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Foreword

Intracranial EEG (iEEG) is a unique tool that needs to be cherished beyond any
other in Neuroscience. Here is why: brain “areas” do not operate in isolated silos,
and “single” neurons do not exist. Any cognitive function or behavior is anchored in
an interplay across regions of the brain, each encompassing millions and millions of
neurons.We need tomove to a system-level approach to understand large brains, such
as the humanbrain.Noother tool has the samepower as the iEEG to address important
system-wide questions through simultaneous recordings across many regions.

The iEEG method shines where the neuroimaging methods failed. The imaging
studies in the last several decades gave us a beautiful yet static and frozen view of the
brain that did not reveal much about the dynamics of operations across regions on
a fast temporal scale when humans are engaged in a task. The subsecond temporal
resolution of iEEG is a blessing.

Also, neuroimaging methods have relied heavily on the subtractive method (i.e.,
comparing activity between two conditions),which reveals areas of the brain in colors
and the rest of the brain in black as if the dark ones are entirely silent and sleeping
during the task—nothing could be farther from truth. Comparing the activity of a
given site with its own baseline is another advantage of the iEEG that should not be
forgotten.

Now lately, the pendulum in research has swung to the other end of the spec-
trumwith complex computational matrices showing checkerboard patterns with little
regard to the very specific anatomical architecture of the brain—almost as if the brain
works in silico. The anatomical precision of the iEEG recordings makes it a method
of choice for revealing the neuroanatomy of the brain’s functional architecture.

Another important advantage of the iEEG is that it has a very high signal-to-
noise ratio. This allows us to reach statistical significance at the single subject,
or even single trial, level, allowing us to decipher the mode of a brain operation
in real time in naturalistic settings. Reliance on group analysis, combined with
smoothing and averaging of the signal across subjects, always will blur functional
organizations in the native individual brain space and may give us an erroneous
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vi Foreword

view of the brain at the individual subject level. The high signal-to-noise ratio of
iEEG takes care of this potentially big problem. The iEEG signal always carries the
individual anatomical source information; hence, the “i” in iEEG could also refer to
the I—as in “Me”—signal.

I often get asked why iEEG and why not single-unit recordings. I answer the
question by stating the obvious: iEEG is far superior to single-cell recordings in
capturing the oscillatory dynamics of activity locally and across brain regions. As
such, the signals captured with iEEG electrodes reveal the profile of engagement of
a population of neurons at the mesoscale level rather than the behavior of a few
neurons at a micro-scale level. Yes, the recorded signal only denotes the engagement
of the forest underneath or around the electrode. It does not reveal the precise code of
computation within a tree of neurons or across the branches of adjacent trees. But no
one argues that the human mind works with single neurons detached from their local
populations. No one defends the view that a given region works independently from
other nodes of a distributed system. Yes, I admit that the iEEG recordings capture
signals from a population of neurons, which is a coarse method. In all honesty,
however, there are no single neurons in the brains as there are no single phrenolog-
ical sites. Millions of neurons operate in functional columns, which work closely
together and simultaneously so, with other functional units that are further away.
Recording the chatter in the dendritic “forest” is the best we have gotten to capture
the mode of local engagement in a widespread net of regions working together. Once
we understand the oscillatory dynamics of interactions, we can dive into the oper-
ation of local circuitries and neuronal ensembles and then into single neurons. The
blindness of the iEEG signal to the micrometer space may be a blessing in disguise!
Neighboring populations of the brain are known to be connected with regions that
perform similar computational roles. Thus, the mesoscopic level of information may
have more practical utility than the microscopic level at the individual neuron level.

Lastly, from yet another practical point of view, the most significant benefit of
iEEG is that implanted electrodes can deliver electrical pulses that affect the activity
of a population of neurons and their interconnected nodes. The electricity propagates
within a specific anatomically organized and hardwired circuit. Thus, the technique
confers the ability to stimulate the human brain at specific recording sites and specific
functional systems to test the causal relevance of a given brain area or a system for
a particular function. It also allows one to probe the effect of perturbation of a given
node of a functional systemon the individual’s subjective state. This sets human iEEG
apart from all other electrophysiological recordings. Human subjects can report what
is going on in their “mind” when we stimulate a given brain region. No human mind
will be altered by changing the activity of a single neuron. Additionally, by delivering
repeated single pulses in a given site and recording simultaneously in other brain
regions, one can connect the immediate effect of perturbing a node to the rest of the
network to which it belongs.

Overall, I remain excited about the future of iEEG and how much it will teach us
about our brains. I look forward to learning new things from my colleagues when I
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read their chapters and I am positive that my excitement, and yours, will be much
higher when we finish reading this excellent book that Nikolai has elegantly put
together.

Remain excited about the iEEG and do not settle!

Dr. Josef Parvizi



Introduction: What Can You Expect
in This Book?

As the name suggests, cognitive neuroscience has two aims: understanding the mind
and understanding the brain. Again not surprisingly, cognitive neuroscience is built
upon the premise that these two aims are inextricably intertwined: That a profound
understanding of cognitive functions is only possible when their emergence from
basic biological mechanisms is elucidated and that the major function of the brain
is to enable cognition. The methods that are used to investigate the neural basis of
cognition can be distinguished based on the precision with which they address each
of these two aims. On the one end of this continuum are studies in simple organ-
isms like C. elegans or Drosophila that allow for a very detailed analysis of neural
mechanisms at subcellular resolution, but investigate only relatively rudimentary and
basic cognitive processes. On the other extreme are non-invasive studies in humans
that provide access to rich and complex behavior and cognitive functions, but are
substantially limited in their temporal and spatial resolution (invasive recordings in
rodents, primates, and other animals are somewhere in-between).

Intracranial EEG (iEEG) recordings provide the best of both worlds: They allow
studying neural processes in awake and behaving human beings at millisecond
temporal resolution, millimeter spatial resolution, and at a high signal-to-noise ratio,
giving access to both the neocortex and to small brain structures like the hippocampus,
the amygdala, or thalamic nuclei that are located deep inside the brain. In some
situations—which, of course, need to be clearly limited by medical and safety
considerations—iEEG electrodes cannot only be used to record data during cogni-
tive paradigms, but also to deliver electrical stimulation, which enables a causal
understanding of how cognitive functions emerge from neural processing.

Are iEEG recordings the “gold standard of cognitive” neuroscience? Well, they
clearly have their challenges and disadvantages as well. First of all, such record-
ings are only possible in patient populations—most importantly, presurgical epilepsy
patients—who are implanted with electrodes for clinical reasons. Data acquisition
is thus more challenging and time-consuming than recording data in healthy partic-
ipants. Moreover, iEEG experiments typically have to be shorter than recordings in
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x Introduction: What Can You Expect in This Book?

young and enduring students, and the cognitive performance of patients is more vari-
able. And once the data have been acquired, their analysis poses novel challenges—
for example, they contain other types of artifacts than those which are known from
EEG and MEG data, they are sampled from highly variable patterns of electrodes,
and they require special considerations for referencing. Last but not least, the statis-
tical analysis of these heterogenous data is more challenging than analysis of EEG
or MEG data with standardized recording schemes.

When I started working with iEEG almost 20 years ago, I was in the lucky situ-
ation to be in a clinical and scientific environment with extensive experience of
dealing with these data. Since then, I collected data from hundreds of patients and
started substantial collaborations on this method with labs around the world—which
is critical, because there are only very few clinical sites that provide access to large
enough data for comprehensive studies in isolation. More importantly, data anal-
ysis approaches are highly heterogenous across different labs, reflecting diverse and
complementary research traditions and scientific approaches. In my opinion, this
heterogeneity needs to be embraced, because it reduces the risk of a limited approach
to understanding brain and cognition—while there are clear obstacles and pitfalls that
need to be avoided, there is more than one correct way to analyze the data.

However, this situation is difficult for newcomers who just start doing iEEG
research, and also for experienced researchers, it is hard to keep track of all method-
ological developments in the field. This volume is supposed to serve both the beginner
and the expert. It is meant to provide guidelines for basic steps, to help navigate the
complexity of analysis decisions to take, and to inspire a large community to apply
the most sophisticated and state-of-the-art approaches.

The book is divided into four larger sections. The first section covers some general
and basic aspects of iEEG studies, including their clinical background—i.e., the
patient populations (Chap. 1), their cognitive status (Chap. 2), and the impact of
epilepsy on cognitive performance (Chap. 3). Most iEEG researchers do not have a
background in both medicine and (neuro-)psychology, but some knowledge in both
disciplines is necessary to successfully plan and conduct patient studies in a hospital
setting and to interpret the findings and their limitations. Indeed, recording data in a
clinical environment involves various practical challenges that need to be anticipated
and solved. Since these practical issues may differ substantially between hospitals
and since they can be addressed in various different ways, they are discussed in two
complementary chapters (Chaps. 4 and 5). Together, Chaps. 1–5 demonstrate the
substantial heterogeneity of presurgical epilepsy patients and emphasize the factors
that need to be considered when interpreting data from iEEG studies; all of this infor-
mation should be described in the papers that arise from these studies. These chapters
are followed by two chapters on ethical questions of iEEG studies (Chaps. 6 and 7),
which address many important issues—starting with the special status and possible
role conflicts of the “clinician-researcher” to far-ranging philosophical questions
on the impact of novel recording and stimulation approaches on personal identity,
agency, and privacy. While Chap. 6 addresses more general issues, Chap. 7 specif-
ically focuses on ethical questions related to microwires and Utah arrays, whose
implantation may provide no direct clinical benefit for the patient and thus requires
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specific considerations, including complex question of informed consent in patients
with possibly reduced decision-making abilities. A subsequent chapter addresses the
overall contribution of iEEG research as compared to other methods in the cogni-
tive neurosciences, a critical issue that needs to be considered when planning the
recording modality that is optimally suited to address a specific research question
(Chap. 8). Once a decision is made in favor of iEEG, a logical follow-up question
concerns the required sample size. The next chapter thus discusses the amount of data
that is needed for an iEEG study and critically compares the different rationale, bene-
fits, and limitations of single-case studies, studies in small groups of patients, and
large-scale investigations (Chap. 9). Large samples also allow for analyses of inter-
individual differences as well as (cross-sectional) developmental studies, a relatively
novel and important approach that is discussed in a subsequent chapter (Chap. 10).
The concluding chapter of the first section discusses whether cognitive neuroscience
research in iEEG patients has a clinical benefit (Chap. 11).While this is often implic-
itly assumed, it is less commonly directly demonstrated, and the chapter describes
several examples where iEEG cognitive neuroscience research has fundamentally
changed clinical reasoning and surgical planning in epilepsy patients.

The second section addresses the physiological basis and the functional role of
iEEG signals, with a particular focus on oscillations. The section starts with chapters
that discuss how iEEG signals compare to other data modalities including non-
invasive methods (EEG, MEG, and fMRI) and to recordings via microelectrodes.
Ideally, this comparison requires simultaneous data acquisition, and the first two
chapters address the promises and challenges of simultaneous recordings of iEEG
and scalp EEG data (Chap. 12) and of iEEG and MEG data (Chap. 13). In addition,
some studies have now conducted eye-tracking during iEEG recordings, which may
not only help to identify eyemovement-related artifacts in iEEG data but also provide
exciting novel insights into the neural mechanisms underlying active visual sampling
of our environments (Chap. 14). Such multimodal data are not only challenging to
acquire, but also their analysis raises novel questions. Chapter 15 outlines dedicated
analytical frameworks for the combination of multimodal data, be they recorded
simultaneously or consecutively. While iEEG allows measuring the activity of rela-
tively small neural assemblies across a wide range of frequencies, it does not have the
spatial resolution and single-cell recording capability that microelectrodes provide.
This situation is described in Chap. 16 and illustrated with various recent examples.
The next chapter provides an in-depth discussion of the spatial resolution of iEEG as
compared to microelectrode recordings—an important topic for the interpretation of
data from both modalities (Chap. 17). Relatedly, Chap. 18 describes the relationship
between spikes and field potentials recorded via novel subdural hybrid electrodes.
The following chapters then turn to the functional relevance of iEEG oscillations.
Chapter 19 proposes a taxonomy on the relationship of specific oscillatory features to
fundamental brain computations and cognitive functions. In addition to task-related
activity, iEEG data can also be collected during resting states, sleep, and anesthesia;
the opportunities and challenges of these recordings are addressed inChap. 20. Subse-
quently, Chap. 21 discusses the cognitive function of activity during these apparent
“resting” periods and reviews recent studies in this emerging field of research. The
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detection of narrow-band oscillations and their delineation from aperiodic activity
can be challenging, and various algorithms have been suggested for this purpose,
which are discussed in Chaps. 22 and 23. While the first of these chapters describes
the technical background of various algorithms, which can be applied to oscillations
at any frequency, the second specifically addresses the case of low-frequency oscil-
lations during navigation. Apart from the distinction of narrow-band and aperiodic
activity, the delineation of physiological and pathological brain processes can be
difficult. This is particularly the case for high-frequency oscillations (ripples), and
Chap. 24 is devoted to this topic. The section concludes with two chapters on more
advanced topics, namely the differentiation of oscillations that reflect bottom-up vs.
top-down processing of information (Chap. 25) and the relationship of iEEG oscil-
lations to gene expression patterns and in vitro electrophysiological data that can be
assessed ex-vivo, i.e., in resected brain specimens (Chap. 26).

Section III covers the complex and far-ranging issues related to data analysis in
more detail. As mentioned earlier, iEEG data analysis is particularly challenging
because of the heterogeneity of research approaches; nevertheless, while the exact
procedures depend on the scientific question of individual studies, some general
guidelines can be provided. Notably, the section focuses on questions that are specific
for iEEG rather than those that need to be considered for electrophysiological data
analysis in general; for example, topics such as baseline correction, analysis of event-
related potentials, or time-frequency transformation that are equally relevant for EEG
and MEG data are not considered here, and the reader is referred to other treatises
of these topics. The section starts with an overview of procedures for electrode
localization, which can be challenging because of different recording modalities of
pre- and postimplantation images, brain shift, and other factors (Chap. 27). This
is followed by a thorough and detailed description of the implications of different
referencing schemes and their impact on data quality and the interpretation of results
(Chap. 28). One of the major challenges when conducting group analyses of iEEG
data as compared to EEG or MEG data are the heterogeneous implantation schemes.
Several options have been proposed for how to deal with this heterogeneity, which
are discussed in Chap. 29.More specific questions concern advanced approaches that
have been recently applied in an increasing number of studies: The detection and
analysis of “traveling waves” (Chap. 30) and the application of “frequency tagging”
for the investigation of various perceptual and cognitive functions (Chap. 31). The
next series of chapters discuss the wide field of bivariate or connectivity analyses.
While connectivity can to a certain extent also be analyzed in EEG and MEG data,
the reduced spatial resolution of these methods makes it more difficult to disentangle
multiple sources whose interactions may then be analyzed. IEEG data appear ideally
suited for these approaches; on the other hand, the inherently limited sampling of
brain activity due to the sparse and variable implantation schemes poses impor-
tant challenges again. Chapter 32 provides a comprehensive overview of various
methods for connectivity analyses, discusses their respective benefits, and provides
guidelines to avoid pitfalls. Patterns of functional connectivity can be conceptual-
ized as networks, and Chap. 33 discusses the analysis and cognitive function of
large-scale brain networks that can be observed during both resting periods and
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cognitive paradigms. Following connectivity (bivariate) analysis, the recent years
have seen a rapid development in the application of multivariate analyses, which
are particularly important for the identification of stimulus-specific activity patterns.
These important approaches are described in Chap. 34. The next chapters concern
various aspects of statistical analyses, whichmay be relevant for univariate, bivariate,
and multivariate data: Chap. 35 provides practical guidelines and recommendations
on how to conduct non-parametric surrogate analyses, and Chap. 36 describes the
application of multi-level models—two approaches that are ideally suited for iEEG
data and have been increasingly applied recently. Chapter 37 addresses the important
question of circular analyses and how to avoid them, a crucial topic in the context of
the replication crisis of all cognitive sciences, including iEEG research. Relatedly,
Chap. 38 provides recommendations for data sharing and open science. While publi-
cation of research data in open-access repositories has become common practice
in various research fields, it is still more rare in the field of iEEG, where concerns
for data privacy are particularly important given that the data are acquired from
vulnerable (patient) populations. However, open science procedures that take these
concerns into account have been increasingly applied in the recent past, providing
access to these rare data to an increasing number of scientists.

The final section addresses more advanced aspects related to brain stimulation,
microelectrode recordings, and the application of machine learning and artificial
intelligencemethods for the analysis of iEEGdata. Chapter 39 provides a comprehen-
sive overview of the opportunities and challenges that electrical stimulation studies
provide for cognitive neuroscientists, touching on a wide range of questions and
covering a broad literature. Systematically applying stimulation in patients with
widespread implantation schemes allows one to define causal networks, a topic that
is addressed in Chap. 40. This is followed by Chap. 41 on closed-loop stimula-
tion approaches that are increasingly applied in various neurological and psychiatric
conditions and, for cognitive neuroscientists, offer unique insights into the neural
mechanisms underlying cognitive functions. The next series of chapters addresses
microelectrode recordings, starting with important practical aspects that need to be
considered during the implantation of electrodes (Chap. 42). The following Chap. 43
then provides an overview of analysis pipelines for these data, including the iden-
tification of action potentials (spike detection) and their assignment to single cells
(spike sorting). The next two chapters address more advanced analyses of micro-
electrode data: Chapter 44 focuses on the relationship of spikes to the power and
phase of local field potentials, a topic of high importance for understanding mecha-
nisms of neural coding as well as interactions between network-level and single-cell
activities. Chapter 45 describes how interactions between different brain regions
can be analyzed at the level of single units and local field potentials, providing a
highly detailed and mechanistic account to the analysis of functional connectivity
and information transfer in the brain. These chapters all refer to classical micro-
macroelectrodes (“Behnke-Fried approach”), which have a substantially lower yield
than state-of-the-art devices in animal neuroscience and do not provide laminar infor-
mation, but are stillwidely used because of the substantial burden for clinical approval
of novel electrode designs. However, there are now important developments of novel
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electrodes, which is critical since innovation in neuroscience is strongly dependent on
novel technologies. These developments are described in Chap. 46, which discusses
the opportunities and challenges of laminar microelectrodes.

The next chapters address novel analysis pipelines based onmachine learning and
artificial intelligence. These methods have recently revolutionized cognitive neuro-
science: They provide direct access to the formation, task-related employment, and
transformation of cognitive representations—arguably themost important constructs
in cognitive psychology that could hitherto only be inferred indirectly. Chapter 47
introduces the application of AI methods in iEEG research and capitalizes on two
main fields, the use of AI models as models of cognitive function and their employ-
ment for clinical purposes (e.g., brain-computer interfaces). Related to the first direc-
tion, Chap. 48 describes how machine learning and AI methods can serve to identify
stimulus-driven activity, discusses differences between recording modalities, and
compares these models to more basic approaches. Chapter 49 discusses a more
specific application of machine learning approaches, namely their use to identify
active (i.e., task-related) electrodes during various cognitive functions. Chapter 50
follows up on the multivariate analyses introduced in the preceding section and
focuses on the employment of different kinds of deep neural networks as models of
the neural representations that are recruited during perception, memory, and higher
cognitive functions. Chapter 51 addresses a more clinical direction of AI, namely
the development of brain-computer interfaces based on electrode arrays, in partic-
ular the “Utah array”. The final two chapters are related to chronically implanted
invasive electrodes that can be used for both recording and stimulation. Chapter 52
discusses how these electrodes may serve in the identification of novel biomarkers of
neurological and psychiatric diseases, while Chap. 53 describes their usage for inves-
tigating cognitive functions during ambulatory behavior (i.e., goal-directed spatial
navigation).

This broad overview shows several recurring themes. First, it becomes obvious
that iEEG research is not a field in its infancy anymore, but has seen ample develop-
ments and improved standards in a number of important areas. This starts with ethical
procedures and the relationship between clinical and basic research, touches the intri-
cacies of preprocessing pipelines, and ends with the multiple facets of data analyses
that are now heavily based on time-frequency decompositions and oscillations in
addition to classical time-domain analysis pipelines (even though it has become
clear that many seemingly oscillatory effects actually reflect changes in aperiodic
1/f signals). Various ways to cope with group analyses despite the heterogeneity of
implantation schemes have been proposed, and pitfalls and circular analyses have
been identified.

A second development is a clear tendency toward network analyses. Large-scale
brain networks during both resting states and tasks are relevant for numerous cogni-
tive functions and play an important role in understanding neuropsychiatric disor-
ders. These networks can be defined by their connectivity structure using various
undirected or directed connectivity measures, some of which cannot be well applied
to data from non-invasive recordings. In addition, iEEG offers the unique oppor-
tunity to apply focal stimulation and define causal connectivity and networks via
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the ensuing responses to electric stimulation. Alternatively, networks can be deter-
mined by patterns of univariate responses that are inputted to multivariate analyses
(e.g., pattern classification or representational similarity analysis). In the future, it
will become important to integrate these two approaches that go back to dynamic
systems theory and decoding, respectively, and understand their relationship.

Finally, there are some exciting technological developments. These include novel
electrode designs for combined recordings across multiple levels of brain organiza-
tion as well as closed-loop brain stimulation devices that enable recordings during
natural everyday behaviors including locomotion. These developments may ulti-
mately provide an integrated understanding of brain functions from the cell to small
assemblies and large-scale networks, give access to causalmechanisms, and allow for
ecologically valid and naturalistic experimental paradigms of embodied and situated
cognition. In addition, they hold the promise of new therapeutic interventions in a
wide-ranging spectrum of diseases such as epilepsy, Parkinson’s disease, depression,
or Alzheimer’s disease.

This introduction cannot conclude without a series of thanks and acknowledg-
ments. First of all, I would like to thank the authors for contributing to this book and
providing such deep and comprehensive discussions on a large area of topics. This
is all the more remarkable since writing book chapters is often regarded as cumber-
some and less rewarding than publishing in high-profile journals. I started writing
invitations in the midst of the pandemic, and it was an overwhelming experience to
receive so much positive feedback and later to engage in numerous exciting discus-
sions about the content of the chapters. I would also like to thank Leontina Di Cecco
and Jayarani Premkumar for their continuing support during the extended prepa-
ration process and actually for their benevolent acceptance to extend this process
repeatedly. It was a wonderful and enriching experience to edit this book, and I hope
it may be similarly enriching and enjoyable for the reader!

Dr. Nikolai Axmacher
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Part I
Clinical Background, General Questions

and Practical Considerations



Chapter 1
How Are Patients Selected
for Intracranial EEG Recordings?

Tim Wehner, Kanjana Unnwongse, and Jörg Wellmer

Abstract Intracranial EEG recordings have been employed for decades in the
presurgical workup of people with pharmacoresistant epilepsy. The global aim of this
procedure is to work out if individuals can benefit from epilepsy surgery concerning
seizure control and to tailor surgical intervention tominimize the risk for neurological
and cognitive sequelae. On the individual patient level, intracranial EEG is recom-
mended if incongruent or insufficient data from non-invasive examinations require
further search for the seizure onset (explorative approach), if an assumed seizure
onset/the epileptogenicity of a suspected lesion needs to be proven (confirmative
approach), or if the spatial relationship between seizure onset zone and function-
ally indispensable (“eloquent”) cortex has to be elucidated (functional mapping).
Typical clinical scenarios for invasive EEG recordings are therefore the absence
of a clear epileptogenic lesion, seizure onset potentially remote from an assumed
epileptogenic lesion, potentially multifocal epilepsy, and potential overlap of epilep-
togenic and eloquent cortex. Depending on the given scenario, different invasive
work-up method can be applied: subdural grid and strip electrodes via a craniotomy;
intracerebral implantation of depth electrodes, either in the sense of few, confir-
mative electrodes or following the classical “French-Italian” stereo-EEG concept;
variations of both. While the subdural approach allows systematic sampling and
electrocortical mapping of cortical surface areas (gyral crowns), in particular the
frontoparietal convexity, neocortical temporal areas, and mesial frontal and parietal
areas, the depth electrodes method permits the evaluation of deep cortical areas,
including temporo-mesial structures, as well as bihemispheric target areas.

1.1 Prologue

For everybody who is not working in the field of epileptology, the easiest approach
to understand the rationale and the principles of intracranial electroencephalography

T. Wehner (B) · K. Unnwongse · J. Wellmer
Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus
Bochum, In der Schornau 23-25, 44892 Bochum, Germany
e-mail: tim.wehner@kk-bochum.de
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(EEG) recordings is the “fuse box model” of the brain and focal epilepsies. We
use this model to explain to our patients with pharmacoresistant focal epilepsy the
rationale for electrical recordings directly from their brain:

Imagine your brain is the central fuse box of your house—then epileptic seizures are
like short circuits in this fuse box. If you repeatedly recognize an identical electrical
dysfunction in your house (electricity first breaks down in the kitchen, then in the
basement and next in the garage), you might find the explanation in the layout or
“anatomy” of your central fuse box. The kitchen is protected by fuse #14, basement
by fuse #15, garage by fuse #16. This makes it likely that only fuse #14 is defect and
that the remaining dysfunction is just the result of a spread to neighboring fuses. After
our non-invasive examination including scalp EEG delivered only an approximation
where in your “fuse box” brain the dysfunction responsible for your seizures might
be located, we suggest further EEG recordings directly from your brain to make sure
which “fuse” exactly is responsible for your seizures. This will help us identifying a
target for possible surgical intervention.

In fact, this model can explain all steps of intracranial presurgical work-up to
patients and other laypersons, from candidate selection, via planning and placement
of electrodes to eventual surgical recommendations and surgery.

In the following,wedono longer refer to thismodel butmove to the epileptological
literature. The goal of this chapter is to provide cognitive neuro-scientists with a brief
didactic overviewof the rationale for intracranial EEG recordings.Wewill discuss the
diagnosticmodalities used in the presurgical epilepsyworkup, the different recording
techniques of intracranial EEG, and the rationale for their use. Illustrative cases are
provided. It is, however, beyond the scope of this chapter to discuss technical details
and limits of each diagnostic modality.

1.2 Who is a Candidate for a Presurgical Epilepsy
Work-Up?

In the vast majority of people with epilepsy, the disease is defined by recurrent
unprovoked epileptic seizures [9]. Up to 70%of peoplewith epilepsy can be rendered
seizure-free by taking anti-seizure medications. These patients are not considered
candidates for a neurosurgical intervention unless there is a primary neurosurgical
indication such as a brain tumor or a cavernoma. In these cases, seizure freedommay
be a welcomed by-effect of the operation.

In about 30% of epilepsy patients, however, seizure control is not possible by
medication alone (pharmacoresistant epilepsy). Among these, a majority suffer from
“focal epilepsy”. For a simplified approach in this chapter, this term refers to epilep-
sies with an identifiable circumscribed seizure generating area and a perspective of
seizure freedom after its removal.
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The goal of a presurgical epilepsy workup is to define the brain area that is
responsible for the generation of seizures, and to estimate the risks of its resection,
destruction or disconnection. This “seizure generating area” is called the epilepto-
genic zone.1 There is currently no imaging modality available to directly display the
epileptogenic zone. However, if epilepsy surgery results in seizure freedom, one can
infer that the epileptogenic zone was removed, destroyed or disconnected. In prac-
tical terms, the epileptogenic zone can be approximated using five different zones
that in turn can be estimated by diagnostic tests [18]:

• The symptomatogenic zone is the brain area that generates ictal symptoms. This
information is gathered from the clinical history and the observation of seizures
during video-EEG-monitoring (Table 1.1).

• The irritative zone is the cortical area that generates interictal epileptiform
discharges.

• The seizure onset zone is the brain area that generates the initial ictal discharges.
Interictal epileptiform discharges and ictal patterns are recorded by EEG (and
potentially magnetoencephalography, MEG), and interpreted via visual analysis
and increasingly also using complexmathematical algorithms (source analysis, [5,
7, 10, 30]). In selected cases, ictal single-photon emission computed tomography
(SPECT) is helpful to identify the area of seizure onset and early propagation if
this is not possible using EEG [22].

• The epileptogenic lesion is a structural brain abnormality, usually identified by
magnet resonance imaging (MRI), which is a (potential) cause of the epilepsy.
In patients who ultimately underwent epilepsy surgery, the most common epilep-
togenic lesions are hippocampal sclerosis, long-term epilepsy associated tumors
such as ganglioglioma and dysembryoplastic neuroepithelial tumors, malforma-
tions of cortical development including focal cortical dysplasias, cavernomatous
angioma, gliotic residua of a stroke or a traumatic brain injury, and encephalitis
[4]. MRI postprocessing may be used to detect subtle focal cortical dysplasias
[11, 24, 25], however pharmacoresistant focal epilepsy is amenable to surgical
treatment even in the absence of a structural lesion on MRI.

• The functional deficit zone is a brain area that is functionally compromised in
the interictal state. Brain function is assessed during the clinical neurological
examination, as well as detailed neuropsychological testing (see also Chap. 2). In
some patients, fluoro-desoxy-glucose positron emission tomography (FDG-PET)
is used to detect cerebral areas with reduced glucose uptake.

• In addition, eloquent cortical areas and white matter tracts may need to be identi-
fied if the putative epileptogenic zone is closely related to areas that are function-
ally indispensable. These can be approximated using functional MRI, diffusion
tensor imaging (DTI), and electrocortical stimulation (see also Chap. 39) intra-
and extraoperatively.

1 For the purpose of this chapter, we use the term “epileptogenic zone” as defined by Rosenow and
Lüders [18], since we find the concept of the various zones helpful from a didactic point of view.
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Table 1.1 Ictal symptoms and signs with localizing or lateralizing value, adapted from [21]

Clinical feature Description Typical localization;
Lateralization

Sensory domain

Somatosensory aura Unilateral, localized tingling,
numbness, electrical sensation,
heat, pain, sense of movement
or desire to move

Primary sensory cortex,
secondary somatosensory
areas; contralateral (if
unilateral)

Simple visual aura Flashing or flickering lights,
spots, patterns, scotoma,
amaurosis

Primary visual cortex;
contralateral

Complex visual aura Visual distortions, changes in
dimension

Visual association cortex;
contralateral if unilateral

Auditory aura Buzzing or drumming sounds,
single tones, melodies

Primary and secondary
auditory cortex; contralateral
if unilateral

Olfactory aura Burning, rotten, unnatural
unpleasant smells

Amygdala, insula,
frontobasal; non-lateralizing

Gustatory aura Metallic or rubbery, unnatural
unpleasant taste

Parietal operculum, basal
temporal cortex;
non-lateralizing

Abdominal aura Nausea, emptiness, tightness,
rising sensation in abdomen
and/or chest

Insula; non-lateralizing

Vertiginous aura Temporoparietal
junction; non-lateralizing

Psychic domain

Fear Amygdala, hippocampus,
mesial frontal cortex;
non-lateralizing

Distortions of familiarity Déjà vu: sensation of being
familiar with a new situation;
Jamais vu: sensation that a
familiar context appears new

Mesial temporal, temporal
association cortex, rhinal
cortex; non-lateralizing

Multisensory hallucinations Revocation of complex
memories

Mesiobasal limbic cortex,
neocortical temporal,
temporo-parieto-occipital
junction;
non-lateralizing

Autonomic domain

Autonomic alterations Hot flashes, hypersecretion,
piloerection, sweating,
vomiting, tachycardia

Mesial temporal, insula,
anterior cingulum,
orbitofrontal;
non-lateralizing

(continued)
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Table 1.1 (continued)

Clinical feature Description Typical localization;
Lateralization

Motor domain

Focal clonic activity Unilateral, localized, rhythmic
repetitive movements

Primary and secondary
motor cortex; contralateral

Focal tonic activity Unilateral, sustained muscle
contraction

Supplementary motor area,
secondary motor cortex,
anterior cingulum;
contralateral

Versive head/eyes Sustained, forced conjugate
ocular, cephalic, and/or truncal
rotation or lateral deviation

Secondary motor cortex,
frontal eye fields;
contralateral

Unilateral dystonic arm
posturing

Sustained contraction of agonist
and antagonist muscles,
resulting in pronation and
extension of the forearm, flexion
of the wrist, extension of the
digits

Basal ganglia activation;
contralateral

Figure of four sign Asymmetric contraction of
upper limbs resembling the
number “4” with arm extension
contralateral to focus, ipsilateral
arm flexed at elbow, occurring
during initial phase of bilateral
tonic–clonic seizure

Supplementary motor area,
precentral areas;
contralateral

Automatisms with preserved
responsiveness

Coordinated, repetitive, motor
activity without impaired
awareness

Temporal lobe;
non-dominant

Postictal paresis Postictal weakness involving
arm, face, or leg

Exhaustion of primary or
secondary motor cortex;
contralateral

Asymmetric termination of the
clonic phase

Unilateral persistence of clonic
jerks at the end of bilateral
tonic–clonic seizure

Exhaustion of hemisphere of
seizure onset; ipsilateral

Language domain

Ictal/postictal aphasia Inability to speak or
comprehend with preserved
consciousness

Anterior and posterior
language areas; dominant

Ictal speech Ability to speak out of
situational context with
impaired awareness

Temporal; non-dominant
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Symptoms experienced by the patient at the beginning of a seizure (epileptic aura)
and clinical signs observed during a seizure provide potential localizing and lateral-
izing information with regards to the hemisphere or lobe of seizure origin. Common
signs and symptoms with localizing or lateralizing value are listed in Table 1.1 [21].

The first step of the presurgical workup is commonly called “non-invasive
workup” and comprises a standardized set of diagnostics: a detailed history of
seizure semiology, clinical neurological examination, scalp video-EEG recording
of all habitual seizure types, brain MRI using a dedicated protocol with a high yield
for epileptogenic lesions [3, 27], neuropsychological testing, and functional MRI to
determine the language dominant hemisphere. In somepatients, further imaging tech-
niques such as FDG-PET, ictal SPECT, and MEG are used if the results of the stan-
dard workup are uninformative or contradictory. The diagnostic accuracy and yield
of long-term scalp video-EEG [13], interictal and ictal source imaging [14, 19] and
MRI [17] in the presurgical epilepsy evaluation have been systematically examined.
However, for individual treatment decisions, the combined assessment of all avail-
able examinations supersedes the contribution of an individual technique. The results
of the non-invasive workup are integrated to formulate a hypothesis about the epilep-
togenic zone and its extent, and an assessment of the potential risks associated with
surgical treatment. Typically, this is done in amultidisciplinary conferencewith input
from epileptologists, neuropsychologists, neuroradiologists, and neurosurgeons.

In principle, one of the following scenarios applies (Fig. 1.1):

Fig. 1.1 Decision making in epilepsy surgery, adapted from [26]. Ecog—Electrocorticography,
EEG—Electroencephalography ± source analysis, iEEG—intracranial EEG, LITT—Laser inter-
stitial thermotherapy, L-RFTC—lesion-based radiofrequency thermocoagulation, MRI—Magnetic
resonance imaging, PET—positron emission tomography, SPECT—single photon emission
computed tomography
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A. The area of seizure origin can be identified with a high degree of certainty
based on seizure semiology and ictal and interictal EEG findings; MRI reveals a
matching epileptogenic lesion; and the risk of its surgical treatment is low. In this
scenario, surgical treatment can be recommended without the need for further
investigations. A typical example is a patient with a single seizure semiology
suggestive of mesial temporal sclerosis, corresponding ictal and interical EEG
findings, ipsilateral hippocampal sclerosis on MRI, and a matching profile on
neuropsychological examination.

B. The non-invasively obtained data result in a hypothesis about the suspected
area of seizure onset, however no immediate surgical strategy can be formu-
lated. In this case, further intracranial EEG recordings may confirm or reject the
hypothesis. Typical examples are patients without clear epileptogenic lesion,
with extensive or several epileptogenic lesions and/or discordant findings in
the non-invasive diagnostic modalities. In representative European epilepsy
centers, intracranial EEG recordings are used in approximately 30% of cases
who ultimately undergo epilepsy surgery [2].

C. The putative seizure onset zone is closely related to eloquent cortical areas
and/orwhitematter tracts. Therefore, detailedmappingof the patient’s individual
functional anatomy is needed to define the boundaries of a (possible) resection.

D. The suspected area is large and/or involves both cerebral hemispheres. In this
situation, no surgical treatment options other than palliative measures (subpial
transsections, corpus callosotomy, neurostimulation, [8]) are available (for
neurostimulation, see also Chaps. 52 and 53). A typical example is a patient with
multifocal epilepsy in the setting ofmultiple bihemispheric nodular heterotopias.

1.3 Different Methodological Approaches to Intracranial
EEG

Intracranial EEG recordings have been used since the 1950s using two different
approaches, their development thus predates the era of modern neuroimaging [6].

The North American school utilized subdural grid- and strip electrodes, in some
cases combined with few depth electrodes. This approach allows the systematic
evaluation of relatively large cortical areas, in particular the frontal and temporal
convexity, the mesial frontal and parietal surface, and the temporal pole. Amygdala
and hippocampus can be sampled from strip electrodes placed underneath the basal
temporal surface. The implantation of grid and strip electrodes requires a craniotomy,
and recordings are largely limited to structures in one cerebral hemisphere.

The French-Italian approach employs multiple stereotactically implanted depth
electrodes to study the area of seizure onset and propagation. Thismethod, also called
stereo-EEG, allows sampling from non-contiguous and bihemispheric areas, as well
as areas remote from the cerebral surface, such as the amygdala, hippocampus, and
insula. The implantation of depth electrodes is done via multiple small skull drills,
utilizing either a stereotactic frame, a robot, or a frameless approach. In order to
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choose safe implantation trajectories, cerebral blood vessels and sulcal boundaries
are avoided.

It is important to stress that bothmethods of intracranial EEG suffer from sampling
bias: In either approach, only a relatively small amount of cerebral cortex can be
sampled. The information obtained with intracranial recordings therefore largely
depends on the strength and precision of the pre-implantation hypothesis. In other
words, an ill-devised intracranial EEG investigationwith randomsampling of cortical
areas (“fishing expedition”) is unlikely to result in the formulation of an individually
tailored surgical treatment plan.

It is further important to note that both types of intracranial recording require
a neurosurgical operation under general anesthesia for the placement of the elec-
trodes, and are therefore associated with the general risks of neurosurgery (bleeding,
infection, perioperative infarction, venous thromboembolism). According to a recent
meta-analysis, the most common risks associated with subdural grid electrodes
are neurologic infections (2.3%), superficial infections (3%), intracranial hemor-
rhage (4%), and elevated intracranial pressure (2.4%), with up to 3.5% of patients
requiring additional surgical procedure(s) to manage these adverse events [1]. For
SEEG implantations, the most common risks are hemorrhage (1%) and infections
(0.8%, [15]). Because of the lower morbidity associated with SEEG compared to
subdural grid recordings, the former is increasingly used in many epilepsy surgery
programs around the world [2, 20].

For both types of implantations, the neurosurgical risks increase with the number
of electrodes and electrode contacts implanted.One therefore has to balance the desire
for most comprehensive EEG sampling with the need to limit the risks associated
with the recording.

From the conceptional point of view, intracranial presurgical work-up that is
applied for delineation of the seizure onset zone can follow a confirmative or
explorative strategy, or a combination of both (Fig. 1.1, [26]).

In a confirmative scenario, there is a strong hypothesis about the seizure onset
zone, typically based on the presence of a (suspected) epileptogenic lesion. In this
case, the goal of the intracranial recording may be to prove that ictal discharges
are generated from the epileptogenic lesion or its immediate vicinity, and that these
predate the onset of ictal EEG changes seen on simultaneous scalp recordings as
well as the initial ictal symptoms and signs. In this setting, a limited number of depth
electrodes may be used. Typical clinical scenarios are:

(1) a presentation of temporal lobe epilepsy in the setting of unilateral hippocampal
sclerosis, but equivocal ictal EEG patterns, and

(2) suspected focal cortical dysplasia and non-specific seizure semiology and/or
ictal EEG findings (illustrative case 1, Fig. 1.2).

In an explorative scenario, there is often no clear epileptogenic lesion. Seizure
semiology and interictal and ictal EEG findings suggest a hypothesis with regards
to the epileptogenic zone, however a variety of brain areas need to be considered
(or excluded) as seizure onset areas (illustrative case 2, Fig. 1.3). Typical clinical
scenarios are patients with nonlesional MRI or more than one epileptogenic lesion,
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Fig. 1.2 a Coronal fluid attenuated inversion recovery MRI showing a small area of blurring of
the grey-white matter junction in the left frontal sulcus. b Implantation scheme of stereotactically
placed depth electrodes targeting the MRI abnormality (electrodes D + E), solutions of source
localization algorithms based on interictal EEG and MEG recordings (electrodes A-C) and one
interspaced gyrus (F). c Ictal onset on intracranial EEG, contacts E 3 + 4, and propagation to
contacts F 4–6, D 1–4, and A 1–4. Tracing labels on the left refer to electrode labels in fig. B.
Referential montage, the uppermost line for each tracing refers to the electrode contact furthest
from the surface. Single-channel EKG at the bottom. Ten second gap between the left and the right
EEG page

non-specific ictal symptoms and signs at the seizure onset, and/or equivocal surface
EEG findings, or patients in whom non-invasive evaluation suggests the possibility
of bilateral temporal lobe epilepsy.

The decision for a particular implantation strategy (grids ± few depth electrodes
vs stereotactically implanted depth electrodes) takes into account individual patient
circumstances and the expertise of the epilepsy surgery team. A traditional indication
for an exploration with subdural grid electrodes is the need to perform extraoperative
functional mapping using electrocortical stimulation, in particular if the suspected
epileptogenic zone is close to eloquent cortex (illustrative case 3, Fig. 1.4). This can
alternatively be done intraoperatively, with or without an “awake” approach during
which the patient is woken up after the craniotomy has been performed.
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Fig. 1.3 a Explorative SEEG-implantation scheme used in patient 2, photograph of electrode bolts
in situ. b Electrode position reconstruction to surface-rendered MRI. Electrode labels and corre-
sponding anatomical targets: A—entorhinal cortex, B—amygdala, C—anterior hippocampus, D—
parahippocampal gyrus, E—posterior hippocampus, F—posterior cingulate, G—anterior lingual
gyrus, H—temporo-occipital junction, I—temporo-occipital base, K—temporoparietal junction,
L—posterior lingual gyrus, M—posterior insula. c Ictal onset on intracranial EEG as explained in
the text. Tracing labels on the left refer to electrode labels in Fig. 1.3A+B.Bipolarmontage of adja-
cent electrode contacts, the uppermost line for each tracing refers to the channel linking electrode
contacts 1–2 (furthest from the cortical surface). Only selected electrodes shown. Single-channel
ECG at the bottom

As outlined above, the SEEG approach is increasingly becoming the preferred
approach in many epilepsy surgery programs.

The decision for a specific implantation plan considers all the data obtained
during the non-invasive workup to define target areas for implantation. Planning
is facilitated if data points can be integrated and displayed in a multimodal imaging
platform, in which all datasets are coregistered to a common volumetric MPRAGE
(T1-weighted) MRI sequence [16]. Although implantation schemes are tailored to
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Fig. 1.4 a Axial FLAIR MRI demonstrates a hyperintense lesion in the left middle frontal gyrus
and sulcus. b Summary of the intracranial EEG recording and extraoperative electrocortical
stimulation (ECS), electrode contact position based on intraoperative photograph

the individual clinical scenario, there are common targets for implantation, in partic-
ular the mesial temporal structures. In our center, we investigate these with a stan-
dardized approach using five depth electrodes inserted through the temporal bone,
targeting the entorhinal cortex, amygdala, anterior and posterior hippocampus, and
parahippocampal gyrus.

Both methods of intracranial EEG recording have shaped our understanding of
seizure initiation and propagation within the brain, in particular since they have
been used in parallel with the development of modern neuroimaging techniques.
As a result of this process, the relationship of the seizure onset zone and different
kinds of epileptogenic lesions has been defined. For example, in small focal cortical
dysplasias, the complete removal or destruction of the abnormality seen on MRI
typically results in seizure freedom, suggesting a complete overlap between the
epileptogenic lesion and the epileptogenic zone [23, 29]. This is also the case in
some—but not all—patients with unilateral hippocampal sclerosis. In particular the
SEEG method has uncovered scenarios in which the epileptogenic zone extends
from the mesial temporal lobe to neocortical temporal, frontal, parietal or insular
areas (“temporal plus epilepsy”, [12]). For other types of MRI abnormality, the
epileptogenic zone may be a subset of the visible lesion, for example in patients with
extensive polymicrogyria or a large gliotic scar. Lastly, in patients with epilepsy and
a brain tumor or cavernous angioma, the MRI abnormality is not necessarily the
epileptogenic lesion.

In addition, intracranial EEG recordings and electrocortical stimulation provide
an opportunity to study the function of the brain, for example by running neuropsy-
chological paradigms and/or implanting combined macro- and microwire electrodes
(further discussed in Chaps. 42–44).
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1.4 Conclusion

Intracranial EEG is—with few exceptions—used in patients who suffer from phar-
macoresistant focal epilepsy, in whom a non-invasive presurgical work up is not
sufficiently able to generate a clear surgical hypothesis or in whom eloquent func-
tions need to be delineated from the epileptological “what to remove” area. The
decision for the type and number of implanted electrodes and implantation targets is
based on the results of the preceding multimodal non-invasive work-up.

1.5 Illustrative Case Scenarios

Case scenario 1: A 17-year-old man presented with seizures from sleep since child-
hood. He was amnestic for the events, woke up in the morning with a headache
and tongue bite. His parents never saw a seizure from the onset, they usually woke
up from a tonic vocalization and then described bilateral stiffening with subsequent
clonic movements of all extremities. On scalp video-EEG, he was found to have
repetitive spikes in the left fronto-central area. Several seizures were recorded from
sleep; the patient abruptly turns his head towards the right and slightly raises his
arms. He loudly utters two incomprehensible words. No further symptoms, the total
duration is less than ten seconds. On immediate postictal testing, he answers ques-
tions and performs tasks appropriately. In most seizures, there is no clear scalp EEG
change, in some there is a subtle rhythmic delta activity over the left frontal area.MRI
was initially interpreted as normal, however on further review a small area of blur-
ring of the cortical-subcortical interface was found in the left superior frontal sulcus
(Fig. 1.2a). These findings raised the suspicion of a small focal cortical dysplasia,
but a vascular tract could not be excluded. The patient therefore underwent further
FDG-PET imaging which revealed a circumscribed area of reduced glucose uptake
coinciding with the MRI finding, and MEG as part of a research study. Neuropsy-
chological testing revealed a profile in the high average range without localizing
domains of relative underfunctioning.

Comment: In this patient, the seizure semiology is consistent with frontal lobe
epilepsy, but does not provide further localizing or lateralizing information. Inter-
ictal and ictal scalp EEG findings broadly coincide with the subtle imaging findings
that are, however, not evidential for a focal cortical dysplasia. The patient therefore
underwent a “confirmatory” implantation of six stereotactically placed depth elec-
trodes targeting the imaging abnormality and adjacent areas suggested by interictal
EEGandMEGsource localization algorithms (Fig. 1.2b). On intracranial EEG, inter-
ictal epileptiform activity was largely confined to the electrodes implanted around
the subtle imaging abnormality. The patient’s habitual seizures arose from the same
contacts with subsequent spread to the neighboring depth electrodes (Fig. 1.2c). The
findings thus confirmed epileptogenicity and seizure origin in the imaging abnor-
mality. The patient subsequently underwent stereotactically guided radio-frequency
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thermocoagulation targeted at the imaging abnormality. This minimally invasive
lesioning approach offers an alternative to an open resection in selected patients with
very circumscribed target volumes for destruction [28]. He has been seizure free for
4.5 years since this procedure, >2 years off anti-seizure medication.

Case scenario 2. A 47-year-old woman had focal epilepsy since age 17 years.
She describes a sensation of numbness in her left arm for a few seconds without
propagation to other parts of her body; subsequently, she may lose awareness. Her
husband reports behavioral arrest, staring and oral automatisms in some seizures.
There is frequent enuresis during seizures. Seizures last up to 5 min and occur on
average once per week.

Non-invasive video-EEG based source analysis revealed epileptiform discharges
in the left anterior temporal area. Habitual seizures were recorded with behavioral
arrest, oral automatisms, left hand fumbling, then arm tonic posturing, head version
to the right, and subsequent tonic–clonicmovements of the right extremities. The first
ictal changes on scalp EEG were seen over the left temporoparietal area, ictal source
localization suggested a seizure onset in the left temporal basal area. MRI using
a dedicated protocol to detect epileptogenic lesions was repeatedly normal. FDG-
PET demonstrated subtle areas of reduced glucose uptake in the temporo-occipital
junction on the left. Her neuropsychological examination showed impaired simple
semantic and complex phonematic fluidity and verbal memory.

Comment: In this patient without an epileptogenic lesion on MRI, the seizure
semiology suggests left hemispheric origin, the initial numbness in the left arm
points to the left insula as a possible symptomatogenic area. The ictal and inter-
ictal EEG findings including source localization imply the left temporal lobe and
temporo-parietal junction, the PET the left temporo-occipital junction. The patient
was thus further investigated using an “explorative” SEEG approach with depth
electrodes implanted into the left entorhinal cortex, amygdala, anterior and poste-
rior hippocampus, parahippocampal gyrus, posterior parahippocampal gyrus, poste-
rior cingulate gyrus, posterior insula and the temporo-occipital-parietal junction
(Fig. 1.3a, b).

On intracranial video-EEG, interictal epileptiform activity was recorded from
the anterior hippocampus, the anterior temporal neocortex, the posterior cingulate,
the posterior middle temporal gyrus, and the lingual gyrus (electrodes A, E, F, G
and L, Fig. 1.3a, b). Four habitual seizures were recorded. The ictal EEG changes
evolved from repetitive spiking in the lingual gyrus (electrode contacts G3 and L2,
left arrows in Fig. 1.3c) with spread towards other contacts on these electrodes and to
neighboring temporo-occipital areas (electrodes I and K, right arrows in Fig. 1.3c).

Case scenario 3: A 24-year-old left-handed man presented with focal seizures
since age 16 years. His seizures start with a “woozy” feeling that he localizes to the
head, then he feels his head rotating to the right in a forced manner, his body follows
his head. This may result in a full 360° body turn. At this point, the seizure may
terminate without any further symptoms, or he may lose consciousness. His family
describes a bilateral tonic clonic seizure, sometimes associated with a right tongue
bite. During scalp video-EEG, rare spikes were seen in the left frontocentral area.
One habitual seizure was recorded;, in addition, five seizures were recorded during
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which he rose from sleep, with some incomprehensible speech and doubling of the
heart rate. In all seizures, scalp EEG changes in both frontocentral regions preceded
the behavioral change by 5–30 s. During the ictal phase, movement artefacts mar the
EEG. MRIs since age 18 years had suggested a focal cortical dysplasia in the left
middle frontal gyrus. At the time of the scalp video-EEG evaluation, theMRI features
had somewhat changed to suggest a neoplastic process (Fig. 1.4a). Neuropsycholog-
ical examination revealed test results in the average and above-average range without
any localized functional deficit. Functional MRI using a word generation paradigm
suggested left hemispheric language dominance.

Comment: Seizure semiology with initial versive rotation of the head and body to
the right indicate early ictal activation of the left frontal eye field (located in the poste-
rior part of the superior frontal sulcus), the interictal and ictal EEG and the location
of the MRI lesion are corresponding. The changes in the MRI suggest a neoplastic
process; hence, there is an indication for a resection of the MRI lesion, independent
from the epileptological perspective. The rationale for intracranial recording in this
case is the need for detailed extraoperative cortical mapping due to the proximity
of the lesion to the precentral gyrus and the anterior language area in the pars trian-
gularis of the inferior frontal gyrus. Therefore, a subdural grid electrode (8 × 8
contacts) is implanted covering the lesion, the central area, and the inferior frontal
area. Results of the intracranial recording are summarized in Fig. 1.4b. The following
aspects illustrate the principles discussed above:

(1) The spontaneous electrographic seizure onset (red dot) is adjacent to the anatom-
ical lesion, however electrocortical stimulation elicits seizures from a more
extensive area (flashes). Interictal epileptiform activity (yellow dots) is recorded
from separate neighboring contacts.

(2) The cortical area of the first ictal symptoms (involuntary eye deviation to the
right, brown dot) is located more than 3 cm posterior from the ictal onset area.

(3) Electrocortical stimulation revealed language functions (green dots) immedi-
ately adjacent to the contacts showing interictal epileptiform activity, extending
from the area suggested by fMRI activity by ~2 cm.

The patient subsequently underwent an awake resection of the lesion in themiddle
frontal gyrus and the adjacent superior frontal gyrus. Histopathology revealed an
angiocentric glioma. Postoperatively, he has been seizure-free for 23 months.
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Chapter 2
Which is the Cognitive Status of Patients
with Epilepsy Undergoing Intracranial
Presurgical Studies, and How is This
Affected by Antiepileptic Drugs?

Philip Grewe and Christian G. Bien

Abstract Patients with drug-resistant focal epilepsy undergoing presurgical assess-
ment may be cognitively impaired. Quality and intensity of these impairments differ
inter- and even intraindividually. They may depend on patient variables (epilep-
togenic lesion, electric ictal and interictal activity, age and epilepsy duration) and
iatrogenic interventions (anti-seizure medication and electrode implantation). This
chapter will both summarize the most frequent cognitive impairments found in
presurgical patients with epilepsy and illustrate factors influencing their cognitive
status. A special focus will be laid on how antiepileptic drugs alter patients’ cogni-
tive functioning. Finally, evidence on how these drugs may alter the signal of the
intracranial EEG recording is reviewed. At the same time, wewill discuss some prac-
tical implications based on this chapter’s clinical neuropsychological perspective for
recording and interpreting experimental data in patients with epilepsy undergoing
intracranial EEG assessment.

2.1 Introduction

Cognitive impairments are among the most frequent symptoms accompanying
chronic focal epilepsy. However, the spectrum of cognitive impairment may severely
vary between patients, with some patients experiencing global cognitive impairment
and some patients not suffering from any cognitive impairment at all. Such different
cognitive phenotypes could be demonstrated applying a cluster-analytical approach
on a comprehensive battery of different neuropsychological measures in a rather
large cohort of 185 presurgical patients with temporal lobe epilepsy (TLE)—the
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Table 2.1 Factors with a potential influence on the cognitive status of patients with epilepsy

Epileptic
activity

Medication Brain lesion Clinical-demographical Psychosocial
and psychiatric

Epileptic
seizures
(frequency,
type,
propagation)

Type of
antiepileptic
drug

Localization Age at epilepsy onset Cognitive
reserve
capacity/IQ

Interictal
epileptoform
discharges

Number of
antiepileptic
drugs

Lateralization Duration of
disease

Psychiatric
comorbidities

Dosage Etiology Language lateralization

Titration time Prior brain
surgery

Blood levels

patient group most frequently presenting in presurgical settings. Whereas 21% of
patients suffered from a global cognitive impairment comprising several cognitive
domains, 49%of patients had selective cognitive impairments limited to single cogni-
tive domains only; the remaining 30% of patients, though, belonged to a cluster
characterized by no cognitive impairment [1]. What is more, the cognitive status
of patients with epilepsy (PWE) may not always be persistent, but may fluctuate
intraindividually due to potentially reversible factors such as the seizure status or
antiepileptic medication. Given these heterogeneous inter- and intraindividual cogni-
tive profiles in presurgical PWE, this chapter will both review cognitive domains
potentially affected in presurgical PWE and the factors known to affect the cognitive
status in individual patients most relevant to the presurgical setting (Table 2.1).

2.2 Cognitive Domains Frequently Affected in Presurgical
Patients with Epilepsy

2.2.1 Memory

Among different cognitive domains, memory processes are prevalently investigated
in iEEG research [2, 3]. At the same time, memory functions are most frequently
affected in PWE which is mainly based on the temporal lobe’s prominent role
for memory processing [4, 5] and the high prevalence of TLE within the group
of focal epilepsies. This especially applies to PWE undergoing presurgical eval-
uation due to high proportions of patients with TLE in this cohort in general [6,
7] and in the subgroup of patients undergoing invasive EEG recordings, in partic-
ular [8, 9]. When estimating the prevalence of memory disturbances in patients
with TLE, numbers between 25–68% have been reported [10–12]. Variance between
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the numbers reported in different studies are likely to result from differences in
neuropsychological measures (i.e., choice of memory measure), definitions of a
“neuropsychological impairment” (e.g., scores <1 SD vs. <2 SD below average), and
in sampling biases due to monocentric studies (e.g., cohorts from surgically active
specialized epilepsy centres vs. cohorts from less-specialized centres). In spite of
these different rates due to methodological differences between studies, complaints
aboutmemory troubles are themost frequently reported impairment amongPWE[13]
which underlines the preponderance of disturbed memory functions in this patient
group.

As “memory” is a rather broad theoretical construct covering different mnemonic
processes and functions [5, 14], one may ask which kind of memory disturbances
are most prominent in PWE. For patients with TLE, anterograde episodic memory
functions are predominantly affected. This is reflected by reduced performance in the
acquisition of novel information (e.g., word-lists, design patterns, prose text, item-
item-associations) and, consequently, reduced performance is most typically found
for test parameters of consolidation and free recall.

While the majority of studies on memory and epilepsy stems from patients with
TLE, there is an increasing number of studies investigating mnemonic functions in
patients with frontal lobe epilepsy (FLE), the second-most frequent type of epilepsy
presenting in presurgical cohorts of PWE.Beside reports of reducedworkingmemory
in FLE [15], there is accumulating evidence that anterograde, long-term memory,
too, may be disturbed in FLE [16]. Due to the relatively low prevalence of FLE—as
compared to TLE—prevalence rates of long-term memory disturbances are hard to
estimate. A recent analysis among our own presurgical cohort found that 15–30% of
patients with FLE presented with disturbed anterograde, verbal memory functions
[12].

In excess to earlier studies focusing on anterograde memory functions, more
recent studies suggest that retrograde memory might also be affected in PWE [17].
Most prominently, retrogradememory disturbancesmaymanifest as reduced recall of
episodic autobiographical memories, whereas recall of personal semantics is mostly
unaffected or at least to a far lesser degree then personal episodes [18, 19]. Measures
of episodic-autobiographicalmemoryusually are not included in standard presurgical
neuropsychological test batteries [20], making it hard to estimate the prevalence of
disturbances in this function among presurgical PWE. Still, it may be supposed
that episodic-autobiographical memory may be affected in a substantial number of
presurgical PWE. This assumption is based on recent studies demonstrating reduced
episodic-autobiographical memory recall not only in patients with TLE but with
FLE as well [21]. In line with this result, our own and others’ clinical experience
[21] show that PWE often complain about reduced episodic-autobiographical recall,
underlining the hypothesis that this type of memory disturbance may be present in a
higher number of PWE than expected so far.

In addition to the aforementioned anterograde and retrograde memory distur-
bances, a specific deficit in long-term memory consolidation—coined “accelerated
long-term forgetting” [22]—may be found among PWE. In this type of memory
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dysfunction, patients perform regular on standard clinical tests of memory func-
tions, which usually probe memory recall with delays between 30 min and a couple
of hours. Reduced recall performance can, however, be found in these patients when
testing them again after longer memory delays (e.g., days or weeks). Accelerated
long-term forgetting has most frequently been reported for patients with TLE and
hippocampal lesions although it may occasionally also be present in TLE without
structural hippocampal lesions or even extratemporal lobe epilepsy [23]. Currently, it
is under debate whether such alterations in long-term consolidation as seen in accel-
erated long-term forgetting may eventually result in the aforementioned retrograde
memory disturbances or whether these are distinct phenomena co-occurring in some
PWE [24].

2.2.2 Language/Naming

Profound “classical” aphasic syndromes (such as Broca’s or Wernicke’s aphasia) are
only rarely seen in presurgical PWE. Still, two domains of language functions are
of critical interest among these patients. First, a number of studies found naming
abilities to be impaired in PWE. Reduced naming abilities—usually detected by
tests of confrontational naming—affect patients with TLE in particular, given the
involvement of the anterior temporal lobe in object naming. Some studies propose
that using measures of category-specific naming (i.e., famous faces or animals) will
reveal more subtle naming deficits in TLE [25, 26]. In accordance with studies
demonstrating a close link between reduced object-naming and semantic memory
failures [27], these studies suggest that in addition to episodic memory, semantic
memory networks may be disturbed in TLE—even though deficits may be more
subtle.

A second vulnerable subfunction of language in PWE is verbal fluency. Patients
with both TLE and FLE may present with impaired verbal fluency although impair-
ments in patients with FLE may be more frequent and more pronounced than those
seen in TLE [28]. It should be noted that verbal fluency to a high degree depends
on executive functions, such as divergent thinking, or cognitive flexibility and there-
fore is occasionally taken as a neuropsychological marker of executive functions
rather than language. Indeed, some researchers demonstrated distinct neurocogni-
tive mechanisms underlying verbal fluency deficits in TLE versus FLE [29]. This
suggests that verbal fluency, and semantic fluency in particular, can be used both as a
marker of semantic processing and executive functions. Notwithstanding this distinc-
tion, measures of verbal fluency are a critical neuropsychological measure in PWE
as they significantly contribute to the patients’ subjective estimation of their own
cognitive functioning [30]. As a final note, if iEEG-studies aim to investigate specific
language-related aspects, it is advisory to consider adverse cognitive side effects of
the antiepileptic medication as some substances (i.e., Topiramate and Zonisamide)
may specifically affect this domain [31] (see below, section “antiepileptic drugs”).
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2.2.3 Executive Functions

Given the frontal lobes’ prominent role for executive functions [32], impairments
in executive functions are frequently observed in patients with FLE. Several studies
investigating cognitive profiles of patients with FLE reported reduced performance
in numerous executive domains such as planning, response inhibition, motor coor-
dination, verbal fluency, cognitive estimation (i.e., generating a reasonable answer
when a specific solution is not available [33]), and cognitive flexibility [34]. In
addition to impairments of executive functions in patients with FLE, these impair-
ments may also be observed in patients with TLE. However, it still appears that
executive functions are more severely affected in patients with FLE as compared to
patients with TLE. Although impairments in specific executive functions (i.e., task
switching) were detected in a comparable proportion of patients with FLE and TLE
(FLE: 27% vs. TLE: 29%), the impairment found in the FLE group was signifi-
cantly more pronounced [12]. Likewise, according to a recent review [28], several
studies reported significantly lower scores for patients with FLE as compared to TLE
on numerous measures of executive functions (i.e., verbal and nonverbal fluency,
planning, working memory, interference, task-switching, and problem solving). A
certain amount of executive dysfunctions in TLE is assumed to be caused by nocif-
erous effects of epileptic discharges propagating from temporal to interconnected
frontal sites (see also Chap. 3). Reports of postoperative improvements in executive
functions in TLE patients who became seizure free after temporal lobe resections
support this hypothesis [35]. In addition, executive dysfunctions in TLE may reflect
additional structural abnormalities, which go beyond the temporal lobe (see below,
section “epileptogenic lesion”). For patients with TLE suffering from global cogni-
tive impairment (including executive dysfunctions), structural MRI studies revealed
more widespread, extratemporal grey and white matter abnormalities as compared to
patients with memory impairments only or patients with minimal cognitive impair-
ment [36]. Irrespective of the type of epilepsy, impaired executive functionsmay stem
from adverse cognitive side effects caused by antiepileptic drugs (AEDs), given that
executive functions are among the functions most frequently affected by AEDs (see
below). Please note that findings about verbal fluency in PWE are discussed in detail
in the language section (see above).

2.2.4 Attention

Reduced processing and psychomotor speed is a common findings among PWE
[37]. As prerequisite for numerous cognitive functions, processing speed mediates
the association between IQ and other cognitive functions [37] and thus signifi-
cantly contributes to subjective memory complaints in PWE [38]. As reaction time
and motor speed will affect performance in many experimental iEEG paradigms,
measures of attention will bear valuable information for patient selection and for
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interpreting the results in iEEG research. In our own presurgical cohort of patients
with TLE and FLE, we found about 10% of patients presenting with impaired
psychomotor speed measured by a line tracing task [12]. Presumably, a large part of
these reductions in psychomotor and processing speed is caused by the antiepileptic
medication as many AEDs are known to affect this cognitive domain (see below).
Nevertheless, it should be noted that reduced psychomotor speed was even found
in drug-naïve newly diagnosed PWE [39] suggesting an additional role of disease-
related variables in excess to AEDs underlying reduced attentional dysfunctions in
PWE. Further attentional subfunctions (e.g., divided or selected attention) are studied
less systematically in presurgical PWE.

2.2.5 Intelligence

The level of general intelligence may be of particular importance for patient selec-
tion in the setting of experimental iEEG research. Looking at the two most common
patient groups undergoing presurgical assessment, somewhat lowered IQ scoreswere
reported both for patients with TLE [40, 41] and FLE [15, 34] with no group differ-
enceswhen directly comparing scores betweenTLE and FLE [42]. Although one also
has to underline that average to above-average IQ scores are not exceptional among
PWE, the distribution of IQ scores in PWE is somewhat skewed to the lower end of
the scale [43]. IQ scores in PWE occasionally may underestimate a patient’s actual
general intellectual level due to negative impact of related cognitive processes (e.g.,
working memory, processing speed) on IQ. This especially applies to patients with
FLE or patients with AED-related cognitive adverse effects (see below), in which
diminished processing speed and executive dysfunctions may negatively influence
IQ scores [44]. Judging a patient’s suitability for participation in an iEEG experi-
ment based on her/his intelligence, it is recommended to not only inspect global IQ
scores, but also to incorporate additional pieces of information such as the educational
history, or scores of attentional and executive functions.

2.3 Variables Affecting the Cognitive Status in Presurgical
Patients with Epilepsy

2.3.1 Patient Variables

2.3.1.1 Epileptogenic Lesion

Characteristics of the suspected epileptogenic lesion may most significantly influ-
ence the cognitive status in presurgical PWE. Among these lesion-related factors, the
localization and extent may critically mediate the association between an epileptic
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lesion and cognitive disturbances. Type and severity of cognitive dysfunctions in prin-
ciple follow the relationship between cognitive functions and cortical brain lesions
as can be expected from functional neuroanatomy. As one example, patients with
epilepsy caused by frontal lobe lesions frequently exhibit executive dysfunctions,
whereas executive dysfunctions are impaired less frequently and to a lesser degree
in patients with epilepsy caused by temporal lobe lesions [see above, section “exec-
utive functions”; 12]. Analogously, TLE following medial temporal lobe lesions,
frequently causes mnemonic disturbances with anterograde memory functions being
most frequently affected (see above, section “memory”), while memory is signifi-
cantly less impaired in TLE following neocortical, lateral lesions not affecting the
medial temporal lobe structures [45].

When evaluating the effects of an epileptogenic lesion’s localization on a patient’s
cognitive performance, it is recommended to additionally take into account informa-
tion on the lesion’s lateralization. A concept closely connected to the lateralization
of an epileptogenic lesion, patients’ individual language lateralization will criti-
cally mediate the association between cognitive functions and the lateralization of
a structural lesion. This is of particular relevance for the iEEG researcher because
significantly increased rates of atypical language representations (i.e., bilateral or
right-hemispherical) can be found among presurgical samples of PWE [46]. Thus, in
presurgical settings, a classification of lesions and electrode implantation sites into
“language-dominant versus non-dominant” might be more adequate than into “right
versus left”. We hence recommend to additionally taking into account measures of
the patient’s individual language lateralization when estimating potential negative
effects of an epileptic lesion on a specific cognitive task in the context of iEEG-
research. Language lateralization is typically measured by functional magnetic reso-
nance imaging (fMRI), magnetoencephalography (MEG), Wada test, or functional
transcranial Doppler sonography (fTCD) in the clinical context [20, 47]. During
the Wada test, basic language functions are tested while temporarily deactivating the
ipsilateral hemispherewith an anesthetic injected into the left versus the right internal
carotid artery [48]. The aim of this technique is to determine the language capacity of
each hemisphere independently of the contralateral, temporarily deactivated hemi-
sphere. Determining language lateralization with fTCD is based on event-related
changes in blood flow velocities of the left versus right middle cerebral arteries
during basic language tasks such as verbal fluency [49].

The influence of an epileptogenic lesion’s lateralization and localization on
a patient’s cognitive performance is best exemplified for memory disturbances
following unilateral mesial temporal lobe lesions. Following a classical view, antero-
grade memory disturbances in TLE follow the principle of material-specificity
assuming a hemispheric specialization for mnemonic processing in the temporal
lobes with respect to different stimulus material [50]. This proposal assumes that
verbal memory would be diminished in left (or language-dominant, respectively)
TLE, whereas nonverbal memory would be affected in right TLE. Material-specific
patterns of memory disturbances have yielded a high specificity for left versus right
TLE, although clear cases of material-specific memory disturbances were not very
frequent [51]. This low prevalence of clear material-specific memory disturbances
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may—among other factors—be explained by different cognitive strategies employed
by patients during memory testing (e.g., verbalizing of visual stimuli or visualization
of verbal stimuli) [52]. In addition, cognitive disturbances in patients with TLE may
not only be caused by the epileptogenic lesion itself and disturbances in non-memory
functions may also negatively influence memory functions, which complicate clear
attribution of memory disturbances to an epileptogenic lesion [53]. Overall, while
the specificity of verbal memory disturbances for left TLE has been frequently repli-
cated across studies, specific impairment of nonverbalmemory in right TLEcould not
consistently be demonstrated [54]. Refining the “classical” material-specific view of
verbal versus non-verbal memory disturbances in left- versus right-sided TLE, more
recent research suggests not only a role of test material (i.e., verbal vs. non-verbal),
but also warrant consideration of task-specific mnemonic (sub-)processes, such as
associative item binding [55–57], or the distinction between learning, recall, and
recognition [58] when assessing memory functions in patients with TLE [59].

Considering the impact of the laterality of an epileptic lesion on presurgical
performance, there is accumulating evidence that—at least for TLE with unilat-
eral hippocampal sclerosis—left versus right epileptogenic lesions may differen-
tially affect brain network alterations and cognition. Several studies have reported
left-sided TLE—as compared to right-sided TLE—to be associated with more
pronounced and widespread reductions in connectivity of functional networks [60–
62], whichmay be associatedwith reduced performance in several cognitive domains
[63, 64].

In contrast to the vast number of studies on the impact of the laterality of
epileptogenic lesions in patients with TLE, results on these effects in extratem-
poral lobe lesions remain sparse. The few studies available have yielded mixed
findings [12, 28, 65] presumably due to more heterogeneous patient cohorts and
neuropsychological-methodological inconsistencies across studies on extratemporal
lobe epilepsy.

Finally, the type of the epileptic lesions may be another lesion-related factor rele-
vant to the cognitive status in presurgical PWE. Earlier studies suggested that the
assumed type of epileptic lesion would not have a vast effect on the cognitive status
[66, 67]. Yet, more recent studies suggest that hippocampal sclerosis may more
severely affect memory and further cognitive domains than other types of lesions
[68] even when these lesions affect the medial temporal lobe such as medial temporal
tumors [69]. In a more recent study, Phuong et al. [45] reported analogous findings
demonstrating that in patients with hippocampal sclerosis, memory and executive
functions were more strongly affected than in patients with epilepsy due to medial
temporal lobe foci other than hippocampal sclerosis. Interestingly, these results were
even obtained after controlling for several potentially confounding factors (e.g., age,
disease duration, lateralization of epileptic focus, seizure frequency, or antiepileptic
medication). These results are in accordance with findings of more widespread struc-
tural–functional network alterations in TLEwith hippocampal sclerosis as compared
to medial TLE with other lesions [70].

As one indication for intracranial recordings in PWE may be the detection of
seizure foci in non-lesional patients [71], a substantial proportion of presurgical iEEG
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patients will present without lesions detectable on MRI. At the same time, cognitive
performance in MRI-negative patients has been found to be significantly higher as
compared to patients with a structural MRI lesion as reported for presurgical verbal
memory in patients with TLE [72, 73]. In contrast to this, a more recent study could
not replicate these findings, reporting equally diminished memory performance in
patients with TLE with and without structural MRI lesions [19]; however, this study
did not solely include presurgical PWE, restricting the comparability between these
and the aforementioned results. Thus far, the presence or absence of a structural alter-
ation should be considered when deciding about the inclusion of a given presurgical
iEEG patient into a cognitive study, as relatively good cognitive performance may
be expected in PWE without structural lesions.

Occasionally, patients undergoing iEEG recordings have already undergone resec-
tive brain surgery at an earlier stage of their disease treatment. Prior resections may
most significantly add to cognitive impairments [74] caused by the factors outlined
in this chapter and may trigger cerebral reorganization. These patients, thus, may be
less suitable for participation in cognitive iEEG research unless the research ques-
tions specifically aims to investigate cognitive processes after resection of particular
brain structures or to address neurophysiological correlates of compensational or
reorganizational mechanisms.

2.3.1.2 EEG Activity

The impact of epileptic EEG activity on cognitive functions is most certainly one
of the most critical factors, which has to be considered by researchers conducting
experiments with iEEG patients. For a detailed overview on this issue, the reader is
referred to Chap. 3 in this volume.

2.3.1.3 Age-Related Factors

The cognitive status of presurgical PWE may also be affected by the age at onset of
epilepsy and the duration of epilepsy. Although it is challenging to disentangle the
effects of the age at epilepsy onset and the duration of epilepsy, an earlier disease
onset is generally accepted as a risk factor formore pronounced cognitive impairment.
Also, the literature suggests negative effects of longer epilepsy duration on cogni-
tive performance demonstrating a weak but significant association between ongoing
seizures and cognitive impairment—especially in patients with frequent and ongoing
bilateral tonic–clonic seizures and status epilepticus [75]. Particularly, in presurgical
cohorts, patients with TLE with an early age at onset (i.e., <6 years) were found to
suffer from more global memory impairment as compared to those with a later onset
(i.e., >9 years) of seizures [76]. Likewise, in presurgical patients with TLE, early
onset of epilepsy (i.e., age <15 years) was associated with more global impairments
affecting both memory and total IQ, whereas later onset was associated with more
selective memory impairment only [77]. Although effects of age at onset in patients
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with extratemporal epilepsy have been less frequently investigated than in patients
with TLE, studies on patients with FLE suggest that age at onset and the duration of
epilepsy may also affect cognition in this patient group [78].

Undoubtedly, it is also critical to consider patients’ chronological age at time of
testing as progressing age is negatively associated with cognitive performance in
patients with TLE [79, 80]. Results from a large cross-sectional study in patients
with TLE suggest that lower memory performance can be attributed to an interfer-
ence of the epilepsy on the development of memory performance but is not caused
by progressive mental decline [68]. Accordingly, patients with TLE may fall under
certain cut-offs for cognitive impairment earlier in life as compared to healthy individ-
uals. Still, for older patients (i.e., age >65 years) there is some more recent evidence
of potential associations between epilepsy and dementia [81]. Although this patient
group of older patients is rarely seen among presurgical iEEG patients, it is still
recommended to consider age and age-related variables as potential covariates when
analyzing results from iEEG-experiments.

2.3.2 Iatrogenic Effects

2.3.2.1 Antiepileptic Drugs

AsAEDs aim to reduce (hyper-)synchronic neural discharges underlying an epileptic
seizure, it comes with little surprise that AED intake may occasionally affect
neurocognitive functions by reducing neural excitability in general [82]. Though,
negative effects of AEDs on cognitive performance are reversible in principle for a
majority of patients and it is therefore critical to disentangle cognitive disturbances
caused by the epilepsy itself (e.g., by a specific brain lesion or by epileptic seizures)
and those additionally caused by AEDs [83]. Discussing potential negative effects
of AEDs in the context of presurgical evaluation, one of the most critical factors is
the type of AED (Table 2.2). In general, new-generation AEDs (e.g., Lamotrigine,
Levetiracetam, Oxcarbazepine) are designed to cause fewer cognitive side effects as
compared to older-generation AEDs (e.g., Phenytoin, Sodium valproate, Phenobar-
bital). Among the newer AEDs, however, Topiramate is known to frequently cause
adverse cognitive side effects. Cognitive domainsmost frequently affected byTopira-
mate are language, executive functions, and processing speed, but memory may also
be affected in some cases. Comparable adverse cognitive side effects were reported
for Zonisamide even though effects may not be as strong as those seen in Topiramate
[31].Of note, adverse cognitive side effects caused byTopiramate or Zonisamidemay
not always be subjectively experienced by patients [84, 85]. Of particular interest for
experimental testing during the presurgical monitoring, these adverse effects may
persist for several days to even weeks after drug discontinuation – which at least
in parts may be caused by the long half-life times of these AEDs. Across different
types of AEDs, attention/psychomotor speed and executive functions appear to be
the cognitive domains most vulnerable to adverse AED effects [86].
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Table 2.2 Degree of severity
of cognitive side effects of
selected, commonly used
AEDs [adapted from 87]

Severe Moderate Mild

Topiramate Carbamazepine Lamotrigine

Zonisamide Phenytoin Levetiracetam

Benzodiazepines Pregabalin Gabapentin

Phenobarbital Sodium valproate Tiagabin

Oxcarbazepine Vigabatrin

In excess to an increased risk of adverse cognitive effects caused by the specific
type of AED, there are additional factors, which are associated with cognitive AED
side effects. Polytherapy (as opposed tomonotherapy)may critically affect the cogni-
tive status in PWE. In detail, the number of AEDs was shown to be correlated with
the severity of cognitive disturbances with most detrimental effects for polytherapy
with more than two AEDs [88]. Apart from the mere effects of the number of AEDs
[45], particular AED interactions, which may specifically affect cognition are yet to
be investigated. In addition, AED-related cognitive side-effects typically are more
pronounced with higher doses and blood serum levels.

Of particular interest for the iEEG researcher, AEDs are regularly reduced for
patients undergoing invasive EEG monitoring to increase the likelihood of seizures
during this diagnostic phase. This situation can pose a challenge for selecting an
appropriate time for testing patients during this phase. On the one hand, temporary
AED reductions may increase the frequency of interictal epileptic discharges and
epileptic seizures and, presumably, their negative effects on cognitive functioning
([89]; also see Chap. 3 ). Adverse cognitive side effects related to the intake of
specific AEDs, on the other hand, may be reduced during this phase. Still, one has
to consider the half-life time of the AEDs administered to the patient and keep in
mind that faster titration of AEDs increases the likelihood of adverse cognitive side
effects. According to our own experience, best cognitive performance is achieved by
avoiding experimental testing on days with (severe or frequent) seizures (particularly
on days with electrocortical stimulations for functional mapping) and by avoiding
days with abrupt AED tapering [90]. Experiments usually should not start before the
second or third day after electrode implantation to circumvent negative effects on
cognition causedby fatigue or pain during the immediate postoperative phase.We still
underline that the ideal time for experimental testing may depend on the individual
patient and her/his clinical features (such as frequency and type of seizure, type
and number of AEDs, susceptibility to cognitive side effects, and type of implanted
electrodes) and should be decided on with the clinical staff (see also Chap. 4).

Given the influence of AEDs on neural transmission on the one hand, and cogni-
tive functions on the other hand, one might ask in which way AEDs may alter the
iEEG signal and how effects of AEDs can be quantified in terms of neurophysi-
ological markers. The existing literature on this issue is sparse. Studies based on
surface EEG have typically found an AED-induced decrease in activities >6 Hz and
an increase of slow activity <6 Hz [see review in 91]. Yet relatively few studies
have studied the impact of AED on the iEEG signal. In a series of studies, Zaveri
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and colleagues have investigated potential changes in the iEEG signal caused by
AED intake. Directly comparing epochs on- versus off-AEDs, the authors inter-
estingly reported a significant decrease in cortical excitation after AED tapering;
energy measures decreased about 35% at all recorded electrodes and for different
AEDs [92]. In addition, these results were extended by showing decreased rates of
epileptic spikes and iEEG power after AED tapering for delta, beta and—to a lesser
degree—gamma frequency bands [93].While these results offer interesting—though
somewhat counterintuitive—initial findings, further studies on the effects of AEDs
on different measures of the iEEG-signal are needed to draw final conclusions.

2.3.2.2 Intracranial Electrodes

An issue of particular interest for experimental research in iEEG patients is the
question whether electrode implantation may cause additional alterations of cogni-
tive functioning. Of note, there has been a recent study reporting that in patients
with bilateral depth electrodes implanted along the longitudinal hippocampal axis,
anterograde memory performance significantly decreased when measured imme-
diately after electrode explantation prior to resective surgery—as compared to pre-
implantation scores [94]. Unfortunately, this study has not comparedmemory perfor-
mance before electrode implantation with performance after electrode implantation.
Furthermore, the study has been criticized for a number of methodological issues
and contradicts earlier reports not showing negative long-term cognitive effects after
electrode explantation [95]. Still, these results give rise to an important question about
potential effects of implanted electrodes; future research should particularly examine
these effects considering both factors such as the number, type, and localization of
electrodes, and potential effects of the implantation scheme.

2.4 Conclusion

In spite of the cognitive disturbances in presurgical PWE reviewed here, it should
be underlined that focal epilepsy is not per se associated with cognitive distur-
bances. In the abovementioned study of Elvermann and colleagues [1], no cogni-
tive impairment was found in 30% and only circumscribed cognitive impairment in
49% of presurgical patients with TLE. Given this heterogeneity of different cogni-
tive profiles among presurgical PWE and a number of factors affecting the cognitive
status in these patients, we recommend that evaluations of an individual patient’s
suitability to participate in a certain iEEG paradigm should be based on the results
of a formal clinical neuropsychological assessment and additional clinical informa-
tion provided by the clinical staff. In addition, it may be helpful to provide practice
trials of the iEEG paradigm and consider the patient’s performance in these trials
for evaluating her/his suitability to participate in that specific paradigm. This will



2 Which is the Cognitive Status of Patients with Epilepsy Undergoing … 31

be particularly relevant for paradigms, which address cognitive domains not typi-
cally included in standard clinical-neuropsychological test batteries (e.g., spatial
navigation, or emotional memory). Given the high relevance of memory functions
for patients undergoing iEEG recordings, the neuropsychological assessment should
cover different aspects of memory functions. In addition, AED-related cognitive
side effects should be estimated by evaluating scores of executive and attentional
functions (e.g., verbal fluency, processing speed, task-switching). Screening instru-
ments designed to have a high sensitivity in detecting these AED-related cognitive
side effects may be an economic option [96]. Discussing individual patients with
the clinical staff may answer whether a patient may be suitable for experimental
testing at all, help finding the ideal time of testing during iEEG-video monitoring, or
estimate the potential impact of a patient’s given cognitive disturbance on a certain
experimental paradigm. Such careful selection of patients at the time of experimental
testing will certainly address some of the major concerns about iEEG research in
PWE [as discussed in 2] and ultimately improve the quality of iEEG studies.
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Chapter 3
(How) Does Epileptic Activity Influence
Cognitive Functioning?

Linglin Yang and Shuang Wang

Abstract In patients with epilepsy, comorbid cognitive impairments are common
and strongly related to both ictal and interictal epileptic activities. More specifically,
the exact domains of cognitive impairment depend on the location and timing of
epileptic activities, while the severity of cognitive impairment is related to the inci-
dence, spatial extent and electrophysiological characteristics (including amplitude,
duration and rhythmicity) of epileptic activities. Recent studies revealed that epileptic
activities impart the deleterious influence on cognitive function through disturbance
of interwoven cognitive networks. This chapter starts with a short review of cognitive
networks and their hierarchical organization, highlighting the fundamental role of
partial synchrony and the mediating role of subcortical regions. Subsequently, we
discuss transient cognitive impairments through abrupt disruptions of network func-
tions, as well as persistent cognitive decline via chronic remodeling of neural circuits.
We emphasize the particular value of intracranial electroencephalography and brain
stimulation for understanding the crucial roles of cortical-subcortical neural circuits
in cognitive dysfunction.

3.1 Introduction

Although some epilepsy patients self-report normal cognitive function, detailed eval-
uations of various cognitive domains reveals that cognitive dysfunction is a common
symptom among them, which seriously affects their psychosocial functioning and
quality of life. Apart from the etiology of epilepsy, several factors including disease
course, adverse effects of antiseizure medication (ASM), possible surgical resection,
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and epileptic activities impart deleterious effects on cognitive function. Various func-
tional domains can be involved, including attention, perception, memory, language,
information processing speed and response times to stimuli [1, 2].

Obviously, more frequent and extensive epileptic activities lead to more severe
cognitive decline [3–8]. Of note, various types of epileptic activities appear to
exert different effects on cognitive functioning. The slowing effect of epileptic
activity on reaction time was most prominent during classical spike discharges and
weakest during sharp theta activity [5]. However, the effect of polyspike on cognition
need further exploration. Accumulating electrophysiological evidence suggests that
epileptic activities with larger amplitude and longer duration are more disruptive
and correlate with more serious cognitive impairments [3, 9–11]. Focal interictal
epileptiform discharges (IEDs), even infrequent, may result in transient cognitive
impairment in epilepsy patients [11–15]. However, several earlier studies observed
no obvious relationship between focal IEDs and cognitive impairment [4, 16]. A
compelling explanation of this discrepancy is that the exact influence of epileptic
activities on cognition depends on the specific location and time theyoccurred [12, 13,
15, 17–20]. That is, epileptic activities located in eloquent regions induce prominent
and regionally-specific cognitive impairment. For example, occipital epileptic activ-
ities disturb visual perception [18]. Epileptic activities in the left middle temporal
gyrus impair memory encoding during a delayed verbal free-recall memory task
[11]. Surprisingly, hippocampal epileptic activities disrupt memory maintenance
and retrieval rather than encoding during working memory tasks, which might be
due to “buffer” functions of primary sensory cortex and prefrontal cortex during
working memory encoding (described briefly in the next section) [13, 21]. Further-
more, epileptic activities with white matter propagation were associated with poorer
cognitive performance [11], probably due to the involvement of a broader cognitive
network [22, 23].Another study reported that IEDs during sleep, especially non-rapid
eye movement periods, were associated with visuospatial and memory impairments,
while IEDs during waking state impaired attention [14]. Interestingly, the cognitive
performance deteriorates with the onset of epileptic activities and recovered at the
end of epileptic activities [24, 25]. These studies provide strong evidence that short-
term cognitive deficits are related to transient disruption of network functions by
epileptic activities [12, 13, 15, 18–20].

In addition to these transient effects, sustained cognitive deficits due to epileptic
activities have been reported, especially in the developing brain [1, 26–28]. Thus,
a hypothesis has been proposed that epileptic activities may result in long-term
cognitive deficits through chronic remodeling of cognition-related neural circuits.
Due to multiple confounding factors such as ASM administration, education, and
comorbidity with other diseases, there are still insufficient data to clearly understand
the long-term effects of epileptic activities on cognition [29]. Nevertheless, it has
been widely documented that epileptic activities can progressively remodel neural
networks including cognitive networks [30–34].

Up to now, the question remains as to how epileptic activities influence cognitive
functioning. This chapter briefly reviews the interactions among cognition-related
networks in the healthy brain, and then explores the deleterious influence of epileptic
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activities on cognitive function through transient disruptions of network functioning
and chronic remodeling of neuronal circuits, respectively. By reviewing the present
work, we hope to begin a journey toward the intervention of neural stimulation in
patients with cognitive decline.

3.2 A Quick Look at Cognitive Networks

In the past decades, emerging neuroimaging and electrophysiological evidence
demonstrated the existence and functional role of various cognitive subnetworks
[35–40]. The most prominent of these networks is the default mode network
(DMN) comprising the medial prefrontal cortex (mPFC), posterior cingulate cortex,
precuneus and temporal-parietal junction [35, 41]. The DMN is known as an
‘intrinsic’ or ‘task-negative’ network that reflects internally oriented cognition and
is deactivated during tasks driven by external stimuli [35, 38]. Conversely, there are
various ‘task-positive’ networks. The central executive network (CEN), involving the
dorsolateral prefrontal cortex and the posterior parietal cortex, is externally oriented
and responsible for executive functions such as the allocation of attention, working
memory, inhibitory control and decision-making [37, 38, 42]. The salience network
(SN), involving the fronto-insular cortex and the dorsal anterior cingulate cortex,
contributes to switching between CEN and DMN depending on task demands and
subjective salience [36–38]. In addition to these three networks, the dorsal and ventral
attention networks as well as the limbic system exert crucial effects on cognitive
functioning [39, 40].

Intriguingly, variable spatiotemporal patterns of partial synchrony can be observed
among these interleaved cognitive subnetworks during distinct cognitive tasks [43–
45]. For example, the medial temporal lobe structures including the hippocampus
play a vital role in memory processes via interacting with distributed areas in the
neocortex: Sensory memories are initially formed in the primary sensory cortex, and
then re-encoded into long-termmemories by the hippocampus, entorhinal cortex, and
mPFC for further consolidation, storage and retrieval [21]. Theta-band coherence in
an anatomically widespread network involving frontal, temporal and parietal lobes is
particularly increasedwhen episodicmemory is engaged [46]. Using subject-specific
brain network models including 76 key nodes, a recent in silico experiment explored
how regional brain stimulation can produce dynamically integrated patterns among
nine cognitive subnetworks [44]. All cognitive subnetworks produced a so called
“chimera states” which is characterized as a partially synchronized state of some
of the network nodes. The chimera state contributes to the dynamic and flexible
organization of large-scale networks, supporting diverse cognitive demands. In fact,
individual cognitive subnetworks may be more or less specific for a given cogni-
tive process: While auditory and visual sensory systems are mainly responsible for
perceiving external stimuli, the dorsal and ventral attention networks are conjointly
active with other cognitive subnetworks [44, 47], because the allocation of attention
is relevant for almost all cognitive processes.
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Indeed, an intricate balance between the dynamic segregation and integration of
cognitive processing cannot be divorced from a robust hierarchical network architec-
ture [44, 48, 49]. This is especially true for subcortical structures such as the thalamus
[50, 51]. The thalamus is divided into multiple distinct nuclei including the anterior
nucleus, the medial dorsal nucleus, the reticular nucleus, the pulvinar and the genic-
ulate body. It is reciprocally and topographically connected to distributed cortical
regions, basal ganglia, brainstem and cerebellum, participating in various cogni-
tive processes [52]. Therefore, the thalamus has been traditionally conceptualized
as a high-fidelity information relay [53]. Recent evidence has highlighted the crit-
ical function of the thalamus in filtering goal-relevant information and coordinating
cognitive networks [52, 54, 55]. With abundant diverse projections to distributed
cortical regions, subcortical structures play vital roles in mediating the transition
between functionally separated and integrated cognitive networks [49].

In summary, optimal cognitive functioning relies on fine-tuned interactions of
spatiotemporally interdependent brain networks [44, 48, 49]. Conversely, cognitive
dysfunction has been considered to result from a disturbance of these networks.
In the following sections, we will describe accumulating evidence that epilepsy-
related alterations in functional aswell as structural network connectivitymay induce
cognitive deficits. Moreover, these abnormal connectivity patterns are dynamic and
appear to be related to the recurrence of epileptic activities.

3.3 Transient Disruption of Network Functions

It has been reported that epileptic activities may exert transient deleterious effects
on various cognitive functions, including attention, perception, memory, language,
and the overall speed of information processing. Since the severity and exact
domain of cognitive impairment are closely related to the location and timing of
epileptic activities, it is reasonable to consider that these activities directly disturb
cognitive functions of eloquent brain regions [12, 13, 15, 18–20]. Moreover, when
epileptic activities involve subcortical structures such as the thalamus, abnormalities
in cortical-subcortical circuits are bound to result in severe cognitive impairment.

Various studies have shown that cognitive impairments fluctuate with the
dynamics of epileptic activities. Cognitive performance begins to decline in the
seconds preceding the onset of epileptic activities, and gradually improves towards
the end of epileptic activities [5, 56]. A study combining EEG with cognitive tests
(FePsyR) has found that generalized IEDs result in apparent cognitive slowing (by
approximately 35%) [4]. A study using functional magnetic resonance imaging
(fMRI) showed that blood oxygen level dependent (BOLD) signals in the frontal and
parietal cortex increase before the occurrence of generalized slow-wave discharges
(SWDs) and decrease after the end of SWDs [56], suggesting that epileptic activi-
ties cause transient disruptions of cognitive networks. Moreover, a longer duration
and larger amplitude of SWDs predicted poorer cognitive performance, suggesting
that broader cognitive networks were disturbed [10]. Combining fMRI with analysis
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of magnetoencephalography (MEG) recordings, Ibrahim et al. found that cognitive
impairments and large-scale network alterations preceded and followed IEDs in a
group of 26 children with focal epilepsy [25]. Among the cognitive networks, the
DMN is most prominently affected by epileptic activities [25, 57, 58]. More specifi-
cally, theDMNconnectivity isweaker during IEDs compared to IED-free epochs [57,
58]. Another fMRI study observed IED-related attenuation of connectivity between
the attentional networks and basal ganglia [59]. According to the ‘network inhibition
hypothesis’, the suppression of DMN, attention networks and other cognitive subnet-
works is interpreted as disconnection of functional networks induced by epileptic
activities [25, 58]. In patients with focal epilepsy, the connectivity of widespread
networks remote from the epileptogenic zone was significantly reduced, indicating
global effects of the disease [60].

Besides the ‘network inhibition hypothesis’ of neocortical deactivation, patho-
logical IEDs may compete with physiological neural oscillations and disturb cogni-
tive processes [61, 62]. In epilepsy patients undergoing intracranial EEG evalu-
ation, hippocampal IEDs during an associative memory task reduce the rate of
physiological ripples and lead to marked memory deficits. More specifically, the
likelihood of remembering an item was reduced by 6–23% if hippocampal IEDs
occurred during memory encoding, and by 15–33% during memory retrieval [62].
These findings are consistent with those found in the rodent kindling model of
temporal lobe epilepsy (TLE) [61]. In parallel with increasing rates of IEDs, this
study observed lower memory performance and reduced physiological hippocampal
ripples during the kindlingphase.During the ‘recovery’ phase, cognitive performance
and physiological ripple rate improved gradually. Additionally, hippocampal IEDs
generated a cortical ‘down’ state and subsequently induced mPFC spindles during
wakefulness and rapid-eye movement sleep. The pathological hippocampal-mPFC
coupling surpassed the physiological ripple-spindle coupling which is an important
physiological mechanism of memory consolidation.

The transient effects of epileptic activities on network function and cognition have
been widely discussed. Recurrent network disruption induced by epileptic activities
may accumulate and lead to chronic remodeling of neuronal circuits [30, 63], which
we will discuss in the following section.

3.4 Chronic Remodeling of Neuronal Circuits

During the early stage of epileptogenesis, remodeling of brain connectivity begins
with the onset of IEDs before epileptic seizures develop [33]. Brain network remod-
eling progresses gradually over time, accompanied by aggravating cognitive impair-
ment [30, 31, 32, 34]. Galovic et al. have found pronounced progression of network
abnormalities within the first 5 years of epilepsy [64]. It seems that cognitive dete-
rioration is closely associated with the frequency and severity of epileptic activities
[63, 65]. More specifically, the cumulative frequency of generalized seizures across
lifetime is a strong predictor of cognitive decline [63]. Although cognitive deficits
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progress with ongoing epileptic activities, their progression can also be stopped
and even reversed after successful medical or surgical treatments [65]. The degree
and speed of cognitive recovery depends on the recruitment of reserve capacities
in eloquent brain regions [65, 66]. Together, these studies indicate that epileptic
activities exert critical effects on chronic remodeling of neuronal circuits.

Although regional atrophy of the ipsilateral hippocampus and thalamus has been
well documented in TLE with mesial temporal sclerosis [67–69], enhanced ipsilat-
eral hippocampal-thalamic connectionswere found at both functional and anatomical
levels [70, 71], in line with the critical role of the thalamus in seizure propagation.
Interestingly, however, the increased connectivity between the hippocampus and the
thalamus was associated with poor cognitive performance, in particular regarding
executive functioning. This suggests an abnormal and dysfunctional reorganiza-
tion of hippocampal-thalamic connectivity. In the course of chronic remodeling, the
cingulate midline network, comprising the cingulate cortex, bilateral thalamus and
precuneus, becamemore synchronized aswell [31]. In addition, an increased connec-
tivity between the hippocampus and other subcortical regions, including the insula,
basal ganglia, brainstem and cerebellum, has been observed [70, 72]. As described in
the first section ‘A Quick Look at Cognitive Networks’, the hippocampus, thalamus,
cingulate cortex, insula and basal ganglia are all key nodes of different cognitive
subnetworks, and the abnormal synchronization among them is likely to disturb the
delicate balance of various cognitive subnetworks during different tasks, resulting
in cognitive decline [44]. Of note, it is hypothesized that reductions of cortico-
subcortical connectivity may constitute an adaptive mechanism preventing seizure
propagation. In addition, brain structures withmore frequent epileptic activities seem
to show more extended reductions of functional connectivity with other regions
[73], further supporting the defense mechanism hypothesis. However, the decreased
hippocampal-cortical and thalamocortical connectivity in mesial TLE lead to disrup-
tion of functional networks and might account for impairments in attention and
memory [74–77]. One of the most often impaired cognitive subnetwork in mesial
TLE is the DMN, which manifests as decreased BOLD signals in resting-state
fMRI studies [32, 70, 78]. Considering the laterality of brain networks, several
neuroimaging studies have revealed distinct reorganization patterns of neural circuits
in the left versus right TLE [64, 73, 77, 79]. Patients with left TLE showmoremarked
anatomical and functional alterations compared to those with right TLE [64, 73, 79],
in accordance with differences in cognitive performance between the two groups
[77]. Of interest, the different memory phenotypes are strongly related to the distinct
reorganization patterns of brain networks in left versus right mesial TLE [77]: Verbal
memory performance was positively correlated with functional connectivity in the
anterior hippocampal network in left mesial TLE, while it was found to be negatively
correlated with functional connectivity in the posterior hippocampal network in right
mesial TLE. A recent fMRI study revealed two different network states in mesial
TLE, one that was dominated by the anterior hippocampal network (segregated state)
and another one thatwas dominated by the posterior hippocampal network (integrated
state) [80]. In this study, the authors found that memory deficits were related to a
less segregated and more integrated state, and the modular alterations of dynamic
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functional connectivity in the hippocampal networks could help identify the memory
phenotypes.

Similarly, both regional and global patterns of reorganization of connectivity
have been reported in focal neocortical epilepsy [81, 82]. A resting-state functional
connectivity study based on MEG found decreased connectivity in both cortical and
subcortical regions, including the anterior thalamus, basal ganglia, temporal-parietal
junction and perisylvian cortex [82]. Subsequent analysis of mean imaginary coher-
ence revealed decreased global mean connectivity in the delta, theta, alpha and beta
frequency bands [83]. Creating functional connectivity maps that were seeded at the
epileptogenetic regions in 23 patients with frontal lobe epilepsy, Luo et al. found
patient-specific connectivity patterns characterized via enhanced connectivity in the
neighborhood of the seeds and decreased connectivity between the seeds and remote
networks [84]. Surprisingly, the reorganization pattern of functional connectivity
does not occur instantaneously with the onset of IEDs, implying that the remolding
of neural circuits in frontal lobe epilepsy is a gradual and chronic process [84].
Therefore, the reorganization pattern of functional connectivitymay depend on struc-
tural changes. In frontal lobe epilepsy, accelerated cortical thinning was found in a
widespread network involving both frontal and extra-frontal regions [64, 85]. These
findings are supported by another diffusion tensor imaging study in frontal lobe
epilepsy which showed increased characteristic path length and decreased network
strength, global efficiency, and nodal efficiency [86]. Furthermore, reduced task acti-
vation independent of epileptic activities has been observed in epilepsy patients [59],
reflecting that the chronic remodeling diminished the task-dependent synchrony of
cognitive networks [46]. A recent stereotactic EEG study revealed that the absence
of theta-band synchronous network might result in failure of information transfer
among brain regions and memory deficits in the epilepsy patients [46].

Chronic brain network remodeling related to epileptic activities is also seen in
other neuropsychiatric disorders, such as attention deficit and hyperactivity disorder
(ADHD) and Alzheimer’s disease [87–89]. Compared with ADHD patients without
epileptic activities on scalpEEG, thosewith epileptic activities presentedmore severe
executive dysfunction [87, 88]. In early stages ofAlzheimer’s disease, epileptic activ-
ities cooccur with cognitive decline [89, 90], and the frequency of epileptic activities
is strongly associatedwith accelerated cognitive decline inAlzheimer’s patients [91].
Notably, administration of low doses of disease-modifying ASMs over 3 weeks can
improve synaptic function and cognitive performance through suppressing epileptic
activities in transgenic mouse model of Alzheimer’s disease [89, 92–94], and similar
effects may occur in humans as well [95] (Fig. 3.1).
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Fig. 3.1 Schematic diagram of the impact of epileptic activity on cognitive function via a distur-
bance of cognitive networks. Epileptic activities could exert transient deleterious effects on various
cognitive functions by interrupting cortico-subcortical circuits. Recurrent disruption of networks
due to epileptic activities may accumulate and lead to chronic remodeling of cognitive networks,
which is characterized as enhanced connectivity between the epileptic zone and atrophic subcor-
tical regions, thinning of distributed cortical areas and decreased cortico-subcortical connections.
These reorganization patterns of cognitive networks result in sustained cognitive impairment. With
the decrease of epileptic activities after effective treatments, functional connectivity of cognitive
network gradually recovers in parallel with partially improved cognitive function. The red bold
bidirectional arrows represent enhanced connectivity between the epileptic zone and subcortical
regions, the orange dotted arrows represent interrupted cortico-subcortical circuits, and the orange
solid arrows represent the normal cortico-subcortical circuits

3.5 Directions of Future Practice and Research

Detrimental effects of epileptic activities on cognitive function are closely related to
functional and structural alterations of cognitive networks. On one hand, recurrent
epileptic activities may directly lead to dysfunction in key nodes of neural circuits;
on the other hand, adaptive mechanisms which limit the propagation of epileptic
activities might contribute to long-term reorganization [60]. Suppressing epileptic
activities through disease-modifying ASM and/or epilepsy surgery may attenuate
these detrimental effects and improve cognitive performance [25, 65]. Even though
brain reserve capacities are gradually released after successful treatments, cognitive
dysfunction at the epileptic zone and its neighboring regions often do not recover
completely [65]. In the future, coordinating cognitive networks via interventions that
target their key nodes is a promising treatment for cognitive impairments.

To date, neuromodulation methods including transcranial magnetic stimulation,
transcranial electrical stimulation, vagal nerve stimulation and intracranial (deep
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brain) stimulation have been investigated for improving cognitive functions such
as memory, language, and perception [96–101]. Compared to non-invasive stimu-
lation paradigms, intracranial electrical stimulation appears to exert more reliable
effects on the improvement of cognitive function [97]. Direct electrical stimulation
of the amygdala, the anterior nucleus of the thalamus, or of the hypothalamus/fornix
could enhance memory, and that effect might be independent of seizure control [96,
102, 103]. It is hypothesized that neuromodulation initiates a molecular cascade of
synaptic plasticity via regulating synchronized neural oscillations between regions
and altering neurotransmitter concentrations [96, 104, 105]. Considering the high
complexity of brain network, this novel therapeutic approach perturbes the neuro-
physiological state of the brain and faces great challenges, i.e. how to specifically
and precisely improve specific cognitive functioning without compromising other
functions. A better understanding of cognitive networks may help identify optimal
targets and treatment parameters for neuromodulation.Given that fMRI lacks optimal
temporal resolution, intracranial EEG would be optimally suited to detect transient
and dynamic alterations in cognitive networks (see also Chaps. 39 and 41 on deep
brain stimulation, andChaps. 33 and 40 on the identification and analysis of cognitive
networks).
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Chapter 4
Which Practical Issues Should I Consider
When Planning and Conducting an iEEG
Study?

Elias M. B. Rau and Robin Lienkämper

Abstract Intracranial EEG recordings enable scientists to investigate unique
research questions, directly addressing the intricate interplay of neuronal activity
and complex behaviors in humans. While its strength lies in measuring direct brain
activity with a spatial and temporal resolution that is superior to more commonly
used neuroscientific methods, its practical implementation comes with a number
of unique challenges, which are particularly important to consider for novices in
the field. Specifically, the large inter-subject variability and characteristics of iEEG
samples raise significant considerations regarding the study design and the config-
uration of the behavioral task. Further, the situation of patients and their motiva-
tion to participate strikingly differs from well-defined samples of healthy subjects
and requires you to behave and prepare accordingly. Additionally, specific technical
aspects have to be considered concerning the general recording setup, the synchro-
nization of neural and behavioral events, and on-site quality control checks. For each
of these challenges, we propose practical solutions that may help to improve the
quality of future research for all involved parties, from patients and researchers to
clinical staff.

4.1 Study Design

In human behavioral and cognitive neuroscience studies, researchers usually try to
recruit either a homogenous group of subjects (for example healthy, right-handed
people of a certain age) or a selection of subjects that represents all age groups,
genders and possible other factors. Contrariwise, in iEEG studies researchers typi-
cally cannot actively recruit subjects based on specific criteria, but can merely select
among those patients who agreed to participate in scientific studies. This results
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in relatively small samples of patients that differ from well-defined control groups
of healthy students in both their cognitive status and many demographic variables
such as age, the level of education, and socioeconomic status (see also Chap. 2). As
the decision to undergo invasive iEEG monitoring has to be purely based on medical
judgements and not on research interests, the experimenters’ control over patient and
sample characteristics is very limited. Thus, iEEG samples show a high variability
in many aspects which have to be considered when planning studies, approaching
patients, and collecting data.

Since the number of available patients is the most limiting factor in data acqui-
sition, waiting for “ideal” subjects to form a homogenous group is often neither
recommended nor feasible. Instead, collecting data from as many suited patients as
possible provides the opportunity to be mindful of other sample characteristics later
on. Thus, if a given patient is both behaviorally capable of performing a task, and has
electrodes implanted in regions of interest, we recommend that you consider inviting
him/her for participation in your study.

The unforeseeable characteristics of a final iEEG sample complicate preparation
steps when designing the experiment or comparing performance to healthy control
groups. In general, pilot studies are an essential part of experimental research and are
crucial for developing suitable behavioral paradigms, which afford the engagement
of the cognitive processes of interest. In the non-clinical setting, such precursor
experimental versions are mostly run on separate, smaller cohorts of young and
healthy subjects prior to main data acquisition. Although pilot studies are invaluable
for designing a suitable behavioral paradigm for iEEG as well, the scarce avail-
ability of patients and circumstances in clinical routines limit opportunities for pilot
testing with a patient cohort directly. Nevertheless, especially for novel behavioral
paradigms, we recommend that you test the paradigm with healthy control samples
beforehand to improve your prediction on expected effect-sizes, validate the suit-
ability of experimental conditions, adapt task difficulty of different experimental
versions and identify potential technical pitfalls that may disrupt neural data acquisi-
tion. Keep in mind though, that for the same experimental version, a clinical sample
will likely perform worse compared to a healthy control group. Vice versa, in a
patient-optimized task, healthy controls will often perform at ceiling. Thus, transfer-
ability of performance levels between a healthy and young control group to a sample
of iEEG patients is limited. To address this issue, you could test the same behavioral
paradigm on a healthy age-matched sample. This will improve your estimation of the
suitability of the paradigm for samples differing from student populations. An even
closer comparison group to invasive patients consists in a group of other epilepsy
patients who undergo non-invasive scalp-EEGmonitoring, possibly even in the same
clinic. This form of clinical monitoring is performed more frequently and requires
fewer resources for the clinical staff, which increases the number of possible partic-
ipants to be included in preliminary versions of your task. Crucially, this group of
patients will share many of the sample characteristics of the final sample, and will
thus provide you with better estimates of performance levels for data acquisition in
implanted patients.
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While diagnosis and localization of epileptic seizures strongly capitalize on
inferences from EEG recordings, invasive monitoring is less common and mainly
conducted in larger clinics or university hospitals with the required medical and
technical expertise. Therefore, patients in need of invasive monitoring may come
from a widespread area and possibly even from foreign countries. Be aware that
opportunities may arise to test patients who do not speak your own language, or who
only have limited skills in this language. If the patient and their implantation scheme
is otherwise suitable for your experiment and may be willing to participate, it may
be recommendable to invite an interpreter to the experimental session or prepare a
translated version of the instructions beforehand.

Many behavioral tasks used in research nowadays contain elements like using
arrow-keys or a joystick to navigate in a virtual environment. Other paradigms may
contain equipment like touchscreens or even virtual reality designs presented via
immersive goggles. Combined with the variation in iEEG sample demographics,
differences in previous experience with such devices may introduce additional vari-
ance to the data. While navigating a 2D-world on a laptop screen using a joystick
may be trivial for someone who grew up or is otherwise experienced with computers
and video games, it may be a difficult challenge for someone with less experience
in these areas. In your study design, it is therefore important to keep the task simple
(wherever possible) and to make sure that patients have sufficient time to familiarize
themselves with the paradigm and the equipment.

Besides previous experiencewith the input devices, physical constraints to interact
with task elements should be taken into account, too. During invasivemonitoring, the
patient is physically connected to the recording system, which results in restricted
freedom of movement. An exception to this constraint are novel approaches with
wireless recordings (see Chap. 53), which are, as of this writing, far from stan-
dard practice. In addition to the large head bandages covering the head and ears,
possibly complicating the wearing of glasses, medical devices for monitoring other
vital parameters may also be attached to the patient. Given these circumstances, it is
vital to ensure that the patient is easily able to interact with any devices that may be
required for a given experiment.

Finally, similar to the variability in patient characteristics, opportunities to record
neural data often cannot be easily scheduled in advance for researchers who are
not directly involved in the everyday clinical routines. Since the decision to implant
patients depends on a multitude of clinical considerations and available resources,
surgeries may be planned or cancelled within only a few days of notice. Following
successful implantation of electrodes, the duration of on-site monitoring may differ
substantially between patients and can range from a few days to weeks, depending
on the frequency and diagnostic value of observed seizures. These aspects are also
worth considering when designing your experimental study, where single-session
recordings per patient are more practically feasible, since you cannot be sure to see
each patient multiple times or even on several consecutive days. The best way to
address these various aspects is to establish reliable communication channels with
the clinical staff. Ideally, this will allow you to plan recording sessions in advance.
In other cases, it may be necessary to set up a recording on short notice.
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4.2 Task Design

Considering the large variability of age and cognitive capacities of iEEGpatients, you
should also expect a substantial variance in their task performance. It is, for example,
widely known that memory, reaction time, and motor capabilities decrease signifi-
cantly with age—and they may be affected by epilepsy and antiepileptic drugs (see
Chap. 2). However, given the scarcity of epilepsy patients undergoing invasive EEG
monitoring, each individual patient is valuable to the research project. It is therefore
important to design the experimental paradigm to be as flexible as possible. This will
allow you to meet the patients’ cognitive capacities and help achieve the maximum
quality and quantity of recorded data. For example, we recommend implementing a
practice session of the task with a sufficient number of trials for familiarization or a
free exploration phase. Additionally, implement sufficient opportunity for breaks in
between experimental trials and blocks. You may even allow button presses to pause
the experiment whenever necessary, and save the respective information in the log
file of your experiment to remember such events in the data files at a later point in
time. If the paradigm allows it, you may prefer self-paced sequences of trials over
fixed time limits to ensure that inter-trial intervals are long enough and allow for
longer breaks in between trials. Your study design should also consider the fact that
patients may abort the recording session at any point due to epileptic seizures, or
because they are feeling unwell or exhausted. You should therefore make sure that
behavioral data is stored on disk even if the experiment is left unfinished, and that
you may continue the experiment on another day if possible. Generally, aiming for
an experimental paradigm that runs no longer than one hour helps ensure that most
patients complete the study. If your paradigm needs to be longer, try to split it up into
several sessions and leave sufficient breaks in between. Paradigms that consist of
several conditions performed in a sequence should however make sure that the risk
of aborted sessions is spread evenly among conditions, for example by presenting
the conditions in a randomized order.

Another important practical consideration when designing an experimental
paradigm is task difficulty. A task that the patient perceives as too easy can quickly
lead to boredom and decrease the subject’s attention and interest in the experiment,
which can negatively affect the results. On the other hand, patients can just as quickly
become frustrated with tasks that they perceive as too difficult. In many cases, the
paradigm may directly confront the patient with the cognitive limitations imposed
on them by their neurological condition, which may cause psychological discomfort
and stress. Keep in mind that patients are selected for your study because they have
electrodes implanted in a target brain region whose function may be impaired by an
epileptogenic lesion. Depending on the severity of accompanying neuropsycholog-
ical deficits, you may have to expect a substantial variability in performance. Thus,
having different versions of the task that vary in difficulty and/or duration can be
helpful to adapt to the patient’s condition. To select the right version of the task, you
may consult results from neuropsychological testing, ask the medical staff for their
impression of the patient’s cognitive capacities, and/or conduct some test trials.
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These recommendations will require a very flexible paradigm, but also compa-
rability between slightly different versions of the task. An alternative way to keep
a task engaging that may otherwise be perceived as too easy is to introduce enter-
taining elements into the paradigm (gamification). Additionally, some paradigms can
be adapted to limit the feedback that patients receive about their task performance,
which can greatly reduce the frustration for patients who perform worse than they
expect.

4.3 Patient Handling

Empathy with the patient is of paramount importance in all medical professions, and
this is no different for a scientist interacting with patients. During preparation of the
recording setup, start connecting with the patient on a personal yet professional level.
Describe your role as a researcher, your ownmotivation for doing the experiment, and
offer to explain the iEEG setup. Stress the contribution of the patient’s participation
in the study in advancing our knowledge of mind and brain. Be aware that raising
interest in the general research topic and stressing the importance of the scientific
contribution is your main tool to engage the patient to participate. This is different
from subjects in non-clinical settings, who often receivemonetary reimbursement for
their participation. Due to ethical reasons, similar reimbursements cannot be offered
to patients.

However, for fundamental research, you also need to explicitly clarify that the
experimental procedure, the patient’s performance, and their participation is not
related to the epilepsy disorder, will typically not advance the understanding and
treatment of epilepsy, and most importantly, that participation in the study will by no
means influence the quality of their ongoing treatment in any way. This emphasizes
that your experimental procedure is completely separate from any medical proce-
dures. Assure that while the experiment is going on, medical surveillance of the
patient is never interrupted and that you know how to react and whom to contact in
case of an epileptic event. Discussing beforehand how to react in case of such events
clarifies behavioral guidelines and responsibilities for all involved parties.

An important aspect of patient handling in iEEG studies is to understand the
vulnerable situation of the patients. At the time they participate in your study, some
patients may very well have one of the worst weeks of their life. Imagine lying in a
hospital bed, just days after you had a brain surgery. You still have a hole in your skull
and cables coming out of your brain. Somewhere between lunch and your next change
of bandages, a group of scientists comes into your room and wants you to play a
memory-game on a laptop they brought with them. Understanding the patient’s point
of view helps to understand how to keep their motivation to participate in your study
as high as possible. This also means you have to maintain a professional attitude and
demonstrate some self-confidence with the situation. Minor technical difficulties, as
they often occur with scientific equipment, can make you seem unprofessional in the
patient’s eyes. This can make patients uncomfortable or even afraid of the procedure
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ahead. Make sure all the equipment is tested before entering the patient’s room, and
that at least one person in the room is experienced in running the recording setup.
While recordings can also be stressful and demanding for the operating researcher,
your confidence will increase with each patient you see and as you get familiar with
the clinical setting.

Additionally, patients will be much more engaged in your experiment if they
understand its relevance. Briefly explain the research questions in simple terms and
take time to answer any questions the patients may have. Also, emphasize what a rare
opportunity it is for scientists to be able to record human iEEG, and how important it
is for the advancement of your research question. While participation in a behavioral
experiment can be a positive experience for the patient, it can also unveil subjec-
tive or objective cognitive deficits. Emphasize your understanding of the vulnerable
situation the patients find themselves in to ease possible anxieties concerning their
behavioral performance and stress that you are not expecting extraordinary perfor-
mance.On the contrary, also a reduced behavioral performance combinedwith neural
recordings may be important for scientific advancement.

4.4 Technical Setup

Besides considerations of task design and experimental procedure, correctly oper-
ating specialized iEEG hardware is a crucial factor for the success of your study. The
implanted electrodes are physically connected to amplifiers that redirect the stream
of information to a neural processing unit capable of interpreting the recorded signal.
The recorded signal is then stored on a PC running the data acquisition software.

Research-dedicated hardware is not only advisable due to its accessibility to the
researcher, but it may also outperform standard clinical systems in terms of e.g.,
sampling rates or superior signal-to-noise ratio. While most clinical decisions are
based on recordings of macro-electrodes sampled at ~ 1 kHz, research setups may
allow much higher sampling rates that are necessary for single-unit recordings of
micro-wires and micro-arrays. With such high sampling rates and channel numbers,
you need to ensure sufficient free disk space for storage. Recording a 60-min session
of 10 electrodes sampled at 30 kHz will result in 1.08 billion data points! The size of
the data file ultimately depends on the precision of data points of the recorded signal.
Using neural signal oscillators or other simulated signals, you can record dummy
data for the duration of an experimental run to see how large the files get.

In case of a separate research-dedicated system, the amount of implanted channels
may exceed the maximum number of channels you can record. Clinical staff can help
you decide for the best selection, since they may have already identified contacts that
show a poor signal-to-noise ratio or frequent epileptiform activity.

All devices combined in a rack may require a considerable amount of space in
the patient’s monitoring room. Figure out the best way to position the equipment,
the patient, and yourself to ensure that you can easily instruct and guide the patient
during the course of the experiment.
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4.5 Event Synchronization

Relating specific experimental events such as the onset of a stimulus or behavioral
responses to recorded iEEG samples requires temporally aligning neural and behav-
ioral events. This is usually achieved by sending temporal markers or triggers from
the experimental paradigm to the recording device (i.e., the amplifier). This way, a
specific sample of the neural data stream is marked with a behavioral event from
the experiment. To fully exploit the high temporal resolution of intracranial EEG,
it is crucial to mark such events in a temporally precise manner. At high sampling
rates, transmission delays from the experimental system to the recording system can
substantially bias your data. Thus, especially for time-sensitive paradigms or online
data-analysis as in BCI applications (see Chap. 51), estimating the temporal delay of
trigger signals—and even more important, the variance of these delays—is a crucial
aspect for data quality that should be taken care of prior to the start of data acquisition.
Relying on internal clocks of the running operating system may not be sufficient,
since they can vary slightly between devices.

There are multiple ways to transmit triggers between the paradigm and recording
hardware, and the best option depends on the specifics of your recording system.
Serial or parallel ports are among the most standard approaches for sending and
receiving triggers in EEG recordings. However, new-generation computers usually
do not have serial or even parallel port connections. While USB-to-Serial or USB-
to-Parallel adapters work well for time-insensitive applications, they may introduce
jittered transmission delays that are difficult to compensate for after data acquisi-
tion. Instead, docking stations, customized hardware based on microcontrollers (e.g.
Arduino), or vendor-specific hardware can be solutions to this issue.

For the presentation of complex stimuli such as sophisticated 3D virtual envi-
ronments or combined audio and visual presentations, the computation time needed
for rendering the stimuli may also cause a delay. When sending a trigger before
presenting some complex stimulus, the time required to present the stimulus on screen
is not considered. Using photodiodes to mark experimental events in your recording
is the gold-standard approach and accounts for both transmission and rendering
delays. Photodiodes are light-sensitive transmission devices which conduct current
upon light-induced stimulation. The diodes are physically taped to e.g. the lower left
corner of the presentation screen and connected to the recording device. To mark
an experimental event, for example the presentation of a picture, simultaneously
display a small white square on the screen-position of the diode. This will cause
a light-triggered discharge of the diode and send a marker to the neural recording
device. This way, the time that is needed for rendering is taken into account and the
event is marked at the exact point in time the stimulus appeared.

Irrespective of your final approach for marking events in the recording, test the
setup and ensure its functionality before starting each recording session. To do so,
send some triggers from a separate dummy script to the recording device and verify
that the events are properly recognized. Usually, such events are marked as ticks
in a separate I/O channel in the recording software. To open up the possibility of
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realigning neural recordings and experimental events afterwards, you could send
triggers at the very start and end of your experiment in predefined delays, for example
10 triggers with 100 ms delay. The temporal distance between the events in the
recording file will help you estimate inherent variation in transmission and allow for
realignment of data streams after the recording session is done.

4.6 Data Quality

Since data acquisition in iEEG is time-consuming and participant recruitment can
be a major hurdle, researchers have to be particularly meticulous about their data
quality. Importantly, ensuring good data quality prior to recording is always superior
to offline data correction. Many issues concerning data quality can cost you an entire
recording session if they go unnoticed. Therefore, you should not blindly trust in
cables being set up correctly and recording settings being set the way they should.

Firstly, you should orient yourself in the channel layout. If the recording uses the
same iEEG setup that was used for the medical recording, this step has generally
been taken care of by the medical staff. If, however, a separate device is used for the
scientific recording, the cables of the iEEG electrodes have to be plugged into this
system first. To ensure that the channel order (and with it any information about the
implantation site) is correct, it is always advisable to check some channels that are
easy to discriminate from the others, and make sure they show the signal you expect.
For example, some electrodesmay be set up to recordmedical data unrelated to neural
activity (for example ECG). Other electrodes may be broken and are therefore easily
identifiable. Making sure that these channels are in the place where you expect them
to be ensures that the channel numbering matches the implantation plan.

In a second step, you should visually inspect some channels that you expect to
record neural data. Many problems with the recording setup can be identified, or at
least recognized, with a short look at the data itself. The most basic system failure to
be seen in this step is channels that do not show any believable neural data at all, but
merely jump between oversteering and understeering. This is typically a sign that
some cables in the system are not properly connected, but may also indicate issues
with the reference settings or grounding. Sometimes, channels can also swing back
and forth between a state showing over- and understeering and a second state with
recognizable iEEG waveforms. This usually indicates a faulty connection between
the electrode and the system, most commonly a loose cable connector or a broken
cable.

Once you have made sure the channel layout is fine and that all relevant neural
data is being recorded, a more in-depth look at the data can help identify possible
further issues and subsequently improve the data quality. Visual inspection of iEEG
data cannot always give you all the information needed to judge the data quality.
The most prominent source of noise in iEEG recordings is line noise, caused by the
electrical devices and infrastructure in the near surroundings. This noise depends
on the power grid frequency of your recording site, which is generally 60 Hz in the
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Americas and 50 Hz in the rest of the world. Line noise cannot always be identified
visually, since it is hard to identify a certain frequency within a signal by eye. Many
researchers therefore prefer to “listen” to the signal by ear, which makes it much
easier to identify specific frequencies in the signal. Options for this exist for most
modern recording systems. While this requires some experience, it will allow you
to identify line noise on channels quickly and to look for its source. Turning off
lights or unplugging devices like electrical patient beds and phone chargers can
significantly improve signal quality. Other artifacts that may be picked up by iEEG
electrodes could be related to muscle activity during head- or jaw movements, cable
movements, or even blood flow, if the electrode is located in proximity to a blood
vessel.

4.7 Conclusions

Themain goal of this chapter was to provide practical guidelines on iEEG data acqui-
sition, to discuss challenges and pitfalls and to offer solutions for commonly arising
problems. We addressed several challenges concerning variability in iEEG samples
and how to consider them in the development of a suitable study design and the final
configuration of the behavioral task. Moreover, we raised awareness of the patient’s
situation and how the researcher’s approach can be optimized to meet the require-
ments and affordances of all involved parties. Additionally, we outlined ways to
ensure good data quality at the day of recording, and finally stressed the relevance of
event synchronization during continuous data acquisition. Despite extensive prepa-
ration, there is and always will be room for error or unexpected events. However,
good preparation, robust routines and a professional attitude are ways to adapt to the
complex situation of iEEG data acquisition and ultimately gain unique insights into
the neural basis of human cognition.



Chapter 5
What Are the Practical Considerations
for Building a Successful Intracranial
EEG and Direct Brain Stimulation
Research Program?

Cory S. Inman and Peter Brunner

Abstract Intracranial EEG is performed at a wide range of clinical centers across
the world and presents a unique opportunity to directly observe and modulate human
brain activity at the speed of cognition. Capitalizing on this opportunity requires
specific attention to the practicalities and challenges involved in establishing an
effective and efficient intracranial research program. This entails identifying relevant
scientific and clinical problems, building interdisciplinary, multi-institution teams
that function within the clinical environment—a daunting task even for the most
experienced scientists. Finally, we discuss the unique challenges to career advance-
ment for those training in iEEG and brain stimulation. By providing a comprehensive
discussion, along with practical recommendations, this chapter hopes to reduce the
barriers of entry and maximize success for new investigators entering the field of
intracranial research.

5.1 Introduction

Intracranial electroencephalography (iEEG) and direct brain stimulation has been
used for the localization of epileptogenic regions in patients with drug-resistant
epilepsy for nearly a century [1, 2]. Despite this long history of using electrodes
with direct contact to the human brain to observe and provoke changes in brain
activity, iEEG and direct brain stimulation have only recently gained traction over
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the past 30 years as an opportunity to study the neural correlates of human cogni-
tion and behavior on a broad scale across many laboratories and institutions across
the world [3]. Insights from iEEG are now frequently used to complement long-
standing evidence from lesion studies [4–9] and accumulating evidence from func-
tional imaging modalities in healthy individuals like functional MRI and scalp EEG
as to the functional role of regions throughout the human brain during cognition. In
fact, relative to other brain mapping techniques, iEEG offers the unique ability to
directly capture and manipulate neurophysiological processes with precise spatial
localization on the order of millimeters and at the true temporal resolution of human
cognition on the order of milliseconds. Proliferation of iEEG research over the past
three decades has occurred due to increasing interdisciplinary recognition of iEEG
data’s neuroscientific and translational value, growing relationships between basic
and clinical neuroscientists, and technical developments that simplify the collection
of iEEG data during cognitive tasks [10]. In this chapter, we will discuss the oppor-
tunities iEEG and direct brain stimulation research offer to complementary cognitive
neuroscience approaches and the necessary practical and career considerations for
establishing a successful iEEG research program.

Pursuing human iEEG research requires scientists and clinicians to establish coop-
erative collaborations that aim to ask the strongest scientific questions in the context
of the clinical team providing patients the best clinical care possible. In some cases,
like clinician-scientists in neurology and neurosurgery, the scientist and the clinician
are one and the same and may have received medical and PhD level training (i.e.,
M.D.-Ph.D.; see Chap. 6 for relevant ethical issues of this setting). Increasingly,
systems and cognitive neuroscientists have been given the opportunity to pursue
basic neuroscience questions with iEEG populations through collaborations with
clinicians. Beyond the clinician-scientists relationship, there are many other essen-
tial team members involved in the operation of a successful iEEG research program.
These essential team members include both permanent and transient collaborations
with clinical staff whose primary responsibility is patient care, including neurosur-
geons, neurologists, nurses, EEG technicians, and even patient family members or
caregivers (see Fig. 5.1 for typical iEEG team interactions). Without some agree-
ment and understanding between these essential team members, iEEG research can
be inefficient or difficult to complete at all. Help from transient teammembers should
be discussed and requested by clinicians involved in the patient’s care to ensure that
no research pursuits interfere with the clinical mission and to show support for the
research program. Our first recommendation when working to establish an iEEG
research program is to get to know all key personnel that might be involved in
the patient’s care and supporting the research endeavor. We’ve found it particularly
helpful to give them the opportunity to learn about the research, from the basic steps of
the experiment to the significance of the questions being pursued. How well various
parts of the iEEG team work together is a major determinant for how successful the
iEEG research program can be.
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Fig. 5.1 A typical iEEG Research Team and their interactions. Every node of this network of
stakeholders in the iEEG research process is essential to the success of an intracranial EEG research
program.Failing toproperly engage anypart of the teamwill at least slowany iEEGresearchprogress
and at most make a research program unsustainable. Careful and purposeful communication and
interactions among each of the stakeholders can help to establish, sustain, and grow a new iEEG
research program

5.2 Preparing Experiments for the Clinical Environment

Intracranial recording time is highly coveted and often shared across multiple
investigators and projects. To value this precious time, experiments must be well-
prepared before engaging with the research subjects. Such preparations entail care-
fully designing the experiment to control for potential confounds, along with valida-
tion and verification to ensure that experiments yield the intended behavioral results.
While validation and verification of experiments typically are conducted within the
controlled laboratory setting using highly functioning neurotypical subjects, subject
populations who represent the range of diversity in sex, age, and cognitive abilities
that can commonly be expected within the clinical population, should be included
early within the design and verification process. Soliciting qualitative feedback by
these validation and verification subjects during debriefings can be used to identify
issues that might otherwise only become apparent in statistical behavioral analyses.
Additional consideration should be given to clinical considerations, such as limiting
experimental sessions to 30 min or less, allowing for short breaks to accommodate
ongoing clinical care, and capturing potential confounding variables such as distrac-
tions that might occur from the hospital public announcement system and phone
calls or text messages that the patient might be receiving throughout the experimental
session. Overall, experimental conditions in the clinical setting require well-justified
research questions with thoughtful, careful designs that account for the unique envi-
ronment in which testing will take place. Guidelines and best practices for designing
and implementing iEEG research and direct brain stimulation studies are published
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in other chapters in this edited volume (e.g., see Chaps. 4, 8, and 39) and in recent
review articles [3, 11–14].

5.3 Interactions with Clinicians and Other Stakeholders

The opportunity to do research with iEEG patients is given by neurosurgeons and
neurologists caring for the patients. Without their support, iEEG research is not
possible. This reliance on clinicians stems from the clinical context in which the
research is being performed and the ethical obligations of researchers to not interfere
with the clinical mission. The strength of support from the patient’s neurologists and
neurosurgeons directly contributes to the ease and success of a research program.
Strong physician support makes all other research-related interactions with those
involved in the patient’s care easier, from the patient’s family to nurses and EEG
technicians. When aiming to start an iEEG research program, researchers should
engage all of the physicians that might be involved in the patient’s care with in-depth
conversations about the goals of the research, how the physicians can be involved,
the risks of the research, and how clinicians will be given credit for their participation
in research through authorship on resulting publications. Having these discussions
early and often will help keep clinicians engaged and interested in supporting the
research endeavor.

Once support for a research program has been established with the iEEG clinical
team, the most essential step to maintaining a good relationship is being respectful of
the clinicians’ time. Given the extremely busy and varied schedules clinicians follow
on a day-to-day basis, requests for a clinician’s time should be well-justified and
minimized to ensure continued support. For instance, if a clinician’s time is needed
to do safety checks prior to a stimulation study, the procedure for performing the
safety checks should be made as time efficient as possible. Communication of the
research-related requests should be made well ahead of time to help the clinician fit
the request into their schedule. It’s important to keep in mind that every minute of
time requested for clinicians to help with research is an additional minute added to
their workload before they can go home for the day. Respect for all clinicians’ time
will go a long way towards maintaining a successful iEEG research program.

Finally, given that iEEG patients are a scarce and rare resource at many surgical
epilepsy centers, researchers will need to work well with other research teams. This
is best achieved through regular communication between each of the research teams
and the clinical team. Ideally, independent research groups are organized under a
larger iEEG research team with regular meetings prior to patient testing to establish
testing priorities and order between all the independent research groups. It is often
the case that many win–win situations can be found when regular communication is
practiced between research groups, even across multiple institutions. We’ve found
it particularly helpful for all research staff to be trained to administer all the tasks a
patient may be asked to perform. This minimizes the number of people needing to
interact with the patient and their family, as well as the number of people that need to
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be tracking the ongoing testing progress across projects. When this is not possible,
given the complexities of certain tasks (i.e., stimulation tasks vs. recording-only
tasks), then there should be regular communication between the research groups to
minimize conflicts and patient confusion. Regular communication can be aided by
project management software like Slack, Asana, or Microsoft Teams. The success of
an iEEG research program can be determined by how well the independent research
groups work together to maximize clinician support and testing efficiency while
minimizing the need for clinicians’ time.

5.4 Interactions with Patients and Their Families

The duration of inpatientmonitoring primarily depends on reaching sufficient clinical
evidence in identifying the seizure onset zone and can range from several days
to multiple weeks. Duration of implantation and physical and mental condition is
impossible to predict. Establishing a good working and social relationship with the
patients are key to ensuring the willingness and motivation of patients to participate
in research. It is also critical for the patient to feel like they’re making a positive
contribution to scientific knowledge. In this regard, having a small team of one to
three researchers who, in pairs of two, attend to the patient for the entire duration of
the inpatient monitoring tends to be more enjoyable for the patient than working with
multiple teams that change fromday to daywhichmay overwhelm the patient socially
and emotionally. It can be particularly helpful to get to know the patient beyond just
their clinical situation. Asking the patient and their family about themselves goes
a long way to establishing a good rapport throughout the patient’s monitoring stay.
It is possible to get to know patients and families quite well through their research
experience. These short-term relationships can be a great source of satisfaction as an
iEEG researcher and helpmaintain a healthy and caring relationshipwith patients and
their families. Honestly one of themost incredible experiences as an iEEG researcher
is bearing witness to the strength of patients and families going through the invasive
experience of iEEG monitoring.

Consulting the neuropsychologist and epileptologist who often have followed a
patient for years before the inpatient monitoring can be used to understand patient
abilities andneeds aswell as the social and family dynamics that need to be considered
when approaching the patientwith the opportunity to participate in the research proto-
cols (see also Chap. 2 on the neuropsychological background of epilepsy patients).
Clearly explaining the scope of the research and delineating it from the ongoing
clinical care is paramount to establishing and maintaining trust between patients
and their families and the research team. This also entails informing patients that
the research will not directly benefit nor will affect their clinical care. When clin-
ical personnel are involved, they need to state when they visit in their capacity as
researchers or clinicians to minimize any potential influence they may have (see
Chap. 6). These additional steps of communication are even more important when
engaging in direct brain stimulation studies. Gaining andmaintaining a patient’s trust
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during direct brain stimulation experiments requires a clear description of the poten-
tial risks associated with stimulation. Immediate explanations of any sensations or
behavioral results also aids in maintaining the patient as a collaborator throughout
the research process. Many patients are excited to share their experience and to have
the opportunity to potentially contribute to therapies that can help future patients in
their situation. Overall, patients and their families are essential parts of the research
team and endeavor, and they should be treated as collaborators in any projects they
participate in.

5.5 Interactions with the Nursing Staff

Patients implanted with intracranial electrodes are typically monitored within an
epilepsy unit staffed by nurses dedicated to the clinical care of such patients. This
ensures that nurses can rapidly respond to a clinical seizure to prevent the patient
from injury. Any research experiment conducted in this patient population needs
to be able to rapidly vacate the bedside within seconds to allow the nursing staff to
attend to a potential generalized seizure. Consulting with the attending epileptologist
about the typical manifestation, including viewing a previously recorded seizure, can
be helpful in increasing the sensitivity of the research team to seizures. Especially for
generalized frontal-lobe seizures, the research team needs to be prepared to be asked
by the nursing staff to help subdue a violently convulsing patient. Nursing staff should
bemade aware of stimulation studies or any studies that might increase the chance for
provoking a seizure. This may involve having anti-epileptic medications like Ativan
(Lorazepam) at the ready or checking in with EEG technicians that are actively
monitoring the patient’s EEG data throughout the stimulation testing. Further, the
daily changing nursing staff needs to be consistently kept in the loop about the
scope and duration of any research protocols, and important clinical care needs to be
completed before research experiments can be conducted. This allows researchers
to minimize testing interruptions and nursing staff to ensure the patient has received
any scheduled care or medications. Many nursing staff appreciated being involved in
helping with research when clear steps to minimize any extra duties have been made
by researchers. Nurses are often the most frequent caregivers for patients; respecting
their expertise and time will help make the patient and researcher experience as
productive as possible.

5.6 Interactions with EEG Technicians

The technical complexity ofmonitoring epilepsy patients requires specifically trained
EEG technicians to apply EEG electrodes, connect EEG and iEEG electrodes to the
amplifier, and monitor and maintain good recording quality throughout the moni-
toring stay. While EEG monitoring is a relatively simple and highly standardized
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procedure that is routinely performed by most EEG technicians on a daily basis,
iEEG monitoring is highly complex as it requires connecting and managing an order
of magnitude more electrodes than EEG monitoring and is only performed once or
twice per month. This complexity is further increased by clinical research where
additional electrodes (e.g., micro-electrodes; see Chaps. 42–46) are connected, or
additional dedicated signal acquisition systems for the acquiring from these elec-
trodes are inserted into the clinical signal path. Establishing a successful intracranial
monitoring research project thus requires collaboration and a good working relation-
ship between the EEG technicians and the research team on the technical aspects
of the research. For example, connecting the dedicated research system needs to
be done in the presence of the EEG technicians, and reseating of connectors or
EEG electrodes throughout the monitoring should be done by the EEG technician
in a timely manner to ensure stable signal quality across all research protocols. Of
particular importance is that the research is slowly increased in complexity to allow
for identifying and isolating issues at an early stage, rather than being faced with
noise issues that cannot be isolated. This situation can create pushback by the clin-
ical team and prevent the use of the research amplifier or stimulator system. It is
often helpful to give EEG technicians the opportunity to learn about the aims of the
research being done with their patients. This can be done through organizing a talk
to review the current iEEG research projects, or when EEG technicians have allotted
time for research, they can be brought into a more permanent role on the research
team that utilizes their expertise (i.e., reviewing EEG data for interictal discharges or
non-convulsive seizures or performing signal processing analyses). Like clinicians
and nurses, establishing and maintaining a good rapport with EEG technicians and
their supervisors by minimizing the requests on their time helps with sustaining a
successful iEEG research program.

5.7 Practical Considerations for Direct Brain Stimulation
Studies

Direct brain stimulation studies have become an increasingly important source of
evidence for understanding causal influences brain regions have upon one another
and the related cognitive behaviors (seeChaps. 39, 41, and 52).Humanbrainmapping
studies using direct brain stimulation in awake patients began in the 1930s with
the pioneering work of Foerster and Penfield [1, 2, 15–17]. Since then, our ability
to deliver intracranial stimulation and to use it as a brain mapping tool outside
of the operating room has improved, but there is still much to learn about how
direct electrical stimulation to the human brain changes neurophysiology. Recent
work has demonstrated novel capabilities to deliver stimulation responsively to
epilepsy-related andmemory-related brain states [18–20]. This capability to perform
closed-loop stimulation in response to neurophysiological signals and states gives
researchers the opportunity to deduce the causal neural dynamics of specific and
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widespread networks of brain regions. Whether open-loop or closed-loop, all stim-
ulation experiments require additional consideration by the research team [21–31].
Every step of the research process is more complex when performing a stimulation
study, from gaining IRB and ethics approval (see Chap. 6) to purchasing approved
stimulation equipment to ensuring patient safety during testing and working with the
clinical team.

Gaining IRBor ethical approval for a stimulation study startswith having a reason-
able justification for performing the study that outweighs the risk. The maximum
risk threshold is generally set by the common stimulation mapping practices used
for clinical seizure mapping during the patient’s monitoring. Research risks, based
on stimulation parameters, are often kept much lower than this clinical threshold.
Risks can also be minimized by involving the clinical team in discussions of the
stimulation parameters (location, amplitude, frequency, duration, etc.) relative to
the ongoing information coming in from the patient’s monitoring. Neurologists can
also be involved in the process of checking for after-discharges caused by stimula-
tion during a pre-testing safety check where the stimulation parameters are manually
controlled (i.e., stimulation delivery is not programmatically automated). These sorts
of manual safety checks should be done for all parameter sets prior to testing to mini-
mize the risk of a stimulation-induced seizure or kindling of a novel epileptic focus
from repeated induction of after-discharges. Performing stimulation experiments that
are safe andwell-tolerated by research participants requires additional considerations
relative to recording-only studies. The best way to maintain the trust of participants
and clinicians is for researchers performing stimulation studies to constantly seek to
minimize the risks of their experiments.

5.8 Career Pathways to Starting a Successful iEEG
Research Program

Given the interdisciplinary nature of iEEG research, establishing a successful and
impactful iEEG research program critically depends on three factors: (1) becoming
an open-minded investigatorwho iswell-trained in a range of disciplines; (2) building
a network of open-minded and supportive collaborators who complement your
skills; and (3) finding an institution that provides the necessary clinical and scien-
tific resources and environment to engage in highly intensive basic or translational
research. Of course, there are also various idiosyncrasies related to each job appli-
cant’s training background (M.D.-Ph.D., neuroscientist, psychologist, physicist, data
scientist, etc.) and where they are applying for a position (R1 University, United
States, Europe, etc.) that we cannot thoroughly cover here. Our primary goal with
this section is to outline some suggestions for gaining training and finding a position
that overcomes these hurdles, given the interdisciplinary nature of iEEG research.
We suggest establishing a mentorship relationship with current iEEG investigators
to get a sense of how to navigate the idiosyncrasies of your situation.
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With the growth of more independent iEEG research labs, gaining the necessary
hands-on training to collect and analyze data is becoming more feasible, but relative
to other lab techniques, iEEG research can be difficult to break into. The easiest
path to gaining the necessary expertise in iEEG research is to join an established lab
in graduate school or during a postdoctoral fellowship. While these training expe-
riences may give you the requisite experience to develop your own experiments,
collect and analyze data, they do not guarantee well-rounded training across all of
these aspects of a project. Well-rounded training must be sought from the beginning
by the trainee. Fortunately, already collected, large iEEG and stimulation datasets
have now begun to be shared via data repositories (iEEG.org, the international data
portal, openneuro.org, University of Pennsylvania Computational Memory Lab; see
https://github.com/openlists/ElectrophysiologyData#human-intracranial-data for a
comprehensive list). These previously collected iEEG datasets can give anyone the
opportunity to analyze precious iEEG data but gaining experience in iEEG experi-
mental design and collecting iEEG data is harder to gain. There are also opportunities
to gain iEEG research experience from the medical training track duringM.D.-Ph.D.
training, medical school, residency, or fellowship. Besides doing Ph.D. training in
an iEEG lab, other medical research experiences are often time-limited, so it’s often
best to work with existing datasets to gain analysis experience and to shadow task
development and patient testing. For those that are coming from an academic back-
ground, it may be possible to develop an outside collaboration with an existing iEEG
lab at your institution. Clinician-scientists often seek support from behavioral or
cognitive neuroscientists to establish a research program, given the clinician’s split
clinical and research responsibilities. If you are not sure if your institution has iEEG
patients or research resources, reach out to the local epileptologists and functional
neurosurgeons to gauge their research interests and possibilities. In general, a well-
rounded iEEG researcher seeking independence will have training and experience in
experimental design, patient and clinician interaction, experimental testing, signal
processing, advanced statistics, and article and grant writing.

Along the way to gaining this diverse training, those interested in an iEEG
research career should establish a broad network of clinicians and established iEEG
researchers across institutions. Growing your network will involve the typical inter-
actions at conferences (Society for Neuroscience, Cognitive Neuroscience Society,
Human Brain Mapping, World Society of Stereotactic and Functional Neurosurgery,
American Epilepsy Society, etc.) and reaching out to researchers and trainees to
discuss their prior publications. Growing your iEEG network can also be aided by
reaching out to neurologists and neurosurgeons in your local academic hospitals to
discoverwhat iEEG researchmight be occurring locally. Other avenues to developing
a multi-institution iEEG research network might include working with established
researchers at your institution on a multi-institution iEEG research or direct brain
stimulation grant or offering your specific expertise to an ongoing project. Presenting
results generated from analyses of open iEEG datasets at various conferences can
also be an excellent way to get noticed by iEEG research laboratories seeking help.
Finally, asking collaborators and researchers in your discipline that are at other insti-
tutions to try to make connections with the clinicians involved with the surgical
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epilepsy service at institutions they are familiar with can also help you determine
where potential opportunities might become available. Connections established to
anyone else currently engaged in iEEG research during training have the potential
to open future doors along the pathway to establishing a career and independent
laboratory in iEEG research.

The final and perhaps most difficult step of establishing an independent labora-
tory in iEEG research is finding an institution that provides the necessary clinical
and scientific resources and environment to engage in highly intensive basic or trans-
lational research. There are likely hundreds of academic medical centers around the
world that do not currently perform research with their intracranial EEG patients. In
some cases, this is due to a lack of support from clinical administration given revenue
models or physicians interest. In many cases, clinicians are interested in hosting
iEEG research but simply do not have the time to establish a research program given
their clinical responsibilities. There are also situations where some intracranial EEG
research is taking place at an institution, but the opportunities to test patients are not
yet saturated. All of these clinical situations have the potential to develop a successful
iEEG and direct brain stimulation research program with the right approach. If there
is interest in starting a program from the clinician’s side, there might be a postdoc-
toral or faculty job posting in the medical school seeking researchers with iEEG,
experimental design, or signal processing experience.

Most iEEG job opportunities are posted and hired through medical schools, but
there are other academic departments that might support an iEEG research program
(psychology, neuroscience, biomedical engineering, biology, computer science, etc.).
Successfully applying to non-medical academic departments with an iEEG research
program requires a certain amount of creativity in connecting your program with
interests of existing faculty. Clear support from the clinicians that would give you
access to work with iEEG patients is also essential for successfully landing a
iEEG faculty position. Showing a clear connection between current faculty research
programs in a department and a novel iEEG program is essential to gaining a
search committee’s interest in your application. For example, this could be done
by describing how existing behavioral or cognitive neuroscience questions currently
being examined with non-invasive techniques can benefit from complementary inva-
sive studies of similar behaviors. Making this case for the search committee can
also be aided by offering to help connect the current faculty in the department with
the iEEG research opportunities as the program becomes established. Of course, to
make these sorts of offers or connections, a potential applicant needs to establish
a strong relationship and support from current researchers and clinicians involved
in the patient’s care that are aware of the current possibilities for adding a new
iEEG research lab. Gaining clinician and researcher support will be aided by having
already established a strong network of multi-institution iEEG researchers. Given
the relatively small number of places to train to perform iEEG research, it is likely
that someone in this broad network has a personal or collaborative connection with
clinicians at iEEG monitoring centers, even those with no current iEEG research
program. Once a connection is established, and you have gained clinical support for
your proposed research program, a letter of support from the clinicians involved in
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the iEEG patient’s care attached to your application can go a long way in showing a
search committee the potential to grow an iEEG research program at their institution.
This support letter would include details about the unique opportunities offered by
iEEG research, the current availability of research time with iEEG patients, possible
collaborations with current researchers, and detailed support for your specific iEEG
research program. Although it is challenging to meet all these criteria to gain a tenure
or researcher track faculty position, it is certainly possible with the proper training,
connections, and support.

5.9 Conclusion

Intracranial EEG research offers the rare opportunity to directly record and modulate
human brain activity at the speed of cognition. With rare opportunities come unique
responsibilities to develop a well-justified, unique research program, gain and main-
tain support of clinicians caring for iEEG patients, and cultivate a rapport and trust
in a limited amount of time with patients and their families. This chapter aimed to
provide some insight into the practical considerations for those wanting to establish a
successful, independent line of research in iEEG and direct brain stimulation. While
all of these recommendations may not apply to all situations, we hope that these
suggestions can help most applicants as they pursue a career in iEEG research. The
iEEG research landscape will surely change over the coming years since this chapter
is published with new technologies becoming available to improve long-term seizure
monitoring and record electrophysiological data from the human brain. Those that
can foresee and adapt to these changes in technology and data analytics will be most
successful at building and sustaining a successful iEEG research program.With these
rapidly developing technological and data analysis approaches, intracranial EEG and
direct brain stimulation research is currently poised to transform our understanding
of human brain function in the coming decades.
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Chapter 6
What Ethical Issues Need to Be
Considered When Doing Research
with Patients Undergoing Invasive
Electrode Implantation?

Ashley Feinsinger and Nader Pouratian

Abstract Directly recording and modulating human brain activity through inva-
sive techniques takes advantage of unique neurosurgical opportunities provided by
patients who have a clinical need for invasive electrode placement. These patients,
including those who undergo deep brain stimulator (DBS) implantation or have
wires implanted in the epilepsy monitoring unit (EMU), may consent to research
to be conducted during these interventions. This research may involve extra record-
ings, additional behavioral tasks, temporary electrode placement, and modification
of implantable wires for the purposes of gaining generalizable knowledge about the
brain. The unique context of this research, including the overlap of clinical care and
research and the populations of patients eligible to participate, generates a multi-
tude of ethical issues. This chapter provides an overview of these issues and the
special contextual features of iEEG research that engender them. Areas of focus will
include risk/benefit assessments, informed consent, the dual-role of the physician-
researcher, fair access, neurodiversity, and identity. Attention will be centered on
non-therapeutic and basic science research conducted in the intraoperative setting
with DBS patients and the extra-operative setting with EMU patients. This chapter
is meant to inspire deliberation about research design, recruitment, and consent, and
foster an appreciation for the unique ethical challenges in invasive iEEG research
with neurosurgical patients.

6.1 Introduction

Intraoperative research with DBS patients is conducted during a patient’s DBS
implantation procedure. Crucially, these patients are seeking treatment for diseases
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like Parkinson’s, epilepsy, and dystonia, and often have exhausted other treatment
options. Sometimes, the clinical activities of the surgery are paused, and patients are
asked to complete additional tasks while extra recordings are taken either through
the depth electrodes themselves or through a temporarily placed cortical strip (elec-
trocorticography, or ECoG). The experiments can be conducted either in the middle
of the implantation procedure or immediately prior to closure. Somewhat differ-
ently, extra-operative research is conducted during an epilepsy patient’s stay in the
EMU. These patients, who have wires implanted to for epilepsy diagnostics, stay in
the hospital while clinicians attempt to record and localize seizure activity. During
this stay, researchers may take advantage of the implanted wires to conduct iEEG
recordings for research purposes, and sometimes, they may use modified wires in
the implantation itself to enable these recordings during the stay [4, 26]. Impor-
tantly, both of these research activities are subsumed in what is otherwise a clinical
setting and is often led by researchers who are also the patients’ clinician. Crucially,
all participants in these studies are concurrently patients, who in many cases come
to pursue a neurosurgical intervention when other therapeutic options have been
exhausted.

This duality—in space, investigator role, and participant role—may complicate
traditional ethical questions about risks, benefits, and consent, but also require
expanding the locus of ethical attention and developing innovative practices (Table
6.1). Similarities and differences between research contexts and patient populations
in DBS research and EMU research will be noted below.

6.2 Risks and Benefits

Federal common rule requires that risks of research are “reasonable in relation to
anticipated benefits, if any, to subjects, and the importance of the knowledge that
may reasonably be expected to result” (45 CFR Part 46). Intraoperative and extra-
operative iEEG research is made possible and judged permissible in part because
a large portion of the surgical risks of intracranial recordings are already assumed
in the clinical interventions (e.g., implantation of the DBS device or monitoring
wires). This renders the additional surgical risks of intracranial research marginally
low, contributing to the rationale that the knowledge to be gained through these
recordings is reasonably balanced against the minor increase in individual risk. In
fact, conducting research that takes advantage of already occurring clinical activities
is ethically encouraged for just this reason [8]. But, further ethical questions persist
in iEEG research, not just about (i) what risks and benefits exist, but also (ii) the
importance of those risks and benefits, and (iii) how to communicate with patients
about those risks and benefits. In particular, when research is non-therapeutic or
guided by basic scientific questions about the brain, questions endure about how to
balance individual risks against the predicted value of the expected knowledge. Since
the risks of iEEG research include risks of harm to the brain, the sequelae of such
harms may be consequential, making the identification and weighing of risks and
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Table 6.1 Ethical considerations for iEEG research with DBS and EMU patients. The first column
lists broad study features deserving ethical consideration. Rows list fine-grained sub-categories for
study specific consideration. For example, when considering the ethical importance of the partic-
ipant population for a specific study, researchers may need to consider not only the diagnoses of
the patients and potential vulnerabilities for consent, but also current and potential marginalization
of that population and how research may intersect with senses of identity and diverse values

Categories of
ethical
importance

Sub-categories to consider

Risks: Kinds (clinical, social) Magnitudes Structural and
financial context

Importance to
participant
population

Benefits: Kinds (therapeutic,
non-therapeutic,
social)

Magnitudes Distance from
translation

Relationship to
participants’
disease

Participant
population:

Diagnoses (kinds,
severity, rarity)

Potential
vulnerabilities
(capacity,
misconceptions)

Social
positionality,
marginalization

Identity, diverse
values

Team
constitution:

Presence of
clinician-investigators

Presence of
non-clinicians

Involvement of
technology
companies

Involvement of
other health
professionals

Care and
research
overlap:

Timing (intraoperative,
extra-operative,
duration)

Space (in OR,
hospital, clinic,
home)

Tasks (similarity
to clinical tasks,
intimacy)

Dual-roles

Participant
involvement:

Kinds (intensity,
duration)

Effects of
participation

Participant
motivations

Opportunities
for engagement

Down-stream
effects:

Barriers to fair access Potential for
exploitation

Effects on
neurodiversity

Effects on
agency, sense of
self

benefits of critical importance. This section focuses not on the empirical estimations
of those risks and benefits, but on motivating the extant challenges that exist and
which researchers ought to address in their own studies.

6.2.1 What Matters When Assessing Risks?

The risks of intraoperative research include increased risk of surgical harm, such
as stroke, bleeding, and infection, as well as increased discomfort from prolonged
intraoperative time. While those risks may be relatively small compared to the risks
assumed for the DBS surgery itself [4, 25], it can be difficult to quantify the added
risks of the research intervention. How much time, for example, correlates with how
much increased surgical risk? It may also be challenging to communicate these risks
to patients in comprehensible ways which distinctly separate clinical risks from
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research risks. Risks of discomfort and stress, for example, may be difficult for
patient-participants to imagine or predict, particularly before they have experienced
the intraoperative environment. While research does not extend operating time for
EMU patients, risks may still include discomfort and stress related to carrying out
tasks while implanted. Furthermore, since EMU stays can extend for periods up to
days and weeks, patient-participants may experience these risks differently over this
time and change how concerned they are about them.

There may be other research related effects on patient-participants. Some repet-
itive tasks may be boring, some cognitive and movement tasks may be frustrating,
and tasks involving emotions or affective states may have a more profound effects.
Research involving emotion regulation, or inducing or suppressing distress, for
example, may itself be distressing. Patient-participants may feel differently when
study tasks are more intimate or relate more closely to their sense of self. As tasks
become more closely connected to patient-participants’ desires, behaviors, and self-
conceptions, it may become more important to assess what is it like to participate in
the research. When does participation itself impact patients positively or negatively,
and when should some of these effects, if there are any, be communicated as risks?
While there is emerging data on how patients experience usingDBS devices for treat-
ment, for example [11], there is less data on how intraoperative iEEG research affects
patients, or how EMU patients experience research in the hospital. Recent work has
begun to explore these experiences, finding for example, that (i) participants in intra-
operative research recall very little about the risks and were relatively unconcerned
about them at the time of consent, but (ii) have varied experiences of participation,
ranging from neutral and benign to uncomfortable and painful. Researchers might
have obligations to explore experiences of participationwith their patients anddiscuss
this potential in study specific ways [22, 29].

6.2.2 What Matters When Assessing Benefits?

While all research intends to generate generalizable knowledge, a significant portion
of iEEG research, and intracranial recording in general, is basic science research. It
is governed by a scientific question, aimed at providing a greater understanding of
human brain function. The benefits of this research come in the form of knowledge,
and past studies have elucidated, for example, the network basis of motor decision-
making as well as the role of cortical and subcortical structures in language [6, 21,
30]. However, neither the extended time in the OR nor the extra tasks performed
provide patients with added clinical benefits. This has a few implications. First,
there is no potential clinical benefit to offset individual risks. Second, the knowledge
researchers might expect to gain may be disconnected from the patients’ condition,
and so patients, or others with their diagnosis, may not experience the downstream
translational benefits.

While there are no direct or near-term clinical benefits to participants, there may
be other sources of value in participation. The topic of non-clinical, or social, benefits
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has gathered some attention in research pertaining to longer term BCI studies [17,
18], including the value gained from participating and taking part in the study itself.
For example, some participants cite a sense of social worth and feeling part of the
research team as sources as benefits. What kinds of value might exist for patients
in intraoperative and extra-operative studies? Do patients welcome participating in
research? Is it a burden? It is an open question whether these kinds of benefits
ought to factor into a formal risk/benefit assessment, and whether value gained from
participation is an “extraneous benefit” [8] or one more directly gained from the
research itself. But, if social benefits do exist for DBS and EMU patients, researchers
may have obligations to maximize them and respond to them in patient interactions
and research design. For example, if patients feel part of the research team, or would
like to, researchers might take steps to honor this, including expressing gratitude,
sharing ultimate research findings, or exploring opportunities for patient-participant
engagement, etc.

Furthermore, communicating to patients about benefits, when those benefitsmight
be unknown, in the form of specialized knowledge, and disconnected from the
patient’s own condition, may require special care. It may not be sufficient, for
example, to disclose that research recordings will not benefit participants. There
may be much more discussion required to explore how patients interpret this claim
and understand potential translational benefits in the future.We return to this question
in discussing consent in Sect. 6.3.

6.2.3 What Is a Reasonable Risk/Benefit Ratio?

There is no formula for risk/benefit assessment. Furthermore, comparing the clin-
ical risks to individual patients to the benefit of advancing society’s understanding
requires balancing two things which are perhaps incommensurate. This may lead
to vague or inconsistent judgments [23]. What should be considered in these
assessments?

Determining whether the balance of risks and benefits is reasonable requires
not just an empirical judgment of what those risks and benefits are, but also a value
judgment of their relative worth.While the scientific communitymay have privileged
expertise about what risks exist and what benefits are likely, the value judgments of
investigators may not reflect those of society writ large or the patient-participants
who volunteer. How important is gaining a particular piece of knowledge about the
brain? How much risk is worth how much knowledge? Is knowledge that is more
closely tied with individual participants’ diseases more valuable to pursue with these
patient-populations?Does the distance between the expected knowledge and eventual
translational opportunity matter? Generally, lower and less likely risks may permit
more “circumspect benefits” [8], and iEEG research with DBS and EMU patients
often has low surgical risks. But the risk/benefit ratio must still be favorable and
some have proposed that this assessment require a citizen’s understanding of social
values [8].
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While these judgments are a challenge for any non-therapeutic study, they may
carry particular import in iEEG research which can only be conducted with DBS and
EMUpatients. These patients need an invasive clinical intervention for a neurological
or psychiatric diagnosis and may belong to various disability populations systemati-
callymarginalized in other ways. Judgments about a study’s risks/benefit ratio should
not be made in isolation from these contextual features, and researchers should be
especially attuned to the possibility of biased judgments which may downplay the
risks of harm to potentially vulnerable groups. There is a danger that broader atti-
tudes about neurological and psychiatric disorders weight these judgments, raising
the threshold for tolerable risks and lowering it for required benefits.

It is important to address the questions raised here in addition to questions about
individual consent. While overall risk/benefit assessments impact the permissibility
of seeking consent, they are largely meant to be determined pre-consent—before any
patient is recruited. Moreover, it is not sufficient to rely on consent alone to protect
DBS and EMU patient-participants from unreasonable harm, since it is possible for
patients to consent to unjustified risks. This potential may be exacerbated in settings
where patients may be exhausting their treatment options, or where care and research
overlap. As the next section will discuss, the context of DBS and EMU research may
make patients particularly vulnerable with respect to informed consent, and careful
risk/benefit assessments can maximize protection against undue harm.

6.3 Consent

Informed consent, as a way to promote respect for persons and minimize harm, is
a pillar of ethical research with humans and requires that the decision to participate
be both informed and voluntary [27]. Research with DBS and EMU patients raises
several questions along both dimensions,many ofwhich arise from the co-occurrence
of care and research. There is currently limited data on participant experiences of
consent andwhat best practices ought to involve. But emerging studies on intracranial
research document heterogeneity in consent practices [9, 19] and lack of participant
recall of informed consent [29]. These studies highlight the complexity of consent
interactions for this research and the need for intentional and study specific design.

6.3.1 What Do Patients Understand?

Consenting patients for intraoperative research may require additional practices to
assess whether patients have the capacity to understand the risks and the benefits
sufficiently tomake informeddecisions.Discussions of informedconsent often center
the notion of capacity [1].Whether participants can give informed consent to research
participation depends in part on whether they have the capacity to understand the
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risks and the benefits, appreciate those risks and benefits as they apply to their own
situation, and rationally explain their decision to participate.

Some of the diagnoses which make patients eligible for DBS treatment (such as
Parkinson’s disease) may be associated with cognitive impairments, particularly in
the executive domain where judgements may be affected [13]. Patients who have
the capacity to understand the risks and benefits of their surgery, which is tied to
their health, symptoms, and current prognosis, may not have the same capacity to
understand the details of a basic science study or the additional risks involved [5,
10]. IEEG recordings, for example, may have more abstract goals, not rooted in
the individual’s experiences. Researchers may need to consider how to explain the
study’s goals and risks inways that patients can understand, but also separately assess
whether the patient is able to understand.

At a minimum, patients need to understand the extent to which iEEG research
will not benefit them. This is in addition to understanding the purpose of the study, or
that the research is basic science research, for example. More specifically, it requires
understanding that the research is not directly targeted at improving their own health
or, sometimes, the health of individuals with their same disease. The timing of the
research in intraoperative studies and, in many instances, the similarities between
research and clinical tasks, may make this fact difficult to appreciate both during
initial consent and again before the initiation of research in the OR.

This raises a broader question of whether patients understand the separation of
care and research, by a teamwhichmay include their own clinician. This concernmay
be exacerbated when clinicians approach their own patients to join research studies.
These considerations make salient the possibilities of a therapeutic misconception—
patients may have the false belief that research is directed at their benefit or that they
will benefit from research activities [1]. The intraoperative settingmay be particularly
open to these pressures since care and research take place during the same operating
event. Additionally, patients may not adequately understand the different clinical and
research tasks in the OR as they are doing them, which raises questions about the
ability to withdraw, discussed below in Sect. 6.3.2

Additionally, the temporal connection between research and care may inspire the
belief that the research is more related to the patient’s disease or clinical intervention
that it actually is, or at least that it stands to benefit other patients with similar condi-
tions in the future.While this is not a therapeuticmisconception, it may bemisguided,
affect patients’ motivations for enrollment, and could be mitigated in discussions
between patient-participants and the research team.When research is further discon-
nected from patient-participants’ own disorder, more explicit discussion of the
distance may be warranted in consent.

Lastly, concerns about upcoming surgery may eclipse patient-participants’ ability
to appreciate or adequately consider the risks and benefits of research, even if they
understand what those are [22, 29]. Researchers ought to consider the timing of
consent for the surgery and consent for research, ensuring there is adequate time
and space to discuss the research itself, and its implications for patients who might
enroll.
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6.3.2 When Is Participation Voluntary?

Promoting the voluntary enrollments of patients in iEEG research requires multiple
considerations. Patients may feel pressure to enroll in research when that research
is led by their own clinician or carried out in the same institution as their care. This
may stem from worries that their clinical care will be compromised if they decline,
worries that their care will be better if they join, or a general worry that receiving
DBS surgery or EMUmonitoring creates the expectation that they ought to help with
research. Patient-participants may need in-depth conversations about these studies
to ensure that they feel comfortable declining and that their motivations for joining
do not including misunderstanding or undue pressures.

A crucial component to voluntary participation is the right to withdraw from
research without penalty [27]. But it may be difficult for patients to withdraw from
a study mid-surgery, for aforementioned reasons. For example, they may not be
able to easily distinguish the research portions of the DBS surgery from the clinical
portions, especially if tasks are similar, and so they may not know which tasks they
can decline to do without clinical consequence. They may be exhausted, in pain,
or uncomfortable, and would like to revisit their decision to join, but worry about
disappointing the research team once research is initiated. Any concerns about the
influence of dual-role clinician-investigators during consent outside of theORmaybe
exacerbated inside the OR. Researchers may need to provide explicit check-ins with
patients during research and explicit opportunities to withdraw, without waiting for
the patient to signal that they would like to stop or reconsider. Similar considerations
exist for EMU patients, who may need additional check-ins throughout their stay
to ensure that they still understand their right to withdraw and feel comfortable
continuing.

Since research in the OR and EMU is initiated when patients are awake, this
provides an opportunity for re-consent. Patient-participants may acquire more infor-
mation about what it’s like to do certain tasks, howmuch they care about the research,
and their overall experience in brain surgery, which in turn may impact their decision
to participate in research. Seeking an explicit verbal reconsent can respect patient
autonomy and the ability to make continual informed decisions. In the OR, this
moment in time may also let patient-participants express any concerns with the
research team before initiating recordings, ask any new or persisting questions, and
in general, mirror initial consent in a new context [10].

Importantly, patients may bemore vulnerable mid surgery, particularly if research
is pursued before clinical activities are complete. While, in principle, patients can
change theirminds about participation and have the right towithdrawat any time from
research, making patients feel comfortable doing so may deserve careful attention
in the intraoperative setting.
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6.3.3 What Is the Impact of Clinical and Research Overlap?

The overlapping of clinical and research activities necessitates considerations beyond
effects on patient understanding and influences on consent. It also highlights the
potential for conflict of interest, as physicians are generally understood to have
different obligations to patients than researchers do to participants. Appreciation
of this point has led some researchers to advance the position that clinician-
researchers ought to be “clinicians first”. And that the design of research questions
and methodologies should be governed by principles of good clinical practice, aimed
at maintaining the integrity of clinical care and space [10].

Furthermore, appreciation that all members of the research team are entering into
a clinical space may help promote patient welfare. While iEEG research with DBS
and EMU patients has a high prevalence of clinician-researchers, it may also involve
researchers unrelated to the clinical team. These researchers are nonetheless in a
clinical space, and may interact with patient-participants in carrying out the study.
Non-clinical members of the team may consider training in how to interact with
patients when in this dual space, especially when conducting consent [5, 10].

Lastly, conducting iEEG research in these dual contexts is a relatively rare oppor-
tunity, and researchersmay feel pressure to take advantage of this opportunitywhen it
arises. There may be an inherent tension between pursing these opportunities and the
rewards of doing so in the form of grants, and putting patients’ clinical welfare first.
Appreciating these tensionsmay suggest research practiceswhichmake use of checks
and balances, encourage collaboration, and foster multi-team member conferences
to decide when a patient is a potential candidate for intraoperative or EMU research.

6.3.4 What Consent Practices Should Be Considered?

In response to these considerations, various approaches to consent for intraoperative
research with DBS patients have been proposed. What these various practices have
in common is a commitment to maximizing patient-participant understanding while
minimizing undue pressure and influence.

While some, including theAmericanMedical Association, have cautioned against
“dual-role consent”—against clinician-researchers seeking consent from their own
patients—others have called for more nuanced views, arguing that the closer the
research is to usual care, the more preferable dual consent might be [20]. Others
have also proposed a hybrid model [12], on which the surgeon or other physician
discusses the risks and benefits of the research, while another member of the research
team discusses other aspects of enrollment. This model attempts to maximize patient
understanding as clinicians may be in the best position to explain risks in the context
of the upcoming surgery, but also creates space between the clinician and the patient.
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Some studies may benefit from the inclusion of a third person, who is neither on
the clinical team nor the research team, whose job it is to advocate for the patient-
participant’s interests and values. This may not be feasible at all institutions, and
questions remain for how best to implement an objective perspective into consent.
Some have suggested using standardized videos to supplement in depth conversa-
tions, which could provide an external voice to reinforce the right to withdraw and
the separation of clinical care and research [10].

Suggestions for improving consent which make use of multiple in-depth conver-
sations may also encourage participants to discuss research with other physicians not
involved in the research itself, include their families, and devote more time to under-
standing the separation of care and research and the study purpose and risks. Seeking
“teach-back” of important study details may increase retention of study goals and
risks, but work remains on determining what relevant facts should be “taught back”
[29]. These varied consent practices appreciate that patient-participants may want to
discuss the study with their clinician who will be in charge of their care and with
whom they may have robust trusting relationships, but also, foster communication
opportunities with health professionals outside of the clinical team.

6.4 Justice

Currently, all intracranial neurophysiological research requires the participation of
patients with neurological or psychiatric diseases. Individuals who do not have a
condition the treatment of which DBS or EMU stays would or could ameliorate,
cannot participate. This raises concerns about the fair distributions of benefits and
burdens of iEEG research as well as concerns about exploitation.

6.4.1 What Are the Pressures on Fair Access?

Justice in research is often interpreted as requiring atminimum, the fair distribution of
the burdens and benefits of research [27]. The burdens of this research are carried by
individual patients. In the case of clinical research, participants may receive a share
of the benefits in the form of therapeutic outcomes, but for basic human neuroscience
research, the direct benefits are in the form of general knowledge. How, when, and if
that knowledgewill translate into clinical benefitmaybeunclear, vaguely understood,
and in the distant future. How do we ensure that the patient populations who incur
the risks of this research also have fair access to those clinical benefits when they are
available?

When iEEG research with DBS and EMU patients involves potentially vulnerable
and systemically marginalized groups, rapidly advancing cutting-edge technology,
and increasing involvement of for-profit industries, concern is warranted that the
fruits of this research may not be accessible to the groups who made it possible. This
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is in part a concern about cost, the current health care infrastructure in places like The
United States, and the structural barriers many disabled individuals face in affording
and accessing the resulting devices and interventions that this research may yield.

While partnering with technology companies may be crucial for scientific
progress, it may also center the goals of profitability, which may likewise lead to
end products and procedures that disability populations cannot easily access. Relat-
edly, it may encourage the end products to migrate away from therapeutic goals
for particular disease groups, towards enhancement technology or general direct to
consumer technology. While this technology may be likewise unaffordable, perhaps
more problematic is that it may be completely unconcerned with improving the lives
of disabled populations altogether.

6.4.2 What Are the Worries About Exploitation?

Acentral concern in any non-therapeutic study is protecting patients against exploita-
tion—from being taken unfair advantage of or having their vulnerabilities used for
another’s benefit [31]. Since iEEG research with invasive electrodes must make use
of existing clinical situations, a persistent question is when and under which condi-
tions making use of these situations is fair. This chapter cannot answer this question,
but considering this research through the lens of fairness may promote more varied
reflection and inspire different practices than reflection on consent and risk/benefit
assessments alone.

Two kinds of exploitation concerns deserve attention. The first involves the possi-
bility that the distribution of research benefits excessively favors one party (e.g.,
researchers) over others (e.g., patient-participants). This lens centers which parties in
the research benefit from that process, inwhatways, and howmuch [28]. Researchers,
for example, may benefit from enrolling patients in the form of future grants, publica-
tions, and promotions. Patient-participants, on the other hand, gain no such benefits
and do not experience research related clinical outcomes. A second consideration is
about process. It involves the worry that one party could take unfair advantage of an
existing vulnerability in their interactions with another party. Patients approached to
participate in intraoperative research, for example, may be particularly vulnerable
to confusing care with research or feeling pressured to please their clinician [5]. A
researcher might, in attempt to boost enrollment numbers, take advantage of these
vulnerabilities during consent interactions. In these cases, the worry is not just that
researchmayproduce an unfair disparity in benefits between patients and researchers,
but rather, that it may make unfair use of an existing disparity [16].

It is important to consider both of these questions in iEEG research design, since
while good consent procedures can protect against exploitation to some extent, it’s
possible for patients to consent to exploitative interactions. Careful risk/benefit
assessments could also protect against exploitation, but unexamined researcher
perspectives may be biased. The context of intraoperative and extra-operative iEEG
research highlights that these participants are different from mere volunteers and
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other research participants. They are participantswhose involvement ismade possible
by the fact that they are in an operating room having brain surgery or in the hospital
waiting for seizure onset. Theymay thus requiremore protections than other research
participants in efforts to make sure that their situation is not taken unfair advantage
of.

6.5 Future Social Considerations

As the field of invasive functional neurosurgery expands and technological capabil-
ities improve, the kinds of diseases that invasive electrodes can treat will expand.
For example, while OCD is currently the only psychiatric condition for which DBS
is approved by means of a humanitarian device exemption by the FDA, studies are
currently exploring the value of DBS for other disorders, such as treatment resis-
tant depression [15, 24]. These advancements bring with them new opportunities to
study the human brain, in terms of number of surgical opportunities, kinds of brain
activity, and patient populations involved. As more questions become possible to
ask and answer with iEEG research, different ethical complexities come to the fore,
including the broader social implications and translations of this research. Further-
more, given that iEEG research may translate into advances in neurotechnology, it
may inherit some of the concerns neuroscientists and ethicists have raised about the
effects of these technologies on individuals and society [2, 14]. This section explores
just a few of these considerations, including neurodiversity, identity, and agency.

6.5.1 How Might Potential Uses of iEEG Research Impact
Neurodiversity?

Since a significant portion of iEEG recording data is for basic science research,
the translational and societal uses of the eventual advances in technology may be
unknown. Potential concerns have been raised, for example, about the effects of
identifying biomarkers for chronic pain, including the marginalization of patients’
subjective experiences (which the International Association for the Study of Pain
identifies as crucial to chronic pain diagnoses), and use by employers and insurers
to decline employment or insurance coverage for individuals who are particularly
pain-sensitive or who exhibit a predisposition to chronic pain [7]. But Davis et al.
also recognize the potential for this data to be used beneficially, to “advise patients of
their personal risks and benefits of a surgical procedure, including the risks of chronic
post-surgical pain, and to protect physicians from liability if such pain develops” [7].

IEEG data may have the potential to decrease stigma associated with various
neurological and psychiatric diseases and disabilities, legitimizing patient claims and
easing the burden of testimony. This may help marginalized populations—including
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women and patients of color whose reports of pain and other symptoms are often
systemically disbelieved and dismissed [3]—access necessary healthcare. However,
this data may also lead to an increase in stigma associated with other neurodiverse
behaviors. Data from iEEG researchmay combinewith societal biases and contribute
to the view that those studied behaviors are pathological, that persons with those
behaviors have something wrong with their brain function, and that patients should
pursue treatment. It may encourage physicians to order imaging tests and insurance
companies to require them.

While the immediate goals of iEEG research may be narrow in scope and defined
in abstraction from the broader clinical and social questions raised above, the results
of these studies intersect with existing social biases and social problems. Since
this research involves—and will continue to involve—populations that are already
marginalized, researchers ought to consider the responsible stewardship of the data
and findings that might impact those populations. One of the central worries about
human experimentation with vulnerable groups is that more widespread harm can
come to those groups as a result of the experimentation, including further marginal-
ization and medicalization. Researchers should consider what effects pursing certain
questions about brain function will have on neurodiversity, including whether they
might further exacerbate existing inequalities, and how best to take into account the
social positionality of many patients who will use resulting treatments.

6.5.2 How Might Resulting Technology Affect Identity
and Agency?

It has been suggested that neurotechnologies, including DBS, should be understood
in terms of how they move users closer and further from their “authentic selves”
[11]. This lens centers how using neurotechnology may affect potential patients’
self-conception, identity, and agency—how they move around the world, and what
it feels like to do so.

As Goering et al. describe, “we often think of the brain as a very important
center of our values, desires, behaviors, and self-conceptions. We understandably
are possessive of the neural activity that makes us who we are” [11]. When patients
pursue neurotechnology therapies that change their experience of the world, such
as DBS for depression or Parkinson’s, this may impact how they interpret those
experiences, whether they identify with them or see them as foreign, and whether
they see themselves as the author of resulting actions. Patient narratives, for example,
suggest that while many patients feel like themselves when using DBS devices, some
may feel disconnected and unsure of the authorship of their actions [11].

Using neurotechnology may not only impact one’s sense of personal identity and
agency, but also aspects of one’s social identity. Neurotechnology may be used, for
example, to modify brain activity which accompanies various social identities (e.g.,
autism, deafness, blindness), and iEEGresearchmayaim tounderstandbrain function



88 A. Feinsinger and N. Pouratian

which accompanies those identities. Considering what patients with various identi-
ties value, including what functional abilities would be beneficial, can inform which
questions researchers ought to pursue and what meaningful technological end points
would be. What blind individuals might value most in assistive neurotechnology, for
example, may not be what sighted researchers most value. Without patient engage-
ment, research and resulting technology may advance ableist assumptions about
various identities.

IEEG research is in some ways decoupled from these issues, as patients do not
experience the outcomes of research in the same way they do with therapy. But, even
basic research may contribute to the development of technologies which directly
intersect with our desires, self-conceptions, and social identities. Narratives from
patients can provide insight into what it’s like to participate in iEEG research and to
use the resulting technologies, and may prove crucial for translating iEEG research
into therapies which respect diverse values, identities, and neuro-abilities.

6.6 Conclusions

The surgical opportunities provided by DBS and EMU patients enable very specific
kinds of research, whose questions and tools are dependent on what the clinical
context makes available. But equally important is the fact that the relationship
between clinical care and iEEG research is somewhat circular. IEEG studies are not
only influenced by current clinical opportunities and available technologies, but in
turn, influence which clinical opportunities and technologies will exist in the future.
Decisions of iEEG researchers play a crucial role in which parts of the brain are
explored, and thus, which disorders will be understood and which treatments will be
made realities. This chapter has explored the ethical implications of both directions
of influence, with the goals of motivating further discussions among researchers,
clinicians, and patient-participants.
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Chapter 7
Which Ethical Issues Need to Be
Considered Related to Microwires
or Utah Arrays?

Michael J. Young

Abstract Intracortical microwires and multichannel microelectrode arrays
including the Utah array and its derivatives have provided formative groundwork
for extraordinary insights into brain dynamics, and carry immense promise to alle-
viate suffering and restore function to persons with severe neurological disorders
through novel neural interfaces and neuroprosthetics (see also Chap. 51). As basic
and clinical research involving these novel materials and devices continues apace,
with several pivotal devices at the cusp of clinical translation, proactive consideration
of their ethical and philosophical dimensions is crucial. This chapter explains and
critically evaluates key ethical concerns surrounding safety, signal integrity, neural
data privacy, impact on personal identity, and post-trial obligations related to these
devices. It also explores how rich neural data andmodulatory capabilities provided by
these technologies could uniquely advance philosophical inquiry into the reducibility
of conscious experience, and clarify notions of causality, constitution, and identity
in theories of mind.

7.1 Risks and Safety

Ethical analysis of intracortical microwires and microelectrode arrays such as the
Utah array should begin with consideration of the central principles of biomed-
ical ethics, including beneficience (i.e., maximizing benefits and wellbeing), non-
maleficience (i.e., avoiding harm), justice (i.e., ensuring fair distribution and equity),
and autonomy (i.e., respecting individuals’ preferences and dignity). Knowledge of
and transparency surrounding the risks and safety of these devices and the proce-
dures necessary to implant them are necessary to ensure that translational research
proceeds in accordancewith the principles of beneficience and non-maleficience, and
to ensure that consent processes are optimally informed [1–4]. Ethical issues related
to justice may arise in the context of clinical research involving vulnerable patient
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populations, who may be more prone to undue inducement or to taking on risks
due to therapeutic misconception or false hope (see also Chap. 6 on general ethical
considerations of research involving intracranial EEG and deep brain stimulation)
[5].

Potential risks include those associated with neurosurgery, infection, inflamma-
tion, electrode migration, fracture of leads, skin erosion, bleeding, local disrup-
tion of the blood–brain barrier, local cytotoxicity and gliosis [2, 6–8]. Research
efforts are underway to improve materials used to minimize these potential risks
[9–12]. It is additionally important to consider atypical risks following implantation,
including potential changes in personality, identity, mood, and cognition, especially
with respect to devices that stimulate in addition to sensing and recording brain
activity (see Chaps. 5, 39, 41 and 52 on the promises and challenges of deep brain
stimulation) [13].

Investigators must consider these risks and proactively counsel prospective study
participants in order to ensure that consent is optimally informed and that benefits
outweigh risks. In situations where risks unambiguously outweigh potential bene-
fits, research cannot proceed ethically [14–16]. As investigators themselves might
harbor inherent conflicts of interest in making such determinations, institutional
review boards (IRBs) have important roles to play in evaluating benefits and risks of
proposed interventions anddeterminingwhether the balance is sufficiently acceptable
for research to ethically proceed [17].

The system through which implantable neurotechnologies are regulated revolves
primarily around the driving aims of ensuring device safety and efficacy while
advancing public health [18]. While these aims are vital and the regulatory system
is well-tuned to meet them, current regulations do not address a distinctive array
of ethical, social and philosophical challenges that fall outside the strict purview of
these aims as they are traditionally conceived. These include obstacles in ensuring
adequate informed consent in contexts of neurologic disturbance that may affect
patient capacity [13, 19, 20]; protection, management and sharing of uniquely sensi-
tive and increasingly rich neural information (currently not fundamentally protected
despite being of potentially equal or greater importance than genetic information
which receives special protection under the Genetic Information Nondiscrimination
Act [21–23] (as we will examine later in this chapter); uncertainties surrounding
the phenomenological impact of implanted neural devices on users’ sense of self
[24], personal identity [25–27], and agency [28]; concerns surrounding potential
applications for enhancement [29–31]; brain-specific risk factors (especially in the
developing brain [32] for devices geared toward pediatric patients) [13, 33, 34];
and, for persons in clinical trials, the scope of sponsors and/or investigators’ post-
trial responsibilities toward those who opt for long-term use [35]. It is encumbant
on investigators to partner with neuroethicists in proactively identifying these down-
stream risks and developing safeguards tomitigate and optimally counsel prospective
users of these technologies about them.
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7.2 Signal Integrity and Integrity in Signal Translation

Additional ethical issues arise in considering the integrity of recorded signals and
the longevity of sensing apparatus. These issues become especially relevant in the
context of neural interfaces to restore or augment communication. The importance
of ensuring that decoded communication is reliable rises in tandem with the signifi-
cance of what is being communicated and the degree to which it may impact weighty
decisions. For example, the importance of ensuring the reliability of a BCI-mediated
communication concerning goals of care is far greater as compared to the importance
of ensuring the reliability of a BCI-mediated communication concerning one’s lunch
preferences. In the case of detecting command signals and translating those signals
into actions, uncertainties may exist about how to determine whether the action
executed accurately reflects the intention of the agent; conundrums surrounding
moral responsibility and culpability for BCI-mediated actionmay consequently arise
[28, 36]. To ensure that participants and family members are informed, investigators
should counsel prospective participants on the nature and duration of training periods
necessary to optimize performance. Moreover, investigators must rigorously study
the integrity and longevity of recorded signals over time, and understand whether the
quality of signals may gradually decline over months or years following implantation
[3]. Further research is needed to understand participants’ perspectives on the relia-
bility and trustworthiness of decoded communications and commands. Furthermore,
investigations of how philosophical theories of action and language may inform
normative interpretations and attitudes toward BCI-mediated communication and
action [25, 30]. Such approaches and the information they might yield could guide
an empirically grounded ethical framework for safeguarding clinical translation and
optimizing informed consent paradigms for microwires and microelectrode arrays.

7.3 Neural Data Privacy

As development and deployment of microelectrode arrays in clinical contexts
advances, increasingly rich neural data will be captured and recorded at massive
scales never before feasible, both within and across individuals. Profound ethical,
social and legal questions accordingly emerge surrounding how to handle and protect
such neural data, which may reveal uniquely sensitive information about individuals,
given the centrality of the brain to human identity. Related ethical and legal questions
arise concerning neural data ownership, and the ethics of monetizing such data [37].
Management and sharing of uniquely sensitive and increasingly rich neural infor-
mation is currently not fundamentally protected despite being of potentially equal or
greater importance than genetic information which receives special protection under
GINA [21–23]. Efforts are underway to craft and codify policies to protect neural
data, define rights to mental privacy, and guide responsible neural data handling and
sharing [38–41]. Absent such protections, the scientific imperatives of data sharing
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and open science may come to conflict with the ethical imperatives of protecting
individual privacy and mitigating potential harms that could accrue through adver-
tant or inadvertant data access. This ethical imperative presents both a challenge
and opportunity to investigators; proactive consideration of these issues is needed to
guide development of a platform for neural data sharing that is sensitive to privacy
issues while conducive to neuroscientific collaboration and progress.

Analogous challenges have indeed emerged in other research contexts involving
the capture of sensitive biomedical data, leading to the development of enhanced
privacy-enhancing methods to safeguard data while allowing it to be responsibly
shared for specific means through vetted channels and federated platforms [42–49].
The importance of developing privacy-enhancing methods and protections is magni-
fied in the setting of neural data, which can hypothetically reveal even more about an
individual than ordinary medical data [21]. Indeed, while the topic of data sharing
has been explored and dissected in a variety of research and clinical contexts to date,
distinctive and under-explored challenges are posed in the context of neural data [50,
51]. The accelerating development and deployment of microelectrode arrays and
microwires challenge researchers, neuroengineers and regulators to closely evaluate
existing oversight and governance systems to determine how to balance the ideal
of data transparency, which motivates open sharing of information in ways that are
accessible and understandable to stakeholders, with countervailing considerations
surrounding maintaining scientific rigor and protecting the privacy of participants
sensitive neural data [52, 53]. It is recognized that maximizing data sharing and
trials transparency can serve to advance science, spur further neurotechnology and
neurotherapeutic development, and keep patients and the public informed, however
these efforts may be met with concerns that neural data can reveal uniquely sensitive
information and is potentially re-identifiable [54, 55]. Accordingly, the ideal bound-
aries, extent and level of generality of data-sharing are normatively constrained by
principled interests to protect the privacy of research participants and patients, and
preserve the rigor of neuroscientific inquiry if studies are ongoing. Neural data repos-
itory platforms have been suggested as a strategy for facilitating responsible and
secure data sharing, however their resilience in terms of data protection, corporate
status, long-term viability are highly variable, and systems of governance have yet
to be systematically defined [56]. A tailored approach to neural data sharing may be
needed to specially handle potentially re-identifiable neural information. Input from
key stakeholders, captured through an empirical and embeddedneuroethics approach,
will be essential to inform this evolving conceptual and ethical landscape, with the
aim of identifying and codifying an actionable approach to optimally balancing trans-
parency and privacy in this evolving era of large-scale and high-dimensional neural
data [57].
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7.4 Personal Identity and Agency

When considering the ethical implications of microelectrode arrays or microwires
in the context of brain-machine interfaces or neuroprosthetic devices, ethicists and
philosophers have explored the distinctive impact that these devices may have on
users’ sense of self, agency and personal identity [38, 58–60]. Living with an inte-
gratedmicroelectrodes ormicrowires in the brainmay carry important existential and
phenomenological significance, especially when such devices exist in “closed-loop”
systems (see also Chap. 41) [61]. The sense of embodiment that users might expe-
rience with relation to such devices requires careful ethical and philosophical study.
Ethicists SaraGoering, EranKlein and colleagues have described a kind of ‘relational
agency’ thatmay emergewhen actions and communication becomemediated through
technologies and others [35]. Users may experience a sense of alienation, alterations
in agency, or changes in perceived authenticity when behaviors or speech are accom-
plished via novel neural interfaces [62–64]. The lived experiences of users of these
technologies are important to understand and rigorously study not only because of
their ethical gravity, but also because these very phenomenological features and
experiences may reflexively influence the performance of the devices under investi-
gation. Neuroengineers and investigators ought to consider how to incorporate these
concerns upstream in the research and development process. Training, counseling
and neuroethics-informed design techniques may help to proactively address and
mitigate these issues [65]. On a more speculative plane, neuroethicists and legal
scholars have explored the hypothetical implications of BCI-mediated behaviors and
communication for users’ culpability and responsibility; how should responsibility
be adjudicated when an BCI-mediated action results in harm? Howmight such inter-
faces affect the fundamental rights of users or of thosewithwhomusersmay interact?
As legal scholars, ethicists and philosophers consider these future-oriented issues,
neuroengineers and investigators should consider these potential downstream impli-
cations, especially as functional capacities enabled bymicrowires andmicroelectrode
arrays increase [66–70].

7.5 Post-study Obligations

Active consideration of ethical and legal post-study responsibilities are crucial [35,
71, 72]. Who is responsible for monitoring, removing or maintaining microelectrode
arrays or microwires in human participants once a research study has completed?
How should investigators handle user-driven deviations from study protocols? If a
participant is benefiting from an implanted neurotechnology, and perhaps might even
identify with it as part of their self identity [72], may they opt to continue using it
after a study ends? If so, who ought to cover the costs and carry the responsibili-
ties of device maintenance and monitoring after study closure? A multi-stakeholder
process is needed to clarify (1) the nature and scope of investigators’ responsibilities
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to provide long-term technical and clinical support after clinical trial closure; (2)
funding and budgetary processes to ensure adequate resource provisions in the event
that a subject opts for device use beyond the grant funding period (e.g., via a study-
end escrow); (3) plans for dissemination of and training in specialized techniques
pertaining to device management and explantation, including training of additional
surgeons or other personnel who could safely remove implanted devices if necessary
or simply if requested; and (4) clarification of how to handle user-driven deviations
from study protocols.

7.6 Neurophilosophical Implications

Microwires and microelectrode arrays promise to enable unprecedented recordings
of vast data from the human brain, potentially revealing remarkable insights into
its multiform functions, mechanisms and pathologies [73–80]. These data could
inform not only neuroscientific inquiry to be leveraged for potential therapeutic
tools, but may also importantly inform approaches to age-old philosophical ques-
tions surrounding consciousness, volition and freewill, andpotentially clarify notions
of causality, constitution, and identity in theories of mind [81]. Such breakthroughs
promise to bring previous aspirations of melding philosophy and neuroscience closer
to fruition [82–84]. As high-dimensional neural data become increasingly acces-
sible for researchers, growing opportunities for partnership with philosophers to
understand how these data might be used to test philosophical theories or answer
longstanding philosophical questions should be recognized and strengthened. For
example, how might recent abilities to detect covert consciousness following severe
brain injury by measuring neural signals inform competing theories surrounding
the phylogeny, ontogeny and ontology of consciousness [4, 85–90]? Recognizing
these opportunities, an emerging discipline of “neurophilosophy” has taken shape;
concerted efforts to refine this nascent field’s methodologies are underway [91–98].

7.7 Conclusions

To promote the successful and ethical development of neurotechnologies employing
microwires and microelectrode arrays, neuroscientists, clinicians and engineers are
working with neuroethicists with the common goal of proactively identifying and
rigorously assessing the trajectories and potential limits of these novel technolo-
gies. The BRAIN Initiative and its funding agencies have been visionary in empha-
sizing that as research programs advance frontiers of neurotechnology, neuroethical
considerations should be addressed. In 2018, the NIH BRAIN Initiative Neuroethics
Working Group disseminated a set of Neuroethics Guiding Principles that encourage
research teams to undertake robust safety assessments; to consider issues “related
to capacity, autonomy and agency”; to “[p]rotect the privacy and confidentiality of
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neural data”; to “[a]ttend to possiblemalign uses of neuroscience tools and neurotech-
nologies”; to emphasize caution in clinical translation; to “[i]dentify and address
specific concerns of the public about the brain;” to “encourage public education and
dialogue;” and to “[b]ehave justly and share the benefits of neuroscience research
and resulting technologies” [99, 100]. Guided by this imperative, neroengineering
and translational research teams should identify opportunities to embed personnel
with neuroethics expertise throughout the development lifecycle to elucidate and
to be a sounding board for ethical implications and to help develop safeguards for
responsible translation.

Analyses of novel ethical issues raised by implantable neurotechnologies are
particularly informed when the perspectives of those whose views perhaps matter
most are explicitly included, namely, those of patients, family members, surrogates
[37, 101–103], in addition to those of clinicians, engineers, neuroscientists, and other
researchers. In parallel with development of implantable neurotechnologies, research
teams have the opportunity to improve the impact of their device development by
capturing perspectives and concerns of key stakeholders during the earliest planning
stages of research and development.
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Chapter 8
What Is the Contribution of iEEG
as Compared to Other Methods
to Cognitive Neuroscience?

Jing Liu and Gui Xue

Abstract Intracranial electroencephalography (iEEG) enables us to record and
modulate neuronal responses from the level ofmacroscopic networks to small assem-
blies and single cells in both cortical and subcortical regions of the human brain
with high spatial and temporal precision, offering significant methodological advan-
tages over other non-invasive imaging and stimulating technologies. Leveraging
these technical strengths of iEEG, in combination with sophisticated multivariate
analytical approaches, researchers have obtained unprecedented insights into many
long-standing problems in cognitive neuroscience. This chapter aims to illustrate
these contributions, focusing on human memory. In particular, we describe how
iEEG could advance our understanding of (1) the dynamic and transformative nature
of short-term and long-term memory representations; (2) the role of hippocampal
high-frequency neural activities, especially ripple activities, in memory formation,
consolidation, and retrieval; (3) the information coding scheme of single-neuronal
activity in the hippocampus and other brain regions; and (4) the common and different
neural mechanisms between humans, primates and rodents. Moreover, we briefly
discuss how iEEG studies can contribute to developing the state-of-the-art brain-
computer interface and closed-loop brain stimulation. We conclude by summarizing
the strengths and limitations of the iEEG method and providing practical guidance
on how to choose between iEEG and other methods.
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8.1 Introduction

It is generally accepted that human brain functions, such as perception, attention,
decision, learning, and memory, are supported by dynamic and interactive neuronal
activities. At the microscopic level, neuronal activities can be well characterized by
twomain types of electrical activity, i.e., neuronal spikes and postsynaptic potentials.
Neuronal spikes are action potentials that travel along the axons of neurons in an all-
or-none form, with a very short duration of approximately one millisecond. Multiple
spikes, which result in spike trainswith highly intricate temporal patterns, serve as the
code of brain information [1, 2]. Because of the brief timing and opposite electrical
currents flow in the intracellular and extracellular spaces, the neuronal spikes can
only be recorded with a sensor near enough to the neuron. In contrast to the spikes,
the postsynaptic potentials (PSPs) are changes of the potentials in the membrane of
the neurons [3], which have a longer duration ranging from tens- to hundreds- of
milliseconds and can be summated in extracellular space across large populations
of synchronized neurons. The resultant electrophysiological signals could propagate
and thus be recorded both within and outside the skull.

