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Preface

Bioinformatics is the convergence of two trends in biological research since the 1960s: 
storage of molecular sequences in computer databases and application of computational 
algorithms to the analysis of DNA and protein sequences. Both sequence information 
accumulated in databases and computer capacities have been growing exponentially 
which explain why bioinformatics has been developing so fast as a scientific field.

Bioinformatics is integrating many scientific fields such as mathematics, computer sci-
ence, and statistics. Other disciplines involve biochemistry, molecular biology, and phys-
ics. The microbiologists are the most important since they formulate the questions and 
hypothesis to be investigated. The bioinformaticians integrate all information, and bio-
informatics has matured during the past two decades to become a scientific field of its 
own and so has the integration of bioinformatics with microbiology. Related to small and 
uniform size of most microorganisms, bioinformatics has revolutionized microbiologi-
cal research by providing new insight into all aspects of microbiology. The analysis of all 
genomes (microbiome) from all organisms in a sample (microbiota) is designated 
metagenomics and has not only revolutionized the investigation of microbiology but 
also human medicine (human microbiome).

The aim of this book is to teach bioinformatics to microbiologists working within bio-
technology, biology, veterinary medicine, clinical medicine and with environmental 
microbiology at graduate as well as postgraduate levels and equivalent continuous edu-
cation. The book can be used for novices as well as scientists with some experience in the 
field. Some basic concepts have been explained very detailed to provide beginners with 
the proper understanding which allow the more complicated problems to be understood 
and the right conclusions drawn.

The book is based on material and experience gained from teaching the PhD course 
“Bioinformatics for Microbiology” during the past 15 years. Teaching has been per-
formed by introductory lectures followed by computer exercises where participants have 
worked on cases including their own data. With a background in the course, they have 
worked out independent bioinformatics projects with realistic cases at the level of scien-
tific publications.

The idea behind the course and also this book is to use the “freeware” computer pro-
grams without prepaid licenses. Readers will be able to start their own bioinformatics 
investigations just with a laptop computer and an internet connection. The book will for 
most users only be an introduction, and they will have to seek further teaching including 
self-teaching to continue with the more advanced bioinformatics pipelines as well as 
writing of bioinformatics programs which will not be covered in this book.

I acknowledge my colleagues at the Danish Informatics Network in Agriculture who 
took the initiative to the first bioinformatics PhD course level training in 1999. I also 
acknowledge the more than 200 PhD level students who have attended the course “Bio-
informatics for Microbiology.” They have contributed to a continuous development of 
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the course with their personal experience from active research projects, curiosity, and 
enthusiasm. Some former participants have become coauthors on this book, and they in 
particular are thanked for their work. Finally I would like to acknowledge editor Silvia 
Herold and project coordinator Srinivasan Manavalan at Springer Nature for inviting me 
to write the book and to provide optimal support during the process.

Henrik Christensen
Copenhagen, Denmark
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1
What You Will Learn in This Chapter
You will learn why bioinformatics became an independent scientific discipline and why bio-
informatics is of particular relevance to microbiology. You will then be provided with the 
background of this book as well as its major outline. At the end, you will get information 
about computers, operating systems, and computer programs required to carry out bioin-
formatics. The book has many practical relevant examples.

1.1  Basics and History of Bioinformatics

Bioinformatics has become a major scientific field within biological sciences. This includes 
microbiology in particular related to the small and often uniform size of the organisms 
investigated which promoted molecular investigation early on. The use of molecular biology 
including DNA sequencing has been essential to microbiological investigations. The first 
literature references to bioinformatics date back to the early 1990s, and the term came into 
common use in the late 1990s. Bioinformatics is mainly the convergence of two trends in 
biological research: storage of molecular sequences in computer databases and application 
of computational algorithms to the analysis of DNA and protein sequences (Bogusky 1998). 
Now it has become a routine in most labs not only to sequence single genes but also whole 
genomes and in many labs to use metagenomics based on 16S rRNA amplicon sequencing. 
Scientists and students are automatically assumed to know how to analyze this immense 
information. The book will teach you how to handle this problem top-down. The bipartition 
of bioinformatics between the databases and the computers explains why bioinformatics 
has grown and is growing as a scientific field – both sequence information accumulated in 
databases and computer capacities have been and are still growing exponentially.

1.1.1  Bioinformatics Is Integrating Many Scientific Fields

Bioinformatics is integrating many scientific fields (. Fig. 1.1), and a major task of the 
“information” part of bioinformatics relates to the understanding and translation of terms 
and concepts between these scientific disciplines. It all starts with a biological problem to 

Computer-science

Biochemistry

Physics

Molecular biology

Mathematics

Statistics Microbiology

       . Fig. 1.1 Good communica-
tion between the different sci-
entific disciplines is essential for 
bioinformaticians to do research

 H. Christensen
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be solved. In the context of this book, the microbiologist formulates the biological ques-
tion and hypothesis. For instance, if a microbiologist wants to use an enzyme from sea-
water for the production of “plastic” (synthetic polymers), a biochemist may need to set 
up tests to identify the synthetic polymers which are related to the organism or sample. 
Computer programs are used which include algorithms formulated by mathematicians 
and implemented by computer scientists to analyze the data and identify relevant protein 
sequences that have significant similarity to enzymes already known to be involved in 
the specific polymerization. The interaction with molecular biologists and physicists is 
needed to further interpret and annotate the information about the enzyme in the data-
bases. The bioinformatician will have to integrate all information into one concept and 
know of all scientific disciplines needed. Bioinformaticians often have their background in 
one of the traditional disciplines such as computer science, biochemistry, and physics – or 
microbiology.

1.1.2  Homology

A key biological concept behind bioinformatics is homology. Homologous structures have 
the same ancestor or are predicted to have the same ancestor. The different bones in a wing 
of a bird and in a human arm can be compared since they are thought to belong to com-
mon structures in a common ancestor even though this common structure is several 100 
millions of age. DNA and protein sequences also only can be compared in a meaningful 
way if they are homologs, i.e., if they once belonged to a common ancestor. The criteria 
of morphological homology were defined by Remane (1952). It is not needed to read this 
German text unless you love comparative morphology since the comparison of molecular 
sequences has provided us with tools to model ancestry which are many times stronger 
and faster than the comparison of morphologic characteristics. One reason for the success 
of bioinformatics has been that we are able to model evolution and test homology. The 
homology concept can be subdivided into orthology and paralogy. These concepts were 
defined by Walter M.  Fitch and have become key terms used in bioinformatics (Fitch 
2000). Ortholog genes or proteins are homologs that diverged following speciation events, 
whereas paralogs (para for parallel) are homologs which diverged as a consequence of 
gene duplication. In prokaryotes, multiple copies of a gene with the same function are 
usually not tolerated, and as a consequence, paralogs in the same species will have differ-
ent functions.

An example is shown in . Fig. 1.2 of the phylogeny of the proteins in the toxin cyto-
lethal distending toxin (CDT). CDT is produced by some bacterial pathogens like species 
of Campylobacter and Haemophilus. CDT has not been found in Gram-positive bacteria. 
CDT can induce G2/M cell cycle arrest, chromatin fragmentation, cell distention, and 
nucleus enlargement of eukaryotic cells. CDT is a heterotrimer consisting of CDTA, 
CDTB, and CDTC protein chains. The three proteins are homologs but distantly related. 
From the figure is seen that all the CDTA proteins are related in the different species com-
pared, and they are therefore orthologs. Also the CDTB proteins are related in different 
species, and they are also orthologs according to the definition. However, the CDTA and 
CDTB proteins are more distantly related, and they are paralogs since they are present in 
the same species but with different functions. The phylogenetic relationships are explained 
in more detail in 7 Chap. 6.

Another example of the use of phylogeny is for the classification of all prokaryotes 
based on phylogenetic analysis of the 16S rRNA gene sequences. The 16S rRNA-based 

Introduction
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phylogeny has changed the classification of all prokaryotes dramatically during the past 
two decades and as a consequence also how identification of prokaryotes is performed by 
sequencing (7 Chaps. 7 and 8).

1.1.3  Evolution Is Related to Sequence Diversity  
Caused by Mutations

The observed differences between related DNA sequences are related to mutations. A 
mutation is a stable inheritable alteration of the genome. There are two types of muta-
tions, point mutations and mutations involving larger fragments of DNA. Point mutations 
involve only one nucleotide. Point mutations are rare events related to mistakes in DNA 
replication. If such a mutation is changing the codon of an amino acid (non-synonymous 
substitution) of a protein, it may lead to a change in the function of the organism or be 
fatal for the organisms. Other point mutation may not result in the change of an amino 
acid (synonymous substitution); however, they can of course still be registered at the level 
of DNA. Point mutations are distinguished from changes of larger fragments of DNA that 
may have been exchanged between different organisms, and such changes are referred to 
as horizontal gene transfer (7 Chap. 11).

1.2  The Aim, Structure, and Outline of the Book

The aim of the book is to provide readers with a background to carry out bioinformatics 
investigations within microbiology which will provide sufficient scientific background to 
publish their investigations in scientific peer-reviewed journals. The weight on bioinfor-
matics teaching in this book has been understanding, introduction, use of proper con-
trols to confirm results, evaluating the quality of analysis, and graduating the precision 
of results required. In some cases, only round figures are needed, for example, when the 
similarity between CDTA and CDTB proteins is compared to each other in . Fig. 1.2 since 
they are so distantly related. In other cases, results need several digits to be significant, 

CDTB Aggregatibacter actinomycetemcomitans
CDTB Haemophilus ducreyi

CDTB Haemophilus haemoglobinophilus
CDTB Haemophilus parasuis

CDTB Avibacterium paragallinarum

CDTB Escherichia coli
CDTA Aggretibacter actinomycetemcomitans
CDTA Haemophilus ducreyi

CDTA Haemophilus haemoglobinophilus
CDTA Haemophilus parasuis

CDTA Avibacterium paragalinarum
CDTA Escherichia coli

Orthologs

Paralogs

0.1

Orthologs

       . Fig. 1.2 The concepts of orthology and paralogy illustrated by phylogenetic relationships between 
protein sequences A and B of the cytolethal distending toxin (CDT)

 H. Christensen
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for instance, when 16S rRNA gene sequences of bacterial species are compared for the 
purpose of identification (7 Chap. 7). Members of the prokaryotes have the main focus in 
the book since we have mainly worked with this group including the examples provided. 
The book is still relevant for microbiologists investigating fungi and virus.

. Figure 1.3 shows the main topics of bioinformatics treated in this book. This struc-
ture has been used in many bioinformatics textbooks. After the current introductory 
chapter, the book starts with sequence assembly and annotation. Annotation is actually a 
consequence of the databases covered in 7 Chap. 3. 7 Chapter 4 introduces substitution 
matrices and pair-wise and multiple alignments used for comparing sequences. 7 Chapter 
4 also introduces BLAST which is used to compare sequences in the databases described 
in 7 Chap. 3. In 7 Chap. 5, primer design is described. This subject is important both for 
the generation of new sequences (7 Chap. 2) and for diagnostic purposes. The chapter 
includes a distinction between primers used for PCR and oligonucleotides probes used for 
hybridization proposes. In 7 Chap. 6, phylogeny is introduced which requires 7 Chap. 4 
about the multiple alignment as background. In 7 Chap. 7, sequence-based classification 
and identification is introduced which includes backgrounds from all former chapters. 
The identification of prokaryotes has been dominated by 16S rRNA gene sequence-based 
identification for the past two decades. 16S rRNA gene sequence-based identification and 
classification is the background for 16S rRNA amplicon sequencing which currently is 
the most frequently used method to characterize prokaryotic communities (7 Chap. 8). 
Full DNA metagenomics also called shotgun metagenomics is described in 7 Chap. 9. 
In 7 Chap. 10, RNA-based transcriptomics is described which allows an estimation of 
the relative transcriptional level of different genes. This heavily relies on the databases in 

11 Molecular typing

4.1 Pair-wise alignment

5 Primer design

4.2 Multiple alignment

8 16S amplicon 6 Phylogeny 10 Transcriptomics

9 Full DNA metagenomics

1 Introduction

4.3 BLAST

7 Classification, identification

2.1 Assembly 2.2 Annotation

3.1–3.5 Databases 3.6 Protein structures

       . Fig. 1.3 The structure of the book. The topics are illustrated as bricks which can be used and com-
bined to construct different types of analysis. The highlighted bricks are most closely related to the 
actual chapter shown with yellow
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1
7 Chap. 3. Finally, 7 Chap. 11 describes molecular typing which is relying both on multi-
locus gene sequence typing (MLST) and whole genome analysis either by use of the single 
nucleotide approach (SNP) or by whole genomic MLST (wgMLST).

The aim is to provide readers with more understanding and inspiration of bioinfor-
matics by reading this book which they may then use as a stepping stone toward further 
and deeper bioinformatics investigation.

Readers will have to be introduced to microbiology in other relevant textbooks such 
as Brock Biology of Microorganisms edited by Michael Madigan and coworkers (Madigan 
et al. 2019). Some readers may also need to consult basic textbooks about biochemistry 
and molecular biology.

1.3  Computers and Operating Systems Required 
for Bioinformatics

Bioinformatics is practiced with a computer. If you have not worked with bioinformatics 
before, you need to choose the optimal computer to solve a given problem. For a start, your 
favorite laptop will probably do the job. The computer needs to have at least 50 Gbyte free 
space on the hard disk and a reasonable amount of RAM (ready access memory) where 
8 Gbyte is minimum and 16 Gbyte preferred – the more RAM, the better. If you do a lot 
of bioinformatics, it will be beneficial with a desktop computer with 32 Gbyte RAM. For 
beginners, operating systems can both be of the “Mac” type provided by Apple® and 
“Windows” type by Microsoft® (. Fig. 1.4). Most of the basics bioinformatics programs 

       . Fig. 1.4 A collection of operating systems and computers. SuperUsers is acknowledged for this his-
torical photo (7 www. superusers. dk)

 H. Christensen
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will be available for both types. Such programs will also usually run most smoothly on 
the Linux type of operating systems such as Ubuntu. However, it is only recommended to 
start on Ubuntu if you have some experience with this operating systems already or else 
you risk to use most of the time learning Linux instead of learning bioinformatics. Many 
bioinformatics tools can be performed for free on servers which can be accessed through 
the Internet. The same holds true for the databases, and a good Internet connection is 
mandatory. Readers of this book will be able to start their own bioinformatics analysis just 
with a laptop computer and an Internet connection.

1.4  Computer Programs and Pipelines

The majority of the best computer programs for bioinformatics are noncommercial in the 
way that they are free to use for nonprofit purposes. The weight will therefore be on free 
programs in this book. Unfortunately, most free programs are with command line inter-
face which is unfamiliar for most beginners in this field. Especially for sequence assembly, 
it has been difficult to suggest free programs with a graphical user interface, and in this 
case, suggestions to use programs with a user fee have been made.

1.5  Activity

How much RAM is in your computer?
Windows 7: Left click on Start, right click on Computer, and select Properties.
Windows 10: Left click on the Windows start icon, left click on Computer, right click 

on Computer, and left click on Properties.
Mac: Click on the Apple icon in top left corner and click About this Mac.
Ubuntu: Left click at the settings icon (cogwheel) and left click at Details (cogwheel) 

under System.

 Take-Home Messages

 5 Bioinformatics developed as the convergence of two trends in biologi-
cal research: storage of molecular sequences in computer databases and 
application of computational algorithms to the analysis of DNA and protein 
sequences.

 5 Bioinformatics is integrating most of the scientific disciplines in natural sci-
ences, and a major task of the “information” part of bioinformatics relates 
to the understanding and translation of terms and concepts between these 
scientific fields.

 5 A major reason for the success of bioinformatics is that we are able to model 
evolution and test homology.

 5 The majority of the best computer programs for bioinformatics are noncom-
mercial in the way that they are free to use for nonprofit purposes, and many 
bioinformatics tools can be used for free on servers which can be accessed 
through the Internet.
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2

What You Will Learn in This Chapter
In this chapter, you will learn about the different sequencing strategies currently available 
and the pros and cons of the different strategies to help you select the optimal DNA 
sequencing strategy for your research question. Thereafter, you are introduced to the 
challenges associated with assembly of DNA sequence data and the different quality criteria 
needed in the process including how genomes can be closed. The simple FASTA format 
used for representing DNA sequence is demonstrated, and annotation of the DNA sequence 
is then introduced.

2.1  DNA Sequencing

DNA sequencing is the determination of the order of nucleotides of parts or whole chro-
mosomes of organisms and virus. DNA sequencing can be done for a single gene or a 
whole genome or many genomes at a time such as in metagenomics. The first decision 
to be taken is the selection of the optimal DNA sequencing strategy for your research 
question in your project. In . Tables 2.1 and 2.2, we summarize the different technologies 
and what they could be used for and their benchmarks. Often laboratories outsource the 
sequencing to companies or institutions if they do not have their own in house sequencer, 
resulting in a longer turnaround time and higher sequencing costs. Therefore, research 
labs are now investing in smaller, more affordable benchtop next-generation sequencers 
for more cost-efficient sequencing (. Fig. 2.1).

The development of DNA sequencing technology has a long history with multiple 
leaps occurring within a few decades. In 1973, Maxim and Gilbert published the first 

       . Table 2.1 Selection of DNA sequencing strategies and methods in relation to capacity and 
cost

Problem Method Read length (nt) Capacity Cost (related 
to capacity)

1. Single genes, 
sequencing of BAC, 
FOSa or plasmid 
inserts (cloning)

Sanger sequencing of 
PCR amplicons

500–1000 Low High

2. Genomes and 
16S metagenomics

Illumina 150–600 High Low

Ion torrent 400–600 High Low

3. Single-cell 
sequencing

Single-cell dissection, 
DNA extraction, phi29 
amplification, and 
Illumina sequencing

150–251 High High

4. Closing of single 
genomes

PacBio® (Pacific 
Biosciences)

15,000–100,000 Medium High

Nanopore 1000,000 Medium High

aBAC bacterial artificial chromosome, FOS fosmid, based on bacterial F-plasmid. Both are used for 
cloning of large fragments of DNA in the order of 50 kbases

 H. Christensen and A. Moodley
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       . Table 2.2 Comparison of different commonly used sequenced platforms

Platform Read 
length

Amount of 
data 
produced

Num-
ber of 
reads

Run 
time

Accu-
racy

Cost of 
instrument 
(US$)

Cost per Gb 
(approx. 
US$)

Illumina 
MiSeq
v3 600 bp

300 bp 
PE

13.2–15 Gb 44–50 
million 
PE

56 h 99.9% 99,000 110

Illumina 
HiSeq 
2500 v2

250 bp 
PE

125–150 Gb 600 
million 
PE

60 h 99.9% 690,000 45

Ion Torrent 
Ion PGM 
318

400 bp 
SE

1–2 Gb 4–5.5 
million

7.3 h 98–99% 49,000 450–800

PacBio 
RS II

Approx. 
20 Kb

500 Mb–1Gb 55,000 4 h 87% 695,000 1000

MinIon Variable 
up to 
900 Kb

5 Gb Up to 1 
million

Up to 
48 h

88% 1000 500–900

Table derived from Goodwin et al. (2016) and 7 https://blog. genohub. com/2017/06/16/pacbio- 
vs- oxford-nanopore-sequencing/
PE paired end, SE single end, Gb gigabase, Mb megabase, Kb kilobase

3 Databases 3.2 Protein structure

2.1 Assembly

2.2 Annotation

10 Transcriptomics

4.3 BLAST

9 Full DNA 
metagenomics

11 Molecular typing

4.1 Pair-wise 
alignment

8 16S rRNA 
amplicon

       . Fig. 2.1 DNA sequence assembly and annotation are related to most other chapters in this book by 
providing the raw DNA data and information about the location of genes on chromosomes and their 
functional and taxonomic relationships
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ever DNA sequence, 24 bp of the lacR binding site. It took 2 years, meaning one base per 
month. In 1976, Sanger and Coulson described the chain-terminator method, which is 
based on the inclusion of one of the four radioactive-labeled dideoxynucleotides in a reac-
tion and when incorporated would stop strand elongation (chain termination), producing 
fragments of different lengths (7 Sect. 2.1.1). All four reactions would then be resolved 
individually by electrophoresis on a polyacrylamide gel (one lane, one dideoxynucleo-
tide base). The X-ray gel picture would resemble a ladder from which the sequence could 
be read off. Traditional Sanger sequencing has the limitation in that sequencing larger 
genomes, e.g., a 3300 Mb human genome, is rather challenging leading to the develop-
ment of next-generation DNA sequencing (NGS) or massive parallel sequencing of small 
DNA fragments. The key difference between Sanger sequencing and NGS is the ability to 
multiplex.

The first high-throughput sequencing platform that became available was 454 GS20 
pyrosequencer marketed by Roche in 2005 (later replaced by model GSFLX). 454 
sequencing is no longer widely used as the company has stopped sales of this instrument. 
However, data generated by this method are available in databases, and from a bioin-
formatical perspective, it is relevant to know about the platform. This is similar for data 
derived from an Ion Torrent system, which will be explained further down. When we 
are dealing with handling of the data, the 454/Ion Torrent-derived data is very similar to 
Illumina data since sequencing is done by replication of DNA and millions of short DNA 
reads are generated which need to be assembled to the final DNA sequence.

2.1.1  Sanger Sequencing

This sequencing method was developed in the 1970s (Sanger et  al. 1977) and was the 
predominant method until the mid-2000s. Now it is mainly used as a method for sequenc-
ing single genes or fragments of DNA. The principle of the method is based on sequenc-
ing by replication of DNA and the incorporation of dideoxynucleotides (ddNTPs) which 
will stop replication randomly when one of the four dideoxynucleotides, ddATP, ddCTP, 
ddGTP, or ddTTP, is incorporated. The position of the stops is determined based on the 
specific radioactive or fluorescent label of each ddNTP to determine the DNA sequence. 
As mentioned, the initial method used radioactive labeling and polyacrylamide gel elec-
trophoresis which was very time demanding. By the mid-1980s, automated fluorescence-
based Sanger sequencing machines were developed, e.g., those by Applied Biosystems. 
Current methods are based on fluorescent labeling and capillary gel electrophoresis in 
automatic instruments. Further information of this method can be found in textbooks 
(Madigan et al. 2019).

2.1.2  Massive Parallel, Short-Read Sequencing

2.1.2.1  Illumina (Sequencing by Synthesis)
More space will be used to introduce Illumina sequencing since it is the most frequently 
used platform today. Illumina acquired Solexa GA in 2007 to develop and commer-
cialize genome sequencing technology. The company currently has a number of differ-
ent sequencers depending on the sequencing capacity needed, ranging from benchtop 
sequencers to production-scale sequencers. Microbiology research labs would invest in 
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one of the benchtop sequencers, in which at the moment the most common platform is 
the MiSeq (. Fig. 2.2). Smaller systems such as the MiniSeq and iSeq 100 are also avail-
able. These are cheaper than the MiSeq but have a limited sequencing capacity. More 
information can be found on the company website: 7 https://www. illumina. com/systems/
sequencing- platforms. html. We will only focus on the MiSeq, but the principle of sequenc-
ing is the same across the machines.

The MiSeq is capable of doing small whole-genome sequencing, transcriptomics, 16S 
metagenomics, and DNA-protein interaction analysis (ChIP-Seq). It is possible to multi-
plex by using unique combinations of specific barcodes and indexes (see 7 Chap. 8 for the 
use of barcodes and indexes). One of the first steps of sequencing is the fragmentation of 
DNA. Depending on the library preparation kit used, the DNA can be fragmented manu-
ally, e.g., using a Covaris instrument or an enzymatic fragmentation, e.g., transposon- 
mediated fragmentation as in the Nextera XT kit. This process is called tagmentation. 
For sequencing of small genomes, the Nextera XT kit is widely used since the library 
preparation protocol is simple. DNA is tagmentation which used two transposons that 
randomly cuts the DNA. During this tagmentation process, the transposon attaches adap-
tor sequences to the ends of the fragments. These sequences are then used as primer bind-
ing sites for the inclusion of indexes and the adaptors that are needed to anchor the DNA 
to a solid support which is the surface of the flow cell (. Fig. 2.3).

From each template of DNA, “spots” or “cluster” is generated that is complementary 
to the original DNA template sequence. This is done by “bridge amplification” or “fold-
back” step. This step is crucial to generate sufficient signal to be detected in the sequencing 
process. Sequencing is then done by the addition of fluorescently labeled nucleotides in 
the presence of DNA polymerase in cycles. This way, a complementary strand is gener-
ated, and for each cycle, which includes a wash step, the flow cell is imaged, and the emis-
sion from each cluster is recorded. The wavelength and intensity are used to identify the 
base. This is repeated a number of cycles depending on the flow cell used, e.g., V3 600 bp 
(600 cycles or 2 × 300 cycles for paired end sequencing). The final DNA sequence is then 
generated by comparing all images as a stack.

Aside from Illumina sequencers, there is the Ion Torrent system by Thermo Fisher 
Scientific. This is also a benchtop sequencer released in 2010. Similar to Illumina, the 
technology is based on sequencing by synthesis, but the detection method is different. 

       . Fig. 2.2 A picture of our 
Miseq instrument (Illumina)
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The Ion Torrent system uses ion semiconductor sequencing technology, which detects 
hydrogen ions released during DNA polymerization. After DNA amplification, each 
microwell contains a single species of template DNA. Unmodified nucleotides are washed 
into the microwells one dNTP species at a time. When a nucleotide is incorporated into a 
complementary strand, a covalent bond is formed, and a phosphate and hydrogen ion are 
released. This release of a hydrogen ion changes the pH, and this change is detected by an 
ion-sensitive field-effect transistor (ISFET) ion sensor on the chip. The major benefit of 
the Ion Torrent is the low cost of the instrument since unmodified nucleotides are used 
and no optics needed. One of the major limitations to this method is the correct identi-
fication of homopolymers, i.e., stretches of repeating nucleotides. If homopolymers are 
present, this means multiple nucleotides are incorporated and hence the release of more 
hydrogen ions in a single cycle. This results in a greater pH change and a greater electronic 
signal detected. The system is not able to determine exactly how many nucleotides were 
included.

2.1.3  DNA Sequencing in Metagenomic 
and for Single-Cell Sequencing

The principle of sequencing DNA extracted for metagenomics and for single-cell sequenc-
ing is the same as described above for single genomes. Further explanation is given in 
7 Chaps. 8 and 9 including the use of index primers to perform Illumina sequencing with 
multiple samples.

2.1.4  Real-Time, Single-Molecule Sequencing

All of the platforms that are capable of massive parallel sequencing (7 Sect. 2.1.2) require 
fragmentation and amplification of the DNA. These steps can introduce errors, and there 
are sequence-dependent biases. Furthermore, these steps add to the overall turnaround 
time for a sequencing run. Real-time, single-molecule sequencing allows for sequencing 
of the native DNA, resulting in significantly longer read lengths and sequence information 
available when the bases are incorporated, i.e., information available in real time. The first 

       . Fig. 2.3 The flow cell from 
Miseq (Illumina)
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of this type of technology was developed by Pacific Biosciences, and the PacBio RS sys-
tem was made available in 2011. The second approach is nanopore sequencing by Oxford 
Nanopore Technologies, who released the MinIon in 2014.

2.1.4.1  PacBio®
PacBio is built on the ability to optically observe polymerase-mediated synthesis in real 
time. On a SMRT® cell, a single polymerase is fixed at the bottom of a microwell (also called 
a zero-mode waveguides, ZMW) with a single DNA template. Four fluorescently labeled 
nucleotides are introduced. When a labeled nucleotide is incorporated, the fluorophore 
is cleaved, and a light pulse corresponding to the incorporated base is produced. Each 
pulse has its own color intensity, and hence the type of base is identified. This technology 
produces long read lengths, on average >15Kb, with some reads >100Kb. These long reads 
can be used to assist with closing small genomes. Furthermore, PacBio sequencing can be 
used to span long, repetitive regions and can also be used to determine the methylome of 
microorganisms (methylated nucleotides) used for so-called epigenetics. The major draw-
backs to the technology are the high sequencing costs and high error rate.

2.1.4.2  Nanopore Sequencing
Nanopores are small holes created by pore-forming proteins in a membrane. The principle 
of nanopore sequencing is the direct detection of the nucleotide sequence when a single- 
stranded DNA molecule passes through the nanopore and a current is generated by a flow 
of ions across the flow. When the template is threaded through the pore, a voltage block 
occurs that affects the current passing through the pore. These changes are characteris-
tic of a particular nucleotide base. A MinIon has 512 nanopores, with each pore capable 
of sequencing approx. 70  bp/s. The read lengths produced are comparable to PacBio. 
Nanopore sequencing has been brought to the market by Oxford Nanopore Technologies 
who released the MinIon in 2014. The uniqueness of this system is the extreme portability 
of the device. The MinIon is a USB sequencer that plugs directly to a computer. Sequencing 
is cheaper compared to PacBio but had initially the same high error probability drawback.

2.2  DNA Sequence Assembly

Base calling is the first step in sequencing where the electronic signal generated in the 
sequencing machine is separated from random noise and converted to nucleotide infor-
mation. Then the nucleotide information needs to be assembled to DNA sequences which 
resemble the original DNA sequenced as best as possible. This can either be done de novo 
without a reference or with a reference if the genome of the organism or virus is well 
known.

2.2.1  Base Calling and Trimming

Base calling is the conversion of electronic signal generated in the sequencing machine 
to the sequence of nucleotides in the DNA sequence. First, the signal needs to be quality 
controlled. Only a certain threshold passes the quality control. The phred index (q, Q, or 
qual) defined by Ewing et al. (1998) and for ABI data manipulation (automatic Sanger) is 
one way of expressing the quality of signal and now has become a standard. Another way 
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is the error probability (p) of the signal that each nucleotide has to be determined with. 
The two, q and p, are related by

q p= - ´ ( )10 10log

An error probability of 0.01 equals phred 20 (Q10 = 10%, Q20 = 1%, etc.). In the CLC 
Genomic Workbench program, p is used. The quality thresholds are used to filter the out-
put from the sequencing machine and are referred to as trimming. Stand-alone trimming 
programs are available such as trimmomatic (Bolger et al. 2014).

2.2.2  Assembly of DNA Sequences

The output from the DNA sequencing machine is short single “reads,” a few hundred 
nucleotides in length that need to be combined to mimic the original DNA that was sub-
jected to sequencing which is often several millions in length. After the reads have been 
trimmed as described above, they need to be assembled. At least an overlap of forward and 
reverse reads needs to be generated and assembled with Sanger sequencing compared to 
the original DNA sequence (. Table 2.3).

With high-throughput Illumina sequencing, many times more reads need to be com-
bined compared to the original DNA being sequenced. This relates to short read length 
and to high error rates with individual nucleotides of the reads.

During assembly, the short DNA reads from the sequencing machine are combined to 
long DNA strands which equal the original DNA which was sequenced and which can be 
used for gene prediction (annotation below). The goal is always to assemble the longest 
DNA strand as possible, and such a strand is called a contig (a sequenced contiguous 
region of DNA). Ideally a contig should span the entire chromosome.

       . Table 2.3 Assembly programs

Program Principle Use Reference

CLC Main 
Workbencha

Overlap 
consensus

Single genes 7 https://www.qiagenbio 
informatics.com/products/
clc-main-workbench/

Velvet k-mer and de 
Bruijn graph

Genomes Zerbino and Birney (2008)

SPAdes k-mer and de 
Bruijn graph

Genomes and 
single-cell sequencing

Nurk et al. (2013)

DTU server 
assembly

Velvet, SPAdes Genomes Larsen et al. (2012)
7 https://cge. cbs. dtu. dk/services/
Assembler/

CLC Genomics 
Workbencha

NI Genomes and 16S 
rRNA amplicons

7 https://www.qiagenbio 
informatics.com/products/
clc-genomics- workbench/

aRequires fee

 H. Christensen and A. Moodley

https://www.qiagenbioinformatics.com/products/clc-main-workbench
https://www.qiagenbioinformatics.com/products/clc-main-workbench
https://www.qiagenbioinformatics.com/products/clc-main-workbench
https://cge.cbs.dtu.dk/services/Assembler/
https://cge.cbs.dtu.dk/services/Assembler/
https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/
https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/
https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/


17 2

2.2.2.1  Assembly by Overlap Consensus Methods
Overlap and consensus methods are used for assembly of sequences generated by Sanger 
sequencing. Sequence reads are compared and matched by principles which equal pair- 
wise alignments (7 Chap. 4). Unfortunately assembly programs are not freely available 
for Windows or Apple operating systems. Reads generated by Sanger sequencing can be 
assembled by CLC Main Workbench which requires a minor fee.

2.2.2.2  Assembly by k-mer Strategy
Short “words” of DNA sequence called k-mers (length k) are used as an intermedial tool 
to combine the single reads from the sequencing machine to the DNA sequence of the 
organisms or virus originally sequenced. This method is most relevant to whole genomic 
sequences and to metagenomic datasets. The assembly of such datasets would not be pos-
sible by use of the “overlap” strategy above since it would be too demanding for the com-
puters. This method originated in attempts to sequence by hybridization where the k-mers 
were used to link specific sequence motifs to hybridization probes (Idury and Waterman 
1995). Sequence assembly is based on a so-called sequence graph (. Fig. 2.4). The k-mers 
will cover the DNA sequences observed in all of the reads generated by the sequencing 
machine. All k-mers are shifted one nucleotide to the right (1-tuples) so that their overlap 
is k-1. A popular k-mer size has been 31 since it fits with 4 base representation as a 64 bit 
integer. The idea is then to label a read on the k-mers and to visit all edges only once. This 
way, contigs are formed and shorter contigs are joined together (. Fig. 2.4).

Next to the handling of large datasets, the problems of repeats and sequencing errors 
can also be handled by use of Euler’s algorithm and de Bruijn graphs. Errors are handled as 

Original DNA

Reads generated by DNA sequencing GAGCGTCT

GAA
AAT

ATG
TGA

GAG
AGC

GCG
CGT

GTC
TCT

CTT

A   T  G  A  G   C   G T   C  T  T  T   A

ATGAGCGTCTTTA

de Bruijn grap with k-mers. Eulerian path
(cycle if genome is linear) nodes represent
a series of overlapping k-mers and can only
occur once in a graph

k-mers representing
all reads as k-1

Contig

The last nucleotide
of each k-mer has
information about
the sequence

Arc connecting
nodes, twin nodes
are merged

CTTTA AGCGT

GAATGAGCGTCTTTA

GAATGAGCGT
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A
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AT
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TG
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CG
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TC
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CT
T

TT
T
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A

       . Fig. 2.4 Principles of assembly strategies based on Euler principle using k-mers resulting in a so-
called de Bruijn graph. Only short fragments are shown to illustrate the principle. Only assembly of the 
forward DNA sequence is shown. Linear genomes need to be assembled by finding an Eulerian path. 
(Modified from Compeau et al. 2011)
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“bulges” in the de Bruijn graph (Pevzner et al. 2001). The time to run computer implemen-
tation of Euler’s algorithm is roughly proportional to the number of edges in the de Bruijn 
graph construction for the particular problem. The de novo assembly can be extended by 
scaffolding where the information from the paired end reads is used to link contigs. In 
. Table 2.3, a comparison of different assembly programs has been made.

2.2.2.3  Quality Criteria of the Final Assembled DNA Sequence
The minimal requirements to assemblies are summarized from Chun et al. (2018).

The first important parameter to consider is the coverage = (number of reads × average 
read length)/genome size

The genome size will often be provided as the sum of contigs from assembly programs. 
For taxonomy, more than 50 times coverage is recommended (Chun et al. 2018). For 16S 
rRNA amplicon sequencing (7 Chap. 8), Q20 or higher is preferred.

Another important parameter is N50 which is obtained by listing all contigs from the 
longest to the shortest. The length is then accumulated from the longest to the shortest 
contig, and when half the genome size is reached, the length of that particular contig is 
read as N50 (. Fig. 2.5).

Comparison of different assemblies can be made with Quast (Gurevich et al. 2013). 
The “minimum information about a genome sequence” (MIGS) specification (Field et al. 

N50 = 62

       . Fig. 2.5 Illustration of the calculation of N50. First, the contigs are arranged in decreasing order from 
longest to shortest. The length of sequence is accumulated, and when the accumulation reaches 50%, 
the specific contig is identified and its length recorded. The length of this contig is defined as N50
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2008) provides an exhaustive list of the information required for genomic sequences 
including demands to metadata. The reads can be compared to the assembled contigs by 
mapping (. Fig. 2.6). This way, local coverage can be evaluated.

2.2.2.4  De Novo or with Reference
The assembly process can be made easier if an existing genome of a related strain is used in 
the process. It is used as a reference. This approach is only possible for well-known species 
where fully closed genomes are available.

2.3  Closing of Genomes

If repeats in the DNA sequences to be assembled are longer than the read length, the DNA 
sequences become harder to assemble. With prokaryotes, the problem is often ignored. If 
the researcher is interested in coding genes to predict the function of the proteins, genome 
closing is not critical since the majority of functions can be scored without full assembly. 
Also whole genomic multilocus sequence typing (wgsMLST) can be done on contigs which 
are not fully assembled to a full chromosome. The rRNA operons (5–7 kilo bases) and tRNA 
genes are major reasons for the lack of full assembly since they are longer or at the same size 

       . Fig. 2.6 The original reads of DNA sequences from the sequencing machine are mapped to the con-
tigs assembled from the reads (consensus in the figure) and to another related genome (de novo assem-
bly) in the figure. Green reads were determined by forward sequencing primers and red reads by reverse 
sequencing primers. Reads in blue are paired read of both forward and reverse reads. (Output from CLC 
Genomics Workbench (7 https://www. qiagenbioinformatics. com/products/clc-genomics-workbench/))
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have most read lengths. Fully closed genomes are preferred as references in single-nucle-
otide polymorphism (SNP) finding further described in 7 Chap. 11. To combine contigs, 
short paired reads can be combined with long paired reads. Long reads can be obtained by 
the PacBio method with a significant fraction of reads longer than 7 kb (Koren et al. 2013).

2.4  DNA Sequence Formats

The most simple and frequently used format to represent DNA sequences is the FASTA 
format named after the sequence search program FASTA (Pearson and Lipman 1988). It is 
a text format with the first line starting with “>” and some information about the sequence. 
On the following lines follow the DNA sequence written as the order of nucleotides. Files 
can include one or more sequences. FASTA format files often have the extension .fa, .fna, 
.fsa, or .fasta. However, the extension is only required for certain programs to recognize 
the format, and the files can be used without an extension or with .txt as extension if used 
for text editing. An extension to the FASTA format is the FASTQ, the format where the 
“Q” is short for quality (. Table 2.4). Such files include both DNA sequences and quality 
scores, and they are suited for high-throughput sequencing (Cock et al. 2010). A quality 
score is included for each nucleotide in the DNA sequence. The quality score is in the form 
phred: QUAL format. Scores are based on ASCII codes 33–126 for phred qualities 0–93  
(1 wrong base to 10–9.3 is extremely accurate).

2.5  Annotation

Genome annotation is the identification and labeling of all the relevant features of the 
genomic sequence. At first this includes the coordinates provided as nucleotide positions 
in where coding regions are predicted. It is mainly a prediction of coding genes; however, 
other structural genes such as rRNA are also identified.