For ethical reasons, most human studies rely on non-invasive brain imaging tech-
niques, including electroencephalogram (EEG), magnetoencephalography (MEG),
functional near-infrared spectroscopy (fNIRS), functional magnetic resonance
imaging (fMRI), and positron emission tomography (PET). These methods provide
either an indirect (e.g., fNIRS, PET, or fMRI) or a coarse (e.g., EEG and MEG)
measure of neuronal responses. Intracranial EEG (iEEG) recordings, which are
mainly applied in drug-resistant epilepsy patients with electrodes implanted for clin-
ical purposes, provide a rare opportunity to directly record neuronal responses inside
the human brain (see also Chap. 1 for a detailed description of presurgical epilepsy
patients). IEEG can record both local field potentials (LFPs) and neuronal spikes
with macroelectrodes and microelectrodes, respectively. Specifically, there are two
types of macroelectrode recordings, i.e., electrocorticography (ECoG) and stereo-
electroencephalography (sEEG). Whereas ECoG recordings place electrodes on the
surface of the brain, sEEG uses depth electrodes perpetrating the brain to target deep
brain structures. Similarly, using microelectrode arrays or microwires on the tips
of the depth electrodes, iEEG can be used to record single-unit activities from the
surface and deep structures of the brain (see also Chap. 17 for a detailed description
of iEEG signal characteristics, and Chaps. 42–46 about microelectrode recordings).
Compared with non-invasive brain imaging methods, iEEG offers several critical
methodological advantages to better uncover the neuronal mechanisms of human
cognition. In this chapter, we will summarize these methodological advantages and
discuss how they could be leveraged to address long-standing problems in cognitive
neuroscience, with a focus on learning and memory. We will conclude by providing
practical guidance on how to choose between iEEG and other non-invasive methods.
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8.2 The Methodological Advantages of iEEG

8.2.1 High Spatial–Temporal Resolution

FMRI and PET are well-known for their high spatial resolution (1–3mm) andwhole-
brain coverage. However, they indirectly measure neuronal responses (e.g., blood
flow or metabolism), with a temporal resolution at the level of seconds. The temporal
resolution ofEEG/MEGrivals that of iEEG, but their spatial resolution and the signal-
to-noise ratio (SNR) are much lower due to the higher impedance of the electrodes,
larger distances between the electrodes and the sources (i.e., neurons), and volume
conduction. The irreversible problem of untangling the sources that contribute to the
observed EEG/MEG signals further impedes research from precisely localizing the
origins of signals, especially those from deep brain areas.

The iEEG signal has both high spatial and temporal resolutions. The grid and/or
strip electrodes placed subdurally onto the cortex are ~2mm in diameter and cover ~4
mm2 of cortical surface. Meanwhile, each depth electrode has about 6–20 contacts,
with a diameter of ~1mmand a length of ~2mm for each contact. Given the diameters
of the electrodes and their adjacency to neurons, it is assumed that iEEG could
record local field potentials from neural populations within a few millimeters [4, 5].
Microwire electrodes used for single-unit recordings are about 40 µm in diameter
[6], with a spatial resolution higher than 1 mm. In addition, with a sampling rate
ranging from ~1000–3000 Hz for macroelectrodes and ~30 kHz for microelectrodes,
iEEG is able to observe rapid changes of local neural activities at a millisecond to
submillisecond level (Table 8.1).

In summary, due to the high spatial and temporal resolution, iEEG is one of the best
methods to characterize the dynamic changes of neural processes and representations
across time and brain regions.

8.2.2 High Signal-to-Noise Ratio

Since iEEG can directly record neuronal responses around their origin, it can yield
a greater SNR. In contrast, EEG and MEG record brain signals at the scalp, which
is far away from the origins. In addition, iEEG recordings are less sensitive to envi-
ronmental noise and artifacts. For example, fMRI and MEG are both sensitive to
magnetic field changes in the recording environments. A slight headmovement could
result in motion artifacts and introduce challenges in an accurate spatial registration
for fMRI andMEG. For both EEG andMEG, bodymovements, eye blinks, ormuscle
tension could introduce external noise into the recorded signals. In contrast, the iEEG
is less sensitive to movement or magnetic field changes. As a result, its signal-to-
noise ratio (SNR) is about 20–100 times higher than scalp EEG [7]. The high SNR
of iEEG helps distinguish task-related neural activities more meticulously.
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Table 8.1 Summary of the methodological advantages of iEEG as compared to common non-
invasive recording methods

Recording features iEEG MEG EEG fMRI

Neural
electrophysiological
activities

Yes Yes Yes No

Temporal resolution <1 ms <1 ms <1 ms ~100 ms–3 s

Spatial resolution <1 cm 2–10 cm
(2–3 mm at
the source
level)

~10 cm
(7–10 mm at
the source
level)

~1 mm

High-frequency
oscillations

Up to ~150 Hz <100 Hz <70 Hz No (but the BOLD
activities reflect
high-frequency
activity)

Spike activities Yes (only for
microelectrode
recordings)

No No No

Signal-to-noise ratio High Relatively
low

Relatively low High

Deep brain activities Yes No No Yes

Direct brain
stimulation

Yes No No No

8.2.3 High-Frequency Activity

High-frequency activity (50–150Hz) is typically generated by local neuronal popula-
tions [8], which show synchronized activity at high frequencies and low amplitudes
with high temporal dynamics. The fMRI blood-oxygen-level-dependent (BOLD)
signal has been found to be correlated with high-frequency LFP power (40–80 Hz)
[9]. Given the local properties of high-frequency activity and the fact that the skull
acts as a low-pass filter, these high-frequency activities cannot be easily detected
by non-invasive EEG recordings. Although MEG records neural activities up to
about 100 Hz [10], its signal-to-noise ratio for high-frequency activities is lower
than iEEG in general. This makes iEEG optimally suited to unveil high-frequency
activities during both online (wake) and offline (sleep) periods.

8.2.4 Direct Electrical Stimulation of the Human Brain

In addition to recording neural activities from the brain, iEEG electrodes can also
be used to deliver precise electric pulses to specific brain areas. As compared with
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transcranial stimulation systems, such as tDCS/tACS and TMS, direct brain stim-
ulation via iEEG electrodes enjoys greater specificity. For example, it could target
the medial temporal lobe (MTL), a region that is critical for declarative memory
[11], or the orbitofrontal cortex that is involved in mood states [12]. In cognitive
studies, different stimulation parameters have been applied. In general, the electrical
pulses have a width of 100–300µs, a current amplitude of 0.5–6mA, and stimulation
frequency can be either in a low-frequency range (e.g., 2–5Hz) or at high frequencies
(e.g., 50, 60, or 130 Hz) [13].

8.3 Characterizing the Dynamic and Transformative
Nature of Neural Representations

Information processing in the brain is highly dynamic, showing fast and prominent
changes in neural processes and representations in various brain regions. Intracranial
EEGrecordings candirectlymeasure brain activities fromawide rangeof frequencies
from 0.5 up to 150 Hz with a high temporal resolution, which is ideal for charac-
terizing dynamic information processing at a fine spatio-temporal scale. Using this
approach, many studies have uncovered the dynamic and transformative nature of
neural representations, particularly during short-term and long-term memory, which
have profoundly changed our perspective of human memory.

For example, the classic persistent activity model postulates that neural patterns
formed during stimulus encoding persist during the short-term maintenance period
[14, 15]. With high temporal resolution, a recent iEEG study showed that the neural
patterns of visual items experienced rapid changes from visual formats to abstract
semantic formats, and the latter was more robustly maintained during short-term
memory [16] (Fig. 8.1a, b). This study further revealed that the neural representations
of memory items were dynamically reactivated during the maintenance period and
coupled to the phase of hippocampal low-frequency activities.

Regarding maintenance of multiple items in short-termmemory, the theta-gamma
coding scheme posits that individual items are represented by the synchronized acti-
vation of different subsets of neural assemblies at the gamma frequency range and
the phase of theta oscillations. Specifically, hippocampal theta oscillations act as a
glue that tightly links items to different theta phases in support of short-termmemory
maintenance [21]. Using EEG/MEG, studies have found evidence for theta-gamma
coupling during the short-term memory maintenance period [22–24]. On the other
hand, fMRI studies have shown that short-term memory information is stored in
distributed brain regions, including the sensory cortex and higher-order brain regions,
e.g., the frontal and parietal lobes [25, 26]. However, the dynamic interactions among
these regions and the unique role of the hippocampus in theta-gamma coding cannot
be addressed using non-invasive recordings. Using iEEG recordings, studies showed
that the theta-gamma coupling is not only observed in the hippocampus [27, 28],
but also in multiple neocortical sites [19] during multi-item short-term memory
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a b
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e f

Fig. 8.1 Dynamic and transformative memory representations during encoding, maintenance, and
retrieval. a Higher-order visual representations and abstract semantic representations during early
and late encoding clusters, respectively. Left: visual representational formats observed in the iEEG
data during encoding of visual objects identified using an eight-layer visual deep neural network
model (AlexNet, see [17]). Right: Semantic and abstract semantic formats during encoding of
visual objects measured using a Chinese word embedding model (see [18]). Dashed frames indicate
encoding time clusters whose neural activities were reinstated during the short-term maintenance
period. bAbstract semantic representations from the late encoding cluster were more strongly reac-
tivated in short-term memory. c Items learned in a sequential order were locked to different phases
of low-frequency oscillations in the neocortex. P1/P2/P3 indicate the positions (order) of items in a
three-item sequence. d Schematic depiction of analysis approach to examine continuous represen-
tational transformation of memory items across task stages. e Abstract semantic representations of
visual items are reinstated during successful retrieval. f Continuous transformation from encoding
to maintenance and retrieval. Cross-stage transformation was examined by comparing within-stage
versus between-stage item-specific pattern similarity. EES: encoding-encoding similarity; EMS:
encoding-maintenance similarity; MRS: maintenance-retrieval similarity; ERS: encoding-retrieval
similarity; WI: within-item similarity; BI: between-item similarity. *: p < 0.05. (a, b) adapted from
[16]. c adapted from [19]. d–f adapted from [20]

(Fig. 8.1c). It further shows that the interactions between hippocampal and cortical
regions increase with working memory load [29] (see also Chap. 16). Leveraging
its high spatiotemporal resolution, several iEEG studies have revealed directional
interactions betweenMTL and cortical regions at various processing stages [30–33].
Specifically, hippocampal replay preceded replay in the sensory cortex during the
maintenance period, whereas a reversed pattern was observed during the encoding
period [33].

Intracranial EEG studies could also shed light on the subprocesses of memory
formations at a higher spatial resolution. For example, ERP analysis of EEG/MEG
signals revealed that a late positive complex (LPC) component starting from ~500ms
post-stimulus onset, and an FN400 component with a peak around 400 ms, are both
associated with memory retrieval [34, 35]. Using iEEG, Fernández and colleagues
found that the memory-related ERPs included at least two different subprocesses
that were executed sequentially [36]. The intracranial ERPs diverged between
subsequently remembered and forgotten items from about 300 ms in the anterior
parahippocampal cortex, followed by the reversed polarity in the hippocampus from
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about 500 ms post-stimulus onset, suggesting a dynamic interaction between MTL
subregions.

Intracranial EEG studies could provide a detailed picture of the transformative
nature of long-term memory representations. Guided by Tulving’s mental time trav-
eling perspective of episodic memory [37], extant studies have provided evidence
that retrieval involves the reinstatement of neural activation during encoding, which
enables humans to vividly re-experience the past [38–41]. Nevertheless, there is now
increasing neural evidence to suggest that memory is rather a constructive process
[42, 43] that involves a substantial transformation of neural representations. For
example, an fMRI study found that item-specific encoding-retrieval similarity was
not significant and substantially lower than the neural pattern similarities within the
encoding and retrieval stages when considered separately [44], suggesting the neural
representations were transformed from encoding to retrieval. A recent iEEG study
took advantage of its high temporal resolution to systematically delineate the dynamic
transformation of neural representations from encoding to maintenance and retrieval
period [20] (Fig. 8.1d–f). It showed that neural representations ofmemory itemswere
highly dynamic during encoding, evolving rapidly from visual to abstract semantic
representations. Interestingly, greater encoding dynamicity predicted better subse-
quent long-term memory performance. After encoding, these neural representations
experienced continuous transformation during maintenance and retrieval, and only
abstract semantic representations were reactivated in successful long-term memory
retrieval.

Recent iEEG studies have provided a more detailed description of the temporal
dynamics of the hippocampus and cortical region during memory retrieval, which
emphasized the role of the hippocampus in driving cortical activities during retrieval.
Specifically, high-frequency activities (gamma band activity in the range of 40–
50Hz) in the hippocampus preceded reductions of oscillatory power in the alpha/beta
band in the anterior temporal lobe during memory retrieval [45]. During long-term
memory recognition, the reinstatement of item-context associations occurred within
the first second of retrieval in the hippocampus, followed by reinstatement of item-
specific information in the lateral temporal lobe from ~1 to ~3 s of retrieval [46]. The
same study also revealed that phase synchronization between the hippocampus and
lateral temporal lobe preceded the item-specific reinstatement in the lateral temporal
lobe.

8.4 The Role of Hippocampal Ripple Activities in Memory

Ripple oscillations were first discovered in the rodent hippocampus with a frequency
range between ~140–200 Hz [47, 48]. They are short-lived fast oscillatory patterns
that are generated by pyramidal cell ensembles in the CA1 region of the hippocampus
[49]. Animal studies have implicated the role of hippocampal sharp-wave ripples
(SWRs), i.e., co-occurring ripples and sharp waves, in memory consolidation
[50–52]. Specifically, rodent studies have observed that the sequential firing of
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hippocampal place cells during spatial navigation was replayed during post-learning
wakeful rest [50, 51], as well as during sleep [53], in particular, slow-wave sleep
stages [54]. Strikingly, these replay events were often accompanied by hippocampal
SWRs. Selective disruption of hippocampal SWRs via electrical stimulation during
sleep could impair memory formation [55, 56]. Using a similar method to interrupt
SWRs during the encoding stage, a later study also found impairment of memory
formation and memory-based decision making, suggesting an important role of
hippocampal SWRs in memory encoding, consolidation, and retrieval [57].

In light of these inspiring findings from animal studies, it is natural to ask whether
there are ripples in the human hippocampus and, if so, whether hippocampal ripples
only support spatial memory as extensively examined in animal studies, or also
other types of declarative memory in humans. Due to their high frequency and deep
origin, it is a challenge to confidently isolate hippocampal ripples by non-invasive
imagingmethods (see recent efforts by Liu and colleagues [58]). Using iEEG record-
ings, several studies have investigated the functional role of hippocampal ripples in
humans (see also Chap. 21). First, iEEG studies have observed ripples in the human
hippocampus (Fig. 8.2a, b), although at a lower frequency band (80–140 Hz) than
found in the rodent hippocampus [59, 60]. Hippocampal ripples were found during
an attention-demanding cognitive task, autobiographic memory recall, wakeful rest,
and sleep (Fig. 8.2c), and the duration, rate, and peak frequencies were surpris-
ingly consistent across states [61, 62]. Notably, the ripple rate during non-rapid eye
movement (NREM) sleep was higher than during other task states and sleep stages.
Ripple ratewas also higher inCA1 thanCA2 andCA3 (Fig. 8.2d). The coincidence of
individual ripples between every two hippocampal channels decreased sharply with
increasing distance [62, 63], suggesting a local nature of the hippocampal ripples.

Second, iEEG studies have shed light on the functional role of ripples in memory
formation and consolidation. For example, several iEEG studies have associated
ripple activities during sleep with post-sleep performance. For example, the number
of ripples that occurred in the rhinal cortex (but not the hippocampus) predicted
memory performance after sleep [60]. Using representational similarity analysis, an
iEEG study further revealed that the replay of memory representations was time-
locked to hippocampal ripples during NREM sleep [64] (Fig. 8.2e) and predicted
subsequent long-term memory. These results suggest that hippocampal ripples
contribute to memory consolidation via memory replay. In addition to memory
consolidation, emerging human iEEG studies have shown that ripples duringwakeful
state predict successful encoding [66] and memory retrieval [62, 67, 68]. During
encoding, hippocampal ripple rates were significantly higher for novel stimuli than
that for familiar stimuli, and higher ripple rates predicted better subsequent memory
performance [66, 69]. During memory retrieval, hippocampal ripples modulated the
high-frequency activities in the neocortex, which supported memory reinstatement
[66, 68, 70]. Together, these studies highlight an important role of ripples during
both wakefulness and sleep in memory [71].

Third, several iEEG studies have started to uncover the underlyingmechanisms of
hippocampal ripples in triggering cortical reinstatement. For example, an iEEG study
found that rippleswere locked to the phase of delta oscillation (0.5–4Hz) during sleep
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Fig. 8.2 Hippocampal ripples and memory reinstatement. a Depiction of hippocampal electrodes
in epilepsy patients. b Example of ripple activities recorded from hippocampal electrodes. c Ripple
rates across awake tasks and sleep stages.dEffect of anatomical locations on ripple rates inmemory-
selective tasks. eMemory replayduringNREMsleep is precisely locked to ripples. f Ripple activities
with short (mean±SEM: duration= 0.046± 0.001 s) and long durations (mean±SEM: duration=
0.059 ± 0.002 s). g Directional interactions from neocortex to hippocampus during the occurrence
of ripples, especially long ripples. PDC: partial directed coherence in the 12–16 Hz spindle range.
NC: neocortex; HIPP: hippocampus; Positive PDC value indicates information flowing from NC
to HIPP, and vice versa for negative PDC values. a–c Adapted from [61]; d adapted from [62]; e
adapted from [64]; f, g adapted from [65]

within the hippocampus [60], resembling the coupling between hippocampal ripples
and neocortical slow oscillations (SO). By simultaneously recording MTL ripples
using iEEG and slow-wave oscillations using scalp EEG, one study showed thatMTL
ripples and spindle activities were both time-locked to the upstate of neocortical SOs
[59]. The neocortical SO-spindle coupling also coordinated MTL ripples during
NREM sleep. In turn, MTL ripples mediate the information flow from the MTL to
the neocortex [72]. Consistently, another iEEG study found that neocritical spindles
occurred earlier than hippocampal spindles, followed by the hippocampal SWRs,
especially for long but not short ripples [65] (Fig. 8.2f, g). These results suggest a
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top-down control from the neocortex to the hippocampus via sleep spindles, which
potentially initiates thememory replay in the hippocampus. The hippocampal ripples
then further drive the neocortical reinstatement of memory content.

8.5 The Information Coding Scheme of Human
Single-Neuronal Activities

Usingmicroelectrodes, iEEG recordings are capable of capturing signals from single
neurons, providing direct observations of information processing at the cellular level.
Nevertheless, due to technical and ethical challenges, it is extremely difficult to record
single neuronal activity in the human brain. Several studies have seized this rare
opportunity to uncover the information coding scheme of single-neuron activities in
humans. In particular, a series of studies have examined the role of MTL neurons in
signaling memory content, temporal context, and novelty, as well as in supporting
memory formation and maintenance.

A classical finding from human single-unit studies is the discovery of the “concept
cells”, a subset of MTL neurons that are selectively firing to specific persons or items
[73, 74]. For example, a subset of neurons showed an increased firing rate to all photos
of Jennifer Aniston with different views or backgrounds while showing very weak
or no firings to photos of other famous actresses, landmarks, animals, or objects.
More interestingly, these neurons not only fired to the visual images but also the
written or auditory names of the actress, suggesting an invariant, amodal conceptual
representation [75] (Fig. 8.3a). These cells were initially named “Jennifer Aniston”
cells and are now termed “concept cells” [74]. The proportion of modality-invariant
neurons increases from the parahippocampal and perirhinal cortex to the entorhinal
cortex and peaks in the hippocampus [75], which resembles the increased visual
invariance along the ventral visual pathway in non-human primates [76].

Are these concept cells also involved in short-term maintenance when the stimuli
are no longer presented on the screen? According to animal models, one potential
neural mechanism of short-term memory maintenance is the persistent activation
of neurons that are initially reactivated during the perception stage (see above; [14,
15]). This hypothesis was tested by two independent human single-unit studies,
which both showed that concept cells in the MTL, which fired during the encoding
phase, showed continuous firing during the maintenance period [78, 79]. Although
a similar persistent activity was found in the medial frontal cortex, it was associated
with the working memory load instead of memory content. It should be noted that
persistent activities are generally obtained by averaging spikes across time and trials.
When examining individual trials, recent studies have found that the neuronal spikes
in support of working memory occurred in a sparse, transient, and dynamic manner
[80, 81].

In addition to the concept cells, human single-unit studies have also observed cells
that signal visual categories, novelty, familiarity, confidence, or temporal context of
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Fig. 8.3 Examples ofmemory-selective cells observed by human single-unit recordings. aConcept
cells, which invariantly and selectively fire to specific concepts, for example, the picture or the
written name of the television host OprahWinfrey. bMemory-selective cells during the recognition
task. First column: novelty cells; second column: familiarity cells; third column: cellular signal
confidence level; fourth column: average firing rate of these three types of cells during a recognition
task. a Adapted from [75]; b adapted from [77]

memory items in the MTL and other brain regions [77, 82, 83]. For example, by
separating the neuronal responses according to subjects’ behavioral responses in a
recognition task, one study has found two types of neurons, with one showing greater
firing to novel than familiar stimuli, and the other showing the opposing pattern
[83] (Fig. 8.3b). In addition, neurons in the posterior parietal cortex could signal
the subjective confidence level of memory decisions regardless of familiarity [77].
Another study found that in a memory-based decision task, neurons in the medial
frontal cortex could signal the abstract task goals according to the task demands [84]
(see also Chap. 45). Umbach and colleagues discovered “time cells” in the human
hippocampus and entorhinal cortex, which signal the temporal positions of items
within encoding/retrieval tasks and predict the temporal clustering of items during
memory retrieval [85]. Another study also identified time cells in the hippocampus,
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which track the successive temporal information during sequential learning and
replay during post-encoding gaps [86]. A recent iEEG study had demonstrated the
existence of “boundary cells” in theMTL, which fired increasingly when a boundary
was detected. The neural state changes elicited by the boundary at the population
level also predicted temporal order memory [87].

Single-unit recordings have also contributed to the understanding of associative
learning and memory. Different items in the same episodic memory would rely on
overlapping neuronal networks. This is achieved by the plasticity of concept neurons,
whose firing properties can be reshaped by associative learning [88, 89]. For example,
a single neuron firing to a specific item during the pre-learning period showed an
expanded preferred response to the associated items that co-occur with the preferred
items after a few trials of learning [88]. Once the associative memory is formed,
effective memory cues would trigger a predictive firing of MTL neurons before the
re-appearance of items [89].

8.6 The Common and Different Neural Mechanisms
Between Humans, Primates, and Rodents

Our understanding of the neuronal mechanisms of cognition has been largely
advanced by animal studies. A critical question is how the findings from animal
studies could inform the neural mechanisms of human cognition, given the apparent
difference in brain structure and functions between animals and humans. This ques-
tion is challenging to address due to different neural imaging techniques, e.g., cellular
recording in animals and non-invasive imaging in humans. Human intracranial EEG
associated with single-unit recordings bridges the gap, providing unprecedented
insights into the shared and unique neural mechanisms between humans, non-human
primates, and rodents.

Various studies have revealed that humans and rodents share similar encoding
schemes during spatial navigation, memory encoding, and consolidation. For
example, a well-known finding in rodents is the grid cell in the entorhinal cortex
[90]. Similarly, several iEEG studies also revealed grid-like representations in the
human entorhinal cortex [91–93], and this hexadirectional modulation was associ-
ated with spatial memory performance [92]. Another well-documented neural code
of spatial/temporal information consists in phase precession [94]. Phase precession
refers to the observation that the firing of place cells occurs with progressively earlier
phase on each successive theta (~5–10 Hz) cycle, so that the spatial or temporal
information can be connected into an ordered sequence within theta cycles (see also
Chap. 44). This phenomenon was well observed in hippocampal place cells [94]
and entorhinal grid cells in rodents [95]. Consistently, a recent iEEG study observed
phase precession in the human hippocampus and entorhinal cortex when participants
were performing spatial navigation tasks [96]. In addition, as described above, both
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rodents and human studies have implicated hippocampal SWRs in memory consol-
idation [52, 65, 97–100], providing another example of similar coding schemes in
rodents and humans.

Despite these similarities, researchers have also revealed important differences
between humans and non-human animals. For example, a human iEEG study showed
that hippocampal theta oscillations during navigation and memory processing occur
at a lower frequency (1–4 Hz) as compared with rodents (4–10 Hz) [101, 102]. This
slower theta frequency might enable a higher working memory capacity, according
to the theta-gamma coding scheme [21]. Similarly, the frequency of human SWRs is
also lower than in rodents [59, 60]. More importantly, it is reasonable to argue that
the modality-invariance of concept cells found in the human hippocampus [73, 103]
might not be possible for rodents. Nevertheless, more studies are definitely required
to test this hypothesis. Finally, it usually takes much longer time to train animals
than humans to perform certain cognitive tasks, and this overtraining may introduce
additional cognitive and neural processes. For example, one rodent study has revealed
two types of temporal order representation in the hippocampal–entorhinal system:
in addition to the temporal flow that is formed automatically with one-shot learning,
there are also representations of stable event sequences which are increased in well-
practiced structured events [104]. Future studies are definitely required to address
these issues.

8.7 iEEG Based Brain-Computer Interface
and Closed-Loop Brain Stimulation

With their superb SNRs and high temporal resolution, iEEG recordings could
promote the development of brain-computer interfaces (BCI), a next-generation
of rehabilitative technologies to restore impaired cognitive functions (see also
Chaps. 51–53). For example, in a recent iEEG study, Chartier and colleagues
recorded neural activities from the human sensorimotor cortex while participants
were speaking. They identified the neural code that gives rise to the complex articu-
latory kinematic trajectories underlying fluent speech production [105]. These results
were then used to develop neural decoders that could synthesize the audible speech
from the cortical activity [106]. In another instance, ECoG has been applied to
measure signals from the motor cortex, which have then been used to control pros-
thetic hands and arms. Compared to scalp EEG, BCI using ECoG could achievemore
accurate operation with fewer training trials [107–110].

As both a recording and modulation technology, iEEG could also help to develop
state-of-the-art closed-loop brain stimulation systems, which could establish a causal
relationship between neural activities and behavior and also improve behavioral
outcomes (see also Chap. 41). Almost 70 years ago, Wilder Penfield mapped brain
functions by directly stimulating different brain areas during brain surgery [111,
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112]. Although an increasing number of studies have shown that non-invasive stimu-
lation, including transcranial current or magnetic stimulation, can modulate various
brain functions, including perception [113], attention [114], decision making [115],
cognitive control [116], working memory and long-term memories [117–120], the
exact mechanisms are less clear due to low spatial specificity. For example, one
study directly tested the effect of tACS via using iEEG recordings but failed to
find any effects of applied low-frequency tACS on brain rhythms [121]. In addition,
transcranial stimulations so far cannot directly target deep brain structures.

To circumvent these issues, researchers have applied direct electrical brain stim-
ulation (EBS) to epilepsy patients. Studies on memories have found inconsistent
results, with some studies showingmemory enhancement [122–124], whereas others
showing memory impairment [11, 125–127]. The mixed results might be explained
by the interaction effects of ongoing brain states and stimulation [128]. For example,
Ezzyat and colleagues showed that stimulations during a state of low encoding effi-
cacy could promote memory and otherwise could impair memory [129]. To address
this issue, they developed a closed-loop stimulation scheme, in which the stimu-
lation was triggered by a neural state that indicates subsequent memory forgetting.
Using this novel approach, they revealed a robust enhancement effect of hippocampal
stimulation on long-term memory [130] (Fig. 8.4) (see also Chap. 41).

a b c

Fig. 8.4 Closed-loopbrain stimulation using iEEG tomodulatememoryperformance.a Illustration
of closed-loop stimulation. First, a classifier is trained using an independent data set. Second, spectral
decomposition analysis is performed during online recordings. Third, the pre-trained classifier is
applied to the spectrally decomposed data. Fourth, an electric pulse is triggered if the decoding
evidence reaches the threshold. b Number of successfully recalled items in the stimulation (Stim)
vs. no stimulation (NoStim) condition. The stimulation was applied either to the lateral temporal
lobe or other brain regions (i.e., non-lateral temporal). c Lateral temporal lobe stimulation increased
classifier evidence during memory encoding. This figure is adapted from [130]
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8.8 Summary and a Practical Guidance

So far, we have provided an overall description of the methodological advantages
of iEEG and illustrated its implications in addressing fundamental questions in
cognitive neuroscience. Compared with non-invasive brain imaging methods, the
ability of iEEG to direct record single-neuron spikes and LFPs with greater spatial–
temporal resolution and SNRs are unprecedently rare and precious. Nevertheless,
it is important to notice the limitations of iEEG when planning your studies. First
of all, due to ethical issues, iEEG recordings are only performed in patients—most
often, drug-resistant epilepsy patients for clinical purposes—whichmakes iEEG less
accessible than other non-invasive neuroimagingmethods. Second, the electrodes are
usually implanted for 2–3 weeks, during which extensive physical examinations are
conducted, leaving limited time windows for conducting experiments (see Chap. 4).
It usually takes much longer to collect data from the required number of participants
for the above reasons. Third, the electrodes are implanted to localize the seizure onset
zone, thus are often located within or near the epileptic loci. As a result, it is unlikely
to get a full brain coverage of electrodes. Moreover, the signals could be smeared
by the epileptic spikes, particularly when electrodes are located near the epileptic
loci. Thus, iEEG is often less optimal for examining interactions across wide brain
networks. Finally, implantation schemes are heterogeneous across patients, severely
limiting the ability to compare subgroups (see also Chap. 29).

Given these apparent strengths and limitations, it is vital to decide when to choose
iEEG recordings over other non-invasive imaging methods. Non-invasive imaging
methods are always recommended if they are sufficient to address your research ques-
tions. For example, if you are interested in temporal dynamic changes of neocortical
brain regions, EEG andMEG can be good options. If you are interested in localizing
the brain regions where information is processed or stored, fMRI could be a good
choice. Nevertheless, if you are interested in brain oscillations of deep brain regions,
such as the medial temporal lobe or thalamus, iEEG would be a good choice. More-
over, epilepsy patients often show cognitive impairments, and fatigue is a common
symptom in epilepsy [131] (see alsoChap. 2 for a detailed description of the cognitive
status of epilepsy patients). Therefore, it is important to avoid tasks that are either
cognitively challenging, may introduce intense arousal and emotional responses, or
take an excessively long time (e.g., >2 h). Finally, the iEEG study should be designed
and conductedwith potential benefits to the patients whenever possible. For example,
when developing mind-controlled robotic arms for paralyzed patients, intracranial
EEG recordings with high SNRs and spatiotemporal resolution might be better than
other non-invasive imaging methods. Similarly, deep brain stimulation protocols can
be conducted to suppress seizures or improve cognitive functions (see also Chaps. 5,
39, and 41). Still, studies that could potentially localize the brain regions involved in
essential brain functions, such as motor, language, or memory, could be conducted
to aid surgical planning. Together, iEEG studies are the method of choice when
researchers need to record neural activities at high spatial–temporal resolutions from
deep brain structures, and should be conducted with careful consideration to patients.
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Chapter 9
How Many Data Do I Need for an iEEG
Study? Treasure Maps and the Status
of Variability

Jean-Philippe Lachaux

Abstract While most research projects are under strict time constraints, the acquisi-
tion of intracranial EEG data is often a long process, with few patients recorded every
yearwith variable electrode implantations. The question of howmany patients should
be recorded, and how repeatedly in the same cognitive situation is therefore of utmost
importance. While the implicit goal of most human cognitive neuroscience studies is
to identify phenomena and mechanisms which are universal to our species (ultimate
reproducibility), there can be no magic number of patients or trials that would secure
that objective. Rather, we will argue that iEEG studies should be considered as a
kind of “treasure maps”, providing the maximum number of indications of where
and how to observe the reported phenomenon. Within that framework, we propose
that the exceptional quality of iEEG data, both at the anatomical and functional level,
leads to a change in view point regarding variability—across trials and patients—
which should be explained rather than discarded through group-level statistics. We
will show how that approach applies to two complementary trends in iEEG research:
the constitution of large-scale international databases and in-depth analyses of small
groups of patients across multiple tasks including naturalistic conditions.

The struggle is long, the struggle is hard, the struggle is beautiful (Killing Joke, 1990).

One notorious difficulty of iEEG research is that data collection is painfully slow,
in most cases. The rate of data acquisition is governed by factors that researchers
cannot control, such as the volume of iEEG implantations performed by the associ-
ated epilepsy unit, the ability and willingness of patients to participate in research
experiments, the number of other experiments they generously give their time to and,
of course, the clinical schedule (see also Chap. 4). In addition, there are portions of
the brain that are seldom recorded, because of their little clinical relevance or the
difficulty to insert electrodes safely or because of specific strategies of the clinical
team (such as a preference for ECoG or SEEG). To give a concrete example, patients
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in Lyon or Grenoble are often implanted in the insula but almost never in the superior
parietal lobe. For all those reasons, it can take years to record five or ten patients in
some cortical areas, and even longer in specific pairs of regions for bivariate analysis.
This is clearly incompatible with the timeline of most research projects (Ph.D. thesis,
post-docs, grants, etc.).

Consequently, any researcher new to iEEG wants to know the minimal amount
of data that constitutes a study, with the intuition that the usual standards of non-
invasive neuroimaging—more than ten participants inmost fMRI andM/EEG studies
(e.g., [1, 2])—are unrealistic in this case. And the question concerns not only the
number of subjects to include, but also the amount of data to record in each of
them, since recording time is often limited. A well-conducted iEEG project should
reach conclusions with the minimal number of patients, each recorded for a minimal
amount of time. But how minimal?

9.1 Any Project Starts with a First Patient

As any iEEG project starts with recordings from a first patient, we will first discuss
the minimal amount of data that is needed to reach sound conclusions in that first
patient (and later, the minimal number of patients to include in a study). The answer
obviously depends on the aim of the project: a few minutes of continuous recording
might be sufficient to characterize functional connectivity at rest [3], but it might
take a great number of trials and conditions to fit the numerous parameters of a
complex neurobehavioral computational model. There can’t be any universal and
simple answer to our initial question, which depends ultimately on our understanding
of what it really means to provide a convincing answer to a scientific question with
iEEG. Although it might seem a bit trivial to experienced neuroscientists, going back
to such basics is the most efficient way to decide whether a set of observations is
“conclusive enough”, because that decision cannot be derived from statistics alone.

We will consider the general objective of finding the neural substrate of a cogni-
tive process or mental state with iEEG. That might not encompass all the science
that can be done with intracranial recordings, but it is general enough to guide our
steps throughout that chapter. Within that framework, most iEEG studies arguably
try to demonstrate a relationship between “something that the patient does” and
“something that her brain does”, to put it simply (see also Chap. 48 for a stimulus-
based perspective). “What the brain does” refers to a change at the neural level
(we’ll call it ‘N’): it is the sudden appearance (or amplification, or reduction …)
of a neural pattern of activity that can be detected in iEEG signals. It might corre-
spond to an Event-Related Potential, or transient neural oscillations, local broadband
energy increases or decreases, long-distance synchronization between oscillations,
causal influences between brain areas etc. … with no restriction. ‘What the patient
does’ is equally general: it refers to a change at the patient’s level in a very general
sense (let’s tag it ‘P’). P might be the experience of fear, the recollection of a life
event from episodic memory, the recognition of a face, a button press … it is usually
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induced by a cognitive paradigm and inferred from overt behavior: the patient is
led to experience or ‘do’ P. Think of a patient giving a correct response during a
delayed-match-to-sample paradigm. We can infer from that response that she “suc-
cessfully maintained the items in working memory during the time interval between
the sample and the probe”: this is P, which is induced by the experimental protocol,
and a researcher might search for a neural pattern N associated with that maintenance
process P. In other instances, P might occur spontaneously and overtly, and be acces-
sible only through verbal reports (“I was just thinking of my sister when she was a
baby”). Let’s keep that in mind when we discuss the specific case of electro-cortical
stimulations studies, and naturalistic neuroscience [4, 5].

As shown in Fig. 9.1, a relationship between P and N can sometimes be inferred
from single trials, because of the exquisite signal-to-noise ratio of iEEG. In that
example, the onset of a face stimulus is followed by a strong energy increase between
50 and 150 Hz in the fusiform gyrus. That increase (N) seems to be related to face
processing in the visual cortex (P). But how many times must that pattern repeat to
be truly convincing of that N/P relationship? Our little statistical analysis reveals that
six events are enough to show that the increase is significant across the trials, but is
it sufficient to demonstrate the N/P relationship? We will see now that the answer is
not just a matter of statistics, but ultimately … of common sense.

In daily life, it often takes very little evidence to convince ourselves that two
phenomena are related. Imagine yourself in a hotel room, trying to figure out which
switch turns on the bathroom light. Eventually, you will press one particular button
and notice that the light goes on: do you need to repeat the procedure to be truly
convinced that it is the right switch? Of course not. When you press that button,
you exert a constraint on the electrical circuit (analogous to inducing P through
experimental manipulation), which triggers the sudden illumination (analogous to a
sudden change in brain activity, N). If things are so simple in the hotel room, why
does it take several repetitions to establish convincingly a N/P relationship in iEEG
research? Why does it take several trials to be convinced that a transient energy
increase recorded in the fusiform gyrus is related to the processing of a face?

Well, a first difference is that activity in the fusiform gyrus never goes from zero
to one in the radical fashion of the bathroom light. In other words, the spontaneous
variations of the iEEG signal before P (during what is called “the baseline”) compli-
cate the detection of N. We would encounter the same difficulty in the bathroom
if it was already illuminated by a couple of light bulbs with random time-varying
intensities. The effect of your button press would be more difficult to detect and you
would probably press the button several times to be convinced that you really changed
anything. As for that bathroom light, iEEG signals often record frommultiple neural
sources with heterogeneous functional characteristics, that might not have the same
relationship with P, which is equivalent to the situation just described. And of course,
the detection would be even more difficult if you could only observe the global light
of the bathroom from the outside, which explains why EEG and MEG require more
repetitions than iEEG, because they record much broader brain areas. Yet, the influ-
ence of multiple neural populations on local iEEG signals, and their uncontrolled
activity, makes it more difficult to detect N in single-trials.
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Fig. 9.1 Individual responses to face and house stimuli in the visual cortex. Each graph shows the
neural activity recorded in the same SEEG contact site, in the fusiform gyrus/lateral-occipital sulcus
(High-Frequency Activity, HFA, between 50 and 150 Hz, computed as in [20]). The patient watched
several categories of images flashed for 200 ms during a visual oddball task (black horizontal line).
The instruction was to press a button after each ‘fruit’ stimulus. The four red (resp. blue) curves
correspond to four different individual ‘face’ (resp. ‘house’) stimuli, while the gray curve is the
average response to 50 stimuli of the same category. For each of the four face stimuli, HFA increased
significantly above pre-stimulus level (‘*’ sign: p < 0.001 for each, Kruskal–Wallis comparison
between a test window [100: 300 ms] and the baseline [−250:−50 ms]). A Wilcoxon test was also
performed to compare the average HFA during the baseline and the test window when considering
only trials 1 and 2 (two trials: p = 0.5, n.s), or all four trials (p = 0.125, n.s.). When considering
more trials, the significance criterion was reached for n > 6 (p = 0.03125 for six trials, p = 0.0078
for eight trials, p = 0.0019 for ten trials)

In short, it takes more trials to identify a N/P relationship when the amplitude of
N is small relative to the ongoing fluctuations before P (as quantified by a z-score).
Practically, it means that the number of repetitions of P that an experiment should
include (the number of trials per condition, typically) cannot be estimated unless
iEEG signals are measured from the region of interest, because brain activity is less
stable in some regions than in others. For instance, neural activity has greater ongoing
fluctuations in areas supporting spontaneous cognition or non-specific sensory and
motor processing (think of the activity of the primary auditory cortex in a noisy
hospital room). It follows that the number of trials required to demonstrate the N/P
relationship depends on the targeted region. As a rule of thumb, it also takes more
repetitions to compare a neural pattern between two experimental conditions (i.e.,
to show that high-gamma activity increases with memory load in the inferior frontal
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gyrus), because the difference that must be detected might be small. The amount of
spontaneous neural fluctuations in the cortical regions of interest can be estimated
frompreliminary recordings, when available, and occasionally, fromprevious studies
of the same region: for instance, figures from our study [6] show that attention-
induced energy increase in the high-gamma band can be detected in the dorso-lateral
prefrontal cortex from just a few trials.

One additional problem that must be taken into consideration when designing an
iEEG protocol is that recording sessionsmight end abruptly, for multiple reasons: the
fatigue of the patient, a seizure or a clinical procedure… it follows that data collection
should be organized temporally in such a way that even partial recordings can be
used. It would be a bad idea, for instance, to have critical experimental conditions
by the end of the protocol. When possible, data should be collected equally for
all conditions as time unfolds. And iEEG experiments should also be as short as
possible, for the same reason (see Chaps. 4 and 5 for detailed descriptions of the
practical challenges of iEEG recordings).

9.2 Confounding Factors

Until now, simple statistical considerations regarding the baseline have brought
preliminary insights about our initial question (‘how many data …’) but additional
factors must now be taken into account, which are much more difficult to address
mathematically. Going back to the hotel room, let’s imagine now that you came with
a group of restless children busy playing with all the light switches. In the midst
of such enthusiastic frenzy, how could you be sure that you pressed the bathroom
switch? You would probably repeat the process in hope of isolating the effect of your
own action. Yet, the probability that someone else pressed the right button twice in a
row—exactly when you pressed your switch—increases with the number of children
in the room. With iEEG, it means that even if you could detect N reliably in every
trial, as in Fig. 9.1, several repetitions might be needed to establish that N is not
due to causes other than P (confounds). Of course, any well-designed experiment
minimizes the number of confounds and makes sure that several P’s are not induced
systematically at the same time. It would be suboptimal, for instance, to compare
the brain response to colored faces and black-and-white landscapes because neural
processes specific to faces and colors would always occur at the same time. But there
are numerous other types of confounds over which experimenters have little control,
such as spontaneous overt or covert actions, which can occur at the same time as P
several times, unnoticed. Since such causes are impossible to list exhaustively, there
can be no mathematical way to assess precisely the number of repetitions needed to
demonstrate an N/P relationship. If iEEG and M/EEG studies publish such conclu-
sions from a finite number of trials, it is only because reviewers are ready to believe
that other confounds are very unlikely. A famous example is the relationship that was
established between gamma-band induced responses in scalp EEG recordings (N)
and the perception of visual objects (P) [7]. That relationship was widely accepted
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within visual neuroscience until Yuval-Greenberg et al. [8] showed that miniature
saccades generate a transient artefactual gamma activity in EEG signals. Since then,
the detection of gamma oscillations during object perception—however repeated and
systematic—is no longer considered as a definite proof that the two phenomena are
related, at least by some researchers. Unless a study provides an exhaustive list of
all potential causes of their neural phenomenon of interest (the number of children
in the room and how often they press the buttons), it is up to readers to appreciate
whether the evidence is “convincing enough” using their common sense and not
just mathematics. This limitation is primarily due to the fact that iEEG research is
essentially about correlations and co-occurrences, rather than about causal effects,
just as neuroimaging in general. The problem is not unique to our field, but certainly
amplified by the unique complexity of the human brain and its sensitivity to such a
wide variety of effects. The conclusions of any iEEG study should therefore be taken
as temporary—not final—explanations, “jusqu’à preuve du contraire” (until proven
otherwise).

9.3 When One Is Enough

One type of iEEG studies illustrates perfectly the importance of common sense: Elec-
trical cortical stimulation studies. Stimulation studies report the behavioral, cogni-
tive and experiential effects of electrical cortical stimulations (ECS) [9] delivered
through iEEG electrodes (see also Chaps. 5, 39, 41, and 52). ECS studies have a
long and rich history that dates back 80 years, and the pioneering mapping of the
sensorimotor homunculus by Penfield and Boldrey [10]. Today, most clinicians still
consider ECS to be the gold standard when it comes to map eloquent brain areas.
Yet, conclusions are based on a few single events—if not one—because repeated
ECS can induce after-discharges. For instance, Mazzola et al. [11] used ECS to build
a very insightful functional map of the insula, in a study that mentions no statistical
method nor the number of stimulations used, because it is not relevant in that field of
research. What the authors reported was the proportion of sites triggering a specific
manifestation (e.g., a gustatory sensation) in each portion of the insula, which is a
way to convince others that those effects were somehow ‘typical’ because they could
be replicated in the same area in several patients. Yet, it is up to readers to judge
whether those observations were “reproducible enough” to be truly convincing. In
another study, Nencha et al. [12] showed that ECS in the dorsal anterior insula can
induce an ecstatic feeling. This time, the effect was demonstrated with only three
stimulations of the same site in one patient only. Yet, the evidence was considered
sufficiently strong to be published, with no statistical analysis, obviously (but the
authors didn’t claim that the effect was typical). Sometimes, important conclusions
about the function of a given brain region are even derived from a single stimulation
in a single patient: during awake surgery, neurosurgeons frequently use ECS to iden-
tify eloquent brain regions which must be spared by the resection [13]. For instance,
if the ECS induces a speech-arrest, the region is assumed to be critical for language
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production. Such important decisions are based on single events and no statistics,
which illustrates the “convincing” power of single events.

What makes single-trial data so convincing in ECS studies? One important aspect
is timing: the fact that the change in behavior (or the experiential manifestation) is
observed immediately after the stimulation. But timing cannot explain everything: if
the patient blinked or coughed after the ECS, no one would conclude that it is neces-
sarily due to the stimulation. It is also important that the behavioral or experiential
manifestation be clear and rare. In theNencha et al. study [12], the probability that the
patient experienced spontaneously a state of deep clarity right after the stimulation
was ridiculously small. How small? Intuitively small, based on our own experience
of those states, but with no proper mathematical way to quantify that probability. To
a lesser degree, the same holds for speech arrests or visual phosphenes: because such
phenomena rarely occur spontaneously, their most reasonable cause is the electrical
stimulation. The conclusion is an educated guess made through an observation; it
is based on logical inference. It is the most logical explanation for that observation
based on common sense, but certainly not a definite proof of a general principle.
The followers of Penfield use the same logic we would use in our hotel room, when
there is only one light that functions normally: the light goes on when you press the
button, and that single event is sufficient to convince you that the two phenomena
are related. It is perfectly acceptable.

With ECS, clinicians exert an influence on the neural activity and expect a change
in behavior or cognition. During cognitive paradigms, experimenters exert an influ-
ence on the behavior and cognition of the participant and expect that some component
of the iEEG signals will change. The two approaches are symmetric and comparable.
The reason why the effect of ECS can be revealed with one single event is because
(a) the change in behavior and cognition is unlikely to occur by chance, and (b) its
timing is tightly linked to the ECS. It follows that during cognitive paradigms, N/P
relationships can be demonstrated with very few trials—possibly one—if there is a
tight relationship between changes in P and N, and if P is the ‘most likely’ cause of
the change in N.

9.4 The Longer, the Better

So far, we emphasized the correspondence between the onsets of the stimulation and
the manifestation, in ECS studies: the later occurs as soon as the former is delivered.
But in most cases, it also ceases immediately when the stimulation stops, which
makes the relationship even more convincing. During cognitive paradigms, a similar
correspondence occurs when P and N are sustained with similar dynamics, which is
often observed in associative cortical regions [14]. Figure 9.2 illustrates such a case:
during a visual search task, high-frequency activity in the inferior frontal sulcus
(N) is sustained above baseline level for the full duration of the search process (P).
Such temporal alignment makes the relationship extremely convincing, even with
few trials and especially as it holds for variable durations of P.
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Fig. 9.2 Neural activity in the inferior frontal sulcus during a visual search task. Color codes High-
Frequency Activity [50–150 Hz] expressed in percentage variation from the average HFA in that
prefrontal site during the entire experiment. Trials (y-axis) are sorted according to reaction time
(black dots), from the stimulus onset (t = 0 ms). This type of visualization illustrates very clearly
the relationship between the sustained HFA increase and the search process, in every trial

If the bathroom light went off as soon as you released the button, you would
quickly conclude that you found the right switch, even with hyperactive children
in the room. In other words, a tight correlation between two sustained phenomena
brings stronger support for a relationship between the two, than if they are short and
transient (as in Fig. 9.1). But again, it is difficult to evaluate properly how evidence
increased, because it depends on the number of independent observations of the
N/P relationship which can be made from a single instance. That number depends
on parameters such as the inertia of the mechanism causing the observed pattern
N: in Fig. 9.2, iEEG signals were sampled at 512 Hz, but they did not provide
512 independent observations per second that “high-frequency activity is still above
baseline as long as the visual search goes on”. A proper statistical estimation would
include factors such as the probability that “N is still above baseline level at time
t + 1 knowing that it was above baseline level at time t”, among others. For now,
let’s simply conclude that a sustained temporal relationship between a neural pattern
and the cognitive or behavioral phenomenon of interest is “more convincing” than a
more transient one, and requires less repetitions. This is particularly interesting for
naturalistic studies, as we will see now.

9.5 Naturalistic Studies: So Hard to Replicate

In naturalistic studies, N/P relationships are studied in situations which resemble
everyday life. The behavior or cognitive activity under study is elicited during the
casual interaction of the patient with her environment, including people, rather than
by a rigorously controlled paradigm. iEEG is the technique of choice for that purpose,
because high-quality data can be recorded even when subjects are moving, which
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is not possible with M/EEG and fMRI. Figure 9.3a shows a sudden activity of the
fusiform face area (FFA) each time a patient made eye contact with people around
her, but not when she looked at inert objects in the room. Is it sufficient to conclude
that in a real-life setting, the FFA reacts to faces as it does when stimuli are flashed
experimentally on a screen? Using the criteria of ECS studies, the answer might
be positive, because the reaction of the FFA is clear and rare—it does not happen
when the patient is looking at other objects—and it also occurs with a reproducible
delay after the eye-contact. Yet, our statement would not be supported by any formal
statistical analysis, as in the insula stimulation studies.

Figure 9.3b shows an informal verbal exchange during which the experimenter
challenges the patient to memorize a list of four words in a foreign language (in
Suomi). The activity of the dorsal anterior insula (dAI) rose to reach a plateau until
the patient repeated the words that he just heard. Although the behavior was observed
only once, most observers would agree that the dAI was involved in that improvised
memory task, because its activity (N) was sustained as long as information was
maintained in working memory (P). That temporal pattern might be due to other
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Fig. 9.3 iEEG responses during naturalistic interactions. Top panels: HFA [50–150 Hz] in the
left dorsal anterior insula while the patient a listened to three words in a foreign language with
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Patricia: experimenters). HFA increased selectively when she turned to faces. Very few repetitions
can convince observers of a relationship between a specific behavior and a focal neural activity
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causes, but the possibility that working memory involves sustained dAI activation is
themost plausible explanation for the tight temporal correspondence between the two
phenomena. Of course, the experimenter might have challenged the patient several
times with new words to accumulate more evidence for that relationship, but there
are many other types of naturalistic P which are more difficult to reproduce: some
emotions for instance (think of a patient receiving a good-news phone call). Neural
correlates of such behavioral or cognitive events can be investigated, following the
guiding principles of ECS studies (“clear, rare and coincident”).

A parallel can be drawn with the seminal study of Gelbard-Sagiv et al. [15], who
showed that the spontaneous recollection of a recent memory coincides with the
sudden activation of individual neurons with a specificity for that memory in the
medial temporal lobe (‘concept cells’). During some of his talks, the senior author
(I.F.) showed a striking video illustrating that effect: a silent cell responsive to the
‘Simpsons concept’ suddenly fired a series of action potentials a fraction of a second
before the patient recalled ‘he just saw a Simpsons cartoon’. I.F. would then comment
with amischievous smile: “that’swhen you need to hire a statistician” [to demonstrate
that the cell’s response is involved in memory recollection]. Again, a single occur-
rence can be convincing enough if the response is clear and highly selective, with the
expected timing. This example is particularly compelling because the spontaneous
recollection of specific episodic memories usually occurs in a random, unique and
naturalistic way.

In that study, Gelbard-Sagiv et al. [15] reported several additional instances of
recollection-related neural activations, which is always preferable.When some effect
is observed in a region that is often recorded in the iEEG unit, it is always better to
collect data for more than one patient in similar naturalistic conditions, as we will
discuss later. But if the cortical region is rarely implanted, or if the natural situation is
difficult to reproduce, publishing such observations, with sufficient details regarding
the electrode position and the observed phenomenon (with raw data showing the
correspondence between N and P) can encourage other researchers to reproduce the
observation when they have a chance to record from the same brain region.

Finally, we shall mention a specific type of naturalistic study, inwhich patients can
visualize their brain activity in real-time, thanks to a dedicated set-up [16]. During
such sessions, the patients are encouraged to search for correlations between the
ongoing activity in specific iEEG sites—N, for instance High-gamma activity [50–
150 Hz]—and aspects of their subjective experience (what they are aware of doing
or feeling: first-person data, P). This is equivalent to asking a patient if she “felt
anything special”, while her brain was stimulated with ECS. The real-time display
allows to test N/P correspondences rapidly, using a stop-go-repeat paradigm: the
patient starts and stops doing P (go/stop), then repeats the procedure. If the neural
activity of interest N waxes and wanes, a mechanistic relationship between N and P
is the most plausible explanation.
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9.6 How Many Patients Constitute an iEEG Study?

Once an effect has been demonstrated in a first patient, the next question is whether
that effect is specific to that person, or a general feature of the population she was
drawn from (in most cases: the human species). The answer requires recordings
from more patients, but how many? It depends essentially on what researchers try
to demonstrate. Addressing that issue in an eponym article (“how many subjects
constitute a study?”), Friston et al. [17] distinguished between two different objec-
tives: showing that a trait is typical of a population (let’s call it a ‘type I’ objective)
and providing a more refined characterization with quantitative values for such traits
(type II). The authors illustrated that distinction with a comparison between two
objectives: “showing that farmers in Wales typically own tractors” (i.e., showing a
typical trait, type I) versus “showing that farmers inWales own on average more than
0.86 tractor(s)” (type II). With iEEG, a similar distinction could be made between
“showing that the presentation of a face stimulus generates a response peak in the
right fusiform gyrus later than 100 ms” versus “showing that the peak latency of the
neural response to face stimuli in the fusiformgyrus is 170ms on average”. Intuitively
(andmathematically), it takes smaller samples to achieve objectives of type I because
they require categorical data which are less sensitive to noise (the answer is ‘yes’
or ‘no’, the feature is ‘present’ or ‘absent’). Still, one might suspect that the ‘mere’
demonstration of typicality also requires samples much larger than the number of
patients who can be recorded in a reasonable time frame. After all, if asking twenty
random British citizens was sufficient to conclude with a high degree of certainty
that ‘typically, people in the UK still approve the Brexit’, polling institutes would go
bankrupt. Friston et al. [17] provided an estimate for theminimumnumber of subjects
needed to establish that a trait is typical of a given population, if all subjects within
that sample share that specific trait. The number is surprisingly low, but depends on
the operational definition of “typicality”: showing that 6 out of 6 subjects possess the
specific feature is enough to demonstrate with 95% confidence that it is present in at
least 60% of the population. In other words, if less than 6 individuals out of 10 have
that feature in the global population, it is very unlikely that six random individuals
would all have that feature. But it is impossible with a sample of six to conclude that
the feature is more present in the population (more “typical”), than 60%. In other
words, it is relatively easy to demonstrate that a feature is present in at least X%
of the population when X is low, because it would be extremely unlikely otherwise
that all individuals in your sample had that feature. For instance, it takes a group of
twenty individuals with the same feature to show that X is higher than 85% (a more
stringent definition of typicality) ([17], Fig. 9.2).

It follows that iEEG studies should aim for objectives of type I (to demonstrate
typicality), but that the number of subjects which constitute a study depends on the
level of typicality onewishes to demonstrate. According to Friston et al., one hundred
patients would not be sufficient to show that the inferior frontal gyrus is involved in
verbal working memory in 99% of the population. Interestingly, most iEEG studies
attempt to demonstrate that a NP relationship is typical with no explicit defining
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criterion, which means that the actual objective is simply to convey a feeling that the
relationship is «quite» typical of the human brain. It would be simpler, and clearer, if
all iEEG studies tried to demonstrate “absolute typicality” (i.e., the NP relationship is
present in all human beings). But that goal is mathematically unachievable and leads
one to believe that iEEG projects should always include as many patients as possible.
This is of course an unsatisfactory conclusion, whichmeans that statistics alone don’t
provide a good answer to our initial question: how many patients constitute an iEEG
study?

Let’s consider electrophysiological studies conducted in non-human primates
(NHP). Most NHP studies report data from two or three monkeys and not more
(i.e., [18]), for obvious ethical and practical reasons. Yet reviewers and readers
widely accept the conclusion that the effects are “typical”, in the sense that they
are not specific to those two or three individuals. That belief is not supported by
mathematics, but rather by “common sense”. For the reasons mentioned above, the
objective of NHP studies cannot be to demonstrate effects which are general to that
species, and the added value of studying one versus two monkeys is simply to show
that the results are not due to some weird hidden characteristic of a specific primate.
It is more psychological thanmathematical and yet, NHP studies manage to convince
other scientists that further recordings in the same area of the brain and the same
condition would yield similar observations.

There is no reason why the same logic should not apply to iEEG studies, which
rely on data very similar to some NHP recordings (local field potentials, [19]). If two
monkeys constitute a NHP study, then two humans should constitute an iEEG study.
The main difference is that iEEG patients suffer from a major neurological disorder
with possible brain reorganization. This motivates even further the replication of the
findings in a second patient, but not more. There is no mathematical reason to set
the bar higher for iEEG, just because iEEG recordings are more common in humans
than in monkeys.

NHP studies have long abandoned the ambition to demonstrate the perfect typi-
cality of their findings, which is less apparent in M/EEG and fMRI but still true.
But since electrophysiological and neuroimaging studies never provide a consistent,
operational definition of that term, that’s not a big loss after all. For instance, the study
by Ossandon et al. [20] showed that high-gamma activity is reduced for the entire
duration of a visual search throughout the Default-Mode Network. The claim was
illustrated in several patients for each region of the DMN, but there was no attempt
to quantify the probability of fellow researchers to observe a similar decrease when
recording from DMN regions in the same conditions. The best we could do was to
provide evidence that the phenomenon of interest was not due to a specific feature
of a particular brain.

But then, why include more than two subjects in an iEEG study? We will argue
that it helps other iEEG researchers to replicate the findings in other patients. Let’s
illustrate that point with a second metaphor: the treasure map. As everybody knows,
a treasure map is a document which provides explicit cartographic information on
where tofind a treasure.Andweexpect fromagood treasuremap toprovide numerous
unambiguous details about the treasure location; for instance, that “it is buried at the
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bottomof a small hill, on its eastern side next to a fewpine trees, on themid-west coast
of the island”. In a sense, most iEEG studies are analogous to treasure maps. They
provide explicit details on where a specific effect (N= the treasure) should be found.
The iEEG treasure map (= the article) is here to help future neuro-adventurers to find
that treasure: if they record (‘dig’) in that specific location, they will most likely find
it. This metaphor helps understand why including more patients in a study will make
the map more precise, considering that several patients are very rarely implanted in
the exact same locations. Within a particular region of the cortex, reporting from
more than one patient specifies further where the effect was found (and where it
was not found): what were the characteristics shared by all the sites where the effect
was observed? The answer might be: “they were all in the depth of the left inferior
frontal sulcus, immediately above the pars opercularis ofBroca (and sitesmore lateral
didn’t show the effect)”. Doing so, the authors provide all the information that seems
relevant to help other researchers make the same observation. And of course, the
amount of information they can provide increases with the number of patients they
present in their study. That includes not only detailed anatomical information, but
also various factors such as behavioral measures (reaction times, hit rates …) or the
strategy used …

That strategy somehow assumes that the effect should be present in every patient
(perfect typicality), which makes sense: if we had reported, in our DMN study [20],
that in some individuals, the activity of the DMNwas not suppressed during a visual
search, with no further explanation, it would have been very difficult to draw any
insightful conclusion regarding the role of the DMN. When the effect of interest is
not observed in some patients, some type of explanation is expected. The “treasure
map approach” lists factors which might explain why the effect was observed only
in some sites and some patients, such as: “in patient 2, where the effect was not
observed, the recording site in the inferior frontal sulcus was in fact more superficial
than in the other patients”. The ideal study should list all distinctive properties of
the sites (and patients) where the effect was present. It requires a very detailed
understanding of the cortical region(s) of interest, at the single-patient level, not only
in terms of anatomy, but also connectivity and functionality, ideally. For instance,
the distinctive property of all sites of interest might be that “when stimulated with
cortical electrical potentials, a response was observed in the primary auditory cortex”
or that “in a visual localizer task, they were selectively activated by face stimuli, but
not by house stimuli”. And if the effect was found in all iEEG sites in a given region,
in all participants, having more patients provides more information about the extent
of the region where that effect should be found, given that electrode coverage of the
brain is sparse and variable across patients.

9.7 Multiple-Case Studies: The More, the Merrier

None of the arguments so far impose that iEEG studies should include more than two
patients: it would just add more information to the treasure map. Yet, this conclusion
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does not apply to studies which report more than one N/P relationship. Let’s consider
an attempt to show that face stimuli elicit a strong response in a specific portion of
the fusiform gyrus, and in the lateral occipital cortex. Following the guidelines of
NHP research, it would be good to report effects in more than one patient for each
region. But since implantations vary across patients, it might take years to record
from two participants with electrodes in both regions. This is not necessary, however,
because the study can simply report the effect for two patients in the fusiform gyrus,
and two other patients in the lateral occipital cortex. In that case, the study requires
more than two patients, because it combines two independent studies in one. There
is no particular need to record all regions of interest in the same patients, unless one
is interested in particular relationships between those regions (such as differences in
peak latencies, patterns of propagation, or long-distance coupling mechanisms …).

To summarize, the basis of any iEEG study should be a strong and convincing
observation in one individual, as for primates’ studies. It must be followed by a repli-
cation in at least one subject, because the brain of an epileptic patient can have some
specificities which might affect the observation. The study might of course include
more patients, but never enough to demonstrate that an effect is general to the human
species. Evidence will always be weak and preliminary. If the conditions of obser-
vation are sufficiently well described, with enough detailed anatomical information,
other researchers can replicate the finding and provide more information regarding
its exact cortical origin and factors which amplify or diminish the effect (such as
strategies, patient’s characteristics, …): the ‘treasure map’ should be as precise as
possible for future treasure hunters. If the study fails to identify distinctive features of
the responsive sites and if the conclusion is that a fraction of the cortical recordings
shows the pattern of interest within a well-defined region, it is up to future studies
to perform new recordings of that detailed area in search for explanations of that
variability. After all, there is no deadline for understanding the human brain.

The approach we described clearly differs from the common practice of non-
invasive neuroimaging. In M/EEG and fMRI, inter-individual variability is usually
not explained, butmodeled as a random variable (random-effect analysis) (e.g., [21]).
Also combining data from multiple participants facilitates the detection of effects
that are not significant in single subjects. Using the same approach for iEEG is
questionable: the signal-to-noise ratio is so good that the effect of interest should
be detected if the electrode is correctly positioned, as in NHP studies. Nevertheless,
random-effect analysis of iEEG might become popular in the near future, with the
emergence of large multi-centric iEEG datasets (see below). Data will be collected
in the same focal brain regions and the same paradigms in populations comparable in
size to typical M/EEG and fMRI samples. All collected data could then be attributed
to a single meta-subject, in the same way as many EEG studies pool together all
recordings from Cz or Fz across all participants. This strategy will greatly facilitate
data analysis and probably reveal effects which are absent in some patients, but it
will also fail to provide any explanation for such absence. Another potential pitfall is
that sites might be pooled together based on automatic labelling only (as provided by
popular tools such as MAPER or Freesurfer, [22]). The parcellation induces a loss
of anatomical information, which might limit data interpretation, especially if the
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parcellation does not take into account critical sources of response variability (such
as the depth of iEEG sites within a sulcus). A detailed anatomical and functional
analysis at the single-patient level will always provide a much deeper understanding
of the structure–function relationship, and make full use of the spatial precision of
iEEG.

9.8 Towards Large Multicentric iEEG Databases

With the advent of open-science and the emergence of technical solutions for fluid
and secured data-transfer, new platforms have been created to facilitate the joint
analysis of multicentric iEEG data. For instance, the Human Intracranial Plat-
form (https://www.humanbrainproject.eu/en/medicine/human-intracerebral-eeg-pla
tform/), funded by the Human Brain Project, will encourage researchers to submit
experimental protocols to a reviewboard, so that iEEGdata can be collected in several
clinical centers simultaneously. The data will then be centralized and made available
to other researchers, in the spirit of open-science pioneered by the team of Michael
Kahana for iEEG (https://memory.psych.upenn.edu/Data#2021). The field will no
longer be a niche for a few lucky research teams, overwhelmed by the richness of
their data. Open-data policies will provide more opportunities for scientists outside
our field to find golden nuggets within shared iEEG datasets. iEEG studies including
hundreds of patients will become more and more common, which will inevitably
bring important breakthroughs. Considering our recommendation to take anatomy
very seriously at the single-patient level, data analysis might become impossibly
tedious, unless new softwarewill be developed to facilitate detailed anatomical inves-
tigation in large groups of patients. One example is HiBoP, a visualization software
developed within the Human Brain Project to navigate conveniently between group-
level and patient-level functional data visualization, in 4D (dynamic visualization
onto 3D brain reconstructions) (https://github.com/hbp-HiBoP/HiBoP) (Fig. 9.4).
HiBoP helps iEEG researchers to identify regions of interest at the group level,
search for reproducible effects across patients and distinctive anatomical features of
the responsive sites. Hopefully, HiBoP and similar software will allow the publi-
cation of extremely precise treasure maps from large samples of patients. But that
should not condemn studies based on a couple of patients, as there will be no new
mathematical justification for raising the bar, in terms of sample size, beyond the
criteria of NHP research.

9.9 A Final Word on Case-Reports

One might conclude from this chapter that any iEEG study should include at least
two patients, which would exclude de facto single-case studies. On the contrary,
publication of rare and interesting phenomena in regions seldomly accessed are

https://www.humanbrainproject.eu/en/medicine/human-intracerebral-eeg-platform/
https://memory.psych.upenn.edu/Data#2021
https://github.com/hbp-HiBoP/HiBoP
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GROUP INDIVIDUAL

Fig. 9.4 Group versus Single-patient level visualization. The left panel displays insula iEEG sites
in of twenty patients, realigned onto a 3D reconstruction of the left insula on the MNI template
(color codes for subregions of the insula). The right panel displays iEEG insula sites of one patient
onto her own 3D brain. The HiBoP software was designed to quickly shift between group-level and
individual-level anatomy for high-precision anatomical labelling of all iEEG sites of interest (such
as the green site Y’8)

invaluable, because they encourage other research teams throughout the world to
reproduce those observations, combine data from several patients and reach stronger
conclusions. But that implies that the initial case-report provides a very precise
‘treasure map’, with the most detailed information about the location of the effect. It
should also list any atypicality of the patient, anatomy-, pathology- and performance-
wise.

For the same reason, a multi-centric iEEG platform could become a depository
of rare naturalistic observations made in single subjects. It will require new ways to
share anonymized iEEG-video datasets—a technical challenge when the behavior
of interest involves verbal exchanges and oro-facial expressions—but solutions will
soon exist. And within a few years, researchers throughout the world will have
access to large datasets of iEEG and video recordings from the same brain regions
in closely-related naturalistic situations.



9 How Many Data Do I Need for an iEEG Study? Treasure Maps … 141

9.10 Conclusion

Toconclude,most ofwhatweknowabout the brain has come fromanimal studies, that
is, detailed investigations of a few individuals, with high-quality recordings showing
clear effects in single-trials. IEEG studies are the closest equivalent in humans,
and could follow similar guidelines regarding the amount of data needed to reach
sound conclusions. The specific case of Electro-Cortical Stimulation studies show
that important findings can even be made from single events, for particularly clear
and rare effects. This should encourage a seminal type of research which takes very
seriously brain-function relationships at the finest level: a clear change of activity
in specific cortical regions of one individual, in relation to one particular event,
such as the observation that led to the discovery of mirror neurons in Parma [23].
With the advent of large multicentric iEEG data collection, it would be a great loss if
such ‘old-school, naked-eye’ approach, inspired by classic electrophysiology studies
(e.g., [24]) gave way entirely to efficient machine-learning algorithms which process
blindly entire databases in seconds to generate global statistical reports about effects
which cannot be seen in any individual patient.
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Chapter 10
How Can iEEG Be Used to Study
Inter-Individual and Developmental
Differences?

Elizabeth L. Johnson and Robert T. Knight

Abstract Inter-individual differences, including but not limited to those that distin-
guish children from adolescents and younger from older adults, are a hallmark of
human cognition. As described throughout this book, intracranial electroencephalog-
raphy (iEEG) affords unprecedented access to the human brain, permitting insight
into the neurophysiology of human cognition with high spatiotemporal and single-
trial precision. However, iEEG is also limited due to brain coverage that is sparse
within one patient and variable across patients. This limitation poses a fundamental
challenge for the use of iEEG in controlled investigations of inter-individual differ-
ences. In this chapter, we address this challenge and describe best practices for studies
that aim to elucidate inter-individual and developmental differences in the neuro-
physiological mechanisms of human cognition using iEEG. We first briefly discuss
how iEEG data are typically handled by minimizing sources of inter-individual vari-
ability.We then present best practices for the use of iEEG in controlled investigations
of inter-individual differences and describe recent studies that used iEEG to reveal
signatures of memory which differ across patients. We propose that iEEG be consid-
ered a gold standard in studies of inter-individual and developmental differences in
the neurophysiology of human cognition.

10.1 Introduction

No two brains are identical, and inter-individual differences are a defining feature of
the human experience. This chapter focuses on intracranial electroencephalography
(iEEG) as a tool to investigate inter-individual and developmental differences in
human cognition, understanding of which has been hindered by common neurosci-
entific approaches. First, because noninvasive imaging methods offer either spatial

E. L. Johnson (B)
Northwestern University, 633 N. St. Clair St., Chicago, IL 60611, US
e-mail: eljohnson@northwestern.edu

R. T. Knight
University of California, 132 Barker Hall, Berkeley, CA 94720, US
e-mail: rtknight@berkeley.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Axmacher (ed.), Intracranial EEG, Studies in Neuroscience, Psychology
and Behavioral Economics, https://doi.org/10.1007/978-3-031-20910-9_10

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20910-9_10&domain=pdf
mailto:eljohnson@northwestern.edu
mailto:rtknight@berkeley.edu
https://doi.org/10.1007/978-3-031-20910-9_10


144 E. L. Johnson and R. T. Knight

or temporal precision, reliance on techniques such as functional magnetic reso-
nance imaging (fMRI) and scalp EEG has limited our ability to delineate human
brain activity with both spatial and temporal precision. Second, because noninva-
sive imaging techniques offer relatively low signal-to-noise ratio [1], many studies
have relied on group-level averaging of brain data and treated inter-individual vari-
ability as a source of noise [2–5]. Third, because invasive recording, which offers
high spatiotemporal resolution and signal quality, has been traditionally performed in
non-human animals, resulting data cannot explain factors that distinguish one person
fromanother. This is especially relevant to developmental inquiry, as thematurational
trajectory of the human brain is more protracted and qualitatively distinct from that
of even our closest primate relatives [6–10]. iEEG addresses these hindrances by
providing insight into the neurophysiology of human cognition with high spatiotem-
poral resolution and signal-to-noise ratio enabling single-trial precision [11–14].
With appropriate controls, iEEG studies offer immense potential to advance our
understanding of inter-individual and developmental differences in human cognition.

Figure 10.1 illustrates two datasets in which responses such as behavioral perfor-
mance or measures of brain structure or function differ between two experimental
conditions [2]. In one dataset, most individual data are consistent with group averages
and averaging reveals an omnibus pattern. However, some participants show oppo-
site trends or higher responses that are masked by averaging. In the other dataset,
group averages do not differ between conditions, but the underlying individual data
could be divided into two groups of participants showing opposite trends. Here, aver-
aging may mask a systematic pattern of inter-individual differences which reflects
meaningful variability in the brain. Indeed, inter-individual variability in behaviors
ranging fromsimplemotor actions to complex executive functions havebeen linked to
inter-individual variability in brain structure [2] and function [15, 16]. Neuroimaging
measures provide better predictive power of inter-individual differences in cognitive
and clinical outcomes than behavioral measures alone [16], and they explain rela-
tionships between factors like socioeconomic status and adolescent development [5].
Comprehensive models in human neuroscience must account for the fact that neural
phenotypes and cognitive behaviors vary widely across the population and change
over time within individuals across the lifespan [17].

Due to its unparalleled spatiotemporal and single-trial precision, iEEG investi-
gations add crucial mechanistic insight to models in human neuroscience [11–14,
18]. However, despite the advantages of iEEG, surgical electrode placement is driven
solely by clinical needs. Electrodes sample brain regions that are common sources of
epilepsy, such that some regions tend to be over-sampled and others under-sampled,
resulting in a “corticocentric bias” that pervades iEEG literature [12]. Further, elec-
trodes should not be placed to sample more of the brain than is necessary to identify
a patient’s seizure focus and, in some cases, to characterize regions critical to motor
and language functions to ensure they are spared from surgical resection [19]. Elec-
trode coverage is therefore sparse within one patient and variable from one patient to
another [11], which renders the exact placement of electrodes a potential source of
noise. Individual electrode placement poses a fundamental challenge for the use of
iEEG in investigations of meaningful inter-individual variability in brain function.
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a b

Fig. 10.1 Schematic examples of average and individual data in two experimental conditions.
(a) The group average in condition B is larger than in condition A (left). Most individual data
are consistent with the group averages (right; purple), however, some participants showed opposite
trends (pink) or higher responses (green). Such inter-individual differences aremasked by averaging.
(b) Group averages do not differ between conditions A and B (left). However, the underlying
individual data could be divided into two groups of participants showing opposite trends (right;
orange vs. purple). Adapted from [2]

Here, we address this challenge and describe best practices for studies that aim to
elucidate inter-individual and developmental differences in the neurophysiological
mechanisms of human cognition using iEEG. We focus on aspects of iEEG studies
that researchers can control to achieve high scientific rigor when examining system-
atic, generalizable patterns of inter-individual and developmental differences in the
precise neurophysiology of human cognition.

10.2 Minimize Inter-Individual Variability in Study Design
and Analysis

Most iEEG studies take considerable measures to minimize inter-individual vari-
ability and draw general conclusions about the neurophysiology of human cognition
without considering the person to whom a brain belongs. In one common approach,
patients are selected for a study based on electrode sampling of the same anatomical
region-of-interest (ROI) and as few as 3-5 patients are includedwith results replicated
per patient. This approach is akin to the standard two-sample procedure of non-human
primate neurophysiology, and offers the advantage of replicability [20]. It is quali-
fied by the high signal-to-noise ratio of intracranial data [1], which enables single-
trial precision and single-subject reliability [11–14]. In another common approach,
patients are selected for a study regardless of specific electrode sampling and elec-
trodes from all patients are combined onto a population-template brain for analysis
of all regions sampled. Larger sample sizes permit sampling of larger swaths of the
brain [21]. These approaches are discussed in detail in Chap. 29. However, studies
aiming to identify inter-individual differences cannot adopt approaches which ignore
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the person to whom a brain belongs. For this reason, it is important to minimize inter-
individual variability not related to effects of interest across subjects during study
design and analysis.

At the design stage, experiments may be designed to promote statistical testing
of iEEG effects of interest prior to analysis of inter-individual differences in those
effects. Specifically, researchers should pay close attention to the appropriateness
of the study design to test hypotheses, and ensure that any manipulation (e.g., of
experimental condition) is successful. Such research design and strict theorizing
should be considered a prerequisite to rigorous statistical testing [22]. Resulting data
may then be divided trial-by-trial according to the study design, whether that is a
condition manipulation [23, 24], participant-defined criterion (e.g., correct versus
incorrect behavioral response [25–27]), or some other task-related component (e.g.,
post-stimulus versus pre-stimulus epoch [24, 25]). At the analysis stage, iEEG data
maybe analyzed trial-by-trial at the single-subject level according to the study design.
Although these steps do not directly address the issue of electrode placement, they
capitalize on the high signal quality of intracranial data and isolate iEEG effects of
interest per patient while minimizing other sources of noise that vary from patient
to patient (e.g., hospital testing environment). Applying these steps before analyzing
inter-individual differences maximizes the likelihood that iEEG measures reflect
meaningful factors with unambiguous interpretation of function.

10.3 Define the Inter-Individual Factor(s) of Interest

As described above, factors reflecting the neurophysiology of cognition broadly may
be tested on the single-subject level prior to analyzing inter-individual differences.
These factors should be defined according to the study design [22], be they manip-
ulations of experimental condition, participant-defined criteria, or other task-related
factors. Inter-individual factors of interest, however, need not directly relate to the
study design. Factors to consider include experimental task performance, demo-
graphic factors like age or sex, neuropsychological assessment data, and measures
of brain structure.

Individual measures of task performance including accuracy and response time
(RT) are straightforward to consider because they require no additional data collec-
tion. Here we describe two studies that used iEEG to reveal inter-individual differ-
ences in memory performance and addressed the issue of electrode placement in
distinct statistical approaches. In one study, Sheehan and colleagues related indi-
vidual iEEG effects to associative memory accuracy [26] (Fig. 10.2). iEEG data
were analyzed for sample entropy, a measure of signal complexity posited to reflect
the brain’s ability to flexibly encode and process information, during the encoding
of word pairs that were subsequently remembered. Individual signal complexity was
found to correlate positively with associative memory accuracy across the sample of
43 participants. To address the issue of electrode placement, researchers included
patients regardless of specific electrode sampling and applied spatial smoothing
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around each 1 × 1 cm ROI to minimize noise related to exact sampling across
patients. Although this procedure attenuated the spatial resolution slightly from the
mm to cm scale, it balanced the spatial precision of iEEG with the need to main-
tain statistical power across patients. In another study, Brzezicka and colleagues
related individual iEEG effects to RT in a task that manipulated working memory
load [23]. Data were analyzed for load-related changes in power in three ROIs, and
theta power in the dorsolateral prefrontal cortex (PFC), but not anterior cingulate or
hippocampus, was found to correlate positively with RT across electrodes from 13
patients. To address the issue of electrode placement, researchers included patients
withROI sampling and used linearmixed-effectsmodelingwith electrodes as random
samples. Although this procedure limited the spatial precision to the ROI, it mini-
mized noise related to specific electrode sampling and increased the sample size for
enhanced statistical power.

In addition to task performance, demographic factors such as patient age and sex
are often obtained as part of research without additional data collection, and the
information is easily de-identified [19]. Studies which aim to study inter-individual
differences as they relate to development may consider age as a factor of interest, or
the interaction of age and performance.Ofen, Johnson,Yin, and colleagues pioneered
this approach in the first published studies of memory development using iEEG [13,

a c

d

b

Fig. 10.2 iEEG signal complexity tracks inter-individual variability in associative memory perfor-
mance. (a) Associative memory task in [26]. At study, participants encoded word pairs. At test, they
were presented with single words and prompted to retrieve the other word in the pair. (b) Spatial
distribution of electrode coverage color-coded by the number of participants with sampling of
different regions. (c) Signal complexity, measured by sample entropy during the encoding window
shown in (A), was positively correlated with associative memory performance across participants
(r = 0.51, p = 0.0007). (d) Spatial distribution of correlations across all sampled regions, raw (top)
and cluster-corrected for multiple comparisons at p < 0.05 (bottom). SampEn, sample entropy
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24, 25, 27]. In these studies, researchers employed an established subsequentmemory
task where pediatric patients studied scenes in preparation for a recognition test [13]
(Fig. 10.3A). iEEG data were analyzed per patient based on the participant-defined
criterion of subsequent memory (i.e., scenes that were later remembered or forgotten
at test) and then analyzed for inter-individual differences related to age and overall
accuracy. The first study investigated the latency of PFC responses in 17 patients aged
6–19 years [25] (Fig. 10.3B–C). Response latency was defined as the time of peak
high-frequency broadband activity, a partial proxy for multi-unit neuronal activity
[28–31], and individual latency was quantified in four ROIs. The onset latency of
high-frequency responses in inferior frontal gyrus was found to predict behavioral
RT and explain age-related gains in recognition performance. The second study
investigated alpha oscillations in the primary visual cortex of 24 patients aged 6–
21 years [24] (Fig. 10.3D–E). Decreased alpha activity, which is posited to reflect
increased information processing similar to signal complexity [11, 26, 32], was found
to explain age-related gains in the recognition of visually complex scenes. To address
the issue of electrode placement, both studies included patients with ROI sampling
and used linear mixed-effects modeling with patients as random samples (see also
Chap. 36 for a detailed description of this approach). Although this procedure limited
the spatial precision to theROI, it reduced noise related to specific electrode sampling
across patients.

The third study, published in 2022, investigated patterns of inter-regional connec-
tivity between medial temporal lobe (MTL) and PFC in 21 patients aged 6–21
years [27] (Fig. 10.4). Functional connectivity was assessed separately at slow and
fast theta frequencies using both phase- and amplitude-based measures [33, 34].
Importantly, these analyses were performed using individually defined frequencies
to capture oscillatory phenomena of interest while controlling for inter-individual
differences in these phenomena. Both increased slow theta amplitude correlations
[35] betweenMTL and inferior frontal gyrus and fast theta phase-locking values [36]
between MTL and middle frontal gyrus were found to explain age-related gains in
recognition performance. Patients were again included based on ROI sampling and
inter-individual differences were assessed using linear mixed-effects models with
patients as random samples. Finally, to identify potential underlying brain structures
supporting functional connectivity effects, the researchers incorporated diffusion
tractography data that had been obtained as part of the presurgical workup of 11
patients in the sample. Specifically, they tested whether distinct functional connec-
tivity mechanisms in top-performing adolescents were more likely to reflect matu-
ration of the same white matter tract or distinct tracts. They focused a priori on the
two major white matter tracts connecting MTL and PFC, the cingulum and uncinate.
Bayesian analysis provided an initial test due to limitations of the small sample [37]
and suggested that age-related differences in both functional connectivity mecha-
nisms reflected maturation of the cingulum. The high spatiotemporal precision of
iEEG, combined with measures of brain structure, supported a mechanistic proposal
about how brain maturation supports memory development and addressed major
outstanding questions in theoretical models of memory [13].
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Fig. 10.3 iEEG spectral activities track age-related variability in recognitionmemory performance.
(a) Recognition memory task. At study, participants encoded pictures of scenes and classified
each scene as ‘indoor’ or ‘outdoor’. At test, they were presented with studied scenes inter-mixed
with new scenes and prompted to indicate whether each scene was ‘old’ or ‘new’. (b) Frontal
electrode coverage across participants color-coded by region of interest in [25]. IFG, inferior frontal
gyrus; MFG, middle frontal gyrus; SFG, superior frontal gyrus; PCG, precentral gyrus. (c) The
latency of peak IFG high-frequency broadband activity during encoding was negatively correlated
with recognition memory performance across all participants (left; r = –0.60, p = 0.0004). The
negative relationship between peak high-frequency activity latency and performance explained
superior performance in adolescents (right; p = 0.00004). (d) Occipital electrode coverage across
participants color-coded by participant age in [24]. (e) Occipital alpha power differed by age during
the encoding of high- (≥5 object categories) and low-complexity (≤3 object categories) scenes that
were subsequently recognized (left; FDR-corrected p < 0.05). The negative relationship between
alpha power and age during the encoding of high-complexity scenes explained superior performance
in adolescents (right; p < 0.05).

Developmental iEEG research is a burgeoning field which poses additional chal-
lenges. In studies that consider age and performance as factors, for instance, it is
important to demonstrate whether patients in the sample exhibit the expected pattern
of performance for their age. This may be accomplished by comparing the behav-
ioral data from patients to a larger sample of data on the same task from non-clinical
participants [11]. In the memory development studies described above [24, 25, 27],
researchers related the pattern of performance by age in iEEG patient samples to
larger samples of data from non-clinical participants [13]. Alternatively, researchers
may present normative data from neuropsychological assessments, which may be
obtained as part of routine clinical care. If patients do fall in the range of expectations,
iEEG findings of inter-individual and developmental differences may generalize to
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b

a

Fig. 10.4 iEEG functional connectivity tracks age-related variability in recognitionmemoryperfor-
mance and maps to brain structure. (a) Subsequent memory effects in slow theta amplitude corre-
lations (AC) between MTL and inferior frontal gyrus differentiated top-performing adolescents
from both low-performing adolescents and children (left; p = 0.011). AC subsequent memory
effects correlated with individual differences the strength of the cingulum tract (right; r = 0.50,
BF10 = 1.48). (b) Subsequent memory effects in fast theta phase-locking values (PLV) between
MTL andmiddle frontal gyrus differentiated top-performing adolescents from both low-performing
adolescents and children (left; p = 0.0006). PLV subsequent memory effects correlated with indi-
vidual differences the strength of the cingulum tract (right; r = 0.64, BF10 = 4.31). FA, fractional
anisotropy. Adapted from [27]

the population. If they do not, it is a limitation of the study sample and findings
should be interpreted and acknowledged as such.

10.4 Understand (and Increase) the Sample Size

In all studies described above [23–27], analyses of inter-individual differences mini-
mized noise related to specific electrode sampling and maintained statistical power
across patients by reducing spatial precision. This illuminates a tradeoff between
statistical power and spatial precision in group-level analysis of iEEG data. Because
research in clinical samples is inherently constrained by the availability of patients
who fit study criteria, many iEEG studies are based on few patients and examine
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effects in single trials, making the sample size constrained by the number of trials
in an experiment as opposed to number of patients who participated. This approach
capitalizes on the single-trial precision of iEEG data and, although it ignores the
person to whom a brain belongs, it is relevant here as it demonstrates the reliability
of the data in single subjects. The single-subject reliability of iEEG data is especially
advantageous in inter-individual differences analysis because it means few patients
are needed at different levels of a factor, for example, task performance for a given
age. It is therefore feasible to investigate inter-individual differences in fewer partic-
ipants than might be needed to achieve comparable reliability using noninvasive
measures with lower signal quality [1].

Nonetheless, iEEG investigations of inter-individual differences are subject to
the same rules of statistics as any other investigation and the availability of patients
who fit study criteria limits the sample size, limiting statistical power [38]. For
instance, samples of approximately 20 participants achieve 80%power to detect large
effects and are likely to miss smaller effects (i.e., Type II error) [39]. It is likely that
initial iEEG investigations of inter-individual differences [23–27] missed not only
the potential to detect meaningful variability within ROIs due to spatial smoothing,
but also smaller effects due to sample size constraints. This is especially relevant in
developmental iEEG studies examining interactions among multiple factors. Future
iEEG investigations of inter-individual and developmental differences may address
both limitations by increasing sample sizes. Substantially increasing sample sizes
would also permit cross-validation analysis, which is recommended over correla-
tion to demonstrate the generalizability of findings to the population [16, 40]. As
more researchers apply iEEG to examine inter-individual and developmental differ-
ences in human cognition, they may seek to increase sample sizes through multi-site
collaboration and data sharing [13, 41]

10.5 Discussion

Intracranial EEG affords unprecedented access to the human brain, permitting insight
into the neurophysiology of human cognition with high spatiotemporal and single-
trial precision and single-subject reliability. However, because iEEG sampling is
sparse within one patient and variable across patients, the technique poses a funda-
mental challenge in investigations of inter-individual differences. Here, we address
this challenge and describe best practices for studies that aim to elucidate inter-
individual and developmental differences in human cognition using iEEG. We focus
on aspects of iEEG studies that researchers can control to achieve high scientific rigor
when examining systematic, generalizable patterns of inter-individual and devel-
opmental differences. First, researchers should pay close attention to the appro-
priateness of the study design to test hypotheses and ensure that iEEG measures
reflectmeaningful factors with clear interpretation of function before analyzing inter-
individual differences. Second, researchers should define inter-individual factors of
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interest based onwhat is feasible given sensitive, potentially identifiable patient infor-
mation, and ensure that group-level analysis of inter-individual differences controls
for noise in electrode sampling across patients. In developmental studies, researchers
should also demonstrate whether the study sample represents the population based on
non-clinical or normative data and interpret findings accordingly. Third, researchers
should understand the statistical power achieved given the sample size and seek to
increase the sample size when possible. With appropriate controls, we propose that
iEEG be considered a gold standard in studies of inter-individual and developmental
differences in the neurophysiology of human cognition.
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Chapter 11
Is IEEG-Based Cognitive Neuroscience
Research Clinically Relevant?
Examination of Three “Neuromemes”

Jonathan Curot, Luc Valton, and Emmanuel J. Barbeau

Abstract Muchprogress has beenmade in the field of cognitive neuroscience thanks
to intracerebral EEG (iEEG) research, largely due to the possibility of directly
recording brain activity with unsurpassed spatial and temporal precision while
patients perform cognitive tasks. However, do these patients gain anything from
the time and effort they devote to this endeavour? In this chapter, we focus on three
neuromemes, the “eloquent cortex”, “localisationism” and the “nociferous cortex” to
provide possible answers to this question. We discuss the value of these neuromemes
and show that clinical care of epilepsy and iEEG-based cognitive neuroscience are
consubstantial in the sense that iEEG during epilepsy assessment provides an under-
standing of physiological processes of the healthy brain; but also, that cognitive iEEG
research in epileptic patients has a direct impact on semiology and curative neuro-
surgery. Last, we highlight how recent cognitive iEEG research provides insights
into interictal complaints and could improve identification of the epileptogenic zone.

11.1 Introduction

Concept neurons and the famous Jennifer Aniston cell [1–3], memories induced
by direct electrical brain stimulation (EBS) as if a neurostimulator could replace a
madeleine [4]…Neurosciencebasedon intracerebralEEG(iEEG) led to fundamental
scientific discoveries that are widely popularised. Some of them became mainstream
and culturally shared. Compared to scalp EEG or functional MRI, iEEG is recorded
with unsurpassed spatial and temporal precision. Such an approach has been used
in a large number of cognitive studies that take advantage of iEEG to investigate
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the electrophysiological correlates of cognition in humans (for recent reviews, see
[5–8]). Although there is no doubt that iEEG research has significantly contributed
to cognitive neuroscience, it would only be fair to ask the opposite. Has iEEG-
based cognitive neuroscience contributed to the clinical workup of epileptic patients
and their welfare? After all, many patients have contributed time to cognitive iEEG
studies with the sincere hope it would help other patients like them in the future.

In this chapter, we will focus on three aspects that are commonplace concepts
used every day by clinicians, electrophysiologists and neurosurgeons with epileptic
patients in their care: the “eloquent cortex” [9], “localisationism” [10] and the
“nociferous cortex” [11]. We suggest that these concepts are in fact “neuromemes”,
exchangeable cognitive units that spread easily from one individual to another and
which can be maintained throughout time [12, 13]. Memes gather ideas, behaviours
or styles, with a common goal to easily replicate within a group. Some of these
memes directly concern the epilepsy pathology as analysed recently by Baxen-
dale [14]. Neuromyths have been the focus of other authors such as Devinsky [15]
who commented on three: “epilepsy is a static disorder with minimal morbidity
and mortality; epileptogenic tissue impairs only the functions of the seizure focus;
and the anterior temporal lobes contain areas of non-functional, “silent” cortex.”
Hence, the medical culture, like any other culture, is rich with easily replicated
and sustainable concepts and theories, i.e., “neuromemes”. Although the term “neu-
romyth” has infiltrated the neuroscience community [16–18], “neuromeme” seems
to be a more appropriate term in the context of this chapter because neuromemes
are not systematically wrong are not systematically wrong or do not constantly lack
rationality.

However, one characteristic of a neuromeme is that it is loosely defined. It is this
malleability that makes it so useful. It can be used in many situations and can be
adapted to the needs, circumstances or even the epoch. However, this represents a
paradox since medicine usually relies on the efficiency of precisely defined concepts.
This suggests that there is a high risk of such neuromemes causing a bias or polluting
clinical practice.

In this chapter, we will show that intracranial explorations have played an impor-
tant role in the genesis of neuromemes. However, we will also show that as a result
of the progress made in the field, neuromemes can now be examined and refined for
the benefit of patients.

11.2 IEEG Research: A Cocoon for Neuromemes

Paradoxically, while iEEG has been the historical nest for the creation or enrichment
of some neuromemes, and neuromyths for that matter, it can also simultaneously
play a significant role in confirming or invalidating them. First, we will review each
of our selected neuromemes, which are closely related to Penfield’s work either in
terms of their origin or significant promotion.
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The eloquent cortex

The concept of the “eloquent cortex” did not originate with Penfield, but is derived
from his work. In fact, Drake was very likely the first to use the term “eloquent”
after a series of lectures by Penfield in the sixties in a paper on the surgical treatment
of arteriovenous malformations [9, 19, 20]. One literal definition of “eloquent” that
can be found in the dictionary is “clearly expressing or indicating something”. In
the epilepsy literature, it is defined as the “cortex related reproducibly to a given
function.” [21]. “Cortical stimulation allows themost precise localization of eloquent
cortex” [22] or “Fast-ripples near the resection and in distant pathologic areas
could have changed the resection in 8 patients without harming functionally eloquent
areas” [23] are just two of the countless occurrences of the term “eloquent” (see
[19]). In the current scientific literature, particularly in the context of preoperative
functional mapping, the term “silent cortex” appeared in opposition to the parts of the
cortex that were not “eloquent”, which is consistent with previous ideas concerning
brain equipotentiality [15].

However, in 1993, Fried questioned the myth of the eloquent cortex and high-
lighted the danger of such terminology “which replaces the neurological reality it
sets out to simplify” [9]. In 2005, Devinsky tried to dismiss the myth of the silent
cortex based on the example of temporal lobe surgery: “Because the normal brain
does not contain functionless, "silent" areas, the procedure can have negative as
well as positive cognitive or behavioural consequences” [15]. This is obviously an
important issue for patients undergoing neurosurgery.

Localisationism

According to the localisationist theory, the brain is conceived as a mosaic of rela-
tively independent functional regions, i.e., each part of the brain is associated with
a particular function, in keeping with the seminal suggestions by Franz Gall in the
early nineteenth century. This view appeared to be supported by later discoveries,
for example, of Broca’s area and the motor and sensitive homunculus proposed by
Penfield.

Let us take the example of Penfield’s interpretative cortex [24]. The experiential
phenomena that Penfield reported were always produced by electrical stimulations
applied to a large area of the temporal neocortex, which included the superior, lateral
and inferomedial temporal lobes [25]. He named this area the interpretative cortex
since, contrary to the pericentral and visual regions that he also studied, only stim-
ulation here led to flashbacks of past experiences or to interpretative illusions of the
present situation [25, 26]. His surgical exploration technique restricted his applica-
tion of electrical stimulation to only the surface of the temporal cortex. Despite a
few attempts at deep stimulation, he only exceptionally observed such responses by
stimulations of the temporal uncus, and never by stimulations of the hippocampus.
However, the subsequent history of intracranial EEG research clearly demonstrated
that the interpretative cortex was not by any means the only region that induces expe-
riential memory phenomena when stimulated and that the memory network extends
far beyond [18, 27]. This implies that cognitive functions depend on networks of brain
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areas [28], the complexity of which is probably only barely understood at present
[29] (see also Chaps. 33 and 40).

While no clinician will deny that complex cognitive functions are subtended by
distributed networks [30, 31], daily clinical thinking remains contaminated by the
localizationist approach, from which the idea of the "eloquent cortex" is derived
[15]. This impacts the quality of patient care because it oversimplifies neurosurgery
planning and in particular its consequences.

The nociferous cortex

This is perhaps the least identifiable of the three neuromemes we selected. In 1954,
Penfield and Jasper suggested the concept of a “nociferous cortex” to describe the
notion that the epileptic focus, now more appropriately defined as the epileptogenic
zone, may be deleterious for widespread areas beyond the epileptogenic zone (EZ)
and may disrupt normal processes [32] (see also Chap. 3). The “nociferous cortex”
in epilepsy refers to the fact that local brain damage can have remote consequences,
a secular concept, which could date back to the time of Brown Sequard in the middle
of the nineteenth century [33, 34]. It is, for example, closely related to the concept of
diaschisis describedbyVonMonakow [35, 36]. Thedistributed effects of focal lesions
on brain dynamics, such as diaschisis, compensation or transneuronal degeneration,
are nowadayswidely supported by the study of brain connectomics and are applicable
to a wide range of diseases [29, 33, 37].

In epilepsy, the “nociferous concept” was updated about 25 years ago thanks to
cognitive psychology. Hermann and Seidenberg demonstrated executive disorders in
temporal lobe epilepsy, whereas executive functions are thought to depend primarily
on the prefrontal lobes [38]. In 2014, Coan et al. revealed decreased grey matter in
extratemporal regions in patients suffering from temporal lobe epilepsy [39]. The
influence of such ideas is now growing in the field of epilepsy as a result of a series
of recent intracranial EEG-based neuroscience studies that demonstrate the remote
influence of epileptic activities on brain functions [40–43]. Unlike the “localisation-
ism” and “eloquent cortex” neuromemes, the meme of the nociferous cortex holds up
only if networks are considered [44]. This may be the reason why it is the only one of
the three selected neuromemes that appears to have some validity. It is likely that in
the future, the strong interest in network neuroscience will contribute to improving
the cognitive status of epileptic patients, particularly following neurosurgery.

11.3 Dispelling the Myth of the Eloquent vs the Silent
Cortex

Many years after Drake (1963), Spetzler and Martin (1986) defined the eloquent
cortex as “areas that speak to readily identifiable neurological function” and, “if
injured, result in a disabling neurologic deficit” [19, 45].
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At first glance, the etymological choice of “eloquent” to name the primary cortices
that induce obvious and easily reproducible symptoms after EBS appears sound. EBS
can trigger oral and written language symptoms [46–49], motor [50–52] or sensory
manifestations [53], during either awake surgery [54, 55] or intracerebral explorations
[56–58].

Moreover, there seems to be “silent” areas that do not respond to electrical brain
stimulation: for instance, the posterior cingulate cortex where EBS never induces
memory or other symptoms (or at least not yet reported), whereas stimulation of
surrounding areas can easily trigger motor, vestibular and visual symptoms [18, 59].
A similar phenomenon can be observed in the orbitofrontal cortex, a ghost area,
almost absent from the EBS literature [56]. Therefore, “silent” and “eloquent” do
not appear to be inappropriate terminology.

Unfortunately, the term “eloquent” has since been extensively used and deviated
from the original (literal) definition [19]. In neurosurgery, it is now a synonym of
“which should be preserved” and the silent cortex is that which can be easily resected
without visible or disablingdeficit. In that respect, numerous articles and reviewshave
suggested that EBS is a good functional mapping method to determine the “eloquent
cortex” before epilepsy surgery (e.g., [60, 61]). The premise is that if resecting the
eloquent cortex is avoided there is a reasonable likelihood that the patient will not
suffer from cognitive deficits following neurosurgery. Despite the rise of functional
imaging, EBS is still considered the gold standard for mapping "functional areas"
and predicting functional deficits. However, there are several conceptual difficulties
with this approach.

(1) How can the limits of eloquent and silent brain areas be defined? This question is
particularly relevant since a series of studies demonstrated that EBS effects are
dependent on the parameters [62–66], that EBS effects may not be reproducible
despite using the same parameters [18], that optimal parameters are not known
[67] and that the understanding of the physiological mechanisms underlying
EBS is limited [68]. Should EBS be accompanied by afterdischarges [69], or
should they remain under the threshold for induction [70, 71]?

(2) The term “silent cortex” is still inappropriately used for areas where no obvious
symptoms were elicited during functional mapping, while their resection may
lead to deficits after surgery. For example, who is able to predict spatial and
navigation deficits [72] or de novo psychiatric symptoms [73, 74] that occur
after right anterior and medial temporal lobectomy guided by EBS? Do we
know what type of postoperative cognitive decline to expect and how this can
be adequately assessed? At present, there are too few studies regardingmemory,
social cognition and psychiatric consequences of right anterior temporal lobe
surgery to conclude that this is a silent cortical area, if such a notion is even
possible. The situation is just as unclear for other regions such as the cingulate
or the prefrontal cortex.

(3) What is the value of the “eloquent cortex”when the patient is no longer eloquent?
Not all patients can report their symptoms, due to either ictal amnesia or aphasia,
especially in temporal lobe epilepsy [75].
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(4) Are “non-eloquent” and “silent” synonymous? Does “not responding to EBS”
really mean constantly and reliably silent areas? Aren’t “silent” areas just
“shy” areas? Patients are not always assisted to verbalise subjective experiences
through specific appropriate questions, especially when the temporal lobes are
explored. In case of neuropsychological disturbances, such experiences are only
revealed if an appropriate cognitive task is performed at the time of stimulation
[69, 76]. Coleshill et al. [71] for example, were able to demonstrate material-
specific recognition memory deficits in some patients by combining unilateral
electrical stimulations in the hippocampus synchronised with the presentation
of verbal or visual stimuli. To date, no such routine is standardised and EBS
still cannot replace the Wada test. The aim of the Wada test is to assess the
hemispheric lateralization of speech or memory during preoperative evalua-
tion of refractory epilepsy in order to avoid a risk of sequela. It consists of an
intracarotid injection of an anaesthetic drug (barbiturate or propofol), which
transiently inhibits the ipsilateral cerebral hemisphere in order to assess the
activity of the contralateral one [77].

This also implies that theoretically, different tasksmust be carried out for a single
stimulation of a given region in order to test the role of this region in different
functions and to determine with certainty whether the errors observed in the
tests are indeed related to the EBS (and not to the preoperative cognitive state
of the patient). For instance, the procedures to evaluate language are not stan-
dardised and each centre uses its own battery of tests (image naming, reading,
spontaneous speech, repetition, auditory comprehension, etc.). Usually, only
one of these tasks is performed for the sake of time, which strongly limits the
understanding of the links between the stimulated area and its precise function
in language.

(5) Cognitive functions are supported by large-scale networks. All cognitive
processes are due to the emergence of a distributed, specific, transient, and
synchronous neural assembly characterised by the level of synchrony of its
components [30]. There is dense interregional connectivity, which makes each
brain region part of an extensive network [29, 37]. These large-scale brain
networks consist of nodes that share many of the same connections, sometimes
reciprocally [31, 78]. There is now evidence that EBS does not only have a local
effect at the EBS site but also long-range effects. Intracranial implantations are
governed by hypotheses about the epileptogenic network [79, 80] and sample
only a fraction of the brain. Functional and physiological processes are not
considered in the surgical plan. For instance, language investigationwould theo-
retically require bilateral implantation and should cover a large fronto-temporo-
parietal surface [81], which is generally not the case, for an accurate mapping
of the patient’s specific language network. Indeed, about 40% of patients show
a decline in image naming after left temporal lobe neurosurgery [82], whereas
the preservation of regions essential for naming, for example by limiting the
posterior ventral extent of the resection, could help preventing such outcome.
EBS effects propagate far away from the electrode [83], with the capacity to
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inhibit distant cortical regions through afferents connections [84]. In addition,
networks can only be activated by some of their hubs and not by all regions
involved in the network [85–87]. This is the case for memory. The rhinal cortex
seems to be the “gatekeeper” of memory networks [88], the site where EBS
most frequently induces memories. There are also “closed doors” to neuromod-
ulation, such as the posterior cingulate region, where EBS has never induced
memory phenomenon yet [18], even though it is a region that is known to play a
role in memory. Hubs are defined as “nodes occupying a central position in the
overall organization of a network”, having a key role in information integration,
making them “points of vulnerability that are susceptible to disconnection and
dysfunction in brain disorders” [89]. However, hubs should not be conceived of
as an updated and more timely formulation of the concept of “eloquent cortex”.
The properties of a network cannot be limited to its hubs and the use of this
term should be restricted to the context of the definition above to avoid to go
back to poorly defined terminology.

In conclusion, there are alternatives to EBS such as using ERPs [90, 91] or high-
frequency activity induced by specific cognitive tasks [92, 93]. Some authors have
suggested that these approaches could be ameans of reducing the duration of the EBS
procedure, which would be more efficient and at the same time more comfortable
for the patient and save time for the clinician. They could also be a complement to
EBS to preselect the sites to stimulate [94].

While EBS is probably one of the major sources of the misleading “eloquent” vs
“silent” cortices concepts, an analysis of the limits of EBS demonstrates that the term
“eloquent” should be avoided in clinical practice. New ways of thinking about the
possible postoperative deficits can be imagined. iEEG-based cognitive neuroscience
suggests that standard, multimodal, cognitive procedures should be performed that
are tailored to each location and if possible standardised among centres, to better
assess the predictive value of EBS in postoperative deficits. A collective effort to this
end, guided by recent progress in the methods and concepts developed recently in
the framework of iEEG-based cognitive neuroscience, would clearly benefit epileptic
patients.

11.4 Eliminating the Implicit Dogma of “Localisationism”

Although clinicians may still, often implicitly or unconsciously, use localisationism
to interpret brain-behaviour relationships, it is undeniable that modern neuroscience
has considerably modified clinical thinking by introducing the idea that it is probable
that networks are the underpinning of the cognitive or behavioural symptoms that
occur during seizures.
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iEEG in the areas of epileptogenic networks

One major contribution of iEEG-based cognitive science is the improvement in
knowledge about seizure semiology, initiated by scalp EEG [95]. This was achieved
through analysis of the sequence of symptoms that occur at the onset of seizures, that
coincided temporally with the iEEG recorded in the different brain areas that were
sampled [96]. Semiology is one of the keys to clinical reasoning in epilepsy and to
the nosology and syndromic classification of epilepsy [97]. Semiology is the basis
for building hypotheses on the epileptogenic network. It significantly influences the
strategy of electrode implantation in patients who will benefit from an invasive pre-
surgical assessment. It may also drive tailored neuromodulation treatments in the
future as has recently been suggested [98, 99].

A part of the diagnostic arsenal in epileptology is video-EEG, especially during
phase 2 (intracranial EEG recording), and it has simply revolutionised the under-
standing of seizure semiology. The primary contribution of intracranial EEG to the
understanding of semiology is related to the possibility of simultaneously recording
iEEG and analysing symptomatology on video during seizures and then analysing
the networks underlying each symptom through the correlation of the symptoms to
the distribution of the concomitant ictal discharge on EEG. The symptomatogenic
zone (“the area of cortex that, when activated by an epileptiform discharge, produces
the ictal symptom”) should be dissociated from the epileptogenic zone [21] (see also
Chap. 1).

Clinical symptoms have also been studied beyond a simple visual analysis of the
regions concerned by the propagation of the epileptic discharge. This is particularly
true of cognitive symptoms, for which a panel of spectral or network analyses have
been proposed. For instance, coherence analyses (seeChap. 32) during ictal humming
demonstrated the activation of a network involving the superior temporal and inferior
frontal gyrus [100]. Faced with such results, any clinician who observes early ictal
humming in the seizure semiology will pay specific attention to these brain areas
when analysing an MRI in order to identify any structural abnormality or will want
to target these two areas during the presurgical workup. Fear is another example.
Fear networks identified by coherence analyses during seizures [101, 102] revealed
the synchronisation of the amygdala, ventral medial PFC, cingulate and dorsomedial
prefrontal cortex during fear [103]. Electrode implantations, as well as structural
brain MRI to identify possible lesions, could therefore be driven by such results and
target these regions in patients who are frightened while having a seizure.

Such a paradigm becomes particularly important to understand the semiology
of brain areas for which EBS does not or rarely induces symptoms. By improving
knowledge of the semiology of seizures, iEEG-based cognitive neuroscience can
certainly play a role in the electrode implantation strategy.
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iEEG in “healthy areas”

The contribution of intracranial EEGgoes beyond simply understanding the sequence
of symptoms that occurs during seizures. In reality, the direct benefit for a patient
who agrees to participate in a cognitive protocol during his or her own intracranial
exploration is not obvious and most of the time is not measurable. Nevertheless,
the data acquired during each of these procedures improve clinicians’ knowledge
of the brain networks that underly normal cognition which incidentally influences
their ability to draw anatomical-functional conclusions from the seizure semiology.
The possibility to identify the “normal” networks that underly specific cognitive
functions through the study of functional or effective coupling (i.e., using coherence
or other measures) or cortico-cortical evoked potential (CCEP; [104, 105]; see also
Chap. 40) improves the overall knowledge of clinicians. Long-term collaboration
between clinicians and cognitive neuroscience researchers, and other neuroscience
methods such as functional MRI constantly, if only gradually, increase the quality
of interpretation of the symptoms reported by patients or observed during seizures
[106].

In sum, the age-old tension between segregation and integration in the field of
neuroscience also pervades the field of epilepsy. However, results clearly show that
the network paradigm is a more accurate description of how the brain works and is
also more nuanced (see also Chaps. 33 and 40). It opens the way to other critical
questions for patients, such as how these networks reorganise in the context of the
pathology or how brain plasticity can be preserved or promoted after neurosurgery.
The network approach is fully embedded in the notion of the “nociferous cortex” as
will be seen in the next section.

11.5 Updating and Validating the “Nociferous Cortex”
Concept

The concept that a pathological area can impact remote healthy areas is not neces-
sarily intuitive.However, it fits perfectlywith the view that the brain relies on dynamic
network activity. A series of recent studies contributed to renewed interest in this
concept. For example, it was shown that interictal epileptic discharges can alter
large-scale networks beyond the epileptogenic zone [40, 107], either by patholog-
ical coupling (e.g. spikes pathologically coupled to the spindles involved in memory
consolidation [42, 43]) or by remote inhibition of healthy tissue (e.g. fast-ripples, a
local phenomenon, that inhibits distant neurons outside the epileptogenic zone [108]).
With regards to the nociferous cortex, combining the study of interictal epileptic
activities and cognitive tasks is clinically relevant in different ways.
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An impact on antiseizure medicine

The nociferous concept can help clinicians to determine how to adjust an antiseizure
medicine, not only in terms of seizure persistence but also in relation to residual inter-
ictal cognitive complaints. More than 50% of patients with epilepsy complain that
their memorymoderately or severely limits their daily life [109]. In a recent study, we
showed that approximately 75% of a large population of patients with temporal lobe
epilepsy with initial subjective memory complaints had objective memory impair-
ment after 3 weeks, regardless of whether they had a brain lesion, the type of lesion
or how they responded to antiseizure medicine [110]. Such results suggest that there
are other factors that explain cognitive alterations in epileptic patients, the best candi-
date being interictal epileptic discharges (IED). Some iEEG studies have provided
convincing evidence that IEDs can disrupt cognitive processes, particularly those
involved in memory [40, 111] (see Chap. 3). Beyond correlational results, it is
suggested that IED disrupt memory processes because they occur at key moments
(encoding and recall, [112], retrieval and maintenance, [107]), most notably because
they directly disrupt the physiological interactions betweenneocortical (spindles) and
hippocampal oscillations (ripples) necessary for memory consolidation. IEDs lead
to pathological coupling with spindles [42] or they interfere with hippocampal phys-
iological ripples during encoding and recall [41]. Such studies are almost impossible
to conduct with scalp EEG or functional MRI. This clearly reinforces the importance
of treating certain epileptic patients who are apparently free of seizures but who have
a persistent interictal cognitive complaint probably due to IEDs [113].

A fingerprint of the EZ/non-EZ?

Recent studies have led to a renewed interest in cognitive tasks as markers of the EZ.
To be succinct, the question is whether examination of the iEEG recorded during
cognitive tasks can inform clinicians about the EZ or the epileptogenic network. A
few studies suggest that seizure onset regions are dysfunctional at baseline and are
functionally disconnected from the other functional network hubs [114, 115]. IEDs
(interictal epileptic spikes, interictal high frequency oscillations) during cognitive
processes [107, 116–118] or coherence analyses during cognitive paradigms [119],
or even resting state analyses may reveal these fingerprints. IEDs that occur in the
areas where a seizure starts do not impact cognitive scores, whereas IEDs recorded
contralateral to the seizure onset zone (SOZ) or bilaterally doubled the risk of errors
on a short-term memory task where letters within a sequence had to be recognized a
few seconds after encoding [107].Anetwork synchronized in the theta-band activated
during episodic memory was not found in the electrodes that belong to the seizure-
onset zone [119]. The seizure onset and non-seizure onset zones may also show
different electrophysical patterns during interictal cognitive tasks [118]. Increased
relative entropic differences between the SOZ and non-SOZ were observed during
a verbal memory task while the number of IEDs decreased during the task only in
the non-SOZ, suggesting that iEEG recordings coupled with cognitive tasks might
be able to unmask interictal fingerprint patterns specific to the EZ [118]. Similarly,



11 Is IEEG-Based Cognitive Neuroscience Research Clinically Relevant? … 165

cognitive tasks may induce a differential “reactivity” of interictal epileptic activities
within or outside the EZ: for instance, an oddball task induced a significant decrease
of high frequency oscillation rates, in particular ripples (see alsoChap. 24), within the
epileptic, but not in the non-epileptic hippocampus [116, 117]. Transient suppression
of ripples in the seconds following the stimuli presentation was also only observed
in the non-epileptic hippocampus.

This approach, although promising, is still in its infancy and is dominated by
verbal [40, 118] or visual [120] memory tasks, attentional [116, 117] or short-term
memory tasks [107]. Long-term memory tasks, especially episodic, are rare [119]. It
is currently mostly relevant for EZ located in the left, dominant hemisphere, whereas
only a few results are available for the right hemisphere. What is most notable is that
there are still discrepancies and incongruences concerning the influence of cognitive
tasks on epileptic activities according to the brain area. Results even appear to differ
significantly within the same study [116, 117]. However, the study of IED during
cognitive tasks could be of value to optimise presurgical assessment by distinguishing
EZ and non-EZ structures, thereby completing the information derived from the
examination of spontaneous seizures.

Although the concept of the nociferous cortex is somewhat outdated and rarely
used, it conveys the important, yet often overlooked idea that epileptic networks
may impact healthy networks and brain areas. It may help to explain some of the
cognitive deficits exhibited by patients beyond simply relating them to the EZ or
lesions. It might also help to provide a more nuanced and complete pattern of the
electrophysiological alterations in a given patient.

11.6 Conclusion

Epilepsy and cognition are intricately intertwined in several ways. While epilepsy is
related to basic dysfunctions of neural assemblies, its expression is often in the form
of cognitive, affective or behavioural symptoms. In addition, epileptic patients often
suffer from cognitive deficits. Last but not least, an important goal in patient manage-
ment is preventing an impact on cognition by antiseizure medicine or neurosurgery.
The variety of types of epilepsy also makes this specific brain disease particularly
abundant in terms of cognitive symptoms and profiles (see also Chap. 2), unlike other
brain diseases which usually have more stereotyped cognitive profiles.

To return to the question raised in this chapter: has iEEG-based cognitive neuro-
science contributed to the clinical workup of epileptic patients and their welfare?We
think this is undoubtedly so. It guides the localisation of the epileptogenic network
through a thorough analysis of the symptoms and subsequently often helps to clarify
the type of epilepsy. It obviously guides intracerebral electrode planning and neuro-
surgery. It is also an important factor in improving the understanding of the cognitive
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deficits that patients experience. Directly and indirectly, iEEG studies have signifi-
cantly contributed to improvements in these areas. Table 11.1 provides an overview
of the contribution of iEEG cognitive research to epilepsy management.

Cognitive iEEG research helps to question some neuromemes that, although
widely disseminated in the field of epilepsy, appear inadequate or limiting, for
example, the “eloquent cortex” and “localisationism”, especially since clinicians
may be unaware of their influence. Given the highly detailed cognitive paradigms
currently available, these loosely defined concepts should be refined. However, this
can only be done through a collective effort of clinicians and researchers across many
epilepsy centres, because the task is tremendous, requires agreement and guidelines,
and probably the inclusion or large groups of patients to be able to update these
concepts. In contrast, the “nociferous” neuromeme appears to fit more naturally into
clinical practice as we have seen, with current trends of trying to assess the impact
of the epilepsy network on the global functioning of the brain. Conversely, iEEG can
reveal that what appears at first sight to be nociferous can also turn out to be func-
tional and integrated with cognitive networks, as recently described for heterotopia
with similar electrophysiological responses to the healthy cortex during an atten-
tional task [121]. In any event, identifying neuromemes in epilepsy could be highly
useful as many people in the field are unaware of them and therefore do not question
the validity of some of the concepts they use every day.

In general, cognitive iEEG has helped to decrease the stigmatisation of patients.
For example, an often-overlooked importance of iEEG is that it is continuously
recorded for several days or even weeks. Therefore, it can be correlated with the
fleeting, highly subjective phenomena that sometimes occur during seizures but
which are impossible to replicate using experiments in the lab. As such, iEEG is
unsurpassed. For example, converging iEEG data demonstrate a pivotal involvement
of the hippocampus and rhinal cortex in experiential memory phenomena such as
“déjà-vu”, which has helped to discard the interpretation of déjà-vu as an uncon-
scious fantasy or being related to a past-life experience [122, 123]. Only intracranial
EEG can capture the semiological diversity of such subjective phenomena such as
déjà-rêvé [124], or the degree of consciousness alterations [125], while improving
our understanding of their neural correlates [108].
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Table 11.1 Aspects of patients’ epilepsy impactedby iEEGcognitive neuroscience.CCEP: cortico-
cortical evoked potential; ERP: evoked related potential; EZ: epileptogenic zone; IED: interictal
epileptic discharge

Aspect Clinical benefits Consequence for patients Example of IEEG methods

Semiology More detailed
understanding of
symptoms,
refinement of
symptoms

• More accurate
classification of
syndromes

• Improved epilepsy
diagnosis

• Better knowledge of
daily consequences of
seizures

• Less stigmatisation

• Verbatim analyses (e.g.,
diversity of experiential
phenomena)

• Video analyses
• Behavioural scales (e.g.,
graduation of
consciousness)

• Anatomical and
functional correlations
(concomitant video &
iEEG)

Identification of
the networks that
underly specific
symptoms

• Help to focus the MRI
analysis on specific
areas, help to identify
lesions with low
visibility

• Identification of targets
for intracranial
implantation, more
relevant sample of
intracranial recordings

• Distinction between
symptomatogenic vs
epileptogenic zone

• Choice of tailored
neuromodulation
treatments (in the
future)

• iEEG visual analyses
• Network analyses during
symptoms

Presurgical
assessment

Functional
mapping

• Identification of func-
tional/dysfunctional
brain areas, not
necessarily mapping
the EZ

• Information about the
consequences of the
neurosurgery

• Prediction of deficit(s)
• Clearer information to
patients

• Guiding the boundaries
of the surgical resection

• EBS that induces
symptom(s)

• EBS during cognitive
tasks, causal stimulation

• High gamma activity
activated by cognitive task

• ERP to specific cognitive
tasks

• CCEPs (functional
tractography)

Epileptogenic
network mapping

• More relevant EZ
identification,
theoretically better
post-surgical outcome

• Interictal epileptic activity
reactivity (e.g., ripple,
fast-ripple, IEDs) during
cognitive tasks

• Fingerprints during
resting state or cognitive
tasks

(continued)
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Table 11.1 (continued)

Aspect Clinical benefits Consequence for patients Example of IEEG methods

Interictal
cognitive
complaint

Impact of IED on
cognition

• Complementary tool
for indication of
antiseizure medicine

• Curing cognitive
deficits (interictal
cognitive complaints)
by adjusting treatment,
when patients seem
seizure free

• Correlation between IEDs
rates and cognitive
processes or performance

• Correlation between IEDs
rates during sleep and
performance

• Interferences of IEDs with
cognitive processes and
physiological oscillations

General
knowledge about
the brain

Brain activity in
healthy areas
during cognitive
tasks

• Better identification
and information of the
possible postoperative
deficits

• Better identification
and information of the
consequences of
epileptic activities on
cognition

• Questioning
neuromemes

• Cognitive task proposed
to patients during
ECoG/SEEG/awake
craniotomy

• Extrapolation to other
brain diseases

• Therapeutic
neuromodulation (e.g.,
memory modulation in
Alzheimer’s disease, etc.)

• Valuation of the patient
who becomes a
participant in
understanding his own
pathology and who
contributes to
neuroscience research
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Chapter 12
What Are the Advantages and Challenges
of Simultaneous Scalp EEG
and Intracranial EEG Data Recording?

Laurent Koessler

Abstract Scalp and intracranial electroencephalography are both based on the
recording of field potentials, i.e., electrical potentials in the extracellular space.
Thanks to recent technological developments, simultaneous recordings of EEG and
iEEG provide complementary information to understand brain functions. The rela-
tionship of the cortical source activitywith their scalp and intracranial EEGcorrelates
is still not very well known. Since some cortical sources are not directly visible in
scalp EEG recordings, it gives the false impression of no electrical contribution and
thus that scalp electrodes are unnecessary. In this chapter, I illustrate the importance
to record and precisely analyze scalp EEG in combination with intracranial EEG.
First, the technical challenges imposed by combination of the two EEG methods
are described. Then, historical aspects and the main findings of the first simulta-
neous scalp and intracranial EEG recordings since the mid-1950s are presented.
Finally, applications and future perspectives in cognitive, clinical, and computational
neuroscience are discussed.

Keywords Scalp EEG · Multi-scale EEG · EEG biomarkers · Biophysics ·
Cognition

Intracranial electroencephalography (iEEG) in humans offers closer access to neural
activity generated in local brain regions than scalp EEG.Despite the growing insights
obtained from intracranial human research (as recently reviewed by [1]), several
limitations of iEEG as a method to understand human brain function should be
mentioned. First, even though iEEG has high spatial resolution, it has limited spatial
coverage. Electrode placement (both multi-contact SEEG electrodes, or subdural
grids or strips) is driven solely by clinical purposes to target brain regions that are
suspected to be included in a focal epileptic network or to be related to it (see Chap. 1
for the clinical background of electrode implantation). Considering the different
anatomical localizations of focal epilepsy (the most frequent being temporal lobe
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epilepsy), some brain regions may be over-sampled and some others under-sampled.
Thus, a full investigation of human sensorimotor and cognitive functions is difficult to
achieve with iEEG only. In contrast, scalp EEG recordings combined simultaneously
with iEEG can sample more brain regions (especially those that are not sampled by
iEEG) and thus offer solutions to provide additional and complementary information.

12.1 Technical Aspects and Challenges

The simultaneous recording of scalp and intracranial EEG recordings (s-iEEG) has
to consider several technical aspects. First, and most importantly, the asepsis must
be guaranteed during the patient’s stay in the hospital. The placement of intracranial
electrodes requires a (more or less extended) craniotomy in the case of subdural strip
or grid electrodes or the insertion of depth electrodes via burr holes under general
anesthesia. The following days and throughout the whole iEEG recording period, the
head is coveredwith an antiseptic protection (solution/gel and sterile bandages).After
the surgery, when the patient recovers, scalp electrodes must be placed following a
specific protocol to respect the asepsis condition. First, the protective sterile bandage
from the subject’s head should be carefully removed by adding a surgical sterile
field around the head, using sterile gloves and gown. Second, if the scalp electrode
placement occurs several days after the surgery, a new skin disinfectionwithBetadine
or Clorexan has to be performed, especially on the scalp regions where the electrodes
will be placed. Third, the EEG net or the individual scalp electrodes used must be
sterile, either by purchasing them in a sterile form or by sterilizing them (physical,
radiation, ultrasonic, or chemical methods). Finally, the electrodes can be positioned
on the scalp, considering a security distance (a few centimeters) from the craniotomy
or the entry points of intracranial electrodes. This distance implies that the cranial
positions of the scalp electrodes must often be slightly shifted from conventional
positions. The 10/20 system [2, 3] cannot always be respected and newpositionsmust
be determined on the scalp surface. In this case, the new electrode positions must be
recorded, ideally 3D digitized [4]. If one (or several) electrode position(s) is modified
with respect to standard configurations, it is important to symmetrically displace the
contralateral one(s), especially if a common average reference is computed for scalp
EEG analysis. Another important reason not to place scalp electrodes next to the
craniotomy is the current leakage. Since iEEG recordings requires small or large
holes in the skull, physiological artefacts called breach rhythms (i.e., an increase of
amplitude activity in alpha, beta, and mu rhythms) can be observed in scalp EEG
recordings [5]. In a computational study, Datta et al., in 2010, demonstrated that
current flow significantly changed when scalp electrodes were placed over either
small (for stereoelectroencephalography, SEEG) or large (for electrocorticography,
ECoG) skull defects [6].

Second, following the installation of scalp electrodes, an important issue is the
synchronization of intracranial and scalp EEG signals. Ideally, scalp and intracra-
nial electrodes must be connected to the same acquisition system (i.e., with a unique
sampling clock). The use of an external trigger box to synchronize two signals coming
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from two different acquisition systems can be difficult to implement and risky if it
is not controlled regularly over time. The sampling rate of acquisition should be at
least 1 kHz in order to obtain the highest number of EEG samples for the extrac-
tion and the precise analysis of spontaneous or evoked EEG biomarkers. This high
sampling rate is also required by the Nyquist-Shannon sampling theorem to record
high frequency oscillations (especially in the gamma frequency range: 40–100 Hz)
that have been tentatively associated with sensorimotor and cognitive processes [7,
8]. Considering the high number of scalp and intracranial electrodes to plug, a 64–
128-channel recording system is recommended, or even a 256-channel system to
avoid a difficult manual selection of unplugged electrodes.

The vast majority of simultaneous s-iEEG recording studies use a scalp electrode
as acquisition reference (e.g., Fpz). This referencemontage is particularly appropriate
for simultaneous recordings because EEG amplitude is much lower, i.e., closer to
zero volts, on the scalp than in the intracranial volume. This scalp reference is also
convenient because it is routinely used to record evoked potentials, so that the scalp
EEG signals recorded during intracranial investigation can be compared directly
(i.e., without re-referencing) with those obtained before or after the pre-surgical
iEEG evaluation.

12.2 Methodological Aspects and Challenges

The first simultaneous s-iEEG recordings were not performed to study cognitive
brain functions but for pre-surgical evaluation of focal drug-resistant epilepsies
(reviewed by [9]). These pathologies require long-term (several days) invasive EEG
recordings to precisely localize the epileptogenic network [10–12], giving the unique
opportunity in humans to combine simultaneously non-invasive (scalp) and invasive
(intracranial) EEG recordings. Since the first intracranial EEG recordings performed
in an epileptic patient in 1948 by Reginal Bickford, clinicians observed an impor-
tant discordance between the abundance of discharges in iEEG and the absence of
visible discharges in previous scalp EEG recordings of the same patients [13]. The
current methodology of invasive techniques has inherent limitations, thus rendering
multiscale comparisons particularly challenging. Indeed, invasive recordings with
subdural grids or strips of electrodes provide extensive cortical coverage but are
prone to sampling limitations for deep brain sources and sulci (see Chap. 39). In
contrast, depth electrodes (SEEG) provide information of some selected deep brain
regions but only provide irregular and incomplete coverage of the cortical surface.

The first paper with simultaneous s-iEEG recordings was published in 1958 by
Abraham and Ajmone-Marsan [14]. In this early study, the authors investigated both
clinical and biophysical questions. They especially dealt with the issue of visibility,
i.e., the ability to observe by visual expertise the discharges from cortical sources
in scalp EEG signals. This issue should not be confused with the ability to record
discharges that are not observable by visual expertise, i.e., the issue of contribution.
These two questions are important for cognitive neuroscience because whatever the



182 L. Koessler

EEG patterns (epileptic or not), it is important to understand which EEG signals are
visible and detectable with scalp or intracranial EEG recordings. In this pioneering
study, the authors demonstrated that a high number of discharges at the cortical level
were not visible in scalp EEG signals [14]. On the contrary, discharges that were
visible in scalp EEG signals were in direct correlation with activities recorded in
the intracranial volume (Fig. 12.1), although not in all cases. This last observation
is spatial coverage limitation of the brain in iEEG, so that only a small subset of
electrical brain sources can be recorded. This initial investigation also demonstrated
that scalp EEG recordings can give additional information thanks to its global and
uniform coverage of the head. Concerning the biophysical link between the two
scales of EEG recordings, Abraham and Ajmone-Marson suggested that the extent
of cortical activation, rather than the morphology or the duration of the discharges,
determines the amplitude (and thus, the visibility) of the scalp EEG correlates. This
suggested role of the scalp as “a spatial EEG average of electrical activity” was also
mentioned at an early stage in animal studies [15, 16].

While these first observations provided very interesting insights about howelectric
fields propagate in the head volume, and showed the importance to record both
signals simultaneously, several decades passed until new studies appeared at the end

a b

Fig. 12.1 (adapted from [14]): a Intracranial EEG amplitude (dashed line; RS5 electrode) of seven-
teen cortical discharges and their scalp EEG correlates (continuous line; scalp T4 electrode). In this
example, there is a direct relationship between the two recordings. When intracranial EEG ampli-
tudes are high (low), scalp EEG amplitude increases (decreases). b Schematic view of the scalp and
cortical (RS5-7) electrode positions
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of the 1990s. During the second phase of investigation, two crucial questions were
investigated. First, which extent of cortical activation is required to induce visible
scalpEEGsignals?And second,what is the amplitude, or signal-to-noise ratio (SNR),
relationship between scalp and intracranial EEG recordings?

For a long time, researchers and clinicians considered that several square centime-
ters (from 6 to 30) of neural source activity were required to generate detectable
scalp EEG activity. These values were obtained from instrumental, computational,
and human in-vivo studies. Using realistic head and source models, Cosandier and
colleagues, in 2008, modeled the electrical fields at the level of scalp and SEEG
electrodes using different source configurations [17]. Their results showed that a
cortical source with an area from 7 to 30 cm2 can produce scalp EEG patterns with
peak amplitude encompassing 1.5–2.8 times the background activity, respectively.
This large cortical extent was also found using simultaneous EEG-ECoG record-
ings [18]. In this latter study, cortical sources with less than 6 cm2 did not produce
visible scalp potentials. Between 6 and 10 cm2 of synchronous cerebral activity, only
rare scalp-recordable EEG discharges were generated, whereas sources having more
than 10 cm2 commonly resulted in recognizable scalp potentials. Finally, this latter
study concluded that prominent scalp discharges were related to areas of 30 cm2 of
activated cortex. These estimations differed importantly from Cooper et al., 1965,
who found a required cortical surface of 6–8 cm2 to obtain a similar signal decrease
[19]. In the same vein, more recently, other authors demonstrated with human in-
vivo studies that very focal brain sources can produce EEG signals at the level of the
scalp surface. For example, high frequency oscillations from very focal sources (e.g.,
somatosensory cortex) were detectable in scalp EEG recordings [20–22]. Zelmann
and colleagues, in 2014, found that similar scalp topographies of high frequency
oscillations (HFO) corresponded to distinct cortical distributions on 1 cm intracranial
grid electrodes, and that averaging similar scalp HFO resulted in focal intracranial
maps [21]. This finding shows that HFO of small cortical extents are spatially under-
sampled with standard 10/20 scalp configurations, and also with grid electrodes with
their relatively large inter-electrode distances. It also demonstrates that intracranial
EEG recordings with grids do not necessarily record everything that contributes to
the potentials of close scalp electrodes. Similar results were found using evoked
potentials (N20 combined with HFO) in the somatosensory cortex [22]. Despite the
small activated cortical surface (functional brain area 3b), the authors reported a
significant correlation between HFO in intracranial and scalp EEG recordings (r =
0.65).

One possibility is that these focal brain sources were detectable in scalp EEG
due to their superficial positions. To address this issue, the scalp contribution of both
focal anddeepbrain sources such as the hippocampus have been investigated [23–25].
These latter studies demonstrated that the deep sources also significantly contribute
to scalp EEG (Fig. 12.2). This scalp EEG contribution of deep mesial temporal lobe
sources is also interesting to consider because, in addition to the depth and the small
extent, these “curved” sources are very often considered as closed electrical field
structures [26, 27] that thus presumably never contribute to scalpEEG.The scalpEEG
contribution of hippocampal sources concerns basal temporal scalp electrodes (FT/P9
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et FT/P10 electrodes). Interestingly, the scalp amplitude topographies of mesial and
lateral temporal lobe sources can be distinguished using a hierarchical clustering
method. The mesial sources generate only a low and focal amplitude negativity over
the basal temporal electrodes (Fig. 12.2) whereas the neocortical sources generate
a higher and more widespread negativity at temporal electrodes combined with a
widespread positivity in the vertex (with a predominance in contralateral fronto-
centro-parietal electrodes).

This spatial contribution of deep mesial temporal lobe sources has induced a
recent change in the international 10/20 system for scalp EEG electrodes placement
with the addition of four new electrodes in basal temporal regions [3].

It is important to mention that the contributions of these deep brain sources could
only be revealed by an averaging process of a high number of events (not yet precisely
determined but certainly around a hundred) to detect scalp EEG evoked potentials.
Evenwhen there is a genuine electrical contribution to the scalp EEG signals, the high
amplitude background activity of superficial brain sources canmask this activity (e.g.,
average SNR of non-averaged EEG signals frommesial temporal sources of−2.1 dB
compared to the background activity in [23]). Extracting these EEG signals from their
background activity is thus a real challenge. At this level, signal analysis methods

Fig. 12.2 (Adapted from [23]): Deepmesial temporal lobe contribution to scalp EEGdemonstrated
via simultaneous EEG-SEEG recordings. Discharges in the hippocampus (in blue) can generate
(after averaging) a significant EEG signal (in red) at basal temporal scalp EEG electrodes (see scalp
map from EEG). Blind source separation (BSS) method can extract a brain source with (i) a very
similar scalp map as the one obtained from real data (spatial correlation) and (ii) a very similar peak
of amplitude at t0 (temporal correlation)



12 What Are the Advantages and Challenges of Simultaneous Scalp EEG … 185

such as blind source separation methods and artificial intelligence (AI; e.g., machine
learning or deep learning) could provide meaningful information. Fahimi Hnazaee
and colleagues, in 2020 confirmed the electrical contribution of deep brain sources
in scalp EEG using independent component analysis (ICA) of simultaneous s-iEEG
recordings (both SEEG and ECoG) during resting state periods [28]. These authors
tested whether activity from deep sources spread to the cortical surface and scalp,
finding a weak but significant correlation and peaks at zero-lag between the depth
electrodes, several subdural contacts and scalp electrodes. This ICA methodology
of signal analysis is interesting because the analysis is carried out “blindly” and
does not require tagging the intracranial EEG signals in the time domain. Another
blind method, zero-crossing analysis, has also been used to detect scalp signatures
of intracranial discharges. Pyrzowski and colleagues, in 2021, showed that the zero-
crossing of scalp EEG patterns can be used as a reliable single-trial scalp EEG signal
of intracranial discharges, with some of them originating from deep brain structures
[25]. Detection based on these zero-crossing patterns can achieve high temporal
precision and be generalized between patients i.e., with the same performance to
automatically detect deep sources. It could allow discriminating successfully scalp
EEG patterns of epileptic patients and healthy subjects without needing to access the
intracranial recordings even in the absence of visible scalp discharges.

In summary, focal, deep or “curved” brain sources can produce measurable scalp
EEG signals. This contribution is often invisible by a human (expert) observation but
nevertheless significant after data analysis. The criteria of visibility on the scalp also
(and certainly mainly) depend on the background activity of the neighboring brain
regions, especially the most lateral cortices. In addition to cortical surface, the degree
of synchronization between activities of the neuronal populations within a cortical
surface is also a crucial determinant of the recorded EEG patterns [29]. It is also
important to notice that the minimally required size of activated cortical surface does
not consider that higher neural densities can produce the same amplitude within a
smaller brain surface. Thus, the activated cortical surface cannot be the only or main
factor that can influence the electrical contribution of brain sources to scalp EEG.

Following the influence of cortical extent on scalp EEG signals, the second impor-
tant issue concerns the amplitude (or SNR) ratio between intracranial and scalp EEG
signals. From a methodological point of view, amplitude ratio is better estimated
with simultaneous EEG-SEEG recordings instead of EEG-ECoG. Indeed, the large
craniotomy of ECoG induces an increase of electrical conductivity [30] and a breach
rhythm [5] in the scalp EEG signals that can bias the ratio estimation. In addition, the
presence of a non-conducting substrate like the subdural grids on the cortical surface
induces modifications in the visibility of sources. Using computational modeling,
Von Ellenrieder and colleagues, in 2014, have shown an important attenuation of the
scalp EEG signals for generators located underneath the grid, and an amplification
for generators located underneath the craniotomy [31]. These effects were spatially
localized and, according to the numerical simulations, did not cancel out each other.
Quantitatively, grids of 32 and 64 cm2 can induce attenuations of 2–3 and up to
8 times, respectively. In the same way, cortical sources of 4–8 cm2 produce scalp
EEG potentials of the same maximum amplitude as generators of 10–20 cm2 located
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under the center of a subdural grid. Finally, simultaneous EEG-ECoG studies can
overestimate the minimum cortical extent necessary to produce visible scalp EEG
activity. In simultaneous EEG-SEEG recordings, this effect is much less pronounced
due to smaller intracranial electrodes (needle) and skull holes.

In the first simultaneous EEG-SEEG study described above [14], the authors
mentioned that the ratio was highly variable and varied between 58:1 and 2:1 in
the same patient. In the next studies, ratios from 10:1 to 2:1 were proposed by some
authors [32–34] who compared the average EEG amplitudes recorded during routine
scalp EEG with those recorded during electrocorticography. A recent study inves-
tigated this question using simultaneous s-iEEG recordings during complex visual
stimulation, with localized face-selective brain sources in the occipital cortex of a
single case [35]. To precisely quantify the amplitude and SNR in s-iEEG, the authors
performed quantitative analyses of evoked EEG signals acquired during periodic
stimulation (‘frequency-tagging’) [36–38] (see also Chap. 31). Thanks to this deter-
ministic method, they observed scalp evoked EEG amplitudes on lateral occipital
electrodes (PO8 and O2) between 7.7 and 9.9 times smaller than the corresponding
intracerebral signals in the inferior occipital gyrus (Fig. 12.3). Interestingly, the SNR
at the visual stimulation frequency (6 Hz in this study) on the scalp was relatively
less attenuated (i.e., between 2 and 3.5 times) than the absolute amplitude compared
to intracerebral recordings. This was due to the amplitude being comparatively more
attenuated from intracerebral to scalp EEG recordings than the mean background
(i.e., noise) amplitude in frequency bins around the 6 Hz stimulation frequency (ratio
of intracerebral to scalp noise = 3.4). A main factor contributing to this decrease
of the ratio between amplitudes and SNR was that, rather than being calculated
over a pre-stimulus baseline as in standard evoked potentials studies, the noise (i.e.,
the electrophysiological background) was calculated within a small range frequency
around the signal of interest (6 Hz, theta band). Therefore, scalp EEG noise was
exempt from alpha activity, environmental noise, physiological artifacts (eyes and
muscles activity) which greatly contaminate scalp EEG signals. Finally, the cortical
extent to which a scalp EEG electrode is sensitive to is larger than that of an SEEG
electrode. Noise in scalp EEG signals might be smaller compared to SEEG signals
due to averaging of uncorrelated noise over a larger surface.

Several biophysical parameters can affect the amplitude ratio. Indeed, the potential
field, Ve, recorded between a brain source (considered as a current dipole) and an
EEG electrode, e, can be estimated as follows [39]:

Ve =
∣
∣
∣
−→
M

∣
∣
∣cosθ

4πσd2

where
∣
∣
∣
−→
M

∣
∣
∣ is the current dipole moment (i.e., the intensity of the brain source), θ

the angle between the dipole axis and the vector r to the EEG electrode e, σ the
conductivities of the volume conduction (i.e., the head tissues) and d the distance
from the dipole (i.e., the brain source) to ameasurement point (i.e., theEEGelectrode,
e).
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a b

Fig. 12.3 (from [35]): Intracerebral and scalp EEG responses to visual face presentation in the
frequency domain. Face stimuli were presented during fast periodic visual stimulation (sequences
of 70 s using a sinusoidal contrast modulation at a rate of 6 Hz, i.e., one face stimulus every
166.66 ms). a Amplitude spectrum measured during fast periodic visual stimulation (FPVS) at
6 Hz with a fast frequency transform (resolution: 0.02 Hz) at the three most external intracerebral
contacts of electrodes F, L, andD (top) and at three right occipito-temporal scalp electrodes (bottom).
The two graphs are displayed with the same amplitude scale to compare the amplitude difference
between intracerebral and scalp EEG recordings of the same visual response. Amplitude and SNR
ratios of around 8:1 and 3:1, respectively, were found between scalp and intracerebral EEG signals.
bVentral view of the posterior half of the right hemisphere (white matter surface, the gray matter is
shown as a dotted gray outline) with intracerebral contacts (small circles) and selected surrounding
scalp electrodes (large circles). Circles are colored as a function of the 6 Hz-amplitude responses.
Note the difference in the color scale used for intracerebral and scalp data

In a same subject, scalp and intracranial electrodes will record EEG signals with
different amplitudes due to their respective distances d and angles θ with respect to
the brain source. In a cohort with different subjects, the ratio is evenmore challenging
to determine because the head tissue conductivities (σ ) vary. For example, a recent
computational study demonstrated that ignoring the cerebrospinal fluid in a head
model leads to an overestimation of EEG SNR values [40]. Finally, whatever the
study context, a global amplitude ratio is genuinely difficult to estimate in humans
in-vivo because it depends on the combination of several variables (depth, position,
extent, intensity, orientation) from one considered brain source. In several studies
[17, 40], it has been found that the SNR of EEG signals is maximal for brain sources
in the sulcal valleys or at the gyri crows where the orientations are radial to the
scalp surface and minimal for brain sources with tangential orientation (e.g., those
in the sulcal banks). These studies also reported, for a constant intensity and extent
of a brain source placed in head model, a weak modulation of the EEG SNR values
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according to the source depths and angles and especially a slow SNR decrease when
the depth increased.

A precise ratio estimation (for both amplitude and SNR) in human in-vivo will
require a large simultaneous s-iEEG database with a high spatial resolution sampling
and a lot of different brain source configurations. Cohort or meta-analysis studies
with the same methodology could be conducted for this purpose.

Finally, the simultaneous combination of intracranial and scalp EEG recordings
is the only “ground-truth” that allows one to investigate the influence of each of
these configurations and that can provide guidelines and future directions to detect
new scalp EEG biomarkers. The addition of scalp EEG is not superfluous but can
help to see or detect brain sources that are not sampled by intracranial EEG record-
ings. Another challenge has also to be considered in cognitive neuroscience because
sparse brain networks with different activated (or even co-activated) brain sources
may contribute to a cognitive task. Thus, the precise comparison of intracranial and
scalp EEG recordings cannot rely on a focal and unique brain source (i.e., a single
equivalent current dipole model). To tackle this issue, the different brain sources
need to be separated in order to estimate their respective contributions in scalp EEG
recordings. This introduces a new section of this chapter regarding the key findings
and advantages of adding scalp EEGelectrodes during intracranial EEG investigation
of cognitive processes.

12.3 Applications in Cognitive Neurosciences
and Advantages

Two different types of findings can be obtained thanks to the addition of scalp EEG
electrodes.

First, the identification of intracranial or scalp EEG patterns using one of them
as a reference. In other words, the aim is to find new electrophysiological signals
at different scales in order to better interpret them and develop specific methods to
extract and analyze them. This correlation study is not achievable without the use of
simultaneous s-iEEG recordings.

Second, the anatomical localization of brain sources that produced common scalp
event-related potentials (ERPs), i.e., localization of brain sources using intracranial
EEG recordings. This information is crucial because it can improve our knowledge
about the neural basis of scalp ERPs to understand the spatiotemporal dynamics
of cognition (fundamental research goal) and help to non-invasively identify brain
regions that would produce abnormal ERPs (clinical goal).

Concerning the first point (i.e., the identification of new EEG signals), there are
highly interesting results in sleep studies. Indeed, the sleep EEG biomarkers (i.e.,
change in occipital alpha waves, sleep spindles, K-complexes, delta waves, etc.)
are exclusively described and taught using scalp EEG recordings. Staging sleep
cycles using iEEG recordings alone is really complex, if not impossible, due to
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the limited spatial coverage and the signal difference in amplitude and SNR of the
iEEG recordings. However, when scalp electrodes are combined with iEEG record-
ings, they provide crucial information for staging sleep. Thanks to this combination,
hippocampalEEGactivity has been described during rapid eyemovement (REM) and
non-REM sleep (N2 andN3 stages) [41]. Using spectral analysis of SEEG recordings
in six epileptic patients, it was demonstrated that the absolute power of hippocampal
activity was different during N2 and N3 stage. The power of SEEG signals in the
hippocampus decreased between the first and the second sleep cycle, suggesting a
homeostatic process. In term of frequency, the hippocampal sleep spindles showed a
frequency closer to fast than slow cortical spindles. This simultaneous EEG-SEEG
study thus pointed out for the first time the heterogeneity of human hippocampal
non-REM sleep by distinguishing hippocampal N2 from N3 sleep.

In another study with a similar methodology of frequency analysis, gamma oscil-
lations during N3 stage (slow wave sleep) were investigated in human neocortex
[42]. Interestingly, intracerebral gamma activities (both in low and high frequency
bands) recorded in different brain areas had amplitude peaks that were aligned with
specific phases of slow waves recorded in scalp EEG. Two types of patterns were
observed according to the phase of the slow phase: broadband bursts of activity in a
frequency band of 30–120 Hz that correlated with the positive peaks of EEG slow
waves, and other bursts in a narrow high gamma band (around 70 Hz) only that corre-
lated with the negative troughs of EEG slow waves and especially those localized
in the temporal neocortex (Fig. 12.4). These original data provide the first human
evidence that reliable gamma band activity can be observed at a macroscopic scale
(i.e., scalp EEG) during sleep and that these brain activity might be associated with
synchronizations of neural activity during slow oscillations. This result contributes to
our understanding of brain function, and especially on off-line processing of human
cortical networks. It is important to note that these intracerebral findings, providing
a better understanding of how the brain works during sleep, could not be possible
without the use of simultaneous scalp EEG recordings.

In neurofeedback training by self-regulation, scalp EEG records electric potentials
in the vertex at a very slow frequency (<0.5Hz). These slowpotentials could be related
to cognitive tasks but also to peripheral physiological artifacts such as a galvanic skin
response. In a simultaneous s-iEEG study, Fumuro and colleagues, in 2018, showed
that the coherence (i.e., the estimation of the relation inmagnitude and phase between
scalp and subdural EEG signals) of this slow EEG pattern negatively correlated
with the distance between subdural and scalp electrodes [43]. A significant negative
correlation was noted between the linear subdural-scalp electrode distance and the
coherence value (r = −0.91). The authors also demonstrated that the scalp slow
electric potentials recorded during the neurofeedback can derive from the cortices of
high lateral convexity of the brain and not from artifacts.

Finally, a highly interesting human dataset of simultaneous scalp and intracere-
bral (with both depth electrodes and micro-wires) EEG recordings has been reported
during a verbal working memory task [44] (see also Chap. 16). In this study, subjects
performed a modified Sternberg task in which the encoding of memory items, main-
tenance, and recall were carried out separately over time. Thanks to this dataset,
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Fig. 12.4 (from [42]): Relationship between intracerebral gamma band EEG activities and slow
waves scalp EEG during N3 sleep stage. Two different patterns are found and are locked to different
phases of slow waves: broadband gamma activities that correlate with negative peaks of slow waves
at the level of the scalp EEG (left column, IN-phase) and narrowband gamma activities (around
70 Hz) that correlate with positives peaks (ANTI-phase)

several studies could be performed, such as the analysis and the validation of the
biophysical relationship between single unit recordings and local fields potentials
(intracranial or scalp EEG) [45–47] or a multi-scale study (from neurons to neuronal
populations and brain areas) of the electrical contribution (pattern in the time or
frequency domains) of different brain sources involved in the memory processes.

Concerning the second point (i.e., source localization of functional scalp EEG
components), non-invasive electrical source imaging has been around for decades,
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providing informative results in cognitive neuroscience [48–50]. Therefore, the
usefulness of simultaneous s-iEEG recordings could be debated. However, the results
of non-invasive electrical source imaging are limited due to (i) methodological
reasons, such as the inaccuracies of the biophysical models (e.g., the variabilities
of in-vivo head tissue conductivities; [51]) or the non-uniqueness of the solution to
the inverse problem [52] and (ii) physiological reasons especially when different
and sparse co-activated brain regions produce scalp ERPs. An illustration of the
limits of source localization algorithms is the attempt to relate the face-evoked N170
component measured on the scalp [53] to face-selective occipito-temporal regions
defined in neuroimaging studies. The vast majority of non-invasive electrical source
localization studies (e.g., [54–58]) report that the N170 originates primarily from
the fusiform gyrus (FG) (see also the review by [59]), which is the first and most
consistent brain region associated with face-selectivity in neuroimaging studies [60–
62] and also, in intracranial recordings [63, 64]. Despite the occipital projection of
the N170 on the scalp surface [53, 65], a more posterior localization in the occip-
ital cortex has rarely been considered as a potential source of the N170. In a recent
study, Jacques and colleagues, in 2019, performed a correlation analysis of the N170
recorded simultaneously in s-iEEG [66]. Scalp EEG recordings identified the N170
in typical sites over the right occipito-temporal scalp regions (especially PO8 and O2
electrodes) (Fig. 12.5). Inside the brain, the N170 was observed in intracerebral elec-
trodes localized in the right ventral and lateral sections of the occipito-temporal and
posterior temporal cortex. The latency and amplitude of the scalp N170 were signif-
icantly and strongly correlated at the single-trial level with the N170 recorded in the
lateral inferior occipital gyrus (IOG), i.e., close to the scalp lateral occipital surface.
Most importantly, no correlation either in latency or in amplitude was found with
N170 activity in the fusiform gyrus (electrode F). This study provides evidence that
the IOG is a major contributor of the face-selective N170 recorded on the scalp due
to its lateral position and orientation pointing to the occipital temporal scalp region.
The non-significant electrical contribution of the fusiform gyrus to the scalp EEG
could be due to the electrode being positioned in non-optimal localizations, but also
due to the cortical geometry (down-top orientation) of that structure, projecting to the
distant scalp electrodes on the vertex, with a very important amplitude attenuation.

A second example is the study of Zhang and colleagues, in 2018, who inves-
tigated how the medial temporal lobe is involved in memory retrieval with (non-
simultaneous) ECoG and EEG recordings in a same cohort [67]. Three interesting
points can be noticed in this study. First, despite being recorded at different times,
EEG and ECoG recordings yielded concordant results about the successive cogni-
tive processes (pre-attention, encoding, retrieving, decision making). Second, the
authors found that the top five components from the canonical correlation analysis
were highly correlated between intracranial and scalp EEG recordings (correlations
from 0.4 to 0.87). Third and most importantly, some of these components originated
from deep mesial temporal structures. This finding confirms the biophysical finding
in [23] that scalp EEG recordings can detect signals from small and deep cortical
structures.
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Fig. 12.5 (adapted from [66]): The inferior occipital gyrus is themain contributor to the scalpN170
component. Faces were presented in a discontinuous way (two sequences of 30 upright and inverted
photographs in front view, unfamiliar faceswith neutral expression).Upright and inverted faceswere
presented in a random order with a fixation point for 100ms, followed between 200 and 400ms later
by a face stimulus for 300 ms. a Averaged event-related potentials (ERPs) to upright and inverted
faces at twomost external intracerebral contacts of electrodes L andD (inferior occipital gyrus) (top)
and at two occipito-temporal scalp electrodes (bottom). ERPs at these two intracerebral contacts
present an opposite polarity such that anN170 ismeasured in L8 and a P170 ismeasured in L6. ERPs
at the scalp level are presented above. Note the scale difference between intracerebral and scalp
responses but the similarity in N170 latency. b Same ventral view as in Fig. 12.3b. The closest scalp
electrodes to intracerebral contacts D8 and L8 were sPO8, sO2, sP10 and sP6. Circles are colored
as a function of the mean ERP amplitudes (N170/P170 peaks ±10 ms) for upright faces. Note the
difference in the color scale used for scalp and intracerebral data. c Pearson correlations between
intracerebral and scalp N170 amplitudes to upright faces. At the top, scalp topographical maps of
the unthresholded Pearson correlation coefficients between the peak amplitude in the N170 time
window measured at each intracerebral and scalp electrode. At the bottom, topographical maps
showing only significant correlation coefficients (p < 0.05, corrected for multiple comparisons).
Note that the only significant correlations were in inferior occipital gyrus (IOG) (D7-D8 and L7-L8
SEEG contacts) whereas no significant correlation was found in the fusiform gyrus (FG) (F6-F7
contacts)
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Since the electric fields propagate fromdeep cortical structures to the scalp surface,
it offers perspectives to investigate the reciprocity principle. Simply stated, the elec-
trical path from a brain source to a recording scalp electrode is equivalent to the
electrical path from a stimulating scalp electrode to the location of the brain source
[68, 69]. The reciprocity principle should allow to leverage the information carried by
scalp EEG recordings to guide the parameters of non-invasive transcranial stimula-
tions. Via the addition of scalp electrodes during iEEG recordings and the application
of a weak current in these electrodes (1 mA), it has been recently demonstrated in
humans in-vivo that strong electrical fields (0.14V/m in average andwith amaximum
value up to 0.49 V/m) can be induced in deep cortical structures like amygdala,
hippocampus, or cingulate gyrus [70]. These promising results of non-invasive brain
stimulations rely on the simultaneous combination of scalp and intracranial elec-
trodes in the same subjects. In the future, transcranial electrical stimulations based on
reciprocity principle should benefit from the growing development of simultaneous
scalp and intracerebral EEG recordings in epilepsy units.

12.4 Conclusions

The addition of scalp EEG during presurgical intracranial EEG recordings has imme-
diate advantages. Indeed, EEG recordings will overcome some limitations of iEEG,
particularly its spatial under-sampling. First, it allows combining the focal or regional
view of intracranial investigations with the global view of scalp-level investigations.
This combination is particularly important to avoid misinterpretation of intracranial
EEG recordings that could be due to a lack of visibility or detection of electrophys-
iological biomarkers. During presurgical evaluations, a precise functional mapping
is required to avoid the resection of functionally relevant brain areas and thus reduce
negative side effects such as cognitive impairments [71–73].

Adding scalp EEG electrodes also permits linking iEEG signals with signals from
the scalp in the same individual subject. Considering that the non-invasive scalp
recordings can be performed several times (before and after the intracranial record-
ings), they provide a robust and common standard for interpreting the intracerebral
EEG signals. Indeed, if investigators can demonstrate that scalp ERPs remain stable
before, during and after the invasive EEG recordings, it reinforces the validity of the
cognitive biomarkers found in iEEG signals (intra-subject variability estimation).
Adding scalp EEG electrodes to iEEG also permits to directly correlate the investi-
gations performed in patients (the only population in which intracranial recordings
are possible) with those performed in healthy subjects in whom intracranial record-
ings are not possible (inter-subject variability estimation). In the scientific literature,
cognitive EEG signals are very well-described, but intracranial signals need to be
more documented, with larger cohorts. Simultaneous scalp EEG correlates offer a
link with the existing extensive literature about scalp ERPs and valuable information
to improve the fundamental impact of cognitive intracranial EEG signals.
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Looking further ahead, the addition of scalp EEG could allow to disclose new
EEG signals thanks to signal analysis methods. This point is very important for clin-
ical investigation [74] but also for cognitive neuroscience. With a precise and well-
defined relationship between brain sources and EEG recording electrodes, biophys-
ical models (especially volume conduction models) and automatic methods for
scalp EEG signal extraction (blind and AI-based methods) and localization (inverse
problem methods) could be validated. This approach then offers a solution to iden-
tify brain sources and to even target them by non-invasive transcranial electrical
stimulations. Further down the line, these new findings coming from simultaneous
s-iEEG recordings could lead to new ways to choose the number and the posi-
tioning of intracranial electrodes, or even more to avoid the placement in some brain
regions where scalp EEG can record all the required information for the pre-surgical
evaluation.
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Chapter 13
What Are the Promises and Challenges
of Simultaneous MEG and Intracranial
Recordings?

Anne-Sophie Dubarry, John C. Mosher, Sarang S. Dalal,
and Christian G. Bénar

Abstract Intracranial electroencephalography (iEEG) invasively measures brain
activity from neurosurgical patients with higher fidelity and spatial precision than
noninvasive electroencephalography (EEG) or magnetoencephalography (MEG)
alone. For planning neurosurgical resection, iEEGmore robustly detects lower ampli-
tude signals that may distinguish pathological from healthy brain tissue. On the
other hand, iEEG can only sample the immediate brain regions implanted for clinical
reasons, whileMEG synopticallymeasures the entire brain, albeit with lower fidelity.
Relative to scalp EEG, signals recorded by MEG are less distorted by the poorly
conducting skull, craniotomies, and neurosurgical hardware. By combining iEEG
with simultaneous MEG recordings, we supplement the limited spatial sampling
of iEEG with the superior source localization ability of MEG, yielding a combined
interesting technique at two differentmeasurement scales that can cross-validate find-
ings from either. Setting up such simultaneous MEG-iEEG measurements involves
specific considerations, and we review patient selection, patient preparation, and
equipment. We then review published studies related to cognition, with emphasis on
the sensitivity of MEG to source depth as well as functional connectivity between
iEEG and MEG. We end with future directions opened by the unique possibility to
record brain signals at different scales simultaneously.
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13.1 Introduction and Motivation

Magnetoencephalography (MEG) is a powerful neurophysiological tool for the non-
invasive investigation of brain activity at millisecond temporal precision. Clinically,
however, electrodes may need to be placed intracranially for higher specificity to
assist planning of neurosurgical resection, such as in the presurgical evaluation of
epilepsy using electrocorticography (ECoG) and stereo-EEG (sEEG). In other cases,
electrodes are chronically implanted in subcortical structures for the purpose of deep
brain stimulation (DBS); these same electrodes can be alternatively used to measure
local field potentials. DBS is performed most commonly in the basal ganglia for
movement disorders such as Parkinson’s disease, though increasingly, other appli-
cations of DBS are being investigated, such as the thalamus for essential tremor and
certain forms of epilepsy.

These invasive procedures, done on purely clinical grounds, provide a unique
opportunity to compare the global scale of MEG with the local scale of a ground
truth recorded directly above the brain and below the dura (ECoG) or directly within
the brain tissues (sEEG, DBS). The simultaneous acquisition of MEG and intracra-
nial EEG (iEEG) represents a significant burden in terms of patient management,
acquisition of signals, and data processing.Yet the recording signals of the exact same
activity at different scales—local and global—provides key advantages, such as in
epilepsy, where interictal discharges are spontaneous and show large variations from
one event to another. Similarly, in complex cognitive protocols investigating aspects
of memory or different mental strategies, the brain response cannot be assumed to be
similar across repetitions of the paradigm. In either case, recording the two modal-
ities at distinctly separate times makes it infeasible to align and average the signals
in post-processing. More generally, the simultaneous recording of MEG and iEEG
ensures that the brain is in the same state (vigilance, attention, etc.) at both scales.

In methodological terms, simultaneous recordings bring possibilities that are out
of reach with separate recordings. In order to understand the links between depth
and surface, one can quantify which intracranially observed signals are likely to
be measurable extracranially by MEG. This can be detected by identifying signals
with no lag between the iEEG and MEG [1, 2], implying propagation via volume
conduction rather than neural connectivity (which would generally involve a lag or
phase delay). Another approach is to measure trial-to-trial correlation of amplitude
in the time domain (e.g., the inter-trial correlation, ITCOR introduced in [3]) or in the
time–frequency domain [4]. Apart from these validation-oriented techniques, simul-
taneous measurements allow the computation of connectivity index between signals
seen intracranially with high spatial specificity and MEG signals [5], providing a
powerful means of multi-scale network analysis.

Therefore, in order to compare the exact same brain sources in the same brain
states, and to take full advantage of trial-to-trial fluctuations, the invasive and non-
invasive signals need to be recorded simultaneously. In this chapter, we review the
technical challenges, methods, and findings of simultaneous MEG and intracranial
recordings, as well as discuss future venues, with emphasis on cognitive research.
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13.2 Setting up a Simultaneous Recording

In the last few years, several publications have provided detailed guidelines for
the collection of MEG data [6, 7]. Clinical context involves additional challenges
and simultaneous recordings require further considerations. Although simultaneous
recordings ofMEG and iEEG share some aspects of the context and recording proce-
dure with clinical MEG routine [8] and iEEG procedure [9], some characteristics,
which we detail here, are very specific to simultaneous recordings.

The present section describes the specific steps required to perform a simul-
taneous MEG-iEEG recording, including MEG site preparation, patient selection,
patient preparation, and we review some of the experimental protocols found in the
simultaneous MEG-iEEG literature.

13.2.1 General Considerations

One of the first considerations when deciding to perform a simultaneous recording
is the accessibility of the MEG lab, particularly for inpatients in the epilepsy moni-
toring unit. The proximity of the MEG system facilitates the setup and the prepa-
ration of the recording session. Minimal emergency preparation is required for an
MEG facility to host a simultaneousMEG-iEEG recording. Depending on the patient
safety risk areas, various potential emergency situations may arise and call for best
patient safety practices, including specific equipment (e.g. oxygen, suction) and
documented procedures (e.g. rescue procedure, crash charts) reviewed by the MEG
Medical Director.

In this context, iEEG signals can either be collected from the built-in EEG ampli-
fier of the MEG system [3] or an external one [e.g. 10]. Both configurations have
advantages and limitations. The built-in EEG system may have a limited number of
channels (e.g. 64, 128) and the amplitude range may be adapted to record microvolts,
whereas the iEEG signals range in the order of millivolts, requiring adjustments to
the EEG gain. The built-in EEG system, usually designed for measuring scalp EEG,
may need to be certified and approved by the MEGMedical Director and the Institu-
tional ReviewBoard for research using invasive electrodes. Nevertheless, this built-in
configuration offers two main advantages: (1) reducing potential noise introduced
by an external device (containing metallic parts) within the MEG environment, and
(2) reducing post-recording processing, since the EEG data are digitized in the iden-
tical MEG environment. Thus a single dataset encapsulates both the MEG and iEEG
signals in a single time-aligned dataset.

In other instances, however, an external EEG amplifier may be desirable. In the
monitoring unit, for example, the acquisition system is typically certified for inva-
sive clinical applications, which simplifies the procedure for obtaining institutional
approval for research. The external unit may also have better gain, noise shielding,
jack connectors, and channel count than that offered by the MEG system. In some
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instances, the analog or digital output of the EEG system can be integrated directly
into the MEG system’s acquisition. More often, however, the two separate acquisi-
tion systems record to two separate files, and the data need to be time-synchronised,
typically by providing a periodic timing pulse into a channel of each system. As
reviewed in [10], in post processing, the data need to be resampled and aligned to
the same time base and filter settings, then merged into a common dataset to ease
the simultaneous review of both modalities. As discussed below, the external system
must also be arranged to introduce minimal additional noise into theMEG recording.

Planning the stimulation procedure involves preparing the adapted equipment in
the MEG facility (e.g. headphones, speakers, relevant display, electrical stimulator).
The presentation of the sequence of stimuli must be controlled by a procedure or
delivered by a research software package which ensures sub millisecond precision
and allows the recording of response time. TheMEG facility must validate all timing
with calibration measurements for the specific stimulus and computer configuration
[11].

Simultaneous recordings involve placing a large amount of recording apparatus
(electrodes, wires, connectors), within close reach of theMEG sensors. The presence
of metal inside the MEG magnetic shielded room and nearby the sensors may thus
result in higher noise levels. SEEG electrodes are usually made of platinum, while
ECoG grids may be made of either platinum or nonmagnetic stainless steel. As
such, the electrodes themselves, cables, and surgical hardware are typically MRI-
compatible, but may nevertheless result in added MEG noise and artifacts arising
from electrically conductive materials moving together with the patient’s head. An
example of this is shown in Fig. 1b of [3], where slow oscillatory artifacts arise
from the connector placed on the patient’s shoulder due to its displacement from
breathing. Another source of noise comes from the amplification system that may
not be perfectly isolated, and may be transmitted through the wires to the vicinity
of the MEG. An example of this effect is shown in Fig. 1d of [3]. Thus, connectors
need to be immobilized and removed from the patient body, and the EEG amplifier
may need to be isolated from the environment (e.g., powered by battery rather than
mains) [10].

13.2.2 Patient Selection

Once the hardware and MEG facility feasibility (as described in previous section)
have been established, another constraint in the design of any research study is the
likely selection bias of a relatively small number of patients due to their limited
availability. Deep brain stimulation studies typically involve the placement of only
one or two electrodes with only one pair of contacts activated, and the DBS device
may or may not be capable of recording on the other remaining contacts. Thus
only a small region of the brain may be available for individual or group studies,
depending on the application of DBS used in the patient cohort (e.g., Parkinson’s
disease, essential tremor, epilepsy, depression, obsessive compulsive disorder, pain).
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In contrast, ECoG and sEEG clinical studies generally span wider regions of the
brain. ECoG is often performed using a silastic electrode grid placed on the cortical
surface and/or sEEG depth electrodes to common targets like the hippocampus and
amygdala; when used in epilepsy monitoring, ECoG surface grids can involve more
than 100 electrodes spanning entire lobes. sEEG studies typically use between eight
and twenty stereotactic depth probes, with five to twenty electrode contacts along
each probe [9] such that simultaneous recordings of roughly 200 iEEG channels
are common. Unlike DBS patients, however, these are almost always patients with
epilepsy that are monitored exclusively in a hospital monitoring unit, with sensitive
surgical sites, post-surgery irritability, and reduced medication level to facilitate
capturing epileptiform activity. As discussed in the next section, the apparatus of
sEEG channels protruding from the head makes it further difficult to find patients
that will literally fit inside the rigid MEG helmet. On the other hand, the large
craniotomy needed for the implantation of ECoG grids may leave the patient too
vulnerable to place inside the rigid MEG helmet.

Another selection bias consideration is the medication level of the patient. The
clinical examination of the iEEG patient usually involves the halting/reduction of
anti-seizure medication, in order to record as many typical seizures (i.e. with typical
semiology) as possible during themonitoring unit stay. Once the patient management
team is satisfied that an adequate exam has been completed, the patient is returned
to their medications, and explantation surgery is scheduled. Research examinations
in the MEG are therefore possible in this limited time window, but with an uncertain
titration of medication levels in the patient, who may also be tired and subject to
brain atypical activities resulting from a series of prior seizures.

The above constraints result in a patient cohort with smaller heads (typically
leading to inclusion of more females than males) or a younger pediatric cohort,
with various levels of fatigue or alertness on changing medication levels, which
can complicate general findings in a group study. Nonetheless, as we review below,
these patients provide valuable cross-validation of studies at local and global scales of
measurement, from focused invasive studies to synoptic non-invasive measurements,
and the possibility to bridge the non-invasivemeasurements to themuch broader class
of non-invasive measurements of control research subjects. Put more simply, control
studies with electrodes implanted in normal brains are not ethically possible, so these
patient studies are invaluable, despite their unavoidable selection bias.

13.2.3 Patient Preparation at the Time of the MEG
Examination

Patients with a DBS implanted may be examined in an outpatient setting, such that
the procedure for preparing the patient is nearly identical to the procedures outlined in
[8]. If theDBS generator is embedded in the skull, then special caremay be necessary
regarding any degaussing (i.e. procedure to remove minor magnetic contaminants)
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of the generator, and the Medical Director for the MEG site must be consulted. If the
generator is considered MRI-safe, or if the generator is in the chest, then no other
special handling of the patient may be necessary outside of routine preparation for a
MEG exam.

Patients with either embedded depth (sEEG) electrodes or a craniotomy with
cortical (ECoG) electrodes are beingmonitored as inpatients in amonitoring unit and
therefore require special considerations and handling on the day of the MEG exam.
As discussed above in Patient Selection, the opportunity to perform the MEG exam
typically comes at the end of the monitoring stay, after adequate clinical data have
been gathered to perform the diagnosis and/or the treatment strategy for the patient
(see also Chaps. 4 and 5 on practical issues with recordings in presurgical epilepsy
patients). Typically, medications are being resumed, and surgical explantation has
been scheduled. We lay out the basic steps that should be considered, with an overall
goal to ensure patient safety and comfort by performing many of the tasks bedside
in the monitoring unit, before transport to the MEG.

First, the patient should be reconsented to ensure their continuing agreement with
any research to be conducted (see also Chaps. 6 and 7 on Ethical issues). Surgical
nursing is then consulted to remove the surgical head dressing, which may have been
in place for many days or weeks. With the original headdress removed, the leads of
the electrodes can be gathered into a bundle that drapes away from the surgical site
and down the neck. The connectors should be arranged such that they land in the
nape of the neck and/or outside the MEG helmet. The head can then be rewrapped
in a light surgical wrapping, as shown in the figure (Fig. 13.1a, b).

At this point it is imperative to ensure that the patient and their apparatus will fit
in the MEG, by using a replica helmet (provided by the MEG manufacturer) at the
bedside, as shown in Fig. 13.1c. Adjustments can be made to the arrangement of the
wire bundle and connectors, or it may be determined that the patient cannot fit in the
MEG.

Assuming the patient fits the helmet, the MEG technician can begin the bedside
process of replacing any heart or muscle (ECG or EMG) electrodes that may not be
MEG-compatible, then disconnecting the patient from the monitoring room system
and connecting the electrodes into the jackbox compatible with the MEG. Since the
built-in EEG system of the MEG may have fewer EEG channels than the separate
monitoring unit EEG system, selection of a subset of relevant electrodes has to be
coordinated with the researcher, and a careful record of which contacts are retained
for the MEG recording must be maintained.

Hospital transport thenmoves the patient to theMEG suite, with amonitoring unit
nurse in attendance, where the usual patient preparation continues [8], albeit under
masked (sterile) conditions. Unlike DBS outpatients, however, degaussing may not
be approved by the Medical Director, since the introduction of dozens of electrodes
into the brain may present unknown coupling considerations. The patient is then
placed either supine or upright in the MEG, taking into account the protocols to
be run, and taking into account any pressure points of the helmet with the patient’s
surgical sites.
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a

b

c

Fig. 13.1 a The original head dressing is removed and replaced with a light dressing, with the
leads and connectors bundled together and draped away from the implantation site. b The nape of
the neck provides a suitable place to arrange the connectors, such that they nest inside the helmet or
extend just below the helmet, depending on the length of the specific brand of electrodes. cAn exact
replica of the MEG helmet is highly useful bedside to ensure that sEEG apparatus and headdress
have not made it impossible for the patient to fit, as shown here

Immediately after theMEG recording is completed, the patient is directly returned
to the monitoring unit for resumed care by the unit staff. Bedside, the MEG jacks
and electrodes are removed, and the surgical nurse prepares a final headdress prior
to explantation surgery. Depending on the timing before the explantation surgery,
reconnection to the recording system in the monitoring unit may not be required.
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13.2.4 Protocols with the iEEG Patient in the MEG

In this book, a wide range of possible experimental protocols are discussed, and with
the general consideration laid out above, many of them could be run simultaneously
with MEG. In this section, we restrict ourselves to citing a few of the published
instances that have been used in simultaneous MEG-iEEG, including spontaneous
recordings and evoked responses for the study of cognitive functions.

The recording of spontaneous simultaneous MEG-iEEG activity has mainly been
focused on the analysis of interictal spikes in epilepsy [2, e.g. 12–14]. Because
of the relatively short time of the MEG session, particularly for an sEEG patient,
capturing a spontaneous seizure simultaneously with theMEG and sEEG system has
not been reported to our knowledge. However, one unique study analyzed a reflexive
musicogenic seizure, triggered during the recording by the playing of vocal music
[15].

In contrast, studies that measured MEG simultaneously with subcortical LFPs
from electrodes implanted for the purpose of DBS often investigate motor move-
ments or associated pathology, which may be expected since DBS is most common
in patients with movement disorders such as Parkinson’s disease, essential tremor,
and dystonia. Similar methods have also been used to examine subcortical-cortical
connectivity in resting state networks. For a review, see [16].

As opposed to passive LFP recordings from deep brain electrodes, several more
studies have implemented protocols measuringMEG during DBS stimulation, intro-
ducing the additional challenge of recording and analyzing the signals despite the
presence of high amplitude artefact evoked by the DBS [17–19].

Less commonly, but of particular interest in this book, protocols have been
designed to capture the neural activity elicited by various experimental conditions
underlying specific cognitive processes, typically using protocols that were origi-
nally inspired by earlier experiments from either MEG alone or intracranial EEG
alone. We will discuss these studies in greater detail in Sect. 13.3.4.

13.3 What Do Simultaneous Recordings Reveal?

13.3.1 Methodological Approaches

Classical MEG and intracranial EEG (iEEG) analyses techniques, such as evoked
fields/potentials and time–frequency analysis, can be performed at the level of indi-
vidual sensors. However, to explore the overall spatial information provided by the
multi-sensor recordings, source reconstruction techniques are required, e.g., spatial
filtering [20] or independent component analysis followed by source localization
[21].

Several goals can be pursued with simultaneous recordings. One goal is to assess
whether the activity measured with iEEG can be retrieved from MEG signals, either
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for epileptic discharges [2], evoked fields [3] or time–frequency modulations [1].
When performing correlation analysis, this boils down to finding zero-lag corre-
lation in order to assess whether the same activity is retrieved on MEG in sEEG.
Such correlation can be measured across time [2, 22] or across trials [3]. In seminal
work, Dalal and colleagues [22] computed and presented the topographic maps of
correlation of each sensor data with sEEG electrode in the hippocampus, showing a
large-field topography that is compatible with a deep origin of the signals. Another
goal is to measure delayed connectivity between an iEEG sensor and MEG signals,
in order to retrieve large-scale networks and benefit from the local view of sEEG
and large-scale view of MEG. This was performed by [5] using directed phase-lag
index, with a seed point in the hippocampus.

13.3.2 Precision of Localization

The first tests of source localization took advantage of measuring fields generated
by small currents injected in intracerebral electrodes, thus creating artificial dipoles
within the head volume. The great advantage of this technique is to generate a known
and well-characterized source, both in terms of location and extent, albeit with a
higher amplitude and lesser spatial complexity relative to natural brain activity.
Cohen and colleagues [23] injected currents in intracranial EEG electrodes while
simultaneously measuring scalp EEG and MEG. No major differences in localiza-
tion error were found, in contradiction with the hypothesis that MEG would yield
better source localization performance. As noted in [24], the study was initially crit-
icized on methodological grounds [25, 26]. The spatial sampling was low with only
16 channels each forMEG and EEG, which inadvertently prevented theMEG source
localization from reaching its full potential; as the skull blurs MEG signals to a far
lesser degree than EEG signals, MEG scalp topographies contain more nuances at
higher spatial frequencies that can increase the performance of source reconstruc-
tion when sensor coverage is optimal. The exclusively radial nature of the implanted
sources (due to the electrode implantation scheme) presented a strong bias favoring
EEG, since MEG is much less sensitive to radial sources [27].

In [28, 29], the call was for a careful consideration of the absolute accuracies of
either modality under conditions that are fair to both modalities. As noted in [30] and
repeated in [29], EEG and MEG provide complementary data, and the use of both
modalities can contribute to overall improved accuracy, as confirmed over a large
number of theoretical cases [24].

A similar experimental study was conducted by Leahy and colleagues [31] using
a human skull phantom implanted with 32 current dipoles and 64 scalp electrodes. A
CT scan was used to determine ground truth, and MEG measurements were made.
The results yielded a smaller error for MEG (3 mm versus 7–8 mm for EEG) which
was attributed to the difficulty of accurately modelling the complexity of the human
skull in EEG.



208 A.-S. Dubarry et al.

More recently, in a resting state study on patients with epilepsy, [20] measured the
distance between (1) the sources found at the peak of the ICA components computed
from MEG signals, and (2) the sEEG contact showing maximal correlation with
component, and report a mean distance of 20 ± 12.25 mm. Two additional studies
used the same localization technique on ICA components putatively corresponding
to deep mesial activity, both on epileptic spikes [2] and event related responses [21].
In both cases, the confidence interval of one or two dipole scans included the mesial
regions.

13.3.3 Epileptic Discharges

The first report of epileptic discharges in simultaneous MEG-sEEG from [32],
compared the epileptic spikes detected onMEG recordings with the ones detected on
sEEG signals in terms of detectability, amplitude and localization. The capacity of
interictal MEG to detect and localize the epileptogenic zone was found to be compa-
rable with that of sEEG when targeting convexity foci. However, the epileptiform
discharges required a higher amplitude and a wider distribution to be detected and
localized with only MEG signals.

Shortly after this first report, [33] provided a parametric description ofMEGspikes
detected thanks to sEEG, aiming at increasing the objectivity of MEG epileptiform
events selection.

With a similar strategy, [12] marked the epileptic spikes on sEEG signals, and
localized the sources from averaged MEG data (locked on the sEEG events). The
resulting early activity was located in a plausible region, not sampled by sEEG
because of physical constraints (a very posterior region where orthogonal electrodes
cannot be implanted), confirming clinical hypotheses on this patient.

To investigate the visibility of high gamma oscillations on MEG, [34] performed
a time–frequency analysis on the MEG signals locked to epileptic spikes that were
detected from sEEG signals. The high gamma oscillations which they observed on
the MEG signals were temporally aligned to the ones observed within the same
frequency band on the iEEG signals [34 Supp. Fig. 2]. The oscillations formed well
isolated islands in the time–frequency plane and thus do not correspond to filtered
spikes, i.e. “false ripples” [35]. In a more recent study, [36] have used a beamformer
analysis (i.e. a spatial filter applied to the sensor data) in order to detect and localize
epileptic ripples (80–120 Hz oscillations) from MEG data. The ripples detected in
MEG were validated using sEEG as a gold standard.

Finally, [2] have shown that deep epileptic discharges originating fromdeepmesial
sources can be detected by the MEG sensors. In a first step, independent component
analysiswas computed on epileptic spikesmeasured on deep sEEGelectrodes (within
amygdala and hippocampus). This approach enabled separating focal deep activity
from large scale (propagated) networks, whereas the analysis of the MEG signals
alone showed only the propagated activity. In a second step, they have shown that
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in a large proportion of patients the ICA ran on the whole dataset can also extract
activity from deep sources, without the prior information arising from sEEG.

13.3.4 Cognitive Potentials and Oscillations

13.3.4.1 Cortical Measurements

The first “trimodal” EEG-MEG-sEEG recording reported in a case study by [3]
showed that evoked activity in response to visual presentation of a checkerboard is
detected on the three recordingmodalities, both on average (evoked potentials/fields)
and at the single trial level. The simultaneous recording enabled tracking the corre-
lation between depth and surface fluctuations. A source analysis confirmed the
consistency between the MEEG sources and the sEEG potentials. In addition, time–
frequency analysis could retrieve early beta/gamma band activity (likely evoked)
and alpha desynchronization. Induced gamma activations weremore scarce, possibly
because of the small extent of the sources activated by the experimental task.

With MEG, [5] found that decreases in theta power during spatial encoding
predict greater accuracy during subsequent recall. An epilepsy patient with elec-
trodes implanted in temporal regions allowed further investigation of this effect.
By simultaneously measuring MEG and intracranial EEG, they further discovered
that these theta oscillations in right anterior hippocampus and left inferior frontal
phase-led the left temporal cortex (see Fig. 13.2).

These studies demonstrate different ways in which simultaneous MEG with
intracranial EEG can be leveraged to validate MEG-only findings, identify novel
connections that may not have been evident with either method alone, and further
identify regions of interest for subsequent analyses with MEG alone.

López-Madrona et al. [21] recorded 6 patients with simultaneous MEG-sEEG
during a memory task. Patients were instructed to recognize images that they
previously memorized (‘old/new’ paradigm). A blind source separation technique
(Second Order Blind Identification, SOBI) revealed MEG components sensitive to
the protocol (i.e. showing evoked activity). These components showed consistent
topographies across patients and were confirmed in control subjects, presenting a
“large” pattern (i.e. topographieswith distant positive and negative poles), suggesting
the activation of a source originating from a deep origin. The source localization and
the correlation analysis of the simultaneous sEEGsignals revealed highest correlation
with contacts located in the hippocampus and rhinal cortex (Fig. 13.3), confirming
the previous findings.
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a
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Fig. 13.2 Simultaneous MEG-iEEG analysis from a single patient to investigate connectivity
between MEG sources and left temporal locations sampled directly with intracranial electrodes
during a spatial encoding task, and to validate independent MEG findings. a Directed phase lag
index analysis (see Chap. 32) with MEG beamformer results revealed that task performance was
superior when the right hippocampus phase-led the left inferior temporal gyrus. b A corresponding
analysis between intracranial EEG from the left temporal cortex and the right hippocampus from
MEG yielded similar findings, validating the MEG results. c Task performance was also better
when left inferior frontal gyrus, reconstructed with MEG, phase-led the anterior temporal lobe, as
sampled by intracranial EEG. d Subsequently using the left inferior frontal gyrus as a seed for the
MEG-based analyses showed that it also exhibited connectivity with the left inferior temporal gyrus,
the same area found in (a) that exhibited connectivity with the right hippocampus. Reproduced with
permission from [5]
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Fig. 13.3 Relation between MEG signals and simultaneously recorded intracerebral recordings
in one patient [21]. a Topography of the deep component obtained with blind source separation
(BSS) on MEG signals (BSS-MEG). This topography corresponds to the contribution of the BSS-
MEG component to each MEG sensor; its broad distribution is indicative of a deep source. b
Event-related potential (ERP) on BSS-MEG. Solid and dotted traces are the averaged ERP for old
(recognition) and new pictures, respectively. Stars indicate statistically significant differences in
amplitude between old and new trials. There is a clear memory-related effect, consistent with what
is expected from previous intracerebral studies. c Source localization of the BSS-MEG topography
with two symmetric dipoles, which confirms the deep origin of the signals (GoF: Goodness of Fit of
the two dipoles). dDistribution of the correlation of BSS-MEG signals with intracerebral EEG. The
highest correlation is visible on the TB (temporo-basal) electrode that targets deepmesial structures,
with the peak of correlation located in the rhinal cortex. (Figure courtesy of Victor López-Madrona)

13.3.4.2 MEG-LFP of Basal Ganglia/STN via DBS Electrodes

DBS electrodes are most commonly implanted in the basal ganglia of patients with
movement disorders such as Parkinson’s disease. Naturally, the effects of DBS itself
on cortical activity and cognition have been investigated in several studies [e.g. 37,
38] and reviews [16, 19]. Before permanent connection to the stimulator, however,
DBS electrodes can be alternatively used to measure local field potentials from the
implanted structure; a few groups have managed to combine such measurements
with MEG.
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Most such simultaneousmeasurements have investigated pathological oscillations
or aspects of motor control. However, evidence is mounting that the basal ganglia
and other DBS targets such as the thalamus are indeed involved in several other brain
functions, including various aspects of cognition.

The first cognitive study employing simultaneousMEG-STNmeasurements came
out recently. Patai et al. [39] employed an expanded judgement task in which partic-
ipants needed to accumulate multiple observations of a cue with two possibilities,
before deciding which of the two possibilities was the accurate choice. The study
primarily aimed to investigatewhether theSTNwas involvedwith “global conflict”—
when a cue conflictswith several precedingones—but did not find evidence to support
that role. They found that beta oscillations in both the STN and frontal cortex instead
encoded “local conflict”—i.e., when the presented cue differed from the immedi-
ately preceding one—but the beta activity in the STN persisted until the next cue,
while the cortical activity subsided more quickly. They also specifically found alpha
and beta band connectivity between the right dorsal premotor cortex and right STN
for these conflicts. Although they could not reliably determine directionality of this
relationship, the cortical activity peaked earlier and is in line with other studies which
suggest that the cortical activity drives STN activity.

13.3.4.3 MEG-LFP of Thalamus via DBS Electrodes

In a pioneering study, [40] combined MEG with thalamic iEEG measurements to
investigate corticothalamic circuits mediating visual perception. They found that
the phase of low-frequency oscillations in the mediodorsal thalamus (7–9 Hz)
predicts whether threshold-level visual stimuli were perceived. Leveraging MEG,
they furthermore discovered that prefrontal cortex activity precedes these thalamic
responses, as assessed by directed connectivity measures, suggesting that corticotha-
lamic interactions ultimately mediate perceptual performance. They also found some
evidence that visual cortex activity follows the thalamic responses, though did not
have adequate occipital MEG coverage in enough patients to make stronger conclu-
sions. As direct investigations of the human thalamus are rare, this provides important
insights into the role of corticothalamic interactions into perceptual cognition, and
an impetus for further investigations integrating both thalamic measurements with
MEG.

13.4 Discussion and Future Avenues

Most effort so far in simultaneousMEG and intracranial recordings has been directed
towards epileptic activity, where the spontaneous aspect of the discharges requires
simultaneity in order to ensure capturing the exact same brain activity at the two
levels. In cognition, the added value of simultaneous recordings may not be so
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obvious at a first glance. Many studies have performed cognitive protocols in intrac-
erebral EEG alone, and may serve as a basis for assessing MEG results [e.g. 41–44].
Still, simultaneous recordings have distinct qualities that may justify the (signif-
icant) added difficulty during acquisition. Firstly, as for epilepsy, they ensure the
exact same patient state (vigilance, arousal, level of medication, etc.), which can
be important for subtle activity or in protocols where repetition of the same stimuli
may result in different brain responses. Secondly, simultaneous recordings allow
performing correlation between surface and depth at a single-trial level, which gives
a stronger confirmation (in contrast to average across trials) that MEG and iEEG are
indeed recording the same brain source. Finally, simultaneous recordings may allow
in the future to build a “meta-modality” that combines the local view from iEEG
and the global view from MEG, thus improving our knowledge of brain function
across spatial scales. Of course, simultaneous recordings can only be performed in
patients, thus presenting pathological activity intermingled with physiological one,
and potentially reorganized brain networks. Hence the importance of combining the
results from multiple patients with varying epileptic sources [45] and confirming the
simultaneousMEG results with activity measured in control subjects withMEG only
[21].

MEG technology is now rapidly evolving, with next-generation MEG systems
employing optically pumped magnetometers (OPM) that operate without liquid
helium and allow closer positioning on the head [46]. As OPMs can be placed on the
head in any desired configuration rather than a rigid unisize helmet, this will relieve
some of the challenges with obtaining measurements simultaneously with iEEG.
Indeed, the first simultaneous measurements of OPM-MEG and iEEG for detection
of interictal spikes were recently presented [47]. The impending proliferation of
OPM-MEG systems will surely provide more such opportunities, with the aims of
characterizing their sensitivity and source localization accuracy as well as providing
further insights into functional connectivity mediating cognitive processes.
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Chapter 14
Why and How Should I Track
Eye-Movements During iEEG
Recordings?

Benjamin J. Griffiths and Tobias Staudigl

Abstract We are visual animals. How we perceive, understand and interact with
the world is intimately tied to our visual sense. Yet, the value of monitoring ocular
activity in neuroscientific experiments is often overlooked. In this chapter, we set
out to highlight how a whole host of ocular phenomena relate to brain function
and human cognition, with a special focus on intracranial electroencephalogram
(iEEG) recordings. We begin by describing key ocular events, such as saccades
and fixations, before discussing the extensive impact these ocular events have on
common neural phenomenon andmeasurable behaviour. Lastly, we provide practical
recommendations for combining eye tracking and intracranial EEG in neuroscientific
research.

14.1 Anatomy and Activity of the Human Eye

Our eyes serve to receive incoming light, transform said light into tangible informa-
tion, and project this information towards the central nervous system. The process
begins with light hitting the pupil, which is then projected onto a small area of the
retina called the fovea. The fovea is capable of extracting a highly-detailed image of
whatever the eye is fixated upon (though the size of this image is very small due to
the small size of the fovea [~1.5 mm; 0.25 mm at its most sensitive area]). Comple-
menting the highly-detailed foveal image is a coarser surrounding image generated
by the parafovea (a region of the retina that surrounds the fovea). Together, the
information extracted by the fovea and parafovea is projected to the central nervous
system via the optic nerve. From here, the signal is passed to the occipital cortex via
the thalamus, where an image is constructed and then passed across a wide range of
brain regions for additional action (e.g., interpretation, response).

Given the limited diameter of the fovea, ocular movements are essential for
building a comprehensive image of our immediate environments. Such exploration
is principally achieved through rapid, ballistic eye movements known as saccades.
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Table 14.1 Description of common ocular phenomena [1, 2]

Name Description

Saccade A rapid ballistic eye movement that orients the fovea towards the target

Fixation A prolonged moment in which the fovea is focused upon a stationary
target

Smooth pursuit A smooth movement which allows the fovea to follow a moving target

Vestibular ocular reflex A movement of the eye that counteracts the movement of the
environment incurred by events such as head rotation

Vergence Opposing movements of the left and right eyes as a stimulus
approaches / moves away

Drift A smooth, slow movement incurred during periods of fixation

Tremor A small, oscillating movement (~90 Hz) incurred during periods of
fixation

Microsaccade A small, rapid jump in eye position incurred during periods of fixation
(which may serve to compensate for the drifts described above)

Saccades are exceptionally brief (~20-50 ms) and involve a ~2–5-degree rotation of
the eye from one target to another. Once the eye has made its saccade, it will fixate
upon the visual target, allowing key visual details to be extracted by the fovea. The
duration of these fixations will vary according to a whole host of factors, including
attention, stimulus complexity and current goals, but typically last between 150 and
300 ms. Aside from saccades and fixations, the eye can execute other movements,
such as smooth pursuits, and fixational eye movements, like tremor, and drift, and
microsaccades (see Table 14.1 for details). For the rest of this chapter however, we
will principally focus on the influence of saccades and fixations on electrophysiology
and cognition.

14.2 The Neural Correlates of Ocular Activity

There are very few aspects of iEEG activity that do not, in some way, shape or form,
correlate with oculomotor activity. Whether a researcher is interested in evoked
responses, changes in spectral power, phase-locking, rhythmic fluctuations in neural
excitation, inter-area coherence or single unit activity, it is essential to account for
oculomotor activity induced by our innate tendency to visually explore the local envi-
ronment. In this section, we will describe how electrophysiological activity changes
when a saccade is executed, when this saccade stops and a fixation begins, and when
the preparation for the next saccade begins.

The onset of a saccade is accompanied by a rapid spike in electrophysiological
activity that is attributable to neural activity associated with the saccade [e.g., 3–
5], as well as muscular activity relating to the physical movement of the eyeball
[6, 7] (see “The electro-muscular correlates of oculomotor activity” below). The
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neural correlates of saccadic activity arise ~50 ms after the saccade onset [3, 8],
and are readily observable in measures of local field potential, broadband power,
inter-trial coherence, and single unit firing rate [e.g., 3–5, 8–10]. The magnitude of
these effects scale with the size of the saccade [8, 9] and appear to be lateralised,
with the ipsilateral hemisphere showing a greater saccadic spike potential than the
contralateral hemisphere [3]. Importantly, these effects are not only observed in early
visual regions; they extend across the entire visual hierarchy, from V1 [e.g., 4] to the
hippocampus [5, 9, 10]. Functionally speaking, this spike in neural activity is thought
to originate from a corollary discharge (a copy of motor output signals sent across the
brain) and serves to reset the ongoing phase of oscillatory signals within the visual
system so that incoming information falls upon the most excitable phase for stimulus
processing [11, 12]. Moreover, by resetting phase across the entire visual hierarchy
(which inherently synchronises neural activity across this network), properties of the
viewed stimulus can be readily transferred between regions [13, 14] (this is discussed
further in Sect. 14.3.2).

At the offset of the saccade, a secondubiquitous electrophysiological phenomenon
occurs: the lambda potential [15]. Much like the neural correlates of saccades, this
lambda potential arises around ~50 ms after saccade offset/fixation onset, and can be
observed across the visual hierarchy using a number of different electrophysiological
metrics including amplitude, inter-trial phase coherence, and single unit firing rate
[12, 16–19]. This response is thought to be related to the influx of visual information
[8, 17]—a theory supported by the absence of a lambda potential when saccades are
made in the dark [15], and the fact that the lambda potential appears to be highly
similar to the visually-evoked P100 ERP component [20].

In addition to onset and offset potentials, there is evidence to suggest that a number
of regions engage in preparatory processes that precede saccades. These pre-saccadic
effects present as fluctuations in amplitude, spectral power and phase clustering over
the visual cortex [8, 21–23] as well as in frontal regions [24, 25]. Typically, this
is thought to be related to motor planning, shifts in attention and a suppression
of visual processing prior to this upcoming saccade in order to ensure perceptual
stability across the saccade [26, 27]. This suppression, in conjunction with the post-
saccadic excitation described above, has been interpreted as a cyclic modulation of
excitability across the saccade-fixation cycle [11].

Based on the evidence above, it is clear that the brain is highly sensitive to eye
movements, but the neural-ocular link is also observable in the absence of major eye
movements. For example,microsaccades correlatewith very similar neural responses
to the saccades described above, albeit with a smallermagnitude [e.g., 28].Moreover,
pupil dilation that arises when fixating upon emotionally salient stimuli has been
linked to fluctuations in amplitude and alpha/beta power [29]. In other words, even
in absence of major oculomotor activity, the eyes continue to exert a noticeable
influence over electrophysiological activity.

In sum, there is an extensive link between ocular and electrophysiological activity
that can be observed across the brain, using many different signal processing tech-
niques, and are sustained (in one way or another) across the fixation-saccade cycle.
Given that patterns of ocular activity cannot be fully suppressed (that is, even the
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most well-trained participant will occasionally make a saccade), it is wise to assume
that ocular activity will influence iEEG recordings under almost any circumstance.
As such, one needs to consider how to account for this, and how it may interact with
other variables of interest, such as behaviour.