First, the coordinates of candidate genes open reading frames (ORF) are predicted. 
ORFs are stretches of DNA that can translate to amino acids without stop codons. There 
are three reading frames of the forward (sense) strand of DNA and three reading frames 
on the reverse (antisense) (Appendix). Normally only one out of six will be without stop 
codons over hundreds of nucleotides, and such a reading frame is a candidate for a coding 
gene. Further, to predict the function of ORFs, the gene sequences are compared to differ-
ent databases by a variant of BLAST. The databases include UniProt, RefSeq at NCBI, and 

       . Table 2.4 The FASTQ format

Format Example

@ (title line) @SEQ_ID

DNA sequence GATTTGGGGT

+ shows end of sequence and start of quality +

Quality lines “*(+)%0.1–5
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domain databases such as Pfam (7 Chap. 3). For some ORFs, a functional prediction can-
not be obtained, and they are designated as hypothetical proteins (no match in databases).

The most frequent way to annotate prokaryotic genomes is during the deposition of 
the sequence with NCBI. Here whole genomic sequences will be automatically annotated. 
To obtain an independent annotation, the server RAST (rapid annotation with subsystem 
technology) can be used (Aziz et al. 2008; Overbeek et al. 2014) (. Table 2.5). In some 
cases the NCBI and RAST annotation will be different for the same ORF. It is related to 
different priorities for best hits in the databases. To investigate such conflicts further, the 
researcher needs to compare the specific sequence to different databases (7 Chap. 3) by 
the use of BLAST or similar search tool (7 Chap. 4). Prokka is a suite of software tools 
used for annotation (Seemann 2014) (. Table 2.5).

2.6  Activities

2.6.1  Assembly with DTU Server

First, we need to get some DNA sequence reads to assemble. They can be downloaded 
from SRA at NCBIl. At NCBI, select SRA (7 https://www. ncbi. nlm. nih. gov/sra/) and write 
the SRR number (SRR639898). You will see a list with the different sequence runs from 
the project. Use SRR639898 as a link. A new window opens with the experiment number 
(SRX145167). Click the upper panel Download bottom and select FASTA/FASTQ and 
write the experiment number from above in the window. Mark the run SRR639898 and to 
the right select FASTQ and download. You will now download a .gz format file and save 
it on your computer.

Open 7 https://cge. cbs. dtu. dk/services/Assembler/.
Select Illumina paired end reads and upload the file just downloaded.

       . Table 2.5 Annotation programs

Program Database Principle Reference

BlastKOALA NCBI RefSeq, GenBank Single genomes 7 http://www. kegg. jp/blastkoala/
Kanehisa et al. (2016)

Ghost-
KOALA

NCBI RefSeq, GenBank Metagenomes 7 http://www. kegg. jp/ghostkoala/

RAST SEED, many databases Subsystem 7 http://rast. nmpdr. org/
Aziz et al. (2008), Overbeek et al. (2014)

MG-RAST Subsystem Glass et al. (2010)

Prokkaa RefSeq, UniProt, Pfam Suite of existing 
programs

Seemann (2014)

aRuns on Unix/Linux
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2.6.2  Annotation at RAST

You need to register to get an account 7 http://rast. nmpdr. org/. The online program both 
performs ORF finding and annotation and returns GenBank formatted files as well as 
other outputs. The optimal function is with fully assembled genomes, but it can also work 
with unassembled contigs where you just include all contigs in one file. You can use the 
contigs assembled in 7 Activity 2.6.1 above.

When logged on RAST, select Your jobs | Upload new job and select the file with the 
contigs in FASTA. Select genetic code “Bacteria” and “11” since the genome was from an 
enterococcus and Enterococcus is a Prokaryote.

Leave the next page with default settings. Press submit. Now you can follow the job 
at “Your jobs.” It usually takes overnight to finish. The three main output files are the 
GenBank with the annotations and the Amino-Acid FASTA and the Nucleic-Acid FASTA 
with amino acid and nucleotide sequences of all predicted genes, respectively.

 Take-Home Messages

 5 DNA sequencing is the determination of the order of nucleotides of parts or of 
whole chromosomes of organisms and virus.

 5 DNA sequencing can be done for a single gene or a whole genome or many 
genomes at a time such as in metagenomics.

 5 One of the most popular high throughput sequencing machines is the MiSeq 
from Illumina which is capable of doing whole genome sequencing of smaller 
genomes, transcriptomics and 16S rRNA metagenomics.

 5 Multiple samples can be sequenced by high throughput sequencing by multi-
plexing using unique combinations of specific barcodes and indexes.

 5 Real time, single molecule sequencing allows for sequencing of the native DNA, 
resulting in significantly longer read lengths compared to Illumina sequencing.

 5 Base calling is the first step in sequencing where the electronic signal gener-
ated in the sequencing machine is separated from random noise and con-
verted to nucleotide information.

 5 The nucleotide information needs to be assembled to DNA sequences which 
resemble the original DNA sequence as best as possible.

 5 The most important quality parameter to consider in the final assembled DNA 
sequence (contig) is the coverage indicating how many reads that can be 
aligned with the assembled DNA at a given position of the DNA sequence.

 5 The ‘minimum in formation about a genome sequence’ (MIGS) specification 
provides an exhaustive list of the information required for genomic sequences 
including demands to metadata.

 5 Genome annotation is the identification and labelling of all the relevant fea-
tures of the genomic sequence and it includes the coordinates provided as 
nucleotide positions where coding regions are predicted as well as structural 
genes such as rRNA.
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What You Will Learn in This Chapter
Bioinformatics databases store biological information from life science research. It is an 
important topic for understanding of the majority of the other chapters in this book. In this 
chapter you will learn how to access the bioinformatics databases and extract information 
from them. You will be guided for best choices of databases and how to make sequences 
and related molecular material accessible to the scientific community by deposition of such 
material with the databases. You will be introduced to tools to visualize protein structures 
and to compare protein structures. Finally, a brief introduction to proteomics is provided.

3.1  Introduction to Bioinformatics Databases

Bioinformatics databases contain biological data from scientific experiments most impor-
tant, DNA and protein sequences and protein structures. In addition to this core level, 
databases of published literature, computational analysis of primary data, and metadata 
are also important. Bioinformatics databases are usually affiliated with query facilities as 
well as data analysis tools. Bioinformatics databases are important for most other fields of 
bioinformatics and relate to most other chapters of the book (. Fig. 3.1).

We expect the databases to represent high diversity of information as well as data 
formats that can be handled by most computers. The databases need to be reliable and 
updated and the documentation for the databases easily accessed. Documentation for the 
databases can be found in the journal, Nucleic Acids Research (7 https://academic. oup. 
com/nar/issue/46/D1), where the first issue each year publishes papers dealing with new 
developments in the bioinformatics databases. We will refer to these papers and recom-
mend the readers to refer to the papers when they include bioinformatics databases in 
their scientific publications.

2.2 Annotation 4.3 BLAST 7 Identification

3.6 Protein structures 3.1–3.5 Databases 10 Transcriptomics

8 16S amplicon 9 Full DNA 
metagenomics 11 Molecular typing

       . Fig. 3.1 Relation of this chapter to the other chapters in the book
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Some databases present parallel information, and each user has a special preference for 
a certain set of databases, and in this respect the weight and priority in this chapter reflect 
the author’s personal choices and not any ranking of databases.

Bioinformatics databases are hosted by bioinformatics institutions who provide the 
resources to maintain and curate the databases (. Table 3.1). The major bioinformatics 
databases are available on the Internet with free access from bioinformatics institutes. For 
example, GenBank is hosted with NCBI (NCBI 2018) and ENA with EBI-EMBL (Cook 
et al. 2018) (. Tables 3.1 and 3.2). The bioinformatics institutions are providing the cura-
tion of the databases and maintaining the servers needed to host the large datasets and to 
make data accessible for the scientific society. NCBI is located and maintained from the 
USA, whereas EBI-EMBL is located in the UK and maintained mainly by European fund-
ing. DDBJ is located in Japan and maintained by NIG (Kodama et al. 2018).

The first bioinformatics database was established in 1965 (PIR) (Barker et al. 1993), 
and PIR later became associated with UniProt (Uniprot 2018). The majority of other data-
bases were established during the 1980s (. Table 3.2).

3.1.1  Data Formats Used with Bioinformatics Databases

From the information technical point of view, databases can be classified based on the 
database file structure, for example, as flat file, object-oriented, and relational databases. 
A flat file database is an ordered collection of similar files in some standard format. A flat 
file database is made useful by ordering the files and indexing them, which makes them 
searchable (Gibas and Jambeck 2001). These files are in ASCII text file format (7 https://
www. asciitable. com/). The ASCII format translates characters to numbers that can be read 
into computers. The ASCII format can be read both by humans and computers. Many 
popular sequence databases, including GenBank, are flat file databases.

For relational databases, information is stored in a collection of tables, which makes it 
possible to extract specific type of information across the database content. For example, 

       . Table 3.1 Major bioinformatics institutions

Abbreviation Institution and activity URL and reference

NCBI National Center for Biotechnology Information
Maintains the most important and frequently 
used bioinformatics databases such as GenBank 
and PubMed

7 https://www. ncbi. nlm. nih. 
gov/
(NCBI 2018)

UniProt Universal Protein Resource
Maintains secondary protein databases, most 
importantly Swiss-Prot

7 http://www. uniprot. org/
(UniProt 2018)

EMBL-EBI European Bioinformatics Institute
Bioinformatics databases, research, and training

7 https://www. ebi. ac. uk/
(Cook et al. 2018)

NIG National Institute of Genetics hosts DDBJ (DNA 
databank of Japan). DDBJ provides databases 
and analysis services from life science 
researches and advances science

7 https://www. nig. ac. jp/nig/
(Kodama et al. 2018)
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from the PBD database, you can extract only information about the secondary structure 
for a specific type of proteins (Gibas and Jambeck 2001).

Object-oriented databases are more complex. They handle data as object (instead of 
tables), which enables the storage of various information types in different formats, from 
simple text formats to images and videos (Gibas and Jambeck 2001).

3.2  Organization of Databases and Bioinformatics Institutions

The International Nucleotide Sequence Databases (INSD), DDBJ, EMBL, and GenBank 
in short DDBJ/EMBL/GenBank are organized in INSDC (International Nucleotide 
Sequence Database Collaboration) (7 http://www. insdc. org.). The three databases collab-
orate to enable access to DNA data in standardized formats for the scientific community 
worldwide (Karsch-Mizrachi et al. 2018). The online content of the databases is exchanged 
on a daily basis. To do that the officially supported XML format of INSDC, the INSDSeq, 
is used (see 7 Sect. 3.3.8).

       . Table 3.2 Bioinformatics sequence and protein structure databases

Name Typea Content Established and 
hosted at

URL

GenBank P DNA 
sequencesb

Established in 1982 and 
hosted at NCBI since 
1992

7 https://www. ncbi. 
nlm. nih. gov/
(Benson et al. 2018)

ENA (European 
Nucleotide 
Archive)

P DNA 
sequencesb

Established in 1982 and 
hosted at EMBL-EBI 
since 1994

7 https://www. ebi. 
ac. uk/ena

DDBJ (DNA 
Data Bank 
Japan)

P DNA 
sequencesb

Hosted at NIG since 
1987

7 http://www. ddbj. nig. 
ac. jp/
(Kodama et al. 2018)

SRA (Sequence 
Read Archive)

P DNA 
sequences

NCBI 7 https://www. ncbi. 
nlm. nih. gov/
(Haft et al. 2018)

RefSeq S DNA 
sequences

NCBI 7 https://www. ncbi. 
nlm. nih. gov/
(NCBI 2018)

Swiss-Prot S Protein 
sequences

Established in 1986 and 
since 2003 included 
with UniProt

7 http://www. uniprot. 
org/
(UniProt 2018)

PDB (Protein 
Data Bank)

PS 3D structures 
of proteins

Established in 1971 and 
hosted at Research 
Collaboratory for 
Structural Bioinformat-
ics (RCSB)

7 https://www. rcsb. org/
(Rose et al. 2017)

aP, primary; S, secondary databases
band their protein translations
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The nucleotide databases DDBJ, EMBL, and GenBank are automatically translated to 
the protein level if the DNA sequences are coding. These protein translations are available 
along with the DNA sequences from the databases (. Fig. 3.2).

       . Fig. 3.2 The GenBank format. Note only the start of the entry and a part of the protein section are 
shown. Readers can easily look at the full record at 7 https://www. ncbi. nlm. nih. gov/nuccore/u04208

 H. Christensen and L. E. de Vries
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3.3  Major Bioinformatics Databases

3.3.1  GenBank

The best known bioinformatics database is GenBank (. Fig. 3.2). This is a primary data-
base for DNA sequences. Primary DNA sequence databases are sometimes called “nucleo-
tide” databases and even shortened as “nt.” GenBank is distributed from NCBI as flat file 
and ASN.1 (Abstract Syntax Notation One) file formats (7  https://www. ncbi. nlm. nih. gov/
genbank/) (see 7 Sect. 3.3.8).

From GenBank all translations to protein are in the GenPept database. The well- 
recognized GenBank flat file format is shown in . Fig. 3.2. Each GenBank record contains 
three parts: the first part includes information about the record (e.g., type of molecule, 
submission date, the unique accession number, keywords, source, and references) and the 
second part contains sequence annotations such as biological features, e.g., genes, CDS 
(coding sequences), base counts, and origin. The main characteristics of this format are 
that it is easy to read both for humans and computers and information fields are easy to 
understand (. Fig. 3.2).

GenBank can be searched by keyword including accession number via text-based 
query directly at the root of NCBI (7 https://www. ncbi. nlm. nih. gov/) or at the Nucleotide 
section (GenBank) where annotations associated with a sequence entry are searched 
(7 https://www. ncbi. nlm. nih. gov/nucleotide/).

Sequence similarity search can also be carried out via the algorithm BLAST 7 https://
blast. ncbi. nlm. nih. gov/Blast. cgi, where a query sequence (DNA or protein) is compared 
to the sequence database (see 7 Chap. 4 for more details). Data can be retrieved from 
GenBank in several file formats including the GenBank file record and FASTA file format 
(see also 7 Activities 3.8.1 and 3.8.2).

3.3.2  The European Nucleotide Archive (ENA)

EMBL was the original primary database for DNA sequences hosted with EBI-EMBL. Now 
EMBL is included with ENA (. Fig. 3.3). The translations of DNA sequences in EMBL to 
proteins were called TrEMBL (Cook et al. 2018). TrEMBL was developed specifically for 
comparison to the Swiss-Prot database (see below). The original EMBL format was using 
two-letter codes for all information fields (. Fig. 3.4) which was harder to read than the 
GenBank format. The original two-letter format is sometimes used. However, the infor-
mation fields in ENA are now also self-explanatory like GenBank (Silvester et al. 2018).

3.3.3  Swiss-Prot and UniProt

The aim of Swiss-Prot was to include all information from one protein from one species 
in one entry. Swiss-Prot was included in UniProt in 2002 (in full UniProt Knowledge 
database) (UniProt 2018), but the context of the Swiss-Prot database has survived.

PIR (Protein Information Resource) was established in 1965 by Margaret O. Dayhoff. 
The first IT version became available in 1972. The database has been included with UniProt 
since 2003. PIR is currently focusing on protein information comparisons (7 http://pir. 
georgetown. edu/).
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Really well-known and a well-annotated proteins are referred to as “Swiss-Prot” in the 
UniProt database, and they are also recognized as “reviewer” and labeled with a golden 
star in UniProt. Sometimes the Swiss-Prot section is labeled “sp” for short, and this is 
used at NCBI where proteins from Swiss-Prot also can be looked up. Whenever possible 
one should look for information about proteins in the Swiss-Prot section of UniProt 
(. Fig. 3.5).

The information about a protein in UniProt can be a bit overwhelming at first sight. 
This is because all information is actually here gathered about the protein. To guide read-
ers, the information fields are shown in . Table 3.3.

3.3.4  Genomics Databases

NCBI registers genomic sequences from single isolates according to biosample and bio-
project in the format SAMN00000000 and PRJNA000000, respectively. A genome which 
is not fully assembled will get an accession number in the form AAAA00000000. For fully 
closed genomic sequences, a GenBank format DNA sequence accession number will be 
provided in the form AB123456 (see also 7 Activity 3.8.4.2).

       . Fig. 3.3 The homepage of the European Nucleotide Archive (ENA) homepage. Text search by key-
word including accession number can be carried out

 H. Christensen and L. E. de Vries
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       . Fig. 3.4 EMBL format for acc. U04208 (7 https://www. ebi. ac. uk/ena/data/view/U04208&display=text). 
To simplify, some of the reference, cross-reference, and sequence sections have been omitted on the figure

Databases and Protein Structures
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3.3.5  Raw Sequence Read Datasets

SRA (Sequence Read Archive) (7 https://www. ncbi. nlm. nih. gov/) (Haft et  al. 2018) 
(. Table  3.2) is a primary database for raw sequence reads hosted with NCBI.  Here 
whole raw datasets from Illumina sequencing of whole genomes (7 Chap. 2) and 16S 
rRNA metagenomes (7 Chap. 8) and full DNA metagenomes (7 Chap. 9) can be stored 
and downloaded. A similar facility is provided by ENA (European Nucleotide Archive) 
(. Table 3.2).

3.3.6  Other Databases

The following databases are all more specialized (. Table  3.4). CAZyme is a database 
of carbohydrate active enzymes (André et al. 2014). This database separates enzymes in 
GH (glycoside hydrolase) families. It is possible to annotate protein sequences of whole 
genomes according to CAZy by the use of dbCAN (7 http://csbl. bmb. uga. edu/dbCAN/).

KEGG (Kyoto Encyclopedia of Genes and Genomes) has the main objective to estab-
lish links from collective sets of genes in the genome to high-level function of the cell and 
organism (Kanehisa et al. 2016). Annotation can be performed in KEGG (7 Chap. 2). For 
a long time KEGG GENES database was created from NCBI’s RefSeq database. From 2014 
on, KEGG GENES also includes genomes from GenBank. KEGG has a section devoted to 

       . Fig. 3.5 An entry in the UniProt database showing that the protein is in Swiss-Prot (reviewed, note 
the golden star). The full entry can easily be viewed from 7 http://www. uniprot. org/uniprot/O06522 
(UniProt 2018)
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       . Table 3.3 Major information fields used in a UniProt protein entry. The CdtB protein has been 
used as example (accession number Q46669 from UniProt). Note that you can make a custom 
arrangement of the information fields at UniProt. For instance, if your main interest is structure, 
this field can be shown on the top

Information field Content Example

 1. Function Short summary of biological function “CdtB exhibits a DNA-nicking 
endonuclease activity”

 2.  Names and 
taxonomy

Protein names, gene names, organism 
names

Escherichia coli

 3.  Subcellular 
location

Localized to the membrane or cytosol “Secreted”

 4.  Pathology 
and biotech

Effect of mutagenesis on function Mutagenesis H154A will not cause 
cell cycle arrest in HeLa cells

 5.  PTM/
processing

How the molecule is processed Signal peptide at position 1–18

 6. Structure Graphical representation of the 
secondary structure. Links to 3D models. 
Note, only models with PDB numbers 
have been experimentally determined

2F1N link

 7. Sequence The protein sequence MKKYIISLIV FLSF

 8.  Family and 
domains

Links to family and domain databases “View protein in Pfam”

 9.  Interaction Other proteins that the protein is 
associated with in vivo

Heterotrimer of three subunits, 
CdtA, CdtB, and CdtC

10.  Entry 
information

Information about the background 
information for the record

O32586 a similar protein

       . Table 3.4 Specialized databases

Name Content and use URL

KEGG Metabolic pathway database 7 http://www. genome. jp/kegg/ 
(Kanehisa et al. 2016)

CAZyme Database of carbohydrate active enzymes (7 www. cazy. org) (André et al. 2014)

Essential 
genes

Genes which are indispensable for the 
survival of organisms

7 http://www. essentialgene. org/ 
(Gao et al. 2015)

Silva rRNA gene sequence database all three 
domains of life

7 https://www. arb-silva. de/ (Yilmaz 
et al. 2014)

RDP 16S rRNA gene sequence database of 
prokaryotes and fungi

(Cole et al. 2014)

GreenGenes 16S rRNA gene database and quality 
control

(DeSantis et al. 2006; McDonald et al. 
2012)

Databases and Protein Structures
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antimicrobial resistance. The benefit of KEGG is that it focuses on modules and pathways 
directed against functionality, and the drawback is that it excludes poorly annotated func-
tions. The 16S rRNA gene sequence databases are further used in 7 Chap. 8.

3.3.7  Primary and Secondary Bioinformatics Databases

From the biological point of view, the most important categorization of databases is into 
primary and secondary databases, which refers to the type and source of stored data. 
Primary databases, such as GenBank and ENA, are also called archives or repositories, 
and they take information directly from the individual researcher, and data are owned 
by the submitter with privileges to change data. The benefit is fast publication of new 
entries in the databases and high diversity. The drawback of this system is that informa-
tion occasionally can be wrong, for instance, if the researcher should accidentally have 
used the wrong coding table (7 Chap. 2) or wrong names for organisms (7 Chap. 7) or 
wrong information fields.

Users should therefore always be aware of errors in the databases. It is recommended 
to contact the authors listed with the specific entry of database linked to the dataset if 
errors are suspected. Such errors will be passed on to all other databases that are linked to 
the dataset if they are not corrected. Another problem with the primary databases is the 
tendency for redundancy (repeating information) since two scientists could in principle 
submit the same sequence for the same gene for the same organism independently of each 
other. When searching primary databases, users should always be critical of the informa-
tion, especially if the data is not associated with a published reference.

The secondary databases (e.g., Swiss-Prot and PDB) are curated, and they perform a 
quality control and sorting of information before the information is made accessible to 
the public. These databases have better chances of reducing redundancy. They can also 
bypass the submitters of entries in the primary databases which are no longer updated. 
This is important in case the submitter changes affiliation or no longer is active in science.

A variant of the secondary database is the third party annotation (TPA). This is a 
secondary database mainly of nucleotide sequences. To avoid shortcomings with primary 
data and bypass submitters’ privileges, the database has released the submitters’ burdens 
of updating data. The best-known example is RefSeq at NCBI which is used a lot with 
genomic sequences, providing a backbone to a range of DNA metagenomics studies 
(7 Chap. 9).

3.3.8  Data Formats in Bioinformatics Databases

The most simple format is the FASTA format introduced in 7 Chap. 2 (7 Sect. 2.4). This 
format is not very suitable for arranging information in the bioinformatics databases 
since the information next to the sequence is not structured and can only be very brief. 
Therefore more special data formats are used.

ASN.1 (Abstract Syntax Notation One) is a format suitable for transferring data 
between different computers and computer system. If you select this format for a sequence 
in GenBank (try the link: 7 https://www. ncbi. nlm. nih. gov/nuccore/U04208. 1?report=asn1
&log$=seqview), it can be read but will not give much meaning to the human reader but 
to the computer.
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A very precise way of representing database information is the XML format. XML 
(Extensible Markup Language) is derived from Standard Generalized Markup Language 
(SGML). All information of a document is annotated in the format <tag>text</tag>. The 
INSDC variant of XML is used. For instance, the sequence in a GenBank file in INSDSq 
format is between tags <Seq-data> and <\Seq-data>, and the accession number in a 
GenBank file in INSDSq format is between tags <Seq-id> and <\Seq-id>.

3.4  Accession Numbers

All sequences in the databases are recognized by accession numbers. They are the unique 
identifiers for all information. Already the format of an accession number tells about 
its origin (. Table  3.5). Nucleotide sequences in primary DNA database like GenBank 
have the format of two letters and six numbers. Their translated protein sequences have 
the format of three letters and five numbers. All GenBank entries had a GI number 
(GenBank unique number for each sequence 1234567); however, this system was stopped 
in September 2016, and now only older sequences in GenBank can be recognized by this 
number. New WP numbers were introduced from 2013 for proteins. Non-redundant pro-
tein sequences will only be given one WP number (Clark et al. 2016). To get information 
about proteins included in WP numbers, use the number as link, and see identical proteins 
where all the accession numbers included with the WP number are listed.

       . Table 3.5 Accession numbers

Database Section Accession number format Example

International Nucleo-
tide Sequence 
Database Collaboration 
(GenBank, EMBL, DDBJ)

GenBank Common to DNA
X12345 (until 1999) (1 + 5), AB123456 
(1999 -) (2 + 6)

U04208

Protein P12345 (until 1999) (1 + 5), ABC12345 
(1999 -) (3 + 5)

O06522

RefSeq Accession no. 2 + 6 with underscore
NT_123456 genomic DNA
NM_123456 mRNAs
NP_123456 protein

Swiss- 
Prot

Primary accession number on the 
form P12345 but also six-digit
combinations of numbers and letters:
NNNN_YYYYY
The Ns represent the protein name 
and the Ys the organism

O06522
CDTA_HAEDU

PDB 1N1N (capital letters and numbers 
without fixed order)

2F1N

NCBI Genomes Incomplete NNNN12345678
Complete AB123456
(Or A12345 old number)

LXWV01000000
L42024

Databases and Protein Structures
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3.5  Protein Structure Databases and Predictions

This section provides an introduction to databases of protein structures and how struc-
tures can be downloaded and visualized from the databases. Prediction of structures based 
on a query protein sequences will be described.

One of the beautiful synergistic achievements in bioinformatics is that the function 
of a protein can be predicted by a rather low identity of proteins over rather short length 
of comparison and rather low similarity to protein structures. As a rule of thumb, the 
function of a protein can be predicted if it is at least 40% similar in its primary structure 
to known proteins in the database. In the range of 20–40% similarity, only folds can be 
predicted but not function. Homology modeling based on 3D structure performed with 
Swiss-Prot or similar (. Table 3.6) can predict 3D structures for proteins if they are at least 
25% identical in a pairwise alignment of at least 100 amino acid (Petsko and Ringe 2004).

With respect to the prokaryotes, we are interested in predicting if a protein is secreted 
to the extracellular space, if it is part of the cell wall, or if it is located in the cytoplasm of 
the prokaryote. A special group of very important proteins form pores in the prokaryotic 
cell and occupy important positions in the periplasmic space of bacteria with a Gram- 
negative cell wall structure. Both function and location of uncharacterized proteins can 
be predicted bioinformatically by comparison to specialized protein structure databases.

       . Table 3.6 Prediction and comparison tools for protein structures

Tool Function URL

PRED Predicting and discriminating 
beta-barrel outer membrane proteins

7 http://bioinformatics. biol. uoa. gr/
PRED-TMBB/
(Bagos et al. 2004)

Dali Comparison of structures 7 http://ekhidna2. biocenter. helsinki. fi/
dali (Holm and Laakso 2016)

Phyre2 For comparison of models.
Visualization in CLC Main Workbench 
using superimpose function

7 http://www. sbg. bio. ic. ac. 
uk/~phyre2/html/page. cgi?id=index 
(Kelley et al. 2015)

SignalP Determination of signal peptide 
cleavage sites

7 http://www. cbs. dtu. dk/services/
SignalP/ (Petersen et al. 2011)

PSORT Protein localization sites 7 https://psort. hgc. jp/(Nakai and 
Horton 1999)

PHOBIUS Transmembrane topology and signal 
peptide predictor

7 http://phobius. sbc. su. se/ (Käll et al. 
2004)

OMPdb Beta-barrel membrane proteins located 
in the outer membrane of bacteria with 
a Gram-negative cell wall structure

7 http://aias. biol. uoa. gr/OMPdb/ 
(Tsirigos et al. 2011)

SWISS- 
MODEL

Homology modeling of protein 
structures

7 https://swissmodel. expasy. org/ 
(Waterhouse et al. 2018)

PyMOL The ultimate tool for protein modeling 7 https://pymol. org/2/

 H. Christensen and L. E. de Vries

http://bioinformatics.biol.uoa.gr/PRED-TMBB/
http://bioinformatics.biol.uoa.gr/PRED-TMBB/
http://ekhidna2.biocenter.helsinki.fi/dali
http://ekhidna2.biocenter.helsinki.fi/dali
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
https://psort.hgc.jp/
http://phobius.sbc.su.se/
http://aias.biol.uoa.gr/OMPdb/
https://swissmodel.expasy.org/
https://pymol.org/2/


39 3

3.5.1  Primary and Secondary Structures

The primary structure of a protein is simply the amino acid sequence. The secondary 
structure can mainly be separated in α-helices and β-sheets (. Fig. 3.6); however, also the 
“loop” and “turn” regions linking α-helices and β-sheets are important. Wool contains 
α-helices and silk β-sheets. In the prokaryotic world, proteins rich in α-helices may be 
transmembrane; however, the beta-barrel structure predominated by β-sheets may also 
be transmembrane. An example of a protein with β-sheets is the cytolethal distending 
toxin (Cdt) (. Fig. 3.6). It is a tripartite complex (A, B, C) that is required for the CDT 
activity (Pickett and Whitehouse 1999). The holoprotein (consisting of proteins A, B, and 
C) induces G2/M cell cycle arrest, chromatin fragmentation, cell distention, and nucleus 
enlargement. CDTA and CDTC probably form a heterodimeric subunit required for the 
delivery of CDTB. CDTB exhibits a DNA-nicking endonuclease activity and very prob-
ably causes DNA damage in intoxicated cells.

The M-protein is used as an example of a protein with mainly α-helix secondary 
structure (Ghosh 2018). The α-helices are here exposed on the surface of the strepto-
cocci, and the variable N-terminal may interact with the immune system of the host. 
Two α-helices are held wound together to coiled coil holoproteins. A coil-coil structure 
is formed as a super twisted helix. The two α-helices will have a periodicity of seven 
amino acids with a certain combination of hydrophobic amino acids allowing two adja-
cent hydrophobic amino acids to bury their hydrophobic nature from the surrounding 
solvent.

       . Fig. 3.6 The 3D structure of the CdtB protein (acc. no. 2F1N) visualized with Cn3D viewer 
(7  Activity 3.8.3). The flat arrows illustrate regions with β-sheets and the “pencil” regions with 
α-helices. (STRUCTURE [Internet]. Bethesda (MD): National Library of Medicine (US), National Center 
for Biotechnology Information; 2004 – [cited 2018 04 17]. Available from: 7 https://www. ncbi. nlm. nih. 
gov/structure/)
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3.5.2  Domain Prediction and Databases

Domains are compact units of proteins that may behave independently and be associated 
with certain functions. Motifs are conserved regions of proteins which may be part of 
domains (. Fig. 3.7). On the figure, the three types of predictors are illustrated.

3.5.2.1  Single Motif
PROSITE (7 https://prosite. expasy. org/) is based on the so-called regular expressions 
to define biologically significant protein patterns and profiles. A regular expression is a 
sequence of characters that define a search pattern.

A regular expression is, for instance:
Y-x-[NQH]-K-[DE]-[IVA]-F-[LM]-R-[ED] which is the heat shock hsp90 proteins’ 

family signature. The code is the single symbol code for amino acids, and positions where 
variation is allowed are labeled with “x,” and positions where only a subset of amino acids 
are possible are labeled within brackets. In the PROSITE database, an entry will look like 
this (note the EMBL coding; see . Fig. 3.4).

ID CUTINASE_1; PATTERN.
AC PS00155;
DT APR-1990 (CREATED); NOV-1997 (DATA UPDATE); MAR-2005 (INFO UPDATE).
DE Cutinase, serine active site.
PA P-x-[STA]-x-[LIV]-[IVT]-x-[GS]-G-Y-S-[QL]-G.

Epitope prediction is an important task for the prediction of interactions of proteins with 
the immune system. The paper by Soria-Guerra et  al. (2015) compares different tools. 
Surface-exposed epitopes are often associated with loops and turns located between 
α-helices and β-sheets.

3.5.2.2  Multiple Motifs
BLOCKS (Henikoff and Henikoff 1992) is based on multiple alignments of conserved 
regions. PRINTS is parallel to BLOCKS based on OWL (Attwood et al. 1997).

Single motiv methods

Multiple motiv methods

Full domain methods

       . Fig. 3.7 Databases and prediction tool of protein motifs, domains, and families. (Figure redrawn 
from Higgs and Attwood (2005))
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3.5.2.3  Full Domain
Pfam is primarily based on UniProt reference proteomes (Finn et al. 2016). A represen-
tative subset of matching sequences are aligned to make a seed alignment. It is used to 
construct a profile hidden Markov model (HMM) using the HMMER software (7 http://
hmmer. org).

SMART (simple modular architecture research tool) 7 http://smart. embl-heidelberg. 
de/ is for identification and annotation of protein domains based on manually curated 
models. Prediction is also here based on hidden Markov modeling (HMM) (Letunic and 
Bork 2018).

ProDOM (automatic created blocks, France) (Sonnhammer and Kahn 1994) (7 http://
prodom. prabi. fr/prodom/current/html/home. php) is a comprehensive set of protein domain 
families automatically generated from the UniProt Knowledge database.

3.5.2.4  Mixing Different Methods
InterPro (Finn et al. 2017) is linking information in PRINTS, PROSITE, ProDOM, CDD, 
Pfam, and seven additional domain databases. InterProScan is the underlying software 
that allows users to search with protein and DNA sequences against InterPro’s predictive 
models.

CDD (Conserved Domain Database) is linking information from Pfam and SMART 
(. Fig. 3.8). CDD is automatically invoked when a protein BLAST search is activated at 
NCBI (7 Chap. 4).

       . Fig. 3.8 CDD domain prediction invoked in BLASTp. The search resulted in a sialidase domain being 
predicted. (BLAST [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Bio-
technology Information; 2004. Available from: 7 https://www. ncbi. nlm. nih. gov/Blast. cgi)
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3.5.3  Protein 3D Structure

The 3D structure of a protein is representing the full folding pattern of a protein. Three- 
dimensional structures are needed to analyze the location of active sites where amino acid 
substitutions will have an effect on the function of the protein. The 3D structure is also 
needed to investigate interactions between proteins and other molecules.

The 3D structure of a protein is an exact measurement based on X-ray crystallogra-
phy or NMR spectroscopy. X-ray crystallography can only be performed on crystals of 
proteins. For proteins to form crystals, small ions are sometimes needed (ligands). 3D 
structures for proteins that cannot be crystallized need to be determined by NMR. The 
database for the 3D structures is PDB (. Table 3.2) (. Fig. 3.9).

An example of a 3D structure has been given for a protein with predominant β-sheets 
(CDTB) (. Fig. 3.8), and the M-protein from Staphylococcus aureus has been used to rep-
resent a structure predominantly with α-helices.

The resolution of the 3D structure is very important. High resolution is best. With 1 Å 
resolution, the atoms are visible; however, 30 times more date are needed compared to 3 Å 
resolution. With 3 Å resolution, folds can be seen, and with 2 Å, side chains are resolved.

Comparison of 3D structures can be done in Phyre2 or SWISS-MODEL (. Table 3.6). 
The folding pattern is theoretically determined by the phi (φ) and psi (ψ) angles. The 
peptide bound between amino acids in protein chains is planar (180°) (rarely 0°), and 
the φ (N-C) and ψ (C-C) angles determine the folding. The deviation between expected 
and observed folding can be visualized in a Ramachandran plot (. Fig. 3.10). The upper 
left field represents φ and ψ angles of β-sheets, whereas the middle left section represents 
α-helices. The variants observed in the right quartets may be the amino acid glycine which 

       . Fig. 3.9 The portal of PDB (Protein Data Bank) hosted by RCSB (Research Collaboratory for Structural 
Bioinformatics). PDB is a worldwide repository of information about the 3D structures of large biological 
molecules, including proteins and nucleic acids (7 https://www. rcsb. org/)
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is not associated with any particular folding pattern. Amino acids at other positions in the 
plot represent observed variants not fitting with the theoretical expectations.

3.6  Overview of Proteomics Databases and Servers

Proteomics is dealing with the prediction of proteins based on measurements of mass-to- 
charge ratios. Proteins need to be degraded to peptides before they can be analyzed by mass 
spectrometry (MS). Trypsin is the preferred enzyme to degrade proteins to peptides resulting 
in molecular weights of 300–1500 daltons. Liquid chromatography (LS) is used to fraction-
ate the protein extract for the analysis. The double MS (MS/MS) is needed to obtain suffi-
cient resolution for precise determination of mass-to-charge ratios (m/z). Disulfide bridges 
are normally ignored in proteomics. The majority of proteins in cells are conserved between 
types and tissues. Only a minor fraction of proteins varies and changes with disease. The 
membrane-bound proteins are the most difficult to identify since they cannot be extracted 
free from their matrix (the membrane). The drawbacks with proteomics are that all proteins 
cannot be identified by proteomics. One group of proteins cannot be degraded to peptides. 
Another drawback is that the state of the art requires highly advanced hardware and bioin-
formatics that can acquire full images of samples and full storage of the image that can after-
ward be analyzed in different ways. For these reasons proteomics is even more complicated 
than “genomics.” The most simple prediction of proteins is done with Mascot (. Fig. 3.11). 
In this program the m/z coordinates from an analysis are held up against the reviewed part of 
UniProt (7 Sect. 3.3.3). MaxQuant is a free program used for metaproteomics (. Fig. 3.12).

       . Fig. 3.10 Ramachandran plot is a comparison between observed and expected phi and psi angles. 
(The plot was obtained from SPDB (7 Activity 3.8.5) (7 https://spdbv. vital-it. ch/))
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       . Fig. 3.11 Mascot proteomics search tool (7 http://www. matrixscience. com/)

       .Fig. 3.12 MaxQuant (Cox). Freeware used for shotgun proteomics. Includes Perseus module for statistics and 
Andromeda search engine based on Mascot (. Fig. 3.11) (7  http://www. biochem. mpg. de/5111795/maxquant)
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3.7  Help to Databases

The major bioinformatics databases maintain updated online “handbooks” (. Table 3.7).

3.8  Activities

3.8.1  Download a Sequence from NCBI

We will download the DNA sequence for the cdtB gene encoding the CdtB protein men-
tioned in 7 Sect. 3.5.1.

Open GenBank (NCBI) from your browser with the URL: 7 http://www. ncbi. nlm. nih. gov/.
Choose “Nucleotide” in the Search window, and write the accession number U04208 

in the window after “for” and press Search. As a standard, the result is shown in GenBank 
format. The view should be the same as . Fig. 3.2.

Convert the format to FASTA by selecting FASTA (left top corner).
Save the file on your computer by clicking Send to: (top right corner), select File in the 

Choose Destination window, and select FASTA in the Format window and Create File.
Open the file by WordPad, check that it is in FASTA format, and save it on the computer 

with the acc. no. as name and filename extension, fasta or fna (e.g., U04208.fasta).
You actually downloaded the DNA sequence of cdtA, cdtB, and cdtC genes since they 

are located in polycistrons. If you only want to download the DNA sequence of the CDS 
of one gene, then press the CDS link when you are in the GenBank format, and then press 
the FASTA link in the lower right corner, and then only the DNA sequence of the CDS 
will be downloaded.

 z Batch Download
If you need many DNA sequences to download, all acc. no. can be written in the search 
field at NCBI just separated by space, and all can be downloaded at once. However, in this 
case you will get the full sequence of all entries and not only the CDSs.

3.8.2  Download a Genome from NCBI

To access genomic sequences of prokaryotes at NCBI,
7 http://www. ncbi. nlm. nih. gov, select Genome in right panel and then Microbe in the 

middle column, and then Browse microbial genomes to the left.

       . Table 3.7 Help to databases

Database Subject URL

Instructions to 
Swiss-Prot

The Swiss-Prot manual, here you 
will find all documentation

7 http://www. expasy. org/sprot/
userman. html

Instructions to NCBI The NCBI handbook 7 https://www. ncbi. nlm. nih. gov/
books/NBK143764/

Overview of all 
databases

First issue of Nucleic Acid Research 
each year

7 https://academic. oup. com/nar/
issue/45/D1
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Insert the organisms’ name, Haemophilus influenzae, under Genome information by 
organism and press Search.

Use the first strain (Rd KW20) at Organisms name as link, and get access to a sub-list 
for that species.

The INSDC or RefSeq columns show the acc. numbers that can be used as links to the 
sequences. Use L42023 as link and open the GenBank record. This information can be 
downloaded as just described at 7 Sect. 3.8.1 for a record with a few genes.