14.2.1 A Note on the Electro-Muscular Correlates
of Oculomotor Activity

Unlike scalp EEG and MEG recordings, iEEG recordings are thought to be largely
unaffected by muscular artefacts induced by eye movements, owing to the local,
intracerebral nature of iEEG recordings. However, this is not always the case.
Saccade-related muscular artefacts can be observed in intracranial recordings taken
from numerous brain regions [7]. These effects are most prominent in the temporal
pole, which neighbours extraocular muscles (namely, rectus lateralis [30]). While
someof these effects have been attributed to the choice of re-referencing (with a scalp-
based reference producing the greatest artefact), even bipolar-referenced recordings
used in conjunction with independent components analysis cannot fully correct for
such artefacts [7]. Consequently, researchers should be aware of saccade-related
artefacts in intracranial recordings when interpreting their results and, wherever
possible, use direct measurements of ocular activity to address the possibility of
such a confound.

14.3 The Functional Roles of Eye Movements for Brain
Function and Behaviour

As alluded to above, the neural correlates of ocular activity are not epiphenomena;
rather, they exert a profound influence over brain function and behaviour. In this
section, we give two examples of how eye movements influence brain function and
behaviour, and then highlight several key resources relating these eye movements to
various psychological constructs.

14.3.1 Eye Movements Map Visual Space

Eye movements can be viewed as a window to cognitive processes [31] and
accounting for them has been shown to reveal valuable insights into fundamental
cognitive processes.One particularly impressive example pertains to the neural corre-
lates of spatial navigation across different species, and the implications different
exploration strategies in these species might have for the coding of space. Seminal
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research in rodents discovered place cells, head directions cells and grid cells and
identified them as the major pillars underlying navigation and memory [32–34]. The
quest to discover cells in primates that show analogous spatially tuned firing patterns
has long been difficult (but see [35, 36]). Instead, what has been consistently found
in primates are cells that code for visual space. That is, neurons in the monkey
hippocampus fire with respect to where the animal is looking, rather than where the
animal is located in space [e.g., 37]. A variety of gaze dependent firing patterns have
been found in neurons located in the primate medial temporal lobe, some of which
closely resemble their rodent counterparts (e.g., visual grid cells, saccade direction
cells and visual border cells), but also cells that code for multiple aspects of visual
and other spaces [38–40]. Considering the primacy of vision among primates’ senses
and the extent to which primates use vision to explore their environment, it seems
clear that cells code essential features of visual space to build a cognitive map. In
humans, single neurons coding for visual space have not yet been identified, but brain
activity exhibiting grid-like coding of visual space has been shown with fMRI, MEG
and iEEG [41–43].

14.3.2 Eye Movements Align Brain Rhythms

While exploring the visual environment, we rapidly move our eyes, shifting the
fovea centralis from one location to another. During saccadic eye movements, neural
activity is suppressed and perception is reduced, while during fixation periods in
between saccades, neural activity is enhanced [44]. Saccades typically occur at a
frequency of 3–4 Hz during visual exploration (with slight variations depending on
the task). Each saccade interrupts the flow of visual input, making our perception
of the visual world rhythmic rather than continuous. Our brains, however, compen-
sate for the perceptual gaps during saccades and create the illusion of a contin-
uous stream of visual input [e.g., 45, 46]. The quasi-periodicity of saccades thus
produces temporal windows during which novel visual input arrives in the brain and
excites both visual and non-visual areas. The brain itself also relies on temporal
windows during which neural processing is favourable, located between periods
when processing is impeded or even impossible which can range from a fewmillisec-
onds (e.g., refractory periods in neurons) to several hundreds of milliseconds (e.g.,
down-states during slow wave sleep). Brain oscillations are a prominent example of
these rhythmic temporal windows, or duty cycles, defined by the phase of the oscil-
lation. Much of the functionality ascribed to brain oscillations lies in the very fact
that they provide a window of opportunity for (ensembles of) neurons to fire coher-
ently and, thus, enable coordinated processing and communication of information
[47]. Therefore, an optimised strategy to process and communicate incoming visual
information would be to align one temporal window to the other, such that new input
arrives during the duty cycle. At least two steps are necessary to achieve this: (1) The
system needs to be able to predict upcoming temporal windows, and (2), the system
needs to adjust one (or both) of the temporal windows according to the prediction.
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A temporal prediction of when windows for novel visual input will occur can be
made on the basis of efference copies. Efference copies are copies of the motor
commands that the brain sent to produce the movement (also called corollary
discharge). Whenever the brain sends a motor command towards the periphery to
execute a movement, a copy of this command is kept within the system. The infor-
mation about the imminent movement can then be used to prepare the brain and
potentially modulate the state of a network such that it is optimised for when the
predicted movement happens. Consequently, efference copies usually target brain
circuits interpreting sensory inputs and are particularly important for distinguishing
self-generatedmovements fromchanges in the externalworld. In the case of saccades,
this is particularly striking: whenever we move our eyes, the image on our retinas
moves in the opposite direction. However, the brain predicts and compensates for the
movement in the physical world to provide a stable internal representation [27]. The
neural foundations of eye movement related efference copies have principally been
investigated in non-human primates [e.g., 48]. Cortical areas, in particular the frontal
eye fields, send amotor command to the superior colliculus which is conveyed down-
stream to lower motor areas. An efference copy is sent from the superior colliculus
to the mediodorsal thalamus, which holds information about the onset and direc-
tion of the upcoming saccade (see Fig. 14.1a). This information is provided to the
frontal eye fields via thalamocortical neurons. Providing essential information about
impending (motor) behaviour has been suggested to be one of the fundamental roles
of thalamocortical loops [49] and could be a fundamental mechanism to predict an
upcoming temporal window during which new input arrives.

a b

Fig. 14.1 Saccade-triggered phase alignment of brain rhythms. a Superior colliculus (SC) neurons
send a motor command which is branched off to the mediodorsal thalamus (MD), signalling an
upcoming saccade (efference copy). b Sketch of the proposed model. Simultaneous recording of
eye movements (black lines) and iEEG from multiple brain areas (blue, orange). To prepare for
processing and communication of the incoming stimulus, the phases of brain areas are aligned to
the saccade (but it is also plausible to suggest that saccades align to brain rhythms). Shaded areas
depict duty cycles of the respective brain rhythms. Dashed lines depict saccade onsets. Specific
phase angles and brain areas are chosen for clarity purposes and not based on real data
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With the system primed for an upcoming eye movement, neural activity now
needs to be modulated to synchronise peak excitability with the eye movement. A
potential mechanism to adjust windows of excitability according to the prediction
based on an efference copy is the alignment of low frequency oscillatory phase. Such
low-frequency phase-alignment has been demonstrated to co-occur with saccades in
humans as well as non-human primates [9, 10, 17, 50] and linked to prioritised cogni-
tive processing [5, 51]. Phase alignment is not necessarily limited to a single ensemble
of neurons, but might, instead, be a feasible tool to organise functional networks
across many brain areas [52]. In order to make this work, efference copies would
need to be distributed to and induce phase alignment in multiple brain regions (which
is feasible considering the widespread projections of the thalamocortical system). A
coordinated alignment of low-frequency phase on a global level could set the stage
for efficient neural communication [13, 47]. Recent findings combining intracranial
recordings and eye tracking support this idea by showing enhanced connectivity
related to saccade onset [51] (see Fig. 14.1b).

14.3.3 The Role of Eye Movements in Various Psychological
Constructs

There are numerous other examples of exciting research lines investigating the rela-
tionship between cognitive processes and oculomotor behaviour. Since a compre-
hensive review of all these findings would be sufficient to form it’s very own book,
we list suggestions for the interested reader on a selection of topics: memory [e.g.,
53, 54], navigation [e.g., 55, 56], attention [57, 58], perception [59], reading [60, 61]
and ‘active sensing’ [62, 63].

14.4 Accounting for Ocular Activity in Cognitive
Neuroscience Research

The previous two sections demonstrate that eye movements are intimately linked
to a wide range of electrophysiological phenomena, and quite possibly mediate the
interaction between this neural activity and cognition [e.g., 54]. Consequently, it is
essential to account for ocular activity when exploring the links between electro-
physiological activity, cognition and behaviour. In this section, we discuss how best
to account for ocular activity when studying brain-behaviour correlations, and their
relative strengths and weaknesses.

The first approach, which is perhaps the default for those who are unaware of
the ubiquity of ocular influence over the brain and cognition, is to simply ‘prevent’
eye movements. This could include designing a paradigm that uses simple stimuli,
presented at the centre of the screen and instructing participants to avoid making
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eye movements during the task. We place ‘prevent’ in quotes, because this ‘prevent
eye movements’ approach does not really prevent eye movements at all. The eyes
are never completely still. While these design choices may reduce the number of
major saccades made in the experiment, some of these larger saccades will remain,
and smaller movements (i.e., microsaccades, tremors) will continue to be prevalent.
Impeding all eye movements is, on the other hand, not practical in most experimental
settings anyway. If one were successful in preventing their participants’ eye move-
ments completely (including miniature ones), they would soon realise the drawback
of this unnatural condition: visual perception fades when all eye movements are
suppressed [64]. One can experience a mild version of this in the so-called Troxler’s
effect: when fixating upon the centre of a display, peripheral stimuli will start to fade
after only a short period of time. The effect vanishes immediately when the eyes
are moved. Neurally, this can be explained by adaptation processes during fixation,
which are counteracted by micro-saccades [64]. Moreover, such an approach lacks
ecological validity—in daily life, eye movements are not suppressed, and if they
do indeed serve to facilitate cognition [54, 65], suppression of eye movements may
lead to peculiarities in cognitive processes that undermine the experimental ques-
tion at hand. Ultimately, this approach is not fit-for-purpose, and experimenters who
take such an approach must accept the fact that eye movements may be acting as a
latent variable that mediates the experimenter’s observed link between the brain and
cognition.

The second approach,which involves a deep dive into ocular activity, is to embrace
“free-viewing” paradigms and employ simultaneous eye tracking-iEEG recordings.
By allowing participants to fully explore the stimuli presented to them, the neural
data and behaviour recorded will be most representative of what occurs in daily
life, substantially boosting the ecological validity of the data. Of course, such an
approach also requires careful analysis of data, focusing not only on what happens
when a stimulus is presented, but also what happens when saccades and other eye
movements occur (details on how to handle such analyses can be found in the next
section). However, these additional analyses may be off-putting to researchers who
are not focused principally on the influence of eye movements on the brain and/or
behaviour, and they may prefer the third approach.

The third approach sits somewhere between thefirst and second approaches, in that
it acknowledges the importance of eye movements in cognitive electrophysiology,
but does not wish to focus a study on them. Like the second approach, simultaneous
eye tracking and intracranial recordings would be taken, but in a paradigm that serves
to minimise eye movements (e.g., by presenting simple stimuli at the centre of the
screen). The nature of eye movements could then be calculated on a trial-by-trial
level (e.g., number of saccades, length of fixations) and included as covariates in the
main analyses (see the section ‘“eye movements-as-covariates” analysis’ below).
This approach may be best suited to those researchers who simply wish to factor out
the contributions of eye movements from their experimental questions.
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14.5 A “How-To” of Eye Tracking and Intracranial EEG

The sections above have highlighted the influence that ocular activity exerts over
neural activity, but a question remains: what practical steps can researchers take to
measure the interactions between the eyes, brain, and behaviour? Here, we provide
an overview on how to conduct simultaneous iEEG-eye tracking experiments, from
the practicalities of recording in the clinic to descriptions of the myriad of analytical
possibilities. Given the breadth and depth of eye tracking as a research topic, this
section should not be viewed as a comprehensive guide to eye tracking, but rather an
introduction to the key issues in relation to intracranial recordings. For the interested
reader, we have provided a number of references to other detailed guides at relevant
moments which go deeper into various aspects of the methodology.

14.5.1 Recording Ocular Activity in the Clinic

It would be fair to say that most eye trackers have not been designed with iEEG
patients in mind, and many lab-based eye tracking solutions have their drawbacks
when brought to the patient’s bedside. In this section, we aim to highlight the rela-
tive strengths and weaknesses of different eye tracking solutions when used in the
clinic (see also Chaps. 4 and 5 for general considerations of recordings in a hospital
environment).

Eye tracking systems can be divided into two broad categories: desk-mounted
systems and wearable systems. Desk-mounted systems tend to be large units that
are placed on the desk in front of a participant, either as large towers sitting directly
betweenparticipants and the computer screen (e.g., TowerMountEyeLink1000Plus)
or smaller, remote devices that sit beneath/beside the computer screen (e.g., Tobii
Pro Spectrum, Eyelink Portable Duo, TrackPixx 3). These desk-mounted systems
tend to provide a more accurate and higher-sampled recording (up to 2000 Hz) of
ocular activity than wearable systems, but they do have their drawbacks. Due to their
weight and a lack of dedicated work surfaces available to the patient in the clinic,
tower systems are not a practical option for combined iEEG-eye tracking recording.
The remote systems, in contrast, can be used in the clinic settings, but care is required.
For example, remote systems can be set up on the patient bedside table if this does not
interfere with the patient responding to a computer task. However, the remote system
is still heavy, meaning some tables will struggle to hold the weight of the system.
Moreover, the system may become a hazard should the patient experience a seizure.
As with other research equipment brought to the hospital ward, one needs to be
careful not to blockmedical staff access to the patient. One solution for this particular
issue is to use downscaled versions of some manufacturers’ high-end products (e.g.,
Tobii Pro Fusion), that can be attached directly to a monitor or a laptop and are,
consequently, easier to set up and more mobile. Usually, these systems come with
a reduced sampling rate relative to their high-end siblings. Beyond size, it is also
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important to consider how tolerant the eye tracker would be to head movements.
Research with iEEG patients will in most cases be conducted while the patient is
in their hospital bed, and fixing their head position using a chin-/forehead rest or a
bite bar will be very hard to accomplish and potentially unpleasant for the patient. A
visualisation of how iEEG and eye tracking can be combined at the patient’s bedside
is provided byWang and colleagues [66]. Researchers aiming to track eyemovements
intraoperatively (e.g., when Parkinson’s patients are awake during placement of deep
brain stimulation lead) will face additional challenges. The setup and access to the
patient needs to be arranged in close consultation with surgeons and other medical
staff, and the time available for experimental procedures during surgeries is usually
very little, restricting the range of suitable tasks. However, in contrast to patients
outside the operating room, head movements are less problematic since patients’
heads are restricted in a head frame (though this may obscure the patient’s field of
view). Nonetheless, should the researcher manage to navigate these issues, remote
systems can provide a robust and reliable measure of ocular activity in the clinic.

Wearable eye trackers provide a light-weight alternative to desk-mounted options.
Typically, wearable eye trackers train one camera (or more) on each eye, and point an
additional camera outwards to capture the participant’s frame of view (e.g., Tobii Pro
Glasses 3; Pupil Core, Eyelink II). As these eye trackers are worn by the participant,
researchers needn’t worry about additional desk space to hold the system, whichmay
allow formoreflexibility in the taskswhichparticipants complete.However, these eye
trackers also have their drawbacks. For example, the maximum sample rate tends
to be smaller than desk-mounted alternatives (often <120 Hz), meaning analysis
of saccades can become difficult. Furthermore, depending on where intracranial
electrodes have been implanted and/or where bandages have been placed, the patient
may not be able to wear these eye trackers.

Ultimately, the question of which type of eye tracker to use boils down to the
experimental question at hand. If researchers are interested in fixation-related anal-
yses (which do not require high sampling rates), or have limited space, wearable eye
trackers may be more appropriate, but if researchers are focused on saccadic activity,
desk-mounted options with high sampling rates are more suitable.

Regardless of which system is used however, researchers need to consider how
they will synchronise the eye tracking recordings with the iEEG recordings as this is
paramount to exploring the interactions between ocular activity, neural activity and
behaviour. Fortunately, many systems will have the capability to receive a trigger
much like how iEEG recording systems do. This means researchers may be able
to send a single trigger from the experimental computer to both the iEEG and eye
tracking systems, allowing the two data streams to be aligned during subsequent
analysis. If the eye tracking system is not built to receive such triggers, however,
researchers will need to synchronise the clocks of the experimental, iEEG-recording
and eye tracker-recording computers so that timestamps are consistent across all hard-
ware elements of the experiment (as clocks have a tendency to drift over time [67]).
One popular synchronisation solution is ‘Lab Streaming Layer’ (LSL; https://github.
com/sccn/labstreaminglayer), which can synchronise clocks up to every five seconds.
While LSLmay take a little additionalwork to set up in comparison to a simple trigger

https://github.com/sccn/labstreaminglayer
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cable, it may be more effective in situations where recordings occur across multiple
sites and researchers wish for a single, commonmeans of synchronisation rather than
bespoke solutions for each site.

If eye tracking equipment is unavailable, researchers may still benefit from the use
of electrooculography (EOG). Depending on the position of the patient’s bandages,
researchers can place horizontal EOG pairs (one left of the left eye, and one right of
the right eye) and vertical EOG pairs (one above the eye and one below the same eye).
EOGrecordings can be used to identifywhen a saccade or fixation occurred, aswell as
amplitude and direction of these ocular phenomena [68]. Moreover, EOG recordings
are often directly fed into the iEEG recording system, avoiding the issues relating
to synchronisation described above. However, much like the wearable eye trackers,
the placement of EOG electrodes may be difficult for some patients depending on
bandage placement. Nonetheless, EOG provides a feasible alternative for measuring
ocular activity when eye tracking equipment is not available.

14.5.2 Detecting Ocular Events

The detection of ocular events is key to any analysis focusing on the intersection of
ocular activity, neural activity and behaviour. While large events such as saccades
and fixations can be readily identified in the raw eye tracker trace, manually labelling
every event can be a time-consuming approach that is difficult to replicate by others.
Consequently, algorithms tend to be more popular when it comes to event detection.
Here, we provide a brief overview of the two most common forms of event detection
algorithm, and then describe how to handle common artefacts that may impair the
performance of these algorithms.

Almost all event detection algorithms involve translating the gaze co-ordinates
(i.e., the x- and y-positions of where the eye is focused on the computer screen)
into key ocular events (e.g., saccades, fixations). Dispersion algorithms will set out
to identify key ocular events based upon the range of the x- and y-gaze positions
over a predefined period of time (that is: dispersion= [max(x)−min(x)]+ [max(y)
− min(y)], where x and y are vectors containing x- and y-gaze positions over the
predefined timewindow). In themost basic of dispersion algorithms, if the dispersion
measure falls below a predetermined threshold (either based on existing literature, or
through visual inspection of the participant data), then that time period is considered
to be a ‘fixation’ and the remainder of time periods are inferred to be ‘saccades’.
One of the most common examples of a dispersion algorithm is the ‘identification
by dispersion threshold’ algorithm (I-DT [69]). While popular and widely-available,
dispersion algorithms do have their drawbacks. For example, they are often distorted
by ocular drifts, and tend not to function well when the sample rate of the eye tracker
exceeds 50 Hz.

An alternative is to use velocity-based algorithms [e.g., 57]. Many of these algo-
rithms use a derivative of gaze position (i.e., velocity= change in visual angle/change
in time) to identify saccades based upon a pre-defined velocity threshold. When the
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data exceeds this threshold, a saccade is marked, and anything that falls below the
threshold is assumed tobe afixation (though somealgorithms also include aminimum
fixation threshold, where velocity must fall below the threshold for a set period of
time). In their most basic form, velocity-based algorithms are simpler than dispersion
algorithms, but they are often built upon to help minimise distortion by noise. For
example, implausibly fast saccades may be discarded, or a two-pass procedure may
be implemented in which approximate saccade windows are identified in the first
pass, and then the onsets/offsets are concretely defined in the second pass. However,
even with these modifications, defining events based solely on velocity can be unre-
liable. This has led to some incorporating acceleration into the algorithm (where
acceleration = change in velocity/change in time; [e.g., 70]), which can help distin-
guish slow saccades frommoments involving fast smooth pursuits. Both velocity and
velocity-plus-acceleration algorithms tend to perform better when the eye tracking
data has a high sample rate, as high sample rates allow for a more robust estimation
of velocity/acceleration.

Of course, no event detection algorithm is perfect, and it is important to consider
how to handle potential artefacts that distort the algorithm output. One of the most
common artefacts comes from blinks; the moving of the eyelid can lead to a rapid
change in the eye tracker-predicted gaze position,which in turn can lead to algorithms
detecting an illusionary saccade. Some researchers tackle this issue by asking partic-
ipants to refrain from blinking during the key moments of a task, and then discarding
trials in which participants did blink, while others tackle this issue by ignoring any
events that are detected just before (e.g., 100 ms) or just after a blink. Stochastic
noise can also be problematic for event detection, where momentary jumps in gaze
position are erroneously defined as saccades. If these jumps are relatively small,
smoothing or filtering the data will often attenuate these issues. However, in cases
where these jumps are large, smoothing/filtering may make the situation worse as it
maymake these jumps appear more saccade-like to the automated algorithms. Visual
inspection is perhaps the best approach to tackle these larger jumps, where artefactual
trials are discarded in much the same way that artefactual trials are discarded when
contaminated by an iEEG artefact.

In sum, many event detection algorithms are readily available for eye tracking
research, each of which have their relative strengths and weaknesses. Dispersion-
based algorithms search for fixations based on limited change in gaze position, and
are better suited for low sample-rate data, while velocity-based algorithms detect
saccades based upon changes in velocity (and also acceleration). If the reader is
interested in exploring these approaches further, we can recommend Holmqvist &
Andersson (2017) for a detailed review of many different forms of algorithm [1],
and Nyström & Holmqvist (2010) for a description of how to build a bespoke,
velocity-based, event detection algorithm [70].
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14.5.3 Saccade-/Fixation-Locked Analysis

For researchers looking to directly explore the impact of saccades and fixations on
a particular brain-behaviour correlation, it can be highly informative to conduct a
saccade- or fixation-locked analysis in which the intracranial data is re-epoched
around these saccadic or fixation events. In order to do so, however, researchers
should consider three factors: (1) what ocular event to lock the iEEG data to, (2)
how to address trial imbalances, and (3) how to baseline correct the data. We will
consider each issue in turn.

The decision about which ocular event to lock to should be driven by the question
at hand. If researchers are focused on how the brain/behaviour responds to stimulus
properties, fixation-locked analyses aremore appropriate as this form to time-locking
is more closely locked to the ‘onset’ of the visual stimulus, whereas saccade-locked
analyses are more effective for questions relating to the preparation, execution, and
response to eye movements themselves. In instances where researchers are unsure
about which method to use, they could elect to do both (though of course this will
effectively double the number of epochs that will need to be analysed, as well as
double the number of statistical comparisons that will be made later down the line).

After deciding which ocular event to lock to, researchers need to consider
balancing trials between conditions. As described earlier, the size and direction of
saccades [e.g., 8, 9] and duration of fixations [e.g., 11] can have a large impact on
neural activity. If there are differences in saccadic or fixation-related activity between
conditions, this has the potential to drive neural differences between conditions. So, if
researchers are not interested in the effects of differences in saccadic/fixation-related
activity, these parameters should be matched as best as possible between conditions.
For example, researchers could, for every trial of one condition, find the most similar
trial of the second condition (e.g., in terms of saccade distance, fixation duration),
and use these two matched conditions for subsequent analysis.

After balancing trials, the choice of baseline needs to be considered for a range
of iEEG analyses (e.g., event-related potentials or changes in amplitude/power).
Typically, baselines can either be common across all saccades/fixations of a
trial/recording, or individual to each saccade/fixation event. Common baselines typi-
cally take data from before the beginning of the trial and correct epochs based on this
signal. Such an approach is useful if the researcher is interested in exploring how
neural responses change over the course of a trial (e.g., increase in memory load,
change in attentional resources). However, for long trials, or continuous record-
ings (e.g., movie-viewing), drifts in activity between the pre-trial baseline and later
saccades can become problematic. Individual baselines are less likely to be swayed
by such drift, as the baseline signal comes directly before the event of interest. It also
helps control for factors such as shifts in attentional resources if this is not a variable of
interest. However, individual baselines also have their drawbacks. For example, these
baselines are easily swayed by differences in preceding saccadic/fixation-related
activity (e.g., saccade size, fixation duration), which means greater effort is required
when it comes to matching trials between conditions. This issue can also become
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exacerbated if the two conditions have inherent differences in saccadic-/fixation-
related activity; in such instances, a common baseline may be more appropriate.
Ultimately however, the decision sits with the researcher, and they should select the
method they feel is most appropriate for the question at hand.

After completing these steps, researchers can proceed with their iEEG analyses
as if the data were locked to a stimulus trigger. However, it is always worth remem-
bering that for saccade-/fixation-locked recordings, the data immediately preceding
the event may correspond to some other ocular activity (e.g., the offset of a fixation,
saccade execution), and methods that involve temporal smoothing (e.g., wavelet-
based time–frequency decomposition approaches)may lead to this preceding activity
obscuring the effects of interest. For the interested reader, a deep dive into the
various decisions involved in saccade-/fixation-locked analyses has been presented
by Nikolaev and colleagues [8].

Most of the information provided above pertains to the analyses of local field
potentials. Only a few studies have related human single cell recordings to eye
movement behaviour [e.g., 50, 51, 71]. As a general approach, firing rates of putative
single units can be analysed during time windows related to saccades or fixations.
For example, a single cell could be classified as being visually selective if its firing
rate was modulated by the category of fixated image in a defined time window after
fixation onset. Obviously, a plethora of single unit analyses and approaches could be
used in a similar way, the interested reader is referred to the publications cited above
for inspiration (see also Chap. 45).

14.5.4 Encoding Models

There has been a rapid expansion in the use of multivariate methods to analyse
neuroimaging data in the last decade. One approach that is particularly relevant to
studying the link between eye movements and the brain is the forward encoding
model (FEM).

A FEM aims to model neural activity at any given electrode/sample point as a
function of the properties of a stimulus, be that visual stimuli [e.g., 72, 73], auditory
stimuli [e.g., 74], or ocular activity [e.g., 75]. This is achieved by breaking the
stimulus down into its constituent parts. In the case of ocular activity, breaking this
down into constituent parts can be done in a myriad of ways. For example, one could
simply use eye position on the x- and y-axes as two predictors in the encoding model,
or one could push the boat out andmodel eye position as a series of circular–Gaussian
kernels covering all possible ocular angles as has previously been done for virtual
head direction [76]. Ultimately, the decision on how to break down the patterns of
ocular activity depends on the research question at hand.

Whatever the approach used, the next step of the FEM analysis involves building
a general linear model to estimate activity at a given intracranial electrode based
upon the consistent parts of a stimulus (each of which will act as a separate predictor
variable in the linear model). The linear model is constructed such that the outcome
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variable (y) reflects a vector of iEEG activity from a single iEEG channel, where
every row of the y reflects a separate sample point of this iEEG activity. The predictor
matrix (X) contains all the predictor variableswhichmake up the stimulus, with every
column of X representing a different stimulus feature. The beta weights (β) are then
estimated using the conventional equation: y = βX.

To validate the performance of the FEM, the estimated beta weights are then
applied to a second, hold-out dataset. By multiplying the beta weights with the
predictor matrix of the hold-out dataset, a predicted time-series of iEEG activity
is produced. This predicted time-series can then be correlated with the observed
iEEG time-series of the hold-out dataset. If there is a significant correlation (or one
that significantly deviates from a surrogate distribution), one can conclude that the
stimulus (in this case, ocular activity) can predict neural activity at a given iEEG
electrode. Beyond predicting iEEG activity, the beta weights of the FEM can be
inspected to identify which parts of the stimulus best predict iEEG activity (though
see [77], for a cautionary note on the interpretation ofweights inmultivariatemodels),
or theweights canbe inverted to allow researchers to predict stimulus properties based
on iEEG activity.

FEMs are a powerful technique for probing the link between ocular and elec-
trophysiological activity. For example, they allow for the simultaneous modelling
of multiple stimulus features, which many univariate analyses cannot easily do.
However, this also has drawbacks. The relative complexity of the FEM makes
the analysis computationally expensive, sometimes prohibitively so. Moreover, it
is sometimes unclear what parts of the stimulus feature it is best to model. This can
lead to researchers having to build and compare several models, which incurs issues
with multiple comparisons. Nonetheless, so long as the researchers have a clear
research question in mind, and have the computational means to run the analyses,
FEMs could prove to be a fruitful venture when exploring the link between ocular
and electrophysiological activity.

FEMs are a complex topic in their own right, and the interested reader may wish
for more detail than what is provided here. Fortunately, there are a number of great
primers on the topic out there which can be explored in more detail [e.g., 78] (see
also Chap. 47).

14.5.5 “Eye Movements-As-Covariates” Analysis

If the research question does not focus on the role of ocular activity, but the exper-
imenters wish to control for the potential mediating effect of such activity on the
brain, behaviour and cognition, the experimenters can consider ocular activity as
a covariate. There are many ways to analyse brain-behaviour relationships while
controlling for covariates, and here we provide two suggestions, one simple and one
more sophisticated.

Perhaps the most straightforward solution is the median split, whereby the dataset
is split into two based on a covariate, and analysis is conducted on the two groups
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separately: One could divide participants into two groups based on, say, the mean
number of saccades they made per trial, and run the brain-behaviour correlation
separately for the two groups. If the correlation remains significant in both groups,
and there is no significant difference in the correlation coefficient between the groups,
one could conclude that saccade count does not exert a substantial influence over the
brain-behaviour correlation. If, however, the correlation disappears for one group, or
a significant difference in the correlation coefficient is observable between the two
groups, then one could conclude that saccade count mediates the brain-behaviour
correlation. While this approach is easy to implement, it does have a number of
drawbacks. First, by splitting the data in two, the sample size for each test is halved,
substantially limiting statistical power. Second, one needs to test whether there is a
difference between the two groups (i.e., a between-samples comparison) which may
be difficult to robustly implement given the inconsistent placement of intracranial
electrodes across participants. Third, one can only address one covariate at a time.
If, for example, one wished to also explore the impact of saccade count and fixation
duration on the brain-behaviour correlation, a second median split analysis using
fixation duration as the criterion for dividing the groups needs to be conducted.
Critically, this prevents one from simultaneously accounting for two covariates (i.e.,
number of saccades, fixation duration), meaning both median split analyses may still
contain influence from the other covariate.

An alternative approach which does not impact statistical power, and can handle
multiple covariates simultaneously, involves linear modelling. Here, a linear model
would be constructed in which iEEG activity (the outcome variable) is modelled as
the weighted sum of behaviour and the saccade count (the predictor variables) on a
trial-by-trial level. The resulting regressor (i.e., beta) weight for behaviour can then
be viewed as the link between behaviour and iEEG activity after regressing out the
influence of saccade count. These beta weights can then be statistically appraised
in one of two ways. The first option involves running a linear model separately for
each participant, pooling the resulting beta weights and then testing whether they
consistently differ fromzero in a one-sample t-test. The alternative is to create a single
linear mixed-effects model, which includes iEEG activity, behaviour and saccade
count for every trial of every participant as well as additional random effects to
account for influences of individual participants (see alsoChap. 36). The linearmixed
model can then be statistically appraised in a myriad of ways, including likelihood
ratio tests or permutation testing (for more details, see [79]). Unlike median split
analyses, linear modelling approaches preserve statistical power, which may aid
in the detection of smaller effects. Moreover, multiple covariates can be inserted
into the same model, allowing for the simultaneous control of several potentially-
mediating factors. However, the analyses are more computationally intensive, which
may cause difficulty for analytical approaches that already require large amounts of
computational resources.
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14.5.6 Eye Movement Artefacts in Intracranial EEG

As discussed throughout this chapter, treating eye movements as nothing more
than artefacts is a highly problematic practice. That said, some parts of the ocular-
induced change in electrophysiological signal (namely, the electromuscular compo-
nent) should be suppressed prior to analysis [7, 30] as these signals do not reflect true
brain activity. For example, intracranial electrodes that are proximal to the extraoc-
ular muscles are likely to pick up electrical signals generated by these muscles
during saccadic activity. The magnitude of these effects depends on the referencing
montage used, with bipolar montages perhaps being themost effective in suppressing
the artefact [30]. However, even bipolar referencing is not sufficient to fully remove
the artefact. Independent components analysis has also been proposed as a means to
suppress these artefacts, and can do a good job in suppressing the electromuscular
artefact [7], although this too does not totally remove the artefact. In conjunction,
bipolar referencing and independent components analysis acts as perhaps the most
effective means to remove electromuscular artefacts from intracranial data, but even
after applying these analytical steps, researcherswould bewise to vieweyemovement
artefacts as “suppressed” rather than fully subtracted from the recordings.

14.6 Conclusion

With this chapter, we hope to convince the reader that recording eye movements and
iEEG simultaneously will benefit their research. We argue that eye movements are
more than just artefacts, and ignoring oculomotor behaviour in iEEG research will
impede our understanding of brain processes underlying cognition. Eye tracking in
clinical settings is challenging, but by pointing out several options on how to combine
and analyse eye tracking and iEEG recordings, we hope to mitigate these concerns
and inspire new avenues of research.
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Chapter 15
How Can I Combine Data from fMRI,
EEG, and Intracranial EEG?

Biao Han, Lu Shen, and Qi Chen

Abstract Functional Magnetic Resonance Imaging (fMRI) has become a widely
used method for noninvasive mapping of cognitive functions in humans, and allows
for the functional characterization of specific brain regions or large-scale neural
networks. However, the temporal resolution of fMRI is limited due to the delayed
hemodynamic response and the relatively poor signal-to-noise ratio. Therefore,
the fine-grained temporal dynamics, the critical frequency bands, and the neural
network connectivitywithin and across different frequency bands underlying specific
cognitive functions cannot be well delineated by fMRI. Electroencephalography
(EEG), on the other hand, has excellent temporal resolution but poor spatial resolu-
tion. Intracranial electroencephalography (iEEG) recordings in patients with drug-
resistant epilepsy provide neurophysiological signals with superior temporal resolu-
tion, together with high anatomical precision. In the chapter, we are going to discuss
how to combine data from fMRI, EEGand iEEG to best reveal the neuralmechanisms
underlying cognitive functions.

15.1 Introduction

As a brain signal recording technique with superior temporal and spatial resolu-
tions, intracranial EEG has become an important tool for studying various cogni-
tive processes in the human brain. Notably, the simultaneous employment of iEEG
with existing noninvasive brain signal recording techniques (e.g., EEG and fMRI)
in the same study has provided profound insights on the neural dynamics under-
lying a variety of cognitive processes, such as attention [1, 2], perception [1, 3],
and memory [4, 5]. Theoretically, combining iEEG data with results from previous
fMRI and EEG studies is straightforward since they complete each other in terms
of spatial and temporal resolutions [6]. However, from a technical perspective, the
rationale and the analysis workflow on how to bridge data from iEEG and fMRI/EEG
experiments remain unclear. In this chapter, we describe the reasons for combining
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iEEG data with EEG or fMRI data, and the various approaches adopted in existing
literature to combine these data.

Even though iEEG provides superior resolutions to EEG/fMRI in both the spatial
and temporal domains, there are still many advantages to combine them. First, the
non-invasive recordings (EEG and fMRI) provide broader coverage of brain regions.
Since techniques like iEEG are most often used to identify the epileptogenic zone
in patients with refractory epilepsy (see Chap. 1), this clinical rather than research
motivation defines the implantation strategy. Specifically speaking, the number and
the anatomical coverage of the implanted electrodes are based on diagnostic purposes
regarding each patient’s specific medical conditions [6]. On the contrary, many
studies using non-invasive techniques such as functional MRI and EEG are designed
solely for research purposes, and thus whole brain coverage is achievable. Therefore,
to circumvent the limited brain coverage of iEEG, brain regions associated with a
specific cognitive process can be first identified via fMRI studies, and then iEEG
patients with implantations in the fMRI-localized brain regions will be recruited
(see also Chap. 29). Second, since non-invasive recording methods can be used in
both healthy subjects and patients, a comprehensive data pool can be acquired. In
contrast, due to the invasive and clinically oriented properties of iEEG recordings,
the number of patients participating in iEEG experiments is typically rather small,
and accordingly the iEEG data pool is limited. By combing non-invasive record-
ings and iEEG, we can first detect relatively small effects using the large amount of
data in the non-invasive methods, and then further confirm and characterize these
effects taking advantage of the spatial and temporal resolution of iEEG. Last but
not least, the combined use of iEEG and EEG/fMRI make it possible to explore
the relationship between different data dimensions. For example, by combining the
blood oxygen signal provided by fMRI with the intracranial signal of iEEG, it is
possible to explore the relationship between the hemodynamic response and the
neural oscillations during different cognitive processes.

In the subsequent sections, we will review studies that have effectively integrated
iEEG data with either previous or concurrent fMRI/EEG data. We aim at providing
a conceptual guidance on the data analysis pipelines for combining iEEG data with
either fMRI or EEG data. Specifically, for the combination of iEEG and fMRI, we
focus on the advantages of fMRI in providing anatomical precisions and whole brain
coverage, together with the high temporal resolution of iEEG. For the combination
of iEEG and EEG, we focus on the advantages of EEG in terms of the extensive
amount of previous experiments and whole-brain coverage, together with the high
spatial resolution of iEEG.
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15.2 How Can I Combine Data from fMRI
and Intracranial EEG?

Since the early 1990s, functional magnetic resonance imaging (fMRI) has been
widely adopted in brain mapping research because it does not involve injections,
surgery, the ingestion of substances, or exposure to ionizing radiation. Based on
its non-invasiveness, fMRI is applicable to a relatively wide range of test subjects,
including animals, healthy humans, and patients, among others. More importantly,
it can provide whole brain scans with high spatial resolution. Therefore, the existing
fMRI results provide the anatomical basis for iEEG studies. For example, fMRI
studies can provide information on task-relevant brain areas (e.g., visual areas, audi-
tory areas, motor areas, and high-order areas etc.) and whole-brain templates (e.g.,
Desikan-Killiany altas, Destrieux atlas), which help iEEG studies to purposefully
identify brain areas of interest and pick out relevant electrodes [7–9]. Moreover, as
fMRI records blood oxygen signals and iEEG records electrophysiological signals,
the combination of the two techniques promotes an understanding of the common
nature of neural signals underlying specific cognitive functions through multidi-
mensional data analysis. Based on the existing literature, the methods of combining
fMRI and iEEG can be categorized into three groups according to the complexity of
data analysis: (1) direct combination of univariate signals, (2) combination of multi-
variate signals in decoding analyses, and (3) combination of multivariate signals in
connectivity analyses (Fig. 15.1).

15.2.1 Combining Univariate Signal in fMRI and iEEG

Like all hemodynamics-based techniques, fMRI measures an indirect signal, i.e., the
blood oxygen level dependent (BOLD) signal, whose spatial and temporal specificity
is limited by physical and biological constraints. In general, high spatial resolution
of 3 to 4 mm can be easily achieved with typical fMRI, while spatial resolution of
0.5 mm or less is possible only at higher magnetic fields (e.g., 7 T) [10]. Further-
more, the typical hemodynamic response function (HRF) of the BOLD response has
a width of around 3 s, with a peak occurring approximately 5 to 6 s after the onset of
a brief neural stimulus, a rate much slower than the underlying neural process, and
thus the temporal information is severely blurred [10]. On the contrary, iEEG allows
for a direct measurement of electrophysiological signals in the brain at millisecond
resolution and minimal latency through implanted electrodes. Moreover, iEEG has
the advantage of high spatial resolution. For example, typical stereotactic EEG elec-
trodes have a contact length of ~2 mm and a diameter of ~1 mm, capturing signals
from ~500,000 cells around each electrode [6, 11] (see also Chap. 17). The high
temporal and spatial resolution of iEEG makes it a highly valuable tool for research.
However, since the iEEG implantation schemes in patients are designed for diag-
nosis purposes only, unlike fMRI, these implants tend to be clustered in specific
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Fig. 15.1 Combining fMRI and iEEG data. The fMRI whole brain data provide information on
task-relevant brain areas, i.e., regions of interest (ROIs), that may be used to select electrodes of
interest in iEEG studies. For the univariate signal analysis, the amplitude of BOLD responses in
fMRI can be linked to the power of neural oscillations in different frequency bands in iEEG, within
the same anatomical region. For multivariate decoding analyses, neural representations of different
categories may be separated within a brain region via fMRI, and temporal dynamics of the decoding
performance can be further investigated via temporal decoding and temporal generalization analyses
in iEEG studies. For the neural connectivity analysis, fMRI data may provide information on
functionally connected brain regions, and iEEGdata further show the carrier frequency and temporal
dynamics of connectivity between these brain regions

brain areas and it is not possible to achieve full coverage of the whole brain. There-
fore, by combining fMRI and iEEG, researchers can take advantage of both imaging
techniques to achieve a more fine-grained understanding of the neural mechanisms
underlying a specific cognitive task.

For example, in existing fMRI studies, it has beenwell documented that the default
mode network (DMN) exhibits antagonistic activitywith the dorsal attention network
(DAN) and the saliency network (SN) during a variety of externally oriented cognitive
tasks (e.g., attention and conflict tasks) [12–14] (see also Chap. 33). Using the contin-
uous performance task sessions (GradCPT) paradigm, an iEEG study investigated
the neural relevance and fine-grained temporal dynamics during attentional fluctu-
ations [15]. To know exactly where the electrodes are located in these networks,
researchers assigned each electrode to membership with the DMN, DAN, SN, or
none of these networks, based on alignment with the Yeo 7 atlas (Fig. 15.2a). Later,
consistent with the results of previous fMRI studies, analysis based on these three
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networks showed distinct profiles of task-evoked activity and provided direct electro-
physiological evidence that antagonistic inter-network dynamics relate to attentional
performance.

Moreover, concurrent fMRI and iEEG studies have been performed to associate
the BOLD signal with neural oscillations in different frequency bands in the same
cognitive task. A link between an increased BOLD signal and increased gamma-band
power has been found in the visual [16, 17], auditory [1, 18], temporal [19], and
sensorimotor cortex [20]. For example, Conner et al. [21] combined fMRI and iEEG
in a visually cued object naming task or a verb generation task, and found a positive
correlation between the BOLD signal and the power of neural activity at 60–120 Hz.
Nevertheless, the direct BOLD-high gamma correspondence was not observed in all
brain regions and cognitive tasks. For example, in a navigation task, Ekstrom et al.
[22] did not find a coupling between BOLD and gamma power in parahippocampus;
instead, a significant positive correlation was found between the BOLD signal and
theta power. Unlike the high-frequency gamma activity, correspondence between the
BOLD signal and low-frequency band oscillations is less consistent, depending on
the specific task and the brain regions involved. For example, similar to the above-
mentioned positive correlation between BOLD signal and theta power during virtual
navigation in the parahippocampus, a positive correlation between BOLD responses
and theta power was also found in the amygdala during a fearful face task [23]. By
contrast, BOLD signal increase were found to correspond to alpha- and beta-band
power decreases in human motor cortex during a simple finger movement task [20]
and to beta-band power decreases in the frontal cortex [21].

15.2.2 Decoding with fMRI and iEEG

Traditional univariate analysis methods treat information in each dimension (e.g.,
each voxel or electrode) as independent data, which does not reflect the fact that
information may be contained in the brain by non-linear combinations of activity in
different dimensions. Decoding, or multivariate pattern analysis, extracts informa-
tion contained in patterns of activity across multiple dimensions, such that patterns
of activity between each dimension can provide information that is not available in
univariate analysis. In decoding, fMRI shows great advantages along the spatial
dimension while iEEG shows advantages along both the spatial, temporal and
frequency dimensions. The combination of the two techniques provides us with
rich multi-dimensional decoding information.

For example, the ability to recognize faces is one of the most intriguing aspects
of human vision and has received a substantial amount of attention. A number of
brain regions have been identified that are said to be involved in face recognition, the
best known being the fusiform face area (FFA) [24, 28]. Previous fMRI studies have
demonstrated that FFA activity contains information about individual faces invariant
across facial expression (Fig. 15.2b, left) [24, 29–31]. However, face processing was



244 B. Han et al.

a

b

c

Fig. 15.2 Examples of combining fMRI and iEEGdata. aUnivariate signals. Based on fMRI data, it
has been well documented that the default mode network (DMN) exhibits antagonistic activity with
the dorsal attention network (DAN) and salience network (SN, also referred to as the ventral attention
network) during both resting state and a variety of externally oriented cognitive tasks. Taking
advantage of a brain atlas derived from previous fMRI studies (left) [9], Kucyi et al. [15] adopted
iEEG and assigned implanted electrodes to the DMN, DAN, and SN, respectively, to investigate the
fine-grained neural dynamics within and between these networks (right). bDecoding analysis. Left:
fMRI data show that activity in the fusiform face area (FFA) contains information about individual
faces, invariant across facial expressions (rFFA/lFFA: right/left fusiform face area, EVC: early
visual cortex) [24]. Right: Based on fMRI data, Ghuman et al. [25] adopted iEEG and further tested
the temporal dynamics of face individuation and categorization. The results showed that FFA is
involved in multiple face processing stages (red lines indicate 95% threshold, corrected for multiple
comparisons). cConnectivity analysis. Left: fMRI data show increases in effective connectivity from
the amygdala to the hippocampus during processing emotionally arousing information [26]. Right:
Based on fMRI data, Zheng et al. [27] adopted iEEG and investigated the temporal progress of the
amygdala-hippocampus connectivity. The iEEG results showed that early theta-band connectivity
is associated with successful processing of emotional stimuli, while later alpha-band connectivity
is associated with discrimination errors (AMY: amygdala, HIP: hippocampus, LCR: lure correct
rejection, LFA: lure false alarm). Figures are modified from [9, 15, 24–27]
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thought to occur through a set of partially distinct stages [32]. These stages are diffi-
cult to disentangle via fMRI because of its relatively low temporal resolution, and
thus this method has provided little insights on the relative timing of FFA responses
to different aspects of face-related information. An iEEG study combined two experi-
ments to tackle this question [25]. Participants were instructed to press a button when
an image was repeated in Experiment 1, an approach which was adopted to examine
the temporal dynamics of face sensitivity and specificity in FFA. Participants were
then instructed to report whether the face was male or female in Experiment 2,
which was employed to examine the temporal dynamics of face individuation and
categorization invariant to facial expression. Multivariate pattern classification was
then used to decode the temporal dynamics of expression-invariant face informa-
tion processing using electrodes placed directly in the FFA. Results provide strong
evidence that FFA is involved in multiple face processing stages: early FFA activi-
ties (50–75 ms) contained information related to face detection, while intermediate
activities (200–500 ms) were related to expression-independent individuation using
facial features and their configuration (Fig. 15.2b, right).

15.2.3 Neural Connectivity Within fMRI and iEEG

Efficient task performance requires neural interactions among a distributed network
of areas. Such neural communications involve routing, coordinating, and integrating
neural information between brain areas (see also Chap. 19). FMRI, endowed with
high spatial resolution and whole-brain coverage, was adopted to localize interacting
brain regions and test the direction of information flow [33–35]. The low temporal
resolution of fMRI, however, deters it from detecting the fine-grained temporal and
frequency dynamics of the neural communication—a problem easily tackled with
iEEG. IEEG can be adopted to investigate the inter-regional interactions via the
coherence of the neural oscillations, and it offers a detailed delineation of the temporal
dynamics of inter-regional connectivity across different frequency bands due to its
high temporal resolution [36, 37] (see Chap. 32). Therefore, based on the accurate
and complete anatomical architecture defined by fMRI, one could better explore the
temporal dynamics of neural connectivity via iEEG.

During emotional memory, for example, several fMRI studies highlighted an
increase in the effective connectivity from amygdala to hippocampus during
processing of emotionally arousing information (Fig. 15.2c, left) [26, 38].
The temporal progression of amygdala-hippocampus connectivity has remained
unknown, however. A recent iEEG study tackled this question [27]. Subjects were
instructed to judge whether or not a lure image was the same as an emotionally nega-
tive image presented before. The authors calculated the phase locking value (PLV)
and theGranger causality index across time and frequency in the lure correct rejection
(LCR) and the lure false alarm (LFA) conditions. This analysis showed that successful
processing of emotional stimuli was associated with early bi-directional interactions
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between amygdala and hippocampus in the theta frequency band, while discrimi-
nation errors were associated with later uni-directional influence from amygdala to
hippocampus in the alpha band (Fig. 15.2c, right).

Moreover, iEEG recordings allow for a detection of electrophysiological compo-
nents, such as the theta frequency band, as a carrier of neural interactions [39, 40].
Inter-regional coherence of neural oscillations is thought to reflect a fundamental
mechanism of neural communications [41, 42] (see also Chap. 25). With ROIs being
defined via fMRI, iEEG could take a further step and unveil the carrier frequency
underlying neural interactions within and between ROIs. For example, Hacker et al.
[43] measured the spatial correspondence between iEEG power correlations and
fMRI BOLD correlation patterns in resting human subjects. The results showed that
although correspondence of fMRI correlations and iEEG power correlations was
common throughout the brain, correspondence with theta (4–8 Hz) power correla-
tions was most pronounced for the default mode network (DMN) and frontoparietal
control network (FPC), while correspondence to alpha (8–12 Hz) power correla-
tions was highest for the sensorimotor network (SMN) and dorsal attention network
(DAN), suggesting specific carrier frequencies in different neural networks. Simi-
larly, Kucyi et al. [15] assessed high frequency band (HFB) power in different large-
scale brain networks during a continuous performance task and compared the latency
of responses in these networks. They found that HFB responses peak fastest in the
DAN, at intermediate speed in the SN, and slowest in the DMN, demonstrating the
behavioral relevance of distributed activity patterns in these networks.

15.3 How Can I Combine Data from EEG and Intracranial
EEG?

Scalp EEG recordings are known for their high temporal resolution but low spatial
resolution. Due to its non-invasive nature, simplicity of equipment and whole brain
electrode coverage, scalp EEG recordings have become one of the most widely used
methods in cognitive neuroscience. Since the 1920s, EEG has provided many robust
event-related potential (ERP) components, such as N75, P100 and N145 after visual
stimuli [44–46] and a consistent P100 response after simple auditory stimuli [47,
48]. These stable ERP components can act as indexes for data validation. Besides,
the international 10–20 system of electrode placement of EEG makes it possible to
associate cortical regions with specific electrodes, by combining a sphere fitted with
the spatial position of theEEGelectrodeswithMRIorCT images of the brain [49, 50].
For the combination of EEG and iEEG, we also categorize the data analysis methods
into three groups based on their complexity: (1) ERPs averaged over simple time
dimensions [51, 52]; (2) neural oscillations in the time and frequency domains [53,
54]; and (3) connectivity analyses exploring the relationship between time–frequency
data from different brain areas [55, 56] (Fig. 15.3).
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Fig. 15.3 Combining EEG and iEEG data. IEEG data provide precise anatomical localization not
only for ERP components, but also for the power, frequency, and phase of neural oscillations. For
connectivity analyses, the connectivity between scalp EEG electrodes can be used as a positional
reference for connectivity analysis of iEEG

15.3.1 ERP Analysis Based on EEG and iEEG

Electrophysiological activity in the brain is generated by neurons in the cerebral
cortex and subcortical structures [57–59]. For EEG signals, the ERP is a sum neural
signal on the surface of the brain, which is assumed to be generated by synchronous
activity of postsynaptic potentials in millions of neurons via volume conduction [60].
For iEEG signals, the ERP is the sum neural signal of the local field potential (LFP),
which is due to both postsynaptic potentials and multi-unit spiking activity [61].
Scalp EEG recordings allow for a simultaneous assessment of ERPs across various
regions throughout the brain. Compared to scalp EEG, the iEEG has a higher spatial
resolution, and also allows for the recording of activity in deep brain regions that
are not accessible by scalp EEG. Therefore, when the ERP results from scalp EEG
are combined with the anatomically precise information in the iEEG, researchers are
able to assign the differences in the ERP amplitude between different experimental
conditions to specific anatomical regions [62–65]. In addition, scalpERPcomponents
can also be accurately localized in specific brain regions taking advantage of the iEEG
technique [66].
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ERPs can be separated based on their peak latencies, such as P1, N2, P3, and other
components, which are thought to reflect different stages of perceptual and cognitive
processing. Using iEEG, researchers have explored differences in ERP amplitudes
between experimental conditions in a single brain region with high anatomical preci-
sion, e.g. in studies on consciousness [64], time perception [65], decisionmaking [63]
and emotion [62]. In a joint EEG and iEEG study, Bekinschtein et al. [67] explored
the neural mechanisms that process auditory regularities. In the experiment, subjects
were either presented groups of identical sounds or groups that contained one “local
deviant” (LD) sound. In some blocks, the groups of identical sounds constituted the
minority of groups and were thus “global deviants” (GDs). Analysis of scalp EEG
data showed that both LD and GD conditions induced an ERP mismatch negativity
(MMN) (Fig. 15.4a, left). However, the lack of localization accuracy in EEG did not
allow for an anatomically precise distinction of the LD and GD effects. Adopting
iEEG recordings, the researchers were able to localize the LD effect to the supe-
rior temporal gyrus (Brodmann Area 22, BA22), while the GD effect was seen in
the anterior cingulate cortex (BA 32) and the dorsolateral prefrontal cortex (BA 44)
(Fig. 15.4a, right).

Although EEG can, to some extent, localize the anatomical origin of ERP compo-
nents via source reconstruction, it is difficult to determine the source of the ERP
components due to the spatial inaccuracy of scalp EEG. Using iEEG, researchers
can localize the ERP components found in the scalp EEG to precise anatomical
regions. For example, Halgren et al. [66] adopted iEEG in visual and auditory
oddball paradigms, and localized the N2-P3 components in three brain regions:
auditory-specific regions of the temporal lobe, areas in the parietal lobe associated
with attentional orienting, and multimodal association cortex associated with event
encoding.

15.3.2 Neural Oscillations in EEG and iEEG

In addition to ERPs, firing patterns in the brain generate large-scale synchro-
nized neuronal activity, resulting in neural oscillations of different frequencies [71–
74]. These oscillations can be recorded via scalp EEG or iEEG, and analyzed by
converting the time domain signal to the frequency domain using Fourier or Hilbert
transforms, or by exploring the temporal dynamics of neural oscillations using time–
frequency analysis [53, 54].When combining the neural oscillation results fromEEG
and iEEG, iEEG analysis can be based on time–frequency results obtained from scalp
EEG, including power, frequency, and phase effects, and be used to further explore
differences between experimental conditions in more anatomically refined regions
[68, 69, 75–82].

For example, iEEG can help to allocate the neural oscillation effects observed
in EEG to precise brain regions. For oscillatory frequency, taking advantage of the
bistableTernus paradigm,Shen et al. [68] found that changes in the frequencyof alpha
oscillations in posterior EEG electrodes predicted the outcome of bistable perception
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Fig. 15.4 Examples of combining EEG and iEEG data. a Left: Bekinschtein et al. [67] first used
scalp EEG to demonstrate the local deviant and global deviant effect. Red lines indicate ERPs in
the deviant condition and green lines indicate ERPs in the baseline condition. Blue lines indicate
significant differences between deviant and baseline condition. Right: Using iEEG, they replicated
the ERP results and found that the sources of the local deviant and global deviant effects are different.
The yellow disk shows the position of the electrodes. bNeural oscillation analysis. Left: Shen et al.
[68] first used scalp EEG to show that the frequency of alpha oscillations in posterior electrodes
predicts the outcome of bistable perception in the bistable Ternus display task (EM: element motion,
GM: group motion). Right: Using iEEG, they replicated the alpha frequency effect, and further
localized it to several visual regions, including the lingual gyrus, lateral occipital sulcus, precuneus
etc. c Connectivity analysis. Left: Canales-Johnson et al. [69] first used scalp EEG to demonstrate
that neural connectivity between frontal and parietal areas reflected the two percepts during bistable
perception of a sequence of tones. Using iEEG, they further confirmed the connectivity results and
localized effects between superior parietal lobe, middle frontal gyrus, and orbitofrontal areas (B.C:
before change, A.C: after change). Figures are modified from [64, 68–70]
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(Fig. 15.4b, left). Using data from a smaller group of 4 subjects, the iEEG results
confirmed the observed alpha frequency effect. Moreover, the authors found that the
effect was present in a wide range of cortical regions including lingual gyrus, lateral
occipital sulcus, precuneus and others (Fig. 15.4b, right). With regard to oscillatory
power, previous EEG studies revealed theta-band activity during spatial navigation
[83–85]. However, it has been unclear whether theta oscillations are generated in
hippocampus or in other brain regions, and what the dynamics of theta oscillations
are. Based on these EEG studies, Kahana et al. [75] conducted iEEG recordings
during a spatial navigation paradigmwith a short and a longmaze. They found that the
difference between the short and the long maze was directly reflected in theta power
in multiple areas of the cortex, including the temporal lobe, verifying the important
role of theta oscillations in spatial navigation. For oscillatory phase, in a joint study
of EEG and iEEG, Thézé et al. [81] used computer-generated naturalistic audiovisual
speech stimuli, including a keywordwith amismatched phoneme-sight pair, to trigger
the McGurk effect (i.e., the percept of a “ba” sound due to visually presented lip
movements despite an incongruent simultaneously presented “ga” sound). In this
way, the authors created bistable stimuli in which conscious perception is driven
by either visual or auditory cues. In the EEG part of the study, they found that
the perception of the stimulus was determined by the pre-stimulus phase of theta
oscillations. Based on this result, they submitted the time and frequency information
to the iEEG part of the study to localize the observed effects and found the same
phase results in posterior temporal and occipital cortex of the right hemisphere.

15.3.3 Combining Neural Connectivity in EEG and iEEG

Cognitive processes rely on a dynamic interactions within and between special-
ized neural networks [86–89]. While scalp EEG may be used to measure coher-
ence between larger-scale neocortical areas, iEEG may reveal coherence between
more fine-grained cortical and/or subcortical brain areas [56, 90–92]. Because of
their comprehensive coverage, scalp EEG recordings allow mapping coherence
patterns across all (accessible) areas of the neocortex. Therefore, the connectivity
between scalp EEG electrodes can be used as a reference for connectivity analyses
in iEEG studies. Reversely, iEEG connectivity results may be used to interpret EEG
connectivity at a higher spatial resolution.

Connectivity results in EEG/MEG studies using the same experimental paradigm
can help to further investigate the connectivity between specific brain areas in iEEG
studies [36, 69, 93]. For instance, Canales-Johnson et al. [69] asked participants
to listen to a sequence of tones (auditory bistable stimuli) that could be experi-
enced as a single stream (perceptual integration) or as two parallel streams (percep-
tual differentiation) of sounds. They determined the neural information dynamics
underlying integration and differentiation by measuring phase lag index (PLI) and
weighted symbolic mutual information (wMI) in scalp EEG and iEEG recordings
(see Chap. 32 on different connectivity measures). PLI and wMI between frontal and
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parietal regions in the EEG signals and between superior parietal lobe (SPL) and
middle frontal gyrus (MFG)/orbitofrontal cortex (OF) in the iEEG signals showed
significant connectivity. This suggests that perceptual integration and differentiation
can be mapped to interactions between frontal and temporal networks, whereas no
such effect was observed for neural connections within the frontal network or within
the temporal network (Fig. 15.4c).

Moreover, simultaneous recording of EEG and iEEG signals is useful to explore
the connectivity of neocortical signals (accessible via scalp EEG) and subcortical
signals [5, 94, 95]. For instance, the anterior thalamic nucleus (ATN) is thought to
play an important role in the formation of memories. Sweeney-Reed et al. [94] asked
subjects to perform a memory task including an encoding stage and a recognition
test, and simultaneously monitored the activity of each subject’s ATN via implanted
intracranial electrodes, and frontal and parietal areas via scalp EEG electrodes. The
results showed significant neural connectivity between the frontal-parietal area and
ATN during successful memory encoding: Neocortical-ATN theta phase synchrony
and cross-frequency coupling of neocortical theta phases with ATN gamma power
predicted later memory for scenes.

15.4 Discussion

Scalp EEG and fMRI recordings, as two widely used neuroimaging techniques, have
contributed substantially to our understanding of the neural mechanisms underlying
a variety of cognitive functions. IEEG, as a relatively new and less widely used
technique, complements scalp EEG and fMRI in terms of both spatial and temporal
resolution. In this chapter, we described relevant previous studies as examples to
illustratewhyandhow to combine iEEGdatawith scalpEEG/fMRIdata. Specifically,
fMRI and iEEG data can be combined during univariate signal analysis, multivariate
decoding analysis, and functional connectivity analysis. For scalp EEG and iEEG
data, ERP components, properties of neural oscillations, and connectivity between
scalp EEG electrodes can be accurately localized to specific brain structures via
iEEG. Combining these datasets does not only effectively exploit the high temporal
and spatial resolution of iEEG data, but also takes advantage of easy data acquisition
and whole brain coverage in conventional EEG and fMRI recordings.

However, our understanding of the relationship between different types of brain
signals acquired by the different techniques is still incomplete. Thus, the combina-
tion of multimodal datasets still has shortcomings and needs further improvements
in future studies. For fMRI and iEEG, more studies will need to be conducted that
simultaneously utilize fMRI and iEEG. In this way, the correspondence between
fMRI activation and neural oscillations will be more adequately delineated. More-
over, since iEEG patients with refractory epilepsy have by definition brain patholo-
gies, it will be ideal to perform fMRI recordings prior to iEEG implantation in the
same group of patients [96]. In this way, task-relevant brain areas, which show the
same pattern of activation as in previous fMRI studies in healthy adults, can be
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first localized via fMRI. Subsequently, neural oscillations in these fMRI-localized
‘healthy’ brain regions may be recorded in the same patients with the same behav-
ioral task. For EEG and iEEG, although we often consider scalp EEG signals as
direct recordings of brain activity, there is still a gap between the scalp EEG signals
and the local field potentials directly recorded by iEEG. Simultaneous recording of
scalp EEG and iEEG provide a better understanding of both, the difference between
the electrophysiological signals recorded by scalp EEG vs. iEEG. In addition, iEEG
allows for confirmation and improvement of source reconstructions of scalp EEG
signals.
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Chapter 16
What is the Relationship Between Scalp
EEG, Intracranial EEG,
and Microelectrode Activities?

Johannes Sarnthein and Lukas Imbach

Abstract Brain function evolves simultaneously at several scales in space and time.
We here review studies with data recorded at the smallest scale of single neurons,
local field potentials from micro-electrodes, intracranial EEG recorded from macro-
electrodes, up to EEG recorded from the scalp. Simultaneous recordings of thalamic
LFP and scalp EEG at rest show a strong coherence that reflects functional coupling
in thalamocortical loops around 8 Hz. The iEEG in the subthalamic nucleus and
the scalp EEG modulate their phase locking in the beta band (20–35 Hz) in relation
to motor performance. Activation of the amygdala is evidenced by single neural
firing, LFP, iEEG and BOLD. During the delay period of a working memory task,
hippocampal neurons fire persistently while the iEEG and the parietal EEG show
enhanced phase locking in the 8–12 Hz alpha band. For the same task, stimulus
encoding elicits information flow in the 4–8 Hz theta band from auditory cortex to
hippocampus while this information flow is reversed from hippocampus to cortex
during active maintenance. This series of studies illustrates how local processing in
specific brain areas is embedded in large-scale network communication that can be
accessed through simultaneous recordings across several brain areas and neuronal
scales.

16.1 Introduction

Mental activity is related both to brain activity from single neurons and also to large
scale brain-wide networks. Capturing activity at different scales requires recording
brain activity with different techniques. In this chapter, we review data recorded
at the smallest scale (single neuron firing), local field potential (LFP) from micro-
electrodes, intracranial EEG (iEEG or ECoG) recorded from macro-electrodes, up
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to EEG recorded from the scalp. As an additional technique, we review a dataset of
Blood Oxygenation Level Dependent (BOLD) imaging.

How do these scales interact and what is their relationship? To characterize the
functional interaction between recordings from different brain areas and scales, we
focus on neuronal communication that is subserved by neuronal synchronization [1,
2]. This interaction evolves at different timescales and in frequencies that require
temporal resolution down to the ms range. Therefore, it is advantageous to record
the data from the different scales simultaneously (see also Chap. 53).

Simultaneous recordings in different brain regions in humans are possible in
patients who undergo neurosurgical interventions [3]. Here, we review recordings
performed in patients with Parkinson’s disease (PD), neurogenic pain, or epilepsy
whowere implantedwith depth electrodes. Thedatawas acquired either during awake
surgery or after implantation of the electrodes. During the recordings, patients were
awake at rest or they performed cognitive or motor tasks.

We first review our recordings in the thalamus and the subthalamic nucleus (STN)
and their interaction with scalp EEG recordings during rest and during task perfor-
mance. We finally present iEEG recordings from the hippocampal cortex and its
relationship to direct cortical recording (ECoG), scalp EEG and single neuron firing
while participants perform a working memory task.

16.2 Cellular Origin of iEEG, LFP and Scalp EEG

When comparing intracranial recordings and scalp EEG, we must be aware that
these signals are generated by neural networks of drastically different scales. The
generation of each signal filters out the synchronized activity of neuronal assemblies.
Thenumber of neurons that forman assembly andgenerate the recorded signals varies
widely depending on the size and physical properties of the recording electrode.

Regarding the recording setup, we define that macro-electrodes with surface >1
mm2 record iEEG. Micro-electrodes with tip surface �1 mm2 record LFP from
which the action potentials of single neurons can be isolated.

When recording directly from the hippocampus or cerebral cortex, or from scalp
EEG electrodes, the origin of these extracellular fields is well understood [4]. The
scalp EEG is generated by post-synaptic dipole-like potentials along the dendrites
of cortical pyramidal cells that are arranged in parallel. Their extracellular return
current is averaged over several square centimeters of the cortex. Several 10,000
pyramidal cells must be active synchronously for an EEG signal to appear on the
scalp [5, 6] (see also Chaps. 8 and 9). A similar reasoning holds for the iEEG recorded
in the hippocampus, albeit a smaller number of neurons generate these post-synaptic
potentials.

Anatomically different, the amygdala, thalamus and subthalamic nucleus lack
the anatomical topography of pyramidal cells aligned in parallel. In the thalamus,
ellipsoid dendritic arbors of thalamocortical cells generate a “closed field” in the
sense that there is no aligned structure of dipoles that allows for the emergence of
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a summed dipole field as in the cortex. Therefore, recorded signals must stem from
fewer neurons in closer proximity to the recording probe. For the LFP recorded with
a micro-electrode in the thalamus, we assume a contribution of cells in a small cube
of side length 0.1 mm [7], which corresponds to a sample of approximately four to
five cells [8, 9]. Because multi-electrode LFP recordings in the thalamus show high
correlation between distant sites [10], a small sample of cells may be representative
for thalamic LFP activity. Similarly, the anatomy of neurons in the amygdala and
STN show that also the neurons in these areas generate a closed local electrical field.
Thus, the iEEG is generated in a small region of tissue closely around the depth
electrode in the respective brain tissue.

16.3 Relationship Between Thalamic LFP and Scalp EEG

We analyzed spontaneous brain activity intraoperatively from patients suffering from
severe PD [8]. The thalamic recordings were in the ventral anterior nucleus (VA) and
in the ventral lateral nucleus (VLa). We first observed that the dominant peak in the
power spectral density (PSD) appeared at around 8 Hz in both scalp EEG and in the
thalamic LFP (Fig. 16.1a). When looking at the temporal relationship between LFP
and scalp EEG, high thalamocortical coherence appeared at the dominant frequency
of the PSD. The dominant frequency in PD is known to be shifted to frequencies
lower than the common 8–12 Hz alpha band. When looking at the scalp topography
of thalamocortical coherence, we found the highest coherences to frontal electrodes
(Fig. 16.1b). The magnitude of thalamocortical coherence was comparable to the
magnitude of coherence between two scalp EEG electrodes (Fig. 16.1c). This is
much larger than the magnitude of coherence between subdural recordings, which
amounts to only 20% at 3 cm and decreases with distance [10]. For the same distance,
coherence in scalp EEG exceeded 80% (Fig. 16.1c). Thus, the spatial averaging,
which is the basis of the EEG signal, may extract those components of cortical
activity that are highly coherent over large distances [6]. Importantly, in contrast to
coherence between different EEG electrodes, the thalamo-cortical coherence does
not depend on the distance between electrodes in thalamus and on cortex.

In a similar setup, we analyzed spontaneous brain activity intraoperatively from
patients suffering from severe neurogenic pain. The thalamic recordings were in
the posterior part of the centrolateral nucleus (CL). Again, as for the recordings
from anterior nuclei VA and VLa, the magnitude of thalamocortical theta coherence
was comparable to the magnitude of coherence between EEG electrodes [6]. To
further characterize the dominant frequency of the coherence spectrum, we asked
the participants to open their eyes. Eye-opening reduced the power of the dominant
frequency in the thalamus and at posterior electrode sites, reminiscent of the classic
alpha desynchronization (alpha-blocking effect) in occipital scalp EEG [11].

In both studies [8, 12], we concurrently recorded firing of single neurons. We
found firing patterns that were clearly associated with low threshold Ca2+ bursts that
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a b

Fig. 16.1 Thalamocortical coherence from anterior thalamic nuclei. a The power spectra of
scalp EEG and thalamic LFP both show a dominant frequency at 8 Hz (theta band). The thalam-
ocortical coherence is significant only at the dominant frequency. b In the spatial distribution of
thalamocortical coherence, the highest coherence from anterior thalamic nuclei was found with
frontal electrode sites. c Cortico-cortical coherence (+) from frontal electrode FPz falls off with
distance, which illustrates the effect of volume conduction. Thalamocortical coherence (◯) is inde-
pendent of distance, which speaks against volume conduction but rather for synaptic transmission.
Copyright 2007 Society for Neuroscience. Modified from [8] with permission

showed the typical interburst frequency of ~4 Hz. However, there was no obvious
relation of the bursts with the thalamocortical oscillations.

Our finding of high thalamocortical coherence supports the notion that the
thalamus is involved in synchronizing activity between distant cortical areas. This
is consistent with the anatomy of the thalamocortical network that is characterized
by widely divergent thalamocortical and corticothalamic connections. In this way,
very focal thalamic activity as reflected in the LFP can show high coherence with
widespread cortical areas. Our data also indicates that the two electrode types, micro-
electrode and scalp EEG electrode, are well adapted to record manifestations of the
thalamocortical network interaction at the two given sites. The comparable magni-
tude of thalamocortical and EEG coherence suggests that the thalamus and cortex
are both relevant partners in the genesis of thalamocortical rhythmicity.

16.4 Relationship Between Subthalamic iEEG and Scalp
EEG

Electrophysiological studies in Parkinson’s disease (PD) aim to establish a link
between motor behavior and its central electrophysiological correlates [13]. To this
end, intracranial recordings from cortical and subcortical structures are used to study
motor control in PD on a network level [14]. In a subgroup of patients with PD
undergoing deep brain stimulation (DBS) in the subthalamic nucleus (STN), it is
possible to access iEEG in the basal ganglia through the implanted deep brain elec-
trodes post-operatively simultaneously with scalp EEG. This allows for a real time
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a b c

Fig. 16.2 a Coherence between STN and scalp electrode site (ipsilateral central EEG C3/C4). b,
c The timelocking between STN beta power and motor output resembles a sine wave for habitual
“shaking” (b) and a cosine wave for voluntary “pressing” (c). Modified from [15] with permission

network analysis of motor control. In addition to intracranial recordings in the resting
state, this approach allows for comparative analyses of brain network activity during
different behaviors. The large scale synchronicity and its modulation is measured
between scalp EEG electrodes and connected subcortical structures.

In a first experiment,we asked PDpatients tomove a cube (volume (6 cm)3,weight
300 g) with their hand. The cube recorded the time-varying force that the fingers
exerted on the surface of the cube in adapting the grip force. We then recorded iEEG
in the STN with simultaneous measurement of scalp EEG from PD patients who had
electrodes implanted for DBS [15]. To compare the synchronization between STN
and scalp EEG across different tasks, we analyzed the spectral coherence between
iEEG in the STN and the ipsilateral central EEG (C3 orC4, respectively). TheMagni-
tude Squared Coherence (MSC, Fig. 16.2a) showed a broad beta peak (20–35 Hz)
that persisted during the baseline condition (hold) and for voluntary movements
(press). In contrast, habitual movements (shaking) revealed a marked desynchro-
nization between motor cortex and basal ganglia. A similarly striking difference
between habitual “shaking” and voluntary “pressing” of the device appeared in the
phase locking between STNbeta power and themotor output, i.e. the force exerted on
the cube (Fig. 16.2b, c), thus underlining the difference in STN activity for habitual
and voluntary movements.

In a further experiment, we measured cortico-subcortical coupling prior to and
duringmovements inwakefulness andREMsleep in PDpatients implantedwithDBS
leads in the STN [16]. For voluntary self-paced movements during wakefulness, no
relevant modulation of synchronicity (phase locking) in the peri-movement period
5 s before and after movement initiation was found. In contrast, during unconscious
movements in REM sleep, cortico-subthalamic phase locking in the beta range was
reduced aftermovement onset, indicating a significant decoupling of the basal ganglia
from cortical neurons during sleep related movements.

In a recent study, we investigated cortico-subthalamic coupling for cued and self-
pacedmovements on a network level [17].Again, simultaneous recordings of iEEG in
different subparts of the STN and scalp EEG were performed during different motor
tasks. To differentiate the network properties of two distinct cortico-subthalamic
loops for self-paced and cued motor control, the phase locking value between STN,
central and frontal EEG electrodes was measured for both motor behaviors sepa-
rately. Connectivity analysis revealed higher synchronicity (phase-locking value,
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PLV) between the STN and central electrodes during self-paced movements and
higher STN to frontal phase-locking during externally-cuedmovements. This finding
supports the existence of functionally segregated cortico-basal ganglia networks
controlling motor behavior in PD patients.

These three studies corroborate the hypothesis that during voluntary (explicit)
motor control cortico-subcortical synchronicity is higher (voluntary grip force, cued
tapping or wake movements), whereas more habitual (intrinsic) behavior is charac-
terized by lower basal cortex-to-basal ganglia synchronicity and information transfer.
Importantly, the conclusions on the dynamics of brain network activity rely on the
large scale spatial distribution of the recording electrodes within the same functional
network.

16.5 Relationship Between Neuronal Firing, Local Field
Potentials and Hemodynamic Activity
in the Amygdala

To examine the relation between different scales of activity within the amygdala,
we recorded iEEG in epilepsy patients while they watched video sequences of
dynamic fearful faces (AVERSIVE condition) interleaved with sequences of land-
scapes (NEUTRAL condition). Concurrently, we recorded the LFP from microelec-
trodes and isolated the firing of single neurons. Further, we included in our analysis
the hemodynamic brain activity (BOLD) that was recorded a few months earlier
while participants had watched the same video sequences [18, 19]. The comparison
is valid even though BOLD was not recorded simultaneously because EEG spectra
are known to be highly reproducible over several months [20].

We found a striking covariation between the neuronal firing rate (FR), the LFP
filtered for high gamma power (µHGP) and the iEEG filtered for high gamma power
(HGP) (Fig. 16.3). The correlations suggest that the covariation is driven by the
synchronized firing within these neuronal assemblies at three different scales.

This covariation reflects common correlates of amygdalar activity across
recordingmodalities, ranging from the neuronal firing, to high frequencymicroscopic
and macroscopic activity, up to hemodynamic responses.

16.6 Relationship Between Scalp EEG, Hippocampal
iEEG, and Single Neuron Firing

In a next set of recordings in the medial temporal lobe (MTL), we focused on signals
stemming from the hippocampus, amygdala and entorhinal cortex. Multiple elec-
trodes were implanted during the presurgical evaluation in patients with epilepsy.
Simultaneous with iEEG, we recorded single neuron firing and scalp EEG [21, 22].
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Fig. 16.3 Anexample of covariation between firing rate (FR),µHGP,HGP andBOLDsignal in one
patient along the duration of the visual stimulation (upper bar: red AVERSIVE, blue NEUTRAL).
Across all neurons, the firing rate correlated positively with µHGP, HGP, and BOLD. Modified
from [19] with permission

We asked the patients to participate in a task that activates their working memory
(WM) because WM recruits activity in a wide network of brain regions [23]. WM
describes our capacity to represent sensory input for prospective use. In our verbal
WM task (Fig. 16.4), the encoding of letter items was isolated from the maintenance
period in which the active rehearsal of memory items was paramount to achieve
correct performance [21, 22, 24–26].

16.6.1 Phase Locking Value Between Hippocampal iEEG
and Scalp EEG

We will first review how hippocampus communicates within the WM network. We
investigated the PLV between hippocampal iEEG and scalp EEG and found the most
salient effect in the 4–12 Hz alpha-theta range (Fig. 16.5) [21]. The PLV had a
well-defined onset in the last 2 s of the maintenance period and rapidly diminished
following the presentation of the probe letter. The PLV increased with workload. In
our task design, this indicates that neural communication between brain regions is
channeled through theta-alpha coupling within a limited time window between the
onset and offset of the maintenance phase during trials with a high workload.
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Fig. 16.4 Verbal working memory task. Sets of consonants are presented and have to be memo-
rized.The set size (4, 6, or 8 letters) determinesworkingmemoryworkload. In each trial, presentation
of a letter string (encoding period, [−5 −3] s) is followed by a delay (maintenance period, [−3 0]
s). After the delay, a probe letter is presented. Participants indicate whether the probe was in the
letter string or not

Fig. 16.5 Synchronization of hippocampal iEEG and parietal scalp EEG. The stimulus letter
set was presented during the encoding period [−5 −3] s and maintained in WM during the main-
tenance period [−3 0] s. After presentation of the probe letter at 0 s, the participant initiated the
response. Synchronization (phase locking value PLV) around 10 Hz appears during the last 2 s of
the maintenance period in expectance of the probe letter. Modified from [21] with permission

Interestingly, the PLV synchronization occurred strongly between the
hippocampus and occipito-parietal scalp electrodes, a common locus for alpha
waves. This finding is consistent with scalp EEG findings in several healthy subjects
recorded while performing the same [20, 26] or similar tasks [27]. The enhanced
hippocampal coupling between iEEG and scalp EEG during maintenance suggests
that hippocampal activity may be integrated into the WM network via coupling
of local iEEG with long-range connectivity in the alpha-theta band. As a common
finding, the PSD in the parietal alpha-band may increase during maintenance [20,
21, 26] but parietal alpha PSD may not be directly involved in WM processing as it
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has been proposed to be critical for protecting WM maintenance from non-relevant
information [28, 29].

16.6.2 Information Flow Between iEEG from Hippocampus
and Auditory Cortex

We next investigated the directionality of the information flow during encoding and
maintenance in the task. To this end, we used spectral Granger causality (GC) as a
measure of directed functional connectivity to determine the direction of the informa-
tion flow between brain areas. As an added value compared to undirected measures
of connectivity, GC quantifies the ability of a time series to predict the temporal
evolution of another time series and can thus be interpreted as a measure of direc-
tional information flow (see also Chap. 32). In one study, we investigated the inter-
action between anterior and posterior hippocampus [24]. In another recent study, we
investigated the interaction between cortex and hippocampus in a patient with iEEG
recorded from a grid electrode (ECoG) over auditory cortex [25]. During encoding,
the net information flow�Granger (GChipp →cortex – GCcortex→hipp) was from auditory
cortex to hippocampus in the 4–10 Hz range (Fig. 16.6a). Concurrently, encoding
in the auditory cortex was accompanied by local activity in the gamma range (40–
100 Hz) of the PSD. During maintenance, the net information flow �Granger in
the 4–8 Hz range was reversed and occurred from hippocampus to auditory cortex
(Fig. 16.6a, b).

To confirm this finding from three participants with ECoG, we analyzed the
hippocampal iEEG and the scalp EEG of 15 patients who participated in this task
[25]. We used beamforming to reconstruct the EEG sources (Fig. 16.7). Indeed, the

a b

Fig. 16.6 Information flow between hippocampal iEEG and ECoG over auditory cortex. The
stimulus letter set was presented during the encoding period [−5 −3] s and maintained in WM
during the maintenance period [−3 0] s. After presentation of the probe letter at 0 s, the partic-
ipant initiated the response. a The Granger time–frequency map illustrates the net information
flow (�Granger). During encoding, net information flows from auditory cortex to hippocampus
(blue). During maintenance, the information flow is reversed from hippocampus to auditory cortex
(red) indicating the replay of letters in memory. b During maintenance, the information flow from
hippocampus is most salient to electrode contacts over auditory cortex. Modified from [25] with
permission
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Fig. 16.7 Bidirectional information flow between cortical sites and hippocampus in the
working memory network. The GC analysis suggests a surprisingly simple model of informa-
tion flow during the task. During encoding, letter strings are verbalized as subvocal speech; the
incoming information flows from auditory cortex to hippocampus. During maintenance, partici-
pants actively recall and rehearse the subvocal speech in the phonological loop; GC indicates an
information flow fromhippocampus to cortex as the physiological basis for the replay of thememory
items. Modified from [25] with permission

information flow between hippocampal iEEG and EEG sources was from auditory
cortex to hippocampus during encoding. During maintenance, the flow was reverse,
from hippocampus to auditory cortex, indicating the active replay of memory items.

In the literature, there are several studies investigating theWMnetwork. However,
only few report directional interactions. One of these [30], reports cross-spectral
directionality between intracranial recordings in frontal cortex and the medial
temporal lobe in theta frequencies.

16.6.3 Neuronal Firing Patterns During the Trial

On the finest spatial scale, we isolated the firing of single neurons from the LFP
recorded within theMTL. Figure 16.8 shows an example of a neuron in hippocampus
that is characterized by persistent firing during the delay period after stimulus
presentation. Persistent firing is considered a hallmark of WM activity [23, 31, 32].

First, during encoding, hippocampal population firing predicted whether subjects
later responded correctly or incorrectly. Then we found neurons that fired in the
absence of stimulation during the delay period (maintenance neurons). The firing of
maintenance neurons in hippocampus predicted the number of items held in memory
in each trial. Our data provide the first direct evidence that hippocampal firing predicts
workload, which matches the trial difficulty as derived from the subjects’ perfor-
mance. The time course of activity suggests that the WM network’s function goes
beyond memorization towards a task-related preparation in expectance of the probe.
Here, hippocampal neurons seem to participate in generic processes of working
memory, possibly by establishing a contextual index in the network with distributed
cortical sites involved in letter processing [23].

In their time course of activity, scalp EEG, hippocampal iEEG, PLV and
hippocampal neuron firing all persistently show elevated activity in the maintenance
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Fig. 16.8 A hippocampal neuron fires persistently during WM maintenance. The firing rate
(top) of neuronal action potentials (bottom, raster plot) increases during encoding [−5 −3] s and
persists during maintenance [−3 0] s until presentation of the probe letter. The firing rate increases
with theworkload of the trial (4, 6, or 8 letters to bememorized).Modified from [21]with permission

period after the stimulus presentation. Between single neurons and hippocampal
iEEG, spike-field coherence appeared in the alpha frequency range during mainte-
nance but not during encoding.

16.6.4 Neural Communication in Working Memory

The integration of distributed components of information across brain regions has
been proposed to rely on long-range recurrent connections that support oscillatory
signals [1], for example, during WM tasks [33, 34]. Regarding the frequency of
oscillations, a relationship between the frequency range and the spatial extent of
engaged brain networks has been proposed, with low frequencies binding large-scale
networks and high frequencies coordinating smaller networks [30, 35, 36]. There are
several examples in which neural oscillations play a role in coordinating functional
neuronal assemblies thought to be responsible for computation and communication
in large-scale brain networks [34, 37]. Thus, the interpretation that action poten-
tials generated in the hippocampus are embedded within the WM network through
coupling with iEEG and long-range recurrent connections refines our current view
on neural communication within and between brain regions.
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16.7 Volume Conduction

The interaction between recordings from different brain regions has to be discussed
with respect to volume conduction. As an effect of volume conduction, cortico-
cortical coherence in scalp EEG is highest for adjacent electrode sites and falls off
with distance (Fig. 16.1c). Of note, as an unspecific effect, the coherence due to
volume conduction is high over a wide range of the spectrum. Therefore, volume
conduction could also lead to biased (pseudo-)connectivity in combined scalp and
subcortical recordings. When looking at the synchronization between scalp EEG
and iEEG, there are several aspects that speak against a large contribution of volume
conduction in the studies reviewed here:

(1) The spectra of coherence and PLV show a marked frequency dependence in the
range of interest (Figs. 16.1, 16.2 and 16.4).

(2) The topographical distribution of coherence and PLV is highly inhomogeneous
as it varies between recording sites (Fig. 16.1, [21]).

(3) The coherence is associated with a non-zero phase lag, different from what one
would expect for volume conduction [8, 11, 12, 15].

(4) The magnitude of coherence and PLV varies between subjects [8, 12, 21].
(5) The magnitude of coherence and PLV varies with task condition (Figs. 16.2 and

16.5).
(6) The direction of information flow depends on task condition (Figs. 16.6 and

16.7). Given that the relative flow may depend on the reference scheme, it is
advisable to use two different reference electrodes [38].

In view of these aspects, the contribution of volume conduction to the synchro-
nization of the signals seems to be small compared to the functional interaction that
is mediated by axonal transmission.

16.8 Conclusions

It iswell established thatmany aspects of humanbrain activity involve awide network
of brain areas. In each of these areas, brain activity evolves simultaneously in different
spatial and temporal scales, from single neuron firing to synchronous activity of large
neuronal assemblies. Thus, themost promising approaches to unravel these functions
are recordings with microelectrodes, intracranial LFP, intracranial EEG, and scalp
EEG. While the literature on recordings at each spatial scale is vast, the number
of reports that combine simultaneous recordings is somewhat more restricted, but
crucial for exploring the relevant network interaction and its modulation in space
and time.

In this review, we have focused on our own studies that combine recordings at
different levels and set them in the context of each other and the literature. The series
of experiments presents examples on how local processing in specific brain areas
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is embedded in large-scale network communication that can be accessed through
simultaneous recordings from several brain areas and neuronal scales.
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Chapter 17
How Do Local Field Potentials Measured
with Microelectrodes Differ from iEEG
Activity?

Supratim Ray

Abstract Simultaneous recordings of local field potentials (LFPs) and iEEG from
the visual cortex of macaques have revealed that the spatial spread of iEEG (i.e., the
extent of cortical tissue that contributes to its activity) is highly localized (~3 mm),
only about 3 times the spatial spread of LFP, even though the iEEG electrode is much
larger. Further, the stimulus tuning preferences of gamma oscillations (30–70 Hz)
and high-gamma power (>80 Hz) in LFP versus iEEG are surprisingly similar. In
particular, high-gamma power, which is thought to reflect the average firing rate
around the electrode, decreases with increasing stimulus size in both LFP and iEEG,
consistent with local origins of both signals. Both signals carry information about
the sensory stimulus, with maximal information in the gamma band, although iEEG
has higher information and better decodability than LFP. The power of iEEG falls
more rapidly than LFP between 20 and 100 Hz, leading to steeper slope of the
power spectral density (PSD), but at higher frequencies the slopes are comparable.
A simple model of iEEG, obtained by averaging LFPs over ~3 mm, provides an
accurate description of the properties of the recorded iEEG, including its PSD slope,
stimulus tuning, and information content.

Local field potential (LFP), obtained by low-pass filtering the raw signal recorded
from microelectrodes and thought to mainly reflect synaptic activity of a popula-
tion of neurons around the microelectrode [1], is an important signal for under-
standing neural circuitry and brain function [2, 3]. However, LFPs are mainly
recorded in animal models, while iEEG is traditionally recorded in humans. To accu-
rately compare the properties of LFP and iEEG, it is important to record both these
signals simultaneously, so that potential differences due to differences in species,
recording setup, referencing scheme and behavioral state are minimized. To this end,
we recently implanted a hybrid electrode array containing both microelectrode and
iEEG electrodes (9 × 9 Utah microelectrode array and 3 × 3 Adtech iEEG array;

S. Ray (B)
Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
e-mail: sray@iisc.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Axmacher (ed.), Intracranial EEG, Studies in Neuroscience, Psychology
and Behavioral Economics, https://doi.org/10.1007/978-3-031-20910-9_17

273

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20910-9_17&domain=pdf
mailto:sray@iisc.ac.in
https://doi.org/10.1007/978-3-031-20910-9_17


274 S. Ray

a

b

c

Fig. 17.1 Spatial spread of iEEG electrodes. Adapted from [4]

for details, see Fig. 17.1a) in the primary visual cortex of monkeys. In this chapter,
I summarize the main findings from these studies, as reported in [4–6].
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17.1 Spatial Spread

Spatial spread refers to the extent of cortical tissue around the recording electrode
that contributes to its activity. For iEEG, estimation of the spatial spread has direct
clinical relevance, because it determines the area of cortical tissue that needs to be
resected if epileptic activity is recorded from the electrode. Unfortunately, there is
very little consensus on the spread of field potentials, including LFP. For example,
while some researchers have shown the LFP spread to be limited to a few hundred
micrometers [4, 7–9], others have shown that it can extend up to several millimeters
[10, 11]. The differences could be due to differences in recording areas and several
other factors, as discussed later.

Spatial spread is most easily estimated in sensory cortices which have a well-
defined topographic representation of the sensory world, such as primary visual and
auditory cortices that have retinotopic and tonotopic maps, respectively. Presentation
of a very small visual stimulus or a pure tone excites a small population of neurons in
primary visual and auditory cortex, respectively, and shifting the location of the visual
stimulus or the frequencyof the tone systematically shifts the position of this activated
neural population in the cortical space. For example, Fig. 17.1b shows the evoked
responses recorded from iEEG electrodes when a small visual stimulus (radius of
0.3°) was presented in one of 19× 25 grid positions on the screen, spanning [0° 5.4°]
of azimuth and [−4.5° 2.7°] of elevation in visual space. The three traces at each
position correspond to iEEG electrodes 1 (red), 4 (green) and 5 (blue), as shown
in Fig. 17.1a. Strong evoked responses were recorded from the iEEG electrodes
only when the stimulus was presented over a small and non-overlapping subset of
positions.

Even before we quantitatively estimate the spatial spread, it is clear from these
traces that at least in the primary visual cortex, the spatial spread of iEEG is very
local. If an iEEG electrode had a spatial spread exceeding 10 mm, it is impossible
that a visual stimulus would produce a strong response on one electrode but virtually
no response at a neighboring electrode that is only 10 mm apart (Fig. 17.1a). In
fact, the visual spreads appear to be even less than half the inter-electrode distance.
Quantitative estimation (discussed below) confirms this intuition.

(A) Image of the hybrid grid, implanted in the primary visual cortex of a bonnet
macaque. The microelectrode array was a 9 × 9 Utah array (Blackrock
Microsystems), with inter-electrode spacing of 400 µm, length of 1 mm, active
electrode made of platinum with tip-diameter of 3–5 µm. The 3 × 3 iEEG
array had platinum electrodes that were 4 mm in diameter with an exposed
recording area of 2.3 mm with inter-electrode spacing of 10 mm (Ad-Tech
Medical Instrument). These electrodes are widely used in clinical settings. The
electrodes were placed on the pial surface of the brain and recorded the elec-
trocorticogram (ECoG; here we use iEEG and ECoG interchangeably). Four
corners of the microelectrode array are color coded to provide a reference to
the RF centers plotted in C. iEEG electrodes posterior to the lunate sulcus are
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in V1. Only iEEG electrodes 5 and 6 are visible; the remaining electrodes are
under the skull and their approximate positions are indicated.

(B) Simultaneously recorded mean evoked responses for three iEEG electrodes: 1
(red), 4 (green), and 5 (blue), averaged across trials and six recording sessions
at each of the 475 (19 × 25 rectangular grid) stimulus positions.

(C) Estimated RF centers of the LFP electrodes color coded based on their position
on the microarray grid as shown in A. The RF size of a typical LFP electrode is
shown in black. Estimated RF centers and sizes of ECoG electrodes are plotted
in blue. Stable RFs were obtained from 5 iEEG electrodes (1, 4, 5, 8 and 9) and
77 LFP electrodes.

To estimate the spatial spread, a 2D Gaussian can be fitted to the average evoked
response at each location, which yields the “visual spread” or receptive field (RF)
for each electrode. The center and size (reported as the standard deviation (SD) of
the fitted Gaussian) of the RFs of the iEEG electrodes are shown as blue ellipses in
Fig. 17.1c. The RF centers of the simultaneously recorded LFPs are also shown, color
coded based on their position on the microelectrode grid (as shown in Fig. 17.1a),
along with the RF of the LFP recorded from one microelectrode (black ellipse).
Surprisingly, even though the exposed diameter of the iEEG electrode (2.3 mm) is
much larger than the tip of a microelectrode (a few micrometers), the RF sizes only
differ by a factor of ~2. Specifically, the median iEEG and LFP RF sizes (1 SD of
the fitted Gaussian) were 0.72° and 0.37° for this monkey, and 0.66° and 0.28° for
the full dataset of 5 monkeys. These monkey iEEG RF sizes were comparable to RF
sizes reported earlier in humans [12].

To convert the visual spread to cortical spread, the standard approach is tomultiply
the visual spread by the cortical magnification factor (MF), defined as the length of
cortex that processes a unit degree of visual space. MF depends on the eccentricity
of the RF center, and has been estimated by several researchers (summarized in
Fig. 6 of [13]). MF can also be calculated directly from microelectrode recordings
since the change in RF center can be measured for neighboring electrodes for which
the inter-electrode distance is known. For example, from Fig. 17.1c, the RFs of the
microelectrodes at the diagonals (marked in red and green in A) are ~2° apart in
visual space (2° to 4° of azimuth). Because this array has 9 × 9 microelectrodes
separated by 400 µm, the distance between the two ends of the array is 3.2 × √

2
or ~4.5 mm, yielding a MF of ~2.25 mm/deg. Multiplying the MF with the visual
spread yields cortical spreads of ~0.75 and ~1.73 mm for LFP and iEEG electrodes
[4].

Unfortunately, the cortical spread computed this way is inflated by several factors,
such as small eye movements. For example, in this task, while the visual stimuli were
presented on the screen, the animals were required to maintain fixation within 2° of
a small dot at the center of the screen. This fixation window is typical for these kinds
of neurophysiological experiments but is much greater than the size of the stimulus
and distance between neighboring stimulus positions (both 0.3°). If the animal made
small eye movements (while staying within the fixation window), iEEG responses
could potentially be obtained from a larger set of stimulus positions (essentially the
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responses will be “smeared” due to fixation jitters), leading to a larger visual spread
and consequently cortical spread. This is one of many factors (discussed below) that
can artifactually inflate the visual spread. Xing et al. [9] developed an elegant model
to address some of these concerns, as discussed next.

Model to estimate spatial spread: To better appreciate the confounding factors,
we consider an often-used analogy for describing the spatial spread: a microphone
(microelectrode) in a stadium (cortical tissue). The spatial spread could be inter-
preted as the number of people (neurons) whose voices can be reliably picked up
by the microphone. Spatial spread defined this way depends on the properties of
the microphone (its size and acoustic properties), but also on the way the popu-
lation responds to any event (stimulus). In particular, if the population activity is
highly correlated (people singing in unison), the activity can be picked up from far
away. Indeed, Lindén et al. [14] showed that the spatial spread expands when the
underlying population activity is correlated, which also reconciles the differences in
spatial spreads estimated by different researchers. However, while this definition of
spatial spread is intuitive, there are two issues. First, spatial spread defined this way
trivially depends on many factors, making its interpretation difficult. For example,
recurrent connections between neurons that may differ across brain regions, stimulus
size, behavioural factors such as eye movements and attentional state that changes
pairwise correlations [15, 16] and RF size [17] are all expected to change the spatial
spread. Second, such factors are expected to affect the spatial spread of other signals
also, such as the multiunit activity (MUA). For example, since the cortical tissue is
ohmic [18], the effect of correlation on spatial spread as modelled by Lindén et al.
[14] should be observed at low as well as high frequencies, causing both LFP and
MUA spatial spreads to become large depending on the spatial extent of correlation.

One strategy, proposed by Xing et al. [9], is to decouple the total spatial spread
into two parts—one that depends on the microphone and the other that depends on
the population. Only the first part is taken as the spatial spread of the signal. The
total spread can be calculated by convolving the signal spread and population spread
(for mathematical details, see [4, 9]). If both spread functions are assumed to be
Gaussian, the resultant total spread is also a Gaussian whose variance is equal to the
sum of individual variances. All the factors described above change the population
spread (and hence the total spread), but not the signal spread. The signal spread now
depends only on the properties of the electrode, such as its impedance and size.

Experimentally, wemeasure the total spread (which is the visual spreadmultiplied
by the MF), so how can we get the signal spread, given that the population spread
is unknown? The key, as proposed by Xing et al., is to compute the difference in the
spreads of two signals (in their case, LFP and MUA). While the visual spreads of
both measures will get inflated due to the population spread, they get inflated by the
same amount, and therefore get cancelled when we subtract the total spreads of LFP
and MUA.

We found that using this approach, the spatial spread (SD of the fitted Gaussian)
of LFP reduced to ~0.5 mm, a reduction of ~30% from the earlier estimate (similar
results were also obtained by Xing et al.). Because we had also collected iEEG data,
we could adjust the spatial spread of iEEG by comparing with the LFP spread, which



278 S. Ray

led to a ~10% reduction and an adjusted spread of ~1.5 mm (note that the spread is
local even if the model is not considered). Therefore, the iEEG spread is only thrice
the spread of LFP, even though the iEEG electrode is much larger. Further, if we take
the diameter of spread to be twice the SD, the diameter of spread of iEEG (~3 mm)
is approximately equal to the sum of LFP spread (~1 mm) and the iEEG electrode
itself (2.3 mm). This is consistent with the simple idea that the spatial spread of an
infinitesimally small electrode (microelectrode tip) has a diameter of ~1 mm and
increasing the electrode diameter simply adds the overall spread by that amount.
However, this is yet to be experimentally verified.

17.2 Stimulus Tuning Preferences of LFP and iEEG

Tocompare howLFPand iEEGgetmodulatedwith sensory stimulation,wepresented
gratings that varied in size, orientation, contrast or spatial frequency, while the
monkeys fixated on a small dot at the centre of the screen as in the RF mapping task
[5]. In the neural signals, we focused on two frequency bands: gamma (30–70 Hz)
and high-gamma (>80 Hz). In the primary visual cortex, visual gratings are known
to induce strong gamma oscillations, and both gamma power and centre frequency
systematically vary when the stimulus size, orientation, spatial frequency, contrast
or temporal frequency is varied [19–22]. We found that gamma tuning (i.e., how
gamma power varied when the stimulus parameter was changed) was comparable
between LFP and iEEG. This is in stark contrast to the gamma tuning in EEG [21],
which was substantially weaker. Therefore, iEEG is more similar to LFP than EEG.

We also compared high-gamma activity, which refers to power over a broad range
of frequencies above the gamma band. In iEEG, high-gamma is modulated by stim-
ulus presentation aswell as the behavioral state [23, 24]. In LFP, it is tightly correlated
with the spiking activity of neurons in the vicinity of themicroelectrode [25–27]. The
manipulation of stimulus size has two opposing effects: larger stimulus size reduces
the average firing rates of neurons due to larger surround suppression, but also acti-
vates a larger neural population. We had previously shown that the LFP high-gamma
power also reduced with increasing stimulus size, following the trend observed in
firing rates [27]. We might have observed an increase in iEEG high-gamma power
despite a reduction in firing rate if the iEEG signal represented the average activity
over a much larger cortical area than LFP. However, we found that even iEEG high-
gamma power reduced with stimulus size [5], again confirming that iEEG is a local
signal.

Because power in both LFP and iEEG signals varied systematically for different
types of visual stimuli, they carried information about the sensory stimulus and there-
fore the stimulus identity could be decoded from the LFP/iEEG power. We presented
a large array of natural images to the monkeys and compared the information content
and decodability of LFP and iEEG. Surprisingly, iEEG had higher information and
decodability than LFP [6]. Control analyses showed that higher decoding accuracy of
iEEG compared with LFP was not because of differences in low-level visual features
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but instead because of larger spatial summation of the iEEG. Natural images tend to
have more energy at low spatial frequencies, which means that image features tend to
change slowlywith space and consequently nearby neural assemblies process similar
features. In such a situation, averaging the responses of such neural assemblies (which
is more effectively done by the iEEG electrode compared to a microelectrode due to
its larger size) leads to effective cancellation of random noise in the assemblies while
preserving the common signal, and hence an improvement in the information content.
Further, we found that low frequencies and gamma band carried more information
than other frequencies, consistent with previous results in the LFP [28]. The spatial
scale over which gamma rhythms remains coherent is typically several millimeters
[21, 29], and therefore better captured by the iEEG electrode compared to LFP.

17.3 iEEG as an Average of LFPs

As described above, information content in iEEG far exceeded the information
content in LFP even though the stimulus tuning preferences were comparable.
Another feature that was found to be different was the shape of the power spectral
density (PSD), which was much steeper between 20 and 100 Hz for iEEG compared
to LFP [4]. We tested whether iEEG could be mimicked by simply averaging LFPs
from nearby electrodes. This procedure is expected to increase the PSD slope, since
lower frequencies of the LFPs are more coherent than higher frequencies, and there-
fore averaging the LFPs from nearby electrodes does not appreciably change the
signal amplitude at low frequencies (since individual components are more or less
similar) but reduces the amplitude at higher frequencies (since the signal compo-
nents have different phases and therefore cancel out), leading to an increase in the
slope of the PSD (for a more detailed discussion, see [4]). We found that as the LFPs
were averaged over a larger set of neighboring microelectrodes, the PSD slope of the
resultant averaged signal indeed increased and matched the slope of the experimen-
tally obtained iEEG slope when ~50 microelectrodes (7× 7 grid spanning ~3 mm on
each side) were averaged. Similarly, the information content of the averaged signal
increased and approached the information content of the iEEG signal [6].

In summary, simultaneous recordings of iEEG (obtained using electrodes with
exposed diameter of 2.3 mm) and LFPs (Utah arrays with inter-electrode spacing of
400 µm) from the primary visual cortex of monkeys have revealed that the spatial
spread of iEEG is about ~3 mm, only three times the LFP spread, and the iEEG
signal is well approximated by simply averaging LFP signals over ~3 mm. It is
likely that these results will be generalizable to humans as well. Yoshor et al. [12]
measured the RFs by presenting small visual stimuli and found visual spreads that
are comparable to our results. Similarly, Winawer et al. [30, 31] measured stimulus-
locked and broadband components of the iEEG responses to a moving flickering
bar and estimated visual spreads using a population RF (pRF) model [32]. Their
iEEG spread estimated for broadband responses was comparable to our estimates.
Regarding stimulus tuning, gamma oscillations recorded using iEEG from visual
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areas when gratings are presented show similar stimulus preferences as observed in
monkeys (for example, compare [33] with [22, 34]).

Whether these results are generalizable to other brain areas remains an open
question. As discussed earlier, Kajikawa and Schroeder [10] found the spatial spread
of LFP to be much larger (several millimeters) in the auditory cortex. Some addi-
tional features of the estimated spatial spread can shed light on this discrepancy. For
example, if the spatial spread is calculated as a function of frequency (by taking
the amplitude of the response at a particular frequency instead of taking the overall
magnitude of the evoked response), the spread function for LFP has a “band-pass”
shape, with a substantially larger spread in the high-gamma range [7], although this
band-pass effect is not seen in iEEG [4]. Further, the spread is also higher at very low
frequencies in the LFP [4], likely due to the presence of the alpha rhythm that gets
suppressed with visual stimulation. Since different brain areas show different oscilla-
tory signatures (sensory-motor areas predominantly showbeta rhythm),which poten-
tially get modulated over different spatial scales, the resultant spread may depend on
such factors (which cannot be accounted for in the model described above). Further
studies are needed (using both microelectrode and iEEG electrodes) in other sensory
areas to establish the generalizability of the results discussed here.
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Chapter 18
What Do ECoG Recordings Tell Us
About Intracortical Action Potentials?

Tobias Bockhorst, Andreas K. Engel, and Edgar Galindo-Leon

Abstract Human intracranial recordings are, with few exceptions, typically
confined to recording of local field potentials. Spike detection has been limited
to intracortical measurements with microelectrodes or microwires. Here, we put
a spotlight on an emerging class of subdural surface arrays densely packed with
micro- to mesoscale electrodes. These now combine the benefits of low invasive-
ness, large coverage and high signal quality with the option of recording spikes in
addition to spatially resolved brain waves. We discuss recent work where features
of surface spiking activity have been compared to action potential recordings from
intracortical electrodes, showing that substantial information about the underlying
cortical columns can be retrieved form the epicortical recordings. These novel
approaches have potential for large-scale network studies contributing to a deeper
understanding of brain function andhold promise for refinement of clinical diagnostic
or interventional procedures.

18.1 Introduction

Electric currents on the cortical surfacewere initially reported in rabbits andmonkeys
by Caton as early as 1875 [1]. In humans, the first recordings of electrical brain
activity date back to 1924, when Hans Berger measured manifestations of brain
waves on the scalp, setting the stage for the era of EEG [2, 3]. With the applicability
of a low-cost, noninvasive method, EEG has enormously fueled insights into cogni-
tive processes and their higher-level physiological correlates, such as synchronized
neural oscillations and event-related potentials. As a drawback, however, transcra-
nial measurement from the scalp considerably reduces spatial resolution of signal
sources aswell as the amplitude of the signal itself—in particular at frequencies above
100 Hz. As a remedy, approaches for more localized recording of electric fields have
been developed over more recent decades, yielding the electrocorticogram (ECoG)
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ba

Fig. 18.1 Brain signals acquired with extracranial, epi- and intracortical recording techniques. a
Placement of different electrode designs for extra- and intracortical recordings. EEG, electroen-
cephalogram; ECoG, electrocorticogram; probe, intracortical extracellular probe; ara., arachnoid
mater. b Types of signals acquired with the respective techniques. Note that contacts along the intra-
cortical probe record the electric field at a different angle relative to the dendritic axes compared to
surface electrodes

when recorded by subdural electrodes from the cortical surface. For sufficiently small
electrodes the ECoG signal compares to a classical local field potential (LFP) which
is usually obtained by sharp electrodes advanced into the brain (Fig. 18.1).

In primate research preparations and human patients, ECoG is usually obtained
throughgrids of electrodeswith diameters and spacing in the rangeof severalmillime-
ters [4–9]. Electrode size determines the number of synaptic inputs and neurons that
contribute to the local raw signal—because of cell size and density as well as the
specific microarchitecture of dendritic branches in the volume underneath the elec-
trode. These microanatomical features vary between regions in the same brain [10],
across species [11] and with functional organization [12], requiring careful adjust-
ments of electrode size with respect to what sort of processes shall be resolved.
Generally speaking, the relatively large electrodes common inmost previous research
are more prone to source cancellation by destructive interference [13] between sub-
populations, which may blur topographies of both ongoing and stimulus-related
activity. Moreover, the technical routine for analysis of ECoG measurements often
included low-pass filtering (<100 Hz) and down-sampling for technical convenience.
As a result, ECoG data available from the vast majority of past studies effectively
correspond to a ‘low-noise EEG’—cleaner, higher in spatial resolution, but often still
spatially gross from the perspective of distinct processes within cortical regions.

Action potentials, the basic elements of neuronal information processing in every
hitherto studied nervous system [14–17] are at best represented indirectly in the high-
frequency component of the LFP [18, 19]. Recordings of action potentials in-vivo
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have so far required penetration of brain tissue with electrodes, causing stress to the
neural tissue and limiting human studies to rare clinical settings, such as probing
of electrode positions in deep brain stimulation [5, 20–22] or combined macro-
/microelectrode recordings in epilepsy patients (see Chaps. 42, 43, 44 and 45). A
possibility to overcome themajor limitations of scalp recordings—spatial blur, signal
attenuation and effective blindness to spiking activity—is now promised by novel
types of electrode arrays for subdural ECoG.

As we will discuss in the following, such novel types of spike-sensitive ECoG
arrays (spECoG) are densely populated with micro- (approx. 10 µm diameter) or
mesoscale (approx. 250 µm diameter) electrodes. These are fabricated through fully
customizable,waver-aided techniques. The thinness (4–10µm)of carrier foils used in
currently described designs allows folding of these arrays into fissures and sulci previ-
ously inaccessible to surface recording methods. Table 18.1 and Fig. 18.2 summarize
the different designs of ECoG arrays. The spECoG approach now allows to concur-
rently record, from the intact cortical surface, the projection of summed synaptic
inputs (i.e., graded potentials in the LFP-band) of neurons as well as their spiking
outputs. While both are intrinsically related (by nonlinear transformations of post-
synaptic inputs into spiking outputs) [23, 24] their informational contents are not
redundant. The two signals also feature different spatial and temporal resolutions:
the spike-time signal is more precise in time, yet it reflects a spatially more confined
neural population [25]. As a result, analyses of spiking activity can add relevant infor-
mation beyond ECoG-LFPs, when local activity needs to be resolved [26]—a prereq-
uisite for reading out topographically organized information. This, in turn, is key to
interfacing, e.g., for neuroprosthetic application, with sensory and motor cortices in
the human brain, where stimulus features (e.g., retinotopy, tonotopy, somatosensory
fields) and movement direction systematically vary along columnar topographies.
Studies on the decoding of movement direction and grasp types revealed highest
decoding performance for activity in the high gamma band, a presumed correlate
of coordinated assembly spiking (Fig. 18.2c, left panel) [27, 28]. Spike informa-
tion can also outperform high gamma band LFP in the decoding of more abstract
cognitive processes such as attention [29]. Large-coverage recording of spatially
resolved, ‘clean’ LFPs and action potentials from the intact cortical surface is likely to
further illuminate network-level substrates of cortical processing, such as functional
connectivity, criticality or travelling waves.

Table 18.1 Specifications and features of different EcoG array designs

Array design Electrode diameter
(spacing)

Anatomical
resolution

Accessible
regions

Signals

Macroscale
EcoG

~5 mm (5–10 mm) (Subsections of)
gyri

Superficial gyri Low-noise EEG

Mesoscale
spECoG

250 µm (1.5 mm) (Macro-)columns Gyri and sulci;
neocortex and
hippocampus

LFP, spikes

Microscale
spECoG

~5 µm (30 µm)
(NeuroGrid1)

Microcolumns,
cells
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Fig. 18.2 Comparison of macro-, meso- and microscale EcoG arrays. The three columns of the
figure highlight examples for macroscale (left), mesoscale (middle) and microscale (right) ECoG
arrays. a–a′′ Basic design of each type and projection onto a respective brain. a Yellow triangle:
electrode position referred to in b. a′ Note that the carrier foil of the mesoscale spECoG is split into
three ‘fingers’ to promote adherence to the cortical surface. Shank windows between the recording
electrodes allowparallelmeasurementswith penetrating intracortical probes. a′′ Opticalmicrograph
of 256-channel NeuroGrid; inset: further magnified view of recording contacts. Note that spikes
occur on a subset of contacts only (topography plot to the right), whilst almost every contact provided
spiking signals in case of the mesoscale spECoG (not shown). White patch on surface of rat brain
indicates the size of the first NeuroGrid implant. b–b′′ Example traces of signals recorded with the
three types of EcoG arrays. bUpper trace: example time course of a conventional macroscale EcoG
during a tracking task (electrode position indicated by yellow triangle in a). Dotted/dashed traces
below indicate the horizontal positions of a controllable tracking cursor, and of the moving target on
the screen, respectively. Note that EcoG activity rather reflects cursor- than actual target position.
b′, b′′ Spike-band activity traces with example waveforms of detected spikes (red circles in raw
trace) shown below. Red dotted line, detection threshold (corresponding to 3 times noise level). c–c′′
Representative findings. c Decoding accuracy for grip type in a naturalistic grasp task is best for
spike-related high frequency bands (54–114 Hz) in the EcoG. c′ Spiking responses measured with
a mesoscale array are stronger, more stable (PSTH illustrations of responses to flash stimuli) and
more precise in tuning (receptive field, RF, from retinotopic mapping) than concurrently obtained
intracortical responses in representative single trials. c′′ Locking of spikes (green) to the averaged
phase of delta-band LFP waves, recorded in a human patient under anesthesia (second instantiation
of NeuroGrid). a photo of clinical grid from [56]. Panels a, b modified from [6]; c modified from
[28]; a′ modified from [40, 43]; b′, c′ modified from [40]; a′′ modified from [36], except for drawing
of rat brain created by E. Galindo-Leon; b′′, c′′ modified from [36, 38]
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In the following sections, we highlight recent work on epicortical recording of
action potentials via such novel types of spECoG electrode arrays in animal prepara-
tions and human patients. In particular, we discuss first evidence on how the ‘surface
spikes’ recorded through spECoGs relate to cortical action potentials.

18.2 Microscale Surface Electrodes with Single-Cell
Resolution

ECoG arrays used in animal research differ mainly in electrode diameter and
interelectrode spacing. These low-level features are critical in biophysical and
microanatomical respects. From the technical perspective, electrode diameter is a
major determinant of impedance, i.e., the frequency-dependent input resistance of
the electrode. This parameter is often believed to be crucial in spike recordings, in
particular for intracellular measurements, where high impedance is a sign of suffi-
ciently sharp electrode tips that can penetrate cellular membranes. In contrast, the
role of electrode impedance for spike detectability in extracellular recordings remains
elusive [30–34]. A direct comparison between adjacent low- and high-impedance
contacts (iridium; 177 µm2) on the same intracortical array [35] has returned no
difference in spike amplitude and detectability between the two. As the spectral
composition of spikes and neural noise should be roughly similar across species, it
seems plausible that this statement could hold true in general. Apart from adjusting
electrode dimensions, spike registration is eased by electrode materials with mixed
electronic and ionic conductivity [36] and, obviously, requires sufficient sampling
frequency.

In 2015, Khodagholy and colleagues introduced the first instantiation of ‘Neuro-
Grid’, a small-coverage spECoG array composed of microscale electrodes (10 ×
10 µm electrode area; 30 µm interelectrode distance; 256 electrodes; impedance,
10 k� at 1 kHz; 1 mm2 total coverage) [36]. Its design targets recordings from
single-units within cortical microcircuits (Fig. 18.2, right column). The authors
report reliable, prolonged recordings of action potentials from rodent cortex (puta-
tive single-unit activity; Fig. 18.2b, right panel) and two human patients (multi-units)
under minimal stress to the cortex itself. In rats, recording quality was still adequate
10 days after implantation, which corresponds to typical epochs of presurgical
subdural EEG monitoring in epilepsy patients. In contrast, intraoperative record-
ings in patients lasted for a maximum of 30 min and the amplitude of the spikes
was lower, hindering the clustering of single neurons in humans. In particular, spikes
observed at the cortical surface were also differentiable into fast and slow spikes,
indicative of inhibitory interneurons vs. excitatory principal cells, respectively [37],
suggesting that the array can capture activity from neurons down to a depth of at
least 200 µm. Previously, layer 1 neurons in particular had been difficult to monitor
at such resolution by conventional methods. To investigate whether these features
and limitations were specific to the neocortex, the authors also recorded activity at
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the alvear surface of the hippocampus, which was reached after removal of small
region of the neocortex. This pilot study highlights that the novel approach eases
studies into the relationship of spiking activity and LFPs (see also Chaps. 44 and
45), reporting entrainment between spikes and brain oscillations in both, neocortex
and hippocampus.

Follow-up work [38] demonstrated scalability of the design under concessions to
electrode density, but preservation of putative single-cell resolution. With 120 (240)
tetrodes (each 4 × 10 µm × 10 µm) instead of single contact electrodes, and now
spaced 2 mm apart, a cortical area of 420 (840) mm2 was covered, sufficient to trace
the propagation of local LFP activity patterns during neurosurgery. The NeuroGrid
also proved more sensitive to high-frequency (gamma band) LFP than the gross
conventional clinical arrays. Precise localization of sources that generate pathological
activity should substantially refine tissue resection and intervention strategies in
patients with neurological diseases, such as treatment-resistant focal epilepsy. The
co-registration of spikes through the same electrodes provided insights into the local
generation of pathological activity (Fig. 18.2c, right panel), which may help refine
tissue resection and intervention strategies in diseases such as treatment-resistant
focal epilepsy. Comparable data previously required intracortical recordings, which
are only possible on rare occasions in the clinical setting. The study represents an
important proof of principle in scaling the original 1 mm2 NeuroGrid, originally
designed for studies on cortical microcircuitry in small rodents, up to the dimensions
of local networks in human cortex. Still, substantial advances in technical solutions
and analysis methods for massive parallel recordings will be necessary to further
scale such spECoG microarrays up to the level of networks that expand across brain
areas, without further compromises in electrode density.

18.3 Mesoscale Surface Electrodes for Network-Wide
Coverage

Amodeling study [39] has elucidated how action potentials from layer 1 neurons can
be sensed through the types of surface electrode used by Khodagholy and colleagues
[36], but still the NeuroGrid studies have not addressed how the spike signals
observed at the cortical surface relate to intracortical action potentials—in partic-
ular with respect to faithful representation of stimulus features and topographically
mapped neural response properties. This, however, seems crucial for the assessment
of the signal’s relevance in processes such as perceptually driven decisions or motor
control.

We have recently investigated this aspect in combined recordings of intracortical
and surface spikes in anesthetized ferrets using Michigan probes (32 electrodes,
15 µm diameter, 50 µm spacing) and a spECoG array with mesoscale geometry
(Fig. 18.2, middle column) (250 µm electrode diameter; 1.5 mm hexagonal spacing;
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impedance at 1 kHz < 10 k�) [40]. The principle ECoG electrode design had previ-
ously been applied in acute and chronic LFP recordings from the cortex of monkeys
and ferrets with recordings stable over months [41–43]. Epicortical spikes have been
recorded using the previously described 64 electrodes instantiation [40] and a novel
96 electrodes version with denser spacing (unpublished data), both scaled to cover an
extended multisensory network that spans the dorsal two thirds of the ferret cerebral
hemisphere.

Using this combination of surface recordings of ongoing and stimulus-related
activity with intracortical single-site recordings via the linear probe we investigated
how epicortical spiking relates to action potentials of cortical cells [40]. Waveforms
of epicortical spikes recorded through the mesoscale electrodes resembled those
of intracortical action potentials. Epicortical responses to presentations of sensory
stimuli (light flashes and/or acoustic clicks) were higher in amplitude and less vari-
able (in amplitude, latency and duration) across trials as compared to intracortical
responses. This held true even when sum activity rather than single-site measure-
ments was considered for the intracortical data (Fig. 18.2c, middle panel). In addi-
tion to a strengthening of signal to noise ratio, the sharpness of response-tuning was
found preserved (contour orientation and tonotopy) or even increased (visual recep-
tive fields) as compared to the concurrent intracortical recordings. Hence, epicortical
recordings through mesoscale spECoG electrodes can resolve topographical repre-
sentations across retinotopic maps, neighboring orientation columns or tonotopical
gradients. Levels of ongoing activity on the surface were below the sum of activity
along the laminar probe, with rates of epicortical spiking best predicted by taking
only synchronized intracortical spikes into account (see also Chap. 46 on laminar
recordings).

Together, these observations render it unlikely that surface spiking merely reflects
a superposition of spike trains fired by several neurons. Based on empirical and
modeling data, we propose a selectivity of the mesoscale spECoG electrodes for
synchronized spikes fired in concert by several neurons distributed along the depth
of the underlying cortical columns. The successful recording of surface spikes with
such mesoscale electrodes disproves theoretical claims that the contact area should
not exceed a maximum of 100 µm2 to maintain detectable spike amplitudes [39].

As a potential mechanism to account for both the synchrony-dependence of
surface spikes and their relatively narrow waveform (as compared to dendritic
calcium spikes which have been shown to be recordable at the surface [44] we
proposed that sodium spikes fired by layer 5 principal cells, which can act as coinci-
dence detector neurons, may be projected to layer 1. In fact, this mechanism is in line
with previous research on sodium spikes that propagate via association fibers along
layer 1 (Fig. 18.3) and play a role in attentional selection [44–48]. At the level of
the LFP, a particular role of spike-synchrony for epicortical LFP in the high gamma
band (60–200 Hz) was predicted by modeling [49] which revealed that an increase
in ECoG high-gamma power could equally well be obtained by a large increase in
firing rate or by a small increase in synchronization (see also Chap. 17).

If surface spikes trace back to intracortical action potentials fired in synchrony
theymay provide a particularlymeaningful signal, as synchronous spiking is believed
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Fig. 18.3 Presumed origin of synchrony-dependent epicortical spikes. Dendritic Ca2+ spikes are
detectable at the surface according to Suzuki and Larkum [44]. Our results suggest a similar mech-
anism with respect to dendritic Na+ spikes [48]. Sensory inputs to layers 3 and 4 are propagated to
layer 5, in which some neurons act as coincident detectors and fire Na+ spikes. Those spikes might
be projected to layer 1 in a similar way as dendritic Ca2+ spikes and, thus, become detectable at the
cortical surface [44]

to serve the propagation of neural information, and to be key to a variety of tasks
such as attentional gain modulation, feature binding or sensorimotor processing [50–
54]. In line with the idea of a synchrony-based process, responses to visual stimuli
have been shown to be more stable and sharpened in tuning when recorded on the
surface as compared to simultaneous recordings through adjacent laminar probes
[40]. Hence, chronic implants that capture synchronized spiking of neural assemblies
in sensory or motor areas may improve real-time decoding of neuronal signals in
neuroprosthetic device control through more robust and strong neuronal responses.
From a broader perspective, mesoscale spECoG arrays may provide first insights
into spiking activity of large-scale networks through minimally invasive recordings
in chronically implanted, freely behaving animals or even humans.

Another proof of principle for recordings of multiunit spiking through mesoscale
spECoG electrodes was reported in guinea pigs [55]. The authors describe an array of
16 electrodes (100 µm diameter, 0.5 mm spacing) scaled to cover primary auditory
cortex (4 mm2 array area). Based on comparisons of first-spike latencies between
spECoG and concurrently obtained intracortical probe data (16 contacts single-shank
Michigan probe), Konerding and colleagues found that surface spiking best corre-
lated with spiking in supragranular layer IV (800–1100 µm). Moreover, frequency
resolution in A1 was more resolved in the multiunit spiking data as compared to
same-site LFPs (<100 Hz), again confirming the capability of mesoscale-electrode
recordings to preserve topographic information.
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18.4 Opportunities and Challenges

The novel spECoG arrays described here share two key features. First, they consist
of miniaturized electrodes suited for spike recording mounted on flexible carrier
foils that can adhere closely to gyri, fold into sulci and give access to cortices in
deep fissures. Second, they are built from biocompatible materials and are stable
in recording quality over clinically relevant epochs [41]. Already, spike recordings
from the intact cortical surface using these arrays have been demonstrated in rats,
guinea pigs, ferrets, and humans [36, 38, 40, 55]. This paves the way for a wide
range of optimization, from diagnostically tailored arrays in surgery planning [38]
to reading out functional brain activity at various scales of network coverage, e.g.,
in brain-machine interfacing [56].

Previous applications of electrocorticography were restricted to recordings of
graded activity in the LFP band (<100Hz), whichmay primarily reflect the concerted
postsynaptic activity of inhibitory interneurons in large populations [18]. The novel
spECoG approach allows the additional recording of spikes from principal cells
and interneurons in spatially resolved subpopulations through the same electrodes.
Piloting experiments confirmed applicability in the neurosurgical setting, where it
may open novel perspectives in the treatment of epileptic patients [36, 38].

Arrays of small-size electrodes with large coverage and a high-density of contacts
are essential to localize the site of microseizures in epilepsy patients. For this
purpose, Chiang et al. [57] recently developed a flexible, high-resolution array based
on a substrate of liquid crystal polymer (LCP) that can be implanted in humans
and animals. In a follow-up study the authors observed that microseizures detected
using this type of arrays may provide a more precise tool to improve pre-surgical
evaluation for drug-resistant epilepsy [58]. Another remarkable achievement was
recently published by Tchoe et al. [59] who developed reconfigurable thin-film,
multithousand-channel recording grids using platinum nanorods (PtNRGrids) with
small electrodes (30µm). Using these novel arrays in patients the authors havemoni-
tored the patterns of seizure spread and the spatiotemporal dynamics of motor and
sensory activity with high resolution [59]. In contrast to the LCP-based array by
Chiang et al. [57], PtNRGrids are currently not available for chronic recording in
patients. The challenges here are in the safety and durability of the thin-film. These
recent studies do not report detection of spiking activity but the arrays developed
may show potential to this end.

Microscale instantiations with single-cell resolution will allow deeper studies into
how individual action potentials relate to LFP signals. Moreover, they may prove
capable of resolving intermingled (‘salt-and-pepper’) subpopulations of differently
tuned sensory neurons in rodent neocortex. At mesoscale resolution, coverage can
be scaled up to the level of extended cortico-cortical networks, a prerequisite for
the understanding of normal brain function and pathological states. Preservation of
topographical maps [40, 55] and increased robustness of single-trial responses [40]
promise advances in brain-machine interfacing and real time applications such as
closed-loop measurement and/or stimulation regimes. In line with this perspective,
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macroscale LFP studies on the decoding of movement direction and grasp types
revealed best predictive power for activity in the high gamma band, a presumed
correlate of coordinated assembly spiking (Fig. 18.2c, left panel) [27, 28].

Naturally, the recording of spike activity through spECoG with high channel
numbers also poses additional technical challenges, in particular as high sampling
rates are required to cover the spike-band in the kHz range. Furthermore, any explo-
rative analysis of the resultant data may require the development of time-efficient,
unsupervised algorithms.

As discussed in the preceding section, electrodes of 250 µm in diameter allowed
to observe epicortical spikes that correlated with synchronized firing of action poten-
tials by neurons distributed along the cortical microcolumn. Arrays selective for such
synchronized population activity are of particular interest to fundamental research
into the propagation of neural information, sensorimotor transformation, and atten-
tional selection, among others [50–53, 60]. Although combined recordings through
spECoG and intracortical electrode arrays [40] have shed first light on the intracor-
tical substrates of surface spikes, optogenetic interrogation of the process is clearly
indicated for further clarification.

In animal models, arrays of mesoscale electrodes can be scaled up to cover multi-
site brain networks, and in many species, the scalability will allow a coverage equal
to gross scalp EEG. This could now pave the way for novel insights into the spiking
level substrate of key large-scale phenomena such as functional connectivity [61–63],
neuronal avalanches [64] or traveling waves [65] by recording of LFPs and spikes
through the same electrodes in an extended, yet sufficiently dense subdural grid.
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Chapter 19
What is the Functional Role of iEEG
Oscillations in Neural Processing
and Cognitive Functions?

Timothée Proix, Pierre Mégevand, and Anne-Lise Giraud

Abstract Oscillations of the electric field generated by neuronal populations are
often observed in intracranial EEG recordings from human cortical and subcortical
brain regions. The functional relevance of these oscillations for neural processing
and cognitive functions remains a debated issue in modern neuroscience. In this
chapter, we review evidence that iEEG oscillations constitute a key mechanism in
the functional integration of neuronal activity across temporal and spatial scales.
We focus on the potential role of cortical oscillations in cognitive processes, and
particularly speech perception and production, which involve diverse brain regions
and temporal scales in a structured hierarchy, as an ideal testbed for outlining the
possible insights that iEEG oscillations offer on cognitive functions.

19.1 Introduction

Hans Berger is famous for being the first to have recorded alpha and beta rhythms
using electroencephalogram [1]. Perhaps less well-known is that he was also the first
to record these rhythms directly from the cortex by performing the first intracranial
electroencephalogram (iEEG) of a patient undergoing surgery for a brain tumour
[2]. A few other studies completed this early finding, until the opportunities to
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record intracranially became more frequent in the 40s with the advent of opera-
tive explorations in conscious patients with epilepsy [3]. Nowadays, most rhythms
described with non-invasive methods such as electroencephalography (EEG) and
magnetoencephalography (MEG) have also been recorded directly with intracranial
recordings in human. Those rhythms are often grouped into five frequency bands:
Delta (0.5−4 Hz), theta (4−8 Hz), alpha (8−12 Hz), beta (12−25 Hz), and (low-)
gamma (30–50 Hz). In addition, high-frequency activity (>80 Hz), a non-oscillatory
signal which can be recorded with iEEG (see Chap. 23), but usually not with EEG or
MEG, is nowwidely used as a proxy for spatially localized neuronal spiking activity,
although its origin is somewhat discussed [4].

We mostly focus here on neural oscillations recorded with intracranial recordings
in human, leaving aside a large part of the literature on neural oscillations, including
non-human studies, alternative recording methods, and computational models. We
refer the curious reader to the excellent books of György Buzsáki [5, 6] and dedicated
reviews [7, 8]. Although we do report a large number of studies in the broad field of
iEEG oscillations, we do not exhaustively cover all relevant publications. Also, we
do not discuss here the neurophysiological underpinnings of neural oscillations, for
this see for instance [7]. We only and importantly stress here that neural oscillations
do not originate from a well-defined harmonic oscillator existing somewhere in the
brain, but rather emerge as collective dynamics of heterogeneous populations of
neurons [9]. Neuronal dynamics are by nature oscillatory in that they periodically
(but often irregularly) drift out of their equilibrium for spiking and come back to it
to prepare for the next spiking activity.

Neural oscillations can be recorded from a large variety of brain regions with
iEEG. These oscillations can be concomitant of a specific task the subject is
performing, but are also found while the subject is asleep, or during pathological
neuronal activity [10]. The question whether there is a causal relationship between
neural oscillations and function, or a mere correlate is intensely debated. Yet, several
hypotheses on the functional role of neural oscillations and how they emerge from
and influence excitability of neurons are supported by a growing amount of experi-
mental and theoretical evidence (see below). Additional evidence might come from
neurofeedback and stimulation studies that can causally influence or disturb a specific
neural rhythm (see Chaps. 39, 40, and 41).

The study of neural oscillations is not trivial, and a number of methodological
issues need to be considered when processing and interpreting iEEG recordings [7].
We briefly emphasize those that are relevant for this chapter. (i) Decomposition of
the recordings into distinct frequency bands is often performed with predetermined
frequency bands, which can be misleading if there is no real neural activity in these
bands [11]. This has implications formultivariatemethods that consider relationships
between channels, such as phase synchronization and phase amplitude coupling [11].
(ii) A related issue is that neural oscillations are not necessarily sinusoidal, which
might lead to missing important information when applying methods designed for
sinusoidal signals [12]. In particular, the so-called high-gamma activity corresponds
to a large frequency band (typically between 80 and 150Hz) that does not correspond
to a well-defined oscillation, and for which only the power can reliably be extracted.
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Accordingly, we refer to it as broadband high-frequency activity (BHA). (iii) iEEG
power spectra typically exhibit a 1/f response over a large range of frequencies,
possibly due to both the low-pass properties of induced currents in the extracellular
space [13], and the range of time scales involved in single neuron dynamics [14].
Whether high-frequency power represent synchronous rhythms or a change of the
1/f response is still debated and calls for caution in the interpretation [15] (see also
Chaps. 22 and 23).

19.2 iEEG Oscillations Supporting Cognitive Functions

Over the last decades, human iEEG studies have shown the presence of neural oscilla-
tions in numerous brain regions and in relation tomany cognitive functions, including
working memory, memory formation, attention, sensory and motor activity, multi-
sensory integration, sleep, and speech. Several functions have been proposed for
neural oscillations in relation to these cognitive functions, including sensory selec-
tion and control, communication between neuronal populations, sequence represen-
tation, replay, and temporal prediction [7, 8]. Here, we first review the mechanisms
supporting human cognitive functions, and then show the iEEG evidence for their
roles in these functions.

Functional mechanisms of iEEG oscillations. Oscillations are uniquely char-
acterized by three measures: frequency/period, phase, and amplitude. Each of those
features contributes to one or several of the following five functions of iEEG oscil-
lations. (i) Sensory selection via resonance (Fig. 19.1a). The leak and voltage-gated
currents of neurons make neuronal populations respond preferentially to stimuli
with specific frequencies. These resonance frequencies allow neuronal popula-
tions to select and enhance specific features of the input stimuli. (ii) Communi-
cation via coupling (Fig. 19.1b, see also Chap. 25). Coupling between (possibly
distant) brain regions can take many forms, with phase coupling (phase-amplitude
coupling and phase-phase coupling) being the most frequent one (see also Chap. 32).
Periods of enhanced spiking activity then co-occur across brain regions, allowing
for temporal windows of communication. (iii) Sequence representation via phase
encoding (Fig. 19.1c). The phase advance during the on-going iEEG oscillation trig-
gers distinct neuronal patterns representing different items. This can be exploited
to encode item sequences. (iv) Replay via entrainment. Without external perturba-
tions, iEEG oscillations persist across time, allowing previous sequences of neuronal
patterns to be replayed (see also Chap. 21). (v) Temporal prediction via entrainment
and phase reset. The natural frequency of the oscillation helps predicting when future
stimulus or neuronal activity is expected. This prediction can be changed by simply
shifting the phase of the on-going iEEG oscillations through an incoming signal.

Together, these fivemechanisms allow for a large repertoire of cognitive functions,
as detailed below. They are sometimes combined, and cannot always be disentangled
from one another.
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Fig. 19.1 Functional mechanisms of iEEG oscillations. (a) iEEG oscillations (green) facilitate
neuronal spiking (black bars) for an input frequency (blue) that matches the resonant frequency
of the iEEG oscillation. (b) Coupling between two or more iEEG oscillations allows coordinating
simultaneous windows of increased or decreased excitability across brain regions. (iii) As the phase
of the on-going iEEG oscillations advances, distinct neuronal patterns representing different items
(A, B, C) are sequentially activated. Progressive shifting of this sequence allows for new items (D)
to be represented. (d) Repetition of previous sequences of neuronal representation is possible thanks
to the rhythmic nature of neural activity. (e) On-going oscillations help predicting future stimuli,
and can be reset by phase-shifting through an input (arrow) signal

Working memory. The role of neural oscillations in working memory is well
characterized in animal models, in particular in the mouse and rat hippocampus.
In humans, theta oscillations have been described in the temporal lobe and frontal
regions while subjects navigate a virtual maze [22, 23]. While it is not completely
clear if maze learning only depends on working memory or also involves long-term
spatial memory, further studies have confirmed that theta activity increases in frontal
and temporal regions during the whole duration of working memory tasks [16, 24]
(Fig. 19.2a). The phase synchronization between theta oscillations in temporal and
frontal regions is argued to help co-activating and integrating information across
neuronal networks, a desired feature to store items in memory (Fig. 19.1b). Gamma
power also increases inworkingmemory tasks [24, 25], allowing precise spike timing
to be shared across local networks, thus supporting synaptic plasticity. The gamma
rhythm is additionally phase-coupled to on-going theta rhythm in the hippocampus
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[17, 26] (Fig. 19.2a). This finding suggests that sequences of items are encoded by
the phase of the on-going theta rhythm (Fig. 19.1c), while the signature of an item’s
content is signalled by gamma power increase. A similar mechanism is proposed for
speech processing, as described below.
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�Fig. 19.2 iEEG recordings of neural oscillations during cognitive tasks. (a) Top: Spectrogram
of iEEG recordings in the left temporal lobe during a working memory task. The black bar denotes
the duration of a trial. Bottom: The gamma band power is coupled to the phase of theta iEEG
oscillations in the hippocampus during a working memory task. (b) Top: Spectrogram of an ECoG
electrode located in the auditory cortex, showing a BHA increase to attended auditory stimuli, but
not to attended tactile stimuli. Significant effects are outlined by a rectangular box. Bottom: Time
response function during a cocktail party task shows that low-frequencies are selectively enhanced
for the attended stimulus. (c) During rest, broadband iEEG oscillations become phase-locked to the
beta rhythm in the sensory and motor cortex. Top: Strength of the phase-locking is shown as the
diameter of each iEEG electrode. Bottom: Example of phase-locking for one exemplary electrode.
(d) Top left: Phase opposition sum for a mismatched audio-visual speech perception task for the
electrode shown in top right. Phase opposition sum is here maximal when the theta phase angle
differs as a function of perception. Bottom left: Theta phase for each perception group (grey and red)
for this electrode. Bottom right: Corresponding phase distribution. The measured phase predicts the
perception. Panel (a) top is adapted from [16]. Copyright 2001 Society for Neuroscience. Panel (a)
bottom is adapted from [17]. Panel (b) top is adapted from [18]. Copyright 2008, with permission
fromElsevier. Panel (b) bottom is adapted from [19].Copyright 2013,with permission fromElsevier.
Panel (c) is adapted from [20] Panel (d) is adapted from [21].

Attention.While functionally distinct fromworkingmemory, attention appears to
share neuronal circuits with it, and both cannot always be disentangled [7]. Increases
in BHA are often found in attention tasks. BHA increases in primary sensory areas,
auditory or somatosensory cortex as a function of the attended stimulus (auditory
vs. tactile), as well as in the prefrontal cortex [18] (Fig. 19.2b). BHA and gamma
responses also increase in response to auditory deviants in the auditory association
cortex [27], duringmotor intention tasks in thepremotor cortex [28], andduringvisual
attention tasks in occipital cortex and fusiform gyrus [29]. Critically, lower frequency
oscillations in the delta-theta range drive the attention focus to a specific stream,
by selectively enhancing the neural activity representing the attended stimulus in
higher cortical regions hosting more abstract representations of the attended stimuli
(Fig. 19.1a and Fig. 19.2b) [19, 30]. Long-range communication between prefrontal
and sensory areas for selective attention is supported by phase coupling in the alpha
range (Fig. 19.1b), simultaneously to a decrease of the alpha power in the sensory
areas, which enables the formation of cortical ensembles [31].

Declarative memory. Similarly to working memory, the theta and gamma
rhythms are thought to play an important role for memory formation. A pre-stimulus
theta increase occurs in themedial temporal lobe duringword learning tasks [32], and
subcortical structures, e.g. dorsomedial and anterior thalamic nuclei, exhibit similar
rhythms during visual learning tasks [33]. In a semantic memory task using natural
language associations, strong theta rhythm can be recorded in the hippocampus [34].
The phase of the theta rhythm encodes stimulus information, thus allowing sequence
encoding throughout a whole theta cycle (Fig. 19.1c) [35]. Beyond the theta rhythm,
the power of gamma oscillations in the hippocampus, the left temporal lobe and
the frontal cortex predicts successful encoding of verbal memory when learning a
list of common words [36, 37]. Here, phase synchronization in the gamma rhythm
might play a critical role in long-term memory formation by enhancing plasticity,
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notably between the rhinal cortex and the hippocampus[38], where it can interact
with working memory [39] (Fig. 19.2c).

Sensory and motor cortical activity. Two main rhythms are classically associ-
atedwithmotor cortex function: Thewidespreadmu/beta rhythm, and localizedBHA
activations. The large amplitude of the mu/beta rhythm had already been described
long ago, both with scalp and intracranial electrode recordings [40]. The mu/beta
activity, which is typically widespread across the sensory and motor regions at rest
and strongly reduced during movement [3, 41, 42], plays a role in the initiation and
interruption of a movement [43]. By contrast, BHA in the motor cortex is present
during movement at specific cortical locations, i.e. following a somatotopic orga-
nization, and are phase-coupled to the beta rhythm [20, 44, 45] (Fig. 19.1a). The
beta rhythm has a suppressive effect: By recruiting large parts of the motor cortex
and phase-locking with BHA, it prevents movement-specific activity to be triggered.
Conversely, its strong diminution during movement allows BHA to emerge in local-
ized networks and triggermovement [20] (Fig. 19.2c).Dysfunction of the beta rhythm
is a well-known correlate of Parkinson’s disease (see below).

Other sensory areas exhibit activations of gamma oscillations and BHA when
a stimulus is perceived [46–48], but no beta activity which remains specific to the
motor areas, suggesting this rhythm is only needed to gate output activity, whereas
inputs in sensory areas are directly triggered by stimuli.

Multisensory integration. In naturalistic environments, we simultaneously
perceive events in the outside world through multiple modalities which are handled
by distinct circuits and brain regions. Yet, the conscious perception of these events
is merged into a single unified representation. Evidence from non-human primates
indicates that crossmodal sensory influences on primary sensory cortices take place
through phase reset: A visual event, say, resets the phase of ongoing oscillations in
auditory cortex without modifying neuronal firing [49, 50] (Fig. 19.1e). In humans
as well, crossmodal phase reset occurs in auditory cortex upon visual stimulation,
and in visual cortex upon auditory stimulation [51, 52]. Phase reset, and the corre-
sponding changes in cortical responsiveness, are argued to underlie the perceptual
amplification of auditory speech by the corresponding visual cues, e.g. lip move-
ments [53]. Buttressing this hypothesis, visual speech stimuli can cause both phase
reset and power changes in auditory cortices [54].

Cortical oscillations also play a key role in selecting which modality is attended
when disparate streams of stimuli arrive simultaneously to the senses [50, 55]. As
noted above, the deployment of attention to one or the other stream is associated with
a shift in the phase of oscillations in sensory cortex [56] (Fig. 19.1a). The phase of
oscillatory activity does not only predict cortical responsiveness but also the percept
itself. In the case of competing auditory and visual speech stimuli, prestimulus theta
phase in the posterior superior temporal cortex determines whether the auditory or
the visual component eventually drives perception [21] (Fig. 19.2d).

Sleep. During non-rapid eye movement sleep, two types of oscillations are typi-
cally recorded with scalp EEG: Slow-waves, and ripples (80–150 Hz). Both have
also been foundwith simultaneous scalp/intracranial EEG, with activations that stays
local, without propagating to other brain regions [57, 58]. The function of slow-waves
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and ripples is not clear but likely relates to memory consolidation, arousal and gating
[58]. Ripples are found in human hippocampus during the consolidation phase of
memory encoding [59–61], but also in several neocortical areas where their functions
are currently not well understood [62]. Importantly, ripples are phase-locked to slow
oscillations, suggesting that the latter drive the windows where replay can take place
[61] (Fig. 19.1d).

19.3 Speech Perception and Production

Speech communication is a complex human behaviour that extends across multiple
timescales. Accordingly, its neural representations are supported by oscillations and
activities at different frequencies, including BHA, delta, theta, beta and gamma
rhythms [9, 63, 64]. In the following, we explore in more details how these rhythms
contribute to the neural representations of speech at various time scales.

Chunking auditory speech stimuli into syllables. Words in uttered speech are
not necessarily marked by silences, but rather form a continuous streamwhere mean-
ingful linguistic items need to be separated for semantic and syntactic processing.
This chunking operation is performed by the theta rhythm in the primary and
secondary auditory cortex [64] (Fig. 19.3a). Theta oscillations strongly correlate with
speech envelope (amplitude modulation of the acoustic signal), although acoustic
onset edges have also been proposed as the actual entraining events [67]. The
frequency range of the theta rhythm, between 4 and 8 Hz, corresponds to the syllabic
rate of all spoken languages [68] (2−8 Hz), which makes it ideally suited to chunk
heard speech into distinct syllables by periodically enhancing incoming activity
(Fig. 19.1a). Both rhythms must commensurate for the chunking to operate, as bril-
liantly demonstrated by showing that compressed speech remains intelligible if prop-
erly spaced [69, 70]. The actual nature of the theta rhythm, whether endogenous or
entrained by heard speech, is nevertheless still heavily debated (see for instance [71]
and the avalanche of commentaries that it triggered).

Encoding phonemes. In parallel to chunking, heard phonemes must be encoded
in a neural representation. This task is carried out by the gamma rhythm, which is
recorded in the auditory cortex when subjects are hearing speech [9, 63, 64, 72]
(Fig. 19.2a). The amplitude of the gamma rhythm is coupled to the phase of the theta
rhythm, thereby assuring that it is maximally activated during periods of interest
(Fig. 19.1c, Fig. 19.3b). Simultaneously to gamma oscillations, BHA activations
lay out a spatio-temporal neuronal mapping of spectral, articulatory or phonetic
representations of speech utterances in the auditory and motor cortex [48, 73–75].

Binding linguistic elements. The next important step for speech processing is to
combine linguistic elements together, so that complex syntactic and semantic struc-
tures can emerge. This requires binding elements in working memory over large
temporal windows [61]. Slow rhythms, such as the delta rhythm, are proposed to
selectively enhance items over the duration of the slow delta period (Fig. 19.1a),
but additional experiments are needed to confirm this, notably using iEEG data. The
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Fig. 19.3 iEEG oscillations in speech perception and production. (a) Spectrograms of iEEG
activity responding to a sentence heard by the subject. Theta and gamma rhythms in primary (left)
and association (right) auditory cortices are enhancedduring speechperception. (b) Phase-amplitude
coupling between theta and gamma bands for the same regions. (c) Left: The syntactic tree of a
sentence heard by a subject is used to define the number of open nodes. Right: BHA increase in
the superior temporal sulcus correlates with the number of open nodes at the time of word onset.
(d) Intracranial recordings from the auditory cortex of a non-human primate during perception
of repetitive stimuli. Left: Intertrial coherence (top) and amplitude (bottom) of delta oscillations
increase during the repetitive patterns (R1-5), indicating a phase alignment. Right: Neuronal multi-
unit activity is synchronously or anti-synchronously phase-locked to the delta rhythm for neurons
tuned to frequencies < 11 kHz and > 11 kHz, respectively. Panels (a) and (b) adapted from [63].
Panel (c) adapted from [65]. Panel (d) adapted from [66]
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delta rhythm is also suggested to be involved in syntactic encoding of sentences, by
combining distinct syntactic elementswithin the same temporalwindows (Fig. 19.1a)
[76]. More sophisticated mechanisms, such as nested structures of progressively
slower oscillations [77] or phase encoding of item positions and content [78] presum-
ably further refine the processing of syntactic structures. Finally, BHA modulations
in the inferior frontal gyrus might be a signature of compositionality of linguistic
elements, as BHA power increases with working memory load and abruptly drops
when a new element is bound [65] (Fig. 19.3c).

Temporal prediction.One of the key feature of speech perception is the ability of
the brain to predict the next sensory input [79]. Themainmechanismused by the brain
to achieve this is to use oscillatory entrainment (of the theta rhythm in the auditory
cortex) regulated by top-down phase resetting mechanisms (Fig. 19.1e). Although
this mechanism has so far only been shown with non-invasive recordings [80, 81] or
invasive recordings in non-human primate [66] (Fig. 19.3d), it will likely be found as
well with invasive recordings. A good candidate for the phase resetting role is the beta
rhythm, which is foreseen as the main top-down signal. Computational modelling
data suggest that beta is the optimal rhythm for controlling the rate of prediction
errors within a given region during speech processing [82]. The sensitivity of the
theta rhythm to top-down signal would render the signal more flexible, in particular
for aperiodic predictable and memorized signals [79].

Imagined speech. Interestingly, while BHA in sensory and motor cortices is the
best predictor of overt or articulated speech, it becomes equally or less predictive than
other frequency bands for phoneme decoding in imagined speech (i.e. without any
movements), suggesting that imagined speech is presumably not primarily grounded
in imagined articulatory movements [83]. In contrast, speech attempted by paralyzed
persons with preserved language and cortical motor commands was well decoded
usingBHA recorded from themotor and sensory cortex by leveraging the articulatory
representation described above [84].

Paralinguistic speech features. Several other features are relevant for the neural
representation of speech, such as speaker invariant representations, emotion, prosody,
etc. These features have been investigated mostly by analysing BHA, for instance
with the speech prosody in the superior temporal gyrus [85], the planning of conver-
sational answers in inferior and middle frontal gyrus[86], or even the onset of voices
in rock songs [87].

19.4 Dysfunctional iEEG Oscillations

We have so far focused on the functional properties of iEEG oscillations. However,
excessive neural oscillations can also be pathological, and be associated with observ-
able symptoms. Pathological oscillations have beenwell characterized with iEEG for
epilepsy and Parkinson’s disease, where the implantation of intracranial electrodes
is necessary for clinical reasons.
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Epileptic seizures. Epileptic seizures constitute the prototypical example of
dysfunctional oscillations that can be recordedwith iEEG (Chap. 1).During a seizure,
assemblies of neurons discharge hypersynchronously, creating strong oscillations
that can easily be recorded with invasive and non-invasive recording techniques. This
excessive synchronization disrupts the normal operative role of brain rhythms, and
recruits atypical neural circuits inducing abnormal behavior. For instance, seizures
that progressively recruit somatotopically arranged regions in the motor cortex via
the spreading of a strong alpha/beta rhythm correspond to the apparition of motors
symptoms (e.g. rhythmic muscle contractions) that appear sequentially in neigh-
boring body parts (this particular progression is called the Jacksonian march [88]).
Similar symptoms occur in the domain of language when seizures spread through
the temporal lobe (mumbling of incoherent speech).

Amore recently identified type of epileptic oscillatory rhythmic activity is the high
frequency oscillations (HFO) between 80 and 500Hz that appear by brief episodes34.
Presence of HFO has been proposed to reflect pathological tissue: recent findings
suggest that they reflect the presence of multiple independent pools of neurons that
fire together but out-of-phase with each other [89, 90] (see also Chap. 24 for the
distinction of physiological vs. pathological ripples).

Finally, thanks to recent long-term intracranial recordings (several years) obtained
by chronic implantation of a neurostimulation device (see also Chaps. 52 and 53), it
appeared that seizures are very often phase-locked to interictal very slow oscillations,
with a period spanningweeks tomonths [91, 92]. These findings, in addition to known
circadian rhythms of these cycles [93], have triggered newhope for the field of seizure
forecasting [94].

Beyond the seizure focus itself, pathological oscillations can also invade remote
cortical areas and participate in the clinical expression of seizures: During medial
temporal lobe seizures, slow (delta-band) oscillations appear in frontal and parietal
cortices [95, 96] and are associated with impaired consciousness [97], likely because
of the large territories recruited in this synchronous regime.

Interictal epileptiform discharges (IEDs, the “spikes and waves” of epilepsy) also
impair the function of the neural networks that they invade [98, 99]. Whether the
pathological neuronal activity causing the IED itself suffices to alter function, or
whether it is the sudden interruption of ongoing oscillations by the IED that causes
the symptoms, remains an open question (see also Chap. 3). Since the occurrence
of IEDs depends on the phase of ongoing oscillations in neuronal networks [100], it
might be the case that the execution of a cognitive task itself influences the occurrence
of IEDs [101].

Parkinson’s disease. Deep brain stimulation is often used to alleviate the symp-
toms of patients with Parkinson’s disease by placing electrodes in the subthalamic
nucleus (STN), providing opportunities for researchers to record this brain region.
Aberrant beta activity is found in the STN of 95% of patients with Parkinson’s
disease [102]. This beta activity occurs in bursts, with phasic coupling across the
motor network, including the globus pallidus and the thalamus [103]. As mentioned
above, the beta rhythm that is enhanced in Parkinson’s disease has a suppressive
effect that might be due to recruitment of local populations of neurons. This explains
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for instance the difficulty to initiate movements (i.e. to stop the beta rhythm). Oscil-
lations in other bands, such as theta and alpha, might also play a role inmotor but also
cognitive impairments in Parkinson’s disease, for which the underlying mechanisms
remained to be fully characterized [104].

19.5 Conclusion

Several types of iEEG oscillations have been reported and related to many cognitive
functions. Correspondingly, when these functions are impaired, neural oscillatory
behaviour is abnormal, suggesting a possible causality of oscillatory phenomena and
generic computational processes [105]. To further establish the functional relevance
of iEEG oscillation, it will be particularly useful to be able to relate on-going iEEG
oscillations with the underlying spiking activity. To this end, intracranial recording at
the single neuron level simultaneously with local field potential recordings constitute
an invaluable tool to further explore those mechanisms (see also Chaps. 16 and 44).

A number of oscillations found in animal or non-invasive studies have not yet been
reportedwith iEEG in human, but are likely to be found in the future if the opportunity
to record them intracranially arises. An example is in the domain of dyslexia, where
scalp EEG recordings in children with dyslexia have repeatedly found a deficit in
gamma power in the auditory cortex (see above for the role of gamma band in speech
perception) [106]. Enhancement of this band with the use of transcranial electrical
stimulation has allowed improvement of phonemic processing and reading accuracy
[107], thus causally establishing the importance of the low-gamma band activity for
speech processing.

To conclude, iEEG oscillations support many distinct cognitive functions using
a large variety of mechanisms. Future studies will help further explore a potential
role of neural oscillations in cognitive operations that are higher in the cognitive
hierarchy (e.g. syntactic processing, value-based decision making etc.), for which
the functional role of iEEG oscillations has so far been more difficult to establish.
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Chapter 20
How Can I Run Sleep and Anesthesia
Studies with Intracranial EEG?

Janna D. Lendner and Randolph F. Helfrich

Abstract The similarity of sleep and general anesthesia has fascinated scientists
for a long time. At first glance, both states are characterized by similar behavioral
correlates, namely decreased responsiveness, arousal and movement. Previously,
non-invasive scalp electroencephalographic (EEG) recordings demonstrated highly
comparable spectral signatures of both states, such as the ubiquitous presence of slow
waves or delta oscillations.More recently, intracranial recordings in humans provided
a more fine-grained perspective and revealed that sleep and anesthesia reflect highly
distinct entities. Here, we outline how intracranial sleep and anesthesia recordings
can be embedded into the clinical routine. We discuss caveats and shortcomings
that need to be considered, especially in the context of epilepsy as the underlying
neurological disorder. Subsequently, we provide a practical road map to obtain state-
specific neural recordings and discuss technical prerequisites as well as important
analytical considerations. Finally, we summarize how intracranial recordings extend
our understanding about the mechanism-of-action of anesthetic drugs at the network
level and to which extent these signatures overlap with physiologic sleep networks.
Collectively, here we review how intracranial recordings in humans can be leveraged
to gain important insights into sleep physiology and the neural correlates of (un-)
consciousness.
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20.1 Introduction

“You will fall asleep now” might be the most common phrase used by anesthe-
siologists before administering the hypnotic drug during everyday clinical care.
At first glance, sleep and anesthesia share several behavioral signatures, including
decreased arousal and movement [1]. However, upon closer inspection, both states
reflect distinct entities. In contrast to someone asleep, patients undergoing anes-
thesia remain unresponsive to painful stimuli. In addition, anesthesia impairsmemory
formation and can be detrimental to cognitive functioning (especially in the elderly;
[2, 3]), while sleep benefits memory formation and cognition [4]. The neural corre-
lates of unconscious brain states have fascinated scientists for decades [1, 5]. Several
scalp EEG studies identified electrophysiological signatures, such as high amplitude
slow waves (<1.25 Hz) and delta activity (<4 Hz) that both occur in non-rapid eye
movement (NREM) sleep and under deep anesthesia [6–8].

Intracranial EEG (iEEG) offers a unique window to study cognition, sleep phys-
iology, sleep deprivation and anesthesia on the single subject level. Patients are
typically monitored for multiple days; hence, several days and nights worth of data
can be obtained. Furthermore, sleep deprivation is a common intervention to trigger
seizures (see Sect. 20.3.2) and provides a valuable experimental condition to test
causal links between sleep and cognition. In addition, iEEG often explores deeper
brain structures, such as the hippocampus, the amygdala or thalamic nuclei, which are
difficult to image using non-invasive methods, but are thought to reflect key nodes
of the human memory network [4, 9, 10]. The high temporal resolution of iEEG
enables extraction and analysis of e.g. high-frequency band activity (~70–150 Hz;
HFA; [11, 12]) or of cardinal sleep oscillations, such as sharp-wave ripples (~80–
120 Hz; [9, 13–15]), which cannot be observed at the scalp level. iEEG is typically
used to sample multiple nodes of the suspected epileptic network (i.e. mesial or
limbic structures, including the hippocampus, cingulate and orbitofrontal cortex).
To target these deeper structures, electrodes have to transverse through intact cortex
(i.e. lateral temporal and frontal); thus, enabling simultaneous multisite recordings
with high spatiotemporal resolution, which allows dissecting network processes in
great detail. With the advent of human single neuron recordings, it is now feasible to
record single unit activity (SUA), field potential, HFA, intracranial and scalp EEG
all simultaneously within the same patient [16, 17] (see also Chaps. 12 and 16).

20.2 The Clinical Context for Sleep and Anesthesia Studies

20.2.1 The Peri- and Post-operative Clinical Setting

Patients undergoing invasive intracranial monitoring have typically experienced a
long-lasting ordeal of seizures, failed treatments and non-invasive diagnostic tests.
Once the non-invasive work-up is completed and electrode implantation has been
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planned to pinpoint the seizure onset zone, patients are admitted to neurosurgery
for implantation of either subdural grid electrodes (ECoG), stereotactically placed
depth electrodes (sEEG) or a combination of both. Once patients are out of the
operating room and electrode placement has been radiologically confirmed, they are
transferred to the epilepsy-monitoring unit (EMU). Depending on the duration of
the procedure and the precise dosing of the anesthetics, patients might be drowsy or
somnolent until all effects of the general anesthesia wear off over the course of the
first few hours. Depending on the type of electrode (grid vs. depth) patients might
experience different levels of discomfort. In general, depth electrodes are better toler-
ated with less post-operative pain, given that no craniotomy is necessary. However,
depth electrodes targetingmesial temporal lobe areas typically transverse through the
temporal muscles, hence, patients often report pain and discomfort while chewing
or drinking. In addition, electrodes are covered in a head-wrap, often requiring a
supine positioning with an elevated backrest; hence, habitual sleeping positions are
not always feasible. Most patients are confined to bed rest during the entire moni-
toring. Therefore, patients often require one or two days (and nights) to adapt to the
surroundings of the EMU during invasive monitoring, which in turn, impacts sleep
quality and duration (see also Chaps. 4 and 5).

20.2.2 Factors Determining Sleep Quality in the Monitoring
Unit

Peri-operative circumstances impact sleep in the first few hours, but once the imme-
diate effects of the procedure wear off, most patients resume their habitual night-day
cycle. In the context of sleep studies on the monitoring unit a few caveats apply.
Depending on the medical center, some patients will be assessed clinically every few
hours throughout the night to monitor their vital signs as well as their neurological
state. Hence, the clinical routine might introduce sleep fragmentation and frequent
arousals during the night (Fig. 20.1). Arousals during nighttime might also be trig-
gered through alarms on the ward at night or warning sounds of intravenous infusion
systems.

Another factor that influences sleep quality on the EMU is the current antiepileptic
drug regime (see Sect. 20.2.3 for drug specific effects), which is typically tapered
during monitoring to provoke seizures. While the patient or members of the
family/staff can press a bedside button whenever the patient experiences epileptic
prodromes or seizures, in some instances, especially during reduction of antiepileptic
medication, patients may first present with subclinical seizure patterns. Subclinical
events are noted by the EEG techs as suddenly occurring rhythmic spiking patterns in
the EEG without obvious clinical correlate. In order to determine the precise clinical
manifestation of a given pattern, the techs then wake up the patient and administer a
series of tests to determine orientation and executive functions. Collectively, given
the clinical circumstances and several contributing factors, an undisturbed night on
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Fig. 20.1 Sleep architecture in the sleep lab and EMU. a Top: Hypnogram. Bottom: Multitaper
spectral representation with number of detected slow oscillations and sleep spindles superimposed
as recorded during a habitual night of sleep in a sleep lab. b Same conventions. Data recorded in the
EMU. A comparable pattern is observed; thus, indicating the feasibility to conduct sleep studies in
the EMU. Panel A is reproduced with permission from [60]. Panel B reproduced with permission
from [14] under the Creative Commons Attribution (CC BY) license

the EMU is less common that in a dedicated sleep laboratory. This needs to be
accounted for in studies that examine sleep physiology or sleep-dependent memory
formation.

20.2.3 The Effects of Antiepileptic Drugs

Patients undergoing invasive monitoring failed multiple drug regimes and are typi-
cally being admitted while they are on a combination of different antiepileptic drugs
(AEDs), which might include sodium channel blockers, GABAergic drugs or AMPA
receptor antagonists. During monitoring, AEDs are typically tapered off to provoke
habitual seizures. In the context of sleep studies, it is important to note that tapering
off medications will increase both interictal spiking (see also Sect. 20.3.1) and the
likelihood for seizures. On the other hand, AEDs themselves often impair sleep
quality and its electrophysiological signatures. For instance, lamotrigine, a widely
used sodium channel blocker, triggers sleep disturbances and fragmentation [18]. In
contrast, GABAergic drugs, such as clobazam (a benzodiazepine), lead to daytime
sleepiness and sedation [19]. AMPA receptor antagonists like perampanel are strong
sedatives and are therefore taken only in the evening hours [20]. To date, the precise
effects of many AEDs on sleep are not well known, but in the context of sleep studies
detailed knowledge about the current medication status is helpful to interpret these
findings [21–24]. This is of particular relevance, since certain anticonvulsants exhibit
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distinct electrophysiological signatures, such as benzodiazepines, which introduce
widespread EEG beta activity (~13–30 Hz).

20.2.4 Electrode Explantation as a Window into the Neural
Correlates of Anesthesia

Once intracranial electrodes are in place and patients are awake and stable, they
are typically transferred from the operating room (OR) to the monitoring ward,
where electrodes are first connected to the clinical and research recording setup, a
process that takes between 45 min to 1.5 h. In rare instances, the setup can already be
completed in the OR; thus, enabling recording electrophysiological activity during
the emergence of anesthesia [25]. However, as virtually all patients undergo post-
operative imaging by means of CT- or MRI-based imaging to confirm electrode
placement and to rule out perioperative complications such as brain hemorrhage,
electrodes would have to be disconnected for scanning and then reconnected on the
EMU, making this recording strategy highly impractical in the clinical context.

The more feasible route to obtain iEEG recordings during anesthesia is recording
at the end of invasive monitoring, just before electrode explantation. Again, this is
only viable if electrodes are explanted under general anesthesia, which is common
for grid electrodes, in patients that cannot complywith lying still (e.g. young children
or patients with anxiety disorders) or when the epileptogenic tissue is removed in the
same session. Nowadays, many centers remove depth electrodes in the EMU under
local anesthesia, while patients are awake. If patients undergo general anesthesia for
explantation, then recording equipment may be transferred to the OR and record-
ings continue until the wires are physically removed; hence, capturing induction and
maintenance of anesthesia. A few reports are available where patients underwent
light anesthesia or sedation accompanied by research testing (e.g. tasks or auditory
stimuli), then recovered as part of the research protocol and then were again anes-
thetized for final removal of the electrodes [26]. The exact clinical set up will vary
between medical centers. However, often enough it will be possible to incorporate
research studies into the individual clinical context, without jeopardizing patient
safety and while respecting clinical time constrains and limited OR time. In most
centers, protocols can be tailored to address specific questions; however, given the
scarcity of reports, there is currently no consensus or gold standard available on how
to conduct these studies.
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20.3 Implications of Epilepsy as the Underlying
Neurological Disorder

20.3.1 Sleep Stages and Epileptic Activity

Anempirical observation in numerous overnightEEGrecordings is that the frequency
of epileptic spikes (interictal epileptic discharges; IEDs) sharply increases during
NREM sleep and that they are less common during wakefulness and REM sleep
(Fig. 20.2; [21]). In addition, most nighttime seizures occur during NREM sleep.
In fact, epileptic activity that occurs during REM sleep is highly informative for
clinical localization of the seizure onset zone (SOZ), while NREM spikes are less
specific. Theprecise (patho-) physiologic underpinnings of these observations remain
unknown, however, it has been argued thatNREMsleep reflects a hyper-synchronized
brain state that facilitates propagation of synchronized volleys of epileptic activity
[24]. A related clinical observation is that hippocampal IEDs are common during
NREM sleep, even if the SOZ is located outside of the medial temporal lobe. It has
been argued that the anatomical structure and connectivity of the hippocampus abet
its susceptibility to epileptic activity [21, 27]. Uncontrolled seizure activity outside of
the medial temporal lobe might ‘kindle’ the hippocampus [28], i.e. induce a second
independent source of seizure activity, thus, rendering a focal epilepsy multi-focal
and therefore, not amendable to resective surgery. In the context of sleep studies, the
spatial and temporal characteristics of IEDs need to be accounted for to circumvent a
systematic bias when analyzing REM and NREM sleep separately. Likewise, special
caution is necessary when analyzing hippocampal activity during sleep (see also
Sect. 20.4.3).

a b

Fig. 20.2 The rate of interictal discharges increases during NREM sleep. a Inter-ictal
discharges (IED) as detected by two automatic detectors [15, 27]. b Discharge rate (red) across
the night (hypnogram in grey), highlighting more IEDs during NREM sleep as compared to wake-
fulness (blue) or REM sleep (purple). Panel A reproduced with permission from [14] under the
Creative Commons Attribution (CC BY) license
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20.3.2 Sleep Deprivation is a Powerful Trigger for Seizures

Invasive monitoring on the EMU provides a narrow time window (often between 4
and 7 days) to observe seizures and to determine the SOZ for subsequent surgical
resection. In addition to tapering off the AEDs, (partial) sleep deprivation is another
commonly employed tool to trigger seizures during monitoring [29, 30]. Patients are
typically kept awake or are only allowed to sleep for approximately four hours, e.g.
from 2 to 6 a.m. Seizures after sleep deprivation do not occur immediately, but mani-
fest within the subsequent 24 h. The precisemechanisms are not fully understood yet,
but it has been argued that sleep deprivation attenuates physiologic homeostasis for
the excitatory-to-inhibitory balance; thereby, resulting in a net increase of excitation
and subsequent epileptic activity [30–32]. In the context of iEEG sleep studies on
e.g. overnight memory formation, sleep deprivation constitutes a valuable control
condition that is already implemented in the clinical context. However, an impor-
tant confound is that it also sharply increases epileptic activity, which might bias
behavioral performance and electrophysiological signatures the next day.

20.3.3 The Relationship of Anesthesia and Epileptic Activity

General anesthesia induces a state of unconsciousness, often by increasing inhibi-
tion in the brain [5]. Common anesthetic agents like propofol bind to GABAergic
receptors, similar to benzodiazepines, which are also used as anticonvulsants. Hence,
anesthetic drugs are occasionally being used to treat a status epilepticus, i.e. a contin-
uous epileptic seizure. This has also strong implications for intracranial EEG studies
on general anesthesia. In contrast to sleep studies, where epileptic activity can be
sharply increased, IEDs are typically strongly attenuated during general anesthesia;
thus, potentially biasing and hampering a direct within subject comparison between
both neuronal states. However, most studies focused on the neuronal correlates of the
loss-of-consciousness (LOC) under anesthesia and in this scenario a strong atten-
uation of epileptic activity is desirable. From a clinical point-of-view, LOC from
general anesthesia results from a maximum of inhibitory drive resulting in hyper-
synchronized medium to slow neural activity, while LOC during a seizure typically
results from uncoordinated neuronal firing due to hyperexcitability.
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20.4 Analysis Strategies

20.4.1 Technical Pre-requisites for Comparative
Electrophysiology

In principle, data is continuously recorded during monitoring. However, in order to
take full advantage of the acquired data, several prerequisites need to be met. First,
it is desirable that iEEG during sleep and anesthesia are recorded using the same
amplifier. Some centers run dedicated clinical and research systems that are either
fully independent (parallel data streaming) or that run serially (data is streamed from
the clinical to the research system). If a serial setup is employed, it might be difficult
to transfer both the clinical and research system to the OR for recordings during anes-
thesia. In this scenario, it would be beneficial to use the clinical amplifier for both
recordings. It is of critical importance to be aware of the operating room logistics
where several disciplines (nurses, anesthesia techs, neurophysiologists, anesthesiol-
ogists and neurosurgeons) interact under both, time and space constrains. Contin-
uous EEG recordings during this phase likely contain movement artifacts as well
as artifacts from manipulation of wires and the head, which will require careful
inspection during analysis. Wherever possible, noise should be attenuated during
the recording, e.g. by shielding recording leads from surrounding noise sources or
unplug unnecessary equipment in the vicinity.

To enable a direct comparison to non-invasive results and to facilitate gold-
standard sleep staging, scalp EEG should be recorded simultaneously [33]. Implanted
iEEG leads sometimes prohibit placement of scalp leads, but it is best practice to at
least record from a few scalp locations (i.e. midline electrodes Fz, Cz and Pz along
with C3/C4 to facilitate spindle detection) as well as electrooculogram (EOG) and
electromyogram (EMG) electrodes to detect REM sleep.

In addition, data should be recorded at a sufficient high sampling rate (>500 Hz)
to enable extraction of HFA and ripple oscillations. During recording data should be
minimally processed with regard to low-pass, high-pass or band-stop filters.

20.4.2 How to Determine the Current Behavioral or Brain
State?

Sleep staging from iEEG is theoretically possible, however, guidelines for sleep
staging are only available for scalp EEG. Hence, it remains best practice to obtain
simultaneous scalpEEG,EOGandEMGto facilitate sleep staging. The key challenge
is the distinction of wakefulness and REM sleep, while NREM sleep can easily be
detected given the presence of clear oscillatory key signatures, such as prominent
slow waves and spindle oscillations.
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With respect to anesthesia, the current gold standard to determine the loss
of consciousness is based on clinical judgement by the physician. The Modi-
fied Observer’s Assessment of Alertness and Sedation (MOAA/S) scale is a vali-
dated 6-point scale assessing responsiveness of patients, which has been defined
by American Society of Anesthesiologists (ASA). For neuroscientific applications,
sometimes a simplified categorization into awake/alert, sedated/drowsy (but arous-
able/responsive to predefined stimuli such as subject’s name or mild prodding) and
unconscious/unresponsive is employed. Lastly, anesthetic depth may be monitored
with the help of special neuromonitoring devices such as the bispectral index (BIS)
monitor, which was initially developed to prevent intraoperative awareness. Elec-
trophysiological data (EEG, EMG) is measured from a few frontal sensors and
then transformed into a numerical value between 0 and 100 that indicates the level
of arousal (100 = wakefulness, 40–60 = sufficient anesthetic depth for surgery).
However, the algorithm of this calculation is proprietary, thus, it remains unclear
which EEG features are being evaluated. Furthermore, BIS hasmainly been validated
in propofol anesthesia and the efficacy and reliability of BIS monitoring remains
controversial.

20.4.3 How to Address Epileptic Activity?

Epileptic activity is an inherent feature of iEEG data. Depending on the question,
multiple approaches are conceivable. Typically, when addressing questions on sleep
or cognitive physiology, it is considered best practice to exclude electrode contacts
within the clinically identified SOZ and to reject any other channels that contain
seizure or spiking activity [12]. However, in the context of sleep studies, these criteria
might be overly conservative. As outlined above, even when the SOZ is outside of the
MTL it is common to observe IEDs in hippocampal contacts. These IEDs should be
rejected either basedonvisual inspection by aneurologist or bymeans of an automatic
IEDdetector (Fig. 20.2). Several algorithms have been introduced in recent years [15,
27], but specificity and sensitivity have not fully been evaluated and detectors are not
being used for clinical purposes, where the time-consuming visual inspection still
constitutes the gold standard. It is common practice to only analyze nights where the
patient did not experience any seizures or to discard recordings around the seizures
with a large error margin of ±2 h to avoid any pre- or postictal rhythmic slowing,
which can easily be mistaken for physiologic slow waves.
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20.5 Insights into Sleep and Anesthesia

20.5.1 The Human Memory Network During Sleep

Contemporary theories of memory consolidation emphasize the role of a two-step
bidirectional hippocampal-neocortical dialogue, where novel information is initially
encoded in hippocampal-dependent loops and overtime becomes mainly neocortex-
dependent during consolidation [4, 10]. A hierarchy of sleep oscillations is thought to
subserve the sleep-dependent reactivation, transfer and consolidation of mnemonic
information. In this model, hippocampus-dependent information is spontaneously
replayed during sleep, i.e. the very same pattern that was present during encoding is
recapitulated during sleep in a time-compressed manner [34–37]. Replay is tightly
linked to the expression of a hippocampal sharp-wave ripple (80–120 Hz; [37]),
which in turn is nested in thalamo-cortical spindles (12–16 Hz) and neocortical slow
waves (<4 Hz). Selective synchronization of these three cardinal sleep oscillations
is thought to reflect an endogenous timing mechanism for the routing of informa-
tion [4]. Before the advent of iEEG in humans, a major caveat of this theory was
that most evidence stemmed from recordings in rodents, as non-invasive imaging of
the human hippocampus did not offer a sufficiently high spatiotemporal resolution
to detect ripple oscillations [9]. However, in recent years, the field of epileptology
transitioned from using grid and strip electrodes on the outer surface of the MTL
to employing depth electrodes that directly target the hippocampus, often in stan-
dardized bilateral implanting schemes; thus, providing the necessary resolution to
examine the building blocks of systems memory consolidation in humans. Intracra-
nial recordings from the sleeping brain have yielded important insights into sleep
physiology in recent years. For instance, it has been shown that the hierarchical
triple coupling is preserved in humans and that the precise SO-spindle coupling
phase predicts hippocampal ripple expression [13–15, 38]. Hippocampal ripples
then mediate the transfer of mnemonic information from the hippocampus to long-
term neocortical storage (Fig. 20.3). Recently, intracranial recordings have been also
used to also establish the presence of cortical ripples, however, their role in systems
memory consolidation remains unclear [39, 40].

20.5.2 The Brain Under Anesthesia

In recent years, EEG studies under various anesthetics have revealed distinct spectral
fingerprints of each drug [1, 5]. For example, the administration of GABAergic
anesthetics such as propofol lead to an overall decrease of brain activity.Although this
is true for most neural activity including IEDs, LOC under anesthesia is associated
with a sudden increase of coherent slow and alpha oscillations (depicted in one frontal
intracranial electrode Fig. 20.4a). We are currently lacking mechanistic insights into
how the brain transitions from consciousness to anesthesia and how it recovers from
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Fig. 20.3 Ripple-triggered information transfer between the hippocampus and neocortex.
a Simultaneous recordings from frontal and hippocampal areas during NREM sleep highlight the
presence of all cardinal sleep oscillations.bBidirectional information exchange upon a hippocampal
ripple. c Widespread increases in shared information between the hippocampus and neocortical
intracranial contacts. d Spectrally-resolved information flow (transfer entropy) highlights a key role
of spindle oscillations formediating inter-areal information flow. Figure reproducedwith permission
from [14] under the Creative Commons Attribution (CC BY) license

the perturbation, with potential implications for coma and other states of altered
arousal. Moreover, anesthesia can impact perioperative cognition beyond immediate
recovery resulting in long-lasting cognitive deficits including memory impairments
[3]. Although highly valuable, iEEG data during anesthesia remains scarce given the
logistical challenges outlined above.

To date, iEEG has been used to illuminate the neural correlates of the loss-of-
consciousness under general anesthesia. It has been demonstrated that network
dynamics change dramatically upon anesthesia induction with prominent power
increases in the delta- and alpha-bands [41–43]. Specifically, it has been shown that
anesthesia alters spatiotemporal network configurations and alters coupling across
temporal (i.e. delta-alpha or delta-gamma cross-frequency coupling; [43]) and across
spatial scales (delta-, alpha- or gamma-band phase synchronization; [44–46]). It has
been argued that impaired network synchronization is detrimental for information
integration in large-scale cortical networks [41, 43, 46]. This consideration is in
line with the observation that sensory processing in primary sensory areas remained
intact under general anesthesia, while subsequent processing in secondary sensory
and higher-order association areas was attenuated [47–49].

It has been proposed that neural networks operate close to criticality, i.e. at a
transition point between ordered and chaotic network states, which may be optimal
for information processing and transmission capacities [50–52]. Several findings
indicated that anesthesia renders neural activity less critical, i.e. more predictable
[53]. It has been argued that high variability close to possible network transition
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Fig. 20.4 Aperiodic activity dissociates arousal levels in sleep and anesthesia. a Multitaper
spectrogram during induction of propofol anesthesia highlights the emergence of both slow waves
and alpha oscillations during loss-of-consciousness. bDecreased arousal is associated with a reduc-
tion of the spectral exponent. States that are characterized by increased inhibition lead to a stronger
reduction of the spectral slope. The steepest slope is observed during anesthesia. c Reduction of
the slope in iEEG recordings highlights that anesthesia induces a brain wide reduction. d On the
contrary, during sleep this reduction is confined to key nodes of thememory network, namelymedial
temporal and medial frontal areas. Figure reproduced with permission from [56] under the Creative
Commons Attribution (CC BY) license

states is necessary to remain conscious, while anesthesia induces a shift away from
the network bifurcation and thereby, promotes unconsciousness [54–57].

Collectively, this set of findings indicates that anesthesia promotes altered states
of consciousness by impairing information flow and integration in cortical networks.
Furthermore, the available evidence suggests that hyper-synchrony (as indicated by
increased power and connectivity) heavily constrains the neural repertoire, which is
necessary for consciousness. Collectively, iEEG under anesthesia provides a unique
opportunity to assess the neural correlates of consciousness through the lens of
pharmacologically induced unconsciousness.

20.5.3 Comparative Electrophysiology of Sleep
and Anesthesia

In the last decade, several seminal findings were published using iEEG to understand
sleep or anesthesia. However, to date only very few comparative approaches have
been reported [25, 47, 56]. Hence, it remains unclear if anesthesia actually hijacks
sleep pathways during induction, emergence or maintenance.
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Until recently, slow oscillations have been considered a hallmark of the uncon-
scious brain and a marker of cortical inhibition as they occur both in deep sleep
and under anesthesia [1, 24]. However, this notion was in stark contrast to the
presumed active role of NREM sleep in information processing [4]. Recent compara-
tive evidence provided functional insights beyond these prominent oscillatory signa-
tures. Computational modeling indicated increased inhibition is associated with
a steepening on the electrophysiological power spectrum (reduction of the spec-
tral exponent; [58]). Indeed, this shift towards inhibition was also observed during
propofol anesthesia in rodents, monkeys and humans (Fig. 20.4; [56]). Importantly,
anesthesia induced a brain-wide reduction of the spectral exponent (Fig. 20.4c). A
similar exponent reduction was also observed during sleep, which had several impli-
cations [59]. First, contrary to popular belief, inhibition was maximal during REM
and not NREM sleep, possibly sub-serving sleep-dependent neural homeostasis.
Second, this reduction was mainly confined to the human memory network, i.e.
encompassing medial temporal and medial frontal areas (Fig. 20.4d). However, it is
critical to note that this line of inquiry is in early stages and we foresee that a direct,
within subject comparison of sleep and anesthesia with iEEG will provide important
insights into physiological as well as pathophysiological mechanism underlying e.g.
post-operative cognitive decline.

20.6 Conclusions

In summary, intracranial recordings in humans can be leveraged to gain important
insights into sleep physiology and the neural correlates of (un-) consciousness. We
reviewed the most important technical considerations and prerequisites to success-
fully implement these recordings in a clinical environment. Recording sleep and anes-
thesia data during invasivemonitoring constitutes an interdisciplinary team effort that
involves multiple disciplines (neurology, neurosurgery, anesthesiology) and requires
support from nurses and EEG techs. The obtained data provides a unique window in
the correlates of (un-) consciousness in the human brain and therefore, constitutes
an important link to recordings in non-human primates and rodents.
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Chapter 21
What Can iEEG Inform Us About
Mechanisms of Spontaneous Behavior?

Yitzhak Norman and Rafael Malach

Abstract While controlled experiments form the core of human brain research—a
fundamental, yet far less studied, domain concerns the neuronal mechanism under-
lying freely-generated, spontaneous behavior. Intracranial recordings in conscious
humanpatients offer an invaluablewindow into this question.Herewe review relevant
iEEG findings highlighting a universal mechanism underlying human free behavior:
internally generated ultra-slow fluctuations in neuronal activity. These spontaneous
firing dynamics are ubiquitous across the brain and appear at various scales—from
functionally-specialized local sub-populations of neurons, to brain wide networks.
Crucially, signatures of these slow fluctuations appear in every free behavior studied
so far. Focusing on free recall as a paradigmatic example, we demonstrate that
spontaneous activity fluctuations, manifested as slow anticipatory waves in cortico-
hippocampal circuits, tend to precede spontaneous recollections by 1–2 s. Moreover,
when patients attempt to constrain their spontaneous recollections to a particular
category, intracranial recordings in the cortex reveal a category-specific “baseline
shift”, i.e., steady enhancement in the excitability of neuronal populations encoding
the targeted category. Such top-down modulation can bias the free recall process by
pushing the spontaneous fluctuations of the relevant neuronal subpopulations closer
to the behavioral threshold. Along with evidence derived from fMRI studies, these
iEEG experiments demonstrate that slow spontaneous fluctuations within the appro-
priate brain circuitsmay serve as a driving force behind the emergence of spontaneous
thoughts and free human behavior.
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21.1 The Fundamental Importance and Characteristics
of Free Behavior

Human brain research has been studied most commonly under stimulus–response
paradigms. This approach, in which brain responses are measured while participants
receive sensory stimulation or instructions to act has the great advantage of providing
tight control and reproducibility of the experimental conditions. However, a funda-
mental and critically important aspect of human behavior does not lend itself to such
deterministic experimental paradigms. This is the large group of internally generated
behaviors that are termed free or spontaneous. It is not possible to over-estimate the
importance of free behaviors in human life. The potential to act freely is an essen-
tial element for human well-being. A sub-set of free behaviors—creativity—is the
fundamental generator driving human progress on all cultural and scientific fronts.

The concept of free behavior—andwhether it even exists—has been a debated, and
far from settled philosophical issue. For the purpose of this chapter wewill define this
vast field of free behaviors operationally as the group of behaviors that are not fully
determinedby an external stimulus or instruction. It is important to emphasize that our
definition allows for a deterministic component in such behaviors (discussed below).
In fact, such deterministic component is an essential part since free behavior always
occurs within a particular context and is required to comply with behavioral goals or
external constraints—and is therefore never completely random or chaotic. However,
crucially, free behaviors will always include a significant, spontaneously generated,
component that is not determined by the external instructions or conditions.

A useful strategy in searching for a likely neuronal mechanism that may drive free
behaviors will be to identify what are their common and central characteristics. Iden-
tifying such common characterizations could provide important constraints on poten-
tial neuronal substrates of free behavior. Below we outline several common charac-
teristics which are shared by all free behaviors and may assist in the identification of
the neuronal mechanisms involved.

21.1.1 Heterogeneity

In light of our operational definition, the first obvious characteristic of free behav-
iors is their heterogeneity. In fact the range of free behaviors is so large that it is
difficult to consider any domain of human behavior that does not have a spontaneous
counter-part. Examples can range from improvisation theatre to creative writing, to
problem solving, free associations and action painting. Thus, in terms of the brain,
the neuronal mechanism driving spontaneity in all these diverse behaviors is likely
to be widespread and of the same nature, regardless of the functional brain area
concerned.



21 What Can iEEG Inform Us About Mechanisms of Spontaneous Behavior? 333

21.1.2 Spontaneity

Not surprising, as it is part of the defining characteristic of free behavior—a truly
free behavior must have, even if only partially, an internally-generated aspect. Thus,
spontaneous behaviors are not being directly determined by any informative signal
from outside—not even signals that are subliminal or belong to a long association
chain. An element of de-novo creation must be included.

21.1.3 Personality Constraints

Although free behaviors haves a strong element of self-generation, this does notmean
that such behaviors are totally random or chaotic. In fact, it is virtually impossible
to generate free behaviors that are not bounded, to some extent, by the personalities,
expertise, and tendencies of the freely behaving individual: a trumpet player trained
exclusively in jazz naturally improvises differently from one trained exclusively in
classical music.

21.1.4 Boundary Setting

While free behavior is spontaneous, it is not devoid from the motivation and control
of the individual. To the contrary—we can flexibly and rapidly define the boundaries
of our free behaviors. For example, we are capable of switching, rapidly, from one
free behavior say Rap, to another, e.g., Scat singing, without erroneously performing
the unintended behavior. Thus, we would expect the neuronal mechanism underlying
free behavior to manifest such rapid boundary setting process as well.

21.1.5 Pre-conscious Preparation

Althoughwe have a strong sense of agency especiallywhen behaving freely—careful
psychological and physiological research has revealed the surprising observation
that most, if not all, of our free behaviors are often driven by various unconscious
processes. Perhaps the most common example of this fact is the “out of the blue”
experience—when we freely solve a problem or recall an item without any prior
premonition that this is going to occur. However, as has been beautifully described
byWilliam James, even mundane acts such as jumping out of bed on a cold morning
are decided subconsciously [1]. This aspect has been studied most thoroughly in the
domain of free decisions to move [2].
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21.2 Spontaneous (Resting State) Fluctuations: A Plausible
Neuronal Generator of Free Behaviors

Is there a potential neuronal process that satisfies these diverse characteristics
of free behaviors outlined above? A broad examination of human brain research
readily brings to the forefront an obvious candidate: a robust, extensively researched
phenomenon termed slowneuronal activity fluctuations (also knownas ‘resting-state’
fluctuations). These spontaneous fluctuations have been at the center of a major and
rapidly expanding research field. They are characterized by ultra-slow dynamics and
appear to fit all the criteria highlighted above. These fluctuations are internally gener-
ated, in the absence of external stimulation or task (hence the term “resting state”).
They manifest high heterogeneity in that they have been observed in each and every
cortical network studied so far. They are organized in networks that have been linked
to behavioral or cognitive habits and personality traits [3–8]. Finally, they appear to
operate largely below the consciousness threshold [2, 9–11] (see further evidence
below).

21.3 iEEG Reveals the Neuronal Basis and Precise
Dynamics of Spontaneous Fluctuations

The original observations of resting state fluctuations in humans were obtained using
BOLD-fMRI imaging [12, 13].However, thismethod suffers from threemajor limita-
tions: First, it is based on blood flow rather than direct recordings of electrophysiolog-
ical signals. In the case of the spontaneous fluctuation this raised major concerns that
the phenomenon reflects non-neuronal processes (including astrocytic signals [14]).
Second, the BOLD signals are notoriously sluggish—thus preventing an accurate
characterization of the fluctuations’ amplitude and dynamics. Finally, BOLD-fMRI
at 3-T is of somewhat lower spatial resolution compared to the intracranial iEEG
electrodes [15].

All these limitations can be substantially alleviated using direct intracranial
recordings in patients. Thus, Nir et al. [16] took advantage of intracranial recordings
that, importantly, measured homotopic regions in human auditory cortex bilaterally,
as patients rested in a quiet room. Figure 21.1 depicts their finding.

First, the study demonstrated that spontaneous fluctuations can be found even
in activity modulations of single neurons (Fig. 21.1b) as well as high frequency
broadband (HFB) power (Fig. 21.1c). The latter signal was shown to be an excel-
lent marker of local population firing rate [17–19]. Second, the study revealed that
the spontaneous fluctuations were indeed dominated by ultra-slow frequencies (with
wavelength in the seconds domain), but, importantly, the study also indicated that
the fluctuations followed a power law spectrum in which the amplitude of the fluc-
tuation was inversely related to their frequency (see Fig. 21.1d). Finally, the study
demonstrated that the amplitude of the spontaneous fluctuations was about an order
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Fig. 21.1 Bi-lateral recordings of ultra-slow fluctuations of HFB and single-unit activity in human
auditory cortex during quiet rest. a Estimated anatomical location of intracranial recording sites in
auditory cortex of 3 representative patients. b, c Examples of slow fluctuations (<0.1 Hz) in neuronal
activity showing correlation between right (red) and left (blue) hemispheres during wakeful rest.
b Single units’ activity; vertical lines show actual spike times. Black arrows indicate the relation
between time courses of slow firing-rate modulations and actual spikes. Waveforms of neuronal
action potentials are shown below spike trains (gray zone represents SEM across spike instances). c
Same as in panel b, but for High frequency broadband (HFB) signals. d Cross- and autocorrelations
of neuronal firing rates during wakeful rest (n = 8 recording sessions in two individuals). Green,
cross-correlation; black, autocorrelation. Red arrows indicate very slow elevation in correlation
(±10 s) corresponding to ultra-slow fluctuations <0.1 Hz. Inset shows Fourier transform of cross-
and autocorrelation functions (cross-spectrum and spectrum, respectively) showing 1/f-like spectral
profiles. Adapted from Ref. [16] with permission from Nature Publishing Group
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ofmagnitude lower than the typical sensory evoked “ignitions” of activity at the same
cortical sites. This work nicely illustrates the power and precision of iEEG record-
ings in providing a direct and detailed characterization of major neuronal processes
in the human brain.

21.4 The Role of Spontaneous Fluctuations in Free
Behavior: An iEEG Study of Free Visual Recall

While the slow spontaneous fluctuations appear to have features compatible with a
role in free behavior, the question still remains: what direct evidence may point to
such a role? A full review of this field is beyond the scope of this chapter. Here we
will highlight some relevant data using a specific paradigmatic case—that of free
recall, as studied, specifically, using the powerful methodology of iEEG recordings
in conscious patients, both at the level of single units and local neuronal populations
activity (i.e., HFB signal).

The basic experimental paradigm of free recall is rather simple and can be
easily and successfully performed by the patients. Figure 21.2 illustrates the basic
experimental design of a free recall task involving visual episodic memories.

In the first part of the experiment (the memory encoding stage), the patients are
presented with visual content—photographs from specific categories (e.g. famous
faces and places) [20–22] or short video clips depicting famous persons, places
and other categories [23]. After a short distracting task (e.g., math calculation) aimed
at eliminating the possibility of direct associative chains and disrupting working
memory representations, the patients are then blocked from external visual stimuli
and are asked to freely recall, in their mind’s eye and in asmuch detail as possible, the
materials that they had viewed earlier. Crucially, they are asked to describe verbally,
in real time, any explicit content that comes to their mind. In the offline analysis,

Fig. 21.2 Intracranial EEG recordings during free visual recall: experimental paradigm. a Intracra-
nial recordings obtained simultaneously from the hippocampus and the cerebral cortex. b During
the memory encoding phase, patients are presented with e.g., vivid images of famous people and
places. c After viewing each item several times and performing a short distraction task, the patients
put on blindfolds and attempt to recall as many items as possible, describing them briefly as soon
as they come to mind
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these verbal reports are used to determine the timing and content of the memory
items that emerged spontaneously in the patients’ minds.

Note, importantly, that the recall is not totally free in the sense that the patients
were instructed to only recall items from the previously presented set, and in one
of the experiments (to be described below) they were asked to further constrain
their recall to only one category at a time, e.g., faces in one session and places in
another. However, note that this type of behavior still contains a free, undetermined,
component since the patients were not instructed which specific visual image to
recall—allowing the “spontaneity generator” mechanism enough room to operate
within this pre-determined arena.

Free visual recall is a particularly informative case since it involves two central
cognitive components—memory and vision. Hence it is to be expected that the free-
behaviormechanismwill bemanifested in bothmemory-related circuits in themedial
temporal lobe (MTL) on the one hand, and in the visual cortex on the other. Indeed,
recording single neurons in human MTL during the free visual recall of previously
seen video clips,Gelbard-Sagiv et al. [23] have found re-activation of content-specific
neurons in the human hippocampus (Fig. 21.3a). The study demonstrated robust
activation of hippocampal neurons during the presentation of the clips. In agreement
with other single-unit studies [24–26], the response profile showed a remarkable
content specificity,with neurons commonly responding to only 1–2 preferred items
(5–10% of stimuli presented, on average). Most important, these neurons were re-
activated also when the patients freely recalled these videos later, in the absence of
external stimuli, recapitulating the same content-specificity found during viewing.
Thus, a neuron was reactivated during recall only when the patient recalled the
specific video clip to which this neuron selectively responded earlier during the
viewing session.

As for the visual cortex, a study by Khuvis et al. [20] demonstrated a similar
reactivation phenomenon in face-selective neurons recorded in the inferior temporal
cortex (ITC). There, the neurons were reactivated only when the patient recalled the
face images, but not place images (see Fig. 21.4b; the experimental design is depicted
in Fig. 21.2).

What was the mechanism that drove the patient to recall a specific picture or
video clip in the absence of any external stimulation? A telling sign can be found
by comparing the response of the neurons to the actual stimulus during the viewing
session (Fig. 21.4, left panels), with their internally generated activation during the
free recall (Fig. 21.4, right panels). Notice that in contrast to the stimulus-driven acti-
vation, the activations induced by the free recall were preceded by a slow, anticipatory
buildup starting approximately 2 s before the onset of verbal recall.

The superb SNR offered by single unit recordings allows to actually observe this
process at the single trial level, both in the hippocampus (Fig. 21.4a) and the visual
cortex (Fig. 21.4b).

Throughout the recall period, one can observe that the neurons’ activity slowly
fluctuates at a low amplitude in an apparently spontaneous manner, until, just before
the recall, one of the slow fluctuations becomes large enough to cross a cognitive
bound or threshold—allowing the patient to become aware of the spontaneously
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Fig. 21.3 Slow activity buildup anticipating the free recall event—averaged activity. a Single unit
recordings of hippocampal and entorhinal neurons, showing a firing rate increase during viewing
(left) and free recall (right) of video clips to which the neurons responded preferentially (compared
to a 5 s blank period; gray dashed line). Firing rateswere averaged across all responsive hippocampal
and entorhinal neurons (n= 154). Reproduced fromRef. [23] with permission fromAAAS. b Face-
selective neurons in the visual cortex, showing a face-selective increase in firing rate during viewing
(left) and free recall (right) of face images (red), but not place images (black). Reproduced from
Ref. [20] with permission. Notice the sluggish buildup in firing rate anticipating the onset of verbal
recall, in both structures

retrieved content, and to verbally report about it. Following the recollection, the
activity declines back to the slowly fluctuating mode. Thus, taking advantage of
intracranial recordings of single neuron activity, this study opens a direct window into
the dynamics of slow spontaneous fluctuations and how it evolves into a conscious
mental event of spontaneously recalling a specific item.

It is important to note that the slow anticipatory buildup that—we hypothesize—
drives these spontaneous recall events, is also observable in fMRI [27] and is not
specific to the memory domain, as similar dynamic signatures of such a process
have been found in many other examples of spontaneous behavior studied so far
(e.g., Refs. [2, 9, 11, 28–31]), and even creative insights [32]. Critically, a direct link
between the slow spontaneous fluctuations and the slow buildup anticipating free
decisions has been recently demonstrated by Broday-Dvir et al. in an fMRI study
[32].
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Fig. 21.4 Slow activity buildup anticipating the free recall event—single trial example. aA single-
unit in the right entorhinal cortex, showing spontaneous activity fluctuations and then re-activation
shortly before the patient recalls an episode from the TV series The Simpsons (the preferred clip
of that neuron). The cell’s firing rate rose significantly above baseline 1.5 s before onset of verbal
report of recall (voice amplitude and the content of the verbal report are shown at top). b Raster
plot depicting spiking activity of face-selective neurons in non-primary visual cortex of one patient.
Picture viewing response is shown on the left, spontaneous recollection on the right (voice amplitude
and the content of the verbal report are shown at top). Reproduced from Ref. [20] with permission

21.5 Integration of Memory and Vision: Hippocampal
Ripples Anticipating Recollection

As we discussed above, the phenomenon of free visual recall is an interesting model
case for research because it integrates the MTL-centered mechanisms of episodic
memorywith (conveniently trackable) visual content represented in high-order visual
areas. What are the neuronal processes that govern such cross-system integration
during free, internally-generated recall? Intracranial EEGoffers a unique opportunity
to explore these cross-system interactions because, aswe discussed above, in a typical
iEEG diagnostic session, the neurosurgeon places numerous contacts across both
cortical and hippocampal sites which offer a rare experimental situation enabling
simultaneous recordings fromboth visual and hippocampal regions during free visual
recall.