Try to open the file with a text editor to control that is what you expected.
You should see a typical GenBank format just with much more information than the 

one on . Fig. 3.2.
At Genome Region the Graphics provides representation of annotated genes by 

arrows. You will have to zoom in. You can select “tracts” like for eukaryotic browsers. 
Right click in the window will allow you to save a pdf format of the view.

3.8.3  Cn3D Viewer for Protein Structures

Install the Cn3D 4.1 program from NCBI by downloading the program from 7 ftp://ftp. 
ncbi. nih. gov/cn3d/, and save it on your computer. Install Cn3D:

 5 For Window users download and run 7 Cn3D-4. 3. 1_setup. exe file.
 5 Mac users: see the instruction on NCBI to install X11, and then it should work.

When the Cn3D viewer is installed, you can open the structures from NCBI at 7 http://
www. ncbi. nlm. nih. gov/ and select Structure. Write the acc. no. (2F1N) of the structure 
in the Search window and press Search. Go to the section right to the graphic model 
and press Download. Here you can download the structure in MMDB format on your 
computer.

You can now view protein structures stored on your computer by either activating the 
Cn3D program or activating the program and select the stored structure with Open.

The viewer will show a 3D model in “Worm” format where the string is the protein 
sequence and the “pencils” and “arrows” illustrate α-helices and β-sheets, respectively. The 
output should be like . Fig. 3.6. The position in the primary protein sequence is seen in the 
“Sequence/Alignment” viewer. The amino acid pos. is shown below the sequence, and by 
“mousing over” the sequence, it is marked in the 3D structure. The whole primary struc-
ture may not have been listed if it is not included in the structure. Different graphical out-
puts can be selected at Style | Rendering Shortcuts (tubes, wire, ball and stick, space fill).

3.8.4  Deposition of Sequence with GenBank

3.8.4.1  Procedure for Single DNA Sequences
Before you deposit a DNA sequence, you need to be 100% certain about the unbiased 
nature of the sequence and have all metadata available for the sequence. The tool BankIt 
will be most easy to start with. You need to register as user by following the link: 7 http://
www. ncbi. nlm. nih. gov/WebSub/?tool=genbank.

Sequences are submitted by interactive online approach.
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Do not upload the translation independently. The program will automatically translate 
the DNA sequence. For partial sequences mark 5′ partial and 3′ partial.

3.8.4.2  Genomic Sequence
The following instruction is based on one bacterial strain with the genome assembled into 
contigs with CLC or similar program listed in 7 Table 2.2 (7 Chap. 2).

You should prepare the contigs in a text file and control that the sequences are not 
including Ns. This means that they should be assembled without ambiguities.

You edit all description lines (first line of FASTA format with the > sign) to >contx 
[organism = NNN] [strain = XY] where x is the contig number, NNN the species, and XY 
the strain number.

The replace function in WordPad can be used for that. Alternatively, if your genome 
has many contigs or you have many genomes, you can use a format function in CLC 
Genomics Workbench for this: In CLC select Help | Batch rename.

You then upload from 7 https://submit. ncbi. nlm. nih. gov/subs/genome/.
The NCBI-specific identifiers Bioproject and Biosample numbers are registered with 

NCBI during upload. At the end you will get a genome accession number in the format 
NNNN12345678 (. Table 3.5).

3.8.5  Protein Structure Prediction with Swiss Model and SPDBV

To predict the structure of a protein, we can use SWISS-MODEL found at 7 http://
swissmodel. expasy. org/ (Arnold et al. 2006).

Start modeling by uploading the protein sequence. Try the protein with acc. no. 
OOF68275. See 7 Activity 3.8.1 of how to download. Select Build Model. When the analy-
sis is done, usually the top result is the best prediction. However, sometimes a protein can 
be split up on many 3D models. This can, for instance, happen with a long autotransporter 
protein. The output(s) show the best hit to a structure already known.

The bars show how good the prediction of structure has been through the sequence 
based on different tools. This information can be used if you are interested in specific 
regions of the sequence, for example, conformations of regions involved in substrate bind-
ing.

You can download the predicted model (sequences with .pdb extension) by a Model 
selecting SPDBv format or pdb format, and save the model.

Use Vast to convert pdb to a structure that can be visualized in Cn3D (7 Activity 3.8.3) 
(7 https://www. ncbi. nlm. nih. gov/Structure/VAST/vastsearch. html).

As an alternative, you can search for template if you have no clue about the structure, 
or specify a model if you want to test the similarity to that one.

The models can be opened with the SPDBV_4.10_PC. You need to install the program 
on the PC first.

7 http://swiss-pdb-viewer. software. informer. com/download/
This happens sooner than expected, and the panel is rather narrow and the file opened 

from File | Open. Tools to move, turn, and zoom in on the structure from the narrow 
panel are available.

It is possible to look at the Ramachandran plot from Select | All | Wind (. Fig. 3.10).
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What You Will Learn in This Chapter
Pairwise alignments and multiple alignments are the basic tools to compare sequences. 
BLAST is the most frequently used bioinformatics program to compare your own sequence 
(query sequence) to all sequences in a database (subject sequences) based on local pair-
wise alignments. The outcome of the BLAST analysis provides qualitative information 
about homologous sequences and can quantify the identity of the query sequence to the 
sequences in the database. You will learn about multiple alignments and how to construct 
them. Multiple alignments are used for a range of applications described in the other chap-
ters of the book.

4.1  The Pairwise Alignment Problem

A pairwise alignment is a model of the homology between two sequences considering all 
nucleotides or amino acids and all deletion and insertions.

Two sequences to be compared could, for instance, be the ones below:
 5 GCAGTAGCATGACGATAG
 5 GCGGTAGCATGATAC

A pairwise alignment requires a model for the evolutionary steps that led to the differences 
observed. First, we should test if they are homologous. Such a test can be done by BLAST 
(see 7 Sect. 4.3), and it will tell if the sequences are from the same gene. Once this has been 
established, we need to model evolution to construct the pairwise alignment. The simplest 
assumptions are that identical nucleotide pairs and that identical amino acids pair and, 
further, that different amino acids with similar physiochemical properties form pairs.

For most comparisons it is preferred to base pairwise alignments on the amino acid 
sequences especially if the sequences are very divergent. Pairwise nucleotide comparisons 
are preferred for closely related sequences only.

Gaps are used to show that an amino acid or nucleotide is without a match in the other 
sequence and the gaps represent insertions or deletions in an evolutionary context. Most evo-
lutionary modeling assumes that it is more difficult to form gaps than to form mismatches 
and that it is more difficult to form a gap than to extend one already formed. Scoring sys-
tems are used to separate matches (high score) from mismatches (low score) and gaps (very 
low score). For proteins, scoring matrices (see 7 Sect. 4.1.2.1) are used. At the end, scores 
between amino acids or nucleotides are summarized over the whole pairwise alignment, and 
penalties for gaps are subtracted. The result is a unit score for the pairwise alignment given 
the parameters used. Given the same sequences compared, the pairwise alignment with the 
highest total score is preferred compared to one with a lower score.

When the pairwise alignment has been constructed, the identity and similarity can 
be quantified. The identity is the number of nucleotides or amino acids matching in two 
sequences compared at all positions between the two sequences. Similarity is a further 
comparison also considering different types of nucleotides or amino acids as well as the 
gaps.

An alignment of the sequences above, and a possible scenario leading to the differ-
ences between them, is shown in . Fig. 4.1.

The principles of pairwise alignments are used for most multiple alignment pro-
grams and for BLAST. The three tools are fundamental to carry out most bioinformatics 
(. Fig. 4.2).
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4.1.1  Global or Local Pairwise Alignments?

Before a pairwise alignment is constructed, it needs to be decided if it should be global or 
local. A pairwise alignment is global if it is know that the sequences are homologous in 
their full length. In this situation, it is sound to align both sequences in their full length. 
If preliminary evidence has showed that the genes are encoding for the same proteins and 
the full length of the gene has been sequenced, a global alignment can be constructed. 

Time

       . Fig. 4.1 Hypothetical example of a pairwise alignment of two sequences if their evolution was 
known. The first sequence is the ancestor sequence which then diverged into two new lineages. In the 
sequence to the left, five-point mutations occurred over time, and in the one to the right, two-point 
mutations plus a deletion of three nucleotides happened probably resulting in the loss of an amino acid. 
With the exact knowledge of the position of the gap, we can construct the pairwise alignment at the 
bottom without any assumptions needed

2.1 Assembly

4.1 Pair-wise alignment

5 Primer design 3.1–3.5 Databases

4.2 Multiple alignment 4.3 BLAST

6 Phylogeny 7 Identification 9 Full DNA 
metagenomics

       . Fig. 4.2 Pairwise and multiple alignments as well as BLAST introduced in this chapter provide the 
background for most other chapters in this book
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A local alignment is needed if it is know that one sequence is shorter than the other and 
that it cannot be related to the other in its full length. This can happen if the DNA sequence 
of one gene has not been determined in the full length or if the domain structure of the 
proteins that the genes encode for are rather divergent.

4.1.2  Substitution Matrices

Substitution matrices are used to model the probability of mutual amino acid or nucleo-
tide substitutions in sequences. Amino acids or nucleotides with a lower probability of 
changing are given more weight in the comparisons compared to those with a higher 
probability of changing. The changes are assumed to occur according to a Markov model 
where changes only depend on the current nucleotide or amino acid observed and not on 
past changes (. Fig. 4.3).

4.1.2.1  Amino Acid Substitution Matrices
Amino acids have different biochemical and physical properties that influence their rela-
tive replaceability during evolution (. Table 4.1). The probability of replacement has been 
related to the physiochemical properties of the amino acids in the way that hydrophobic 
amino acids are easier replaced by other hydrophobic amino acids again compared to 
other types such as charged amino acids. The substitution matrices reflect these properties 
as seen from . Fig. 4.4. Here the score between the two hydrophobic amino acids isoleu-
cine and histidine is 5, whereas the score between isoleucine and the positive charged argi-
nine is only −4. Some amino acids belong to more groups, for instance, histidine which is 
hydrophobic, positively charged, polar, and aromatic.

The PAM (percent accepted mutations) matrices are based on global alignments of 
closely related proteins. The number at the end of a PAM matrix refers to the number of 
steps required for a given percent change. PAM1 corresponds to 99% identity (1% change) 
between the aligned sequences. This means that PAM112 will recognize more distantly 
related sequences (40% identity) than PAM23 (80% identity). PAM matrices are based 
on global alignments and therefore best suited for global pairwise alignments used in 
evolutionary studies (. Table 4.2).

BLOSUM (blocks substitution matrix) matrices are based on local alignments. The 
number at the end of a BLOSUM matrix refers to the minimum percent identity allowed 

A

C G

T
       . Fig. 4.3 Markov substitu-

tion model of nucleotides. The 
consequence of the Markov 
model is that it only depends 
on the observed nucleotide or 
amino acid and not on the past 
changes. The arrows with differ-
ent colors indicate that poten-
tially 16 different probabilities 
exist for changes (unrestricted 
model on . Table 4.3). (Modified 
from Durbin et al. 1999)
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in the set of aligned sequences used to build the matrix. This means that BLOSUM50 will 
recognize more distantly related sequences than BLOSUM80 (. Table 4.2).

4.1.2.2  Nucleotide Substitution Matrices
Substitution matrices for nucleotides give higher weight to transitions (G to A or C to T and 
vice versa) than to transversions (G to C, G to T, A to C, A to T, and vice versa) (. Table 4.3). 
This is mainly related to the larger size of the purine compared to the pyrimidine nucleo-
tides. The simplest model is the Jukes and Cantor model where equal probabilities for the 
substitution of all four nucleotides are assumed (. Table 4.4). The transversion/transition 
bias is included in the models of HKY, Kimura, Tamura-Nei, Tamura, and the general 
reversible model. An additional account for the frequency of nucleotides is included in 
models of Tamura-Nei, the equal input, and the general reversible models. These frequen-
cies are the observed frequencies of nucleotides under comparison. The unrestricted model 
allows different probabilities of changes for all 12 combinations of nucleotides (. Table 4.4).

       . Table 4.1 Physiochemical properties of amino acids

Amino 
acid

Hydro-
phobic

Positive Negative Polar Charged Small Tiny Ali-
phatic

Aro-
matic

Ile + +

Leu + +

Val + + +

Cys + +

Ala + + +

Gly + + +

Met +

Phe + +

Tyr + + +

Trp + + +

His + + + + +

Lys + + +

Arg + + +

Glu + + +

Gln +

Asp + + +

Asn + +

Ser + + +

Thr + + +

Pro +
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       . Fig. 4.4 The BLOSUM50 scoring matrix. Note that low scores both can be 0 and with a minus sign. Low 
scoring pairs occur with high frequencies in sequences. (Jesper Larsen is acknowledged for the figure)

       . Table 4.2 Practical rules for use of PAM and BLOSUM amino acid substitution matrices

Application Default Related sequences Distant sequences

Search BLOSUM62 BLOSUM80 BLOSUM45

Evolution PAM100 PAM50 PAM250

       . Table 4.3 The sixteen different types of nucleotide pairs that can be observed between two 
sequences

Class Nucleotide Pair

Identical nucleotides AA TT CC GG

Transition-type pair AG GA TC CT

Transversion-type pair AT TA AC CA

TG GT CG GC

Modified from Nei and Kumar (2000)
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4.1.3  Gaps

Gaps are used to model insertions or deletions in sequences. If arbitrarily many gaps are 
inserted, this can lead to high-scoring alignments of nonhomologous sequences. To abol-
ish this effect, gaps are penalized when alignments are constructed to obtain relatively few 
gaps and separate penalties used for gap opening and gap elongation. In the linear model, 
the penalty ϒ is proportional to the number of gaps (g) given the penalty for one gap d:

Linear gap penalty score:

¡ g gd( ) = -

       . Table 4.4 Models of nucleotide substitutions

A T C G A T C G

Jukes and Cantor HKY

A – α α α – βgT βgC αgG

T α – α α βgA – αgC βgG

C α α – α βgA αgT – βgG

G α α α – αgA βgT βgC –

Kimura Tamura-Nei

A – β β α – βgT βgC α1gG

T β – α β βgA – α2gC βgG

C β α – β βgA α2gT – βgG

G α β β – α1gA βgT βgC –

Equal input General reversible

A – αgT αgC αgG – agT bgC cgG

T αgA – αgC αgG agA – dgC egG

C αgA αgT – αgG bgA dgT – fgG

G αgA αgT αgC – cgA egT fgC –

Tamura Unrestricted

A – βϴ2 βϴ1 αϴ1 – a12 a13 a14

T βϴ2 – αϴ1 βϴ1 a21 – a23 a24

C βϴ2 αϴ2 – βϴ1 a31 a32 – a34

G αϴ2 βϴ2 βϴ1 – a41 a42 a43 –

Modified from Nei and Kumar (2000)
gA, gT, gC, and gG are the nucleotide frequencies, ϴ1 = gC + gG, ϴ2 = gA + gT. The nucleotide 
frequencies either can be estimated from the data compared or set as fixed parameters
aij is the substitution rate from the nucleotide in the i-th row to the nucleotide in the j-th column
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If the penalty of one gap is 8 and there are 3 gaps, the total penalty will be – 24.
To better model biological events where many gaps often occur in a row, the affine 

penalty score model is used where the cost is higher for inserting the first gap than to 
extent this gap to lengths of two and more:

¡ g d g e( ) = - - -( )1

where ϒ(g) = gap penalty score of gap length g, d = gap opening penalty, and e = gap exten-
sion penalty. For a gap of length 3 with a penalty of opening the gap of 8 and of extending 
the gap with two more, the total penalty will be – 16.

4.1.4  Dynamic Programming

Dynamic programming is a way to compute the pairwise alignment? If all possibilities 
for the pairwise alignment of two sequences should be tested, there would be around 1059 
possibilities for two nucleotide sequences of 100  in length. This number is approx. the 
same as the number of molecules in the Milky Way, and even the largest computer would 
not be able to handle the problem. There is also no need to consider possibilities without 
relevance, for instance, that one nucleotide in one sequence would pair only with gaps in 
the other.

To reduce the computing effort but still to perform a careful analysis, dynamic pro-
gramming is used. The computer is only testing relevant comparisons (high scores) and 
keeping in memory the highest ones already calculated. The most relevant dynamic pro-
gramming algorithms for comparison of global and local pairwise alignments were pub-
lished be Needleman and Wunsch (1970) and Smith et al. (1981), respectively.

The Needleman and Wunsch algorithm is used when it is known that the sequences 
represent exactly a gene or protein in full length (few amino acids or nucleotide differ-
ences are tolerated) and it is used to build global pairwise alignments.

The Smith and Waterman algorithm is used with partial sequences or with sequences 
of unknown length to build local alignments. For both algorithms, the adjustment of gap 
penalty functions depends on previous knowledge about domain structures, repeats, and 
other properties. Both algorithms and their implementations in computer programs can 
be used for both amino acid and nucleotide sequences.

4.1.4.1  Needleman and Wunsch
The score function in this model is illustrated in . Fig. 4.5. This function is used on all 
comparisons between the two sequences. Here we will use the example with the two 
sequences:

 5 Sequence 1: HEAGAWGHEE
 5 Sequence 2: PAWHEAE

. Figure 4.6 shows one sequence (1) on the top of the table and sequence 2 as a vertical 
column. First an alignment path matrix is created. For each cell, F(i, j) is calculated based 
on the score function in . Fig. 4.5. This matrix allows a stepwise calculation of score val-
ues. The score of the best alignment is calculated between the initial segment x1...i of x 
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up to xi and the initial segment y1...j of y up to yj. The algorithm function, F(i, j), is built 
recursively beginning with F(0,0) = 0 (. Figs. 4.6, 4.7, and 4.8). When the matrix is filled, 
backtracking is started (evaluation of the optimal path).

The scoring parameters are given by the BLOSUM 50 matrix (. Fig. 4.4) and a linear 
gap penalty of d = −8. We will align the whole sequence length of the sequences meaning 
that we need to form a global alignment and use the Needleman and Wunsch algorithm. 
The procedure can be followed on . Figs. 4.6, 4.7, 4.8, and 4.9.

A real example of the use of the Needleman and Wunsch algorithm is shown on 
. Fig. 4.10. Here realistic long sequences are aligned by the algorithm implemented as the 
needle program in the EMBOSS package (Rice et al. 2000).

F(i, j) = max

F(i-1, j-1) + s(i, j)

F(i–1, j) – d

F(i, j–1) – d

       . Fig. 4.5 For the Needleman and Wunsch algorithm, the score function F is defined as the maximum 
of the three expressions. F(i–1, j–1) is the score of the previous diagonal cell in the matrix which added 
the score for a match between an amino acid pair in the current cell. F(i–1, j) is the score for the previous 
cell in the column subtracted the penalty of a gap (d), and F(i, j–1) is the equivalent score for the previous 
cell in the row subtracted the gap penalty (see . Fig. 4.7 for an example of this calculation)

H
1

0 –8

–8P

A

W

H

E

A

E

1

2

3

4

5

6

7

–16

–16

–24

–24

–32

–32

–40

–40

–48

–48

–56

–56

–64 –72 –80
2 3 4 5 6 7 8 9 10
E

F(i, 0) = –id

s(
i)

t(j)

F(0, j) = –jd

A AG G H E EW

Boundary conditions:

       . Fig. 4.6 Pairwise alignment with the Needleman and Wunsch algorithm showing the boundary con-
ditions calculated. Here both of the sequences are paired only with gaps resulting in the lowest negative 
score. (Jesper Larsen is acknowledged for the figure)
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       . Fig. 4.8 Pairwise alignment with the Needleman and Wunsch algorithm. Here the maximum score 
has been inserted for all cells in the matrix, and backtracking from the bottom right corner has been 
performed following the path which maximizes the score. After the score of 1 for the cells to the lowest 
right, −5 is chosen since it was marked as a path to 1 in the forward tracking. The higher score of 2 can-
not be selected since it was not marked in the forward tracking. (Jesper Larsen is acknowledged for the 
figure)
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       . Fig. 4.7 Pairwise alignment with the Needleman and Wunsch algorithm. Here the first real position 
of the matrix is calculated. The three possibilities, H pairing with a gap, P pairing with a gap, or H pairing 
with P are considered. The one with the highest score: H pairing with P (−2) (see . Fig. 4.4) gives the 
maximum score and is preferred. (Jesper Larsen is acknowledged for the figure)
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4.1.4.2  Smith and Waterman
Now we will compute a pairwise alignment of the sequences using the Smith and 
Waterman algorithm. There are two differences in the algorithm compared to Needleman 
and Wunsch. The first is that the alignment can start/end anywhere in the matrix, and the 
other that backtracking is started at the highest value rather than in the lower right corner. 
Backtracking is terminated as soon as zero is encountered. The score function is shown 
in . Fig. 4.11.