Norman et al. [22] took advantage of this opportunity and probed the cortical-
hippocampal interaction during visual free recall, as depicted in Fig. 21.2. Thus,
after viewing various pictures of famous faces or places, patients were asked to
freely recall as many images as possible, and to provide a brief visual description for
each item recalled—to ensure retrieval of specific visual details and not just general
semantic information.

In the electrophysiological analysis Norman et al. focused on rapid and promi-
nent oscillations in the local field potential of the hippocampus termed hippocampal
ripples. These short-lived oscillations, which have been extensively studied in animal
models over the past two decades [33–35], are believed to constitute one of the
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most massive neuronal synchronization events in the mammalian brain. It has been
estimated that hundreds of thousands of neurons (5–15% of the neurons on the
hippocampal-entorhinal output pathway) participate in these events by emitting a
spike within a strikingly narrow time window of about 100 ms [36–40]. Focusing
on these events opens an informative window into various mnemonic signals that
are neither encoded at the level of individual neurons nor at the level of an entire
population, but instead, at the level of local neuronal assemblies operating together
in tight temporal coordination. Moreover, these LFP markers provide a conve-
nient and fairly accurate timestamps of informative moments in time when the
hippocampus processes and communicates critical mnemonic informationwith other
brain structures.

This last point is of particular importance for the study of spontaneous cognitive
behavior, where the underlying neuronal signals are triggered spontaneously and as
such their precise timing cannot be fully modeled a-priori (unlike immediate sensory
responses). Thus, the value of internal timestamps obtained from the brain itself is
crucial.

Importantly, hippocampal ripples can be reliably identified and detected with
iEEG recordings [41–47]. Figure 21.5a, b depicts an example of a hippocampal ripple
event as it appears in the raw iEEG trace froma contact located in CA1.The clear high
frequency signature of such ripples is easily evident, both in the ripple-band envelope
(70–180 Hz) and in the ripple-triggered spectrogram (Fig. 21.5c).

Examining ripple rate during the free recall period reveals a significant increase
in ripple rate that anticipates the verbal report of recall by approximately 2 s.
Figure 21.5d illustrates this finding in a single-trial example of a patient recalling
an image of Bart Simpson. As can be seen, two ripples emerged in the recorded
site prior to the verbal report (“Oh! I remember…”), and another one right after
the patient begins to describe the picture. Importantly, just as was in the case of
single neurons recorded during free recall of video clips in the Gelbard-Sagiv [23]
study—the anticipatory enhancement in ripple rate was content-selective and reca-
pitulated the picture preferences found in the same sites during the viewing session
(see group level results in Fig. 21.5e). That is, specific images that generated at a
given site an increase in ripple rate during the viewing session—generated a parallel,
content-specific, increase in ripple rate also during the free recall event.

Notably, in agreement with the single unit studies, the findings of Norman et al.
again demonstrate a slow anticipatory buildup—this time in ripple rate—beginning
almost 3 s prior to the recall event. In view of the fact that the hippocampus is
situated at the top of the visual processing hierarchy and is capable of integrating
signals from a variety of cortical sites [48]—the increase in ripple rate prior to recall
may be thought of as the result of an extensive synthesis of ongoing spontaneous
activity in the cortex. In other words, considering the inherently integrative properties
of the hippocampus as well as its extensive connectivity, a main factor that governs
spontaneous activity in the hippocampus is likely to be the accumulation of multiple
fluctuating populations within upstream cortex, culminating in hippocampus ripples
(and their cognitive consequence, the recall event).
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Fig. 21.5 Hippocampal ripples anticipate the free recall event. a Representative example of iEEG
depth electrodes implanted in the hippocampus. Red circles indicate individual recording sites.
Ripples could be clearly identified in recording sites located in theCA1 subfield (black arrow; panels
b-d show signal from this recording site). b Example of an individual ripple event as it appears in the
raw iEEG trace and the ripple band (70–180Hz). cRipple-triggered spectrogram averaged across all
ripples detected during the experiment, demonstrating the typical spectral characteristics of human
hippocampal ripples. d A single-trial example of spontaneously generated ripples, elicited shortly
before the patient recalled an image of Bart Simpson’s face. Voice amplitude and the content of the
verbal report are presented at top. eGroup-level results demonstrating the content-selective increase
in ripple rate anticipating spontaneous recollections (n = 15 patients; shaded area represents SEM
across patients in the left side, and bootstrap SE over pooled trials in the right). Left panel: during
the picture viewing stage some images resulted in an increase in ripple rate (red), while others
resulted in a decrease in ripple rate (black). Right panel: when patients freely recalled the images,
a transient increase in ripple rate anticipated the onset of recall, driven by items that generated a
higher ripple rate during viewing (compare red and black lines). Reproduced from Ref. [22] with
permission from AAAS

21.6 Ripple-Mediated Cortico-Hippocampal Dialogue
During Free Recall

It has been hypothesized that ripples coordinate a dialogue between the hippocampus
and cortex for rapid and effective communication of mnemonic information [35, 49,
50]. In the case of free visual recall, this hypothesis predicts that when patients freely
recall a vivid visual image and reexperience it in their mind, hippocampal ripples
will play a central role in this cognitive process. Simultaneous iEEG recordings of
ripples on the one hand and visual cortex activations on the other hand provide a
unique opportunity to examine this hypothesis. Figure 21.6 compares the high order
visual cortex activations when the patients first viewed the images (Fig. 21.6b) and
when they freely recalled these images (Fig. 21.6c). During the viewing session, the
recording sites in high order visual areas showed a strong preference for a subset of
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the visual images (e.g., face images in face selective sites), while remaining unre-
sponsive to the rest of the viewed images (non-preferred images). Notably, as has
been demonstrated in previous studies, the cortical HFB response elicited during the
viewing condition was tightly locked to the stimulus onset—rapidly “igniting” at
170–200 ms latency [51–53].

Fig. 21.6 Ripple-coupled cortical reactivation profile during free recall. a Anatomical location
of face-selective and place-selective cortical electrodes (n = 57 bipolar pairs). b HFB response
to preferred and non-preferred images during picture viewing. c During free recall, the category-
selective visual sites in the cortex showed SWR-coupled reactivation, recapitulating the content
selectivity found during viewing. As can be seen, activity in the cortex both precedes and follows
the hippocampal ripple, consistent with a recurrent cortical-hippocampal loop. Reproduced from
Ref. [22] with permission from AAAS
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Time-locking the cortical HFB in those visual electrodes to the timestamps of the
spontaneous hippocampal ripples elicited during the free recall, reveals a transient
reactivation of visual content, with recapitulation of the content-selectivity found
during viewing. Thus, when patients recalled a face, for example a picture of Barack
Obama, or alternatively, a monument, such as the Eiffel Tower, cortical activity was
selectively enhanced at the corresponding visual sites that represent these items.
Likewise, when the non-preferred items were recalled, activity in those sites was
unaffected and showed no associationwith the ripples. It should be noted that the acti-
vation dynamic was precisely centered on the hippocampal ripple event—supporting
the hypothesis that ripple emissions participate in the emergence of a freely recalled
visual percept.

21.7 Evidence for Recurrent Rather Than Unidirectional
Information Flow

Examining the temporal profile of the peri-ripple cortical responses, one can discern
that the cortical activation slightly preceded the hippocampal ripples by approxi-
mately 300 ms, while peaking together and persisting for additional 300 ms. This
dynamic suggests that instead of participating in a unidirectional causal relation-
ship—the ripple and cortical activations were likely engaged in recurrent, loop-like,
mutual activations. In such a recurrent dialogue, spontaneously generated spiking
activity in upstream cortex may play a role in seeding hippocampal representations
prior to the ripple [49]. Then, by eliciting a ripple, the hippocampus can influence the
cortex by coordinating reactivation of specificmemory items [22, 54] aswell as infor-
mation related to context [44]. In such process, the cortex both precedes and follows
the ripple emission event. This recurrent dynamical relationship between the ongoing
cortical activity and hippocampal ripples has been confirmed and extended in a recent
iEEG study examining the hippocampal cortical dialogue in human autobiographic
and semantic memory recall [55] (Fig. 21.7). Similar to free visual recall, retrieval of
declarative memories exhibits similar build-up and follow-up waves of cortical acti-
vation of about 400ms duration relative to the ripple event. This recurrent relationship
appears to be a wide-spread phenomenon involving a number of prominent cortical
networks—dominated, in the case of autobiographical recall, by the memory-related
default mode network [56]. Finally, a number of studies in rodents have demonstrated
a similar recurrent dynamics between cortical activity and hippocampal ripples as
shown here for the human brain [49, 57].



344 Y. Norman and R. Malach

Fig. 21.7 Recurrent dynamic of ripple-coupled cortical activation during autobiographicalmemory
recall across canonical “resting state” networks. Peri-ripple activations across seven canonical
resting-state networks, based on the Yeo et al. (2011) atlas [58]. The bar plot shows the mean
peri-ripple HFB response in DMN electrodes, averaged over a time window of −250 to 250 ms
relative to ripple peak. Peri-ripple activity in DMN sites was significantly stronger compared to the
other networks (*p < 0.05, **p < 0.01, rank-sum test, FDR adjusted). Reproduced from Ref. [55]
with permission from Cell Press

21.8 Boundary Setting

As we have discussed above, despite the internally driven and spontaneous nature of
free behaviors, individuals can rapidly, accurately and flexibly, define the boundary
within which the free behavior is allowed to operate. Considering the example of free
recall—we can easily decide that we want to recall visual images belonging to the
category of famous faces, without specifying a particular individual face. And then
rapidly, and effortlessly, switch to recalling images belonging only to the category of
famous places. It is rare that when we attempt to recall an image from one category
an image belonging to the wrong category will erroneously intrude. How does the
human brain implement such well-defined and flexible boundary setting?

This question was addressed by an iEEG study [21] employing the experimental
paradigm depicted in Fig. 21.2—but this time, the goal was to study the neuronal
process associated with the instructions to restrict the free recall to a particular
category and recall images only from one category at time (famous faces or places),
in two separate sessions. Thus, in one session (recalling faces) the patients were
asked to recall (and verbally report) only the faces they had seen in the earlier
viewing session (which included both categories of images), whereas in the other
recall session (recalling places) the patients were asked to recall only the famous
places. As expected, patients’ performance was high, and only a few erroneous
recalls of items belonging to the wrong category were detected.

The study focused on high order visual recording sites that show category-
selectivity to either faces or places. Interestingly, examining the HFB amplitude in
these category-selective sites during the free recall condition, revealed a general
increase in the baseline activity levels whenever participants were targeting the
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preferred category of the electrodes, i.e., faces in face-selective sites (red trace in
Fig. 21.8a) and places in place-selective sites (green trace in Fig. 21.8b). When
the opposite, non-preferred category was targeted, the same electrodes exhibited a
general reduction of baseline activity (green trace and red trace in Fig. 21.8a, b,
respectively). The effect was significant, and evident across the entire set of relevant
electrodes (see Fig. 21.8c).

A careful analysis revealed that the baseline shift was evident not only during the
moments of the actual reported recollection, but also during thememory search occur-
ring in between recall events, and throughout the free recall period. Furthermore,
power spectrum analysis revealed that in addition to the steady baseline shift—there

Fig. 21.8 Category-selective baseline shift during goal-directed free recall. a, b An example of
a face-selective electrode (LGRD60) and a place-selective electrode (LTO4) showing a sustained
baseline increase during free recall of pictures from their preferred category. HFB time-courses
were normalized relative to rest and smoothed using a triangular window of 5 s for visualization
purposes. c Anatomical locations of the two electrodes (marked in red) in relation to primary visual
cortex (blue), intermediate visual areas (yellow), and the fusiform gyrus (pink). d Group-level
results showing that the median HFB amplitude in category selective electrodes was increased
in a content-selective manner throughout the free recall period (two-way mixed-effects ANOVA,
interaction: F(1,63) = 17.69, ***p < 0.0001; data from 12 patients). Reproduced from Ref. [21]
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was a significant enhancement in the amplitude of the spontaneous activity fluctu-
ations during the targeted recall. This amplitude increase was specific to ultra-slow
fluctuations (<0.25 Hz) and to the relevant high order contacts.

A plausible consequence of the baseline shift and enhancement of ongoing fluc-
tuations is an increased probability of crossing the threshold for evoking the required
memory items in downstream MTL circuits. Thanks to the baseline shift, the slow
spontaneous fluctuations generated in neuronal populations representing the targeted
category become more prominent relative to fluctuations generated by other popu-
lations; as a result, the cortical input that ultimately arrives at the hippocampal-
entorhinal circuitry, at the top of the visual hierarchy, is inherently biased towards
the required category, e.g., faces, and thus facilitate the internal activation of, e.g.,
face-relatedmemories over other non-relevant items. Yet, the exactmemory itemwill
only be determined when downstreamMTL representations of more specific content
(e.g., Bart Simpson) are eventually activated. This ultimate memory-trace activa-
tion may take place in multiple hippocampal circuits operating in parallel at various
scales—from individual concept cells [23, 59] to massive cell-assemblies orches-
trated by ripples [22, 43, 54, 55, 60], to hippocampal-entorhinal pattern completion
loops [59, 61]—whosemode of collective operationwill require clarification in future
studies.

The baseline shift mechanism constitutes an optimal candidate for boundary
setting—it is volitionally controlled, rapidly and selectively activated, and thus
provides a straightforward mechanism that selectively enables the emergence of
free memories, thoughts and decisions within a volitionally specified boundaries.

21.9 In Summary

We would like to propose a common, universal, brain mechanism involved in the
generation of free human behavior. This mechanism, consisting of ultra-slow sponta-
neous activity fluctuations (also termed “resting state” activity) acts by exploring and
eventually moving latent neuronal representations above the cognitive thresholds of
awareness and decision-making. Intracranial EEG, due to its multi-site recordings
and superb spatio-temporal resolution is optimally suited to provide direct and infor-
mative characterization of this mechanism. We review here findings that demon-
strate the power-law dynamics of these spontaneous fluctuations and point to the
way in which they contribute to the emergence of free thoughts and spontaneous
actions. The iEEG recordings highlight a central signature of these fluctuations: a
slow activity buildup anticipating the onset of spontaneous mental events. This antic-
ipatory buildup is reflected in single neuron activity, local field potentials and mass
hippocampal bursts (ripples). Finally, iEEG reveals a boundary-setting mechanism,
that by shifting the baseline and amplitude of the ultra-slow fluctuations enables
rapid, flexible, and precise volitional control of the arena in which their free behavior
operates.
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Chapter 22
How Can We Differentiate Narrow-Band
Oscillations from Aperiodic Activity?

Thomas Donoghue and Andrew J. Watrous

Abstract Human intracranial recordings are composed of both periodic “narrow-
band oscillations” along with aperiodic, “1/f-like”, activity. While oscillations have
been a consistent focus of investigation in neurophysiological data, the physiological
and functional properties of aperiodic activity are less well understood, as it is often
treated as “background noise”. In this chapter, we provide an overview of both
periodic and aperiodic activity, providing a brief historical perspective on the study
of each, alongwith conceptual approaches and analytic assumptions researchers have
madewhenmeasuring both types of activity.We thenhighlight recentmethodological
developments and available techniques for explicitly measuring (a)periodic activity,
so as to evaluate which components of the neural data are changing. We propose
that studies of human intracranial recordings should employ measures which can
differentiate (a)periodic signals in order to determine if they have distinct generators
and functional roles. Finally, we discuss putative interpretations of both periodic
and aperiodic activity, as well as several unresolved issues which can be explored in
future work to further model and interpret these signals.

22.1 Introduction

22.1.1 Narrowband Oscillations/Periodic Activity

Rhythmic fluctuations in electrical neural activity, or neural oscillations, have been
observed since the initial use of human intracranial recordings [1, 2]. Neural oscil-
lations are readily observable in neural field data such as the local field potential
(LFP) using both macro- and micro-electrode recordings (Fig. 22.1a). Physiologi-
cally, oscillations mainly consist of synaptic activity [3] and are generated by the
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summation of excitation and inhibition within and between large groups of neurons
[4]. Neural oscillations are thought to reflect the functional organization of neural
activity, possibly by aiding in information flow within the brain by flexibly aligning
and misaligning periods of excitability between brain regions [5, 6]. As this chapter
and others make clear, neural oscillations are a prevailing feature of human brain
activity that play a key role in neural functioning [7–11].

Neural oscillations reflect “narrowband” activity with frequency-specific power
which appear as peaks in the power spectrum [12, 13]. Narrowband oscillatory
activity can be characterized by several features of interest, including amplitude,
phase, and center frequency, and are typically assumed to exist in canonical frequency
bands (e.g. delta, theta, alpha) (Fig. 22.1b). A notable aspect of neural oscilla-
tions is their variability, both within and across individuals [14, 15] and over time
(Fig. 22.1b, c). This variability—in their peak frequencies, features, and spatial and
temporal organization—motivates a number of methodological considerations that
need to be addressed for accurately measuring neural oscillations [16]. As we discuss
below, narrowband oscillatory activity coexists with, and can be dissociated from,
“broadband” activity which spans the width of the measured frequency spectrum.

a

b c d e

Fig. 22.1 Properties and representations of neural data. a A simulated neural time series, with a
bursty theta oscillation combined with an aperiodic 1/f component. b, c Power spectra for different
segments of the time series in A, demonstrating variability over time, including b for periods when
the oscillation is present and c for periods when the oscillation is absent. d The power spectrum for
the full time series, annotated to label signal components, including the oscillatory peak, and the
fit of the aperiodic component. e The power spectrum for a simulated time series with annotations
for the parameters of the aperiodic components. This time series was generated with a model of
synaptic activity that gives rise to a ‘knee’ in the aperiodic component. Note that the frequency
range (abscissa) is different between panels b–d and e
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22.1.2 Broadband/Aperiodic Activity

In addition to neural oscillations, human intracranial recordings also show prominent
aperiodic—meaning irregular, or non-periodic—activity [17]. In frequency repre-
sentations, this is seen as the 1/f-like structure of neural power spectra. By 1/f,
it is meant that there is an approximate power-law relation between power and
frequency, reflecting exponentially decreasing power across increasing frequencies.
Aperiodic neural activity, which roughly follows a power-law distribution, is some-
times described as being ‘scale-free’ or ‘self-similar’ activity [17], and will here be
referred to as the ‘aperiodic’ component of the data. Despite the early observation of
1/f activity in electrophysiological data [18], and some early work mapping it across
the cortex in human and in animal models [19–21], relatively little work has explored
the properties and interpretations of aperiodic activity, as compared to, for example,
the broad literature investigating neural oscillations.

In the simple case, aperiodic neural activity manifests as a linear relationship
between frequency and power when plotted in log–log space. This relationship can
be quantified, using a simple ‘1/f’ function, for example, p = a * fx wherein the
‘a’ parameter reflects the global power of the signal, and will be referred to as the
aperiodic ’offset’, and the ‘x’ parameter reflects the steepness of the decay, and will
be referred to as the aperiodic ’exponent’ (Fig. 22.1d). The aperiodic exponent is
analogous to the slope of the line of the log–log power-spectrum, sometimes referred
to as the ‘spectral slope’. This kind of power-law distributed activity is seen in many
other physical systems, and as such is a feature of inquiry across areas of physics
and mathematics [22]. Notably, in neural data, we refer to this aperiodic activity as
‘1/f-like’, in that it typically does not exhibit a true 1/f structure across all frequencies
because there are often ‘bends’ or ‘knees’ (Fig. 22.1e) in the aperiodic component
of the data [23].

22.1.3 Overlap of Periodic & Aperiodic Components

Despite the traditional focus on analyzing neural oscillations, electrophysiological
recordings are not mainly rhythmic [24] but instead contain a mixture of both oscil-
latory and non-oscillatory “aperiodic” activity. While most standard measures of
neural oscillations assume stable background noise which can be averaged away,
this simplifying assumption ignores the dynamic nature of aperiodic activity [25,
26]. Consequently, commonly employed measures can often be biased by aperi-
odic activity, and conflate changes in narrowband and broadband components. For
example, when measuring power within a narrowband frequency range, measured
changes may reflect the oscillatory power, but may also be driven by changes in
the oscillatory center frequency, aperiodic offset, or aperiodic exponent (Fig. 22.2).
Similarly, the available measures of 1/f activity tend to have difficulty accurately
measuring aperiodic properties in the presence of concurrent periodic activity.
Despite the increasingly recognized presence and variability of aperiodic neural
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activity, there is currently a lack of consensus for methods, interpretations, and best
practices guidelines for investigations of aperiodic activity in neural field data.

Given the overlap of periodic (oscillatory) and aperiodic activity in neural record-
ings, this chapter focuses on how tomeasure, dissociate, and interpret changes in both
oscillations and aperiodic activity in human intracranial recordings. Regardless of
which feature is of interest, the co-occurrence of periodic and aperiodic activity is an
issue formeasurements that aim tomeasure one or both components. This can be seen
in an example simulated event-related response in intracranial data (Fig. 22.3a), in
which low frequency oscillatory power is higher pre-stimulus, after which there is an
increase in high-frequency activity [27, 28]. This pattern of responses includes both
oscillatory peaks and distributed aperiodic activity that changes with task context
(Fig. 22.3b), motivating the need to apply methods that carefully adjudicate between
different signal components. To address these issues,we start by consideringmethods
which aim to disambiguate (a)periodic signals in intracranial recordings, and then
discuss current findings and open questions.

a b c d

Fig. 22.2 Changes in different signal parameters may result in the same band power differences.
In each panel, the power difference in the highlighted alpha range (8–12 Hz) between the two
power spectra is exactly the same. This change can arise from differences in (a) oscillation power,
(b) oscillation center frequency, (c) aperiodic offset and/or (d) aperiodic exponent

a b

Fig. 22.3 Dynamics of spectral parameters through time. aAn example time series (top) and corre-
sponding spectrogram (bottom) for simulated data representing a canonical task-related response.
In this example, there is a pre-stimulus oscillation (~25 Hz) that fades away post stimulus, at which
point there is an increase in broadband high frequency power. b Power spectra, averaged across
time separately for the pre- and post-stimulus windows, showing an oscillatory peak that disap-
pears post-stimulus, as well as an overall change in the aperiodic component of the data. Note that
high-frequency activity is reflected in the aperiodic exponent
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22.2 Analysis Methods

22.2.1 Conventional Approaches for Analyzing Neural Time
Series

The analysis of neural field data has developed a rich ecosystem of approaches,
adopted and adapted from the field of digital signal processing (DSP), to measure
components of interest, such as neural oscillations [29, 30]. Such analyses can be
done in the time and/or frequency domain, including, for example, computing power
spectra to analyze frequency ranges of interest or using time–frequency analyses
to examine signal dynamics through time. Each of these analyses makes assump-
tions, both in the ways they operate on the data, and in how they are typically inter-
preted. Validating the assumptions of these methods, and interpreting the outputs
accordingly, is necessary for getting appropriate results [16, 31].

Notably, the vast majority of approaches to analyze neural time-series employ
Fourier-based methods. Mathematically, via the Fourier theorem, any continuous
time series can be perfectly represented by a Fourier Series as a combination of sinu-
soidal waveforms. This mathematical convenience, and associated suite of computa-
tional tools, has led to the widespread use of frequency-domain representations and
transformations. However, this powerful property that enables many of the methods
researchers employ also includes some interpretational peril. This arises in the form
of the Fourier fallacy; although it may be possible to analyze neural data in terms of
rhythmic sine waves, it is a fallacy to a priori assume that this activity necessarily
occurs as periodic phenomena in the data [32]. These issues also relate to the other
similar methods, such as wavelets and Hilbert transforms, that are mathematically
equivalent to Fourier analysis [33].

In practice, thismeans that computing a frequency domain representation of neural
field data does not by itself clarify if, or to what extent, the underlying data contains
rhythmic activity.Commonanalysis approaches, such as examining power or filtering
in a predefined frequency range, can lead to measures that conflate between periodic
and aperiodic activity, and/or between different features of each component [16, 26]
(Fig. 22.2). Other measures that are supposed to reflect periodic activity, such as
computing ratios of power between frequency bands, suffer the same limitations,
and can be heavily biased by aperiodic activity, leading to erroneous interpretations
[34]. Overall, these considerations indicate that the analysis of human intracranial
recordings would benefit from dedicatedmethods that address the overlapping nature
of periodic and aperiodic activity.

22.2.2 Methods for Dissociating Periodic & Aperiodic Activity

Since aperiodic activity manifests as a pattern of power across all frequencies,
and periodic power exhibits as overlying peaks of frequency-specific power, initial
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approaches for measuring periodic and/or aperiodic activity involved fitting lines to
estimate the 1/f-like component, and/or detecting peaks in the power spectrum to
measure putative oscillatory activity. An estimate of the 1/f activity of the data can
be obtained by fitting a line to the power spectrum in log–log space [20]. Similarly,
in order to detect oscillations, peaks can be detected and measured as regions with
power over and above this line, which is used as an estimate of the “background”
spectrum [14, 35, 36]. Though simple line and peak fitting procedures may not gener-
alize to all cases, early investigations successfully used these approaches to estimate
both periodic and aperiodic parameters of the data.

Subsequently, variants of line and peak fitting have also been formalized into
algorithms such as the ‘Better OSCillation detector’ (BOSC) [37, 38], the updated
‘extended BOSC’ (eBOSC) algorithm [39] and the ‘Multiple Oscillations Detection
ALgorithm’ (MODAL) [40]. These methods use explicit measurements of the aperi-
odic component to detect frequency specific power above the 1/f activity that are
then measured in a temporally resolved manner as oscillations. In doing so, these
methods are able to capture large amplitude, frequently occurring oscillations with
excellent temporal and spectral resolution but ignore aperiodic signal components
and can fail to detect sparsely occurring oscillations. A limitation of these methods
is that they typically assume that the aperiodic component is invariant/stationary, an
assumption which doesn’t generally hold [25, 41]. However these methods still offer
a time-resolved measure of aperiodic-controlled oscillatory activity.

Previous methods based on fitting components of the power spectrum often used
non-robust approaches to fit the 1/f-line, and/or were limited in their capacity to
fit oscillatory peaks. To address these limitations, the spectral parameterization
approach (formerly known as ‘fooof’) was developed to provide a more robust and
generalizable method for parameterizing neural power spectra [26]. This method
generalizes to an arbitrary number of oscillations, determines the number of periodic
components in a data-driven manner, and measures the center frequency, aperiodic-
adjusted power, and bandwidth for each. It also allows for fitting different forms of
the aperiodic component and measures the aperiodic offset, exponent, and option-
ally, the knee. Overall, by combining elements of model selection with improved
parameter fitting, spectral parameterization offers a more flexible and generalizable
algorithm than previous approaches for fitting lines and peaks. A limitation is that,
due to operating in the frequency domain, the time-resolution is limited to time
windows of sufficient length to reliably estimate power spectra.

Another approach for investigating periodic and aperiodic activity is to use decom-
position techniques which attempt to separate components of interest in the data. For
example, principal component analysis (PCA) can be used to separate broadband
components from periodic activity [42, 43]. In doing so, the first spectral compo-
nent typically reflects broadband activity, and the next two or three high-variance
components often reflect periodic activity, for example, reflecting alpha, beta and
delta activity in a motor task [42]. A benefit of this spectral decomposition approach
is that the obtained PCA weights can be applied to continuous measurements, such
as a spectrogram, and thus allow for the analysis of time-resolved changes in the
decomposed components. A disadvantage of this and other naive decompositions is
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that selecting and validating the top number of components is a manual process in
which sparsely occurring oscillations with low variance may be discarded.

Neural oscillations display substantial variability over time and across individ-
uals, channels, and behaviors. Aside from the aforementioned work employing new
methods,most prior research hasmeasured oscillatory activity in canonical frequency
bands, which can lead to misestimations due to misalignments between the data and
the analyzed frequencies [16]. Recently, two additional new techniques have been
developed which employ empirically-defined frequency bands to maximize analysis
sensitivity and to provide improved, time-resolvedmeasures of amplitude, phase, and
frequency in adaptively identified frequency bands. First, the ‘gedBounds’ method
applies a data-driven procedure to identify frequency regions reflecting oscillatory
activity [44]. This method finds clusters of spatially-correlated components which
separate narrowband and broadband activity and has the advantage that it operates
onmulti-channel data. Second, the ‘Oscillatory ReConstruction Algorithm’ (ORCA)
[15] quantifies differentmodels of the power spectrum (i.e. frequency bands) in terms
of explained variance, allowing researchers to test and compare any model(s) they
wish, and enables the detection of both narrowband and broadband signal compo-
nents. ORCA works well in cases in which there is substantial variability across
channels, such as in intracranial recordings. A limitation of these approaches is that
neither ORCA nor ‘gedBounds’ provide a direct measure of 1/f activity.

Another available method, designed to estimate 1/f properties of data and explic-
itly control for periodic components, is the irregular resampling auto-spectral anal-
ysis (IRASA) method [45]. The IRASA method leverages the scale-free property
of 1/f activity, meaning it has the same structure across different scales, to sepa-
rate this component of the data from periodic activity which is defined by having a
characteristic scale (frequency). To do so, it uses a resampling procedure to extract
frequency-specific activity, which allows for isolating the 1/f component of the data.
These isolated components can then be quantified, allowing for separate measure-
ments of the oscillatory and non-oscillatory components of the data. While IRASA
is a powerful tool when its assumptions are met, a limitation of this method is that
the decomposition algorithm assumes and requires true 1/f data to work optimally,
and may provide biased measurements in situations where the data is not truly 1/f,
such as when there is a ‘knee’ in the power spectrum [26, 45].

The aforementioned methods reflect many of the currently available approaches
for analyzing neural data in the context of considering the combination of periodic
and aperiodic activity.While there are alsomethods from other fields that are specific
to measuring aperiodic features of the data, some of which are discussed elsewhere
[46], in general these methods may not work as intended in data containing both 1/f
activity and periodic components, and so may fail when applied to neural data.
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22.2.3 Methodological Considerations

As many of the methods described above are quite new, systematic comparisons
between methods are lacking at present but are needed in order to clarify which
methods are best suited for different scientific questions. Generally, however, the
above methods can be applied broadly across different types of intracranial (or
scalp) electrodes. In doing so, researchers should consider the spatial scale of their
analysis as well as the temporal resolution when assessing their ability to detect
oscillations and/or aperiodic activity. Other factors such as hardware filtering and
referencing scheme may impact which frequencies are recorded and would therefore
impact oscillatory and aperiodic signal detection. Different research questions and
data properties may also impose constraints on the parameters of interest, as well
as the temporal and frequency resolutions needed. In sum, there may be differences
between different recording methods, task designs, and analysis plans that should be
consideredwhen choosing and employingmethods to separate periodic and aperiodic
activity.

In particular, intracranial recordings offer better spatial resolution and also allow
for analyzing the data across broader frequency ranges than is typically possible
in extra-cranial recordings. Likely due to both differences in the propagation and
analyzed frequency ranges, measures of the aperiodic exponent in iEEG are often
steeper (in the range of 2–4whenmeasured across 10–100Hz [20, 25]) thanmeasures
in M/EEG data (found to be mostly between 0.5–1.5 across the range of 3–30 Hz
[26]). Relatedly, when looking at the broader frequency ranges in intracranial data,
there can be a knee, whereby there are two different 1/f regimes, each with their
own exponent, separated by a ‘bend’ at a knee frequency [23]. It may therefore be
particularly important to check for knees when analyzing intracranial data across
broader frequency ranges. The spatial resolution of intracranial data also allows for
analyzing aperiodic and periodic components in amore localized fashion.Ultimately,
more work is needed to better understand the differences observed between modal-
ities, with intracranial data offering a particularly potent method for investigations
to leverage the better temporal, spatial, and frequency resolution in order to further
our understanding of periodic and aperiodic activity, and their inter-relations.

22.3 Existing Studies Separating Periodic & Aperiodic
Activity

Recent empirical work has demonstrated the utility of applyingmethods which relate
(a)periodic signal components to their behavioral and demographic correlates. For
example, aperiodic activity has been shown to systematically relate to age [47, 48],
a finding which recontextualizes prior reports that aging reflects a change in power
within oscillation bands, by showing that the employed measures in such investiga-
tions can be biased by aperiodic activity [34, 49]. Similarly, aperiodic activity has
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been shown to vary within subjects across states including sleep [50] and anesthesia
[51]. These studies suggest aperiodic activitymay reflect between- andwithin-subject
variation in brain state, and may therefore be useful for investigating global brain
dynamics [17, 52].

More than simply being a marker of state, other studies have also demonstrated
the extent to which aperiodic activity is highly dynamic within task contexts at
rapid time scales, which may reflect changes in arrhythmic firing and/or bursts of
excitation [41, 42, 53] For example, task related variation in aperiodic activity has
been shown to relate to working memory performance [26] and cognitive processing
speed [54]. Using spectral decomposition, it has been shown that in an auditory
oddball task, the broadband component of the data best reflects the prediction error
related response [55]. Using spectral parameterization, it has also been shown that
trial-by-trial variations of aperiodic activity relate to both stimulus properties and
attentional state [56]. This emerging evidence suggests that aperiodic activity may
be an informative feature for investigating trial-by-trial neural activity and its relation
to behavior.

Separating periodic and aperiodic components has also been important for clari-
fying putative functional roles of oscillatory neural activity. In aging, controlling for
changes in aperiodic activity has allowed for a detailed analysis of changes in theta,
alpha, and beta oscillations [47, 57]. In resting state data, controlling for aperiodic
activity has enabled quantifications of oscillation occurrence [26]. In task contexts,
explicitly measuring aperiodic activity has been used to clarify how theta oscillations
relate to memory [58], how beta oscillations relate to motor activity [28], and how
oscillatory gamma relates to visual processing [35, 59]. In cases where the focus of
the investigation is primarily on oscillatory activity, these studies demonstrate that
explicitly characterizing aperiodic activity can further refine our understanding of
the relationship between neural oscillations and behavior.

In the context of human intracranial recordings, special consideration is due to
higher frequency activity, typically referred to as the “gamma” range. This range
includes gamma oscillations (~30–80 Hz), considered to reflect narrowband oscilla-
tions as well as a broader high-frequency range, sometimes called “high-gamma” or
simply high-frequency activity (roughly 70–200 Hz). This higher range is generally
considered to be broadband, in terms of not exhibiting any frequency specific peaks
[60]. Conceptualizing, measuring, and interpreting these various ‘gamma’ ranges has
longbeen a topic of debate, includingdifferentiatingbetweennarrow- andbroad-band
responses [61]. Gamma oscillations, suggested to be a potential narrowband signal
reflecting inter-areal communication [5], and high-frequency activity, suggested to be
a general marker of neural activation likely reflecting spiking activity [27], have long
been features of interest in neural data, but appropriately differentiating between
the two requires careful analysis that appropriately differentiates the periodic vs.
aperiodic aspects of the signal.

Empirically, animal work has demonstrated that in monkey visual cortex, narrow-
band, oscillatory gamma (30–80 Hz) is a distinct phenomenon that differs from
broadband gamma (above 80Hz), with each having a different relationship to spiking
activity [62]. In visual tasks, it has been shown that the dominant neural response is a
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change in broadband activity [25, 35, 59], an effect that has also been demonstrated in
motor tasks [28, 42]. Subsequent work has continued to decouple the narrowband and
broadband responses in visual cortex, proposing a model for each signal, whereby
the broadband activity is again found to be the dominant response, with some stimuli
also inducing narrowband activity [63]. Notably, each of these investigations disso-
ciating narrowband gamma oscillations from broadband responses employed one of
the aforementioned methods for separating periodic and aperiodic activity.

22.4 Discussion

22.4.1 Interpretations of Periodic & Aperiodic Components

Thus far we have focused onmethodological considerations that motivate the need to
use dedicated methods to measure periodic and aperiodic components in neural data.
We now turn to interpreting these components. As the physiological and theoretical
underpinnings of periodic activity have beenmore commonly examined in priorwork
[3, 4], here we will briefly discuss aperiodic activity. Some investigations consider
aperiodic activity in terms of the variability, and/or level of ’neural noise’ in the
system [48, 64]. Other functional interpretations of aperiodic neural activity focus on
its scale-free properties [17]. This interpretation comes from theoreticalwork arguing
that 1/f dynamics arise in systems that naturally evolve a self-organized critical
point [22]. Based on this, criticality has been proposed and developed as a potential
framework for conceptualizing neural data [65], reflected in the analysis of long-term
dependencies in time series and/or critical states in dynamical systems [66]. Another
distinct, though not necessarily conflicting, approach is to focus on the potential
physiological underpinnings and generative models of field data that may explain the
observation of ubiquitous aperiodic activity [23, 41, 42, 67]. For example, the overall
power or offset of broadband activity has been related to the amount of local spiking
activity [42, 67], the aperiodic exponent has been shown to relate to the balance
of excitation and inhibition of underlying synaptic activity [41], and the presence
and location of ‘knees’, which relate to the auto-correlation of the signal, have been
suggested to relate to the characteristic timescale of the underlying activity [23].
Other proposals suggest that aperiodic activity could be generated by a collection of
damped oscillators [68]. Overall, these functional and physiological models provide
a framework for conceptualizing aperiodic neural activity, with further work needed
to evaluate the most productive approaches.
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22.4.2 Future Work

A key focus for future work will be to continue to expand the methodological toolkit.
While there currently exists a collection of tools that have recently been developed
with the goal of separating and measuring periodic and aperiodic activity in neural
time series, the relationships between these different tools is currently underex-
plored.Methodological work including formal evaluations and comparisons between
methods should be pursued, includingdevelopingbest practice guides recommending
which approaches to use in different scenarios. Anotherweakness of several available
methods operating in the frequency domain is limited temporal resolution. Continued
work on methods development should focus on improving the temporal resolution
of these methods, in order to take full advantage of the high resolution of electro-
physiological data. One way to pursue these methodological goals is by using simu-
lated data and quantitatively comparing algorithm performance with known ground
truth, as can be done with open-source tools that include simulations and algorithm
implementations [69].

Beyondmethodological pursuits, another focus for future work should be to refine
our conceptual underpinnings and theoretical understanding of the signals under
study. A particular focus should be on the aperiodic component, which has been
the focus of much less work than periodic activity, but which is clearly a prominent
and important facet of neural data. Another avenue for inquiry should determine
how different signal components relate to each other. For example, in the context of
sleep, it has been proposed that alternations between periodic and aperiodic states
reflect dynamic switching between cross-areal communication (periodic activity)
and local-processing (aperiodic activity) [52]. Developing and testing such theories,
including how (a)periodic activity relates to physiological events at different spatial
scales, such as evoked potentials and neuronal spiking, should be a focus of future
theoretical and experimental work.

22.4.3 Conclusion

Electrophysiological data from intracranial recordings are complex signals that
contain multiple components, including narrowband periodic and broadband, aperi-
odic activity. Here we have explored the evidence suggesting that periodic and
aperiodic activity are ubiquitous and overlapping features of neural data, discussed
the limitations of standard methods in the face of these considerations, and exam-
ined several existing methods for measuring and disentangling different signal
features. Overall, when investigating periodic and/or aperiodic components in neuro-
electrophysiological data, dedicated methods that account for the complexity in the
data must be used.
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Chapter 23
How Can We Detect and Analyze
Navigation-Related Low-Frequency
Oscillations in Human Invasive
Recordings?

Mingli Liang and Arne Ekstrom

Abstract Theta oscillations are a prominent semi-periodic fluctuation in the local
field potential of the human hippocampus and show important links to areas of cogni-
tion like episodic memory and navigation. In this chapter, we begin by characterizing
the properties of human hippocampal theta oscillations, which are more bursty and
less continuous compared with rodents. Next, we introduce the Better OSCillation
Detection algorithm (Whitten et al. in Neuroimage 54:860–874, 2011) for detecting
oscillations based on amplitude and temporal thresholding. We compare BOSC with
other oscillatory detection methods, such as those based on dual-amplitude thresh-
olding and hiddenMarkov models. Additionally, we provide tutorials and a practical
guide for oscillation detection for the interested reader. All codes and examples are
provided freely in open-source format. Together, these provide researchers with the
tools to explore novel questions about the nature of hippocampal navigation-related
theta oscillations. As we demonstrate in this chapter, oscillatory detection proce-
dures are extremely helpful for characterizing oscillatory dynamics including burst
frequency and burst duration, exceeding beyond the singular dimension provided by
amplitude changes measured in the power spectra.

23.1 Introduction

Low-frequency (2–12 Hz) oscillations are a prominent signature in the local field
potential associated with navigation and memory. In invasive recordings they mani-
fest in medial temporal lobe and neocortex, but they are also observed in noninvasive
recordings such as scalp electroencephalogram (EEG). The bursty nature of oscil-
lations, in contrast to the more sustained oscillations observed in animals, prompts
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the needs to detect and quantify the presence of oscillations. This chapter will first
provide a background on neural oscillations as they relate to memory and navigation
and include a step-by-step tutorial for detecting neural oscillations using existing
algorithms.

Human navigation-related oscillations manifest in various frequencies, typically
covering a range of from 1 to 12 Hz. The frequency, and prevalence of hippocampal
oscillations varied across tasks and species. For example, rodents display 8–12 Hz
oscillations in hippocampus associated with movement, while humans display 1–
4 Hz oscillations [1, 2]. Typically, theta oscillations in rodent hippocampi are more
sustained (Fig. 23.1, adapted fromVanderwolf 1969). In contrast, theta oscillations in
humans are more bursty, appearing in the form of bouts [3]. Existing findings suggest
that human hippocampal bouts typically last 0.57 s, with the range between 0.4 and
0.6 s, which is ~3.35 cycles for 6 Hz oscillations [4]. In contrast, 8 Hz oscillations
in rodents last longer; for example, in a spatial navigation task, the average burst
length measured in rats’ hippocampal electrodes is ~4.3 cycles [3]. Some frequency
variation in navigation-related theta may also relate to differences in sensorimotor
inputs between virtual navigation and real-world locomotion. For example, patients
with implanted hippocampal electrodes showmore electrodesmanifesting significant
theta bursts in the 8–12 Hz theta band compared to virtual desktop navigation, in
which oscillations tend to manifest from 1 to 4 Hz [5]. Therefore, when examining
intracranial recordings from humans obtained during a spatial navigation task, it is
advised to analyze a wider range of 1–12 Hz oscillatory activities.

Oneway to examine navigation-related responses is to analyze the time–frequency
power representations. While the absolute power correlates with theta activities in
the iEEG data, the absolute power can be confounded by the background noise that
is independent of task-related activities. For example, successful memory encoding
and retrieval involve absolute theta power decreases and absolute gamma power
increases in human hippocampus [6]. However, the changes in absolute power are
often confounded with the slopes of background power spectra (see Fig. 23.2 for an
example of background power spectra). This is because background noise also has
“power” based on the 1/fα spectrum. Absolute theta power decreases, for example,
can be interpreted as relative theta power increases coupled with an increased tilt of
the aperiodic background spectra. Oscillatory detection algorithms, which we will
discuss in more detail here, provide a solution by standardizing the quantification
of oscillations across electrodes and patients. In the next section we describe the
procedure to detect oscillatory activities in intracranial recordings.
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a

b

Fig. 23.1 Navigation-related hippocampal oscillations in humans and rodents manifest differently
in frequency and prevalence. a Example of 8–12 Hz hippocampal oscillations during naturalistic
behaviors in rodents. Adapted from Vanderwolf (1969) Fig. 23.4 Panel c. Note the nearly contin-
uous nature of the oscillatory signal. Each row shows example raw traces from one electrode, and
the calibrations indicate 1 s of data and 100 μV. b Example of navigation-related hippocampal
oscillations in humans. Note the less continuous nature of human theta, even during continuous
movement (similar to what is shown in rats in a). Adapted from Watrous et al. [3]

Fig. 23.2 Fitting the
background spectra using
ordinary least square
regression and recursive
Gaussian fitting processes.
The blue solid line indicates
the empirical power spectra
obtained from the example
recordings

23.2 A Practical Guide for Detecting Oscillations
from Human Hippocampal Recordings During
a Navigation Task

In this section, we describe the procedure to detect and quantify the presence
of hippocampal oscillations, using deidentified data from Liang et al. [25]. The
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data are available for download via https://github.com/liangmingli/chapter_scripts.
The example data are recorded from an implanted electrode in the left anterior
hippocampus of a patient undergoing seizure monitoring. The data were collected
when the patient navigated in a T-maze in virtual reality on a laptop, and the data
contains 48 repetitions of the navigation segments.

As part of the preprocessing pipeline, including filtering, line noise removal, and
ictal discharges, visual inspection should also be done by the researcher. We note
that researchers should properly epoch the data dependent on whether the navigation
tasks are time-locked or active free exploration. In terms of free exploration, epoching
is better implemented after the time–frequency decomposition on the continuous
data. For an event-related design, it is better to epoch the continuous data before
time–frequency power decomposition, to prevent information leak from temporal
smoothing.

Amplitude thresholding is one viable method to detect and quantify navigation-
related theta oscillations. They are implemented on the basis of time–frequency
decomposition of iEEG data, including BOSC [7], eBOSC [8], and burst detection
by neuroDSP [9]. Better Oscillation Detection algorithm detects neural oscillations
based on two levels of thresholding: power threshold and duration threshold [7, 10].
The power thresholding identifies timepoints with high oscillatory power, and the
duration thresholding reassures that those timepoints when clustered together are
sustained based on the number of cycles.

The BOSC library can be downloaded via https://github.com/liangmingli/cha
pter_scripts, contributed by Whitten et al. [7]. The BOSC procedures include

(1) extracting the time–frequency power,
(2) estimating the background spectra,
(3) calculating the power threshold and duration threshold, and
(4) detecting oscillations.

When approximating the background spectra, the original BOSC algorithm uses
ordinary least squares linear regression for the estimate. Other alternatives have been
proposed and used, such as robust linear regression to exclude outlier values from the
power spectra [8], and using recursive Gaussian processes to estimate the aperiodic
spectra [11] (see also Chap. 22). After the background spectra is approximated,
power threshold is estimated based on a chi square distribution with 2 degrees of
freedom, and a default cutoff is 95% of the distribution. Compared to the OLS
linear regression, robust linear regression and recursive Gaussian fitting produce
lower power thresholds, i.e., are more sensitive to detecting navigation-related theta
oscillations (Fig. 23.2). As for selecting the temporal threshold, shorter temporal
thresholds enable researchers to capture the dynamics of shorter oscillatory bouts
during navigation, vice versa for longer temporal thresholds (see Fig. 23.3). Three
cycles or more is the preferred value for the cycle (temporal) threshold, although a
shorter temporal threshold (e.g., 2 cycles) has been used by researchers as well [12].

After detecting oscillations with BOSC, the outputs are a binary sequence (i.e.,
timepoints with detected oscillations are noted with 1, otherwise with 0). Averaging
the binary sequence yields the measure of oscillatory activities, or the percentage

https://github.com/liangmingli/chapter_scripts
https://github.com/liangmingli/chapter_scripts


23 How Can We Detect and Analyze Navigation-Related Low-Frequency … 369

Fig. 23.3 Shorter temporal
thresholds (i.e., fewer
required cycles) yield an
estimate of higher oscillatory
activities

of time detected with oscillations at a given frequency (the Pepisode measure.)
Researchers have utilized the Pepisode to investigate the relationship between oscil-
latory prevalence and spatial navigation [3, 4, 13]. For example, using the BOSC
detection algorithm, Vass et al. showed that hippocampal theta prevalence differed
between short distance and long distance traversals during navigation.

Further, oscillatory detection algorithms also enable researchers to examine the
properties of bursts, such as the burst density, burst duration, and burst amplitudes.
Those three aspects of burst dynamics have been implicated as relevant forms of
information coding [14]. In the example dataset on trial 11, two oscillatory bursts
at 8 Hz were identified: one detected around [0.10, 0.90] seconds, and the other
burst around [2.72, 3.20] seconds. The first burst lasted approximately 0.79 s (6.34
cycles) while second burst lasted 0.48 s (3.83 cycles). On average, for the example
trial with a four second long duration, approximately 31% of the data was detected
with oscillations. To examine the amplitude of 8 Hz oscillation, the researcher can
simply sample the power series during the timepoints detected with oscillations.
Therefore, the BOSC detection algorithm allows researchers to more comprehen-
sively evaluate burst dynamics including burst frequency, burst duration and burst
amplitudes. For example, Aghajan et al. [4] sampled hippocampal activity from one
patient with congenital blindness during real-world navigation. Compared to patients
with vision, hippocampal theta oscillatory boutswere significantly longer. Therefore,
characterization of the oscillatory burst dynamics enables novel insights into how
neural oscillations are associated with spatial navigation.

Fig. 23.4 Two oscillatory
bursts at 8 Hz were detected
using BOSC in the example
dataset, example trial 11.
Timepoints detected with
8 Hz oscillations are
overlayed in red color
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Table 23.1 Studies using BOSC and detecting medial temporal lobe theta oscillations

Study Location θ percentage Task type

Watrous et al. [3] Hippocampus 0–16 Navigation

Vass et al. [13] Hippocampus 0–30 Navigation and teleportation

Aghajan et al. [4] Medial temporal lobe 0–15 Real-world navigation

Chen et al. [15] Entorhinal 10–20 Navigation

Kragel et al. [16] Hippocampus 10 Recognition memory

Liang et al. [25] Hippocampus 0–15 Navigation and teleportation

What is the typical range of detected theta oscillations in humans during spatial
navigation?Here,we present several recent publications in the field of human electro-
physiology and spatial navigation. During a spatial navigation task, a hippocampal
electrode is expected to manifest theta bursts approximately 10–20% of the time
(Table 23.1).

23.3 Convergence: Detecting Navigation-Related
Oscillations Using Other Available Methods

In addition to BOSC [7, 10], as mentioned, there are other methods to cover oscil-
lation detection. Some of these include: (1) using double amplitude thresholding in
NeuroDSP [9] https://neurodsp-tools.github.io/neurodsp/index.html, and (2) Hidden
Markov Model based state inferences of burst status [17, 18], via https://github.
com/OHBA-analysis/Quinn2019_BurstHMM. In this section we note that we do not
intend to give a formal assessment and comparison among themethods for oscillatory
detection (see Chap. 22).

In contrast toBOSCusingboth amplitude andduration thresholds,NeuroDSPuses
only power thresholds but no temporal threshold. The power series will be marked
as oscillatory when it goes above the upper power threshold, and then marked as
non-oscillatory when it drops below the lower power threshold. Without temporal
thresholding, the detected events could include oscillatory bursts that are both short
and long. Based on the example dataset, for trial 11, NeuroDSP returned two oscilla-
tory bursts detected at the frequency range of 7–9 Hz, similar to the output reported
by BOSC: one burst of 0.84 s length (6.72 cycles) and the other burst of 0.63 s length
(5.0 cycles), and about 38.21% of the data were detected with 7–9 Hz oscillations
(Fig. 23.5).

An alternative method is based on Hidden Markov models (HMM) and Multi-
variate Autoregressive models [17, 18]. Rather than thresholding with a voltage
threshold, oscillatory states are inferred based on empirical observations of time–
frequency data and histories of oscillatory states. The idea behind is that compared
to a non-oscillatory baseline, oscillatory bursts at distinct frequencies are associated
with distinct power spectra, and distinct power spectra can be detected as distinct

https://neurodsp-tools.github.io/neurodsp/index.html
https://github.com/OHBA-analysis/Quinn2019_BurstHMM
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Fig. 23.5 Two oscillatory bursts within 7–9 Hz were detected using NeuroDSP dual power
threshold detection. Timepoints detected with 7–9 Hz oscillations are overlayed in red color.
Compared to the output reported by BOSC (Fig. 23.4), both methods discovered two oscillatory
bursts with similar timestamps, and both methods detected a similar percentage of 8 Hz oscillatory
activities (BOSC: 31%, NeuroDSP: 38%). We note that NeuroDSP and BOSC involved different
approaches to determining the amplitude threshold(s), and therefore they could produce different
detections of oscillatory onsets: note the earlier detected onsets of 8 Hz activities in the NeuroDSP
outputs compared to that of BOSC

events/states. The HMMpredicts the oscillatory states at each timepoint based on the
history of time–frequency representations of past timepoints and the inferred states
of past timepoints.

One key parameter for HMM is the possible number of states (K), which requires
apriori specification. In Quinn et al. [17], the authors explored two differentK values:
2 and more than 2. When K is set to 2, the possible number of states is set to 2,
(i.e., oscillatory vs non-oscillatory), and the inference is operated on narrow-banded
filtered signals (i.e., 7–9Hz bandpass filtered signal for detecting 8Hz activities). The
second approach, where K is set to be more than 2, is to explore all the possible oscil-
latory states in the data across multiple frequency ranges. This is suited for research
questions that look at multiple oscillatory frequencies in the context of spatial navi-
gation (e.g., theta and gamma activities). One critical difference between the HMM
based- and amplitude-threshold-based oscillatory detection is that the output from
HMMis ambiguous and requires experimenter interpretation. For example, theHMM
will output the posterior probabilities for each timepoint and for each state. But what
state(s) belong to theta oscillatory occurrence?Would state 1 or state 2 be the inferred
state of theta occurrence? That is the question that will need the experimenter’s exper-
tise to answer. Here, to demonstrate the HMM method for oscillatory detection, we
simulated 8 Hz sinusoids added on top of 1/f noise. HMM-based models detected
the simulated 8 Hz oscillatory bursts, and after visual examination, we concluded
that state 1 was associated 8 Hz oscillatory bursts and state 2 was associated with
non-oscillatory timepoints (Fig. 23.6).
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Fig. 23.6 Detecting 8 Hz
simulated oscillatory bursts
using Hidden Markov
models [17, 18]. In the top
panel, the simulated 8 Hz
bursts are plotted, and the
simulated bursts are added to
1/f noise for follow-up
oscillatory detection. In the
bottom panel, timepoints
detected with 7–9 Hz
oscillations are overlayed in
red color

23.4 What Do We Mean by “Oscillation?”

The mathematical definition of an oscillation refers to a continuous periodic signal
that can be decomposed into frequency, amplitude, and phase. In most applications,
such oscillations are approximated as sine and cosine functions using the Fourier
Transform. As is fairly clear from our examples above, however, the “bursts” of
signals discussed cannot be considered “oscillations” in the strict sense because they
are not continuous in terms of their cycles. Consistent with this, comparing Fourier
methods with methods that better account for the burstiness of these signals within
the local field potential (such as BOSC) suggest that Fourier methods generally do a
comparatively poor job at characterizing these signals [19].

This raises the question then why we even call such signals “oscillations” when
they are clearly not, even in rodents, continuous cycles resembling sine waves. The
answer to this question appears to be part nomenclature: early efforts to characterize
these time-varying signals in scalp EEG and invasive recordings applied Fourier
methods [20, 21] thereby assuming oscillatory signals in the stricter mathemat-
ical sense. This assumption, however, is not necessarily problematic as Fourier
methods can still approximate aperiodic signals as well, and almost any function
for that matter, although the numbers of coefficients can become unwieldy [22]. As
mentioned, the accuracy of characterizations that assume a periodic continuous signal
is weaker than methods that allow for bursts (such as BOSC or NeuroDSP). Perhaps
more importantly, though, for our present consideration is that the term “oscillation”
is incorrect.

As an alternative, we suggest the term “semi-periodic fluctuation” (SFP) in the
local field potential. This term helps capture the idea that such signals are indeed
periodic for bouts but then taper off (for reasons that have yet to be revealed). The
term “fluctuation” helps to capture another issue which is that the amplitude of these
bursts also varies from cycle to cycle and burst to burst. This is also in contrast to a
classic sine wave in that the amplitude should be constant and therefore something
that can be approximated with a single number. While we think it is likely that the
term “oscillation” will persist, it is important to be aware that the signals we have



23 How Can We Detect and Analyze Navigation-Related Low-Frequency … 373

discussed, particularly in humans, are not “oscillatory” in the classic Fourier sense
but rather semi-periodic and varying in amplitude.

One could ask why such signals might be “bursty” in the first place, and why
human signals might be more bursty than those of other species, like rats. While
the reasons have yet to be uncovered, one possibility is that brief bursts of periodic
fluctuations actually carry more information than long continuous bursts. This can
be seen from the Fourier perspective described above; a continuous signal requires 3
parameters to describe it in Fourier space: frequency, amplitude, and phase. A semi-
periodic fluctuation requires many more parameters to capture both the aperiodic
nature and the fluctuating amplitude of the signal. Likely, such bursty signals aremore
adept at transiently coordinating disparate brain regions compared to a continuous
signal, whichwould lead to entrainment and potentially seizures [23, 24].While these
ideas remain speculative, they provide some initial ideas about why “oscillations”
may not be oscillatory at all.

23.5 Conclusions

Hippocampal low-frequency oscillations are often found when humans perform a
spatial navigation task. Such low-frequencyoscillations havebeendemonstrated to be
relevant for the formation of spatial representations and the coding ofmultiple spatial
variables. While power can provide some degree of the prevalence of navigation-
related oscillations, the transient and bursty nature of human hippocampal low-
frequency oscillations necessitates oscillatory detection performed on the data.
Implementing oscillatory detection on the obtained intracranial recordings can quan-
tify the amount of oscillations in the signal and allows for the extraction of parameters
regarding burst frequency, burst duration, and burst amplitude. Oscillatory detection
is mostly performed via amplitude thresholding, in which timepoints with suffi-
ciently high oscillatory power are considered “oscillatory”. The amplitude thresh-
olding sometimes is accompanied by temporal thresholding to identify oscillatory
bursts that last longer than a specific number of cycles. Alternative approaches to
oscillatory detection also include Hidden Markov model-based approach, in which
the oscillatory states are inferred rather than yielded from thresholding. Oscillatory
detection can generate new analyses and insights for spatial cognition research, allow
for the standardization of oscillatory prevalence across electrodes and participants,
and most crucially, incorporates the transient nature of low-frequency semi-periodic
fluctuations in humans versus animals.
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Chapter 24
How Can I Disentangle Physiological
and Pathological High-Frequency
Oscillations?

Birgit Frauscher and Jean Gotman

Abstract High-frequency oscillations (HFOs) consist of ripples (80–250 Hz) and
fast ripples (>250Hz).Ripples are attributed an important role in cognition, sleep, and
task-related processes and have been reported in many cortical areas of the healthy
brain, with large variations in rates depending on anatomical localization. HFOs are
also a promising interictal biomarker of epilepsy. HFOs were shown to be more
specific to localize the epileptogenic zone than interictal epileptiform discharges.
One emerging area in HFO research is the nontrivial task of separating physiological
from pathological HFOs. Attempts to differentiate between both entities consist of
considering their coupling with epileptic spikes, the background EEG activity, their
relation to tasks, the anatomical localization of implanted electrodes, more classical
neurophysiological features such as amplitude and frequency, as well as their inter-
action with sleep and distinct pharmacological modulation. This chapter provides
an overview of the current state of evidence, discusses unresolved challenges, and
finally shows how to improve the yield of HFOs for prediction of the epileptogenic
zone and isolating physiological HFOs for cognitive research. Accounting for the
distinct properties of physiological and pathological HFOs could be critical for the
interpretation of HFO findings for clinical use or neurocognitive research.

24.1 Introduction

High-frequency oscillations (HFOs), usually subclassified as ripples (80–250 Hz)
and fast ripples (250–500 Hz), have been studied in both physiological and patho-
logical brain conditions. In physiological conditions, HFOs were attributed a signifi-
cant role in memory consolidation via sharp-wave ripple complexes, sleep, and task-
related processes [1–3]. In pathological conditions,HFOswere found in experimental
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models of epilepsy to be biomarkers for the epileptic tissue [4]; fast ripples in partic-
ular were shown to be a promising predictor of seizure occurrence after traumatic
brain injury [5]. These studies were performedwithmicroelectrodes recording single
cells or small cell assemblies. It was later found that HFOs could also be recorded
with the much larger (contact area of several mm2) intracerebral macroelectrodes
used in the clinical investigation of epileptic patients [6]. This vastly enhanced the
ability to study HFOs in humans. Indeed, HFOs recorded with macroelectrodes were
shown to be more specific to localize the epileptogenic zone than interictal epilep-
tiform discharges, the traditional biomarker of epilepsy [7]. It was also found that
macroelectrode recorded HFOs, ripples in particular, were common in non-epileptic
brain regions. These latter events correspond presumably to the physiological ripples
studied with microelectrodes in animals [8].

24.2 Lessons Learnt for HFO Research from Human
Microelectrode Studies

Studies on HFOs using microelectrode recordings in humans focused on three main
lines of research: the understanding of underlying neuronalmechanisms of neurocog-
nitive processes, the dissection of differences in the various firing patterns in physi-
ological versus pathological HFOs to draw conclusions on underlying mechanisms,
and the study of microwire correlates of HFOs using standard clinical macroelec-
trodes, which are necessary for a wider application in clinical research. Pioneering
work using microelectrodes of 40 microns in humans showed that there are sharp
wave ripple complexes in the human hippocampus which are visually comparable to
those seen in experimental models [9]. Subsequently, it was shown that sharp wave
ripple complexes in humans and experimental models have similar underlyingmech-
anisms as revealed by the investigation of the relationships between ripples and unit
activity [10]. Also, studies showed a complex pattern of feedforward and feedback
processing between the ento- and peri-rhinal cortex during a word recognition task
underlying the temporal patterns of different cell assemblies, something not possible
when using macroelectrodes [11].

Surprisingly,most of this work ignored that these datawere gathered frompatients
with drug-resistant epilepsy in whom implantations were performed for seizure
focus localization. Over the past two decades, substantial work has been made to
investigate the mechanisms underlying both physiological and pathological HFOs.
Although HFOs may have similar spectral frequencies, both types are attributed
different underlying neuronal mechanisms, with interneurons playing an important
role in HFO genesis (see Fig. 24.1). In physiological sharp-wave ripples, HFOs
represent extracellularly recorded, synchronous, inhibitory, postsynaptic potentials
on the membranes of principal cells (Fig. 24.1a). In contrast, in epileptic ripples,
the interneuronal activity and inhibitory postsynaptic potentials control the action
potential firing of the active epileptic population which manifests as pathological
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ripples. This mechanism is dependent on intact perisomatic inhibition maintained
by basket cells (Fig. 24.1b). Finally, loss of inhibition plays a role in the genesis of
fast ripples. The absence of rhythmic fast inhibition results in functional clustering
or asynchronous neuronal firing and the generation of fast ripples (Fig. 24.1c, d). For
further details, the reader is referred to the review of Jiruska et al. [12]. Discrimi-
nation between both entities, particularly in macroelectrode recordings, is therefore
not a trivial task and has remained a major challenge in HFO research [13–15].

Finally, attempts have been made to compare the ability of macro- and microelec-
trodes to record HFOs. As expected given the size and orientation of HFO gener-
ators [16], it was found that penetrating microcontacts of 40 microns in diameter

a b c d

Fig. 24.1 The role of interneurons in HFOs. (A) HFOs may represent extracellularly recorded,
synchronous, inhibitory, postsynaptic potentials on the membranes of principal cells. This mech-
anism underlies physiologic sharp-wave ripples. Pathologically, they may be involved in low-
amplitude fast activity ictal onset but usually with frequencies lower than ripples. (B) In epileptic
ripples, the interneuronal activity and inhibitory postsynaptic potentials control the action potential
firing of the active epileptic population, which manifests as pathologic ripples. This mechanism is
dependent on intact perisomatic inhibition maintained by basket cells. (C) Loss of inhibition may
play a role in the pathogenesis of fast ripples. The absence of rhythmogenic fast inhibition may
result in functional clustering or asynchronous neuronal firing and the generation of fast ripples
(D). Source Jiruska et al. [12] with permission from John Wiley and sons
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detected substantially more HFOs, particularly fast ripples, than depth macroelec-
trodes, whereas superficial microcontacts and standard subdural electrodes did not
differ in their abilities to record HFOs [17]. When considering macroelectrodes, it
was found that the size of the contact area had no significant influence on the ability
to record HFOs [18].

24.3 Why Is It Important to Separate Physiological
from Pathological HFOs

Albeit research showed that HFOs are a promising biomarker of the epileptogenic
zone when considering patient groups [7], more recent research revealed that their
use as biomarker is still hampered at the individual level, with up to 30% of patients
not being correctly classified using this biomarker [19, 20]. One potential explanation
is the presence of physiological HFOs, which are included in the total HFO count. To
identify new ways to differentiate between both entities is therefore key to improve
the yield of HFOs for prediction of the epileptogenic zone on the one hand, and to
isolate physiological HFOs for cognitive research on the other hand. In the following
we will review various approaches that have been applied to accomplish this task
focusing on studies using macroelectrodes.

24.4 Approaches to Separate Pathological from Physiologic
HFOs

Distinguishing pathologic from physiologic HFOs has the potential to increase the
specificity of thismarker for both clinical use in epilepsy andneurocognitive research.
This requires defining HFOs to be considered either as physiological or pathological.
Studies attempted to separate pathological from physiological HFOs by considering
the coupling with sleep spindles or epileptic spikes [21, 22], the background EEG
activity [23, 24], task-induced HFOs [25–27], the anatomical location of implanted
electrodes [14, 28–30], the classic features including amplitude, duration, spectral
frequency, and rate [31, 32], their stereotypical appearance [15], the manner of inter-
action with the accompanying slow wave or phasic rapid eye movement sleep [13,
29, 33–37], and their distinct pharmacological modulation [38–41]. Whereas most
of these features were able to show significant group differences reflecting that phys-
iological and pathological HFOs are influenced by different factors, achieving suffi-
cient performance to separate channels having predominantly one type of event or
the other, or even separating individual oscillations, has remained challenging. In
what follows we will discuss the most promising of these approaches in more detail:
(i) building an atlas of normative HFO rates given the considerable variation in phys-
iological HFO rates across the brain; (ii) utilizing evoked responses to separate both
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entities, and (iii) leveraging the different coupling to sleep physiological features to
separate both entities.

24.5 Building an Atlas of HFO Normative Rates and Its
Use to Improve the Yield of Identification of Epileptic
Tissue

The ability of HFOs as a biomarker for epileptic tissue might be improved by
correcting HFO rates according to their topographic localization. In this situation
one is not trying to separate individual physiological and pathological events but
one is trying to delineate epileptogenic tissue by separating channels with likely
significant rates of pathological ripples from channels likely to include mostly phys-
iological ripples. Rates of ripples vary substantially across different brain regions [14,
28, 29]. A multicenter project aiming at developing normative values of intracranial
EEG (iEEG) activity [42, 43] investigated this question by carefully selecting in
individual patients the small subset of iEEG channels showing normal physiologic
EEG activity defined as (i) absence of interictal epileptic activity during the complete
implantation period, (ii) absence of a significant slow wave anomaly, and (iii) being
outside of the seizure-onset zone, and outside of lesional tissue as assessed with
MRI. In a subproject of this atlas of normative iEEG activity, normative rates of
HFOs (ripples and fast ripples) were assessed [30]. A total of 1,171 bipolar channels
with normal physiologic activity from 71 patients were analyzed. Rates of ripples
varied substantially across the different regions analyzed, with rates of up to 30/min
in areas referred to as ripple-rich cortex, and other regions with rates of one or two per
minute, referred as ripple-poor cortex. Themean 95th percentile of the distribution of
rates of all the channels within one anatomical region was 9.6/min. The highest 95th
percentile rates were recorded in the occipital cortex, the medial and basal temporal
region, the transverse temporal gyrus and planum temporale, the pre- and postcen-
tral gyri, and the medial parietal lobe (Fig. 24.2 left panel). Interestingly, all these
regions correspond to cortical regions that have a higher degree of demyelination
[44, 45] Indeed, myeloarchitecture was suggested to support connectivity across all
bands [46]. The mean rate of fast ripples was very low with 0.038/min. Only 5% of
channels had a rate of more than 0.2 fast ripples/min. This multicenter atlas is the
first to provide region-specific normative values for physiologic HFOs in a common
stereotactic space. It demonstrated that physiologic ripples are particularly frequent
in the mesiotemporal, somatosensory and visual areas. In contrast, physiologic fast
ripples are very rare, even in ripple-rich cortical areas, which makes them a better
candidate for defining epileptic tissue, when present. This atlas is an open-access
resource available for consultation on the web (http://mni-open-ieegatlas.research.
mcgill.ca).

We give above absolute rates of number of events/min, but these are highly depen-
dent on the sensitivity of the HFO detector. The atlas can nevertheless provide widely

http://mni-open-ieegatlas.research.mcgill.ca


382 B. Frauscher and J. Gotman

a

b

Fig. 24.2 Improving the specificity of ripples for the epileptic tissue by normalization from the
atlas of physiological ripple rates. (left) Physiological ripple rates for bipolar channels (clinical
macroelectrodes) represented on the inflated cortex. Top: 95th percentile of the physiological ripple
rate per brain region. Bottom: rate of the individual channels. Each dot represents a channel, the
size and color indicate its ripple rate (left: lateral view, right: medial view). (right) Patient examples
of a case (A) with an epileptic focus in a region known to have high rates of physiological ripples,
where normalization improves prediction, and a case (B) with an epileptic focus in ripple-poor
cortex where the 50% and all normalization thresholds work. Both patients had Engel IA outcome.
We mapped the electrodes in the patient’s brain surface as dark blue cylinders and indicated which
channels were above the cutoff threshold of 1 ripple/min with small dark blue spheres. The three
columns indicate channels that had ripples (i) above a threshold of 50% relative to the total number
of ripples in a patient as frequently used in the literature (light blue), (ii) above the global Atlas
threshold defined as the 90th percentile value of the distribution of normative HFO rates of all
regions combined (yellow), and (iii) above a regional Atlas (green) threshold defined as the region-
specific 90th percentile values of the normative rates. The black dots indicate the resection. (A)
This patient benefitted from regional thresholding and shifted from false negative to true positive
classification. He was classified as false negative using ripple rate >1/min and as true positive using
all other thresholds. Source Frauscher et al. [30] and Zweiphenning et al. [47] with permission from
John Wiley and sons

applicable normative data in two ways: the first is that the detector is available on
the web site of the atlas and the second is that users can run their own detector on the
iEEGs of the atlas and obtain the normative rates that are specific to their detector.

We then evaluated whether defining abnormal HFO rates by statistical compar-
ison to region-specific physiological HFO rates observed in the healthy brain [30]
improves identification of the epileptic focus and surgical outcome prediction [47].
To do so, we performed a two-center study in 151 patients undergoing subsequent
epilepsy surgery, leveraging normalization ofHFOs for detection of the epileptogenic
zone and prediction of surgical outcome. The main results of this work were that (1)
normalization significantly improved the ability of ripples to identify the resected
tissue and predict seizure freedom; (2) normalization is particularly useful in patients
with a focus in ripple-rich cortex (Fig. 24.2 right panel), and that in this condition,
ripple normalization was better than either considering the fast ripple rate or than
using the current gold standard of seizure-onset zone localization based on ictal iEEG
patterns; and (3) normalization did not improve the performance of fast ripples for
focus identification or outcome prediction, presumably because physiological fast
ripples are so infrequent.
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24.6 Evoked Responses Are Useful to Separate
Physiological from Pathological HFOs

In this case, one is trying to separate individual HFOs by examining if they occur as
response to various stimuli, with the reasonable assumption that evoked HFOs are
physiological. Nagasawa et al. [25] were the first to report on the possibility to distin-
guish physiological from epileptic HFOs by using evoked potentials. They studied 10
patients undergoing iEEG and found that visually evoked HFOs, which are presum-
ably physiological, had significantly longer durations than epileptic HFOs. Similar
results were revealed later also for somatosensory evoked or cognitive task evoked
HFOs [26, 48]. Recently, it was shown that even in channels inside the epilepto-
genic zone, physiological HFO responses can be evoked [27], making the separation
between physiological and pathological HFOs even more tricky and suggesting the
need to separate HFOs not only at the channel but also the individual event level. In
all patients, the authors found abundant normal physiological responses to cognitive
stimuli in the epileptic sites. Regarding signal properties, the two types of HFOs
were distinct, with evoked activity being of longer duration and broadband in the
high-frequency range, and pathological HFOs representing short and narrow band
high-frequency events (Fig. 24.3). Interestingly, evokedphysiological responseswere
more likely to be delayed or missed when spontaneous pathological HFOs occurred.
Furthermore, spontaneous pathological HFOs in the mesial temporal lobe affected
the subjects’ memory performance. The authors concluded that epileptic tissue is
capable of generating normal physiological responses [27].

One remaining challenge here is that evoked high-frequency band responses do
not have the same signal properties as spontaneously occurring and non-evoked
physiological HFOs, so that it remains questionable if evoked responses will indeed
be helpful to separate spontaneously occurring HFOs from epileptic HFOs with
respect to clinical use in epilepsy. This issue also suggests to consider the use of
one nomenclature across disciplines. Whereas for scientists in the field of epilepsy,
HFOs are defined as isolated short events >80Hz [7], several papers in neurocognitive
research define high gamma activity as longer events up to 140 Hz or speak of ripples
when indeed referring to high-frequency broadband activity, as demonstrated by Liu
and Parvizi [27].

24.7 Separating Physiological from Pathological HFOs
Using Coupling to Sleep Features

Work of various groupswas able to show that there is a difference in coupling between
physiological and pathological HFOs with sleep slow oscillations [13, 29, 34–37].
This distinct behavior was first reported in a study [13] investigating if epileptic
activity occurs evenly across non-rapid eye movement sleep or if it is coupled to
sleep slow oscillations known for their properties to orchestrate physiological brain
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Fig. 24.3 Temporal and spectral profiles of HFO and high-frequency band (HFB) signals. (a)Data
plots for exemplar HFO and HFB in the same sites in two representative cases (S1 and S4). For
each sample event, raw data (top) and high-pass filtered data above 80 Hz (bottom) are shown. For
an HFO event, time = 0 indicates the time point corresponding to the peak amplitude; for an HFB
event, time = 0 indicates the stimulus onset. (b) Time–frequency maps averaged across all HFO
and HFB events in S1 and S4. (c) Averaged power time course in the high-frequency band above
80 Hz for HFO and task-induced HFB in S1 and S4. Task-induced low-band deactivation is also
presented. (d) Averaged signal spectra for HFO and HFB in S1 and S4. The spectral width is given
by its full width at half maximum (dashed vertical lines). (e)Averaged time–frequency maps, signal
duration, and spectral width for HFO and HFB activities in all subjects. **P < 0.01. Source Liu and
Parvizi [27] with permission from the American Association for the Advancement of Science

rhythms [49]. The authors found that the two types of HFOs are coupled to specific
phases of the sleep slow wave. They selected channels in which most HFOs were
likely of one type or the other. Interestingly, there was a biphasic distribution pattern
with HFOs in channels with normal physiological activity occurring predominantly
at the transition from the “down” to the “up” state, and HFOs in channels with
epileptic activity occurring at the transition from the “up” to the “down” state [13].
Furthermore, there seems to be a difference between physiological and pathological
HFOs with respect to the subtype of rapid eye movement sleep. In contrast to patho-
logical HFOs, physiological HFOs appear predominantly during phasic as opposed
to tonic REM sleep [33] and seem to increase in rate over the night during REM
sleep [50]. Finally, work from the hippocampus showed that HFOs occurring at the
time of sleep spindles are likely physiological in nature [51].
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24.8 Conclusion and Outlook

The 2nd InternationalWorkshop onHFO in 2017 recognized that separation between
physiological and pathological HFOs is important for a correct interpretation of
HFO findings for clinical use or cognitive research [7]. Evidence suggests that this
separation is particularly important for HFOs with frequencies in the ripple or low
fast ripple band, whereas presence of fast ripples above 330 Hz was basically always
linked to epilepsy [30]. In the last years, significant progress has been made to
separate both entities at the channel level, whereas it remains an inaccurate and
likely an impossible task to separate physiological from pathological HFOs at the
event level [52]. It was shown that indeed both physiological and pathological HFOs
can occur in the same channel [27], and that physiological HFOs can be highjacked
by pathological HFOs [27, 53], as shown for the replacement of sleep spindles by
generalized spike and wave discharges [54]. The fact however that it was recently
shown that HFO normalization enables an improved delineation of epileptic tissue
in areas with high rates of physiological ripples [47] indicates that a channel level
separation may be sufficient for improving the yield of detecting epileptic tissue as
required for HFOs to be a reliable epilepsy biomarker. Regarding neurocognitive
research, several studies demonstrated that evoked physiological HFA responses are
broadband high frequency events with longer duration, and that this difference in
properties analyzed with supervised machine learning techniques allowed a good
separation from epileptic HFOs even inside epileptic tissue [25, 27]. Future research
will show if leveraging the knowledge gained from the various procedures paired
with advanced techniques of artificial intelligence in large datasetwill allow to further
improve the performance, and ultimately result in a simpler use in epilepsy care. For
cognitive research, it seems to be sufficient to advise to exclude channels with any
type of epileptic activity and inside lesional tissue, as by doing so only very few
pathological ripples are expected to be encountered, or alternatively to concentrate
on evoked responses where separation was shown to be feasible.
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Chapter 25
Which Rhythms Reflect Bottom-Up
and Top-Down Processing?

Yihan Xiong, Pascal Fries, and André M. Bastos

Abstract Top-down processing is how the mind uses our expectations, attentional
focus, and other cognitive variables to adaptively influence bottom-up sensory
processing. In thisChapterwe summarize and review themain sources of evidence for
howdifferent neuronal oscillations contribute to top-down and bottom-up processing.
We start with a historical and methodological overview with a focus on studies that
have provided rich spatio-temporal dynamics to reveal the operations that underlie
cognition.We then discuss four primary sources of evidence for how dynamics in the
alpha/beta (8–30 Hz) and gamma (40–100 Hz) frequency bands map onto top-down
and bottom-up processing, respectively. First, we discuss task manipulations that
have isolated bottom-up and top-down processing. Second, we discuss studies that
have measured cortical dynamics with laminar resolution. Third, we discuss studies
of inter-areal directed connectivity. Fourth, we discuss causal manipulation studies.
We end with a discussion of directions for future research to elucidate how top-down
versus bottom-up communication is achieved in the brain.

25.1 Introduction—Historical Overview

To understand the brain, it is imperative that we understand multiple complex and
interacting spatial and temporal scales of neural activity. The relevant temporal scales
of brain activity range from months to years in the case of long-term memories to
less than a millisecond when considering tight spike synchrony. The relevant spatial
scales are equally wide ranging. At the largest scale, multiple brain-wide networks
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have been discovered, and recent work pushes some of these networks beyond the
brain to include the spinal cord and even the periphery [1]. At the other end of the
spatial scale, dendrites and spines are defined at micrometer resolution.

Given this massive range of potentially relevant spatial and temporal scales, it is
worthwhile to ask what the optimal spatial and functional scale of measurement is
in neuroscience? The single neuron doctrine maintained that the spatial scale of the
single neuronwould be sufficient to understand the brain [2]. In this view, each neuron
has a specific function, and by fine-tuning the parameters of an experiment one could
decipher the function (e.g., the neuron’s receptive field) of that neuron. Recording
from one neuron at a time would be sufficient to understand the brain, as long as
the experimenter sampled a sufficiently representative population. This is because
the theory assumed that the operations of many neurons would be deducible from
single-neuron properties. Many of the experiments based on this theory were indeed
foundational to our present understanding of the brain. But these experiments gave us
limited insight on the network properties of the brain. The emerging view is that a full
understanding of brain function cannot be achieved with a single-neuron perspective
alone, but requires the investigation of network properties at the appropriate scale
[2, 3].

In the visual system, some of the first compelling support for a network view
of the brain came from observations that two groups of neurons fired in gamma-
rhythm (40–100 Hz) synchrony when oriented bars were colinear and spanned the
receptive fields of both neuronal groups [4]. Other evidence suggested even tighter
temporal control of synchrony at the millisecond level was important for information
transmission, at least in early stages of visual processing [5].

As the non-invasive field of human neuroimaging flourished, there were multiple
observations of large-scale functional networks for cognition. For example, resting-
state networks were discovered [6, 7] to involve multiple areas across the brain.
The dorsal attention network [8] was discovered and found to powerfully modulate
neuronal responses in visual cortex. With these and other observations, the stage was
set for scientists whowanted to understand both the network level (because cognition
involves multiple interacting regions) as well as the single neuron level (to connect
our initial foundational knowledge to the scale of network activity). These studies
began to address the question of how single neurons compute information and route
that information to both higher and lower order brain areas [9]. Crucially, this level
of investigation requires a combination of millisecond temporal resolution, single
neuron spatial resolution, with coverage of at least a few brain areas. Millisecond
temporal resolution is required because that is the time scale of neural activity and
communication. Single neuron spatial resolution is required to understand how spikes
in one area affect others. Spatially, it requires sampling from multiple brain regions
simultaneously because cognition involves interconnected networks.

In order to achieve this combination of high temporal and spatial resolution across
multiple brain areas, it is currently necessary to record intracranially and directly
observe neural activity in vivo. In humans, intracranial recordings are only possible
in the context of performing a medical procedure, such as pre-surgical functional
mapping in epilepsy. For this reason, human intracranial data is limited to recordings
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from locations that are suspected sites of epileptic activity, and it is difficult to
acquire data with the necessary coverage to address these hypotheses. Our review
will therefore be focused on animal studies, where intracranial recordings can be
designed to address these scientific hypotheses. Wherever possible, we will refer to
the human intracranial (and non-invasive) literature to highlight points of contact.

25.2 Methodological Summary

Themain intracranial methodologies for observing these fine and fast spatiotemporal
patterns are multiple microelectrodes, electrocorticography, and laminar electrodes.
The multiple-microelectrode approach was a direct continuation of the methods used
originally to study single-unit activity (Fig. 25.1). This method was scaled up first
to a few, then a few dozen, and now a few hundred electrodes [10, 11]. This method
allows for excellent single unit isolation as well as recording the local field potential
which reveals local oscillations. In a modified version, this method has also been
used in human intracranial recordings [12].

Electrocorticography is a method that was originally used in human patients
suffering from intractable epilepsy. We and others have adapted and “reverse trans-
lated” this approach for studies in animals, where grid location, size, and position
would be under direct experimental control [13, 14]. This method offers excellent
temporal and spatial resolution and good coverage and can record frommany cortical
areas simultaneously (Fig. 25.1). Finally, multiple-contact laminar electrodes have
also been used to record from all layers of cortex simultaneously [15]. Recently, this
recording methodology has been expanded to allow for simultaneous recordings of
between 5–6 cortical and subcortical areas [16, 17]. These recordings have also been
performed in human cortex in rare cases where the recorded tissue is likely to be
surgically resected [18].

These methods provide rich data across both spatial and temporal scales. They
can be combined to yield even richer data [19]. They can also be complemented
by other non-invasive methods such as electroencephalography and magnetoen-
cephalography, which offer excellent temporal information but are limited in spatial
scale (Fig. 25.1). On the other hand, full-brain coverage and sub-millimeter spatial
scales can be achieved with functional Magnetic Resonance Imaging (fMRI) but at
the sacrifice of temporal resolution. Some studies have combined EEG with fMRI
to try to compensate, and where possible we will also discuss these studies.
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Fig. 25.1 Select current neuroimaging/neurophysiology methods and their respective capabilities.
The goal is to increase resolution in the spatial and temporal domainswhile also increasing coverage.
Note thatmulti-area electrophysiology recordings (e.g.,multiple neuropixel probes) are approaching
the optimal space in the diagram: large-scale coverage ofmultiple areas at a spatial resolution capable
of recording single neurons at millisecond temporal resolution

25.3 Top-Down Versus Bottom-Up Processing, and Cortical
Hierarchy

A high-resolution combination of spatial and temporal scales with good coverage
is important for shedding light on the question of how the bottom-up and top-down
streams of processing are implemented in the brain. Anatomically, the cortex appears
to be constructed as a flexible hierarchy [20, 21]. The sensory periphery projects
via thalamus to the first stage of processing, which in vision is area V1. Activity
proceeds up the hierarchy from V1 to the temporal and parietal streams, and finally
reaches the prefrontal cortex. Bottom-up processing refers to how information flows
up the cortical hierarchy. It carries the sensory information about the stimuli, such
as color, form, shape, and identity in vision [17, 22]. Top-down processing refers to
how information flows down the hierarchy. Top-down information is the process by
which our internal thoughts, goals, attention, and expectation shape and influence the
bottom-up flow.Cognition arises from an interplay between these streams (Fig. 25.2).

The bottom-up and top-down counterstreams are additionally separated by
laminar origin and termination patterns. The cortex is made up of six cortical layers,
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Fig. 25.2 Top-down and bottom-up counterstreams in the cortical hierarchy, with superficial layers
(layer 2/3) sending feedforward information, and deep layers (layer 5/6) sending feedback infor-
mation. Injections of retrograde tracers (indicated by the syringe) reveal a laminar pattern for
distribution of feedforward and feedback connections. Feedforward connections arise mostly from
superficial layers (patterns shown to the left of the injection site). Feedback connections arisemostly
fromdeep layers (patterns shown to the right of the injection site). The larger the hierarchical distance
between the injection site and the origin of the projection cells, the stronger these patterns become.
These laminar projection patterns can be quantified and used to form a hierarchical arrangement,
which is a result of taking the global model that best fits the entire dataset of multiple inter-areal
laminar connection patterns. This hierarchy for the visual system of macaque monkeys is shown
in the bottom subpanel. Red lines indicate anatomical connections, and the hierarchical position
of each area is shown as different levels on the y-axis. Figure from Markov and Kennedy (2013),
reproduced with permission
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which are sometimes summarized as superficial (layers 1–3), granular (layer 4) and
deep (layers 5/6). These layers largely separate the cells that project in the bottom-up
(or feedforward) direction from the top-down (or feedback) direction. In primates,
the majority of feedforward-projecting cells that ascend the cortical hierarchy derive
from layers 2 and 3. Feedforward projections largely terminate in the middle layers,
mainly layer 4, of higher areas [23]. By contrast, themajority of feedback projections
arises from cells in layers 5 and 6 [21]. They largely target layers 1 and 6 of earlier
cortical areas [23]. In addition to these “rules”, there exist deviations from these
patterns. For example, there are feedforward connections in deep layers and feed-
back connections in superficial layers [21]. However, across many cortico-cortical
connections, the anatomical patterns explain a great deal of variance in the anatomy.
Indeed, the global consistency of these patterns can define a cortical hierarchy.

25.4 Frequencies of Neuronal Communication

In parallel to the constant chatter of spiking activity in the brain, oscillations are
another ubiquitous feature of neural activity. These oscillations range in frequency
from less than ~1 Hz to over 100 Hz [24]. They often involve the recurrent interplay
of inhibitory and excitatory neurons. In one mechanism for gamma and beta oscilla-
tions (the Pyramidal Interneuron Network Gamma, or PING model [25]), inhibitory
cells shut down the activity of multiple excitatory cells. These excitatory cells tend
to recover from the inhibition at a similar time. When they recover, they spike and
re-activate the inhibitory cells to fire, shutting down the network and setting up the
next oscillatory cycle. The inhibitory neurons are thought to control the frequency of
the oscillation through the time-scale of synaptic inhibition (although other elements
also contribute to the frequency of the oscillation, for a review see [26]). Modeling
evidence suggests that the time constants of cortical networks robustly support these
oscillations both in the beta (roughly 15–30 Hz, sometimes grouped with alpha,
roughly 8–12 Hz) as well as gamma (40–100 Hz) frequency ranges [27, 28]. What
these models suggest is that neuronal oscillations are an emergent property of any
neural system containing recurrent inhibition and excitation. Since recurrent excita-
tion/inhibition is a canonical cortical motif, so are the oscillations. Different areas
of the cortex appear to have a natural rhythm to their activity [29, 30]. This may be
due to variations in the types of cells and circuits that are present across areas [28].

These oscillations provide temporal windows in which spiking activity in a
neuronal group becomes relatively more or less likely. Therefore, an oscillation
entails the creation of windows of relative excitability and relative inhibition. If
two or more separate neuronal groups are oscillating, then this naturally sets up
a system where two sets of excitability windows can either coincide in time or
not. When the rhythmic input from one neuronal group consistently arrives at the
rhythmic excitability window of another, then the coherence between the rhythms
likely promotes efficient neuronal communication [31]. On the other hand, if inputs
and excitability windows are not aligned, then neuronal communication will be less
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efficient. This is the basis of the communication through coherence (CTC) hypothesis
(Fig. 25.3a).

As discussed above, neuronal oscillations can occur at multiple frequencies. This
allows for the interesting possibility that distinct networks of brain areas communi-
cate at separate frequencies. It also allows for the possibility that different oscilla-
tory frequencies can traffic information in different directions, i.e. bottom-up versus
top-down [32].

In this Chapter, we will discuss the evidence for whether separate frequency
oscillations carry top-down versus bottom-up information. We discuss studies that
provide three primary sources of evidence. First we review studies that have relied
on a cognitive operationalization of bottom-up versus top-down processing. This
approach primarily uses a task contrast to reveal which neuronal dynamics are related
to processes that are defined as environmental (bottom-up) versus based on internal
knowledge (top-down). Second, we discuss studies that have used laminar elec-
trodes and distinguished activity from superficial versus deep layers. The majority
of bottom-up connections (also called feedforward) derive from superficial layers,
and the majority of top-down connections (also called feedback) derive from deep
layers (Fig. 25.2). Therefore, if certain dynamics are primarily containedwithin these
distinct compartments, they will likely primarily affect either bottom-up or top-down
processing. Third, we will discuss studies that have recorded from multiple loca-
tions in cortex simultaneously and quantified directed influences in the bottom-up
versus top-downdirections using analyticmethods such asGranger causality. Finally,
we will also discuss studies that have used causal manipulation to inform which
mechanisms contribute to bottom-up versus top-down neuronal communication.

25.5 Part 1: Cognitive Operationalization

One approach to study the computations subserving top-down and bottom-up
processing is by operationalizing a task which separately manipulates these factors.
First, we will define these terms. By a bottom-up task factor, what wemean is a factor
relating to the sensory attributes of the stimuli that can be presented to a subject. A
top-down factor is one which relies on internal knowledge or rules that have been
acquired through behavioral training (in the case of animal experiments) or verbal
instructions (in the case of human subjects). By definition, a top-down factor cannot
be deduced solely on the basis of the stimulus configuration presented to a subject
at a given time.

A classic example of this is visual attention. In visual attention, “pop-out” (or
“efficient”) search refers to a condition in which the bottom-up features of a stimulus
are sufficient to distinguish target from distractor. For example, a red target that has to
be found amongst an array of green distractors is a pop-out search. Because the target
differs from all distractors along a salient dimension (color), the visual system can
extract the target through bottom-up mechanisms. In contrast, in a situation where
the target and distractor differ through the conjunction of more than one feature
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a

b

Fig. 25.3 Panel a shows the mechanism of Communication Through Coherence (CTC), where
oscillatory coherence facilitates higher- and lower-order cortex to effectively communicate. Super-
ficial layer gamma-frequency coherencemediates feedforward (lower to higher-order cortex, shown
in red arrows) interactions and deep layer beta frequency coherence mediates feedback (higher to
lower-order cortex, shown in green arrows) interactions. Activity in higher-order cortex is phase-
delayed at gamma frequencies relative to activity in lower-order cortex. Activity in lower-order
cortex is phase-delayed at beta frequencies relative to activity in higher-order cortex. Panel b shows
empirical results indicating that spike-field coherence peaks in superficial layers at gamma range
frequencies, while in deep layers it peaks at alpha/beta range frequencies (the red and blue lines
indicate different attentional states). Red means visual spatial attention was directed into the recep-
tive field of the recorded neurons. Blue means visual spatial attention was directed away from
the receptive field of the recorded neurons. Panel a from Bastos et al. (2014), reproduced with
permission. Panel b from Buffalo et al. (2011), reproduced with permission
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dimension, such as color and orientation, a more deliberate search strategy is needed
which entails top-down processing.

Buschman and Miller trained macaque monkeys on such a visual search task
and recorded with multiple Tungsten electrodes in parietal and prefrontal cortex
[33]. They recorded both spikes and local field potentials from area LIP (Lateral
Intraparietal area), FEF (Frontal Eye Fields), and lateral PFC (Prefrontal Cortex).
As they recorded neural activity, monkeys performed the attention task in either a
bottom-up (pop-out search) or top-down (conjunction search) mode. They computed
the spectral coherence between the sites in frontal and parietal cortex. Spectral
coherence is a method to quantify the strength of phase alignment of oscillations in
different frequency bands which is thought to reflect neuronal communication [34].
Comparing bottom-up to top-down search, they found that coherence during top-
down search was stronger in the beta-band, and coherence during bottom-up search
was stronger in the gamma-band. Thus, different oscillations were involved in imple-
menting neuronal communication between frontal and parietal cortices depending
on task demands.

In human intracranial work, top-down attention has also been linked to enhanced
beta frequency neuronal synchronization between frontal and parietal cortex [35].
In this study, Micheli et al. recorded intracranial data from epilepsy patients as they
performed a visual attention task. In the task, subjects had to report near-threshold
changes to one of four targets on a computer display.During the task periods requiring
sustained attention, Micheli et al. observed a larger amount of frontoparietal beta-
band synchronization on trials in which subjects correctly reported a change. This
supports the view that long-distance beta synchrony supports a cognitive, top-down
network [36].

Another cognitive framework that is thought to map onto bottom-up versus top-
down processing is predictive coding [37]. In this case, prediction refers to learning
the statistical regularities of the environment. These predictions are thought to be
stored as internal models that can guide perception and action, especially in noisy
environments. The predictions are thought to reflect top-down processing, because
they reflect internal knowledge created by experience.Whenpredictions do notmatch
the environment, they need to be updated. These prediction-error signals are thought
to be implemented by bottom-up processing, because they reflect the features of
sensory inputs that deviate from prediction.

Chao et al. were the first to test this hypothesis using intracranial data in monkeys
[38]. They used an auditory oddball task to evoke simple sensory prediction errors
and prediction updates. They implanted monkeys with large-scale electrocorticog-
raphy (ECoG) grids to record from multiple cortical locations. These recordings
spanned multiple hierarchical stages, including two stages of the auditory processing
hierarchy and lateral PFC. Auditory oddballs (stimuli hypothesized to evoke “pre-
diction errors”) induced gamma frequency oscillations that emerged first in early
auditory cortex, then later-stage auditory cortex, and then frontal cortex. In contrast,
a prediction update signal was identified to begin later (about 400–600 ms after the
occurrence of a stimulus which deviated from what was predicted) and was centered
on the beta band. Granger causality analysis (a method to infer directed functional
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connectivity, see “Part 3: Inter-areal interactions”) showed that prefrontal channels
Granger-caused the temporal/auditory sites more than the other way around. This
was consistent with a top-down role for beta in signaling a prediction update.

Another recent macaque study has complemented and extended this work by
showing that the predictability of visual stimuli used in a working memory task
changes the balance between beta and gamma oscillations [16]. Stimuli that occurred
in a predictable context engaged top-down alpha and beta rhythmic networks span-
ning prefrontal, parietal, and visual cortex (area V4). Within area V4, alpha/beta
power in deep layers was higher in response to a predictable than to an unpredictable
stimulus, but only when the predictable stimulus matched the stimulus preference
of the V4 neurons. Put another way, the same neurons did not show an alpha/beta
modulation to predictability when the prediction concerned a non-preferred stim-
ulus. In other words, predictions were acting at specific cortical locations to inhibit
processing. In the absence of such stimulus-specific predictions, cortexwas relatively
uninhibited. A non-predictable stimulus evoked strong superficial-layer bottom-up
gamma. Therefore, the neural implementation of prediction may work by selectively
preparing, and therefore “routing” information along predictable routes via top-down
beta. Unpredicted information (reflecting a prediction “error”) would then naturally
be re-routed in the bottom-up direction via uninhibited pathways [16].

Multiple studies in humans have also investigated the neurophysiological mecha-
nisms for top-down prediction and bottom-up prediction error. Bauer and colleagues
used temporal expectation to induce varying levels of prediction to an attended
visual grating stimulus [39]. As time in the trial progressed, a change in the stim-
ulus became more likely to occur. Given this hazard rate function, changes in the
stimulus that occurred early in the trial were less predictable than changes occurring
later in the trial. Attentional modulation of alpha and gamma power tracked this
stimulus predictability. Gamma was negatively correlated with predictability (there-
fore gamma reflected unpredictable signals), and alpha was positively linked with
predictability. Intracranial studies in humans have also manipulated auditory predic-
tion using oddball tasks. A human intracranial study linked prediction errors or
“surprising” aspects of an auditory stimulus to gamma oscillations in auditory cortex
[40]. Other studies have also linked unpredictable auditory stimuli to gamma oscil-
lations [41–43]. To summarize, these studies on predictable stimuli suggest gamma
as a bottom-up mechanism for prediction errors and beta as a top-down mechanism
for predictions or their updates.

In addition to attention and prediction, many other tasks have been used to oper-
ationalize top-down versus bottom-up processing. For example, monkeys can be
trained to apply different rules (e.g. using “Color” vs. “Orientation”) to the exact
same bottom-up stimulus [44, 45]. They can also learn to perform concrete or
abstract categorization judgements (e.g., “Dog” vs. “Cat” or abstract dot categories)
or learn to associate one stimulus with another. All of these tasks engage top-down
processing, because they can only be solved by applying internal knowledge to a
stimulus set. Without exception, these studies have found that differences in higher-
order cortex alpha/beta power and/or coherence (but not gamma) discriminate across
different top-down task conditions [44–51]. This is consistent with the hypothesized
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role of alpha/beta in creating dynamic neuronal assemblies that facilitate top-down
processing.

In addition to these studies that have focused on bottom-up versus top-down
task modulations, there is a simple neurophysiological observation that links distinct
neuronal oscillations to distinct forms of processing. Namely, the observation that
gamma-band activity is strongly induced by a sensory stimulus is consistent with this
frequency band signaling a sensory representation [31, 52]. By contrast, alpha/beta
band signals are typically stronger in the pre-trial and baseline periods, which in
most experiments is devoid of sensory stimulation. What is present in these pre-task,
beta-rich epochs? The subject’s internal chatter which is thought to be indexed by
the default-mode network. In addition, this default-mode activity is highly correlated
with beta band oscillations in human EEG [53]. Therefore, it makes sense that an
internal status-quo is represented by beta band rhythmic activity [54].

These observations are also consistent with the positive correlation between
gammaand spiking [55, 56], andwith the negative correlation between alpha/beta and
spiking [29, 57]. This is because task conditions that lead to large increases in spiking
(and gamma) are usually associated with bottom-up sensory stimulation. In contrast,
alpha/beta rhythms are frequently observed in pre-stimulation or delay-period epochs
with relatively less spiking, when top-down processing is active.

25.6 Part 2: Laminar Studies

Several studies have examined neural activity in different layers of cortex within
and between areas. Since the bottom-up and top-down streams are to a large extent
separated between layers (Fig. 25.2), these studies should reveal whether distinct
layers and oscillatory frequencies contribute to these counterstreams.

Combining the laminar and cognitive operationalization approaches, Lakatos et al.
showed attention and sensory processing in distinct layers [15]. The authors recorded
electrophysiological signals in area V1 and primary auditory cortex of macaques
that were trained to alternate between paying attention to a stream of sensory inputs
in either the visual or auditory modalities. They found that the middle layers of
cortex primarily signaled the current sensory context. Interestingly, the superficial
layers behaved in a more “cognitive” way. Activity there was primarily reporting
the attended input. This was a landmark study that showed how important it was to
consider the laminar dimension in cognition, because different layerswere apparently
performing distinct computations. This study paved theway for others looking further
into how distinct oscillations across layers behave during cognitive tasks.

VanKerkoerle et al. usedmulti-laminar probes to study the propagation of gamma
and alpha band frequencies in macaque V1 [58]. The researchers phase-aligned
the Local Field Potential (LFP), Current Source Density (a spatially more resolved
version of the LFP), and spiking activity to the trough of the oscillation detected in
layer 4 (recall that layer 4 is the input layer for feedforward connections). This trough
detection procedure was performed separately for the gamma and alpha bands. They
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discovered a remarkable frequency dissociation: The gamma-band activity was orga-
nized as a travelling wave, with superficial and deep layers following waves in layer
4. This suggests that the gamma activity originated in layer 4 and then subsequently
drove the gamma activity in more superficial and deeper layers. This functional
pattern of columnar activation mirrors the intracortical feedforward canonical circuit
[59]. It is also consistent with earlier observations that spiking activity in superficial
cortical layers is phase delayed relative to layer 4 in squirrel monkeys [60]. Van
Kerkoerle et al. next triggered their analysis to the trough of the alpha wave in layer
4. They again found a spatially coherent travelling wave pattern but with the opposite
direction: layer 4 was now delayed relative to more superficial and deep layers. This
suggested a feedback pattern of activity, with the alpha wave originating, or entering
from other areas, in feedback recipient layers 1 and 6 and then progressing to layer
4.

These observations are consistent with other work based onwithin-area functional
connectivity analysis (for inter-areal interactions, see Part 3). Several studies have
used Granger causality [61], a time-series methodology to infer the primary direction
of information flow between signals. It is beyond the scope of this review to discuss
all the technical aspects of this method [62, 63]. Granger causality quantifies the
amount of frequency-specific directed information flow between two signals A and
B. If A is below B in the cortical hierarchy then the directed information flow fromA
to B is the bottom-up flow and the flow from B to A is the top-down flow. It was used
to measure how alpha/beta rhythms flow between layers. In early visual cortex (V1
and V2) as well as frontal cortex, LFP signals from deeper layers (both granular layer
4 and infragranular layers 5 and 6) drive activity inmore superficial layers 2 and 3 [58,
64, 65] in the alpha frequency range. Several studies have also quantified functional
interactions between layers with phase-amplitude coupling analysis. This measure
quantifies how the phase of a lower frequency (alpha/beta) couples to the amplitude
of a higher frequency (the gamma-band). These studies examined all possible pairs
of channels for providing phase and amplitude in superficial and deep layers and
were therefore not biased by any possible electrode pre-selection steps. Both Spaak
et al. as well as Bastos et al. found that deep alpha/beta phase coupled to gamma
amplitude in superficial layers [64, 66]. This was observed in visual as well as frontal
and prefrontal cortex (but see [67]).

Several additional observations from other laminar studies strengthened the
hypothesis that different layers were differentially involved in generating gamma
versus alpha. Maier et al. discovered separate superficial and deep laminar compart-
ments for coherent activity [68].Within both deep and superficial layers, LFP activity
was highly coherent. But between laminar compartments, coherence levels fell quite
quickly. These effects were observed both in the gamma and alpha/beta frequency
ranges. They are consistent with the study of [69], which analyzed spike-field
coherence between spikes and LFPs recorded either in superficial or deep layers.
These authors found that superficial neurons tended to strongly synchronize to the
gamma-band LFP but not very much to alpha. By contrast, neurons in deep cortical
layers showed relatively little gamma-band synchronization and instead preferred to
synchronize at the alpha range [69]. Finally, recordings in brain slices showed that
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superficial layers can resonate at gamma and deep layers at beta even after the slice
has been cut at layer 4, severing the connections between layers [70].

These studies suggested separate laminar mechanisms with superficial layers
resonating at gamma and deep layers resonating at alpha/beta frequency.We note that
two studies have argued against this based on the observation that a local bipolar or
current source density analysis will frequently eliminate nearly all alpha/beta power
in deep layers while sparing alpha/beta in superficial layers [18, 71]. This observa-
tion could be explained by a source in deep layers that is highly coherent across the
deep layers and which is thereby largely eliminated by the local spatial differentia-
tion involved in the calculation of both local bipolar and of current-source-density
derivations. Studies that have examined the coherence of alpha are consistent with
this: alpha band synchronization is high between neighboring sites in deep layers
and between nearby cortical columns. This is in contrast to coherence in the gamma-
band, which is also high within superficial layers but drops off precipitously between
channels in superficial and deep layers and between nearby cortical columns [72].

In addition, the invention of sub-millimeter (typically around 0.7 mm) resolution
fMRI now allows non-invasive data collection in humans to corroborate the laminar
mechanisms found in animal models. Notably, Scheeringa et al. combined EEG
with high resolution fMRI to show that the superficial-layer BOLD signal correlates
with gamma band power [73]. Also, high-resolution source modeling with MEG has
shown consistently that alpha/beta sources localize to deeper locations than gamma
[74]. There has also been evidence that BOLD-signal correlations reflect oscillatory
synchronization sampled by MEG [75] suggesting that fMRI can provide a useful
proxy for neuronal interactions. Multiple studies on working memory and prediction
using layer-resolved fMRI showed that feedback information in forms of predic-
tion [76], visual illusion [77], and working memory [78] evoked deep layer BOLD
signal in V1. However, one study by Muckli et al. showed superficial layer in V1
carrying feedback information [79]. This divergence has been argued to be due to
methodological differences in data collection and analysis [78]. Nevertheless, all
studies concur that feedback information is signaled in non-middle layers. The liter-
ature remains to be strengthened by further investigations using neurophysiological
techniques discussed in this chapter.

25.7 Part 3: Inter-Areal Interactions

Another approach to assess which oscillations are involved in bottom-up and top-
down processing is to measure electrophysiological signals simultaneously from
multiple brain areas and to quantify the directionality of signal flow. This requires
the application of signal processing methods for directed functional connectivity,
such as Granger causality.

Bastos et al. (2015) recorded electrocorticography from eight visual areas in the
cortex of macaques as they performed a visual attention task that engaged both top-
down processing (in this case, selective attention) as well as bottom-up processing
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(processing of visual stimuli) [32]. They quantified Granger causality between the
visual areas and found a commonpattern.Beta frequencyoscillationswere stronger in
the top-downdirection, and theta andgammaoscillationswere stronger in the bottom-
up direction (Fig. 25.4a). These patterns were highly correlated with the underlying
laminar anatomical patterns that define top-down versus bottom-up connectivity
(Fig. 25.2). These feedforward gamma and feedback beta patterns were recently
expanded to an even greater number of areas and shown to be related to the strength
of anatomical projections between areas [80]. This strong anatomy-function rela-
tionship allowed us to derive a cortical hierarchy based on the functional data
alone, and this functional hierarchy corresponded closely to the anatomical hier-
archy (Fig. 25.4b). Selective visual attention enhanced these inter-areal gamma and
beta interactions.

In a closely related study, Michalareas et al. (2016) analyzed source-projected
MEG data of human subjects as they monitored a visual grating stimulus [81].
By performing Granger causality on the source-projected data they found similar
functional asymmetries in the human brain as was previous detected within the
macaque brain. Namely, Granger causality analysis indicated that beta oscillations
were stronger in the top-down direction, and gamma was stronger in the bottom-up
direction. The functional connectivity based on Granger causality from human data
correlated with laminar anatomical connectivity in macaques for the cross-species
homologous areas. Even more interestingly, the authors constructed a functional
hierarchy amongst all source-projected areas including areas for which there is no
homologue between humans and monkeys (Fig. 25.4c). This top-down direction of
alpha/beta propagation has also been confirmed in an additional human MEG study
which examined interactions between areas FEF and V1 [82]

The above studies have used Granger-causality (GC) based functional connec-
tivity analysis to infer directed information flow between distinct areas. These studies
have indicated that the patterns of GC correlate with layer-specific anatomy. Several
studies have now also investigated the laminar specificity of GC. In a groundbreaking
study, Roberts et al. (2013) recorded from retinotopically aligned locations of areas
V1 and V2 with laminar probes [83]. They found that the laminar pattern of coher-
ence and Granger causality largely matched the feedforward pattern known from
anatomy. Namely, the superficial layers of V1 had strong gamma coherence and
Granger causal influence onto layer 4 (the anatomical input layer) of V2. In addi-
tion, as the contrast of the presented visual image increased, the dominant frequency
of inter-areal synchronization gradually shifted to faster gamma frequencies. This
confirmed previous theoretical work that suggested more total excitation would lead
to faster gamma [25]. However, the spatial pattern defining which layers partici-
pated in this gamma synchronization was largely conserved across contrasts and
matched the anatomical feedforward pattern. Ferro and Thiele also investigated the
laminar pattern of GC between visual areas V1 and V4 during an attention task. They
confirmed that the bottom-up flow was dominated by gamma frequencies and the
top-down flow by beta frequencies. However, in this study, the laminar pattern was
not well-predicted by the anatomy and was relatively non-specific when it came to
layers [84].
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Fig. 25.4 a Granger causality shows functional asymmetries between bottom-up communication
at gamma and theta versus top-down communication at beta frequencies. b The global consistency
of these metrics allows us to compute a functional hierarchy in the monkey brain based on Granger
causality,which is remarkably consistentwith anatomy-basedhierarchies (c). TheseGrangermetrics
can also be computed in the human brain including uniquely human areas using source-projected
MEGwhich defines a human functional hierarchy. Panels a, b from Bastos et al. (2015), reproduced
with permission, Panel c from Michalareas et al. (2016), reproduced with permission.
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Another recent study combined the cognitive operationalization and inter-areal
interaction strategies of analysis to ask which layers, frequencies, and directions of
information flow were associated with visual stimuli that were either predictable or
unpredictable [16]. These authors performed multi-laminar recordings in monkeys
fromV4, parietal areas 7A and LIP, FEF, and prefrontal cortex asmonkeys performed
a working memory task on either predictable or unpredictable stimuli (Fig. 25.5).
They compared the patterns of GC in either predictable or unpredictable cases. In the
pre-stimulus period when the visual stimulus was predictable but not yet seen, there
was stronger deep-layer top-down alpha/beta GC from prefrontal cortex to the other
areas. In contrast, during the visual stimulation period, there was stronger superficial-
layer bottom-up gamma GC from V4 to the other areas, when the visual stimulus
was unpredictable. Therefore, the bottom-up (superficial-layer) gamma flow was
reflecting an unpredictable or surprising stimulus. The processing of unpredictable
stimuli evoked particularly strong responses in gamma and spiking in superficial
layers of V4 (Fig. 25.5). In contrast, the top-down (deep-layer) beta flow from PFC
to other areas was stronger during a time period in which a predictable stimulus was
about to be seen.

These patterns of functional signal flow have also been quantified in monkeys
performing visual working memory tasks. These tasks require subjects to maintain
information inworkingmemory across a delay period and then report which itemwas

Fig. 25.5 Summary of
layer-specific top-down and
bottom-up information
streams. Prediction error
(including novel or
unpredictable information)
travels from sensory cortex
to higher order cortex
through gamma frequency
and spiking in superficial
layers; prediction (for
example, what a subject
expects to see but has not yet
seen) travels from
higher-order cortex through
alpha/beta frequency in deep
layers



25 Which Rhythms Reflect Bottom-Up and Top-Down Processing? 405

previously seen. Salazar et al. (2012) recorded spiking and LFP activity in various
areas of prefrontal and parietal cortex as monkeys performed the working memory
task [85]. They found content-specific patterns of frontoparietal beta-frequency
synchronization. In addition, they found a pattern of Granger causality in which
the flow from parietal cortex to prefrontal cortex was larger than vice-versa. Both
frontal andparietal cortex participate in top-down functions [8]. Thereby, these results
provide additional data to suggest that at the top levels of cortical hierarchy, beta-band
oscillations are critical for signaling the cognitive context [52].

Most of the available data on directed information flow has been obtained in
animals. However, directed functional connectivity analysis can also be performed
on human intracranial data. Indeed, Fontolan et al. recorded from two areas of the
auditory cortex in human subjects [86], performed Granger causality analysis and
discovered a frequency dissociation between bottom-up and top-down connectivity
similar to the macaque studies reviewed above. Additional studies using intracranial
data in humans are necessary to confirm and expand these observations beyond the
auditory system.

25.8 Part 4: Causal Manipulation Studies

Another approach for mapping which frequencies are transmitted in the bottom-up
versus top-down direction is to causally manipulate the brain. This is especially
advantageous for studying top-down functions because they are notoriously diffi-
cult to experimentally control, and attempts to do so are always based on assump-
tions about how task modulation of top-down processing can be achieved. There are
several methods capable of manipulating top-down and bottom-up communication.
Some examples are optogenetics [87, 88], electrical microstimulation, transcranial
magnetic stimulation (TMS) and pharmacology. A coarser approach is to lesion parts
of cortex either at the top or the bottom of the hierarchy and record the electrophysio-
logical consequences in other areas. For this chapter, we will focus on electrical stim-
ulation and lesions in monkeys and TMS in humans, as studies with these methods
have provided significant insights into top-down and bottom-up communication.

Stimulation in one area of the brain and recordings in other areas should reveal
which oscillatory frequencies are transmitted between areas. The logic is that stimu-
lating early areas of the cortical hierarchy will selectively induce bottom-up commu-
nication. Stimulating higher areas of the brain and recording in earlier areas will
induce top-down communication. Van Kerkoerle et al. performed electrical micros-
timulation and recordings in V1 and V4 as monkeys viewed a textured stimulus [58].
Microstimulation in V1 induced gamma-power increases in V4. These effects were
independent of what visual stimulus monkeys were viewing. Microstimulation in
V4 induced alpha power in V1 to increase, and gamma power in V1 to decrease.
These effects were specific to conditions when the receptive fields of the stimulated
neurons fell on the background of the figure. In addition to the frequency-specificity,
this suggests a role for top-down connections in modulating the background (but not
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foreground) of visual processing. They are also consistent with a role for top-down
alpha frequencies in inhibiting neuronal activity by decreasing gamma. Overall, the
results strongly support a role for gamma in bottom-up communication and alpha in
top-down communication.

In humans, both bottom-up and top-down communication have been studied using
a similar experimental logic. To study top-down communication, Veniero et al. used
TMS to deliver a single pulse of excitation in human FEF and recorded whole-
scalp EEG [89]. They examined which oscillatory components were induced by the
single pulse in FEF. They observed a phase-reset of beta oscillations with a peak
in magnitude occurring in occipital cortex, consistent with a top-down direction of
communication. They also used dual-pulse TMS over FEF and visual cortex to test
whether TMS to FEF modulates cortical excitability in visual cortex (measured as
the probability of detecting a TMS-induced phosphene). They first pulsed the FEF
and then applied TMS to visual cortex and asked subjects whether they perceived a
phosphene. By varying the delay between the FEF and visual cortex TMS pulses they
concluded that the subjects’ visual phosphene detection was rhythmically modulated
at a beta-rhythmic rate of ~16 Hz.

Another human study determined the probability that intracranial pulses of elec-
trical stimulation to occipital sites would induce phosphenes [90]. The researchers
titrated the levels of electrical current to the occipital areas to induce phosphenes
on approximately half the trials. As they applied stimulation they also recorded
from higher-level visual cortex in the Temporal-Parietal Junction (area TPJ). Trials
that successfully induced phosphene perception were associated with increases in
gamma-band oscillations in TPJ. These gamma oscillations were not observed in
trials without phosphene perception. This supports the role of activity at gamma
frequencies in human visual cortex in bottom-up communication and further suggests
that gamma may be necessary for conscious processing (Fig. 25.6).

Another approach for causal studies is lesion work. Lesions to both prefrontal
and primary visual cortex of macaques have been performed to study the behavioral
effects on visual attention and visual processing and the neural effects in V4. Impor-
tantly, area V4 receives both bottom-up inputs from V1 as well as top-down inputs
from the PFC. Schmiedt et al. trainedmonkeys on a visual detection task and recorded
neural activity in area V4 with a chronic Utah array [91]. In the intact (non-lesioned)
case, a visual grating stimulus evoked strong gamma-band power increases in V4
and alpha/beta band suppression. After a lesion to V1 that dramatically reduced the
monkey’s ability to perform the visual detection task, gamma (40–100 Hz) in V4was
dramatically reduced in power and delayed in time by roughly 200 ms. Alpha/beta
power was no longer suppressed with a visual stimulus. Instead, alpha/beta became
facilitated by a visual stimulus. Another recent study largely confirmed these results
in the high-gamma band [92]. In the low-gamma band/high beta band centered at
30 Hz, Kienitz et al. also observed lesion-specific power facilitation. Therefore, in
the higher-frequency gamma range above ~40 Hz, both studies suggest a massive
loss of V4 gamma to V1 lesion. As the bottom-up anatomical pathway is damaged,
gamma (and theta) oscillations in higher-order areas are strongly reduced.
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a c

b d

Fig. 25.6 Summary of studies involving causal manipulations of bottom-up and top-down path-
ways, and their effects on neuronal oscillation. a Microstimulation in V4 causes alpha increases in
V1 (Van Kerkoerle 2014) and TMS in FEF causes beta phase-reset in visual cortex (Veniero 2021).
b Microstimulation in V1 causes gamma enhancement in V4 (Van Kerkoerle 2014). c Lesion in
PFC causes loss of beta attentional modulation in V4 and reduction of attentional modulation in
gamma/spiking (Gregoriou 2014). D: Lesion inV1 causes loss/reduction of gamma inV4 (Schmiedt
2014; Kienitz 2021)

Gregoriou et al. performed neurophysiological recordings in macaque area V4
during a visual attention task and lesioned the PFC, a critical node of the attention
network [93]. Previous studies had shown that the neurophysiological consequences
of attention in V4 is to enhance firing rates and gamma-frequency power and coher-
ence [94] while at the same time decreasing the alpha/beta power and coherence [69].
Gregoriou et al. (2014) therefore asked which of these frequency-specific attentional
modulations were dependent on top-down PFC-to-V4 inputs. They recorded in both
hemispheres of V4, allowing a within-subject comparison of attentional modulation
in the affected versus unaffected hemispheres. PFC lesion did not have a substan-
tial effect on overall firing rates in V4 during the sustained visual attention task to
a visual grating stimulus. This indicates that PFC lesions do not alter the bottom-
up excitability of V4. They did however alter the attentional modulation of both
firing rates and gamma in V4. Both were strongly reduced but not eliminated. The
attentional modulation on beta oscillations in V4 was eliminated.
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Together, this work suggests that a V1 lesion will strongly reduce the stimulus-
driven bottom-up gamma (and theta) and change the sign of alpha/beta modulation
from normal suppression to facilitation. The PFC-lesion work suggests that atten-
tional modulation of oscillatory dynamics in V4 are affected in both beta and gamma
bands. Importantly, however, whereas the gamma (and spiking) attentional modu-
lation is still weakly present in V4 after PFC lesion, the alpha/beta modulation is
eliminated. Overall, the body of work supports a frequency dissociation between
top-down and bottom-up neuronal communication. However, a permanent lesion
will always perturb the specific pathway of interest (in these studies from V1 to V4
or from PFC to V4) but in addition cause unmasking of other inputs that may not
normally contribute or induce plastic adaptation in the system. These non-specific
factors can never be separated from the effects of the lesion itself. These limitations
can be addressed by the use of pharmacology whereby inhibitory drugs are delivered
intracortically to induce a temporary lesion. While some studies have pharmaco-
logically inactivated PFC [95, 96] to our knowledge they have not reported on the
frequency specificity of these effects on downstream structures.

What is needed in future causal studies is more precise control over the bottom-up
and top-down pathways to precisely induce excitation or inhibition in cell-specific
populations. Such fine control is possible with optogenetics, although few studies
in non-human primates have used this technique to map out functional bottom-up
versus top-down pathways and the neuronal oscillations on which they operate.

25.9 Conclusion and Future Directions

In this Chapter, we have reviewed four classes of evidence for alpha/beta and gamma
oscillations as representing distinct cortical mechanisms. This evidence suggests
beta as a frequency channel for top-down communication and gamma for bottom-up
communication. Starting with cognitive tasks that have operationalized bottom-up
versus top-downmodulation, there ismounting evidence that these computationsmap
to distinct (gamma and beta, respectively) oscillations. We next considered whether
the sub-layers of cortex have distinct dynamics. Since the mapping between superfi-
cial and deep layers reflects a largely preserved segregation between bottom-up and
top-down anatomical connectivity, studies suggesting different oscillatory mecha-
nisms in these layers are suggestive of a role also in inter-areal communication. We
then considered studies that have recorded neurophysiology in different areas of the
hierarchy and quantified directed connectivity using Granger causality. Finally, we
discussed causal manipulation studies where either the top-down or bottom-up path-
ways have been enhanced or eliminated. Across these broad classes of studies, there
is general support for gamma and beta subserving different directions of neuronal
communication and types of cognition.
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Despite this body of work there are clearly many open questions for future
research. A particular weakness in the current literature is that most causal manipu-
lation studies are based on lesion studies. While important, they should be comple-
mented by studies which enhance or eliminate top-down and bottom-up interactions
on a finer scale. In addition, most studies have focused on measuring interactions
using the local field potential. These studies should eventually be complemented by
a more detailed picture of the underlying neuronal level and how distinct cell types
support these different dynamics [97, 98] and patterns of inter-areal communication
[17]. Also, we have focused in this Chapter on beta and gamma dynamics, but theta
range (~2–6 Hz) dynamics have also been implicated in bottom-up processing [32,
92]. Theta and gamma dynamics have been shown to interact via phase-amplitude
coupling [99], and future studies should elucidate to what extent this theta/gamma
code supports bottom-up processing, rhythmic sampling [100], or other computa-
tions. Our focus here has been on a cortex-centric view. However, it is clearly the case
that thalamic and other sub-cortical structures modulate beta and gamma oscillations
in cortex [101–104]. Future studies should clarify and expand the underlying roles
of cortex versus thalamus in controlling beta and gamma dynamics during cognition.

Another role for future research is to expand upon the computational methods
used to measure signal flow. Most studies on bottom-up and top-down interactions
have used Granger causality.While a useful tool, it should be complemented by other
analytical methods, including computational modeling [105–107] and information
theory based tools [106, 108]. This more theoretical and computational approach can
help address the important question of how top-down beta and bottom-up gamma
interact [109]. Finally, these studies in animal models will also be increasingly
complemented and extended by richer and richer intracranial datasets in humans
[110–112]. Together, these basic science studies will advance our understanding of
the underlying brain mechanisms for cognition and ultimately, how they break down
in a variety of cognitive disorders.
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Chapter 26
How Can We Study the Mechanisms
of Memory-Related Oscillations Using
Multimodal in Vivo and in Vitro
Approaches?

Haley Moore, Genevieve Konopka, and Bradley C. Lega

Abstract The previous two decades of research in the electrophysiology of human
memory have witnessed rapid expansion in the range of experiments, data avail-
ability, and technology being applied to unravel the underlying mechanisms of
mnemonic cognition. A large portion of this work utilizes awake, behaving neuro-
surgical patients implanted with intracranial electrodes for the purposes of seizure
mapping. However, this patient population also yields another opportunity for study.
As these patients often undergo neurosurgical procedures to resect brain tissue, inves-
tigators with access to these patients can also ask novel questions related to gene
expression, in vitro physiology, and brain morphology. We outline existing findings
related to how multimethod data such as these can be used to understand potential
gene expression networks linkedwith brain activity duringmnemonic processing.We
begin with an historical perspective on the first efforts to identify a genetic influence
on brain activity patterns. We then introduce high-throughput sequencing technolo-
gies, followed by a discussion of how these techniques have been used to iden-
tify memory-relevant temporal lobe expression networks. We then review existing
methodological treatments for culturing human tissue, and end with a description
of the experimental manipulations that may help unravel key questions of human
memory, including oscillatory activity.

The genetic underpinnings of human brain activity, especially memory—related
brain oscillations, remain obscure. In animal models, the investigation of such genes
has utilized in vitro methods such as gene editing, as these tools provide mechanistic
clues to understand dissect gene networks. Neurosurgical tissue presents the oppor-
tunity to conduct analogous experiments in human tissue. The goals of this chapter
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are to examine the existing knowledge of the genetics of human brain oscillations,
beginning with an overview of methods and results from the twentieth century and a
look at how next generation sequencing technologies have revolutionized the field.
We will introduce common analyses of transcriptomic data while reviewing our own
studies regarding gene expression and memory-related oscillations. Finally, we will
discuss the advantages of using human neurosurgical tissue in vitro to delve deeper
into the molecular genetics of oscillatory activity. We will examine recent develop-
ments in long-term organotypic slice culture and propose experiments that could be
conducted using this system.

26.1 The Heredity of Brain Activity—Historical
Approaches

Prior to the completion of the HumanGenome Project, the ability to study the genetic
basis of brain oscillations (as with any trait) was limited. Genetically influenced traits
were characterized using twin and family studies, inwhich heritability ismeasured by
concordance. Concordance is the incidence of a particular shared trait between two
people, be it twins, pairs of family members (e.g., parent-offspring, sibling-sibling),
or unrelated individuals. If a trait is significantly influenced by genetic components, a
twin studywould theoretically find the highest rate of concordance betweenmonozy-
gotic (MZ) twins, then dizygotic (DZ) twins, and the lowest concordance between
unrelated individuals.

Soon after the EEG was described in 1929, scientists began questioning the heri-
tability of brain activity using twin and family studies [8, 71] A prototypical study
design would compare resting state electrograms from a single brain region from
twins and unrelated people. Before 1960, researchers could only use a well-trained
“clinical eye” to visually estimate the similarities and differences of EEG traces
recorded on paper. In 1936, the first EEG twin study concluded that resting alpha
(~10 Hz) activity over the occiput or cranial vertex of MZ twins was as similar as
consecutive recordings in a single person [19]. Just two years later, a family study of
similar design concluded that there was no noticeable similarity in alpha activity in
parent–offspring pairs [24]. Subsequent large twin studies continued to report high
concordance of EEG signatures in MZ and DZ pairs. Several aspects of alpha and
beta oscillations (~20 Hz), like amplitude and preferred frequency of the band, were
found to be highly concordant in MZ twins, slightly less so in DZ twins, and not
concordant in unrelated people [71]. Still other studies reported high MZ and low
DZ concordance in multiple frequencies. A 1974 spectral analysis of 39 MZ pairs
and 27 DZ pairs reported high MZ and low or absent DZ concordance in delta, theta,
alpha, and beta frequency bands at the occiput [42].

1978 brought the first publication to compare sibling concordance between sepa-
rate brain regions [45]. An analysis of alpha and beta power in multiple brain
regions of 20 MZ pairs and 20 DZ pairs concluded that genetic influence was more
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pronounced in occipital and parietal leads compared to frontal and temporal leads.46

These results were partially contradicted by a twin study in 1995 showing high
heritability in the parietotemporal and anterior areas [64]. Overall, twin and family
studies conducted between the introduction of the EEG and the Human Genome
Project support the existence of a heritable component of brain oscillations observed
via EEG [72]. However, the genetic factors that affect cognition and neurophysi-
ological processes linked with cognition are clearly polygenic, which necessitates
population level studies. In the case of complex behaviors such as memory, execu-
tive function, and related disease states such as autism, such population level genetic
studies suggest that hundreds of genes affect observable phenotypes [55, 58]. Next
generation sequencing technologies have drastically increased our ability to explore
the genes underlying complex neurological function and disease at a population level
[70].

26.2 High-Throughput Sequencing Technologies: RNA
Sequencing

The advent of next generation sequencing technologies not only revolutionized the
identification of genetic variants at the level of DNA to demonstrate heritability
of physiological or cognitive traits but also facilitated high throughput assessment of
RNA transcripts to measure gene expression [60, 75]. Such RNA sequencing (RNA-
seq) approaches have been applied to brain tissue resected from surgical patients
and post-mortem donors, revealing the enormous complexity of gene expression
in the human brain [30]. Bulk RNA-seq results in a transcriptomic profile of an
entire sample of tissue or cells as if it were a homogenous genetic unit. Tissues,
particularly the brain, are composed of heterogenous cell populations with unique
transcriptomic identities that cannot be easily disambiguated from bulk sequencing
data. Since the human brain is comprised of dozens of cell types in any given region
[66], bulk RNA-seq results can be skewed by the abundance of a given cell type or
the overall transcriptional output of a cell type (e.g., neurons express greater numbers
of genes than non-neurons [30]).

RNA-seq can be applied to samples of dissociated cells (single cell RNA-seq, or
scRNA-seq) or isolated nuclei (single nuclei RNA-seq, or snRNA-seq) to generate
transcriptomes at cellular resolution, overcoming the limitations of bulk RNA-
seq [37]. In scRNA-seq, each mRNA transcript within a cell is tagged with a
cell-specific barcode and a transcript-specific unique molecular identifier. Tagged
mRNA transcripts are converted to cDNA, amplified, and sequenced. Subsequent
data processing steps group cells into clusters based on the similarity of their tran-
scriptomes (see Fig. 26.1). snRNA-seq, involving the isolated nuclei of cells of
interests, is the preferred technique for morphologically complex cell types (e.g.,
neurons) [26, 38]. Although nuclei contain a fraction of a cell’s total mRNA, tran-
scriptomic data gleaned from cells versus nuclei show similar distributions of gene
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expression levels [26]. These single cell methods are necessary to disentangle how
specific genes influence memory—related brain oscillations via the activity of glial
cells or different classes of neurons.

Genome-wide association studies (GWAS) are now routinely applied to vast
genomic datasets to identify associations between complex traits and many gene
variants [73]. Weighted gene co-expression network analyses (WGCNA) are used
to identify groups of genes, known as ‘modules’ in genomics parlance, with highly
correlated expression levels in transcriptomic datasets [39]. The genes within these
modules canbe further studiedusingGWASorgeneontology analyses, thus revealing
which networks are enriched for trait or disease-relevant genes. Applying these
methods to single cell/nuclei data allows us to associate complex traits and diseases
back to specific cell types [77].

Fig. 26.1 A typical single-nuclei RNA sequencing experiment workflow. (1) Tissue is resected in
the operating room. A 2–3 cm3 piece is dissected, placed in PBS, and transported to the lab on
ice. Tissue is divided into multiple tubes and flash-frozen in liquid nitrogen. (2) Tissue pieces are
homogenized and nuclei are isolated using an optimized protocol (e.g., see 4). (3) Using a droplet-
based microfluidics system, mRNA transcripts within individual nuclei are reverse transcribed to
cDNA and tagged with transcript-specific unique molecular identifiers (UMI) and nucleus-specific
barcodes. cDNA is amplified, cleaned, and prepped for sequencing. (4) Next-generation sequencing
is conducted with the desired coverage. (5) Reads are aligned and mapped to individual genes and
cells. (6) Clusters are generated based on similarity of gene expression profiles using dimension
reduction algorithms (e.g., UMAP or tSNE) and clusters are annotated as cell types. Figure created
with Biorender.com
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26.3 High-Throughput Sequencing Technologies: ATAC
Sequencing

Within the nucleus, DNA iswound around histones in a compact nucleoprotein struc-
ture (chromatin). Chromatin exists dynamically as dense heterochromatin (low tran-
scription) or loose euchromatin (high transcription) depending on transcriptional
demands. Gene expression occurs when chromatin structure does not sterically
hinder transcription machinery. Open euchromatin, which often contains exposed
transcription factor binding sites, can be accessed by transcription machinery. Chro-
matin structure can be characterized using the assay for transposase-accessible chro-
matin using sequencing (ATAC-Seq) [35]. ATAC-seq employs a hyperactive trans-
posase to excise open regions of chromatin. After excision, these regions are tagged,
sequenced, and mapped back to their cell of origin as in sc/snRNA-seq [62]. With
ATAC-seq, binding sites for transcription factors can be identified within the open
chromatin regions. The genes that such transcription factors might influence can be
inferred by coupling the ATAC-seq data with sc/snRNA-seq. Such an approach is
in contrast to chromatin immunoprecipitation-seq (ChIP-seq), where specific tran-
scription factors are crosslinked to DNA and the bound regions purified via immuno-
precipitation and then sequenced. ATAC-seq is sometimes preferred to ChIP-seq
as antibodies to specific proteins and a prior knowledge of chromatin factors are not
required, rendering ATAC-seq less technically intensive and more unbiased [43].

26.4 High-Throughput Sequencing Technologies: Special
Considerations

After identifying transcripts of interest, the presence of the gene product should be
verified (e.g., via histology or western blot). RNA transcripts and protein products
do not always correlate. This is likely due to turnover rates of both transcripts and
proteins as well as post-transcriptional and post-translational mechanisms, none of
which are readily easily measured in a high throughput manner. For example, while
parvalbumin (PVALB) positive cells (based on the presence of PVALB protein)
are abundant in cortex immunohistochemistry, parvalbumin transcripts are chal-
lenging to detect in scRNA-seq datasets [5, 67]. It is also important to note that
even at the single cell level, RNA-seq and ATAC-seq do not intrinsically main-
tain spatial information. Microdissecting individual cortical layers or hippocampus
subfields, for example, then sequencing the samples separately can solve this issue
[16, 34]. Adding this step increases costs and can generally only be applied when
physical divisions are well-demarcated, though. Fluorescence in situ hybridization
or recently developed spatial transcriptomics methods like Slide-seq can be used to
determine the location of a transcript or cell type without previous knowledge of
spatial information [56].
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It is not possible to genetically analyze completely healthy brain tissue from a
living donor who has no indication for brain biopsy. Brain tissue that is unaffected
by a neurological disease is typically garnered from a deceased donor many hours
or days after death, while fresh brain tissue is resected from patients diagnosed
with a number of diseases, such as cancer or epilepsy. Epilepsy tissue presents less
variability than infiltrating disease such as gliomas, although both types of tissue
have been used in studies of human brain gene expression. The possible influence of
tumors (gliomas) in other datasetsmay be under-explored.We have employed several
control parameters to overcome the challenge of using epilepsy tissue. Epilepsy
duration and seizure frequency can be included as variables in statistical models
(e.g., linear mixed model) [5]. Additionally, NIH-funded studies are required to
share de-identified genomic datasets in repositories that can be accessed by quali-
fied investigators. Therefore, post-mortem “normal” transcriptome data are available
from many human brain regions [34]. To confirm the validity of RNA-seq data we
generated from epilepsy tissue, we have compared datasets from our epilepsy tissue
to those from postmortem tissue. We found no difference between these condi-
tions, suggesting that genetic information gleaned from these tissue conditions is
comparable. This suggests that appropriate modeling can help develop generaliz-
able insights from epilepsy patients, using pathologically normal tissue (i.e., tissue
without pathological changes such as dysplasia, stroke, or other lesions). The use of
fresh tissue (as compared to cadaveric tissue) offers the advantage of combining with
datasets describing functional activity obtained from the same individuals, including
intracranial recordings.

26.5 The Genes Underlying Memory-Associated
Oscillations

We will now review our group’s recent work linking genes with memory processes,
providing examples of how state-of-the-art sequencing technologies can be combined
with iEEG to generate and support hypotheses on the genetics of oscillations.
We highlight a portion of our data and discuss the implications of identifying
mnemonically relevant oscillation-related genes.

Atlases of the human brain transcriptome have facilitated comparisons of gene
expression with functional brain data, including physiology and imaging [14,
74]. These atlases are derived from postmortem tissues and demonstrate robust
stability of gene expression at steady state levels. Integration of gene expression
with other brain activity measures or morphology in non-postmortem tissues have
primarily been limited to studies that carry out ex vivo approaches such as patch-seq
[13, 31]. Patch-seq integrates electrophysiology and gene expression measurements
from the same individual cells. First, whole-cell patch clamp measurements (e.g.,
cell firing patterns in response to current injection) are taken, then the cell’s cytosolic
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contents are aspirated and processed for RNA-seq. Unfortunately, the current patch-
seq method suffers from being labor intensive and low-throughput. Building on
the availability of intracranial EEG recordings during memory behavior and gene
expression atlases, our group sought to investigate gene expression linked with
memory-related brain oscillations.

In our initial work linking memory, oscillations, and genes, we analyzed data
from patients undergoing iEEG recording for seizure mapping [10]. Focusing on
surface electrodes located across the fronto-temporal-parietal cortex, we compared
oscillatory activity during successful and unsuccessful recall to identify subsequent
memory effects (SME) in the six standard frequency bands (delta, 2–4 Hz; theta,
4–8 Hz; alpha, 8–12 Hz; beta, 16–20 Hz; low gamma, 35–70 Hz; high gamma,
70–150 Hz). By aggregating information across hundreds of subjects, we created
an estimate of memory—related oscillatory activity at these frequencies across 14
cortical and subcortical brain regions. To profile gene expression, we completed
bulk RNA-seq on post-mortem samples of the same cortical areas from which we
had recorded SME data. The aggregation of memory—related activity in over two
hundred subjects provided data across the cortex that we could correlate with gene
expression levels from these same cortical regions. Our analysis provided data to
begin unraveling how expression differences can predict differences in memory—
related oscillatory activity.

After comparing the gene expression and SME value correlations across brain
regions, we were able to construct a list of 163 SME-associated genes. 61% of
these genes were correlated with beta SME values across the cortex. Gene ontology
analyses revealed that SME-associated genes were enriched for neuronal functions
related to activity (e.g., synaptic transmission, ion channel activity, and neurotrans-
mitter transport). GWAS showed that SME-related geneswere highly associatedwith
many neuropsychiatric disorders.We also found positive correlations between SME-
related genes and the WWC1 gene network. WWC1, encoding the protein KIBRA,
is one of the few genes that has previously been associated with memory perfor-
mance specifically [59]. The relationship between WWC1 and SME-related genes
supports our conclusion that the genes we identified in this study are indeed asso-
ciated with memory processes. This study represented a major step forward in the
efforts to uncover the relationship between memory-related brain oscillations and
gene expression in the human brain.

This analysis directly complemented previous attempts to use large datasets of
non—invasive data and gene expression atlases. However, we recognized that gener-
ating both gene expression and brain oscillation data from the same individuals
would be a significant improvement to understand the genetic underpinnings of
memory—related brain activity. Because we are unable to obtain resected surgical
tissue frommany brain regions from each individual, we focused this follow-up study
on the temporal pole as it is frequently resected in the surgical treatment of seizures
[9].We first had patients participate in a free recall task during stereo EEG recording,
then we calculated SME values for each frequency band as previously described.
The same patients later underwent temporal lobectomy for epilepsy treatment. We
excluded patients suffering from lesions such as cortical dysplasia, cavernomas, or
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low-grade tumors. None of the patients had previous laser ablation or other surgery
on the temporal lobe. These data afforded us the unique opportunity to generate
genetic, behavioral, and electrophysiological data from the temporal cortex of the
same patients, overcoming a weakness of the previous studies.

With bulk RNA sequencing, we were able to link 300 genes to memory—related
oscillations (SMEs) in individual frequency bands. Most genes were specifically
correlated with a single frequency band. A high proportion of genes were correlated
with 2–4Hz ‘delta’ oscillations, supporting other analyses indicating that oscillations
in this lower frequency range may exhibit memory—related properties analogous
to those linked with 4–9 Hz ‘theta’ oscillations in animal models. These findings
suggest that individual variability in low frequency theta/delta patterns may have an
underlying basis in gene expression networks. Using GWAS, we uncovered relation-
ships between SMEmodules (groups of co-expressed genes correlatedwithmemory-
related oscillations) and brain disorders. Two of these modules (named “WM4” and
“WM12” in the text [9]) contained genes that were differentially expressed in several
neuropsychiatric disorders including depression, schizophrenia, and autism spectrum
disorders. Importantly, we did not find any enrichment for epilepsy-associated loci in
themodules. This result underscores the validity of using tissue fromepilepsy patients
to study normal human brain processes, as well as the possible utility of identifying
specific gene targets for therapeutic development using predictive models built using
electrophysiological data.

We further refined our set of genes linked to memory-associated oscillations at
cellular resolution by completing snRNA-seq and snATAC-seq on a subset of patients
that contributed sEEG data. Excitatory neurons in cortical layers IV, V, and VI were
enriched for genes in the delta-associated modules WM4 andWM12. Genes present
in WM21, which is negatively associated with delta, were enriched in glial cells.
This hints at a potential role for non-neuronal cells in oscillation modulation. By
integrating the snATAC-seq data, we were also able to identify the transcription
factor SMAD3 as a key regulator of memory-associated genes in excitatory neurons.
SMAD3 is also a member ofWM12, indicating a potential mechanistic link between
memory-associated genes and delta oscillations.

Most recently, we used human hippocampal tissue to investigate anterior versus
posterior differences in gene expression, building on cognitive models positing
distinct mnemonic roles for these structures [5, 25, 53]. We identified differen-
tially expressed genes (i.e., upregulated or downregulated) across the longitudinal
axis using these human tissue samples. The anterior and posterior divisions of the
human hippocampus participate in distinct neural circuits and exhibit many dichoto-
mous functional properties [53]. For example, memory encoding and retrieval have
been specifically associated with the anterior and posterior hippocampus, respec-
tively [63]. The differentially expressed genes we identified may lead to mechanistic
explanations for these specializations, potentially after further investigation in human
tissue in vitro.

Taken together, our data provide several important insights to guide the next set of
investigations linking mnemonic neurophysiological processes in humans with gene
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expression networks. At a granular level, these insights include linking WWC1—
associated gene networks expression with memory—related oscillations, and identi-
fying SMAD3 gene networks as favorable targets for further experimentation. More
broadly, these experiments demonstrate how investigators can use cadaveric gene
expression data and cortical and hippocampal tissue from neurosurgical patients to
investigate human memory from a unique perspective.

26.6 Studying the Human Brain in Vitro

In vitro investigations of human neurophysiology offer the potential to complement
in vivo intracranial EEG studies to help overcome limitations inherent in the study
of human subjects. The need for ‘opportunistic’ recordings, when subjects are in the
epilepsy monitoring unit, limits the number of behavioral manipulations available.
Precise anatomical distinctions, such as differences in activity across hippocampal
subfields, are not reliable using in vivo recordings. Further, the use of surgical
epilepsy patients entails that many variables beyond the control of the investigator,
such as levels of epilepsy medicines or frequency of seizures, could potentially influ-
ence results. Most important, any experiment that poses risk of side effects or neural
injury cannot be performed, including pharmacological interventions.

Tissue collected from neurosurgical cases is a valuable resource for in vitro exper-
iments. In the acute period, tissue can be sliced for acute electrophysiology exper-
iments, flash-frozen for gene expression, or fixed and preserved for immunocyto-
chemistry. Acute electrophysiology experiments have helped establish key princi-
ples of neurophysiology, such as long-term potentiation and synaptic plasticity.1

For example, studies in human and rodent hippocampus slices identified similari-
ties in synaptic plasticity reliant on NMDA receptors, revealing a common feature
of hippocampal-dependent information storage across species [7] Tissue processing
and storagemethods have been optimized for this purpose, with preliminary evidence
showing that human hippocampal slices remain viable for up to 48 h [78]. Genetic
manipulation studies (e.g., viral knockdown of a gene, optogenetics) require more
time than this, typically 1–3 weeks depending on the method. The ability to define
and manipulate the genetics, and therefore molecular mechanisms, of oscillatory
activity in vitro is limited by the length of time brain tissue can be kept healthy and
active in culture.

26.7 Organotypic Brain Slice Culture

Organotypic—A descriptive term for tissue that has been removed from its native
space but continues to function as it normally would—brain slice culture is used to
study the brain in vitrowhilemaintaining in vivo-like three-dimensional architecture.
The first application of mouse organotypic slice culture was in 1973 [40] and by the
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turn of the century the method was widely used to study normal and disordered
neural processes in animal models [49]. Some have been able to maintain rodent
brain slices in vitro for months at a time [44, 46]. For a review on organotypic slice
culture applications in non-human animals, see [32].

While acute electrophysiology experiments using human brain slices have been
commonplace for several decades, humanorganotypic slice culture has lagged behind
due to poor viability in vitro.51 The ability to culture human neurosurgical specimens
more than a few days was only recently demonstrated. Since 2014, several groups
have published methods using unique culture media formulations and different
measures of viability [3, 21, 61, 66]. Electrophysiological properties have been
monitored over time, with neuronal activity in cortex and hippocampal slices still
appearing after four weeks in vitro [21, 61]. Some have argued that culturing cortex
in unsupplemented human cerebrospinal fluid (hCSF) produces the most stable elec-
trophysiological activity over time [61]. hCSF is a relatively easy to procure, cheap
culture material compared to some defined artificial media formulations [21]. Using
hCSF as a culture medium may promote tissue viability by increasing intrinsic
neuronal activity, perhaps providing an ideal environment for the tissue to over-
come the trauma of losing synaptic connections during dissection and slicing prior
to culture [32, 79]. Long-term human organotypic slice culture may be an ideal
system in which to study the genetics and molecular mechanisms of oscillations (see
Fig. 26.2), particularly when animal models lack in translational relevance due to the
apparent uniquely human properties of oscillations (e.g., see [33]).

26.8 Viruses and Gene Manipulation

Several molecular biology techniques have been demonstrated in human organotypic
slice culture that could be useful in determining the mechanisms underlying oscilla-
tory activity. Viral expression of reporter proteins like GFP or lacZ has been achieved
in human brain tissue in less than 24 h when using adenoviral vectors [50, 66] This
method could be useful in the short term to rapidly label specific cell types or to
quickly introduce a short hairpin RNA (shRNA) against a gene one wishes to silence
[18]. shRNA is seen as foreign geneticmaterial by the cell’s natural defenses [47]. The
enzymes Dicer and the RNA-induced silencing complex (RISC) process the shRNA
and “remember” its sequence; RISC will destroy that sequence any time it comes
across it in the future [54]. Therefore, gene silencing can be achieved by introducing
an shRNA that includes a critical portion of the gene’s mRNA sequence. The mRNA
will subsequently be degraded, and protein expression will decrease without needing
to alter the genome as in CRISPR/Cas9 experiments. CRISPR/Cas9 requires the cell
to express the RNA-guidedDNA endonuclease Cas9 and a gene-specific guide RNA.
The coding material for these components is delivered via viral vector. Cas9 induces
a double-strand break at the point in the genome specified by the guide RNA. DNA
repair via non-homologous end joining can then cause mutations that result in gene
silencing [27, 28].
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Fig. 26.2 Simplified organotypic slice culture workflow. (1) Tissue is resected in the operating
room. A 2–3 cm3 piece is dissected, placed in sterile, oxygenated transport medium, and quickly
transported to the lab on ice. (2) Under sterile conditions, a ~ 1 cm3 tissue block is dissected for
slicing. (3) Tissue block is sliced at ~300–400-micron thickness. (4) Slices recover in oxygenated
aCSF, then are transferred to permeable membrane tissue culture inserts in a 6-well plate with
culture medium of choice (e.g., an artificial medium or human CSF). Media is refreshed or
replaced at one- or two-day intervals. (5) Slices can be manipulated at any point during culture
(e.g., via viral transduction), then experimental measurements can be made using many tech-
niques like immunofluorescence, electrophysiology, or gene expression profiling. Figure created
with Biorender.com

Different viral vectors have unique strengths and weaknesses that should be
considered during experimental design. For example, adenoviruses act quickly but
result in transient expression of the encoded material, while lentiviruses incorporate
into the genome and produce stable expression after twoweeks [20] Thus, a lentiviral
vector would be ideal when attempting to express a protein with high-turnover rates,
while an adenoviral vector would be acceptable for expression of a long-lasting
protein likeGFP [17].Although the principles ofmanipulating genes in vitro arewell-
established, including in human neural stem cells and brain organoids, the methods
have not yet been demonstrated in human organotypic slice culture [22].
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26.9 Optogenetics

Optogenetics presents the opportunity to control the activity of a cell type of
interest [41]. The cell must express a particular light-sensitive channel, such as
channelrhodopsin-2 or halorhodopsin, which respectively excite or inhibit a cell
in the presence of a light stimulus [48, 80] Expression of the light-sensitive channel
is made possible by viral delivery of the genetic material encoding the channel and
can result in cell-type specific expression using recombination systems like Cre-
lox genetics [41, 69]. One group has successfully applied optogenetic manipulation
of neurons within cultured human brain slices [3]. Lentiviral vectors were used to
deliver the coding material for the excitatory channelrhodopsin-2 under the control
of a neuron-specific promoter (meaning the channel would only be expressed in
neurons). Expression was apparent after two weeks in culture, and neuronal activity
was successfully induced with blue light pulses. In future experiments, the appli-
cation of optogenetic techniques in human brain slice culture could assist in char-
acterizing specific neuronal populations that participate in a range of memory and
disease-relevant processes like oscillatory activity [6, 29].

26.10 Electrophysiology

Local field potentials, action potentials, and many aspects of a neuron’s membrane
physiology can be recorded in human brain slices using standard electrophysiology
methods. Oscillatory activity analogous to what is observed with iEEG in vivo is
more difficult to assess. Few groups have studied human oscillations in vitro [23, 52].
Florez et al. elicited oscillations in temporal cortex slices using electrical stimulation
and a combination of glutamatergic and cholinergic agonists (kainate and carbachol,
respectively), techniques that have been used extensively to study field potentials in
animalmodels in vitro [12, 23, 68, 77].Robust non-ictal theta andgammaoscillations,
as well as ictal events, were recorded in deep and superficial cortical layers. Phase
coherence in theta, but not gamma, was found between superficial and deep cortical
layers. Theta-gamma cross-frequency coupling was also observed during non-ictal
activity. These exciting results imply that human epilepsy tissue can be used to
study the mechanistic principles of in vivo-like oscillations in vitro. Although the
hippocampus is the most characterized brain region with respect to low frequency
oscillations, in vitro data is absent. Only ictal-like ripples in the subiculum have been
recorded in vitro [2]. Some reports suggest that ex vivo ictal activity ismore prevalent
in hippocampal slices compared to cortical slices [21].The use of tissue from surgical
epilepsy patients may preclude our ability to study hippocampal oscillations in vitro
without the interference of ictal activity.

The oscillations described above were recorded using low-impedance glass elec-
trodes carefully placed in cortex slices submerged in a flow of warm, oxygenated
artificial CSF [23]. This is a common method for recording local field potentials and
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can be combined with whole cell patch-clampmethods if simultaneous single neuron
data is desired. [36]. Multiple recording and stimulating electrodes can be used at
once, the number of which is limited by tissue size and recording rig setup. For
example, Florez et al. used two recording electrodes and one stimulating electrode
[23]. High-density microelectrode arrays (MEA) consist of several dozen to tens of
thousands of recording electrodes packed into a small (typically < 10 mm2) chip [51,
57]. MEAs can be used to record high-resolution network activity, including local
field potentials and spiking neurons, across a slice without having to place individual
electrodes. MEAs have been used to study oscillatory activity in non-human animals
[15]. Bursting activity in acute human cortex slices has been recorded using MEA,
but oscillations were not specifically characterized [79].

There is a notable lack of research on how genes and oscillations change over time
in culture, representing an important gap in knowledge that must be addressed before
using this system tomanipulate genes related to oscillations. It is possible to measure
oscillations in vitro [23]. Few have analyzed oscillations in acute human brain slices,
and no one hasmeasured them in cultured human brain slices [2, 23].Gene expression
studies in human liver and intestine slice culture have shown myriad time-dependent
changes in gene expression [11]. However, temporally influenced gene expression
in brain tissue has not been studied.

26.11 Conclusion

Since 1929, our ability to study the mechanistic basis of human brain activity has
increaseddramatically.What beganwith studies ofEEGheritability hasmost recently
resulted in the identification of specific genes that are associated with memory-
relevant oscillations from iEEG recordings. To understand the function of these genes
in terms of human brain activity, innovative in vitro approaches must be pursued.
Applying molecular techniques to human brain tissue in vitro has the potential to
reveal crucial mechanisms underlying oscillatory activity and ultimately result in
seminal insights into human cognition.
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17. Csepregi R, Temesfői V, Poór M, et al (2018) Green fluorescent protein-based viability assay
in a multiparametric configuration. Molecules 23

18. Davidson BL, Harper SQ (2005) Viral delivery of recombinant short hairpin RNAs. Methods
Enzymol 392:145–173

19. Davis H, Davis PA (1936) Action potentials of the brain. in normal persons and in normal states
of cerebral activity. Arch Neurol Psychiatry 36:1214–1224

20. Dong W, Kantor B (2021) Lentiviral vectors for delivery of gene-editing systems based on
CRISPR/Cas: current state and perspectives. Viruses 13

21. Eugène E, Cluzeaud F, Cifuentes-Diaz C et al (2014) An organotypic brain slice preparation
from adult patients with temporal lobe epilepsy. J Neurosci Methods 235:234–244

22. Fischer J, Heide M, Huttner WB (2019) Genetic modification of brain organoids. Frontiers in
Cellular Neuroscience 13

23. Florez CM, McGinn RJ, Lukankin V et al (2015) In vitro recordings of human neocortical
oscillations. Cereb Cortex 25:578–597

24. Gottlober AB (1938) The inheritance of brain potential patterns. Journal of Experimental
Psychology 22

25. Goyal A, Miller J, Qasim SE et al (2020) Functionally distinct high and low theta oscillations
in the human hippocampus. Nat Commun 11:2469

26. Grindberg RV, Yee-Greenbaum JL, McConnell MJ et al (2013) RNA-sequencing from single
nuclei. Proc Natl Acad Sci U S A 110:19802–19807

27. Hana S, Peterson M, McLaughlin H et al (2021) Highly efficient neuronal gene knockout
in vivo by CRISPR-Cas9 via neonatal intracerebroventricular injection of AAV in mice. Gene
Ther 28:646–658

28. Heidenreich M, Zhang F (2016) Applications of CRISPR-Cas systems in neuroscience. Nat
Rev Neurosci 17:36–44

29. Herweg NA, Solomon EA, Kahana MJ (2020) Theta oscillations in human memory. Trends
Cogn Sci 24:208–227

30. Hodge RD, Bakken TE, Miller JA et al (2019) Conserved cell types with divergent features in
human versus mouse cortex. Nature 573:61–68



26 How Can We Study the Mechanisms of Memory-Related Oscillations … 429

31. Hodge RD, Miller JA, Novotny M et al (2020) Transcriptomic evidence that von Economo
neurons are regionally specialized extratelencephalic-projecting excitatory neurons. Nat
Commun 11:1172

32. Humpel C (2015) Organotypic brain slice cultures: A review. Neuroscience 305:86–98
33. Jacobs J (2014) Hippocampal theta oscillations are slower in humans than in rodents: impli-

cations for models of spatial navigation and memory. Philos Trans R Soc Lond B Biol Sci
369:20130304

34. Keil JM,QaliehA, KwanKY (2018) Brain transcriptome databases: AUser’s guide. J Neurosci
38:2399–2412

35. Klemm SL, Shipony Z, Greenleaf WJ (2019) Chromatin accessibility and the regulatory
epigenome. Nat Rev Genet 20:207–220

36. Köhling R, Avoli M (2006) Methodological approaches to exploring epileptic disorders in the
human brain in vitro. J Neurosci Methods 155:1–19

37. Kulkarni A, Anderson AG, Merullo DP et al (2019) Beyond bulk: a review of single cell
transcriptomics methodologies and applications. Curr Opin Biotechnol 58:129–136

38. Lake BB, Ai R, Kaeser GE et al (2016) Neuronal subtypes and diversity revealed by single-
nucleus RNA sequencing of the human brain. Science 352:1586–1590

39. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network
analysis. BMC Bioinformatics 9:559

40. LaVail JH, Wolf MK (1973) Postnatal development of the mouse dentate gyrus in organotypic
cultures of the hippocampal formation. Am J Anat 137:47–65

41. Lee C, Lavoie A, Liu J, et al (2020) Light Up the Brain: The application of optogenetics in
cell-type specific dissection of mouse brain circuits. Frontiers in Neural Circuits 14

42. LykkenDT, TellegenA, ThorkelsonK (1974)Genetic determination of EEG frequency spectra.
Biol Psychol 1:245–259

43. Ma S, Zhang Y (2020) Profiling chromatin regulatory landscape: insights into the development
of ChIP-seq and ATAC-seq. Molecular Biomedicine 1:9

44. Marksteiner J, Humpel C (2008) Beta-amyloid expression, release and extracellular deposition
in aged rat brain slices. Mol Psychiatry 13:939–952

45. Meshkova TA, Ravich-Shcherbo IV (1978) Role of genotype in determination of individual
specific features of the resting EEG. Hum Physiol 4:418–426

46. Michaelson SD, Müller TM, Bompolaki M et al (2021) Long-Lived organotypic slice culture
model of the rat basolateral amygdala. Curr Protoc 1:e267

47. Moore CB, Guthrie EH, HuangMT et al (2010) Short hairpin RNA (shRNA): design, delivery,
and assessment of gene knockdown. Methods Mol Biol 629:141–158

48. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-
selective membrane channel. Proc Natl Acad Sci 100:13940–13945

49. Noraberg J, Poulsen FR, Blaabjerg M et al (2005) Organotypic hippocampal slice cultures
for studies of brain damage, neuroprotection and neurorepair. Curr Drug Targets CNS Neurol
Disord 4:435–452

50. O’Connor WM, Davidson BL, Kaplitt MG et al (1997) Adenovirus vector-mediated gene
transfer into human epileptogenic brain slices: prospects for gene therapy in epilepsy. Exp
Neurol 148:167–178

51. Obien MEJ, Deligkaris K, Bullmann T, et al (2015) Revealing neuronal function through
microelectrode array recordings. Frontiers in Neuroscience 8

52. Pennifold J (2017) Oscillatory and epileptiform activity in human and rodent cortical regions
in vitro. PhD Thesis. Aston University, Birmingham.

53. Poppenk J, Evensmoen HR, Moscovitch M et al (2013) Long-axis specialization of the human
hippocampus. Trends Cogn Sci 17:230–240

54. Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing
machine. J Biol Chem 284:17897–17901

55. Rees E, Owen MJ (2020) Translating insights from neuropsychiatric genetics and genomics
for precision psychiatry. Genome Medicine 12:43



430 H. Moore et al.

56. Rodriques SG, Stickels RR, Goeva A et al (2019) Slide-seq: A scalable technology for
measuring genome-wide expression at high spatial resolution. Science 363:1463–1467

57. Ronchi S, FiscellaM,Marchetti C, et al (2019) Single-Cell electrical stimulationUsingCMOS-
Based High-Density Microelectrode Arrays. Frontiers in Neuroscience 13

58. Rylaarsdam L, Guemez-Gamboa A (2019) Genetic causes and modifiers of autism spectrum
disorder. Frontiers in Cellular Neuroscience 13

59. Schneider A, HuentelmanM, Kremerskothen J, et al (2010) KIBRA: a new gateway to learning
and memory? Frontiers in Aging Neuroscience 2

60. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods
5:16–18

61. Schwarz N, Hedrich UBS, Schwarz H et al (2017) Human Cerebrospinal fluid promotes long-
term neuronal viability and network function in human neocortical organotypic brain slice
cultures. Sci Rep 7:12249

62. Smith JP, Sheffield NC (2020) Analytical approaches for ATAC-seq data analysis. Curr Protoc
Hum Genet 106:e101

63. Spaniol J, Davidson PSR, Kim ASN et al (2009) Event-related fMRI studies of episodic
encoding and retrieval: Meta-analyses using activation likelihood estimation. Neuropsy-
chologia 47:1765–1779

64. Sviderskaya NE, Korol’kova TA, (1995) Genetic features of the spatial organization of the
human cerebral cortex. Neurosci Behav Physiol 25:370–377

65. Tasic B, Yao Z, Graybuck LT et al (2018) Shared and distinct transcriptomic cell types across
neocortical areas. Nature 563:72–78

66. Ting JT, Kalmbach B, Chong P et al (2018) A robust ex vivo experimental platform for
molecular-genetic dissection of adult human neocortical cell types and circuits. Sci Rep 8:8407

67. Tran MN, Maynard KR, Spangler A et al (2021) Single-nucleus transcriptome analysis reveals
cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron
109:3088-3103.e3085

68. Traub RD, Whittington MA, Colling SB et al (1996) Analysis of gamma rhythms in the rat
hippocampus in vitro and in vivo. J Physiol 493(Pt 2):471–484

69. Tsien JZ (2016) Cre-Lox Neurogenetics: 20 Years of versatile applications in brain research
and counting. Frontiers in Genetics 7

70. Uffelmann E, Posthuma D (2021) Emerging Methods and Resources for Biological Interroga-
tion of Neuropsychiatric Polygenic Signal. Biol Psychiat 89:41–53

71. vanBeijsterveldt CE, BoomsmaDI (1994)Genetics of the human electroencephalogram (EEG)
and event-related brain potentials (ERPs): a review. Hum Genet 94:319–330

72. van Beijsterveldt CEM, van Baal GCM (2002) Twin and family studies of the human
electroencephalogram: a review and a meta-analysis. Biol Psychol 61:111–138

73. Visscher PM,Wray NR, Zhang Q et al (2017) 10 Years of GWAS discovery: biology, function,
and translation. Am J Hum Genet 101:5–22

74. Wang GZ, Belgard TG, Mao D et al (2015) Correspondence between Resting-State Activity
and Brain Gene Expression. Neuron 88:659–666

75. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat
Rev Genet 10:57–63
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Chapter 27
How Can I Integrate iEEG Recordings
with Patients’ Brain Anatomy?

Sushmita Sadhukha, Robert Oostenveld, and Arjen Stolk

Abstract Preparing intracranial electroencephalography (iEEG) datasets for anal-
ysis presents a unique set ofmethodological challenges that are absent in non-invasive
investigative techniques. Because iEEG is primarily used in epilepsy patients with
varying brain pathologies, the main challenges pertain to variability in electrode
coverage and therefore the regions of the brain from which electrophysiological
recordings can be obtained. In this chapter, we outline how to efficiently integrate
the rawanatomical images and electrophysiological recordings during preprocessing,
allowing iEEG datasets to be analyzed in an anatomically precise and consistent way.

27.1 Introduction

Intracranial electroencephalography (iEEG) has high spatiotemporal precision,
making it one of the foremost investigative techniques towards gaining a rich under-
standing of the human brain and its cognitive processes. Notably, empirical investi-
gations using iEEG by either placing electrodes directly on the neocortex (electrocor-
ticography, ECoG) or in targeted brain areas (stereoelectroencephalography, sEEG),
have recently shed light on the role of language areas in speech [14, 25], hippocampal
circuits in learning [27], and sensorimotor rhythms in movement coordination [32].
In each case, iEEG enabled researchers to characterize neural processing and infor-
mation flow with a level of spatiotemporal resolution unrivaled by non-invasive
techniques such as scalp EEG, magnetoencephalography (MEG), and functional
MRI. Still, iEEG’s remarkable spatiotemporal precision comeswith a cost; analyzing
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iEEG data is far from straightforward and presents a series of methodological chal-
lenges that are typically absent in data obtained from non-invasive methods. In this
chapter, we describe these challenges and give a conceptual overview of how they
are addressed during data preprocessing and analysis.

The challenges with analyzing iEEG data can be condensed to two main issues,
both due to the unique circumstances under which these datasets are collected. First,
there is sparse electrode coverage in each patient owing to the clinical constraints of
iEEG. This technique is most commonly used to determine epileptogenic zones (EZ)
in patients undergoing presurgical monitoring for intractable epilepsy. Unlike in non-
invasivemethods, this clinicalmotivation imposes case-specific considerations on the
electrode implantation strategy, including how many electrodes to use and where in
the brain theywill be implanted to provide optimal clinical utility [40].Aconsequence
of sparse electrode use is that researchers cannot achieve the whole brain coverage
that is characteristic of functional MRI and most other non-invasive techniques.
Second, the electrode implementation schemes are not spatially consistent across
patients. Because the majority of epilepsy patients suffer from limbic or frontal
lobe seizures, most of the implanted electrodes tend to cover these regions of the
brain [28]. However, the type of electrode (e.g., strip, grid, or depth electrodes) and
their precise location may still vary substantially across patients in iEEG, making it
challenging to aggregate data from multiple patients when performing group level
analyses. Moreover, medical facilities which use iEEG also vary in the surgical tools
andprocedures used in their epilepsy treatment. For example, some institutes useMRI
andCTscans,while others useX-rays, or different combinations thereof [7]. Thus, the
anatomical images providing the neuroanatomical context in interpreting the precise
location of implanted electrodes may also vary within and across datasets. Taken
together, these idiosyncratic circumstances generate different sources of variation,
challenging researchers to analyze iEEG datasets in an anatomically precise and
consistent way.

Here we describe a workflow to efficiently integrate iEEG recordings with
patients’ brain anatomy at the preprocessing stage. It aims to resolve challenges
of varying electrode coverage and datasets, while also providing concrete guid-
ance and flexibility to overcome real-world obstacles in iEEG analysis, including
electrode displacement and anatomical variability within and across patients. The
workflow can be applied in cognitive and systems neuroscience research as well as
in clinical studies of epileptogenic activity. Furthermore, each step has an imple-
mentation counterpart in an analysis protocol embedded within the open-source
FieldTrip toolbox [26, 33]. This versatile MATLAB toolbox enables researchers
to readily adopt reproducible preprocessing pipelines and build on a continuously
growing body of advanced analysis methods developed and used by a large research
community, including time–frequency, connectivity, spike-field, and statistical anal-
ysis. Starting with the anatomical images, we illustrate how the present workflow
guides researchers from the multitude of raw intracranial data files to integrated
observations, while also highlighting considerations for subsequent analysis.
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27.2 Anatomical Images

Clinicians may acquire several anatomical images of the patient’s brain before and
during iEEG data collection. These images can be used to detect structural abnor-
malities and provide a neuroanatomical context in the clinical interpretation of iEEG
recordings leading up to the surgical procedure. Most commonly, this includes a
pre-implant structural Magnetic Resonance Imaging (MRI) scan and a post-implant
Computed Tomography (CT) scan, but this post-implant scan can vary depending
on the medical facility and other case-specific circumstances. For example, some
medical institutes may collect X-ray images along one or a few directions instead
of a three-dimensional CT scan, while others may acquire a second MRI scan post-
implantation. Figure 27.1 below outlines the pre- and post-implant scans researchers
typically encounter in iEEG analysis and how we use these raw images to inter-
pret electrophysiological signals embedded in a neuroanatomical context. For the
purpose of this chapter, we use the pre-implant MRI and post-implant CT scan
as the archetypal anatomical scans; they are disproportionately common in iEEG
and preprocessing them requires undertaking all the fundamental steps necessary to
handle other types of scans and combinations thereof.

The MRI scans of the brain represent the soft tissue anatomy in great detail.
CT scans on the other hand depict high-intensity objects such as the skull and the
implanted electrodes but poorly depict neuroanatomical landmarks. During prepro-
cessing, the pre-implant MRI and post-implant CT scans are coregistered to deter-
mine the location of the electrodes from the CT in relation to the brain’s anatomy
from the MRI. In some cases, clinicians will acquire post-implant MRI scans.
Because these images show brain anatomy after electrode implantation, if the post-
implant MRI is of sufficient quality for the purposes of electrode localization and
cortical surface extraction, then the coregistration and the compensation for electrode
displacement due to “brain shift” steps we describe further below do not apply. In
a T1-weighted MRI, the electrodes are visible as dark voids in the higher-intensity
brain tissue, as a consequence of magnetic susceptibility artifact. These distortions in
MR signal may complicate electrode localization as well as compromise the cortical
surface’s structural integrity depending on the locations of the electrodes [41]. Irre-
spective of the type of images acquired, following the electrode localization, all
scans need to be aligned to a standardized head coordinate system, such that there is
a systematic way to link the electrode locations and electrophysiological recordings
to the anatomical volumes across all patients.

27.2.1 Determining the Coordinate System of the Anatomical
Images

MRI and CT scans are three-dimensional volumetric representations of the head;
they consist of three-dimensional pixels termed “voxels”, the centers of which lie
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Fig. 27.1 Workflow for integrating iEEG recordings with patients’ brain anatomy during data
preprocessing. The initial foundation for the integration is laid during electrode localization, which
offers the opportunity to directly link anatomical locations to electrode labels corresponding to
the electrophysiological data as stored in the recording file (lateral connection). The integration is
completed when the electrode information is combined with the preprocessed electrophysiological
data (converging arrows), allowing iEEG analysis to be performed in an anatomically precise and
consistent way. White boxes denote workflow steps supported by the FieldTrip toolbox

at the intersections of an equally spaced grid. In a voxel system with 256 × 256
× 256 voxels, for example, coordinate [1,1,1] is the first voxel1 and coordinate
[256,256,256] is the last voxel in the volume. Neither the voxels nor the volume
need to be isometric; for instance, you can have an MRI scan with a within-slice
resolution that differs from the slice spacing. It is worth noting, however, that the
voxel coordinate system does not specify the position or orientation of the head
within the scanned volumes, nor are the voxel indices meaningful with respect to
brain anatomy (i.e., the voxels do not correspond to any specific neuroanatomical
landmarks). Head and scanner coordinate systems on the other hand do define the
real-world interpretable positions and orientations relative to awell-defined origin. In
head coordinates, the origin at [0,0,0] mm is defined relative to anatomical landmarks

1 Note that, depending on the software used, the index of the first voxel is indicated with either 1
or 0.
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such as the anterior commissure, whereas in scanner coordinates the origin is a
separate function of the acquisition field of view.2

Given that head positioning is not fixed relative to the scanner, the head coordi-
nate system of a scan cannot typically be determined automatically from the acquired
image itself. Hence, the first step in preprocessing MRI and CT scans is to deter-
mine the origin and the orientation of the coordinate system that is native to the
raw anatomical image. Depending on whether we are working with the original
DICOM files or with data converted to NifTI format, the direction of the cardinal
axes can vary [23]. By determining the orientation of the head in the raw image,
we can specify how the direction of the x, y, and z axes should be interpreted,
a precondition for correct alignment and coregistration of the anatomical images
in the steps described below. Although visually determining posterior-anterior and
inferior-superior axes is straightforward from a sagittal slice of the brain, differen-
tiating left from right is more challenging [15]. To this end, we recommend using
FieldTrip’s ft_determine_coordsys, which depicts an anatomical volume as three
intersecting, orthogonal slices together with the cardinal axes and their x, y, and z
labels. This depiction allows for rapidly determining the orientation of the left–right
axis (see Box 3 in [33] for a 4-step procedure), which is necessary to demarcate the
right-hemisphere landmark in the following alignment step.

27.2.2 Aligning Anatomical Images to a Standard
Coordinate System

After determining the native coordinate system of the anatomical images, we align
them to the ACPC coordinate system [35]. Although technically any head coordinate
system could fill this role, the ACPC system is the preferred convention for the
optional FreeSurfer operationwe describe below. In theACPCcoordinate system, the
origin is at the anterior commissure (AC), the y-axis runs along the line between the
AC and the posterior commissure (PC), and the z-axis lies in the midline dividing the
two cerebral hemispheres. To align theMRI to this coordinate system,we first specify
the AC, the PC, an interhemispheric location along the midline at the top of the brain,
and a location somewhere in the brain’s right hemisphere. Contingent on the native
orientation identified in the previous step, the point in the right hemisphere may have
larger or smaller values for their spatial coordinates. FieldTrip’s ft_volumerealign
offers a graphical user interface (GUI) for specifying these four landmarks.

Then,wealign theCTscan to theACPCcoordinate system.BecauseCTscans only
represent high-intensity objects such as the skull anddonot have anyneuroanatomical
landmarks (i.e., anterior and posterior commissure), we first align the CT scan to the
CTF head surface coordinate system. To do this, we specify the nasion (at the root
of the nose), left and right pre-auricular points (just in front of the ear canals), and

2 For an overview and description of common head and scanner coordinate systems, see www.fie
ldtriptoolbox.org/faq/coordsys/.

http://www.fieldtriptoolbox.org/faq/coordsys/
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an interhemispheric location along the midline at the top of the brain. Finally, we
convert the CT’s coordinate system into an approximation of the ACPC coordinate
system, such that the orientations of both the MRI and CT scans are expressed in
a compatible format. Note that the MRI and CT scans are not coregistered just yet.
This would require estimating a detailed rigid body geometric transformation in a
subsequent step. Moreover, the spatial coordinates are not consistent across patients,
since thatwould require the additional spatial normalization of the coordinates. These
steps are described further below.

27.2.3 Using FreeSurfer for Extracting Cortical Surfaces

Freesurfer is a free software package that offers several advantages for processing
human brain MRI images that are beneficial for subsequent iEEG analysis and data
interpretation. Notably, FreeSurfer allows extracting cortical surfaces from patients’
MRI scans, enabling an anatomically realistic representation of iEEG recordings
on the neocortex [8]. For instance, using cortical surfaces extracted from precisely
registered MRI scans, a recent study found that two prominent and oft-considered
spatially overlapping sensorimotor rhythms differed in their anatomical properties.
Specifically, alpha rhythms were maximal at electrodes on the postcentral gyrus,
whereas beta rhythms localized on average 12 mm anterior to both sides of the
central sulcus [32]. This finding was further made possible by FreeSurfer’s surface-
based registration, which registers patients’ brains to a template brain based on their
cortical gyrification patterns, effective for generalizing across patients. As illustrated
further below, cortical gyri and sulci remain difficult to accurately normalize using
volume-based registration techniques due to their spatial complexity and variability
across patients.

FreeSurfer is only compatiblewithLinux andmacOSoperating systems but can be
used onWindowswithVirtualBox.While this step is recommended, users technically
would be able to do iEEGanalysiswithout it, forgoing someof the advantages that this
step offers. Furthermore, it is worth considering performing the FreeSurfer operation
on both the pre- and post-implantMRI scans in case the latter is available. If the post-
implantMRI yields cortical surfaces of sufficient quality for the purpose of the study,
and the dark voids marking electrodes are clearly visible, then researchers may use
this scan to localize and place electrodes directly in their neuroanatomical context,
rendering the coregistration and brain shift compensation steps unnecessary (as seen
in the reduced workflow of path 2 in Fig. 27.1).

27.2.4 Coregistering the Anatomical Images

Thus far in theworkflowwe describe, we have a pre-implantMRI scan alignedmanu-
ally to the ACPC head coordinate system, and a post-implant CT scan converted into
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an approximate ACPC coordinate system. The two scans need to be precisely coreg-
istered, such that we can link the electrode locations in the post-implant anatomical
image to their corresponding locations in the pre-implant anatomical image. This
coregistration step is automatic and consists of determining a rigid body transfor-
mation that provides the best fit of the CT and MRI scan based on their common
denominator, the skull (recall that CT scans show very little brain anatomy). After
coregistration, the CT scan’s coordinate system is updated to have spatial coordi-
nates consistent with those of the MRI scan, as well as with pertinent files from
the FreeSurfer operation performed on that scan. Overall, the coregistration proce-
dure, also implemented in FieldTrip’s ft_volumerealign, lays the groundwork for
obtaining precise knowledge of the neuroanatomical locations of the electrodes,
thereby providing a mechanism to isolate the local electrophysiological signal and
dictating how subsequent data analysis is executed and interpreted. Now that the
anatomical images are precisely coregistered, we can precisely identify and label the
implanted electrodes in the electrode placement step we describe next.

27.3 Electrodes

At this point in the workflow, we have a CT image showing the implanted elec-
trodes, but not the precise coordinates of the electrodes themselves. The next step
is to localize, label, and sort the electrodes to match the channel names assigned
in the raw electrophysiological recording file. Furthermore, we determine whether
it will be necessary to compensate for electrode displacement due to “brain shift”,
the inward sinking of the brain following ECoG implantation. Electrode localiza-
tion benefits from knowledge of the implantation procedure, including details of the
number of electrodes along each sEEG shaft, the size of ECoG grids and strips and
their possible overlap. There has been significant progress in automating the local-
ization of electrodes in the post-implant CT or MRI scan, but none currently achieve
100% accuracy, rendering manual review necessary regardless [5, 21]. Furthermore,
it is important that all electrodes are assigned labels that unambiguously link them to
the channel names configured in the acquisition software and used during recording,
which can vary across medical facilities as well as from clinician to clinician. Gener-
ally, a prefix is used that bears some anatomical relationship with the target site,
such as RAM for an sEEG probe in the right amygdala, or LPG for a left parietal
ECoG grid. In the numbering scheme of sEEG electrodes, electrode 1 is the electrode
farthest away from the insertion site; this also applies to single row ECoG strip elec-
trodes. To determine the numbering of multi-row ECoG grid and strip electrodes,
careful notes must be taken during recording.

Brain shift refers to the phenomenon of tissue displacement during surgery and is
contingent on the type of electrodes that are used for epilepsy monitoring. To implant
multi-row ECoG grid or strip electrodes, clinicians must perform a craniotomy in
which a C-shaped bone flap is surgically removed from the skull to access the cortical
surface [38]. This proceduremay cause the brain to sink inwards from its pre-surgical
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position due to subdural fluid loss and pressure exerted by the electrodes themselves.
As a result, electrodes that are known to have been placed on the cortical surface
occasionally appear buried within the cortical tissue from the pre-implant MRI after
coregistration, sometimes more than a centimeter deep [30, 24]. The displacement
is most pronounced directly below a craniotomy and is usually minimal for implants
solely involving burr holes, including depth and single row strip electrodes [34].
We discuss strategies for brain shift compensation as well as subsequent anatomical
registration in the following steps.

27.3.1 Localizing Electrodes in the Anatomical Image

FieldTrip offers an interactive electrode-placement GUI tool, ft_electrodeplacement,
that displays anatomical images together with an electrode list. Clicking an electrode
label in the list will directly assign that label to the current crosshair position in theCT
scan, see Fig. 27.2. Several features facilitate precise navigation of the anatomical
image including (1) zooming in and out of the crosshair section, (2) an intensity
slider that allows thresholding the image’s low and high values, (3) a toggle function
that allows switching between active views of the CT and MRI scan, and (4) a
magnet feature that transports the selected crosshair position to the nearest weighted
maximum or minimum, within a certain voxel radius of the selected location. This
enables users to efficiently pinpoint high-intensity electrodes or dark voids marking
their locations in the post-implantCT andMRI scans, respectively.An interactive tool
like this has several advantages for precisely identifying and labeling the electrodes.
First, it allows loading the recording file with the list of electrode labels, obviating
the need to manually sort and rename the electrodes to match the iEEG recordings.
Second, the ability to toggle between the anatomical scans is helpful to precisely
assign the crosshair position in cases where the quality of the image is less than ideal
and to manually determine electrodes’ anatomical labels.

27.3.2 Compensating for Electrode Displacement due
to Brain Shift

After localizing the electrodes, re-alignment of electrode grids to the pre-implant
cortical surface may be necessary to compensate for brain shift. To assess whether
there is brain shift, we visualize ECoG electrodes together with a smooth hull around
the cortical mesh generated by FreeSurfer, see leftmost panel of Fig. 27.3. This hull
tracks the (exposed) outer surface onwhich the electrode grid rested. Several research
labs have developed re-alignment techniques to compensate for electrode displace-
ment, reducing localization error to under 3 mm based on surgical photographs [2,
7, 29, 41, 31, 4, 11, 17]. FieldTrip’s ft_electroderealign currently supports two of
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Fig. 27.2 Electrode localization. Clicking an electrode label in the main panel on the left will
directly assign that label to the current crosshair position in the CT scan. Several features facilitate
precise navigation of the anatomical CT, such as a zoom mode, a magnet option that transports the
crosshair to the nearest weighted maximum (or minimum in case of a post-implant MRI), and the
interactive 3D scatter figure shown on the right. Adapted from [33]

these techniques to project electrode grids back to the cortical surface. One method,
illustrated in Fig. 27.3, uses an optimization algorithm that minimizes an energy
function defined by inter-electrode distances and global deformation of the electrode
configuration [11]. The other method projects electrodes to the cortical surface in
the direction of the local norm vector of the electrode grid [17]. To prevent inwardly
displaced electrodes from being incorrectly placed in nearby cortical sulci during
back-projection, we re-align electrode grids to the smooth hull used above rather than
to the highly folded cortical mesh directly. Furthermore, given that different grids
can move independently from one another, we re-align electrode grids individually
by running separate re-alignment procedures for each grid.

27.3.3 Registering Electrodes to an Anatomical Template
and Atlas

Thus far in theworkflow,we have obtained electrode locations aligned to the patient’s
neuroanatomy. To systematically combine and examine iEEG data from different
patients, we need to generalize, or spatially normalize, the electrode coordinates by
registering the patient’s brain to a standardized model of brain anatomy. FieldTrip
supports two methods to achieve this, embedded within ft_electroderealign. The first
registers the patient’s brain to a template brain by deforming the entire brain in
three-dimensional space [1]. This volume-based registration technique considers the
overall geometry of the brain and can be used for spatial normalization of all types of
electrodes, whether at depth or on the surface. The second method, which relies on
the FreeSurfer operation described above, registers the patient’s brain to the template
by considering features on the cortical surface [8]. This surface-based registration
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Fig. 27.3 Brain shift compensation and spatial normalization. In cases in which there is electrode
displacement due to brain shift (left-most panel), compensation by re-aligning the electrode grids
to the pre-implant cortical surface (middle panel) may be necessary. The re-aligned grids to the
cortical surface can then be spatially normalized using volume-based or surface-based registration
to a template brain (top and bottom in right-most panel, respectively). This allows data originating
from multiple patients to be readily aggregated or overlaid with standardized anatomical atlases.
Adapted from [33]

technique considers only the curvature patterns of the cortex and thus can be used for
the spatial normalization of electrodes located on or near the cortical surface, most
appropriately ECoG grid and strip electrodes. As seen in the right-most panel of
Fig. 27.3, compared with volume-based registration, with surface-based registration,
the original grid geometry is no longer preserved as electrodes are moved from one
brain to another according to the curvature pattern of the cortex.

Another advantage of spatially normalizing the electrode locations is that they can
be overlaid with standardized anatomical atlases. This allows looking up anatomical
or functional labels corresponding to the electrodes and aggregate iEEG data from
different patients on the basis of those labels. FieldTrip’s ft_volumelookup supports
looking up labels in a number of atlases, including the AFNI Talairach-Tournoux
atlas [20], the AAL atlas [37], the BrainWeb dataset [6], the JuBrain Cytoarchitec-
tonic Atlas [12], the VTPM atlas [39], the Brainnetome Atlas [13], the Yeo Atlases
[42], and the Melbourne Subcortical Atlas [36], in addition to FreeSurfer’s Desikan-
Killiany and Destrieux atlases [9, 10]. Together, these atlases provide a variety of
ways for combining electrodes fromdifferent patients, providing a data-drivenmeans
to overcome the challenge of spatial inconsistency across patients in iEEG analysis.

27.4 Electrophysiological Recordings

Electrophysiological data are acquired continuously post-implantation as part of
ongoing epilepsy monitoring. Each data channel represents, as a function of time, the
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electric potential difference between an electrode and its reference. Most commonly,
the electrodes are referenced to a single, common electrode during acquisition. This
referential montage has the benefit that the recordings can be readily remontaged to a
more preferred scheme during offline analysis [3]. Markers or triggers for stimulus-
onset times and responses are typically recorded in a dedicated channel, allowing
for precise synchronization of experimental scenarios with the electrophysiological
recordings. The electrophysiological data, together with the electrode labels and
other pertinent recording information, are written to a recording file in a data format
dictated by the data-acquisition system. The final step in the workflow is to import
and preprocess segments of interest from the raw recording file, followed by their
integration with the electrode information we obtained in relation to the patient’s
neuroanatomy. When spatially normalized, this electrode information bridges the
gap between the electrophysiological data and patient or template brain anatomy.
We describe this final integrative step and how it benefits subsequent analysis next.

27.4.1 Preprocessing the Electrophysiological Recordings

The electrophysiological recordings consist of a mixture of signal-of-interest and
noise, both neural and non-neural. The main objective of preprocessing is to improve
the overall signal-to-noise ratio of the data, while preparing it in a format that is
suitable for follow-up analysis. The specifics of preprocessing will be contingent on
the experimental design and research question at hand, but the general order remains
the same. First, we define the segments of data that will be used for further analysis,
either time intervals of experimental interest or epileptogenic activity in the case
of clinical studies. Then, we filter the data for high-frequency and power line-noise,
followed by the removal of channels and/or segments of the data that are poor quality
for experimental purposes, such as those that contain signal artifacts or epileptiform
activity (see Chap. 4). Using FieldTrip, this is readily achievedwith ft_preprocessing,
a versatile function that combines a slew of preprocessing options with the capability
to read data formats used by the most popular electrophysiological data-acquisition
systems. Finally, we add the electrode information obtained during the previous
steps to the preprocessed electrophysiological data. The advantage of adding the
electrode information at this stage is that FieldTrip will keep it consistent with the
electrophysiological data going forward, as during the re-referencing process we
describe next.

27.4.2 Re-referencing and Subsequent Analysis

So far, we have linked the electrophysiological recordings with electrode locations
corresponding to the patient’s neuroanatomy. The initial foundation for this integra-
tion was laid during electrode localization, which offered the opportunity to directly
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link anatomical locations to electrode labels corresponding to the electrophysio-
logical data as stored in the recording file. The integration was completed when
we combined the electrode information with the preprocessed electrophysiological
data. This benefits subsequent processing and analysis in at least two ways. First, it
affords the flexibility to consider different referencing schemes, and create new chan-
nels depending on the type of derivation we choose and thereby modify all parts of
this integration. For example, in the case of re-referencing to a bipolar montage, the
samemontage that is used for the electrophysiological data can also be automatically
applied to the channel positions to reflect the update in neuroanatomical context, e.g.,
between the two electrodes that constitute a newly formed bipolar channel (for the
pros and cons of different referent schemes, see Chap. 28). Second, the integration
affords the flexibility to browse through various anatomically informed represen-
tations of the electrophysiological data during subsequent analysis. For instance,
FieldTrip’s plotting suite allows interactively launching new figures showing the
recalculated distribution of activity for selected channels, frequency, or time inter-
vals, thus without having to concern oneself with repeatedly matching electrophysio-
logical signals with electrodes’ labels and anatomical locations. In addition, by using
the spatially normalized electrode coordinates in the analysis, electrophysiological
data originating frommultiple patients can be readily aggregated or overlaid on stan-
dardized models of brain anatomy. Together these represent just a few examples of
how integrated representations of electrophysiological activity and brain anatomy
can both simplify existing and open up new possibilities in iEEG analysis.

27.5 Discussion

We have described a workflow for obtaining precise knowledge of the neuroanatom-
ical locations of surgically implanted electrodes, and efficiently integrating that
knowledge with the electrophysiological data and its subsequent analysis. Human
intracranial datasets are collected under unique circumstances in clinical settings.
For these reasons, they come in different shapes and sizes, and can be processed for
different purposes. These considerations suggest it is important for a workflow to
strike the right balance between flexibility and efficiency. The need for flexibility is
further amplified by intracranial data typically imposing greater demands on alter-
native options and strategies in the analysis than non-invasive data recorded in more
standardized laboratory settings. As shown in Fig. 27.1, the present workflow takes
as input various data combinations and offers several routes during preprocessing to
accommodate data from different patients and situations, including non-ideal cases.

Efficiency pertains to the optimization of processing within and across patients.
For within patient processing, the workflow reduces redundancy and facilitates inte-
gration across steps, as seen in how electrode locations can be directly assigned to
labels collected from the electrophysiological recording file during localization. This
design obviates the need to sort and rename electrodes to match the electrophysio-
logical data during later stages of analysis. To optimize processing across patients,
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each step has an implementation counterpart in an analysis protocol embeddedwithin
the open-source FieldTrip toolbox [33]. The implementation as a toolbox enables
the use of batch scripting to deal with repeated analyses within and across patients.
In addition, it allows researchers to readily build on a continuously growing body
of analysis methods that, over the past decade, have been developed and used by a
large research community [26]. Several suitable alternative toolboxes exist that can
implement aspects of the workflow we have described here, e.g., [2, 16, 19, 22].

Most notably, integrated iEEG analysis opens up the possibility to ask a different
set of research questions relating to anatomically precise and consistent representa-
tions of electrophysiological activity. Recent work performing such analyses have
begun to open up new dimensions in the study of neural processing and information
flow, including the propagation of wave-like activity across cortical and hippocampal
tissue [43, 32, 18]. Using a workflow which readily integrates electrophysiological
recordings with the neuroanatomical context facilitates discoveries like these and
more generally allows researchers to advance the field of human iEEG.
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Chapter 28
How Should I Re-reference My
Intracranial EEG Data?

George M. Parish, Sebastian Michelmann, and Simon Hanslmayr

Abstract The analysis of intracranial electrophysiological recordings requires
processing choices. Electrical signals are recorded relative to a reference and the
choice of that online reference may be sub-optimal depending on the goal of the
subsequent analysis. Therefore, a secondary re-referencing operation is often under-
taken aiming to increase the signal-to-noise ratio, which can entail transforming
the signal in relation to a specific hypothesis. However, comparative studies on this
much understudied issue of re-referencing are sparse, which can lead to habitual
and ill-informed decision making. This chapter starts with giving a non-exhaustive
overview over common re-referencing schemes before presenting three studies that
explore what re-referencing means for cortical alpha and gamma power during a
motor task as well as lower frequency power in the medial temporal lobe during a
memory task. By revealing how different strategies lead to different observations
in the iEEG signal and their modulation by task or behaviour, we demonstrate how
significant this early transformative decision is for further analyses.

28.1 Why Do We Need a Reference?

Intracranial EEG offers the exciting prospect of measuring brain activity at high
spatialand high temporal resolution,which is not possiblewith non-invasivemethods
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where a researcher needs to compromise on either of the two dimensions. The moti-
vation of an iEEG study therefore often is to utilize this unique strength in temporal
and spatial resolution in an experiment. However, there is a fundamental biophysical
reality that any researcher wishing to use iEEG faces, which naturally comes with
the type of signal we record. This signal represents fluctuations in voltages over time
which are caused by weak electrical fields generated by the summated activity of
neurons [1]. An iEEG recording at a given channel therefore refers to the dynamic
measurement of potential differences, or differences in “electrical pressure”, between
two points. This can be written as a simple subtraction formula:

V(t) = V 1(t) − V 2(t)

whereV(t) is the signal at time (t), andV1(t) is the electrical potential at one recording
site at time (t) and V2(t) is the electrical potential at another recording site at time (t).
This raises a fundamental question, which is “Is a change in V caused by a change in
V1, or V2, or by a change in both?”. Referencing describes the process by which we
initially chose the recording points V1 and V2 to record a signal of interest V, which
is in most cases dictated by clinical needs. Re-referencing refers to carrying out this
subtraction offline, i.e. after the initial recordings have been made, to isolate a signal
of interest based on a particular research question. Re-referencing is therefore one of
the first steps in the preprocessing “pipeline” of an iEEG dataset. Because there is no
“one-size-fits-all” approach (as will become clear in the remainder of this chapter),
this initial step needs to be the result of an informed decision based upon careful
considerations. An in-optimal reference may even lead to erroneous conclusions.

At this point you may be asking yourself, why don’t we simply choose an electri-
cally inactive site as a reference? Indeed, the very term “reference” implies a source
that is non-active against which the activity of an “active” source can be measured.
Unfortunately, this is a myth often encountered in EEG research. In such a hypothet-
ical scenario any change in the signal can be interpreted unequivocally to the change
in the “active” electrode. The biophysical reality of the brain, however is that there
are no electrically inactive sources (see [2] for an excellent in-depth discussion on
this issue1). While there are areas in the brain that are electrically more or less active,
like grey matter (electrically more active) and white matter (electrically less active),
there will be no area in the brain, or on the scalp that is electrically inactive [3]. Even
electrodes placed on the bone or on the skin outside the brain will pick up electrical
activity that is volume conducted to that site and therefore introduce this activity into
recordings if being used as reference.

Let us consider a specific example of a recording where electrodes in the
hippocampus are referenced against a scalp electrode placed on the mastoid (i.e.,
a point at the back of the head behind the ear, which is a popular choice for refer-
encing [4]). After analysing the data, the researcher may find alpha power decreases
that are modulated by the task and concludes that alpha power modulations in the

1 This book chapter is mostly concerned with scalp EEG but many of the fundamental biophysical
properties also apply to intracranial EEG.
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hippocampus reflect a specific cognitive process. However, it may well be that the
hippocampus itself does actually not show any modulations in alpha power at all,
and that instead these alpha modulations are solely introduced by the mastoid refer-
ence which happens to pick up alpha signals volume conducted to the scalp. Such
an example is demonstrated in [5], Fig. 28.2 and illustrates one possibility where a
wrongful conclusion is made due to an in-optimal referencing choice.2

So far, we have only considered electrical fluctuations that are generated by the
brain. However, several other sources also give rise to changes in electrical poten-
tials that may be picked up by intracranial electrodes, or introduced by reference
electrodes. Muscle activity induced by head movements, speech, and chewing for
instance; another example is power line noise introducedby electrical sources near the
patient (i.e., power sockets, patient bed, medical devices near the patient, etc.). These
signals can be amplified by sub-optimal reference choices and, in extreme cases, may
render a whole recording unfit for analysis. On the other hand, re-referencing can be
a powerful tool to separate out such artefacts and may even salvage a “lost” dataset.

To summarise, we have clarified that any intracranial EEG researcher is forced
to make a decision on how to re-reference the data. This decision has the potential
to improve the data quality or to make it worse, and in extreme examples lead to
wrongful conclusions. Because no electrically inactive source exists there is currently
no gold standard in the field as to how to re-reference an iEEG dataset. Hence the
answer to the title question of this chapter “How should I re-reference my iEEG data”
will be different on a case-by-case basis, depending on the research questions and
what the signal of interest is.

The aim of this book chapter is to introduce the reader into the complex issue of
re-referencing by providing a (non-exhaustive) overview over the different most used
referencing schemes. A secondary aim is to give the reader an intuition about the
advantages/disadvantages of different referencing schemes by reviewing the results
of two recent empirical studies exploring the effects of re-referencing on a signal of
interest. Inevitably, this chapter will raise more questions than it will answer because
our current knowledge on this issue is far from being complete. Our hope is to
stimulate further research, and to give the reader a few tools tomake a better-informed
decision on which re-referencing scheme to choose for their dataset.