We will align the same two short model protein sequences with Smith and Waterman:
 5 Sequence 1: HEAGAWGHEE
 5 Sequence 2: PAWHEAE

And use the same parameters of BLOSUM50 and a linear gap penalty of d = −8.
Using the score function in . Fig. 4.11 results in 0 in most cells when the matrix is 

filled in the forward direction (. Fig. 4.12). The reason is that the three other possibilities 
in . Fig. 4.11 result in negative values and we then have to use 0. Backtracking starts with 
the highest score (28) and terminates when 0 is reached. Note that an alternative path 
is also possible. However, the maximum score of this one is lower (21), and therefore 
the first is chosen to construct the final pairwise alignment (. Fig. 4.13). Similar to the 
example with Needleman and Wunsch (. Fig. 4.10), a more realistic example is shown in 
. Fig. 4.14 with longer sequences. The sequences are the same that we used in . Fig. 4.10, 
and we see little difference between the two pairwise alignments probably because they 
were of nearly the same length.
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Optimal global alignment:

       . Fig. 4.9 Pairwise alignment with the Needleman and Wunsch algorithm. The optimal path for back-
tracking is shown again (. Fig. 4.8), and the pairwise alignment has been built. Note the combination 
of H and P considered in . Fig. 4.7 has not been selected since the backtrack path did not pass through 
this cell. The total score for the multiple alignments is 1 (bottom left corner). (Jesper Larsen is acknowl-
edged for the figure)
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F(i, j) = max
F(i-1, j-1) + s(i,j)

F(i–1, j) - d

F(i, j-1) - d

0

       . Fig. 4.11 Score function 
for Smith and Waterman. An 
extra possibility of 0 can be 
selected in addition to the three 
in . Fig. 4.5. The 0 is chosen 
if the other three are negative. 
This way cells are marked as 0 to 
account for different length of 
sequences in the local alignment 
(. Fig. 4.12)

       . Fig. 4.10 Pairwise alignment with the Needleman and Wunsch algorithm. A real example with 
sequences of realistic length has been computed using implementation of the algorithm in EMBOSS as 
the needle program. (see 7 Activity 4.4.1 for details about this program)
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       . Fig. 4.12 Smith and Waterman alignment. Here the matrix has been filled with combinations based 
on the score function in . Fig. 4.11. Backtracking started from the highest score in the matrix (28) and 
continued to join the highest possibilities until 0 was reached. (Jesper Larsen is acknowledged for the 
figure)
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       . Fig. 4.13 Smith and Waterman algorithm. Here the backtrack path is shown and the resulting pair-
wise alignment has been constructed. Note the difference to global alignment generated by the Needle-
man and Wunsch algorithm in . Fig. 4.9. The total score for the pairwise alignment is 28. (Jesper Larsen 
is acknowledged for the figure)

Pairwise Alignment, Multiple Alignment, and BLAST



64

4

4.2  Multiple Alignment

A multiple alignment is the simultaneous alignment of three or more nucleic acid or 
amino acid sequences. The procedure involves the insertion of gaps in the sequences so 
as to maximize the overall similarity (Higgins and Sharp 1988). Multiple alignments are 
rarely used for their own sake but are usually created for another purpose – for instance, 
primer design (7 Chap. 5) or analysis of phylogeny (7 Chap. 6). Users select a favorite 
program or program package and try to optimize program settings for that.

       . Fig. 4.14 Pairwise alignment with the Smith and Waterman algorithm. A real example with 
sequences of realistic length has been computed using the water program of EMBOSS which has imple-
mented the Smith and Waterman algorithm (see 7 Activity 4.4.2 for details about this program). Note 
that there are only small differences to the pairwise alignment generated by Needleman and Wunsch 
(. Fig. 4.10). It is related to the comparable length of the two sequences
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To start the construction of a multiple alignment, we will use the same criteria as for 
the pairwise alignment problem. We will assume that they shared ancestors (homolo-
gous). We need to model evolution the way that every column represents only ortholo-
gous amino acids or nucleotides that have evolved from a common ancestor. The simplest 
assumptions are again that identical nucleotides or identical amino acids pair, that dif-
ferent amino acids with similar physiochemical properties pair, that it is more difficult 
to form a gap than to form a mismatch, and that it is more difficult to form a gap than to 
extend one already formed. The scoring between nucleotides and amino acids is based on 
the system above for pairwise alignment (7 Sect. 4.1.2).

4.2.1  Clustal

To form a multiple alignment of the clustal type, first pairwise alignments between 
sequences 1–2, 1–3, 1–4, 1–5, 2–3, 2–4, 2–5…4–5 are formed (. Fig. 4.15). This is the 
progressive alignment part of the process, and there are (n(n – 1))/2 combinations where 
n is the number of sequences. In this example with five sequences, there are ten combi-
nations. The next step is to construct a “guide tree” (. Fig. 4.16) uniting the pairs with 
highest score. The final step is to construct the multiple alignments from the guide tree 
which is called profile alignment (. Fig. 4.17). The clustal type of multiple alignments is 
therefore performing progressive profile alignment. Clustal has been called “a quick and 
dirty version of Feng and Dolittle (1987)” where “only residues that are part of the matches 
of a given length (k-tuple matches) are scored” (Higgins and Sharp 1988).

The developments in the clustal programs were started with Clustal (1988) (Higgins 
and Sharp 1988) and continued with ClustalV (five) (1992), ClustalW (weights) (1994), 
and ClustalX 2.0 (2007) (Larkin et al. 2007). ClustalX is the implementation of the pro-
gram for PC (. Figs. 4.18 and 4.19) and is further described in 7 Activity 4.4.2. Clustal 

       . Fig. 4.15 Output from ClustalW showing the pairwise combinations and the grouping of sequences 
based on the guide tree (. Fig. 4.16)
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       . Fig. 4.16 The guide tree of ClustalW which is used by the program to perform the full multiple 
 alignment

       . Fig. 4.17 The final multiple alignments made with ClustalW
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       . Fig. 4.18 CLUSTALX (Larkin et al. 2007) showing the sequences not yet aligned. This is seem from the 
unordered arrangement of the nucleotides in the columns

       . Fig. 4.19 CLUSTALX (Larkin et al. 2007) showing aligned sequences where most of the columns 
show only one type of nucleotide
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Omega is the most recent version of the program for multiple alignments of very large 
protein datasets (Sievers et al. 2011).

ClustalX/W produces global alignments which include benefits and drawbacks 
inhered from the pairwise alignment part included in the construction of the alignment. 
Domain structures of proteins can be optimized by ClustalW/X (. Fig. 4.20). ClustalW/X 
invokes different “hidden” functions during alignment and tends to be cluster gaps and 
take hydrophobic/hydrophobic properties into account. An inherent problem with the 
progressive approach used in ClustalX/W is that mistakes made in the initial alignment 
cannot be corrected later. To account for this and other problems, other programs have 
been constructed.

4.2.2  Other Multiple Alignment Programs

MUSCLE (Multiple Sequence Comparison by Log-Expectation) (Edgar 2004) (7 https://
www. drive5. com/muscle/downloads. htm) includes no guide tree. MUSCLE is claimed both 
to achieve better average accuracy and better speed than ClustalW2 or T-Coffee (Edgar 
2004). The main focus is on protein multiple alignments, but it works also on DNA. The 
principle is based on K-mer comparison between sequences. K-mers are contiguous sub-
sequence of short length (k-tuple). Related sequences tend to have more k-mers in com-
mon than expected by chance. The program can be used from MEGA7 (Tamura et al. 

       . Fig. 4.20 CLUSTALX (Larkin et al. 2007) showing optimization by realignment of a region of the mul-
tiple alignment to improve local regions

 H. Christensen and J. E. Olsen

https://www.drive5.com/muscle/downloads.htm
https://www.drive5.com/muscle/downloads.htm


69 4

2011) (7 https://www. megasoftware. net/) used in 7 Chaps. 6 and 11. Like the following 
programs, T-Coffee and MAFFT have options to adjust alignment parameters for a range 
of applications.

T-Coffee (7 http://tcoffee. crg. cat/) (Notredame et al. 2000) incorporates a “tree-based 
consistency objective function for alignment evaluation.” The benefit should be high accu-
racy. The program comes in a range of flavors suitable for different applications.

MAFFT (Yamada et  al. 2016 and other papers) (7 https://mafft. cbrc. jp/alignment/
software/) is also a multiple alignment package that includes applications for very large 
datasets.

Multiple alignment programs can be compared with sets of reference sequence 
(BAliBASE) (Thompson et al. 1999).

To account for the secondary structures in 16S rRNA sequence, the ARB package 
(Ludwig et al. 2004) (7 http://www. arb-home. de/) has been developed. It has been used to 
construct precomputed multiple alignments in the SILVA database (7 www. arb-silva-de) 
which is further considered in 7 Chap. 8. Folding patterns in 16S rRNA genes can be pre-
dicted with Mfold (7 http://unafold. rna. albany. edu/?q=mfold) (Zuker and Jacobson 1998) 
or similar program.

Trimming should only be done with limited datasets of closely related organisms. 
Trimming can be done in BioEdit (. Fig.  4.21). For Mac users Jalview can be used. 
(7 http://www. jalview. org) (Waterhouse et al. 2009)

       . Fig. 4.21 BIOEDIT (Hall 1999) (7 http://www. mbio. ncsu. edu/BioEdit/bioedit. html) used to trim 
a region of a multiple alignment with many gaps inserted as a consequence of lack of data (short 
sequences). The box marked in black was deleted
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Graphic output of multiple alignments can be made in BoxShade (7 http://www. ch. 
embnet. org/software/BOX_form. html) (. Fig. 4.22).

4.3  BLAST

BLAST (Basic Local Alignment Search Tool) was originally described by Altschul et al. 
(1990), and this tool enabled fast search in the electronic nucleotide and protein data-
bases during the 1990s when the Internet was invented. Later an improved algorithm 
was described allowing gaps to be inserted during the analysis (Altschul et  al. 1997). 
Both versions of BLAST are in use as the “ungapped” (1990) and “gapped” (1997), 
respectively.

BLAST is based on a heuristics search algorithm which is able to search through the ever-
growing sizes of databases. BLAST can be compared to the search tool Google in popularity 
within the bioinformatics community including the formation of the verb “to blast.” BLAST 
is based on the initial identification of the users’ query sequence by short pieces of sequence 
(words). These words are compared to the database with all the sequences (subjects). If the 
word is identified in a sequence of the database, the match of the word can be extended and 
will form a high-scoring pair (HSP). When no further extension is possible, the result is 
returned as a hit list to the used with indication of similarity between the query and the clos-
est related subjects in the database. The “gapped” version of BLAST is most frequently used, 
and its “two-hit method” requires two non- overlapping “words” on the same diagonal with 
a distance of A before an extension is invoked. Gapped BLAST should only require 1/3 com-
puter time compared to ungapped version because of less extensions of the words. BLAST 
uses dynamic programming to extend residues in both directions; BLAST is most suitable 

       . Fig. 4.22 Output from BoxShade (7 http://www. ch. embnet. org/software/BOX_form. html). This out-
put can be included for presentation in a publication
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for finding of subject DNA and protein sequences in databases that match with a reasonable 
similarity and a comparable length to the query. BLAST is good for sequences of at least 
100 in length that are well represented in the databases. BLAST is not suitable to make really 
precise determination of similarity between sequences, and pairwise alignment programs 
should instead be used for that (7 Sect. 4.1). BLAST is not suitable for sequence-based iden-
tification of bacterial species since there are simply too many sequences in GenBank and 
the type strains are not always clearly labeled (7 Chap. 7). BLAST is not suitable for data-
bases beyond a certain size and cannot be used to search very large metagenomics databases 
(7 Chap. 9). In principle the database search of BLAST is based on local alignments. It needs 
to be local since we are never certain if our query sequence will be represented by a homolog 
in the database with similar length. BLAST is most often used on the NCBI server (7 http://
www. ncbi. nlm. nih. gov/BLAST/); however, the BLAST program can also be installed on your 
local computer and used with your own database.

4.3.1  NCBI BLAST

The most common way of performing a BLAST search is to access the program at NCBI 
and search in their databases. A search can be performed by a DNA or protein sequence 
in FASTA format, by uploading a sequence file in FASTA format or by inserting an acces-
sion number as AB490809 shown in . Fig. 4.23 if the sequence is already included with 

       . Fig. 4.23 BLAST search (Altschul et al. 1990, 1997). (BLAST [Internet]. Bethesda (MD): National Library 
of Medicine (US), National Center for Biotechnology Information; 2004 – [cited 2018 04 17]. Available 
from: 7 https://www. ncbi. nlm. nih. gov/Blast. cgi)

Pairwise Alignment, Multiple Alignment, and BLAST

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
https://www.ncbi.nlm.nih.gov/Blast.cgi


72

4

GenBank. In the example shown on . Fig.  4.23, default setting has been selected for a 
BLAST search with a DNA sequence. Under Program Selection and Optimize for differ-
ent versions of BLAST can be selected. In this case megablast, discontigous megablast, 
and blastn can be selected. The three versions differ by the scores given to matches and 
their way of penalizing gaps. For shorter sequences blastn should be used.

When the search is terminated, you will see the familiar graphical overview in 
. Fig.  4.24  – the colored section with horizontal bars. You can see details of subject 
sequences by mousing over the bars in this section.

In the next section comes the descriptions with one line for each subject which 
gives a more detailed information about the subject sequences providing Score, Query 
cover, E value, and accession number. These parameters will be explained in the 
following.

The hit list is arranged by decreasing Score. In the example you see that hits are sorted 
by decreasing score. The identities are also decreasing but not systematically since the 
score is not always directly related to the identity. The longer the match between two 
sequences, the higher the score given the same identity. E values cannot be directly seen 
here since they are very small and they are just shown as “0.0.”

In the alignments section, the pairwise alignments are shown. This is the most detailed 
information of comparison between your query sequence and the subjects in the database. 
The parameters from the description section are available, and additional information of 
gaps and visual location of both gaps and mismatches can be observed.

4.3.2  Ortholog Detection

Sequences are orthologs if they are homologs and have the same function in different 
species. The paralogs are also homologs but have been duplicated in evolution, and 
they have got divergent functions in the same species, and the sequences are often quite 
divergent. BLAST can be used to sort the orthologs from the paralogs. The principle of 
reciprocal best hits (RBH) is used as explained in Moreno-Hagelsieb and Latimer (2008) 
“Two genes residing in two different genomes are deemed orthologs if their protein 
products find each other as the best hit in the opposite genome” (Moreno-Hagelsieb and 
Latimer 2008). Further investigation of orthologs and paralogs can be done by phylog-
eny (7 Chap. 6).

4.3.3  BLAST2 Sequences

BLAST2 sequences is a version of NCBI BLAST that allows pairwise comparisons on 
server or on stand-alone BLAST installed on your PC.  The program is available on 
both DNA and protein level, and it can be used to build your own database for many 
purposes by including many sequences in the 2nd window (. Fig. 4.25). For instance, 
if the query DNA or protein sequence is included with the 1st search window and a 
range of genomes included in the 2nd search, you can identify the query sequence in 
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       . Fig. 4.24 BLAST (Altschul et al. 1990, 1997) output showing three screenshots of the output from 
BLAST search: Graphic Summary, Description, and Alignments, respectively. The number of Max target 
sequences was reduced to ten in the alignment parameters section to show it all on one page. (BLAST 
[Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Informa-
tion; 2004 – [cited 2018 04 17]. Available from: 7 https://www. ncbi. nlm. nih. gov/Blast. cgi)
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the whole genomic sequences including genomes not yet deposited with the databases. 
The same approach can be used to build a small MLST database (7 Chap. 11). BLAST2 
sequences is started from the ordinary BLAST page NCBI by marking “Align two or 
more sequences.” It can be used for fast draft comparisons between two sequences for 
example if you want to look up the location of a primer or gene on a genome. This 
is your “Swiss knife” always available if you just can access the Internet. Like for an 
ordinary knife, be careful with BLAST2 sequences! If you need real precise similari-
ties between sequences, they should be obtained by the pairwise alignment programs 
described in 7 Sect. 4.1.

4.3.4  Statistics

Evaluation of the results in the BLAST output is based on the Karlin and Altschul formula 
E = k × m × N × e–λs (Karlin and Altschul 1990) where m is letter in query meaning the 
number of nucleotides or amino acids, N is the total letters in database, and S is the actual 
score.

For amino acids, S is defined by the BLOSUM matrix. S is scaled to bit score to 
better fit the computer. The bit score = ((λ × S) – ln κ) / ln2. In the pairwise section 
(. Fig. 4.24 above), you can see the raw score in parenthesis along with the bit score, 

       . Fig. 4.25 BLAST2 sequences (Altschul et al. 1990, 1997). (BLAST [Internet]. Bethesda (MD): National 
Library of Medicine (US), National Center for Biotechnology Information; 2004 – [cited 2018 04 17]. Avail-
able from: 7 https://www. ncbi. nlm. nih. gov/Blast. cgi)
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the constants κ and λ depending on the database. E reflects that we find the sequence in 
the database by chance (chance for false positives). E is this way related to the size of the 
database. The smaller E the less likely is it found by chance and the more unique is the 
sequence – “The smaller E the better.” For really “unique” sequences, E is so small that 
it cannot be represented on the computer; this is the reason for “0.0” with the output.

All parameters related to the search can be found in Search Summary (. Fig. 4.26); 
just press the bottom Graphic summary on the output page (. Fig. 4.24). Here you can 
find parameters used for calculating the statistics in the Karlin and Altschul formula, and 
you can understand everything about the BLAST output if you compare these parameters 
to the statistics just explained.

Note that parameters for ungapped blast (Altschul et al. 1990) differ from gapped blast 
(Altschul et al. 1997) (. Fig. 4.26) and λ and κ are different for gapped BLAST compared 
to ungapped.

4.3.5  Variants of BLAST

A BLAST search can be based on a query DNA sequence that the program translates to 
protein and compares to all protein sequence in the database (BLASTx). In this case the 
search takes more time, and it should only be done when it is absolutely needed (rarely). 

       . Fig. 4.26 The Search Summary section of the output showing all parameters used for the search 
(Altschul et al. 1990, 1997). (BLAST [Internet]. Bethesda (MD): National Library of Medicine (US), National 
Center for Biotechnology Information; 2004 – [cited 2018 04 17]. Available from: 7 https://www. ncbi. 
nlm. nih. gov/Blast. cgi)
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For such comparison, the codon table should be defined according to the type of organ-
isms. Prokaryotes are using codon table 11 (Appendix). tBLASTn searches a translated 
nucleotide databases using a protein query. tBLASTx searches a translated nucleotide 
query against the translated nucleotide databases.

For BLASTp it is sometimes convenient to select Swiss-Prot or ref_seq_protein if you 
want a really precise information about the hits. For protein searches note the additional 
options PSI-, PHI-, and delta BLAST (. Fig. 4.27); they can be used to build up a profile 
used to search for query proteins which are rather distantly related to the subject proteins 
in the database.