28.2 How Can We Re-reference iEEG Data?

The following (non-exhaustive) list of commonly used re-referencing approaches
may guide the reader through the literature on this topic and help them to make an
informed decision about the optimal choice of reference for the analyses they pursue
(see Fig. 28.1). Before describing these different referencing schemes it is important

2 This is not to say that the hippocampus does not show alpha oscillations that are modulated by a
task. Indeed several studies suggest that the hippocampus expresses genuine alpha oscillations that
are modulated by memory processes (e.g. [6]).
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to define the terminology to avoid confusion. The term electrode is used to refer to
the device that is inserted into the brain, or placed onto the brain which can be either
a depth, strip or grid electrode.3 The term contact refers to a singular location on
that device where electrical contact with the brain tissue is made. The term channel
will be used to refer to the recorded signal which is impacted by given referencing
or re-referencing procedures.

28.2.1 Monopolar Reference

In intracranial and classical EEG studies, monopolar reference describes the refer-
encing of all contacts against a single contact [1]. This is the typical scenario that is
encountered in raw iEEGdata, where datamay be referenced to a subdural contact, or
to a contact that is placed in the bone or on the mastoid [6, 7]. Notably, a researcher’s
preferred choice of such a reference may not correspond to the optimal choice in a
clinical setting.

In the re-referencing step, the researcher can easily change the monopolar refer-
ence, by subtracting the newly selected reference channel from all other channels,
i.e., at a given channel k that currently reflects the voltage difference between k and
the online reference o, activity is recomputed such that

V ′
k = (Vk − Vr )

where r is the index of the new reference channel. Because both Vk and Vr are
capturing the voltage difference to the online reference o, the activity from o will
cancel out during subtraction. Note that the removal of shared activity that stems from
the online reference is a common goal that is shared between many re-referencing
schemes.

28.2.2 Bipolar Reference

Bipolar re-referencing is one of the most applied re-referencing schemes in intracra-
nial EEG. It describes the subtraction of each channel from its neighbour. Specifically,
a new channel k is computed as

V ′
k = (Vk − Vk−1)

Akey goal of bipolar referencing is to highlight activity that is local: by subtracting
a channel from its neighbour (typically on the same electrode shaft), activity that is
shared between the two channels will cancel out. Bipolar re-referencing can also

3 In some occasions we also use electrode to refer to recording sites used in scalp EEG.
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a

b

Fig. 28.1 A non-exhaustive list of commonly used re-referencing methods. a Equations for several
re-referencing methods that can be applied to intracranial EEG data, for both 1-dimensional depth
electrodes (Vk), 1-dimensional strip electrodes and 2-dimensional grid electrodes (Vij). b Visual-
isation of a depth electrode (top panel) and grid electrodes (bottom panel). c Visualisations of the
application of the equations in (a) to the actual data. Blue nodes indicate the contact in question
(Vk or Vij), red nodes indicate single target re-reference contacts and light red indicate a set of re-
reference contacts that will be averaged over. Note that these visualisations do not depict possible
re-reference choices that are exterior to the brain, for example in the case of the monopolar method,
nor do they depict the possibility to average over all depth or grid electrodes within the brain, for
example in the case of the average or Gram-Schmidt methods

be described as the spatial derivative; after re-referencing a channel captures the
change in activity from one contact to the next [3, 8]. Because activity recorded
from the reference contact should affect neighbouring channels to a similar extent,
noise and activity from the online reference will cancel out with the bipolar refer-
encing operation. Likewise, however, bipolar re-referencing removes any signal
that is shared between two neighbouring channels, which disproportionally affects
the low-frequency range. Depending on how much signal and noise is shared on
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two neighbouring electrodes, bipolar re-referencing can therefore either increase or
decrease the signal to noise ratio on a channel (see: [5]). Another key disadvan-
tage of bipolar re-referencing is the inevitable loss of information due to the reduced
dimensionality of the re-referenced data: after re-referencing on, for instance, a depth
electrode with 8 contacts, activity will be pulled together into 7 channels that reflect
the difference between neighbours. The measured activity on the original 8 channels,
however, cannot be reconstructed anymore by the linear combination of the new 7
channels, unless there were already linear dependencies beforehand (the new data
has a reduced rank [5]).

28.2.3 Laplacian Reference

Laplacian reference pursues a similar goal to bipolar re-referencing, however, instead
of considering a single neighbour, each channel is re-referenced to the average of
both neighbouring channels for shaft and strip electrodes, or to the average of its 4
nearest neighbours for grid electrodes [3]. Specifically, for depth and strip electrodes
a new channel k is computed as

V ′
k = Vk − 0.5(Vk−1 + Vk+1)

On grid electrodes, the new channel at the 2-D position (i, j), can be computed as

V ′
i, j = Vi, j − 0.25(Vi−1, j + Vi+1, j + Vi, j−1 + Vi, j+1)

The advantages and disadvantages of Laplacian re-referencing are comparable to
bipolar re-referencing, however, because all neighbours are considered the researcher
does not have to decide on a direction for the operation. A key disadvantage is again
the inevitable loss of information due to the reduced dimensionality of the data (see
above). This problem is even exacerbatedwith Laplacian re-referencing, the resulting
data will be reduced in rank by 2 for each electrode [5].

28.2.4 Common Average Reference (CAR) and Median
Reference

Average reference is a popular reference for scalp EEG. In scalp EEG a coverage of
the head can be approximated as a sphere if sufficient (and approximately equidistant)
electrode coverage is given. The sum of electrical potentials that are measured on
opposite sides of the head should therefore—at least in theory—be zero. Therefore,
in scalp EEG, a reasonable approximation of removing activity from the online
reference (often mastoid, or Cz) can be achieved by subtracting the average [2, 9].
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The broad electrode coverage to approximate the head as a sphere is almost
certainly never achieved with intracranial EEG, where coverage is entirely deter-
mined by clinical considerations. Furthermore, intracranial contacts measure signal
that is more local than the summed potential that is picked up by scalp EEG contacts
[10] and depending on the location of a contact, large differences in electrical poten-
tial can be observed; the readermay consider, for instance, the difference in amplitude
between contacts located in the Hippocampus and in nearby white matter.

Nonetheless, the average across all channels may entail an approximation of
activity at the reference, especially if the online reference is very noisy and therefore
accounts for a large proportion of the variance.

With average reference, a new channel k is computed as

V ′
k = (Vk − x)

where x represents the average across all channels. Average re-referencing has the
advantage of preserving information, it only reduces the total rank of the data by
one (because the sum of all channels is 0, each channel is a linear combination
of all others; it can be re-written as their negative sum). This advantage, however,
may (but doesn’t have to) come at the cost of a lower signal to noise ratio in the
re-referenced channels and of a potential mislocalization of effects. Specifically, the
average across all channels is sensitive to extreme values, e.g., sharp high-amplitude
noise on single channels; subtracting the average from otherwise clean channels,
may therefore reduce the signal to noise ratio on that channel. Furthermore, the
average may be sensitive to high amplitude oscillations from sub-cortical structures.
CAR can therefore lead the researcher to attribute effects to structures that are not
involved in the measured neural process. On channels that strongly contribute to
the average (e.g., high amplitude channels in the hippocampus), the signal will also
appear attenuated (by a factor of 1/N, where N refers to the number of channels)
after re-referencing.

The use of a common median reference is an attempt to alleviate the sensitivity
of CAR to extreme values. Again, a new channel k is computed as (V′

k = Vk – x),
where x now represents the median across all channels, e.g., [11].

28.2.5 Gram-Schmidt Orthogonalization

A potential issue with re-referencing is that the subtraction of the new reference can
introduce artifacts that were not present on a channel before the re-referencing step
(see above). A recent approach to address this issue is the use of orthonormalization
between a channel and the average across all other channels via the Gram-Schmidt
process [12]. Specifically, the new channel k is computed as:

V ′
k = Vk − 〈−→x ,−→vk 〉

〈−→x ,
−→x 〉

−→x
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where −→vk represents the time-series of channel k, and −→x represents the time series
of the average across all channels except k; the brackets denote the dot product.
This procedure effectively removes the part of the signal at Vk that is shared with the
average across all other channels, reducing the risk of introducing artefacts fromother
channels. As the average is scaled by the inner product of the channel and channel
average, this operation can boost smaller amplitude local signal whilst bringing down
higher amplitude global signal.

28.2.6 White Matter Reference

The idea behind the use of a white matter reference is to select a single channel or
the average of a group of channels that pick up little to no signal. Because elec-
tric potentials that are associated with neural activity are generated in gray matter,
contacts located in white matter are assumed to not pick up signal and only reflect
shared noise, e.g., from the online reference.

The new re-referenced channel is then computed as

V ′
k = (Vk − Vw)

where w is the index of the selected white matter channel or

V ′
k = (Vk − w)

where w is the average activity across a group of the white matter channels [13,
14]. Importantly, the assumption of white matter contacts being “silent” is overly
simplified; a recent study by [3] demonstrated that contacts in the white matter
record a mixture of (zero lag) volume conducted signal from nearby gray matter and
surprisingly from distant gray matter, i.e., signal that was carried by the white matter
fibers themselves [3].

Identification of White Matter Contacts in Intracranial EEG
Oneof the challenges for the use ofwhitematter reference is to determinewhich
contacts are suitable. Contacts are often located viaMRI scans from before and
after surgical implantation of electrodes, that are then normalized against one
another—a transformation that does not always give perfect anatomical infor-
mation. To quantify the amount of white/gray matter surrounding a contact,
Mercier et al. [3] propose a Proximal Tissue Density index (PTD) based on
white/gray matter estimates from a Freesurfer parcellation. PTD is computed
within a 3 × 3 × 3 mm cube around the centroid of an electrode contact as
PTD = (VoxGray − VoxWhite)/(VoxGray + VoxWhite), where VoxGray and
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VoxWhite describe the number of gray and white matter voxels respectively.
This measure results in a value between (−1) for contacts that are surrounded
entirely by white matter and (+1) for contacts that are surrounded entirely by
gray matter.

When selecting white matter contacts for re-referencing, it is also useful to
assess properties of the recorded signal. Parish et al. [15] propose an approach
that is informed by electrophysiological signal properties. They reason that,
as a ‘silent’ channel, a white matter contact should have a lower signal to
noise ratio than other channels. They demonstrate that a white matter contact
is characterized by less variability in the local field potential (LFP), and by less
low frequency (2–12 Hz) power and gamma frequency (60–90 Hz) power than
contacts that are situated in graymatter (e.g., inMTL graymatter). The authors
propose to performwhitematter channel-selection based on a threshold, where,
for instance, WM theta power should not exceed 20% of that for MTL theta
power (compare Fig. 28.2; note that contacts in the hippocampus typically
express stronger signal than other channels [16]).

a b

Fig. 28.2 Analyses from an episodic memory paradigm, using iEEG data recorded with depth
electrodes, originally referenced using either a bipolar method or a reference contact close to the
recording source. a, b Mean power in the theta (a 2–12 Hz) and gamma (b 60–90 Hz) frequency
bands for contacts situated in themedial temporal lobe (MTL; blue) andwhitematter (WM; orange),
against variability of the local field potential (LFP; calculated as 2 × standard deviation). Blue and
orange dots indicate individual MTL or WM channels, respectively, whilst blue and orange circles
indicate the centroid of all MTL or WM channels, respectively
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28.2.7 Independent Component Analysis

Independent ComponentAnalysis is amethod that “unmixes” data into its underlying
latent components [17]. It is widely used in EEG to subtract out activity that stems
from ocular movements and blinks, but also electrical noise [18]. The reasoning to
apply ICA as a re-referencing method, is that neural activity that is measured by a
given channel reflects a mixture of local activity, online reference activity, electrical
noise and volume conducted activity from nearby areas, but the researcher is blind to
the nature of that superposition of activity. ICA can unmix the recorded data into its
underlying independent sources (note that noise should be independent from neurally
generated activity). The decomposition of the data into its underlying independent
components can then be used to systematically eliminate certain components from
the data. Because a linear combination of independent components leads back to the
original data, it is possible to inspect howmuch each component affects each channel.
Crucially, activity and noise from the online reference mixes into all channels to a
similar extent because recorded channels reflect the voltage difference between their
respective contact and the online reference contact. It follows that a component that
captures activity from the online reference is very global. Discarding this global
component should therefore eliminate undesired parts of the data, while leaving the
rest of the data intact [5, 19].

This reference can be thought of as a data-driven re-referencing scheme because
the coefficients of the computation are learned from the statistical properties of
the data at hand. While average reference, for instance, assumes that the average
is a good approximation of broad noise and noise at the online reference (using
the same coefficient 1/N for every channel), ICA learns coefficients that optimally
isolate components that are independent from the rest of the data. A spatially broad
component can then be identified by the researcher and be removed from the data.

28.2.8 Spatio-spectral Decomposition and Tailored Spatial
Filtering Approaches

The example of ICA illustrates that it is useful to think of the re-referencing step as
spatial filtering operation that highlights certain properties of the data. The bipolar
re-referencing of a channel, for instance, is a spatial filter with the fixed coefficients
[1, −1] on neighbouring contacts (and zero otherwise), whereas ICA learns coeffi-
cients to extract each component from the data. Consequently, the researcher might
wonder whether tailored spatial filters should be applied directly for the purpose of
highlighting desired properties of the signal. One recent such application is the use
of spatio-spectral decomposition (SSD) [20] for intracranial EEG data [21].

SSD is a spatial filter that operates on the spectrum of the time series, to maximize
power in a selected frequency band over its flanking frequencies. If the goal of the
analysis is to extract specific oscillationswith high signal to noise ratio, the researcher
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may therefore opt to use this method directly in lieu of re-referencing. Similarly, it
is noteworthy that other spatial filtering methods (e.g., logistic regression, or linear
discriminant they are often used for classification [11, 22]) can learn coefficients
including those afforded by common re-referencing schemes. It may therefore be
preferable to learn spatial filters on the data directly for analysis purposes, without an
intermediate re-referencing step that could potentially result in a loss of information
(see above).

28.3 What Does Re-referencing Do to My Data?
An Empirical Comparison Between Different
Re-referencing Schemes

In this section, we collect results from the relatively sparse number of studies that
compare how your re-referencing choice reflects on your data. These studies work
with data collected from two very different experiments: one an associative memory
paradigm that is interested in low frequency theta oscillations in the hippocampus, the
other a gesture decoding paradigm that is interested in mid to high frequency alpha
and broadband gamma oscillations in the motor cortex. The relative differences in
outcome indicate that your choice of re-referencing method should be part of a wider
strategy that is driven by your hypothesis, as each method will transform your data
relative to its own assumptions.

The data compared here is obtained via intracranial stereotaxic EEG (sEEG)
obtained by recordings from depth electrodes which are implanted into the brain
to target potential focal points of epileptic seizures for monitoring and assessment
of surgical feasibility. As these electrodes penetrate the deeper structures of the
limbic system, contacts along the length of the electrode offer recordings from lateral
contacts which pick up signals from many neuronal groups—near and far. First,
we will look at how different re-referencing methods perform as a means of data
cleaning, as well as whether re-referencing affects the proportion of channels that
are responsive to the task at hand. From there, it is important to ask what is left in
your electrical signals after all this pre-processing, and more importantly—what is
it telling you? This is described in Sect. 28.2.2 which illustrates the effect of re-
referencing on basic signal metrics such as power in specific frequency bands, and
task-related differences between these signals as observed in a memory task and a
motor task.

28.3.1 What Is Left in Your Data After Re-referencing?

A recent study [13] compared how several re-referencing methods transformed the
raw signal, with a specific interest in obtaining local signals for analyses in the
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broadband gamma and alpha frequency bands. During data acquisition, the data was
originally referenced using the mean of two white matter contacts. This study found
that the signal was quite often contaminated when applying amonopolar re-reference
from white matter areas, whereby task-related activity that was previously localised
to the monopolar reference channel was introduced to all other channels to become
more global in nature (see Fig. 28.3a, b). This led to more channels being responsive
to the task at hand (Fig. 28.3c, d), however, this did not translate into an increase in
overall power in these frequency bands (Fig. 28.3e, f). Another important observation
made in this study is that neighbour drivenmethods such as bipolar or Laplacian seem
to be good at eliminating global activity from the combined set of macro contacts,
leading to a relatively small amount of correlation between channels (see Fig. 28.3a,
b). The ability of neighbour drivenmethods to remove global components and reduce
the contamination of task-related activity enables further analyses to focus on the
most responsive channels (Fig. 28.3c, d) that contain the most local amount of useful
signal (Fig. 28.3e, f).

Neighbour driven re-referencing methods are therefore commonly applied to
maximise local signals. However, [5] demonstrate that ICA may be better suited for
this goal (see Fig. 28.4). The authors compare the performance of ICA in extracting
local signal, to the performance of bipolar referencing. Simulations suggest that ICA
outperforms bipolar referencing in sensitivity (i.e., in isolating signal from local
sources) and specificity (discarding activity from distant sources). Indeed, bipolar
reference only performed reasonably well, when signal was very local and noise
levels were low, however, ICA still performed better under these conditions.

When choosing a re-referencing method, one thing to consider is how it will
interact with the signal in relation to artefacts. Here, we consider an artefact to be an
undesirable sharp transient in the grounded electrical signal, the causes of which can
be varied. They might be introduced by electrical interference near to the recording
or grounding sites, such as 50 Hz line noise or similar electrical bursts. Since sEEG
depth electrodes are implanted to identify the origin of epileptic seizures, interictal
epileptiform discharges (or IEDs) produced by a pathological area are a common
occurrence. Whilst these are a desirable observation in a clinical setting, they can
distort offline analyses of the electrical signal and understandably lower the patient’s
performance onmemory or attentional tasks (see also Chap. 3).When pre-processing
sEEG data, it is often considered important to identify and remove trials with IEDs
and other artefacts. Artefact identification and removal can be done either manually
or algorithmically depending on time and the volume of data.

Parish et al. [15] employed an associative memory paradigm and compared data
retention after applying several commonly used re-referencing methods (described
in Fig. 28.1) on sEEG data recorded from the medial temporal lobe (Fig. 28.5). Indi-
vidual trials were removed after applying an automatic artefact rejection algorithm
which was sensitive to sharp transient offsets in the signal. The retention rate of indi-
vidual channels was then recorded, as well as the proportion of channels that were
responsive to the task after an inter-trial phase consistency (ITPC) check between 1
and 20Hz. To determine the rate bywhich re-referencing transforms artefacts that are
identified in this way (Fig. 28.5c), automatic artefact rejection was applied to identify
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b d f

Fig. 28.3 Analyses from a motor task paradigm, using sEEG data originally referenced to white
matter contacts. Time–frequency analyses here do not perform a 1/F correction. a, b Signal correla-
tion for different referencing methods. a Correlation matrix from Subject 12 for the six referencing
methods: (a) monopolar; (b) grey/white matter (GWR); (c) common average (CAR); (d) electrode
shaft resonance (ESR; where channels are referenced to the average across the entire grid or depth
electrode); (e) bipolar; and (f) Laplacian. Colors correspond to the correlation between two specific
channels. The correlation between channels varies across the methods. b Average Pearson’s corre-
lation and standard error for the six referencing methods. Asterisks denote the significance of the
difference between correlations established using paired t-tests: *** (p < 0.001), ** (p < 0.01).
These statistical results are shown only for the nearest pairs that show a significant difference. c,
d Fraction of all channels that are related to the task for different referencing methods. For each
subject, we calculated the ratio of task-related channels by dividing the number of task-related
channels by the number of all channels. c Mean (averaged across subjects) and standard error of
the ratio of task-related channels for broadband gamma power. d Mean (averaged across subjects)
and standard error of the ratio of task-related channels for alpha power. Asterisks denote the signifi-
cance of the difference between the ratio of task-related channels for adjacent referencing methods,
established using paired t-tests: ** (p < 0.01), * (p < 0.05). These statistical results are shown only
for the nearest pairs that show a significant difference. e, f: Coefficient of determination (R2) for
different referencing methods, which determines how strongly alpha or broadband gamma power
was modulated by the task [23–25]. eMean and standard error of R2 for broadband gamma power,
calculated across all channels from all subjects. f Mean and standard error of R2 for alpha power.
Asterisks denote significance of the difference (paired t-test) between R2 values for referencing
methods: ** (p < 0.01), * (p < 0:05). These statistical results are shown only for the nearest pairs
that show a significant difference

undesirable trials in both the raw and the re-referenced data. The relative difference in
identified artefacts is then described as the number of newly introduced artefacts (i.e.,
trials that did not have an artefact in the raw signal but now do in the re-referenced
signal) and the number of no longer existing artefacts (i.e., trials that did have artefacts
in the raw data that are no longer present after re-referencing). In general, artefacts
were both removed and introduced at a similar rate, indicating that re-referencing
is not an optimal strategy for the removal of sharp transient spikes from the signal
and should be used in tandem with more targeted methods. The data presented here
is ordered by the amount of power in the theta frequency band (1–12 Hz), and as
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Fig. 28.4 Combined correlation (sensitivity * specificity) of extracted ICA components (left) and
bipolar channel (right) with simulated sources. After re-referencing, the local component and the
bipolar channel were correlated with an underlying simulated source (sensitivity) and with an
interfering distant source (1-correlation, i.e., specificity) under various levels of noise (y-axis) and
spatial mixing (x-axis; mixing from a distant source before re-referencing/unmixing, where 1/a2

is the scaling factor of the source at distance d that decays with 1/ad). Bipolar referencing only
performed well when signal was very local and noise levels were low, yet ICA outperformed
bipolar re-referencing under all conditions

such we can see a slight positive correlation between power and the percentage of
responsive channels following an ITPC check—though a 1-way ANOVA suggests
that one’s choice of re-referencing scheme does not have a significant effect on
channel responsiveness.

Whilst this comparative analysis does not equate to any tangible data quality
metric, it can still be informative to see how re-referencing methods transform the
data. In terms of overall data retention, there is little difference between most re-
referencing methods except for the median method (MD), which resulted in the
removal of far more trials per channel than any other method. Figure 28.5c shows
that the median method is an outlier in how it transforms artefacts within the data: it
fails to sufficiently reduce the amplitude of pre-existing artefacts due to its nature of
being less sensitive to outliers. Furthermore, it appears to introduce artefacts to more
channels than any other re-referencing scheme, which is surprising given the typical
reason one might employ its usage, leaving this method with significantly less data
than other methods after automatic artefact rejection. In comparison to the use of the
mean average (AV), it appears that the high amplitude outliers of a localised artefact
are sufficiently offset within the mean, such that the subtraction of the mean strikes
the right balance between reducing the localised artefact without introducing it to
the other contacts on the electrode. In contrast, the Gram-Schmidt method seems
to preserve potentially useful signals by removing more artefacts than it introduces,
resulting in a slightly higher trial retention than most of the other methods. This is
likely due to the nature of the Gram-Schmidt method, which subtracts variance that
is shared across the signal, making it less likely that more localised artefacts will
be introduced to other channels. Most notable however, is the way in which ICA
works to clean the data of artefacts. It seemingly transforms the data less than other
methods (introducing and removing fewer artefacts), though it equally manages to
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Fig. 28.5 Automatic artefact rejection on a large dataset of 16 subjects, looking at macro contact
data from sEEG depth electrodes. If the variance of a trial, calculated as the root mean square
(RMS) or Z-score normalisation of the LFP, was above a threshold of 4, then the trial was indexed
as artefactual. a Visualisation of the retention percentage across channels for 7 commonly used
re-referencing methods, independent component analyses (ICA), common average (AV), median
(MD), Gram-Schmidt (GS), white matter (WM), bi-polar (BP), and Laplacian (LP). Re-referencing
was applied before artefact rejection. The red dotted line indicates the threshold for retaining a
channel in the analysis (i.e., 40%). The order of methods is determined by overall theta power
(1–12 Hz; see Fig. 28.6). b The percentage of channels that showed significant inter-trial phase
consistency between 1 and 20 Hz. A 1-way ANOVA indicates that the re-referencing method does
not have a significant effect on channel responsiveness (p = 0.9529). c Proportion of artefacts from
the raw data that were no longer present after re-referencing (y-axis), alongside the proportion of
artefacts in the re-referenced data that were not present in the raw data (x-axis), essentially: artefacts
removed and artefacts introduced by re-referencingmethod. A line of best fit for both was calculated
from information taken from underlying channel datapoints, where scatter points represent averages
across re-referencing methods. Figure taken from [15]
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retain a high proportion of trials in comparison to other methods (Fig. 28.5a) and
also the highest number of responsive channels (Fig. 28.5b). This suggests the power
of using a data driven method to efficiently identify and remove common noise that
exists across a set of independent channels.

In line with [13] (see Fig. 28.3) the Laplacian method here returns a lower propor-
tion of channels that are responsive to the task—perhaps indicating the effect that
a neighbour driven re-referencing method can have for producing a more localised
signal with a lower proportion of task-related channels and a higher signal to noise
ratio. Here, the monopolar method also returns a relatively lower proportion of
responsive channels relative to other methods, in contrast to [13], where task-related
information contained within the monopolar reference was thought to contami-
nate other channels. This might indicate the strength of using the data to identify
appropriate white matter monopolar contacts for re-referencing (see Fig. 28.2).

28.3.2 What Is Your Data Telling You After Re-referencing?

We next consider what the data is telling you after re-referencing, looking at two
studies. We first continue with the associative memory task [15], looking at power,
peak frequencies and memory effects in lower frequency band, followed by another
motor task that compared the effect of re-referencing methods on decoding accuracy
in higher frequency bands [26].

First, we consider the power of specific frequencies from a signal obtained during
an associative memory paradigm [15]. A Wavelet time–frequency decomposition
with 1/F correction was applied to the re-referenced signal, where 1/F pink noise was
reduced (estimated separately per channel) to enhance the analyses of low frequency
oscillations. Low frequency oscillations tend to be more ubiquitous in the brain, as
they are important for the long-range synchronisation of neuronal processes, whilst
high frequency oscillations tend to be more derived from local neuronal circuits
[27]. This means that lower frequencies will return higher amplitudes in the power
spectrum, as more neurons are entrained together in phase by more global and low
frequency rhythms. In this study themedial temporal lobe is under observation,where
low frequencies are thought to be mostly driven by the theta frequency (typically 2–
8 Hz) which dominates there, rather than the alpha rhythm (typically 8–15 Hz) that
is dominant in cortical areas [14]. By plotting the average 1/F corrected power across
all re-referencing methods (Fig. 28.6a), we can see that macro contacts seem to have
two components in the theta frequency range and one component in the alpha range
(slow theta at ~2–4 Hz and fast theta at 4–8 Hz and possibly alpha at 8–12 Hz).

Different re-referencing methods have varied effects on each of these low
frequency components, which roughly fit in line with their respective assumptions
thatwere described earlier. For example, bi-polar (BP) andLaplacian (LP) both vastly
reduce the 4–12 Hz components (Fig. 28.6a, b: comparative power across all chan-
nels; and Fig. 28.6cii–iii: statistical comparison of binned mean power for common
channels). As low frequency oscillations tend to be a more global phenomenon that
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Fig. 28.6 Comparing power and peak frequencies in macro contact data for 7 commonly used
re-referencing methods, independent component analyses (ICA), common average (AV), median
(MD), Gram-Schmidt (GS), white matter (WM), bi-polar (BP), and Laplacian (LP). The order of
methods is rank ordered by overall theta power (1–12 Hz). For this analysis we used all available
channels regardless of location or responsiveness to the task, except those that were rejected after
automatic artefact removal. a Comparative power differences across re-referencing schemes using
all available channels per re-referencing method in an independent manner. Power has been 1/F
corrected throughout this figure, though the raw power is shown in an inset of (a). b Paired t-test
over channels, where each re-referencing scheme was compared to the average of all other re-
referencing schemes at every frequency bin. c The mean power across re-referencing schemes was
split into three windows between 2–4 Hz (ci), 4–8 Hz (cii), and 8–12 Hz (ciii), rank ordered by
magnitude where paired t-tests indicate the nearest rank-ordered neighbour with significantly less
power (red lines, p < = 0.05). A 2-wayANOVA (top p-value) indicates interaction of re-referencing
scheme by frequency and 1-way ANOVAs indicate a main effect per frequency bin (p-values within
subplots). d Peak frequency differences. Peak frequencies were detected on a channel-by-channel
basis, where the prominence of a peak equates to the difference in power between a local maximum
and neighbouring minima (dii). The frequency of detected peak frequencies was also recorded (i.e.,
the number of times a peak was found at any given frequency bin) (diii), which was normalised
across re-referencing methods (such that each frequency bin summed to 1). After applying a 2-
sample t-test on the multiplication of prominence and relative frequency, T-values (di) indicate
where any given re-referencing scheme has a higher number of larger peaks than the average of all
other re-referencing methods (or vice versa), where significance is indicated by red boxes (p < =
0.05, FDR corrected). Black squares in (di) indicate insufficient common channels for statistical
comparison, black squares in (dii–diii) indicate that no peaks were found

is often sampled at many neighbouring recording sites, these signals are therefore
reduced here by neighbour driven re-referencing methods, which will result in an
emphasis being placed on the more localised faster frequencies as was seen in the
previous study, where LP resulted in higher gamma power [13]. Another potential
issue with such local BP and LP referencing methods is that they may enhance low
frequency activity at tissue borders between areaswhere oscillations are homogenous
within an area but different between areas which would appear as a ring-like shape
of enhanced power. This is also reflected in the peak frequency comparison, where
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LP in particular has significantly fewer and smaller peaks in the 6–10 Hz range when
compared to other re-referencing methods. In line with previous studies [13], the
BP operation does not reduce global components as much as the Laplacian, though
interestingly it does return a higher slow theta component than most other methods.

Another method that works in line with its assumptions is the Gram-Schmidt
method, which works to remove only the part of the signal that is shared with the
average across all channels. Due to the nature of the signal, this typically entails
reducing higher amplitude low frequencies whilst enhancing lower amplitude high
frequencies (as shown by the upwards trending curve in Fig. 28.6b), which in effect
produces a more localised signal. Similarly, other methods that also enhance the
putative alpha frequencies (8–12 Hz) are the common average (AV), median (MD)
and white matter (WM) methods (Fig. 28.6a–c), where AV in particular produces a
larger number of prominent peaks in the 8–10 Hz range (Fig. 28.6di). This might
suggest that these methods have a tendency to introduce signals from cortical areas
where alpha rhythms (8–12 Hz) are dominant. By far the method that maintains the
most amount of potentially useful theta is ICA. It produces significantly more power
in the 2–8 Hz frequency bins, indicating that it does not introduce cortical alpha into
the hippocampal signal. Similar to the neighbour driven BP and LP methods, ICA
also produces a large number of peaks in 2–4 Hz frequency range, though unlike
those methods ICA also enhances a 6 Hz component which is seemingly lost when
applying most other methods.

From this comparative analysis, we might be able to ascertain that the 2–4 Hz
component is thus themost localised rhythmwithin theMTL, as it is not significantly
reduced by neighbour driven methods such as BP and LP. The 6 Hz theta component
can therefore be considered amore global theta rhythm as it is almost entirely reduced
by these neighbour-driven methods whilst also maximised by the data-driven nature
of ICA. Additionally, it might be prudent to caution against the over interpretation
of faster theta or alpha frequencies in the MTL if one has applied a more global
re-referencing akin to the common average or white matter monopolar, as it might
simply have been introduced from cortical areas (this same pattern is also implied
by findings from [13]; see Fig. 28.3).

Next, [15] looked at the effect of re-referencing on memory effects (Fig. 28.7).
Data was obtained by way of a cued recall memory paradigm, where subjects were
presented with a cue followed by a pair of images (termed the encoding phase). After
several trials, and a distractor task, cues were subsequently presented again and the
subject indicated howmany images they could remember (termed the retrieval phase),
before identifying the paired images from a selection on screen.Memory effects refer
to the differences between successful memory trials (i.e., hits) where the participant
could correctly retrieve the memory, and unsuccessful memory trials (i.e., misses)
where the participant could not correctly retrieve the memory. These memory effects
were analysed during thememory formation (i.e., encoding) phase of the experiment,
and during the retrieval phase of the experiment. Theta oscillations have long been
thought to play a formative role for suchmemory operations [28], where both positive
and negative effects (i.e., where hits have more theta power than misses, or vice
versa) have been reported. It might be the case that this effect is made up of both
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a narrowband and broadband component, where contrasts in paradigm, recording
technique and referencing scheme might emphasise one of these components over
the other [29]. Therefore, it is important to consider whether or not re-referencing
has any interaction with such memory effects.

Overall, the data from the study produced large negative fast-theta and alpha (6–
12 Hz) effects—indicating that trials where subjects performed worse had a larger
amount of this frequency band, as backed up by the literature [29]. As well as this,
there might be a small positive slow-theta (2–4 Hz) retrieval memory effect—indi-
cating that trials that were successfully remembered might have higher theta power
(see GS data shown in Fig. 28.7c). However, there was no significant interaction
between re-referencing method and frequency which suggests that re-referencing
did not strongly affect memory effects for the macro contact data. Nevertheless,
there were some subtle yet insignificant differences. In general, re-referencing with

a b c d

Fig. 28.7 Memory effects for contacts situated in the hippocampus, that indicated significant inter-
trial phase consistency (1–20 Hz). Comparing between 7 commonly used re-referencing methods,
independent component analyses (ICA), common average (AV), median (MD), Gram-Schmidt
(GS), white matter (WM), bi-polar (BP), and Laplacian (LP). The order of methods is rank ordered
by overall theta power (1–12 Hz; see Fig. 28.6). Independent t-tests were applied on a channel-by-
channel basis for power across hit trials minus miss trials, both for encoding (a, b) and retrieval
(c, d) trials. 1-sample t-test applied to the resultant T-values (a/c) to indicate significant differences
to zero (red lines, p < = 0.05, FDR corrected). T-values were further split into 3 frequency bins
2–4; 4–8 and 8–12 Hz (b/d), where both a 2-way ANOVA (top p-value) indicates interaction of
re-referencing scheme by frequency bin and 1-way ANOVAs indicate the main effect per frequency
bin (p-values within subplots)
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ICA, WM, AV, MD and GS seemed to produce more negative memory effects in the
fast theta and alpha frequency range, particularly for retrieval effects, whereas local
referencing schemes such as BP and LP did not show these effects. This may indi-
cate that the memory related alpha power decreases [6] in the MTL originate from
a spatially broadly distributed source as opposed to very local sources. Importantly,
these negative fast theta and alpha memory effects are unlikely to be introduced by
cortical signals as demonstrated by the ICA results. It is interesting to note that the
only method to obtain significant theta effects in both memory contrasts was the
Gram-Schmidt method, which produced a negative theta effect (hits < misses) at
encoding and a positive theta effect at retrieval (hits > misses). It is also worth noting
that the Laplacian method completely abolishes any observable effects at retrieval
(see Fig. 28.7c), perhaps indicating that a neighbour-drivenmethod reduces toomuch
of the global signal in lower frequencies across both hit and miss data (see Fig. 28.6).

Another study [26] complements these low frequency findings related to memory,
by looking at gesture decoding accuracy for a motor task across several frequency
bands (see Fig. 28.8). This entailed usage of a classification algorithm that first
built a feature vector based upon spectral power (normalised to a baseline period)
obtained over overlapping segmentations of the signal, where features constituted
the mean power across frequency bins. Next, a set of channels were selected that
maximised these features using a search optimisation algorithm, where power was
further normalised across trials to eliminate inter-channel differences. A support
vector machine was then applied for the classification of multiple hand gestures. This
process was repeated in a tenfold cross-validation process to obtain a comparable
gesture decoding accuracy measure for each re-referencing method.

Fig. 28.8 Single-frequency band-based decoding accuracy (SDA) of data cleaning methods for
multiple sub-bands. Comparison of SDAs of different frequency bands. Bars and error bars repre-
sented mean accuracy and standard error calculated across all subjects, respectively. Redline
represented average SDAs across all methods for different bands, respectively. Figure taken from
[26]
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Importantly, it was found that the adoption of any re-referencing method made a
significant improvement on decoding accuracy, implying that a sufficient amount of
non-task related noise was removed by re-referencing. In general, this study found
that the more localised the re-referencing method the higher the decoding accuracy
across most frequency bands, likely due to the ability of localised re-referencing
methods (such as the neighbour-driven Laplacian and bi-polar) to retain more task-
related information by reducing globally shared signals. However, as the spatial
topography of implanted electrodes was an essential feature of the decoding algo-
rithm, then it would be expected that re-referencing methods that improve spatial
resolution would also improve decoding performance.

28.4 Discussion of Results

Overall, the way in which you re-reference your intracranial sEEG data will have
a transformative effect on your signal. We gave an overview of three comparative
studies that looked at sEEGdata collected from epilepsy patientswhowere implanted
with depth electrodes for the purpose of monitoring and observation. Each of these
studies compared a range of re-referencing methods and their effect on the research
objective in question. Two of these studies [13, 26] focused onmotor task paradigms,
with a focus on analysing data collected from cortical areas where such processes are
typically observable. The dominant oscillatory rhythms in these regions are faster
alpha and gamma frequencies [27], which might be locally produced by individual
cortical regions as they respond to the environment. The third study focused on an
associative memory paradigm, with a focus on analysing data collected from the
medial temporal lobe, which is thought to be essential for memory processes [30].
This region is thought to be dominated by theta oscillations [14], a global rhythm
that enables long range communication and memory processes [28, 31].

This overview therefore did not consider any similar comparative study over other
domains or regions, such as the visual domain or prefrontal cortex. The explicit focus
of this chapter is time–frequency analyses and oscillations, so other important and
understudied issues such as event-related potentials and related phasic phenomena
were not considered. The predominant focus of the above analyses was on macro
contact data for sEEGdepth electrodes. A better understanding of how re-referencing
effects sEEG data on grid and strip electrodes is still required. Another not well
understood mode of data is that which is collected frommicro-wires, an increasingly
popular technique which can be used in tandem with the macro contacts and are
capable of recording highly localised single unit and population activity (see also
Chaps. 42–46). In studying this issue, it might prove useful to understand how re-
referencing might introduce phase-reversals into highly localised data and the likely
ensuing effect that this has on the identified waveforms of neuronal spikes. Indeed,
the issue of phase-reversals might be a prescient one for any analyses of oscillatory
phase in general (which neighbour driven re-referencing methods might be more
susceptible to)—which also requires further study.
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In general, the re-referencing methods described here each work according to
their own assumptions to emphasise either local or global effects, dependent on the
type of data you are working with and the paradigm you are interested in. In general,
re-referencing can be a good way to increase the signal to noise ratio of your data
[26]—though it might prove insufficient to reduce sharp transient noise such as IEDs
[15]—and might even contaminate previously unaffected signals in this respect.
More localised methods (such as the neighbour-driven Laplacian or bipolar) might
best enhance local effects, especially if spatial resolution is an important element in
the design of the analyses [13]. However, simulations have shown (see Fig. 28.4; [5])
that a data-driven method (such as independent component analyses or ICA), might
be better suited to both isolate signal from local sources and discard activity from
distant sources—especially in noisier conditions. Equally,more globalmethods (such
as methods that make use of the average) might best enhance more global effects
in the lower frequency range [15]. The data-driven ICA method seems to perform
equally well at both isolating local signals [5], and enhancing global signals [15],
depending on the hypothesis and parameters utilised—highlighting the versatility of
data-driven methods to extract desirable components for further analyses.

In sum, more comparative work is required to build a full image of the transfor-
mative effect that re-referencing has on intracranial electrophysiological data that
is collected from various neuronal sources and for a variety of hypothesis. Hope-
fully this chapter will encourage researchers to consider re-referencing as an active
pre-processing decision that needs careful consideration.
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Chapter 29
What Are the Pros and Cons of ROI
Versus Whole-Brain Analysis of iEEG
Data?

Carina Oehrn

Abstract Human invasive neural recordings stem from neurological and psychi-
atric patients with depth and subdural electrodes implanted for diagnostic or ther-
apeutic purposes. Electrode placement is therefore dictated by clinical needs, and
the sparseness in brain coverage and variability in electrode location across patients
impedes group-level analyses using random-effects models. This chapter discusses
the process of electrode selection for subsequent analyses and in particular the advan-
tages and disadvantages of two approaches. First, one can select regions-of-interest
(ROIs) guided by a priori hypotheses emerging from previous findings, e.g., non-
invasive lines of research. This procedure allows for random-effects analyses and
inferences about the population but can lead to a loss of spatial precision and an
increase of type-II error. Alternatively, one can conduct whole-brain analyses and
study all available electrodes, either for each individual or across patients by means
of functional pre-selection of contacts or a fixed-effects analysis with pooled data
across patients. This approach preserves anatomical precision but reduces the gener-
alizability of the findings and requires rigorous correction for type-I error. Finally,
I describe one procedure that combines the strengths of ROI selection and the anal-
ysis of all electrodes and thereby represents a good compromise between the two
methods.

29.1 Introduction

Intracranial EEG (iEEG) offers the opportunity to record electrophysiological
activity with exceptional anatomical precision. Nevertheless, combining data across
participants without losing this spatial resolution is challenging. IEEG recordings
in humans stem from neurological and psychiatric patients. In epilepsy, patients are
usually implanted with depth or subdural electrodes for diagnostic purposes to deter-
mine the localization of seizure onset and to assess eligibility for epilepsy surgery (see
Chap. 1). In indications for deep brain stimulation (DBS), such as Parkinson’s disease
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a b

Fig. 29.1 Variability of electrode location across patients. a Example of variance in cortical elec-
trode positions in 13 epilepsy patients [1]. Each color represents data from one patient. b Example
of variability in subcortical electrode location. The illustration shows bilateral electrode placement
in the subthalamic nucleus (STN, orange) of 14 patients with obsessive–compulsive disorder [2]

and obsessive–compulsive disorder, depth electrodes are chronically implanted for
therapeutic purposes. Implantations in one patient can provide up to a hundred or even
more distinct recording sites across the brain, allowing for simultaneous recordings
within and across various brain structures. Electrode location is, however, dictated
by clinical needs and varies across patients (Fig. 29.1). Further, coverage of brain
areas is limited to few brain regions. For research purposes, however, it is neces-
sary to compare task-related activity in a circumscribed anatomical brain area across
patients in order to draw inferences about its function beyond the single-subject level.
How to cluster electrodes for group-level analyses is therefore a major challenge in
human iEEG research. Two general approaches are commonly applied for electrode
selection. First, one can focus the analysis on electrodes within one or several regions
of interest (ROIs). Alternatively, one can use all electrodes and conduct awhole-brain
analysis. Type I and type II errors in the following sections refer to false positive
and false negative findings, respectively, related to multiple comparisons and data
selection in the spatial (not in the temporal or frequency) domain.

29.2 Steps Before Electrode Selection

In epilepsy patients, the first step of iEEG data analysis is commonly the rejection of
datawith epileptic artifacts.At aminimum, electrodes covering the seizure onset zone
are excluded from the analysis [3]. More conservatively, the analysis may even be
restricted to recordings from the hemisphere contralateral to the epileptogenic focus
[4]. Next, the position of electrodes is determined manually or semi-automatically
(see Chap. 27). Nowadays, many software platforms offer tools for determining elec-
trode placement [5–7]. This is usually done by co-registration of pre-implant struc-
tural magnetic resonance imaging (MRI) to the post-implant computed tomography
(CT) or MRI scan [4]. Subsequently, a common procedure is to project electrode
location into Montreal Neurological Institute (MNI) or Talairach space (www.talair
ach.org). Each contact can thereafter be assigned to a corresponding anatomical label

http://www.talairach.org
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using atlases (e.g., Freesurfer’s automated segmentation, https://surfer.nmr.mgh.har
vard.edu/). For all selection procedures performed in normalized space, it is crucial
to confirm electrode location by visual inspection in native space.

29.3 Regions of Interest Analysis

One common approach for electrode selection in iEEG research is the a priori defini-
tion of ROIs. The selection of ROIs is hypothesis-driven and based on findings from
previous invasive or noninvasive studies in humans or animals demonstrating robust
task-related activity in the respective brain area. The ROI can therefore represent a
circumscribed anatomical region, such as the hippocampus, or the spatial location
of a functional effect reported in a previous publication, for instance, MNI coordi-
nates from a functional MRI study [8]. For each patient, all electrodes inside the ROI
are chosen. This will lead to the exclusion of patients without electrodes inside the
defined brain area from subsequent analyses. Due to the sparse sampling of iEEG
data, many studies focus on regions most commonly covered by electrodes. The
most frequent forms of focal epilepsy comprise temporal and frontal lobe epilepsy.
Many studies in epilepsy patients therefore focus on the role of the frontal cortex and
medial temporal lobe for cognitive functions. In DBS patients, electrodes are usually
implanted subcortically, for instance in the subthalamic nucleus for Parkinson’s
disease or the ventral striatum for obsessive–compulsive disorder.

29.3.1 Anatomical ROI Definition

One option of ROI definition is the selection of anatomically defined regions that
have previously been associated with the cognitive function of interest. If the ROI
is macroscopically identifiable, electrodes can be selected in native space. This is
usually the case for the hippocampus, the amygdala, the basal ganglia and other sub-
cortical brain areas (Fig. 29.2a, e.g., [9, 10]). In this case, one can choose all electrodes
in the respective brain area or focus on the analysis of sub-regions. Macroscopic
ROI selection is more challenging when it comes to cortical regions. One approach
is thereby the identification of electrodes in specific gyri in native or normalized
space (Fig. 29.2b, e.g., [11, 12]). In addition, or alternatively, one can use Brodmann
areas to guide electrode selection [11, 13]. To this end, contact positions are usually
transferred into normalized space and the nearest greymatter is determined bymeans
of an atlas. Subsequently, all electrodes inside the relevant brain area are selected.

https://surfer.nmr.mgh.harvard.edu/
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a b

c d

Fig. 29.2 Examples of methods for ROI selection. a Examples of macroscopically identifiable
ROI on a co-registered CT/MRI of a single patient. Left: Location of the DBS electrodes in the
subthalamic nucleus shown as a hypointense region with lead artifacts (white arrows) [14]. Right:
illustration of one electrode laterally inserted in the hippocampus [10]. Below: red circle illustrates
a selected electrode in the amygdala [15]. b Example of selecting contacts within the bounds of gyri
in native space, here in the lateral parietal cortex (LPC) and ventral temporal cortex (VTC) of two
epilepsy patients color-coded by anatomical subregion [12]. c Selection of one electrode per patient
(green) within the dorsolateral and dorsomedial prefrontal cortex based on their proximity to MNI
coordinates of activations observed in a previous fMRI study (red) [8]. d Grouping of electrodes
based on functional connectivity networks: visual (V), sensori-motor (SM), limbic (Lb), default
mode network (DMN), ventral attention (VA), fronto-parietal (FP) and dorsal attention (DA) [16]

29.3.2 Functional ROI Definition

ROIs can further be defined based on the location of functional effects, for instance
the MNI coordinates of a task-related blood oxygenation level dependent (BOLD)
effect from a previous functional MRI (fMRI) study. To this end, the Euclidian
distance between the MNI coordinates of each contact and the respective target
coordinate is calculated. Thereafter, one can choose one contact per patient based
on the minimum distance to the target coordinate or select all electrodes within a
certain radius (Fig. 29.2c, [8]). This procedure can also be applied to functional
networks. For instance, one can assign electrodes to networks based on coordinates
of functional resting-state or task-related connectivity obtained from an independent
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set of subjects (Fig. 29.2d, [16–19]). The sensitivity and specificity of the statistical
analysis depend on the size of the ROI relative to spatial extent of the task-related
effect. The choice of the radius around the target coordinates is therefore a crucial
step in ROI definition. If the ROI is chosen too large, local effects can be diluted
due to an inclusion of task-irrelevant electrodes. If a ROI is chosen too small, effects
can be missed, as less electrodes and patients are entered into the analysis reducing
statistical power. Both can lead to false negative findings. The effect of ROI size
on statistical results has not yet been systematically assessed and there is no easy
answer to this question. The spatial spread of task-related effects, i.e., the distance
from the peak effect in which the effect is still measurable, depends on many inter-
related factors, including the brain region and its microarchitecture, properties of the
recording electrodes, the task, and the characteristics of the signal to be analyzed
(compare Chap. 17). Further, the location of effects can vary across patients, e.g., up
to 24 mm within the dorsolateral prefrontal cortex (DLPFC) [8]. Thus, it is difficult
to provide universal recommendations for optimal ROI size. It is therefore important
to assess the spatial variability of functional effects that have been described in
the literature for a given cognitive process or task. Previous studies in humans and
non-human primates suggest that electrocorticography (ECoG) and macro depth
electrodes record activity from a radius of several milli- to centimeters ([20, 21]; see
Chap. 17). Further, the normalization procedure and brain shift resulting from surgery
can compromise the precision of electrode localization (see Chap. 27). Previous
studies found task-related effects using a radius of 3–12.5 mm from ROI voxels and
vertices (see Sect. 29.4.2.3), target coordinates, or functional networks [8, 17, 19]. A
radius of 10 mm might therefore be used as a rule of thumb with larger ROI size in
regions with higher inter-individual spatial variability of effects such as the DLPFC.

29.3.3 How Can I Handle a Different Number of Electrodes
in the ROI for Each Patient?

Unless a single electrode per patient is selected, patients usually have different
numbers of electrodes inside the ROI. One statistical approach that is still commonly
used in clinically oriented studies is a fixed-effects analysis. In this type of analysis,
one assumes that the underlying effect is the same in all participants and that any
variance is due to sampling errors. Therefore, data from all electrodes across patients
are entered into the analysis as if they originated from one patient.While fixed-effects
analyses are suitable for some specific research questions, they have several limita-
tions (see Chap. 36). First, they can inflate type I error, as they ignore dependency
between within-patient measurements [22]. Second, this statistical approach does
not support inferences about the general population, as it does not account for the
heterogeneity between patients [23]. Conclusions drawn from the obtained results
are only valid for the included group of subjects. Further, the effects in few patients
with many samples contributing to the analysis can drive the results. To test whether



480 C. Oehrn

the obtained results generalize to the population level, the statistical approach should
consider that participants represent a randomly drawn sample from a larger popula-
tion. For research questions in cognitive neuroscience, random-effects analyses are
therefore preferable [22]. Thus, the same number of samples should be entered for
each patient. To this end, the measure of interest can be averaged across electrodes
within each patient before statistical analysis. An alternative approach using all data
while considering participants as random factor is a mixed-effects model (e.g., [24,
25], Chap. 36).

29.3.4 What Are the Advantages and Disadvantages of ROI
Selection?

Electrode selection based on ROI has several advantages. First, this approach allows
for a rigorous group-level analysis. As every included patient has one or more elec-
trodes in theROI, one can performa random-effects analysis and thus draw inferences
about the respective population. In epilepsy patients, electrodes are implanted for a
short diagnostic time period and frequently cover a broad range of brain areas. When
analyses are restricted to electrodes covering non-epileptic tissue, studies often make
inferences about the general population. In experiments with DBS patients, record-
ings are obtained from chronically implanted electrodes that are placed in brain areas
inside a pathophysiological network. Inferences from effects found in these patients
to cognitive functioning in healthy participants may not be impossible but need to be
considered with caution. Second, ROI definition reduces the dimensionality of the
data and thereby the multiple comparison problem that results from the analysis of a
large number of electrodes. However, one main disadvantage of ROI selection is that
statistical comparisons depend on the size of the defined ROI in relation to the extent
of the effect, which is somewhat arbitrary (see Sect. 29.3.2). ROIs that are either
too small or too large can lead to false negative findings. Further, summarizing all
electrodes within a ROI reduces the spatial resolution of iEEG as a function of ROI
size. As such, the original strength of iEEG in disentangling selective engagement
of neuronal populations at the millimeter scale is compromised.

29.4 Whole-Brain Analyses

As an alternative to the a priori definition of ROI, one can enter all available elec-
trodes per patient into the analysis to fully leverage the anatomical precision of iEEG
recordings. Such whole-brain analyses can comprise the analysis of single electrodes
(per patient or across patients) and group-level statistics. The latter can be based on
fixed-effects analyses, a functional selection of electrodes in each patient, ormapping
of all electrodes into normalized space.
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29.4.1 Electrode-Level Whole-Brain Analyses

For some research questions, it can be appropriate to refrain from group analyses
and study effects in each single participant. This can be particularly relevant when
interested in inter-individual variability (see Chap. 10). It can further be suitable
for data sets with low sample sizes, for instance when studying activity in rarely
implanted brain areas. Some studies conducted statistical analyses per electrode for
all patients, i.e. treating them as if they came from one participant, in order to cover
a larger cortical surface (Fig. 29.3a, e.g., [1]). This approach avoids the problem of
electrode selection as all contacts per patient are entered into the analysis. Thus, the
high spatial resolution of iEEG recordings is preserved and the risk of type II error
is reduced. However, one major drawback of these analyses is that they do not allow
for conclusions about the general population, unless subsequent group-level statistics
are performed (see Sect. 29.3.3). In case that electrodes for all patients are entered
into the analysis, results can be driven by a single patient. Further, this approach
bears an increased risk of spurious results, i.e., type I error, and requires rigorous
correction for multiple comparisons.

a b

c d

Fig. 29.3 Different approaches to whole-brain analyses. a Illustration of results from an analysis
on single electrode level pooling contacts across 13 patients. Colors represent positive (orange) and
negative (blue) task-related effects [1]. b Combination of ROI selection and fixed-effects analysis.
Illustration shows electrodes across 15 subjects in the medial temporal lobe and three prefrontal
ROIs, which were used for the fixed-effects analysis [26]. c A combination between ROI definition
(posteromedial cortex, marked in purple) and the selection of responsive electrodes [3]. Electrode
locations of eight epilepsy patients are illustrated and ROI electrodes responsive to the task are
marked in red, opposed to unresponsive electrodes (black). Electrodes falling outside the anatomical
boundaries of the ROI are filled in white. d Example of functional mapping into normalized space.
Plots illustrate the number of patients contributing to cortical vertices and the functional maps in
this study with 55 epilepsy patients. Contacts contributed to a vertex when the center of the vertex
was located within a 10 mm vicinity around a given contact [29]. All graphs illustrate electrode
location on template images
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29.4.2 Group-Level Whole-Brain Analyses

29.4.2.1 Fixed Effects Analysis

A second approach for a whole-brain analysis of all electrodes per patient comprises
fixed-effects group-level analyses by concatenating electrodes from all patients
(Fig. 29.3b, [1, 26]). The advantage of this method is that it maintains the anatomical
precision of iEEG recordings, as it does not require averaging across electrodes. As
mentioned in Sect. 29.3.3, however, this statistical approach does not account for the
heterogeneity between patients and the conclusions drawn from the obtained results
cannot be extrapolated beyond the group included in the study. Further, results can
be driven by few patients. If the fixed-effect analysis is not restricted to a ROI, no
conclusion about a specific anatomical region can be made. Thus, it is recommended
to combine this approach with other statistical methods [1].

29.4.2.2 Selecting Responsive Electrodes

One way of combining the analysis of all available electrodes and performing group-
level analysis is by investigating activity in all electrodes of each patient and choosing
contacts based on functional criteria, e.g. the response to a cue or highest sleep spindle
power (Fig. 29.3c, e.g., [27, 28]). Using this approach, one needs to be particularly
careful about avoiding circular analysis. Thus, electrode selection should not be
based on comparisons subsequently performed on the group level. Common pitfalls
of functional electrode selection are discussed in Chap. 37. One disadvantage of this
approach is that it can be difficult to draw conclusions about circumscribed brain
areas, as electrode locations can vary between patients. It is thus recommended to
combine this approach with a ROI selection in order to constrain electrodes to a
specific anatomical region [3, 19, 28]. This also reduces the number of statistical
comparisons performed, for which correction is required.

29.4.2.3 Projecting Electrodes into Normalized Space

An alternative approach that combines a fine-grained spatial resolution with random-
effects group-level analyses consists of creating whole-brain maps of functional
effects in normalized space. To this end, standard brain templates are parcellated into
a number of standardized sub-areas to which contacts are allocated. The outcome
measure of interest is thereafter averaged across all contacts assigned to each sub-area
within each patient. As the resulting averaged outcome measures in each sub-area
contain one value per patient, this approach allows for random-effects group anal-
yses in order to identify regions with significant task-related activity. The statistical
analysis is usually limited to fields with a minimum number of patients (often n= 5).
Several studies have used this approach. In one study, the authors assigned cortical



29 What Are the Pros and Cons of ROI Versus Whole-Brain Analysis … 483

contacts to the closest Brodmann area, which results in a spatial sampling of 52 sub-
regions [30]. Alternatively, cortical electrodes can be projected to a standardized
surface-based grid of ROIs with 2,400 or 600 points spaced at 5 or 10 mm distance,
respectively [31]. In another study, the authors grouped normalized electrodes by
segregating Talairach space into >53,000 overlapping spheres with 12.5 mm radius
[13]. Contacts were thereby grouped based on their location inside a sphere. Using
a similar approach, the authors of subsequent studies assigned contacts to vertices
and voxels in MNI space (Fig. 29.3d, [29, 32]). In line with findings that elec-
trodes record neural activity from a radius of several millimeters to centimeters [20,
21], they projected the measures of interest to all cortical and hippocampal parcel-
lations within a 10–12.5 mm and 3 mm radius around each contact, respectively.
The mentioned approaches result in one functional map per patient, and subsequent
group-level analyses compare functional effects across patients. These procedures
have several advantages. On one hand, they allow for a random-effects analysis and
the extrapolation of results to the general population. Secondly, the analysis is not
restricted to a priori selected brain areas, as effects from all electrodes are consid-
ered in this analysis (apart from electrodes covering rarely implanted brain areas).
These approaches therefore reduce type II error compared to ROI selection. Further,
some spatial resolution is sacrificed compared to single electrode analysis, but a
high anatomical precision can be maintained. Moreover, these methods reduce the
risk of type I error compared to the analysis of all available electrodes, as effects
are averaged within brain areas, voxels or vertices leading to a reduced number of
comparisons. One drawback of this method is that it is not suitable for small groups
of patients, as sub-regions have to be covered by a minimum number of participants
to be included into the analysis.

29.4.3 What Are the Advantages and Disadvantages
of Whole-Brain Analyses?

The advantages and disadvantages of whole-brain analyses depend on the method
used. The analysis of effects in every electrode of individual patients maintains
the highest spatial resolution and the lowest probability of type II error, but also
the highest chance of type I error. Fixed-effects analyses can provide broad spatial
sampling of brain areas, but results can be driven by single patients. Both proce-
dures do not allow for inferences beyond the studied group of subjects. The selec-
tion of electrodes based on functional criteria is associated with decreased type II
error compared to a priori ROI selection and allows for random-effects group-level
analyses, but inferences about the functional role of a particular brain area can be
difficult to interpret, as the spatial location of effects can vary largely across patients.
Further, attention needs to be paid to avoid circular analysis. One good compromise
between maintaining anatomical precision and preparing data for random-effects
group-level analysis is the projection and subsequent grouping of electrodes into
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normalized space. This approach sacrifices less spatial resolution than ROI selec-
tion, is associated with less probability for type II error and simultaneously reduces
type I error compared to statistical contrasts for every single electrode. This procedure
therefore offers a good compromise between ROI selection and statistics on single-
electrode level. Further, the standardized mapping of electrode locations facilitates
the comparability across studies. Nevertheless, correction for multiple comparisons
is required.

29.5 Summary

In summary, both ROI and whole-brain analyses come with several advantages and
disadvantages. Focusing the analysis on one or several ROIs, inwhich activity is aver-
aged across electrodes, allows for random-effects group-level analyses and is asso-
ciated with a lower risk of type I error compared to whole-brain analyses. However,
ROI analysis sacrifices spatial resolution and bears a relatively high risk of type II
error. In contrast, whole-brain analyses are associated with a lower chance of type II
error compared to the selection of a fewROIs, as all covered brain regions are consid-
ered. Further, these methods can provide insights into human brain function beyond
previous knowledge, as analysis is not restricted to a priori defined ROIs. Moreover,
whole-brain analyses maintain a higher anatomical precision, which is, however,
associated with a larger number of comparisons and thus increased type I error. Thus,
these data-driven approaches require rigorous group-level analyses and corrections
for multiple comparisons. One good compromise between the a priori ROI selec-
tion and analysis of all electrodes separately is the creation of functional maps in
standardized space followed by group analyses. However, this method requires a
larger number of patients, as a minimum number of patients per voxel or vertex must
be reached. For data sets with few patients, a combination of electrode selection
methods is therefore recommended in order to avoid spurious results, substantiate
findings, and minimize type II error.
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Chapter 30
How to Detect and Analyze Traveling
Waves in Human Intracranial EEG
Oscillations?

Anup Das, Erfan Zabeh, and Joshua Jacobs

Abstract The brain is a complex, interconnected network and the large-scale
spatiotemporal coordination of neuronal activity is vital for cognition and behavior.
Prior studies have proposed that traveling waves of brain oscillations are one mech-
anism that helps coordinate complex neuronal processes and are crucial for cogni-
tion. Traveling waves consist of oscillations that propagate progressively across the
cortex and previous studies have shown that these waves play a foundational role
for learning, memory processing, and memory consolidation and a range of other
behaviors across multiple species. The prevalence of traveling waves in cognition
thus indicates that spatiotemporal patterns of neuronal oscillations may coordinate
multiple neuronal brain networks and impact behavior. Even though there are several
different approaches for analyzing travelingwaves using electrophysiological record-
ings, computational tools targeting the analysis and visualization and understanding
of traveling waves are still rare. We briefly review the literature on human intracra-
nial electroencephalography (iEEG), which has shown that traveling waves play an
important role in cognition. We then describe a statistical methodology based on
circular–linear regression for the detection and analysis of traveling waves from
human electrophysiological oscillations. We hope that this approach will provide a
more mechanistic understanding of the coordination of neurons across space and
time.
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30.1 Introduction

Prior research has shown that neuronal oscillations play a fundamental role for
learning, memory processing, and consciousness in the brain across species [1, 2]
(see also Chap. 19). Starting from the discovery of alpha frequency band (8–12 Hz)
oscillations byHansBerger in 1929 [3] in scalp electroencephalograhy (EEG) record-
ings in humans to the advent of invasive electrocorticogram recordings in 1949 by
Jasper and Penfield in humans [4], oscillations are now widely believed to play an
important role for spatiotemporal coordination among multiple brain networks [2].
Growing evidence suggests that oscillations do not occur at individual neurons in
an isolated way, rather they occur simultaneously across multiple neurons in a given
small brain area or on a larger scale across multiple brain areas [5].

Oscillation-based temporal synchronization among neurons is a foundational
mechanism for information transfer and coordination among neurons [2]. These
synchronization mechanisms are usually thought to involve zero-phase-lag synchro-
nization among neurons, where phases of the recordings from multiple electrodes
are temporally aligned [6]. However, recent studies have found waves of electrical
activity propagating across the cortex in the human brain [7–15]. This was possible
because of improved methods in analyzing simultaneous intracranial EEG (iEEG)
recordings from many brain areas [5], which have shown systematic spatial varia-
tion of instantaneous phases of the electrodes across the cortex. These systematic
phase delays reveal the progressive propagation of neuronal activity across the cortex,
known as traveling waves, which have been shown to be closely related to behavior
[5].

Studies in animals showed that the frequency, strength, direction, and speed of
traveling waves correlate with a broad range of behaviors in animals. These include
visual perception [16–23], movement initiation [24–28], and memory processing
[29, 30] in non-human primates as well as visual processing [31–33] and spatial
navigation [34–36] in rodents. However, currently, there are no well-established
methods for analyzing travelingwaves in the humanbrain and rigorous computational
tools specifically targeting the visualization and understanding of traveling waves
are rare. Therefore, even though oscillations are seemingly ubiquitous in the human
brain [2], many of the potential traveling waves associated with those oscillations
have been missed. Although some iEEG studies in humans have demonstrated a role
for traveling waves in cognition [5], systematic studies with rigorous analysis of
traveling waves are still lacking.

In this chapter, our focus is on the development of novel approaches for the detec-
tion and analysis of traveling waves from human iEEG recordings.Most prior studies
in the last two decades have detected traveling waves predominantly in scalp EEG
and magnetoencephalography (MEG) recordings [37–42]. However, several recent
iEEG studies in humans have also demonstrated the existence of traveling waves
[7–15]. These iEEG recordings are from pharmaco-resistant epileptic patients who
underwent neurological surgery for removal of their seizure onset zones. Traveling
waves in these studies were usually detected and analyzed using the spatial gradient
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of the phases of the recordings from the iEEG electrodes [9, 12]. Traveling waves
are present spontaneously during resting-state conditions such as eye-closure [9]
(Fig. 30.1a) and passive fixation [43] (Fig. 30.1b). Traveling waves are also present
during sleep spindles suggesting their putative role in memory consolidation and
plasticity [8, 12] (Fig. 30.1c). More recently, traveling waves were also detected
during movement imagery suggesting their putative role in coordinating complex
movements [13] (Fig. 30.1d). Furthermore, traveling waves play a prominent role
during speech processing [11], and also, during working memory, suggesting their
putative role for memory processing as well [15] (Fig. 30.1e).

To provide a broader introduction for how tomeasure travelingwaves in the human
brain, we describe an approach based on circular statistics to capture and analyze
traveling waves amidst neuronal oscillations in iEEG recordings. Our approach over-
comes several challenges for analyzing these waves in the human brain. First, we
describe novel approaches for detecting oscillations in the iEEG electrodes and intro-
duce methods to detect groups of nearby electrodes each having an oscillation at
nearly identical frequencies. We then describe methods to detect and analyze the
features of waves of electrical activity propagating across the cortex corresponding
to these detected oscillations. We also introduce a novel approach based on circular
statistics to track theprogressive variationof the phases acrossmultiple electrodes and
subsequently detect travelingwaves based on the fitted parameters of a circular-linear
regression model. And, finally, we describe several features of the detected traveling
waves and how they are intimately related with human behavior. Our approach is
rigorous and can be used to identify multiple foundational mechanisms underlying
the propagation of traveling waves and to reveal their link with behavior.

30.2 Approach to Measure Traveling Waves of Neuronal
Oscillations

Many previous studies of traveling waves in animal models used relatively simple
analytical approaches based on the spatial gradient of phases. These approachesmade
sense because neural recording electrodes in animals are usually implanted in a rela-
tively small area of the brain that was consistently placed across animals. However,
there are several inherent aspects of human iEEG datasets that make it challenging
to detect and analyze traveling waves. In particular, placements of electrodes across
patients can be highly variable due to the complicated clinical protocols involved and
can consist of multiple types of electrodes such as grid, strip, and depth electrodes
[44, 45]. Furthermore, the frequencies of neuronal oscillations can vary substantially
across human patients, even after controlling for task behavior and electrode place-
ment [15]. Due to these challenges, an improved method for measuring traveling
waves would be preferable if it were able to accommodate the specific features of
the signals in a given patient’s iEEG recordings.
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Fig. 30.1 Traveling waves in the human brain across multiple domains, detected using iEEG. a
Travelingwaves during eye-closure resting-state condition.Alpha oscillations in patients propagated
as traveling waves in the cortex during eye-closure resting-state condition. Colors of electrodes
represent the phases of their oscillations (left panel) and traces represent the raw voltages of the
marked electrodes (right panel). Adapted with permission fromHalgren et al. [9]. bTraveling waves
during passive fixation resting-state condition in the insula. Beta oscillations in the human insula
propagated as traveling waves during passive fixation resting-state condition. Shown is an example
of implanted stereo EEG electrodes in a patient (left panel), with arrows denoting the direction
of the traveling wave associated with each electrode (right panel). Adapted with permission from
Das et al. [43]. c Traveling waves during sleep spindles. Sleep spindles are traveling waves in
the human brain. When visualized on the cortex, individual spindle cycles are often organized
as rotating waves traveling from temporal (+0 ms, top) to parietal (+20 ms, middle) to frontal
(+40 ms, bottom) lobes. Adapted with permission fromMuller et al. [12]. d Traveling waves during
movement imagery in the sensorimotor cortex. Alpha rhythmic activity during imagined movement
in a representative individual. Shown are filtered signals for the five electrodes numbered on the
brain plot (left panel). Cortical phase maps indicate the average phase at each cortical site relative
to a central sensorimotor reference electrode. Local arrows indicate the propagation direction at
each electrode, with arrow size weighted by the local phase gradient magnitude (right panel). Large
global arrow indicates the mean propagation direction across the sensorimotor cortex, with arrow
size weighted by the alignment of sensorimotor gradients. Alpha rhythm propagation is maximal
in a caudo-rostral direction (red distribution, denoted by a polar plot). Adapted with permission
from Stolk et al. [13]. e Traveling waves during memory processing. Alpha-theta oscillations are
traveling waves in humans while performing a working memory task. Example shows data from
a patient with an 8.3-Hz traveling wave (right panel). Shown are raw signals from three selected
electrodes (left panel), the selected electrodes are ordered from anterior (top) to posterior (bottom).
Also shown are the filtered signals (filtered at 6–10 Hz) for the eight electrodes numbered on the
brain plot. Adapted with permission from Zhang et al. [15]

Our method overcomes these challenges by customizing the analysis pipeline
according to the iEEG recordings fromeach individual patient [15, 43]. This approach
consists of two primary steps: (i) The first step consists of identification of spatially
contiguous clusters of electrodeswith narrowband oscillations at similar frequencies.
Identifying a group of nearby electrodes with a single oscillation frequency is crucial
since, by definition, a traveling wave involves a single frequency and whose phase
progressively propagates through these electrodes, thus making it possible to detect
the traveling wave when it passes by these electrodes. (ii) The second step consists
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of identification of systematic spatial variation of the instantaneous phases of the
electrodes for each cluster, defined to be a traveling phasewave. This step is important
since we want to capture the systematic phase delays of the wave across the group
of electrodes in the oscillation cluster identified in step (i) above, thus enabling us
to detect the presence or absence of a traveling wave. Once these systematic spatial
variations in phases have been detected, we can then analyze the features of this
spatial phase propagation and examine its relationship with human behavior. These
procedures are detailed below. Our new approaches are flexible in the sense that they
can be easily applied to other domains of brain imaging such as scalp EEG andMEG
recordings as well as recordings from animal models.

30.2.1 Identification of Oscillations and Clustering
Algorithm

Bydefinition, a travelingwave involves a neuronal oscillation that appearswith a time
delay across multiple regions of the cortex. Therefore, our first step in identifying
these patterns is to detect oscillations that appear at a single frequency at multiple
nearby electrodes. To detect such patterns, we first identify spatially contiguous
clusters of electrodes with oscillations at the same or similar frequencies [15, 43].
Critically, we perform this procedure in an adaptive fashion that is well suited for
human iEEG data by accommodating differences in electrode positions and oscil-
lation frequencies across individuals. This flexibility is especially important since
iEEG electrodes in humans can be in the form of grid, strip, or depth electrodes and
can also span multiple brain areas. Our approach can overcome this challenge by
detecting waves which can travel through multiple types of electrodes and spanning
many different brain areas, including both gray matter and white matter volumes.

The first step to detect oscillations in neuronal signals is estimating their power
distribution in the frequency domain and distinguishing true narrowband rhythmic
oscillations frombackgroundfluctuations such as the 1/f signal [15]. There are several
methods that can been used for such steps [15, 46, 47] (see alsoChap. 23). In ourwork,
we have used Morlet wavelets to compute the power spectra of the neuronal oscil-
lations. Morlet wavelets are useful particularly for analyzing intracranial recordings
because of their superior ability to detect transient, possibly non-stationary, oscil-
latory dynamics [15, 48]. After using Morlet wavelets to measure each electrode’s
power spectrum, we then distinguish true narrowband oscillations as those that have
peaks that are significantly greater than the background 1/f spectrum. We use a
thresholding procedure to ensure that we specifically focus on significant narrow-
band oscillations that are reliably different from the background 1/f signal at an
electrode [46].

We use this approach to identify narrowband oscillations at each recording site
and eventually, to find multiple nearby electrodes oscillating at nearly the same
frequency. To distinguish narrowband peaks in an electrode’s power spectrum from
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the background signal, we fit a line to each patient’s mean power spectrum in log–
log coordinates using robust linear regression [15] (Fig. 30.2a). We then subtract
the actual power spectrum from the regression line. This normalized power spec-
trum removes the 1/f background signal and emphasizes narrowband oscillations as
positive deflections (Fig. 30.2a.1). We identify narrowband peaks in the normalized
power spectrum as any local maximum greater than some predefined threshold. In
our work [43], we used a threshold of one standard deviation above the mean, but
other thresholds could be used depending on the experimenter’s needs. This method
reliably identifies the frequencies where individual electrodes show strong oscilla-
tions, as can be seen in Fig. 30.2a.1 which shows our approach from two example
electrodes. One of these electrodes has a narrowband oscillation that we success-
fully detected at the theta frequency band and the other has one at alpha band, thus
demonstrating the efficacy of this approach.

Next, to identify travelingwaves (see below),we focus on the groups of contiguous
electrodes that show oscillations at the same frequency. We focus on the contiguous
electrode groups because our focus is to characterize the oscillations that are trav-
eling waves by having each cycle propagating across contiguous regions of cortex.
To identify these groups, or oscillation clusters, we implement a spatial clustering
algorithm that we designed to find the contiguous groups of electrodes that exhibit
narrowband oscillations at a given frequency (Fig. 30.2a.1). To identify the specific
electrodes that comprise a spatially contiguous group, we first create a pairwise-
adjacency matrix that indicates whether each pair of electrodes is contiguous. This
matrix indicateswhether each electrode pair is separated by less than somepredefined
threshold (such as <= 20 mm [15]). Finally, we use this adjacency matrix to iden-
tify mutually connected spatial clusters of electrodes by computing the connected
components of this graph [49]. In our work, we only include clusters with at least
four connected electrodes in our analysis. Further, in our work, we have allowed for
some electrodes to show oscillations at nearby but nonidentical frequencies (such
as within 10%; see [15]), which allows our procedure to accommodate oscillations
that can slightly vary across frequencies. However, note that some parameters of this
method could be tweaked according to the experimenter’s needs. Once we identify a
group of electrodes that oscillate at same or similar frequencies, we can then design
methods to detect the presence or absence of a traveling wave. This is described
below.

30.2.2 Identification of Traveling Waves

After identifying oscillation clusters in each person, which will distinguish the
contiguous regions of cortex that oscillate at a single frequency, the next step in
our framework is to identify traveling waves that propagate across that cluster [12,
15]. Quantitatively, we can define a traveling phase wave as a set of simultaneously
recorded neuronal oscillations at the same frequency whose instantaneous phases
vary systematically with the location of the electrodes, such that individual cycles of



30 How to Detect and Analyze Traveling Waves in Human Intracranial … 493

a

b

Fig. 30.2 Detection and analysis of traveling waves. a Flowchart illustrating the pipeline for
detecting and analyzing traveling waves. First column: Identification of spatially contiguous clus-
ters of electrodes with narrowband oscillations at similar frequencies. Narrowband oscillation at
each electrode was identified by fitting a line to each electrode’s mean power spectrum in log–log
coordinates using robust linear regression and then subtracting the actual power spectrum from the
regression line. This normalized power spectrum removes the 1/f background signal and emphasizes
narrowband oscillations as positive deflections. Shown are two oscillation clusters, one oscillating
at theta frequency and the other at alpha frequency. Second column: Calculation of phases of the
electrodes for each oscillation cluster. Phases of the oscillations were calculated using Hilbert trans-
form on the filtered signals. Colors in this figure show the phases of the electrodes corresponding
to the alpha oscillation cluster in the first column. Third column: Circular-linear regression was
used to identify traveling waves of phase progression for each oscillation cluster at each time point.
For each spatial phase distribution, two-dimensional (2-D) circular–linear regression was used to
assess whether the observed phase pattern varies linearly with the electrode’s coordinates in 2-D.
Shown are solid circles representing the actual phases, the fitted plane, which is the predicted phase,
and bars denoting the residuals between the actual and predicted phases. Fourth column: Features
of traveling waves were calculated based on the fitted parameters of the circular-linear regression
model. Shown are electrodes with colors denoting the phases and arrow denoting the direction of
the traveling wave, with distribution of directions in blue, denoted by a polar plot. b Advantages
of the circular-linear regression model for the identification of traveling waves. Due to the circular
nature of the phase, any potential linear association between phase and electrode coordinates can be
better estimated by the circular-linear model (right) compared to the linear regression model (left)
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the oscillation move across the cortex. A challenge for quantifying and tracking the
traveling spatial patterns in human intracranial recordings is tracking the systematic
presence of multiple cycles of oscillations across multiple electrodes. To perform
this task, we use a circular-linear regression which models the relation between
oscillation phase and electrode position (Fig. 30.2b). Since the phase wraps around
every 360°, a circular-linear regression model, leveraging circular statistics [50], is
important to use rather than a conventional linear model (Fig. 30.2b).

To identify travelingwaves from the phases of electrodes in each oscillation cluster
(Fig. 30.2a.2), we first measure the instantaneous phases of the signals from each
electrode of a given cluster by applying a zero phase-lag filter at the peak frequency
of the detected oscillation. In our analysis, we have used a Butterworth filter at the
cluster’s narrowband peak frequency (bandwidth [fp × 0.85, fp/0.85] where fp is the
peak frequency).We then use the Hilbert transform on each electrode’s filtered signal
to extract the instantaneous phase at each time-point of the iEEG recordings [15].
However, other transforms such as the Fourier and wavelet transforms can also be
used to extract the instantaneous phases of the electrodes aswell. These instantaneous
phase values are then fed-in to the circular-linear regression model described below.

In a traveling wave, the phases of an ongoing oscillation are spatially organized,
with a systematic phase shift across space in the cortex. Accordingly, tomeasure such
patterns, we use a 2D circular-linear regression to quantitatively measure the rela-
tion between oscillation phase and electrode position. This regression lets us assess
whether the observed phase pattern varies linearly with the electrode’s coordinates
(Fig. 30.2a.3).

The structure for our circular-linearmodel is as follows. xi and yi represent the 2-D
coordinates and θ i the instantaneous phase of the ith electrode. Whereas the original
electrode positions are of course in 3D in the brain’s volumetric coordinates, we
reduced the data to 2-D coordinates xi and yi corresponding to the cortical surface by
projecting the 3-D Talairach coordinates of electrodes into the best-fitting 2-D plane
using principal component analysis. Even though this procedure is most applicable
to subdural grid electrodes, it can be applied to stereo EEG depth electrodes as
well [43]. This procedure can also be carried out in the 3-D volumetric space in
the brain, however, projecting the 3-D coordinates to 2-D helps in better visualizing
and interpreting the traveling wave [43]. Based on the 2D electrode coordinates, to
measure the phase propagation, we then fit a 2-D circular-linear model to the phase
distribution at each timepoint. This model has the following structure,

θ̂i = (axi + byi + ϑ) mod 360◦,

where θ̂i is the predicted phase, a and b are the phase slopes corresponding to the
rate of phase change (or spatial frequencies) projected into each of the orthogonal
dimensions, and ϑ is the phase offset.

Circular–linear models do not have an analytical solution and, hence, we fit them
iteratively using numerical methods [50], which makes this procedure computation-
ally complex. To simplify model fitting, we first convert the parameters of the model
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from cartesian coordinates to polar coordinates. We define α = a tan 2(b, a) which
denotes the angle of wave propagation and ξ = √

a2 + b2 which denotes the spatial
frequency (Fig. 30.2a.4). We fit α and ξ to the distribution of oscillation phases at
each time point by conducting a grid search over α ∈ [0◦, 360◦] and ξ ∈ [0, 180/δ]
in sufficiently small increments of phase and phase/space steps respectively (for
example, the step sizes used by [43] are 5° and 0.5 °/mm for phase and phase/space
respectively). Note that ξ = 180/δ corresponds to the spatial Nyquist frequency of
180/δ °/mm, corresponding to the highest spacing δ mm between neighboring elec-
trodes. We fit the model parameters (a = ξcos(α) and b = ξsin(α)) for each time
point to most closely match the phase observed at each electrode in the cluster. We
compute the goodness of fit as the mean vector length r of the residuals between the
predicted (θ̂i ) and actual (θ i) phases [50],

r =
√
√
√
√

[

1

n

n
∑

i=1

cos
(

θi − θ̂i

)
]2

+
[

1

n

n
∑

i=1

sin
(

θi − θ̂i

)
]2

,

where n is the number of electrodes. We choose the selected values of α and ξ to
maximize r . We repeat this procedure for each oscillation cluster. To measure the
statistical reliability of each fitted traveling wave, we examined the phase variance
that was explained by the best fitting model. To do this, we compute the circular
correlation ρcc between the predicted (θ̂i ) and actual (θ i) phases at each electrode
[43]:
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sin
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)

sin
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)

√
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(

θi − θ
) n∑

i=1
sin2

(

θ̂i − ∧
θ

)
,

where bar denotes averaging across electrodes. Finally, to account for the variation
in the number of electrodes across clusters, we apply an adjustment to control for
number of fitted model parameters [43]:

ρ2
ad j = 1 −

(

1 − ρ2
cc

)

(n − 1)

n − k − 1
,

where k is the number of independent regressors (k = 3 in this case). We refer to ρ2
ad j

as the wave-strength of the traveling wave [15] as it quantifies the strength of the
traveling wave (note that ρ2

ad j has been referred to as phase gradient directionality
(PGD) in some prior studies [12, 15, 26]). We note that ρ2

ad j can now be compared
across different clusters and subjects with varying number of electrodes. To test
for the statistical significance of a traveling wave, we shuffle the coordinates of the
electrodes and re-estimate the strength of the wave for each shuffling. In this way,
we construct a histogram of surrogate wave-strength values against which we then



496 A. Das et al.

compare the empirical wave-strength to test for the presence or absence of a traveling
wave [43].

A step-by-step visual demonstration of the circular-linear regression approach
to detect traveling waves has been illustrated in Fig. 30.3 for the iEEG recordings
measured on two trials of a task, one with a traveling wave and the other without
a wave. As a result of this fitting procedure, the direction α represents the spatial
orientation at which the traveling wave propagates with a continuously increasing
phase gradient through the cortex (Fig. 30.3). When this direction α is visualized as
an arrow on a brain plot, the traveling wave’s propagation can be seen visually. In
these plots, individual oscillation cycles appear at relatively early timepoints on the
electrodes near the tail of the directional arrow and at later latencies on electrodes
near the head of the arrow (Fig. 30.1a).

30.3 Features of Traveling Waves

The 2Dcircular-linearmodel thatwe described above is a very useful quantitative tool
for measuring the instantaneous properties of the traveling waves at each moment.
The fitted coefficients a and b from the model can be used to calculate all the key
features of the current traveling wave on that electrode cluster (Fig. 30.2a.4). For
example, the parameters α and ξ in the polar coordinates denote the angle of wave
propagation and the spatial frequency respectively. Other features of the traveling
wave such as the wavelength (2π/spatial frequency) and the speed (wavelength ×
frequency) can be readily derived from these parameters as well.

Another defining advantage of our proposed approach is that traveling waves can
be reliably detected on a single-trial level using our methods. In a working memory
task [15], we were able to detect traveling waves in ~81% of clusters at the single-
trial level and ~67% of clusters had consistent traveling waves at the single-trial level
which also had a consistent propagation direction. In another study using a verbal
working memory task [51], we found that frontal theta and temporal alpha traveling
waves are more reliably detected during the earlier periods of a trial compared to
late detection of reliable temporal theta traveling waves in a trial, during the memory
encoding periods.

Current studies have indicated that multiple features of traveling waves are related
to human behavior [11, 51] (Fig. 30.4). Traveling waves exist across a broad range of
frequencies, starting from low frequency delta to higher frequency beta bands. Prior
iEEG studies have detected traveling waves at alpha frequency during eye-closure
resting-state in subdural grid electrodes [9], similar to the alpha waves observed in
scalp EEG recordings [37]. Recently, we have found traveling waves of theta and
beta oscillations during passive fixation resting-state in the insula using stereo-EEG
depth electrodes [43], indicating that traveling waves are present in not only the
surface of the cortex, but also deep brain structures such as the insula. This finding
also suggested that whereas lower frequency alpha oscillations are a defining feature
of the resting brain at the surface of the cortex, higher beta frequencies may play
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Fig. 30.3 Examples of detection of traveling waves for two representative trials. Left and right
columns correspond to two example trials demonstrating the absence and presence of a traveling
wave respectively. Top row: phase organization of electrodes in two representative trials of a cortical
recording array with 49 electrodes. Colors represent the instantaneous phase of each electrode.
Observe the systematic spatial variation of the phases of the electrodes in the right column indicating
the presence of a traveling wave. Contrast this to the left columnwhere there is no systematic spatial
variation of the phases indicating the absence of a traveling wave. Middle row: filtered LFP traces
of five adjacent electrodes as labelled in the top row. Observe that the amplitude peaks occur
at successively later times for electrodes 1–5 in the right column in contrast to the left column.
Red-colored, vertical dashed lines represent the time-instants at which the phase distributions were
plotted in the top row. Bottom row: Fitted planes estimated from the circular-linear regression
analysis showing the best fit between the phases and the locations of the electrodes. Solid circles
denote the actual phases of the electrodes with the colors as in the top-row and the vertical bars
denote the residuals between the actual phases and the predicted phases using the circular-linear
regression. The thick black arrows indicate the orthogonal vectors of the fitted planes and gray
arrows represent the projection of these orthogonal vectors on the X–Y plane (cortical plane).
Observe the smaller vertical bars in the right column indicating the presence of a traveling wave
in contrast to the larger vertical bars in the left column indicating the absence of a traveling wave.
Features of the traveling wave can be estimated by the parameters of the fitted plane (Fig. 30.2a)



498 A. Das et al.

an enhanced role in deeper structures of the cortex such as the insula. Other studies
have also shown that these traveling waves are also highly relevant for memory
processing in the human brain, and not just in resting-state. Specifically these studies
have shown a crucial role for theta and alpha oscillatory traveling waves during a
working memory task [15] and also verbal episodic memory task [51], suggesting
that lower frequency oscillations might be more relevant for memory processing in
the human brain. Some other studies have also shown a role of low frequency delta,
theta, and alpha oscillatory travelingwaves during speech processing aswell [11]. On
the other hand, higher frequency beta oscillatory traveling waves play an important
role during movement imagery [13] and sleep spindles [8, 12], in line with the role
of beta frequency for sensorimotor neuronal activity processing and propagation of
sleep spindles in the human brain, respectively.

The frequencies of these oscillations thatwe just describedusually define the speed
of propagation of traveling waves. Indeed, lower frequency traveling waves such as
theta and alpha usually propagate in the range ~0.25–1 m/s [9, 15, 51], whereas
higher frequency beta traveling waves usually propagate in the range ~0.5–5 m/s
[12, 13]. In our previous studies, we have also found that the speed of a traveling
wave increases with an increase in its oscillation frequency [15]. Moreover, prior
work on computational modeling of weakly coupled oscillators has also shown that
traveling waves can naturally emerge from spatially varying gradients of oscillations
across different frequencies [52] and suggests that the propagation speed of these
waves depends on the associated oscillation frequency. However, it is important to
observe that these waves were detected using subdural grid electrodes on the surface
of the cortex. In our more recent work, using stereo EEG depth electrodes, we have
found that waves travel at ~0.7 m/s in the insula during passive fixation resting-
state condition for both low frequency theta and higher frequency beta oscillations
[43]. This indicates that the speed-frequency relation of the traveling waves that we
observe on the cortical surface may not be relevant for deep brain structures such as
the insula and suggests that putatively different mechanisms might be involved for
the origin of these travelingwaves for the cortical surface and deeper cortical regions.
Further studies are needed to definitively examine the speed-frequency relationship
of these traveling waves. Rigorous computational models of these waves can go a
long way in providing important insights into the characteristics of these traveling
waves and the link between the different features of these waves. It is worth noting
that, all these types of traveling waves features, and more, can be detected at each
moment using the methods we described here.

Another important feature of a traveling wave is its propagation direction. The
direction of a traveling wave informs us about the spatiotemporal coordination of
different brain regions and its relation to behavior. In our previous studies, we have
found thatwaves usually propagate fromhigher frequency regions to lower frequency
regions [15], suggesting that the different features of traveling waves are inter-linked.
More importantly, several studies have found that the propagation direction of these
waves is linked to human behavior. The directions of traveling waves can distinguish
speech compared to non-speech trials [11], successful memory encoding compared
to unsuccessful memory encoding and memory recall in a verbal episodic memory
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a

b

c

Fig. 30.4 Features of traveling waves and potential behavioral relevance. a Wave-strength. (Left):
Cartoon demonstration showing that systematic variation of the phase in space indicates high wave-
strength, while non-systematic variation of phase indicates low wave-strength. (Right): Filtered
signals of electrodes from two different trials (corresponding to the two different brain plots) from
a representative patient performing a verbal episodic memory task, demonstrating high and low
strength of traveling waves. Arrows denote the direction of the waves with colors denoting the
phases. Note the lower residuals, indicating higher wave-strength in the first column, with higher
residuals indicating lower wave-strength in the second column. In humans, no association has been
found between wave-strength and behavior [51]. Adapted with permission from Mohan et al. [51].
b Direction. (Left): Cartoon demonstration of forward and backward direction of traveling waves.
(Right): iEEG recordings of the hippocampus from a patient demonstrating that the direction of
traveling waves is dependent on the timing of a speech task, with waves traveling opposite to each
other for speech compared to non-speech periods. Adapted with permission fromKleen et al. [11]. c
Phase. (Left): Cartoon demonstration linking behavior to the phase of the traveling waves (excitable
versus non-excitable). (Right): Recordings from electrocorticographic electrodes in a representative
patient performing the Sternberg working memory task shows that the reaction time of the patient
is correlated with the phase of the traveling wave in each electrode, shaping a spatial map for the
preferred phase of the traveling wave for the optimal performance. Adapted with permission from
Mohan et al. [51]

task [51], and fast response times compared to slow response times in a working
memory task [15], demonstrating its behavior relevance. Moreover, the directions
of traveling waves also shift across brain regions. During eye-closure resting-state
[9], waves travel from anterosuperior to posteroinferior direction broadly across the
cortex. In a working memory task [15], the waves travelled from posterior to anterior
direction in the frontal and temporal lobes, however no definite wave direction was
found in the occipital and parietal lobes.
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Furthermore, the timing (or phase) of traveling waves also plays a critical role
in human cognition. In our recent study, we have shown that the timing of a wave
precisely defines fast and slow response times, in a workingmemory task [51]. These
results may be similar to a set of findings in animals, where the phase of traveling
beta oscillations predicted stimulus detection in visual perception [17].

Together, across this broad literature, these findings suggest that multiple features
of traveling waves simultaneously define different behavioral states in humans. Since
our proposed methodology can directly extract all these features of the traveling
waves, it provides a useful tool for probing the direction of information flow for
the precise spatiotemporal coordination of neuronal activity underlying different
behaviors in humans.

30.4 Discussion

Oscillations play aprominent role in the brain and studies acrossmultiple species have
shown that they are correlated with learning, memory processing, and consciousness
[1, 2]. Even though oscillations are seemingly ubiquitous in the human brain [2], how
these oscillations spatiotemporally coordinate neuronal activity acrossmultiple brain
regions, has remained elusive, due to lack of well-established methods for rigorously
analyzing these oscillations. Recent advances [5] in obtaining highly precise, simul-
taneous intracranial EEG recordings from many brain areas have shown systematic
spatial variation of instantaneous phases of the electrodes in an oscillation cluster
which lays the foundation for possible existence of traveling waves. Intracranial
recordings from subdural grid, strip, or depth electrodes often contain dynamics
which are complex and it’s difficult to visualize time-periods of systematic spatiotem-
poral patterns across broad regions in the brain and often, can bemissed by separately
analyzing individual traces of electrodes as is often done by neurologists [45]. Using
these types of traditional analysis, we can visualize the waves only when the record-
ings align with the direction of wave propagation and this may be the reason why
many of the previous intracranial EEG studies might have missed these traveling
waves [45], which are now known to be ubiquitous across the human brain [5]. Trav-
eling waves exist across multiple cognitive domains such as resting-state, speech,
memory processing, and sleep, in the human brain, using iEEG recordings. Previous
studies detected and analyzed traveling waves using the spatial gradient of the phases
of the iEEG recordings [9, 12].

Here we described a new approach based on circular statistics to capture and
analyze traveling waves in iEEG recordings. Our approach is general and can quan-
titatively measure all key features of these traveling waves. This approach consists
of two primary steps, (i) identification of spatially contiguous clusters of electrodes,
and (ii) identification of systematic spatial variation of instantaneous phases of the
electrodes for each cluster, defined to be a traveling phase wave. Even though we
described our approach in an iEEG setting, our methods are also applicable to other
modalities such as scalp EEG, MEG, and optical recordings as well as field potential
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and depth electrode recordings in animals. These may be promising areas of future
work because there is evidence for traveling waves in these settings as well [31, 34,
37, 53–55]. Moreover, several features of traveling waves can be directly extracted
from the parameters of our circular-linear regression model. We can then analyze the
relationship of these features to different human behaviors as we have done in our
previous studies [14, 15, 43, 51].

It is important to note that even with our analysis method, a number of features of
the datamust be satisfied in order tomeasure travelingwaves. In particular,measuring
travelingwaves accurately requires adequate sampling of electrodes across the region
that exhibits each oscillation. The detection of traveling waves is also constrained by
the size of an oscillation cluster, and a sufficient number of electrodes, all oscillating at
nearly similar oscillation frequencies, is necessary to capture a wave traveling across
the cortex [15]. To find the features of traveling waves that reliably correlate with
behavior, owing to inter-individual differences in oscillations [15], a large sample
size of patients may be important to reveal the key features of traveling waves.
In one of our previous studies, we detected traveling waves across 77 patients in a
working memory task [15], and we had found substantial heterogeneity in oscillation
frequency and direction of these waves across patients. To this end, open-source
data sharing efforts (see Chap. 38) will be crucial to analyze inter-individual and
gender-related differences of traveling waves across large cohorts of patients.

Given that we found evidence for the existence of traveling waves across several
frequency bands such as the delta, theta, alpha, and beta ranges [14, 15, 43, 51], it
raises an important question of how the waves in these bands relate to each other.
Previous studies have shown that theta and beta traveling waves in the human insula
travel independently of each other during resting-state [43]. In another study, gamma
power was phase-locked to alpha traveling waves in the human neocortex [7], similar
to the more traditional phase-amplitude coupling mechanism found in the human
cortex [56]. However, how the interactions of these waves in different frequency
bands relate to human behavior remains unknown and future studies specifically
focusing on developing novel methods for analyzing the interactions between these
waves at different frequencies and their links to human cognition are needed to fill
this important gap.

The new methods that we have developed related to traveling waves could poten-
tially be informative about information coding in local neuronal activity and how it is
coordinated across larger brain networks.Manybrain areas that show travelingwaves,
including the hippocampus [14] and the neocortex [15], are also regions that show
gradients in neural coding. Because the timing of local neuronal activity is phase-
locked to specific phases of traveling waves [7, 47], it suggests that traveling waves
may underlie neuronal processing by supporting a type of temporal multiplexing, in
which only certain subregions in particular cortical areas are active at a givenmoment
[57]. We previously noted that traveling waves allow particular cortical regions to
be consistently indexed by the phase delay of the overlying traveling waves, because
human traveling waves maintain a consistent spatial frequency across trials [14].
Combined with the findings that various cortical regions such as the hippocampus
and the frontal lobe show gradients in neural representations that match the direction
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of traveling waves propagation [58, 59], this suggests that traveling waves could be
important for large-scale information coding by allowing different cortical represen-
tations to be indexed at specific phase delays. Our rigorous approaches to precisely
estimate the different features of traveling waves would thus be informative of a new
type of cortical communication involving the role of traveling waves to coordinate
cortico–hippocampal interactions.

It is also important to note that traveling waves also exist during interictal spiking
activity [60] as well as seizures [61]. It thus becomes critical to distinguish traveling
waves arising from pathological activity from those arising from putative normal
brain function, and further research is needed to develop more advanced methods for
classification of normal and non-normal traveling waves [62]. Finding strong rela-
tions between the different features of these travelingwaves and human behaviormay
help to avoid interpretational difficulty between putative normal and pathological
traveling waves.

Even though we focused on methods to detect and analyze planar traveling waves
here due to their behavioral relevance [11, 15, 51], more complex patterns of trav-
eling waves such as radial and spiral waves have also been detected in the human
brain, especially during sleep spindles [8, 12], and also recently, in monkey [29, 63]
and rodent [64, 65] brains. It will be interesting to show whether and how these
more complex radial and spiral traveling waves are relevant for other types of behav-
iors such as learning, and verbal episodic and spatial memory tasks in humans.
These complex patterns of traveling waves might also indicate excitation/inhibition
of neural ensembles in the brain. For example, the center of an outward spiral or a
source traveling wave might putatively have elevated neuronal excitation compared
to the rest of the cortex and an inward spiral might have comparatively decreased
neuronal excitation, in light of computational models that showed that traveling
waves propagate from areas with faster intrinsic rhythmicity to the slower ones
[52]. This may help us identify brain regions with relatively distinctive levels of
excitation/inhibition. Therefore, it is crucial to develop rigorous signal processing
methods to carry out a comprehensive analysis of these complex patterns of trav-
eling waves. Relatedly, some previous studies have suggested the use of curl and
divergence analysis of spatial phase gradients to detect radial and spiral traveling
waves [12, 31, 66, 67]. Building on this work, an interesting future research direc-
tion would be to develop new methods by extending the circular-linear regression
model-based methods presented here to account for more complex patterns such
as radial or spiral waves or any combinations of these wave patterns. In our recent
work, we have adopted the circular-linear regression approach described here to
detect localized traveling waves by fitting the phase-plane in a localized sub-cluster
of electrodes (Figs. 30.1b, 30.4a) and shown that it is possible to estimate features
of traveling waves for individual electrodes rather than the entire cluster of elec-
trodes, and found more complex patterns of traveling waves beyond planar waves
[43]. Additional work is necessary to fully characterize the spatiotemporal features of
these complex patterns of traveling waves, and this could provide a key step towards
more fully distinguishing the functional role of the spatiotemporal dynamics of brain
oscillations in various types of cognition.
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Chapter 31
How Can I Investigate Perceptual
and Cognitive Function Using Neural
Frequency Tagging?

Simon Henin, Caspar M. Schwiedrzik, Nai Ding, and Lucia Melloni

Abstract In this chapter we will introduce the concept of neural frequency tagging
(NFT), a versatile tool that can be used to explore how the brain processes, segments,
and tracks specific cognitive processes via rhythmic neural responses. First, we
explain how NFT can be used to investigate perceptual and cognitive processes. We
explore critical experimental design considerations and how they can be exploited by
NFT to answer specific questions in cognition using intracranial electroencephalog-
raphy (iEEG). Next, we describe how NFT is calculated and, crucially, we explain
how results can be interpreted in the context of human cognition and possible limita-
tions of its use to explore certain brain processes. We end the chapter by addressing
specific signal processing issues and potential pitfalls in its implementation and
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explore promising new avenues of cognitive research using NFT, such as develop-
ment across the lifespan, and discuss possible future directions for which NFTwould
be an ideal tool for tackling difficult neuroscientific topics.

31.1 Introduction

As we interact and apprehend the sensory environment, perceptual information
unfolds in a more-or-less continuous manner over time. Yet, our experience of the
world, and our memories, consists of a series of coherent and punctuated sequences
that have demarcated beginnings, middles and ends. A core problem in cognitive
neuroscience has been to understand how and why the continuous flow of experience
is partitioned in meaningful events for the mind; and how those units are acquired
as a function of experience and learning. Speech perception offers a paradigmatic
example: language comprehension depends on the identification and successful inte-
gration of information delivered at different rates, i.e., phonemes are combined into
syllables, syllables into words, and words into phrases and sentences; all of which
unfold in time. More generally, perception, cognition, and action all occur not in
isolation, but in the form of sequences. Whether we walk or talk, the brain needs
to be able to extract and to construct coherent sequences. Yet, due to the inherent
complexity of analyzing time-varying signals, research has mostly focused on inves-
tigating neuronal responses time-locked to the presentation of a given stimulus in
isolation. It is known, however, that rhythmic and periodic stimulation can elicit
rhythmic neural responses (e.g., [1, 2]): a phenomenon known as neural entrainment,
steady-state responses, or neural frequency tagging (NFT). Here, neural responses,
measured non-invasively through electro- or magneto-encephalography (EEG or
MEG), or invasively through intracranial encephalography (iEEG), are selectively
enhanced as a function of the periodicity of the stimulation. This neural entrainment
can then be quantified in the frequency domain as a peak in the spectrum, whose
frequency responses enable inferences as to the events that are being tracked in a
stimulus stream. This method can be used to track low-level properties in a sensory
stream, e.g., rhythmic changes in intensity of a sound—a pure tone, referred to as the
auditory steady state response (aSSR) [3–5]; or the contrast of a visual stimulus—a
Gabor patch, referred to as the steady state visual evoked response (SSVEP) [6].
Recently, neural entrainment has been extended to investigate more abstract stim-
ulus properties. Low-frequency neural entrainment has been observed for rhythms
of musical beats [7], speech segmentation in adults [8–11], infants [12–14] and in
developmental dyslexia [15]; and also for tracking of linguistic structures in adults
[16]. As such, the use of neural frequency tagging has received much attention in
recent years, both due to its theoretical implications for parsing and integration of
information [17, 18] but also since it can be used as tool for online tracking of
high-level cognition in non-verbalizing populations such as infants [19, 20], patients
with disorders of consciousness [21, 22], and more generally as a tool to investigate
perception and cognition across species [23, 24].
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31.2 Neural Frequency Tagging in Intracranial
Electrocorticography (iEEG) Experiments

The general principle of applying NFT to neural signals is that a rhythmic stim-
ulus will produce endogenous neural activity that is synchronized to the external
input. However, the power of NFT, as an analysis technique, only becomes fully
realizable when the rhythmic stimulus is manipulated in a manner that contains
categorical elements (e.g., elements distinguishable from the base stimulus presen-
tation rate). When hypothesized categorical elements are presented at a specified
frequency (or rate) within the contiguous presentation stream, this allows for the
meaningful separation of category-specific responses to be separated from stimulus-
specific responses (see Fig. 31.1a). By exploiting this neural entrainment to different
categorical elements of an input stream, one can deduce the possible mechanistic
processes in the brain that subserve them. Moreover, by exploiting the superior
localizability of iEEG signals to specific cortical and subcortical brain regions, we
can deduce where (and sometimes when) in the brain these processes exist.

In this way, NFT is ideal for identifying and localizing task responsive electrodes
in the brain (see Fig. 31.1b). For example, Jonas et al. [25] embedded images of faces
into a visual stream of images containing multiple object categories. Images were
presented at fixed rate of 6 Hz, with faces presented into the stream on every 5th
presentation (e.g. 6/5= 1.2Hz).Measuring iEEG from a large cohort of patients, they
used NFT to dissociate between electrodes responsive to the visual stream and those
responsive at the frequency of the face presentation (e.g. face-responsive electrodes).
In such away, theywere able to localize face-selective regions of the ventral occipito-
temporal cortex. Further, the strength of NFTwas used to lateralize the face-selective
responses, showingdominant responses to faces in right fusiformgyrus.Using similar
techniques, NFT has been used to localize and dissociate the roles of specific brain
regions in various types of visual categorical processing (e.g. faces vs. words; [26,
27]). Similarly, NFT can be used to scout for (or identify) responsive electrodes and
carry them forward to further analyses (e.g. [11]; Fig. 31.1c).

An even more powerful use of NFT analysis can be realized when combined with
stimulus paradigms aimed at uncovering mental representations/processes. Given a
properly thought-out stimulus paradigm (e.g., a continuous stimulus stream with a
hidden/covert structure at defined frequencies), NFT can be applied to neural signals
(iEEG) to explore the brain’s ability to uncover these hidden structures. For example,
Ding et al. [16] devised an experiment in which the different parts of grammatical
speech (e.g., words, phrases, whole sentences) could be decomposed via NFT. In
that study, each word lasted 250 ms, while a phrase was composed of 2 words and
therefore lasted 500 ms, and each sentence was composed of 4 words lasting 1 s.
As such, the rate of words, phrases and sentences could be tagged at 4, 2, and 1 Hz,
respectively. Using this technique, they were able to provide evidence for speech
processing at multiple timescales corresponding to these linguistic features. Further,
using iEEG they were able to localize these responses to distributed regions, most of
which (e.g., Superior temporal gyrus, STG; Inferior frontal gyrus, IFG) have been
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a

b

c

Fig. 31.1 Design and analysis of NFT paradigms using iEEG. aAbstracted schematic design of an
NFT experimental paradigm (left) and subsequent NFT measures (right), b Example localization
of “category-selective” electrodes, c Using electrodes identified via NFT to perform subsequent
analyses to explore neural representations, adapted from Henin et al. [11]
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shown to be critical for speech processing. In another experiment, Henin et al. [11]
used NFT to identify electrodes that tracked different low- and high-level features
of sequences using a statistical learning paradigm in both the auditory and visual
domains. Specifically, in the auditory condition, they presented sequences of sylla-
bles to patients, which either followed a random sequence or a structured sequence
containing four hidden words composed of 3 syllables that subjects were expected
to implicitly learn after a brief exposure. As such, syllables (250 ms) and words
(3 * 250 ms) could be tagged at different frequencies, i.e., 4 and 1.33 Hz respec-
tively (see Fig. 31.1c). Taking advantage of the sensitivity of NFT, they showed that
electrodes exhibiting different NFT response profiles (e.g., electrodes responding to
words vs. words and syllables) mapped to different hierarchical processing strategies
thought to be involved in statistical learning of novel sequence patterns [28].

The use of NFT in iEEG experiments enables one to uncover the mechanisms
supporting the processing of complex stimuli and where these computations take
place in the brain. Of particular note, the use of NFT paradigms often requires only
short presentations of stimuli. For example, localization of “responsive” electrodes
using NFT can be achieved in only minutes [11, 25] as compared with more tradi-
tional event-related experimental designs, which typically require many repetitions
over longer experimental durations. The speedwithwhichNFT paradigms can be run
is advantageous, especially when measuring iEEG from patients in clinical settings,
whose ability and attention during longer tasks is often limited [29]. Critically, NFT
is exquisitely sensitive to track online learning across sensory modalities as demon-
strated in Henin et al. (2021). The latter offers an added advantage over many other
analysis techniques, especially when used in iEEG studies, as it enables tracking the
temporal tuning of learning across different cortical areas.

31.3 How to Compute NFT

Broadly speaking, NFT analysis is the technique of uncovering rhythmic components
of a neural signal that map to stimulus-related features. In its most simplistic form,
this can mean analyzing the Fourier spectrum of a signal, with the resultant peaks
in the spectrum analyzed considering the underlying frequencies of interest (e.g.,
frequencies representing different stimulus-related activations/representations).

In principle, windowing the signal for analyses is not necessary, and large anal-
ysis windows improve the frequency resolution. However, in practice, including
replication (e.g., multiple trials) can help increase the signal-to-noise ratio of the
technique. Using multiple trials, NFT can then be calculated using any measure that
captures synchronized neural activity at different rates (i.e., in the frequency domain).
However, this implies that the stimuli (and relevant rhythmic representations) should
be resolvable in the frequency domain (e.g., representations should be at integer
multiples of the frequency resolution of the fast Fourier transform). Then, assuming
the neural signal is represented in the frequency domain by Y ( f ) = ∑

f A f e jθ f ,
NFT at frequency f can be computed across all trials, i = 1, 2 … K, using one of
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several different measures, for example,

Response Power Pr ( f ) = 1

K

K∑

i=1

∣
∣A f,i

∣
∣2 (31.1)

Phase Coherence R2( f ) =
(
1

K

K∑

i=1

cos θ f,i

)2

+
(
1

K

K∑

i=1

sinθ f,i

)2

(31.2)

While Eqs. (31.1) and (31.2) represent examples of power and phase-locked
synchronization measures, several other measures exist for computing rhythmic
neural interactions (cf. [30–32]) (see also Chap. 32), and are not reviewed here,
however, their implementation in terms of NFT analysis is much the same. Some
additional considerations when computing NFT are discussed at the end of this
chapter.

31.4 How to Interpret NFT

There are two main hypotheses regarding the neural mechanisms underlying the
neural response tracking stimulus rhythms. The first hypothesis is that sponta-
neous neural oscillations in the brain are synchronized/entrained to external rhythms
through phase resetting [33, 34]. This hypothesis is appealing since it links the neural
response to external rhythms with spontaneous neural activity. However, the prop-
erties of various spontaneous oscillations are not well understood and it is possible
that their properties change when they entrain to an external stimulus. The second
hypothesis is that the rhythmic response is a superposition of event-related poten-
tials (ERPs) evoked by the external rhythmic stimulus [35]. This hypothesis links
the neural response to external rhythms with ERPs. However, since the brain is
a nonlinear and adaptive system, the ERP often depends on the stimulus and the
brain’s internal state. Furthermore, since neither hypothesis can be easily character-
ized by a computational model, it is challenging to quantify which hypothesis can
better describe the neural response to external rhythms.

The ongoing debate between two hypotheses, however, mostly concerns how
the neural response characterized by the NFT is linked to other neural phenomena.
They do not cast concern on the interpretation that the NFT can characterize neural
encoding of the frequency tagged stimulus feature. The debate, however, has moti-
vated discussions about NFT analysis methods. For example, if the neural response is
generated by resetting the phase of ongoing neural oscillations (without an increase
in power of the oscillations), this will lead to an increase in the inter-trial response
phase coherence (Eq. 31.2) but not the response power in single trials (Eq. 31.1).
Single trial power is often characterized by averaging the frequency-domain response
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power across trials, which is distinct from the evoked power (i.e., power of the time-
domain response averaged across trials). By contrast, if the stimulus evokes addi-
tional neural responses that are independent of ongoing background oscillations, the
response power in single trials will increase. Based on these intuitions, early studies
have attempted to distinguish the two hypotheses by analyzing the response power
and indeed demonstrated that phase coherence is muchmore sensitive to the stimulus
than the response power [36]. Nevertheless, simulation results show that regardless
of the generation mechanism (e.g., phase-resetting or independent responses), NFT
is much more reliably characterized by response phase coherence than single-trial
power [37], as single-trial power is much more sensitive to the level of background
activity (e.g. SNR of the response to background activity).

31.4.1 Advantage of Frequency-Domain Analyses

Neural signals are signals in time. Why bother to analyze them in the frequency
domain? This question is especially obvious under the hypothesis that NFT is only
analyzing superimposed ERPs. When the rhythmic stimulus consists of a sequence
of discrete events, e.g., tone pips or pictures, the ERP to each event can be easily
extracted. When comparing the ERP in two conditions, how to appropriately choose
the time window is a question. If the comparison is done for each time point, this
will involve a large number of statistical comparisons and how to correct the effect of
multiple comparisons becomes an issue. If a window is chosen based on prior knowl-
edge, it leaves possible that the effect may fall out of the window or the effect may
have both negative and positive polarities and cancel out in the average. Frequency-
domain analysis does not suffer from these problems: It only requires testing whether
the neural response at the target frequency is significantly stronger than a baseline
or appropriately chosen comparison condition.

In addition to analyzing the response at the target frequency, i.e., f 0, some studies
have used NFT to investigate the responses at frequencies that are harmonically
related to the target frequency, e.g., 2f 0, 3f 0, and 4f 0 [35, 38].However, typically only
a very small number of harmonic frequencies are observed and are not well under-
stood from a phenomenological perspective. Harmonics in NFT spectrum may arise
from nonlinearities inherent in the brain responses (e.g. non-sinusoidal responses)
or from the stimulus presentation frequencies themselves (e.g. if the neural response
to the stimulus decays before the next presentation cycle, this can produce NFT with
broad spectral components, see [35]), and exactly how to interpret these harmonics
is still an ongoing debate [38]. In addition, some studies frequency tag multiple
features/stimuli with multiple frequencies and these studies sometimes also concern
the intermodulation responses, which often reflect the interactions between the neural
encoding of different features/stimuli. For example, if two features are separately
tagged at f 1 and f 2, intermodulation responses include responses at, e.g., nf 1 ±mf 2,
where n andm are integers. In these conditions, n andm are typically small numbers
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and the interactions are often not straightforward to characterize in the time domain
[39–41].

31.5 Challenges and Pitfalls

When computing NFT, several issues should be considered. When segmenting trials
into epochs, care should be taken regarding how data epochs overlap. In principle,
data epochs should contain independent data segments. However, several studies
have used overlapping data epochs to increase the temporal resolution of their anal-
ysis. When overlapping epochs are used, this will lead to artifactual estimates of
entrainment at the frequency of the overlap (e.g., if 10-element segments of data are
used with 9-element overlap, ITC estimates will show entrainment at the 1-element
overlap frequency, Fig. 31.2a). If the increased temporal resolution afforded by over-
lapping window analyses is nevertheless essential, it is important to consider the
effect of the overlap on the NFT spectrum and include well-designed control condi-
tions (e.g., streams with no hidden structure) to ensure that observed NFT effects are
not driven by artifacts in the analysis design [12].

Furthermore, the length of the analysis interval, whether windowed or not, should
be chosen such that it exactly comprises an integer number of cycles. Otherwise,
Fourier analysis will lead to additional peaks in the spectrum known as “overspill”
artifacts (Fig. 31.2b). However, as neural oscillations are rarely pure sinusoids, over-
spill artifacts often occur, and again, careful controls should be considered. Similarly,
care should be taken to filter out trends in the data, since their frequency decomposi-
tion can lead to a “sawtooth” pattern of peaks in the spectrum that is superimposed
onto the NFT frequency peak (Fig. 31.2c) (see [42]). These potential pitfalls do
not preclude the use of NFT as a valid analysis technique, but as in any experi-
mental design, point to the need for careful consideration of potential artifacts in the
interpretation of the results.

To assess whether a peak in the NFT spectrum is statistically significant, several
statistical approaches have been proposed [37, 43]: the first is a comparison between
the experimental and a control condition at the frequency of interest. For this, the
appropriate parametric or non-parametric tests can be used. This approach has the
advantage that the above-mentioned artificial peaks in the power spectrum that can
arise from the use of overlapping analysis windows are automatically taken care
of. However, this approach does not assess the frequency specificity of the NFT
peak and often cannot be performed if no control condition was recorded. Another
possibility is to compare the power of the peak frequency with the average of two
(or more) neighboring frequencies. This determines the “peakiness” in the spectrum
and simultaneously takes care of the above-mentioned sawtooth pattern in the data
that might obscure true peaks. When using phase coherence, statistical assessment
is even more straightforward, with the principled assumption that non-significant
responses are uniformly distributed in the phase (independent of frequency and/or
experimental conditions). Therefore, a simple phase shuffling test (permutation test)
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Fig. 31.2 Example of different types of artifacts to consider when using NFT. a Effect of using
overlapping epochs. In this case, the iEEG signal considered has no inherent coherence. When
analyzed using independent epochs, no significant phase coherence emerges (top). However, when
using overlapping epochs (T = 1 Hz), artifacts are observed in the NFT spectrum at the frequency
of overlap (bottom). b Overspill or “spectral Leakage” is caused when non-integer multiples of
the target frequency are used in the FFT analysis window. c Low-frequency “Trend” artifacts are
observed when slow EEG drifts are not removed from the data
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or Rayleigh test [44] may be used to assess significance. Of course, all approaches
can also be combined, e.g., through an appropriate conjunction test (e.g., [45]) or
with a frequency × condition interaction in a repeated measures ANOVA.

31.6 Promises of NFT and Future Directions

Since its popularization in the 1970’s in the domains of noninvasive electroen-
cephalography and electroretinography, frequency tagging has seen continuous
methodological improvement and topical extension. The popularity of frequency
tagging stems, on the one hand, from the above-mentioned advantages in terms of
signal to noise ratio and the high efficiency of the technique in terms of stimuli per
time unit that vastly improves upon event-related potentials and similar measures
that require sizeable baselines between trials. On the other hand, it has become clear
that frequency tagging lends itself particularly well to the study of cognitive and
perceptual phenomena that unfold in time. Here, the stimuli per time unit advan-
tage of frequency tagging becomes even more clear: for example, in the language
domain, neural data can be simultaneously acquired at the level of syllables, words,
and sentences. Furthermore, frequency tagging has higher ecological validity than
trial-based measures if temporally unfolding phenomena are studied.

While frequency tagging has traditionally been employed mostly in the domain of
non-invasive electrophysiology, it is now also adopted for non-electrophysiological
measures such as video-based pupil diameter tracking (e.g., [46]), and, as we laid
out above, has seen tremendous success in iEEG research.

In particular, over the last years, iEEG-based NFT has proven to be suitable to
study complex cognitive phenomena such as speech perception [16] and sequence
learning [11] with exquisite spatio-temporal resolution. Beyond that, the power of
the NFT approach, combined with appropriate paradigms, now makes it possible
to investigate cognition even in populations that are otherwise hard to study, e.g.,
because they lack the ability to understand instructions or to give verbal reports,
such as infants, certain patients, and other species. We thus anticipate that the near
exponential growth of publication using NFT will continue, leading to exciting new
insights into the brain and cognition.
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Chapter 32
How Can I Analyze Connectivity in iEEG
Data?

Ethan A. Solomon

Abstract Understanding how brain regions influence one another is foundational
to modern neuroscience, which places a heavy emphasis on how behavior emerges
from networks of inter-regional activity. Extracting, analyzing, and interpreting these
brain networks from intracranial EEG remains an ill-defined process, with little by
way of standardized protocols or guidance on navigating a vast suite of analytic tools.
This chapter begins by reviewing methods for computing iEEG-based connectivity,
including common spectral approaches such as phase locking, phase consistency,
and coherence—as well as popular adaptations to account for volume conduction
and several alternative metrics. Statistical frameworks for analyzing these data are
presented in a cognitive neuroscience context, with a focus on how variability in
connectivity relates to human cognition. This chapter also discusses challenges in
the interpretation of iEEG connectivity, particularly in light of current debates over
the causal-versus-correlative nature of functional connectivity. As intracranial data
is becoming increasingly widespread and accessible, the chapter closes with a note
on the need to standardize analytic approaches to iEEG-based connectivity.

32.1 What is Connectivity, and Why Study It?

Since the structure of neurons was first described, it has never been controversial that
nervous systems are communication networks—signals are propagated from sense
organs to the brain, from region-to-region within the brain, and finally tomuscles that
generate behavior. It is natural that cognitive neuroscientists, particularly those who
rely on iEEG, want to understand how signal propagation within the brain relates to
thought and behavior. In this chapter, we broadly define “functional connectivity”
as a measure of correlated activity between two areas of the brain. This definition
is deliberately vague and avoids invoking concepts of communication, causality,
dependence, or “flow” [1].
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To be sure, it is plausible that correlated neural activity reflects any (or all) of these
concepts, but themethods discussed here are insufficient to make strong claims about
anything besides correlation. For instance, if regionA and region B exhibit correlated
activity during a successful task state, this could reflect the influence of axonal projec-
tions from region A to region B, projections via a relay and transformation in region
C, independent drive from region C, or independent generators of similar activity
patterns in both regions in response to external inputs (Fig. 32.1) [2]. Statistical
methods to tease out some of these possibilities exist, but rely on strong assump-
tions about the brain and the meaning of our electrical readouts of brain function.
Alternative approaches, discussed elsewhere in this text, would involve applying
exogenous, targeted perturbations and observing causal responses throughout the
brain (see Chap. 40).

But correlations are not useless. Inter-regional correlations in brain activity can
be useful guides towards developing hypothesis about causality in brain function,
and emerging data indeed confirms that measures of functional connectivity—that
is, correlations between brain signals—are predictive of how exogenous stimulation
propagates through the brain.Moreover, correlations provide valuable insight into the
groupings of brain regions that may share common activity patterns, representations,
or functional roles in the generation of complex behaviors—even if the mechanism

a b

c

Fig. 32.1 Different underlying dynamics can generate similar patterns of functional connectivity.
a “Functional connectivity” is deliberately defined in this chapter as an indicator of correlated
iEEG activity between brain regions, not as an indicator of causality or information transfer. This is
because most methods for calculating functional connectivity cannot distinguish between (1) direct
influence between two regions via axonal projections, (2) indirect influence through a third, poten-
tially unrecorded region, (3) an unrecorded region independently driving activity at two sensors,
or (4) external inputs which happen to yield similar activity patterns despite no direct influence
between the two. b In each of these cases, phase-lagged oscillations could emerge in two recorded
regions, yielding c a tight distribution of phase lags across time (or trials), which is interpreted as
positive “functional connectivity”
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by which activity becomes synchronized is unknown. It is on this basis that broad
networks with distinct roles in cognition have been identified, and there is growing
evidence that understanding these networks has diagnostic or therapeutic utility.

Intracranial EEG presents unique challenges in the study of functional connec-
tivity. Measures of functional connectivity are arguably more (though incompletely)
protocolized and validated in the functional MRI community, which has long lever-
aged the relative consistency of scans across subjects to identify functional connec-
tions which relate to behavior. No such luck in the iEEG world—every subject
has a different sampling of brain regions, often with different recording hardware,
collected on different systems. The interpretation of frontal–temporal connectivity,
for instance, could differ dramatically between a subject with an electrode in the
anterior aspect of the middle temporal gyrus versus another with an implant 1 cm
posterior. The high temporal resolution and concomitant frequency decomposition of
iEEG signals is a powerful advantage over fMRI, but also opens a complicated world
of variable interpretation: which set of frequencies “carry” functional connectivity,
and could those frequencies change from moment-to-moment? Do signals at one
frequency interact with neural responses in another? These questions—and many
others—are too expansive and unexplored to answer in the course of this chapter,
but are an exciting focus of much ongoing work [3].

32.2 IEEG-Based Connectivity Metrics

There is no single “right way” to measure functional connectivity, especially using
iEEG. However, there are a number of metrics which are used more commonly in
the literature. These metrics can be broken down into two broad categories, based on
whether or not a correlative measure is directly dependent on the phase consistency
between two iEEG signals. Because of their widespread use, we will focus primarily
on phase-based measures of iEEG connectivity, but will further consider alternative
metrics which do not directly rely on the computation of phase (see Non-phase
metrics of iEEG connectivity).

32.2.1 Phase-Based Measures of Functional Connectivity

As described intensively in this text, iEEG signals can be easily broken down into
component parts at distinct frequencies, enabling cognitive scientists to study the
relationship between the frequency of neural activity, cognition, and downstream
behavior (see also Chap. 49). This spectral decomposition of a signal is fundamental
to EEG/iEEG studies and is most commonly employed to examine how spectral
power—reflecting the amplitude of a signal—relates to a behavioral variable of
interest. Analogously, functional connectivity can be computed for specific frequen-
cies or frequency ranges (“bands”), reflecting how the frequency-specific component
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of iEEGsignals correlates between two electrodes. Phase—or themeasure of position
through the course of a waveform—is useful for measuring inter-regional connec-
tivity because it essentially indexes the configuration of a neural oscillation over time,
in units that are standardized across electrodes (see Interpreting iEEG connectivity
for further discussion).

Power and phase are interrelated components of EEG/iEEG signals. Power is
a complex summation of neural activity that likely reflects different physiological
processes depending on the frequency band of interest, but broadly derives from
the spatially-summed postsynaptic potentials generated by dendritic inputs. High
temporal correlation of such inputs across a wider spatial extent of neurons drives
higher-amplitude oscillations and therefore higher power. Coarsely, greater power
indicates greater synaptic input activity in a region, but note that other types of cellular
activity—including action potentials—can also contribute to iEEG power, especially
at higher frequencies [3]. The phase of these oscillations is an indication of whether
an oscillation is at a trough, peak, or somewhere in-between, reflecting periods of
greater or lesser synaptic and cellular activity. Phase is thought to play several roles,
including the coordination of spiking activity [4], the modulation of power in other
frequency bands [5], and the synchronization of oscillations between different brain
areas [6, 7]. Phase can be measured independent of power, but as the power of an
oscillation approaches zero, its measured phase will be increasingly unreliable.

Connectivity metrics will often be derived from the difference in phase between
neural oscillations in two different electrodes. If the phase difference between two
electrodes is highly consistent over trials, or time, those electrodes have high func-
tional connectivity (Fig. 32.2). Conversely, if the phase difference between two oscil-
lations is highly variable or inconsistent, those electrodes are said to have low func-
tional connectivity in that frequency band. Critically, functional connectivity should
not exist in a vacuum—any consistency in phase differences can be interpreted as
positive connectivity, so should always be tested parametrically, compared against a
control condition, or compared against a null distribution (see Statistical frameworks
for analyzing iEEG connectivity).

How dowe quantify the consistency of phase differences between two electrodes?
In this section,wewill review somecommonmetrics for summarizing the consistency
of distributions of phase differences (across time points or trials) between two iEEG
sensors. These metrics have been developed to account for several factors that may
alter the interpretation of “connectivity.” The most prominent of these factors are
volume conduction, baseline power of neural oscillations, and statistical bias, each
reviewed here.

32.2.2 Phase-Locking Value

The phase-locking value (PLV) is one of the most straightforward and commonly-
used metrics for computing inter-areal functional connectivity in iEEG data [8]. The
metric reflects the consistency of phase differences between two oscillations, at a
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a

b

Fig. 32.2 Computation and interpretation of the phase-locking value (PLV). a PLV is estimated
by first taking the phase difference between two oscillations from two separate spatial sources,
and aggregating phase differences across time or trials. The length of the mean resultant vector—
the vector sum of all of the polar data—is the phase locking value. b If all phase differences are
closely aligned, vectors will sum additively, producing long resultant vectors and high PLV. If
phase differences are more diffusely distributed around the unit circle, some vectors will cancel
out, producing shorter resultant vectors and correspondingly lower PLV. Phase differences in a
randomuniformdistribution around the unit circle—aswould be the case in completely uncorrelated
oscillations—will, on average, completely cancel out and produce very short resultant vectors (in
the limit case, a PLV of zero)

given frequency. “Consistency” is taken to mean the constancy of values over either
time or experimental trials. For example, two oscillations recorded from two different
electrodeswhichmaintain a constant phase difference for several cycles could be said
to have a high PLV—and therefore a high functional connectivity—in that interval.
Alternatively, if the difference between two oscillations is constant at a specific point
in time following the onset of an experimental trial, across all trials, this would also
indicate high FC in an across-trials sense. Neither time nor trials is “better” than the
others—the choice over which dimension to integrate depends on the experimenter’s
hypothesis (but this choice should always be made clear to the reader!) [9]. Note
that the physiologic interpretation between time vs. trial-based connectivity differs.
Connectivity over time suggests that, through the course of several oscillatory cycles,
two brain regions maintained a consistent phase lag which—in theory—facilitated
communication or neuroplastic mechanisms during that interval. Connectivity over
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trials indicates that, relative to a point in time defined by experimental variables,
two regions tended to have a similar phase lag on all trials. This could indicate that
experimental conditions induced stereotyped iEEG responses among the recorded
regions, which may also be a mechanism that supports inter-areal communication
and plasticity.

The PLV can most intuitively be thought of by considering the distribution phase
differences around the unit circle (Fig. 32.2). If phase differences are highly consis-
tent, they will bunch together towards a specific direction (in circular terminology, a
von Mises distribution with a low circular variance might be expected, as in the left
panel of Fig. 32.2b). If phase differences are inconsistent, they will be distributed
around the unit circle randomly, with no clear directionality to the distribution. In
practice, this property of phase distribution is captured by the mean resultant vector
length; this metric is calculated by treating each data point as a circular unit vector,
summing the vectors, and normalizing by the total number of vectors (i.e. averaging
the vectors; see Eq. 32.1). The resultant vector length (which will fall between 0 and
1 because of the normalization step) is the phase-locking value. A PLV of 1 would
mean that all vectors—in other words, all phase differences—were exactly the same
across all trials/timepoints. Conversely, a PLV of 0means that phase differences were
distributed exactly uniformly around the unit circle.

PLVt f = |N−1
N∑

n=1

ei(ϕxt f −ϕyt f )| (32.1)

Equation 32.1 Calculation of the mean resultant vector length, or the PLV. N is the
total number of trials acrosswhich PLV is calculated,whileϕ refers to the phase angle
of electrode x or y at timepoint t and frequency f. The phase differences are summed
and then normalized by the total number of trials (or timepoints, if computing PLV
over time). Finally, only the magnitude of the result is taken, since PLV itself is
independent of the mean phase direction.

Several important points arise from this formulation. First, note that this measure
of phase consistency between two electrodes is entirely independent of the average
phase direction—in other words, so long as the phase distribution is highly clustered,
PLV will be high, whether that cluster points to 0°, 90°, 180°, and so on. In practice,
this means that the PLV (and its cousins, described below) measures functional
connectivity regardless of the degree of lag between two signals, so long as that
lag remains constant over time/trials. Later, we discuss modifications to the PLV
which account for phase directions (see “PLI, wPLI, and the question of volume
conduction”).

Note also that the PLV is a measure of connectivity which derives solely from
phase information extracted from EEG activity (in other words, PLV analysis utilizes
only the imaginary component of a complex number). This offers some benefits, as
it keeps connectivity analyses simple and easier to interpret, without the need to
account for other variables that describe the amplitude, duration, other qualities of
neural oscillations. Conversely, these qualities may be relevant to a neuroscientific
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question about connectivity, and will be missed entirely by a pure PLV analysis. For
example, it may be relevant to know that the amplitude of an ongoing theta oscillation
at electrode A decreases during times at which phase consistency with electrode B
also appears to fall, suggesting that the phase measure itself might be subject to more
statistical noise. Fortunately, there exist measures of functional connectivity which
account for spectral power as well as phase.

32.2.3 Coherence

A relatively simple modification to the PLV formula can be introduced to account for
changes in spectral power at the contributing electrodes, called spectral coherence
[10]. For each unit vector of phase difference (as in Fig. 32.2a), the vector length
is weighted by the multiplied signal magnitudes (the square root of signal power)
at that specific time point or trial. In other words, if signal magnitudes happen to
be low, the corresponding phase difference vector will contribute less to the overall
measure of functional connectivity that we call coherence (Fig. 32.3). Note also that
because baseline spectral power changes over the course of timeor trials, theweighted
vector sum is divided by the average power at both electrodes over time/trials, thereby
rendering anoutput of coherence in a range from0 to1, just like thePLV(Eq. 32.2).As
this normalization step uses average power, it does not “undo” theweighting by power
at specific trials or instantaneous timepoints inherent to this metric. Additionally, it is
important to observe that the phase differences which make the greatest contribution
to coherence will occur alongside correlated changes in power at both electrodes;
simultaneous increases in power at two electrodes, associated with consistent phase
differences, will tend to drive high coherence values.

Cohxy =
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n=1|mnx |

∣∣mny

∣∣eiϕnxy

∣∣∣
2

( 1
N
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N
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Equation 32.2 Calculation of the coherence between electrodes x and y. Cxy, Cxx,
and Cyy refer to the cross-spectral density and auto-spectral densities of electrodes
x and y, respectively. m refers to the signal magnitude at each electrode, trial n, and
timepoint. ϕ refers to phase differences between electrodes. N is the total number of
trials (or time interval) across which coherence is computed. Note that the numerator
(Cxy) is simply a magnitude-weighted (and squared) version of the PLV, while the
denominator serves to normalize the result by the average power at both electrodes,
rendering a result between 0 and 1.

Coherence has been a popular choice in many recent iEEG studies, because inves-
tigatorsmay see it as an easy-to-interpretmeasure of FC that incorporates two features
of iEEG signals—power and phase—which are both understood to be important
in neural dynamics. Several efficient implementations of coherence are available
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a

b

Fig. 32.3 Spectral coherence and weighted phase-lag index. a Spectral coherence reflects the
power-weighted phase consistency between two signals. Phase vectors which are measured during
periods of low power contribute less to the overall measure of phase consistency. b The weighted
phase-lag index (wPLI) accounts for volume conduction by down-weighting the contribution of
phase differences that are close to the zero axis. Phase differences of exactly zero would make no
contribution to the measure, while phase differences of 90° or 270° make maximum contribution

in popular open-source scientific computing packages; we recommend the MNE
Python implementation [11] (see https://mne.tools/0.13/generated/mne.connectivity.
spectral_connectivity.html).

32.2.4 PLI, wPLI and the Question of Volume Conduction

The brain is not nearly as discrete as the sensors we use to record it. Indeed, the brain
is a heterogenous mixture of fat, neurons, glia, vasculature, ionic fluids, intercellular
proteins, and more. While some of these substances are more electrically conductive

https://mne.tools/0.13/generated/mne.connectivity.spectral_connectivity.html
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than others, the brain’s general makeup of ions dissolved in water tends to propagate
electrical field potentialswell beyond their source, i.e. ionic gradients across neuronal
cell membranes. Because of this, electrical field potentials—the substrate of iEEG
recordings—may be detectable far from their point of neuronal origin. As such,
human electrophysiologists often ask whether iEEG recorded by an electrode is
a representation of local activity versus distant sources. This is important when
measuring functional connectivity, because observed phase differences between two
regionsmay not reflect inter-regional activity propagated through axonal projections,
but instead conduction of electrical activity through aqueous solution—or “volume
conduction” [12, 13].

Significant effort has been devoted to characterizing and modeling volume
conduction, in an effort to free our functional measures of this potentially-
contaminating influence. While these efforts are important, far less often is the
question asked, “what does it matter?” Indeed, if volume conduction is a natural
phenomenon of the brain, might we be losing important information by ignoring it?
If our own crude sensors can be affected by volume-conducted activity, it is possible
that neurons are too! Might electrical fields propagated through inter-neuronal space
be a meaningful substrate of inter-areal communication in the brain? Perhaps, but
perhaps not.

At the very least, it is worth considering how volume-conduction could affect
iEEG data. Operating under the assumption that volume conducted effects are an
undesirable confound, methods exist for mitigating its effect on iEEG data. These
methods are predicated on the idea that volume-conducted signals, or contaminants
introduced by referencing schemes, result in signal components with 0 degrees of
phase lag between two electrodes [14]. (Similarly, volume conduction can also result
in a measured phase difference of 180 degrees, depending on an electrode’s position
relative to a source dipole, i.e. whether it detects negative vs. positive voltage fluctu-
ations.) This is because volume-conducted electrical activity is more-or-less simulta-
neously propagated to all electrodes, so it will be seen with essentially no time delay
regardless of where an electrode is positioned relative to another (the same would
apply to spurious phase correlations introduced via a common referencing scheme).

An early attempt to address such zero-degree lags came in the formof the phase lag
index (PLI) [15]. The intuition behind the PLI is to measure the degree of asymmetry
in phase differences across the 0–180 axis (also called the real axis in complex-
number terminology); if phase differences across trials/time tend to consistently point
above or below this axis (i.e. towards 90° or 270°), one can be confident that there is
little zero-lag component, else there would have been vectors pointing towards 0 or
180°. Conversely, if phase differences are distributed symmetrically across the real
axis, such as towards 0 or 180°, there are substantial zero-lag components that might
derive from spurious sources. Note that this measure of asymmetry (Eq. 32.3) is
irrespective of the numerical angle of phase lag—so long as lags are asymmetrically
distributed around the real axis, PLI will be high. This relationship comes are the
expense of the metric’s stability, especially if phase lags are relatively close to the
real axis.
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Equation 32.3 Calculation of the phase-lag index (PLI). Notation as in prior equa-
tions, where “sign” is the operator that assigns 1 or −1 depending on whether the
phase difference ϕ is above or below the zero axis (i.e. the 0–180 degree axis on a
polar plot). Note again how this formula is a slightly modified version of the original
PLV formula in Eq. 32.1.

To address this instability, Vinck et al. developed the “weighted PLI” [16]. The
wPLI operates similarly to the PLI in that is discounts the influence of phase lags
near the zero axis (i.e. lags close to 0° or 180°). But unlike the PLI, it is not agnostic
to the value of phase lag; instead, phase lags are down-weighted the closer they
are to the zero (or real) axis (stated differently, phase lags are weighted according
to the magnitude of the imaginary component of the complex vector). In this way,
phase lags of zero would not make any contribution to the wPLI, while lags of
90° or 270 would make maximum contributions (Fig. 32.3b). This type of vector-
weighting is similar in principle to the way in which phase lags are weighted by
power to derive spectral coherence. The wPLI generally provides a good estimate
of functional connectivity independent of spurious zero-lag correlations. However,
this metric has low sensitivity to high correlations with low phase lags, as very
concentrated phase clustering around a value close to zero, like 10°, will still yield a
“low”wPLI.Moreover, care should be takenwhenusing thewPLI to compare relative
synchronization between two conditions, as decreases would be observed if (1) phase
lag distributions become less concentrated with a constant mean direction, or (2)
the mean phase lag rotates towards zero while the distribution maintains constant
concentration [17, 18]. Note that in the latter case, relative wPLI will still decrease
even if phase lags rotate within a range unlikely to reflect volume conduction; e.g.
90° to 60°. (For further statistical considerations when using the wPLI and other
phase-based metrics, see Statistical frameworks for analyzing iEEG connectivity).

Similar to volume conduction effects, an experimenter’s choice of referencing
scheme (see Chap. 28) can also introduce spurious correlations between signals
in distant electrodes, if not properly accounted for [12, 13]. For example, the
common-average reference—in which the average iEEG signal across all electrodes
is subtracted from each individual trace—will also add common signal elements to
all electrodes. This procedure could manifest in connectivity metrics as high correla-
tions with zero phase lag, spuriously increasing the measured connectivity between
a given electrode pair. The bipolar reference avoids such brain-wide contamination
at the expense of reduced sensitivity to dynamics with relatively broad topography,
as the reference essentially acts as a high-pass filter. In particular, this reference may
disrupt the detection of low-frequency neural oscillations like the theta oscillation
[19]. In both of these cases, careful statistical controls—such as a contrast between
cognitive states or against a baseline period, canmitigate but not necessarily eliminate
the effect of referencing.
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32.3 Alternative Metrics of iEEG Functional Connectivity

While phase is one of themost commonways to probe intracranial functional connec-
tivity, phase-free measures have been developed that offer unique windows into
intracranial connectivity. An experimenter’s choice to use thesemetrics as opposed to
phase-based values depends on the underlying hypothesis being tested. However, the
two metrics we will discuss here—Granger causality and broadband power correla-
tions—have unique propertieswhich prompt their usage in certain scenarios. Granger
causality, as the name implies, can identify putatively causal relationships between
brain regions (and identify directed interactions), whereas broadband power corre-
lations are thought to be particularly reflective of general neural activation and align
with findings from the fMRI literature.

32.3.1 Granger Causality

The metrics discussed so far have ignored a key question about iEEG functional
connectivity: Is there a direction to the communication between brain regions? The
PLV and its related metrics are all undirected interactions, meaning that the metric
says nothing about whether the activity at one electrode precedes the other. “Granger
causality” has been increasingly used in the neurosciences to identify directed inter-
actions between timeseries that originate from different parts of the brain, and more-
over to statistically suggest a level of causal interaction between such timeseries
[20–22]. The logic is to use linear autoregression to measure how much electrode
A’s own timeseries predicts future values, and compare to the combined autoregres-
sive prediction of electrode A and electrode B. In other words, does knowledge of
electrode B’s timeseries add useful information for predicting the future of elec-
trode A? If so, electrode B exerts a positive Granger “causal” influence on electrode
A. Note that the word “causality” is used loosely in this context, as the confounds
presented in Fig. 32.1 are not addressed by the computation of Granger causality (in
its simplest form). Formally, the autoregressive equation for electrode A is:

At =
N∑

n=1

x At−n + εAt

where A is the iEEG value at time t, x is the autoregression coefficient, and εAt is the
error between the predicted and actual value at time t. N is the total length of time
over which to estimate the autoregression. This equation essentially uses prior values
of electrode A’s timeseries to predict future values, weighted by a linear coefficient
x. When information from two electrodes is available, the equation becomes:
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At =
N∑

n=1

x At−n +
N∑

n=1

yBt−n + εABt

ElectrodeA’s timeseries can nowbe predicted using information from electrodeB,
weighted by an additional coefficient y. The error term εABt reflects the error between
prediction versus actual after incorporating the new information from electrode B.
If the error from the bivariate regression is less than the error from the univariate
autoregression, we can infer that B exerts a Granger-causal influence on electrode
A. To quantify this, we take the natural logarithm of the ratio of the error variances:

G = ln

(
var(εA)

var(εAB)

)

Note that if electrode B adds no predictive value beyond knowledge of electrode
A’s timeseries, the ratio of variances will be 1 and the Granger value will be zero. If
the error decreases with consideration of electrode B, then the ratio will be greater
than 1 and G will take on a positive value.

32.3.2 Power Correlations

One of the simplest ways to conceptualize functional connectivity is as the corre-
lated neural activity between different regions of the brain. iEEG spectral power is
generally a reflection of such activity, be it synaptic potentials (more likely to drive
oscillatory power at lower frequencies) or the direct consequence of population-
level spiking activity (more likely to be observed at high frequencies) [23, 24]. In a
similar manner to the way in which the fMRI BOLD signal is correlated between
regions, the timecourse of spectral power in particular frequencies can be correlated
as an alternative measure of functional connectivity that is not directly rooted in the
phase alignment of oscillations. The general method is straightforward: for a pair of
electrodes, compute spectral power over a suitably long interval (a minimum three
cycles of the frequency of interest is a common rule-of-thumb), and next compute
the correlation coefficient between the two timecourses. (Note that power values
are often non-normal, necessitating use of the Spearman correlation to avoid biased
results [9]). High correlation coefficients indicate co-activation of the two electrodes
at a given frequency.

This method tends to work best at lower frequencies, which naturally evolve at
slower timescales and which are often subject to substantial temporal smoothing in
spectral analysis (i.e. Morlet wavelets). However, the correlation of high-frequency
power timecourses poses a challenge (especially ~50 Hz and up), since these values
will tend to fluctuate widely over time intervals that are most task-relevant (typically
at least several hundred milliseconds to seconds). To observe the slower-timescale
fluctuations of a high-frequency signal, the amplitude envelope is measured and
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correlated, essentially a form of temporal smoothing. This is best achieved by low-
pass filtering the power timeseries before running a correlation [25, 26].

32.4 Statistical Frameworks for Analyzing iEEG
Connectivity

Due to their somewhat abstract nature, it is exceptionally difficult to interpret phase-
basedmeasures of iEEG connectivity in a vacuum—it’s clear that a PLV of 0.4means
less synchronization than a PLVof 0.8, but what does a PLVof 0.4 or 0.8 reallymean?
Here, proper statistical frameworks are essential for drawingmeaningful conclusions
from these kinds of data, but as with many aspects of iEEG connectivity, there is
no definitively prescribed or “correct” way to do this. As such, this section will
present important considerations and outline existing frameworks for analyzing iEEG
connectivity data, couched among the broader message that investigators should
carefully consider the origin, distribution, and specific characteristics of their own
data when designing statistical tests.

Investigators should first take care to note that the PLV and its related metrics
suffer from a bias problem—lower sample sizes tend to inflate a PLV-like measure
of synchronization [27, 28]. This means that a direct comparison between PLVs
measured between two conditions is inadvisable if those conditions consistently
produce differing numbers of trials/timepoints (as is common in many neuroscience
paradigms, such as comparisons between “correct” and “incorrect” judgments). A
simple t-test between distributions of PLVs could therefore erroneously suggest a
significant difference between conditions existswhen, in reality, one condition simply
produces fewer observations than the other. Fortunately, there are several methods
by which one can account for this bias.

Perhaps the most straightforward approach to mitigating this bias is to
design experiments or analyses to directly match the number of observa-
tions/trials/timepoints, but this is not always feasible. Nonparametric tests offer
a compelling option to account for inherent bias in phase-based metrics without
altering experimental design or sacrificing data (see also Chap. 35). For instance,
bootstrapping methods could be used to subsample from the condition with more
observations, compute and compare the PLV between count-matched data, and then
continue resampling to construct a bootstrap estimate of the true difference between
conditions. Similarly, labels between the two conditions could be repeatedly shuffled
and the difference in PLV between conditions computed on each shuffle, generating
a null distribution of PLV-differences to be expected given the inherent bias. The true
PLV difference can then be compared to this null distribution to derive a p-value for
the significance of the difference [29] (Fig. 32.4). Note that, in this method, the null
distribution will likely not be centered around zero, as it will inherently identify the
degree of bias due to sampling differences.
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Fig. 32.4 Example nonparametric test for PLV difference. Trials are randomly shuffled between
experimental conditions to give rise to a distribution of PLV differences that would be expected by
chance, against which the true PLV difference can be compared

However, nonparametric methods are computationally expensive, and yet other
methods also exist for mitigating the bias problem. Several modifications to PLV-
based metrics have been introduced to produce new, bias-free measures of phase
synchronization that can be safely used even in the case of differential observa-
tions between conditions. In 2010, Vinck, et al. published a description of the pair-
wise phase consistency (PPC), which is essentially the average dot product between
possible pairs of phase vectors in a given distribution. Pairs of vectors with small
angular distance between them—as is the case in a highly concentrated distribution,
will have larger dot products and yield a larger PPC. The authors show that the PPC
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is an unbiased estimate of the squared PLV. An unbiased version of the PLI and a
debiased version (i.e. may still reflect some bias at small sample sizes) of the wPLI
were similarly developed [16].

32.5 Interpreting iEEG Connectivity (and Next Steps
for the Field)

Statistical tests are necessary to establish a sense of how reliable patterns of connec-
tivity might be, but they are insufficient to explain the neurobiological basis of
functional connectivity, or how connectivity might support cognitive function and
behavior. As noted previously, the effect of “functional connectivity”—that is, corre-
lations between the electrical signals in different parts of the brain—can manifest
similarly from very different underlying dynamics (see Fig. 32.1). Essentially, the
underspecification of purely correlative measures will be an enduring problem in
human neuroscience, which no amount of assumption-laden analytical complexity
will truly solve. Ultimately, causal interventions in the brain—like stimulation—will
be key to building a full understanding of how brain regions influence one another
(see Chaps. 5, 39, 41 and 52 on stimulation approaches).

Until that time, what can we learn from studies of correlative intracranial func-
tional connectivity? A large body of work has used the computational techniques
reviewed in this chapter to generate compelling hypotheses about how functional
connectivity gives rise to human behavior. One of the most intuitive and popular
hypotheses is that synchronized oscillations between brain regions are a substrate of
inter-areal communication; coordinated oscillations of the electrical field potential
ensure that disparate neuronal assemblies co-activate and promote selective synaptic
strengthening. For example, the gamma rhythm in particular serves to align the
spiking output of one area with the optimally-receptive phase of another, facilitating
transmission of neural representations [6, 30]. Related hypotheses posit that the theta
rhythm synchronizes brain regions with a particularly important role in facilitating
neural plasticity that gives rise to episodic memory [7, 19, 31, 32].

In line with these ideas, many recent studies have used the analytic techniques
discussed in this chapter to better understand how functional connectivity relates
to human cognition. A key insight common to all such studies is that moment-to-
moment variability in the inter-areal synchronization correlates with periods of time
when cognitive processes are operating smoothly. For example, transient increases
in iEEG theta-band synchronization between the lateral temporal, medial temporal,
and prefrontal cortex are associated with successful memory encoding, as measured
using the PLV [17, 29], spectral coherence [33], and PPC [34]. Theta coherence
between the prefrontal cortex and entorhinal cortex was also found to be correlated
with navigational performance in human subjects [35]. When considered alongside
the powerful notion that neuronal spiking is organized by theta oscillations [36], these
results suggest theta oscillations align neural representations across brain regions in
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service of effective cognition (Fig. 32.5). More generally, several lines of evidence
suggest that neural oscillations facilitate communication between brain regionswhen
the phase lagmatches the axonal conduction delay, thereby allowing the output of one
region to arrive at a downstream area during a time ofmaximum neuronal excitability
[7, 37].

An exhaustive review of this literature is outside the scope of this chapter and is
addressed inmore detail elsewhere in this text (see Chap. 25). Study of intracranially-
based functional connectivity has given rise to a host of compelling frameworks for
how the human brain works—our next steps are to use the new tools of human
neuroscience to support or refute these frameworks with causal perturbations of
human brain networks.

This does not mean that the age of correlative functional connectivity is over.
Far from it—these metrics can offer powerful support for existing frameworks, or
inspire entirely new conceptualizations of brain function. But to make the best use
of iEEG-based functional connectivity in human neuroscience, investigators must
agree on a common language. Too often, the overwhelming space of frequency bands,
connectivity metrics, and analytical flexibility causes well-intentioned investigators
to engage in forking-path analyses that can make results difficult to interpret or
compare across laboratories. There is no clear “right answer,” but the field must
engage in a collective effort to standardize our approaches—what range defines a
“frequency band”?When should we pick spectral coherence, as opposed to the PLV?
Do we conceptualize volume conduction as a pure confound, or a feature of natural
brain activity? This effort will surely be a perpetual work-in-progress, but one that
will be ever more important as iEEG proliferates in human neuroscience.

Fig. 32.5 Estimation of whole-brain patterns of iEEG theta coherence at rest. Left: Adjacency
matrix representation of theta-band (3–8 Hz) coherence between Talairach brain regions, with each
pairing represented by a given row/column combination. Data were averaged across electrode pairs
and 287 neurosurgical patients with indwelling electrodes. Low coherence values were thresholded
to zero for visualization purposes. Right: Visual representation of the suprathreshold theta-band
coherences depicted on left. (Unpublished data, courtesy of E. Solomon and Michael Kahana.)
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Chapter 33
How Can I Analyze Large-Scale Intrinsic
Functional Networks with iEEG?

Aaron Kucyi and Sepideh Sadaghiani

Abstract An intrinsic functional brain network is a set of discrete, spatial elements
that exhibit statistically dependent activity (“functional connectivity”) with each
other in a largely state-invariant manner (e.g. across wakeful rest, task performance,
and sleep).Large-scale intrinsic networks—involving coupling between distant brain
regions—were initially discovered with human functional neuroimaging (fMRI)
based on hemodynamic signals. Though fMRI studies suggest critical relevance
of these networks to brain function, findings remain challenging to interpret given
the low temporal resolution and indirect nature of fMRI. Human iEEG is poised
as a unique method that can deliver fundamental insights into the neurophysiolog-
ical connectivity processes in intrinsic networks. In this chapter, we review iEEG
analysis methods that have been used to identify electrophysiological networks
closely resembling those found using classical fMRI functional connectivity. We
focus on amplitude and phase coupling within multiple frequency bands as measures
of iEEG intrinsic connectivity. We review evidence that iEEG connectivity shows
state-invariant patterns of inter-regional coupling across multiple contexts. More-
over, we review applications of intrinsic iEEG connectivity patterns in predicting
the roles of discrete neuronal populations in cognitive function. Finally, we explore
how iEEG sheds light on the cognitive relevance of temporal dynamics within and
between intrinsic networks.
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33.1 Introduction

Cognitive neuroscience has classically emphasized the use of experimenter-
administered task paradigms that actively engage targeted mental processes such as
memory, attention, and decision-making. However, the brain exhibits highly coor-
dinated patterns of spontaneous activity, even in the absence of explicit engagement
in cognitive tasks or changes in external input. In a landmark finding with func-
tional Magnetic Resonance Imaging (fMRI), researchers discovered that infraslow
(<0.1 Hz) blood oxygenation level-dependent (BOLD) signals are highly correlated
between distant regions in the brain when people are wakeful “at rest” (i.e., letting
their minds wander freely) [1]. The spatial patterns of statistically dependent activity
(“functional connectivity”) in resting state fMRI reflect functional network integra-
tion at a large-scale level (i.e., coupling between distinct regions that are each typi-
cally 1mm3 or larger). These large-scale fMRI networks partly (but not exclusively)
reflect underlying anatomical connectivity [2] such as the coupling between homo-
topic regions of the two hemispheres that are structurally connected via commissural
fibers [3]. The networks identified at rest also strongly resemble the most common
patterns of brain-wide co-activation that are evoked during performance of cognitive
tasks [4]. Strikingly, the same spatial architecture of functional connectivity observed
at rest is also largely preserved during a wide variety of conditions, including sleep
[5], anesthesia-induced unconsciousness [6, 7], and engagement in a diverse variety
of cognitive tasks [8, 9]. Thus, the state-invariant nature of these networks suggest
a persistent role in “intrinsic” brain functions that cannot be attributed to immediate
inputs or outputs [10, 11].

Since their discovery, there has been enormous interest within neuroscience in
investigating the significance of large-scale intrinsic networks to healthy cogni-
tive function, clinical dysfunction, neurodevelopment, and aging [12]. Moreover,
there is increasing interest in the temporal dynamics of these networks in relation to
ongoing cognition [13, 14]. However, findings remain challenging to interpret given
the low temporal resolution, low signal-to-noise ratio, and indirect nature of fMRI,
which relies on hemodynamic changes that reflect complex interactions of under-
lying neural and metabolic activity [15]. Non-invasive techniques, including scalp
EEG and magnetoencephalography (MEG), have offered some insight into the elec-
trophysiological basis of large-scale intrinsic networks [16]. Yet those techniques
also suffer from low signal-to-noise as well as limited ability to precisely localize
the anatomical sources of activity.

Thus, within human neuroscience, iEEG is poised as a unique method that
can deliver fundamental insights into the neurophysiology of large-scale intrinsic
networks and their dynamics. Directly implanted electrodes offer a combination of
high signal-to-noise (higher than fMRI and EEG/MEG), high temporal resolution
(higher than fMRI and similar to EEG/MEG), and spatial resolution (similar to fMRI
and higher than EEG/MEG). Although iEEG cannot offer whole-brain coverage
due to clinical considerations, activity is typically sampled from multiple locations
distributed throughout the brain, often including simultaneous recording fromdistinct
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nodeswithin one ormultiple intrinsic networks. Another unique aspect of iEEG, rela-
tive to most non-invasive methods, is that recordings are semi-chronic. This permits
detailed investigations of intrinsic networks across various conditions and states (e.g.
experimental tasks, naturalistic behavior, sleep) at multiple time scales.

In this chapter, we review iEEG analysis methods that have been used to identify
and interrogate large-scale intrinsic networks. Given the rich information available
in iEEG signals, multiple approaches can be used to investigate these networks.
We focus primarily on coupling of iEEG signals within multiple frequency bands
in terms of both amplitude and phase, two analysis methods that capture distinct
neurophysiological processes (see also Chap. 32) [17, 18]. After a brief overview of
methodological considerations, we review evidence that iEEG connectivity shows
state-invariant patterns of inter-regional coupling across multiple mental contexts.
Moreover, we describe how iEEG intrinsic connectivity patterns predict task-evoked
electrophysiological responses as well as the consequences of intracranial stimu-
lation. Finally, we explore how iEEG sheds light on the functional significance of
temporal dynamics within and between intrinsic networks.

33.2 Methodological Considerations

How are large-scale intrinsic networks typically analyzed in iEEG data? In contrast
to fMRI, it is usually not appropriate to examine iEEG intrinsic networks based on
simply the raw signals, as these signals contain a broad range of frequency infor-
mation with dissociable components. The spectral content of iEEG, when charac-
terized as power as a function of frequency f , is non-uniform in that it shows a
1/f pattern where low frequencies contribute disproportionately to the raw signal. As
such, time–frequency decomposition is typically applied to isolate specific frequency
bands prior to analyses of intrinsic network coupling [19]. There are various method-
ological options for performing time–frequency decomposition (e.g. Hilbert trans-
form, wavelet-based methods), yet results have been largely concordant across
studies of iEEG intrinsic networks regardless of the method choice [20–22]. Impor-
tantly, although time–frequency analysis methods decompose the data into distinct
frequency bands, they do not guarantee that the derived time series contain oscilla-
tions (i.e., periodic/cyclical properties). Indeed, engagement of neuronal populations
as measured with iEEG, either when evoked [23, 24] or spontaneous [25], is often
characterized by a shift in broadband, non-oscillatory components of power ampli-
tude. Recently, it has been suggested that band-limited oscillatory signals can be
further disentangled from broadband 1/f -like fluctuations using dedicated tools (see
also Chaps. 22 and 23) [26, 27], but the potential value of such approaches to intrinsic
network analyses has not yet been investigated.

Intrinsic networks are typically defined based on coupling of amplitude or phase
of frequency band-limited activity across a time scale of seconds, minutes or longer
(see Fig. 33.1 for overview). Amplitude coupling considers region pairs for which
the strength (spectral power) of regional frequency band-limited activity waxes and
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wanes in an associated manner as being functionally connected. To estimate ampli-
tude coupling, following re-referencing and minimal preprocessing of the raw iEEG
data (see Chap. 28), time–frequency decomposition is first applied to each elec-
trode signal (Fig. 33.1a, b). The decomposition can either be applied to an entire,
continuous recording session of minutes or hours (a more computationally intensive
approach) or to shorter time windows (e.g. sliding windows of seconds). Connec-
tivity estimates from such short time windows can later be averaged to construct a
‘static’ connectivity organization, or alternatively can be employed to study time-
varying dynamics in connectivity (cf. dedicated section below). After applying time–
frequency analysis, estimates of the amplitude of band-limited power are obtained at
each sample (termed “power amplitude” or “envelope”) (Fig. 33.1c). At this stage,
the continuous power amplitudes (or multiple estimates within shorter windows)
from two different electrode locations can be correlated with one another to estimate
functional connectivity in terms of amplitude coupling.

The major alternative family of within-frequency functional connectivity
measures, phase coupling, is conceptualized as consistent phase relationships across
brain regions.During periods of consistent phase difference (lag) of a given frequency
across a pair of regions, the exchangeof neural information is thought to be temporally
well-aligned and efficient [28–30]. Many measures of phase coupling first estimate
the time course of the phase of a particular band-limited oscillation. To this end,
the Hilbert transform can be applied to the band-pass filtered signal time course at
each electrode (the Wavelet transform offers an alternative). One common measure

a b d

c

e

Fig. 33.1 Illustration of how iEEG functional connectivity can be computed based on frequency
band-limited power amplitude coupling. (a) Raw time series from a single electrode. (b) Filtered
electrode time series in the high-frequency broadband (HFB; 70–180 Hz; gray) and HFB amplitude
(green). (c)Unfiltered (green) and < 1Hz filtered (black)HFB amplitude. (d)Seed-based correlation
between a region in medial parietal cortex and other electrode sites (based on < 1 Hz filtered HFB
amplitude). (e) Same as (D) but for a range of lower frequency bands. Adapted with permission
from [44]
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of phase lag consistency, the Phase Locking Value (PLV), is based on the stability
(i.e., inverse of the variance) of a set of instantaneous phase differences [31]. In
the original PLV formulation for task-based and trial-locked connectivity, the set of
phase pairs either spans across trials at one given time point or across time points
in individual trials. Adopted to studies of intrinsic connectivity, this set comes from
consecutive phase cycles within a given time window over several seconds (to permit
sufficient oscillation cycles [18, 32]). Conversely, the Phase Lag Index (PLI) calcu-
lates the average of the sign of the phase difference over a given set of instantaneous
phases [33] (see [34] for a more stable weighted version). An alternative and widely
used approach to phase coupling is coherence (and variations thereof, e.g. [35]),
which calculates cross-correlation in the frequency domain for a pair of electrodes
[36]. Note however, that this measure does not only reflect interregional coupling
of phases, but also amplitudes. Thus, coherence may be an appropriate choice if
one conceptualizes the functional importance of phase synchrony to depend on the
strength of the carrier oscillation. The choice of the particular measure of phase
coupling therefore depends on the mechanistic view under consideration. Further,
the different measures have different levels of susceptibility to volume conduction
(imaginary coherence [35], imaginary PLV [32], and PLI/weighted PLI [33, 34] are
thought to be less affected by this artifact; see below).

For completeness, we also note that beyond the within-frequency, band-limited
measures most commonly employed and covered above, other approaches have also
been explored to study intrinsic networks in iEEG. For example, instead of relying
on spectral power or phase, intrinsic networks have been reported in cross-region
correlations of the direct ECoG signal time courses in the infraslow range (<0.5 Hz)
[37] and in canonical frequency bands [38]. Further, large-scale intrinsic network
organization has been observed for cross-frequency coupling, where high-frequency
broadband (HFB; ~ 70–180 Hz) in specific distributed regions is coupled to the
phase of a slower oscillation in a seed region [39]. In light of the breadth of possible
procedures to calculate electrophysiological long-range connectivity, we recommend
careful deliberation of biological mechanisms of connectivity for a well-informed
approach [16].

Important to the study of intrinsic networks, band-limited power amplitude time
series and phase time courses contain frequencies that are much faster than BOLD
fMRI signals. As such, when the goal is to investigate the electrophysiological
connectivity processes that correspond to those known from fMRI, then temporal
filtering is sometimes applied to the region-wise power amplitude estimates so that
low frequencies can be isolated prior to computing inter-region correlations [40, 41].
Alternatively, one might be interested in the slow fluctuation range of the cross-
region connectivity time course (when connectivity is calculated in a windowed,
time-resolved manner). In this case, the time course of amplitude coupling or phase
coupling can be temporally low-pass filtered (e.g. [42]). The temporal filtering
method must be carefully considered [43]. When applied, distinct temporal filters
are often explored and are commonly split into > 1 Hz, 0.1–1 Hz, and < 0.1 ranges
[21, 22, 41, 44]. The < 0.1 Hz range closely matches the infraslow component at
which intrinsic BOLD networks are typically investigated, but this approach involves
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severe loss of higher frequency information in the estimates of power amplitude or
cross-region phase- and amplitude coupling.

Using either filtered or unfiltered measures, a “seed-based” connectivity map can
be generated for the coupling of one electrode to all other electrodes (Fig. 33.1d),
or more globally, an ‘all-to-all’ connectivity matrix can be computed between all
implanted electrode sites (Fig. 33.3a) [18]. Connectivity maps may be generated for
multiple carrier frequencies, which can yield different patterns of results (Fig. 33.1e).

Weclose ourmethodological considerationswith a note on accounting for physical
distance. In amplitude-, phase-, and phase-amplitude coupling connectivity analyses,
iEEG correlations between electrode sites are systematically greater at shorter, rela-
tive to longer, distances. There are multiple possible reasons for this relationship.
On one hand, electrodes that are spatially proximal to one another may sample from
distinct neuronal populations that are within the same network, thereby leading to
genuine estimates of strong coupling. On the other hand, adjacent electrodes may
partially sample from the same neuronal populations due to volume conduction or
instantaneous field spread (see Chap. 17). Such factors has been well-described
within the context of non-invasive EEG/MEG and can create artifactual connec-
tivity estimates [45]. The problem is less severe in iEEG due to much greater prox-
imity between each electrode and the neuronal population that it is sampling from
[46]. However, for improved interpretability, studies of intrinsic network coupling
have typically accounted for physical distance in their analyses. For example, when
comparing the similarity of spatial maps of BOLD and iEEG functional connectivity,
or between iEEG maps obtained across different states, physical distance (typically
Euclidean distance) has been regressed out via partial correlation or cubic spline
regression [20–22, 37, 47]. When spatial similarities remain consistent even after
accounting for distance, the identified intrinsic network patterns are likely to be
genuine rather than a product of volume conduction.

33.3 Intrinsic Networks from Amplitude Coupling

Todate,most iEEGstudies on large-scale intrinsic networks have focusedon coupling
ofpower amplitudewithin frequencyband-limited ranges, typically involvingwithin-
frequency band coupling between distinct electrode sites. This focus builds on a rich
literature of cognitive task iEEG studies, where stimulus-/task-evoked changes (rela-
tive to a baseline prestimulus state) in regional frequency-specific power amplitude
have been found across a broad variety of conditions [48, 49].More recently, the self-
organizing properties of task-independent, ongoing co-fluctuations in band-limited
power amplitude have been investigated between regions across large-scale intrinsic
networks [18, 20–22, 37, 41, 42]. Though a large range of carrier frequencies have
been explored, much of this work has emphasized HFB or “high gamma” power
amplitude, given that this component of the iEEG signal is known to correlate posi-
tively with the BOLD signal [50, 51] and with local neuronal population spiking rate
near an iEEG electrode [52–54].
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Using the above-described power amplitude connectivity analyses, researchers
performed iEEG studies that confirmed an electrophysiological basis for large-scale
intrinsic networks. Landmark studies by Nir et al. [41] and He et al. [37] provided
initial evidence for neuroanatomically selective iEEGcoupling patterns that resemble
those originally identified with BOLD fMRI. A hallmark feature of intrinsic BOLD
networks is inter-hemispheric coupling between homotopic regions [1, 3]. Analyzing
bihemispheric iEEG recordings from right and left auditory cortex, Nir et al. [41]
investigated this inter-hemispheric phenomenon across resting state, task, and sleep
states via correlations of band-limited power amplitudes across a broad range of
frequency bands within the 1–100 Hz range. They found that across all states,
gamma band-limited power (40–100 Hz) showed the strongest inter-hemispheric
correlation, although significant coupling was also found at lower frequencies.When
the infraslow (<0.1 Hz) component of gamma power amplitude was examined via
temporal filtering, strong inter-hemispheric correlations (r = 0.5 to 0.8) were found
that approached the magnitude of correlations typically identified in fMRI data. This
inter-hemispheric coupling was highly anatomically selective as it did not gener-
alize to electrodes outside of the bilateral auditory regions. However, fMRI data
were not available for direct comparison with iEEG. In complementary work, He
et al. [37] more directly compared BOLD (obtained via pre- or post-surgical scans)
versus ECoG functional connectivity of intrinsic networks in somatosensory, motor
and surrounding regions. When investigating gamma (50–100 Hz) band-limited
power, they found significant positive spatial correlations between BOLD and ECoG
connectivity estimates, with some dependence on the state in which ECoG data were
acquired (correlations were significant for waking data and REM sleep but not for
slow-wave sleep). Together, these two studies [37, 41] provided the foundations for
further work investigating intrinsic networks via iEEG power amplitude coupling
across diverse behavioral states and broader brain systems.

Using similar power amplitude coupling analyses, iEEG intrinsic networks have
now been identified within various systems extending well beyond auditory and
sensorimotor regions, suggesting a general electrophysiological basis of intrinsic
BOLD functional connectivity across individuals, brain networks, and behavioral
states [21]. For example, iEEG has revealed intrinsic electrophysiological coupling
across rest, task and sleep states within the default mode network (DMN) [55],
one of the most frequently investigated intrinsic networks in neuroimaging research
(Fig. 33.2). Anatomically-precise intrinsic coupling between nodes of the DMN has
consistently been found based on fluctuations in HFB/high gamma power ampli-
tude [20–22, 44]. Lower frequency ranges also show DMN organization that may be
less anatomically specific [20, 21, 44], though future work is needed to quantify the
potential inter-frequency differences in spatial patterns within networks. Addition-
ally, electrodes implanted within other well-described cortical association networks,
such as the “dorsal attention” (DAN) and “frontoparietal control” networks, have
consistently revealed intrinsic connectivity within the HFB power range [20, 21].
It was further suggested that these networks can be distinguished from one another
basedonpreferential couplingwithin low-frequencybands (e.g. 4–8Hz theta inDMN
vs. 8–12 alpha in DAN) [20], a phenomenon that requires more in-depth future study.
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The state-invariant nature of intrinsic iEEG networks across wider systems has also
been confirmed; similarities in spatial organization have been repeatedly observed
across rest, task and sleep states [21, 44, 47].

a b

Fig. 33.2 Power amplitude coupling between core regions within major intrinsic networks origi-
nally described with fMRI. (a) Correspondence between presurgical resting state BOLD functional
connectivity (shown on cortical surface) and ECoG high-frequency broadband (70–170 Hz; 0.1–
1Hz filtered envelope) functional connectivitywithin the same patient’s brain (fMRI and ECoGdata
acquired separately). The medial prefrontal (mPFC) and posterior cingulate (PCC) cortices, within
the default mode network (left), show strong, anatomically selective coupling in both modalities.
The superior parietal lobule and frontal eyes fields, within the dorsal attention network (right), simi-
larly show strong selective coupling. (b) Highly correlated fluctuations (high-frequency broadband
power amplitude; 0.1–1 Hz filtered) between mPFC and PCC persists during sleep (in same patient
as shown in (A)). Adapted with permission from [21]

a b c

Fig. 33.3 Invariance of the intrinsic spatial organization of electrophysiological connectivity over
cognitive states and oscillatory frequency bands. (a)All-to-all electrode phase couplingmatrices for
an example subject. For both the theta (top row) and beta band (bottom row), the connectivity pattern
showed strong spatial correlation between task-free wakefulness (left) and a cognitively demanding
workingmemory 2-back task (right). A (weaker) similarity can also be visually appreciated between
the frequency bands (top vs. bottom). (b) Spatial correlation was assessed for a group of subjects
between the connectivitymatrices from restingwakefulness (“rest”), pre-stimulus baseline (“base”),
and active trial-related processing during the post-stimulus period of various different tasks (“task”).
Group-average values are shown for the cross-state dissimilarity (1 minus spatial correlation). In all
frequency bands, this dissimilaritywas no greater acrossmental states than between two resting state
periods. (c) The group-average spatial correlations across frequency-specific connectivity patterns
(consensus over mental states) showed strong spatial correlation between frequency bands. All
visualized data are derived using Phase locking Value (PLV) on ECoG data. Equivalent results were
observed for band-specific amplitude correlations. Adapted with permission from [47]
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In addition to within-network coupling, the power amplitude approach has also
been used to examine the electrophysiology of between-network phenomena. A
major finding that emerged from intrinsic connectivity fMRI is a negative correla-
tion (anticorrelation) between signals in the DMN and other networks, especially
DAN and salience networks [56–58]. During active task performance, the DMN
typically exhibits stimulus- or task-evoked BOLD deactivation when the DAN and
salience network show BOLD activation, an inter-network pattern often referred to
as ‘functional antagonism’ [59]. This phenomenon has been extensively validated
with iEEG based on task-evoked HFB power amplitude [60–62]. However, whether
or not intrinsic (state-invariant) anticorrelation, including presence during a resting
state, is genuinely grounded in neurophysiological dynamics has been a matter of
debate due to technical limitations of fMRI [63]. Within this context, iEEG has been
used to investigate the neurophysiology of intrinsic DMN anticorrelation. In short
duration (~3–6 min) resting state iEEG recordings, Keller et al. [22] reported DMN
anticorrelations within the low-frequency (<1 Hz) component of high-frequency
broadband (50–150 Hz) power amplitude fluctuations. However, when comparing
resting state iEEG to BOLD correlations (using presurgical fMRI), only a subset of
negative BOLD correlations corresponded to negative iEEG correlations. Moreover,
iEEG anticorrelations were generally weaker than those found in BOLD data [22].

Importantly, however, power amplitude connectivity analysis methods typically
assume zero-lag relationships between regions. Task-evoked iEEG responses have
revealed that the onset of activations within the DAN and salience network precedes
the onset of DMN deactivation by hundreds of milliseconds [61, 62], a phenomenon
that fMRI has been blind to. Thus, Kucyi et al. [62] investigated lagged iEEG inter-
actions between neuronal populations that were functionally localized within the
DMN, DAN or salience network based on task-evoked response profiles. Using
a lagged cross-correlation of HFB power amplitude, they found DMN anticorre-
lations in both rest and task conditions. However, relative to rest, the magnitude of
these lagged anticorrelations was stronger during a continuous performance task that
required sustained attention [62]. Future iEEG studies may shed light on the rapid,
temporally dynamic processes that may underlie DMN anticorrelations as well as
broader, intrinsic coordination between networks. Methodologically, this work high-
lights limitations of power amplitude coupling analyses that purely rely on zero-lag
relationships, suggesting a need for future studies to account for lagged inter-regional
relationships. Important contributions of lagged relationships to intrinsic network
organization have been recently demonstrated based on slow fluctuations in fMRI
and iEEGsignals [64], but iEEGcan also be leveraged to generatemuchmore precise,
millisecond-level insights.

33.4 Intrinsic Networks from Phase Coupling

While the majority of iEEG investigations of large-scale intrinsic networks have
focused on amplitude coupling as discussed above, phase coupling approaches have
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delivered a network organization that is spatially convergent with that of amplitude
coupling. Given this alignment, the current section provides only a brief discussion
of some of the major phase coupling-based findings.

The stark mechanistic difference between amplitude coupling and phase coupling
(see methodological considerations above; [17]) invites the question of how their
intrinsic spatial organization relates to each other. Mostame and Sadaghiani [18]
quantified the spatial similarity ofECoG-derived connectivitymatrices across the two
connectivity modes during short periods (1.5 or 2.5 s) of pre-stimulus baseline and
post-stimulus task processing (finger flexing and verb generation). The study investi-
gated stimulus-related changes from pre-stimulus to post-stimulus periods, as well as
intrinsic connectivity present during both periods. The study confirmed that phase-
and amplitude coupling constitute distinct connectivity processes, since stimulus-
related changes in the two connectivity modes occurred in different connections and
were temporally independent. Importantly however, when assessing the distributed
pattern of intrinsic connectivity, amplitude correlations showed a spatial pattern
substantially similar to that of phase coupling during both post- and pre-stimulus
periods. This observation held true irrespective of the choice of phase coupling
measure (PLV, weighted PLI and imaginary coherence). The stability of the shared,
distributed intrinsic network organization across baseline and active (post-stimulus)
periods further suggests that this organization may be largely invariant to cognitive
contexts.

Indeed, direct investigations of connectivity patterns over various cognitive
contexts confirms such state invariance. Kramer et al. [65] measured frequency-
specific coherence in day-long ECoG recordings comprising various cognitive states.
They estimated the core intrinsic organization from static connectivity over the full ~
24-h recording. They then demonstrated that this core organization is observable in
shorter recordings (> = 100 s) during a broad range of mental states consisting
of wakefulness, drowsiness, as well as stage II and III sleep. In experimentally
controlled task states and restingwakefulness,Mostame and Sadaghiani [47] directly
compared spatial connectivity patterns between cognitive contexts. They found
strong spatial resemblance of phase coupling during the active trial (post-stimulus)
period of various tasks, task-free, pre-stimulus baseline, and task-free resting state in
all frequency bands (Fig. 33.3b). Of note, a substantial part of the intrinsic connec-
tivity pattern of individual frequency bands was spatially shared across frequencies
(Fig. 33.3c). Equivalent results were observed for amplitude coupling. Collectively,
these findings show that long-range electrophysiological connectivity is governed
by a spatial organization that is relatively stable over mental and cognitive states,
largely shared across the breadth of canonical oscillatory bands, and comparable
across phase coupling and amplitude coupling.
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33.5 Applications to the Study of Cognition

Once intrinsic networks are identified, how can they inform or predict the role of
neuronal populations in cognitive functions? In this section, we cover evidence from
two key types of applications that highlight the value of iEEG intrinsic connectivity
to the study of cognition: (A) Predicting task-evoked electrophysiological responses;
and (B) Predicting experiential effects elicited by intracranial stimulation.

First, iEEG studies have demonstrated that intrinsic connectivity is tightly related
to the tendency of two electrode sites to co-activate with each other in response
to a cognitive task or external stimulus [44, 66]. Predictions of task-evoked iEEG
responses can be generated from intrinsic connectivity as estimated from the same
individual’s presurgical resting state fMRI [67] or from a population-level atlas of
intrinsic networks (e.g. [68]) when fMRI data are not available (though the latter
approach may be less accurate). Additionally, intrinsic connectivity (e.g. during a
resting state) can be estimated directly from iEEG to predict task-evoked responses.
For example, Foster et al. [44] showed that two key nodes of the DMN (postero-
medial cortex and angular gyrus) responded with increased HFB power to a task
condition involving autobiographical memory recall. The same sites showed strong,
anatomically-selective coupling of slow (<1 Hz filtered) fluctuations in HFB power
during resting and sleep states. In another example, Kucyi et al. [62] showed that
task-evoked HFB response profiles could be predicted based on the location of a
given electrode within the DMN, DAN or salience network (as predefined based on
fMRI-based intrinsic network atlas) (Fig. 33.4). Such evidence aligns more generally
with prior fMRI work, where it has been shown that at the global (whole-brain) level,
regions exhibiting functional connectivity also tend to co-activate with one another
during cognitive task performance [4, 69]. The reason that intrinsic networks tend
to resemble task-evoked responses remains under debate, and future iEEG studies
may shed light on the neurophysiological mechanisms that underlie such relation-
ships. For example, it is possible that spontaneous activity is constrained by statistical
histories of co-activation [70], provides predictive signals for perception [11, 71],
and partly reflects ongoing experiences and cognitive processes [14].

Second, intrinsic connectivity can predict how intracranial stimulation will cause
a change in a patient’s subjective experience or behavior [72, 73]. High-frequency
(typically 50–100 Hz) stimulation is often applied in the iEEG setting for the clin-
ical purpose of functional mapping (see also Chap. 39). Importantly, the intrinsic
network identity that an electrode is located within can determine whether or not an
effect of stimulation will be found and what the specific experiential or behavioral
qualities of an effect will be. Indeed, the classical behavioral effects that are evoked
by intracranial stimulation of sensorimotor regions have been used to validate fMRI
intrinsic connectivity parcellation methods [74]. In an application to more complex
cognitive function, Parvizi et al. [72] showed that stimulation of electrodes implanted
within the mid-cingulate cortex–when specifically localized to the salience network–
evoked the subjective, narrative experience within patients that was termed by the
experimenters a “will to persevere.” Furthermore, in a larger whole-cortex analysis
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Fig. 33.4 Intrinsic network organization predicts task-evoked electrophysiological HFB response
profile. (Top) Locations of electrodes implanted within cortical nodes of the default mode network
(DMN; blue), dorsal attention network (DAN; green), and salience network (SN; red) in a cohort
of 31 patients. (Bottom) Average task-evoked HFB response profiles of electrode sites that showed
a significant response to a visual target stimulus that appeared in ~ 10% trials in a continuous
performance task. Following target onset, increased HFB activation appears earlier in DAN than
in SN sites, and DMN deactivations are later and more sustained than the activations in both other
networks. Adapted with permission from [62] (Creative Commons license: https://creativecomm
ons.org/licenses/by/4.0/)

across 67 patients, Fox et al. [75] showed that stimulation of a given electrode within
the DMN, compared to stimulation of other networks, is less likely to result in any
experiential or behavioral response. However, it was recently shown that intracranial
stimulation of DMN regions (localized with presurgical fMRI intrinsic connectivity)
affects performance in a creative thinking task, even though patients may not be
aware of stimulation-evoked changes in subjective experience or behavior [76].

Taken together, these findings strongly highlight the relevance of intrinsic connec-
tivity to the study of cognitive function with iEEG. Additionally, these findings may
have important practical implications for research and clinical procedures conducted
within the iEEG setting. For example, they raise the possibility that intrinsic func-
tional connectivity, which can be estimated during relatively passive conditions (e.g.
resting state, sleep), may serve as a substitute for, or initial screening prior to, cogni-
tive task performance or electrical stimulation. Given that some cognitive tasks are
highly demanding or difficult for patients to perform, and that electrical stimulation
procedures can involve patient burden, intrinsic connectivity estimates can play an
important role in determiningwhich tasks should be administered orwhich electrodes
should be stimulated in a given patient.

https://creativecommons.org/licenses/by/4.0/
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33.6 Temporal Dynamics of Intrinsic Networks

This chapter has so far considered intrinsic connectivity as ‘static’ in that the
described analysis approaches and applications explicitly search for iEEG coupling
that is stable across different states. However, though intrinsic network architecture
is largely state-invariant, changes occur in the strength of coupling over time [65,
77]. Such connectivity changes can be externally elicited but can also occur sponta-
neously. These fluctuations are often subtle yet significant, suggesting that intrinsic
activity ‘explores’ a dynamic functional repertoire of distinct brain states about a
central core organization [78]. Time-varying functional connectivity analysis has
recently risen in popularity in resting state fMRI [79], with some findings beginning
to highlight how ongoing network fluctuations relate to spontaneous cognitive and
affective processes, including arousal, attention, memory replay andmindwandering
(see also Chap. 21) [14, 80]. Yet those findings are limited due to poor fMRI temporal
resolution that cannot capture activity relevant to cognitive events that may arise on
the time scale of milliseconds. It is thus within this area in the study of intrinsic
networks–their temporal dynamics–where iEEGmay have potential to offer its most
unique scientific insights into the nature of cognition. The study of intrinsic network
dynamics with iEEG is still in its infancy. We here briefly highlight select examples
of preliminary insights, and point to future research directions, on the cognitive and
behavioral relevance of iEEG network dynamics.

The spontaneous dynamics of iEEG networks at ‘rest,’ and their behavioral
relevance, have been studied across multiple time scales [25, 65, 81, 82]. Impor-
tantly, ongoing changes in inter-electrode coupling, or regional activity at electrodes
localized to intrinsic networks, have been related to changes in external variables
that reflect ongoing cognition. For example, time-varying iEEG amygdalar and
hippocampal network configurations across distinct 15–20min resting statewindows
were predictive of self-reportedmood fluctuations [83, 84]. This suggests that even at
relatively slow time scales, intrinsic network connectivity is not fully stable and that
its changes across time windows–even lasting tens of minutes–meaningfully relate
to subjective experiences that underlie mood states. Future iEEG studies that employ
experience sampling may shed more light on the relevant time scales of network
dynamics that correspond to richer varieties of ongoing conscious phenomena.

At a faster time scale, Kucyi and Parvizi [25] showed that spontaneous, transient
increases in HFB power amplitude (“activations”) during a resting state were often of
similar magnitude to task-evoked activations within a dorsal anterior insular cortex
(daIC) region localized to the salience network. Moreover, both task-evoked and
spontaneous daIC activations reliably preceded pupillary dilations by several hundred
milliseconds, suggesting a role in autonomic arousal regardless of whether it is
externally-elicited or self-generated [25]. Future work is needed to examine how
these spontaneous, functionally significant, daIC events are dynamically coupled to
wider brain networks to mediate the ongoing changes in arousal and cognition that
naturally arise “at rest.”
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Another emerging area of importance in the study of temporal dynamics of
intrinsic networks concerns the role of “sharp-wave ripple” (SWR) events that occur
spontaneously in the hippocampus (see Chaps. 21 and 24). These robust neuronal
synchronization events have been well characterized in animal models [85] and can
be detected in the human brain uniquely using iEEG [86–89]. Hippocampal SWRs
occur more frequently during resting states than during active task performance and
are hypothesized to function in the consolidation, and spontaneous reactivation, of
memory [85]. The dialogue between hippocampal SWRs and large-scale intrinsic
network dynamics in the human brain, and its potential significance to ongoing cogni-
tion, remains poorly characterized. However, it was recently shown that during cued
autobiographical memory recollection, hippocampal ripples occur in concert with
DMN activation [90]. Further iEEG studies of intrinsic activity (e.g. during rest and
‘naturalistic’ states involving spontaneously generated behavior) may further reveal
the potentially critical role of hippocampal SWRs in coordinating intrinsic brain
network dynamics on multiple time scales.

33.7 Conclusion

In this chapter, we reviewed iEEG analysis methods for studying large-scale intrinsic
brain networks and described how these approaches are playing an increasingly
important role in the study of human cognition. To date, iEEG has been critical in
validating evidence from other neuroimaging modalities for the existence of large-
scale intrinsic networks. The convergence of evidencewith that fromothermodalities
and populations (e.g. neurotypical individuals) supports the idea that iEEG–despite
its usual reliance on patients with epilepsy–provides meaningful insights into the
nature of typical intrinsic brain organization. Critically, beyond simply validating
other modalities, iEEG can deliver unique insights into the temporal dynamics of
intrinsic networks that go well beyond what can be gleaned from other human neuro-
science techniques. Future iEEG studies are expected to yield fundamental insights
into how the brain dynamically self-organizes itself to support cognition.
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Chapter 34
What Do I Need to Consider
for Multivariate Analysis of iEEG Data?

Weizhen Xie, John H. Wittig Jr., and Kareem A. Zaghloul

Abstract Intracranial EEG (iEEG) offers an opportunity to directly record neural
activitywith a high signal-to-noise ratio from the humanbrain in order to studyhuman
cognition. Deciphering the rich information afforded by iEEG entails multivariate
analyses of time-series data across recording sites, spectral frequencies, cognitive
events, and participants. In this chapter, we discuss some approaches and issues to
consider for multivariate analyses of iEEG data. We first overview the types and
amount of data researchers may acquire through iEEG recording and discuss some
common practices used for iEEG data extraction before multivariate analyses. We
then review approaches to harness the multivariate structure of iEEG data, including
similarity analyses of neural data and classification based on machine learning. We
discuss how the research question can guide which type of analysis to pursue in order
to advance our understanding of human cognition.

34.1 The Multivariate Nature of iEEG Data Analysis

Neural signals captured through intracranial electroencephalogram (iEEG) record-
ings reflect active neural processes superimposed at a recording location [1]. These
signals can be recorded using either subdural electrodes placed on the brain surface
or through penetrating depth electrodes placed in deep brain structures. In human
studies, iEEG recordings are routinely acquired in epilepsy monitoring units from
patients implanted with intracranial electrodes to localize their seizure onset zone
for surgical intervention. As this clinical practice opens up important investigatory
opportunities to study human brain functions [2], there is a strong scientific interest
in understanding the rich information content captured by iEEG recordings.

One aspect of the richness of iEEG recordings is that the type of electrode used
at each recording site has a substantial impact in the spatial extent of the neural
activity being captured (Fig. 34.1a; see also Chap. 17). At the macroscale, subdural
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and depth electrodes have a recording contact diameter of 1–2mm. Thesemacroelec-
trodes record population activity from local neuronal networks containing hundreds
of thousands of neurons [3]. At the microscale, microelectrode probes (diameter
<100 µm) organized as microwires or multielectrode arrays (MEAs) record local
field potentials (LFPs) [1]. These LFPs contain both extracellular field activity of
thousands of neurons as well as the spiking activity of individual neurons.

Another aspect of the richness of iEEG recordings is the diverse spectral infor-
mation captured regardless of spatial scale. The raw neural signals often exhibit
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oscillations at different frequencies. The synchronization (or desynchronization) of
iEEG activity at certain frequencies over time has been associated with several key
cognitive functions. For example, similar to scalp EEG, iEEGdata contain commonly
identified lower frequency signals (e.g.,≤12 Hz). These low frequency rhythms may
serve as carrier frequencies that communicate information content between distant
nodes of a large-scale network [4]. Because of their high signal-to-noise ratio, iEEG
data also contain rich broadband high-frequency signals (e.g., 70–150 Hz) that are
traditionally thought to reflect neuronal spiking activity averaged across thousands
of neurons immediately adjacent to a recording site [5] (see also Chaps. 16 and 44
on the relationship of spikes and local field potentials).

In addition to the spatial and spectral richness that are innate to iEEG record-
ings, experimental designs can introduce richness in the hierarchical structure of the
data sets compiled across experimental sessions and participants, which can provide
a scaffolding for statistical and multivariate analysis. For example, iEEG data at
different recording sites are nested within individual recording sessions, which are
then further nested within a participant across different experimental sessions. For
single-unit spike data, this can mean that the recorded units may vary from day to
day or session to session since the micro-electrode probes tend to shift over time.
This hierarchical structure of iEEG data therefore gives rise to a complex and high-
dimensional data matrix that has multiple dependent measurements to be explored
across trial types, sessions, and participants. Thus, without some principled consid-
erations, analyzing and interpreting the multivariate data can be computationally,
analytically, and conceptually challenging. An approach to disentangle these hierar-
chies relies uponmulti-level inference andmixed-effectmodeling,which is discussed
in a separate chapter (see Chap. 36). Here we primarily focus on several additional
principled considerations to increase the interpretability of multivariate analysis for
iEEG data.

34.2 Data Extraction

To begin with, iEEG data contain electrical field fluctuations that may be both neuro-
physiological and environmental (e.g., 60Hz line noise). Data preprocessing is there-
fore necessary to further improve the signal-to-noise ratio. Moreover, since iEEG
signals are routinely captured from patients who are being monitored for seizures,
some amount of data preprocessing is required to identify and remove epileptic
activity [6]. To reduce data complexity, one may also consider conventional data
reduction procedures such as principal component analysis (PCA). These proce-
dures enable investigators to focus on data components that carry the majority of the
variance of the recorded iEEG signals [7]. In addition to these conventional prepro-
cessing and data reduction considerations, there are several additional principled
approaches that can be deployed to extract relevant information from iEEG time
series for the study of the human brain and cognition (Fig. 34.1b).
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First, one may consider extracting specific iEEG features that are theoretically
or empirically relevant for specific information processing functions. For example,
since broadband high-frequency activity reflects local neural activity around the
recording site [5, 8], high-frequency power is often linked with the functional role of
the recorded brain tissue. By tracking the average broadband high-frequency power
(70–150 Hz) across different tasks in distributed brain areas, for example, Haller and
colleagues [9] have identified patterns of persistent neural activation in the cortex
that encode perceptual features of stimuli and predict motor outputs. Similarly, in
the context of functional connectivity, consistent with the computational role of low-
frequency activity in facilitating communication across large-scale brain networks
[2, 4], Chapeton and colleagues [10, 11] have shown that iEEG electrode pairs in the
temporal lobe with stable correlated broadband activity also reliably show coherent
8–12 Hz activity. In light of these observations, it is reasonable to focus on certain
iEEG frequencies for theory-driven inquiries that aim to examine either functional
localization (e.g., 70–150 Hz) or connectivity (e.g., 8–12 Hz).

A second approach that extends beyond a restricted range of the information space
in iEEG data defined a priori is to incorporate available non-redundant information
from iEEG data across the spatial and frequency domains for multivariate analyses.
For example, when linking iEEG data with cognitive functions, one may extract
the power values from pre-defined frequency bands (e.g., delta, theta, alpha, beta,
gamma, and high-frequency broadband) across a set of electrodes for the purposes
of neural pattern analyses [12] (also see later sections of this chapter). Variations of
this approach include a more continuous extraction of spectral frequency contents
across a wide frequency range (e.g., 1–150 Hz, 1-Hz steps from 1 to 29 Hz, 5-Hz
steps from 30 to 150 Hz) [13] or within the broadband high-frequency range (e.g.,
80–120 Hz in bands of 10 Hz) [14]. These variations take into account potential
individual differences in frequency-specific contributions, which can be assessed by
performing a leave-one-feature-out jackknife procedure [13, 15].

Third, in addition to continuous iEEG time series and their features (e.g., power
or phase of certain spectral frequency), another approach is to characterize discrete
physiological events that may serve a computational role for cognition. For example,
discrete neuronal spiking information can be extracted from LFPs recorded by
microscale electrodes via spike-sorting algorithms [16] (see also Chap. 43). The
firing rate or spatial–temporal pattern of spiking activity (e.g., sequences) may then
be further examined in relation to cognitive processes such as memory formation and
retrieval [17, 18]. Likewise, continuous iEEG traces recorded by macroelectrodes
can also be filtered to identify discrete synchronous high-frequency neural events
(i.e., “ripples”) [19], similar to those identified in animal models [20]. These discrete
ripple events in the temporal lobe have been shown to play a critical role in supporting
memory formation and retrieval [21, 22].

These data extraction considerations are beneficial for reducing the complexity
in multivariate analyses and for increasing their interpretability. It is worth noting,
however, that analytical considerations should remain secondary to the research ques-
tions and designs. Thus, while sophisticated models and algorithms become increas-
ingly available for multivariate analyses, clarifying the physiological characteristics
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of recorded iEEG signals remains a key consideration in the research of brain and
cognition.

34.3 Multivariate Analysis of iEEG Data
via Similarity-Based Analyses and Classification

Once a set of iEEG features is identified, one can begin to analyze these multivariate
iEEG features in a manner that extends beyond conventional univariate analyses that
compare, for example, the mean power values of a certain frequency across different
conditions. Two approaches for analyzing multivariate data have been identified.
First, one can focus on the similarity or consistency of the patterns of iEEG activity
across different experimental stimuli, trials, or conditions. This measure of consis-
tency captures whether certain iEEG features reliably encode information embedded
in a cognitive task, providing an estimate of task-related information in iEEG signals.
A second approach that extends the investigation of pattern similarity is to apply
machine-learning algorithms to decode information available in the extracted iEEG
features. These machine learning algorithms provide a direct measure of whether
the recorded iEEG signals contain information that can be predicted or read out by a
computational model trained by an independent dataset. These two approaches are
complementary to one another, and both provide information related to brain activity
during a cognitive task. For both of these approaches, time-resolved analyses can
be performed with the high temporal resolution afforded by iEEG. Here, we will
briefly introduce these two approaches and discuss some principled considerations
in interpreting the results from these analyses.

34.3.1 Similarity-Based Analysis

Representational similarity analysis (RSA) has been used as an analytical framework
for linking brain-activity measurement, behavioral measurement, and computational
modeling [23]. In this framework, “representation” is often operationalized as the
evoked patterns of neural activity that contain information associated with a given
stimulus or task event. The similarity between representations of any two events can
be quantified using any one of several different measurements used for parametric
or non-parametric correlation analysis between the vectors of iEEG features for
each event. We favor the cosine similarity metric, as it preserves the sign of each
feature vector, and thus penalizes feature vectors with similar shape but opposite
signs [12]. Irrespective of the exact metric used, if the patterns of neural activity
are consistent across a set of homogeneous stimuli or task events, this suggests
that these patterns of neural activity retain stimulus- or task-specific information
[24]. Notably, this similarity-based approach imposes minimal assumptions on how
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information is distributed over the neural signals andwhether suchmeasures of neural
activity are independent. Hence, RSA is analytically appealing to investigate how
iEEG measures, regardless of their dependence, are related to cognitive variables
measured by a task. Building upon this premise, two subsequent approaches can be
considered (Fig. 34.1c, left).

First, one can examine how the representational patterns captured by iEEG
features are related to an a priori model that predicts similarity patterns across
stimuli or task events [25]. For instance, the similarity between evoked patterns
of iEEG activity across visual images can be directly correlated with the similarity
predicted by deep neural network models between these same images [26] (see also
Chap. 50). This approach allows us to identify the amount of shared variance between
the neural data and the model. Time-resolved analyses across recording sites based
on this approach can then provide further information about when and where the
brain exhibits neural activity most similar to the proposed model.