4.4  Activities

4.4.1  Pairwise Alignment

We will construct local and global pairwise alignments by use of the program “water” 
and “needle,” respectively, available as EMBOSS programs (Rice et al. 2000) on the EBI 
server. The protein sequences AAA85484 and AAA85485 can be downloaded from NCBI 
as described in 7 Chap. 3 (see 7 Sect. 3.3.1 including Activity 3.8.1).

Decide if you want to use “needle” for global – or “water” for local alignment.

       . Fig. 4.27 Protein BLAST and BLASTp; note the additional options PSI- PHI- and delta BLAST (Altschul et al. 
1990, 1997). (BLAST [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotech-
nology Information; 2004 – [cited 2018 04 17]. Available from: 7 https://www. ncbi. nlm. nih. gov/Blast. cgi)
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Open the FASTA format files, and paste them in the windows of the relevant EMBOSS 
program on the server:

7 http://www. ebi. ac. uk/Tools/psa/emboss_needle/
7 http://www. ebi. ac. uk/Tools/psa/emboss_water/
If you need to do comparisons of nucleotide sequences, the similar programs can be 

found here:
7 http://www. ebi. ac. uk/Tools/psa/emboss_needle/nucleotide. html
7 http://www. ebi. ac. uk/Tools/psa/emboss_water/nucleotide. html
You can also install the mEMBOSS package on your PC and select the programs water 

and needle from the menu. Download mEMBOSS from 7 ftp://emboss. open-bio. org/pub/
EMBOSS/windows/ Click on 7 mEMBOSS-6. 3. 1. 2-setup. exe

And download to local computer. Click on file and install.
Use Explorer from Windows to navigate the folder with mEMBOSS.
Go into the Jemboss folder and click Jar and Jemboss MS; this will allow you to run 

EMBOSS in Windows from a graphic interface. All commands to activate the programs 
are found on the left menu bar. Most useful are water, transeq, and revseq which will do 
pairwise Smiths and Water alignments, translate from DNA to protein, and reverse and 
complement sequences, respectively.

4.4.2  Learn How Dynamic Programming Works 
with Pairwise Alignments

Use the tool at: 7 http://www. itu. dk/~sestoft/bsa/graphalign. html. 
Use the short protein sequences shown already. Try the different substitution matrices, let 

the gap costs stay at “linear, gap score −8” to reduce the complexity, or make your own choice. 
Try with or without traceback. The tool has been designed and is maintained by Peter Sestoft.

4.4.3  Multiple Alignment with ClustalX

From 7 ftp://ftp. ebi. ac. uk/pub/software/clustalw2/2. 0. 10/, download 7 clustalx-2. 0. 10- 
win. msi, install, and locate the icon to the desktop. Open the program by double-click-
ing on the icon. File | Load sequences, and select the sequences in FASTA format from 
the location on your computer. You need to edit the input file yourself. The sequences 
that you want to use as input should be in one file only with all sequences in FASTA 
format:

>sequence1
ATGACGATAC...
>sequence2
GATAGATAGACS...
etc.

Select Alignment | Do complete Alignment | ok
In the lower left corner, you can follow how the program works.
Scroll through the alignment when it is completed.

Pairwise Alignment, Multiple Alignment, and BLAST
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At the bottom, the bars show the degree of conservation of columns. Above the align-
ment the signature * shows columns with conserved nucleotides (for amino acids: with 
the same properties).

4.4.4  BLAST

We will use this activity to learn how to perform an ordinary BLAST search in GenBank 
with a DNA sequence. However, we also learn some more about BLAST in this activity. 
We will perform a search with the sequence with acc. no. AF445297 from GenBank. The 
expectation is that this will be the best hit from the BLAST output. To a surprise it is not so.

First perform a BLAST search at NCBI: 7 https://blast. ncbi. nlm. nih. gov/Blast. cgi. On 
the graphics select nucleotide BLAST, insert the acc. no. AF445297 in the window, mark 
“somewhat similar sequences blastn,” mark “show results in a new window,” and press 
the blue BLAST bottom. You will get a nice output and 100% identity to a sequence from 
an uncultured organism. Where is your query sequence? Usually you would expect the 
query as the best hit if it comes from the database. The reason can be found if you look 
up AF445297 at NCBI, since it is labeled as unverified. The unverified sequences are not 
included as databases in any BLAST search.

 Take-Home Messages

 5 Pairwise alignments and multiple alignments are the basic tools for sequence 
comparison.

 5 A quantitative pairwise comparison of two sequences can be performed by 
aligning two sequences based on considerations of gaps representing inser-
tions or deletions and matches between nucleotides or amino acids.

 5 Pairwise comparisons can be performed as global alignments if it is known 
that the sequences are homologous in their full length or by local alignments 
if it is known that one sequence is shorter than the other.

 5 BLAST is the most frequently used bioinformatics program to compare your 
own sequence (query sequence) to all sequences in a database (subject 
sequences).

 5 BLAST provides qualitative information about homologous sequences and can 
quantify the identity of the query sequence to the subject sequences in the 
database.

 5 Substitution matrices provide the probability of nucleotide or amino acid sub-
stitutions when two or more sequences are compared.

 5 Dynamic programming is the most frequently used procedure to perform 
pairwise comparisons of nucleotide or amino acid sequences and can be done 
based on the Needleman and Wunsch algorithm for global alignments and by 
the Smiths and Waterman algorithm for local alignments.

 5 Multiple alignments are most frequently constructed by the progressive profile 
procedure as implemented in the clustal family of programs.

 H. Christensen and J. E. Olsen
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What You Will Learn in This Chapter
You will learn to identify different situations where primer design is necessary and to sepa-
rate exploratory applications from diagnostic applications. In some situations de novo 
design of primers is needed; in others it will be relevant to test primers already published. 
You will learn about the basic rules for primer design and how to evaluate sequence differ-
ences and Tm, and you will be presented with a list of primer design programs. In the activity 
you will train primer design based on the single DNA sequence (exploratory) as well as 
design for PCR primers for diagnostic purpose.

5.1  Background for Oligonucleotide Design

Computer programs are now available allowing users with a limited background knowl-
edge to design oligonucleotides. Most programs are available for free and easy to use 
from convenient web interfaces. A minimum theoretical background is needed to obtain 
meaningful results from such analysis. With a limited investment in time including an 
overview of the different programs available, users can obtain much better performance 
even without the need to go into details of computer science and algorithms of programs. 
The aim of the current chapter is to provide an updated overview of the design of oligo-
nucleotides within a bioinformatical framework including presentation of relevant soft-
ware (. Fig. 5.1). The in silico design of oligonucleotides can lead to tremendous savings 
of time and money in the development of oligonucleotide tests; however, it can never 
replace experimental verification since it is not possible to fully predict oligonucleotide 
probe specificity in silico.

2.1 Assembly 3.1–3.5 Databases

5 Primer design

4.3 BLAST 6 Phylogeny 7 Identification

4.2 Multiple alignment

4.1 Pair-wise alignment

       . Fig. 5.1 Relation of this chapter to the other chapters in the book. Primer design relates to the gen-
eration of sequence, to the multiple alignment of sequences, as well as to databases, identification, and 
BLAST

Primer Design
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Oligonucleotides are in short referred to as “probes” when used for hybridization and 
“primers” when used for PCR. The design of oligonucleotides will be described with ref-
erence to both primers and probes since most researchers use both PCR and hybridiza-
tion technology. Demands to both probes and primers are formation of stable duplexes 
with their target sequences and low self-complementarity. In other respects the design 
of oligonucleotides is different depending on function either in hybridization or PCR, 
respectively. For many applications, probes and primers have already been designed and 
are available from publications and databases, for example, accumulated with a database 
of virus-specific oligonucleotides (7 http://viroligo. okstate. edu) (Onodera and Melcher 
2002). NCBI probe can be searched together with other NCBI databases (7 http://www. 
ncbi. nlm. nih. gov/probe) (NCBI 2016).

5.1.1  Practical Approach to Oligonucleotide Design Whether 
of Exploratory Nature or for Diagnostic Purpose

The use of oligonucleotides can broadly be identified in regard to exploratory projects 
such as the design of PCR primers to amplify DNA based on a single DNA sequence or 
diagnostic purpose where the specific amplification of only one or a group of sequences 
is intended, whereas others are not wanted. For most research projects involving the 
design of oligonucleotide probes, the work is performed in five steps (. Table 5.1). First 
a database search is performed with respect to target gene(s) and organism(s). The DNA 
sequences for design of oligonucleotides are mostly downloaded from the International 
Nucleotide Sequence Database Collaboration (GenBank/EBI/DDBJ; Benson et al. 2018; 
Karsch- Mizrachi et al. 2018; Kodama et al. 2018; NCBI 2018). For instance, GenBank is 
searched with BLAST (Altschul et al. 1997). Sequences of importance can be downloaded 
as described in 7 Chap. 3. The second step is to compare the selected sequences by multi-
ple alignments and phylogenetic analysis. As a third step, it needs to be considered if more 
DNA sequences need to be generated to cover the target sequences being investigated. 
First at step 4, the real sequence comparison allows search for oligonucleotides with the 

       . Table 5.1 Strategies for the design of oligonucleotide PCR primers and hybridization probes

Task Action

1.  Identification of target sequences 
and literature

Tables/files of information are generated based on 
database search (7 Chap. 3)

2.  Identification of conserved and 
homologous regions

Multiple alignments or/and phylogenetic analysis 
(7 Chaps. 4 and 6)

3. Generation of sequence Experimental sequencing (7 Chap. 2)

4.  Identification of oligonucleotide 
candidates

Primer search programs (. Table 5.3)

5. Verification Experimental tests including positive and negative 
controls

 H. Christensen and J. E. Olsen

http://viroligo.okstate.edu
http://www.ncbi.nlm.nih.gov/probe
http://www.ncbi.nlm.nih.gov/probe


85 5

software to be described below (7 Sect. 5.7). The oligonucleotides can further be tested 
against the database(s) by BLAST to confirm target sequences. The final step is to set up 
and try the oligonucleotides for real.

It is important to be able to design new probes and primers for three reasons:
 1. New diagnostic problems are faced.
 2. Improved knowledge of the organisms including new varieties and genes need to be 

accounted for.
 3. Natural genetic variation occurs in the organisms under investigation especially virus.

The main function of oligonucleotides is to “prime” PCR reactions in the way that they 
hybridize to single-stranded DNA and prime the replication of DNA by the action of Taq 
polymerase (. Fig. 5.2).

The other main function is with in situ hybridization. Hybridization is also used for 
microarrays; however, in this case, oligonucleotide probes are usually fixed to a solid sup-
port and used unlabeled, and the test DNA is labeled.

5.1.1.1  Exploratory Applications
Exploratory applications include procedures to amplify DNA for sequencing only requir-
ing PCR primers of low specificity and similar tools to manipulate DNA such as PCR 
primers used for cloning. PCR primers for use with multilocus sequence typing of bacteria 
(7 Chap. 11) are also in this category.

       . Fig. 5.2 Hot well from Yellowstone National Park, the harsh environment where Thermus aquaticus was 
isolated. From this bacterium the thermostable polymerase was isolated that is essential to perform PCR

Primer Design
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Degenerate primers and probes include different nucleotides at some positions of the 
sequence. Degenerate primers and probes are needed if the target DNA sequences include 
an unknown diversity, for instance, if the protein sequence is known and then the under-
lying DNA sequence is known to include codon ambiguities.

The exploratory applications also include PCR primers for cloning with recognition 
sites for restriction enzymes. Other PCR primers are used to “prime” the reverse tran-
scription of mRNA and viral RNA to DNA.

5.1.1.2  Diagnostics Applications
Oligonucleotides designed for this application are typically used for diagnostics of micro-
bial pathogens of animals and plants where high specificity is needed. Oligonucleotide 
probes are used for detection of specific DNA target sequences by hybridization when 
labeled by radioactivity, fluorescence, or other handles facilitating detection.

PCR detection is achieved by overproduction of target DNA sequence, in modern 
diagnostic assays often combined with fluorescent detection achieved in real-time (RT)-
PCR. RT-PCR is not different to ordinary PCR when it comes to oligonucleotide design 
except for the various types of detection chemistries (Sharkey et  al. 2004; Wong and 
Medrano 2005).

The primary goal of PCR primer design for diagnostic purpose has been formulated 
to obtain a balance between specificity of amplification and efficiency of amplification 
(Dieffenbach et  al. 1995). Specificity is the tendency for a primer to hybridize to its 
intended target and not to other targets. In other words, specificity is defined as absence of 
reaction with negative targets. The same principle exists for hybridization. With PCR, the 
efficiency is the ease that the expected product is produced. Often a compromise has to 
be made between specificity and efficiency. For clinical applications, “bedside” specificity 
might be increased at the cost of efficiency to avoid false-positive results that might result 
in the wrong treatment of patients (Dieffenbach et al. 1995; Hyndman and Mitsuhashi 
2003; Grunenwald 2003).

5.2  General Rules for Design of Oligonucleotides

Both PCR and hybridization techniques are based on the hybridization of an oligonucle-
otide to a complementary target DNA sequence. Hybridization is the formation in vitro of 
specific double-stranded nucleic acid molecules from two complementary single-stranded 
molecules under defined physical and chemical conditions. . Figure 5.3 shows the orien-
tation of PCR primers and hybridization probes with respect to targeted double- stranded 
DNA. As a rule of thumb, the forward primer is always oriented as the sense DNA strand, 
whereas the reverse primer is both complementary and reverse to the sense DNA strand. 
Probes are oriented as the antisense DNA strand.

With four possibilities (A, C, G, T) for selection of nucleotides at each position of the 
sequence, 418 (~1011) possibilities exists for the design of an 18 nucleotide oligonucleotide. 
For this reason, very stringent criteria are needed to select the best oligonucleotide for a 
specific purpose. However, hybridization, PCR amplification, and probe binding are also 
possible with a few mismatches under some conditions, and it is not only the sequence but 
also the conditions that define the outcome.

 H. Christensen and J. E. Olsen
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The ability of an oligonucleotide to serve as a PCR primer is dependent on the 
kinetics of:
 1. Association and dissociation of probe- or primer-template duplexes at the annealing 

and extension temperatures
 2. The effects on duplex stability of mismatched bases and their location
 3. The efficiency that the polymerase can recognize and extend a mismatched duplex

The ability of an oligonucleotide to serve as a hybridization probe depends on the kinetics of:
 1. Association and dissociation of probe-template duplexes at the hybridization 

temperature
 2. The effects on duplex stability of mismatched bases and their location

In conclusion, for the design of oligonucleotides, the sequence comparison between oligo-
nucleotide and template is most important. It is also important to calculate Tm (7 Sect. 5.4) 
to estimate the annealing temperature in PCR and hybridizations since the actual hybridiza-
tion temperature in the end will determine the outcome of the experiment. With multiplex 
PCR many probes and primers, respectively, have to function together at the same tempera-
ture, and for this reason, they need to be designed within a common threshold level of Tm.

5.2.1  Lengths of PCR Primers and Products

PCR primers should normally be between 18 and 24 nt (. Table 5.2). The length depends 
on the GC content. For primers of the same length, the Tm will increase with higher GC 
content related to the three hydrogen bounds in the GC pair compared to only two in the 
AT pair. To match the Tm of both forward and reverse primers, the length of a primer with 
high GC content needs to be shorter compared to one with less GCs. PCR primers of 15 
nucleotides or shorter are only used for arbitrary or random short priming in the map-
ping of simple genomes since their sequence is so short that the change that they will be 
complementary to a DNA sequence in a genome is very high. For ordinary PCR, product 

DNA Plus strand = sense strand

5′ 3′
5′

5′
3′ 5′

5′3′

−

DNA Minus strand = anti-sense strand

3′

3′  

       . Fig. 5.3 Sketch of orientation of PCR oligonucleotide primer and hybridization probes in relation 
to DNA target. For PCR, the primer for forward amplification has the same sequence as the sense strand 
of template DNA and binds to the antisense DNA strand. The primer for reverse PCR amplification has a 
sequence that is both reverse and complementary to the sense DNA strains. Probes for hybridization are 
oriented the same way as the antisense DNA strand
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ranges from approx. 200 to 1500 bp are preferred to allow resolution on ordinary agarose 
gels. For real-time PCR (RT-PCR), products are usually shorter (<150 bp). Guidelines for 
RT-PCR are found in Huggett et al. (2013).

5.2.2  Lengths of Oligonucleotide Hybridization Probes

Hybridization probes have been applied with lengths from around 20  nt up to several 
hundreds of nt. For microarray experiments, the usual size is 25 nt, but probes of 50–70 nt 
are also used on certain applications (Gibson and Muse 2004). Generally, the longer the 
probe, the more mismatches are needed to separate target from nontarget sequences.

5.3  Sequence Comparison

For comparison of sequence matches between primer and template, sequence comparison 
can be performed in two fundamentally different ways. Either sequences can be compared 
as so-called strings or evaluated in relation to scores between nucleotide pairs (7 Sect. 
5.3.1). This procedure was shown for local pair-wise sequence comparison (7 Chap. 4). 
Alternatively, sequences can be compared thermodynamically in relation to their changes 
in free energy upon forming duplexes; however, this method is only useful for shorter 
oligonucleotides (7 Sect. 5.3.2).

5.3.1  String Comparison by Score

Sequences are matched pair-wise by alignments and alignments compared by scores. 
Scores are defined in favor of canonical base pairing (G-C, A-T) and the alignment with 
the highest score chosen. The method is by intuition simple in that complementary nucle-
otide pairs are favored in the comparison. For pair-wise comparison between oligonucle-
otide and template, precise algorithms are used, whereas for database comparisons, less 
precise but greedier algorithms are implemented in programs like BLAST.

       . Table 5.2 Rules of thumb for design of oligonucleotide PCR primers and hybridization probes

Application Rules

All Purines and pyrimidines should be equally distributed and long stretches of 
identical nucleotides avoided. The GC content should be similar to or higher 
than the target DNA sequence. The medium length is 18 nt. The hybridization 
temperature including annealing temperature should be 5 °C lower than Tm

PCR primers Primer lengths of 18 and up to 24 nt are preferred with Tm of 54 °C or higher. 
Perfect base pairing between the 3′ end of the primer and the template is 
necessary for maximal specificity, and the last 5–6 nucleotides at the 3′ end of 
the primer must contain minimal mismatches

Hybridization 
probes

At least one or two nucleotide differences are needed for separation of target 
from nontarget sequences. Mismatches near the end of probes are less 
destabilizing than internal mismatches

For design of oligonucleotide probes targeting rRNA, probes should bind 
along one or the other side of hairpins
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5.3.2  Nearest Neighbor Comparisons of Duplex Stability

The nearest neighbor calculation is based on the fact that the change in Gibbs free energy 
(ΔG) of the probe or probe-template complex can be calculated from the enthalpy (ΔH) 
and entropy (ΔS) at a given temperature (T) as ΔG = ΔH – TΔS. If ΔG for the oligonucle-
otide binding to itself is negative, the primer should be redesigned by extension/removal 
of 5′ or 3′ positions in order to reduce self-complementarity. A nearest neighbor pair is 
defined by two neighboring nucleotides in a sequence. For example, in the probe sequence 
5’-ACGT-3′, pairs to be considered for binding to a complementary sequence as a template 
will be A-C, C-G, and G-T. The calculation can either be used for selection of oligonucle-
otides by comparison of all nearest neighbor pairs formed between probe and template 
or for evaluation of probe self-complementarity including loops and for calculation of Tm 
(7 Sect. 5.4.3). Considerations are taken to free energy change in relation to helix initia-
tion associated with forming the first base pair in the duplex, the sum of free energies for 
the subsequent pairs, and correction for self-complementary (Owczarzy et al. 2008). The 
parameters ΔG, ΔH, and ΔS were empirically determined for all nearest neighbors of DNA 
by Breslauer et al. (1986) and further refinements performed as reviewed by SantaLucia 
(1998). These parameters are only used for implementation in computer programs.