Second, in the absence of a proposed underlying model that would make assump-
tions regarding the similarity between patterns of activity, onemay also examine how
a homogeneous set of stimuli or task events are coded across different repetitions
during a recording session. For example, in visual perception, by examining how
stimuli from the same category evoke similar iEEG patterns, Jacques and colleagues
[27] identified iEEG category-selective signals in the human ventral temporal cortex
that are consistent with findings revealed by functional magnetic resonance imaging
(fMRI). In the context of memory, by examining the similarity of activity patterns at
each encoding and retrieval timepoint of a verbal paired-associates recall task, Yaffe
and colleagues [12, 28] demonstrated the reinstatement of iEEG activity in cortical
macroelectrodes between memory encoding and successful retrieval. Notably, such
neural reinstatement is also evident when examining the firing rates [18] and sequen-
tial patterns of spike activity [17] captured by microelectrodes placed in the temporal
lobe. These findings suggest that similarity-based analyses can bridge multiple
levels of neurophysiological phenomena [23] to link multivariate iEEG data with
fundamental cognitive principles such as memory reinstatement [29].

34.3.2 Multivariate Classification

Recent advances in machine-learning techniques have provided diverse tools and
platforms for decoding information present in iEEG data. This is particularly relevant
for brain-machine interfaces, where information read-out is a fundamental require-
ment for decoding movement and for guiding neuromodulation [30, 31]. Classic
approaches such as naive Bayes classification, linear discriminant analysis (LDA),
and support vector machine learning (SVM) remain powerful tools to achieve these
goals. More recently, the increased computational feasibility of implementing deep
neural network modeling has also opened up new opportunities for examining the
complex multivariate structure of iEEG data [32, 33]. The key to selecting and
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harnessing these powerfulmethods is understanding how eachmethod’s assumptions
dictate data requirements (Fig. 34.1c, right).

First, as different classification algorithms are built upon different assumptions,
it is important to consider whether a given iEEG dataset satisfies the assumptions of
a chosen classifier. For example, some classifiers may assume independence of the
data features (e.g., naive Bayes). iEEG data with dependent features, such as power
values from adjacent spectral frequencies, would therefore not be suitable for these
types of classifiers. Second, as classification algorithms rely upon training using a
large amount of data with different features to test on an independent test set, the
selection of relevant data features [34] and the separation of training and test sets
remain an important issue to consider [35]. In principle, unbiased feature selection
with independent training and test sets may help avoid overfitting. In addition, one
may also evaluate model complexity, variance explained, and computational time,
which are common considerations when applying machine-learning techniques to
biomedical research [35, 36].

Besides these considerations above, the application of multivariate classification
of iEEG data may also benefit from incorporating computational models that char-
acterize the underlying cognitive processes to improve classification performance.
For example, iEEG research has raised the possibility that speech may be decoded
using neuroprosthetic devices [37, 38]. However, in practice, speech decoding perfor-
mance has been unsatisfactory due to various experimental and modeling barriers
[39]. These efforts can be substantially improved by incorporating natural language
models that capture linguistic characteristics of words, such as word sequence proba-
bility, from our everyday language. For example, Moses and colleagues [40] recently
demonstrated that speech decoding error rates can substantially drop from 60.5%
to only 25.6% when including a natural language model in their speech classifier
based on iEEG data. In light of these observations, incorporating models of how
semantic information in our everyday language is represented and used to support
diversemental functions, such asmemory search [41] and decisionmaking [42], may
offer a promising approach for exploring brain-machine interfaces in higher human
cognition.

34.4 Summary

In this chapter, we have outlined the multivariate nature of iEEG data and discussed a
few principled considerations for data extraction and the choice of analytical options.
These include variousways to extract relevant data to reduce complexity and improve
interpretability, similarity-based analyses with or without an a priori model, and
approaches to ensure and improve the quality of multivariate classification. While
these approaches and considerations may serve well as starting points, the quest
for analyzing the rich information in multivariate iEEG data does not end here.
As pointed out by John Tukey [43], data analysis in most cases is like detective
work and requires one to embrace the flexibility of high-dimensional data with some
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guiding principles and converging evidence. In doing so, we may maximize the rich
information provided by iEEG recordings in order to advance our understanding of
the human brain and cognition.
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Chapter 35
How Can I Conduct Surrogate Analyses,
and How Should I Shuffle?

Hui Zhang

Abstract The surrogate analysis is a widely used assumption-free statistical method
that can be applied to data sets which do not satisfy prerequisites for parametric
statistical tests. Due to several practical reasons, the distribution or parameters of
intracranial EEG (iEEG) data violates the assumption of parametric tests. In this
case, the surrogate analysis provides a solution to accurately estimate the significance
level by ranking the empirical statistical value within a data-specific null-hypothesis
distribution of permuted statistical values. Different from parametric analyses, surro-
gate analyses are performed regardless of any assumptions about the distribution of
the empirical data. As introduced in previous chapters, iEEG data is composed of
multiple dimensions: It samples from different frequencies at different time points
from different sensors. Applying statistical tests to multi-dimensional iEEG data is
likely to introduce multiple comparison problems which can be corrected by the
surrogate analysis. In this chapter, I will introduce in detail the surrogate analysis
and its application for iEEG data analyses.

35.1 What is a Surrogate Analysis?

The surrogate analysis is an assumption-free statistical method. The essence of the
surrogate analysis is to setup a data-specific null-hypothesis distribution of permuted
statistical values that does not make any assumptions about the distribution and
parameters of the empirical data. The significance level of a statistical test on the
empirical data is computed by comparing the empirical statistical value to the null-
hypothesis distribution of permuted statistical values which are calculated by using
permutation methods discussed in Sect. 35.3.
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35.2 When to Adopt a Surrogate Analysis?

A prerequisite for performing parametric statistical tests is that the data or
transformed data (e.g., logarithmically transformed data) is normally distributed.
Applying parametric tests to data that are not normally distributed induces inac-
curate calculations of p values, confidence intervals, and effect sizes. In this case,
the surrogate analysis provides a non-parametric approach which does not rely on
the assumption of normally distributed data. In the following part, I will discuss
situations in which the surrogate analysis is utilized in iEEG studies.

35.2.1 Not Normally Distributed Data

The normal distribution defines how a data set is distributed around the mean. It is a
prerequisite for most parametric analyses. In order to obtain a normally distributed
data set, researchers can either test a large number of subjects to decrease the variance
across subjects or test a large number of trials within each subject to reduce the
unexpected noise of each subject. Collecting a data setwith a large number of subjects
or a large number of trials for each subject is not easy in iEEG studies. Patient
numbers in iEEG studies are usually small (Fig. 35.1) for several reasons. First, the
number of implanted patients is small because not all epilepsy patients are treated
with neurosurgery [1, 2]. Second, not all implanted patients are suitable for testing
because of cognitive dysfunctions [3] (Chap. 2). Third, the subject number is even
smaller when researchers are focusing on sensors located in one or several specific
brain region(s). Even when patients are testable, they may not conduct as many
testing trials as healthy participants due to several practical reasons (e.g., patients
getting fatigued easily, uncomfortableness or other clinical reasons). As a result,
experimental paradigms adapted for implanted epilepsy patients are usually shorter
in duration and lower in difficulty level. Moreover, it is also hard to rigidly constrain
patients’ demographic information (e.g., age and gender) because the implantation
procedure is purely serving the clinical purpose. The reduced control over participant
recruitment, limited number of patients, and small number of trials per patient affect
the skewness and kurtosis of the data. This likely results in non-normally distributed
iEEG data. In this case, the significance level of a statistical test can be accurately
estimated by setting up a distribution of permuted statistical values under the null-
hypothesis which are calculated from shuffled data that have a similar skewness and
kurtosis as the empirical data.
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Fig. 35.1 Number of subjects per study in peer reviewed papers. Among all peer reviewed
papers from 2016–2021 on pubmed (https://pubmed.ncbi.nlm.nih.gov/), 15 iEEG papers and 15
fMRI/scalp EEG/MEG papers were randomly selected from each year. The plot indicates that the
number of subjects per iEEG study is in general smaller than the number of subjects per fMRI/scalp
EEG/MEG study

35.2.2 Non-Matched Trial Numbers Between Conditions

When researchers design an experiment, they often plan to collect the same number
of trials formatched experimental conditions. This rules out the possibility that differ-
ences between experimental conditions are caused by differences of trial numbers.
IEEG studies may result in non-matched trial numbers for several reasons. When
epilepsy patients are running tasks, it happens frequently that an experiment is
terminated because patients are getting fatigued or because of clinical constraints.
Early termination may result in different numbers of trials between experimental
conditions. When researchers afterwards process the data, the numbers of artifact-
contaminated trials may again differ between experimental conditions. After artifact
rejection, the numbers of clean trials may thus differ between conditions. Finally, a
difference in trial numbersmay be induced by applying certain data analysismethods.
For example, when researchers perform representational similarity analysis (RSA;
[4]) between encoding and retrieval of n items, the generated similarity matrix is
composed of n on-diagonal data points (i.e., similarities between same items) and n×
(n-1) off-diagonal data points (i.e., similarities between different items).When condi-
tions with different trial numbers are compared with each other (e.g., on-diagonal
RSA data vs. off-diagonal RSA data), the significance level can be accurately esti-
mated by ranking the empirical statistical value within the distribution of permuted
statistical values which are computed based on shuffled conditions that have the same
difference of trial numbers as the empirical data.

35.2.3 Correction for Multiple Comparisons

An iEEG data set usually has multiple dimensions (e.g., experimental condition X
time X frequency X sensor). When different experimental conditions are compared
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in several of these dimensions, the same statistical test is applied to a large number
of data points (e.g., time X frequency X sensor). Repeated application of the
same statistical test causes multiple comparison problems that increase the type I
error and generate false positive conclusions. It is thus imperative to correct for
multiple comparisons. Importantly, different data points of iEEG data are not inde-
pendent from each other. Successive time points, adjacent frequency bins, and nearby
sensors are correlated with each other due to temporal autocorrelations, the nature
of time–frequency decompositions, volume conduction and possibly other factors.
The cluster-based surrogate analysis [5] is one of the methods to solve multiple
comparison problems in iEEG data and will be described in detail in Sect. 35.4.

35.3 How to Perform Surrogate Analyses?

In surrogate analyses, it is important to obtain a null-hypothesis distribution of
permuted statistical values using appropriate permutation approaches. In general,
the application of a permutation approach depends on the research question, the
characteristics of the data structure, and the statistical tests applied to the empirical
data. Thus, the shuffling procedure can be applied to subject level, condition level, or
trial level. Note that it is important to shuffle variables that one is interested in while
maintaining other variables as similar to the empirical data as possible. For example,
if one investigates the difference of gamma power between two brain regions within
200 ms after displaying pictures to participants, one could randomly switch labels
of brain regions within each participant. On the other hand, if one investigates the
difference of gamma power between time windows 0–200 ms and 200–400 ms after
displaying pictures to participants, one could randomly switch time labels of each
trial while maintaining labels of brain regions the same as in the empirical data. In
this section, I will introduce different ways of permuting the data and thus different
procedures of performing a surrogate analysis.

35.3.1 Switching Condition Labels

When target conditions arematchedwith each other, a surrogate analysis is performed
based on shuffled data with shuffled conditions that are also matched with each other.
For example, in order to maximize the statistical power/minimize the data collection,
experimental conditions are designed aswithin-subject effects inmany iEEG studies.
The statistical test is performed by considering the matched feature of the empirical
data (e.g., using a paired t-test). To accurately compute the p level of the empirical
statistical value, the null-hypothesis distribution of the permuted statistical values
is computed based on permuted conditions that are also matched with each other.
Switching the condition label can generate permuted data bymaintaining thematched
feature (e.g., shuffled conditions are also from the same subject). It is easy to apply
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this method in practice. Within each permutation, a vector is randomly generated
to indicate which condition pairs (e.g., subjects) should switch labels. After labels
are switched, a set of permuted experimental conditions is generated. Then the same
statistical test is applied to the permuted data. The obtained statistical value is saved as
a permuted statistical value. If there are two experimental conditions from n subjects,
the number of possible permutations is 2n.

35.3.2 Shuffling Condition Labels

The shuffling label approach can be applied to different situations with slightly
different ways of shuffling. In the first situation, experimental conditions are inde-
pendent from each other. The selection of the statistical test (e.g., two sample T test)
considers the fact that the empirical data are independent. The shuffling condition
label approach also takes this into account. To this end, data sets from different
conditions are first pooled together. Within each permutation, the same number of
data sets as in the empirical data are then drawn from the pool for each condition.
Afterwards, the same statistical test is applied to the permuted data. This generates a
permuted statistical value. If there are two experimental conditions with one condi-
tion having m subjects and the other condition having n subjects, the number of all
possible permutations is Cn

m+n = (m+n)!
n!×m! .

As discussed in Sect. 35.2.2, there are situations in which trial numbers differ
between matched experimental conditions. This possibly biases the estimation of
the significance level of the statistical test. In order to control for this bias, the
null-hypothesis distribution of permuted statistical values is calculated based on
permuted conditions with the same bias in trial numbers. Within each permutation,
one pools all trials together from matched conditions within each condition pair
(e.g., within each subject). Afterwards, the same number of trials as in the empirical
data is randomly drawn from the trial pool for each condition within each pair. At
the end, the same statistical test is applied, generating a permuted statistical value.
Let’s assume that there are two experimental conditions with one condition having
m trials and the other condition having n trials for one subject (subj j ). Using the
shuffling condition label approach, the number of all possible permutations for that
subject (psubj j ) is C

n
m+n . The number of all possible permutations for all subjects is

psubj1 × psubj2 × · · · × psubjall . Note that the shuffling approach applied to matched
conditions shuffles at the trial level. By contrast, the shuffling approach applied to
independent conditions in the above paragraph is shuffling at the subject level.

35.3.3 Shifting Permutation

In iEEG studies, several data analysis methods are based on continuous data series,
e.g., calculating phase-locking values [6], phase-amplitude coupling [7], spike trains
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of single unit data [8, 9] etc. In these analyses, the continuous data structure is an
important feature that affects the result. In order to maintain this continuous feature,
a shifting permutation approach can be applied.Within each permutation, a data time
series is randomly segmented into two epochs. These two epochs are reconnected to
form a permuted series of data by switching the sequence of them (i.e., the end of
the second epoch connects to the start of the first epoch). The same data analyses
and statistical tests are then applied to the permuted data, resulting in a permuted
statistical value. The continuity of data and the relations between adjacent data points
(e.g., temporal autocorrelations) are largely preserved after shifting permutation.
Thus, this approach can generate a null-hypothesis distribution of permuted statistical
values that accurately estimates the significance level of the statistical test on the
empirical data. If there are n data points in a series of data, the number of all possible
permutations is n.

35.3.4 Procedure of the Surrogate Analysis

The surrogate analysis tests an assumption-free null-hypothesis that there is no statis-
tical difference between experimental conditions (i.e., that data from different exper-
imental conditions are drawn from the same pool). To test this null-hypothesis, the
surrogate analysis is performed in three steps in practice. The first step is to perform
the statistical test on the empirical data (e.g., a paired T test across subjects between
two matched experimental conditions) and to extract the statistical value (e.g., the t
value). The second step is to build a null-hypothesis distribution of permuted statis-
tical values (e.g., a permuted t distribution) by repeatedly performing the permu-
tation procedure (Sects. 35.3.1–35.3.3) multiple times. The last step is to identify
the rank of the empirical statistical value within the null-hypothesis distribution
of permuted statistical values to compute the p value. If an empirical statistical
value is larger/smaller than 95% of all permuted values, it can be concluded that the
null-hypothesis is rejected at an alpha level of 0.05 (p = 0.05).

35.4 Cluster-Based Permutation Analysis

As mentioned in Sect. 35.2.3, an iEEG data set is usually composed of multiple
dimensions (e.g., experimental condition X time X frequency X sensor). Applying
statistical tests between experimental conditions for these various dimensions (e.g.,
time X frequency X sensor) causes multiple comparison problems. It is thus imper-
ative to correct for multiple comparisons to reduce the type I error. A conventional
way is performing a Bonferroni correction. However, this method is too conserva-
tive because there are usually a large number of data points in iEEG studies. Let’s
assume that there are 200 data points. To achieve an alpha level at 0.05 after Bonfer-
roni correction, each data point would need to correspond to an uncorrected p value
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lower than 0.05/200 = 0.00025. This would likely introduce large type II errors. In
addition, the Bonferroni correction assumes that data points are independent from
each other. This assumption is not realistic for iEEG data as described in Sect. 35.2.3.
To solve this problem, previous researchers have proposed cluster-based permutation
analysis [5] which has been applied to more than 2,000 studies up till now, including
some from our own group [10–13].

One advantage of applying a cluster-based permutation analysis is that it does
not rely on any assumption about the distribution of the empirical data. Another
advantage is that it does not assume that data points are independent from each other.
Instead, it naturally assumes that nearby data points are correlated with each other.
This reflects important characteristics of iEEG data because temporally successive
data points (e.g., data from 10 and 20 ms after stimulus onset), data points from
adjacent frequencies (e.g., EEG power at 10 Hz and 11 Hz), and spatially nearby
data points (e.g., two nearby sensors from the same brain region) are correlated.

One assumption underlying cluster-based permutation analysis is that all data
points contribute equally to the to-be tested null-hypothesis. The homogenous distri-
bution of iEEG data is sometimes difficult to be satisfied. In general, the iEEG data
within each frequency band or brain region is homogenous. However, it is inhomoge-
neous if it is across a large frequency range or across different brain regions. To solve
this problem, a region-of-interest (ROI) approach can be applied by focusing on a
specific frequency band, time period, or brain region. In the frequency domain, this
inhomogeneity problem can also be addressed either by applying different frequency
resolutions in different frequency ranges (e.g., sampling at 1 Hz for low frequency
bands and 5 Hz for high frequency bands [10, 11, 14]) or by selecting frequencies in
a logarithmically transformed space (e.g., equally spaced samples of logarithmically
transformed frequencies; [15]).

35.4.1 Criterions of Defining a Cluster

One important aspect when performing the cluster-based permutation analysis is
defining a cluster. After performing statistical tests, each data point has a statistical
value and a corresponding p value. A cluster is defined via those connected data
points that each have a p value corresponding to a pre-defined alpha level (e.g., p
< 0.05). There are different criteria for defining if two data points are connected.
To better describe these criteria, let’s assume that all data points are equally sized
geometric figures (Fig. 35.2). For example, in one dimensional data all data points are
line segments of equal length (e.g., when calculating ERP components; Fig. 35.2a),
in two dimensional data they are equally sized squares (e.g., when computing time–
frequency clusters; Fig. 35.2b, c), and in three dimensional data they are equally sized
cubes (e.g., when identifying brain regions; Fig. 35.2d, f). In one dimensional data,
two data points with a shared endpoint are defined as being connected (Fig. 35.2a). In
two dimensional data, there are twoways of defining if two data points are connected:
The first one is that two data points share an edge (Fig. 35.2b); the second one is
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Fig. 35.2 Criteria for defining a cluster. (a) Two data points with a shared end are defined as
connected in one dimensional data. (b, c) Two data points with a shared edge (b) or a shared vertex
(c) can be defined as connected in two dimensional data. (d, f) Two data points with a shared surface
(d), a shared edge (e) or a shared vertex (f) can be defined as connected in three dimensional data.
The red dot/line/surface in each panel indicates the connected part of two data points

that two data points share a vertex (Fig. 35.2c). One can either define clusters by the
first criterion or by both criteria. In three dimensional data, there are three ways of
defining if two data points are connected: The first one is that two data points share the
same surface (Fig. 35.2d); the second one is that two data points share the same edge
(Fig. 35.2e); the third one is that two data points share the same vertex (Fig. 35.2f).
One can choose either the first, the combination of the first and the second, or the
combination of all three criteria. Note that data points that show effects in opposite
directions (e.g., data points having positive statistical values vs. data points having
negative statistical values) should not be clustered together even when these data
points are connected.

35.4.2 Procedure of Performing the Cluster-Based
Permutation Analysis

The overall procedure of performing the cluster-based permutation analysis does not
differ much from other surrogate analyses (Sect. 35.3.4). To make the description
easier to read, I will focus on clusters in which all data points have positive statistical
values (i.e., positive clusters). The procedure is composed of three steps. The first
step is to perform statistical tests on the empirical data and select all resulting clusters
(Sect. 35.4.1). Within each cluster, the summed statistical value across all data points
is extracted. The extracted value is assigned as the statistical value of that cluster.
The second step is to perform an appropriate permutation analysis as discussed in
Sect. 35.3. Within each permutation, one performs the same statistical test as in the
empirical data and selects all clusters. Again, one assigns a statistical value to each
cluster, using exactly the same criteria as for the empirical data. Afterwards, the
cluster with the largest statistical value is saved for further analyses. If no cluster is
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found in one permutation, a statistical value of zero is saved for this permutation.
The permutation procedure is repeated n times and generates n permuted statistical
values. In the third step, the statistical value of each empirical cluster is ranked
within the distribution of permuted statistical values to compute the alpha level of
that cluster. A cluster having a statistical value that is larger than 95% of all permuted
statistical values rejects the null-hypothesis at an alpha level of 0.05. This suggests
a significant difference between experimental conditions within that cluster.

There are statistical tests which can generate negative clusters in which each data
point has a negative statistical value (e.g., resulting from paired or two-sample T
tests). The procedure to test the null-hypothesis of negative clusters is largely the
same as for positive clusters except for two aspects: In the second step, the permuted
statistical value is the smallest statistical value among all negative clusters in each
permutation. In the third step, a cluster with a statistical value smaller than 95%
of all permuted negative clusters rejects the null-hypothesis at the alpha level of
0.05. If both positive and negative clusters are obtained from the empirical data,
the null-hypothesis distributions of both positive and negative permuted statistical
values should be built separately. Usually, the null-hypothesis distributions of the
positive and negative permuted statistical values are not symmetric around the y axis
unless one uses the switching label approach (Sect. 35.3.1). The significance levels
of positive and negative empirical clusters are estimated within the distribution of
positive and negative permuted statistical values respectively.

35.5 How Many Permutations Are Appropriate?

In general, themore times one permutes, themore stable the result is (Fig. 35.3a, b). In
practice, it is usually not possible to performall possible permutations. For example, if
one computes the significance level of a t value from a paired T test across 20 subjects
using the switching condition label approach, the number of all possible permutations
is 220 which is more than one billion. The selection of the number of permutations is
affected by several aspects. One is the computing load. Nowadays, it is typically no
problem to perform a large number (e.g., 10,000) of iterations on a computer with
high-end configuration. The second is if the obtained significance level is used for
further computation. For example, the obtained significance level may be applied to
a further Bonferroni correction together with 4 other p values. In order to survive the
Bonferroni correction, each estimated p value should be smaller than 0.05/5 (0.01)
after surrogate analysis. In this case, the iteration number of permutations should be
not smaller than 100. The last but not the least consideration is that it depends on the
requirement of the precision. In some cases, the empirical statistical value exceeds
all permuted values. If the iteration number is 20, it can be reported that p < 0.05.
The precision is obviously low. One can increase the iteration number to increase
the precision. For example, 1,000 iterations can generate a smallest p < 0.001 which
is precise enough for most studies.
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Fig. 35.3 Methods to accurately estimate the significance level. (a) Simulated data of two exper-
imental conditions from 20 subjects. The null-hypothesis is that there is no difference between the
two conditions. Each colourful dot indicates one simulated subject. The same colour indicates data
from the same subject. (b) A paired T test is applied to the simulated data and the resulting t value is
assigned as the empirical statistical value. The null-hypothesis distribution of permuted statistical
values is obtained by randomly switching condition labels. With increasing numbers of permuta-
tions, the estimated p value becomes more and more stable. (c, d) To obtain a stable p value with
smaller numbers of permutations, the surrogate analysis is repeated 10 (c) or 50 (d) times. This
generates 10 or 50 estimated p values, respectively. Mean p values are computed by averaging
across these 10 or 50 p values. As illustrated in the figure, the mean p value with many repetitions
(50 times; d) of the surrogate analysis is more stable than with few repetitions (10 times; c) when
the iteration number is small

When the number of all possible permutations and the actual iteration number
of permutations differ much, this affects the accuracy of the significance level
(Fig. 35.3a, b). To solve this problem, one can either increase the number of iterations
or repeat the surrogate analysis multiple times. By repeating the surrogate analysis,
one obtains a p distribution (Fig. 35.3c, d). The median or mean p value of the p
distribution ismore stable when the iteration number is small and alsomore similar to
the p value computed with a large iteration number. By repeating a surrogate analysis
that has a small number of iterations of the permutation procedure (e.g., 20 times as
in Fig. 35.3d) for a small number of times (e.g., 50 times as in Fig. 35.3d), one could
not only obtain a stable estimation of the significance level of the empirical data,
but also dramatically decrease the overall computing load. It is especially helpful to
reduce the influence of a biased extraction of data sets in a surrogate analysis.
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Chapter 36
How Can iEEG Data Be Analyzed
via Multi-Level Models?

Pengcheng Lv and Liang Wang

Abstract iEEG data are usually collected from a small number of patients with a
number of electrode contacts who may perform different task conditions. For such
nested data, traditional linear regression models are not ideally suited. Instead, we
recommend using linear mixed effect (LME) models to analyze iEEG data. These
models describe the relationship between a dependent variable and independent
variables, with coefficients that can vary depending on group variables. A typical
LME consists of two parts, fixed effects and random effects. Fixed-effects terms
are the traditional linear regression part, while the random effects are associated
with patients and the nested contacts. LME captures the hierarchical structure of the
data, accounting for differential variability between patients and between and within
contacts, and potentially allows for generalization to the population. In this chapter,
we list three common models to illustrate how to apply LME to the iEEG data.

36.1 Introduction

IEEG data are local field potential signals measured directly from drug-resistant
epilepsy patients who have electrodes implanted in their brain to localize the epileptic
focus. This type of data has the advantages of high temporal and spatial resolu-
tion and high signal-to-noise ratio [2, 10]. It is a powerful tool to explore how the
human brain works during cognitive processing [3, 7, 15]. Compared to non-invasive
neuroimaging data, iEEG data are relatively difficult to collect (see also Chaps. 4
and 5). On the one hand, recruitment of patients is relatively slow and depending
on clinical resources and considerations. On the other hand, given the fact that the
locations of the implanted electrode are completely determined by clinical needs,
whether the electrode contacts are located in the region of interest does not depend
on basic research questions. Therefore, in most cases we may collect a relatively
small number of patients (i.e., smaller than in fMRI studies) who are each implanted
with variable numbers of electrodes and perform a cognitive task with different
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conditions. For such data, a traditional linear regression model is not ideally suited,
because multiple contacts from the same patient cannot be considered as indepen-
dent; both their signal properties and their noise level may differ systematically from
electrodes in a different patient. Let us figure out how to solve this issue using LME
methods.

We simulate one dataset in which five patients with 8, 7, 9, 8, and 11 hippocampal
contacts, respectively, complete a spatial location memory task in a virtual envi-
ronment. We want to address the question whether theta power changes along the
anterior–posterior (A-P) axis of the hippocampus during translational movements.
To answer this question, we first determine the relative position of each patient’s
hippocampal contacts along the anterior–posterior (A-P) hippocampal axis (as was
done in [8]; see also Chaps. 27 and 28 for preprocessing) and Z-score the magnitude
of theta power in each of these contacts across all translational movement periods.
In a traditional linear regression analysis across all contacts, we would then build a
linear regression model on all 43 pairs of values to analyze theta power as a function
of location along the longitudinal axis of the hippocampus (Fig. 36.1). This anal-
ysis showed that theta power did not significantly change along the A-P axis (t41
= 0.911, p = 0.368; Fig. 36.1a; see the example script for more details). However,
when analyzing the data of each patient separately, we found that theta power actually
increased along the A-P axis for each individual patient (all p < 0.05; Fig. 36.1b).

Why are there such different results? When we look closely at Fig. 36.1b, we can
understand the problem. The position of the hippocampal contacts is highly different
for each patient, especially Patient 1 and Patient 5, whose contacts are located in
the anterior and posterior hippocampus, respectively. However, the theta power in
the anterior hippocampus of Patient 1 is significantly greater than the theta power in

a b

Fig. 36.1 Example data. (a) Simple linear regression of theta power as a function of longitudinal
position across 43 hippocampal contacts in 5 patients. Each grey dot is a contact. The black line is
the fitted line (not significant). (b) Simple linear regression of position and theta power separately in
each patient. Each point indicates one contact. Each color-coded line is a fitted line for each patient
(significant in every patient)
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the posterior hippocampus of Patient 5 (two-sample t-test, t17 = 2.606, p = 0.018),
although the theta power increases along the A-P axis for both patients (Patient 1: t6
= 3.967, p = 0.007; Patient 5: t9 = 2.457, p = 0.036). Looking back at the simple
linear regression (Fig. 36.1a), it turns out that the data violates the assumption of
independent observations because theta power is correlated acorss the contacts of
each patient. Ignoring the correlation between samples and applying simple linear
regression analysis across all channels biases statistical results [16]. What we learn
from this example is that we should adopt appropriate statistical methods for the data
we collect. For a multi-level data where contacts are nested in patients, we should
use multi-level linear models [9, 11], also called linear mixed models.

36.2 Linear Mixed Effect Model

Before understanding LME, let’s recall ordinary linear regression models. The linear
regression model can be expressed in matrix form as:

y = Xβ + ε

where y is the dependent variable expressed as an N × 1 column vector (N are the
observed samples), X is an N × p matrix (p − 1 independent variables, plus an
intercept term), β is the regression coefficient expressed as a p× 1 column vector, ε
is the random error expressed as an N × 1 column vector. As can be seen from the
formula, the linear regression model only contains two parts, namely the fixed effect
(β) and the noise (ε).

The formula of LME can be expressed as:

y = Xβ + Zu + ε

It can be seen that an LME is similar to the ordinary linear regression model,
but includes the additional term Zu. Z is an N × q matrix where each column is a
random factor, u is the regression coefficient of the random factor, also known as
the random effect, which is a column vector of q × 1. There are two main types of
random factors: random intercept and random slope.

LME can also be understood from a different perspective, which may be helpful
is is described in the next paragraph.
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36.3 Understanding the Construction of LMEs
from the Perspective of Multi-Level Linear Models

LMEs and multi-level linear models are essentially the same. They are both models
that deal with nested data, but have different perspectives on the data. Briefly, a
multi-level linear model first performs linear regression within each group using
the lowest level data. Then, the obtained regression coefficients of each group are
used as the dependent variable, and the linear regression is performed again with
higher-level independent variables. Taking a simple two-level model as an example,
we measure the independent variables X1 (e.g., the relative position of contacts) and
Z1 (e.g., patient’s age) at the first (i.e., individual) and second (i.e., group) level,
respectively. Assuming that the second-level independent variable affects the first-
level coefficients (i.e., intercept and slope), the first-level formula can be written as
follows:

Yi j = β0 j + β1 j X1i j + ei j

where
Yi j is the dependent variable measured at the ith individual of the jth group, such

as the theta power of the ith contact of the jth patient,
X1i j is the independent variable measured in the ith individual of the jth group,

such as the relative position of the ith contact of the jth patient,
β0 j is the intercept of the jth group,
β1 j is the slope of the jth group,
ei j is the random error of the ith individual in the jth group.
The second level formula is as follows:

β0 j = γ00 + γ01Z1 j + u0 j

β1 j = γ10 + γ11Z1 j + u1 j

where
Z1 j is the independent variable Z1 measured in the jth group, such as the age of

the jth patient,
γ00 is the intercept of each group of intercepts after controlling Z1,
γ01 is the effect of each group of intercepts modulated by Z1,
γ10 is the intercept of the slope of each group after controlling Z1,
γ11 is the effect that the slopes of each group are modulated by Z1,
u0 j is the random error of the intercept of the jth group,
u0 j is the random error of the slope of the jth group.
When we substitute the model of the second level into the first level to obtain the

combined model, we can readily understand the LME.

Yi j = γ00 + γ01Z1 j + u0 j + (
γ10 + γ11Z1 j + u1 j

) ∗ X1i j + ei j
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Yi j = (γ00 + γ10X1i j + γ01Z1 j + γ11Z1 j X1i j ) + (u0 j + u1 j X1i j ) + ei j

From the combined model, we can see that (γ00+γ10X1i j +γ01Z1 j +γ11Z1 j X1i j )
is the fixed effect part of the model, and the corresponding matrix form is Xβ.
(u0 j + u1 j X1i j ) is the random effect part, and the corresponding matrix form is Zu.
For the random effects, the intercept and slope of each group consist of random errors
u0 j and u1 j , respectively. Parameter estimation, hypothesis testing, and extension to
generalized linear mixed models are out of the scope of this chapter. If you want to
learn more, you can refer to these books [9, 11, 14].

36.4 Examples of LME with MATLAB

Next, we will use three simple examples to illustrate how to perform LME analysis
on iEEG data through the fitlme function in MATLAB. In this part, we only show the
construction of the basic formula and the results (please see the example scripts). As
mentioned above, iEEG data are inherently nested. Usually, the contact level and the
patient level are included in LME, and in most cases the repeated measurements are
included as the first level. Here we present the three most common types of models:
A two-level model for a continuous independent variable, a three-level model for
repeatedmeasurements, and amodel involving a cross-level interaction of continuous
and categorical independent variables.

36.4.1 Two-Level Model: Contacts that Are Nested in Patients

Returning to the example data, we determined relative positions (i.e., percentile)
along theA-P axis of the hippocampus of 5 patients and extracted their Z-scored theta
power during periods of translational movement. The dependent variable was theta
power (ThetaPower), the first level independent variable was the relative position
(Position), and there was no independent variable at the second level. Given that
theta power may be systematically different between patients, the patient number
(PatientID)was used as a random effect. In LMEs, whenwe focus on the independent
variables of the first level and their interactions, we need to decentralize them within
groups [6]. Here, we subtract the average position of the patient’s contacts from
the position of each contact. Meanwhile, for model parsimony, we assumed that the
effect of contact position on theta power was consistent across patients. That is, we
used an LME with random intercept and fixed slope with the following formula:

ThetaPower ~1 + Position + (1 | PatientID).
where 1 represents the intercept term, and (1|PatientID) represents the random

intercept for each patient. The results show that theta power during translational
movements increases gradually along the A-P axis of the hippocampus (t41 = 6.472,
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p < 0.001). Of course, if you find that the slopes vary significantly between patients,
you can use a random slope model with the following formula:

ThetaPower ~1 + Position + (1 + Position | PatientID).
where (1 + Position|PatientID) indicates the random intercept and slope for each

patient. The MATLAB example script shows that in our sample data, the results of
the two models do not differ much. Therefore, in the following examples, we also
use random intercept models as examples.

36.4.2 Three-Level Model: Repeated Measurements Are
Nested in Contacts that Are Nested in Patients

In the previous example data, we also measured theta power at each hippocampal
contact during stationary periods in all patients. Then, we wanted to analyze whether
the theta power during stationary periods is lower than that during translational
periods. At this point, the theta power was measured for each contact during
both translation and stationary periods, and movement states (i.e., translation and
stationary) are nested in the contacts that are nested in patients. The movement state
(MoveState) is the first level independent variable. The second level is the contact,
which has no independent variable that we are currently concerned about. We use
the contact number (ContactID) as a random effect. The third level is the patient,
and there is also no independent variable. The patient number (PatientID) is used as
a random effect. The formula is as follows:

ThetaPower ~1 + MoveState + (1 | PatientID) + (1 | PatientID:ContactID).
whereMoveState represents the categorical variable ofmovement state (stationary

or translation) encoded with 1 for translational periods and 2 for stationary periods.
(1 | PatientID:ContactID) indicates the random effect of the interaction between the
contact and the patient, i.e. the random intercept of each contact within each patient.
Other parts are the same as in the previous example. The results of the model showed
that the theta power of patients during stationary periods was significantly lower than
during translations (t84 = −8.764, p < 0.001).

36.4.3 Cross-Level Interactions Between Continuous
and Categorical Independent Variables

In many studies, we are probably interested in the interactions between variables.
Different from ordinary linear regression models, LMEs can deal with interactions
between independent variables at different levels (or cross-level). Using the data
from the two examples above, the question we may want to investigate is whether
the hippocampal A-P axis-dependent pattern of theta power is affected by movement
states. This results in a three-level structure of data. The dependent variable is still
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theta power (ThetaPower). The independent variable of the first level is themovement
state (MoveState). The independent variable of the second level is the relative position
(Position) of the contacts. The third level is the patient. No independent variable is
measured, and the patient number is used as a random effect. The formula is as
follows:

ThetaPower ~1 + Position*MoveState + (1 | PatientID) + (1 | Pati-
entID:ContactID).

where Position*MoveState is equivalent to Position + MoveState + Posi-
tion:MoveState, in which Position:MoveState represents the interaction between
relative position and movement state. The other parts are the same as above. We
can use the anova function in MATLAB to return the results of the F-tests for each
fixed-effects term.For simple effects,weneed tomodify the reference conditionwhen
coding dummy variables and obtain simple effects under each condition separately
(see the example script for details). Results showed that the interaction between rela-
tive position and movement state is significant (F1,82 = 42.018, p < 0.001). Simple
effects analysis showed that patients’ hippocampal theta power increase along the A-
P direction during translation (t82 = 6.533, p<0.001) and decreased during stationary
periods (t82 = −2.634, p = 0.01).

36.5 Discussion

Given the natural nesting characteristics of iEEG data, we advocate using LMEs
to perform statistical tests, rather than using traditional linear regression models.
Many recent iEEG studies have used LMEs for data analysis [4, 5, 12, 13, 17]. In
this chapter, we aimed to describe how to apply LMEs to iEEG data. Its stricter
assumptions and parameter estimation are beyond the scope. If you are interested,
you can refer tomore detailed books on this topic [9, 11, 14]. Here, we provided three
examples that reflect some cases which are most commonly found in iEEG research,
and provide associatedMATLABexample code. It is worth noting that other software
packages can implement LME analyses, such as R or SPSS. Due to the different
methods of parameter estimation used by each software, results may also be slightly
different. However as far as we know, the results output from MATLAB and R are
not fundamentally different for the simple LMEs that are commonly used for iEEG
data. For more complex LMEs, such as those involving more than three levels and
including more independent variables and interaction terms, we recommend using
packages in R (such as lme4 [1]) for analysis. In addition, R has many packages
(such as emmeans) that can analyze interactions and simple effects, whichMATLAB
cannot handle very well. Recently, there has been a related literature on how to apply
R to perform LME analysis on neuroscience data in details [18]. Here, our goal was
to provide a basic introduction to LMEs. Do not stop there, you can explore more
about LMEs based on the materials mentioned above.



586 P. Lv and L. Wang

References

1. Bates D,Maechler M, Bolker BM,Walker SC (2015) Fitting linear mixed-effects models using
lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

2. Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents -
EEG, ECoG. LFP and spikes. Nat. Rev. Neurosci. 13(6):407–420. https://doi.org/10.1038/nrn
3241

3. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science
304(5679):1926–1929. https://doi.org/10.1126/science.1099745

4. Chen, D., Kunz, L., Lv, P., Zhang, H., Zhou, W., Liang, S., et al. (2021). Theta oscillations
coordinate grid-like representations between ventromedial prefrontal and entorhinal cortex.
Sci. Adv., 7(44), eabj0200, https://doi.org/10.1126/sciadv.abj0200.

5. Chen, S., Tan, Z., Xia, W., Gomes, C. A., Zhang, X., Zhou, W., et al. (2021). Theta oscillations
synchronize human medial prefrontal cortex and amygdala during fear learning. Sci. Adv.,
7(34), eabf4198, https://doi.org/10.1126/sciadv.abf4198.

6. Enders C, Tofighi D (2007) Centering predictor variables in cross-sectional multilevel models:
A new look at an old issue. Psychol Methods 12:121–138. https://doi.org/10.1037/1082-989X.
12.2.121

7. Friston KJ, Bastos AM, Pinotsis DA, Litvak V (2015) LFP and oscillations—what do they tell
us? Curr Opin Neurobiol 31:1–6. https://doi.org/10.1016/j.conb.2014.05.004

8. Goyal A, Miller J, Qasim SE,Watrous AJ, Zhang H, Stein JM et al (2020) Functionally distinct
high and low theta oscillations in the human hippocampus. Nat Commun 11(1):2469. https://
doi.org/10.1038/s41467-020-15670-6

9. Hox JJ,MoerbeekM,Van de Schoot R (2018)Multilevel analysis: Techniques and applications,
3rd edn. Routledge, New York

10. Jacobs J, Kahana MJ (2010) Direct brain recordings fuel advances in cognitive electrophysi-
ology. Trends Cogn Sci 14(4):162–171. https://doi.org/10.1016/j.tics.2010.01.005

11. Jiang, J., & Nguyen, T. (2021). Linear and generalized linear mixed models and their
applications (2nd ed., Vol. 1). New York: Springer.

12. Norman Y, Raccah O, Liu S, Parvizi J, Malach R (2021) Hippocampal ripples and their
coordinated dialogue with the default mode network recent and remote recollection. Neuron
109(17):2767–2780. https://doi.org/10.1016/j.neuron.2021.06.020

13. Norman Y, Yeagle EM, Harel M, Mehta AD, Malach R (2017) Neuronal baseline shifts under-
lying boundary setting during free recall. Nat Commun 8:1301. https://doi.org/10.1038/s41
467-017-01184-1

14. Raudenbush SW, Bryk AS (2002) Hierarchical linear models: Applications and data analysis
methods (2nd ed., Vol. 1). London: Sage

15. Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal
interactions. Nat Rev Neurosci 13(2):121–134. https://doi.org/10.1038/nrn3137

16. Stevens JP (2015) Applied multivariate statistics for the social sciences, 6th edn. Routledge,
New York

17. Vikbladh OM, Meager MR, King JA, Blackmon K, Devinsky O, Shohamy D et al (2019)
Hippocampal contributions to model-based planning and spatial memory. Neuron 102(3):683–
693. https://doi.org/10.1016/j.neuron.2019.02.014

18. Yu Z, Guindani M, Grieco SF, Chen L, Holmes TC, Xu X (2022) Beyond t test and ANOVA:
applications of mixed-effects models for more rigorous statistical analysis in neuroscience
research. Neuron 110(1):21–35. https://doi.org/10.1016/j.neuron.2021.10.030

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1038/nrn3241
https://doi.org/10.1126/science.1099745
https://doi.org/10.1126/sciadv.abj0200
https://doi.org/10.1126/sciadv.abf4198
https://doi.org/10.1037/1082-989X.12.2.121
https://doi.org/10.1016/j.conb.2014.05.004
https://doi.org/10.1038/s41467-020-15670-6
https://doi.org/10.1016/j.tics.2010.01.005
https://doi.org/10.1016/j.neuron.2021.06.020
https://doi.org/10.1038/s41467-017-01184-1
https://doi.org/10.1038/nrn3137
https://doi.org/10.1016/j.neuron.2019.02.014
https://doi.org/10.1016/j.neuron.2021.10.030


Chapter 37
How Can I Avoid Circular Analysis
(“Double Dipping”)?

Nora Alicia Herweg

Abstract Intracranial montages can include up to a few hundred electrodes per
patient and data is sampled at least every fewmilliseconds. Like fMRI, scalp EEGand
other neuroimaging methods, intracranial recordings therefore produce data sets that
allow for numerous comparisons, raising the need for adequatemultiple comparisons
correction. To reduce the number of comparisons and to answer questions related
to a specific subset of the data, analysis pipelines contain a selection process. Here,
researchers select specific features of the recorded data, such as particular electrodes,
frequencies, or time points, for further analyses. The selection of electrodes, in partic-
ular, poses a unique challenge in intracranial research, given that each patient has
a unique electrode montage that is determined based on their clinical needs. If the
criteria guiding the selection process are not independent of the subsequent statistical
analyses, they can render the analyses circular and their results invalid. This chapter
discusses strategies to avoid circularity and to derive valid statistical inferences when
working with intracranial recordings, considering both univariate and multivariate
analysis techniques.

37.1 What Is Circular Analysis and Why Is It a Problem?

When we conduct an intracranial EEG study, we typically acquire a large dataset,
reflecting electrical potentials across many electrodes and time points. The number
of electrodes typically ranges from several tens to few hundreds of electrodes per
patient. The duration of a typical testing session can range from anywhere between
a few minutes to a couple of hours, with sampling rates commonly ranging between
500 and 2000 Hz. A 1 h session recorded at 1000 Hz, for instance, will result in 3.6
Million data points for each electrode contact. When analyzing the data, we select
subsets of it to conduct one ormore statistical test that address our research questions.
For instance, we may select electrodes localized to a particular region of the brain, or
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time points within a particular window relative to stimulus onset.Wemay further sort
the data points, for instance by assigning them to relevant conditions using criteria
such as task performance.Orwemay explicitly (e.g. duringmultivariate regression or
classification) or implicitly (e.g. when averaging data within conditions with unequal
N) assign weights to each data point, that determine how much it contributes to our
statistical result. Selection, of which sorting and weighting can both be understood
as special cases [1], is a necessary step of the research process but it comes with the
risk of circularity.

Circularity arises when the criteria that guide selection are not independent from
subsequent statistical analysis. Let us assume, for example, that we conduct a statis-
tical test to compare the neural activity elicited by two conditions A and B in each
of 20 individual time-windows relative to stimulus onset. Under the null hypoth-
esis of no difference between these conditions, an alpha threshold of 0.05 will on
average lead us to observe an effect in 1 of the 20 time-windows. In an extreme case,
researchers may choose to select the time-window for which they report the statis-
tical result based on the statistical result itself (having observed an effect), rendering
the statistical inference invalid.

Instead, it is necessary to report the results of all statistical tests and to appro-
priately control for the number of tests. Common approaches to address multiple
comparison correction with intracranial EEG data differ from those used for other
neuroimaging methods like fMRI. Intracranial recording contacts are implanted as
grid, strip or depth electrodes. These electrodes provide coverage of portions of the
brain surface (grid and strip) or deep brain structures (depth), while their positioning
is determined based on the clinical needs of the patient (see Chap. 1). Therefore,
the electrode montage as a whole does not sample neural activity evenly across
space and subjects. As a result, cluster-based methods (discussed in Chap. 35) are
mostly used to detect effects across contiguous samples of time, frequency or time–
frequency dimensions, after selecting electrodes based on a priori criteria. Alterna-
tively, researchers can choose to correct for the number of statistical comparisons
at the level of individual samples (i.e. time points, frequencies, electrodes). Bonfer-
roni correction is a simple but sometimes overly conservative method to control the
family-wise error rate, in which the alpha level is divided by the number of statistical
tests. Other methods, such as the Benjamini–Hochberg procedure instead control the
false-discovery rate and are less conservative [2].

Adjusting the alpha threshold to correct for the increased probability of falsely
rejecting the null hypothesis due to multiple comparisons is necessary but not suffi-
cient to prevent circularity. Let us assume that we appropriately controlled the type-
one error rate and observed an effect in 5 out of 20 time-windows. Whereas we can
safely conclude that there is a statistically significant difference between conditionsA
and B in some time-windows, we do not know whether the 5 time-windows in which
we observed an effect exactlymatch the true effect in the data. This is because the data
we collected is a combination of signal and noise. In any given time-window, noise
may either increase or decrease the difference between our conditions of interest.
Therefore, we may fail to detect a time-window with a true effect if noise in that time
window happened to attenuate the relevant effect; or we may observe an effect in a
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time-window in which there is no true effect if noise in that time-window happened
to increase the relevant condition difference. The selection of time-windows that
passed the significance threshold will thus be biased to include time-windows in
which noise increased rather than decreased the difference between conditions A
and B. Any effect size estimates derived from this specific selection of time windows
will be inflated due to circularity [1, 3].

Selecting data points for the very effect in question is an extreme example of non-
independence. Less extreme examples are less widely recognized but are likewise
problematic.Wemay for instance want to identify electrodes that exhibit a difference
between two conditions A and B, and then ask in a second step whether those same
electrodes also exhibit a difference between conditions A and C. Since our selection
favors electrodes that show extreme activation profiles in condition A (thus rendering
them different from B), these electrodes will be biased to also exhibit a difference
between A and C, resulting in invalid statistical inference [1]. These considerations
of course also apply to the selection of frequency bands, and are not unique to
intracranial EEG but affect most neuroimaging methods.

37.2 Can Multivariate Analyses Be Circular?

So far, we have considered the case of mass-univariate analyses, in which we relate
the activity at multiple sampling locations (i.e. time points, frequencies, electrodes)
to a variable of interest (e.g. task condition) with a statistical model for each sampling
location (e.g. regression, t-test etc.). In recent years,multivariate analyses have gained
popularity in M/EEG research [4], including in the realm of intracranial EEG (e.g.
[5–7], see also Chap. 34). Inmultivariate analyses, we use a single statistical model to
predict a variable of interest from the activity at multiple sampling locations (i.e. the
feature set). If the to-be-predicted variable is categorical, this is called classification;
in the continuous case, it is called regression. In either case, we estimate parameters
that describe the relation between the feature set (x) and the variable of interest (y).
We can think of these parameters as weights, or selection criteria, to be applied to
each feature to arrive at the predicted value (e.g. in the linear model y = β1x1 + …
+ βnxn + e, the feature set x is weighted by β; [1]). Having estimated the parameters
in the model, we next want to assess the model’s performance in predicting y from x.
If the model’s predicted values are closer to the true y values than would be expected
by chance, we conclude that the feature set carries information about y.

Circularity in multivariate analyses arises if parameter estimation (i.e. selection)
is not independent from evaluation of model performance. Testing a model on the
exact same data on which the model was trained constitutes an extreme example of
non-independence that can lead to strongly inflated performance measures. With a
large number of features, and hence parameters, multivariate models tend to overfit
noise in the data, resulting in a high performance on the training data that does not
generalize to new data points [8]. To avoid this problem, researchers usually split
their data sets into a training set and a test set. The parameters are estimated based
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on the training set and the estimated model’s performance is tested in the test set.
However, splitting the data set in half means that we are losing power to detect an
effect. To attenuate the reduction in power, researchers often use cross-validation,
an iterative procedure in which the data set is split into several subsets [9]. On each
iteration, one subset serves as the test set and the remaining subsets are used to train
the model. In the end, performance is averaged across test sets/iterations.

Deciding how to split the data into training and test sets is a crucial decision that
can impact the validity of the findings. This is because different ways of splitting the
data can result in different levels of statistical dependency between training and test
set. Intracranial EEG is temporally autocorrelated and splitting the data into small
subsets such that neighboring subsets are strongly correlated can result in circularity.
Dependence between training and test can also be introduced during an initial feature
selection step. For instance, selecting electrodes, time window or frequencies as the
feature set based on a univariate effect across the entire data set introduces statistical
dependence between training and test sets and can generate spurious results [1].
Similarly, using information from the test set to scale or otherwise preprocess features
in the training set can lead to invalid results [10, 11].

37.3 How Should I Select Data Points to Avoid Circularity?

If your research question and hypothesis allow to select data points (frequencies, time
points, contacts) based on a priori criteria, you should prefer this type of selection
over one that is driven by your current data set. You may want to consult prior studies
that show effects relevant to your research question in a particular frequency band,
time window or region of the brain (see also Chap. 29 for the definition of regions of
interest). Whereas time windows and frequency bands can be exactly replicated in
each participant, electrode selection is trickier given the fact that each subject has an
individual electrodemontage.Electrode selection is usually accomplishedvia amask.
This mask will ideally be derived from an anatomical atlas or from an independent
data set (e.g. using a repository for fMRI results like https://neurosynth.org/; [12]).
If you are working with a large sample size it may be possible to select specific small
subregions and exclude subjects with missing electrode coverage in a given region.
If your sample size is small, you may opt for larger regions of interest instead. In
either case, the number of electrode contacts in each region will likely differ across
subjects. To proceed, you can average each subject’s data across electrodes in a
given region, use a statistical model that can handle hierarchical random effects (see
Chap. 36), or select a single electrode based on independent criteria (e.g. the most
anterior contact in each patient). Instead of using a mask, it is also possible to select
a single electrode directly, for instance by minimizing the distance to a particular
MNI coordinate and setting a cut-off for the maximally allowed distance. Finally,
some research questions may require a subject-specific selection of data points. In
this case, you should plan for an independent contrast (e.g. using a separate localizer
task) prior to data acquisition.

https://neurosynth.org/
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Whatever your selection criterion, you must make this decision prior to analyzing
your data. Choosing a selection criterion among a set of criteria because it maximizes
a certain effect, again renders the analysis circular and its result invalid [12]. The
only way to demonstrate that hypotheses and data selectionwere independent a priori
decisions is to preregister your study, for instance in a public repository such as the
Open Science Framework (OSF, https://osf.io/). Doing so will not prevent you from
performing additional exploratory analyses in your data set but it will ensure that the
results of such analyses are not interpreted as confirmation of an a priori hypothesis
but rather as the basis for a new hypothesis to be tested in an independent data set.

37.4 What if I Don’t Have a Specific Hypothesis?

Some research questions may require a more exploratory rather than confirmatory
approach. In this case, it may not be possible to pinpoint exactly which frequencies,
time windows or contacts should exhibit the effect in question. It is important to
interpret the results of these analyses appropriately—exploratory analyses generate
hypotheses; they do not confirm them. If you do not have a specific hypothesis going
into the analyses, you should be prepared to confirm your exploratory results in a
separate data set. To do this you can split your data set in half prior to the analysis (e.g.
at the level of subjects or experimental sessions), perform all exploratory analyses
on the first half and generate specific hypothesis to be tested in the second half of
the data. This approach reduces your power to detect an effect in either of the two
halves, and hence should be used only if a priori selection is not possible, and if your
dataset is sufficiently large.

37.5 How Do I Ensure Independence Between Training
and Test Set in Multivariate Analyses?

Studies have demonstrated spurious effects in multivariate fMRI analyses driven by
temporal autocorrelation. These effects are stronger within than across scanner runs
(a run is a continuous period of image acquisition with fMRI that usually lasts a few
minutes; an experiment usually consists of multiple such runs) and with shorter inter
stimulus intervals. Therefore, it has ben suggested that data be split at the level of
runs rather than within a run [13, 14]. Like fMRI data, (intracranial) EEG data is
temporally autocorrelated but it is not acquired in runs. Due to the autocorrelation,
a split that results in subsets that are large (e.g. experimental blocks or sessions;
order of several minutes) rather than small (e.g. trials; order of several seconds)
should generally be preferred because it reduces the correlation between training and
test set. This is of particular relevance if the to-be-predicted variable is temporally
structured as well [14, 15]. Furthermore, information from the test set should not

https://osf.io/
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be used during feature selection or preprocessing. Feature selection should either
be based on a priori criteria, or on the training set only. Similarly, preprocessing
of training data should not rely on information from the test set. Instead, the most
commonly used approach is to calculate relevant parameters (e.g. mean and standard
deviation when using z-scoring) in the training data and apply those parameters to
both training and test set.

Finally, a permutation test can provide a measure of model performance that is
robust to circularity if used appropriately (see Chap. 35). In a permutation test, the
cross-validated performance is assessed repeatedly on a resampled data set [16]. On
each permutation iteration, class labels are shuffled relative to the feature set and the
full cross-validation procedure (including all relevant selection steps) is repeated on
each reshuffledversion. The result is a permutation distribution ofmodel performance
under the null hypothesis, which exhibits the same biases as the original performance
metric. If the permutation distributiondeviates from the theoretically expected chance
distribution (e.g. exhibiting a mean of above 50% in balanced binary classification),
this is suggestive of circularity in the analysis pipeline [8]. Comparing our model’s
performance to the permutation distribution instead of the theoretically expected
chance level, can thus result in a more realistic performance estimate. However, the
permutation distribution can only be interpreted in this way if the resampled labels
could have arisen from the same process that generated the original label sequence
[17]. In many situations, the original class labels are not fully randomized but instead
exhibit temporal structure, for instancewhen the randomization of condition labels in
the experiment was subject to constraints or when the labels reflect a behavioral vari-
ablewith temporal autocorrelation [14]. In these situations, the resampling procedure
has to be adapted to reproduce the statistical properties of the original label sequence
[18].

37.6 Summary

Circularity is a major concern in intracranial research because statistical inference
and effect size estimation are usually preceded by several selection steps. Researchers
may analyze neural activity in a particular region of the brain or in a particular portion
of time–frequency space. Whenever possible, the selection of data points should be
driven by a priori criteria, which are independent from subsequent statistical analysis.
Ideally these decisions would be documented prior to data analysis. In multivariate
analyses, selection is part of model training and circularity arises if parameter esti-
mation is not independent from subsequent evaluation of model performance. To
avoid inflated performance measures, researchers need to ensure independence of
training and test data.



37 How Can I Avoid Circular Analysis (“Double Dipping”)? 593

References

1. Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular analysis in systems
neuroscience: the dangers of double dipping. Nat Neurosci 12:535–540. https://doi.org/10.
1038/nn.2303

2. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J R Stat Soc Ser B 57:289–300

3. Vul E, Harris C, Winkielman P, Pashler H (2009) Puzzlingly high correlations in fMRI studies
of emotion, personality, and social cognition. Perspect Psychol Sci 4:274–290. https://doi.org/
10.1111/j.1745-6924.2009.01132.x

4. Grootswagers T,Wardle SG, Carlson TA (2017) Decoding dynamic brain patterns from evoked
responses: a tutorial on multivariate pattern analysis applied to time series neuroimaging data.
J Cogn Neurosci 29:677–697. https://doi.org/10.1162/jocn_a_01068

5. Ezzyat Y,Wanda PA, Levy DF, et al (2018) Closed-loop stimulation of temporal cortex rescues
functional networks and improves memory. Nat Commun 9. https://doi.org/10.1038/s41467-
017-02753-0

6. Anumanchipalli GK, Chartier J, Chang EF (2019) Speech synthesis from neural decoding of
spoken sentences. Nature 568:493–498. https://doi.org/10.1038/s41586-019-1119-1

7. Leuthardt EC, Schalk G, Wolpaw JR et al (2004) A brain-computer interface using electro-
corticographic signals in humans. J Neural Eng 1:63–71. https://doi.org/10.1088/1741-2560/
1/2/001

8. Ball TM, Squeglia LM, Tapert SF, Paulus MP (2020) Double dipping in machine learning:
problems and solutions. Biol Psychiatry Cogn Neurosci Neuroimaging 5:261–263. https://doi.
org/10.1016/j.bpsc.2019.09.003

9. Raamana P, Engemann D, Schwartz Y et al (2016) Assessing and tuning brain decoders:
cross-validation, caveats, and guidelines. Neuroimage 166–179

10. Hebart M, Görgen K, Haynes J-D (2015) The Decoding Toolbox (TDT): a versatile soft-
ware package for multivariate analyses of functional imaging data. Front Neuroinform 8:1–18.
https://doi.org/10.3389/fninf.2014.00088

11. Treder MS (2020) MVPA-Light: a classification and regression toolbox for multi-dimensional
data. Front Neurosci 14:1–19. https://doi.org/10.3389/fnins.2020.00289

12. ButtonKS (2019)Double-dipping revisited.NatNeurosci 22:681–690. https://doi.org/10.1038/
s41593-019-0386-3

13. MurM, Bandettini PA, Kriegeskorte N (2009) Revealing representational content with pattern-
information fMRI—an introductory guide. Soc Cogn Affect Neurosci. https://doi.org/10.1093/
scan/nsn044

14. Mumford JA,Davis T, PoldrackRA (2014) The impact of study design on pattern estimation for
single-trial multivariate pattern analysis. Neuroimage 103:130–138. https://doi.org/10.1016/j.
neuroimage.2014.09.026

15. Li R, Johansen JS, Ahmed H et al (2021) The perils and pitfalls of block design for EEG
classification experiments. IEEE Trans Pattern Anal Mach Intell 43:316–333. https://doi.org/
10.1109/TPAMI.2020.2973153

16. Valente G, Castellanos AL, Hausfeld L et al (2021) Cross-validation and permutations in
MVPA: validity of permutation strategies and power of cross-validation schemes. Neuroimage
238:118145. https://doi.org/10.1016/j.neuroimage.2021.118145

17. Nichols TE, Holmes AP (2001) Nonparametric permutation tests for functional neuroimaging:
a primer with examples. Hum Brain Mapp 15:1–25

18. Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain mapping.
Proc Natl Acad Sci 103:38633868. https://doi.org/10.1073/pnas.0600244103

https://doi.org/10.1038/nn.2303
https://doi.org/10.1111/j.1745-6924.2009.01132.x
https://doi.org/10.1162/jocn_a_01068
https://doi.org/10.1038/s41467-017-02753-0
https://doi.org/10.1038/s41586-019-1119-1
https://doi.org/10.1088/1741-2560/1/2/001
https://doi.org/10.1016/j.bpsc.2019.09.003
https://doi.org/10.3389/fninf.2014.00088
https://doi.org/10.3389/fnins.2020.00289
https://doi.org/10.1038/s41593-019-0386-3
https://doi.org/10.1093/scan/nsn044
https://doi.org/10.1016/j.neuroimage.2014.09.026
https://doi.org/10.1109/TPAMI.2020.2973153
https://doi.org/10.1016/j.neuroimage.2021.118145
https://doi.org/10.1073/pnas.0600244103


Chapter 38
How Can Intracranial EEG Data Be
Published in a Standardized Format?

Dora Hermes and Jan Cimbalnek

Abstract Sharing data or code with publications is not something new and licenses
for public sharing have existed since the late 20s century. More recent worldwide
efforts have led to an increase in the amount of data shared: funding agencies require
that data are shared, journals request that data are made available, and some journals
publish papers describing data resources. For intracranial EEG (iEEG) data, consid-
ering how and when to share data does not happen only at the stage of publication.
Human subjects’ rights demand that data sharing is something that should be consid-
ered whenwriting an ethical protocol and designing a study before data are collected.
At that moment, it should already be considered what levels of data will be collected
and potentially shared. This includes levels of data directly from the amplifier, refor-
matted or processed data, clinical information and imaging data. In this chapter we
will describe considerations and scholarship behind sharing iEEG data, to make it
easier for the iEEG community to share data for reproducibility, teaching, advancing
computational efforts, integrating iEEG data with other modalities and allow others
to build on previous work.

38.1 Introduction

The sharing of data is becoming a core aspect of scientific discourse both inside and
outside of laboratories. Part of scientific advancement is to be able to test and compare
different theories of brain function against different datasets. Conflicts between theo-
ries can stem from many sources, including differences between data supporting
the theory or differences in implementation, visualization and code. Students often
learn about these issues when they run into problems reproducing previous results
from within or outside of a lab. Buckheit and Donoho lay out a scientific decision
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tree that helps determine the source of the differences [1]. In case of disparities
it should be questioned whether an idea is correct, whether an implementation is
correct, whether measurements differ, whether parameters in analyses are correct
and whether the results are displayed correctly. To be able to walk this decision tree
and compare theories between and within labs, they argue that the actual scholarship
of a manuscript is the complete code, environment and data to regenerate the figures,
and that the manuscript by itself is a mere advertisement for this scholarship.

Intracranial EEG (iEEG) data are only collected in select centers with the essential
neurosurgical and neurological expertise and provide a unique perspective on human
brain function. Curating these data for publication, such that others can reproduce or
test new theories against these data, is not a trivial process and goes well beyond a
data format for the iEEG time series data. Data files often do not contain important
information, such as experimental designs with complex sequences of event onsets,
stimuli that were displayed, digitized electrode positions or subject level variables
like age or the type of disease. Labs store this information inmany different ways and
tracking down this information can be extremely challenging even for subsequent
lab members within the same lab. Maintaining a systematic way of data organization
is part of the ongoing expertise of an iEEG lab.

Maintaining and sharing these valuable data is easier if there is a well documented
framework in place. These frameworks are being developed by large community
efforts that lay out standard structures for storing both data and metadata in a manner
that is consistent between different types of neuroimaging, behavioral and electro-
physiological data. Community driven standardization of data structures are believed
to be essential to facilitate data sharing and ensure data accessibility and interoper-
ability [2]. One such community effort is the Brain Imaging Data Structure (BIDS)
[3], which is supported by the International Neuroinformatics Coordinating Facility
(INCF, https://www.incf.org/). BIDS was initially developed for Magnetic Reso-
nance Imaging (MRI) data to minimize data curation time, reduce errors, allow for
the implementation of automated analysis workflows and allow validating datasets
for the presence of essential metadata. BIDS is based on common lab practices and
analyses and labs do not need extensive informatics expertise to use BIDS. With
many scientists from the iEEG community, we therefore extended BIDS to iEEG
data [4] and ensured that iEEG-BIDS is applicable to most common use cases. This
effort was well aligned with the MEG and EEG BIDS extensions to ensure compat-
ibility between electrophysiology data types [5, 6]. In addition to the relative ease
of implementation and human readability, the machine readability in BIDS allows
automated validation and processing at large scales.

Community driven standards for publishing electrophysiological and
neuroimaging data do not only make data easier to parse for other users and
machines, but can, hopefully, also relieve some of the burden related to data cura-
tion. Even if data are only meant to be shared within a group or a small consortium
between a few labs, a shared structure helps walking the scientific decision tree.
The same code can run on multiple datasets if they are in the same structure, which
facilitates the implementation of quality checks at many different levels as well as

https://www.incf.org/
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analyzing and visualizing data, which are all part of the scientific iEEG scholarship
described in this book.

38.2 Study Design and Human Subjects

Before digging into the details of iEEG data components, it is important to briefly
consider the title of this chapter again, which asks how data can be published in
a standardized format. If we want to publish iEEG data, the question of how this
should be done should not be asked at the stage of publication. Human subjects’
rights demand that data sharing is considered when designing a study and writing
an ethical protocol. At that moment, it should be considered what types of data will
be collected and potentially shared and informed consent forms need to match these
plans. The IRB protocol should also detail what type of anatomical images, clinical
information or behavioral data will be collected for the subjects. Also, it should
be considered with whom data will be shared, only with other specific researchers
or such that they can be used by anyone for teaching purposes or perhaps even
commercially. Different countries have varying rules for human subjects protection.
TheOpenBrain Consent provides guidelines that make navigating this process easier
[7].

38.3 From Source Data to Raw Data

Curating data for sharing means structuring the iEEG data and metadata into a
usable, preferably standardized, format that tools can automatically process. The
iEEG source data directly from the recording device do typically not conform to the
standardized BIDS file naming and format. There is thus a conversion step between
the ‘source’ data from the recording device in the amplifier format, to the ‘raw’ data
that are unprocessed or minimally processed due to conversion to the proper file
format and in BIDS (Fig. 38.1). This is comparable to MRI research, where DICOM
data are considered source data and NIFTI files with proper naming are raw data
in BIDS. Subsequently, raw data that have undergone any level of processing are
considered derived data. In contrast with iEEG source data, raw data and derived
data can follow standardized structures for publication. An online BIDS validator is
available to check whether data conform to the BIDS specification [3] and contain
all the required data and metadata.
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a b c

Fig. 38.1 Levels of iEEG data organization. a Source data refer to the data directly from the
recording system, in the format that the data are recorded in. b Data curation from source data
to raw data involves steps such as folder organization and BIDS compatible naming, electrode
reconstruction, de-identificationof data etc. cRawdata refer to the data that are used in the processing
pipelines. Rawdata at the general levelwithin a labmay be organized inBIDS.Data can be organized
across projects, where all subject specific information is contained. d Derivatives are also starting
to be described within BIDS, and may include preprocessing steps or Freesurfer extractions

38.3.1 Creating the Overall Folder Structure

Creating the standardized BIDS folder structure for an experiment may be similar to
marking the rooms in an empty new house for the movers: living room, dining room,
bedroom, etc. When rooms are unlabeled, boxes with toys may end up in the dining
room etc. Defining the basic folder structure makes sure that new, incoming data
find their place. The folder structure identifies a subject and session level, followed
by the acquisition type (e.g. ieeg, T1w, bold, Fig. 38.1). The filename can then also
contain task, run and other optional labels. Note that the example in Fig. 38.1 is
far from exhaustive, and the online evolving BIDS specification provides all neces-
sary, current and up to date details: https://bids.neuroimaging.io/specification.html.
Defining these subject, session and task labels allows writing code to create lists
of the data in an automatic fashion. All iEEG data from subjects who performed a
particular task can be listed [8], and the structure can be validated with the online
BIDS validator. In addition, with this folder structure specified, data from a new
subject can relatively easily flow into the correct folder in the data structure.

Metadata are present at several different positionswithin theBIDS structure to add
information about the study, the participants, the sessions, the events etc. (Fig. 38.1).

https://bids.neuroimaging.io/specification.html
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All metadata files within BIDS are in field-value (.json) or tab separated file (.tsv)
formats, since these are human and machine readable (examples in Fig. 38.2). At
the project level of a BIDS structure (Fig. 38.1c), a dataset description file forces a
scientist to think about sources of funding, a license under which data may be shared
and contributors. A participants file further provides the option to add metadata like
the age of each subject. These metadata are not unique to iEEG, but general to all
types of BIDS data.

For each subject, iEEG study data can then be stored in the BIDS structure.
This does not only concern the raw iEEG time series file. Before electrodes are
implanted, imaging data and clinical information may be collected. After electrodes
are implanted, operative photographs, post-implant imaging, the montage with elec-
trode numbers and behavioral data may be collected. When electrodes are explanted,
resected tissue may be labeled, imaging data and post surgical outcomes like Engel
scores [9] may be collected. De-identifying and curating these data into a compre-
hensive BIDS format requires expertise with the clinical workflow and the different
systems where the imaging, electrophysiology and behavioral data are collected
(Fig. 38.2).

Fig. 38.2 One study identified 6 steps in the curation of clinical iEEG data in BIDS. Step 1: clinical
information is extracted for a subject. Step 2: session, task and run labels are assigned. Step 3: source
time series are converted to BIDS time series data format and corresponding _ieeg.json file. Step
4: Electrode positions are extracted. Step 5: Electrode positions are matched with corresponding
electrode names. Step 6: Channel, event and electrode positions are saved in BIDS.tsv and.json file
formats. Reproduced from [14]
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Since BIDS has such large, expanding, community support, there are many tools
available online to help curate BIDS datasets. Imaging data, for example, have many
converters available from DICOM to BIDS [10, 11]. To curate iEEG data there is
a BIDS starter kit that outlines the process (https://bids-standard.github.io/bids-sta
rter-kit/), as well as tools within larger software packages such as Fieldtrip andMNE
Python (https://bids.neuroimaging.io/benefits.html#converters). These community
driven online resources provide the backbone of BIDS and the online content invites
new users to help contribute to the standard by clarifying and extending the content
and tools.

38.3.2 Curating the iEEG Time Series Data and Channel
Information

For iEEG data, formatting the time series data in BIDS almost always requires a file
conversion step, since source data are typically not in a BIDS appropriate format.
There are many different types of amplifiers and companies that each have their
own, potentially proprietary, data format. BIDS for iEEG accepts data in EDF (.edf
[12]) or BrainVision Core Data Format format (.vhdr, .vmrk, and .eeg) and will
allow MEF3, Neurodata Without Borders (NWB [13]) or eeglab, but many other
formats do not comply [4]. Reformatting may thus be required to produce a raw
BIDS compatible dataset (Fig. 38.2, step 3). For choosing a format it is relevant to
consider the advantages of each. EDF is the oldest and widely spread format but the
storage capacity is limited as well as its capabilities for parallel processing (https://
en.wikipedia.org/wiki/European_Data_Format). It is suitable for datasets where the
individual files are smaller in size and the numerical precision is 16 bits and lower.
BrainVision Core Data Format is a newer format that does not have these issues and
is well supported by Python and Matlab toolboxes. On the other hand, a less known
MEF3 format provides lossless compression of the data and is designed for parallel
processing, thus allowing for storage and processing of large volumes of data. A
proper raw data format should be considered before the start of the study to avoid
unnecessary data conversions during the study. In addition, if data are recorded on a
clinical system, the amplifier data may still have video, audio, time-stamps of when
the data were recorded or other notes embedded in the data that need to be removed
before data are de-identified. De-identification should be a core part of the source to
raw file conversion.

Source iEEG data may not contain all the information necessary to automati-
cally populate all necessary BIDS metadata and some information may need to be
added in a less automated fashion. One such example is the reference that was used
during the recordings, which is not an easy to look up field in the source data file.
Where this reference electrode was placed can help understand important differ-
ences between studies, especially when considering oscillations or traveling waves
(Chap. 28). Figure 38.2 shows several steps in the workflow of curating an iEEG data

https://bids-standard.github.io/bids-starter-kit/
https://bids.neuroimaging.io/benefits.html#converters
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collected for clinical epilepsy research purposes in BIDS (from [14]). It can be seen
in this example that the _ieeg.json file describes the reference. The _ieeg.json sidecar
also includes the hardware filters that were used, information that is sometimes only
available in an amplifier manual, but is also essential for publication and data reuse.

38.3.3 Curating Electrode Positions

For iEEG data, source data also contain files necessary to reconstruct the positions
of the electrode contacts (Chap. 27). A CT or MRI scan with electrodes in place,
and sketches and text files with the electrode montage are necessary to reconstruct
these positions. In the workflow of an iEEG lab these files are part of the source
data and reconstructing the positions in an interpretable manner is a core part that is
necessary before data can be analyzed. In addition to the positions of the electrode
contacts, the type, size and manufacturer can be added. In terms of the scientific
decision tree, electrode positions are necessary to answer important questions, such
as the spatial location and spread of signals and the fall off of signals as a function
of Euclidean distance between electrodes. Electrode positions can be in the original
single subject space, where Euclidean distances are maintained or in a standard MNI
or Talairach space where nonlinear transformations may have been applied. These
differences directly affect the type of analyses that can be done with the data. The
electrode positions and spaces are well described in BIDS during data curation.

38.3.4 Curating Task Information

Events in the data can be stored in BIDS as well. Many iEEG studies include
some stimulus or task presentation (e.g. see Chap. 48), or electrical stimulation (see
Chaps. 5, 39, 41, 52, 53). The timing of the experiments can be linked to the data
through a photodiode or marker channel or sometimes in one integrated system. Data
curation involves synchronizing and storing these events with the data. BIDS allows
storing discrete and continuous events and also has options to link to images, audio
files or videos. Further information about events can also be stored in a BIDS compat-
ible manner using Hierarchical Event Descriptor (HED) tags [15]. Standardized task
information allows rapid quality checks such as the presence of basic sensory and
motor responses that are expected during a particular task (see also Chaps. 4 and 5
for practical guidelines on online and offline quality checks).
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38.3.5 Derivatives

Derived data have undergone any level of processing, such as filtering, denoising, re-
referencing or statistical processing.When raw data are stored in a standard structure,
it becomes easier to develop automated analyses that produce these derivatives in a
reproducible manner. BIDS apps provide one way to design automated processing
pipelines, in which a container interfaces with the BIDS structure and requires little
user input to perform an automated analysis [16]. Reproducible workflows have also
beendeveloped forEEGdata [17]. In suchworkflows, different tools can be combined
into one package, and include quality checks in addition to processing steps. The
exact same pipeline can then be run on different subjects or datasets, assisting in the
overall reproducibility.

38.3.6 Choosing a Publication Platform

A number of options exist for publication of the curated dataset. One option is
to publish the dataset on a general data sharing platform for research such as
Open Science Foundation platform (https://osf.io/), figshare (https://figshare.com/)
or Dryad Digital Repository (https://datadryad.org/). The uploaded datasets receive
a DOI and can be cited, however, the platforms are not dedicated to brain research
and are often limited in provided space which can be a problem for iEEG data with
high sampling frequencies. Another option is to share the dataset through one of the
databases solely dedicated to storage of iEEGdata, for example theUSbased ieeg.org
(https://www.ieeg.org/), but this can provide problems for multimodal data. Another
option is to publish the dataset with platforms dedicated to brain research developed
as part of the BRAIN initiative in the US. OpenNeuro, for example, is specifically
designed for and validates data in BIDS (https://www.openneuro.org/ [18]). Another
option is DABI, which places less restrictions and validations on the data format
(https://dabi.loni.usc.edu). The Human Brain Project in Europe also has platforms
for sharing data (https://ebrains.eu/), and includes an example of published iEEGdata
during memory processing in BIDS [19]. Important to consider is the data sharing
license that is used on a certain platform and that a permanentDOI is provided to track
the data. Processing platforms are arising that can link to these data sharing platforms
to facilitate cloud computing and large scale automated processing [20, 21].

38.4 Discussion

Sharing a well curated dataset with publication is different than just dropping a file
with time series data online. The scholarship and knowledge of the clinical workflow
behind iEEG data curation takes time to acquire, and involves not only running a

https://osf.io/
https://figshare.com/
https://datadryad.org/
https://www.ieeg.org/
https://www.openneuro.org/
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task, but also writing the protocols that allow one to do the research. The cost of
collecting and sharing iEEG data in a standardized format is not negligible, and
has to be budgeted in proposals. It may be an easy question to ask which iEEG
electrodes are recording from a seizure onset zone, but it takes time from a highly
trained clinician to answer this question. It is argued that this cost behind sharing data
is outweighed by the potential that is provided by sharing the data [22]. In addition
to basic manuscripts, the scientific knowledge and scholarship of experimentalists
can indeed be shared through well curated data.

Working with datasets in standardized formats can reduce processing time and
effort and can help walk the scientific decision tree. A standardized format creates
a checklist to help curate data with necessary aspects for publication. In addition
to living, dynamic best practice documents, such as the COBIDAS guidelines for
MEEG [23], or published guidelines with best practices [24], a standard format
with validation tools helps ensure that important aspects are not missed. Differences
between experiments canbedue tomanydifferent recording settings, such as different
lowpass filters, reference schemes or electrode types. These standardized formats and
guidelines help curate data in a manner that such parameters are coded in a standard
format.When these parameters arefindable in a humanandmachine readablemanner,
it becomes easier to understand differences between datasets.

Standards for sharing and reporting data, such as BIDS and COBIDAS, are all
living documents that are evolving around large communities and their needs. In
the past, small groups standardized local data formats, and shared these with the
community. While many of these efforts did not lack usefulness, they often lacked
large-scale support acrossmany labs located in different continents.With the growing
Open Science movement, including Social Media, Github, Google docs [25], large
communities can more easily work together to standardize data structures. The BIDS
standard described in this chapter is driven by the communities’ members, not by a
few labs. This facilitates designing automated analyses, and comparing datasets and
experiments, and advance reproducible iEEG research.
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Chapter 39
What Are the Contributions
and Challenges of Direct Intracranial
Electrical Stimulation in Human
Cognitive Neuroscience?

Jacques Jonas and Bruno Rossion

Abstract Direct electrical stimulation (DES) is an old and powerful technique to
causally inform about the localization of human brain function for clinical and
research purposes.However,DES faces important challenges particularly in research:
poorly knownmechanisms and localization of the effects, methodological limitations
due to clinical settings, etc. Through contributions of DES studies performed in the
ventral occipito-temporal cortex, in particular to understand human face recognition,
this chapter illustrates how future DES studies can overcome these challenges. At
the methodological level, increasing the value of DES in cognitive neuroscience will
depend on the use of well-controlled and diverse experimental paradigms across
enough trials and stimulations to objectively evaluate DES effects. The combi-
nation of DES with independent or simultaneous measurements with functional
magnetic resonance imaging and intracranial electroencephalography, particularly
with frequency-tagging, offers new promises for causal objective mapping of brain
function. Single or multiple subjects’ studies are both well suited to this purpose,
depending on the evaluated function and the frequency of observed effects. At a theo-
retical level, since it is now well established that DES affects remote brain regions,
future DES studies should focus on assessing the connectivity of the critical sites to
identify the network affected by the stimulation.
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39.1 Introduction

Localizing and understanding sensorimotor and cognitive functions of the human
brain are major goals in cognitive neuroscience. Among functional mapping tech-
niques, the application of electrical current with an electrode to brain nuclei, to the
cortex or white matter tracts, i.e., direct electrical stimulation (DES), holds a special
place. Together with lesion studies, DES was one of the first methods used to inves-
tigate brain function, well before the advent of neuroimaging. Historically, DES
provided to establish some of the foundations of modern neuroscience, such as the
electrical nature of the brain, the localization of brain functions, and the functional
anatomy of the sensorimotor cortex [1–3].

DES has also provided some of themost fascinating observations in human neuro-
science (e.g., out-of-body experience [4]; self-face hallucination [5]). Most impor-
tantly for the purpose of this chapter, since it offers to draw a causal link between
a specific brain region and a given function [6, 7], DES is often considered as the
gold standard for functional localization, in particular for clinical purposes. That
is, the rationale of DES is that applying an electrical current to the brain allows
to temporarily disrupt the specific function of the stimulated region and therefore
simulates what would be the behavioral effect if this region was removed or lesioned
(“virtual lesion”).

In practice, DES can be delivered extraoperatively via two types of intracranial
electrodes in epileptic patients refractory to medication (Box 39.1): either intrac-
erebral “depth” electrodes inserted inside the brain (stereo-electroencephalography,
SEEG) or subdural electrodes applied onto the cortex after removing a part of the
skull (electro-corticography, ECOG). DES can also be performed intraoperatively,
mostly during brain tumor resection, by applying electrical currents over the cortex
or thewhitematter via handheld probe electrodes [8]. In this chapter, wewill focus on
DES applied extraoperatively in epileptic subjects, i.e., through electrodes implanted
intracranially for several days or weeks to define the localization and extent of
epileptic seizures, allowing more carefully controlled stimulation procedures and
concomitant electrophysiological recordings (intracranial EEG or iEEG).
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Box 39.1: Two Types of Intracranial Approaches for Extraoperative DES
in Epileptic Patients

ECOGconsists in applying electrodes onto the cortical surface after craniec-
tomy (i.e., subdural electrodes). Subdural electrodes have a circular shape and
are spatially arranged as grids or strips with typically 5–10 mm inter-electrode
spacing (center-to-center). SEEG consists in inserting needle electrodes inside
the brain through small holes in the skull (i.e., depth electrodes). The current
intracerebral electrodes are thin cylinders (e.g., 0.8 mm diameter) typically
containing 8–15 contiguous individual recordings sites (or contacts) sepa-
rated by an insulating material (3.5 mm spacing, center-to-center). From the
point of view of fundamental research, each technique has its own advantages:
while ECOG offers a more extensive spatial coverage, SEEG provides record-
ings and stimulations directly inside the grey matter and allows the specific
exploration of cortical sulci, white matter, and deep structures (e.g., amyg-
dala, hippocampus). The usual variables of electrical stimulation parameters
are intensity, waveform, duration and frequency of the pulses, total duration
and montage (bipolar or monopolar). The commonly used parameters of these
techniques have been reported in previous reviews [9–14]. While the stimula-
tion settings are similar between ECOG and SEEG, current intensities are
lower in SEEG (0.5–5 mA compared to 1–20 mA in ECOG) in order to
deliver similar charge density, and pulse duration is usually longer in SEEG.
DES parameters in clinical practice remain insufficiently standardized with
significant variations across epilepsy centers [15], which is an issue for DES
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functional mapping (risk of false negatives and false positives, lack of repro-
ducibility across centers and studies, etc.). In order to streamline DES proce-
dure, French epilepsy centers published recommended stimulation parameters
for SEEG [11]: bipolar and biphasic square wave current delivered either in
low-frequency DES (frequency: 1 Hz, pulse duration: 0.5–3 ms, intensity:
0.5–4 mA, total duration: 20–60 s) or high-frequency DES (frequency: 50 Hz,
pulse duration: 0.5–1 ms, intensity: 0.5–5 mA, total duration: 3–8 s). These 2
types of DES are recommended for functional localization, with low-frequency
DES particularly well-suited for the primary cortices (especially the primary
motor cortex) and to study functional connectivity, and high-frequency DES
for the associative cortex. However, varying these parameters, beyond the usual
recommendations but within the safety limits, produces differential neural
effects that help to understand the physiology of the DES (e.g., [16]) and
highlight some behavioural effects which may have been missed with standard
settings; [17–20]; see also [21]). For example, a promising avenue for DES
in the future would be to adapt stimulation parameters on the known physi-
ology of the stimulated region or on individual electrophysiological analyses
performed before DES (e.g., stimulation frequencymatching the main endoge-
nous oscillations of the stimulated site, [18]; theta burst stimulation parameters
in the medial temporal lobe, [20], see also [22] for microstimulations).

Since cognitive functions are localized (to some extent) in specific brain regions
and networks, stimulating discrete brain regions to observe behavioral consequences
in real time represents a uniqueway to understand human brain function.Over several
decades of investigation, DESwith SEEG or ECOGhas provided unique information
about the anatomico-functional organization of the human brain [10, 13, 14, 23–26].
However, as early as the first DES studies on themotor cortex of dogs and non-human
primates [1, 2], the relevance of DES effects to map and understand brain function
has been debated, mainly because of the unknown effect of DES at local and distant
sites.While it is sometimes claimed that “if its rules of use are rigorously applied, the
sensitivity of DES for detection of cortical and axonal eloquent structures is 100%”
[6], these claims have been criticized [27–29]. These criticisms are based on the fact
that the physiology of DES is far from being fully understood, that DES effects could
be due to the involvement of a large brain surface (both local and distant) and that
these effects may be unpredictable, depending on local and remote factors. In sum,
the danger of ignoring the complexity of DES may lead to oversimplistic and equiv-
ocal conclusions about the role of the stimulated region [29]. Moreover, since DES
investigations in humans are performed in clinical settings with inherent limitations
(e.g., limited testing time, limited number of experiments and trials, electrode posi-
tions based on clinical factors, patients with epilepsy or brain tumor, etc.), they are
sometimes considered as anecdotical compared to other neuroscientific approaches,
in particular recordings and stimulations performed in non-human primates [30,
31]. Therefore, despite the “gold standard” label for mapping brain function that is
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still attributed to human DES nowadays in clinical settings, the technique faces a
substantial number of challenges that need to be addressed.

In the present chapter, we first illustrate these challenges with DES studies applied
to the human ventral occipito-temporal cortex (VOTC), one of the most explored
regions in temporal epilepsy patients. Then, we illustrate how DES could overcome
these challenges and provide a unique body of knowledge about the functions of the
VOTC and the human brain in general. To do so, we build upon a specific research
program with SEEG DES that aims at understanding arguably the most complex
recognition function for the human brain, face identity recognition (FIR). In a last
section, we survey the methodological and theoretical issues necessary for DES to
overcome these challenges and to be considered as a key technique to understand the
neural basis of human brain function.

39.2 Challenges of DES Studies in the VOTC

In humans, the VOTC supports many cognitive functions including visual recogni-
tion (through the ventral visual pathway), semantic memory (through the anterior
temporal lobe), episodic and spatial memory (through the medial temporal lobe),
and some language-related functions (mainly reading and naming through the left
lateralized ventral visual pathway and the basal temporal language area, i.e., BTLA,
respectively).

Recognition based on vision (considered as the dominant sensory modality in
primates, humans in particular; see [32]) is of one most complex human brain func-
tions, enabling us to quickly and automatically behave adaptively in a rich, dynamic
and fundamentally ambiguous sensory environment. This function is supported by a
network of brain regions in the VOTC, forming the ventral visual stream [33]. The
ventral visual stream emerges from low-level (i.e., retinotopic) visual areas in the
occipital lobe (e.g., V1, V2, V4, etc.) and continues through the ventral temporal lobe
where higher-level category-selective areas (e.g., for faces, scenes, letters/words or
other categories such as body parts) have been identified in neuroimaging studies
over the past three decades [33, 34].

DES performed in the VOTC evokes either visual hallucinations (simple such as
phosphenes or complex such as faces or scenes), illusions (e.g., distortions of the
face being perceived during stimulation) or recognition impairments (for reviews,
see [25, 35, 36]). These DES studies have supported the hierarchical organization
of the ventral visual pathway [37–39] and showed the causal role of some category-
selective areas in the recognition of their preferred category (faces: [40, 41]; written
words: [42–44]; scenes: [45]). However, these latter studies are mostly considered
as confirming the utmost importance of these regions in the dedicated functions
that were already defined by neuroimaging or lesion studies. For example, recent
ECOG DES studies have shown a causal link between the most studied and well-
known face-selective area, i.e., the Fusiform Face Area (FFA, [46]; Fig. 39.1) in
the lateral section of the middle fusiform gyrus (LatMidFG), and face perception
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Fig. 39.1 Schematic illustration of the main VOTC face-selective regions (IOG/OFA,
LatMidFG/FFA,AntFGandATL face area) in the right hemisphere and of their hypothetical patterns
of reentrant connectivity. FMRI and iEEG studies have recorded robust face-selective neural activity
in these regions, except in the AntFG, in which face-selectivity has been disclosed only in iEEG
recordings because of a strong BOLD signal drop-out affecting this region, making this region
almost invisible in fMRI (see [97]). SEEG DES of the right IOG/OFA and AntFG have induced
transient FIR impairment while SEEG DES to the LatMidFG has led to perceptual face distortion
or palinopsia. According to a recent hypothesis [25], transient changes of the currently experienced
face stimulus during SEEG DES of the right IOG and LatMidFG would be due to reentrant direct
(i.e., monosynaptic) connections between these face-selective posterior regions and low-level (i.e.,
retinotopic) visual cortex (LLVC). In contrast, the face-selective AntFG is not directly connected
to the low-level visual cortex (LLVC), but has direct connections with the medial temporal lobe
(MTL), mainly the hippocampus, such that stimulation of the AntFG leads to transient failures to
encode the visual stimulation experience in memory [98, 99]. Face-selective regions are shown at
their approximate locations—considering a wide interindividual variability—as schematic yellow
stars on a reconstructed cortical surface of the Colin27 brain

[30, 31, 40, 41]. By electrically stimulating the FFA in the right hemisphere, these
studies reported either face-related perceptual changes (i.e., subjective change in the
visual appearance of a face, usually a distortion of the experimenter’s face in front
of the subject) and face or face-part hallucinations. Although these studies showed
that the FFA is causally involved in visually processing the category of faces, they
provided no information about the specific role of the FFA in face recognition. Most
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strikingly, while lesion studies, neuroimaging and intracranial recordings point to an
important role of the (right) FFA and its neighboring VOTC face-selective areas in
face identity recognition (e.g., [47–51]), impairment at this function during DES to
the FFA has never been demonstrated (see [25]).Moreover, these ECOGDES studies
were performed without well-controlled experimental set-up, essentially requiring
subjects to passively look at real faces or objects in the room and describe their
subjective experience, thus reinforcing the anecdotal reputation of DES studies in
neuroscientific research. For this reason, these studies have offered no or very little
contribution to neurofunctional models of human face recognition, which are some-
what paradoxically more influenced by findings in non-human primate recording
studies [52]. In the same vein, observations of transient deficits in written word
reading (alexia) during DES to a region of the left VOTC (potentially the so-called
Visual Word Form Area, VWFA; [53]) have been rather anecdotic, i.e., reported
without quantitative analyses of the behavioral effects and independent functional
mapping [42, 44], or only briefly described in the context of extensive iEEG recording
investigations [43, 54].

Another example of the limited impact ofDES in the definition ofVOTC functions
is the study of the so-calledBTLA, a functionally defined region based onDESeffects
observed at the interface between the ventral visual stream, the semantic system in
the anterior temporal lobe (ATL) and the perisylvian language system [55]. DES
performed on the left VOTC (inferior temporal gyrus, fusiform gyrus and parahip-
pocampal gyrus) has consistently elicited deficits in naming (in both visual and
authority modalities) but also in reading and comprehension [56–59] (for review see
[10]). However, beyond the clinical community, the concept of BTLA and the infor-
mation derived from DES of this region have so far generated little interest in funda-
mental neuroscience research, and the outcome of these studies is not included in
theoretical frameworks of the anatomo-functional organization of language (e.g., [60,
61]). Despite relatively frequent effects of DES observed in this region, two factors at
least have been brought forward to reduce interest in the BTLA. First, post-operative
language deficits are either weak, inconsistent, or transient following resection of this
region [57, 62, 63]. Second, DES studies have recorded distant post-discharges or
cortico-cortical evoked potentials (CCEP), suggesting strong anatomico-functional
connections between the BTLA and perisylvian language regions [64–66]. These
two observations suggest that language-related deficits observed upon BTLA stimu-
lation are due to remote rather than local effects of DES [29]. In short, studies on the
BTLA provide a good example of the type of arguments raised against the validity
of the information derived from DES and its ability to precisely map brain regions
that are critical for cognitive functions.
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39.3 DES to Understand Human Face Identity Recognition

39.3.1 Why Studying Face Identity Recognition with DES?

In its interaction with the environment, the brain is primarily a biological recog-
nition system: it needs to provide selective/specific responses to sensory stimuli,
these responses being generalizable across a wide variety of viewing conditions
and temporal contexts. In primates and particularly in humans, the recognition1 of
faces is particularly rich and socially relevant, allowing to rapidly e.g., tell apart
males and females, decode others’ emotional states from their expression, estimate
their age, infer their ethnical origin, their attention from head and gaze orienta-
tion, attractiveness and even make social judgments of dominance or trustworthiness
[68, 69].

For several reasons, recognizing someone’s identity from their faces, i.e., face
identity recognition (FIR), is arguably the most challenging human recognition func-
tion, across the board. First, while individual human faces, even in a genetically
homogenous population, appear to differ more than in other animal species [70],
they nevertheless look similar in their basic features and configuration, requiring
relatively fine-grained visual discrimination processes. Second, a given face identity
can vary substantially in appearance across viewing conditions [71], requiring high
level generalization abilities. Third, in most modern societies, the number of facial
identities to recognize is very large, usually from several hundreds to thousands of
individual faces [72]. Fourth, the number of identities to recognize is often unde-
termined, i.e., changes across different contexts and over time, with familiar faces
mixed up among unfamiliar faces in various contexts.

Considering the challenge at stake, human adults’ FIR is impressive, i.e., with
up to thousands of face identities recognized accurately [72], automatically and at
a glance (e.g., [73]). Yet, this challenge also explains why there is so much natural
interindividual variability in this ability in the normal population [74], an ability
that is easily disrupted in many neurological, neurodevelopmental and psychiatric
disorders [75].

For long, knowledge of the neural basis of FIR relied on the localization of lesions
in patients with prosopagnosia (a category-selective impairment in FIR; [76, 77]),
these lesions being consistently found in the VOTC, with a right hemispheric domi-
nance [49, 78–81]. However, cases of prosopagnosia are rare (at least when properly
diagnosed to exclude general visual object agnosia or semanticmemorydisorders; see
[77, 82]) andhave usually large lesions that limit the spatial resolution of these investi-
gations. Functional magnetic resonance imaging (fMRI) studies have shown reduced

1 The term ‘Recognition’ is often used in psychological research to refer to the judgment of previous
occurrence [67]. However, the term is used here in a general biological meaning to refer to the
production of a selective (i.e., discriminant) response to a given sensory input, a response that
can be reproduced (i.e., generalized) across variable viewing conditions. Defined as such, even the
decision or response signaling that a visual stimulus is a face is a recognition function (i.e., generic
face recognition).
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neural activity when repeating (unfamiliar or familiar) pictures of the same facial
identities as compared to different identities in several face-selective (i.e., responding
more to faces than non-face objects) VOTC regions, most notably the FFA in the
LatMidFG and the occipital face area (OFA, Fig. 39.1) in the inferior occipital gyrus
(IOG) [50, 83–86]. However, fMRI studies analyzing pattern variations of neural
activity across voxels for different face identities have only reported small and/or
inconsistent effects across experiments, sometimes outside face-selective regions,
casting doubt on the contribution of the FFAand other posterior face-selective regions
of the VOTC to FIR and pointing instead to the ATL [87–91]. Moreover, directly
contrasting pictures of unfamiliar and familiar faces rarely leads to consistent differ-
ences in face-selective VOTC regions, andmay instead recruit widespread unspecific
regions in the brain, probably because of the richness of semantic information linked
to familiar faces [50, 89, 92].

In this context, DES of face-selective VOTC regions, which are largely specific
to humans or hominoids [93, 94] and largely inaccessible to transcranial magnetic
stimulation (TMS), may provide invaluable information regarding the neural basis
of this complex FIR function. Moreover, the human face recognition function is
thought to be highly specialized and localized but also supported by a vast network
of bilateral VOTC regions (Fig. 39.1; [95, 96]), making it particularly amenable to
DES.

Below we briefly describe the contribution of DES studies performed in the last
decade in the context of SEEG as an example case of promises and challenges of
human DES in cognitive neuroscience.

39.3.2 DES of the Right Face-Selective IOG Impairs FIR

The first case of transient FIR impairment with DES (i.e., “transient prosopag-
nosia”) was reported ten years ago [100]. During stimulation of a right IOG region
(Fig. 39.2a), subject KV reported various subjective experiences (e.g., “the face does
not appear to me as a single entity”, “the facial elements were mixed”) although
some stimulation trials on the same contacts did not lead to perceptual changes.
Regardless of her perceptual experience, DES to the right IOG caused a sudden
inability for KV to recognize the face identity in front of her (i.e., the neurologist,
or photographs of famous faces). This effect was transient, in fact ending as soon as
the stimulation stopped, and highly consistent across trials [100] (see also [25], with
all videos of the stimulation trials).

At the time of this original observation, only relatively limited behavioral obser-
vations could be performed on the case of KV, all with familiar faces. However, about
a year later, KV underwent a second SEEG to perform radiofrequency-thermolesions
of the epileptic focus. An intracerebral electrode was again inserted in KV’s right
IOG, near the location of the previous critical stimulation site (Fig. 39.2b; [101]). A
behavioral paradigm with simultaneously presented pictures of unfamiliar face iden-
tities appearing on a computer screen next to each other at each trial was designed,
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a

b

Fig. 39.2 Stimulating the face-selective right IOG induces transient prosopagnosia (subject KV).
a Reprinted with permission from [100]. b [101]. In both studies, the left panel shows the fMRI
face-selective activations in the right VOTC (axial slices) with the SEEG electrodes superimposed
(white dots); the middle panel shows the stimuli presented during the stimulation procedure; the
right panel shows SEEG recordings during a FPVS paradigm measuring sensitivity to face identity.
In [100], the eloquent contacts O6, O7 and O8 (in the red rectangle) were located in the right face-
selective IOG (“OFA”) as shown by fMRI (shown here) and face-selective ERPs recorded on these
contacts. Stimulation of these contacts induced a transient inability to recognize famous faces while
object recognition was preserved. In [101], stimulating two contacts located within the right face
selective IOG (D5/D6) evoked a transient inability to discriminate unfamiliar face identities. During
SEEG, KV was tested with a FPVS adaptation paradigm measuring sensitivity to face identity at
a fast rate of 6 Hz, with either identical faces or different faces [102]. The significantly largest
difference for different versus same faces for upright faces was found on the critical contact D5
(right panel shows responses to different and same faces at 6 Hz in the frequency domain)

askingKV to determinewhether theywere of the same identity or not (Fig. 39.2b). To
adjust the task toKV’s excellent FIR ability (as pre-assessedwith neuropsychological
tests), faces that differed only by 40% along a morphed continuum were selected.
While KV performed this task extremely well outside of stimulation, DES inside
the face-selective right IOG led to systematic errors (i.e., answering “same” when
different unfamiliar face identities were presented). She stated: “I had a feeling of a
strong resemblance”, “there were two identical faces”, as if DES inside the right IOG
interrupted her ability to grasp the physical differences between the two unfamiliar
face identities. There was no visual distortion or rearrangement of facial elements
reported ([101]; with videos of the stimulation trials). Sensitivity to unfamiliar face
identity of each intracerebral contact was quantified independently in SEEG with
a frequency-tagging approach (or Fast Periodic Visual Stimulation, FPVS) adapta-
tion paradigm (fast periodic presentation of either different or same face identities;
[102]) (see also Chap. 31 on frequency tagging in iEEG studies). Strikingly, among
all electrode contacts implanted in KV’s brain (N = 27), the largest face identity
adaptation effect was recorded on the critical stimulation site (Fig. 39.2b).



39 What Are the Contributions and Challenges of Direct Intracranial … 617

These two successive reports of DES performed in the same brain region of the
same patient [100, 101] at a one-year interval are not only unique to our knowledge,
but they serve well to illustrate the progress that can be made in methodological
control and systematicity as well as the refinement of hypotheses and correlations
with independent electrophysiological measures to enrich the contribution of DES
to our understanding of the neural basis of cognitive functions.

39.3.3 DES of the Right Face-Selective Anterior Fusiform
Gyrus Impairs FIR

The anterior fusiform gyrus (AntFG) is located anteriorly to the LatMidFG/FFA but
posteriorly to the ATL face area usually found in fMRI close to the temporal pole
(Fig. 39.1). Unfortunately, little is known about its role in FIR mainly because this
region is affected by a large BOLD signal drop-out arising from magnetic suscepti-
bility artifact [97, 103, 104]. Consequently, only a handful of fMRI studies identified
this region as face-selective (e.g., [105–107]). In contrast, large face-selective activity
has consistently been reported with SEEG in this region [108, 109].

Transient impairment to recognize facial identity during right AntFG stimulation
was reported initially a few years ago in a single case, CD (Fig. 39.3a; [98]). Upon
DES to the right AntFG, CD was transiently unable to recognize any famous face
picture presented. Visual object recognition was intact upon stimulation. As for
subject KV, her behavioral impairment was clear, massive, and highly reproducible.
After stimulation, CD said that she did not recognize the face identity, as if the face
was shown for the first time. She did not report any perceptual change in the structure
of the face. Subsequently, CD was unable to remember which were the face pictures
presented during the stimulation, as if they did not enter her memory [98] (see also
[25], with all videos of the stimulation trials).

As for the two successive observations on subject KV described above, this
unique observation on CD was subsequently—recently—reproduced and extended
by a behavioral investigation during right AntFG stimulation in another subject, ND
(Fig. 39.3b; [99]). Based on the initial observation, multiple tasks that did not require
a verbal output were designed, both with familiar and unfamiliar faces, quantifying
performance in terms of both accuracy rates and response times. Upon stimulation
of the right AntFG, DN was impaired at pointing out a familiar face among unfa-
miliar faces and at matching different pictures of the same identity, either familiar
or unfamiliar. However, he had no difficulty at pointing famous names, and naming
common objects and famous buildings. As for subject CD, DN never reported visual
face-related changes, stating for example: “I don’t’ know who he is”; “I don’t know
the 3 faces you showed me”, “I had difficulties recognizing her”, “I didn’t recognize
the face immediately”.DNalso failed to remember all the visual items presented (face
and non-face-items) during the stimulation. Sensitivity to unfamiliar face identity of
each contact weremeasured independently with a FPVS paradigm [110, 111]. Again,



618 J. Jonas and B. Rossion

a

b

Fig. 39.3 Stimulating the right AntFG induces transient prosopagnosia. a Subject CD [98]. b
Subject DN [99]. In both studies, the left panel shows fMRI face-selective activations in the right
VOTC (axial slices) with SEEG electrodes superimposed (red crosses or white dots); the middle
panel shows the stimuli presented during DES; the right panel shows SEEG recordings during
a FPVS paradigm measuring sensitivity to face identity (for subject DN only, [110, 111]). a In
subject CD, DES of contacts F3 to F6, located in the right AntFG, anteriorly to the FFA, induced
a transient inability to recognize famous faces. Despite large face-selective responses in SEEG on
these contacts, fMRI face-selective activations were not found because of a severe signal drop-out
affecting the right AntFG (the left panel displays the raw functional images in light grey, showing
the critical contacts being located in a region with very low fMRI signal). b In subject DN, DES of
the same region (contacts TM1 to TM2 and TM4 to TM6) induced a transient inability to point out
the familiar faces among unfamiliar faces (along with the inability to matching the identity of either
familiar or unfamiliar faces). Again, no fMRI face-selective activations were found in the vicinity
of the stimulation sites despite large SEEG face-selective responses recorded on these contacts. Of
all the 141 recorded contacts in DN’s brain, one of the critical contacts (TM5) recorded the largest
face identity discrimination response amplitude in the upright condition (as well as the largest face
inversion effect, i.e., upright-inverted) as measured by a FPVS paradigm (right panel shows the sum
of identity discrimination responses at 1.2 Hz and harmonics centred on 0 Hz, in both upright and
inverted conditions)

one of the few critical contacts recorded the largest neural face identity discrimination
response (Fig. 39.3b; [99]).
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39.3.4 DES to the FFA: Subjective and Objective Effects

The case studies presented above concern face-selective VOTC regions that are
located posteriorly (IOG) and anteriorly (AntFG) to the FFA, which is not only,
by far, the most studied and well-known face-selective human brain region [112],
but also the right hemisphere region showing the most consistent and largest face-
selective activity [108, 113]. However, to date, there has been no clear case of tran-
sient prosopagnosia following DES applied to this region. That is, DES with ECOG
electrodes positioned over the right (but not the left) FFA have reported face-related
perceptual changes and face or face-part hallucinations [30, 31, 40, 41, 114] (see also
[115]) but without an objective FIR impairment (as only behaviorally tested by [40];
without any effect). With ECOG, these perceptual phenomena have been observed
consistently enough to report studies in (small) groups of subjects (N= 8, [30]; N=
5, [114]), allowing to statistically demonstrate the prevalence of perceptual effects
when stimulating on face-selective as compared to non-face-selective sites in the
LatMidFG.

Importantly, two group studies have related DES to this region of the FFA (bilat-
erally) with objective face-related behavioral effects. Chong et al. [116] showed
their participants (N = 8) ambiguous visual displays of a face and a house image
superimposed in different transparency levels (Fig. 39.4a), asking them to recognize
the images as face or nonface stimuli. This generic face recognition performance
significantly decreased with brief (550 ms) electrical stimulation of the bilateral
LatMidFG relative to no stimulation. TheDES effect was small but significant thanks
to the inclusion of several subjects and electrode contacts in the study. Moreover,
subsequent analyses showed that this impairment by DES was confined to face-
selective electrodes, with the amount of interference being positively correlated with
the degree of face-selectivity of the electrodes as determinedwith iEEG(event-related
potentials, ERPs).

Extending these findings, [117] applied DES to electrophysiologically face-
selective sites of the bilateral LatMidFG in six subjects, and showed significant
increases in response time at detectingwhether a face stimuluswas (slightly) distorted
or not (Fig. 39.4b) (see also Chap. 40). The effect was also confined to face-selective
sites defined independently, with no effect found for DES to neighboring non-face-
selective (i.e., place-selective) regions. Importantly, response times were increased
only when DES was applied 100 ms after visual onset (compared to 200 ms before
or 500 after this onset), a latency that corresponds remarkably well to the onset time
of face-selective activity in this region [117] (see also [118, 119]).

Unlike most of the above-cited studies reporting face-related perceptual changes
(e.g., [31, 40]), these latter two studies did not localize the FFA in fMRI, measuring
instead face-selectivity with independent electrophysiological recordings.Moreover,
they used only brief stimulation durations. However, both of these studies provide a
more systematic methodologically controlled approach to the effect of DES in the
VOTC on human face recognition, here limited to the recognition of a visual stimulus
as a (normal) face.
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Fig. 39.4 Objective generic face recognition impairment during DES of the LatMidFG as assessed
byquantitativemeasurements. For the 2 studies illustrated here, the left panel shows the experimental
computerized paradigm during DES, the middle panel the location of the stimulated electrodes and
the right panel the quantitative behavioral measurements across subjects. aAdapted from [116] with
permission. Subjects (N= 8) had to decide whether compound stimuli mixing a certain percentage
face and scene images were a face or a house while brief DES (550 ms) was applied to LatMidFG
sites. Compared to no stimulation or stimulation of non-face-selective sites, DES of face-selective
sites of the LatMidFG electrodes impaired categorization of the stimulus as a face, as shown by
a small but significant increase of the point of subjective equality. b Adapted from [117] with
permission. Subjects (N = 6) had to decide whether a face stimulus was distorted or not with DES
applied to either face-selective and control (non-face selective) regions at −200, 100, and 500 ms
with respect to the face presentation (face-selective sites are shown in red in a brain template). Only
DES to face-selective sites and applied 100 ms after the face presentation induced a response time
increase at the judgment of face distortion

How about face identity recognition linked to the FFA? To date, only one case
of DES to the FFA apparently affecting FIR has been reported, with SEEG: subject
MBwho, during stimulation in this region of the right hemisphere experienced facial
palinopsia, i.e., hallucinations of facial elements appropriately incorporated in the
face identity in front of her [120]. MB experienced this phenomenon for the faces of
a clinician or of an experimenter in front of her (“I saw you with eyes and ears which
were not yours”). Although she stated that the superimposed features were those of a
familiar face, shewas unable to determine the identity of that face. Shewas also tested
more systematically with photographs, stating, for example, that “the photograph of
Sarkozy [former French president, first presented face picture during stimulation]
was transposed onto the other face identity [second presented face picture during
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stimulation]”. MB never reported aberrant facial configurations, and reproducibly
stated that the facial structure was preserved (“it was a normal face”). Although
MB was not tested behaviourally with unfamiliar faces during DES, the sensitivity
to unfamiliar face identity of each contact was also measured independently with a
frequency-tagging paradigm [110, 111]. Again, strikingly, of all the 137 recorded
contacts, the critical contact in the right LatMidFG recorded, by far, the largest neural
face individuation response [120].

39.3.5 What Can Be Learned from DES in Face-Selective
VOTC Regions?

In summary, following anecdotal observations of the effect of DES on face-selective
VOTC regions in the context of extensive and detailed reports of iEEG record-
ings [121, 122], a number of studies performed over the last decade (since [100])
have focused on the effects of DES on perceptual experience, behavior, and even
electrophysiological activity evoked by concurrent face stimulation.

Collectively, these studies showfirst that category-selectivity, i.e., face-selectivity,
is a key predictor of the effect of DES. Indeed, the effective cortical sites are almost
systematically located in highly face-selective regions, either shown by independent
iEEG recordings (using standard ERPs or a frequency-tagging approach) or a face-
localizer in fMRI. Moreover, across all recorded contacts, the contacts leading to
DES effects are generally the most face-selective [40, 41, 99, 100, 116, 120].

Second, while DES to bilateral face-selective cortical sites in the LatMidFG can
affect even the simple classificationof a visual stimulus as a (normal) face, spectacular
phenomena such as a change of percept or a complete interruption of face identity
recognition have been observed following stimulation in the right hemisphere only
(with the exception of one left handed subject in [123] and one in [30]; see [124] for
the role of handedness in face recognition lateralization). Altogether with the lack
of FIR impairment when stimulating corresponding regions of the left hemisphere,
as regularly tested in our clinical center, this suggests that the right hemisphere is
both necessary and sufficient for FIR. This conclusion is an agreement with the
long-standing view of the right hemispheric predominance of human face (identity)
recognition, as supported by a wealth of evidence in cognitive neuroscience [125].

Third, while (small) group studies have been performed with DES in ECOG, they
have restricted their investigation to stimulation over face-selective contacts of the
LatMidFG (i.e., the FFA, including sometimes two functional regions, pFus-faces
and mFus-faces; e.g., [30]), focusing either on spontaneous perceptual reports or on
a single behavioral task. In contrast, DES effects with SEEG have been rarer, but
concerned more extensively studied single cases, with stimulation effects observed
beyond the (right) FFA. Specifically, the 4 SEEG cases (5 explorations) summa-
rized above (i.e., KV 2 times; CD; DN; MB) show that intracerebral stimulation of
spatially different regions, i.e., the right IOG, LatMidFG andAntFG can evoke highly



622 J. Jonas and B. Rossion

reproducible transient impairments of FIR, both in terms of subjective reports and
quantified behavioral measures, while the recognition of non-face images (common
objects, famous buildings, famous names) is preserved [98–101, 120]. While the two
posterior face-selective regions (IOG/OFA and LatMidFG/FFA) were already well
identified (which does not mean that their critical role was established before DES),
SEEG DES therefore extended the neural basis of FIR to the face-selective right
AntFG (Fig. 39.1), a region with very little evidence of relationship to FIR (although
see [126]), mainly because it is almost invisible in fMRI due to a large magnetic
susceptibility artefact [77, 103]. Importantly, in all cases in which these tests were
performed (KV second SEEG, MB, ND) the largest neural measures of sensitivity
to the visual individuality of unfamiliar faces (i.e., independently from long-term
familiarity) were also recorded on the very same contacts eliciting the transient FIR
impairment.

Finally, while slight alterations of performance can be due to DES to several
spatially dissociated contacts in the same patient, a FIR impairment appears to be
restricted to the stimulation of one to three adjacent pairs of contacts, i.e., these sites
being spatially confined. This does not imply that the effect of DES is limited to the
stimulated contact, as demonstrated in some of these studies [117] and discussed
below.

39.4 Interpretations, Practical and Theoretical
Considerations for Future DES Studies

Based on the specific DES observations described above, in this last section of the
chapter, we discuss practical and theoretical issues that are important to take into
consideration to increase the value of DES in cognitive neuroscience.

39.4.1 Bringing the Lab into the Clinical Room

Asmentioned in the introduction, the impact ofDESstudies in cognitive neuroscience
has been limited in part because the experimental set-up is often less controlled than
the experimental standards usually accepted in research laboratories worldwide. This
gap is of course due to the fact that DES data is acquired in a clinical context, with
limited testing time and experimental resources (for a description of the practical
challenges of iEEG research and how they may be addressed, see also Chaps. 4 and
5). DES effects are sometimes unexpected and the time to adapt the experimental
set-up is also limited in this context. As a consequence, DES studies usually include
a restricted number of stimulations and trials, rely on retrospective clinical data, or
are based only on the observation of the subjects’ spontaneous behavior or subjective
reports. Yet, in recent years, there has been an effort to bring the lab into the clinical
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room to match as much as possible the lab experimental standards, and this effort
should be pursued in the future. As illustrated in the present chapter for FIR, some
DES studies have usedwell-controlled experimental paradigms specifically designed
to test specific hypothesis regarding the potential function of the stimulated brain
region (e.g., [22, 99, 101, 116, 117, 127–130]; see Figs. 39.2b, 39.4). Ideally, critical
sites should be tested with a sufficient number of different paradigms, including
control tasks, in order to isolate as much as possible the nature of the function of the
stimulated region. For these tasks, objective measurements in terms of accuracy rates
and response times should be recorded. Moreover, for all of these tasks, a sufficient
number of stimulations, i.e., trials, should be performed in order to objectively (i.e.,
statistically) define theDESeffects relative to trialswithout stimulation or stimulation
to non-critical sites.

The experimental set-up during DES can be computerized to better control the
delay between the stimulation and the trial onsets [101], to facilitate the recording
of accuracy and response times and to promote multicenter DES studies thanks to
easily sharable testing software (e.g., NeuroMapper; [26]). These computer-based
paradigms promote innovative testingmethods (e.g., video, virtual reality), providing
a deeper understanding of usually targeted functions but also expand the range
of tested functions (episodic memory, socio-emotional cognitive function, spatial
memory, e.g., [26, 131, 132]). At the same time, computer-based approaches are
not always possible in the clinical context and may lack flexibility (e.g., quickly
removing problematic trials with low accuracy outside DES, or quickly showing
impaired trials again after the stimulation procedure to test the subject once more
or to let the subject comment about what happened during DES). Moreover, using
only computer-based approaches may prevent subjects from reporting phenomeno-
logical experiences that are not available in non-human animal research and may be
particularly useful in understanding the nature of the affected brain function and/or
guiding further experiments.

39.4.2 Group or Single Case Studies?

The general principle of DES group studies is to perform stimulations across several
subjects with the same test(s). Such studies are particularly suitable to map critical
sites for a given brain function across a large area of cortex, as long as this function can
easily be disrupted by DES to reach a sufficient number of subjects with critical sites
(e.g., naming across the leftATL). They enable for example to report the percentage of
positive and negative sites across regions and to compute proportion maps of positive
sites (e.g., [58, 59, 101]).WhenDES results are projected into a standard brain space,
the individual anatomy and functional organization is blurred, a caveat that can be
avoided by grouping DES results according to their location based on the individual
anatomy (e.g., [58]). By focusing on a specific brain region, these studies can also
reveal subtle DES effects, such as increases of average error rates or response times
(e.g., [116, 117, 132]; Fig. 39.4).Multiple critical sites across multiple subjects allow
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such studies to correlate DES results with independent variables to better understand
why some sites elicit positive effects while others do not (e.g., [116, 117]). Although
they have the advantage to group subjects stimulated with similar cognitive tests
and stimulation procedures, these tests are usually limited in number, usually one or
two, restraining the full comprehension of the disturbed function. This limitation is
usually due to practical reasons, either because a streamlined procedure is required
to test all subjects the same way or because some studies rely on retrospective data
acquired in a clinical context.

Other studies report in-depth explorations of a small number of subjects in the
same article (e.g., [117, 129]). This type of studyprovides limited spatial sampling but
deeper investigation of each subject and of the studied function. While our research
group benefits from a large number of SEEG investigations per year at the University
Hospital in Nancy (France) and has been able to map the neural basis of face, object
and visual word recognitionwith large samples for SEEG recordings [108, 109, 133],
the rarity of FIR impairments observed during DES (i.e., 5 cases in 10 years) has
constrained us to report single case studies only. Despite this obvious limitation in
number of cases and reproducibility of effects, this approach offered us the oppor-
tunity to report in-depth DES investigations of each subject, along with extensive
multimodal explorations beyond DES (behavior, fMRI, SEEG recordings). First,
well-controlled behavioral paradigms were specifically designed to test a specific
function (e.g., [99, 101]). DES during these paradigms was repeated as often as
possible to objectively measure DES effects with quantitative variables (error rates
and/or response times increase during versus outside DES). Control tasks were also
designed to isolate as much as possible the nature of the disturbed cognitive function.
Second, beyond these objective measures, subjective reports and the semiology of
these visual hallucinations or illusions were also investigated and clearly reported
(e.g., facial palinopsia; [120]). Third, subjects were all tested with behavioral tasks
before the DES procedure to ensure integrity of the tested function. In fact, subjects
were even tested with the exact same tasks used subsequently during the DES proce-
dure to ensure that their accuracy at these tasks was very high or even at ceiling, such
that every failed trial duringDES could be unambiguously classified as a stimulation-
induced impairment (e.g., [99]). Finally, DES effectswere interpreted in light of inde-
pendent measures in every single case, mainly fMRI and SEEG recordings, either to
map the whole network (e.g., the face network with face-selectivity measurements)
or a specific function (e.g., sensitivity to face identity) (see also e.g., [41, 117, 129]).

As described above, all FIR impairments during DES were evoked by stimulating
face-selective sites (as shown by both fMRI and SEEG recordings) and, when tested,
by stimulating the regions with the highest sensitivity to unfamiliar face identity
(as shown by SEEG recordings, [99, 101, 120]). The support of these independent
measures is essential for DES studies for several reasons. They allow additional
evidence of the critical role of the simulated region when DES and independent
measurements evaluate the same function (e.g., face identity; [99, 101, 120]). When
DES investigations remain ambiguous about the nature of the disrupted function
because of a limited testing time or number of trials, these independent measures can
tilt the balance in favor of one hypothesis according to the type of responses recorded
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on the critical contacts. For instance, when the largest iEEG amplitude is recorded
specifically on a critical site, it helps interpreting this stimulated site as a key node
in the cortical network (e.g., entry point, highly connected node, etc.). In our DES
studies specifically, we greatly benefited from the frequency-tagging approach for
SEEG measurements, not only for its high sensitivity but also for enabling us to
objectively identify, quantify and classify response amplitudes on each contact in the
frequency domain rather than in an inherently ambiguous and subjective time-domain
representation [99, 101, 120].

In summary, group and multiple case studies both have their own advantages and
drawbacks, and the choice of one rather than the other approach should be based
on the aim of the study, the frequency of observations and the nature of the tested
cognitive function. A single case approach is inevitable if the observed phenomena
and effects are extremely rare or if the patient’s characteristics are unique.When such
DES single case reports are well conducted (sufficient number of DES with adapted
paradigms, multimodal investigations with independent measurements), they should
not be considered as anecdotal or as “case reports” with their associated pejorative
connotation, but as opportunities to perform in-depth investigations of a cognitive
function, generate and evaluate new hypotheses [134–137]. Hence, as illustrated in
the present chapter, we firmly believe that these types of studies have a key role to
play in the future of DES.

39.4.3 A SEEG Advantage Over ECOG for DES?

As described above, transient impairment of FIR has been reported so far in 4 cases
with DES using depth electrodes (i.e., SEEG). In contrast, DES with subdural elec-
trodes, i.e., ECOG, has been much less successful and limited to anecdotal reports
without quantification in early studies [121, 122]. SubsequentECOGstudies applying
DES to face-selective regions of the VOTC (mainly the FFA) evoked changes of the
face percept (i.e., face distortions) in several cases [30, 31, 40, 41, 114]; see also
[115], but never reported a FIR impairment. One potential reason is that ECOGDES
studies rarely tested for such impairments with behavioral tasks (with the exception
of [40], in which no effect of DES on naming of celebrity pictures was found). More-
over, while complete category-selective impairment of FIR following brain damage,
i.e., prosopagnosia, remains extremely rare, the prevalence of significant drops in
recognition accuracy rates or increases in response times during FIR tasks in right
posterior brain-damaged patients is high [138, 139]. Hence, in addition to subjective
perceptual reports, the effect of DES to face-selective regions of the VOTC with
subdural electrodes may be objectively identified in future studies with behavioral
FIR tasks measuring accuracy rates and response times (as performed during generic
face recognition tasks; [116, 117]; Fig. 39.4).

Alternatively, it could be that depth electrodes as used in SEEG, thanks to the
position of the stimulated contacts within the brain tissue and often within the cortex
as well as to the small intercontact spacing (see Box 39.1), allow for more focal
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stimulation effects compared to subdural electrodes. In contrast, DES with the latter
approach probably involves a relatively large cortical zone beyond regions specifi-
cally involved inFIR, explainingwhyvisual distortions sometimes extend to non-face
objects [40, 41] and can be experienced when stimulating non-face-selective sites
[30]; see also [122].

Compared to the relatively low risk profile associated with the small burr holes
of SEEG, ECOG requires a partial craniotomy. SEEG is therefore a safer surgical
procedure with fewer post-operative complications such as hemorrhages and infec-
tions [140]. Specifically for DES to understand the neural basis of cognitive func-
tion, compared to ECOG, SEEG is also likely to leave the subject more alert cogni-
tively to accurately report his/her perceptual experiences and to perform explicit
behavioral tasks.

Despite a lower spatial coverage compared toECOG,SEEGalso has the advantage
to access deep and medial structures that are inaccessible to ECOG (e.g., the medial
temporal lobe, [141]; the precuneus, [5]; the cingulate gyrus, [142]; the transverse
temporal gyrus, [143]; the insula, [144]). SEEG also allows one to specifically stim-
ulate sulci, where critical effects are often found, sometimes more frequently than
in the adjacent gyri [5, 42, 58, 99]. For example, the second highest rate of induced
anomia in the left VOTC was found in a sulcus, the occipito-temporal sulcus [58],
and the VWFA is also located primarily within this sulcus [145], making it particu-
larly amenable to DES with SEEG [42]. SEEG DES enables also to independently
stimulate grey and white matter [130].

While SEEG is already predominant in European clinical centers, these advan-
tages, along with other clinical advantages not developed here, explain the recent rise
of SEEG in the US compared to ECOG [13, 146]. For example, SEEG became the
most frequently performed iEEG procedure in the US Medicare population in 2016
[13, 146]. While the selection of an iEEG procedure does not depend on advantages
to answer fundamental research questions, we think that the increasing use of SEEG
internationally will allow for more focal DES, targeting cognitive functions more
specifically in the years to come.

39.4.4 Functional Specificity of Local and Remote DES
Effects

As illustrated in the present chapter, several pieces of evidence show that DES effects
are specific to the functional role of the stimulated region. Indeed, strikingly, almost
all DES effects interfering with face perception (i.e., the subjective experience of
seeing faces) were reported after stimulating cortical sites defined independently as
face-selective [30, 31, 40, 41, 98, 100, 101, 114, 115, 120–122, 147]. Moreover,
there is generally a highly positive correlation between the frequency or magnitude
of DES effects and the amplitude of the face-selective [41, 99, 101, 116, 120] or face
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identity-sensitive [99, 101, 120] electrophysiological activity. Along these observa-
tions, numerous stimulations of (sometimes weak) face-selective sites do not lead to
face recognition/perception effects [30, 38, 114, 117].

The SEEG DES studies described in the chapter allowed for a clarification of
the functional characteristics of the critical sites, beyond their high-level of face-
selectivity. Specifically, only the stimulation of cortical sites that share common
characteristics could elicit behavioral effects (in the case of FIR: right-lateralized,
anatomically restricted, located from the IOG to the AntFG, highly face-selective,
highly sensitive to unfamiliar individual faces). In our experience, DES of face-
selective sites located in the left hemisphere or anteriorly to the AntFG located in
classical semantic ATL regions [51, 148] never produced FIR impairments. This
shows that the stimulation current does not spread indifferently across the whole
bilateral cortical face-selective network and that the function—FIR—is impaired
only if, within the specialized network, a key node is directly stimulated.

At first glance, these observations could be interpreted as evidence for a strictly
localized function, suggesting that DES effects on face recognition/perception are
due exclusively to interference with the function of a highly functionally specific
local region (e.g., [31]). However, given the high density of connectivity between
brain regions [149] and our current knowledge of DES effects, viewing these effects
as being strictly focal seems outdated [6, 29, 150–152]. Instead, DES effects may
arise when directly stimulating a key node of a functionally specialized network,
i.e., a dense population of highly specialized neurons with increased connectivity to
other sites of the network ([117, 153]; Fig. 39.5a). Nevertheless, a current crucial
issue for DES studies is to assess the functional specificity of the current propagation
and remote effects (i.e., that DES remote effects specifically concern the functional
network to which the stimulation site belongs).

Regarding human face recognition, several pieces of evidence show the functional
specificity of the remote effects. SEEG DES showed that a FIR impairment could be
evoked by stimulating several distant sites (right IOG, LatMidFG and antFG), all part
of the network supporting (unfamiliar) FIR as evidenced in electrophysiology [51].
Therewere also subtle differences inDES effects across regions probably due to these
regions’ own connectivity pattern with other nearby networks/regions (Fig. 39.1).
Yet, that did not prevent us fromhighlighting themain functional role of these regions.
For instance, face-perceptual changes (i.e., changes in the phenomenological expe-
rience of faces) have been found when stimulating posterior face-selective regions
(OFA, FFA) [100, 101, 120]; see also [40, 41], i.e., regions that are known to be
directly connected with low-level visual areas [154], but never when stimulating the
more anteriorly located AntFG [98, 99]. In contrast, direct stimulation of the right
AntFG only led to a generic deficit in encoding the stimulation episode in memory,
interpreted as reflecting a remote effect of DES to the connected medial temporal
lobe episodic memory system [25].

The cortical face network view of DES effects, which is supported by independent
evidence of tight anatomo-functional connectivity within this network [155], is also
well illustrated by the study of [117]; (Fig. 39.5b), in which the effect of DES to the
LatMidFG (affecting behavioral performance) spreads anteriorly and posteriorly to a
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Fig. 39.5 Assessing the connectivity of criticalDES sites. aAdapted from [153]with permission.A
critical DES language site showed increased functional connectivity (left panel) compared to a non-
critical DES site (right panel), as measured by imaginary coherence in the alpha band (example in
one subject). bAdapted from [117] with permission. Single-pulse DES over the LatMidFG induced
increase reaction time at detecting face distortions as well as distant CCEP along the VOTC (left
panel, example in one subject). Interestingly, there was an amplitude correlation across electrodes
between the N2 CCEP (left panel) and the face N170 recorded independently (right panel), showing
that the stimulation current propagates preferentially within the face-selective network. c Adapted
from [152] with permission. Critical DES naming sites (left panel shows the probability of evoking
a naming impairment in the left hemisphere across 29 subjects) induced high-frequency activity
(HFA) at distant sites, whose probability of occurrence is shown on right panel

number of recorded contacts along the VOTC but also to more distant regions of the
temporal lobe and prefrontal cortex in some patients, as shown by distant recorded
CCEP (see Chap. 40). Importantly, in that study, there was a strong amplitude corre-
lation between the CCEP and the face-selective N170 potential in each patient and
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in a group average, showing that the spread of activity reflects the intrinsic organiza-
tion of a functional network. Even if cortical face networks of humans and monkeys
differ substantially in anatomical substrates, region size, lateralization and cortical
distance between the nodes of this network [94, 156], such findings are in line with
the observation that focal electrical microstimulation of a face-selective region in
the monkey brain also spreads selectively within the cortical face-selective network
[150].

39.4.5 Assessing the Connectivity of the Critical Sites

Once it is admitted that DES is likely to affect a network linked to the stimulated
site rather than only an isolated functional brain region, the next step for future
DES studies is to identify and characterize this network. A first approach consists
of identifying the critical sites using DES and subsequently assessing the functional
connectivity of these sites using independent connectivity measures. In particular,
high-frequencyDES has been combinedwith CCEP, especially in studies stimulating
language regions. Critical language sites identified with high-frequency DES either
in Broca’s area, Wernicke’s area or the BTLA showed strong connectivity within the
language network, i.e., elicited CCEP in the 2 remaining regions [65, 66, 157], see
also [158]. DES could also be combined with various measures of functional connec-
tivity using iEEG recordings acquired independently (e.g., coherence, phase-locking
values, debiased phase lag index, etc.; see Chaps. 32 and 33). Several studies have
shown increased functional connectivity of critical DES sites with distant regions
[17, 153, 159, 160]; Fig. 39.5a). Finally, DES could be also combined with struc-
tural connectivity methods [158, 161]. For example, with diffusion tensor imaging, it
has been shown that critical BTLA sites were structurally connected to the temporal
pole, medial temporal lobe, lateral temporal, and occipital cortex through the inferior
longitudinal fasciculus [161].

A second approach consists of using the DES effect itself to study the connectivity
of the critical sites by simultaneously combining DES and iEEG recordings. Using
this approach, a number of studies have identified remote power spectral changes
in various frequency bands induced by DES evoking behavioral effects [152, 160];
see also [162, 163]). For instance, Perrone-Bertolotti and colleagues [152] found
induced high frequency activity by critical language DES in remote sites belonging
to the language system (Fig. 39.5c). Interestingly, they found similar results using
remote after-discharges, indicating that these discharges could also be used to index
the connectivity of DES sites. When single-pulse DES was sufficient to evoke a
behavioral effect, it could be used at the same time to study the effective connectivity
of the stimulated region using a CCEP approach (e.g., [19] for low-frequency DES
in the fornix inducing memory improvement along with CCEP in hippocampus and
posterior cingulate).

Other approaches have proposed to identify the distant spectral lines corre-
sponding to the stimulationwaveformof high-frequencyDESevoking clinical effects
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[164] or to measure the functional connectivity change just after DES [165]. Finally,
a promising approach has recently been introduced in human research: DES while
simultaneously recording fMRI to map evoke distant BOLD activation [166, 167].

Overall, connectivity analyses should be highly promoted in future DES studies
not only to avoid the simplistic interpretation of strictly focal DES effects but to
better characterize the neurofunctional organization of the critical network. However,
there are at least two avenues for improvement. First, studies will need to show the
specificity of the connectivity pattern of critical sites (both qualitatively and quan-
titatively), for example by comparing the connectivity of critical and non-critical
DES sites ([117, 153, 163, 165]; Fig. 39.5a). Second, all connectivity methods listed
above are designed to identify the overall connectivity of a region, independently
of the various functional sub-networks linked to the stimulated region. Our investi-
gations of single cases showing FIR impairments during DES strongly suggest that
the stimulation could be specific enough to only affect a sub-network (see also [6]).
Future studies will need to identity the particular sub-network affected byDES, using
more specific connectivity measures. For example, functional responses (e.g., low-
and high frequency neural activity to specific stimuli) could be recorded with and
without concomitant DES, with the local and distant modulation of these responses
reflecting the specific functional network affected by DES [117, 168].
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Chapter 40
How Can I Investigate Causal Brain
Networks with iEEG?

Yuhao Huang and Corey Keller

Abstract Whilemany human imagingmethodologies probe the structural and func-
tional connectivity of the brain, techniques to investigate cortical networks in a causal
and directional manner are critical but limited. The use of iEEG enables several
approaches to directly characterize brain regions that are functionally connected and
in some cases also establish directionality of these connections. In this chapter we
focus on the basis, method and application of the cortico-cortical evoked poten-
tial (CCEP), whereby electrical pulses applied to one set of intracranial electrodes
yields an electrically-induced brain response at local and remote regions. In this
chapter, CCEPs are first contextualized within common brain connectivity methods
used to define cortical networks and how CCEP adds unique information. Second,
the practical and analytical considerations when using CCEP are discussed. Third,
we review the neurophysiology underlying CCEPs and the applications of CCEPs
including exploring functional and pathological brain networks and probing brain
plasticity. Finally, we end with a discussion of limitations, caveats, and directions to
improve CCEP utilization in the future.

40.1 Introduction

The brain connectome, a representation of the functional and structural connec-
tion amongst neural elements, has been indispensable for understanding normal
and pathological brain activity. Tight interconnections between cortical regions are
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known to underlie important motor, perceptual, and cognitive processes. Charac-
terizing the brain connectome involves mapping the neural elements and the inter-
regional pathways that connect them, whether directly or indirectly. Several exper-
imental approaches exist to probe the human brain connectome ranging from non-
invasive imagingmodalities to invasive electrophysiology. In this chapter, we present
the notion of cortico-cortical evoked potentials (CCEP) and place itwithin the context
of other brain connectivity measurements.

40.2 Types of Brain Connectivity

The anatomical connections between neural elements define the structural connec-
tivity. At the microscale this constitutes neurons and the synaptic connections
between neurons. Attempting to map the complete structural connectivity at this
scale might be accomplished in animal models, but is not immediately feasible in
humans. Instead, on a macroscale, structural connectivity can be characterized by
a set of inter-areal pathways connecting regionally distinct brain regions. Although
there is not a unified division of the human brain, numerous parcellation schemes
are widely available and define anatomical brain areas at the macroscale [1, 2].
Commonly, diffusion tensor imaging (DTI) and computational tractography map
white-matter tracts non-invasively in the human brain. The quantitative outputs from
DTI approaches can be tracked longitudinally to assess for changes over time and
can be compared between healthy and pathological states [3, 4]. Although the white
matter structural connections amongst brain regions both enable and constrain infor-
mation flow, they do not imply functionality nor directionality. For instance, fiber
tracts between two regions may or may not be utilized in the context of certain
cognitive states, and the flow of information cannot be established at a particular
time based on the sole presence of anatomical links.

In contrast, the correlated neural activity amongst different brain regions defines
functional connectivity. Two regions are functionally connected if the neurophys-
iological activities in those two regions are statistically dependent. This approach
enables delineating brain networks in the context of different brain states, and enables
characterization of inter-regional communication in a dynamic fashion. Commonly,
brain activity on a macroscale is indexed by electrophysiological recordings (elec-
troencephalography) or functional neuroimaging (functional MRI). One emerging
method to determine functional connectivity is called cortico-cortical evoked poten-
tial (CCEP) mapping and is the focus of this chapter. Unlike other methods of
mapping functional connectivity, CCEP is a measure of causal influence between
brain regions studied. CCEPmapping can not only provide strong evidence for func-
tional connectivity, but also provide evidence for flow of information, making it a
versatile approach to studying brain network dynamics.
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40.3 History of CCEP

CCEPswere first introduced byMatsumoto et al. in 2004when they recruited subjects
with intractable epilepsy implanted with invasive subdural electrodes and applied
single pulse electrical stimulation [5]. These response curves or CCEPs have a char-
acteristic waveform that is dependent on the area being recorded, distance from
stimulation site, cortical orientation with respect to gyri/sulci, proximity to white
matter tracts, degree of pathology, and brain state. Given that CCEPs have excel-
lent spatiotemporal resolution, do not require participant performance on cognitive
tasks, and provide measures of causality and directionality, CCEPs have been used
extensively in recent years [5–16].

40.4 Methods and Quantification of CCEP

40.4.1 Eliciting and Recording CCEPs

CCEP mapping is an invasive electrophysiological approach relying on electrical
measurements from implanted subdural electrodes (electrocorticography or ECoG)
or depth electrodes (stereoelectroencephalography or sEEG). In both cases, elec-
trodes are implanted in various brain regions clinically for seizure mapping in
patients with epilepsy; however, clinical populations with implanted electrodes are
now expanding to those with intractable pain, depression and other neuropsychiatric
disorders [17]. To obtain CCEPs, electrical current varying between 1 and 10 mA is
delivered to these intracranial electrodes. The current can be delivered in amonopolar
or bipolar manner. In monopolar stimulation, the ground electrode can be chosen far
away from the stimulation electrode, usually in distant white matter or extracranial
space. In bipolar stimulation, the current is delivered between a pair of adjacent
electrodes. The current amplitude chosen is dependent on the patient. Typically, less
current is needed to activate cortical regions using bipolar compared to monopolar
stimulation [18]. Ideally the current amplitude is maximized to improve signal to
noise ratio (SNR), but not so high that it would be perceived by the participant (thus
direct cortical evoked potentials would be confounded with non-specific sensory
evoked potentials) or would induce undesired clinical side effects such as epilep-
tiform discharges. Electrical stimulation pulses result in a local neural response as
well as in a distal response. The magnitude of the distal responses is related to the
absolute distance and the functional connectivity between the recording and stimu-
lating locations [15]. Stimulation pulses are typically applied between 20 and 150
times at 0.2 to 1 Hz frequency [7, 15]. For studies with shorter inter-stimulus interval
(ISI) time period, it is important (1) to add a small amount of jitter between pulses
to prevent neural entrainment and (2) to ensure that there are no lasting effects such
as long-term depression, which often occurs at 1 Hz ISI [15, 19]. The number of
pulses required for sufficient signal-to-noise (SNR) vary, and in part depends on the
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quality of the recording amplifier, electrode resistance, and the strength of connection
between the stimulating and recording sites.

40.4.2 Design of CCEP Experiments

There are several experimental considerations when designing a study with CCEP
mapping. One common objective is to index the underlying effective connectivity
between the site of stimulation and other recording sites [20]. In this case, repetitive
pulses of electrical stimulation are delivered at several stimulation sites of interest
and CCEPs at all other sites are obtained. CCEP mapping can also be used to index
changes in brain connectivity after an experimental intervention. These interventions
can be in the form of a behavioral task [13] or a stimulation paradigm designed to
alter connectivity on a short timescale [7, 15]. For instance, to determine if effective
connectivity is altered after a session of high-frequency stimulation, CCEP pulses
can be delivered before and after the intervention to determine the impact on effective
connectivity [7].

40.4.3 Analysis of CCEPs

Different institutions implement different analytical pipelines to analyze CCEPs.
Here we outline a common approach to constructing a CCEP analysis pipeline. First,
the local field potential (LFP) signal comprising CCEPs is sampled at ≥500 Hz to
allow sufficient sampling of high gamma activity (70–200 Hz). Three main steps in
CCEP analysis pipelines include pre-processing (removal of line noise, detrending,
and demeaning), artifact removal, and re-referencing. First, line noise can be removed
using a bandstop (Notch) filter or a discrete Fourier transform (DFT) filter and data
should be detrended and demeaned. Second, electrical artifacts due to stimulation
should be removed, especially if power analysis is to be performed. These artifacts are
typically present for the first 5 or 10ms after stimulation, depending on amplifier type,
sampling rate, and stimulation amplitude. There are several methods to remove these
artifacts including simple interpolation [21], template rejection [22] and replacement
with underlying neural data [23]. Third, a re-referencing scheme is selected to remove
commonnoise from the recording channels.A variety of re-referencing schemes exist
with advantages and disadvantages associatedwith each one [24] (see also Chap. 28).
For SEEG electrodes, bipolar or Laplacian re-referencing is commonly preferred
[7]. For subdural electrodes, data are often re-referenced using common average
or Laplacian methods [7]. After these steps are performed, data are epoched and
CCEPs can be quantified using peak analysis in the time domain (N1, N2) or power
analysis in the frequency domain (delta 1–4 Hz, theta 4–8 Hz, alpha 8–12 Hz, beta
12–25 Hz, gamma 25–70 Hz and high-gamma 70–200 Hz). In the time domain, the
morphology of CCEPs varies significantly and depends on both the stimulation and
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Fig. 40.1 CCEPs and their relationship to anatomical and functional connectivity. a CCEPs typi-
cally consist of an early N1 (10–50 ms) and a later N2 (50–250 ms) response. b Example of CCEP
maps (electrical stimulation to white electrodes). c Comparison of CCEP (effective connectivity)
and DTI (structural connectivity). Here, the number of white matter tracts measured with DTI are
positively correlated with the strength of the CCEP N1 and negatively correlated with its latency.
Adapted with permission from [8]. d Comparison of effective and functional connectivity. Here
regions exhibiting strong CCEP N1 and N2 also exhibit strong fMRI connectivity. Adapted with
permission from [16]

recording sites. Typically, CCEPs consist of an early potential (termedN1, 10–50ms)
and a later potential (termed N2, 50–300 ms, [5]) (Fig. 40.1a, b). The amplitudes of
the N1 and the N2 potentials can be commonly quantified by averaging the signal,
by calculating the peak to trough amplitude or by determining the area under the
curve (AUC) within a specified timeframe. Notably, filtered CCEPs, in particular in
the high-gamma range, have also been used to quantify effective connectivity [23].

40.5 Applications of CCEPs

40.5.1 Investigate Inter- and Intra-Regional Connectivity
of Functional Brain Networks

CCEP mapping has been used extensively to map the causal, inter-regional connec-
tivity in the human brain. CCEP mapping offers several advantages over other non-
invasive mapping tools as it produces directional and causal measures of connec-
tivity. Luders et al. first mapped the language network with CCEPs, reporting recip-
rocal connections between Broca’s and Wernicke’s regions [5] as well as within
motor cortex [9]. In later work, CCEPs were utilized to demonstrate strong frontal
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and parietal intralobar connectionswith associated unidirectional frontal-to-temporal
connections with rare temporal-to-frontal connections [10]. CCEPs have also been
used to examine connections to and from the hippocampus [6, 14], as well as senso-
rimotor [16], visual [13], and recently default mode [25] networks. In summary,
CCEP mapping has begun to reveal causal connectivity within and between well-
known human functional networks. We predict this work will continue to expand as
CCEP mapping becomes commonplace in the epilepsy monitoring unit as a part of
routine brain mapping.

40.5.2 Comparing CCEP Mapping to Other Non-invasive
Connectivity Methods

A comparison of CCEP mapping to other known non-invasive methodologies
that probe anatomical connectivity (diffusion tensor imaging; DTI) and functional
connectivity (resting state functional MRI; rs-fMRI) is necessary to (1) identify
components of CCEPs that track standard connectivity measures and (2) provide
direct electrophysiology grounding to non-invasive connectivity measures that indi-
rectly map neural activity. For example, if the N1 (10–50 ms) reflects direct cortico-
cortical connectivity, then DTI structural measures should correspond to the N1.
Indeed, the number of tracts between two regions positively correlates with the
strength of the N1 response and negatively with the latency of the N1 response in
the CCEP [8] (Fig. 40.1c). CCEPs have also been compared to rs-fMRI measures,
where co-variations of ultraslow (<0.1Hz) fluctuations of theBOLDsignalmap func-
tional brain networks. However, the neural underpinnings of rs-fMRI are not clear.
We hypothesized that fast electrically-propagated potentials observed with CCEP
mapping would travel in a similar trajectory as BOLD co-variations. We showed that
regions with higher BOLD correlations demonstrated stronger CCEP N1 and N2s.
These findings were replicated across patients and functional networks and demon-
strated that temporal correlations of slow, spontaneous hemodynamics reflect similar
functional interactions to those arising from fast electrically propagated activity [16]
(Fig. 40.1d). Specifically, a recent study has shown that the CCEP derived network
resembles functional connectivity (as measured by resting state correlation) in chan-
nels local to the stimulation site, whereas remote CCEP network correlates best
with structural connectivity as measured by DTI [49]. In summary, CCEP mapping
provides a direct measure of effective brain connectivity compared to non-invasive
brain connectivity measures. The work summarized here demonstrates that the N1
of the CCEP partially reflects structural [8] and functional [16] connectivity while
the N2 at least partially reflects functional connectivity [16].
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40.5.3 CCEP Mapping to Measure Pathophysiological
Networks

Just as CCEP mapping can probe functional networks, this methodology can also
investigate the pathophysiology associated with neurological and psychiatric disor-
ders. As CCEPs are typically performed during intracranial monitoring for seizure
localization, epilepsy is by far the most common pathology explored. As seizures
arise infrequently, clinicians typically welcome quantitative methods such as CCEP
mapping that help explore regions that initiate and propagate seizures. Furthermore,
as mounting evidence indicates that seizures arise from a set of interconnected brain
regions, tools such as CCEP mapping have become increasingly helpful to delineate
these interconnected brain regions that may require surgical resection. Between its
potential aid in determining seizure networks and ease of implementation—CCEP
mapping typically takes <1 h and does not require patient participation—CCEP
mapping has become increasingly standard in the workup of seizure localization.

Because an abnormal excitation/inhibition balance may indicate regions that can
generate seizures (‘seizure onset zone’), the CCEP may reflect this imbalance when
stimulating (or recording) in the seizure onset zone. Indeed, compared to control
regions, larger amplitude N1 was observed following single pulse electrical stimula-
tion to the seizure onset zone [12]. When stimulating the seizure onset zone, CCEP
amplitude can also predict the onset of ictal events [26]. In addition to changes in the
N1 or N2, ‘afterdischarges’ have been observed 200–1000 ms after electrical stimu-
lation (after the N1 and N2). These later voltage deflections consisting of ‘spikes’ or
‘sharp waves’ due to enhanced excitation appear to localize to seizure onset zones
[27] and a poorer surgical outcome has been observed when tissue eliciting these
afterdischarges were not resected [27]. In summary, both standard CCEP N1 ampli-
tude and afterdischarges are powerful complements to standard methods to localize
pathological tissue (Fig. 40.2).

40.5.4 CCEP Mapping to Probe Brain Plasticity

CCEPs probe effective brain connectivity in a cross-sectional manner. However,
CCEPs can alsomeasure changes in cognitive state [13] and probe brain plasticity [7,
15]. To characterize how repetitive stimulation can induce brain plasticity, we applied
electrical stimulation in a bipolar fashion patterned to mimic non-invasive transcra-
nialmagnetic stimulation (TMS) treatments. Electrical stimulation patterned at 10Hz
modulated a subset of brain regionsmeasured by changes inCCEPs assessed pre/post
intervention (Fig. 40.3). Modulated regions exhibited stronger baseline CCEPs and
could be predicted based on a combination of anatomical (distance from stimula-
tion site) and effective (CCEPs) connectivity. Furthermore, we were able to assess
changes occurring during 10 Hz electrical stimulation using CCEPs elicited from
the last pulse in each stimulation train [7]. ‘Intratrain’ CCEPs—those derived from
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a b c

Fig. 40.2 Proposed mechanism of CCEP generation. a Electrical stimulation propagates through
the cortex to local pyramidal cells via direct dendritic activity (blue arrows), adjacent interneurons
(green arrows), or white matter traversing the stimulated region (black arrows). b Electrical activity
from stimulation is propagated to downstream regions via direct cortico-cortical connections and
indirect cortico-subcortico-cortical projections. cMultiunit response to electrical stimulation.CCEP
below was derived from a recording from deep layers. The initial N1 response is accompanied by
an increase in mid-deep increase in multiunit activity, while the later N2 is accompanied by a
suppression/activation pattern. Adapted with permission from [33]

the last pulse in a stimulation train—changed with subsequent stimulation trains.
These intratrain CCEPs also predicted CCEP changes that outlasted the stimulation
intervention. Together, this work demonstrated that CCEPs can be used to probe
brain plasticity and that baseline connectivity profiles can be used to predict regions
susceptible to stimulation-induced brain changes. Future human plasticity studies
will focus on how CCEPs are modulated as a function of stimulation frequency,
duration, amplitude, and brain state.

40.6 Mechanistic Basis of CCEPs

The neurophysiologicalmechanisms underlyingCCEPs are only partially known and
future work to further elucidate these mechanisms will improve insights from CCEP
studies. Here, we provide an overview of what is known about the mechanistic basis
of CCEPs. Although CCEPs are applied using different stimulation parameters, the
most common form iswith bipolar, biphasic stimulation. Biphasic stimulation allows
for a balanced charge to be delivered and bipolar stimulation provides a more local
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Fig. 40.3 Repetitive electrical stimulation modulates the CCEP. In this representative stimulation-
recording pair in one subject, electrical stimulation was applied to the prefrontal cortex (lightning
bolt) and recordings were measured in the parietal cortex. Repetitive 10 Hz electrical stimulation
(5 s on, 10 s off, 3000 total pulses) modulated the CCEP for ~20 min. Top: quantification of
CCEP amplitude over time. Bottom: by evaluating the CCEP after the last pulse of each 10 Hz
stimulation, one can evaluate the evolution of plasticity effects induced by repetitive stimulation or
other interventions. Adapted with permission from [7, 15]

stimulation of cortex compared to monophasic stimulation [28], thus minimizing the
spatial spread of electrical stimulation.

40.6.1 Neurophysiology at Site of Stimulation

Electrical stimulation triggers multiple local cortical events that determine if pyra-
midal neurons fire and action potentials propagate to remote regions. Initial electrical
stimulation depolarizes superficial dendrites of layer V pyramidal neurons and layer
II/III inhibitory neurons that synapse on layer V neurons. The balance of these two
events determine if layer V pyramidal neurons will fire; that is, the firing of many
GABAergic neurons will hyperpolarize layer V neurons and inhibit their firing and
orthodromic propagation of action potentials, whereas sufficient pyramidal dendritic
depolarization without GABAergic activation will lead to pyramidal neuron firing
and orthodromic propagation. In addition to this neuronal interplay, electrical stimu-
lation will also directly depolarize long-range axons traversing the stimulated region
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and generate action potentials propagating orthodromically to distant synapses as
well as antidromically backpropagating to pyramidal cell soma [29, 30]. In summary,
electrical stimulation activates white matter tracts both physiologically through pyra-
midal cell firing fromdendritic depolarization and non-physiologically through direct
depolarization of traversing white matter tracts.

40.6.2 Potential Propagation Pathways

Evidence from animal studies have shown that (1) direct cortical stimulation elicits
superficial-to-deep propagation of cortical layers locally at stimulated cortex [31]
and (2) orthodromic axonal activation occurs far more than antidromic activation
[32]. Data from human studies support the fact that electrical stimulation primarily
activates neurons in middle layers [33] and that middle layer pyramidal neurons
typically propagate to mono- and poly-synaptically connected regions via cortico-
cortical and cortico-subcortical-cortical projections [31] (Fig. 40.2). Together this
work suggests that CCEPs propagate via both a major pyramidal cell contribution
via orthodromic cortico-cortical and cortico-subcortical-cortical projections as well
as a minor antidromic contribution [9, 33].

40.6.3 Electrophysiology Underlying the N1 and N2
of the CCEP

Typical CCEP patterns consist of an early N1 peak within the first 50 ms and a later
N2 slow wave lasting up to 500 ms [9, 20, 33]. Direct electrical stimulation has
been shown to activate pyramidal neurons mono-synaptically connected to the site
of stimulation within 4–8 ms of stimulation [34, 35]. Unfortunately, clinical grade
amplifiers saturate for up to 10 ms, masking this initial response. Instead, the N1
observed after 10 ms in clinical amplifiers likely reflect oligo- and poly-synaptic
pyramidal responses local or in close proximity to the applied stimulation. Several
lines of evidence are consistent with this notion, including (1) excitatory neuronal
responses within 50 ms (N1) after direct electrical stimulation of cat cortex [36]; (2)
neuronal spikingwithin 50ms (N1) after direct electrical stimulation in human cortex
[37]; (3) increases in multi-unit activity in deep (layer IV–VI) cortical layers after
single pulse stimulation in humans [33]. In contrast, the N2 slow wave in humans is
time-locked to a reduction in both spiking [37] and middle-to-deep layer multi-unit
activity [33], likely reflecting a prolonged inhibitory time period. In summary, single
and multi-unit recordings of the responses to cortical stimulation suggest that the N1
evoked response reflects early pyramidal neuron activation while the N2 response
represents long-lasting inhibition.
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It is worth noting that this pattern of brief excitation followed by long-lasting
inhibition is not specific to CCEPs and found in other physiological and pathophys-
iological neuronal events. These include the neural response to epileptic discharges
[37, 38] and single pulses of TMS [39]. As such, studying these events will yield
further insight into the neurophysiological basis of this excitation-inhibition wave
and these processes can be evoked and perturbed.

40.7 Advanced Considerations

40.7.1 Limitations and Caveats

Although CCEP mapping represents an important method to causally and direc-
tionally probe the human brain, several limitations are worth discussing. First, as
mentioned above, because common clinical amplifiers saturate during the first 10 ms
after electrical stimulation, important mono- and di-synaptic connections may be
masked by simulation artifacts. As such, novel methods to remove electrical stimu-
lation artifacts analytically [23, 40] as well as the transition to research grade stop-
and-hold amplifiers or those with high dynamic range are currently underway. These
modifications will be critical to elucidate cortical responses within the first 10 ms.
Second, without a clear understanding of the neural basis of the strength, latency,
and polarity of the N1 and N2, as well as the degree that CCEPs reflect ortho-
dromic versus antidromic propagation patterns, it is difficult to accurately interpret
results from CCEP studies. As underlying neurobiological mechanisms are eluci-
dated, more accurate interpretation of the CCEP will be possible. Third, the vari-
ability of experimental design across institutions and even across patients within
an institution limits the ability to compare across studies. These parameters include
electrode type (stereo-EEG vs. subdural implantation), stimulation configuration
(monopolar, bipolar), current amplitude (from 1 to 10 mA), pulse duration (100–
500 µs), inter-stimulation interval (0.5–10 s), and number of stimulation repetitions
(10–500). Other parameters that are more difficult to control and often not reported
include the patient’s cognitive state, type and dosage of anti-epileptic medication,
time of day, and level of sleep deprivation. A thorough reporting of each of these
parameters in a reproducible manner is critical to assess differences across centers
and studies. Fourth, a common criticism in CCEP studies (and all intracranial studies
in epilepsy patients) is the lack of generalizability of results. However, several lines
of evidence can minimize this concern: (1) as these patients vary with respect to
seizure semiology and localization, consistent results across patients are not likely
due to the patient’s pathophysiology; (2) electrodes involved in the seizure onset
zone and early seizure spread are often removed prior to analysis so that results are
from non-pathological regions.
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40.8 Future CCEP Mapping Approaches

In the future, three key improvements will be critical for the CCEP field. Over the
past 5 years, an increasing number of hospitals have incorporated CCEP mapping
as a standard approach for patients with implanted electrodes. As the community
increases, more sophisticated quantitative methods will be applied to analyze CCEP
data. The first key advance, as discussed before, is the transition to research grade
amplifiers to observe neural information within 10 ms of the electrical pulse and
potentially study mono- and di-synaptic connections. A second key advance comes
from the improvement in computational power over the past decade. A typical CCEP
study involves analysis of the N1 and N2 individually at each recording electrode
for each stimulation site. Recent increases in computational power will enable data
driven multivariate approaches by considering the N1 and N2 timing and amplitude
between recording electrodes and stimulation sites. Examples include graph theory
frequency decomposition and multivariate machine learning approaches. A typical
CCEP study uses divergent analysis to examine CCEPs by comparing CCEP wave-
forms atmultiple electrodes after stimulation of one region. In contrast, a recent study
has explored the potential use of convergent CCEP analysis, where CCEP responses
at the same electrode are compared after the sequential stimulation of multiple other
regions, with sufficient time between stimulation of each region (Fig. 40.4). Conver-
gent analysis controls for the variability of electrode orientation, gray/white matter,
etc. in interpreting the response [41]. Another computationally-intensive method
explores the use of basis curves to more accurately define the CCEP. Although the
N1 and N2 are useful ways to describe time windows around the CCEP, in reality
there is significant variability with respect to timing and polarity of each potential,
even within a given patient. As such, Miller et al. recently used computationally-
driven tools such as basis curves to extract the principal components of CCEP
waveforms [50] (Fig. 40.4). Using basis curves to explore how these more funda-
mental components contribute to physiology and pathology across brain regions will
open up new avenues of research. A third critical improvement comes from open
science and big data initiatives [42]. Here, CCEP data format standardization will
enable big data computational approaches not possible before (see also Chap. 38).
For example the Functional Brain Tractography database (f-tract.eu) is a dataset
with CCEP recordings from >1500 patients with standardized data formatting [43].
Together, these improvements will pay the way for the next generation of CCEP
mapping: standardized, data-driven, and reproducible.

Several other research avenues for CCEPs should be explored. First, CCEPs are
applied using different stimulation parameters across groups and it will be important
to explore how the stimulation parameter space differentially affects brain dynamics.
Second, recent studies have explored how brain state influences CCEPs, either using
cognitive tasks [13] or awake/sleep patterns [44]. Future work will further explore
how cognitive states differentially influence CCEP amplitude, latency, and propaga-
tion patterns. Third, the combination of intracranial and non-invasive stimulation and
recording methods will be critical to bridge the knowledge gap that exists between
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Fig. 40.4 Convergent and divergent CCEP analysis paradigms. a Convergent—CCEPs at one
region (gray circle) are compared with the effect of stimulating all other regions (yellow circle). b
Divergent—The CCEP at all regions are examined and compared in response to stimulation of a
chosen region. Adapted with permission from [50]

intracranial and non-invasive brain recordings and move towards more generaliz-
able tools that can be utilized in outpatient clinics. Recent combined recordings
have mapped the relationship between CCEPs measured both intracranially and non-
invasively [45]. Fourth, implantation of deep electrodes for the monitoring, under-
standing, and treatment of neuropsychiatric illness is increasingly being performed
[17, 46–48]. For instance, depth electrode implantations are being done for patients
with obsessive compulsive disorder (OCD) [51] or major depressive disorder (MDD)
[52]. In both cases, depth electrodes implanted inmultiple regions were used to assay
network responses to tasks and tomood variations.Hence, one can expect that as elec-
trodes are implanted for MDD, OCD, obesity, pain, and many other disorders, CCEP
mapping will become a mainstream method of evaluation of cortical excitability and
plasticity.
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40.9 Conclusion

CCEP mapping represents an important methodological tool to quantify brain
connectivity in humans. CCEP mapping has excellent spatial and temporal resolu-
tion with electrophysiological grounding as with any intracranial approach with the
additional characteristics of causality and directionality. The N1 of the CCEP likely
reflects early excitation of pyramidal neurons from feedforward connections while
the N2 likely represents a long-lasting inhibitory period from feedback connections.
The N1 reflects at least in part structural connectivity between two regions while the
N2 can be influenced by brain state and cognitive demands. Future improvements
in amplifier design, computational power, and big data sharing initiatives, as well as
the expansion of implanted electrode approaches to indications other than epilepsy
will pave the way for the next generation of CCEP mapping. This underutilized tool
in basic and clinical neuroscience represents a powerful tool to investigate brain
connectivity, the causal involvement of brain regions in cognitive processes, and the
pathological networks in neurological and psychiatric disorders.
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Chapter 41
What Are the Promises and Challenges
of Closed-Loop Stimulation?

Youssef Ezzyat

Abstract Intracranial electroencephalography (iEEG) offers a unique basis for
recording and understanding the physiological activity of the human brain. Since
its earliest applications researchers have also used intracranially-placed electrodes
to electrically stimulate the brain to probe the neural mechanisms of cognition.
A typical approach, known as open-loop, is to select stimulation parameters (e.g.
timing, frequency, brain location) a priori and then apply stimulation either acutely
or chronically, in order to observe its effects on cognitive function and neural activity.
In recent years there has been substantial development in methods for closed-loop
stimulation in which at least one of the parameters for each stimulation event is
determined by the neural response to preceding stimulation events. This chapter
discusses some promises and challenges of closed-loop stimulation through eval-
uation of recent studies that have used closed-loop stimulation to modulate neural
function and behavior. Closed-loop frameworks are well-suited to test theories that
relate ongoing neural dynamics to cognitive function, and further development of
such approaches may pave the way for chronic closed-loop neuromodulation that
is independent of experimental tasks. Several challenges remain to be addressed,
including optimal modeling of stimulation’s effects on physiology, cognition, and
behavior, which will determine the eventual impact of closed-loop approaches.

41.1 Introduction

Intracranial EEG has many strengths as a method for studying brain function. One of
themost important and earliest to be recognized is the ability to apply direct electrical
stimulation to affect neural activity and cognitive function. In its earliest and most
widespread application, direct brain stimulation was used to map the function of
the cortex, revealing the organization of motor and language abilities in the brain,
and providing patient-specific roadmaps for surgical resection [1, 2]. Alongside the
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continued use of stimulation for surgical mapping [3], clinicians and researchers
have made major advances in using stimulation to directly modulate brain function.
This work has led to therapies for treating neurological dysfunction as well as causal
methods for relating neural function to behavior.

Here, we review recent advances in applying intracranial direct brain stimula-
tion in closed-loop. We first discuss the development of its precursor, open-loop
stimulation, and selectively highlight clinical and research applications of open-loop
stimulation approaches. We then describe how closed-loop approaches developed
out of the clinical research setting, and conclude with a discussion of some promises
and challenges that arise in the context of closed-loop stimulation.

41.2 Open-Loop Versus Closed-Loop

Before focusing on issues that are specific to closed-loop stimulation, we offer a
brief example to draw the distinction between open-loop and closed-loop systems.
The notions of open-loop and closed-loop come from engineering, where a standard
problem is the design of systems that can reliably apply transformations to input(s)
in order to produce output(s) that satisfy or reflect a desired end state. In an open-
loop system, a predetermined input is applied to the system in order to produce an
output. Using knowledge of the input itself and the transformation that the system
performs, an appropriate input can be applied in order to reach the desired end state.
A conventional microwave oven is an example of an open-loop system in which
the user sets the microwave to operate at a given intensity and for a given duration
in order to warm food. Open-loop systems are relatively simple to understand and
design, making them an attractive choice for many problems. However, their simple
design means that they have limitations, one of which being that they are not robust
to disturbances within the system. For example, if the user does not know that the
food is partially frozen, they may not set the microwave to operate at an appropriate
intensity or duration.

Like open-loop systems, closed-loop systems also perform input–output trans-
formations, however they use feedback from the output to modulate the input in
order to achieve the desired end state. In the example of a microwave, sensors which
detect the moisture level inside the microwave can be used as closed-loop feedback
to determine when the food has been warmed to a desired state. The microwave uses
the signals from these sensors as feedback to adjust the intensity and duration of
cooking. For the situation in which the user does not realize the food is partially
frozen, the feedback from the internal sensor will provide the information that is
necessary to prolong or intensify the cooking. Information from the output therefore
affects the input, allowing the closed-loopmicrowave to achieve the desired end state
in the face of disturbance.

Although warming food in a microwave is somewhat different from direct brain
stimulation, the example highlights issues relating to open and closed-loop systems
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that are common to both scenarios. In particular, closed-loop systems are most effec-
tive when (1) there is a well-defined end state; and (2) there is a model that relates
changes to the system’s input to changes in the output. For a microwave, the desired
end state is food that is warmed to an appropriate temperature, and the input/output
model relates the electromagnetic energy produced by the microwave to the amount
of thermal energy generated in the food.

For the iEEG researcher interested in using closed-loop stimulation to study
neural activity and behavior, the desired end state is usually a neurophysiological
state (biomarker) that is associated with a behavioral outcome. Such closed-loop
biomarkers can be defined on the basis of previous research or developed through
novel paradigms. The model relating the system’s input and output corresponds to a
model of stimulation’s effects on neurophysiology. As will be described below, this
is a challenging problem due to the many ways in which stimulation delivery can be
manipulated (e.g. timing, amplitude, frequency, pulse width), and our limited under-
standing of the effects of each of these parameters on local and network physiology
andwhether those effects vary based on the anatomical target. A further complication
arises from differences in how stimulation parameters are described in the literature.
A move toward standardization in reporting is an important step toward a unified
understanding across studies [4].

There are several parameters available to the researcher that can be used to tailor
the pattern of stimulation that is delivered through iEEG electrodes (for detailed
discussions of general issues relating to direct brain stimulation with iEEG, see
Chaps. 5, and 39). Broadly, these include: stimulation timing (when to stimulate); and
stimulation pattern (how to stimulate). In open-loop stimulation designs, researchers
select these parameters in advance (typically based on some combination of: the
parameters used in the existing literature; modeling of the expected current flow; and
the experimental hypotheses and task structure), and then apply stimulation in order
to observe its effects on cognition, physiology, or both. The researcher may conduct
repeated trials in order to gather sufficient data at the specified stimulation parameters
before changing one or more of the parameters in order to collect comparison data.
Such approaches have been highly valuable in providing causal evidence for the role
of particular brain structures in aspects of high-level cognition [5–10].

For the remainder of this chapter we discuss the development of closed-loop
approaches for iEEG stimulation. We briefly highlight first how clinical research has
influenced this development, and how questions about the closed loop biomarker (the
model relating stimulation to physiology) and the selection of stimulation parameters
have been answered in the clinical domain.We then describe the expansion of closed-
loop research to other domains and some promises and challenges for this work.
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41.3 Clinical Development of Closed-Loop Stimulation

Because iEEG research is conducted in a clinical setting, it is perhaps not surprising
that most studies that have evaluated closed-loop stimulation have done so with
clinical outcomes in mind. Treating neurological dysfunction is an urgent societal
problem and there is increasing evidence for, and interest in, the effectiveness of
direct brain stimulation for a variety of such disorders [11, 12]. In a broader sense,
however, the dual imperatives to achieve clinically meaningful symptom reduction
while also limiting side effects have provided clinical research with a relatively clear
set of objectives that have helped in focusing development of closed-loop stimulation
systems that address these two constraints.

Parkinson’s disease (PD) is a domain that has produced significant development
of approaches for closed-loop stimulation. An established treatment for motor symp-
toms of PD is high-frequency open-loop stimulation to the globus pallidus or subtha-
lamic nucleus.While such open-loop stimulation can be quite effective, one challenge
to this approach is that precise stimulation parameters must be tuned by a clinician
in order to achieve symptom relief that is well-tolerated. This tuning process can
take weeks or months, exposing the patient to unnecessary stimulation and more
time living with symptoms that reduce quality of life. Once effective individualized
stimulation parameters are identified, they are often then further adjusted over time
in response to changes in efficacy [13]. This situation, in which the inputs must be
iteratively updated and tuned in order tomaintain a desired outcome state, is precisely
the sort that can benefit from a closed-loop approach.

Because of this, there has been significant interest in closed-loop approaches
for treating PD with stimulation [14]. One goal of such research has been to tune
stimulation more rapidly in response to changes in activity in the dysfunctional PD
circuit. Work in non-human primate models showed the potential effectiveness of
closed-loop stimulation for PD [15], and subsequent studies have suggested that
stimulation amplitude and frequency can be adjusted via closed-loop feedback to
reduce PD symptoms as well as biomarkers of PD, such as beta band power in the
basal ganglia [16–18]. Closed-loop brain stimulation could also be used to broaden
the space parameters that are manipulated, in order to identify those that provide the
most effective treatment, which may vary from patient to patient. For example, while
the standard PD stimulation treatment involves periodic bursts of high-frequency
stimulation, computational modeling has suggested that closed-loop optimization
algorithms could be used to reveal novel therapeutic waveforms [19].

Epilepsy is another disorder that has drawn intense development of methods for
stimulation in closed-loop [20, 21]. For patients with medically-refractory epilepsy,
seizure onset can be disrupted with stimulation that is applied to the seizure focus.
However, because seizures are stochastic and temporally circumscribed, a key chal-
lenge is to selectively apply stimulation only when it is needed and not continu-
ously. Research into stimulation for epilepsy has therefore sought to address the key
question of when to stimulate. Using patient-specific parameters set by a clinician,
responsive neurostimulators monitor neural activity in order to detect the onset of
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seizures, and deliver stimulation to a predetermined target in order to inhibit seizure
onset [22]. This closed-loop system has been safe and effective in reducing seizure
frequency [23–25].

The preceding examples from investigations of PD and epilepsy show how closed-
loop designs can aid in identifying effective stimulation waveform parameters and
timing. Another potential benefit of closed-loop stimulation systems compared to
open-loop systems is that through the use of feedback, closed-loop systems can
theoretically achieve the desired end state by delivering less stimulation overall.
From an engineering perspective, if less stimulation needs to be delivered to reach
or maintain desired end states, then it is possible to power implantable stimulation
devices for longer.

For example, although continuous high-frequency stimulation is the standard stim-
ulation protocol for direct brain stimulation treatment of tremor in Parkinson’s, it is
possible to alleviate motor symptoms while delivering less overall stimulation by
triggering stimulation in response to an ongoing measurement of Parkinson’s related
pathological brain activity. One study did this by measuring power in the beta band
(13–35 Hz) from electrodes implanted in the subthalamic nucleus, and triggering
stimulation when beta band power exceeded a predetermined threshold [26]. This
responsive stimulation approach improved a clinical assessment of motor function
compared to continuous stimulationwhile reducing stimulation time by 56%, thereby
reducing the overall device energy requirements. The study further showed that
responsive stimulation improved motor symptoms compared to randomly delivered
stimulation as well as an unstimulated control condition. An additional benefit of this
approach was a reduction in non-motor (speech) side effects that are associated with
continuous stimulation for Parkinson’s [27]. A similar closed-loop approach also
showed reduced stimulation time and motor improvement when measuring another
clinical symptom of Parkinson’s, essential tremor [28]. Another study implemented
a closed-loop approach, triggering stimulation in response to an ongoing measure-
ment of a motor biomarker, using the phase of a patient’s tremor [29]. The study
stimulated the ventrolateral thalamus and identified, for each individual patient, the
most effective oscillatory tremor phase at which to deliver stimulation.

The preceding selective review highlights some of the ways in which clinical
treatment has driven advancement in the development of closed-loop stimulation
systems. In particular, closed-loop systems have aided in identifying effective stim-
ulation parameters, and in deploying clinically-effective stimulation only when it is
needed. The next section expands on some particular promises and challenges of
closed-loop stimulation as they relate to understanding mechanistic links between
brain and behavior.

41.4 Promises and Challenges

In this section we discuss some promises and challenges associated with closed-loop
iEEG stimulation. Two fundamental questions must be addressed when developing
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closed-loop stimulation systems. The answer to the first,When to stimulate?, depends
largely on the development of stable biomarkers, for example iEEG-derived physio-
logical correlates of the behavioral or cognitive process under study. The answer to
the second question, How to stimulate?, depends on understanding of the effects of
various stimulation parameters on physiology and behavior.We then discuss potential
future applications of closed-loop stimulation for causal investigation of the neural
mechanisms of cognition.

Closed-loop stimulation for epilepsy provides an example case in which stim-
ulation must be delivered at specific moments in response to a particular neural
biomarker. In epilepsy this corresponds to abnormal ictal or interictal physiology
[30]. In PD, biomarkers of motor symptoms such as beta band power in the affected
cortico-basal ganglia-thalamic circuit [31] have been investigated for triggering stim-
ulation [26]. Thus, an effective closed-loop stimulation system depends on a stable
biomarker that can be used to trigger stimulation when it is needed.

In the clinical setting, a biomarker must bear some relation to measured symp-
toms and ideally reflect the underlying pathological mechanism. This link between
measured outcome and biomarker remains vital when the outcomemeasure is instead
a not-necessarily-pathological behavioral measurement of a cognitive process. Thus,
a critical aspect of defining a stable biomarker is to develop experimental tasks and/or
cognitive batteries that measure both the behavior and the physiological mecha-
nism with sufficient specificity. Using experimental tasks that have been validated
across species and are known to depend on specific brain structures [32] can aid in
identifying biomarkers that can be used to trigger stimulation.

In order for the closed-loop biomarker to provide feedback that can guide stimula-
tion to achieve the desired end state, the biomarker must either be stable with respect
to theneural input (i.e. themeasuredphysiology) ormust adapt over timeas thebrain’s
internal dynamics shift. Several recent studies have used multi-session designs in an
attempt to develop stable biomarkers that are not affected by variability in brain
states that may be correlated or mediate the relation between the biomarker and the
measured behavioral outcome. One study evaluated closed-loop brain stimulation in
the context of treatment-resistant depression, capitalizing on and extending several
advances in closed-loop methodology. A patient underwent multi-day intracranial
monitoring, stimulation mapping, and biomarker identification, in order to develop
a personalized stimulation approach that would reduce depression symptoms [33].
By using a data-intensive personalized approach, this study was able to address the
patient-to-patient heterogeneity that has led to inconsistent outcomes in previous
work that used non-personalized approaches. Another study also used a multi-day
recording approach to develop stable patient-specific biomarkers of episodicmemory
based on broadband spectral power, in order to deliver closed-loop cortical stimu-
lation to enhance memory function [34]. Physiological recordings across days were
used to develop a patient-specific neural decoder that successfully generalized over
test sessions across days to predict memory outcomes.

One of themost difficult and important questions to be answered about closed-loop
brain stimulation is how to select stimulation waveform parameters. This is true even
in domains in which there is relatively clear evidence for stimulation’s behavioral
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effects. For example, although biomarkers for stimulation in Parkinson’s Disease
have been identified and are effective in closed-loop [14], there remains debate about
stimulation’s underlyingmechanisms of action [35].While somemodels emphasized
stimulation’s role in creating an informational lesion at the stimulation site [36, see
37 for review], other models have sought to understand how stimulation affects the
broader pathological network [38, 39]. Thus, an important area for future research
in other domains will be to develop predictive models that reveal how the stimulated
region and its network are likely to be affected by a particular set of stimulation
parameters.

Several studies investigating stimulation using macroelectrodes have focused on
the role of white matter pathways in determining how stimulation of a particular
brain target affects local and distributed physiology. For example, stimulation near
white matter vs. gray matter has distinct excitatory and inhibitory effects near the
electrode site [40]. Other studies have suggested that targetingwhitematter pathways
with stimulation can transition broader brain networks between states that reflect
distinct cognitive modes [41, 42]. Consistent with the idea that stimulation can be
used to affect a broader network via white matter pathways, single pulse stimulation
of white matter, compared to gray matter, leads to larger effects at more spatially
distant recording sites [43]. Similar distinctions between the effects of white and gray
matter stimulation have also been shown using functional connectivity to identify
the broader network [44].

Using microelectrodes to deliver more targeted stimulation, in combination
with predictive modeling to determine stimulation’s effects, is another promising
approach. Widespread use of this approach will depend on recent advances in
modeling and stimulation technology developed in non-humanmodels [45, 46] being
translated to humans. For example, microwire recordings in the human hippocampus
during amemory task (delayedmatch to sample) provided the data for amodel, based
on earlier rodent and non-human primatework [47, 48], that linkedCA3 andCA1unit
activity. This model was used in later sessions to decode CA3 activity and to trigger
spatiotemporally-patterned microstimulation to replicate the predicted CA1 firing
pattern. Stimulation improved memory during the task and on delayed recognition,
relative to random and sham stimulation control conditions [49].

41.4.1 Causal Tests of the Neural Basis of Cognition

As mentioned earlier, closed-loop designs are particularly useful for investigating
the causal mechanisms of behavior. This can be especially true for processes that
involve preparation or planning, which may differ in their timing from trial to trial
and individual to individual. For example, the supplementary motor area (SMA) is
active prior to the execution of motor movements, which is thought to reflect queuing
of motor commands before their execution [50–52]. A recent iEEG study described
a system that detected the onset of activity in SMA in order to trigger stimulation in
closed-loop [53]. The researchers performed an initial biomarker identification stage
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to select an SMA electrode with enhanced high-frequency (>60 Hz) power prior
to movement onset. Using a patient-specific threshold on high-frequency power,
the patient then performed a separate session of the motor task in which closed-
loop stimulation was delivered in response to the detected biomarker. Stimulation
of SMA prior to movement onset (but not other non-SMA motor areas) delayed
movement timing [53]. Stimulation’s effects on movement timing were consistent
across patients, in spite of the variability in the biomarker from patient to patient,
in terms of electrode location, the frequency range of the power increase, and its
timing. This suggests that using a closed-loop approach helped account for individual
differences, although a specific open-loop stimulation comparison condition was not
reported.

Closed-loop stimulation has also been used to test predictions of cognitive models
of behavior. For example, theories of memory function suggest that shifts in a cogni-
tive representation of context that is present during encoding, which can bemeasured
with iEEG [54], can lead to divergent effects on associative memory. Accelerating
the drift rate of temporal context should facilitate memory in a paired-associates task,
perhaps by reducing interference [55]while it should reducememorymeasured using
free recall, where temporal associations across items support performance [56]. In
one study, closed-loop stimulation during the encoding phase was found to affect the
drift rate of a neural representation of context in the temporal lobe [57]. This change
in the drift rate of neural context led to effects on memory that validated the predic-
tions of the cognitive theoretical model, and more broadly showed how stimulation
can be used to causally manipulate neural function to test theoretical models.

Many closed-loop stimulation studies have focused on building models that
relate neural activity to behavior. However, it is also possible to take advantage
of intracranially-implanted electrodes to trigger stimulation in closed loop while
decoding behavioral measures. One approach used a latent variable model of partic-
ipant response time to predict trial-to-trial fluctuations in cognitive control [58]. The
latent variable model, a generalization of the Kalman filter approach that is common
in brain-machinemotor prosthetics, predicted participant response times in theMulti-
Source Interference Task (MSIT). The authors used the trial-level model predictions
to trigger stimulation to the internal capsule, part of the striatal-frontal circuit that
underlies inhibition of prepotent responses at moments requiring cognitive control
[59, 60]. When the model predicted lapses in performance, stimulation delivered in
closed-loop led to faster response times (i.e. improved performance). A key aspect
of this study was the inclusion of an open-loop comparison group in which stimula-
tion was delivered randomly on half of the trials. The authors found that open-loop
internal capsule stimulation also sped response times, although to a lesser extent than
closed-loop [58]. By including an open-loop comparison condition, the data support
the interpretation that behavioral modeling combined with intracranial stimulation
can facilitate cognitive control. Given that the open and closed-loop comparison
was a between-participants manipulation with small cohorts, future work should
extend these findings by implementing within-participants designs or increasing the
comparison group sizes.
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41.4.2 Naturalistic Closed Loop

Many closed-loop studies remain linked to laboratory-style experimental paradigms,
yet there is increasing recognition that neural dynamics must be understood outside
of well-defined experimental structure [61]. Thus, an important question for future
research is how to deploy closed-loop stimulation in more naturalistic environments
in a way that can illuminate the neural basis of behavior. Development of systems for
iEEG recording and stimulation in ambulatory human participants will be critical to
thiswork. Research in this area that builds upon existing chronically implanted stimu-
lators has led to tools for synchronizing physiological recordings with measurements
of task performance and behavior [62, 63] (see also Chaps. 52 and 53). For example,
synchronizing wireless iEEG with motion capture to measure walking trajectory
and speed outside of the hospital setting allowed for detailed characterization of
theta oscillations in the human medial temporal lobes [64]. Further developments
have shown the ability to trigger direct brain stimulation and to synchronize inva-
sive stimulation and physiological recordings with additional wearable sensors [65].
These systemswill provide rich data for developingmodels for deploying closed-loop
stimulation during naturalistic behavior.

With the technical development of tools for recording and stimulation during a
broader range of behaviors, researchers will have the opportunity to stimulate the
brain in response to a much broader range of brain states. However, this opportunity
will also create challenges for closed-loop algorithms in their ability to differentiate
brain states that should and should not trigger stimulation. Neural variabilitymay be a
feature that enables intelligent behavior, rather than a source of unwanted noise [66–
68], and, if it is informative, is likely to exist atmultiple timescales [69]. Technologies
to collect and synchronize greater amounts of neural data with behavior will provide
opportunities for detailed predictions for triggering closed-loop stimulation, however
this will require more complex dynamic models relating neural activity to cognition
and behavior. Such issues have already confronted clinical researchers who have
access to years of closed-loop recording and stimulation data [70].

41.5 Conclusion

Here, we have discussed some promises and challenges of closed-loop stimulation,
highlighting recent studies that have used such approaches to modulate neural func-
tion and behavior. Emerging from development for clinical applications, closed-loop
research frameworks are poised to continue to benefit basic science research. Soft-
ware tools are being developed and shared for decoding iEEG activity and triggering
stimulation in closed loop [71], which can aid labs in the adoption of closed-loop
approaches. Although in this chapter we have focused on issues relating to modeling
of stimulation’s effects on physiology, cognition, and behavior, additional challenges
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remain, such as accounting for stimulation-induced recording artifacts [72].Nonethe-
less, iEEG stimulation in closed-loop has unique strengths as a research tool and will
continue to provide insights into brain-behavior relations as the field moves forward.
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Chapter 42
Which Are the Most Important Aspects
of Microelectrode Implantation?

Angelique Sao-Mai S. Tay, Bassir Caravan, and Adam N. Mamelak

Abstract Chronically implanted intracranial electrodes containing microwire
bundles capable of recording extracellular single unit action potentials provide signif-
icant insights into the ways neurons and neural networks regulate cognition, move-
ment, andmany aspects of human behavior, as well as insights into the neuronal basis
of seizures. The most used electrode for these recordings is the commercially avail-
able Behnke-Fried hybrid electrode. In this design, a bundle of microwires protrude
from the distal end of a macroelectrode. Adhering to a few simple techniques during
insertion of these electrodes can maximize the number of neurons recorded and also
achieve stable, high quality, and long-lasting recordings. Techniques include: (1) pre-
loading the microwires into the macroelectrode bundle and cutting them to a 4–5mm
length with sharp scissors prior to use; (2) targeting the distal end of the macroelec-
trode to ensure that the microwires protrude into grey matter; (3) using orthogonal
insertion trajectories whenever possible; (4) avoid kinking of the microwires; and
(5) ensuring that the distal macroelectrode does not penetrate the grey matter where
the microwires will be placed. This chapter will review the technical nuances for
electrode insertion that lead to high quality recordings, a key first step to successful
recording, sorting, and analysis of human single units.

42.1 Introduction

For patients with drug resistant epilepsy, the implantation of intracranial depth elec-
trodes is often used to help identify the seizure focus, and plan subsequent therapies
aimed at stopping or reducing the number of seizures [1, 2]. During this process, a

A. S.-M. S. Tay · B. Caravan · A. N. Mamelak (B)
Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
e-mail: adam.mamelak@cshs.org

A. S.-M. S. Tay
Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, A6600,
90048 Los Angeles, United States

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Axmacher (ed.), Intracranial EEG, Studies in Neuroscience, Psychology
and Behavioral Economics, https://doi.org/10.1007/978-3-031-20910-9_42

671

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20910-9_42&domain=pdf
mailto:adam.mamelak@cshs.org
https://doi.org/10.1007/978-3-031-20910-9_42


672 A. S.-M. S. Tay et al.

study commonly referred to as Stereotactic Electroencephalography (SEEG), pene-
trating electrodes are placed in the brain and patients undergo continuous moni-
toring of EEG for several days to weeks in an epilepsy monitoring unit. During
this monitoring process patients are awake, generally comfortable, and able to fully
interact, thus providing a unique opportunity to perform behavioral testing and corre-
late behavioral responses with brain activity. Research in this arena has led to seminal
discoveries about how the human brain functions in both health and disease. The
simultaneous insertion of research-quality microelectrodes during the implantation
of clinical macroelectrodes enables neuroscientists to record in vivo single unit extra-
cellular action potentials,multi-units, and local field potentials. Thesemicroelectrode
recording have proven instrumental in furthering our understanding of the correla-
tion between single neuron firing patterns, inter-areal neuronal network activity, and
human behavior. Given the size and fragility of these electrical contacts, as well as
the relative rarity of being able to perform these studies, it is essential that proper
technique be followed to maximize the quality and reliability of data obtained from
these experiments.

Although microelectrode recordings are not currently used for clinical diagnosis,
the use of hybrid depth electrodes containing microwires carried within a macro-
electrode array has been shown to be safe and well-tolerated [3], thus justifying their
use. The most used electrode, and the one we have exclusively used over the past
17 years, is the Behnke-Fried electrode (Adtech, Racine, WI), initially developed at
UCLA in the 1960s through 1990s with several modifications [4, 5]. This electrode
consists of two parts: an outer macroelectrode sheath and an inner microelectrode
bundle (Fig. 42.1). The macroelectrode contains platinum iridium macroelectrode
contacts spaced along the distal end of a hollow plastic sheath. The microelectrode
is a bundle of eight 40um diameter platinum iridium wires held together in a resin,
with the distal 15 mm of electrode wire protruding in a flower spray configuration.
During the sterilization process these wires can get coated with ethylene oxide that
can inhibit recording ability. Therefore, the distal ends must be cut to the desired
length at the time of surgery, thus exposing the distal tips for recording. The micro-
electrode also contains a green sheath that slides over the distal end of the protruding
microelectrodes to protect them and guide them into the center hollow core of the
macroelectrode. This sheath is then fully retracted towards the base of the electrode
at final insertion to make sure that it does not cover the protruding microelectrodes.
Many publications describing human single unit activity have been reported using
this electrode [2−4]. However, the number of single units recorded, quality, and
stability of these recording appears to be highly variable between centers (multiple
personal communicationswithANM), suggesting that techniques for electrode inser-
tion may plan a critical role in obtaining the highest quality data. The goal of this
chapter is to summarize our experience inserting Behnke-Fried electrodes, with the
aim of pointing out the technical nuances we have identified as most important to
achieving high yield, high quality single unit recording in humans.
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a

b

Fig. 42.1 a Behnke-Fried (Adtech) electrode. Pictured above is the green guide sheath around the
microelectrode bundle. The sheath is used to cover the microwires during insertion into the macro-
electrode and is retracted back towards the base of the microelectrode bundle at final insertion. The
microwires extend beyond the green sheath when full inserted and the sheath is retracted. Below
it is the hollow macroelectrode in which the microelectrode bundle is inserted. b Schematic draw-
ings of macroelectrode (top), microelectrode (middle) and assembled macro–micro array (bottom).
Reproduced with permission from Adtech, Racine WI

42.2 Target Selection

Patients with drug resistant epilepsy (DRE) are referred for Phase II stereotactic
electroencephalography (SEEG) studies based on multidisciplinary evaluation of all
pre-surgical data. Such pre-surgical data typically includes clinical history, analysis
of seizure semiology, neuropsychological testing, scalp electrode-based video-EEG
monitoring, magnetic resonance image (MRI), single photon emission computed
tomography (SPECT), fluorodeoxyglucose-positron emission tomography (FDG-
PET) and magnetoencephalography (MEG) [6]. The depth electrode targets and
trajectories are then selected to maximize the chances of identifying the hypothetical
seizure onset zone.
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Decisions such as the number and location of electrodes can vary significantly
between centers and individual situations. In our center we tend to routinely perform
bilateral implantations, often targeting classic limbic regions such as amygdala,
hippocampus, entorhinal cortex, anterior cingulate cortex, ventromedial prefrontal
cortex, and pre-supplementary motor area. Whenever possible we aim for largely
orthogonal trajectories for these structures tomaximize sampling and facilitate easier
data interpretation. Other regions include insula, visual cortices, regions of localized
MEG spike, cortical dysplasia, or other regions of interest. For regions such as insula,
visual cortices, or focal cortical dysplasia, we typically use non-orthogonal trajecto-
ries. Due to the possible risk associated with placement of depth electrodes, such as
bleeding in the brain, stroke, infection, and death, it is unethical to insert electrodes
in non-clinically relevant areas that are pre-determined by the pre-surgical area [7].

Prior to surgery, we acquire multiple sequences of Magnetic Resonance Imaging
(MRI) of the brain, along with Computed Tomography Angiogram (CTA) and CT
Venogram (CTV) studies. MRI sequences should be of high quality, devoid of
movement artifact, and contain at least one sequence aimed to optimized visual-
ization of grey matter and grey-white junction (e.g., 2 mm thick whole brain Spoiled
Gradient Recalled Echo, SPGRE orMagnetization Prepared—Rapid Gradient Echo,
MPRAGE).Use of a 3TMRI scan is also preferred if possible. There are several pulse
sequences optimized for patients with epilepsy [8, 9]. High quality pre-operative
imaging without movement artifact is a critical first step to ensure accurate elec-
trode targeting. At our center these images sets are loaded on an S8 Stealth Station
(Medtronic, Louisville, Colorado) orROSArobotic (Zimmer-Biomet) computerwith
stereotactic targeting planning software suite and co-registered. A plan is created for
each electrode target and trajectory (Fig. 42.2). A variety of other planning systems
are available, and the choice of planning and insertion method depends largely on
the surgeon and center.

After selecting the target and entry points, the MRI, CTA and CTV, sequences
are followed on the “trajectory” and “probe’s eye” views from the surface to target.
Plans are adjusted to avoid vessels and to minimize traversing of sulci. The thickness
of the skull at the trajectory entry site is also measured and noted.

42.2.1 Technical “Pearls” for Electrode Planning

1. Plan target depth of macroelectrode tip at grey-white junction, rather than
at medial edge of cortex. To record single unit action potentials, the microwires
must sit in cortical grey matter. These wires typically extend from the distal
tip of the macroelectrode by 4–5 mm, and the thickness of cortex is usually
3–6 mm. Therefore, the distal tip of the macroelectrode must be positioned to
allow the microwires to protrude into the cortical grey matter (Fig. 42.3). When
standard depth electrodes are placed, the distal tip usually targets the deepest or
most medial aspect of the planned trajectory. However, in targeting the deepest
macroelectrode contact, we aim for 4–5 mm shallower. We have not noted any
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Fig. 42.2 Screenshot from a planning software workstation showing examples of electrode target
and trajectory plans for a patient undergoing SEEG placement. Note that the distal end of the targets
aim for the grey-white junction in cortical regions and for grey matter structures such as amygdala
so that the 4nmm protrusion of the microwires will remain in grey matter. Orthogonal trajectories
are preferred whenever feasible

difference in our ability to localize seizures with this modification. However,
we have rouitnely noted that if the electrodes are placed too deep in the grey
matter, then far less optimal neuronal recordings can be obtained. Placing the
distal macroelectrode contact at the greymatter-whitematter border substantially
improves neuronal yield and quality.

2. Use orthogonal insertion trajectories whenever possible. We find this allows
formaximal recordings from cortical surface and deep targets. Orthogonal trajec-
tories tend to be more accurate than non-orthogonal ones, and are often the
shortest path to target and not typically deflected by oblique bone and dura
penetrations [10].

42.3 Device and Methodology for Electrode Insertion

Depth electrodes (either those with microelectrode bundles or without) are inserted
according to well established neurosurgical methods and vary depending on the
surgeon training and preferences. In the past we have used a rigid stereotactic frame
with an orthogonal guide post positioned on the side rail of the frame base for orthog-
onal insertions, and a stereotactic arc for non-orthogonal ones [11].More recently we
have converted to a robotic manipulator method [12]. The use of stand-alone robotic
systems such as the ROSA ONE® (Medtech, Montpellier, France) or Neuromate®

(Renishaw, Dublin, Ireland) and methods based on frameless stereotactic guidance
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a b

Fig. 42.3 Representative T2 weighted MRI images demonstrating correct depth placement
targeting the grey -white junction so that the microwires protrude into grey matter. a Targeting of
ventro-medial prefrontal cortex. b Targeting of amygdala and hippocampus. Arrows demonstrate
protruding microwires at distal tip

[13−15] are also very popular. While all of these methods can work, for microelec-
trode recording purposes we strongly favor a more rigid insertion method, based on
the improved accuracy of these systems when compared to frameless ones [16]. We
suggest the following practices to help improve surgical flow, reduce risk of infection,
and increase targeting accuracy:

1. Patients should undergo a full head shave. Fully shaving the head reduces
any limitation to preferred trajectories, avoids the possibility that hair can distort
the trajectory and reduces risk of infection. To reduce infection, the head shave
should be done just before the surgery and should not be done by the patient at
home.

2. Rigid fixation of the head using a stereotactic frame rather than a three-
point head holder. This provides increased access to all orthogonal targets with
minimal interference from the head holder. We utilize ear bars inserted into the
auditory canals of the patient at the time of frame placement to ensure a perfectly
centered and orthogonal frame.

3. If non-robotic stereotactic targeting methods are used, we recommend the
patient be brought to the CT scanner with the frame in place to acquire
a registration image with the localizer in place. We find this method has the
highest registration accuracy. This image is merged to the previously acquired
MRI to obtain coordinates for electrode placement. Intraoperative CT or intra-
operative 3D fluoroscopy (e.g., O-arm®, Medtronic, Louisville, CO) can also be
used, although CT is slightly more accurate than the O-arm®.

4. Substantial effort should bemade to ensure the highest degree of registration
accuracy possible. For the Autoguide® (Medtronic, Louisville, CO) system that
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we previously usedwe obtained a head CT scanwith skin placed fiducial markers
the night before the day of surgery. The CT is co-registered to other image sets,
and stereotactic space established using a standard registration algorithm. This
marker-based registration is subsequently improved upon using an additional
“skin tracer” registration. We require a registration accuracy of 2.5 mm or less
to proceed (ideally <1.5 mm). Several registration methods have been described
for other robotic systems, and care should be taken to ensure the highest degree
of registration accuracy possible as this will improve targeting accuracy. The
ROSA® and Neuromate® systems have their own registration methods, with
registration acccuracies less than 1 mm being standard. Sterotactic arc-based
systems also have a high degree of registration accuracy but are less commonly
used now due to the slowness of this method and the need to manually set target
coordinates for each insertion.

5. The patient is positioned in a “lounge chair” position or flat. We perform
all electrode placements with the patient under general anesthesia. The patient
is positioned in a semi-sitting “lounge chair” position with the head elevated
about 30degrees above the chest, or perfectly flat with the frame attached to OR
bed. We find this position provides maximal access for the surgeon for drilling
and placing anchor bolts, while minimizing risk of brain shift due to CSF leak.
For ROSA® and Neuromate® systems it is easiest to place the patient flat as
this simplifies intraoperative confirmation imaging with CT. The entire head is
prepped with an iodine based antiseptic solution, ensuring that the prep extends
below the zygoma (cheek bone) on both sides and up to the frame rods. A sterile
“U” drape is draped around the base of the frame but below the base ring and
extended around the front of the patient with a full or three-quarter sheet placed
to cover the patient body. This creates a sterile working area but does not limit
access to any region of the head. In general the method of patient positioning is
left to the discretion of the surgeon, based on experience and the exact insertion
method being used.

42.4 Insertion of Electrodes

Insertion of depth electrodeswithmicrowires is largely identical to standard insertion
method and follows standard neurosurgical methods. These technical details are
beyond the scope or goal of this chapter. Rather,wewill focus on the specific technical
nuances for insertion of hybrid Behnke-Fried electrodes.

For each electrode insertion the following general steps are carried out:

1. Select the correct targeting plan of the guidance system computer
2. Align the robotic arm guide tube, frameless stereotaxic arm, or stereotactic

frame guide tube (depending on surgical method used) directly over the planned
insertion site from the pre-measured target. Alignment is carried out based on
pre-planned targets as discussed earlier, and the specifics of each device.
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3. Make a stab incision in the skin and drill the pilot hole for the anchor bolt that
will hold the electrode in place, with drill depth based on pre-measured bone
thickness. Coagulate and then puncture the dura below the pilot hole.

4. Screw the anchor bolt into the skull using the guide tube to make sure it follows
the exact trajectory as the drill.

5. Measure the length of the electrode to be inserted to planned target.
6. Insert the electrode to target.
7. Tighten the anchor bolt to lock the electrode in place.

Each electrode is placed using these steps. Then a full head wrap is applied
completely covering up the electrodes.

42.4.1 Technical “Pearls” for Microelectrode Insertion

WhenutilizingBehnke-Friedmicroelectrodes the following technical tipswill ensure
the best chance for high quality, high yield, stable recordings. We consider each of
these steps to be critical to achieving good results.

1. Pre-load themicrowires into themacroelectrodebundle.Onaback table in the
operating room, the surgeon should open and insert themicroelectrode bundle and
inspect it. Cover the distal end of the microwire bundle with the green protective
guide sheath and completely insert into the macroelectrode such that it protrudes
through the distal end (Fig. 42.4a). While inserting, the green sheath must be
pulled back so that it is flush with the electrode connector at the proximal end of
the electrode to ensure that the green sheath does not protrude from the distal tip
of the macroelectrode. This replicates how the electrode is situated in the brain.
The distal exposedmicrowires protruding from the end of the macroelectrode are
substantially longer (approximately 15 mm) than the length they will be in the
brain (Fig. 42.4b) Once fully “loaded”, the distal microwires should be cut with
sharp tonotomy scissors so that they protrude 4–5 mm in length. We measure
the length of the microwire bundle with a ruler to ensure accurate length (see
Fig. 42.4c, d). Once cut, carefully remove the microbundle and place it on the
back table. Proceed with insertion of the macroelectrode into the brain. When
doing these steps care is taken to not kink the microbundle and ensure the green
protective sheath overlying it is fully in its retracted position near themicrobundle
base.

2. Cut the microwire bundle so that it will extend from the distal end of the
macroelectrode by a length of 4–5 mm. We have experimented with lengths
ranging from 3 to 8 mm and found that 4 to 5 mm gives the best recordings.

3. When cutting the microwires, make sure that the cut is quick and sharp. A
cut that ismore of a gnawingmotion could crush the distal ends of themicrowires.
Use sharp tonotomy scissors to cut the wires. DO NOT use a scalpel as this will
crush the ends of the microwires.
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Fig. 42.4 Preparing the
electrodes for insertion. a
The microelectrode is
preloaded into the
macroelectrode sheath on a
back table in the OR. Note
the green sheath should be
fully retracted at final
insertion. b On full insertion
the microelectrode bundle
extends approximately
15 mm from the distal
sheath. This must be cut
smaller. c The
microelectrode bundle is cut
to protrude a length of
4–5 mm from the
macroelectrode tip. d Final
appearance of macro-micro
electrode distal tip after
cutting. During actual
insertion the macro sheath is
inserted to target and then
the microbundle inserted
through it, ensuring it will be
4–5 mm from the distal tip of
the macro electrode target

a

b

c

d

4. After inserting themacroelectrode through the anchor bolt remove the stylet
but do not tighten the anchor bolt even temporarily before inserting the
microbundle. Tightening the bolt can crush the outer sheath of the macroelec-
trode and make insertion of the microwires more difficult. We find that the elec-
trode will typically stay in place quite easily during this process, but if needed, an
assistant can hold the macroelectrode in place.

5. Avoid kinking the microwires during placement. The microwire bundle is
fragile and will kink easily if under any pressure. We typically have the surgical
assistant hold the proximal end of the microwire and connector while the surgeon
is inserting the distal end into the macroelectrode. The assistant ensures that
the microwire bundle is not kinking as it is being inserted. The green sheath
that covers the microwire bundle must be passed beyond the distal end of the
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microelectrode bundle prior to inserting it into the macroelectrode and while
passing to target. However, the green sheath must be fully retracted so that its
proximal end sits on the base of the microelectrode connector (at the opposite
end of the electrode from the tip) before fully inserting the electrode into the base
of the macroelectrode. This ensures that the distal microwires protrude into the
brain at the pre-measured length and are not covered by the plastic sheath, which
will prevent any recording. Electrode kinking is most likely to occur during this
step of insertion and the surgeon should take extra care to guide the microbundle
slowly and without tension all the way into position while retracting the green
outer sheath fully.

6. Only tighten the anchor bolt screw after the entire microbundle is inserted.
Once the microelectrode is placed the anchor bolt is tightened. In general, the
degree to which it is tightened is not critical, but we recommend not tightening to
its fullmaximum to avoid crushing of themicrowires. A snug closurewill reliably
hold the electrodes without risk of slipping. Confirmation of accurate insertion
of microelectrode bundles can often be seen on skull X-rays (Fig. 42.5), although
CT and MRI are more useful in providing specific localization information.

7. Subgaleal reference electrodes improve stable single-neuron recordings and
signal-to-noise ratio. Strip electrodes are typically implanted below the scalp
with contacts pointing away from the brain. We place a 1 × 4 contact subdural
strip in the midline parietal areas (approximately Pz) and advance this in the
subgaleal space. The electrode contacts are positioned facing out towards the
scalp rather than towards the bone. A second 2 contact strip is placed more
anteriorly (approximately Cz) with the contacts facing towards the skull. This
electrode serves as a reference for the clinical EEG reccordings.

8. Avoidkinkingof electrodeswhenapplyingor changing theheadwrap.Unlike
standard depth electrodes, the microwire bundles are more prone to break with
bending of the outer sheath of the electrode. Therefore, care should be taken to
minimize the amount of bend and flex in the electrodes when applying a head
wrap or changing the wrap. We typically collect all the electrodes from a single
side of the head and hold them together with a Steri-strip (3M) for strain relief.
When the head wrap is applied, care is taken to make sure the electrode sites
are padded and that all the electrodes exit the dressing with as little bending
as possible. Minimizing the number of dressing changes and hookups in the
epilepsy monitoring unit will improve the stability and quality of recording over
time.

42.5 Summary

The primary goal of this chapter is to provide the researcher or clinician interested in
using Behnke-Fried macro-micro electrode to record extracellular single unit action
potential with several technical “pearls” to improve the reliability and yield of these
electrodes when obtaining single unit recordings in humans. This chapter focused
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Fig. 42.5 Postoperative Skull X-ray showing a typical appearance of multiple hybrid depth elec-
trodes in place. Protrusion of microelectrode bundles can be seen in several electrodes (see arrows
for examples)

exclusively on surgical details, as other chapter will focus on experimental set-up and
similar aspect of the electrophysiology recording process. This chapter is by nomeans
an authoritative overview of the methods used to insert depth electrodes but is aimed
specifically at aspect of microelectrode insertion for research application. Based on
our extensive experience with the Behnke-Fried electrode, as well as feedback from
several of our colleagues who also use these wires, we feel the pearls provided here
will lead to the best possible results. Undoubtedly as other microelectrodes come
into greater use similar technical pearls will be useful for those systems.
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Chapter 43
How Can We Process Microelectrode
Data to Isolate Single Neurons
in Humans?

Mar Yebra and Ueli Rutishauser

Abstract Extracellular recordings of single neurons are a commonly used method
to study the neural mechanisms of cognition and disease. While extensively used in
animal models, rare clinical cases also allow such recordings from the human brain
using high-impedance microwires. These recordings allow the study of the activity
of individual human neurons during cognitive tasks at single-spike resolution. Here,
we discuss one such clinical scenario: Microwires embedded in depth electrodes
implanted in epilepsy patients. We outline the three main processing steps to derive
well isolated putative single neurons from such recordings: Signal processing, spike
detection, and spike sorting. We provide an overview of the state of the art in the
acquisition and processing of extracellular recordings with microwires, review a
typical experimental setup, spike sorting and detection algorithms. We conclude by
providing a step-by-step example, visualizing each intermediate processing step.
Together, this chapter provides a practical guide on how to utilize signal processing,
spike detection, and spike sorting to derive high-quality single-neuron recordings.

43.1 Introduction

Listening to the activity of individual neurons with extracellular recordings is one
of the principal techniques to study the nervous system. Except for rare clinical
opportunities, it is not possible to perform such recordings in humans due to their
invasive manner. In the rare situations where such recordings are possible, however,
they offer the exceptionally valuable opportunity to study the human nervous system
at the level of single neurons in awake human beings. These recordings are performed
in neurosurgical patients who are undergoing electrophysiological recordings as part
of their treatment for a neurological disease or as part of participation in a clinical trial
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for a brain machine interface. In this chapter, we describe the processing steps to go
from raw continuous recordings to a series of timestamps of spikes associated with
a putative single neuron during an experiment in an awake human being performing
a task. Our focus in this chapter is on recordings from hybrid depth electrodes with
embedded microwires implanted in patients with suspected focal epilepsy [5, 8, 17,
33]. In such recordings, each neuron is typically only visible on a single recording
channel. We therefore focus here on algorithms that sort single channel data and that
have been utilized to process such data from humans. The processing pipeline we
describe here is applicable also to other recording setups used with human patients
with few modifications, including intra-operative microelectrode recordings during
DBS implantation [19] and recordings from chronically implanted Utah arrays [30].

43.1.1 Epilepsy Patients

Pharmaco-resistant epileptic patients with suspected focal seizures who are candi-
dates for surgical resection or implantation of a responsive neuromodulation device
are sometimes implantedwith depth electrodes as part of their surgicalworkup. These
electrodes are then used to monitor their brain activity before and during seizures to
help localize the epileptic seizure onset zone (SOZ). Hybrid versions of the depth
electrodes contain 30-40um diametermicrowires that allow the recording of an extra-
cellular signal from a high-impedance insulated contact that is only exposed at the
tip (Fig. 43.1a). Implantation targets vary depending on clinical need but typically
include areas within theMedial Temporal Lobe (MTL) such as the hippocampus and
amygdala and various areas along the midline of the frontal lobe (Fig. 43.1b).

The experiments take place in the patient’s room and require, in addition to the
standard clinical recording system, a research electrophysiology data acquisition
system. We briefly describe our typical recording setup to provide context for how
the data is acquired whose processing is described below (Fig. 43.1c). We use the
ATLAS electrophysiology system (Neuralynx Inc.), a laptop to present stimuli to the
patient, and a response pad (Cedrus Inc.) to acquire button presses. The laptop used
to display the experiment and save the behavioral results is synchronized with the
acquisition system via transistor-to-transistor logic (TTL) parallel port connection
to the data acquisition system. Microwires are first connected to head stages located
on the head (see Fig. 43.1c). Microwire recordings are broadband (0.1 Hz-9 kHz)
with a 32,000 Hz sampling rate. This high sampling rate is essential to resolve single
neurons with enough datapoints (a typical waveform is ~1ms long, i.e., 32 datapoints
in this case).
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a

b

c

Fig. 43.1 Single unit recordings in human epilepsy patients. a Schematic of a typical Behnke-
Fried Hybrid Depth (BFD) electrode, containing both macro (iEEG/ECOG) contacts and a bundle
of microwires exiting at the tip. The version shown has two ‘pig tail’ style connectors (right side).
(Redrawn similarly to Fig. 1B in [18]) b Two examples of patient’s co-registered pre-operativeMRI
and post-operative CT. Note that the distorted electrode trajectories are due to the merge to the pre-
operative MRI. Red dot indicates location of microwires. c Schematic of a typical experimental
setup in the patient’s room, consisting of three separate systems
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43.1.2 Properties of Microwire Recordings

Extracellular spikes can be recorded from micro-wires that terminate within ~<
100 μm of a neuron [2]. If the group of isolated spikes satisfy certain criteria
(see below), this series of spikes is assumed to be the generated by an individual
neuron, i.e., Single Unit Activity (SUA). If an isolated group of spikes appears to be
originating from multiple neurons, such activity is referred to as Multiunit Activity
(MUA). The data we describe in this chapter was obtained using the hybrid macro–
micro Behnke-Fried depth electrode (BFD). This electrode is hollow inside, a space
which contains a bundle ofmicrowires that are each insulated except for the tip.While
there are different possible configurations, we typically use the version that consists
of 8 recordingwires of 38μmdiameter and one uninsulated referencewire. Thewires
terminate in a pigtail-type plug that connects to the preamplifiers on the head (see
Fig. 43.1a). Typical impedances of intact microelectrodesmeasured ex-vivo in sterile
saline ranged between 50 and 500 k�, 20–30 K� lower than post-implant measure-
ments in-vivo [18]. This is in line with the in-vivo measurements provided in [32],
which showed a range of 38–245 K� measured in two patients across a total of 56
electrodes. Several case series have been published that evaluate the safety profile of
utilizing hybrid depth electrodes instead of standard depth electrodes. These studies
conclude that microwires do not modify the risk profile of depth electrodes [3, 18].

43.2 Spike Sorting

Spike sorting is the computational process that identifies single putative neurons
from raw extracellular recordings based on the assumption that the morphology of
extracellular spikes differs between different neurons [15, 26, 28, 36]. Spike sorting
algorithms use unsupervised clustering to group different spike shapes into different
clusters, each of which represents a different putative neuron. If the signal-to-noise
(SNR) ratio is not sufficiently high, or if there are too many similar waveform shapes
in each recording, it is possible that a given cluster is the result of a merge of neurons
from multiple neurons. Here, our focus is on identifying clusters representing single
units (see 43.2.6 Quality metrics. for criteria to select the subset of such clusters).

There are several steps involved in spike sorting. The first step is filtering the
signal to isolate frequencies of interest. The second step is to detect the points of
time at which a spike occurred (spike detection), followed by waveform alignment
and feature extraction. Third, the final step is to cluster the detected waveforms into a
number of different clusters and to assign each detected spike to one of these clusters
(see Fig. 43.2). Most commonly used spike sorting algorithms use all of these steps
(see Table 43.1).
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Fig. 43.2 Overview of processing steps involved in extracting single neurons from extracellular
recordings in humans. (The data in this figure is for illustration only and is not real data)

43.2.1 Preprocessing

43.2.1.1 Filtering

The first step in processing the microelectrode data is to band-pass filter the raw
recorded signal. Typically, the frequencies of interest are 300-3000 Hz (Fig. 43.2,
see column 3 in Table 43.1), a range that is determined by the spectral content of the
extracellular waveforms generated by the neurons in a given area [2] (note that, in
some cases, this range has to be adjusted, for example for the broad waveforms of
dopamine neurons [13]. Since the goal is to extract the waveformwith as little distor-
tions as possible, it is important that the filter applied does not introduce distortions
[27]. For this reason, it is important that a non-causal zero-phase digital filter is used
[17].

43.2.1.2 Common Average Reference

A common pre-processing step (before filtering) is to remove the common average
of all wires recorded in a given brain area. This step, if applied, is used before spike
detection in order to reduce artifacts shared across channels [23]. Also, if recordings
are done with a local bipolar reference (as is often done in humans), it is possible that
all channels contain the spikes of a single neuron that was near the reference wire.
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In this case, this particular neuron can be isolated and removed from the remaining
channels by subtracting the common average and using this common average signal
as a virtual channel for spike detection and sorting [36].

43.2.2 Spike Detection

The first step in spike sorting is detecting the points of time at which a spike is
present in the recorded signal. Commonly used approaches for single-wire record-
ings in humans include thresholding of the raw signal, thresholding an energy
signal, and wavelet methods. These different methods have different advantages
and disadvantages, which we next describe briefly.

To detect spikes using thresholding-basedmethods, the amplitude of action poten-
tials needs to be larger than the background and the spike waveform needs to be
relatively stable over time (which might not be the case in case of bursting or elec-
trode movement). Also, levels of background noise may not be stationary over time.
Therefore, the threshold(s) are typically defined as a function of the underlying noise
properties in the window of time in which spikes are detected. Also, some methods
directly threshold the raw signal, whereas others first compute a surrogate signal
that amplifies spikes and suppresses non-spike background before thresholding. In
human recordings, the following methods have often been used.

Amplitude of raw signal The simplest method is to set the threshold to a multiple
(generally between 4–5) of the estimated standard deviation of the filtered raw signal
[28]. Every time this threshold is crossed, a spike is extracted. A problem with this
method of defining the threshold is that the threshold will become large for channels
with high firing rates (due to the fact that there are many spikes). To avoid this
problem, a commonmethod is to define the threshold based on the median amplitude
rather than the standard deviation:

T = n median

( |x |
0.6748

)
(43.1)

where n is a constant (typically n = 4) and the second term is an estimate of the
standard deviation of the noise in the voltage x [28, 29, 31] in a relatively large
window (several seconds) around the time of spike detection.

Energy signal An alternative method to thresholding the raw signal is to first
compute a surrogate signal in which SNR is maximized for the detection of spikes
relative to other signals present in extracellular recordings. This is achieved by first
computing a surrogate ‘energy’ signal of the raw signal before applying a threshold
[1]. This is commonly done for chronically implanted electrodes that cannot be
moved to optimize SNR [12, 17, 34–36]. The overarching idea of the energy signal
is to convolve the raw signal with a kernel that is approximately equivalent to a
spike waveform, thereby amplifying aspects of the signal that look like spikes and
suppressing other parts. Practically, this is implemented as a convolution of the
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filtered signal with a rectangular kernel with a width of approximately a single action
potential (i.e. ~1ms; this rectangular kernel is amatched filter) [1]. This energy signal
(Fig. 43.2 and Fig. 43.3a) is then used to detect spikes using a threshold that is a
multiple (normally between 3.5–6) of the standard deviation of the energy signal
[36]. Note that in this approach, the energy signal is only used to define the times
at which the threshold is crossed. The actual waveform is always extracted from the
raw signal and not the energy signal.

Wavelets A more comprehensive (but computationally expensive) method is
based on wavelets. Instead of convolving the filtered signal with a rectangular kernel
as it is done when computing the energy signal (see above), the filtered signal is

a b c

d e f g

Fig. 43.3 Spike sorting example usingOSort on a recording obtained from a hybrid depth electrode
implanted in the right ACC. a A1 Raw signal. A2 Filtered signal (300–3000 Hz bandpass). A3
Energy signal. The threshold (red) corresponds to 5 std, and the magenta line is the median as
specified in Eq. (1). A4 Detected spike times in different colors for different clusters. b Plot of
the 2 first PCA components of the raw decorrelated waveforms explaining most of the variance.
Axes are first and second components in the feature space, every point represents a detected neuron
and color represents different clusters as a result of the spike sorting algorithm. Black points are
detected waveforms which are not assigned to any of the five clusters (noise or unsortable). c The
projection test result for the 2 neurons identified in this channel [24]. C1 The mean waveforms for
each cluster, error bars pertain to the standard deviation of the waveforms. C2 Superimposed ISI
for both neurons. C3 Projection test as the probability distribution of distances between spikes. The
distance d is the distance between the two clusters (here, d= 15.23). dNeuron 1 summary output of
Osort: D1 Spike waveforms. Colormap of realigned signals and isolation distance [39]. D2 Power
spectrum of the spike trains. D3 Inter-spike interval (ISI) up to 700 ms. D4 Waveform amplitudes
at alignment point probability distributions. e Example traces showing four instances of neuron 1
in the filtered signal. f and g same as panel d and, but for Neuron 2
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convolved with multiple wavelet functions that resemble spike shapes at different
scales. Wavelet family functions that are biphasic (and thus resemble spikes) and
which are often used for this purpose are either biorthogonal wavelets (Bior) [7] or
Haar wavelets [6, 22, 26, 28]. After applying the wavelet transform, the resulting
coefficients represent a measure of similarity between the recorded signal and the
basis function at different scales and translations (which represent different spike
amplitudes and durations). If the recorded data contains signal (spikes), the statis-
tical properties of the wavelet coefficients will depend on the structure of the noise.
Assuming that the signal is sparse (as is the case for spikes) and assumingwhite gaus-
sian noise, only a few coefficients will be different from zero (those corresponding
to spikes). These relevant coefficients are again detected using thresholding, with
the threshold being a function of the noise variance. The detection process is carried
out by defining an acceptance threshold for every scale. The time associated with
the maximal coefficient is an approximation of the time at which the spike occurred
[21].

43.2.3 Spike Alignment

After a spike is detected, the next critical step is to determine the point of time at
which to align the detected spikewith all the other detected spikes. To do so, a snippet
of the recorded signal with enough samples to contain the entire spike (~2.5 ms) is
extracted from the filtered raw signal. In this snippet, the alignment point is then
defined based on an algorithm. This algorithm, in many instances, simply defines the
alignment point as the point of time at which the voltage is maximal (or minimal).
However, note that that in human recordings with bipolar reference, the polarity of
spikes is arbitrary, and it is therefore a-priori not known whether a spike should be
aligned at the maximum or minimum. Due to this, some alignment algorithms first
determine whether a given waveform has significant negative or positive peaks and
based on this use the minimum or maximum. It is worth nothing thought that this
process can fail in the case of spikeswhich have approximately equal amplitude in the
negative and positive direction. In these cases, this algorithm would split the cluster
in two due to alignment mistakes. Such cases will require either manually enforcing
a single alignment point (negative or positive) or merging of the two clusters. In
practice, alignment issues are a reason for a significant proportion of spike sorting
issues that require manual intervention. A second difficulty is that the exact time at
which the peak of the spike occurred is unknown due to the low sampling rate relative
to the speed by which a spike is produced. Therefore, to improve peak finding, it
is common to upsample the sampling rate before performing alignment. In OSort,
this is achieved by upsampling waveforms to 100 kHz sampling rate after extraction
[36].
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43.2.4 Feature Extraction

The next step in spike sorting is deciding which features of the detected spikes to
use for spike sorting. Methods to do so include selecting a small subset of waveform
features directly from the raw waveforms, data-driven computing of the most distin-
guishing aspects between all the waveforms in a given recording, transformation into
a different feature set followed by selection (wavelets), and the raw waveform itself.
We summarize each approach briefly next.

Raw waveform or subsets thereof Some algorithms, including OSort, cluster
directly in the raw waveform space. Others first extract a small subset of commonly
used features to differentiate between different detected extracellular waveforms.
These typically include the maximal amplitude, width at half-max, trough-to-peak
width, and repolarization time [20]. Clustering is then performed in this relatively
low dimensional feature space. Note that because these features are correlated, an
additional orthogonalization step is often used before classifying.

Data-driven feature selection using dimensionality reduction An alternative
to a priori feature selection is to select features in a data-driven way.Most commonly,
a small (<10) number of features are selected by using principal component analysis
(PCA). To achieve this, all spike waveforms detected on a channel are pooled, with
each waveform a single datapoint in a space that has the same dimensionality as
the original waveforms (i.e., 256 datapoints for a 2.56 ms long segment sampled
at 100 kHz). PCA is then performed to extract a small number of dimensions that
together explain a large proportion of the variance between spikes. Typically, < 10
dimensions will explain > 90% of the variance [12, 23, 29, 36, 40]. A downside of
this approach, however, is that it cannot be used for online sorting as defining the
feature space requires access to all to-be clustered spikes.

Wavelets Spike sorting can also be performed in the wavelet coefficient feature
space rather than the raw space of the waveforms. To do so, after spikes are detected,
the wavelet transform is applied to derive wavelet coefficients for each spike at
different scales and times. Out of this large number of coefficients, a subset is then
selected that best separate the spike waveforms. One approach to do so is to choose a
fixed number of coefficients (i.e., the top-most X features that show the largest devi-
ation from normality). This serves as a dimensionality reduction step for clustering
[28]. Recently, new spike sorting algorithms have been introduced that automatically
select a variable number of coefficients before sorting by identifying all features that
have multi-model distributions for a given dataset [6].

43.2.5 Clustering

The final step in spike sorting is to perform unsupervised clusteringwithin the feature
space of the detectedwaveforms to decide howmany clusters are present and to assign
each detected spike to one of these clusters. While there are many algorithms that
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have been used for this purpose [43], we here focus on the subset that have been
used extensively to automatically or semi-automatically process human microwire
data (see Table 43.1).

Pairwise distance-based clustering One class of approaches is to compute the
pairwise distance in feature space (e.g., Euclidian Distance, Mahalanobis distance)
between all pairs of spikes and to assign spikes to the same cluster that are close
to each other based on this metric. Such clustering can either be obtained through
batch algorithms such as k-means [4] that require all spikes to be present at the time
of clustering, or online iterative algorithms that compute distances only to all spikes
detected in the past. An example of the latter is the OSort algorithm [36], which,
for every new spike detected, computes the distance to all existing clusters and then
either assigns the new spike to one of the existing clusters or creates a new cluster
based on a threshold on the maximal distance that is considered to be part of an
existing cluster. This threshold can be computed based on the standard deviation
of the background noise. After a spike is assigned to an existing cluster, the mean
waveform of that cluster is updated. Also, if the distance is less than the threshold
for two or more clusters those are merged.

GaussianMixtureModels (GMM):Asecond class of clustering algorithms uses
maximum-likelihood fitting of mixtures of Gaussians (the most prominent example
being KlustaKwik and never versions thereof). GMMs are probabilistic models that
assume that the recorded extracellular signal is as a linear sum of the events due to
foreground cells and the background noise modeled as Gaussian distributions with
independent means, variances, and amplitudes [38]. The first step is selecting the
model which implies selecting the number of cells (or Gaussians), followed by the
inference process that determines which cells fired at which times and with which
waveform shapes. These mixture models can be fit using Expectation Maximization
or Variational Bayesian algorithms [42], including automatic determining of the best
number of clusters [41].

Superparamagnetic clustering (SPC): A third method that has found extensive
use for human single neuron processing is SPC as part of the wave_clus (and deriva-
tives thereof) sorting package [28]. This method is based on simulated interactions
of each waveform (in feature space) with its K-nearest neighbors. The interaction
strength between a given waveform and one of its K-nearest neighbors is equal
to exponentially decaying function of the Euclidian distance between the two data-
points. Clustering is then performed by first initializing each datapoint with a random
state 1…q (with q the maximal number clusters), followed by a Monte Carlo algo-
rithm that picks random points and changes their state and that of their k-nearest
neighbors with a probability that is a function of the interaction strength and a free
parameter referred to as the temperature (a procedure referred to as the Wolf algo-
rithm). The temperature T determines the probability of points changing their cluster
identities together, with intermediate values corresponding to the ‘superparamag-
netic’ regime in which only closely interacting points will change identity together.
This is the regime used for spike sorting [28]. More recently, an improved version of
SPC has been introduced, in which different temperatures can be used for different
clusters [6].
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43.2.6 Quality Metrics

After clusters have been identified, the last step is to evaluate each cluster to decide
whether it represents a putative single neuron or not. Also, at this stage, some clusters
will also turn out to be over clustered and thus must be merged. We next describe
the key criteria used to evaluate a given cluster.

Stable waveform The detected waveform should remain stable throughout the
experiment. If not, this is indicative of electrode movement/drift or spike sorting
errors. Stability is assessed by inspecting whether the waveform peak amplitude and
width are similar for all the waveforms belonging to the same cluster (see Fig. 43.3d1
and f1).

Stable firing rate Firing rates should remain stable over the course of the exper-
iment (except for transient modulation on relatively short time scales). If firing rates
change abruptly or drift slowly, this could be indicative of a sorting problem.

Amplitude of waveform First, the amplitudes at the alignment point of the wave-
form should follow a unimodal distribution (see Fig. 43.3d4 and f4). If this distri-
bution is multimodal, several clusters were merged into the cluster being inspected
(unless the cell is bursty). Second, the standard deviation of the voltage distribution
across all waveforms at all points of time should be approximately the same.

Inter-spike histogram Spike trains are often modelled as a Poisson process with
spikes generated randomly, independent of each other and with a uniform probability
of occurrence in time. Thus, the probability distribution of the Inter Spikes Interval
(ISI) can be approximated by an exponential function. However, for real neurons
the ISI should be larger than the refractory period (~3 ms, no less than 1 ms) so the
ISI probability distribution can be better accounted by a gamma process (see Fig. 3
in [10] for more detail and gamma fits shown in light green in Fig. 43.3d3 and f3
for illustration purposes). Typically, the proportion of ISIs that violate this criterion
should be less than 3% for a well isolated unit (see Fig. 43.3d3 and f3).

Autocorrelation of spike trains The autocorrelation captures second order
changes in the dynamics of neuronal firing (such as bursts or modulation of firing
probability by oscillations). It is defined as the average joint probability density of a
spike at time t and t+ τ, minus their mean values. Therefore, if there is no violation
of the refractory period a “dip” should be visible in the autocorrelation function of
the spike train [10]. Thus, an approximately zero (or negative dip) autocorrelation
for small (<3 ms) time lags is expected. Also, for long time periods (>100 ms, but
this depends on the type of cell) the autocorrelation is expected to return to zero.

Power spectrum of spike trains The power spectrum reflects the frequency
content of the spike train and intrinsic properties of the neurons such as the refrac-
tory period. It is computed as the Fourier transform of the autocorrelation function
(see above). For a Poisson process, the Fourier transform of the autocorrelation
yields a positive constant and will usually contain additional terms deviating from
a flat spectrum when the spike train differs from Poisson (i.e., gamma). Thus, it
normally shows an initial dip and a no return to zero for higher frequencies (for
more details see Fig. 14b and Sect. 6.2 in [10] and [9]). Note that depending on
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the shape of the ISI probability distribution this initial dip can be less evident (i.e.,
shorter refractory period and broader range of output firing rates, see Figs. 1 and 2
in [9]). Moreover, the power spectrum of the spike train should contain no peaks at
line frequency (60 Hz/50 Hz (US/ Europe) and/or harmonics thereof. Also, it should
not contain sharp peaks at other frequencies, which are indicative of other types of
non-physiological processes such as a periodic TTL artifact or a refresh-triggered
noise from the screen (up to 240 Hz) (see Fig. 43.3d2).

Isolation Distance This metric was first introduced by [12] and measures how
well separated the spikes in a given cluster are from other spikes recorded on the
same multichannel electrode. One way of computing this metric is to calculate the
smallest ellipsoid from the cluster center containing all of the cluster spikes and an
equal number of noise spikes [39]. Thus, for cluster Clus containing n spikes the
isolation distance can be computed as the Mahalanobis distance of the nth closest
non cluster (Clus) spike to the center of the cluster Clus:

D2
i,clus = (xi − ηclus)

T
−1∑
c

(xi − ηclus) (43.2)

where xi is the feature vector for spike i, and ηclus is the mean feature vector for
cluster Clus.

∑−1
c is the covariance matrix of spikes in cluster Clus. Note that this

metric cannot be calculated (it is undefined) for cases in which the target cluster
contains more spikes than there are other (noise) spikes. A higher value indicates
that non-cluster spikes are located farther away. Note this value can be normalized
by cluster size, so that clusters with a higher number of spikes do not necessarily
have a higher isolation distance [16, 39].

Projection test to evaluate similarity between two clusters It is important to
quantify how similar a pair of two clusters are to assess whether they are sufficiently
different or should perhaps be merged. The metric that we have found to be useful
for this purpose is the projection test, which was first suggested in [24, 25] and
which is implemented as part of OSort [36] (Table 43.1). The overall idea is to,
after appropriate normalization, connect the two centers of the clusters with a line
in the original feature space and to project all datapoints onto this one-dimensional
line. The distributions of the data points associated with these two clusters along this
line are then evaluated using a goodness of fit test as well as a distance metric (in
units of standard deviations) to assess how far apart the two distributions are. If the
distance is too small one or both clusters must be rejected or merged. A distance of
> 5 guarantees an overlap of < 1%, a distance > 3.2 an overlap < 5% and a distance
of > 2.8 an overlap of < 7.5% (see Fig. 43.3 c3).

As part of a well-documented human single neuron paper, it is expected that the
quality of the data and the spike sorting is documented by providing histograms of
above quality metrics across all clusters included in the data analysis. See Fig. S1 in
[37] for an example.
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43.2.7 A Practical Example

In this section we provide an example of how to sort and evaluate single neurons
using the output figures and result metrics from OSort [36] with data recorded in an
epileptic patient while performing a cognitive experiment.

Figure 43.3 depicts subsets of the output figures produced by OSort for a single
channel recording from a microwire in the right Anterior Cingulate Cortex (ACC).
In Fig. 43.3a1 the raw trace of the recorded signal is shown. Figure 43.3a2 shows
the corresponding bandpass filtered trace (300–3000 Hz). Figure 43.3a3 shows the
energy signal, which in this instance was used as the detection signal (red line shows
the threshold used; see 43.2.2 Spike detection). Note that the energy signal provides
better SNR. Figure 43.3a4 shows the detected spikes, colored according to the cluster
they were assigned to. Figure 43.3b shows the waveforms in the feature space.
The spikes are projected in the two first principal components of the raw decor-
related waveforms, every point represent a detected spike and the color represent a
different cluster assignation. As can be seen in the figure clusters corresponding to
the two neurons, depicted in green and purple respectively, are very well separable.
In Fig. 43.3c1 the two waveforms are plotted together in order to check the actual
waveforms assigned to different clusters are indeed different. Figure 43.3c2 shows
the ISIs in ms for both identified clusters for easier comparison. In Fig. 43.3c3 the
projection test probability density functions are shown [24]. In this plot the pairwise
distance between spike counts is plotted for both neurons together with the distance
(d) between the two distributions. Distances of > 5 guarantees an overlap of < 1%, a
distance > 3.2 an overlap < 5% and a distance of > 2.8 an overlap of < 7.5% as long as
their distributions, ISIs and waveforms look different enough [36]. Figure 43.3d and
f show a subset of the criteria that were used to decide whether the two detected clus-
ters correspond to neurons. First, in Fig. 43.3d1 the waveform traces realigned to the
peak (see 43.2.3 Spike alignment) are shown as a color map depicting the probability
density function isolation distance. The isolation distance is a spike quality metric
described in [39], representing the quality of a cluster of extracellularly recorded
spikes by calculating how well separated the spikes in the cluster are from other
spikes recorded on the same multichannel electrode (see 43.2.6 Quality metrics.).
This distance should be high enough, values greater than 101.5 are recommended [39].
(Note that slightly lower thresholds of 20 have been also used in [11]). This plot is
useful to check whether the realigned traces are similar, and to verify that the peak
amplitudes are similar and have reasonable values (20–200 uV). The power spectrum
of the spike train shown in Fig. 43.3d2 can be used to check there are no peaks in
the 50–60 Hz and/or harmonics due to electrical noise, other artifactual frequencies
such as a TTL artifact or screen refresh artifact. Otherwise, that neuron should be
rejected. Fig. 43.3d3 shows the Inter-Spike Interval (ISI) which represents a very
important metric for the correct sorting of a neuron. There should be few ISIs lower
than 3 ms in order not to violate the refractory period of a neuron. (Note that with
this criteria bursty cells might be discarded, also because normally if a neuron fires
bursts of spikes they would in addition violate the similar amplitude at the alignment
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point criterion). Interestingly enough, besides the initial dip in the ISI distribution in
both depicted neurons in this example (purple and green) Fig. 43.3d3 and f3, there
is also a peak in the distribution between 100-200 ms, possibly reflecting that these
neurons fire at a certain theta rhythm. That would also be consistent with the bump
observed at theta frequencies in the power spectrum plots. Lastly, in Fig. 43.3d4
and f4, the waveform amplitude at alignment point probability distribution is shown.
This should be relatively narrow and unimodal distribution reflecting the waveforms
have similar amplitude at alignment point. Figure 43.3e and g are four traces of the
filtered signal showing instances of the sorted neuron for each example.

Acknowledgements This work was supported by the National Institutes of Health (U01NS117839
to U.R.).

References

1. Bankman IN, Johnson KO, Schneider W (1993) Optimal detection, classification, and
superposition resolution in neural waveform recordings. IEEE Transanctions Biomed Eng
40:836–841

2. Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—
EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

3. Carlson AA, Rutishauser U, Mamelak AN (2018) Safety and utility of hybrid depth elec-
trodes for seizure localization and single-unit neuronal recording. J Stereotactic functional
neurosurgery 96:311–319

4. Caro-Martín CR, Delgado-García JM, Gruart A et al (2018) Spike sorting based on shape,
phase, and distribution features, and K-TOPS clustering with validity and error indices. Sci
Rep 8:1–28

5. Cash SS, Hochberg LR (2015) The emergence of single neurons in clinical neurology. Neuron
86:79–91

6. Chaure FJ, Rey HG, Quian Quiroga R (2018) A novel and fully automatic spike-sorting
implementation with variable number of features. J Neurophysiol 120:1859–1871

7. Daubechies I (1995)TenLectures onWavelets. SIAMApplComputHarmonAnal, Philadelphia
8. Engel AK, Moll CK, Fried I et al (2005) Invasive recordings from the human brain: clinical

insights and beyond. Nat Rev Neurosci 6:35–47
9. Franklin J, Bair W (1995) The effect of a refractory period on the power spectrum of neuronal

discharge. SIAM J Appl Mathmatics 55:1074–1093
10. Gabbiani F, KochC (1998) Principles of spike train analysis.MethodsNeuronalModel 12:313–

360
11. Harris KD, Csicsvari J, Hirase H et al (2003) Organization of cell assemblies in the

hippocampus. Nature 424:552–556
12. Harris KD, Henze DA, Csicsvari J et al (2000) Accuracy of tetrode spike separation as

determined by simultaneous intracellular and extracellular measurements. J Neurophysiol
84:401–414
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Chapter 44
How Is Single-Neuron Activity Related
to LFP Oscillations?

Salman E. Qasim and Lukas Kunz

Abstract Local field potentials (LFPs) can provide biomarkers of cognitive func-
tion at the meso-scale level of brain organization. LFPs represent the aggregation of
thousands of transmembrane currents from local and non-local brain regions and it
is thus still not understood how LFP fluctuations relate to action potentials of single
neurons. Because these action potentials represent key units of computation in the
human brain it is important to understand how they relate to and interact with LFPs
during human cognitive functioning. Using intracranial probes which include both
macro- and micro-electrodes, researchers can simultaneously measure synchronous
changes in single-neuron action potentials and LFPs with respect to human cog-
nition and behavior. In this chapter, we describe recent advances in recording and
analyzing simultaneous single-neuron spiking and LFP oscillations. We provide a
practical guide to estimating the relationship between neural spiking, LFP power,
and LFP phase—with a specific focus on recent approaches to investigating how
different LFP oscillations might modulate the timing of single-neuron spiking. We
describe how the relationship between the LFP and single-neuron spiking is thought
to be functionally important for representing information in the brain, and suggest
that studying this relationship has broad relevance for understanding the neurophys-
iological mechanisms underlying human cognition.

44.1 Introduction

Action potentials are presumably the most prevalent and fundamental means for
neurons to communicatewith each other [1]. Action potentials “transfer information”
between connected neurons by triggering the release of chemical neurotransmitters
from the presynaptic neuron into the synaptic cleft. These neurotransmitters, in turn,
may trigger action potentials in the connected, postsynaptic neurons. Recording and
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quantifying the occurrence of action potentials relative to cognitive stimuli that the
subject experiences during an experimental paradigm (such as a memory task) may
thus provide a direct measure of neuronal communication and computation with
respect to behavior. Using this approach, multiple studies have provided insight into
how the human brain processes perceptions, memories, and actions [2].

Single action potentials can be recorded from the human brain by tracking the
current flow in the extracellular space using different types of invasive electrodes
placed in the immediate vicinity of the neurons [3]. For example, “Behnke-Fried
electrodes” have been developed, which feature microelectrodes with a diameter of
40 µm that are inserted through an inner hole of standard intracranial depth elec-
trodes [4] (see Chap.42 for details on the procedure of microelectrode implantation).
These microelectrodes record extracellular potentials with a particularly high spatial
and temporal resolution (often more than 30 kHz) and thus allow the identification of
action potentials (which are very fast, transient events) in the high-frequency com-
ponent of the recorded voltage difference. Because the shape of action potentials
differs between different neurons depending on the spatial relationship between the
microelectrode and the neurons, and because the refractory period of neurons is gen-
erally larger than one millisecond, it is possible to assign action potentials recorded
on the same microelectrode to different neurons [5–9] (for further information on
this topic, see Chaps. 43 and 45).

In addition to the identified action potentials, the slower components of the
recorded potential are referred to as the local field potential (LFP), whose physi-
ological basis is complex and not fully understood [10]. Because both signals are
embedded in the extracellular potential (Fig. 44.1), many studies have aimed at elu-
cidating the relationship between single-neuron action potentials and the LFP. Major
topics of interest concern the question of how the LFP influences the precise occur-
rence of action potentials and how, in turn, populations of action potentials contribute
to the LFP. Another important topic of interest relates to the idea that the brain rep-
resents information in the relationship between action potentials and the LFP, above
and beyond the information that is represented by the rate of the neuron’s action
potentials [11–15].

In this chapter, we thus discuss several ways inwhich the activity of single neurons
is associated with the LFP signal and the oscillations that are present in the LFP.
Specifically, wewill consider the relationship between neuronal action potentials and
LFP power, which is the squared amplitude of the LFP, as well as the relationship
betweenneuronal action potentials andLFPphase,which is themomentary deflection
of the LFP [15, 16]. We suggest that understanding the exact relationships between
single-neuron activity and LFP signals will help us understand the physiological
determinants of single-neuron activity in the human brain, and will help us discover
the ways in which the human brain represents information about various cognitive
stimuli.

http://dx.doi.org/10.1007/978-3-031-20910-9_42
http://dx.doi.org/10.1007/978-3-031-20910-9_43
http://dx.doi.org/10.1007/978-3-031-20910-9_45
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Fig. 44.1 Schematic of extracellular recording and signal separation. Left: Illustration of an extra-
cellular electrode placed in the vicinity of single neurons in the brain. The action potentials of
nearby neurons are detectable and separable (I), while the action potentials of neurons a little fur-
ther away are detectable but not necessarily separable (II), and neurons even further away are not
even detectable (III). Right: Schematic of recording and preprocessing of microelectrode data. The
raw data are filtered in low (<300 Hz) and high (e.g., 300–3000 Hz) frequencies to yield the signals
for LFPs and single-neuron spike sorting, respectively. The right bottom panel shows the action
potentials from three different putative neurons recorded on the same microelectrode. Note the
distinct waveform shape of each putative neuron. Figure modified with permission from Rey et al.
[17]

44.2 Analyzing the Relationship Between Spikes and LFPs

In order to analyze the correlation between action potentials and LFPs, researchers
must first perform several preprocessing steps, including (a) filtering the raw data to
separate the LFP and the high-frequency signal containing possible action potentials,
(b) detecting individual action potentials in the high-frequency signal and assigning
these action potentials to distinct single neurons (or multi-units), and (c) character-
izing the time-varying spectral power and phase of the LFP signal at different fre-
quencies of interest. These individual steps are covered in practical detail in Chap. 43
of this book, have been extensively discussed in previous publications (for example,
Refs. [5, 18, 19]), and various toolboxes have been developed to aid researchers to
perform these steps [5, 18–22]. Here, we will pick up after these preprocessing steps
to describe recent approaches to analyzing the relationship between spike times and
neural oscillations. To begin, all of the following analyses will require two initial
steps:

1. Estimate the time-varying spectral power or phase in a frequency band of choice
(extensively described elsewhere [23]). Briefly, the most common methods for
doing so utilize:

• A bandpass filter followed by a Hilbert transform. Power can then be extracted
as the squared amplitude and phase as the angle of the analytic signal.

http://dx.doi.org/10.1007/978-3-031-20910-9_43
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• A continuous wavelet transform, which provides instantaneous power and
phase by convolving the signal with a brief template oscillation (often a Mor-
let wavelet). By adjusting the number of wavelet cycles, an optimal balance
between time and frequency resolution can be obtained for the data at hand.

• A short-time Fourier transform, which produces instantaneous measures of
power and phase by computing a Fourier transform on short data segments
using a sliding-window approach.

2. Isolate the spike train for the putative single neuron of interest. This results in
a sequence of spike times, which is typically recorded as a vector of zeros (no
action potentials within a given time bin) and ones (presence of action potentials
within a given time bin) the same length as the epoch of interest.

The different methods for estimating power and phase each have their own pitfalls
in terms of computational intensity, time-frequency resolution, and flexibility in
regards to waveform shape and signal stationarity. In general, researchers should not
adopt a one-size-fits-all approach to power and phase estimation and instead endeavor
to identify themethodmost appropriate for their dataset, as improper power and phase
estimates may lead to artifactual spike-LFP correlations. When filters are applied to
the data, filter characteristics should be reported in detail and a plot of the impulse
response should be included in the publication [24].

44.2.1 Computing the Relationship Between Spiking
and Spectral Power

Single-neuron spiking can be examined with regard to how it covaries with features
of the LFP power spectrum, such as the power within specific frequency bands or the
overall shape of the power spectra. Time series such as theLFP are often formalized as
the superposition of component signals of different frequencies. Measuring power at
specific frequencies provides a measure of “how much” signal there is at a particular
frequency. Meanwhile, single-neuron spiking is often described by the “firing rate”
of a neuron, or how many action potentials are recorded over a period of time. As
such, the most straightforward relationship between spiking rate and the LFP is to
compute the correlation between power and firing rate as follows:

1. Bin the epoch of interest into equal-sized temporal bins, typically in the range
of 100–500 ms, compute the firing-rate in each bin (n spikes/bin duration), and
z-score the firing rates relative to a baseline epoch or relative to the entire exper-
imental session.

2. Compute the average spectral power (at a particular frequency) in these temporal
bins.

3. Compute the correlation between firing rate in each bin with spectral power in
each bin.



44 How Is Single-Neuron Activity Related to LFP Oscillations? 707

This approach has been useful in demonstrating both positive and negative corre-
lations between neuronal spiking rates and delta/theta power in the human auditory
cortex (negative association) [25], alpha power in the monkey sensorimotor regions
(negative) [26], beta power inmonkeymotor regions (either positive or negative) [27],
and gamma power in the monkey somatosensory cortex and in various regions of the
human brain (positive) [28, 29]. However, researchers should note that no singular
relationship between LFP power and firing rates has been determined [15]. Instead,
the magnitude and polarity of spiking-power correlations can vary even within indi-
vidual neurons [27] or across different cortical depths [30]. Furthermore, recent work
has shown that power within narrow, predefined frequency bands does not necessar-
ily capture the most informative dimensions of the LFP signal. For example, human
studies have shown that the overall power estimated across the broadband power
spectrum (2–150 Hz) exhibits the strongest correlation with local neuronal firing
rates [29]. By employing new methods that systematically parameterize the relative
contribution of narrowband peaks and aperiodic spectral shifts to the overall power
spectrum [31], future studies may help us to further clarify the exact relationship
between spiking activity and LFP power and to characterize how neuronal spiking
correlates with the full suite of features characterizing the LFP power spectrum.

44.2.2 Computing the Relationship Between Spiking
and Oscillatory Phase

Neural spiking can also be examined with regard to how it covaries with the phase of
the LFP at different frequencies. Phase refers to the momentary deflection of the LFP
and can vary between 0◦ and 360◦. Accordingly, the phase of a given action potential
describes its within-cycle “position” on the LFPwaveform. By decomposing the LFP
into its different frequency components, we can measure the phase of the signal at
different frequencies as a function of time. Upon identifying the phase, researchers
can then compute whether the timing of action potentials is systematically aligned
with particular phases of the LFP or whether action potentials occur more frequently
at some phases than others. Two prominent phenomena are phase locking and phase
precession, which are described below.

It is worth noting a few caveats that one should take into account when estimating
phase. First, phase estimates are difficult to interpret in the absence of a meaningful
oscillation. Thus, it is often worth computing the power in a given frequency before
computing the phase estimate. Accordingly, certain methods only utilize phase esti-
mates from data where power exceeds a certain baseline threshold [32, 33], and
several toolboxes have been developed that estimate phase only during periods when
power exceeds the 1/f background spectrum [13, 34]. Furthermore, Hilbert methods
for phase estimation are most useful for stationary, sinusoidal signals, which is not
always true of LFP signals. If analyzing non-sinusoidal LFP data, we recommend
estimating phase using other approaches such as linear interpolation methods which
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make no assumptions aboutwaveform shape or instantaneous frequency [35]. Finally,
researchers should be careful to implement rigorous permutation testing protocols
(described in this chapter) to ensure that erroneous spike-phase correlations do not
emerge from phase slips or edge effects common to instantaneous phase estimation.

Phase locking Phase locking describes the phenomenon that a neuron activates
at the same phase of an oscillation across cycles, a phenomenon prevalent in both
animals [36–38] and humans [13, 16, 18]. Phase locking is presumably of funda-
mental relevance for neural computation by determining whether a stimulus will
be remembered or forgotten [18, 39], by gating the transmission of action poten-
tials (and, thus, the flow of information) between connected brain regions [36–38],
and by coordinating the simultaneous arrival of multiple different inputs to a tar-
get region. Phase-locking is distinct from the spike-power correlation (as described
above) because it measures the timing of spike occurrence relative to the LFP phase,
not the overall increases in firing rate as a function of oscillatory power. Spike phase-
locking can be computed as follows:

1. Align the spike train and LFP phase estimate for the frequency of interest in the
time-domain. This should allow you to assign each spike a concurrent LFP phase
estimate. It is often worth plotting segments of the phase estimate and the spike
train together to verify that each spike is assigned a valid phase estimate.

2. Using these vectors of spike phases, compute the degree to which spiking tends
to occur at specific phases of the LFP. The most common methods for doing so
are:

• Compute the Rayleigh statistic [16, 18].
• Compute the spike-field coherence [40].
• Compute the phase-locking value [41].
• Compute the pairwise-phase consistency (PPC) [42].

3. To assess statistical significance, compare the computed value against an empir-
ically derived null distribution drawn from surrogate data with matched spike
counts:

• Circularly rotate one signal with respect to the other to generate each of many
surrogate datasets (e.g., >1000 surrogate datasets).

• Compute the strength of phase-locking for each surrogate dataset.
• Z-score the phase-locking metric for the original data against the distribution
of surrogate metrics.

4. Identify the specific phase that the neuronal spiking is locked to by plotting a
histogram of spike phases and by calculating the circular mean of the phases at
which the spikes occurred [43].

These steps form the basis for a majority of studies measuring spike-phase cou-
pling. It is critical to emphasize the importance of performing permutation statistics
to determine significance—many, if not all, of these methods are biased by the spike
rate or low sample size. Other unbiased methods have emerged to deal with this
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issue, relying on spike-triggered average LFPs [44] or machine-learning methods
[45], which may be compared to the approaches described above.

Phase precession Phase precession describes the intriguing phenomenon that a
neuron activates at successively earlier phases of consecutive cycles of an ongoing
oscillation. Phase precession has been extensively described in place cells relative to
the local theta rhythm [46]. Place cells are neurons that encode spatial information
[47] by increasing their firing rates whenever the subject navigates across a particular
location in the spatial environment (the so-called “place field” of a given place cell).
Phase precession has also been observed in grid cells [38], which are another type of
neurons that is important for spatial navigation and spatial memory [48]. Theta-phase
precession may provide a means to encode spatial information above and beyond the
information contained in the cells’ firing rate [12, 49] and presumably plays an
important role in the formation of memories for sequences of events [33, 50, 51].

Phase precession has typically been identified by computing the circular-linear
relationship between the spike phase (which is the circular variable) and a linear
variable of interest such as location in space as follows:

• Circular-linear method from Kempter et al. [52]:

1. Align the spike train and phase estimate for the frequency of interest, and assign
a phase to each spike.

2. Align the spike phases to the linear variable of choice on each trial/epoch (e.g.,
position).

3. Fit a circular-linear model to the data to estimate the slope and angular offset.
4. Scale the linear variable with respect to the absolute value of the slope and take

the result modulo 2π to transform the linear variable into a circular variable.
5. Compute the circular-circular correlation between the spike phase and the trans-

formed linear variable [43].

However, this approach depends on a linear metric of spike progression (such
as spike position within the place field of a place cell). A different method was
thus developed, which estimates phase precession without depending on a linear
behavioral variable or assumptions about spike timing:

• Spike-phase autocorrelation method from Mizuseki et al. [53]:

1. Unwrap the spike-phase vector to make it a linear variable.
2. Compute the autocorrelation for the unwrapped spike-phase vector. The phase-

bin size and window length can be manually determined as a function of the
available number of spikes.

3. Estimate the power spectrum of the frequency of spiking relative to the LFP by
computing the Fourier transform of the spike-phase autocorrelation histogram.

4. Spectral peaks at relative frequencies greater than 1.0 indicate that the cell is
oscillating at a faster frequency than the reference LFP, which is the key property
of phase precession.
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5. To assess statistical significance of this peak, measure its height against the
background spectrum relative to an empirically derived null distribution drawn
from surrogate data with matched spike counts.

– Circularly shuffle the spike-phaseswithin each cycle of the referenceLFP sig-
nal to disrupt cross-cycle dynamics while maintaining other spiking dynam-
ics.

– Compute the strength of phase precession for the surrogate dataset.
– Z-score the height of the spectral peak of the original data against the distri-

bution of surrogate metrics.

It is important to note that this method requires enough spike phases to compute
a reasonable autocorrelation (on the order of >100 spike phases). Otherwise, it can
be difficult to properly detect rhythmicity in the autocorrelation unless it is highly
stereotyped. Note that this method can also be used to identify spike-phase locking, if
the power spectra estimated from the spike-phase autocorrelograms exhibit peaks at
relative frequencies equal to 1.0.However, given that thismethod relies on a relatively
high number of spikes, it is not our recommended technique for computing spike-
phase locking. Also, while all methods described here are largely meant to assess
phase precession relative to oscillations at theta frequency, other studies have assessed
phase precession relative to higher-frequency signals [54, 55].

44.3 Relevance for Human Behavior and Cognition

44.3.1 Spike-Power Associations During Human Cognition

Several studies examined the relationship between neuronal spiking and LFP power
while human participants performed cognitive tasks. For example, while subjects
passively viewed popular English-speaking videos, neuronal spiking in the auditory
cortex was found to correlate positively with LFP power in frequencies above 30Hz,
but negatively with LFP power in frequencies below 30Hz [25] (see also Chap.21).
This generally positive relationship between spiking activity and gamma LFP power
was supported by follow-up analyses examining both periods of audio-visual sensory
stimulation and spontaneous activity [56]. This study also pointed out, however, that
the relationship between single-neuron firing and LFP gamma power is considerably
mediated by the strength of firing-rate correlations between neighboring neurons,
indicating that there can be situations in which the activity of single neurons is
actually uncoupled from population activity reflected in the LFP [56]. Other research
examined the relationship between neural spiking and LFP power during a virtual
navigation task, showing that LFP power in the delta-, theta-, and alpha-frequency
ranges are generally associated with decreased firing rates, whereas LFP power in
the beta- and gamma-frequency ranges are associated with increased firing rates
[29] (Fig. 44.2a). In addition, as described above, this study also demonstrated that

http://dx.doi.org/10.1007/978-3-031-20910-9_21
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neuronal spiking is in fact best predicted by broadband shifts in the LFP power
spectrum and not by power changes in narrow frequency bands [29].

Future studies are needed to further clarify to what extent the changes in spike-
power associations are mediated by particular cognitive processes or stimuli that
the subjects experience during the tasks, particularly since the association between
spiking activity and gamma power has been shown to vary considerably over time
[56]. For example, a recent study showed that the positive correlation between neu-
ronal spiking and LFP gamma power is more strongly pronounced when human
subjects experience aversive emotional stimuli as compared to neutral emotional
stimuli [57]. Although a large majority of the temporal variability may be traced
back to between-neuron firing-rate correlations—meaning that higher spike-gamma
correlations occur when the contributing neurons are more synchronized [56]—
additional variance may be explained by the experimental conditions. Examining
the exact relationship between spike-power associations and cognitive processes
may provide critical information as to whether the correlation between spiking and
LFP power simply represents a useful proxy for local population spiking activity, or
whether these two signals can encode distinct information. A previous study, which
examined single-neuron and LFP responses to specific items (i.e., virtual characters
and landmarks) during a virtual navigation task, already pointed in this direction:
item-specific responses in single-neuron activity appeared to be independent from
item-specific responses in LFP theta and gamma power, recorded from the human
hippocampus and entorhinal cortex [58]. Recent work utilizing laminar probes that
span different cortical depths suggest that such dissociation between spiking and LFP
power may rely on the depth and timing of the LFP [30], illustrating the need for
future studies to carefully characterize the spatiotemporal profile of the LFP signal.

Additionally, spike-power associations may be important for human cognition
by promoting spike-phase associations (Fig. 44.2b) (whose importance is described
below). In particular, bursts of LFP oscillations (i.e., periods in which LFP power
is particularly high and thus leads to easily identifiable oscillations in particular
LFP frequencies) can induce transient spike-phase locking, which in turn is thought
to be important for behavior and cognition [16], but may also reflect pathological
processes: for example, bursts of beta oscillations in Parkinson’s disease temporar-
ily increase spike-phase locking in the subthalamic nucleus and are correlated with
hypokinetic behavior [59]. Furthermore, elevated power in the gamma frequencies
can reflect transient bursts of high-frequency LFPs such as ripples [60] (Fig. 44.2c).
Ripples induce spike-phase locking and spike-phase precession and are thus thought
to be highly important for cognitive functions including memory, learning, and plan-
ning [55, 60–62].

In addition, examining spike-power associations is not only relevant from the basic
physiological perspective but also with respect to disease processes, because pro-
nounced spike-power associations may constitute a cause or consequence of neuro-
logical disorders. In addition to the findings in Parkinson’s patients described above,
in epileptic patients, high-frequency oscillations are prevalent in seizure-generating
brain regions and recruit increased neuronal spiking [63–67]. These increases in
spiking-power associations in the high-frequency range are thus indicative of patho-
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a b c

Fig. 44.2 Examples of spike-power correlations during human cognition. a Percentage of neurons
showing significant correlation with power in different frequency bands of the LFP, as well as
broadband (2–150 Hz) LFP power, while subjects performed a virtual navigation task. b Example
of a neuron exhibiting phase-locking at 4.4 Hz during a virtual navigation task. Note that the
neuron shows strongest phase locking during periods of high oscillatory power (red) as compared
to periods of medium (purple) and low (blue) oscillatory power. c Examples of ripple-aligned spike
histograms showing an increase in neuronal firing during high-frequency LFP bursts (80–200 Hz).
Figures modified with permission from Manning et al. [29], Jacobs et al. [16] [Copyright 2007
Society for Neuroscience], and Le Van Quyen et al. [63]

logical neural activity and may explain some of the cognitive deficits observed in
these patients [68, 69]. Future studies may examine whether high-frequency oscil-
lations are particularly pathological when they lead to stronger firing-rate increases
as compared to when the firing-rate increases are only weakly expressed.

44.3.2 Spike-Phase Associations During Human Cognition

While human participants performed virtual navigation tasks, strong phase locking of
neuronal spiking to local oscillations (i.e., oscillations recorded on the same micro-
electrodes as the neurons) occurred in various regions of the human brain including
the medial temporal lobe as well as frontal and parietal cortices [16] (Fig. 44.3a).
Spike-phase locking appeared to be particularly pronounced with respect to theta
and gamma frequencies. Interestingly, spikes locked to various oscillatory phases
in the theta-frequency range, whereas they preferentially locked to the oscillatory
troughs in the gamma-frequency range [16]. This observation is in line with theo-
retical models on theta-phase coding [70, 71], which suggest that information about
cognitive stimuli or cognitive states is not only encoded in the firing rate of the
neurons but also in the phase of the theta oscillations at which the neurons’ action
potentials occur [13, 72, 73]. Furthermore, spike-phase locking in the human hip-
pocampus and amygdala has been described during successful memory formation
[18] and when human subjects hold multiple working memories in mind [73]. By
means of intraoperative recordings, another study found that single neurons lock
to local theta and beta rhythms in the subthalamic nucleus while human subjects
processed sensorimotor conflicts [74].
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a b

Fig. 44.3 Examples of phase locking and phase precession in humans performing memory and
spatial navigation tasks. a Left: spike-triggered average LFPs in the human brain demonstrating
that action potentials (black line) occur at the same phase of an ongoing oscillation over time. Time
0 denotes the timing of the spikes. Note the clear rhythmicity of the averaged LFP in the theta-
frequency range. Right: histograms of firing-rate as a function of oscillatory phase also exhibit
clear preferences for spiking at specific phases of the ongoing oscillations. b Recent evidence from
humans demonstrates that phase precession is also present in the human hippocampal formation
during virtual navigation. Figures modified with permission from Jacobs et al. [16] [Copyright 2007
Society for Neuroscience] and Qasim et al. [33]

In addition to local spike-phase locking, researchers also examined distant spike-
phase locking, in which single neurons lock to neural oscillations recorded from elec-
trodes implanted in distant brain regions. For example, neurons in various temporal
lobe regions have been shown to phase-lock to neural oscillations in the hippocampus
while subjects performed a virtual navigation task [75]. Furthermore, single neurons
in the subthalamic nucleus lock to distant cortical gamma during movement prepa-
ration [76] as well as to both low- and high-beta-frequency oscillations in the motor
cortex [77]. Together, these studies show that both local and distant spike-phase lock-
ing is a widespread phenomenon throughout the human brain—presumably playing
essential roles in neural processing and information transfer during various types
of human cognition. In addition, spike-phase locking has been described to vary as
a function of disease symptoms in Parkinson’s [78], suggesting that understanding
spike-phase locking in the human brainmay also help us understand some of the con-
sequences neurological diseases have on fine-tuned neuronal mechanisms. It should
be noted that spike-phase locking, as discussed here, is not thought to arise solely
from independent, self-sufficient rhythmicity in the neuronal spiking, but instead due
to a modulatory relationship between neuronal spiking and the LFP.

Moreover, based on influential findings in animal studies [32, 38, 46, 79], recent
human single-neuron studies provided evidence that not only phase locking but also
phase precession exists in humans [33, 80, 81]. Phase precession occurs preferen-
tially relative to theta oscillations and because theta oscillations in the human brain
are less prominent and less stable than in the rodent hippocampus [82], theta-phase
precession is less evident in humans than in animals butmaynevertheless exert impor-
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tant functions in human cognition. For example, phase precession was demonstrated
to occur in spatially-modulated neurons of the human hippocampus and entorhinal
cortex during virtual navigation, as well as in (non-spatially modulated) neurons of
the human anterior cingulate cortex, orbitofrontal cortex, amygdala, and hippocam-
pus when subjects searched for specific goal locations [33] (Fig. 44.3b).

Furthermore, phase precessionwas identified in human time cells, which represent
specific time points during time intervals [80]. These time cells presumably help to
temporally structure different events in a larger episode and phase precession in these
cellsmay help to interconnect temporally neighboring events. Another human single-
neuron study showed that phase precession occurs in hippocampal and entorhinal
neurons that code for specific visual stimuli when subjects learned a fixed sequence
of pictures [81]. When analyzing the neurons’ preferred visual stimuli as well as
the pictures that preceded and followed the preferred visual stimuli in the fixed
sequence, the authors observed that action potentials of these neurons occurred at
different theta phases for the preferred, preceding, and following pictures. Consistent
with phase precession, action potentials occurred at progressively earlier phases
as the sequence advanced from the preceding over the preferred to the following
stimulus [81]. Together, these studies thus provide first empirical evidence that phase
precession occurs in the human brain and that it may specifically support human
sequence learning, which has long been suggested as an important cognitive function
of phase precession [46, 50, 51].

44.4 Conclusion

In this chapter, we described techniques and analysis strategies for assessing the rela-
tionship between two primary types of signals acquired by direct neural recordings
in humans: neuronal spiking and LFPs. Despite the important advances that have
been made on this topic in recent years, much is still unknown about the different
phenomena that can be observedwhen considering the relationship between neuronal
spiking andLFPs. Based on studies in animals,we canmake specific predictionswhat
kind of spike-field phenomena may be associated with particular cognitive functions
in humans (e.g., phase precession during sequence learning), but future studies are
needed to systematically investigate the generalizability of observations from rodents
to humans. Furthermore, adapting technological advances from animal models for
human use, such as high-density microelectrode arrays [83] or laminar recordings
[30], might provide the improved spatiotemporal resolution and signal-to-noise ratio
required to rigorously determine how different neuronal dynamics correlate with or
contribute to LFP fluctuations (see also Chap.46). In this way, nascent methods or
electrode technologies may provide new breakthroughs in understanding the rela-
tionship between spikes and LFPs in the human brain.
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Chapter 45
How Can We Use Simultaneous
Microwire Recordings from Multiple
Areas to Investigate Inter-Areal
Interactions?

Juri Minxha and Jonathan Daume

Abstract In the past few decades, significant progress has been made in under-
standing human cognition using intracranial electrophysiological recordings. Studies
in this body of literature have focused on task-aligned tuning of spiking activity and
features extracted from the local field potential (LFP). More recently, leveraging
simultaneous and multi-site microelectrode recordings, it has become feasible to
study interactions and information flow between multiple brain regions. Electro-
physiological measures of coordination between brain areas are typically based on
correlations of LFP-derived features, spike-timing, or some combination of the two.
Any fluctuation in these measures has been interpreted to reflect changes in the
unidirectional or bidirectional transmission of information between the two brain
areas. Our goal in this chapter is to review: (1) the experimental evidence for inter-
areal communication in microelectrode recordings, focusing on two test-cases of
relevance, and (2) current methodological approaches and their possible (technical)
limitations. The objective is to underscore the utility and importance of making such
measurements in neural data,while cautioning against some common interpretational
pitfalls and recommending validation approaches to avoid them.

45.1 Introduction

If there is one consensus emerging about brain function it would probably have to
be that everything is everywhere. By that, we mean that most cognitive function is
supported by the coordination of many distributed brain areas. This fact underscores
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the importance of neural recordings which simultaneously sample many different
anatomical regions. In the animal literature, the number of neurons and regions
sampled simultaneously has increased dramatically in the past decade (see [1, 2]
as examples of state of the art). In human intracranial electrophysiology however,
coverage of the brain is typically sparse and determined entirely by clinical need. And
yet, the opportunity occasionally arises to record simultaneously frommultiple brain
regions. In such situations, it is possible to identify neural correlates of behavior that
are not readily apparent with intra-regional analysis. For example, recent work has
shown that the coupling of ripple oscillations between the medial temporal lobe
(MTL) and neocortex predicts the successful retrieval of episodic memories [3,
4]. Our own work has shown that context-dependent decision-making and memory
retrieval depends on the functional coupling between themedial frontal cortex (MFC)
and the MTL [5].

Inter-areal communication can be discussed in the context of many kinds of
recording technologies (ex. ECoG, sEEG), experimental setups (ex. chronic epilepsy
recordings, intraoperative recordings), methodological approaches (ex. spike-field
coherence, granger causality), and scientific questions (ex.memory, decisionmaking,
navigation).Our goal in this chapter is not to provide a comprehensive list of the litera-
ture on inter-areal interaction, but rather to demonstrate its feasibility, advantages, and
potential pitfalls through case studies based on our own work. While we will discuss
inter-areal interactions within this limited scope, the methodological approaches
outlined generalize to any experimental configuration. We begin by discussing two
recently published case studies where inter-areal communication played a central
role, followed by an introduction to the theory and practical considerations of some
of the popular metrics used in measuring inter-areal communication.

45.2 Case Studies

Ad-Tech Behnke-Fried depth electrodes [6] are commonly used for monitoring
neural activity from epileptic patients. These electrodes allow for simultaneous low-
impedance recordings from contacts on the shank of the depth electrode as well as
high-impedance recordings from a bundle of microwires present at the tip of the
electrode. Figure 45.1a shows an image of the most medial macro contact of the
depth electrode, the fiber bundle of microwires protruding at the tip, and a sample
recording of the local field potential from the latter. Any oscillations in the LFP can
be picked up on the microwires, as shown in Fig. 45.1b. Event-related responses
vary quite broadly across these two different types of signals (i.e., macro vs. micro,
Fig. 45.1c) and although both have unique properties, in this chapter we will focus
on the signals that are recorded from the microelectrodes.

Across the whole brain, there can be more than a hundred individual microwire
contacts, with 8 contacts per brain area. Typical anatomical targets include amyg-
dala and hippocampus in the MTL, dorsal anterior cingulate cortex (dACC) and pre-
supplementarymotor area (preSMA) in theMFC, and ventromedial prefrontal cortex
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Fig. 45.1 Simultaneous recording of LFP and spiking activity across many brain regions. a
Example hippocampal LFP recording from an Ad-Tech Behnke-Fried microelectrode. b Power
spectrum of the recording in (A) showing a peak in the theta (θ) band. c Example trial-averaged
response of a recording on a micro- and the most medial macro-electrode. d Correlation matrix
across all areas (8 electrodes per area, n = 80 electrodes). Bold lettering with gray background
indicates that the recording was from the right brain hemisphere. e A 10 s snapshot of simultane-
ously recorded cells across all brain areas, during a memory retrieval task. f Distribution of pairwise
neuronal correlations between vmPFC and amygdala in the session shown in (E)

(vmPFC). While electrode placement depends exclusively on clinical relevance,
recordings are typically done in both left and right hemispheres.

The recordings are locally referenced (bipolar), allowing us to explore the corre-
lational structure across all brain areas without worrying about things like volume
conduction (Fig. 45.1d). In addition to LFP, microwires also record spiking activity.
With an average of 1 cell/electrode, we can record the activity of tens of cells simul-
taneously across all brain areas. Figure 45.1e shows a 10 s snippet of 118 simulta-
neously recorded cells. Notice that there is a lot of structure in the spike timing of
the cells across all areas of the brain; the volleys of activity correspond to instances
when the subject is presented with a visual stimulus. Given the simultaneity of
the recordings, it is possible to compute neuronal correlations across brain areas
(Fig. 45.1f).

These types of recordings allow us to use a variety of methods for measuring
inter-areal interactions, including field-field, spike-field, and spike-spikemetrics. For
a more extensive treatment of the intracranial technique discussed here, see [7] and
Chaps. 42–44. Inwhat follows, wewill showhow this experimental configuration has
enabled us to study inter-areal interactions to address specific scientific questions.

a. Task-dependent modulation of functional connectivity between medial
temporal lobe and medial frontal cortex

Adefining characteristic of intelligence is the ability to switch between different tasks
with relative ease. Two key aspects of such cognitive flexibility are: (1) the retrieval
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of contextually relevant information from memory, and (2) the ability to selectively
utilize relevant information depending on task demands. Both aspects depend on the
MFC, theMTL, and functional interactions between them.We used the experimental
setup described in the previous section to study the interaction between these brain
areas as subjects alternate between two different tasks, an object recognition (i.e.,
categorization) task, and a memory retrieval task.

The subjects performed these tasks in blocks of trials and were given instructions
only once at the beginning of the block; therefore, they had to remember what task
they were performing going into each trial. Figure 45.2a shows the general structure
of the task. We measured spiking activity and LFP simultaneously in the MFC and
MTL (Fig. 45.2b). While there are many measures of inter-areal neural interactions,
we focused here on just two, spike-field coherence (SFC), and field-field cross-
correlations. A more detailed description of these metrics is available in the next
section (see also Chap. 44). To avoid any issues related to event-related potentials
(ERPs) induced by the presentation of a visual stimulus, we analyzed the neural
activity in the baseline period of the trial (i.e., before stimulus presentation).

Since we recorded spiking activity and LFP in both the MFC and MTL, there
are number of possible configurations for computing SFC. For example, we can

a b

e f
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d

Fig. 45.2 A task-switching paradigm to highlight inter-regional brain synchrony. a Task switching
paradigm in which subjects alternated between two tasks, (1) object recognition/categorization,
and (2) memory retrieval. bAs the subjects perform the task, we measure field-field and spike-field
interactions between two brain regions believed to support memory retrieval, medial frontal cortex,
and hippocampus/amygdala in the medial temporal lobe. c Example cell in the dACC showing
strong SFC with hippocampal theta oscillations. Since there are many microwires in ipsilateral
hippocampus, we compute SFC with each one separately. The top panel shows the average SFC
across all microwires, separated as a function of task. d Average SFC across all cell-electrode pairs
recorded in the task. e Average cross-correlation across 1263 hippocampus-MFC electrode pairs,
split by task type. f Cross-correlation spectra, showing a peak in the theta band for the memory
task. Panels A-D reproduced with permission from [5]
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compute SFC using spiking activity in MFC and distal LFP recorded in MTL. Each
configuration allows us to observe a different phenomenon and has its own scientific
interpretation. In our study, we found that MFC cells were strongly phase-locked to
hippocampal LFP, especially in the theta (3–8 Hz) band. Note that since there are
many remote electrodes, we get one estimate of the SFC for all possible cell-electrode
pairs. Figure 45.2c shows the SFC of a single MFC cell with 7 distal electrodes in
the ipsilateral hippocampus. Recall that while there are 8 contacts in a bundle, here
we are using one of them as the reference.

In the example shown in Fig. 45.2c, the SFC looks very similar across all cell-
electrode pairs. This is not always the case however, and the results depend on
the degree to which the neural recordings across all microwires in a bundle are
correlated with each other. Once the procedure for measuring SFC was established,
we investigated the degree to which it was modulated by the task that the subject
was performing. Task-based differences can be seen in individual cells (Fig. 45.2c,
bottom panel) and across the entire population, as shown in Fig. 45.2d.

We also corroborated our SFC results using a field-field approach, by computing
the cross-correlation across all electrode pairs in the MFC and MTL. Much like
the SFC, the average cross-correlation shows strong modulation by task (Fig. 45.2e).
There are two features of the average cross-correlation that stand out. First, unlike the
SFC, the cross-correlation allows for somemeasure of directionality of the interaction
between MFC and MTL1; the peak of the average shown in Fig. 45.2e is at approxi-
mately −7 ms, which indicates that activity in the hippocampus precedes that in the
MFC. Second, the average cross-correlation reveals a 3–8 Hz oscillation, suggesting
that the coherence between MFC and MTL is predominantly driven by theta oscil-
lations (Fig. 45.2f). Both the spike-field coherence and the cross-correlation provide
converging evidence for the role of theta in mediating task-dependent communi-
cation between MFC and MTL. It is clear from these results that this channel of
communication is enhanced when the task at hand requires memory retrieval.

There are several considerations in performing this kind of field-field and spike-
field analysis which we have not mentioned so far. First and foremost, the way
the microwires are referenced can have profound effects on the results. Local (i.e.,
bipolar) referencing is perhaps the most conservative when computing inter-area
interactions, because it eliminates artifacts that might be introduced by a common
reference as well as any concerns related to volume conduction. There is however
a penalty for using this referencing scheme. Depending on the degree to which the
microwire bundle splays out upon surgical insertion, the neural signals picked up by
microwires may be highly correlated (i.e., the wires did not separate sufficiently).
As a result, referencing the activity V(t) on a microwire with what is approximately
a copy, V’(t), can diminish the underlying signal. The second consideration in doing
this kind of analysis is electrode selection. Artifact removal and rejection of elec-
trodes with interictal epileptiform discharges (IEDs) is of paramount importance for

1 SFC can also be used to infer directionality, but for this, we must account for the contribution of
local (i.e., spikes and LFP are recorded within the same region) coherence to the overall measured
values.
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interpretable results. The third consideration has to do with comparing inter-areal
interactions across conditions. This requires proper balancing of trials, spikes, and
the firing rates of the cells in the two conditions.2 Further considerations which are
outside the scope of this chapter include (a) computing inter-areal interaction metrics
with the contralateral brain area as a validation method, (b) generating proper null
distributions for statistical tests, and (c) estimating within-condition variability for a
given metric, by resampling trials.

b. Saccade-related neural communication between the hippocampus and
amygdala in the human brain

In the previous study, we measured inter-areal interactions between MFC and MTL
as a function of task. In that case, changes in the underlying functional connectivity
between brain areas occurred on the timescale of a fewminutes, which is roughly the
duration of a single block of trials. In this section, we will see an example where we
measured changes in inter-areal interactions on the timescale of hundreds ofmillisec-
onds. The goal of the study described here, was to understand how unconstrained
visual sampling (i.e., eye movements) coordinate neural communication between
brain areas.

To this end, we asked patients to scan arrays of images containing objects sampled
from a small set of visual categories: cars, fruits, fractals, flowers, human faces, and
monkey faces. Figure 45.3a (left) shows an example of such an array, containing eight
images placed at equal distance from the center of the screen. Subjects saw approx-
imately fifty such arrays, each for four seconds. They were instructed to study the
images within so that they could perform a memory recognition task at the very end
(Fig. 45.3a, right). Subjects sampled the images around the array freely, averaging
about 10 fixations/array (Fig. 45.3c, d). As they studied the images, we recorded
activity in the amygdala and hippocampus simultaneously (see Fig. 45.3b for elec-
trode locations). We expected the interaction between these areas to be coordinated
by the eye movements, and the strength to be modulated by the visual category of
the fixated item.

Figure 45.3e shows LFP snippets recorded in the amygdala (green) and
hippocampus (yellow), aligned with the initiation of a saccade. The period of anal-
ysis is marked in gray. Aligning the analysis window 200 ms after the onset of
the saccade avoids oculomotor artifacts which are frequently present in the LFP
shortly after the initiation of a saccade. In our recordings, these artifacts are strongly
attenuated because of our bipolar referencing scheme; given the proximity of the
microwires, the artifacts look very similar across all of them, making them easy to
remove by using one of the electrodes as the reference.

Weused twomethods tomeasure neural interactions, (1) frequency resolved imag-
inary coherence [10], which removes potential volume conduction effects by elim-
inating zero-phase lag coupling, and (2) granger causality [11, 12]. After grouping

2 Note that balancing firing rates and number of spikes across conditions is not the same thing.
Spike balancing simply requires equalizing the number of spikes (by downsampling for example)
across conditions, whereas balancing firing ratesmeans the exclusion of cells that have a statistically
significant firing rate modulation across conditions.
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Fig. 45.3 Saccade-aligned synchrony between hippocampus and amygdala depends on the social
relevance of fixated item. a Example of a learning through free-viewing (left) and new/old recog-
nition (right) trial. b Recording locations in the amygdala (pink) and hippocampus (yellow). Each
dot indicates the location of a wire bundle in a single patient, projected onto the CIT168 brain atlas
in MNI coordinates. c Example scan path of a subject’s eye movements during free viewing. d The
horizontal position and velocity of the subject’s eye movements. Periods in red indicate saccades
and periods in blue indicate a fixation period. e Example, saccade aligned LFP traces from the
amygdala and hippocampus. Shown at the bottom is the horizontal (x) and vertical (y) position of
the subject’s eye as a function of time. f Increased amygdala-hippocampus iCoh for human faces
vs. all other stimuli. g Granger causality when fixating on human faces vs. other stimuli. Shown in
this plot is amygdala driving hippocampus (i.e., A → H, peaks: 6.5 and 15 Hz). See [8, 9] for the
complete set of results from this project. Reproduced with permission from [9]

fixations by the visual category of the underlying image, both the imaginary coher-
ence (Fig. 45.3f) and the granger causality analysis (Fig. 45.3g) revealed preferential
interaction between amygdala and hippocampus for human faces. Furthermore, the
results from the granger causality suggest that the direction of interaction is from
amygdala to hippocampus and not the other way around. Note that each method has
its respective advantages; the imaginary coherence analysis reduces the possibility of
effects due to volume conduction, whereas the granger analysis provides a measure
of the directionality of the effect.
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As in the previous section, we will end with a few additional considerations and
notes of caution. First and foremost, we reiterate the important role of the referencing
scheme and the removal of artifacts (i.e., IEDs) during the preprocessing of the LFP
traces. Secondly, we were careful in filtering which saccades were included in the
analysis, using only those trials that were free of subsequent saccades and blinks in
the post-saccadic time window (200–600 ms) where the analysis was done. Lastly,
we want to stress that each method for measuring inter-areal connectivity has its
advantages and disadvantages, and to use converging evidence frommultiple metrics
to draw robust and reproducible conclusions.

45.3 Current Methodological Approaches and Their
Limitations

Inter-areal interactions can be measured at various scales, from neural populations
to the level of individual neurons. Most commonly, human intracranial studies of
interactions between brain areas have focused on measuring the synchronization
between LFPs (see also Chaps. 32 and 33). The LFP recorded on the microwires
is thought to represent the summed activity of nearby neurons [13, 14]. Known as
field-field interactions, these kinds of measurements are thought to indirectly reflect
interactions between populations of neurons. With the ability to record LFPs as well
as spiking activity from individual cells, microwire recordings enable us to study
more detailed levels of interaction (see also Chap. 44). Of particular importance,
mixed-modality spike-fieldmetrics capture the level of coordination between spiking
activity and LFP, recorded locally or distally (i.e., inter-areal). Lastly, spike-spike
methodsmeasure the degree of coordination in the spike timingof two simultaneously
recorded cells. In this section, we review common methodological approaches used
to assess degree of connectivity in microwire recordings.

a. Field-field interactions

The LFP, as measured by microwires, represents the summed synaptic activity of
hundreds to thousands of neurons adjacent to the recording electrode [13, 14]. The
broadband LFP signal may consist of the summed activity from multiple neural
populations, eachproducing adifferent oscillatory signature [15].Acommonpractice
in characterizing inter-areal interactions is to first filter the LFP within a certain
frequency range in each area, thereby extracting population activity with specific
spectral properties, and then measure synchrony between brain areas within the
filtered traces. Inter-area field-field metrics are diverse and can be broadly grouped
into a few categories depending on what features of the LFP are used. Many studies
focus on inter-areal phase synchronization among neural populations, while others
compute amplitude correlations, cross-correlations, or cross-frequency coupling.
Insights gained from these methods reveal the different forms of communication
that exist among neural populations [16–18].
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a b c

Fig. 45.4 Within-frequency field-field interactions. a Phase and amplitude of a signal x at time
t can be represented by a vector in complex space, where the amplitude refers to the length m(t)
and the phase to the angle θ(t) of the vector. b Schematic illustration of phase synchronization: the
phases of the LFP signals from area A and B are highly synchronized over time as indicated by
the dashed lines. Due to the high consistency of the phase differences between the signals across
all time samples, the average vector (red) of the phase differences has a length close to 1. The
amplitudes (i.e., envelope) of the signals, however, are only weakly correlated. c In this example,
the phases of the signals are not synchronized, resulting in a length of the average vector close to
0. The signals, however, strongly correlate in their amplitude fluctuations

i. Phase synchronization

Neural interaction between two LFPs is often assessed by how tightly the phases
of their rhythmic, frequency-specific activity are synchronized over time. This form
of interaction is usually referred to as phase synchronization (Fig. 45.4b) [19, 20–
23]. Phase synchronization can be quantified using a metric called the phase-locking
value (PLV) [24], which estimates how consistent the phase differences between
two signals are over time. Since phase is a circular variable, we cannot use standard
statistical tests to measure deviation of a distribution of phase samples from a null
model. The PLV is therefore based on computing themean vector length (MVL) after
averaging the phase differences across all time samples in complex space. Briefly,
at each time point, the signal x(t) can be represented as a vector in complex space
(Fig. 45.4a). The length of the vector m corresponds to the amplitude of the signal
and the angle θ represents the phase. Note that the signal x(t) in this example, is a
processed version of the broadband LFP recorded on amicrowire, filtered in a narrow
frequency band of interest. In Euler’s notation, x(t) can be written as:

x(t) = m(t)eiθ(t) (45.1)

where m(t) is the amplitude and θ(t) is the phase of the signal at time t. Using this
representation, the time-dependent phase difference between two LFP traces, A and
B, is simply the difference between the respective phases, θA and θB. Since the PLV
metric in its simplest form ignores the amplitudes of the two signals, the phase
difference can be represented as follows:

�AB(t) = 1ei(θA(t)−θB(t)) (45.2)

To estimate how consistent the phase differences are over time, the length of the
mean vector, i.e., the PLV, can be computed as:
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where n is the number of time samples. When the phase differences across all time
samples between the two signals are uniformly distributed, averaging across the
vectors results in a mean vector that has a length close to zero (see Fig. 45.4c).
However, if the phase differences are highly consistent across time, the resulting
length of the mean vector will be close to 1 (Fig. 45.4b). Thus, the PLV results in
values between 0 and 1, with high values representing strong phase synchronization
and low values representingweak to no synchronization. Note that the absolute phase
difference between the two signals, and the strength of the amplitude correlation over
time do not affect the PLV. It is therefore a measure that is purely based on the phase
difference between two signals. Also note that this metric only makes sense if the
spectra of the two LFP signals is bandlimited to a narrow range of frequencies.

An alternative measure that not only determines the consistency of phase differ-
ences of two signals across time, but also takes their amplitudes into account, is called
coherence [25, 26]. Coherence is computed by measuring the magnitude-squared
cross-spectral density CAB of two signals in areas A and B at a given frequency and
normalizing it with the product of the power of each of the signals. Mathematically
this is expressed as:
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where CAB is the cross-spectral density between signal A and B at a given frequency,
mA(t) is the amplitude of signal A at time t, and mB(t) is the amplitude of signal B
at time t. Like the PLV, coherence also varies between 0 and 1, with higher values
representing stronger coupling between signals.

ii. Amplitude correlation

Besides phase synchronization, electrophysiological recordings can also yield impor-
tant insights into interactions among brain areas that are reflected by co-fluctuations
of amplitudes [18]. In contrast to phase synchronization methods, amplitude correla-
tionmethods usuallymeasure the degree towhich twodistant signals correlate in their
amplitude envelopes for a given frequency range but ignore how strongly their phases
synchronize (see Fig. 45.4c) [22]. The two different approaches could therefore high-
light different underlying neural communication strategies among brain areas [17].
To assess interregional amplitude correlations, a common approach is to compute a
linear correlation between the amplitude envelopes of two signals across time. Thus,
amplitude correlations can also reveal anti-correlations between amplitude signals,
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which is an important advantage over the phase synchronization methods described
above. The temporal lag between the signals thus matters.

iii. Cross-frequency coupling

Phase synchronization and amplitude correlations both measure inter-areal interac-
tions within the same frequency range. Neural populations however can also interact
across frequency bands, which is usually referred to as cross-frequency coupling
(CFC) [27, 28]. CFC is thought to play important roles in integrating cognitive func-
tions taking place in different frequency bands [16, 20, 29, 30]. Most studies of
CFC so far have focused on an intra-area analysis [31–34]. In studies that sample
activity across many anatomical regions, CFC can also be assessed across brain areas
[35–37].

Different forms of CFC exist in the brain. Phase-amplitude coupling (PAC) [32,
34], where the phase of a lower frequency band modulates the amplitude of a higher
frequency band, and phase-phase coupling [38, 36, 37], where the phase of a higher
frequency band is nested into a lower frequency rhythm (see Fig. 45.5), are among
the most studied forms of CFC. There are however other forms, such as amplitude-
amplitude coupling [39] or phase-frequency coupling [40] which have been docu-
mented in the literature. Despite the variety of approaches to computing CFC, the
initial steps in these different pipelines are very similar. First, the signals are filtered
within each frequency band of interest. In an inter-areal setting for example, the
signal from area A is filtered in a lower frequency range, while the signal from area
B is filtered in a higher frequency range. Using the Hilbert transform, we compute
the analytic representation of each signal, to extract the instantaneous phase and/or
amplitude at each time point. From here the methods diverge, depending on which
form of cross-frequency coupling is relevant. In the remainder of this subsection, we
focus on the most studied forms of CFC, PAC and xPLV.

PAC is by far the most studied form of CFC. Several methods to estimate PAC
have been suggested but two are among the most utilized. One method, introduced
by Canolty and colleagues [32], has strong commonalities with the PLV introduced

a b

Fig. 45.5 Cross-frequency field-field interactions. a Schematic illustration of inter-regional phase-
amplitude coupling, where the amplitude of a higher-frequency signal from area A correlates with
the phase of a lower-frequency signal from area B. The average vector (red), here determining the
strength of the phase-amplitude interaction, has a length different from 0 and thus indicates the
existence of significant PAC. b Illustration of phase-phase coupling, where the phase of a slower
rhythm is coupled to the phase of a faster rhythm. Since no PAC exists in this example, the length
of the average vector determining PAC is close to 0
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in the section above. At each time point, the frequency-specific phase of the signal
in area A and the amplitude in area B is extracted. The combination of these two
values can be represented as a vector in complex space that has a length equal to the
amplitude of signal B and an angle equal to the phase in signal A (see Fig. 45.5a).
In Euler’s format, this can be written as:

mB(t)e
iθA(t) (45.6)

where mB(t) is the amplitude of signal B and θA(t) the phase of signal A at time t.
The modulation index (MI), which measures how strongly the amplitude of signal
B is modulated by the phase of signal A, is again measured using the MVL after
averaging across all time samples, and is computed by:

MI =
∣
∣
∣
∣
∣

1

n

n
∑

t=1

mB(t)e
iθA(t)

∣
∣
∣
∣
∣

(45.7)

If there is no systematic relationship between the phase in signal A and the ampli-
tude in signal B, the vectors from all time samples of the two signalswill be uniformly
distributed around the circle. Their average thus results in a MVL that has a length
of zero (Fig. 45.5b). If, however, there is a systematic relationship between phase
and amplitude, that is, certain phases in signal A always correspond to a narrow
distribution of amplitudes in signal B, then the mean vector will have a length that
is significantly different from zero (Fig. 45.5a). Note that strong modulation will
usually not result in values close to 1, as is the case for the PLV, but its value is
dependent on the absolute amplitude of signal B. Normalizing the amplitude before
computing the MI is therefore recommended, especially when the MI is compared
between frequencies or conditions.

A significant drawback of the method introduced by Canolty becomes apparent
when the amplitude in signal B ismulti-modally distributed across the phase of signal
A. In a symmetric bimodal scenario for example, the two amplitude peaks in signal B
could cancel each other out and lead to anMI with length zero. A method introduced
by Tort et al. [41, 42] circumvents this problem. In their method, after extracting the
phase and amplitude in each of the signals using the Hilbert transform, the phase
in signal A is discretized into bins and the corresponding amplitude of signal B is
averaged within each bin, producing a distribution of amplitude values as a function
of phase. Using the Kullback–Leibler distance metric, any significant divergence of
this distribution from uniformity is indicative of significant CFC between areas A
and B.

Cross-frequency phase-phase coupling (Fig. 45.5b), starts with the same initial
steps of filtering and Hilbert transformation. The difference here is that we measure
phase-phase instead of phase-amplitude coupling, and therefore extract the phase
of the higher frequency signal instead of the amplitude. The most common method
to estimate phase-phase coupling strongly resembles the PLV method introduced
above (thus termed xPLV) [36]. In a cross-frequency setting, the phase of the lower
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frequency signal gets “accelerated” to match the frequency of the higher frequency
signal before assessing the consistency of the phase differences between the two
signals, which can be formulated as:

x PLV =
∣
∣
∣
∣
∣

1

n

n
∑

t=1

e
i( fB

fA
θ
A(t)

−θB(t))
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(45.8)

where f A and f B are the center frequencies of the signals in areaA andB, respectively.
A range of limitations should be considered when assessing CFC metrics, both

in an intra- as well as inter-areal setting. Discussing these here, however, would be
outside the scope of this chapter. An useful overview of the different caveats inherent
to CFC analyses and their assessments can be found in Aru et al. [43].

b. Single neuron interactions

Assessing field-field interactions is an indispensable tool for studying neural commu-
nication among populations of neurons and can reveal important insights into
network-level processes of cognition. Field-field interactions are however a proxy for
what we would really like to measure, communication between cells. This is where
multisite microwire recordings reveal their full potential. Having access to multiple
electrodes implanted in different sites of the brain enables us to study long-range
neuronal communication at the level of individual cells [5]. Here we discuss two
classes of single-neuron metrics: (a) interaction of single neurons with the LFP, and
(b) spike-spike interactions between pairs of cells.

i. Spike-field interactions

Methods that assess spike-field interactions can provide valuable insights into how
single neurons interact with a local (i.e., same area) or distal (i.e., different area)
population of neurons. They are thought to represent a rather indirect measure of
the relationship between neural spiking and synaptic population activity [44]. A
common approach to measuring spike-field interactions is the spike-field coherence
(SFC), which is based on the PLV introduced above [45, 46]. The SFC measures the
consistency of spike times with respect to the phase of an underlying oscillation and
can be stated mathematically as:

SFC =
∣
∣
∣
∣
∣

1

n

n
∑
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eiθx(s)

∣
∣
∣
∣
∣

(45.9)

where θx(s) is the phase of signal x at each spike time s, and n is the number of spikes.
The SFC is a normalized value which ranges between 0 (low consistency) and 1
(high consistency) (Fig. 45.6). An alternative way to compute the SFC, which in
some situations can be more robust, relies on the spike-triggered average of a short
piece of LFP centered on each spike instead [45, 47]. This method has the advantage
that it normalizes for power differences, which might yield a more reliable estimate
of the phase.
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a b

Fig. 45.6 Spike-field interactions. a Spikes of a neuron recorded in area A occur consistently at
a certain phase of an LFP signal recorded in area B, a phenomenon called spike-field coherence
(SFC). The length of the average vector (red) determining SFC is close to 1 and indicates strong
coupling. b In this example, the neuron fires randomly, thus no systematic relation to the LFP in
area B exists. SFC, i.e., the length of the average vector, is therefore close to 0

ii. Spike-spike interactions

Spike-spike interactions reflect the most resolved form of neural communication
that can be studied with human microwire recordings. Using spike correlations (in
its various forms), we can resolve strength of inter-areal interaction, directionality,
whether the interaction is excitatory or inhibitory [48, 49], as well as modulation by
state (or task condition) [50]. Spike-spike interactions can bemeasured by computing
cross-correlations between two spike trains. Cross-correlations measure the simi-
larity between the spike train of neuron A and the (lagged) spike train of neuron
B. For example, if neuron B often fires 2-3 ms after a spike from neuron A, the
cross-correlation will have a peak between 2-3 ms (see Fig. 45.7). An increase in the
probability of neuron B spiking after each spike from neuron A, suggests an excita-
tory influence of neuron A over neuron B (Fig. 45.7a). A reduction on the other hand,
indicates that neuron A has an inhibitory effect on neuron B (Fig. 45.7b). Computing
spike correlations is the gold standard in measuring inter-areal interactions, but often
it is not feasible to do so. Estimates from individual cell pairs are noisy and therefore
to get a reliable measure of inter-areal coordination, we must average across many
cell pairs. This is difficult to do given that we can only record from a handful of cells
from each brain area at a time.

iii. Limitations

Inter-areal interactions suffer from several limitations and their results should always
be interpreted with caution. One of the most important considerations when deter-
mining field-field interactions between electrodes is volume conduction, which refers
to the fact that two or more electrodes can pick up a signal from the same under-
lying source [51]. When not properly accounted for, volume conduction can lead to
spurious interactions among recording electrodes and to amisinterpretation of results
[10, 52].Volume conduction is exacerbatedwhen the two areas are anatomically close
or when using a global reference electrode. As pointed out in the case studies, an
effective way to account for volume conduction is using local bipolar referencing
schemes, where each electrode is referenced against a neighboring channel. Bipolar
referencing ensures that only local sources are picked up by each electrode, making it
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a b c

Fig. 45.7 Spike-spike interactions. a Cross-correlations of the spike trains from two simulated
neurons. In this example, spikes from neuron B consistently occur shortly after spikes from neuron
A. This indicates that neuron A and B are monosynaptically connected to each other and that neuron
A has an excitatory effect on neuron B. bHere, neuron B often fails to spike after spikes from neuron
A. Neuron A thus has an inhibitory effect on neuron B. c Human spike-spike interactions on the
population level. Cross-correlations were computed for all simultaneously recorded cell pairs from
the Hippocampus and the medial frontal cortex (MFC) and then averaged. A peak left to the dashed
midline indicates that spikes of cells in the MFC on average followed spikes of cells recorded in
the Hippocampus, which suggests that the communication between the two areas was led by the
Hippocampus. Data in (C) from [5]

unlikely that distant recordings sites are picking up the same source [12]. In addition,
methods such as imaginary coherence [10] and the weighted phase-lag index [52],
which are slightly modified variants of the phase synchronization methods discussed
above, as well as orthogonalized amplitude correlations [53] and partial correla-
tions [54] account for zero-(phase)lag interactions and therefore minimize the effect
of volume conduction (see Chap. 32). These methods can be helpful tools to enhance
the interpretability of inter-areal interaction results.

One notable limitation of the methods discussed here is the lack of directionality
information. That is, whether area A sends information to area B or vice-versa cannot
be inferred from metrics such as the PLV or PAC. There are however methods, such
as Granger causality [11] or cross-frequency directionality [55], which can provide
evidence for the directionality of an interaction and can be used in concert with the
synchronization metrics discussed above.

Moreover, interaction metrics can tell us if area A is interacting with area B,
but they cannot resolve why this might be the case. For example, it may be that
two brain areas receive concurrent inputs from a third source and might in fact not
communicate with one another directly. For a more concrete example, imagine that
the onset of a visual stimulus causes phase resetting3 in theta oscillations both in
area A as well as in area B. These phase resets will lead to an increase in theta
phase synchronization between area A and B shortly after each stimulus onset. You
can imagine other variations of this scenario. For example, neuronal populations in
areas A and B might both respond with an increase in firing rates to the onset of
the stimulus, which in turn, will inflate cross-correlations between those regions. In

3 A phenomenon where the phase of an ongoing oscillations (ex., theta) resets to a particular
value. This has been suggested as a mechanism for coordinating large-scale neural networks during
goal-directed behavior [56].
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both scenarios, it is unclear if areas A and B directly communicate with one-another
or if they just receive concurrent input from other sources. There are a few, method-
specific practices that can mitigate these factors. For example, it is often advisable to
remove ERPs prior to the analysis of inter-areal interactions or to focus the analysis
on time periods that are free of abrupt signal changes. For spike-spike correlations,
computing noise-correlations in addition to signal-correlations can prove insightful.
In general, it is advisable to interpret inter-areal interaction results with a healthy
amount of scientific caution.

The waveform of neuronal spikes can further strongly influence phase estimations
of the LFP, especially when considering oscillations in higher frequency bands [57].
An important step when assessing SFC is therefore to clean the LFP from spike
waveforms to avoid observing spurious spike-field interactions. Although less severe
in an inter-areal setting, where the spike waveform itself is not present in the LFP
recording, phase estimations of the LFP might still be systematically distorted by
spiking activity of other neurons in that region, especially in the presence of inter-
areal spike-spike correlations. Cleaning the signal from all spike waveforms prior to
computing SFC can therefore minimize this problem [57].

In addition, the SFC (like the other PLV-based measures described here) is a
measure that is biased by the number of samples (i.e., spikes) taken into account [58].
Comparing the SFC between different conditions, each having a different number
of spikes, can therefore be misleading (see Fig. S1 in [47] for an illustration of
this effect). A possible way to avoid this problem is by adjusting the number of
spikes across all conditions through random subsampling [59]. Repeating this step
several hundred times and averaging the SFC across all iterations thereby ensures
robustness of the results. A common alternativemeasure to the SFC is pairwise phase
consistency (PPC) [58], which has the specific advantage that it not biased by the
number of spikes (or samples) considered and is therefore well-suited in situations
where the spike counts are low.

Lastly, phase estimation quality is heavily dependent on the signal-to-noise ratio
of the data. Phase-based metrics such as the PLV, SFC, or CFC are therefore strongly
influenced by the amount of spectral power available in the considered frequency
bands (i.e., it is easier to estimate the phase if the oscillation is strong). Observed
differences in phase-based metrics between conditions or areas can therefore easily
be confounded with differences in spectral power. It is therefore advisable to balance
these confounding factors (through resampling of spikes/trials) across conditions
before computing synchrony between areas.

45.4 Conclusions

Measurements of inter-areal connectivity, when possible, can offer invaluable insight
into brain function. In this chapter we have described two studies where making
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such measurements has played a big role in shaping our understanding of context-
dependent memory retrieval and how visual exploration coordinates communica-
tion between brain areas. In addition, we have also discussed some of the most
popular measures of inter-areal connectivity as well as their respective advantages
and drawbacks. It is important to note that all the methods discussed in this chapter
are correlational in nature and cannot be used to draw any conclusions regarding
causality (see Chaps. 39 and 40 for stimulation approaches to investigate connec-
tivity). Furthermore, none of the approaches discussed can discern real connec-
tivity between two areas from instances where this might be an epiphenomenon, a
byproduct of common input for example. There are however mitigating factors, and
in general we recommend using several converging analysis pipelines in drawing
conclusions about inter-areal interactions. We expect that these kinds of measure-
ments will become increasingly more common as we continue to recognize the
highly distributed nature of all cognitive function and as the recording technologies
in human intracranial electrophysiology improve.
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Chapter 46
How Can Laminar Microelectrodes
Contribute to Human Neurophysiology?

Mila Halgren

Abstract Human laminar microelectrodes (linear arrays implanted acutely or semi-
chronically in surgical patients) present an exciting new frontier of intracranial
electrophysiology. Though most iEEG is limited to imaging networks, laminars
can resolve the cortical microcircuits underlying cognition. Normally implanted in
animal models, laminar probes can record the current-source-density, which reflects
transmembrane currents, as well as single and multi-unit activity (MUA) throughout
the cortical depth. These measures of neural activity allow the mapping of laminar
physiology underlying diverse neural phenomena in humans. For instance, several
studies have shown laminar activity sensitive to language and perception. They’ve
also discovered motifs of different rhythms during sleep (slow waves, spindles) and
wakefulness (delta/theta, alpha). Intriguingly, these studies suggest an outsize role
for superficial layers in cortical oscillations which may be human specific. Human
laminar recordings have also shed light on cortical physiology in general, such as
the spatiotemporal dissociation of high-gamma-power (HGP) and MUA. In disease,
laminars have elucidated the structure of epileptiform discharges. However, key
conceptual and methodological issues like proper referencing, clinical constraints
and comparisons with animal models remain. These difficulties notwithstanding,
new innovations in recording density, simultaneous surface-laminar recordings and
extracranial source-inference will enable laminars to answer fundamental questions
in human neurophysiology.

46.1 Introduction

As reviewed in other chapters, intracranial human electrophysiology (iEEG) has
provided vital insights into human cognition. The exquisite spatiotemporal precision
of these recordings allows for the direct study of human cortex. However, a limitation
of typical iEEG is the lack of layer specific recordings. Neocortex is characterized by
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its layered structure, composed of six laminae with distinct cell types, connectivity
and physiology. This architecture is highly consistent across cortical areas, leading
to the hypothesis that there is a canonical laminar microcircuit [1, 2].

Though laminar physiology has been fruitfully studied in rodents and non-human-
primates, humans have considerably different cortical architecture. For instance,
human cortex has novel neurons and glia not found in rodents [3–5]. Even homolo-
gous cells have strikingly different electrophysiological and transcriptomic properties
across species [4, 6–11]. For example, layer V pyramidal cells are 7× more likely
to be bursty in mice than humans in vitro [6]. On the network level, human cortex is
much more recurrent than rodent cortex [12–15]. These interspecies differences are
particularly pronounced in supragranular layers, which disproportionately expanded
in humans [16, 17], aremore cellularly heterogeneous than in rodents [5], andmay be
critical for human specific cognitive abilities [18–20]. Therefore, the use of animal
models for laminar physiology must be validated directly in humans. This is made
possible by human laminar microelectrodes, or linear arrays which span the cortical
depth perpendicularly.

The only laminar arrays used in humans (save Neuropixels) were designed and
developed by Mr. László Papp, Prof. György Karmos, Prof. Eric Halgren, Prof.
István Ulbert and Neuronelektród Ltd. in the late 1990s [21], and are manufac-
tured with platinum-iridium for increased biocompatibility (especially in potentially
irritable epileptogenic cortex). Harboring 24 contacts with 150 μm spacing, they
are long enough to span the cortical depth while sampling each cortical layer with
multiple channels (Fig. 46.1a–c). This fine spatial sampling enables the collection
of action potentials (AP) as well as their proxies, multi-unit-activity (MUA) and
high-gamma-power (HGP). Additionally, transmembrane currents due to synaptic
activity and active channels can be estimated by the current-source-density (CSD)
within individual laminae (Fig. 46.1d). The CSDmeasures current sinks and sources,
reflecting net transmembrane current flow in and out of neurons (respectively). Pairs
of sinks and sources, or current dipoles, generate the electrical and magnetic signals
measured with iEEG, EEG and MEG (see Sect. 46.3.1). Though diverse cells such
as glia and interneurons contribute to transmembrane current flow, the cortical CSD
is likely dominated by pyramidal cells due to their numerosity, laminar orientation
and large dipole moments [22]. Being able to derive the CSD is a critical advantage
of laminar recordings, as the closely related monopolar (distantly referenced) local
field potential (LFP) and its first derivative, the local field potential gradient (LFPg)
are contaminated by distant sources via volume-conduction (see Sect. 46.3.1).

These platinum-iridium laminars come in surface and depth varieties. The former
anchor to the cortical surface via a thin silicone sheetwhich sits on the pia (Fig. 46.1a).
This holds the probe in place and keeps it normal to the cortical surface/perpendicular
to cortical layers. Conversely, depth laminars protrude from the end of macro-
electrode stereo-EEG probes and allow recordings from medial areas such as the
hippocampus and cingulate. Recordings can be made acutely (within the operating
room, ~1 h) and/or semi-chronically (within the epilepsy-monitoring-unit, ~1 week).
In the semi-chronic case, investigators can record multiple tasks and behavioral
states (wakefulness, sleep, anesthesia) from the same patient, yielding large amounts



46 How Can Laminar Microelectrodes Contribute to Human … 741

Fig. 46.1 a Photomicrograph of a laminar array with anchoring silicone sheet, provided by László
Papp of Neuronelektrod Ltd., Budapest, Hungary (scale bar: 1 mm). b Picture of ECoG with
simultaneously implanted laminar array (arrow). c Schematic of implanted laminar array, with co-
histology from the implantation in b. b, c Reproduced with permission from [97]. d Schematic of
the two principal forms of data measured with a laminar probe: the CSD (reflecting transmembrane
currents) and single/multi-unit activity. e Co-histology of laminar track. f Representative traces of
CSD recorded from the probe, in addition to overlying ECoG. e, f Reproduced with permission
from [61]

of data from a single implantation. Though previous experiments have used only
platinum-iridium laminars, two groups recently recorded with Neuropixels [23, 24].
Neuropixels can record from 384 channels with 20 μm spacing simultaneously, a
drastic advance on platinum-iridium probes [25]. Though human laminar recordings
are in their infancy, with only 27 papers which analyze this data, numerous insights
into cortical physiology have been made. Previous findings from human laminar
recordings are briefly reviewed, before discussing methodological challenges and
future directions.

46.2 Insights

46.2.1 Oscillations

Oscillations, or rhythmic fluctuations in neural activity, dominate human cortex and
are critical for cognition and behavior [26, 27]. Despite a long tradition of study with
extracranial EEG and MEG, little is known of the basic physiology underlying these
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oscillations. Though many seminal studies have been made in animals or in vitro, it
is unknown how these translate to in vivo human cortex.

The key questions human laminar recordings can resolve, over and above macro-
electrode iEEG, are: 1.Which laminae do the transmembrane currentswhich generate
these rhythms stem from? 2.Which layers have cell bodies which fire phasically with
these rhythms? And 3, how might this laminar profile in humans differ from animal
models? Question 1 can be answered by measuring the power of a given oscillation’s
CSD across the cortical depth; 2 by measuring the synchrony of this oscillation with
a simultaneous metric of unit activity; and 3, by recording in areas and behavioral
states comparable to an animal model. Most studies have found that low frequency
rhythms in humans are dominated by currents and firing in superficial laminae;
whether this generalizes to other animals is unclear.

46.2.2 Sleep Rhythms

Slowwaves andK-complexes (0.5–2Hz) are the largest graphoelements in the human
EEG, and coordinate memory consolidation [28] andmetabolic maintenance [29]. In
rodents, the slowoscillationprimarily reflects sinks and sources in deep cortical layers
driven by layer V pyramidal cells [30–34]. Surprisingly, Cash et al. found that human
K-complexes reflect layer I/II sinks and sourceswhich primarilymodulate supragran-
ular firing (Fig. 46.2a) [35]. Human slow waves have a highly similar laminar profile
to K-complexes, comprised mostly by layer I/II currents and supragranular firing
(Fig. 46.2c) [36].

Spindles, like slow waves, are oscillations critical for learning and memory [37–
40]. Two studies on their laminar profile in humans [41, 42] found that spindles
were dominated by currents and firing in superficial and middle layers, the latter
reporting that superficial currents were stronger (Fig. 46.2b). Controversy remains
over whether these spindles can be separated into hypothesized “matrix” and “core”
types, respectively driven by focal or non-specific thalamic input [43].

46.2.3 Wake Rhythms

Delta and theta oscillations are found throughout human cortex [44], and play a
crucial role inmemory and cognition [45]. Two reports found that delta/theta rhythms
were particularly pronounced in superficial cortex throughout a wide variety (19 in
the former) of cortical association areas [46, 47]. These rhythms were phase-reset
by oddball stimuli, and likely contribute to the novelty-induced P300 and N400
(see Sect. 46.2.4). An important caveat is that slow delta is sometimes caused by
drowsiness or epileptic pathology [48], and does not necessarily reflect healthy or
alert cortical activity.
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Fig. 46.2 a The laminar profile of k-complexes, with the averaged CSD on left and averagedMUA
right. b–d Same as a, but for spindles, slow waves and alpha. a–d are reproduced with permission
from [35, 36, 42, 61], respectively

Alpha oscillations (7–13 Hz) [26] dominate the waking EEG, and are linked
to attention [49], perception [50, 51] and functional inhibition [52]. Within cortex,
in vitro recordings and animalmodels suggest that alphaoriginates from infragranular
layers driven by layerV pyramidal cells [53–58] (but see [59, 60]). In contrast, human
alpha-band currents are strongest in very superficial (~I/II) laminae and primarily
modulate layer III firing (Fig. 46.2d) [61]. Therefore, the human alpha rhythm likely
reflects currents on the apical dendrites of layer III pyramidal cells (see Sect. 46.3.1).
Further experiments should determine if this is a general laminar motif, or if alpha
modulates supragranular cells in some cortical regions and infragranular cells in
others [60].

In sum, human laminar studies have converged on superficial layers as a primary
locus for cortical oscillations. In contrast, animal literature on low-frequency oscil-
lations has emphasized the role of deep layers [30, 53, 57, 58, 62]. A possible expla-
nation is that oscillatory networks shifted from infragranular to supragranular cortex
between rodents and primates. This may be due to the enlargement of supragranular
layers in humans, occupying ~60% of the cortical depth versus ~40% in rodents
[16]. Human supragranular cells are also more recurrently connected [15] and have
stronger h-currents than rodents [11], both of which are critical for rhythmicity.
Interestingly, human supragranular pyramidal cells are more transcriptomally and
electrophysiologically diverse than in mice, suggesting that laminar changes in gene
expression and physiology may account for supragranular rhythms in humans [5].
A critical caveat: even if the currents and firing related to low-frequency oscillations
are supragranular, a sparse infragranular population may be causally necessary to
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generate the rhythm [30]; therefore, stating a rhythm is “generated” in superficial
layers simply means that current dipole measured extracranially and the cells which
fire phasically with the rhythm are supragranular, not that superficial layers alone are
causally sufficient to drive an oscillation.

46.2.4 Cortical Physiology

Besides oscillatory dynamics, human laminar recordings have yielded insights into
cortical physiology. These include the laminar structure of event-related potentials
(ERPs) and the differential origins of HGP and MUA.

The N400 (scalp-negative, ~400 ms post stimulus) is an ERP elicited by seman-
tically meaningful (particularly anomalous) stimuli [63]. Hypothesized to underly
lexico-semantic integration [64] and/or predictive processing [65], it has long been
used to probe language and semantic cognition. Despite this, little is known of its
underlying physiology as it cannot be studied in (non-linguistic) animal models.
Therefore, Halgren et al. made laminar recordings in the anteroventral temporal lobe,
a knownN400 generator [66], during a semantic priming task [67].Word presentation
induced a prominent excitatory current sink in layer IV and passive return source
in layers II/III, with a prominent peak ~400 ms post stimulus (Fig. 46.3a). This
sink was longest in response to semantically anomalous words, much like the scalp
N400. Because layer IV receives feedforward input, this suggests that the N400
reflects first-pass lexico-semantic encoding of words within the cortical language
network. A further study found that, rather than reflecting a novel potential per-se,
the laminar N400 arises from the phase-reset of ongoing theta rhythms [47]. A study
in cingulate and temporal areas of the closely related P300 (evoked by anomalous
stimuli regardless of semantic content) found it was dominated by superficial currents
due to a phase-reset of ongoing slow rhythms (in this case delta) [46] (Fig. 46.3b),
suggesting a similar circuit for processing stimulus deviance via the phase-reset of
pre-stimulus oscillations. These results suggest that human theta might have a some-
what deeper (involving layer IV) and distinct laminar distribution than cortical delta;
this should be addressed in future experiments.

A further contribution of human laminars is differentiating the origins of MUA
(~300–3000 Hz) and HGP (~70–190 Hz). Though HGP is lower frequency than
traditional MUA, it’s strongly correlated with single-unit firing [68–70] and is there-
fore the standard proxy for unit activity in macroelectrode iEEG [71]. To deter-
mine possible physiological differences in unit firing and HGP, Leszczyński et al.
measured HGP andMUA simultaneously in macaque and human laminar recordings
[72]. Surprisingly, they found that HGP andMUA had distinct laminar origins; while
MUA was driven by middle/deep layers, HGP was found within both middle/deep
and superficial layers (Fig. 46.3c). Intriguingly, this superficial HGP could occur
without concurrent deep MUA. A parallel finding was observed in a human laminar
study of HGP and MUA modulation by the alpha rhythm [61]. Though HGP was
modulated by alpha throughout superficial layers (~layers I-III), MUA was only
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Fig. 46.3 a CSD profile of
the N400, reproduced with
permission from [67]. b
LFPg profile of the P300,
reproduced with permission
from [46]. c MUA and HGP
in macaque V1 evoked by
flashes, reproduced with
permission from [72]. Note
that MUA is strictly in deep
cortex, whereas HGP is
evoked in superficial and
deep laminae. d MUA and
HGP locked to ongoing
alpha in human parietal
cortex, reproduced with
permission from [61]; MUA
is modulated within deep
layer III, whereas HGP
extends throughout
supragranular cortex

modulated within layer III (Fig. 46.3d). MUA stemming from deeper layers than
HGP, as well as being dissociable from it, is consistent with HGP reflecting (super-
ficial) dendritic processes such as calcium spikes dissociable from (deeper) somatic
firing. Further evidence to this effect is that the NMDA antagonist phencyclidine
attenuated HGP without affecting MUA [72]. Relating discrete calcium spikes (in
principle recordable extracellularly [73]) to ongoing HGP, and quenching both via
pharmacological manipulation, would provide further evidence that HGP reflects
dendritic calcium spikes rather than unit firing per se.

46.3 Challenges

46.3.1 Referencing

How do we interpret the field potentials recorded by laminar arrays? Electric poten-
tials in cortex are primarily generated by transmembrane currents. These currents
arise from synaptic activity and voltage-dependent active channels such as calcium
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spikes, h and t currents, etc. [22]. Maxwell’s equations necessitate that the sum of
potential differences in a circuit is zero [74]; therefore, these currents form balanced
current dipoles of sinks (into cells) and sources (out of cells). Due to cortex’s laminar
architecture, these dipoles are arranged vertically (Fig. 46.1d). Therefore, cortical
field potentials are due to vertically arranged transmembrane current dipoles gener-
ated by synaptic and active channels. It can be shown that given some assumptions
such as radially symmetric currents and isotropic and homogeneous tissue conduc-
tance, the second spatial derivative of the field potential vertically (i.e. along a laminar
probe) yields the net transmembrane current at a channel [75, 76], also called the
current-source-density (CSD).

Consequently, monopolar (distantly referenced) LFPs do not themselves reflect
underlying transmembrane currents, but instead the summed fields generated by
dipoles volume conducted throughout surrounding tissue. This means that laminar
LFPs are not a faithful proxy for local currents. Indeed, the strong influence of volume
conduction make the distantly-referenced field potential misleading to analyze.
Firstly, this is because potentials evoked by distant cortical or subcortical areas can
lead to large field potentials in the absence of local activity [77–79]. Secondly, even
within an area, potentials will volume conduct across cortical layers. Alarmingly,
infragranular LFPs are often susceptible to volume conduction from supragranular
sources [80] (Fig. 46.4a, b). A common objection to the use of local (bipolar, CSD)
referencing is that they can artificially silence synchronous, shared activity between
electrodes (see Chap. 28). However, this is emphatically not the case for laminar
recordings. This is because these electrodes lie within, not outside of, the cortex
(unlike ECoG or scalp EEG). If a current dipole lies between a series of contacts,
field potentials will exhibit changes in amplitude which (when the second derivative
is taken) yield a dipole. If the monopolar field potential amplitude does not change,
or changes linearly between contacts, the signal must be due to volume-conduction
from a dipole in a different cortical layer and/or area. Concerningly, these volume-
conducted potentials are often orders of magnitude larger than those produced by
local currents [77]. As such, volume conduction can lead to high amplitude, coherent
potentials at locations without any local synaptic activity. Therefore, the finding of
a perfectly synchronous monopolar potential across some contacts implies that its
generator does not lie between these contacts (as the second derivative, or CSD, of a
constant is zero). This makes the analysis of monopolar field potentials very difficult
to interpret.

The importance of proper referencing is illustrated in the controversy surrounding
the origin of the cortical alpha rhythm. Several primate laminar studies have empha-
sized infragranular layers, primarily due to high alpha power in the monopolar
field potential in deep cortex [53, 56, 58]. However, laminar studies in humans
and macaques which used local referencing found greater alpha power in superficial
layers [59, 61]. This is most consistent with a supragranular alpha source which
volume conducts to deep layers; because contacts in superficial layers lie within the
generating dipole, the monopolar field potential is silent.

Volume conduction makes the use of local referencing, such as CSD, necessary
to localize transmembrane currents to specific cortical layers. However, there are
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Fig. 46.4 a LFP and CSD derivations of the same activity from a mouse laminar recording [114].
b LFP and CSD from a human laminar recording. In a-b, supragranular currents volume conduct
to deeper layers. c Example of a rhythm generated by supragranular pyramidal cells. This can be
represented in the CSD-MUA coherence plot on the right, which shows that supragranular currents
are synchronous with supragranular firing. d Same as c, but for a rhythm generated by supragranular
currents onto the apical dendrites of infragranular pyramidal cells. Supragranular currents are now
synchronous with infragranular spiking. e as c and d, but for currents and firing in infragranular
layers

several challenges to accurate CSD estimation; firstly, because the second spatial
derivative is ill-defined at the edge of an array, the top and bottom channels must be
discarded. This can be ameliorated by the Vaknin Correction, which takes the edge
monopolar channels (i.e. most superficial and deep), and then pads the referential
recording with these signals before computing the CSD [81]. This is justified by
the minimal decay of the monopolar field potential above and below the array. A
more serious concern is the magnification of spatial noise by the second derivative;
small deviations in amplitude across channels, due to differing impedances, spacing,
noise, etc. will be exaggerated by CSD. Solutions for this include spatial (Gaussian)
smoothing prior to CSD calculation, or kernel-CSD methods [82]. Alternatively, the
local-field-potential-gradient (LFPg), or first derivative of the monopolar LFP, can
be used instead. This measure has similar spatial localization to CSD by attenuating
volume conduction [59], but is less interpretable than the CSD (as it represents the
integral of local sinks and sources, not transmembrane currents per se). Lastly, a
critical assumption of CSD analysis is that electrodes are situated normal to the
cortical surface [75]. This can be difficult to ensure, particularly with poor control of
implantation in a clinical environment, andwith a lack of co-histology.One solution is
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to anchor the probe to a silicone sheetwhich adheres to the cortical surface (Fig. 46.1a,
b).

How do we interpret the relationship of cortical firing (as measured by MUA or
single units) and the local transmembrane currents yielded by the CSD? Critically,
the CSD indicates which layer a given current lies in, but not the layer of the somas
being excited or inhibited by these currents. Because of the rapid spatial decay of
the fields generated by action potentials, unit activity is usually only observable
near the soma [22]. Therefore, by measuring the synchrony or coherence of currents
and unit firing, one can infer the likely layers of both the dendrites and the somas
involved in a graphoelement (Fig. 46.4c–e). For example, the fact that human alpha-
band currents are in layers I/II does not (in itself) indicate that alpha-modulated
cells reside in superficial layers. These currents could be onto the apical dendrites
of either layer II/III or layer V/VI pyramidal cells. The only way of distinguishing
these possibilities is to record unit activity simultaneously, which presumably reflects
somatic spiking, and measure the coherence between this somatic firing and (usually
dendritic) currents (Fig. 46.4c–e). For alpha oscillations in human association cortex,
this CSD-MUA coherence was highest between layer I/II CSD and layer III MUA,
suggesting a supragranular pyramidal source for alpha.

How do we determine if a CSD sink/source is excitatory or inhibitory? Though
it may seem, trivially, that inward currents are excitatory and outward currents
reflect inhibition, this is not necessarily the case. Because net current is conserved,
every excitatory (“active”) current sink must be balanced by a return (“passive”)
current source, and vice-versa. Therefore, current sinks may reflect active exci-
tation or passive return from inhibitory current, and current sources may reflect
active inhibition or the passive return from an excitatory sink. We can determine if a
current sink/source is excitatory/inhibitory by seeing if it coincides with increased or
decreased firing. If a current sink co-occurs with increased firing, it likely represents
an active excitatory current, with its paired source reflecting passive return currents
to extracellular space. Conversely, a current source accompanied by decreased firing
indicates an active inhibitory current, with a paired passive current sink. Because
currents can always be active or passive, unit activity must be recorded simultane-
ously with CSD to infer whether a sink or source is active (excitatory or inhibitory),
or merely a passive return current. For example, in recordings of human alpha oscil-
lations, current sinks/sources in layer I were matched to increased/decreased firing
(respectively), with matched return currents in layer II/III (Fig. 46.2d). This indi-
cates that layer I sinks/sources are “active” (reflecting excitation/inhibition) and
layer II/III sinks/sources are passive return currents. However, because all extracel-
lular CSD signals represent an unknownmixture of cells, definitive evidence for these
excitatory and inhibitory circuits must come from single-cell electrophysiology.
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46.3.2 Recording Conditions

As discussed (Sect. 46.2.3), human laminar recordings have strong currents in layers
I-III not found in animal studies [35, 36, 46, 61]. This might indicate a critical
interspecies distinction in LFP generation due to differences in cortical physiology.
Human pyramidal cells have extremely elaborate layer I/II arborization not paralleled
in other species [83, 84], as well as other anatomical specializations not seen in
rodents (see Sects. 46.1 and 46.2.3). However, the risk remains that these currents
are illusory due to poorCSDestimation at the edge of the laminar array. Fine sampling
of the gray matter/CSF boundary, possible with human Neuropixels [23, 24], could
resolve whether this is artifactual or a real interspecies difference.

Relatedly, it’s usually unclear which cortical layers are recorded by each contact
on a laminar probe. In rodents, this is resolved by explanting the tissue surrounding
the probe and finding the track caused by the electrode (often with the assistance
of electrolytic lesions and/or dye). However, neither electrolytic lesions nor probe
dyeing are approved for use in human surgical cases. Some reports have performed
histology on the explanted tissue, and find the probe track from tissue damage [23,
36, 42, 85]. When co-histology is not available (as is often the case), there are several
strategies for assigning contacts to layers. First, layers may be estimated by current-
source-density analysis of stimulus-evoked activity. Within sensory and neighboring
cortex, stimuli should evoke a feedforward sink in layer IV, allowing the identification
of supragranular and infragranular layers. Unfortunately, it’s not clear whether this
generalizes to human association areas. Alternatively, laminae might be estimated
from anatomical measurements of laminar depth in human staining studies (Hutsler
et al. 2005). On average, layers I–III occupy the first 60% of the cortical depth, layer
IV 6%, and layers V/VI the bottom 33%. In this case, it is important to determine
if the laminar probe spans the cortical depth. This can be done by examining MUA
and CSD, both of which should sharply attenuate in white matter. In cases where
laminar depth cannot be confidently estimated, it’s best to restrict conclusions about
cortical dynamics to superficial versus deep layers. Though which layer channels
in the middle third of the array lie in will be ambiguous, it’s highly likely that the
top and bottom third of channels will correspond to supragranular and infragranular
laminae, respectively.

A last challenge of human laminar recordings is the lower unit yield than compa-
rable rodent studies. This is due to a few factors; first, clinical equipment in the OR
and EMU create significant amounts of electrical noise. Though animal studies can
reduce noise by changing grounds/references, turning off other electronic devices
and using Faraday cages, this troubleshooting is difficult in a clinical environment.
A related issue is that (unlike in animals) one cannot make multiple penetrations of
cortex until an area with high spike rates is found. A further difficulty is the trauma
suffered by cortex upon the insertion of amicroelectrode array. Though animal exper-
imentalists can wait for a long period of time post electrode insertion to allow cortex
to adapt, within acute OR experiments, time is of the essence and recordings must
usually be started immediately. Lastly, as most platinum-iridium human laminars
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have intercontact separations on the order of ~150 um, units cannot be detected
across multiple contacts, which makes spike sorting more challenging than for dense
microelectrode arrays. Human Neuropixel recordings don’t have this drawback due
to their high spatial sampling (20 μm), and have isolated up to 202 single units in
an acute recording [23, 24]; future human laminars might also improve their yield
via similarly dense electrodes. A useful alternative to single-units is MUA, or the
envelope of the signal filtered from ~300–3000 Hz. Analyzing MUA sidesteps the
difficulties of single-unit isolation to make general conclusions about firing rates
in different laminae, instead of the properties of individual cells. HGP may also
provide complementary information about firing to MUA; however, as discussed in
Sect. 46.2.4, HGP does not reflect spiking as tightly as MUA (particularly spatially)
[61, 72, 86].

46.4 Promises

46.4.1 Macroelectrode-Laminar Correspondence

Because of the technical and clinical challenges involved in laminar recordings, most
iEEG research will continue to rely on macroelectrode recordings such as ECoG.
These recordings do not, by themselves, allow for conclusions to be drawn about
individual laminae. However, laminar-specific patterns can be inferred from ECoG
alone if the correspondence of laminar to ECoG activity is known. This is done
by recording events with ECoG and laminar electrodes simultaneously, and then
determining how different layers contribute to the ECoG signal. The results of this
analysis for a given oscillation or potential can then be used to interpret previous
and future ECoG experiments. For instance, Fabo et al. used laminars in temporal
cortex and subiculum to study the physiology of inter-ictal discharges (IIDs) and
found distinct IIDs corresponding to apical or somatic depolarization [87]. These
IIDs were simultaneously recorded with ECoG, allowing future research conducted
solely with macroelectrodes to infer the laminar structure of subicular IIDs without
a laminar probe.

In general, recent work suggests ECoG primarily reflects supragranular activity.
For instance, Ujma et al. recorded sleep spindles simultaneously with ECoG and
laminar electrodes. Contrary to the hypothesized split of spindles into “matrix” and
“core” types with different laminar profiles, they found that ECoG-recorded spin-
dles consistently co-occurred with laminar spindles with maximal power in super-
ficial layers [42]. Likewise, Halgren et al. found that ECoG recordings were most
synchronous with superficial laminae during spontaneous wakefulness and sleep
(Fig. 46.5a). Similar analysis of simultaneous ECoG and laminar recordings of slow-
waves and alpha found high correlations betweenECoGand superficial (but not deep)
contacts [36, 61] (Fig. 46.5b); the former study found a Pearson correlation of r >
0.9 between LFPg recorded in layer II and neighboring ECoG in 5 different patients



46 How Can Laminar Microelectrodes Contribute to Human … 751

Fig. 46.5 a Coherence between individual ECoG contacts and a laminar array during spontaneous
wakefulness, as a function of frequency and depth. Reproduced with permission from [46]. b LFPg
from layer II and simultaneous ECoG during SWS in three patients. Reproduced with permission
from [36]. c Schema of recording travelling waves between two ECoG contacts and a laminar
array simultaneously. d Simultaneous ECoG and CSD of the alpha rhythm during spontaneous
wakefulness. c and d reproduced with permission from [61]. e Implantation of a Neuropixel in a
human surgical patient. f Action potential traces from a human Neuropixel recording. e and f from
Dr. Angelique Paulk, with permission

[36]. HGP recorded by ECoG also reflects superficial layers, as the primary HGP
generators are in supragranular cortex [72].

An important factor in the correlation between ECoG and superficial layers is
the proximity of superficial laminae to ECoG contacts; a layer I dipole will a field
significantly stronger than a layer VI dipole of equal current strength at the cortical
surface [88]. However, even ECoG contacts several centimeters away from a laminar
probe (for which the distance between superficial and deep layers becomes irrele-
vant), are coherent with superficial LFPg [46] (Fig. 46.5a). This may be due to
the further finding that, between two laminar arrays, activity is most synchronous
between the superficial contacts of the two probes [46]. The higher amplitude within
and synchrony between superficial layers, in addition to their proximity to nearby
ECoG contacts, likely explain the correspondence between superficial activity and
simultaneous ECoG.

46.4.2 Laminar Structure of Travelling Waves
and Propagating IIDs

Oscillations often propagate coherently across the cortical surface. Rhythms which
exhibit this wave-like spread are called travelling waves (see Chap. 30). The speed,
direction and frequency of these waves are linked to sleep, memory and perception
[89–94], and could serve many computational roles [95]. Though their underlying
physiology is unknown, propagation speeds and computational modeling point to



752 M. Halgren

horizontal fibers within superficial layers as the substrate for these rhythms [96].
ECoG-laminar recordings could allow for the imaging of travelling waves as they
“pass through” the laminar array, and reveal which laminae travelling waves prop-
agate “into” and “out of”. For instance, if travelling waves generally propagate via
intracortical short-range superficial fibers, we should see superficial current sinks
coinciding with travelling waves as they propagate through the cortex in which
a laminar is implanted (Fig. 46.5c). This was seen in an ECoG-laminar study of
alpha travelling waves, which found that currents in superficial layers had a phase
in between that of neighboring ECoG electrodes, suggesting a propagation within
superficial laminae [61] (Fig. 46.5d).

Like cortical rhythms, IIDs also exhibit wave-like propagation through cortex.
Ulbert et al. used simultaneous laminar-ECoG to study IIDs which were generated
local to the laminar probe, versus IIDs which propagated towards the laminar array
from a distant location. When IIDs were generated locally, they initiated within
layer V. Conversely, IIDs propagating from a distal location were first seen in gran-
ular or supragranular layers [97]. The laminar structure and speed of this propaga-
tion (≥1 m/s) is consistent with polysynaptic intracortical propagation. Fine-grained
analysis of these events should yield further insights into the laminar physiology of
propagating rhythms and IIDs.

46.4.3 Exotic (Non Somatic Action Potential) Waveform
Physiology

Though most studies of extracellular activity focus on stereotyped action potential
waveforms, other microscale events elude identification. These include W-shaped
deflections, large positive spikes and waveforms too slow to reflect somatic spikes
[98]. A tantalizing prospect is mapping these events to cellular phenomena studied
in vitro, such as dendritic (NMDA&AMPA) spikes, plateau potentials, postsynaptic
potentials, axonal spikes, etc. This would allow for the study of these sub-cellular
events in behaving humans. A compelling example is the measurement of backprop-
agating action potentials with laminar recordings in mice, rats and rabbits [99–102].
Identifying backpropagating action potentials in human laminar recordings would
allow experimentalists to see how these events are related to complex cognitive tasks
involving feedback or top-down input.

An important step in this direction was performed by Paulk et al., who searched
laminar recordings for these non-action potential exotic waveforms [103]. They
found two distinct waveforms, dubbed Type 2 and Type 3 events. Type 2 events
had a timescale of ~15 ms, and might correspond to backpropagating action poten-
tials [100]. Type 3 events were significantly slower (~200 ms) and concentrated
within superficial layers. This suggests that theymay reflect dendritic calcium spikes,
which were found to be supragranular and have a similar timescale in extracel-
lular rodent recordings [73]. Critically, Paulk et al. also discovered these events in
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other recording modalities (PEDOT:PSS surface grids, Utah Arrays, Neuropixels)
and species (macaques and mice), and could modulate them with behavioral tasks
and pharmacological manipulation. In a further study using Neuropixels in humans,
Paulk et al. foundmany positive-goingwaveforms, which likely correspond to axonal
spikes [24]. Future human Neuropixel recordings have the fine spatial sampling to
characterize these and other exotic events (Fig. 46.5e, f) [23, 24]. Fortuitously, this
may be easier in humans than animal models due to the large size of human neurons.
This approach could be validated by simultaneous patch-clamp and extracellular
recordings performed in animal models and in vitro [98, 102, 104].

46.4.4 Validation of Extracranial Laminar Inference

Human laminar recordings can also validate and calibrate non-invasive alternatives to
imaging laminar-specific activity in humans, such as high resolution fMRI andMEG
[105–109]. Being able to make laminar recordings via fMRI and MEG, without the
constraints of iEEG, would allow for ambitious future experiments. However, both
methodsmake critical assumptions regarding howMEG/BOLD signals are related to
neural activity which drastically impact estimated laminar sources. Though laminar
fMRI has exquisite spatial resolution, BOLD activity does not reflect neural firing
per se, but instead the underlying vascular architecture and cerebral blood oxygena-
tion and volume, as well as MRI imaging parameters [110]. For instance, differences
in baseline cerebral blood volume across the cortical depth can lead to differences
in the BOLD response across laminae which do not reflect differences in neural
activity. Because the vasculature structure and CBV varies across cortical regions,
these confounds must be addressed on an area-specific basis [110]. This might be
done with human laminar arrays that simultaneously record electrophysiological and
hemodynamic data [111]. High-precision MEG has also made inroads into laminar
imaging, largely via individualized headcasts and complex source-reconstruction
techniques [107–109, 112]. Experiments using these advances have localized low
and high frequency oscillations to different layers [108] and furthered a biophys-
ical model of beta generation [112]. Despite this technique’s promises, laminar
source-reconstruction depends on assumed parameters such as source sparseness and
SNR. Different assumptions concerning relative supragranular/infragranular source
strength and spatial spread profoundly impact MEG estimates of laminar activity
[107]. These assumptionsmay explainwhyMEG localizes alpha to deep layers,while
human laminar recordings find supragranular alpha [61]. Measuring these parame-
ters with ground truth laminar recordings can calibrate and refine the assumptions
made by laminar MEG and fMRI [113].
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46.5 Conclusion

Laminar recordings promise deep insights into human cortical physiology. Under-
standing how different layers interact to produce cognition and behavior allows iEEG
to move beyond network-level characterizations to mapping cortical microcircuitry.
By comparison with analogous animal experiments, we can also gain insights into
howhuman neocortex diverges fromothermammals. Despite being only two decades
old, human laminar recordings have already yielded important insights into cortical
physiology. Striking findings include the dominance of currents and firing within
superficial layers during low-frequency oscillations, the laminar origins of ERPs and
IIDs, and the dissociation of HGP and MUA. Further innovations in high-density
probes and simultaneous macro-microelectrode recordings will allow for a deeper
understanding of how different sub-laminae and cell types contribute to high-level
cognition.

Acknowledgements I thank Sydney S. Cash, Vincent D Tang, Eric Halgren and Harnett Lab
members for useful feedback.
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Chapter 47
How Does Artificial Intelligence
Contribute to iEEG Research?

Julia Berezutskaya, Anne-Lise Saive, Karim Jerbi, and Marcel van Gerven

Abstract Artificial intelligence (AI) is a fast-growing field focused on modeling
and machine implementation of various cognitive functions with an increasing num-
ber of applications in computer vision, text processing, robotics, neurotechnology,
bio-inspired computing and others. In this chapter, we describe how AI methods can
be applied in the context of intracranial electroencephalography (iEEG) research.
IEEG data is unique as it provides extremely high-quality signals recorded directly
from brain tissue. Applying advanced AI models to this data carries the potential to
further our understanding of many fundamental questions in neuroscience. At the
same time, as an invasive technique, iEEG lends itself well to long-term, mobile
brain-computer interface applications, particularly for communication in severely
paralyzed individuals. We provide a detailed overview of these two research direc-
tions in the application of AI techniques to iEEG. That is, (1) the development of
computational models that target fundamental questions about the neurobiological
nature of cognition (AI-iEEG for neuroscience) and (2) applied research on moni-
toring and identification of event-driven brain states for the development of clinical
brain-computer interface systems (AI-iEEG for neurotechnology). We explain key
machine learning concepts, specifics of processing and modeling iEEG data and
details of state-of-the-art iEEG-based neurotechnology and brain-computer inter-
faces.
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47.1 AI-iEEG for Neuroscience

The field of computational cognitive neuroscience uses mathematical models to
describe neural processes underlying cognition and behaviour [1–3]. Advances in
machine learning and the rapid increase in computational power have made it possi-
ble to apply sophisticated analysis methods to large amounts of brain data collected
via increasingly sophisticated recording techniques [4].

Inspired by the computational metaphor of the brain as an information process-
ing device, this has led to the emergence of so-called encoding models and decoding
models in cognition and perception [5–8].Neural encodingmodels capture how infor-
mation is represented and processed in the brain. An approach related to encoding
models, that has become increasingly popular in cognitive neuroscience, is repre-
sentational similarity analysis (RSA) [9]. RSA more directly compares stimulus
features as encoded in computational models and encoded in patterns of brain activ-
ity. Decoding models also aim to understand the representation of information in
the brain but constitute the reverse approach of inferring information features from
observed brain activity. Apart from the practical value of decoding approaches for
neurotechnology (see Sect. 47.2), decodingmodels can also be informative in relating
stimulus features to neural signals.

Given thatmany cognitive functions, including perception,memory, language and
complex sensorimotor behaviour, are supported by large-scale distributed processes
in the brain, data from neuroimaging (fMRI) and whole-brain electrophysiological
(EEG/MEG) experiments in healthy individuals has been the primary source for
construction and validation of computational models. The fMRI, MEG and EEG
communities have provided large amounts of experimental data used for modeling
cognitive processes in the brain [10–15].

However, limitations of non-invasive brain recording modalities have created a
need for the use of intracranial data, such as intracranial electroencephalography
(iEEG), which is a general term that refers to both surface electrocorticography grids
(ECoG) and depth stereo-encephalography electrodes (sEEG). This is because iEEG
offers a number of benefits compared to non-invasive modalities, such as sampling
directly from the cortical tissue, high signal-to-noise ratio and high temporal and
spatial resolution. Recent work has seen successful efforts in creation and validation
of encoding and decoding models, RSA and models of temporal neural dynamics
using iEEG.

In this section, we will describe encoding and decoding models, and include
discussion of RSA and complex temporal dynamics in iEEG data. First, we will
discuss linear encoding models for iEEG signals, including hand-engineered and
deep-learning-based feature extraction for these models, and emergence of advanced
non-linear neural encoding models. Then, we will examine RSA applications to
iEEG. We will finish the section with a description of decoding models applied to
iEEG data, including multivariate pattern analysis, and a discussion of associated
temporal generalization concerns.
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47.1.1 Encoding Models of Perception and Cognition

47.1.1.1 Linear Encoding Models

A linear neural encoding model represents a linear mapping of a set of features
(model input) to the observed brain activity (model output, see also Chap. 48). Fitting
such a model is based on the assumption that the brain activity is a weighted linear
combination of features and normally distributed random noise:

Y = XB + ε, (47.1)

where Y ∈ R
n×m is a matrix of observed neural responses with n corresponding to

the number of observations over time or trials, m corresponding, for example, to the
number of iEEG electrodes or fMRI voxels, X ∈ R

n×p is a matrix of input features
over n time points and p feature dimensions, B ∈ R

p×m is a matrix of regression
coefficients and ε ∼ N (0, σ 2I) is a noise term with I being the identity matrix.

In this formulation, the model input—the feature matrixX—represents properties
of the stimulus thatmay have triggered the observed brain responses. Linear encoding
models are widely used in fitting brain activity evoked by external stimuli (Fig. 47.1).
IEEG examples that use this simple form of the linear model include neural encoding
of visual [16, 17] and auditory [18–21] perceptual features, motor information [22–
24], memory, language [25–27] and decision making concepts [28].

Typically, models in these studies are fitted to predict the temporal envelope of
the high-frequency broadband component (>60 Hz) in iEEG data (obtained with
time-frequency analysis), as it is known to reflect local neural firing rates evoked
by the stimulus [29, 30]. Alternative encoding approaches have been employed to
model frequency-domain representations of iEEG signals [31–34]. Time-domain
iEEG responses on average show less straightforward modulation by a cognitive
task and are more varied compared to frequency-domain responses [35], and are
therefore less typically used in linear fitting with stimulus features.

Whenworkingwith a time-frequency representation of iEEG signals, kernel func-
tions g(·) can be used to transform input stimulus features into a new representation
that could better reflect temporal iEEG structure, yielding an encoding of the form

Y = g(X)B + ε. (47.2)

This is similar to fMRI research, where an input feature matrix is convolved with the
hemodynamic response function for the general linear model fit. For iEEG, Gaussian
kernels can be applied to stimulus features to better approximate smoother iEEG time
courses. Examples of studies that use such feature transformations include [36, 37].

Another property of the spectrotemporal iEEG signal is its high temporal reso-
lution. It is usually addressed in models of continuous iEEG dynamics (as opposed
to fitting trial-based data) by inclusion of lags and temporal integration over input
features, such that

http://dx.doi.org/10.1007/978-3-031-20910-9_48
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Fig. 47.1 a Overview of neural encoding models: linear encoding model on hand-crafted stimulus
features, linear encoding model on features automatically extracted from the stimulus using deep
learningmodels and end-to-end non-linear encodingmodel based on a deep learning approach. Each
model in this example aims to predict high frequency band iEEG responses of three electrodes. bA
linear encoding model that predicts ECoG high frequency band activity during speech dialogues in
a short audiovisual film [20]. A set of spectrotemporal modulations (SM-TM) was extracted from
the sound spectrogram and used to model associated iEEG responses throughout the perisylvian
cortex. Each iEEG electrode exhibited tuning to specific features at different time latencies. Adapted
from [20]. Copyright 2017 Berezutskaya et al.

yt = B̄x̄t + ε, (47.3)

where yt ∈ R
m is a vector of iEEG responses per time point t , B̄ ∈ R

m×(p×τ) a matrix
of regression coefficients, τ is the time lag relative to t and x̄t a stack of vectors xt−s
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with s ∈ [0, τ ]. Features at multiple lags have been used in models of encoding
auditory, speech and movement information in iEEG [20, 23].

A standard linear regression problem is typically solved using ordinary least
squares estimation of regression coefficients B, which can be achieved analytically:

B = (X�X)−1X�Y . (47.4)

To assess model performance, various metrics are used for comparing predicted
and observed brain responses. A popular choice is a Pearson correlation coefficient,
which measures the normalized covariance of predictions and their targets. To assess
generalization potential of the modeling results, encoding models are trained on a
subset of all data (typically 80−90%), and tested on a held-out test set (remaining
data). To account for potential autocorrelation in iEEG signals, data from separate
recording sessions and different experiments can be used as an independent test
set [38]. Model performance is often cross-validated to obtain a more unbiased
estimate of encoding accuracy.

To prevent overfitting to training data (and subsequent lack of generalization on
test data), regularizationmethods are often used. They provide constraints, or priors,
on model coefficients [9], resulting in a less flexible model fit and therefore are less
prone to overfitting on the training data. Regularization is effective in models that
use large numbers of correlated features. A popular method is L2 regularization that
constrains B to small values. A linear model that uses L2 regularization is called a
ridge regression and has the following analytical solution:

B = (X�X + λI)−1X�Y, (47.5)

where λ ≥ 0 is a regularization parameter, typically chosen via nested cross-
validation.

Neural information processing includes high non-linear transformations of its
input. Therefore, the linear models we often use have severe limitations. They can
be mitigated by fitting linear encoding models on non-linear feature representations.
The latter can be either manually defined or extracted from computational models
such as deep and recurrent neural networks.

47.1.1.2 Feature Engineering for Linear Encoding Models

To fit a linear model of brain activity as a response to external stimuli, one requires a
set of features that represent stimulus information. Traditionally and similar to other
recording modalities, such as fMRI, MEG and EEG, hand-engineered features have
been used for this. For example, spectrotemporal features were used in encoding
of auditory and speech information in iEEG [18–20], two-dimensional Gaussian
features were used in population receptive fieldwork in vision [16, 32] and kinematic
trajectories and grasp features were used for modeling sensorimotor iEEG signals
[23, 37].
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The use of hand-engineered features to represent information means that the
choice of features is at the discretion of the researcher. Features could be manually
assigned data labels (for example, language labels, such as words or phonemes,
classes of visually presented images, broadly defined experimental conditions) or a
representation of the stimulus extracted via a preprocessing step or a mathematical
model (for example, spectrotemporal audio features or edge-filtered image features).
In the case of a sufficiently goodfit compared against amodelwith randompredictors,
researchers analyse neural tuning profiles, or stimulus receptive fields. Many studies
compare the fit of models that use different feature sets in an attempt to identify
features that best explain observed brain data [39–43].

Despite its overall success, previous work (also with other neural recording tech-
niques) highlighted someproblemswith using hand-engineered features, specifically,
the inability to determine which feature sets should be deemed the optimal repre-
sentation of information in a specific brain region; and how existing features need to
be modified to explain brain responses better. Moreover, the use of hand-engineered
features lacked the ability to explain how lower-level feature sets (such as image
edges or orientations and spectrogram sound features) transformed to higher-level
features (such as object categories and different words) as a result of information
processing throughout the brain. Recent progress in deep learning, has opened up
new possibilities in addressing the problem of feature engineering by minimizing
manual feature selection and delegating feature extraction to powerful non-linear
models.

In a vanilla deep artificial neural network (DNN), input features are passed to
the first layer, where their weighted linear combination goes through a non-linear
transformation, called an activation function, to obtain layer activations a. This com-
putation is repeated at the next layers. The final layer activations are used to predict
the targets. This yields the following sequence of non-linear transformations:

a(1) = g
(
B(1)xt + b(1)

)
(47.6)

a(2) = g
(
B(2)a(1) + b(2)

)
(47.7)

ŷ = g
(
B(k)a(k−1) + b(k)

)
(47.8)

where k ∈ N is the number of layers and b is a layer-specific bias vector.
DNNs are trained to optimize an objective function associated with the task they

need to solve, for example labeling visual objects in the presented image, or predict-
ing next words in a sentence. Minimizing mean squared error is a popular objective
function for regression tasks (such as time series prediction), and cross-entropy loss
is used in most classification tasks (such as object recognition). To optimize the
objective function a learning algorithm, typically, gradient descent, is applied itera-
tively. This yields incremental updates of learnable parameters of the DNN, such as
weights of its artificial neurons. In most cases, backpropagation is used for efficient
gradient calculation. As a result of this learning, DNN layer activations can capture
increasingly complex non-linear transformations of simple inputs (such as images,
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texts and sounds) necessary for solving the task. For a more detailed introduction to
DNNs see [44–46].

Depending on the type of data andproblem, variousDNNarchitectures that outline
network structure and connections can be used.Multi-layer perceptrons (MLPs) are
feed-forward fully-connected DNNs as described by Eq. 47.8. Convolutional neural
networks are feed-forward neural networks that use convolutions instead of standard
matrix multiplication. They have had tremendous success in computer vision tasks,
such as visual object recognition, image colorization and super-resolution. Recurrent
neural networks [47] are cyclic models best suited for learning complex temporal
dynamics in the data and have therefore been popular in language processing tasks,
such as language modeling, machine translation and speech recognition. Recurrent
architectures have recently been outperformed by transformer architectures [48]—
feed-forward neural networks with an encoder and decoder component and attention
modules for efficient input processing. Deep belief networks, autoencoders [49],
graph DNNs and other DNN variants also have their practical applications. For
a detailed overview of DNN architectures we refer readers to dedicated reviews
[50–53].

Convolutional and recurrent DNNs have been successfully used for automated
complex feature extraction. High-level learning tasks, such as object recognition or
language modeling, and hierarchical structure of deep neural networks allow extrac-
tion of increasingly more complex representations from basic naturalistic inputs,
such as images, sounds and texts. The resulting features across neural network lay-
ers have been used for linear mapping onto brain activity, first with non-invasive
techniques [42, 54] and more recently using iEEG [55, 56] (Fig. 47.2). Many studies
have demonstrated that DNN features explain and correlate with brain activity bet-
ter than alternative, typically hand-engineered features in language [26, 27], audio
perception [54, 57] and vision [42, 58, 59] (Fig. 47.2). Some iEEG work explored
gradients of feature complexity throughout the model, similar to analogous work in
neuroimaging [55, 56].

47.1.1.3 End-to-End Encoding Models Using Deep Learning

Success of deep learning models in extracting features that accurately predict
observed activity throughout the brain, has led to the “deep learning revolution”
in cognitive neuroscience. DNN feature models and activations became widely used
for exploration and interpretation of the neural mechanisms underlying cognition
and perception. Studies identified DNN properties crucial for accurate modeling of
observed neural responses, such as hierarchical structure with increasingly complex
features [54, 60], local recurrence [61, 62], feedback connections, non-linear mixed
selectivity of single neurons [63] with ensemble-based feature separability [64].
See [44, 65–75] for perspectives and reviews and [76–80] for critical reports.

Following this line of thinking, several researchers in the field have argued that
the next logical step in this direction is development of end-to-end deep learning
models that map stimuli and behavior to brain activity directly [44, 81]. Attempts
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Fig. 47.2 a, b A linear encoding model that predicts ECoG high frequency band activity based on
high-level visual features of the movie stimulus [55]. Prediction accuracy, measured as correlation
between predicted and observed brain activity, is projected from individual electrode center coordi-
nates to a regular grid in a common space and interpolated on the brain surface. Authors showed that
components of visual semantics identified in a data-driven way map onto distinct cortical activation
networks. Copyright 2020 Berezutskaya et al. c, dA linear encodingmodel that predicts ECoG high
frequency band activity during a story listening task [27]. Using contextualized word embeddings
in their encoding model, the authors demonstrated that neural activity prior to word onset contained
information about upcoming words and that this information is used to calculate post-word-onset
surprise. Copyright 2022 Goldstein et al.

for training and validating end-to-end DNNs that perform non-linear processing of
simple input features (such as image pixels or sound waveforms) to directly predict
observed brain dynamics have already been made in animal [82–86] and human [87–
89] research. Recent work applied this approach to iEEG during audio and speech
processing [38, 90] and extracted data-driven features from input sound data in a way
that maximized the model fit to observed neural responses (Fig. 47.3). Such end-to-
end DNN encoding models explained more variance in neural signals compared to
linear encoding models and generalized well to novel experimental data.

The ultimate goal of such models is not limited to novel strategies to extract input
features that best explain brain data. Such models can aim to provide an accurate
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Fig. 47.3 a–c End-to-end brain-optimized encodingmodel based on a recurrent convolutional neu-
ral network (BO-NN) [38]. Themodelwas trained to predict ECoG responses to amovie soundtrack.
Model predictions generalized to a novel movie stimulus watched by a separate group of subjects.
Extracted features encoded speech acoustic and temporal information and revealed a gradient of
information propagation in the brain during speech perception. Copyright 2020 Berezutskaya et
al. d–h End-to-end encoding model based on the neural information flow (NIF) [95]. The model
was trained to fit fMRI responses to a movie stimulus throughout the ventral visual pathway (V1 to
MT and FFA). This approach allowed for bottom-up estimation of input visual features that drove
responses throughout the cortical hierarchy of visual processing and area-specific receptive fields.
Copyright 2021 Seeliger et al.

computational account of neural processing mechanisms underlying perception and
cognition. This, however, remains a challenging goal to achieve. For example, there
has been a discussion of the biological feasibility of current DNN architectures and
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their learningmechanisms [65, 68, 69, 74, 91]. Furthermore,DNNs are often referred
to as “black-box models”, excellent for learning a complex mapping between inputs
and outputs, but difficult when it comes to interpretation of their intermediate com-
putations [67, 70–72, 74, 75, 78, 79]. It is especially the case for neural modeling as
opposed to use of DNNs as feature models, where several visualization and compu-
tational tricks have been developed to help interpret what the model has learned [68,
74, 75, 92–94].

Extending upon the previous ideas of end-to-end encoding and incorporating some
of thementioned concerns, the neural informationflow (NIF) frameworkwas recently
developed [95]. The framework is based on an end-to-end deep learning model of
brain activity, constructed in a modular way, such that each artificial neuronal popu-
lation (i.e. individual DNN layer), predicts, or projects to, a corresponding biological
neuronal population (i.e. region of interest in the brain). In the case of modeling the
ventral pathway of visual processing, illustrated by the authors, each convolutional
layer (I, II, III, etc.) predicted brain responses to visual stimuli in a single correspond-
ing brain area along the visual hierarchy (V1, V2, V3, etc.). Moreover, modifications
in the model architecture allowed NIFs to model hemodynamic response function of
fMRI (also see previous work on this [88]) explicitly. The model was validated with
fMRI responses to naturalistic visual stimuli (Fig. 47.3). It could accurately predict
observed brain responses through learning of gradually increasing visual receptive
fields, plausible hemodynamic response rates and emerging high-level features of
visual semantics. Overall, this end-to-end deep learning framework demonstrates
that it could provide data-driven interpretable neural encoding models based on deep
learning by incorporating known properties and constraints of neural systems, per-
ceptual processing and the brain recording modality. Such models could be used for
validation of existing models of neural processing (such as in the ventral visual path-
way for object processing), model comparison and creation of new, fully data-driven
models, whose structure, connectivity and learned perceptual features are optimized
to fit observed neural data.

Following the growing tendency for integration of deep learning in neuroscience
and the ever increasing amounts of neural data recorded from parallel neural sites
over extended periods of naturalistic stimulation, it is likely that this approach will
become dominant in the field.With the help of Bayesian approaches, effective model
comparison and hyperparameter optimization can be performed for improving the
explanatory power of end-to-end models.

Guided interpretable designs, including model architecture, objective function
and learning algorithm, in the spirit of explainable AI will be key in modeling brain
data using end-to-end deep learning models of information encoding. Key principles
of neural computation known from previous work may need to be incorporated in the
architectures of these models, including hierarchical processing with integrated local
and feedback recurrence loops [96, 97], neural adaptation [98–100], sparse coding
principles [101], temporal stability for noise robustness and code invariance [102–
104], stochasticity in neural signals [105, 106] and oscillatory dynamics [107, 108].
However, given that detailed workings of many of these principles remain debated
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in neuroscience, end-to-end DNN encoding models could also provide an excellent
framework for testing associated theory-driven hypotheses in silico [72].

Regarding the objective function, end-to-end deep learning models aim to mimic
neural processes. Elements of this have been used in representational distance
learning—an approach in which DNN feature models were trained with auxiliary
objective functions [109]. The latter constrained DNN layer activations forcing them
to approximate stimulus similarity structure observed in neural responses across
brain areas. Similarly, end-to-end models can implement composite objective func-
tions that represent constraints on DNN dynamics and representations.

Gradient descent via backpropagation has long been considered a biologically
implausible learning algorithm. However, several studies have shown biologically
grounded approximations thereof [110–113]. Moreover, a lot of promising work is
done towards the development of more biologically plausible learning mechanisms
similar to backpropagation [114–117]. At the same time, alternatives to error-guided
supervised learning, such as reward-based learning or unsupervised (Hebbian) learn-
ing, are also an active area of research [112, 118–120].

The outlined end-to-end encoding approach using deep learning models is par-
ticularly promising in the case of iEEG, as more and more human iEEG data is
becoming publicly available [121–126]. The long-duration and continuous nature of
iEEG recordings makes them an excellent candidate for training and validation of
flexible, interpretable end-to-end models of information encoding in the brain, albeit
the application of this approach to iEEG is associated with additional iEEG-specific
challenges. Such challenges relate to generalization across subjects due to individ-
ual coverage and electrode differences, the scale of neural signal representation and
use of rate-based approaches as opposed to integration of single neuron activity in
spiking neural networks for modeling local field potentials; and overall incomplete
understanding of the nature of iEEG signals, its broadband spectrotemporal and
oscillatory features. Some of these challenges can be addressed by incorporation of
iEEG forward models [127, 128] and attempts at transfer learning in the search for
common space across individual subject datasets [129], yet new creative approaches
may be required to tackle data complexity.

Taken together, the application of deep learning models to neuroscience data, and
iEEG inparticular, remains an exciting andpromisingdirectionof research in creating
a detailed computational account of neural mechanisms underlying perceptual and
cognitive processes.

47.1.1.4 Representational Similarity Analysis (RSA) in iEEG

Representational Similarity Analysis (RSA) is a multivariate approach, initially pro-
posed by Kriegeskorte and colleagues [9, 130, 131], which focuses on assessing
distances between patterns rather than providing decoding accuracy. The principle
of RSA is to estimate how the similarity of neural responses to a set of stimulimatches
the similarity of perceptual or cognitive evaluations. Distances can also be computed
based on predicted responses according to a specific computational model in order



772 J. Berezutskaya et al.

to test its fit in distributed regions across the brain or in different behavioral tasks.
One of the major advantages of RSA distance matrices is to provide a robust solution
to compare results across brain regions, subjects, neural recording modalities (e.g.,
fMRI, EEG, MEG), and even species (i.e., humans, monkeys). As such, the RSA
method could greatly help integrating experimental research across laboratories and
connecting methodological branches of systems neuroscience [9, 130, 132].

A handful of studies have combined RSA with the high temporal resolution of
iEEG to assess the stability and changes of neural representations during cognitive
tasks (see also Chaps. 34 and 50). Chang et al. [133] first used RSA to highlight the
categorical neural representations of speech sounds, mapping their acoustic proper-
ties, in the posterior superior temporal gyrus. Zhang et al. [134] have characterized
time-resolved gamma-band activity patterns in a navigational task, demonstrating
the dynamic changes of path representations during encoding and retrieval. More
recently, RSA has been used to characterize the dynamics of semantic coding com-
bining current models of semantic memory and neural representations inside the
ventral and anterior temporal cortex [135, 136].

It is also noteworthy that RSA is increasingly used to estimate similarity across
biological and artificial neural networks [42, 77, 137, 138], enabling testing for
nonlinear contributions of features in models [139]; see [75] for a review. The com-
bination of AI algorithms and RSA has only been applied to human iEEG data in
very few recent vision-related studies. Kuzovkin et al. [56] demonstrated that visual
complexity along the ventral visual pathway, also visible in layers of deep convolu-
tional neural networks (DCNN), was best predicted by gamma activity. Grossman
et al. [140] revealed face-selective responses in the brain to match the structure of
intermediate layers of the DCNN. This research direction is in its early stages but
already demonstrates its high potential to evidence key functional principles of the
human brain.

47.1.2 Decoding Models of Perception and Cognition

47.1.2.1 Supervised Machine Learning

Supervised decoding approaches have become common practice in cognitive neu-
roscience [141]. They generally involve training a model to classify brain signals
into target categories. The latter are assigned “labels” and may reflect distinct groups
(e.g. controls and patients), experimental conditions (e.g. familiar and unfamiliar
face stimuli) or brain states (e.g. wakefulness, non-REM sleep and REM sleep). The
basic principle is straightforward: The data is first split into “train” and “test” sets
(or into train/validation/test sets). The training data and associated labels are used
to train a model for class prediction. The training can in principle be formalized as
a data-driven learning process by which a model learns to tune the parameters of a
decision function to maximize the correct predictions. Model generalization is then

http://dx.doi.org/10.1007/978-3-031-20910-9_34
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explored by evaluating its predictions on the test data (i.e. samples unseen during
training).

One way to ensure that the performance of the classifier is not biased by a lucky
(or unlucky) choice of train-test split, the entire train-test procedure is generally
repeated multiple times (i.e. cross-validation). In brain decoding work, the input to
the classifier consists of brain variables which are, broadly speaking, of two types:
(1) Hand-crafted features derived from raw brain activity (e.g. spectral power values
of iEEG signals). This feature extraction process is generally guided by domain-
specific knowledge. This process of selecting, manipulating, and transforming raw
data into features that can be used in supervised learning is often referred to as feature
engineering. (2) Original brain signals (such as raw iEEG) can also be used as direct
input to the classifier. While shallow learning approaches often involve the use of
hand-crafted features, techniques such as deep learning generally take the raw data
as input, with little or no preprocessing at all (e.g. continuous iEEG raw time series).

A noteworthy issue that often arises when applying supervised machine learn-
ing in brain decoding, is the question of how it relates to using classical statistical
approaches, such as comparison of means in inferential statistics. An important dis-
tinction between the two approaches is that while classical statistics are generally
conducted on all the available data,machine learning focuses on out-of-sample gener-
alization (see [142] for a more detailed discussion). Furthermore, the use of machine
learning cannot be seen as a way to avoid testing the statistical significance of the
reported results. In fact, inmost cases, an assessment of the reliability of the decoding
accuracy of a classifier requires statistical evaluation, for instance using permutation
tests [143] (see also Chap. 35).

Conventional Single and Multi-feature Classification of iEEG Data

Shallow ML is based on an a priori selection of features and aims at identifying the
best predictors of distinct cognitive states. In electrophysiology, brain activity has
been primarily examined by quantifying increases and decreases in evoked-response
potentials and spectral power in distinct frequency bands (very low frequency com-
ponent [0.1–1.5 Hz], delta (δ) [2–4 Hz], theta (θ ) [5–7 Hz], alpha (α) [8–13 Hz],
beta (β) [13–30 Hz], low-gamma (low γ ) [30–60] and broadband gamma (high
γ ) [60–200 Hz]). More recently, other spectral properties such as phase, phase-
amplitude coupling, inter-trial coherence, and phase-locking value depicting both
local and large-scale neural mechanisms have complemented the features palette
used to advance our understanding of the human brain (Fig. 47.4a).

In this context, shallow ML models have proven to be helpful in addressing cog-
nitive neuroscience questions by unraveling the contribution of various intracranial
EEG-based features in cognitive processes. More specifically, by computing the
decoding accuracy achieved by a specific feature—for example, how well gamma
power discriminates between two conditions—we can make interpretations on the
importance of this feature in the task. The application of ML as a brain decoding
technique is increasingly common in different subfields of systems and cognitive neu-

http://dx.doi.org/10.1007/978-3-031-20910-9_35
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a b

c

Fig. 47.4 a–c Decoding iEEG data using supervised ML models. a Examples of brain features
computed from iEEG signal and used for classification. bDecoding accuracies of single-trial classi-
fications ofmotor-states using power, phase and PAC features in significant iEEG sites. c Example of
temporal generalization of choice-type decoding (instructed vs. control and free vs. control) using
high-gamma (HG) activity across significant fronto-parietal iEEG sites. Generalization matrices
show decoding performance plotted as a function of training time (vertical axis) and generalization
time (horizontal axis). Reprinted with permission from [144, 145]

roscience including motor control (e.g., [144, 146]), sensory perception (e.g., [147–
149]), and high-order cognitive processes such as cognitive interference (e.g., [150]),
memory (e.g., [151, 152]) and decision making (e.g., [145, 153]).

ML Models

Various methods have been used to build ML models using intracranial EEG. These
include support vector machines (e.g., [154–156]), linear discriminant analyses
(e.g., [145, 153, 157]), logistic regressions (e.g., [158–160]), and decision trees such
as random forests (e.g., [156]). The choice of the decoding model impacts the per-
formance and the interpretation of the results (e.g., [151]). As all models do not rely
on linear algorithms, it is critical to compare their predictions and explore nonlinear
or unexpected interactions between variables.
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Overview of Decoding Studies in iEEG

Using single-feature approach, some researchers have compared how predictive
single-trial phase values in rhinal and hippocampal cortices are about encodingmem-
ory success, in a word recognition paradigm [155]). As another example, decoding
results have been compared across frontal and parietal cortices during a delayed ocu-
lomotor decision task, demonstrating how free-choice in the brain is supported by
sustained high-gamma activity during the delay period [145]. A similar data-driven
approach, has allowed to disentangle the distinct contributions, on a trial-by-trial
basis of power, phase, and phase-amplitude coupling to the planning and execu-
tion of a goal-directed motor task [144] (Fig. 47.4b). These studies illustrate how
single-feature supervised classification can be employed with iEEG data to advance
our understanding of how distinct electrophysiological patterns in individual brain
regions are involved in goal directed behavior. In the next section, we will address
some promising avenues using multi-features ML models.

One important aspect to watch out for when developing ML pipelines is the risk
of data overfitting, where the model performs well on training data but does not
provide accurate predictions on the previously unseen test data. An overfitted model
learns patterns that accurately describe the training data, but do not generalize to the
test data. This is a prominent issue in data with a small sample size (n) but large
number of features, or predictors (p), a situation often referred to as “wide data”,
or the “p»n problem”. This can become an important limitation in intracranial EEG
studies where the number of patients is often quite limited whereas the feature space
can be very important, which is in principle a perfect recipe for a model to drastically
overfit.

A general recommendation to deal with overfitting is to simplify the model, for
instance by decreasing the number of features through feature selection or dimension-
ality reduction techniques. In intracranial EEG, rather than examining generalization
across subjects, intra-subject analysis is often preferred partly because of the het-
erogeneity of the electrode implantation across individuals. In this case, rather than
reflecting the number of participants, the sample size becomes the number of trials,
and a new model is trained on each subject using single-trial features with the aim of
generalizing across trials, not subjects. This generally reduces the risk of overfitting,
assuming there are more trials than features. This also explains why multi-feature
classification is not very common in intracranial EEG data sets with modest trial
numbers. As a general rule, to reduce the risk of overfitting, it is important to make
sure one is not using an overly complex model with too many parameters.

The occurrence of overfitting when applying ML to intracranial EEG data can be
detected by cross-validation (i.e. measuring performance on left-out data the algo-
rithm has never seen during training). It is worth noting that sample size directly
impacts the standard error of cross-validation, with small sample size studies yield-
ing higher classification performance [161]. In addition, with small sample sizes it
is particularly important to verify the statistical significance of observed decoding
accuracies, as probabilistic chance levels only (e.g. 50% for binary classification)
hold for infinite amounts of data. Large deviations from these thresholds can easily
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occur by chance in small samples. A recommended approach to handling this issue is
to use permutations (i.e. randomly shuffling class labels and recomputing decoding
accuracies) to derive a null distribution of classifier performance, and hence thresh-
olds for statistical significance assessments of decoding accuracies [143] (see Chap.
35 for details). Again, this issue may be particularly important when analyzing small
data sets of intracranial EEG.

Multivariate Analyses for iEEG (MVPA, Temporal Generalization)

Among common supervised decoding frameworks, Multivariate Pattern Analysis
methods (MVPA) have been attracting growing attention in cognitive neuroscience
(for reviews see, [162, 163]). MVPA assesses distributed neural representations—
also called patterns—across multiple voxels (fMRI) or channels (EEG and MEG)
simultaneously. Classifiers are trained to capture the spatial relationships, invisible
with traditional univariate tests, between different brain locations across different
experimental conditions. Theirmain advantage is to allow for content-specific decod-
ing in brain activity, and thus to disentangle it from general cognitive functions. In
addition, by combining spatial information, MVPA increases signal-to-noise ratio
and facilitates single-trial prediction especially relevant in iEEG. Their usefulness
has been demonstrated quite extensively in vision, including evidence for sensitiv-
ity to orientation in V1 [164, 165], and for distinct pattern of responses for visual
categories (e.g., faces, houses) in the ventral temporal cortex [166]. A time-resolved
application of MVPA called the temporal generalization method has also been intro-
duced (see for a review [167]). This method allows for tracking how neural represen-
tations unfold in time by training and testing classifiers to discriminate at least two
experimental conditions at all points in time [168, 169]. This approach allows for
detecting and comparing periods of optimal decodability across time and cognitive
operations.

Overview of iEEG Decoding Studies Using MVPA and Temporal
Generalization

The application of multivariate analysis techniques to iEEG is still in its early days,
though the high spatial and temporal resolutions of these signals would constitute a
true advantage to discriminate neural patterns. Tsuchiya and colleagues [170] have
applied multivariate models to ECoG power signals, finding reliable distinct repre-
sentations for happy and fearful faces in the ventral temporal cortex. Spatial pattern
analyses have also been adopted to identify successful word encoding in ECoG sig-
nals [152, 171] and iEEG [160], and to show the reinstatement of similar processes
during successful encoding and retrieval of words in iEEG [172]. Using the temporal
decoding method, Thiery et al. [145] have recently provided the first evidence for
delayed high-gamma activity in the fronto-parietal cortex in mediating free choices
compared to instructed choices (Fig. 47.4c).

http://dx.doi.org/10.1007/978-3-031-20910-9_35
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Despite the significant advances that multivariateMLmethods allow, certain limi-
tations should be considered when interpreting classification results. Neural patterns
obtained from combining depth electrodes can strongly vary between patients and
often cover distant brain regions that may not be anatomically connected. This raises
the question about the actual computational usage and biological relevance of the
information included in the analysis. In fact, it is possible that decoding results are
driven by a small number of electrodes rather thanwidely distributed patterns. Finally,
when runningMVPAanalyses, one should keep inmind that decoding results strongly
rely on feature selection, e.g. when using statistical feature ranking or dimensionality
reduction techniques.

47.1.2.2 Deep Learning for Decoding

Deep learning is increasingly used in neuroscience research [173]. Although still
in its early days, the application of deep learning to iEEG is very promising and is
starting to gain momentum (see also Chap. 50). Using deep learning in the context
of iEEG decoding work is in part appealing because it allows us to go beyond inves-
tigation based on handcrafted features (see Sect. 47.1.1.2). Indeed, representation
learning [174] is a major motivation for using deep neural networks. In principle,
representation learning (or feature learning) is the process by which a system auto-
matically uncovers the representations needed for classification directly from the
raw data. Although the features learned through deep learning are often described
as being abstract, interpretation can be facilitated using an array of feature visual-
ization techniques [175] including deconvolutional methods such as guided back-
propagation [176]. The identification of the most discriminative samples through
these approaches can be combined with signal processing tools commonly used in
iEEG work, such as spectral analyses, to further enhance interpretability.

An interesting illustration of how deep learning can be applied to iEEG was pro-
vided by a study that used deep convolutional neural networks (CNNs) to probe
which frequency bands of the iEEG data are correlated with feature transformations
of ascending complexity along the ventral visual pathway during object recogni-
tion [56]. The study revealed that gamma activity (30–70 Hz) reflects the increasing
complexity of visual feature representations in the deep CNN (see also [55]). These
results illustrate how CNN activity may capture essential electrophysiological fea-
tures of biological object recognition not only in space and time, but also in the
frequency domain.

Recent work on decoding in cognitive neuroscience has shown the potential of
other deep learning architectures, such as recurrent neural networks [177], generative
adversarial neural networks [178–180] and transformers [181] to reconstruct stimulus
information based on non-linear transformations of brain inputs. In decoding from
iEEG data, deep learning models have been used as powerful feature extractors from
raw iEEG signals and as a tool for combining data across subjects with varying
implantation coverage [129]. Deep learning has also been applied to iEEG in the

http://dx.doi.org/10.1007/978-3-031-20910-9_50


778 J. Berezutskaya et al.

context of epilepsy, including seizures detection, e.g. [182–190] (see Sect. 47.2.3)
as well as for brain-computer interfaces [191–194] (see Sect. 47.2).

47.2 AI-iEEG for Neurotechnology

Theever growing amount of neuroscientificknowledgehas graduallymade it possible
for a novel field of neurotechnology to emerge. This field is focused on development
of brain-computer interface (BCI) devices, and one of its fundamental goals is to offer
technological solutions for real-world clinical problems. This includes technology for
(1) restoration of lost cognitive and motor functions, such as visual prosthesis for the
blind, BCIs for severely paralyzed individuals or cochlear implants for people with
impaired hearing (see alsoChap. 51); and (2) therapy and treatment of various chronic
neurological conditions, such as deep brain stimulation devices for the Parkinson’s
disease, dystonia, epilepsy and severe mental disorders (see also Chaps. 52 and 53).
Despite the availability and lower safety concerns of non-invasive brain recording
techniques, intracranial technology has proven to be best suited for effective man-
agement of severe neurological conditions and restoration of severed cognitive or
motor functions. This is because it provides superior neural signal quality [195],
allows access to highly localized surface and deep brain structures, and overall has
a better potential for long-term, continuous brain recordings and autonomous home
use of the device. In that regard, ECoG and sEEG recordings have been instrumental
in development, testing and deployment of various examples of emerging clinical
neurotechnology. See [196–207] for reviews.

Neurotechnology is a highly multidisciplinary field with contributions from neu-
roscience, signal and data processing and electrical engineering disciplines. Funda-
mental neuroscience provides the theory of neural processes that support cognition
and behavior, and the understanding of neural signals in health and disease. Electrical
engineering and material science develop cutting-edge neural recording and stim-
ulation technology and necessary hardware to enable operation and power supply
of the device. Statistics, computational modeling and machine learning provide the
methodology and algorithmic base for processing neural signals and addressing the
clinical problem at hand, via control of external devices (a wheelchair, exoskeleton
or computer) or brain stimulation to alleviate symptoms of a chronic neural condi-
tion. More recently, BCI methodology began to incorporate advanced computational
models that make use of machine learning and deep learning approaches. These
AI-powered algorithms are being used increasingly more often for (1) neural sig-
nal preprocessing and extraction of informative temporal and spectral features in
brain data; (2) decoding models of target neural events, such as intended movements
in paralyzed individuals or biomarkers of pathological activity in individuals with
a neurological condition; (3) optimization of BCI algorithms and development of
energy-efficient computing systems; (4) integration with external domain-specific
tools and applications, such as virtual reality, natural language processing models
and robotic components, for boosting the development of cutting-edgeBCI solutions.

http://dx.doi.org/10.1007/978-3-031-20910-9_51
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In this section, we will describe neurotechnology applications based on the com-
bination of AI methodology and iEEG neural data. The main examples will include
BCIs for speech and communication in severely paralyzed individuals, brain implants
for motor control of a wheelchair, exoskeleton or robotic arm, and deep brain stim-
ulation devices for neurological and psychiatric disorders.

47.2.1 IEEG BCI for Speech and Communication

Individuals who suffer from a motor neuron disease, such as amyotrophic lateral
sclerosis, (ALS) or a brainstem stroke can develop severemotor paralysis. In extreme
cases, it can lead to a “locked-in syndrome” (LIS) [208] and result in a complete loss
of muscle control. Such individuals may lose the ability to perform voluntary body
movements, such as walking, object interaction, speech, facial expressions, blinking,
swallowing and, in extreme cases, breathing. Theirmeans of communication are often
reduced to limited eye movements or residual control of a few facial muscles. People
with a complete LIS may lose any ability to communicate. Given modern standards
of healthcare “locked-in” individuals can survive in their severely paralyzed state for
many years and even decades [209, 210]. Interestingly, studies report that they can
experience good quality of life [211–215], and that one of the major predictors of
good quality of life is retaining the ability to communicate with the outside world
[216, 217].

In many cases, motor paralysis in people with LIS is caused by damage to connec-
tions between the brainmotor cortex and the spinal cord, or the spinal cord and nerves
that lead to the muscle tissue. Unlike patients in a vegetative state, “locked-in” indi-
viduals remain conscious. Cortical activity in individuals who have suffered a brain-
stem stroke is largely unaffected and exhibits patterns similar to that of the healthy
able-bodied individuals. Effects of motor neuron degeneration on cortical activity in
individuals with a motor neuron disease, such as ALS, remain less well-understood.
Several studies report a decrease in alpha [218] and theta [219] power compared to
healthy controls, while other studies report an increase in alpha power [220] or no dif-
ference [221]. A recent study indicates that population-level sensorimotor dynamics
in ALS subjects may be comparable to sensorimotor responses in non-human pri-
mates [222]. Consistent with this finding, several studies reported successful decod-
ing of motor information from sensorimotor cortex of individuals with ALS [223,
224]. This work demonstrates the potential of BCI technology to detect intended
communication signals from brain activity of “locked-in” individuals and translate
them to computer commands, thereby unlocking a means of communication with
the world.

Preparatory research towards BCI technology based on an iEEG implant relies on
pre-clinical studies in able-bodied patients with medication-resistant epilepsy. These
patients are temporarily implanted with iEEG electrodes (typically, for 7–10 days)
for clinical monitoring of their condition with a goal to identify and subsequently
remove neural sources of epilepsy. While implanted with iEEG, such patients can
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participate in various cognitive and motor tasks, and the collected iEEG signals are
subsequently analyzed with a goal to identify, or decode, neural events relevant for
BCI research. Most of this work rests on the assumption that speech production and
other motor activity in able-bodied subjects engage brain mechanisms and cortical
areas similar to those of attempted speech and imagined actions in paralyzed indi-
viduals. This assumption is supported by the recent work on attempted movements
in amputees [225, 226] and paralyzed individuals [227, 228]. Given the reports on
potentially shared neural basis of performed and imagined movements, including
speech [229–233], it has been proposed to use imagined movement paradigms in
able-bodies participants as a proxy for development of BCI technology for indi-
viduals with LIS. Other reports, however, provide conflicting evidence regarding the
shared neural mechanisms of imagined and performedmotor activity [234, 235], and
in general, a distinction between attempted (no actual movement possible) and imag-
ined (actualmovement possible and likely inhibited)movement should bemade. Fur-
ther research comparing neural activity during performed, imagined and attempted
actions is needed to gain a better understanding of these processes and inform BCI
development.

The pre-clinical work on iEEG BCIs has been focused on identifying three key
components of the emerging technology for communication: (1) optimal location
for implanting iEEG electrodes, (2) optimal targets or features for decoding, and
(3) optimal neural decoding model. State-of-the-art BCI technology for long-term
autonomous use is limited to implants with a small number of electrodes (four to
sixteen) [223, 224]. Larger numbers will require higher power consumption for con-
tinuous signal recording and analysis and may lead to overheating of the implanted
components beyond reasonable temperatures. Moreover, implantation of electrodes
over large parts of the cortex may lead to higher risks during and following the
implantation surgery and may result in longer recovery times. Until these concerns
are mitigated, targeting a smaller brain region for BCI implantation is preferred. Cur-
rently, sensorimotor cortex is the primary candidate for such BCIs as its involvement
inmuscle control duringmovement and communication has been studied extensively
with iEEG in non-human primates [236–238] and human participants [23, 239–241].
Other brain areas have also been considered in decoding of language and speech,
such as inferior frontal gyrus, temporal and parietal regions [230–232, 242–247].
These regions are part of the language processing network in the brain [248, 249].
However, language-related neural signals tend to be highly spatially distributed and
varied across subjects, which results in less overall consensus about their potential
for BCI use. It remains to be seen how the development of BCIs for communication
can incorporate current neurolinguistic theory and benefit from signals recorded in
the language processing network of the brain.

Another key component of a BCI for communication is the target of decoding,
and given the focus on sensorimotor cortex, one of the prominent lines of research
is decoding of motor information. This work includes decoding of performed move-
ments, imagined or attempted movements of, for example, the upper limb, and relies
on the previously mentioned assumption about the shared neural basis of performed
and attemptedmovements. This research includes decoding of various types ofmove-
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ment, such as simple hand andfingermovements [193, 250], gestures [241, 251–254]
and elements of sign language [255]. Accurate decoding of several classes of facial
movements, such as basic mouth movements [256] and facial expressions [257] has
also been demonstrated.

The long-term goal of approaches based on accurate decoding of several discrete
motor commands, is to enable communication via development of a BCI with several
degrees of freedom for flexible cursor control [229, 258] or use of a computer-based
language speller [259]. Decoded motor commands could then be used to control
such interface to move the cursor (in a discrete: up, down, left, right, or continuous
fashion) and perform item selection. Despite the potential of this approach, most
recent work has been focused on making BCI communication faster and more effi-
cient, and rely on a more natural way of communication, such as attempted speech.
For this, BCI researchers have turned to decoding of discrete speech-related fea-
tures, such as individual phonemes [230, 260–263], syllables [264], words [242,
247] and sentences [265]. Researchers have also used a closed set of decoded ele-
ments, such as phonemes, as building bricks for potential open-vocabulary decoding
of full words and sentences [246, 266]. Some work explored decoding of acoustic
features of speech [231, 267] and used external AI models to synthesize speech
from them [233, 268, 269]. Another recent study used microelectrode arrays over
the hand knob in sensorimotor cortex to decode handwriting patterns during word
spelling [270]. Decoding of speech and speech-related features has proven to be
more difficult compared to other motor movements. On the other hand, it can offer
the potential to provide a faster, more natural and convenient way to communicate.
Therefore, speech and speech-related features remain a more attractive and overall
preferred target of decoding in BCI research.

The third component—optimal models for decoding—also remains a topic of
debate. From the beginning, BCI development has relied on various statistical and
machine learning algorithms to perform signal processing, dimensionality reduction,
time series analysis and decoding [271, 272]. Various classification methods, such as
logistic regression, support vector machines, k-nearest neighbours, random forests,
artificial neural networks and others have been used and compared in terms of their
decoding accuracy [245, 263, 264, 273, 274]. There have been attempts to boost the
performance by aggregating results from an ensemble of classifiers, each generating
its own decoding output. Latest advances in AI have led to the focus on the so-called
neuroengineering approach that relies on deep learning for decoding. This includes
the use of deep learning models for extracting features that could be used as targets
of decoding [275], as well as end-to-end deep learning models for learning a com-
plex mapping from neural data to speech and language features [233, 264, 268, 269,
274–277]. Deep learning has been used for transfer learning in iEEG to account for
the variability in electrode placement across subjects and pre-train decoding models
for new subjects on previously collected datasets [129, 276]. Another recent trend
is the use of external AI tools for boosting the decoding results, such as language
models [278, 279], audio synthesismodels [233, 268, 269, 275], speech-to-textmod-
els [276] and models of articulatory-to-acoustic inversion [274]. Overall, it appears
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that AI-powered tools for decoding are beginning to dominate the BCI scene due to
their superior accuracy and potential for sophisticated data-driven solutions.

Several human clinical trials of iEEG-based BCIs for communication aiming to
validate the envisioned technology in the daily life of end users have already started.
A recent study by Vansteensel et al. validated a fully-implantable BCI device for
communication in an individual with late-stage ALS [223]. Using a four-channel
ECoG implant over the subject’s sensorimotor cortex and a simple linear decoding
model the authors decoded binary “click” events based on attempted hand move-
ments with 90% accuracy. The decoded clicks were used to control the on-screen
computer menu and language speller. For the first time, an implantable BCI tech-
nology for communication offered its user the possibility of autonomous 24/7 home
use. More recently, another study reported preliminary data from a fully-implantable
BCI system in two ALS individuals [224]. Minimally invasive stent-electrodes [280]
were implanted within participants’ vein adjacent to their motor cortex. The study
reported high-fidelity decoding of two and three classes of motor events (on average,
93% accuracy of binary decoding in the typing task) and thereby demonstrated high
potential of their BCI system for autonomous use in daily life. Another recent study
reported the proof-of-concept of decoding attempted speech using advancedAImod-
els in a patient with anarthria (inability to speak) following a brainstem stroke [279].
The authors implanted a 128-channel ECoG grid (not suitable for 24/7 home use
due to power limits) over the sensorimotor cortex, and built a deep recurrent neural
network to detect attempted speech in neural signals in real time. After detection,
another set of deep neural networks decoded individual words out of a closed set
of 50 words. In addition, the system used a hidden Markov model approach and an
external language model to decode short full sentences made of the set of 50 words.
The study reported highly accurate (word error rate of 26%) decoding results, high-
lighted the importance of using external languagemodels in achieving this result, and
concluded that the developed BCI was an unprecedentedly fast (15 words a minute),
accurate and naturalistic means of communication available for their participant.

Currently this work remains at the stage of clinical trials and research, but given
its promising results and continuous progress in iEEG technology, BCI hardware,
signal processing and decoding models, it may achieve commercialization in the
foreseeable future. This will make BCI-based communication technology available
for “locked-in” individuals. Once this technology becomes part of the healthcare
system, it will allow its users to communicate more efficiently, thereby helping them
re-integrate in the society and further improving the quality of their lives.

47.2.2 IEEG BCI for Motor Control

Up to 50% of individuals who undergo a spinal cord injury can develop a condition
called tetraplegia, which refers to a complete paralysis of four limbs [281]. BCI for
restoration ofmotor control aims to improve the lives of these individuals by decoding
intended movements from neural signals in their sensorimotor cortex, and use them
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to control an external device. The latter can be a cursor on a screen, a virtual reality
avatar or a mobility device, such as a robotic arm, exoskeleton or wheelchair. As this
neurotechnology is focused on restoration of a lost function, its target population,
goals and approach overlap with those of the BCIs for communication. Yet despite
the severe paralysis, individuals with tetraplegia retain their ability to communicate,
and this BCI technology aims to further decrease the reliance of its users on patient
care by allowing them to move and interact with objects independently. Since these
individuals suffer from paralysis of all four limbs, and because they are not likely
to recover from this condition, long-term invasive BCI solutions may be best for
restoring these persons’ motor control.

The field of iEEG-based BCI for motor control has been based on work on single-
cell recordings andmotor-related action potentials, and has therefore been dominated
by microelectrode Utah arrays. Successful preliminary work on movement decoding
in animals [282–287] has laid down the pathway for clinical trials in humans (see
Chap. 51). In 2006, first decoding results using amicroelectrodeUtah array implanted
in a tetraplegic individual were published [288]. The study participant learned to con-
trol a cursor using attempted hand movements. In each trial, the participant was cued
with one of four target positions (up, down, left and right) and was asked to attempt
to move the cursor from the center of the screen to that position. The associated
single-cell activity on the motor cortex showed modulation that was picked up by the
decoding algorithm and used to update the cursor position. The participant reached
accuracy of 73–95% across six sessions. This study was part of the first clinical trial
BrainGate (Cyberkinetics, Inc.) aimed at development ofmicroelectrode-based BCIs
for motor control in paralysed human subjects (BrainGate).

Later studies, including work from other groups (University of Pittsburgh and
Ohio/Neurolife), expanded upon these results and demonstratedmicroelectrodeBCIs
in tetraplegic subjects for a real-time control of various external devices: computer
cursor [289, 290], robotic arm [291, 292], driving and flight simulators [293, 294].
These studies rely on decoding of a few discrete motor commands, for example, up,
down, left, right [288]; complexmulti-jointmovements, such as reach and grasp [291,
295]; variousmovement parameters, such as velocity, translation, orientation, torque,
etc. [292] and continuous muscle activity [296]. Several studies explored the pos-
sibility of restoring proprioception via electrical stimulation of the implant [297,
298] and showed that implementing sensory feedback from interaction of the BCI-
controlled robotic arm with objects results in faster, more accurate and naturalistic
motor control [299]. Several studies combined microelectrode BCIs with functional
electrical stimulation [300] of peripheral nerves to reanimate participant’s paralysed
limb [296, 301, 302]. See [303] for an overview of the state of the art in upper limb
decoding for BCI motor control.

Despite promising results achievedwithmicroelectrodes, this invasive technology
suffers from signal decay over time [304]. It has also been reported that for chronic
long-term use of the implant, repeated calibration sessions are required [305, 306].
Moreover, microelectrode devices have not been thoroughly tested for autonomous
home use (although see some preliminary recent work [307]) and are not currently
certified for indefinite implantation, which largely affects and restricts the user expe-

http://dx.doi.org/10.1007/978-3-031-20910-9_51
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rience. As a less invasive technique, iEEG does not suffer from signal decay over
long periods of time as strongly asmicroelectrode arrays do. Interestingly, somework
in non-human primates indicates that decoding from iEEG may be more accurate
compared tomicroelectrode arrays [308].Moreover, iEEG shows less signal instabil-
ity over time and therefore does not require frequent re-calibration [223, 258, 305,
309–311]. Autonomous home use of iEEG implants in human subjects has been
successfully demonstrated [223], and iEEG electrode technology and hardware for
power supply continue to evolve towards providing even better long-term record-
ing solutions [312, 313]. Altogether, these factors contribute to the emergence of
iEEG-based BCI technology for restoration of motor control.

Unlike speech, motor control via implanted neurotechnology can be assessed in
animals, and several previous studies have showed promising results of decoding
performed and attempted movements in non-human primates implanted with ECoG
grids [309, 314–316]. At the same time, similar to BCIs for communication, much
of initial research on decoding motor information from neural activity has been done
pre-clinically, in able-bodied patients temporarily implanted with iEEG for epilepsy
monitoring. This work reported on successful decoding of discrete movements and
postures of hand [317–321], fingers [322–324], foot [317, 325] and other body parts;
as well as decoding of continuous movement trajectories [326–330] and movement
properties, such as force, velocity, direction and speed [22], decoding of complex
multi-joint movements and gestures [241, 251–254]. See [331–333] for reviews.
Most of iEEG studies on motor decoding to date have focused on ECoG. However,
some recent work in able-bodied subjects demonstrates the potential of sEEG in
development of BCIs for motor restoration. These studies report successful cursor
control [334, 335] and control of a robotic arm [336] using motor signals decoded
from sEEG. See [203, 333] for reviews of pre-clinical work with sEEG.

Clinical trials in individuals with tetraplegia tested the possibility of real-time
clinical applications of ECoG-based BCIs for motor control. Work by Wang and
colleagues was among the earlier studies to validate the ECoG-based decoding
of intended motor commands in a human subject with tetraplegia [337] (but see
also [338, 339]). Following a spinal cord injury, the study participant lost volitional
control of arm and hand. The participant was subsequently implanted with a high-
density ECoG grid over the sensorimotor cortex and trained to perform 2D control (x
and y coordinates) of a computer cursor using attempted hand and elbowmovements
(thumb for left, elbow for right, both thumb and elbow for up and neither for down).
After 11 days of training, in their final session the participant reached an accuracy
of 87% (chance was 8%) over 176 cursor control trials. Broadband neural activity
in high frequency band (gamma and high gamma) showed largest modulation by the
task. In another study, Silversmith et al. [305] tested a cursor control BCI system in
a patient with severe tetraparesis, or partial tetraplegia. A closed-loop BCI system
with a high-density ECoG implant was built to process motor neural signals (imag-
ined arm and head movements) and use them for control of a cursor on a screen.
The system achieved high performance and stability over time without the need of
re-calibration.
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A series of recent studies demonstrated the use of an ECoG-based BCI for control
of an exoskeleton [311, 340, 341]. Benabid and colleagues for the first time showed
a wireless ECoG device WIMAGINE [312] implanted epidurally and bilaterally
over the sensorimotor cortex of a patient with tetraplegia (Fig. 47.5). In two years
of training, the implanted individual learned to walk and perform complex upper
limb movements by controlling a four-limb exoskeleton or a virtual avatar (virtual
reality) with the ECoG implant. Motor control was achieved with an adaptive linear
model that decoded parameters of movement to the target location (distance to its 3D
position and angles between current and target location). After training the decoder,
the participant could perform voluntary movement control with a success rate above
70% for walking and 71% for 3D bimanual reach and touch tasks. This performance
was stable without the need for frequent re-calibration after 7 weeks [340] and later
than 6 months [341] after implantation.

Another recent study used an ECoG implant in combination with a functional
electrical stimulation device to enable cortical control of the paralyzed hand [342].
Through training, the study participant learned to trigger electrical stimulation of
his hand with 89% accuracy and successfully perform hand grasping tasks. After
the initial period of in-lab testing, the participant was able to use the developed BCI
system autonomously at home.

Similar to BCI for communication, restoration of motor control relies on various
decoding models from statistics and machine learning (see [331, 343] for reviews of
models for decoding movement). Simpler approaches based on decoding of discrete
classes use various classification algorithms, such as linear discriminant analysis,
k-nearest neighbors, support vector machines and others. Models that decode con-
tinuous kinematic trajectories can use linear methods, such as the linear regression.
For decoding of position and velocity of movement, models of linear dynamical sys-
tems, such as the Kalman filter, are typically employed [327, 329]. They compute
hidden states of the system, such as intendedmovement, based onmovement from the
previous time stamp, and model observed states, such as neural activity, as linearly
dependent on the computed hidden state data. Noise associated with observed and
hidden states is modeled separately. Such formulation allows for better estimation
of time series data and helps boost performance on noisy non-stationary iEEG data.
Next to the Kalman filter, hidden Markov models are also often used to handle more
complex temporal dynamics in a model with hidden and observable states [340]. For
better temporal stability, adaptive and switching decoding models [340] have been
employed as well.

Recently, computational approaches based on artificial neural networks [193, 253,
302, 344–347] have become increasingly popular. These models consistently appear
to provide more accurate and robust decoding compared to simpler baselines [193,
302, 344]. Moreover, these approaches have the potential to handle concerns asso-
ciated with real-time decoding for practical BCI applications. Namely, they can
provide superior speed of the BCI response and stable performance over sessions
and days [302], while offering relatively computationally inexpensive, and even
power-efficient solutions. The latter is further explored by development of spiking
neural networks in combination with power-efficient memristive hardware as BCI
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Fig. 47.5 ECoG-controlled exoskeleton: a proof of concept [340], pp. 1112–1122, reprinted with
permission from Elsevier

solutions [348]. Another interesting AI application in motor decoding is analysis of
video recordings collected simultaneously with ECoG and data-driven extraction of
movement feature from video data [345] for decoding from the brain. Thus, similar
to communication, external AI tools for extracting relevant features and building
physical models can guide motor decoding and further improve the state-of-the-art
performance. Altogether, as in the case of BCIs for communication, it appears that
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state-of-the-art BCIs for motor control, implemented either on microelectrode or
iEEG implant, will continue to be powered by AI decoding algorithms and external
tools for achieving highly accurate, sophisticated, reliable control of external devices
by paralyzed individuals.

47.2.3 iEEG for Deep Brain Stimulation

Invasive neurotechnology for healthcare does not only focus on restoration of a lost
function, such as speech, hearing, vision or motor control. Another branch of inva-
sive neurotechnology targets chronic neurological and psychiatric conditions that
do not respond to conventional treatment. Such conditions include movement dis-
orders, such as Parkinson’s disease, essential tremor, dystonia (involuntary muscle
contractions); epilepsy; mental disorders, such as major depression, schizophrenia,
obsessive-compulsive disorder, chronic pain and others. These conditions affect large
numbers of people. For example, it is estimated that over 160 million people world-
wide suffer from major depression [349]. About 50–80 million worldwide suffer
from epilepsy [350, 351], of which 30–40% do not respond to medication [352]).
Parkinson’s disease affects over 6 million of the general population [353].

Manyof these conditions, aswell as the affected behavioral and cognitive function,
have been associated with neural activity in deeper brain structures: basal ganglia in
Parkinson’s disease [354, 355], nucleus accumbens and median forebrain bundle in
major depression [356], amygdala and hippocampus in temporal lobe epilepsy [357].
Severe cases that are resistant to medication can be treated with an invasive form of
therapy called deep brain stimulation (DBS). This neurotechnology assumes implan-
tation of a small electrode wire connected to a pulse generation device, typically
placed under the skin around the chest [358], to modulate function of deeper brain
structures. The device attempts to inhibit pathological neural activity via electrical
stimulation of the neural tissue surrounding the implant and thereby improve the
patient’s condition.

Among the earliest applications of an implantable DBS technology in patients
with Parkinson’s disease was work by Benabid and colleagues [359]. The authors
showed that high-frequency stimulation of ventral intermediate nucleus resulted in up
to 88% improvement of tremor symptoms. The effect persisted up to 29 months after
implantation. Subsequently, DBS in subthalamic nuclei was developed and success-
fully tested in patients with Parkinson’s disease [360, 361]. It has since been shown
to provide more relief and emotional well-being to patients compared to conven-
tional medical treatment [362–364], and is now considered one of the state-of-the-art
solutions for treating Parkinson’s disease. Analogous applications were developed
and successfully demonstrated in patients with medication-resistant epilepsy. Earlier
work reported that modulation of anterior thalamic nucleus could lead to reduction
in seizure frequency [365, 366]. Following successful large-scale trials by Fisher
and colleagues [367], most modern DBS devices target this region for reduction of
epileptic seizures. At the same time, stimulation of other deep brain structures, such
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as hippocampal formation [368], subthalamic nucleus and substantia nigra [369],
centromedian nucleus [370] and cerebellar regions [371], has also been explored.
See [357, 372, 373] for reviews. Apart from Parkinson’s disease and epilepsy, DBS
applications for tackling symptoms of chronic mental disorders are also being devel-
oped. These includeDBS treatment ofmajor depression [374], obsessive-compulsive
disorder [375] and other conditions [376, 377].

DBS systems have already been able to help many people worldwide. Yet despite
the accumulated success, commercially available DBS implementations have sev-
eral limitations. Most systems are based on a single wire with a few electrodes
(typically four) [358] and therefore provide only limited brain coverage that may
not be suitable for comprehensive monitoring of the pathology, as brain signals in
health and disease are believed to reflect large-scale states of dynamic neural sys-
tems [378, 379]. Moreover, commercially available DBS systems are not suitable
for using recorded signals (with the exception of the Percept PC [380] and the Activa
PC+S (Medtronic) neurostimulators), in guiding the stimulation strategy (closed-
loop solutions). Instead, most systems rely on open-loop solutions, which means
that they deliver a constant stimulation pulse to the implanted tissue based on a sim-
ple trial and error approach [377, 381] and do not process observed brain signals
to adapt their stimulation behavior [381, 382]. Such DBS systems are less effective
and could drain the battery during continuous stimulation even when it may not be
necessary. As a consequence, DBS shows high variability of success and can lead
to DBS-induced adverse effects [383–386]. Altogether, there is a need for better
understanding of the neural signal, larger-scale recordings and active, adaptive mon-
itoring of the system. Next-generation devices could represent a closed-loop system
based on neuromodulation, which means that they could continuously monitor brain
activity in compromised regions, identify neural patterns associated with healthy and
pathological states, and devise a stimulation plan for treatment (see also Chaps. 41,
52 and 53).

A number of prototypes for adaptive closed-loop solutions have already been
demonstrated [387–390]. Among those are studies that employ iEEG recordings
for continuous recording and processing of neural signals to observe pathological
activity and effects of stimulation, and adapt stimulation parameters accordingly. For
example, several recent studies used ECoG grids implanted in addition to DBS wires
for monitoring movement-related activity on the motor cortex [389, 390]. Herron
et al. used ECoG electrodes to detect intended hand movements in a patient with
essential tremor [389]. In this disorder, tremor occurs primarily during intentional
movement, and applying stimulation after movement intention has been identified
has led to amore energy-efficient DBS systemwithout losingmuch of the therapeutic
value. Similar results were obtained in patients with Parkinson’s disease by Swann
et al., who monitored high gamma ECoG activity on the motor cortex for markers
of involuntary movements called dyskinesia, and used them to update DBS param-
eters. Another ECoG-based monitoring system for adaptive stimulation was tested
in epilepsy and showed an up to 70% reduction of seizure frequency and persisting
long-term positive effects [391].

http://dx.doi.org/10.1007/978-3-031-20910-9_41
http://dx.doi.org/10.1007/978-3-031-20910-9_52
http://dx.doi.org/10.1007/978-3-031-20910-9_53
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Fig. 47.6 SEEG-guided deep brain stimulation system for treatment of major depression [392].
Reprinted with permission from Springer Nature

In the context of DBS, another type of iEEG recordings is starting be be par-
ticularly attractive. As a less invasive technology compared to ECoG, designed for
monitoring neural activity in deeper brain regions, sEEG has a lot of potential for
successful guidance of adaptive DBS systems. A combination of continuous regis-
tration of activity throughout the brain and advanced computational algorithms for
processing large-scale multi-channel data with complex temporal dynamics and con-
nectivity structure, may provide the necessary understanding of the nature of neural
signals in health and disease and ultimately provide appropriate DBS treatment. For
example, in a recent work, Scangos et al. implanted sEEG electrodes in an individual
with major depression to monitor neural signals in their hippocampus, amygdala,
orbitofrontal, cingulate and striatum cortex [392]. The researchers were able to train
online classifiers to continuously monitor sEEG activity in these regions and identify
patient-specific biomarkers of pathological states. This allowed them to link neural
activity in the patient’s amygdala to their most severe depression symptoms. This
knowledge was used to guide the subsequently implanted DBS system by detect-
ing previously identified biomarkers of depression and applying stimulation to the
affected sites (Fig. 47.6). The study showed that this approach resulted in a signifi-
cant improvement of the patient’s symptoms. Similarly, in another study, the authors
demonstrated a successful mapping of neural states monitored with sEEG to indi-
vidual symptoms of the underlying treatment-resistant depression [393]. Moreover,
the authors used sEEG data to optimize parameters of stimulation applied to the
affected brain regions via a standard DBS implant. SEEG-informed stimulation led
to a large improvement of the patient’s symptoms and their overall quality of life.
Altogether, this work demonstrates the potential of sEEG implants for development
of the next-generation closed-loop DBS systems with data-driven neuromodulation
and personalized approaches to real-world clinical applications.
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A line of research that takes this work one step further is based on the development
of iEEG-based DBS systems, an integrated bidirectional approach to brain monitor-
ing and stimulation through the same set of iEEG electrodes. Two recent studies have
demonstrated a proof of concept for such a device. Basu et al. developed a system for
monitoring cognitive control in individuals with mental disorders based on decoding
of neural events associated with behavioral task performance [394]. Saucedo et al.
reported on a similar approach applied to epilepsy and hippocampal sclerosis [395].

An important component of these adaptive DBS systems is machine learning
and AI models. It has been shown that advanced algorithms that can handle high
dimensionality of large-scale recordings and temporal connectivity structure may be
better suited for signal processing and identification of brain states in health and dis-
ease. These algorithms are being increasingly used for identification of biomarkers
of healthy and pathological states in real time and subsequent adaptation of stim-
ulation parameters depending on how they affect behavior [396, 397]. In several
applications, the potential of AI models for making complex predictions can be
particularly valuable, for example, for prediction of seizure onset in epilepsy [398]
or symptom severity in major depression [392]. Recently, progress in this area has
been accelerated by an increase in availability of large public datasets during clinical
recordings of pathological and healthy brain activity. The latter has stimulated the
emergence of data science competitions, where data analysts compete in develop-
ing the algorithm that best solves the task, for example, seizure prediction. Next to
that, the theory and computational models of large-scale network activity in health
and disease are growing ever more comprehensive and complex [379, 399, 400].
These sophisticated models of dynamical systems and neural connectomics have the
potential to drive forward our understanding of complex neural processes monitored
with continuous multi-channel recordings, such as iEEG. In DBS neurotechnology,
these contributions can lead to novel closed-loop real-world solutions that provide
more effective personalized treatments for severe chronic neurological conditions
and thereby substantially improve, quality of life of the affected individuals.
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Chapter 48
How Can I Identify Stimulus-Driven
Neural Activity Patterns in Multi-Patient
ECoG Data?

Jeremy R. Manning

Abstract Identifying stimulus-driven neural activity patterns is critical for study-
ing the neural basis of cognition. This can be particularly challenging in intracra-
nial datasets, where electrode locations typically vary across patients. This chapter
first presents an overview of the major challenges to identifying stimulus-driven
neural activity patterns in the general case. Next, we will review several modality-
specific considerations and approaches, along with a discussion of several issues
that are particular to intracranial recordings. Against this backdrop, we will consider
a variety of within-subject and across-subject approaches to identifying and mod-
eling stimulus-driven neural activity patterns in multi-patient intracranial record-
ings. These approaches include generalized linear models, multivariate pattern anal-
ysis, representational similarity analysis, joint stimulus-activity models, hierarchical
matrix factorization models, Gaussian process models, geometric alignment models,
inter-subject correlations, and inter-subject functional correlations. Examples from
the recent literature serve to illustrate the major concepts and provide the conceptual
intuitions for each approach.

Keywords Stimulus-driven · Multi-subject · Signal processing · Computational
models · Dynamics

48.1 Overview

Studying brain function often requires identifying brain responses to a given stim-
ulus or set of stimuli. For some stimuli, and for some systems, this identification
problem is relatively straightforward. For example, when a photopigment in a retinal
photoreceptor absorbs light, this triggers a cascade of responses that is ultimately
sent from the retina to other brain areas via the optic nerve [71]. In the general sense,
however (i.e., for arbitrarily complex stimuli and arbitrary brain areas), the problem
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of identifying neural responses to known (or unknown) stimuli can be incredibly
challenging [73].

48.1.1 Why Is It Challenging to Identify Stimulus-Driven
Brain Activity?

To illustrate the enormity of the challenge of identifying stimulus-driven brain
responses in the general sense, it can be useful to start by considering what form
a complete solution might take. First, we need some means of defining (and measur-
ing) what brain activity is. For example, should we concern ourselves withmeasuring
membrane potentials or firing rates of individual neurons? Or population activity in
a given brain structure or network? And is it more appropriate to analyze or interpret
activity patterns in the time domain (e.g., firing rate or voltage as a function of
time), or in the frequency domain (e.g., characterizing the signal through the rela-
tive contributions of its constituent sinusoidal components at different frequencies)?
Should we consider neurons and/or brain structures in isolation, or should we instead
interpret each “unit” of activity within the context of the network(s) it participates
in or contributes to? We discuss several different approaches to these questions (and
their relative trade-offs) in Sect. 48.1.2.

Second, we need some means of characterizing (and ideally, quantifying) the
stimulus itself. For a simple stimulus, such as a single photon of light, emitted from
a known location in an otherwise completely dark room, constructing a sufficiently
comprehensive model of the stimulus might be straightforward—and perhaps even
trivial. For other stimuli, such as real-world experiences, constructing a compre-
hensive model of “what is happening” can be highly complex (at best). Essentially,
building a stimulus model entails quantifying how different features, or properties,
change over time. In our single-photon example, we might represent the stimulus
as a timeseries of zeros (no photon present) and ones (photon present). For more
complex stimuli, however, it may not even be clear what the features are. We discuss
considerations and approaches to building explicit stimulus models in Sect. 48.1.3.

Characterizing brain activity and building stimulus models are each complex
challenges in their own right. Linking the two provides its own set of additional
challenges. We discuss these issues in Sect. 48.2.

48.1.2 How Can We Measure Neural “Activity” in the
Human Brain?

The brain is a complex organ comprising myriad cell types that interconnect to form
a vast network. When neuroscientists use the term brain activity, this can refer to a
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variety of physiological phenomena. To contextualize what brain activity means, it
can be helpful to first consider the brain’s structure and function.

Neurons are the dominant cell type in the brain; the adult human brain contains
roughly 100 billion neurons. The cerebral cortex, commonly associated with high-
level brain function, comprises roughly 80% of the adult human brain’s mass, but
only roughly 20% of its neurons [59]. In general, brain activity refers to changes
in cellular processes that neurons undergo. These processes can take many forms,
including [77]: rapid changes in membrane voltage that result in neurotransmit-
ter release, called action potentials [63]; sub-threshold changes in the membrane
voltages of individual neurons or populations of neurons; neurotransmitter release;
changes in the composition or distribution of cell surface proteins (including ion
channels); metabolic changes (such as increased or decreased blood flow); changes
in ion concentrations; structural or anatomical changes, and so on. Because the term
brain activity often refers to the activities of neurons specifically, the term neural
activity can be a more precise way of referring to these phenomena. However, it is
worth noting that neurons are not the only cell type in the brain. For example, the brain
also contains roughly 100 billion glial cells [4, 103], which also play an important
role in supporting neuronal function, synapse formation, and brain metabolism [7].

After considering the various forms that brain (neural) activity can take, it can also
be useful to define a relevant spatiotemporal scale (Fig. 48.1). For example, a biologist
concerned with the structure and function of individual ion channels embedded in the
neuronal cell membrane may be most interested in processes that happen over a span
of picoseconds or nanoseconds (e.g., the amount of time it takes for an ion to pass
through an ion channel, or the amount of time it takes for an ion channel to change its
conformation). They may also be most interested in spatial resolutions on the orders
of angstroms (e.g., the approximate scale of an individual ion channel). At another
extreme, a neuroanatomist studying the comparative anatomy of different species
of primates might be most interested in timescales on the order of decades (e.g., an
entire lifetime) and spatial scales on the order of decimeters (e.g., the size of an adult
human brain). As summarized in Fig. 48.1, different neuroimaging approaches are
each associated with a range of temporal and spatial scales that they are best suited
to measure.

If we are specifically interested in stimulus-driven neural activity, this implies
focusing in on a limited range of spatiotemporal resolutions (gray shading in
Fig. 48.1). Neuroimaging approaches that enable insights at those resolutions may
provide particularly useful measures of stimulus-driven neural activity.

Non-invasive approaches. Neuroimaging approaches that rely on measurements
taken using sensors that are placed without requiring surgery are referred to as non-
invasive. In general, non-invasive neuroimaging entails placing one or more sensors
on or near the subject’s head. Examples include scalp electroencephalography
(EEG; i.e., recording voltages from small electrodes placed on the scalp); magne-
toencephalography (MEG; i.e., measuring tiny changes in the magnetic field out-
side of the head driven by local field potentials); and functionalmagnetic resonance
imaging (fMRI; i.e., inferring changes in blood flow associated with neural activity
using a powerful magnet placed around the head). A related approach, magnetic
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Fig. 48.1 Spatial versus temporal resolution. Each colored region represents the temporal (x-axis)
and spatial (y-axis) limits of a recording method or neuroimaging modality [figure inspired by
31, 134]. Green shading denotes in vitro methods. Blue shading denotes invasive in vivo methods.
Purple, red, and orange denote non-invasive in vivo methods. The gray shading denotes suggested
ranges ofmaximum structural and functional relevance to experimental-scale behaviors. The shaded
region outlined in yellow denotes overlap between the horizontal and vertical gray regions. Note
Axes are not drawn to scale

resonance imaging (MRI) uses strong magnetic fields, magnetic field gradients,
and radio waves to produce a static anatomical image of the brain. Each of these
approaches is widely used by neuroscientists interested in studying the neural basis
of cognition and behavior. A benefit of relying on non-invasive neuroimaging is
that these approaches are low-risk and may be safely used on healthy (non-patient)
participants, and without the supervision of a physician. The main drawback of non-
invasive neuroimaging is that, because these approaches all rely on sensors placed
outside of the head, any relevant activity that is filtered out by the skull, or that is
too weak to be measured from distant sensors, cannot be captured. This means that
non-invasive neuroimaging approaches tend to have lower spatiotemporal resolution
than invasive approaches.

Invasive approaches. Neuroimaging approaches that require surgery are referred
to as invasive. Invasive in vivo techniques entail placing sensors directly on the sur-
face of and/or in direct contact with deep structure inside of a living person’s brain.
Examples include intracranial electroencephalography (iEEG; i.e., recording volt-
ages from tiny wires implanted in the brain) and electrocorticography (ECoG; i.e.,
recording voltages from small electrodes lying directly on the brain’s cortical sur-
face). Both iEEG and ECoG are similar to (non-invasive) EEG, in that all three
approaches entail recording aggregate voltages from populations of many neurons.
The key differences between these approaches are the locations and sizes of the
electrodes. When sensors are larger and are placed far from the signal sources (i.e.,
neurons), as in EEG, the sensors pick up on relatively large populations of neurons
that are spread over a large portion of the brain. When sensors are smaller and placed
in direct contact with signal sources, as in ECoG and iEEG, the sensors pick up
on smaller populations of neurons that are closer to the recording surface of the
electrodes. When tiny microwires are used to generate iEEG recordings, it is even
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possible to record action potentials from individual neurons (see Chaps. 42, 43, 44
and 45).

Invasive in vitro neuroimaging approaches entail takingmeasurements from brain
slices or other structures that have been excised from an intact brain and placed in
an isolated environment such as a petri dish. For example, patch clamp recordings
use tiny glass micropipettes placed directly on the cell membrane to capture changes
in membrane potential associated with the opening and closing of individual ion
channels. In vitro approaches are not generally used to study stimulus-driven neural
activity in humans, since excising the to-be-recorded tissues typically isolates the
corresponding neurons from their sensory inputs. In vitro approaches also require
extracting the to-be-recorded tissues from the brain, which presents ethical and safety
concerns.

Because invasive neuroimaging approaches require physically cutting into the
brain, they are not appropriate for use in non-patient populations. Rather, invasive
recordings in humans are typically taken from neurosurgical patients who have their
electrodes implanted as part of a diagnostic or treatment protocol. For example, peo-
ple suffering from drug-resistant epilepsy may elect to undergo invasive monitoring
(from implanted electrodes) in order to help neurologists localize the most likely
source(s) of their seizures. During an extended hospital stay, the patients may elect
to participate in research studies that are not directly related to their treatment, in
the interest of advancing scientific knowledge by providing access to high quality
recordings from their brain (also see Chaps. 4 and 5). Stimulus-driven responses
in small circuits that unfold over sub-millisecond timescales can only be measured
using invasive approaches like iEEG and ECoG. By providing measurements at both
high spatial resolution and high temporal resolution, intracranial recordings can be
ideally suited to studying stimulus-driven neural activity patterns (Fig. 48.1).

Single-channel neural signals. A single electrode implanted in a patient’s brain
measures changes in membrane potential (voltage) in individual neurons, other cells
and signal sources, and populations of cells. Because neurons can most effectively
transmit signals to other cells via action potentials, the timings of individual action
potentials from a given neuron, or the firing rate of a neuron, can provide putative
insights into that cell’s function (Fig. 48.2a). For example, if a neuron changes its
firing rate when the patient is exposed to a particular stimulus or experience, this
could suggest that the neuron plays some role in processing information pertaining
to that stimulus or experience.

Local field potentials (LFPs) reflect the aggregate neuronal firing and sub-
threshold changes in membrane potential across thousands of neurons near the
recording surface of an electrode (Fig. 48.2b). When LFPs change during expo-
sure to a stimulus or experience, this can suggest that the underlying population of
neurons plays some role in processing that stimulus or experience. These changes
may be aperiodic, as in Fig. 48.2b, or sinusoidal, as in Fig. 48.2c. Rhythmic (sinu-
soidal or periodic) changes in the LFP tend to reflect coordinated firing patterns
across neurons in the population, whereas uncoordinated changes are reflected as
changes in the volatility (or variance) of the LFP [20, 35, 46, 94].

http://dx.doi.org/10.1007/978-3-031-20910-9_42
http://dx.doi.org/10.1007/978-3-031-20910-9_43
http://dx.doi.org/10.1007/978-3-031-20910-9_44
http://dx.doi.org/10.1007/978-3-031-20910-9_45
http://dx.doi.org/10.1007/978-3-031-20910-9_4
http://dx.doi.org/10.1007/978-3-031-20910-9_5
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Fig. 48.2 Measuring and processing single-channel neural signal. All of the examples shown in
this figure are constructed using simulated data. a–d Neural signals. The illustrated examples show
voltage (y-axis, arbitrary units) as a function of time (x-axis, arbitrary units). a Neuronal firing.
The vertical lines illustrate the times at which an artificial neuron fired action potentials (spikes).
The smooth curve shows the timeseries of firing rates, computed by convolving the spike timeseries
with a Gaussian kernel. b Local field potentials (LFPs). LFPs reflect the aggregate neuronal firing
and sub-threshold changes in membrane potential across thousands of neurons near the recording
surface of an electrode. cOscillations.When the local field potential exhibits sinusoidal fluctuations,
this can reflect coordinated changes in membrane potential across a population of neurons. d Phase
coding. The timing of an individual neuron’s action potentials with respect to oscillations in the local
field potential can code information via the phase (angle) relative to a sine wave at the oscillation’s
frequency. e Spike-triggered average. Phase coding may be identified by sampling the LFP before
and after each spike and then averaging across all spikes. The spike-triggered average in this panel
is computed using the artificial LFP displayed in Panel d (also see Chap. 44). f Power spectrum
and broadband power. Oscillatory contributions to the local field potential may be summarized as
a power spectrum that shows the extent to which oscillations at each frequency contribute to the
LFP. The power spectrum in this panel is computed by convolving second order Morlet wavelets
with the artificial LFP displayed in Panel c. The underlying height of the power spectrum, called
broadband power may be estimated by using robust regression to fit a line to the power spectrum in
log-log space. The area under the robust fit line may be used to estimate the firing rates of neurons
in the underlying population [94]

http://dx.doi.org/10.1007/978-3-031-20910-9_44
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When both spike timing information and LFP recordings are available, it is pos-
sible to examine whether a given neuron’s spikes are modulated according to the
activity of the surrounding population (also see Chaps. 44 and 45). For example,
phase-locked neurons [72] tend to fire action potentials during a particular phase
(angle) of an oscillation that appears in an LFP (Fig. 48.2d). Other neurons exhibit
phase coding by changing their preferred phase according to properties of the stim-
ulus, ongoing experience, or behavior. For these neurons, the phases (of LFP oscil-
lations) at which spikes occur can carry additional information beyond firing rate
alone [70, 76, 90, 140]. One way of characterizing phase-depending firing is to
compute a spike-triggered average of the LFP preceding and proceeding each spike
(Fig. 48.2e). When a neuron exhibits a phase preference, its spike-triggered average
will look like an oscillation centered at the neuron’s preferred phase.

Although oscillations can sometimes be detected visually by examining a rawLFP
recording, a more rigorous approach is to use signal processing methods to quantify
the presence of oscillatory components of the LFP (also see Chaps. 22 and 23). A
power spectrum (Fig. 48.2f) plots the power at each frequency—i.e., the extent to
which oscillations at each frequency contribute to the LFP. When the LFP exhibits
an oscillation, this appears as a peak (centered on the oscillation’s frequency) in the
LFP’s power spectrum. An LFP may also exhibitmultiple oscillations, which appear
as multiple peaks in the power spectrum.

In addition to true (sinusoidal) oscillations in the LFP, the volatility of the LFP can
also change its power spectrum. For example, an increase in the standard deviation of
the LFP’s changes in voltages across successive timepoints will result in an increase
in power at all frequencies. So-called broadband shifts in power can occur when
the neurons in the underlying population change their firing rates [94].

Given the many ways to measure and characterize neural responses, which
approach is best? The answer depends in part on what we hope to learn. For example,
if we are interested in processes that we expect to depend on very precise timing and
relatively simple neural computations, then neuron-centric signals like spike timing
and firing rate may be especially promising. If we are instead interested in processes
that we expect to depend on large-scale computations carried out by populations
of thousands of neurons, then we may instead benefit from focusing on periodic
and aperiodic features of local field potentials recorded from relatively large elec-
trodes. In general, lower-level processes (e.g., signal transduction) tend to rely on
smaller numbers of neurons and occur over shorter timescales. Approaches that oper-
ate over few neurons and that support high temporal resolution are often best-suited
to studying these low-level processes. By contrast, high-level processes (e.g., scene
understanding, complex planning, emotional processing) tend to rely on large popu-
lations of neurons and occur over relatively long timescales [6, 29]. Approaches that
record from larger populations of neurons and that measure processes or changes
that unfold over longer timescales are often best-suited to studying these high-level
processes. While these general principles have tended to hold across many studies
and recording modalities, it is worth noting some exceptions. For example, single-
neuron responses in humans [122] can sometimes exhibit selectivity for high-level
stimuli and semantic concepts.

http://dx.doi.org/10.1007/978-3-031-20910-9_44
http://dx.doi.org/10.1007/978-3-031-20910-9_45
http://dx.doi.org/10.1007/978-3-031-20910-9_22
http://dx.doi.org/10.1007/978-3-031-20910-9_23
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Fig. 48.3 Univariate and multivariate patterns. Individual electrodes (channels) or features (e.g.,
firing rate, phase, power at a given frequency, etc.) may be considered in isolation (univariate
patterns) or in combination with other channels or features (multivariate patterns). Each feature or
pattern may be considered as an “independent” functional unit, or within the context of its broader
network. Finally, analyses may be carried out on data from a single patient’s brain (within-brain)
or in aggregate across multiple individuals (across-brain). Note Portions of this figure are adapted
from [111]

Units and patterns versus networks. After identifying a set of signals that we
think will be appropriate for studying our phenomenon or cognitive process of inter-
est, the next key decisions regard whether we should treat those signals in isolation,
or as part of a broader network. Essentially this comes down to a decision about how
to combine signals and features within and across participants (Fig. 48.3).

Early single-neuron recordings (in cats and non-human primates) played a central
role in Hubel and Wiesel’s Nobel Prize-winning work on mapping out receptive
fields of visual cortical neurons [66, 67]. They mapped out the receptive fields of
neurons in the primary visual cortex by measuring their firing rates as a function
of the visual stimulus shown on the retina. In general, a neuron’s receptive field
describes the stimulus to which it is maximally responsive. Hubel andWiesel’s work
showed that the primary visual cortex is organized into orientation columns of
neurons whose receptive fields are tilted dark or light bars at a particular orientation
relative to horizontal. Several decades later, researchers used high-field fMRI to show
analogous orientation columns in human primary visual cortex [157]. The receptive
fields of individual neurons can be enormously complex. In contrast to the simple
stimuli preferred by primary sensory neurons, neurons in other brain regions can have
receptive fields that correspond to high-level concepts. For example, hippocampal
place cells fire preferentially when an animal travels to a particular location in an
environment [40, 82, 110]. Other work has shown that some medial temporal lobe
neurons appear to increase their firing in response to photographs of specific faces,
animals, objects, or scenes [122].

When recordings from several neurons are available, the set of firing rates across
the population can provide additional information beyond that contained in the firing
rates of individual neurons [3, 120]. For example, if a single place cell responds to
one area of an environment, a population of many place cells that each respond to a
different location in the environment can provide a rich cognitive map [148].
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Although they do not provide information about spike timing, macro-scale
LFP recordings also reflect population-level neuronal activity. Multi-electrode LFP
recordings from one or more brain areas can be especially informative. For example,
multi-channel LFPs may be used to decode visual stimuli [10, 11], auditory stim-
uli [11, 141], speech production [52, 113, 121], acute pain onset and intensity [162],
and even semantic representations [39, 97].

Intracranial recordings (of individual neurons, populations of neurons, and LFPs)
may also be considered within the context of the larger brain networks to which they
belong or contribute [9]. One set of approaches to characterizing brain networks is
informed by graph theory, a branch of mathematics concerned with characterizing
network architectures, influence, and membership [8, 13, 19, 64, 111, 127, 139,
143, 144]. For example, a timeseries of recorded responses from multiple chan-
nels may be used to infer functional or causal interactions between the associated
neural populations. After mapping out a network of pairwise connections between
the responses, graph theoretic measures may be applied to estimate or compare the
influence of a given channel or set of channels. Considering interactions can provide
information beyond the responses of individual channels or patterns. For example,
patterns of interactions between neurons or populations can show selective modula-
tion in response to stimuli or features, even when the underlying individual neurons
or populations do not appear responsive to the stimulus when considered in isola-
tion [126].

Static versus dynamicmeasures of brain activity. When we attempt to discover
the neural patterns associated with a particular stimulus or representation, we need
to consider two fundamental questions about how the relevant patterns might change
over time. The first question is whether brain representations are fundamentally sta-
ble. For example, each time you think of a concept, like the meaning of the word
“automobile” do the brain areas relevant to representing that concept display the
same basic activity patterns? Or do the neural representations of concepts change in
meaningful ways over time, such that the representation of a concept looks funda-
mentally different each time we measure it? The second question is about whether
representations themselves are static or dynamic. For example, when you think of
the concept “cat,” does the entire representation essentially become activated as a
single unit? Or do different components of the representation (e.g., “fur,” “mammal,”
“whiskers,” “tail,” etc.) come online in sequence, perhaps in a stereotyped way that
adds additional nuance or meaning?

Some of our conceptual knowledge, and presumably the underlying neural repre-
sentations of that knowledge, is acquired over timescales on the order of several years.
For example, as they develop, children acquire new representations of concepts and
how they are related or organized [14, 85]. Changes in neural representations that
occur over the course of years are unlikely to be captured by intracranial recordings,
which are typically made over timescales on the order of days or weeks. Never-
theless, some conceptual representations may change on faster timescales that can
be captured by intracranial recordings, such as when concepts become emotionally
charged [23, 156].
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Another process that leads to changes in the neural representations is pattern
separation. Pattern separation refers to the phenomenon of differentiating the neural
representations of two or more related stimuli or concepts. For example, pattern
separation can occur when we learn to identify and focus in on subtle differences
between stimuli or concepts that initially seemed (nearly) identical. Pattern separation
can occur over relatively short timescales, and can be identified using intracranial
recordings [91].

Although research on the development of conceptual knowledge and pattern sepa-
ration shows that neural representations can change over time, there is also substantial
evidence that neural representations are at least somewhat stable over timescales of
hours to days, and even across different individuals [57, 101, 136]. For the most
part, this body of work treats the neural representations of concepts and stimulus
responses as essentially static. By assuming that the neural patterns evoked by a
fixed stimulus are stable (within and across presentations), one can use a machine
learning approach called pattern classification to learn mappings between neural
patterns and stimulus labels [109]. Once these mappings are learned, they may be
applied to new neural patterns to estimate the stimulus or “thoughts” associated with
those neural patterns. This allows researchers to estimate the cognitive dynamics that
occur during neuroimaging [30, 51, 93, 118].

Some stimuli, such aswords, images, pure tones, etc., are perceptually static.Most
or all of the information in the stimulus is “made available” to our sensory systems
at the same time. Certainly it may take some time for higher-order information
to unfold in our minds, for example when we are presented with a complex or
thought-provoking image. However, those dynamics are driven by internal processes
rather than (directly) by the stimulus itself. Other stimuli, such as movies, motion
sequences, and dynamic sounds like speech or music, are fundamentally dynamic.
For example, if we were presented with only the average (across time) visual or
auditory information in a popular feature-length film, we would be missing nearly
all of the structure that made that film engaging or interesting. Dynamic stimuli,
particularly naturalistic stimuli with rich spatiotemporal structure reminiscent of
real-world experiences, can evoke dynamic neural responses that are often highly
reliable across repeated presentations to a single participant participant, as well as
across participants [24, 26, 43, 44, 53, 68, 69, 79, 80, 98, 105, 111]. While it is
possible to temporally average across the timepoints of responses to some classes
of dynamic stimuli while still achieving high reliability [105], this is not universally
true. For example, in the domains of speech comprehension and speech production,
temporal information is a primary indicator of meaning. Studying neural responses
to speech therefore requires considering how neural correlates of speech unfold over
time [52, 121].

Independent of whether a given stimulus is fundamentally static or dynamic,
neural responses can also change according to which other stimuli were experienced
nearby in time. For example, interpreting the neural response to ‘B’ in the sequenceA
B C D Bmight entail accounting for whether the given instance of ‘B’ is the one that
follows ‘A’ or ‘D’. Randomizing stimulus order and averaging over repeated trials
effectively removes this sort of contextual information. However, in some cases, the
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a

b
c

Fig. 48.4 Discrete stimulus timeseries. a Example stimulus sequence. A succession of images
are presented to the participant on a computer screen, interspersed by intervals of blank screen.
Images are drawn from three categories: faces, outdoor scenes, and concrete objects. b Onset and
offset timing. Stimulus timing, but not stimulus category, may be conveyed using a single binary
timeseries. c Stimulus identity. Stimulus identity (e.g., category) may be represented using a single
binary timeseries for each stimulus category or feature

context in which a stimulus occurs—i.e., the set of other stimuli and thoughts that
were experiencednearby in time—canplay a critical role in howweprocess, interpret,
and remember incoming information [92]. For example, priming participants using
different cues can reliably bias them to interpet an ambiguous narrative in a particular
way [159]. Accounting for these sorts of contextual effects often entails factoring in
stimulus order or content to the corresponding analyses and models.

48.1.3 Building Explicit Stimulus Models

Identifying neural responses to a stimulus requires formalizing what the stimulus in
question is and when the participant is exposed to it. Broadly, this entails building
explicit or implicit models that describe the composition and/or dynamics of the
stimulus. The features, outputs, or predictions of these models may then be related
to neural patterns.

What is a stimulus “model”?From an analytic perspective, describing a stimulus
typically entails characterizing how different aspects of the stimulus change over
time. Ifwe are solely interested in the presence or absence of a stimulus, or the timings
of a discrete sequence of trials (Fig. 48.4a), then the “stimulus” might be describable
as a simple binary sequence (Fig. 48.4b). One could then examine or compare neural
activity patterns recorded during the “on” timepoints versus “off” timepoints, or
estimate how neural responses change during the transitions between those binary
states. If stimuli are drawn from a well-defined set of categories, then category
information may be conveyed using one binary sequence per category (Fig. 48.4c).

In other instances, we may be interested in understanding how neural responses
relate to specific stimulus values, or how those values change over time. For example,
we might describe the brightness or salience of a visual stimulus (or the loudness
of an auditory stimulus, etc.) as a sequence of real-valued numbers (Fig. 48.5a).
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Fig. 48.5 Continuous stimulus timeseries. a Univariate real-valued stimulus. The stimulus takes
on any value at any timepoint. In this example the stimulus values are autocorrelated. bMultivariate
real-valued stimulus. The stimulus comprises multiple features, each of which can take on any
value at any moment. When projected into 3D, the stimulus traces out a trajectory describing how
the values of its features change over time. c Multivariate real-valued stimulus with event-level or
trial-level dynamics. This stimulus is similar to the one displayed in Panel b, but here the stimulus
values exhibit occasional event boundaries

This could enable us to understand graded neural responses to the stimulus, such as
how neural responses change as a function of the stimulus values. Event-triggered
averages (analogous to spike-triggered averages such as Fig. 48.2e) can also provide
insights into how the stimulus tended to change during a time window centered on
a particular neural event (e.g., an action potential or the appearance of a specific
activity pattern).

Some stimuli are best described by multivariate real-valued feature vectors whose
elements (i.e., “features”) describe the absence, presence, or values of specific stim-
ulus properties (Fig. 48.5b). Describing a stimulus as a timeseries of multivariate
feature vectors can facilitate more nuanced mappings between those stimulus prop-
erties and different aspects of neural activity. For example, the firing rates of different
neurons, or the patterns of power spectra across the electrodes in a given region of
interest, might display different sensitivity to different stimulus features.

A fourth (general) way of describing how a stimulus changes over time is to use a
multivariate timeseries with explicit event-level or trial-level boundaries (Fig. 48.5c).
For example, in a movie, the scene cuts could constitute event boundaries—i.e.,
moments of transition where the stimulus features exhibit rapid “jumps” that are
substantially larger than usual between-timepoint changes. Event boundaries can
delineate changes in the focus of an ongoing conversation, scenes in a story or movie,
environmental changes, or other transitions in the low-level or high-level content of
the stimulus. Experimental trials can also be considered as a sort of event boundary.
For example, a multivariate timeseries like that in Fig. 48.5c could also be used
to describe the content of a sequence of short video clips presented in succession.
Within each clip, the features might change comparatively less than across clips.

As described next, there are many ways to define what the stimulus features are.
This requiresmaking assumptions about which aspects of the stimulus “matter” (e.g.,
in terms of evoking neural responses, predicting behaviors, etc.), and about how the
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moments of the stimulus timecourse should be matched up with moments of a neural
recording. While these assumptions can have a large influence on the outcome of an
analysis, there is unfortunately no universal way of describing ormodeling stimuli (or
of relating stimulus dynamics to neural responses). Rather, one must make informed
decisions about how to proceed based on the sorts of insights one hopes to gain from
an analysis, or based on what approaches have performed well in prior related work.

Manual approaches. In trial-based experiments where stimuli (e.g., words,
sounds, images, etc.) have well-defined onset and offset times, the stimulus onset
and offset timeseries (e.g., Fig. 48.4b) can serve as a simple stimulus “model.” A
binary sequence that solely describes stimulus onset and offset times ignores stim-
ulus identity (e.g., the category or label) and stimulus features (e.g., the values of
the corresponding feature vectors). In this way, modeling the stimulus using a binary
sequence makes the implicit assumptions that (a) stimulus timing is the main factor
of interest with respect to the associated neural responses and (b) stimulus identity
and stimulus features may be safely ignored.

Tomodel stimulus identity and timing (when both identity and timing information
arewell-defined, e.g. as in trial-based experiments), the stimulusmay also bemodeled
using a set of binary timeseries (Fig. 48.4c). For example, onemight define a separate
binary timeseries describing the onsets and offsets of only one stimulus category or
trial type. This approach makes the implicit assumption that the specific identities
of different exemplars (e.g., within a stimulus category—such as face images of
different people’s faces) may be safely ignored in favor of prioritizing coarser-scale
information such as broad stimulus category or trial type labels.

When parameterized stimuli are constructed to vary along one or more explicit
stimulus dimensions (e.g., visual stimuli that vary in brightness, contrast, spatial
frequency, etc.), the values along each dimension and/or the parameters themselves
can serve as a representation of the stimulus (e.g., Fig. 48.5). Each stimulus dimension
(or parameter) may be represented by its own real-valued timeseries. This approach
makes the implicit assumption that the only relevant sources of variation in the
stimulus are those characterized by the specified stimulus dimensions or parameters.
All other stimulus features or properties are effectively ignored.

Some stimuli cannot be adequately characterized or described using their associ-
ated parameters and/or features that can be directly mapped onto specific physical
or perceptual properties. For example, such stimuli might be best described using
high-level perceptual or conceptual properties of the stimulus such as the presence
of specific objects or high-level content, emotional tone, etc. When these properties
may be readily judged or rated by human observers, normed ratings or judgements
(typically collected by an independent set of participants) may be used as another
means of quantifying stimulus features. These judgements may take the form of
integer-valued or real-valued responses (e.g., rating how “happy” an image or sound
is, on a particular scale) or binary “yes/no” judgements (e.g., indicating whether or
not a tree is present in an image). Stimulus features may also be derived directly
from participants’ own responses or behaviors (e.g., like versus dislike, remembered
versus forgotten, familiarity ratings, etc.). In these cases the features would reflect
not only properties of the stimuli themselves, but also potentially aspects of partici-
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pants’ idiosyncratic responses to those stimuli, cognitive operations, behaviors, and
so on.

Automated approaches. Many types of stimuli, including natural images, text,
complex sounds (e.g., speech, music, recordings of natural environments, etc.),
movies, and others, cannot always be easily categorized or manually labeled or
rated. In other cases, even if manually labeling stimuli might be possible in princi-
ple, in practice it may be too expensive in money or time to generate manual labels.
Automated approaches to building stimulus models can scale to millions of stimuli
and thousands of stimulus features.

One class of automated approaches to generating stimulus feature models entails
applying probabilistic models and deep neural networks such as convolutional neural
networks [84, 88], text embedding models [12, 15, 17, 22, 33, 37, 81, 87, 99, 100,
102, 107, 116, 117, 145, 154], transformers [18, 38, 124], and others [78] to the
stimuli. The activations of the hidden or output layers of these networks may be used
as feature vectors for the corresponding stimuli.

Another class of automated approaches includes visual entity tagging [27], image-
to-text models [5, 36, 146], speech-to-text models [47, 74, 155, 163], and other
algorithms for generating text data from non-text stimuli like still images, video,
and sound. After training these models on large corpora of labeled examples, novel
stimuli may be automatically tagged with text annotations. In turn, these annotations
may be passed to text embedding models to construct feature vectors for each stim-
ulus. Alternatively, the annotations may be treated directly as stimulus features, for
example by treating each unique keyword as a binary feature that is either present or
absent in each stimulus.

Human-in-the-loop techniques [160] provide a balance between purely manual
and purely automated methods. These techniques entail combining human feedback
with classic machine learning approaches. For example, multidimensional scal-
ing [21, 41, 149] may be applied to pairwise similarity judgements from human
participants to derive n-dimensional feature vectors whose pairwise correlations or
(inverse) distances are consistent with those judgements.

To facilitate comparisons or other analyses, it can be useful to partition continuous
stimuli into discrete “states” or “events”. For example, hiddenMarkovmodelsmay
be applied to a multidimensional timeseries of observations (e.g., feature vectors) to
estimate the moments of transition that are interspersed between periods of relative
stability [6, 61, 123]. Neural responses during different events, or at transition points,
may then be examined further.
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48.1.4 What Are Some Modality-Specific Challenges to
Identifying Stimulus-Driven Brain Activity from
Intracranial Recordings?

While intracranial recordings provide high spatiotemporal resolution data about neu-
ral activity (Fig. 48.1), the coverage afforded by intracranial recordings—i.e., the
proportion of the brain volume captured across all electrodes—is relatively poor
compared with popular non-invasive approaches like fMRI, MEG, and scalp EEG.
The locations of electrodes implanted in a representative patient’s brain are shown in
Fig. 48.6a. Across the 169 electrodes, coverage is limited primarily to the left frontal
and temporal lobes. The recordings from this example patient cannot provide direct
information about activity outside of these regions.

Theprecise electrodenumbers and implantation locations are determinedby teams
of clinicians whose primary goal is (typically) to locate the seizure focus for that
patient. For some patients, the clinical team may have a relatively good sense of

a

b

Fig. 48.6 Within-patient versus across-patient electrode coverage. Each dot denotes the location of
the recording surface of one neurosurgically implanted electrode. a Example patient. The locations
of the 169 electrodes implanted in one patient’s brain are displayed. b Across-patient electrode
locations. The locations of n = 5023 electrodes are displayed. Colors denote different patients
(electrodes from m = 53 patients are displayed). Both panels Implantation locations are taken
from [42] and filtered using a thresholding procedure to remove noisy signals reported by [112]
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where the patient’s seizures likely originate. These patients may be implanted with
relatively few electrodes, spread over a relatively small area of the brain. For other
patients where the seizure focus is less clear, they may be implanted with a larger
number of electrodes spread throughout the brain. Taken together, these factors mean
that each patient is implanted with a different number of electrodes, in different
locations, according to a unique clinical plan. Whereas non-invasive recordings can
often be easily aligned across people (since the sensor locations are typically held
relatively constant across people), the alignment problem is highly non-trivial for
intracranial recordings.

One benefit to having varied electrode locations across patients is that, for a suf-
ficiently large number of patients, it becomes possible to obtain data from most of
the brain (Fig. 48.6b). Full-brain maps and analyses may be obtained from intracra-
nial recordings by constructing maps that are stitched together across patients. These
maps obtained from intracranial recordingsmay then be compared to analogousmaps
obtained using other neuroimaging approaches to provide clues about the reliabil-
ity of the across-patient findings. However, because full-brain maps derived from
intracranial recordings typically require combining data across patients, it can be
difficult to identify reliable within-patient effects, or to compare responses across
patients (also see Chaps. 9 and 29).

48.2 Identifying Stimulus-Driven Neural Activity

Thus far, we have surveyed a variety of approaches for measuring or characterizing
neural activity patterns and stimuli. When applied in conjunction, the result of these
approaches is a set of two timeseries: one describing the patient’s neural responses
and the other describing the stimulus the patient experienced as they exhibited those
neural responses. The final step is to combine these characterizations in order to relate
changes in neural activity to changes in the stimulus. Broadly, this combination step
may be carried out within participant or across participant.

48.2.1 Within-Participant Approaches

Within-participant analyses are carried out on data froma single person. Identifying
stimulus-driven neural activity using within-participant analyses typically entails
combining data over time (e.g., across runs, conditions, trials, etc.). The objective is to
estimatemaps, patterns, or response profiles that are unique to each individual. These
within-participant estimates may then be combined across participants to examine
general tendencies in the population and/or individual-specific markers.

Generalized linear models and multivariate pattern analysis. Given a neural
recording (Sect. 48.1.2) and a stimulus model (Sect. 48.1.3), the two most widely
used approaches to identifying stimulus-driven neural activity are generalized lin-

http://dx.doi.org/10.1007/978-3-031-20910-9_9
http://dx.doi.org/10.1007/978-3-031-20910-9_29
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ear models and multivariate pattern analysis. Broadly, generalized linear models
(GLMs) are an approach to predicting a set of labels, Y, typically represented by
one or more feature vectors, from a set of an equal number of observations, also
represented by feature vectors, X [106]. Formally, we say that

yt = f (xt , β) ,

where yt is the N -dimensional vector of output labels for observation t , xt is the
M-dimensional t th observation, and β is an M × N matrix of weights. The link
function, f (·) takes as inputs a set of observations and weights and produces as
output a transformed version of the N -dimensional vector β�xt . For example, if
the elements β�xt are Real-valued and lie within the interval (−∞,+∞), then a
sigmoidal link function (e.g., the logistic or hyperbolic tangent functions) would
transform the elements to lie within the interval (−1,+1). The “power” of the gen-
eralized linear model framework comes from the flexibility in how the link function
may be defined. By choosing an appropriate link function, it is possible to take arbi-
trary Real-valued inputs and transform them into outputs that match a wide variety
of useful formats—e.g., (unbounded) Real-valued outputs; probability-like values
bounded between 0 and 1; indicator vectors (i.e., vectors where all values are 0s
except for one element whose value is 1); binary-like values (i.e., where extreme val-
ues are “pulled” towards one of two boundaries, as in sigmoid functions); and many
more. When X reflects neural activity and Y reflects the stimulus features during
the corresponding moments, the fitted GLM weights (i.e., β) describe how different
aspects of neural activity relate to different stimulus features. These fitted weights
may also be used to “decode” stimulus features from new, previously unobserved,
neural data.

Multivariate pattern analysis (MVPA) describes a second class of approaches
for connecting stimulus features and neural activity [56, 109]. Like GLMs, the goal
ofMVPA is to predict a set of labels from a set of observations. Typically the “labels”
comprise stimulus features and the “observations” comprise neural responses. GLMs
are a special case of MVPA for which the output features reflect a (potentially trans-
formed) linear combination of the input features. However, MVPA also includes a
variety of other approaches for which the relations between input and output fea-
tures are non-linear, and potentially even non-monotonic. The umbrella term for such
algorithms is pattern classifiers, and includes GLMs, support vector machines [16],
boosting [130], naive Bayes classifiers [34, 89, 108], nearest neighbor-based classi-
fiers [45], and (deep) neural network-based classifiers [151, 161], among others.

Representational similarity analysis. Comparing the neural temporal corre-
lation matrix (i.e., the correlations between the neural patterns recorded at every
pair of timepoints) to the stimulus temporal correlation matrix (i.e., the correla-
tions between the stimulus feature vectors at every pair of timepoints) can reveal
similarities and differences between how neural and stimulus feature change over
time. Representational similarity analysis (RSA) entails computing the element-
wise correlation between the upper triangles of the neural and stimulus correlation
matrices [83]. Following the logic of [83], to the extent that neural patterns show a
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similar temporal correlation structure to stimulus features, we can interpret this as
evidence that the neural and stimulus features are related.

RSA may also be carried out across a series of searchlights. Similar to how a
searchlight illuminates a well-defined area of darkness, a searchlight analysis pro-
vides insights into the functionality or responses profiles of a focused region of inter-
est. For each of a series of spherical volumes tiled throughout the brain, RSA may
be performed for each volume by limiting the neural features under consideration to
only those captured by electrodes within that sphere’s radius. This yields, for each
sphere (i.e., searchlight) a single correlation coefficient between that sphere’s neural
temporal correlationmatrix and the stimulus temporal correlationmatrix. Examining
which searchlights displayed high versus low correlations can highlight which brain
areas might represent the stimulus in a way consistent with a given stimulus model
(i.e., the model used to construct or estimate the stimulus features).

A convenient property of RSA is that, unlike approaches like GLMs or MVPA,
RSA does not require learning an explicit mapping between neural features and
stimulus features. This is because RSA is driven solely by pattern similarities across
timepoints, rather than by the specific properties of the patterns themselves. In this
way, RSA can sometimes be a more sensitive way of identifying stimulus-driven
neural patterns (e.g., compared with GLMs and MVPA). For example, high levels of
noise during many of the exposures to a particular stimulus category will mean that
neural decoding approaches will likely fail to effectively learn mappings between
the neural and stimulus features for that category. However, RSA analyses effec-
tively “average” over all timepoints, thereby highlighting aspects of neural activity
with a similar temporal correlation structure to any stimulus features (even if the
associations with a subset of the stimulus features are noisy).

Joint stimulus-activity models. Thus far, we have reviewed two approaches
to identifying stimulus-driven neural activity. MVPA attempts to learn mappings
between stimulus features and neural features, and RSA attempts to identify stimulus
features and neural features that exhibit similar temporal correlation patterns. A third
(related) approach entails building models that jointly consider the timecourses of
neural and stimulus features. Whereas MVPA and RSA implicitly treat stimulus and
neural features as a “ground truth,” joint stimulus-activity models allow the stimulus
features and neural features to mutually inform each other. These models assume
that, while the mappings between stimulus and neural features may be relatively
stable, there may be some times when the stimulus features provide a more reliable
signal and other times when neural features provide a more reliable signal [150].

Figure 48.7 provides some geometric intuitions for the idea of joint stimulus-
activity models. First, consider how we might go about estimating the reliability of
some neural responses we measure as people experience a given stimulus, such as
watching a movie. One approach might be to expose a single participant to the same
stimulus multiple times. Or alternatively, wemight expose several different people to
the same stimulus. We could then examine the similarities and differences between
the neural responses recorded across trials or individuals.

Geometrically, the neural features recorded from one individual, during one
moment, can be conceptualized as a single point in a high dimensional feature space
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Fig. 48.7 Joint geometric models of stimulus and neural features. a Neural features from differ-
ent individuals. Group-averaged trajectory of fMRI activity from ventral visual cortex split into
two randomly-selected groups of subjects (group 1: n = 6, group 2: n = 5) watching the same
movie [57]. b A common geometric space for stimulus and neural features. Group-averaged trajec-
tory of fMRI activity from ventral visual cortex and trajectory of movie (pixel intensities over time)
hyperaligned [57] to a common space. In Panels a and b, the high-dimensional stimulus and neural
trajectories have been projected onto three dimensions to facilitate visualization [62]. c Interpreting
coordinates in the common feature space. Stimuli (e.g., movie frames) may be reconstructed from
ventral visual brain activity by mapping the coordinates of neural features in the common space
onto coordinates in the stimulus space. Note This figure is adapted from [62]

(whose dimensions each correspond to a single neural feature). Over time, as the
individual’s neural activity changes, the successive activity patterns trace out a tra-
jectory through this neural activity space. When the timecourses of neural activity
patterns are similar across trials or individuals, this results in similar neural trajectory
shapes (Fig. 48.7a).

The stimulus features from a single moment, as well as the timecourse describing
how stimulus features change over time, may also be conceptualized as a trajec-
tory through a (different) high dimensional feature space, whose dimensions each
correspond to a single stimulus feature. It could be interesting to ask whether the
neural and stimulus trajectories are similarly shaped, or whether there are particular
moments or circumstances under which the shapes converge or diverge. However,
because the dimensions of neural trajectories and stimulus trajectories do not (typ-
ically) match, an additional step is needed before such comparisons may be made.
The procrustean transformation is a geometric transformation for bringing two
sets of coordinates into an optimal point-by-point alignment. This entails comput-
ing the affine transformations (i.e., rotations, reflections, and scalings) that, when
applied to coordinates in one set, minimize the average Euclidean distance between
the corresponding coordinates in the second set. The resulting aligned coordinates
may then be directly compared, since the transformations map the coordinates in the
first set into the same coordinate system (with the same dimensions) as the second
set [57]. Mapping a neural trajectory into the stimulus feature space (Fig. 48.7b,
c) provides a common coordinate system for describing both stimulus features and
neural features.

We can use this geometric framework to conceptualize what it means to jointly
model the stimulus and neural responses. Consider, for example, the stimulus and
neural trajectories displayed in Fig. 48.7b. While both trajectories look similar in
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some respects (e.g., they have roughly similar coarse-scale shapes), they also dif-
fer in potentially important ways (e.g., the stimulus trajectory is “spikier” than the
neural trajectory). Which trajectory is “correct”? On one hand, the stimulus trajec-
tory provides a relatively clean characterization of the stimulus that exactly reflects
specific measurable aspects of what participants were exposed to. In this sense, the
stimulus trajectory is not “corrupted” by measurement noise, inattention, or other
factors unrelated to the stimulus itself. On the other hand, the stimulus trajectory
is (by definition) a reflection only of the specific stimulus features that we, as the
experimentalists, decidedwere likely to be important. Those featuresmight be at best
different and at worst unrelated to the stimulus properties that participants actually
care about or respond to. In this sense, one could argue that neural responses reflect
the most direct representation of aspects of the stimulus the brain is responding to,
since those neural responses are uncorrupted by the experimentalists’ assumptions
aboutwhich stimulus features are important. Taken together, it is clear that neither the
stimulus trajectory nor the neural response trajectory, in isolation, provide a complete
reflection of an individual’s internal mental representations of the stimulus. Instead,
it might be most accurate to incorporate aspects of both the stimulus and neural tra-
jectories. This joint stimulus-activity modeling approach acknowledges that the true
representation(s) to which an individual’s brain is responding may lie somewhere
between the stimulus and neural trajectories. It is important to note that the specific
mappings one learns through this approach will necessarily depend on both the neu-
ral responses (e.g., recording modality, recording location, neural features, etc.) and
stimulus features (e.g., which features are included, how features are estimated or
computed, etc.). In this way, the mappings between stimulus and neural trajecto-
ries should be interpreted as reflecting not only “pure” stimulus-driven responses or
representations, but also the particular choices of neural and stimulus features.

48.2.2 Across-Participant Approaches

Across-participant analyses are carried out on data frommultiple individuals. Iden-
tifying stimulus-driven neural activity using across-participant analyses typically
entails building an across-participant model or developing analyses that characterize
similarities or differences in responses across participants. The objective is to esti-
mate a single map, pattern, or response profile that is common across individuals.
Some approaches also attempt to estimate individual differences that characterize
how each individual’s responses differ from the group’s (aggregated) responses.

Across-participant models. Building across-participant models for identify-
ing stimulus-driven neural activity requires defining a common representation for
describing neural activity (and, potentially, linking neural features with stimulus
features). Each participant’s data must first be mapped into the common represen-
tation space. This may be carried out using anatomical [2, 60, 147], functional [25,
57, 58, 156], or other [128, 135] alignment methods. Next, the inference proce-
dure (i.e., the algorithm for estimating model parameters from the observed data)
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must learn both local parameters (i.e., parameters that are specific to each indi-
vidual) and global parameters (i.e., parameters that are shared across individuals).
The final step is often to learn a mapping or linking function for connecting local
and/or global parameters to stimulus features. This last step can be carried out within-
participant (by learning mappings between local parameters and stimulus features)
or across-participant (by learning mappings between global parameters and stimulus
features).

Hierarchical matrix factorization models. One reason that models (in the gen-
eral sense) are “useful” is that they provide a means of re-representing complex
measurements or phenomena using features or rules that compress, reduce, or oth-
erwise simplify the original. When measurements or phenomena are represented as
feature vectors, dimensionality reduction algorithms provide a general purpose
framework for mapping those (typically high-dimensional) feature vectors onto a
lower-dimensional space. These lower-dimensional representations of the original
feature vectors can be simpler to visualize, analyze, conceptualize, and/or compute
with than the original feature vectors. The most widely used approaches to dimen-
sionality reduction utilize a family of mathematical approaches termed matrix fac-
torization.Wewill next turn to a formal description ofmatrix factorization, including
connections between matrix factorization and dimensionality reduction. In turn, this
will enable us to define a formal framework for building multi-subject neural activity
models.

Matrix factorization entails decomposing a matrix into the product of several
other matrices. This family includes a large number of machine learning models,
including Topographic Factor Analysis (TFA) [96, 98], Topographic Latent Source
Analysis (TLSA) [50], Principal Components Analysis (PCA) [115], Exploratory
Factor Analysis (EFA) [142], and Independent Components Analysis (ICA) [32,
75], among others. Within the domain of neuroimaging, the general formulation is
to first organize the neural feature vectors (from a single subject) into a T by N data
matrix, Y (where T is the number of observations and N is the number of neural
features). We can then decompose Y as follows:

Y ≈ WF,

where W is a T by K weight matrix (which describes how each of K factors are
activated for each observation) and F is a K by N matrix of factor images (which
describes how each factor maps onto the neural features). In the general case, there
are infinitely many solutions for this decomposition. Different matrix factorization
approaches converge on specific choices for W and F by placing different con-
straints on the forms the matrices must take or by choosing optimization metrics that
emphasize different aspects of Y to be preserved. For example, when K � N , the
approximation of Y will be inexact.

Intuitively, matrix factorization means approximation of each row of Y with a
weighted average of the rows of the factormatrix,F (where theweights are specified
in the corresponding row ofW). When K < N , we can treatW as a low-dimensional
(i.e., simpler, smaller, and more tractable) representation of Y. Formally, “dimen-
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sionality reduction” means using W to approximate some aspects or properties of
Y.

To illustrate howmatrix factorizationmodelsmay be constructed to capturemulti-
subject data, we can examine the details of two related models: hierarchical and
non-hierarchical variants of the same matrix factorization model, topographic fac-
tor analysis. In its non-hierarchical framing, TFA specifies that each row of F is
parameterized by the center parameter, μ, and the width parameter, λ, of a radial
basis function. If a radial basis function has center μ and width λ, then its activity
RBF(r|μ, λ) at location r is:

RBF(r|μ, λ) = exp

{
−||r − μ||2

λ

}
.

The factor images are filled in by evaluating each radial basis function, defined by
the corresponding parameters for each factor, at the location(s) of each electrode
or brain region of interest. In contrast to the factors obtained using PCA or ICA,
TFA’s more constrained factors may be represented much more compactly; each
factor corresponds to the structure or group of structures in the brain over which
the factor spreads its mass (which is governed by μ and λ). TFA’s factors may be
conceptualized as nodes located in 3D space whose activity patterns influence the
observed brain data (Fig. 48.8a, b).

Hierarchical Topographic Factor Analysis (HTFA) works similarly to TFA, but
places an additional constraint over the factors to bias all of the subjects to exhibit
similar factors. Whereas TFA attempts to find the factors that best explain an indi-
vidual subject’s data, HTFA also attempts to find the factors that are common across
a group of subjects (Fig. 48.8c). This is important, because it allows the model to
jointly consider data from multiple subjects.

HTFA handles multi-subject data by defining a global template, which describes
in general where each radial basis function is placed, how wide it is, and how active
its node tends to be. In addition to estimating how factors look and behave in general
(across subjects), HTFA also estimates each individual’s subject-specific template,
which describes each subject’s particular instantiations of each radial basis function
(i.e. that subject’s radial basis function locations and widths) and the factor weights
(i.e. the activities of each of that subject’s radial basis function factors in each of that
subject’s observed neural activity patterns). Because the subject-specific templates
are related to each other (hierarchically [48], via the global template), a given factor’s
radial basis function will tend to be located in about the same location, and be about
as large, across all of the subject-specific templates. Because each subject has the
same set of factors (albeit in slightly different locations and with slightly different
sizes) we can run analyses that relate the factors across subjects.

The general approach of learning global and subject-specific factors may be
applied to many matrix factorization models. For example, TLSA [50], PCA [153],
and ICA [152] each have hierarchical framings aswell. The particular benefit of using
(H)TFA to decompose and describe intracranial data is that the radial basis function
factors may be evaluated at the unique locations of each individual patient’s elec-
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a b c

Fig. 48.8 Topographic factor analysis. a Spherical factors describe contiguous regions of similar
activity. Each factor is represented as a radial basis function. A factor’s image may be constructed
by evaluating its radial basis function anywhere within the brain volume. Level curves for several
example factors fit to a synthetic 3D image are outlined in white; ×s denote the factor centers pro-
jected onto the 2D slice displayed in the panel. b Brain images are described by weighted sums of
the factors’ images. After computing each factor’s image (using its radial basis function), arbitrary
brain images may be approximated using weighted combinations of the images for each factor. The
per-image weights may be used as a low-dimensional embedding of the original data. A 2D slice
of the reconstruction for the image displayed in panel a demonstrates how contiguous clusters of
locations are approximated using weighted activations of spherical factors. c The global template
serves as a prior for subject-specific parameters. The global template defines the numbers of factors,
their locations, and their sizes, for the prototypical participant. Each individual participant’s param-
eters (factor locations and sizes) are fit using the global template as a prior. This provides a linking
function between different participants’ factors, thereby enabling across-subject comparisons. A
subset of the factors outlined in Panel a are displayed in the global template cartoon. The positions
of these factors in each individual participant’s subject-specific template are displayed in different
colors. Note This figure is adapted from [86]

trodes, even though the electrode locations will differ across patients. And because
the subject-specific templates are associated via the global template, aspects of the
subject-specific templates may be compared across patients. For example, after using
HTFA to learn the global and subject-specific templates, these templates may then
be treated as neural features and examined in relation to stimulus features. Specif-
ically, each patient’s W matrix may be treated as neural features—but whereas the
“raw” neural features in the original dataset will not be consistent across patients,
the columns of each patient’s W matrix may be directly combined or compared.
In addition, the global and subject-specific factors (rows of F) may be examined to
identify how the columns of W map onto different brain areas or structures.

Gaussian process models. Gaussian process regression [125] is an approach
for estimating “missing” (unobserved) data by using related observed data. Gaussian
process regression is particularly well-suited to applications where nearby datapoints
are expected to takeon similar values. For example, ifwe assume that nearby locations
in the brain will exhibit similar neural activity patterns, we could use an approach
like Gaussian process regression to estimate the most probable activity patterns from
locations thatwere nearby (but not necessarily exactly overlappingwith) the electrode
implantation sites for that patient [112]. An overview of this technique is shown in
Fig. 48.9.
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a b c ed

Fig. 48.9 Building across-patient models usingGaussian process regression. a Electrode locations.
Each dot reflects the location of a single electrode implanted in the brain of one patient. A held-out
recording location from one patient is indicated in red, and the patient’s remaining electrodes are
indicated in black. The electrodes from the remaining patients are colored by k-means cluster (com-
puted using the full-brain correlation model shown in Panel d). bRadial basis function kernel. Each
electrode contributed by the patient (black) weights on the full set of locations under consideration
(all dots in Panel a). The weights fall off with positional distance (in MNI152 space) according to a
radial basis function. c Per-patient correlation matrices. After computing the pairwise correlations
between the recordings from each patient’s electrodes, correlations between all locations may be
estimated using radial basis function-weighted averages. This yields one estimated full-brain corre-
lation matrix for each patient. d Merged correlation model. Combining the per-patient correlation
matrices (Panel c) yields a single full-brain correlation model that captures information contributed
by every patient. Here the rows and columns are sorted to reflect k-means clustering labels [using
k = 7; 158], whereby locations are grouped according to their correlations with the rest of the brain
(i.e., rows of the matrix displayed in the panel). The boundaries denote the cluster groups. The rows
and columns of Panel c have been sorted using the Panel d-derived cluster labels. e Reconstructing
activity throughout the brain. Given the observed recordings from the given patient (shown in black;
held-out recording is shown in blue), along with a full-brain correlation model (Panel d), applying
Gaussian process regression yields the most probable activity at the held-out location (red). Note
This figure is adapted from [112], and data are from [95, 97, 131–133]

To build an across-subject model of neural activity patterns, we first need to define
a set of locations in the brain to include in the combined model (Fig. 48.9a). These
locations comprise the set of brain coordinates where we will want to estimate activ-
ity patterns for every patient. Next, we estimate a correlation model that describes
how activity exhibited by each pair of locations is related. To estimate the correlation
model, we first compute the pairwise correlations between activity recorded from
each individual patients’ electrodes, and then we use spatial blurring (Fig. 48.9b) to
interpolate those correlations over the full set of target locations in the model. This
yields a single estimated correlation matrix for each patient (Fig. 48.9c). We can then
use weighted averaging to combine the patient-specific correlation matrices into a
single correlation model (Fig. 48.9d). Essentially, an entry in a given patient’s indi-
vidual correlationmatrixwill beweightedmore heavily in the combinedmodel if that
patient had electrodes nearby to the pair of locations that entry reflects. Conceptually,
this combined correlationmodel reflects “global” information frommultiple patients,
whereas each individual patient’s correlationmatrix reflects “local” information from
that patient alone. Given a correlation model (learned from multiple patients) and
a set of recordings (observed from one patient), Gaussian process regression may
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be applied to reconstruct (i.e., estimate) neural activity at any location in the com-
bined model—even if the given patient did not have any electrodes at that location
(Fig. 48.9e).

Using Gaussian process regression to estimate full-brain activity patterns from
a limited number of electrodes can be useful for identifying stimulus-driven neural
activity. For example, whereas raw intracranial recordings are typically taken from
different locations across patients (Fig. 48.6), the above approach may be used to
estimate activity patterns at a common set of locations across people. Second,whereas
raw intracranial recordings from a single patient typically lack full-brain coverage
(Fig. 48.6a), the set of locations in the combined correlation model may be chosen
to cover arbitrarily much of the brain, at arbitrarily high spatial resolution. In turn,
this can enable researchers to train or apply other across-participant models, such as
pattern classifiers, from different patients’ intracranial recordings [129].

Hyperalignment and the shared responsemodel. Evenwhenwe record across sub-
jects from an (ostensibly) overlapping set of locations or neural features, individual
differences in stimulus-driven neural responses, behavior, internal representations,
and even neuroanatomy can lead to different observed responses.Whenworkingwith
intracranial recordings, where the recording locations rarely overlap across people,
and where non-standard neuroanatomical traits are relatively common, these fac-
tors are even more prevalent. Hierarchical matrix factorization and Gaussian process
modelsmake the simplifying assumption that different individual’s underlying neural
representations are spatially similar. But what if the same functional representations
are reflected by different spatial activity patterns across different people? Models
that match up neural features primarily according to their spatial attributes will fail to
capture or correctly identify (non-spatial) functional similarities across individuals.
In contrast, functional alignment models attempt to discover functional overlap in
neural activity patterns across individuals, even when the neural features across those
individuals are incompatible or out of spatial alignment.

Hyperalignment [57] uses the procrustean transformation to align the neural
trajectories of different individuals into a common feature space (Fig. 48.7). This
entails computing the linear re-combination of neural features (for each individ-
ual) that brings the group’s neural trajectories into the closest point-by-point align-
ment. Because the procrustean transformation is invertible, neural features may be
mapped between different individuals, or between specific individuals and the com-
mon feature space. The Shared Response Model [SRM; 28] is similar to hyper-
alignment in that it provides a means of defining a common neural feature space
that is shared across individuals. SRM extends hyperalignment by combining the
alignment step with a dimensionality reduction step that attempts to specifically find
a lower-dimensional common neural feature space.

Although hyperalignment and SRM are most often applied to fMRI data [58],
in principle these models are modality-independent. For example, one recent study
found that applying SRM to intracranial recordings, taken taken as patients watched
a movie, revealed a set of shared components that co-varied with the affective con-
tent of the movie [156]. The study replicated (using intracranial recordings) several
key findings from related fMRI work [23]. Another recent study, using intracranial
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recordings taken from the rodent hippocampus, demonstrated that hyperaligning
neural features across animals enabled reliable across-individual decoding of the
animals’ spatial locations [25].

Inter-subject correlation and inter-subject functional correlation. Inter-
subject correlations [ISC; 54] and inter-subject functional correlations [ISFC;
138] entail computing the correlations between time-aligned signals recorded from
different individuals as they perform a common task (Fig. 48.3). ISC operates on
the same (or equivalent) neural features across individuals, and ISFC operates on
different pairs of neural features across individuals.

To compute ISC for a particular neural feature, we first isolate that feature’s time-
series in each individual’s brain. (If the same neural feature is not present across
individuals, ISC may be performed after employing another approach to equating
or mapping between neural features across individuals.) Next, for a single “refer-
ence” individual, we correlate their timeseries (for the given neural feature) with the
timeseries for the same neural feature averaged across all other individuals. This
yields a single correlation coefficient for that individual, for the given neural feature.
Repeating this calculation using each individual in turn as the reference yields one
correlation coefficient for each individual. Finally, we average the correlations across
individuals to obtain a single ISC value for the given neural feature.

Computing ISFC is similar to computing ISC. However, whereas ISC correlates
the same neural feature across individuals, ISFC correlates different neural features
across individuals. The result is a symmetricmatrix of correlation values that summa-
rize how (on average, across individuals) each pair of neural features are correlated.

ISC and ISFC are particularly effective at capturing stimulus-driven activity pat-
terns during naturalistic tasks (e.g., story listening, movie viewing, natural conver-
sation, etc.) when constructing a reliable model of the stimulus timecourse can be
challenging [137]. Effectively, ISC and ISFC treat the average signals recorded from
other participants as a “model” of the stimulus dynamics. Since non-stimulus-driven
activity patterns are not expected to be correlated across people, ISC and ISFC
are designed to specifically identify timecourses of stimulus-driven neural patterns.
Although these approaches are most commonly applied to non-invasive recordings,
they have been successfully applied to intracranial recordings as well [55, 65, 104,
119].

48.3 Summary and Concluding Remarks

Identifying stimulus-driven neural activity requires selecting an appropriate record-
ing modality and experimental paradigm, defining neural (Sect. 48.1.2) and stimu-
lus (Sect. 48.1.3) features, and then building explicit or implicit linking functions
between neural and stimulus features (Sect. 48.2). We reviewed two general strate-
gies for building these links: within-participant approaches and across-participant
approaches.
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Within-participant approaches include generalized linear models, multivariate
pattern analysis, representational similarity analysis, and joint stimulus-activitymod-
els. These approaches each attempt to identify individual-specific maps, patterns,
and/or response profiles. Across-participant approaches include hierarchical matrix
factorization models, Gaussian process models, geometric alignment models, inter-
subject correlation, and inter-subject functional correlation. These approaches each
attempt to identify stimulus-driven neural activity that is similar across individuals.

We also identified several challenges that are unique to intracranial recordings.
These challenges primarily stem from two factors. First, building across-participant
models requires accounting for differences in electrode placement, number of elec-
trodes, and electrode type, across individuals (Fig. 48.6). Second, because intracranial
electrodes must be implanted surgically, the subject population in human intracranial
experiments is limited to neurosurgical patients with serious neurological symptoms
such as drug-resistent epilepsy. These symptoms often result from brain abnormal-
ities (e.g., trauma or other forms of physical damage, developmental abnormalities,
and/or other structural or functional issues). These issues provide challenges both to
comparing findings across individuals within an intracranial experiment, and also to
generalizing any findings to the broader population.

As a field, cognitive neuroscience is still decades away from being able to link
neural and stimulus features at high levels of detail. This is partly due to recording
quality (even in high-fidelity modalities like intracranial recordings) and coverage,
and partly due to insufficient quality or fidelity of stimulus models and decoding
algorithms. Nevertheless, insights into the associations between stimuli and neural
responses can help to elucidate the neural basis of cognition in ways that behavior
alone cannot. For example, when behaviors are ambiguous (e.g., a response could
convey several meanings, a response could arise from several equally reasonable or
likely cognitive processes, etc.) or when there are no behaviors for a given cognitive
phenomenon (e.g., forgetting, unshared internal thoughts, etc.), additional signal is
needed to resolve those ambiguities. In addition, understanding the neural underpin-
nings of cognition requires measuring neural activity in some form. Recent devel-
opments in natural language processing and deep learning, along with advances in
tools for more easily constructing neural, stimulus, and decoding models [e.g., 1, 49,
114] suggest a bright future for this important area of neuroscientific inquiry.
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Chapter 49
How Can We Identify
Electrophysiological iEEG Activities
Associated with Cognitive Functions?

Michal T. Kucewicz, Krishnakant Saboo, and Gregory A. Worrell

Abstract Electrophysiological activities of the brain are engaged in its various func-
tions and give rise to a wide spectrum of low and high frequency oscillations in the
intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG
spectral activities are distributed across networks of cortical and subcortical areas
arranged into hierarchical processing streams. It remains a major challenge to iden-
tify these activities in the frequency spectrum, time, and anatomical space, especially
during memory and higher-order cognitive functions. Traditionally, this has been
donemanually by visual inspection of the activities induced in iEEG signals, or semi-
automatically by supervised signal detections of computer algorithms. Emerging
machine-learning and artificial intelligence tools enable more automated, efficient,
objective, and accurate solutions than the traditional expert review. In this chapter, we
showcase example applications of features and methods to study cognitive functions
and to identify brain areas for therapeutic interventions, including electrical stimu-
lation. These resulted in unexpected findings about the spatiotemporal organization
of memory processing and the effects of stimulating the brain. Thus identified iEEG
activities offer electrophysiological biomarkers for mapping not only cognitive but
also other sensorimotor functions, and are ideally suited for new brain-computer
interface approaches to intelligently modulate specific neural processes.
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49.1 Challenges of Mining Large-Scale Electrophysiology

In the myriad of electrophysiological activities generated by the brain, one of the
greatest challenges of neuroscience has been to identify the ones that are associated
with particular brain functions. There is a wide spectrum of low and high frequency
oscillations that can be detected in the intracranial EEG signals recorded fromcortical
or subcortical electrodes during performance of sensorimotor or cognitive tasks.
Especially in the case of tasks involving cognitive functions like attention, memory
and executive control, there is an entire spectrum of iEEG activities distributed across
widespread networks of sensory, motor and association areas. Each of these areas
generates signal oscillations in the classic EEG frequency bands and beyond, ranging
from slow and delta-frequency waves through the theta, alpha, beta, and gamma
rhythms, up to the ripple and high frequency activities of the spectrum. These are
very dynamic in time and space, emerging on the timescale of tens to hundreds of
milliseconds at various electrode locations together with the cognitive processes.
Capturing this plethora of brain activities across the large spatial scale of neural
architecture and the temporal space of cognitive processing is already a difficult
task, which requires a large-scale electrophysiological approach, including special
electrodes and signal processing methods [13]. Identification of selected activities
that are actually associated with a given function is more challenging still.

Hence, before we can start identifying and associating specific iEEG activities
with cognitive processes, we first need to consider the spatiotemporal limitations
of our signal recordings. The temporal scale of activities that can be resolved in a
given recording depends both on the sampling rate of signal acquisition and on the
spectral frequency of the fastest activity. For instance a sampling rate of at least
2000 Hz would be required to resolve the waveforms of a fast ripple oscillation at
500 Hz [25] and dissociate it from other sources of broadband power increases [11,
23]. Likewise, a rate of 4000 Hz would be required to sample the waveform of an
ultra-fast ripple oscillation at 1000 Hz in the iEEG signal [5], according to a general
recommendation of at least two times greater sampling rate than the suggested limit
of the Nyquist theorem [6]. The spatial scale, on the other hand, is determined by the
electrode contact size. Micro-electrode contacts with diameters less than 50 um can
capture a fast ripple generated on the scale of an individual cortical column [2, 3]
or action potentials from specific neurons. The traditional macro-electrode contacts
used in the iEEG sample from a larger electrical field potential that may be limited in
resolving very local neural activities (see Chaps. 16 and 17). Density of sampling the
electrical fields with multiple geometrically arranged electrode contacts is another
factor to consider in capturing the spectral activities across the spatial scale. Hybrid
electrode designs with arrays of multiple micro- and macro-electrode contacts offer
newopportunities for overcoming the spatiotemporal limitationswith so-called large-
scale electrophysiology [13]. Signals from hundreds of electrode contacts can now
be acquired with the emerging technologies for high-density recordings and tools
for automated signal processing and ‘big data’ science leveraged to analyse those
recordings.
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Comprehensive and automated identification of electrophysiological activities in
iEEG signals is the main topic of this chapter. Once our iEEG signals are recorded
and the spatiotemporal limits of our technique are known, we face the challenge of
finding the spectral activities of interest in the large volumes of acquired data. As the
new technologies for high-density, large-scale electrophysiological recordings are
developed and the amount of acquired data grows rapidly, there is a pressing need
for computational tools andmethods for efficient signal processing and data analysis.
Traditional manual expert review of processed signals is no longer realistic for the
daunting sizes of electrophysiological data collected nowadays in the terabyte scale.
Reviewing signals from thousands of electrode channels from multiple subjects is
neither efficient nor reliable, even if this is performedwith pre-processed spectral and
other features. Neuroscience studies are transformed from being primarily driven by
the expert manual review that relies primarily on human intelligence to becoming
catalyzed and complemented by machine-learning and artificial intelligence tools
(see Chap. 47). These tools are ideally suited for the aims of large-scale electrophys-
iology to automatically and comprehensively probe all spectral, spatial and temporal
dimensions of the recorded signals and identify activities associated with cognitive
processes.

49.2 Manual and Automatic Detection of Signal Activities

There are three general approaches to identification of an activity in the signal. The
first approach is fully manual review of the raw signals or processed signal features
by an expert. In this approach, an expert is manually browsing through the recordings
to visually detect responses of interest across time and electrode channels. A classic
example would be an epileptologist screening raw iEEG recordings to mark seizures
or interictal epileptiform activities. The same screening process could be enhanced
by filtering the signal in a ripple frequency range to facilitate manual detection
of pathological High Frequency Oscillations (HFOs) (see Chap. 24). Calculating
the power of the filtered signal to obtain a spectral feature could further enhance
spotting significant events across time on any one electrode contact. Given that the
spectral power in the high frequency ranges of the iEEG spectrum correlates with
the local spiking activity of neuronal populations (see Chaps. 16, 18, and 44), the
same high frequency spectral feature could be used to detect activations associated
with a cognitive function. Increases in the spectral power would signify enhanced
neuronal activities at the times of task performance and lead to identification of the
‘active’ electrode channels implanted in particular brain areas. In contrast to seizures
and interictal discharges, however, these physiological activities are more subtle and
thus more difficult to see with a naked eye in this manual review process.

The second approach is to incorporate automated analysis into the manual review
process. In the above-mentioned cases, detection of seizures, interictal pathological,
or the physiological activities could be performed automatically and then reviewed
visually by an expert. By applying a threshold on the spectral power, the raw, or
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the filtered signal feature, any significant event crossing the threshold in time can
be rapidly and effortlessly detected and quantified by a simple computer algorithm
across large volumes of data. Electrode channels showing more or less detections
than the others provide candidates for identification of brain locations and neural
activities of interest. This semi-automated approach is incomparably faster than the
manual approach but is still primarily dependent on the expert.

The third approach, on the other hand, is fully automated and requires only to be
supervised by an expert. Detection of the significant events and classification of the
‘active’ channels is performed completely by computer algorithms. The classification
algorithms vary in their complexity from simple programswith hard-coded threshold
values for assigning the active class label, through machine-learning classifiers that
determine the threshold values based on pre-programmed data separation methods,
all the way to artificial intelligence algorithms that separate the data based on features
and classification thresholds learned from previous ‘training’ datasets. Expert super-
vision is still more or less needed to plan and program the analysis, choose or direct
feature extraction, and assess the outcomes. There are now a number of automated
methods for identifying electrophysiologically ‘active’ channels in a particular brain
function.

Methods that use a “training” dataset to determine separation criteria for iden-
tification of active electrode contacts are referred to as wrapper techniques. These
techniques employ the so-called “supervised learning” paradigmofmachine learning
to select the active contacts based on task-related classification [17, 24, 27]. Features
computed from the iEEG signals at each electrode are used to predict cognitive
task performance—contacts that are most predictive of the performance outcome are
deemed as ‘active’. The training data typically consists of signal features and task-
performance information (e.g. correct or error). Methods that do not use a training
dataset employ the so-called “unsupervised learning” paradigm of machine learning.
Electrode contacts are classified based on the distribution of the iEEG features to
separate the contacts that show features reflecting task-related physiological activities
[16]. Other methods use filtering techniques that separate out the active contacts that
satisfy a priori chosen criteria for any of the features. A general design for method-
ological steps in this identification process is summarized in Fig. 49.1. After all,
every method type has specific advantages that need to be considered for particular
applications as well as for the data available [1].

49.3 Electrophysiological Features of Neural Activities

Whatever is your general approach and particular detection or classification method,
the identification of iEEG activities will only be as good as the features that are
used. These can be categorized into univariate and bivariate, meaning derived
from individual or paired electrode contacts, respectively. A classifier can use
multiple univariate and/or bivariate features to enable multivariate classification (see
Chap. 34). One of the most basic univariate features is amplitude of the signal in
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Fig. 49.1 Pipeline for automated identification of active electrodes. Features are extracted for each
electrode from iEEG data collected during a cognitive task. Electrodes are classified as active or
inactive using machine learning methods based on the features

response to a task event, e.g. the event related potential (ERP). Sensory and also
association areas can be identified based on ERPs obtained from specific contacts at
various latencies in response to stimulus presentation. Spectral power of the signal in
a given frequency band (aka power-in-band) is one ofmost commonly used univariate
features. Bivariate features can be derived from the raw or filtered signal or from the
spectral components of the signal. Correlation of two signals in a given amount
of time is one simple example of a bivariate feature. Spectral coherence is another
common bivariate feature of the phase relationship in a given frequency component
of the signals. It is usually not enough to take raw values of these features, since
different electrode contacts will record iEEG signals at various amplitude scales
due to differences in impedance both across anatomical sites and time of recording.
Hence, most features have to be normalized.

Change from baseline is a classic example of feature normalization that can be
applied both to the evoked (ERP) and induced responses (the former is time-locked
to the stimulus onset). The obtained feature value during the studied brain process
is subtracted from the value outside of the process (typically before the stimulus
presentation) for every contact independently. This baseline normalization is very
suitable for the evoked features, but presents challenges for the induced features. The
evoked features are tightly time-locked to stimulus presentation in a given task with a
clear-cut baseline period before the presentation and a response period following the
stimulus. The induced features like the spectral power-in-band are not as tightly
locked and can appear before the stimulus presentation driven by attentional or
anticipatory processes. In case of the latter, it is less clear what period to use as
the baseline. Alternative normalization techniques include z-score transformation,
which scales all feature values to standard deviations above and below the mean of
the analyzed signal. Other techniques include dividing each feature value in a given
frequency band by the mean power across all bands, for instance, to scale the values
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from different contacts, sessions or subjects. What we want to obtain in the end are
normalized features that extract the total amount of change or response in a given
electrophysiological activity that can be compared across the anatomical sites of the
electrode contacts, and ideally also across the spectrum of neural activities.

The Fig. 49.1 example shows a univariate feature of the spectral power in a high
gamma frequency band around the time of stimulus presentation, normalized by
z-score transformation. Total amount of induced power-in-band, which has been
averaged across multiple trials of stimulus presentation, is integrated from abso-
lute values of both positive and negative deviation from the mean. In this way, any
increases or decreases in the high gamma power that were induced either before or
during stimulus presentation will be captured in this one feature. The same feature
can be obtained for the other frequency bands and compared in one normalized scale
of standard deviations from themean. In the example, two power-in-band features are
then used to plot their distributions across all electrode contacts. The active contacts
can be classified using a Gaussian mixture model with any one of the power-in-band
or other features. This simple approach allows different features to be compared
for how well each can classify the data relative to a gold-standard manual review
by an expert [16]. More importantly, it can identify the anatomical sites and the
neural activities underlying these features and address physiological questions about
cognitive and other brain functions.

49.4 Applications for Investigating Memory and Cognition

Once electrode contacts that show electrophysiological responses in a given task
are identified, we can look more closely at their features to understand the spec-
tral, temporal and spatial dimensions of the underlying neural activities. One basic
question that can be addressed is: what is the spatial scale at which a given spectral
activity is generated? Let’s say that features that separated the active and inactive
contacts were derived from a specific frequency range of the EEG spectrum. We can
then look at the spatial distribution of the active electrode contacts. High frequency
oscillations (HFOs) are a good example of an activity that is detected only on indi-
vidual micro-contacts and the corresponding closest macro-contact (if available) but
not necessarily on the neighboring micro-contacts [3, 4, 26]. Based on these find-
ings it has been estimated that HFOs are generated at a spatial scale of <1 mm3,
corresponding roughly to a single cortical column [25]. Likewise, a micro-seizure
generation can be limited to a single micro-contact and be initially undetectable on
the neighboring macro-contacts until further spreading of the seizure activity [20].
In cognitive processes, HFO activities in the high gamma/ripple frequency range
were detected at the same time on both the macro- and the nearby micro-channels
implanted on the cortical surface [21]. In all three cases above of studying spatial
scale, the electrophysiological activities were relatively easy to detect—they were all
spatially limited to very localized discharges and defined frequency range. These can
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be efficiently identified and studied with recordings from a small number of contacts
in a single subject without a need for a fully automated method.

The situation is different, however, in case of large studies involving multiple
subjects implanted with hundreds of electrode contacts and recorded at various
centers. Such iEEG datasets are becoming more common now, and enable studying
processes that are widely applicable across subjects. However, their large sizes
present many challenges for efficient study of neural activities. Apart from the
obvious technical issues relating to particular ways that data are recorded at various
centers with different formats, sampling rates, electric noise levels, electrode coor-
dinate systems etc., analyzing the neural activities across a wide frequency spec-
trum, anatomical space, and temporal span of the iEEG recordings necessitates
employment of automated tools. Here, we provide three example studies from an
iEEG project that involved over two hundred epilepsy patients, who performed the
same free recall verbal memory tasks at multiple clinical centers. We asked different
questions about the spectral, spatial and temporal dimensions of the neural activities.

In the first study, a multi-feature classification of spectral power from a wide
range of frequency bands was used to predict successful and unsuccessful encoding
of words for subsequent free recall [7]. Spectral features in the theta and gamma
frequency bands in specific brain areas showed the greatest memory effect of
predicting recall. Even though the classification itself did not reveal a high perfor-
mance in terms of specificity and sensitivity, it was found helpful in determining
target neural activities, brain areas, and cognitive states for electrical stimulation to
improve memory performance. In this particular case, pre-selecting active electrode
contacts yielded no further improvement for the classification but significantly short-
ened the computation time [17]. The sameclassifierwas also used to select parameters
of electrical current and trigger stimulation of the lateral temporal cortex in a fully
automated closed-loop design [8]. Although the resultant improvement in memory
performance was of the same magnitude as in the original discovery of open-loop
stimulation in the lateral temporal cortex [12], it was still a milestonemethodological
achievement to develop patient-specific classification and modulation of brain states
that was fully automated (see Chap. 41).

In the second study, electrophysiological activities induced in this free recall
task were mapped across the brain areas and time of memory encoding [12, 15].
Univariate features of spectral power were calculated for a fully automated unsu-
pervised classification of electrode contacts [16], which was performed separately
in low, intermediate, and high frequency bands to identify contacts that recorded
significant responses to stimulus presentation. This revealed unexpected findings
about the spatiotemporal organization of the induced neural activities (Fig. 49.2).
First of all, the vast majority of the identified macro-contacts were classified as
active in only one or two frequency bands, meaning that any one recorded area of
the cortex showed spectral activities at a distinct frequency range in this task. These
findings are in agreement with the spectral fingerprint hypothesis [18], resulting in a
mosaic-like pattern of theta, alpha, beta and gamma patches of cortical neural activ-
ities. Furthermore, the low, intermediate and high frequency activities were induced
differently in the two hemispheres and at different times of memory encoding. The
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Fig. 49.2 Spatial organization of induced neural activities. a Representative examples of trial-
averaged spectrograms during stimulus presentation from active electrodes at different anatomical
locations showing induced power changes confined to one of the three frequency ranges. b Active
electrodes were identified separately for each band (low theta: 2–4 Hz, high theta: 5–9 Hz, alpha:
10–15 Hz, beta: 16–25 Hz, low gamma: 25–55 Hz, high gamma: 65–115 Hz) and combined with
the anatomical location of the electrode to study their spatiotemporal organization. c Percentage
of electrodes that were found active in one or multiple different (up to 6) frequency range(s).
Inset figure: Distribution of the electrodes active in one or more of the frequency bands reveals
the highest overlap in the posterior areas of the occipital and parietal visual cortex, which was
gradually decreasing in more anterior cortical areas as shown in the average brain surface plot and
the cartoon summary of all active electrodes. d Violin plots (black and red lines indicate the mean
and the median, respectively) of distribution of number of bands in which each electrode was active
for nine cortical areas (V—visual; IT—inferior temporal; Pre—precuneus; Par—lateral parietal;
MTL—mesial temporal lobe; LT—lateral temporal; Br—Broca’s area; PFC—prefrontal cortex;
FP—frontal pole)

induced power in each frequency band had a specific propagation pattern across the
sensory and higher-order cortical areas of the processing stream (Fig. 49.3), reminis-
cent of travelling waves (see Chap. 30). In the end, the automated identification of
active contacts in this memory task enabled an efficient and comprehensive mapping
of human memory encoding and provided insights into the distributed independent
dynamics and functions of low, intermediate, and high frequency neural activities
[15].

The third study aimed to find the brain areas and neural activities that were most
predictive of successful memory encoding [22]—the subsequent memory effect. For
a number of reasons, including identification of specific contacts in particular regions,
the initial studies failed to localize one confined area and activity that would have a
greater magnitude of the effect than the others. A hotspot of this subsequent memory
effect was found in the theta frequency activities recorded from electrode contacts in
the left anterior prefrontal cortex (Fig. 49.3). The memory effect in this new hotspot
location was found to be even greater than for the previously reported successful
memory enhancement in the lateral temporal cortex, providing a new target for
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a d

b c

Fig. 49.3 Temporal organization of induced neural activities and a hotspot of memory encoding.
a Subsequent Memory Effect (SME) for an active electrode is computed by taking the difference
between the power in a specific frequency band for recalled and forgotten words. b, c Peak latency
and peak power of the power-in-band signals aggregated across anatomical locations (Brodmann
areas) of active electrodes reveal a hierarchical propagation of memory processing across the cortex,
as visualized in the heatmap matrix. d SME values were averaged across active electrode localiza-
tions and interpolated on an average brain surface to reveal a hotspot for memory encoding in low
theta neural activities of the anterior prefrontal cortex

electrical brain stimulation. Thus, the automated identification of the neural activ-
ities induced during memory encoding resulted in rapid mapping and localization
of targets for modulating cognitive functions. This was accomplished using basic
univariate features—other bivariate measures of connectivity, including correlation,
spectral coherence or cross-frequency coupling, may prove even more successful for
these mapping and heuristic purposes.

49.5 New Technologies and Future Directions

Rapid and efficient identification of neural activities recorded at particular elec-
trode contacts becomes a necessity for the emerging neurotechnologies. Implantable
devices for concurrent recording and stimulation of iEEGactivities require automated
signal processing and analysis. Even the very choice of target electrode contacts for
stimulation therapies becomes more and more reliant on the employment of auto-
mated intelligent identification methods. In the classic example of the DBS (Deep
Brain Stimulation) devices for treating movement disorders, target contacts for the
therapeutic stimulation are selectedmanually based on the information acquired from
the intra-operative recordings and anatomical localization of electrode implantation.
Even these manual procedures would benefit from rapid localization and quantifica-
tion of neural activities. New technologies for responsive and adaptive DBS already
take full advantage of automated identification of neural activities to target the timing
and localization of the stimulation. This automated approach is even more useful in
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similar devices implanted for management of seizures in epilepsy, where the target
location and parameters of electrical stimulation are more difficult to determine both
in the anatomical space of the brain and in time. In fact, the pathological HFOs
observed in epilepsy are known to be a ‘moving target’ and change with time [9].
Likewise, the neural activities associated with cognitive processing are known to
differ between individuals and even change within an individual across the time of
brain development (see Chap. 10). Given that the new devices are designed to be
implanted commonly for a life-time, manual selection and adjustment of the sensing
and stimulation parameters is less and less efficient, feasible, and realistic.

The automated methods, on the other hand, are opening up to vast opportunities
provided by the emerging neurotechnologies. Identification of the neural activities
and optimization of their modulation can now be performed outside of the local
signal acquisition and stimulation, which was traditionally all performed within a
given iEEG system or an implantable device. Algorithms, which use computationally
intensive machine-learning or artificial intelligence methods, are no longer limited
to the local hardware capabilities but can use recordings streamed from local devices
and be implemented across other devices and cloud computing facilities [10, 19].
Possibilities for implementing automated adaptive identification of neural activities
and intelligent optimization of brain modulation are almost limitless once distributed
to the virtual reality of internet space.

As a result, probing cognition is no longer bound to the laboratory space but
can be performed remotely anywhere and at any time, as long as access to the
virtual space of the internet is provided. Personal hand-held devices that stream
iEEG activities between local and remote computing devices are ideally positioned
to deliver cognitive tasks. The tasks themselves can be supervised manually or auto-
matically triggered by unsupervised online analysis of the neural activities identified
in the recordings. Additional features that are commonly utilized in the tasks, like
accelerometry or eye-tracking, are easily implemented with wearable technologies
on almost any smartphone or tablet computer. The eye-tracking measures like gaze
position or pupil size are now commonly used to complement the iEEG features
in studying cognitive functions (see Chap. 14) or in new Brain-Computer Interface
applications [14], see Chap. 51). Empowered by all these technological capabilities,
new paradigms for exploring human memory and cognition in virtual, augmented or
natural environments are developed to take advantage of the emerging technological
opportunities (see Chaps. 52 and 53). Cognitive functions of the human brain are
now being probed and modulated in real time and home environments to eventually
improve individual lives. Efficient identification of electrophysiological activities
across the large scale of their organization is a pivotal step for these exciting new
avenues.
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Chapter 50
How Can We Track Cognitive
Representations with Deep Neural
Networks and Intracranial EEG?

Daniel Pacheco Estefan

Abstract Studies harnessing the heuristic potential of Deep Neural Networks
(DNNs) and the high spatiotemporal resolution of intracranial EEG (iEEG) data are
providing fine-grained details about the nature of brain representations. Originally
employed to simulate visual processing and object recognition in the ventral visual
stream (VVS), DNNs have recently been applied as models of brain representation in
higher-order cognitive domains. In addition to perception, this approach has recently
yielded unprecedented insights in memory research, revealing the representational
formats and temporal dynamics of working and episodic memory representations. In
this chapter, the potential and the limitations of modeling cognitive representations
with DNNs and iEEG data are reviewed.

50.1 Introduction

The goal of cognitive neuroscience is to develop a mechanistic understanding of how
the brain represents information to implement cognitive functions. A fundamental
tool to achieve this objective are computational models, i.e., formal descriptions of
information processing in the brain that describe the operations applied to sensory
inputs and their transformation to produce cognition and behavior. Computational
models have been described at different levels of abstraction, ranging from biophys-
ically detailed models of individual neurons to rate-based models of neural popu-
lations. In recent years, a family of architectures originally developed in the field
of Machine Learning (ML) has been increasingly employed to model brain func-
tion in cognitive neuroscience: the class of Deep Neural Networks (DNNs). Despite
being highly abstract versions of biological brains, DNNs have achieved human-
level performance in a variety of ‘cognitive’ tasks such as visual object recognition,
text generation or Atari video games [1–3]. To solve these tasks, DNNs employ
multiple layers of internal representations of stimuli, which have been used to model
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activity in brains of animals and humans [4–6].Most human studies usingDNNs have
been conducted with neuroimaging andMagnetoencephalography (MEG) data (e.g.,
Refs. [2, 7–9]). Recently, however, investigations have started to apply them to other
recording modalities, including electrocorticography (ECoG) and intracranial EEG
(iEEG). In this chapter, we review these advancements, highlighting the adoption of
Representational Similarity Analysis as a modelling framework to compare repre-
sentations in DNNs and biological systems (RSA; Box 1; [10]). Studies employing
RSA, DNNs and iEEG to characterize the transformative nature of memory repre-
sentations and their relation to hippocampal theta oscillations are reviewed. Finally,
the strengths, limitations and future opportunities of current modeling approaches
are discussed.

50.2 Deep Neural Networks in Cognitive Neuroscience

The development of convolutional DNNs (cDNNs) in the domain of computer vision
largely contributed to the virtuous interaction of Artificial Intelligence (AI) and
neuroscience. CDNNs are a particular class of neural network architectures trained to
classify images—i.e., to assign object labels to perceptually invariant visual inputs-,
whose connectivity structure is loosely inspired by the visual system. After training,
these networks develop layered representations of stimuli that hierarchically encode
increasingly abstract visual properties: Early layers reflect low-level features of
images such as edges or color patches, while deeper layers are sensitive to more
complex visual information, such as the presence of objects or object parts [11].
Several studies demonstrated the validity of cDNNs as models of biological vision,
showing that they capture relevant features of information processing in the ventral
visual stream (VVS) of animals and humans [1, 12, 13]. This was initially shown
in the macaque Inferotemporal (IT) cortex in two studies [7, 14]. The validation of
cDNNs as models of visual processing promoted their application to other animal
species (e.g., rodents [15]) and recording modalities. Several human studies have
applied cDNNs to model visual perception with fMRI and RSA [14, 16–18]. These
investigations revealed a match in the hierarchy of representations in the VVS and
DNN layers, with superficial layers mapping to early visual areas and deep layers
to higher-level regions [13, 14]. The anatomical correspondence of DNN layers,
however, is currently a matter of debate. A recent study showed that all regions
along the VVSmatch better with deep cDNN layers, suggesting that high-level cate-
gorical information is present at all levels of visual processing [19]. It has been
acknowledged that the correspondence of layers of very deep feedforward cDNNs—
currently the state of the art in ML—and particular brain regions is limited [12,
20–22]. Nevertheless, efforts to quantify the quality of models in predicting brain
activity, such as the ‘brain-score’ metric [23], evaluate the predictive power of DNNs
for each region of the VVS separately. Moreover, studies in visual perception have
delineated a sharp line between VVS and medial temporal lobe (MTL) supported
computations, using DNNs as models of VVS only [24].
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Beyond the debate regarding the anatomical correspondence of DNN layers,
recent MEG and iEEG studies have provided fine-grained details about the neuro-
physiological patterns that underlie DNN-like computations in the brain, character-
izing their chronometry [9, 25], spectral properties [26], and architectural constraints
[27, 28]). Among these advancements, architectural factors have been considered
particularly important [13, 29]. For instance, it has been shown that recurrent connec-
tions play a crucial role in the predictive power of convolutional DNNs as models
of visual processing. Indeed, shallow recurrent architectures are better predictors of
VVS activity than deep feedforward networks [13, 23, 27–31]. Feedback connec-
tivity is particularly important given the critical role of top-down connections, such
as those originating in the prefrontal cortex (PFC; [27, 28]) on VVS activity.

Beyond the domain of vision, investigations are starting to use DNNs asmodels of
higher-level cognitive representation (Fig. 50.1b). In general, two approaches can be
distinguished: (1) studies that trained DNNs to perform complex cognitive tasks and
compared their internal representations with those formed in the brains of animals
and humans (i.e., a similar approach as in the visual domain; Fig. 50.1b, Left), and
(2) studies that used DNNs optimized for lower-level tasks (e.g., visual perception)
to model aspects of brain computation during higher-level cognitive functions (e.g.,
visual working memory; Fig. 50.1b, Right).

Studies following the first approach have so far mostly been conducted with
fMRI. For instance, Cross et al. employed a convolutional DNN to map images
extracted from Atari games to actions leading to reward in the games (Fig. 50.1b,
Top left; [2]). Trained to maximize reward within a reinforcement learning (RL)
setting, this network approximates the Q-value function in RL, reflecting the value
of taking an action in a particular state (thus named Deep-Q-Network, DQN). Repre-
sentations formed across layers of DQN were observed in a widespread network of
sensorimotor regions in humans playing Atari games, demonstrating a convergent
solution to the problem of state representation in biological and artificial brains
[2]. Similarly, EmoNet, a convolutional DNN trained to classify images according
to their emotional content, developed representations of high-level emotional cate-
gories (Fig. 50.1b, Bottom left; [8]). The structure of representations in deep layers
of EmoNet was predictive of activity along the VVS of humans watching emotional
movies. This result indicates that high-level emotional categories are represented
in visual areas and may be taken to suggest that these categories can be extracted
from visual representations alone. Interesting results have also been observed in
auditory perception, where task-optimized convolutional DNNs are predictive of
cortical responses to auditory inputs in macaques [32]. In the domain of human
language, recent studies have shown that internal representations formed in trans-
former language models (e.g., GPT-2) map to distributed language networks in the
brain [3, 33–35]. Transformers are a novel class of DNN architectures that rely on
self-attention and contextual representations to capture long-range dependencies in
their inputs [36]. Interestingly, the ability of the models to predict brain activity is
correlated with their performance in the task of next word prediction, suggesting that
the human brain is also engaged in this task during language processing [33, 34].
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a

b

Fig. 50.1 Modeling cognitive representations with DNNs. a Convolutional DNNs have been
employed to model visual object recognition in the VVS with iEEG. In a recent study [26], neural
RDMs were created for each frequency band and compared to different layers of the DNN Alexnet
(Left). This revealed a specific role of low gamma oscillations (31–70Hz) in conveying feedforward
information during visual processing. Consistent with neuroimaging research, this study showed
that superficial layers of Alexnet fit well early visual regions in the VVS, while deep layers are better
matched to high-level visual regions (Right). b DNNs have been employed to model higher-level
cognitive functions beyond the domain of visual perception. Two approaches can be distinguished.
Left: Representations in biological and artificial brains performing the same task are compared. Top:
The Deep-Q-Network is trained to solve Atari Games and used as a model of state-space repre-
sentations in the human brain [2]. Bottom: The EmoNet network is trained to classify emotions
from images and used to track representations of emotional content [8]. Right: Alternatively, studies
using iEEG inmemory research have used pretrained architectures from computer vision and natural
language processing to investigate mnemonic processing of visual and semantic information

Studies following the second approach—of using DNNs trained on lower-level
tasks to investigate representations during higher-level cognitive function—, have
mostly employed iEEG. Using DNNs that were pre-trained for visual and language
processing, these studies are providing crucial details about the employment of
different visual representational formats during working and episodic memory
processes, the transformation of these representations, and their dependence on deep
brain oscillations. These recent developments are reviewed in the next section.
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50.3 DNNs and iEEG: Insights from Memory Research

Harnessing the representational power of DNNs and the high temporal resolution of
iEEG, recent studies have described the formats and dynamics of memory represen-
tationswith an unprecedented level of detail. For instance, several investigations have
now successfully applied the neural network Alexnet [37] to investigate the moment-
to-moment representational transformations underlying the mnemonic processing of
images [38, 39]. Alexnet is a feedforward convolutional network composed of five
convolutional layers and 3 fully connected layers [37]. Using the Alexnet network
and RSA, a recent study showed that neural representations of items during visual
working memory encoding (VSWM) are matched to deep but not early layers of the
network (Fig. 50.2, [39]; see also Chap. 8). This occurs in a relatively early time-
period reflecting fast representational transformations from low- to high-level visual
information (250–770ms after stimulus onset). Interestingly, in a later encoding time-
period (1–2 s), representations were not captured by Alexnet layers but by a semantic
network that was not trained with images but with text corpora [40], highlighting the
relevance of abstract representations for VSWM (Fig. 50.2a, b, Left).

Consistently, a second study also using Alexnet revealed the transformation of
representations from low- to high-level visual and semantic formats in a time frame of
~1.5 s at encoding [38]. Critically, representational dynamicity—the degree of repre-
sentational transformation across time—was correlated with subsequent memory
performance in the task [38]. Moreover, this study revealed that representations
retrieved from long-term memory were more similar to those during short-term
maintenance than during encoding, revealing the highly transformative nature of
these neural patterns [38].

In addition to characterizing the dynamic nature of memory, studies using DNNs,
RSA and iEEG have provided insights into the organizing role of brain oscilla-
tions during memory processes (see also Chap. 19). Theories have proposed that
low frequency oscillations organize and structure representations that are encoded
in high-frequency or single unit activity [41] (see also Chap. 44). Using a word2vec
model [42] to describe the semantic relationships among visual images in an episodic
memory task, a recent iEEG study confirmed that neural representations of items
are organized along hippocampal theta oscillations according to their semantic
content during episodic memory retrieval [43]. In this study, similarity between
time-resolved distributed oscillatory patterns was calculated between encoding and
retrieval using Spearman’s rho. Distributions of encoding retrieval similarity (ERS)
values over hippocampal theta phase were constructed by computing the specific
retrieval phase of the ERS time-series (Fig. 50.2b, Middle). The pairwise similarity
of the phase-ERS distributions was then compared with the distance extracted from
the word2vec embeddings, revealing a segregation of semantically proximal items
into more distant theta (3–8 Hz) phases (Fig. 50.2b, Right). This result is consistent
with previous research showing that hippocampal theta oscillations reflect semantic
distances between words during memory retrieval [44]. Using a similar approach of
characterizing semantic proximities between stimuli using word2vec embeddings,
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Fig. 50.2 Specific advantages of modelling cognitive representations with iEEG. a DNNs can be
applied to assess the representational structure of stimuli in a time-resolved manner, by defining
feature vectors for each item and computing pairwise similarities among them in sliding time
windows. These RDM ‘movies’ can then be compared to different model RDMs (e.g., from early
layers of a DNN). bDifferent uses of time-resolved signals: Left: Themoment-to-moment represen-
tational transformations during working memory encoding are reflected in the traces representing
the fit of a particular network layer to the neural RDMs [38]. High-level visual information is
present during an early time-period at encoding, as observed in the significant fit of deep layers
of the Alexnet network. Middle: Hippocampal theta phases (top row) were linked to time-resolved
encoding-retrieval similarity (ERS) values in each trial (middle row), resulting in phase-ERS distri-
butions reflecting the preferred phase of item reactivations [43] (bottom row). Distances between
these distributions were subsequently compared to semantic distances among items as assessed by
a word2vec DNN. Correspondent matrices of one participant in the experiment are shown (Right)

this study revealed that semantic distances correlate with theta power in a free recall
task, establishing the role of hippocampal theta oscillations in organizing semantic
information during episodic memory processes.

In addition to hippocampal theta oscillations, oscillatory activity in neocortical
regions have been linked to relevant neural computations such as top-down inhibitory
control (alpha and beta; [45, 46]) or bottom-up information flow (gamma; [47]).
By tracking the relationship of representational signals and oscillatory power at
different frequencies and electrodes, a recent study found that ERS is negatively
correlated with beta and positively correlated with gamma power during episodic
memory retrieval [43], consistent with results obtained in a combined fMRI-EEG
experiment [48]. In these studies, DNNswere not employed but item-specific activity
was extracted using RSA. Nevertheless, this research shows the potential of relating
representational patterns extracted from DNNs to neurophysiological signals such
as oscillatory power and/or phase.

Finally, iEEG studies have applied the DNN-RSA framework to characterize the
specific frequencies in which information is encoded and dynamically represented
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during memory processes, as previously achieved in visual perception [26]. A recent
study tracked frequency resolved,DNN-derived representations extracted from iEEG
in a working memory paradigm involving a retro cue. In this study, participants were
required to maintain three items in working memory and only one of them (indicated
by the cue) was tested after themaintenance period. The geometry of activity patterns
in the prefrontal cortex (PFC) after the presentation of the cue was captured by the
deepest layers of a recurrent DNN [49] specifically in the beta (16–28 Hz) band,
suggesting an inhibitory top-down representation [50].

50.4 Discussion

In this chapter, two approaches for modeling cognitive representations with DNNs
were reviewed. The first approach used task-optimized DNNs as models of brain
representations and computations in visual processing and other higher-level cogni-
tive domains. The second approach employed DNN architectures from computer
vision and natural language processing to track cognitive representations underlying
memory. These two approaches have both strengths and limitations, and present
opportunities for future research.

Modeling neural data with task-optimized DNNs has revealed critical insights
about the nature of brain computations. In vision studies, DNNs have been used to
model several different types of data, including rodent [15] and monkey [14, 16]
electrophysiology but also human fMRI, MEG, and iEEG [9, 12, 13, 23, 28, 51].
The variety of methods and number of studies has allowed for a highly detailed char-
acterization of the temporal and spectral dynamics of visual processing in the brain.
In other cognitive domains, DNNs have only been used with neuroimaging, which
represents an opportunity for upcoming iEEG research. For instance, while fMRI
studies revealed the sensorimotor networks involved in the transformation of visual
information into a representation of states of the world in the context of Atari games
[2], the frequencies and temporal dynamics of the neurophysiological patterns under-
lying these representations are currently unknown. A second interesting direction to
explore is to characterize the representation of sensory and cognitive variables in the
hippocampus, a structure to which iEEG offers direct access. Theories have proposed
that hippocampal place cells encode the representation of world states during sharp-
wave ripples events [52] and theta oscillations [53]. Such dynamic state-space repre-
sentation might serve adaptive roles such as learning of action-reward associations
and plan future actions. Itwould be interesting to test these accounts by characterizing
the representation of states in the human hippocampus with deep RL models (e.g.,
DQN) and iEEG data. Similarly, the study of emotional processing in the amygdala
could capitalize on recently developed architectures for emotion classification [8].

The second approach reviewed in this chapter—using architectures trained in
lower-level tasks to model higher-level cognitive functions—provides the practical
advantage of avoiding computationally extensive network training. More impor-
tantly, this modeling framework has been supported by theoretical considerations
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[54, 55]. Indeed, representational accounts of memory have argued that regions
representing particular stimulus properties (e.g., low-level visual features in early
visual regions) are involved in the representation of these features irrespective of
the cognitive process in which they are engaged [55]. While these accounts make
specific predictions about the anatomical brain regions that are activated for partic-
ular representations, iEEG studies have assessed neural representations more widely.
For instance, convolutional DNNs have been used to model representations extracted
from neural patterns covering several brain regions [38, 39, 43]. This contrasts with
modeling approaches in visual neuroscience that typically target to map activity in
particular layers of DNNs to specific anatomical areas [23].

While it is important to describe the computational role of particular brain regions,
global representational patterns may provide functionally relevant information not
observable at a local scale. Interestingly, studies have characterized the relationship
of representations at these different levels of analysis. Typically, iEEG global repre-
sentational patterns are computed by correlating neural activity from all available
electrodes in a particular subject, while local patterns are calculated at individual
electrodes using as features only frequencies and times [43]. Studies have shown
that the contribution of each electrode to global representational patterns correlates
with its local levels of pattern similarity during memory retrieval [56]. Electrode
contribution to the global pattern is assessed through a ‘jackknife’ procedure, in
which a baseline value of pattern similarity is computed when including all features,
and then again after removing these features one by one [43, 56]. This electrode-wise
metric of contribution has been linked to oscillatory power at different frequencies
revealing the critical role of theta, beta and gamma oscillations in encoding and
retrieval of item-specific representations [43]. While this analysis was not applied to
DNN-derived representations, it could be easily adopted toRSA time-series extracted
from DNN activations.

An additional relevant line of research that could benefit from the representational
power of DNNs involves the study of the coordination of different brain regions
representing different content during cognitive processes. The high spatiotemporal
resolution of iEEG makes it an appropriate data type to address this issue. For
instance, iEEG has been used to investigate the coordination of memory reinstate-
ment during episodic retrieval between the hippocampus and the Lateral Temporal
Cortex (LTC; [57]). This study found that representations of items in the LTC and of
item-context associations in the hippocampus are coordinated at the trial level during
memory retrieval, supporting a theory of hippocampal function according to which
the hippocampus forms and retains an index of neocortical areas activated by expe-
riential events [57, 58]. Similarly, a recent study using MEG [59] characterized how
representations extracted from DNNs that were mapped to different brain regions
were related during visual processing (e.g., how representations of low-level features
of images in early visual regions relates to the representation of more abstract visual
information in higher-level areas). Applying Granger Causality to RSA time courses
extracted fromDNN layers, this study found visual information travels through feed-
forward connections, while visual information is transformed into semantic repre-
sentations through feedforward and feedback activity [59]. A similar approach could
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be applied to iEEG, which could also investigate the transformation of perceptual
signals into semantics in deep MTL structures, including the hippocampus, where
abstract conceptual representations have been observed [60].

It must be noticed that some of the studies following the first approach reviewed
in this chapter have employed transfer learning techniques that facilitate network
training on customized tasks. Transfer learning consists of partially retraining a
network, typically by adjusting the architecture and weights in the final layers while
keeping the rest unmodified. For instance, the EmoNet network [8] is fully based
on the Alexnet architecture and trained parameters except from its final classifica-
tion layer, which was adjusted to classify emotions instead of objects from images.
Transfer learning has been used to evaluate the impact of particular architectural
features, e.g., lateral connectivity, in the performance of DNN models [61]. For
instance, a recent study demonstrated that adding recurrent connections to Alexnet’s
Fc7 layer significantly improved the network performance and fit to human behavior
[61]. In addition to transfer learning, studies have fully retrained off-the-shelf archi-
tectures to investigate changes in the internal representations formed in the networks
after changing their training objective. Following this approach, a recent study evalu-
ated the performance of the VGG16 network [20], a deep convolutional architecture
originally designed to classify images, after retraining it to recognize only faces or
objects [62]. This study showed that training for these tasks separately led the network
to develop very different representations of these two categories, while training on
both tasks simultaneously made it segregate itself into two separate systems for faces
and objects. Transfer learning and retraining off-the-shelf networks avoids unnec-
essary network design and training and allows to evaluate task-performing models
customized to particular tasks.

In addition to re-training existing architectures, the development of novel deep
learning models will be critical in future iEEG-DNN research. With the excep-
tion of visual processing, which has incorporated novel types of models, most of
currently employed task-performing networks in other cognitive domains lack recur-
rent connectivity and therefore temporal dynamics [29]. Tomodel higher-level cogni-
tive functions, it will be crucial to assess how inputs of the system are dependent on
contextual information andmemory. Promising new results have been obtained in the
domain of NLP, where networks trained in next-word prediction based on contextual
embeddings are currently the best predictive models of brain activity during human
language tasks [3, 33, 35, 36]. In reinforcement learning, models have also incor-
porated recurrent connectivity to deal with the issue of memory [63, 64]. Modeling
cognitive representations extracted from iEEG data with these novel architectures
constitutes a fascinating opportunity for future research.

While many of themodelling approaches discussed in this chapter assign a promi-
nent role to prediction of neural activity patterns based on the responses observed in
DNNs, this does not by itself provide a mechanistic account of cognitive processing.
Amatch in the representational geometry of representations formed in biological and
artificial brains does not imply that the same computations are being performed in
the two systems, because similar representations could be achieved through different
computations [4, 5]. In that sense, the ability of current DNN models to predict
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neural activity patterns is one relevant aspect that should be complemented with
other methods in future research.

Box 1: Representational Similarity Analysis and Its Application to iEEG
Data
Representational Similarity Analysis (RSA; [10]) is a widely used multivariate
analysis framework for characterizing the representation of stimuli in the brain.
RSA characterizes a system’s representations by means of a representational
dissimilarity matrix (RDM), traditionally defined via the pairwise distances
(e.g., 1-correlation) among stimuli. In a cognitive neuroscience experiment, a
neural RDM is typically built by computing these pairwise distances among
activity patterns representing items and/or particular experimental conditions.
Thesemight comprisemultivariate activity frommultiple fMRI voxels or time–
frequency-electrodes patterns in iEEG. To test specific hypotheses about the
structure of this neural RDM, a model RDM is defined. Model RDMs can
be hand-crafted or taken from other representational systems such as DNNs.
Critically, comparisons between model and neural representational geometries
and are performed at a second level of analysis and do not depend on the indi-
vidual features that are used in each system to build the RDMs. This provides
RSA with great flexibility to compare biological and artificial systems irre-
spective of their particular modality of representation (e.g., artificial units in
a DNN or fMRI voxel activity humans). The fit of the model RDM to the
neural RDM quantifies the evidence supporting the model hypothesis. The
fit of the model can be assessed by correlating vectorized RDMs or using
General Linear Models (GLMs). In GLMs, a set of RDM predictors repre-
senting different factors that could affect the neural representational geometry
are defined. These predictors might not be orthogonal to each other, and studies
have applied jackknife procedures to assess the specific contribution of each
predictor [31]. When using DNNs as models of representation, and given that
different layers of DNNs are correlated, studies have used partial regression or
correlation techniques to assess representations in individual layers [38, 39].

In humans, RSA has been mostly applied to neuroimaging data. Recently,
however, it has also been used with other recording modalities such as MEG,
ECoG or iEEG. RSA can be flexibly adjusted to exploit the high temporal and
spectral resolution of the latter recordingmodalities. In time-resolved analyses,
representational feature vectors characterizing individual items are computed
in sliding time-windows. For each time-window, the representational geom-
etry of the stimuli is defined, resulting in an RDM time-series (or an RDM
‘movie’). This can be contrasted to “static” models (e.g., a particular layer in a
feedforward convolutional DNN, Fig. 50.2a) or “dynamic” models (e.g., RDM
movies extracted from recurrent DNNs). Similarly, RDMs can be specified
for particular frequency bands or individual frequencies, and specific anatom-
ical locations (by selecting electrodes or voxels as features). RSA can also be



50 How Can We Track Cognitive Representations with Deep Neural … 859

applied towhole-brain patterns and/or broad frequencybands.While traditional
approaches have assessed compartmentalized regions in the VVS, recent iEEG
studies have started to use brain-wide patterns including electrodes located in
distributed regions. To assess the contribution of individual brain regions, some
studies have performed local RSA by extracting activity at one specific elec-
trode [57]. Time and/or frequency resolved analyses, together with spatially
localized RSA, provide a powerful way to link representations extracted with
DNNs to the vast neurophysiological literature on iEEG oscillations and their
role in cognitive function.
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Chapter 51
How Can I Use Utah Arrays
for Brain-Computer Interfaces?

Christian Klaes

Abstract To record neuronal data from single neurons requires sophisticated hard-
and software. Signals can be acquired acutely, for example using single Tung-
sten electrodes, or chronically, for example using an electrode array. Chronically
implanted electrodes can provide spiking data for long periods of times so that
long lasting experiments or clinical applications become viable. In case of a brain-
computer interface (BCI) where information directly from the brain is used to drive
an extracorporeal device, like a robotic prosthesis, it is desirable to use chronically
implanted electrodes that can work for multiple years, ideally for a lifetime. One
candidate device that has been used in countless animal experiments and several
human clinical trials is the Utah electrode array (UEA) which was developed in the
late 1980s at the University of Utah. At the time of writing the Utah electrode array
is marketed by Blackrock Neurotech and 31 people have been implanted with one
or multiple UEAs. In this chapter an overview over the UEA is given and its use for
BCI applications will be described in detail.

51.1 What Is a Brain-Computer Interface?

A Brain-Computer Interface (BCI) provides a direct connection between the brain
and a computer. Information of intended actions that arise, for example in the motor
related areas of the brain, are read-out by specific sensors. The recorded neuronal
information is then passed on to a so-called ‘decoder’ which interprets the neuronal
signals and outputs according control signals. These signals are then used to drive
an effector such as a neuroprosthetic device, e.g. a mouse cursor, a robotic arm or
an exoskeleton. A bidirectional BCI can also write-in information, so that instead of
receiving information via the periphery, e.g. the body surface, the areas of the brain
that would normally receive this input are directly electrically stimulated. Primary
targets for reading-out motor related information are the primary motor cortex (M1),
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premotor cortices or the posterior parietal cortex. For writing-in information the
primary sensory cortex (S1) can be targeted. A technical distinction between various
BCI types can be made by looking at the invasiveness of the device. The most
common BCI are non-invasive and use electrodes placed on the scalp, i.e. elec-
troencephalography (EEG). EEG based BCI have a high temporal resolution but
lack spatial resolution which makes it difficult to control devices with them. Long
training phases, few degrees of freedom to control and a lot of concentration required
from the user make them less suitable for continuously operating a neuroprosthesis.
Another candidate is functional magnetic resonance imaging (fMRI) which has a
better spatial resolution and signals from within the brain can be as easily recorded
as surface areas. Unfortunately, fMRI has a very low temporal resolution and is
impractical for size and cost reasons. Functional near infrared spectroscopy (fNIRS)
can be used in a similar setup as EEG or in conjunction with EEG. It offers some
potential advantages for the signal to noise ratio but suffers from low temporal reso-
lution since it only indirectly measures brain activity similar to fMRI. In addition to
problems with reading out signals due to low spatial and temporal resolution there
are also no viable options to write-in information as feedback for the brain. Currently
this can be done non-invasively only using transcutaneous direct current stimulation
(tDCS) or transcranial magnetic stimulation (TMS). Both of these methods have
been used to stimulate the brain but only on a very broad level and by activating
large parts of the brain which makes them less specific. For use in a neuroprosthetic
to provide somesthetic feedback tDCS and TMS are not precise enough.

If invasive BCI are used the signal-to-noise ratio and the spatial resolution can
get much better. Electrodes can be placed either on top of the dura mater which is
considered to be less invasive or beneath it. For placement on top or under the dura
mater, soft electrode grids are used which can stay in the body for several days to a
few weeks to record electrocorticographic (ECoG) signals. ECoG signals are similar
to EEG signals but since they are closer to the cortex and no skull is in the way the
signal-to-noise ratio can be much higher. The local field potentials (LFP) that they
record are less detailed than single neuron activity but they are a highly stable signal.
There are also micro ECoG grids available which can detect signals close to single
neuron level [1]. Generally, ECoG based BCI systems strike a good balance between
invasiveness and signal quality and have been used in research settings extensively
[2, 3].

The most invasive systems used today are electrodes implanted beneath the dura
mater, often in the form of larger arrays containing hundreds of electrodes. These
arrays are placed beneath the dura and are penetrating the outer layers of the cortex.
With such arrays single neuron activity can be measured in real-time. The signal
quality of these electrodes can be excellent although it is possible that only few elec-
trodes are close enough to neurons to pick up single cell spiking activity depending on
the location. Currently, the only available electrode array for implantation in humans
with FDA approval is the Utah electrode array (UEA).
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51.2 Anatomy of the Utah Array

The UEA is a silicon-based probe that consists of 100 electrodes which are arranged
in a 10 by 10 grid. The four electrodes in the corners of the square-shaped array are
used as reference electrodes, so that 96 electrodes can be used for recording spiking
activity. The length of each electrode can vary between 1,000 and 1,500µm.Usually,
all electrodes are of the same length, but slanted designs are also possible in which
the electrode length decreases from one side of the array to the other. At the base
the electrodes have a thickness of 80 µm and taper to a sharp point at the tip. The
original Utah array was developed in the late 1980s at the University of Utah [4]. The
UEA can be used to record intracortical voltage changes caused by single spiking
neurons. It also can be used to apply electrical stimulation to neural tissue. Different
coating types are available if the array is primarily used for stimulation (iridium
oxide tips) or recording (platinum tips). The UEAwas originally designed for retinal
or cortical stimulation, for example to be used in a visual neuroprosthesis. The array
has been used in many primate and rodent research experiments. Recently it has also
been implanted in a few dozen severely paralyzed humans. The impedance of each
electrode in saline is in the range of 10–20 k� [5]. Figure 51.1 shows a UEA at
different magnifications. A percutaneous connector is usually attached at the end of
a wire bundle coming from the array (Fig. 51.1 right). The percutaneous connector
is anchored to the skull by eight titanium screws and connects to a preamplifier if
used for recording. The preamplifier then connects to a neural signal processor which
filters and digitizes the signals. The digitized signals can then be further processed
by a decoder.

51.3 Implantation

At the time of this writing theUEA is the only electrode array that has been implanted
in humans. There are dozens of laboratories around the world that use UEAs for BCI
purposes in monkeys [6, 7] or other small animals [8] and several clinical studies
with humans [9–12]. Array implantations in humans to be used in a BCI have to be
carefully planned and several key points have to be addressed:

(a) Localizing the right position for implantation. Depending on the purpose of
theBCI several brain regions couldbe the target for anUEA. In themost common
case arrays are implanted in the primary motor cortex (M1), dorsal premotor
cortex (PMd) or more rarely posterior parietal cortex (PPC). Anatomical land-
marks, like the hand knob, can be used for placement but as an alternative a
preoperative fMRI scan can be performed. In a scanning session the patient
needs to imagine different movements. The recorded activity in the targeted
areas can pinpoint the best array placement for the planned BCI tasks.

(b) Placement of the percutaneous connector. Currently available UEAs use a
percutaneous connector to connect the array to an amplifier. Computer hardware
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Fig. 51.1 The Utah electrode array. Size comparison (top left). Close up of the array showing a full
row of 10 electrodes (bottom left). Utah electrode assembly showing the array on the left connected
to the percutaneous connector on the right (right)

for spike sorting and decoding remain outside of the body. A good placement of
the bone anchored connector is very important for patient comfort and a secure
connection. If multiple arrays are implanted connector location and orienta-
tion are important. Enough space between the connectors is necessary and also
a medial positioning should be preferred so that the study participant is not
bothered when sleeping.

(c) Array insertion. The UEA is usually inserted using a pneumatic insertion tool
provided by Blackrock Neurotech. The force should be applied perpendicular
to the cortex surface. Blood vessels need to be avoided even if the optimal
placement cannot be achieved then anymore. It should also be avoided to place
the array too close to sulci to avoid that some of the electrodes do not enter the
cortex at all. A firm, flat placement needs to be verified before the dura is closed.

(d) Backup array. The electrodes of the UEA are very fragile and can easily
be destroyed even by slight touch. Handling them very carefully is therefore
paramount. The cables connecting them with the percutaneous connector can
be slightly bent to stay in the right position. Also, care has to be taken for optimal
cable management, especially if multiple arrays are implanted or if some of the
arrays are used for stimulation. Even with all precautions it is recommendable
to have a backup array ready in the operating room.

After implantation and recovery, which usually takes a few weeks, the arrays
can be connected to a computer using the percutaneous connector. Since scar tissue
formation and encapsulation of the electrodes are still unsolved problems neural
recordings are best right after implantation and slowly decline over time. If possible,
data quality can be checked already in the operating room. If that is not possible
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Fig. 51.2 Basic layout of a BCI. Neural data is recorded from the brain (left) and passed on to a
decoder software. The decoder learns correlations between brain signals and intended actions. The
decoder then sends control commands to an effector. This can for example be a cursor on a screen,
a robotic arm or an exoskeleton

functioning of the implanted arrays should be verified as soon as possible after
surgery (Fig. 51.2).

51.4 Data Acquisition

UEAs can record extracellular activity (‘spiking’) of nearby neurons. UEAs are typi-
cally using a sampling rate of 30 kHz which allows for a detailed waveform analysis
and classification. The waveform shape varies depending on the geometric position
of an electrode in regard to a nearby neuron. It is therefore possible to discriminate
activity from multiple nearby neurons. Spike sorting is the process of identifying
and classifying action potentials of neurons based on this waveform information.
The sampled spike candidates are manually, semi-automatically or fully automati-
cally sorted and assigned to either belong to a neuron or being noise. The spike sorting
process is complex and often involves human experts [13] (see also Chap. 43). There
have been some attempts to automatize spike sorting using statistical methods [14]
or for example using deep learning [15, 16]. For decoding purposes, it is impor-
tant to make sure that spiking activity is attributed to a specific neuron which is
not always possible. Combining spikes from multiple neurons (multi-unit activity;
MUA) should be avoided since neurons might have very different selectivities, i.e.
one neuron could be selective formovements to the rightwhile another could be selec-
tive for a movement to the left. The resulting mixed selectivity might compromise
decoding.

Once a UEA has been implanted its position cannot be changed anymore. Still,
it can happen that the array involuntarily shifts. Long term stability of the array is
important especially if the array is used in a neuroprosthetic application. Some algo-
rithms can track changing waveforms of neurons that shifted, but this is not a trivial
task and not always possible. Another problem is scar tissue formation after array
insertion and encapsulation of the electrodes as result of immune response. There
are no optimal solutions yet for these problems, but spike classification and sorting
need to take these long-term effects into account. After the spike sorting process
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information is passed to the decoder which works in a loop to analyze incoming
spiking activity.

51.5 Decoder Loop

A BCI is a complex system that does not only consist of the recording hardware but
also includes a decoder and an effector. The decoder is a software that “decodes”
neural data, aligning actions with neural signals. It is a core component of a BCI
system and a lot of development is focused on improving algorithms to achieve
higher accuracy and faster processing. Inmany neuroprosthetic scenarios the decoder
is trained on themovement intentions of the user. These intentions can be read-out for
example from the primary motor cortex [17], premotor cortex or the parietal cortex.
Machine learning is one of the main techniques to build a decoder. Usually two
modes of operation exist: training and inference. In the training mode the decoder
learns which neural signals correspond to which action. This is a supervised machine
learning task since the correct responses are labeled. Due to the shifting of arrays,
explained in the previous section, re-training a decoder can be necessary. In the
inference mode, which is the normal operating mode of a decoder, novel neural
signals are passed in and actions have to be inferred based on the previous training.
One of the earliest algorithms for decoding is the so-called population vector method
[18] in which the average selectiveness of a population of neurons is used to predict
a variable like movement direction. Later Kalman filters [19] and support vector
machines [20] became more prominent. The decoding problem is well suited for
deep learning algorithms and newer methods use them as well [21]. The decoded
neural signals are then used to create a control command for the effector. The effector
can for example be a cursor on a computer screen, a robotic arm or an exoskeleton.
The control signals can also be passed into an assistant system that uses additional
information to plan the trajectory of the effector. An explanation for how a simple
decoder could work is shown in Fig. 51.3.

51.6 Somesthetic Feedback

The outlined decoder loop is widely used and established. One problem with such a
setup is that the BCI user does not get any feedback from the effector. It is known
that effective feedback is very important to perform any action [22–24]. Without it
the BCI user has to rely on visual observation alone which can be exhausting and
requires constant attention. One solution to this problem is to sensorize the effector.
The sensor information from the effector is translated using an encoder which is the
counterpart to a decoder. It translates external sensor data into signals that the brain
can understand. The electrical impulses are then applied directly to the cortex via
electrodes using intracortical microstimulation [25–28]. The UEA can be used as a
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Fig. 51.3 Illustration of a simple decoder. The top row shows the training mode in which the
decoder learns to associate particular brain states to intended actions. In this case the neural signal
consists of the mean firing rates of two neurons (neuron 1 and neuron 2). Neuron 1 is selective
for imagined hand movements up and neuron 2 is selective for imagined hand movements down.
Since firing rates are variable, multiple sessions (5 in this example) in which the BCI user has to
think of up or down movements are recorded. Mean activity is measured in the greyed-out time
window. Single brain states in neural space which are labeled (red or blue) according to the direction
imagined can be constructed (right). In inference mode (bottom) the decoder is confronted with an
unlabeled brain state, represented by activity of the same two neurons and projected in neural space
(bottom right). Since the unlabeled brain state is located above the decision boundary that has been
learned in the previous training episode the decoder infers that the intended action is a movement
down

stimulating array as well in which case it is usually coated with iridium oxide. Target
regions are typically the primary sensory cortex (S1 or S2). Ideally the stimulated
regions of the brain correspond to the areas that are typically receiving input from
corresponding parts of the actual body. So, for example if a hand prosthesis is the
effector, then the hand region within the primary sensory cortex can be the target of
stimulation. The exact positioning for a stimulation array is not as easy to define as
for a recording array. If a patient does not receive any somesthetic feedback then it
is not possible to use a fMRI task to determine the region based on activity since it
cannot be stimulated by touching the corresponding body part. Therefore, anatomical
landmarks of the brain surface, like the “hand knob”, need to be taken into account.
Another possibilitywould be to touch adjacent regions of the body that the patient can
still feel to determine the likely optimal placement for the stimulation array. A third
alternative is to use non-invasive stimulation like transcranial magnetic stimulation
(TMS) to directly stimulate the primary sensory areas and have the patient report
what he or she feels to determine the array placement.

Both, recording and stimulating UEAs can be used in parallel to form a bidirec-
tional BCI (BBCI). In a BBCI scenario care has to be taken that the stimulating pulses
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Fig. 51.4 Schematic overview of a bidirectional BCI. The information flow of the regular decoding
mode is shown in blue (compare to Fig. 51.2). The new feedback flow of information is shown in
red. Touch sensors register a touch on a robotic hand. This information is encoded into a signal that
can be interpreted by the brain. A microstimulator applies intracortical microstimulation (ICMS)
through an UEA or other type of stimulating electrode to corresponding brain areas

do not interfere with the recorded neural signals. Depending on the distance between
the arrays and the stimulation amplitude this can easily happen and interference
needs to be either prevented or filtered out form the neural signal (Fig. 51.4).

51.7 Outlook

Current developments in BCI research are likely to result in commercially available
neuroprostheses in the near future. Several companies are trying to commercialize
fully implantable systems for severely paralyzed individuals. Some of them use
UEAs and some other electrode designs. Regardless of the system, it is conceivable
that multiple diseases could be treated using BCI systems. Paralysis, certain types
of memory loss or sensory deficiencies are among them (see also Chaps. 47, 52 and
53). One bottleneck for future BCIs is the bandwidth, i.e. the number of electrodes
that can be recorded through and those that can be used for stimulation. A higher
number of electrodes means that a much more fine-grained interface can be realized
that is more precise and ‘feels’ more natural. Another issue that is not entirely solved
is biocompatibility. Smaller electrodes tend to generate less immune response and
scar tissue formation. Long term encapsulation and neuron death is a problem for
UEAs and other electrode types which leads to degrading signals over time. These
problems need to be addressed for implants that are meant to work for a lifetime.
Nevertheless, current systems are a viable option for patients that otherwise have no
option of treatment. The electronic components of a fully implantable BCI need to
be powered which poses additional challenges for low power microchips and high-
density batteries. In conclusion, commercially available BCI systems for severely
impaired individuals are on the horizon. The challenges currently faced are not of
fundamentally neuroscientific but engineering problems that need to be solved.
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Chapter 52
Can Chronically Implanted iEEG Sense
and Stimulation Devices Accelerate
the Discovery of Neural Biomarkers?

Kristin K. Sellers and Edward F. Chang

Invasive electrophysiology in humans has historically been possible under very
constrained conditions in a small number of individuals. People with epilepsy may
undergo intracranial monitoring, during which iEEG electrodes are temporarily
implanted to localize seizure foci. The intraoperative environment also provides an
opportunity for acute recordings of human neurophysiology. The advent of chron-
ically implanted neurostimulation devices capable of sense and stimulation (“bidi-
rectional”) has provided a window into human neurophysiology not previously
attainable. Such devices are most commonly used to treat patients with epilepsy,
Parkinson’s Disease, and essential tremor, with many other indications under active
study. However, the neural recordings during daily life afforded by these devices
allows for the discovery of biomarkers, or neural activity correlates, of physiological
and pathological functions. Furthermore, the longitudinal nature of these recordings
can provide new insight into the stability or lack thereof of these biomarkers. Here,
we describe the devices available for such biomarker discovery, how biomarkers
recorded using these devices can be used for research of physiological and disease
states, provide example experimental workflows, and finally discuss the technolog-
ical and practical limitations of currently available devices, as well as our projection
of what research will be enabled by the next generation of devices.
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52.1 Introduction

Our understanding of human neurophysiology increases as a function of the avail-
ability of technology to record neural signals. Invasive electrophysiologyof local field
potential (LFP), single-unit (SU), or multi-unit (MU) spiking activity is commonly
conducted in animal models. However, the ethical acquisition of such signals from
humans is much more limited due to the invasive nature of placing or implanting
a recording device, and the high burden to demonstrate safety and clinical efficacy.
Opportunities for such recordings have historically been limited to a small popula-
tion of individuals undergoing neurosurgical procedures for clinical need, such as
surgical resection of tumors or localization of epileptic foci. But the development of
new device technology, and the validation of its efficacy in treating disease, yet again
opens the door for more comprehensive neurophysiological studies in humans.

Intracranial electroencephalography (iEEG)provides a temporally precise readout
of population electrical activity at the mesoscale. This modality includes electrocor-
ticography (ECoG) recorded using subdural grid and strip electrodes and stereotactic
EEG (sEEG) recorded using penetrating depth electrodes. These techniques have
seen increasing adoption over the last 3 decades [1]. Numerous scientific break-
throughs in cognitive neuroscience have been enabled by these invasive recordings
in humans; see [2–4] for reviews. In particular, studies in language, emotion, and
volition greatly benefit from the ability to record iEEG in humans, as animal models
are poorly suited to address these topics. However, these studies share constraints
imposed by traditional acquisition of iEEG in humans—restricted timeframe during
an inpatient hospitalization, experiments conducted shortly following a neurosurgical
procedure, and limitedmobility and range of behaviors imposed by participants being
tethered to external racks of recording equipment [2].

A seemingly unrelated advance in clinical treatment and resulting technology
provided an answer to multiple of these challenges. We have long sought methods
by which to modulate brain activity in order to test or restore physiological func-
tion or alleviate disease. One such approach has been the application of electrical
stimulation, dating back to ancient times and gradually being tested with increasing
scientific rigor [5–9]. The mechanisms of electrical stimulation are still under active
study, with evidence for suppression of aberrant signaling (a functional ablation),
targeted activation, disruption of input and output signals, and a host of other possi-
bilities [10–12]. During its modern-day revival, electrical stimulation was primarily
investigated for its ability to reduce pain [13, 14] and control tremors in movement
disorders. However, beneficial effects did not persist upon termination of stimula-
tion [15]. Therefore, stimulation devices were developed which could be chronically
implanted. The first generations of these devices delivered stimulation continuously.
Treatment from such deviceswas revolutionary formovement disorders, as reversible
and programmable stimulation was nearly as effective at reducing symptoms as
surgical lesioning of thalamic areas [16, 17], which was permanent and could lead
to irreversible side effects.
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However, some patients experienced side-effects from this constant stimulation,
including but not limited to worsened speech and gait, paresthesias, muscle contrac-
tions, visual flashes, worsening akinesia, and cognitive or psychiatric deteriora-
tion [18–23]. Therefore, a new generation of devices was developed and eventu-
ally deployed with the added capability of recording neural activity, conducting
computations on that activity in real-time, and delivering stimulation based on pre-
programmed criteria. We call these devices “bidirectional”, as they are capable of
both sensing neural activity (input) and delivering stimulation (output). This tech-
nology has been highly beneficial for reduction of seizures in individuals with medi-
cally refractory epilepsy [24, 25]. While the sense capability of bidirectional devices
enables a new paradigm of closed-loop or responsive stimulation, as a fortuitous
byproduct, we also now have both the technology and ethical use-cases to chronically
record iEEG from humans during their daily lives.

In the remainder of this chapter, we focus on the research applications afforded
by chronically-implanted bidirectional sense- and stimulation-enabled neurostimu-
lation devices. While these implants are typically restricted to patient populations,
concurrent research can be conducted on either healthy, physiological functioning
or on changes to circuits related to disease. In particular, we focus on the ability to
determine neural correlates, or biomarkers, for physiological and disease states and
symptoms.

52.2 What Bidirectional, Chronically Implanted iEEG
Devices Are Available?

There are only a handful of chronically implanted devices currently availablewith the
capability to sense iEEG neural activity and deliver stimulation. While stimulation
is not needed for studies strictly interested in biomarker discovery and validation, it
is typically the motivating factor for implanting these devices; stimulation provides
the therapy which justifies the neurosurgery. There are very specific cases of neural
device implants for sense only, typically in the context of brain-computer interface
(BCI) applications, such as for cursor or prosthetic limb control [26–28] to restore
some function for individuals who have experienced spinal cord injury, stroke, are
paralyzed, or have select neurodegenerative conditions. While many of these devices
use single units or LFP signals recorded using Utah arrays [29, 30] (see Chap. 51),
use of iEEG has also proven successful [31–34]. A notable difference with these
devices is the percutaneous connector, to which a cable or wireless transmitter [35]
is physically connected during use. A limited number of devices do not require a
percutaneous connector, but have an external inductively coupled connector attached
to the head using paste [36]. While these devices can record data over long periods
of time, the range of behaviors and states which can be captured is inherently limited
by the nature of this tether and the typical support needed for connection to enable
data acquisition.
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The NeuroPace RNS® System (NeuroPace, Mountain View, California) is an
FDA-approved device for the personalized treatment of epilepsy [37]. Tailor-made to
detect neural activity patternswhich are indicative of seizures, the cranially contained
RNS system is comprised of two 4-contact leads connected to an implantable
neurostimulator (INS). The system can store modest periods of iEEG data from
up to 4 channels simultaneously, which are selected as bipolar pairs from the elec-
trode contacts. On-board filters are default at 5–70 Hz, while special settings allow
for filters at 1–90 Hz. The INS contains memory for up to ~32 channel-minutes of
data sampled at 250 Hz, so the user must regularly transfer data from the INS onto a
computer, which uploads to the cloud. Recordings can be scheduled based on time of
day, automatically triggered by a programmed neural activity detector, or manually
triggered by the patient using an external magnet.

Medtronic’s bidirectional neurostimulation devices consist of leads implanted in
the brain and a non-cranially contained INS, which is typically implanted in the chest
and connected to the leads via cables tunneled through the neck. The Activa PC+S
(Medtronic, Minneapolis, Minnesota) model is no longer sold and the Summit RC+S
(Medtronic, Minneapolis, Minnesota) [38] system was only available to investiga-
tors under an FDA Investigational Device Exemption (IDE) through 2022. Their
commercially available Percept PC (Medtronic, Minneapolis, Minnesota) device
includes two leads, each with 4 contacts. The device has a sampling rate of 250 Hz
and imposes two low-pass filters at 100 Hz, one high-pass filter at 1 Hz, and a second
high-pass filter that is programmable to 1 or 10 Hz. The patient can trigger 30 s
snapshots of LFP recording at home, but only the on-device calculated power from
this snapshot is saved [39]. In clinic, iEEG from one bipolar channel from each lead
can be recorded; which contacts can be selected for bipolar recording is limited based
on stimulation configuration. The overall duration of live streaming using clinician
peripherals is unlimited, although in practice a new recording must be started every
10min to prevent data export errors [40]. The device has a primary cell battery and 1 h
of streaming shortens battery life by approximately one day. Research studies using
these devices are discussed below in the section “How can we discover biomarkers
using bidirectional iEEG devices?”.

There are other device systems in development, including the Smart Neurostim-
ulation System (SNS) by Nia Therapeutics (Philadelphia, PA) for the treatment of
memory loss caused by traumatic brain injury. The SNS is planned to have four 16-
channel depth electrodes, a cranial INS, and an external wearable earpiece to provide
power and therapy control. CorTec (Freiburg, Germany) is currently validating its
device system, which contains two electrode arrays, an implanted electronics unit,
and an external unit which provides power and communication through inductive
coupling. Current technical specifications indicate 32 recording channels, 1 kHz
sampling rate, and on-board filters between 0.1 and 450 Hz. Additional devices have
been developed and tested in animal models [41, 42].
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52.3 What Can Chronically Implanted iEEG Devices
Provide That (Sub)acute iEEG Cannot?

Most invasive iEEG in humans occurs during acute intraoperative placement of
recording leads or subacute implant (<28 days) of electrode arrays with external-
ized tails. Externalized array tails are connected to cables and amplifiers, digitizers,
and acquisition computers (see Chaps. 4 and 5 for the practical implications of this
setup for researchers).Multiple brain regions can be implantedwith leads which each
contain multiple contacts, and signals can be simultaneously recorded from all these
contacts. However, the externalized electrode leads, heavy and bulky connectoriza-
tion, and external acquisition equipment necessitate that implanted individuals stay
in specialized units in the hospital, typically restricted to being relatively immobile
in bed during recording. Recording under these conditions has proved to be valuable
for the localization of epileptic foci, although also note that some seizures are associ-
atedwithmovement [43, 44], and thus limitedmobility can be problematic. However,
one can readily see how the range of naturalistic behaviors is greatly limited by the
inpatient environment, being tethered to equipment, and proximity to major neuro-
surgery. Furthermore, externalized tails may prevent concurrent recordingwith EEG,
eye trackers, or other non-invasive metrics (some of these topics further discussed in
Chaps. 12–15).

There is overwhelming evidence that cognitive or behavioral state is a critical
context in which to understand neural correlates [45]. The same stimulus or task
can elicit different neural responses dependent upon state. Therefore, many studies
seek to hold state (e.g. arousal, attention, movement) constant across experiments
and participants in order to map neural correlates for a given state. Or studies seek
to purposely measure the same behavior across a sub-selection of defined states.
Indeed, it is the variation of neural activity along one axis of state—symptom or
specific behavior state—that can be used to uncover neural biomarkers; this will
be discussed more in the next section. The historical use of iEEG in the operating
room or inpatient unit has both benefited and suffered in this regard—the contexts
in which experiments can be conducted has been relatively confined, and there is
generally insufficient time to study a multitude of states. With the availability of
iEEG from chronically implanted devices, studies can be conducted across a broader
range of states to better understand how this context affects neural correlates. One
study testing electrical stimulation during concurrent iEEG demonstrated differential
effects of stimulation on modulating depression symptoms based on state [46], while
another demonstrated differential effects of stimulation based on memory encoding
state [47] (seeChap. 41). In addition, studies during ambulation are now feasible—see
Chap. 53 for more on mobile iEEG.

(Sub)acute iEEG in the context of cognitive neuroscience research also suffers
from the limited timeframe of recording. Electrodes are typically explanted after 7–
10 days. Longer implant timewith externalized lead tails is associated with increased
infection risk [48] and degraded signal quality from repeated mechanical strain on
the cables and connections. This severely limits the ability to conduct longitudinal
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recordings. With so many cognitive neuroscience studies conducted at just one time-
point, is there even a need for access to longitudinal recordings? We argue yes for
several reasons. In particular, the characteristic time scale of the cognitive process
of interest should be considered [49]. If the behavior of interest has a fast char-
acteristic time scale (e.g. perception of a visual stimulus), it is relatively easy to
present the stimulus multiple times in order to determine the neural correlates of
perception. High trial count facilitates a good signal-to-noise ratio (SNR) of neural
activity underlying the behavior of interest relative to other neural processing (e.g.
thinking about what’s for lunch, ignoring an itchy arm). However, when studying
something with a much slower characteristic time scale or something which must
be generated internally rather than through experimental presentation (e.g. internally
oriented thoughts), it ismuchharder to disentangle neural activity related to themetric
of interest vs all other neural processing. During a typical inpatient monitoring visit,
theremay be opportunity for only one or two such samples of the behavior of interest.
While data can be pooled across participants, this heterogeneity again complicates
determining neural correlates of the behavior. Access to recordings over weeks and
months facilitates increasing SNR through repeated measurements of the behavior
of interest.

Regardless of the characteristic time scale of the biological process of interest,
there are other factorswhichmake longitudinal recordings important. There aremany
processes in the human brain that are subject to periodic biological clocks. We are
perhaps most familiar with the circadian rhythm—physical, mental, and behavioral
changes that follow a 24 h cycle. Substantial literature demonstrates that circadian
rhythm profoundly affects cognitive functions [50–52]. Some studies on behavior as
a function of circadian rhythm may be possible during in-patient hospitalizations,
but the timeframe and environment are often too restrictive to provide sufficient data.
There also appear to be cycles of longer timescales that affect human brain func-
tioning. Studies using iEEG devices have revealed a multidien cycling component
to seizures in men and women [53, 54]. The female menstrual cycle is another often
overlooked rhythm with corresponding changes in hormones and neurotransmitter
function [55, 56]. Historically, behavioral research with mouse models has primarily
been conducted in male mice to avoid the contribution of these cycling hormones
[57]. While limited work using EEG and other noninvasive measures have demon-
strated changes in oscillations and functional connectivity across the monthly cycle
[58–61], little to no work using higher spatial resolution invasive electrophysiology
has looked at cognitive neuroscience behaviors as a function of menstrual cycle.

Lastly, longitudinal recordings allow insight into the reorganization of networks
as a function of elapsed time, an intervention, or other processes studied in the same
person. Of particular interest is remodeling of networks over the course of disease
treatment or progression. Use of scalp EEG has shown that tracking of neural activity
from pre- to post- cognitive behavioral therapy can be used to predict efficacy of
the therapy in reducing symptoms for social anxiety disorder [62]. Similar use of
EEG has also been used to investigate how neural networks underlying emotion
regulation change during trauma treatment [63]. Use of iEEG in such studies would
provide greater spatial resolution and access to deeper brain structures but is largely
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not possible with subacute implants. Furthermore, iEEG provides SNR up to 100×
higher compared toEEG[64], so detection ofmore subtle biomarkersmaybepossible
with invasive chronic recordings.

52.4 How Can We Discover Biomarkers Using
Bidirectional iEEG Devices?

Biomarkers are quite literally “biological markers”, or something measurable that
provides an objective indication of the state inside the body. The Biomarkers Defi-
nitions Working Group, organized by the National Institutes of Health, defines a
biomarker as “a characteristic that is objectively measured and evaluated as an
indicator of normal biological processes, pathogenic processes, or pharmacological
responses to a therapeutic intervention” [65]. Biomarkers characteristically belong
to four categories: molecular, histologic, radiographic, and physiologic. Molec-
ular biomarkers have biophysical properties, and this category includes measure-
ments of biological samples such as blood and cerebrospinal fluid. Radiographic
biomarkers are obtained from imaging studies, such as x-rays and MRI scans. Histo-
logic biomarkers assess biochemical ormolecular alterations in cells, asmaybe tested
in suspected cancer tissues. Lastly, physiologic biomarkers measure processes of the
body. We will focus on this fourth category of biomarkers. Oftentimes, biomarkers
are used in the context of screening for disease, assessing susceptibility or risk, aiding
in diagnosis, indicating disease prognosis, monitoring progression or response to an
intervention, and assessing safety [66]. We adopt a broader conceptualization of
the utility of biomarkers. Specifically, neural activity (objectively) measured during
behaviors can serve as biomarkers indicative of internal (neural) biological processes.
As neural activity patterns are present on a spectrum, and are rarely completely
present or absent, these can also be referred to as neural activity correlates of behavior.

The idea of neural activity biomarkers is not new. Many studies of neurophys-
iology in the context of behavior seek to uncover neural activity biomarkers of a
particular behavior or process. Subacute iEEG has even previously been used to
determine biomarkers. In a study of 13 patients undergoing iEEG epilepsy moni-
toring, a neural biomarker correctly classified 78% of patients as belonging to the
group with a high burden of depressive symptoms or a control group with minimal
depressive symptoms [67]. Power spectrumslope from iEEGcan serve as a biomarker
for arousal level, differentiating wakefulness from propofol anesthesia, rapid-eye-
movement (REM) sleep, and non-REM sleep [68]. Individuals with epilepsy are
implanted such that iEEG activity can be used to localize tissue with specific inter-
ictal and ictal biomarkers to inform resection surgery of epileptogenic areas [69].
Unique biomarkers can likely identify related but distinct processes, such as acute
pain, chronic pain, and pain relief [70]. Carefully disentangling these constructs
will provide insight into both the mechanisms controlling these processes, as well
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as provide objective metrics for monitoring symptom status and even potentially
therapeutic efficacy.

A limited number of studies have started employing chronically implanted bidi-
rectional iEEG devices to investigate neural correlates [71]. In individuals with
Parkinson’s disease, motor cortex gamma activity was found to be a biomarker for
dyskinesia [72] and prefrontal neural correlates were found for anxiety and depres-
sion symptoms [73]. Neurophysiological correlates of speech perception and produc-
tionwere found to be stable over 1.5 years [74], providing valuable information about
the stability of some neural biomarkers. A biomarker identified during subacute iEEG
recordingswas confirmed following chronic implant, and used to successfully control
closed-loop neurostimulation therapy for a person with severe depression [75]. And
in a slightly different application, the Medtronic PC+S device was implanted in a
personwith amyotrophic lateral sclerosis, and activity recorded over themotor cortex
was decoded to reliably control a typing program [76].

As gleaned from these studies, a general experimental paradigm can be followed
for the discovery of biomarkers using bidirectional iEEG devices (Fig. 52.1). The
integral data required include concurrent or temporally proximatemeasures of neural
activity and the behavior or symptom of interest. For example, this might be the
participant completing a survey on mood at the same time as triggering a neural
recording. This should be done over the course ofweeks ormonths to build a sufficient
dataset. Critically, there must be variation in the response of interest (e.g. severity of
symptom, performance on a task). In the most simplistic model, we are interested
in a regression between features of the neural activity patterns (neural correlates)
and the metric of interest. For example, if the participant only does recordings when
in a poor mood, there is no variation by which to enable modeling of how neural
activity is related to fluctuations in mood. It is oftentimes helpful for the participant
to complete ratings or surveys assessing other variables in addition to the metric of
interest. This can provide the researcher information about potential covariates that
may be influencing relationships seemingly detected between the metric of interest
and neural activity. For example, level of sleepiness (and resulting strongly influenced
neural activity) may need to be accounted for during analysis.

Fig. 52.1 General biomarker discovery pipeline: iEEG from the chronically implanted device is
recorded concurrently with a behavior or measure of interest. The dataset of these paired samples
requires variability in the behavior or measure of interest. Researchers identify time periods of
interest based on the dynamics of the behavior ormeasure of interest, extract relevant neural features,
and model the relationship between the neural activity feature(s) and the behavior
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Next, we are faced with determining the relevant neural activity patterns, or neural
features, of interest.Historically, power in canonical frequencybands has beenwidely
studied [77]. Coherence, or the frequency-specific amplitude and/or phase correlated
activity between regions, may also be of interest [78–80]. There may bemore sophis-
ticated or specific neural activity correlates of interest, depending on the behavior or
symptom. For example, features of evoked potentials measured using EEG have been
identified as biomarkers of cognitive decline in patientswithAlzheimer’sDisease and
mild cognitive impairment [81, 82]. Calculation of neural features may be hypoth-
esis driven, especially if there is prior literature from animal models or non-invasive
human neurophysiology, or more exploratory. Either way, one must be careful to
investigate alternative behaviors that may be co-occurring with the metric of interest.

Another important consideration is the timeframe over which to assess a rela-
tionship between neural activity and a metric of interest. As discussed above, the
characteristic time scale of the biological process of interest should be considered.
It likely does not make sense to look at five minutes of neural activity when looking
for a biomarker of auditory perception. However, five minutes or even longer may
be appropriate for neural activity snapshots related to emotion or other cognitive
processes. When the characteristic time scale of the biological process is unknown,
it can be helpful to look at multiple time periods to assess the most appropriate
duration of neural activity for investigation [75, 78].

Lastly, a mathematical model must be used to relate the neural features with
the metric of interest. These models can be linear or non-linear; the non-linear
relationship between brain activity and behaviors can be represented using linear
models by incorporating transforms or other representations of input and/or output
features. Preprocessing or data transform stepsmay include ICA, PCA, thresholding,
or K-means clustering. For the calculation of neural activity biomarkers, super-
vised models are used, with the behavioral or symptom output serving as the label.
Commonly used models include logistic or linear regression, linear discriminant
analysis, support vector machine, or random forest. Appropriate standards for regu-
larization, train and test sets, or k-fold cross validation should be followed to avoid
overfitting. Biomarkers can be either personalized, calculated for an individual [83],
or generalized across a population. In either case, biomarkers are only meaningful if
they generalize across some time period.

52.5 What Are the Challenges in Using Chronically
Implanted iEEG Devices?

By definition, chronically implanted iEEG devices are invasive and require surgical
implantation. Leads are fixed and later adjustment of position requires subsequent
surgery. Because of the invasive nature, chronically implanted iEEG devices are
currently limited to patients requiring stimulation for a clinical condition. This also
imposes limitations on studies across the lifespan—young children are typically



882 K. K. Sellers and E. F. Chang

not implanted with these devices, and surgery may be contraindicated in elderly
populations. Thus, as with (sub)acute iEEG recordings in humans, the participant
population is restricted to individuals who have a diagnosed neurological or psychi-
atric condition. The majority of iEEG research to date has focused on brain regions
commonly implicated in epilepsy or Parkinson’s disease. Specifically, cortical areas
in the temporal and parietal lobes and subcortical areas such as the hippocampus,
amygdala, and insula are most commonly recorded in patients with epilepsy, and
subthalamic nucleus is commonly sampled in Parkinson’s disease. These are the
same regions which are currently targeted for chronic iEEG implant. Research driven
studies for neuropsychiatric disorders are expanding the regions that are implanted,
including but not limited to subgenual cingulate, nucleus accumbens, and ventral
capsule. In some cases, contact spacing on leads allows access to additional brain
regions for recording, but this is limited. Thus, experimenters do not have ubiquitous
access to all brain regions that may be of interest in studying a particular cognitive or
behavior process. As the therapeutic indications for chronic stimulation with iEEG
devices increase, there will likely be additional brain regions which are regularly
implanted.

Despite technological advances having provided the ability to recording chronic
iEEG, current technology also results in challenges for recording chronic iEEG. One
of the primary limitations of the RNS device is the limited on-board memory capa-
bility. While the device is continually sensing neural activity and computing neural
features to determine if stimulation should be delivered, the vast majority of those
neural signals are not saved or available for offline analysis. Data can be continuously
streamed from the device with the clinician tablet, but this requires an external wand
be placed within a few centimeters of the patient’s INS. Furthermore, the device
has a primary cell battery, which requires surgical intervention for replacement. The
Medtronic RC+S device had a rechargeable battery, removing some limitations of
continuous streaming. However, substantial data post-processing is needed to trans-
form data coming off the device to human-readable formats that are commonly used
for neuroscience analyses [84]. Use of the Medtronic Percept device is hindered
by extremely limited at-home recording capability and restricted configuration of
bipolar recording channels flanking a stimulation contact. All currently available
devices suffer from having only a couple of leads with a small number of contacts;
simultaneous recording is possible only from a subset of these contacts. Sampling
rates are low, and devices impose on-board filters which prevent ultra-low and high
frequency activity from being effectively recorded.

Further, many cognitive neuroscience studies suffer from the Hawthorne effect.
Participants know they are being observed, and that either consciously or subcon-
sciously changes their behavior. The ability to record neural activity continuously,
away from the laboratory environment,may decrease this and provide greater ecolog-
ical validity in studies. Of course, participants should only have their neural record-
ings included in cognitive neuroscience studieswith full consent and knowledge [85].
Experimenters must think carefully about how to mark, determine, and extract time
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periods that are relevant to the behavior being studied. This may require synchro-
nization between data collected on the chronically implanted device and external
equipment which measures a stimulus or other task feature.

52.6 What Will Be Possible for Biomarker Discovery
with the Next Generation of Chronically Implanted
Bidirectional iEEG Devices?

As the history of neuroscience has demonstrated, technological advances beget new
discoveries, and need begets new technological advances. Academia and industry
are actively working on the next generation of chronically implanted bidirectional
iEEG devices. Currently available bidirectional iEEG devices are quite limited in
their spatial coverage. Even compared to subacute iEEG implants, chronic devices
have a small number of leads with fewer contacts. The spacing of these contacts
is generally large (4.5–10 mm). The next generation of devices may incorporate
ultra-high-density arrays [86] in order to better localize neural activity. Further-
more, a greater number of electrode contacts on the same lead is important to
mitigate the current margin of error in surgery—use of stereotaxic frames allows
for an average precision of 1–2 mm from the target area [87, 88], and the brain
can shift by 2–4 mm during surgery [89–91] making targeting more difficult. In
the future, chronically implanted iEEG devices will contain a combination of on-
board memory and automatic data transfer to external peripheral equipment that will
enable virtually continuous streaming with minimal burden on the user. The richness
and quantity of these data will allow for new studies on single-trial investigations
of complex naturalistic behavior. Custom-designed electronics, taking advantage
of application-specific integrated circuits, will provide more advanced computation
on-device with a smaller INS size. These electronics will bring recording capa-
bility—in terms of number of channels, sampling rate, onboard filtering, noise floor,
etc.—more in line with capabilities of external acquisition rigs. Overall, this will
enable the study of more sophisticated neural correlates of behavior. Advances in
battery technology will expand the lifetime of devices. Even rechargeable batteries
have a limited number of charge cycles, so replacement surgery is needed for all
currently available devices. Continued development of battery-free devices, powered
through internal power harvesting or far field transfer [92], may one day remove the
need for battery replacement surgery altogether. Chronically implanted iEEGdevices
will also see integration with other physiological measures or wearables. For many
applications, the biomarker discovery pipeline described previously still requires the
implanted individual to perform tasks or respond to questions that are outside of
their standard daily routine. Continued research will shed light into how we can
use everyday behaviors to track symptoms or other states to then correlate with
brain activity (e.g. digital biomarkers, speech rate, digital phenotyping) [93, 94].
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Taken together, these ongoing technological advances promise an exciting future for
cognitive neuroscience research using chronically implanted iEEG devices.
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Chapter 53
The Future of iEEG: What Are
the Promises and Challenges of Mobile
iEEG Recordings?

Sabrina L. Maoz, Matthias Stangl, Uros Topalovic, and Nanthia Suthana

Abstract Traditional approaches to recording deep brain activity in humans require
participants to remain immobile, limiting the ecological validity and breadth of
cognitive neuroscience questions that can be asked. Individuals with neurostimulator
devices that are chronically implanted for clinical purposes present a rare opportunity
to record intracranial electroencephalography (iEEG) from the human brain while
participants are mobile and interacting with their environment in a natural way.
Research-related benefits of such chronic neurostimulator devices include resistance
to motion artifacts, access to deep brain structures, measurement of neural activity
with high temporal resolution, as well as the possibility to perform closed-loop
neuromodulation through stimulation that can be associated with specific behavioral
or neurophysiological features. Furthermore, recent technical developments have
streamlined the integration of numerous wearables with wireless iEEG recordings,
including virtual and augmented reality headsets, which substantially broadens the
scope of possible cognitive neuroscience experiments that can be implemented. Here,
we provide an overview of the methodological and technical aspects of mobile iEEG
recordings in human research participants and discuss associated promises and chal-
lenges.With this overview, we aim to inspire innovative future applications ofmobile
iEEG to advance our understanding of rich human behaviors in health and disease.
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53.1 Introduction

The human brain undergoes complex cognitive processes throughout our daily lives
by integrating proprioceptive and kinesthetic cueswith rich sensory stimuli and infor-
mation. Understanding how complex behaviors are encoded in the brain thus requires
the ability to study human cognition and record brain activity during naturalistic
paradigms and behaviors. Traditional methods of recording neural activity in humans
are limited by large recording equipment and motion artifacts. Specifically, func-
tional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and
intracranial stereo-electroencephalographic (sEEG) recordings all require patients to
be still, within or tethered to large recording equipment, or at the very least that their
heads remain motionless.

Notable progress, however, has beenmade inmobile brain and body imaging tech-
nology using scalp electroencephalography (EEG) recordings, which has advanced
our understanding of cognitive variables in conditions of naturalistic movement.
Recent studies have usedmobile scalp EEG to explore questions such as howwalking
modulates task switching [20], how movement speed modulates neural representa-
tions of focusing on a visual target [11], how attention varies across stationary vs
walking conditions [10], how cognitive motor interference is modulated by move-
ment complexity [19], and how the dynamics of cortical brain regions support specific
features of active spatial navigation [5], among many others. Although these studies
provide first-insight into how movement modulates human cognition, scalp EEG
signals are also complicated by motion-induced artifacts and limited to recording
broad neural population signals primarily from cortical structures and with limited
spatial resolution. Thus, these constraints reduce the breadth and ecological validity
of behavioral, neural, and cognitive processes and relationships that can be studied.

Recently approved implantable medical devices for treating neurological diseases
(Table 53.1) have created a unique clinical opportunity to record more localized deep
brain activity via iEEG recordings in humans who can be mobile and behave in
naturalistic settings. These chronically implanted neural devices that enable wireless
iEEG recording and neurostimulation are surgically implanted intracranially and can
remain there permanently throughout a person’s lifetime. Patients with such implants
can enjoy day-to-day life as these devices are not externally visible nor do they inter-
fere with any standard activities of daily living, including freely-moving activities of
interest. Thus, the opportunity to record from such chronically implanted neurostim-
ulation devices provides a uniquewindow into cognition allowing for a broad—rather
endless—range of ambulatory activities and cognitive tasks to be explored.

In the present chapter, we describe technical aspects as well as the promises and
challenges related to performing mobile iEEG recordings in individuals who have
permanent brain implants, which thereby enable scientists to advance the field of
cognitive and clinical neuroscience. Specifically, we discuss challenges such as the
limited number of brain regions that can be sampled in mobile iEEG studies, ethical
considerations that should be considered, disease-related confounds, and difficul-
ties related to equipment setup and synchronization of multiple data streams. We
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Table 53.1 Shown are the general characteristics of three of the most commonly available human-
use chronic implantable neurostimulator devices. MDD: Major Depressive Disorder, PTSD: Post-
traumatic stress disorder, LOC: Loss of control (obesity), OCD: obsessive–compulsive disorder,
SCI: Spinal cord injury

Responsive
neurostimulator (RNS)

Percept RC+S

Company Neuropace Medtronic Medtronic

Sampling frequency
(Hz)

250 250 1000

Battery life ~8 years (320 model);
~4 years (300 model)

~5 years rechargeable

Location of battery Intracranial Intrathoracic Intrathoracic

Synchronization
method

Use of the “Mark” or
“Magnet” signal to
inject an artifactual
signal across devices

Stimulation to inject an
artifactual signal across
devices (e.g., Scalp
EEG and iEEG)

Conversion to Unix
time on each data
stream

Example studies Scangos [21, 22]
Stangl et al. [25]
Topalovic et al. [28]
Henin et al. [9]
Rao et al. [18]
Meisenhelter et al. [14]
Molina et al. [16]
Aghajan et al. [1]

Shirvalkar et al. [24] Gilron et al. [7]
Sellers et al. [23]

Clinical trials MDD, PTSD, LOC,
OCD, epilepsy

MDD, OCD, SCI MDD, epilepsy

Typical electrode
regions

Hippocampus,
amygdala, entorhinal
cortex,
parahippocampal
cortex

Subthalamic nucleus,
ventral intermediate
nucleus of thalamus

Determined by
investigational use
criteria

# of implanted
patients

Few thousand Several hundreds <30

also highlight how recording iEEG activity from chronic neurostimulators during
complex cognitive tasks provides an exciting and rare opportunity to explore neural
mechanisms of higher-order naturalistic human behavior. Key benefits include the
ability to record iEEG activity from deep brain structures during ambulatory behav-
iors without motion-artifacts and with high spatial and temporal precision. Alto-
gether, we argue that the promises outweigh the challenges associated with mobile
iEEG studies, ultimately allowing for a rare window into discovery of deep brain
mechanisms underlying naturalistic and ambulatory behaviors in humans.
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53.2 Chronically Implanted Neural Sensing Devices

While deep brain stimulation (DBS) devices have been used in over a hundred thou-
sand patients for over thirty years to treat neurological disorders such as Parkinson’s
disease, essential tremor, and dystonia, it is only within the last decade that there has
been an increase in the availability of DBS devices that allow for sensing of neural
activity. The first of these devices, the Responsive Neurostimulator System (RNS®,
Neuropace, Inc.), was approved by the FDA in 2013 for the treatment of intractable
epilepsy and has since been implanted in over 2500 patients and increasing by several
hundred individuals each year. The FDA-approved clinical use of the RNS System is
to detect seizure-related activity and subsequently deliver neurostimulation to reduce
seizures frequency and pathological symptoms. The RNS System can support up
to two intracranial depth or cortical strip electrode leads each of which have four
contacts and are implanted in hypothesized seizure-onset zones. Exact locations of
the RNS System electrodes vary by patient with both cortical (e.g., orbitofrontal,
lateral temporal) and subcortical locations (e.g., amygdala, hippocampus, entorhinal
cortex) as common targets. Contact-spacing on electrodes can also vary based on
clinical needs, ranging from 3.5 to 10 mm (center-to-center). The RNS System also
includes a hermetically-encased neurostimulator which is implanted in the skull and
is thus shielded and resistant to movement artifacts and externalized electrical noise
sources. This neurostimulator package contains the battery and stores iEEG data in
small units (~240 s) with a sampling rate of 250 Hz on four bipolar channels until it is
downloadedwirelessly (via an external wand device, Fig. 53.1a, b) to a server that can
be accessed by researchers or clinicians. The RNS System can also be programmed
to initiate stimulation on selected channels based on real-time analysis of incoming
neural activity (e.g., seizure activity or other clinical/behavioral neurophysiological
biomarkers).

The second FDA-approved DBS device that allows for recording of iEEG activity
is the Percept PCNeurostimulator (Medtronic, Inc.) used to treat Parkinson’s disease.
Since its approval in 2020, it has been implanted in a few hundred patients and
expected to increase rapidly as patients with older DBS non-sensing devices are
upgraded during battery replacement procedures. The Percept can record iEEG
activity with a sampling rate of 250 Hz and on up to 6 bipolar channels with the
neurostimulator package and battery implanted in the chest near the clavicle in the
thoracic cavity. FDA-approved electrode placement sites for the Percept include the
subthalamic nucleus (STN) and ventral intermediate nucleus of the thalamus (VIM)
[8], however, other sites can be targeted with FDA investigational device exemption
(IDE) approval. Brain activity can be recorded in two formats: (1) 10 min windows,
which are then averaged over time and reported, or (2) continuously while connected
to the implantable pulse generator (IPG) which provides power.

TheActiva PC+S andRC+SNeurostimulators (Medtronic, Inc.) are also available
and allow for much more research flexibility (e.g., higher sampling rates, increased
programmability of closed-loop capability and wider variety of stimulation parame-
ters), however, are only available with FDA IDE approval and thus have been used in
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a c d

b

Fig. 53.1 An example CT (a) andMRI (b) showing the RNS System implanted intracranially with
two leads implanted in the medial temporal lobe. c Mobile iEEG recording set-up. As part of the
mobile deep brain recording and stimulation (Mo-DBRS) platform, a backpack can be worn, which
includes a malleable metal arm holding the wand in place above the participant’s RNS implant and
is connected to a metal-framed backpack [28]. The participant shown is wearing a VR headset,
carrying the associated hand-held controllers, and has a rigid body motion sensor antenna fixed to
the top of their head for precise motion tracking. Full-body motion capture suits can also be worn.
d Stationary iEEG recording set-up. Participant shown is wearing biometric sensors for recording
heart rate and skin conductance (on hands), as well as an eye tracking headset that allows for
pupillometry and eye-gaze tracking, all of which can also be worn during mobile studies. The wand
is placed above the RNS implant using a portable wand holder

only a small number of patients (<30 total) across various clinical trials for epilepsy,
depression, essential tremor, obsessive–compulsive disorder (OCD), dystonia, and
Parkinson’s disease.

53.3 Current Findings

Multiple studies have validated long-term recordings obtained from these chronically
implanted devices by comparing findings of cognition to those identified using acute
iEEG recordings [9, 18]. A rapid increase in the number of individuals chronically
implanted with sensing DBS devices over the past decade has enabled scientists the
ability to use mobile iEEG recordings in humans to carry-out, for the first time,
cognitive and clinical neuroscience studies in freely-moving humans. One such area
of study has been to determine whether findings from freely-moving rodent studies
of spatial navigation translate to humans. The first research study of this kind investi-
gated whether oscillatory activity in the medial temporal lobe (MTL) was modulated
bywalking speed [1] (Fig. 53.2a) given that decades of findings emphasized a critical
role for rodentMTL theta oscillations (4–8Hz) in spatial navigation andmemory [3].
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While this studywas the first to discover the presence of speed-modulated theta oscil-
lations in the humanMTLduring freely-movingwalking behavior, it also highlighted
fundamental species-specific differences between rodents and primates (including
humans) worthy of additional investigation in future mobile iEEG studies: Theta
oscillations were found to increase in prevalence during faster compared to slower
walking speeds in ambulating humans, but their overall presence was less prominent
(~10% of the time) compared to that found in freely-moving rodents, a result consis-
tent with recent findings in freely-moving non-human primates [13] and replicated in
an additional study [25]. Anothermore recentmobile iEEG study found similar levels
of theta activity duringwalking (~10%), but further identified separate behavioral and
environmental variables that also modulateMTL theta activity, such as one’s own (or
another person’s) proximity to environmental boundaries (e.g. walls). Furthermore,
this spatial modulation of theta power was dependent on cognitive state [25]. Future
studies are needed to determine the complex relationship between MTL oscillatory
activity and cognitive (e.g., task goal), behavioral (e.g., movement speed, direction,
position) and environmental variables (e.g., boundaries, presence of others), which
are now enabled with mobile iEEG recordings in humans. Another research group
has explored patient-specific neurophysiological biomarkers relating to inadequate
or excess movements in Parkinson’s disease in five participants implanted with the
Summit RC+S device with electrodes in the motor cortex and subthalamic nucleus.
Streaming of neural activity in the home setting was collected and decoded in rela-
tion to movement state information obtained from wearable monitors. During data
recordings, participants performed normal activities of daily living while wearing
a watch that measured movement activity to distinguish bradykinesia and dyski-
nesia. The authors found that individual patients had unique neural biomarkers (e.g.
frequency band associated with movement state) for changes between active and
inactive movement states. Across participants, many exhibited coherence between
the motor cortex and subthalamic nucleus that discriminated between mobile and
immobile states (Fig. 53.2b) [7].

a b

Fig. 53.2 Example findings from mobile iEEG studies. a Theta oscillations increase in prevalence
during fast versus slow walking speeds in the medial temporal lobe (MTL, adapted from [1]). b
Beta-gamma coherence between the subthalamic nucleus (STN) and motor cortex distinguishes
mobile (low dyskinesia, upward arrows) from immobile states (high dyskinesia, downward arrows)
in an example participant. Adapted from [7]
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Moreover, there is an ever-increasing scope of research areas that can be investi-
gated using mobile iEEG recordings to advance our understanding of other neuro-
logic and psychiatric diseases. Research studies have begun exploring new clinical
applications for chronically implanted sensing and stimulation devices that pave the
way for future opportunities to record mobile iEEG from a broader range of brain
regions. One group implanted the RNS System in the centromedian-parafascicular
region of the thalamus in a case of medically-refractory Tourette syndrome [16]. A
review proposed a possible approach to treat chronic pain by implanting a chronic
sensing and stimulating device in a number of potential target thalamic, cingulate, and
other regions [24]. Recent efforts have used responsive neurostimulation for the treat-
ment of loss of control of eating in participants with treatment-refractory obesity by
implanting theRNSSystem in the nucleus accumbens [29]. Another group implanted
the RNS System in the amygdala and striatum to significantly improve depressive
symptoms in a case of treatment resistant-depression [21, 22]. The RNS System has
even been implanted in the occipital lobe of blind patients and used to investigate
whether stimulation could be used to induce visual percepts [4].

Altogether, these results are an exciting foundation highlighting the utility and
versatility of a new generation of neurostimulator devices for advancing cognitive
neuroscience research. These studies have capitalized on mobile iEEG during a
variety of naturalistic behaviors. Additionally, an increasing number of studies are
exploring the use of chronic sensing and stimulating devices for the treatment of
a broad range of other neurologic and psychiatric disorders. Looking ahead to the
future, these studies foreshadow an increasing diversity of brain regions that can
be wirelessly recorded from in naturalistic and chronic environments, expanding
the possible scope of cognitive neuroscience research using chronic sensing and
stimulating devices.

53.4 Technical Challenges

Designing and carrying out mobile iEEG studies in humans with chronically
implanted neurostimulation devices comes with several technical challenges since
current FDA-approved devices are designed primarilywith clinical- and not research-
needs in mind. For example, the RNS System and Percept devices themselves do
not allow for real-time wireless access and/or control of the implanted neurostimu-
lator, which is critical for designing and carrying out well-controlled mobile iEEG
studies. There have, however, been externalized platforms recently developed that
allow for external wireless control of and communication with chronic neurostimu-
lation devices [7, 14, 28]. For example, one such platform is the mobile deep brain
recording and stimulation (Mo-DBRS) platform [28], which provides researchers
with open-source tools to enable real-time wireless control of the timing of stim-
ulation, start/stop of iEEG recording, and accurate synchronization of iEEG data
with wearable sensors and equipment (e.g., VR/AR headsets, eye trackers, motion
sensors). While the Mo-DBRS platform has been primarily tested with the RNS
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System (Fig. 53.1a, b), most features including integration with wearable sensors
can be extended for use with other implantable neurostimulation devices. Another
such system has been developed and shared with the scientific community to enable
similar features using the RC+S System, including an open source toolbox that
supports pre-processing of raw data, time-alignment across data streams, and basic
power calculations [7, 23].

Here, we briefly discuss the technical features of one of these platforms, specif-
ically, the Mo-DBRS platform, which includes a Wand (Fig. 53.1c, d) that continu-
ously communicateswith the intracranially implanted device via near-field telemetry.
With this platform, theWand is physically connected to a laptop or tablet programmer
(carried by the participant in a backpack) to allow for wireless user-based control
(e.g., to start and stop iEEG recordings). A custom-built programmer tool interfaces
with the laptop or tablet programmer so that the user can programmatically control
the Wand to stop/start iEEG data storage and deliver stimulation or synchronization
pulses. The programmer tool and consequently the Wand can then be controlled
using a wireless control device (e.g., Raspberry Pi) that can be wirelessly controlled
by the researcher (manually) or researcher’s program. During mobile iEEG exper-
iments, the Wand can be affixed to the participant’s head via mechanical solutions
that relieve its weight and allow for several hours of comfortable ambulatory move-
ment (Fig. 53.1c) or stationary experiments (Fig. 53.1d). All of the other Mo-DBRS
accessories and tools (e.g., laptop or tablet programmer, programmer tool, Raspberry
Pi) can fit comfortably within a backpack (Fig. 53.1c) along with any other wearable
equipment (e.g., mobile scalp EEG amplifier) during ambulatory behavioral tasks.
With these capabilities, the Mo-DBRS platform can thus be fluidly combined and
synchronized with wearable sensors for physiological recordings (e.g., heart rate,
respiration, skin conductance), eye tracking (for gaze and/or pupillometry), scalp
EEG, precise kinematic tracking, and virtual reality (VR) or augmented reality (AR)
headsets (see Table 53.2). Precise kinematic tracking, including head position and
rotation, as well as information about arm, leg, and torso movements can be captured
by wearing a full-body motion capture suit or placing motion capture markers at
body joints or appendages of interest.

A critical challenge of experimental design inmobile iEEG studies using any plat-
form is accurate and precise synchronization of neural recordings with behavioral
task features and other data streams. For example, a single experiment may incorpo-
rate a task delivered on a VR headset with simultaneous full-body motion and eye
tracking on independent devices. Such an experiment would result in several separate
data streams (iEEG activity, VR task, positional and kinematic variables, and gaze
positions), each of which would be recorded with unique time clocks and data acqui-
sition start/stop times. Aligning these separate data streams into the same time scale
is critical for relating the behavioral and neural variables that occur at any given point
in time. To facilitate data alignment, it is therefore useful to deliver synchronization
pulses simultaneously across all data streams. One approach is to use brief electrical
deflections (“Mark” artifacts) or stimulation artifacts that are reflected in the iEEG
that can be used as synchronization pulses to note the same timepoint as it occurs
on all data streams. In the case of Mo-DBRS, the Mark command can be wirelessly
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Table 53.2 Example wearable sensors and accessories that can be integrated with mobile
iEEG recordings. From top to bottom: Eye-tracking headsets can record pupillometry, saccades
and gaze positions. Other on-body sensors can record heart rate, respiration, skin conductance.Wall-
mounted motion capture cameras can track position, speed and other movement variables. Mobile
scalp EEG set up is shown with a lightweight backpack carrying the amplifier and connected to the
scalpEEGcap.Awearable camera canbe used to capture audiovisual data such as for comprehensive
documentation of participants’ field of view and visible or auditory events. Example virtual and
augmented reality headsets are also shown

Example product

Eye tracking Pupil Core (Pupil Labs GmbH)
Eyetracking (Tobii AB)

Heart rate Smart center bionomadix (Biopac
Systems Inc.)

Respiratory rate Smart center bionomadix (Biopac
Systems Inc.)

Skin conductance Smart center bionomadix (Biopac
Systems Inc.)

Motion tracking OptiTrack Cameras and Motive software
(NaturalPoint, Inc.)
(Xsens Inc.)

Scalp EEG eego sports (ANT Neuro)

(continued)
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Table 53.2 (continued)

Example product

Audiovisual GoPro 360 (GoPro Inc.)

Virtual reality Meta Quest 2 (Facebook Technologies,
LLC)
Pico neo 2 (Pico Interactive, Inc.)
Vive Pro (HTC Corporation)

Augmented reality MagicLeap (MagicLeap, Inc.)
Hololens (Microsoft)

initiated by an externalized wireless control device (e.g., Raspberry Pi) and delivered
to the implanted device via the head-mountedWand. In the above example, the same
control device can send simultaneous signals to other data streams (e.g., VR task,
motion tracking software) to synchronize the corresponding timepoints across all
data streams. Previous studies have characterized sufficiently accurate and precise
synchronization latencies using this method [28].

Lastly, the recording of numerous data streams through the use of wearables,
audiovisual recordings, and mobile iEEG can result in enormous and complex data
sets that are difficult to parse.Theuseof deep learning andartificial intelligence strate-
gies to analyze these resulting large datasets during complex naturalistic behavioral
studies will likely be beneficial for future mobile iEEG studies in humans [15] (see
also Chap. 47). Furthermore, synchronization of multiple data streams can be chal-
lenging and result in unknown temporal latencies that make relating neural activity
to precise behavioral events difficult. Future studies that add/adopt novel data types
should characterize synchronization latencies prior to collecting data in participants
with chronic sensing neurostimulators.

53.5 Clinical Confounds

While recording iEEG during ambulatory behaviors in humans presents a signifi-
cant scientific opportunity, it is important to be cognizant of the limitations asso-
ciated with doing such studies. Currently, individuals are implanted with chronic
electrodes solely for clinical purposes and thus electrodes are often placed within
disease-modified brain tissue. For example, in patients with epilepsy, electrodes are
implanted in hypothesized seizure-onset zones. However, because electrode contacts
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can span up to 10 mm of tissue and often in bilateral brain regions, some contacts
may be implanted in tissue that is less affected by disease. One way researchers
attempt to characterize the presence of aberrant disease-related neural activity is
by isolating any abnormal samples, for example interictal epileptiform discharges
(IEDs) in the case of epilepsy. There are several methods currently used to detect
IEDs and exclude the affected iEEG data [1, 6, 25]. Additionally, multiple studies
have found that neural activity patterns outside the seizure onset zone are unaffected
and that normal neural activity patterns occur between epileptic events [2, 6, 12,
17]. Another way to mitigate the potential contamination of neural recordings with
disease-related episodes is by selecting participants that have a low frequency of
these events, which can be characterized in advance given these patients have long-
term at-home recordings available to the researcher and/or clinician. In the case of
epilepsy, IED event frequency in the recent months preceding the study can thus be
available to the researcher and used as a selection criterion for recruiting participants
with less disease-related events.

It is important to recognize that mobile iEEG studies involve working with patient
groups who may suffer from cognitive (e.g., memory impairments in epilepsy) and
behavioral (e.g. difficulty walking in PD) deficits, and other comorbidities (e.g.,
depression in epilepsy or PD) (see also Chap. 52). This can introduce variability in a
study and limit the generalizability of findings. However, as the number of approved
indications for which the use of chronic sensing neurostimulation devices increases,
the sample of individuals from which to select from will also increase. Thus, those
individuals who are better suited for a given study can be preferentially selected in
order to minimize variability across the study sample. Further, findings replicated
across different clinical groups can lessen the probability that results are due to
specific disease-related abnormalities and consequently increase confidence in the
generalizability of findings to healthy individuals.

53.6 Limited Sampling of Brain Regions

Another constraint in mobile iEEG recordings is the limited number of electrode
channels available per participant (up to 6 channels) and thus brain regions which
can be sampled given that the placement of electrodes is driven solely by clinical
criteria. Nonetheless, there exists a large pool of potential participants (thousands)
from which to select from in order to acquire sufficient amounts of data from a given
brain region while minimizing variability. Currently, studies with hypotheses related
to medial temporal and striatal function are understandably the most common given
electrodes are implanted most often in these brain regions. Furthermore, as the types
of neurologic and psychiatric conditions treated by implanting chronic neurostimu-
lators expands, a greater diversity of brain regions will likely be accessible, which
in turn will open the door to a greater variety of cognitive and clinical neuroscience
research questions that can be answered.
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The spatial resolution of mobile iEEG data is another important variable to
consider when designing a study using chronic neurostimulators, which is limited by
the diameter of the implanted electrodes (1.5 mm), spacing of electrode contacts (up
to 10 mm) if using bipolar recordings, and the spatial resolution of neuroimaging-
based localization procedures (e.g., co-registration ofMRI andCT images).However,
in contrast to most intracranial neurophysiology studies performed in acute epilepsy
monitoring units,mobile iEEG study participants are able to complete experiments of
longer durations (up to 6–8 h per day, and over multiple days with flexible timelines)
since they have not recently undergone neurosurgery or have any other competing
medical/surgical procedures that co-occur. Finally, participants are often eager to
contribute to research and are highlymotivated, especially if they report positive clin-
ical outcomes due to their chronic neurostimulator treatment and thus large sample
studies are indeed possible to counteract the limited number of brain sites that can
be sampled within a single participant.

53.7 Ethical Considerations

As with other human iEEG studies, research with patients who have chronic neural
implants require a protocol approved by an IRB (internal review board) and should
minimize risks associated with informed consent. Additional risks associated with
mobile iEEG studies should be minimized including to prevent substantial battery
drainage, frequency of seizures during the study, and discomfort during behavioral
tasks, as well as to maintain confidentiality and data security during wireless iEEG
data transfers. Participants should bemade aware of the risks through a fully informed
consent process and it is good practice to allow participants to choose whether stim-
ulation therapy remains on during the iEEG recordings. While mobile iEEG studies
are ideally carried out without the confound of artifacts due to responsive neurostim-
ulation, the potential risk of increased symptoms (e.g. seizures) can be reduced by
inviting participants who have an overall lower frequency of seizure-related activity
in the months prior to the research study and thus lower the likelihood of stimula-
tion events occurring during a given research study. Additionally, it is good practice
to have a neurologist on the research team that can be available during the study
to monitor iEEG activity for the presence of pathological events (e.g., IEDs) or
behavioral symptoms. For neurostimulation studies, the level of stimulation admin-
istered should be controlled, ideally with a charge density lower than that used for
treatment (e.g., <10 µC/cm2) [26, 27]. Finally, there is a risk of battery depletion
associated with mobile iEEG studies that would lead to the need for more frequent
battery-replacement surgeries, especially for research studies that use stimulation
and/or real-time data viewing of iEEG data. To minimize this risk, research studies
should limit the number of study visits per participant (especially if using stimula-
tion and/or real-time recordings) and/or sample more widely from the population
of patients who have chronic sensing neurostimulation devices implanted to prevent
the same group of patients from participating repeatedly. In the case of RC+S and
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other existing and/or future rechargeable battery-powered devices, battery drainage
associated with participation in research studies is not a concern.

53.8 Promises and Future Opportunities

Mobile iEEG studies provide an exciting and unique opportunity for first-in-human
exploration of behavior and cognition inmobile and naturalistic settings. Such studies
will help to bridge the gap betweenfindings in freely-moving animalmodels to under-
stand the human neural mechanisms that underlie everyday behaviors such as for
example spatial navigation, physical movement, and social interaction. Importantly,
mobile iEEG studies in humans provide an avenue for cognitive neuroscience studies
to no longer be constrained by immobility and limited to artificial laboratory environ-
ments. Future research studies can thus use more realistic environments with higher
ecological validity, either by constructing them using advanced 3D-modeling and
VR/AR technologies to allow for experimental control or by simply having partici-
pants step into novel and complex real-world environments (e.g., outdoor or complex
indoor spaces, social experiences) that may be difficult to reconstruct in lab settings.
Mobile iEEG, especially combined with VR/AR and the opportunity to enter real-
world situations opens the door to countless new questions across countless fields
and topics in neuroscience: spatial navigation, episodic memory, emotion, social
interaction, exercise, activities of daily living, psychiatric conditions, and sleep, to
name a few.

Additionally, ongoing clinical trials using chronically implanted sensing
neurostimulators for neuropsychiatric conditions foreshadow increased implantation
of these devices in areas relating to altered emotional processing and pathological
brain states (e.g., depression, PTSD, OCD, loss of control, panic disorder). This
future opportunity opens the field up to many new questions that can be answered to
better understand the pathophysiology underlying neuropsychiatric disease without
relying only on animal models, as well as advance theories related to how emotional
states shape cognition in everyday life experiences.

Finally, chronic neurostimulator devices also provide an opportunity for the devel-
opment of novel closed-loop stimulation paradigms in relation to neural or behav-
iorally relevant cues (see also Chap. 41). A closed-loop approach allows the exper-
iment to program a change in stimulation pattern in response to a condition that is
met. This condition could be detection of a particular neural feature of interest, by
online and real-time analysis of neural signals, or it could be more complex and
relate a neural feature with a behavior that is detected. With the increasing data from
mobile iEEG paired with multiple biometric data streams, there is a broad range
of questions that can be investigated using closed-loop approaches that compare
neural activity and behavioral states with and without the presence of stimulation of
a particular brain region. This notable methodological advance provides researchers
with the ability to test causal questions relating neural activity and behavior under
naturalistic settings.
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Glossary

Deep brain stimulator A medical device that has stimulation capabilities at one
or more electrodes that are intracranially implanted in deep brain structures (i.e.
below the cortex)

Electrode lead Aprobe inserted intracranially that can contain one or more contacts
for recording and/or stimulation. Depending on the diameter, an electrode may
be described as a micro-electrode or a macro-electrode. Micro-electrodes can
record single-neuron and local field potential (LFP) activity and are currently only
available in acute post-surgical hospital settings, while macro-electrodes record
intracranial EEG and are currently used with chronic sensing and stimulation
devices

Electrode contact A metal contact on an electrode that is typically constructed
from silicon, platinum, tungsten, or other metallic substances. There may be one
or more contacts on an electrode

Bipolar channel A recording channel that records neural activity by subtracting the
difference in voltage across two (often adjacent) electrode contacts, where one is
treated as the positive contact and the other is the negative contact

Seizure onset zone (SOZ) A region of the brain where clinical seizures origi-
nate from. Electrode placements are selected to target hypothesized seizure onset
zones, in the case of epilepsy

Interictal epileptiform discharge (IED) A typical neural activity pattern that
commonly occurs in the SOZ of epilepsy patients. These are not clinical-level
seizures

Synchronization Astrategy used to align the timestamps acrossmultiple continuous
and simultaneous data streams. One example strategy may involve a signal sent
from one device simultaneously to all data streams to define an absolute timepoint
that can be used to align timestamps across different data streams

Latency Temporal delays introduced when multiple devices send electronic
messages serially. A good practice is to characterize the temporal latencies of
a system to ensure that they remain lower than the temporal resolution of the
neural signals of interest

Closed-loop system A system in which calculations are computed in real-time
during ongoing continuous neural recordings. Typically, a real-time calculation
is used to detect a neural biomarker or feature. Detection of this event of interest
will then initiate some program that may involve a particular stimulation pattern
or some other change of variables

Responsiveneurostimulator Aclosed-loopdevice that continuously records neural
activity and delivers a pulse of current stimulation when an imminent seizure or
IED event is predicted, in order to prevent the manifestation of a clinical seizure

FDA Food and Drug Administration in the United States which reviews and
approves pharmaceuticals as well as medical devices for clinical use

CT,MRI, fMRI Computed tomography (CT), magnetic resonance imaging (MRI),
and functional magnetic resonance imaging (fMRI). CT and MRI brain scans
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provide anatomical information while fMRI illustrates changes in brain region
activity, measured according to rapid changes in a particular brain region’s
hemodynamic response
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