5.3.3  Design of Primers for PCR and “Kwok’s Rules”

In 1990, Kwok et al. published a set of rules for the design of PCR primers based on their 
experience with PCR amplification of HIV sequences. The principles determined have found 
general use known as “Kwok’s” rules. The discrimination of different PCR targets is related to 
the lack of 3′ to 5′ exonuclease activity of Taq DNA polymerase resulting in extension of mis-
matched 3′ termini at a lower rate compared to complementary termini (Lawyer et al. 1989).

The conclusion of the work of Kwok et al. (1990) was that extension is most dependent 
on the outermost 3′ base pairing, less on second and third last pair and even less on the 
other pairs. . Figure 5.4 summarizes some conclusions from the Kwok paper. The experi-
ments with PCR were performed at 55 °C annealing temperature and are therefore com-
parable to most PCR conditions. The conclusion is that if the aim of the design of primers 
is to obtain specific detection of certain target sequences without amplification of other 
nontargets, G-C-pairs in 3′ end will in most cases allow discrimination but A-T pairs will 
not. It might come as a surprise that amplification also is possible from noncanonical 
pairs, for example, G-T. G-T pairs should be avoided in the 3′ end since they are more 
stable than other types of mismatches (Kwok et al. 1995) (see also Newton et al. 1989).

5.3.4  Design of Probes for Hybridization

In parallel to the rules just outlined for PCR, it is also important to account for different 
sorts of noncanonical base pairing in hybridization experiments. For DNA oligonucle-
otide hybridization, the pairs G-T and G-A are involved in weak binding, and the pairs 
G-A, G-G, C-A, A-A, G-T, T-T, and C-T are destabilizing in decreasing order (Ikuta et al. 
1987; Pozhitkov et al. 2006) (. Fig. 5.5). In correspondence, the stability of RNA/DNA 
duplexes on microarrays are TG, TU, TC > GU, AC, CC, CU, AA, AG > CA > GG, and 
GA (Pozhitkov et  al. 2006). These observed interactions are mostly a consequence of 
pyrimidine-pyrimidine mismatches being more stable than purine-purine mismatches 
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related to higher steric hindrance for binding of the latter (Pozhitkov et al. 2006). In addi-
tion, the G-U pair is stable in RNA compared to the more unstable G-T pair in DNA. For 
microarrays, oligonucleotides bound at the 3′ end, mismatches nearest the 5′ end are less 
destabilizing than those in the middle of the oligonucleotide (Szostak et al. 1979; Urakawa 
et al. 2002; Pozhitkov et al. 2006).

5.4  Tm Calculations

The nucleic acid melting temperature, Tm, is defined as the midpoint in the transition from 
helix to random coil measured as change in optical density. The original definition implied 
almost equal proportions of complementary strands. For oligonucleotides, concentrations 
are orders of magnitude higher than template concentration, and the actual dissociation 

The columns show
nucleotide pairs

between nucleotides in
primer and template DNA

for the most important
3’ end of the primer

Weak or no
amplication

Good
amplication

primer
non-target

primer
target

5′
3′

3′
–
–

5′
3′ –

–

–

3′–

       . Fig. 5.4 Prediction of amplification from interactions between PCR oligonucleotide primer at the 3′ 
end and template (based on Kwok et al. 1990). Low degree of mismatch is assumed between oligonucle-
otide and template for the remaining part of sequence
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temperature, Td, where 50% of oligonucleotides are bound to template out of the maxi-
mum possible, might be different from Tm and depend on the concentration of the DNA 
strands. The thermodynamic approach can also be used for calculation of Tm (7 Sect. 5.4.3). 
Alternatively, Tm is determined by a formula (7 Sect. 5.4.1).

5.4.1  Estimation of Tm by Formula

The crudest way to estimate Tm is used with primers shorter than 20 nt. The formula Tm = 4 
(G + C + 2(A-T) can be used (Suggs et al. 1981). However, the nearest neighbor method 
(see below) was found four times more accurate (Rychlik and Rhoads 1989). An empiric 
derived formula for calculation of Tm was given by Schildkraut (1965) for unsheared DNA 
fragments. This formula has been modified for short DNA fragments. For oligonucle-
otides of 10–50 nt, Tm = 81.5 + 16.6logM + 0.41(G + C%) – (820/(length of probe) (Lathe 
1985). For probes longer than 50 nt, Tm = 81.5 °C + 16.6logM + 0.41(G + C%) – (500/

probe
template

5′
3′

3′
–

– –

Good
binding

Destabilizing

The columns show
nucleotide pairs
between nucleotides in
primer and template DNA
for the most important
Internal section of the primer

Weak binding

       . Fig. 5.5 Prediction of binding in hybridization between probe and template. A low degree of 
mismatch formation is assumed between oligonucleotide and template for the remaining part of the 
sequence
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length of probe) (Meinkoth and Wahl 1984). In these formulas, M is the concentration of 
monovalent cations (N+ and K+). Typical values for PCR are 50 mM KCl where K+ is by 
far the dominant cation. For 1 × SSC, the concentration of monovalent catios is 195 mM.

5.4.2  Formamide Considerations

For practical purpose formamide can be included during hybridization to decrease the 
actual temperature required. It is possible to adjust Tm by application of a gradient of 
formamide concentrations rather than to use a set of different temperatures during incu-
bation. Another reason to include formamide is that temperatures higher than 50–60 °C 
might damage tissue samples with in situ hybridization as well as reagents, materials, 
and equipment. The common rule has been that 1% formamide reduces Tm by 0.72 °C 
(McConaughy et al. 1969). However, recently it was found that 1% formamide reduces Tm 
by only 0.6 °C in oligonucleotide microarrays (Urakawa et al. 2002). Unfortunately health 
hazards associated with formamide has limited its use.

5.4.3  Estimation of Tm by Nearest Neighbor Prediction

The composition of the nucleotide sequence has been found to influence Tm more than 
either length of oligonucleotide or base composition. This is the basis for the use of the 
nearest neighbor models for calculations of Tm. As mentioned, nearest neighbor calcula-
tions are based on the former mentioned stability of base pairs only depending on the 
immediate up- and downstream neighbors. As an example of such calculation used in the 
computer programs, Td = ΔH/(ΔS + RlnC) + 16.6log10 [M], where Tm = Td for PCR and 
Tm is less than 7.6 °C of Td for filter hybridization (Rychlik and Rhoads 1989). R is the uni-
versal gas constant (1.99 cal K−1 mol−1). C is the molar concentration of all strands when 
oligonucleotides are self-complementary and is replaced by C/4 for noncomplementary 
oligo-template interactions (Borer et al. 1974).

Formula and nearest neighbor calculations have been combined. The combination was 
used by Rychlik et al. (1990) for calculation of annealing temperatures (Ta). Ta was calcu-
lated as Ta = 0.3 Tm primer +0.7 Tm product – 14.9. Tm primer was calculated by the nearest 
neighbor model and Tm of product by formula. The calculation of Ta was compared to 
empirically determined Ta in PCR reactions, and they were found to be in good agreement.

5.5  Special Applications

5.5.1  Exploratory Applications

5.5.1.1  Degenerate Primers and Probes
If the purpose is to detect homologous sequences of a particular type, a high degree of 
variation often must be tolerated, and for this purpose degenerate oligonucleotides are 
designed. A primer sequence is degenerate if some of its positions have several possible 
bases. The degeneracy of the primer is the number of unique sequence combination it con-
tains. For example, the degeneracy of the primer GGSABA is six where S means “strong” 
and either G or C and B can be either C, G, or T resulting in 1 × 1 × 2 × 1 × 3 × 1 = 6 
possibilities (GGGACA, GGGAGA, GGGATA, GGCACA, GGCAGA, GGCATA). The IUB 
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codes are shown in the Appendix. Two strategies exist for designing degenerate prim-
ers and probes. Either two or more different nucleotides can be incorporated at specific 
positions of the oligonucleotide at the time of synthesis, or different batches of oligonu-
cleotide primers can be mixed after synthesis. A third possibility is to combine the two 
strategies. Inosine can be incorporated as an “inert” nucleotide forming base pairs with all 
four nucleotides. Degeneracies are usually incorporated to account for codon variation at 
second and third positions. Knowledge of codon bias can be used to limit the degeneracy 
needed (Kwok et al. 1995). A procedure for this strategy is described with the CODEHOP 
program (. Table 5.3). A consequence of the introduction of ambiguous nucleotides is that 
the actual concentration of the important nucleotides at the 3′ end will decrease. Efficient 
PCR amplification (detectable on conventional agarose gel) will probably not work with 
less than 0.1 μM final concentration of primer, and, for example, four ambiguous positions 
will decrease the actual concentration with 2 × 2 × 2 × 2 = 32 which then requires 3.2 μM 
for each of the primers to work.

5.5.1.2  Nested PCRs
In nested PCR, the sample is first amplified with an “outer” primer set and a subsample of 
this product then amplified with the “inner” primer set. The inner primer set is designed 
to be the specific one. In designing primers for this purpose, primer-dimer formation 
between outer and inner pairs should be tested for and avoided (primer-dimer forma-
tion is the ability of two oligonucleotides to base pair often allowing initiation of short 
PCR products). The product obtained with the inner pair should be short (<300 bp). The 
method can be used when the concentration of template is low or the knowledge of the tar-
get sequence is limited and amplification cannot be achieved in other ways (Dieffenbach 
et al. 1995). Programs for the design of nested PCRs include Primer Premier (. Table 5.3).

5.5.1.3  Primers for Cloning
For molecular cloning, restriction sites are needed in the PCR primers. The program 
ORFprimer (. Table 5.3) should be able to handle this application.

5.5.2  Diagnostic Applications

5.5.2.1  Primers for Multiplex PCR
Multiplex PCR is preferred in order to conserve reagents (template) as well as reduce 
preparation and analysis time compared to conventional PCR. With mixtures of primers 
with different sequences, the prediction of Tm becomes difficult since one value might 
only apply to each of the primers included. The programs FastPCR, MuPlex, and Primer 
Premier (. Table  5.3) should be able to handle the design of multiplex PCR primers. 
Experimental testing will be needed to confirm the choice of Tm.

5.5.2.2  SNP Analysis
Single nucleotide polymorphisms (SNP) are differences between individual nucleotides 
within the same gene which may affect virulence or other properties between isolates 
of microorganisms. PCRs can be designed to target SNPs. For this the SNPs need to be 
located in the 3′ of the primer binding to the template. Some programs that can be used 
to identify SNPs based on PCR tests are included in . Table 5.3 (MuPlex, PIRA-PCR, and 
PrimerZ). In order to increase specificity, mismatches may be introduced according to 
Newton et al. (1989).
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       . Table 5.3 Programs listed according to application

Program Description URL and reference

General purpose

Amplifx1.7.0 PCR design program for installa-
tion on MacOS X and Windows

7 http://crn2m. univ-mrs. fr/recherche/
equipe-t-brue/jullien-nicolas/program-
mation/amplifx/?lang=en

AutoDimer Screen PCR primers for primer-
dimer and hairpin

7 https://strbase. nist. gov//AutoDimer-
Homepage/AutoDimerProgramHome 
page. htm

FastPCR PCR primer design including 
multiplex PCR

7 http://primerdigital. com/fastpcr. html

Netprimer Numerous parameters of single 
PCR primers

7 http://www. premierbiosoft. com/
netprimer/index. html

Oligo Nearest neighbor calculations of 
secondary structures and Tm

7 http://www. oligo. net/ (Rychlik and 
Rhoads 1989)

OligoAnalyzer Nearest neighbor parameters. 
Hairpin and primer-dimer analysis

7 https://eu. idtdna. com/pages/tools 
(Owczarzy et al. 2008)

OligoCalc Physical properties of oligonucle-
otides, self- complementarity, and 
hairpin loop formation

7 http://biotools. nubic. northwestern. 
edu/OligoCalc. html (Kibbe 2007)

OligoFaktory DNA microarrays, primers for PCR, 
siRNAs

7 http://www. bioinformatics. org/
oligofaktory/

ORFprimer Large datasets, restriction sites 7 http://www. proteinstrukturfabrik. de/
ORFprimer/
(Büssow et al. 2002)

Pride and 
Genome pride

PCR and microarray 7 http://pride. molgen. mpg. de/ (Staden 
package)

PriFi Search for primers in multiple 
alignments

7 https://services. birc. au. dk/prifi/ 
(Fredslund et al. 2005)

Primaclade PCR primers in multiple nucleo-
tide alignment file

7 http://primaclade. org/ (Gadberry 
et al. 2005)

Primegens Primer design 7 http://primegens. org/(Xu et al. 2002)

Primer3 The most frequently used 
program see also Activity 5.8.1

7 http://bioinfo. ut. ee/primer3-0. 4. 0/
primer3/input. htm (Rozen and Skaletsky 
2000)

Primer3Plus Simplified version of Primer3 7 http://www. bioinformatics. nl/
cgi-bin/primer3plus/primer3plus. cgi/

Primer Design 
Assistant (PDA)

Primer design with all parameters 7 http://dbb. nhri. org. tw/primer/  
(Chen et al. 2003)

Primer Premier PCR primer design, multiplex, 
degeneracies, and nested PCRs

7 http://www. premierbiosoft. com/
primerdesign/index. html

PrimerQuest PCR and hybridization probes. 
Based on Primer3

7 https://eu. idtdna. com/PrimerQuest/
Home/Index
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Program Description URL and reference

Primersearch 
(EMBOSS)

Matches between primers-pairs and 
DNA template by string comparisons

7 http://emboss. sourceforge. net/  
(Rice et al. 2000)

Primo Oligo Calculation of Tm 7 http://www. changbioscience. com/
primo/oligo. html

Web Primer PCR primer design 7 https://www. yeastgenome. org/
cgi-bin/web-primer

SciTools A series of tools 7 http://www. idtdna. com/SciTools/
Scitools. aspx
(Owczarzy et al. 2008)

Tm calculator For primer pairs 7 http://www6. appliedbiosystems. 
com/support/techtools/calc/

Special applications

ARB Design of rRNA-targeted probes 7 http://www. arb-home. de
(Ludwig et al. 2004)

Array Designer Oligo-arrays, cDNA arrays, and 
SNP arrays

7 http://www. premierbiosoft. com/
dnamicroarray/index. html

Assembly PCR
oligo maker

PCR-based construction of long 
DNA molecules for RNA molecules 
by T7 RNA polymerase

7 http://www. yorku. ca/pjohnson/
AssemblyPCRoligomaker. html

AutoPrime Design of RT-PCR oligos to specific 
mRNA amplification of genomic 
sequences

7 http://www. autoprime. de/
AutoPrimeWeb

Beacon 
designer™

Real-time PCR 7 http://www. premierbiosoft. com/
molecular_beacons/index. html

BLOCKMAKER 
and CODEHOP

Degenerate primers to genes of 
proteins

7 https://virology. uvic. ca/virology-ca-
tools/j-codehop/ (Rose et al. 2003)

ddRNAi DNA-directed RNA interference 
(ddRNAi)

7 http://www. geocities. ws/zimzwy/
ddRNAi. html

Expeditor QTL design 7 https://www. animalgenome. org/
cgi-bin/expeditor/expeditor2

Genefisher2 Degenerate PCR primers based on 
multiple aligned sequences

7 https://bibiserv. cebitec. uni-
bielefeld. de/genefisher2/

Gene2Oligo Design of genes in vitro 7 http://berry. engin. umich. edu/
gene2oligo/ (Rouillard et al. 2003)

MFOLD Evaluates probes 7 http://unafold. rna. albany. 
edu/?q=mfold

MOP-UP Targeting one group of sequences 
and excluding another group

7 http://www. hpa-bioinfotools. org. uk/
cgi-bin/mopUP. cgi

MuPlex Multiplex PCR assays for high-through-
put genotyping including SNP

7 http://cagt. bu. edu/page/MuPlex_
about (Rachlin et al. 2005)

(continued)

       . Table 5.3 (continued)
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Program Description URL and reference

OligoArray2 Oligonucleotides for microarray 
experiments

7 http://berry. engin. umich. edu/
oligoarray2/ (Rouillard et al. 2003)

OligoPicker Microarray design of oligonucle-
otides

7 https://pga. mgh. harvard. edu/
oligopicker/index. html

PIRA-PCR SNP 7 http://primer1. soton. ac. uk/
primer2. html (Ke et al. 2001)

PrimerD Degenerate primer pairs 7 http://mblab. wustl. edu/software. 
html#primerdLink

Primer Explorer LAMP primers 7 http://primerexplorer. jp/e/

PrimerX Site-directed mutagenesis 7 http://www. bioinformatics. org/
primerx/cgi-bin/DNA_1. cgi

PrimerZ Promoters, exons, and human SNP 7 https://omictools. com/primerz-tool 
(Tsai et al. 2007)

ProbeSelect Design oligonucleotides for array 
analysis

7 https://omictools. com/probeselect-
tool (Li and Stormo 2001)

ProbeWiz Optimal PCR primer pairs for 
cDNA arrays

7 http://www. cbs. dtu. dk/services/
DNAarray/probewiz. php (Nielsen and 
Knudsen 2002)

ProDesign Oligonucleotide design for 
microarray

7 http://wwwlabs. uhnresearch. ca/
tillier/ProDesign/ProDesign. html (Feng 
and Tillier 2007)

SNPbox Large-scale design and exons 7 http://www. molgen. ua. ac. be/bioinfo/
projects/snpbox/snpbox. htm (Weckx 
et al. 2004, 2005)

ProbeCheck Especially for 16S rRNA 7 http://131. 130. 66. 200/cgi-bin/
probecheck/probecheck. pl

       . Table 5.3 (continued)

5.6  Data Formats

The FASTA format is used most frequently for sequence manipulation (Pearson and 
Lipman 1988) (see 7 Chap. 2). This format is simply a text file starting with a “>” sign and 
followed by the name of the sequence on the first line. On the second and following lines, 
the nucleotide string is listed without any additional characters such as numbers or spaces. 
Some programs will only consider the ten first characters of the name or identifier on the 
first line. Sequences are usually downloaded in FASTA format from the databases.

For certain programs, the sequences included with multiple alignments need to be 
trimmed to the same length before they can be further analyzed for oligonucleotide design. 
First a multiple alignment is prepared, for example, by ClustalX or ClustalW (Larkin et al. 
2007) and saved in the *.aln format (7 Chap. 4). The program BioEdit (Hall, 1999) can be used 
to trim sequences to the same length. BioEdit is installed from the URL (7 http://www. mbio. 
ncsu. edu/bioedit/page2. html). “File” and “Open” are activated in BioEdit and the file in *.aln 
format selected. The “Edit mode” is chosen and regions with gaps identified by “mousing over” 
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column-wise and deleted when the region is marked. The consensus line at the bottom is not 
to be touched. The file is then saved by “File” and “Save as” with the choice of FASTA format. 
The file is reopened with ClustalX or ClustalW and realigned and saved in appropriate format.

Important points to consider using BLAST for evaluation of primer and probes are to use 
the lowest word size (7) and to turn off dust filters and low complexity filters. Even with these 
precautions, BLAST searchers in databases with oligonucleotides cannot always be expected 
to identify all sequences with perfect match. This is related to the short sequence length.

5.7  Programs

A list of relevant computer programs for primer and probe design is shown in . Table 5.3. 
For these programs, we have briefly tested that the links have been open and that pro-
gram installation has worked; however, full functionality has not been tested exhaustively. 
Center for Human and Clinical Genetics at Leiden University Medical Center (7 http://
www. humgen. nl/primer_design. html) maintains a list of programs. Many programs are 
online installations on servers assessed by the Internet as described yearly with the server 
issue of the journal, Nucleic Acids Research (7 https://academic. oup. com/nar/issue/45/W1).

These resources can be consulted to fix broken links as well as to search for new pro-
grams.

5.8  Activities

5.8.1  Exploratory Primers with Primer3 for Recognition  
of Single DNA Sequences

The purpose is to amplify DNA from a strain of avian influenza virus. Primer3 is used at 
7 http://bioinfo. ut. ee/primer3-0. 4. 0/ (Untergasser et al. 2007, 2012). For this activity we 
will use the DNA sequence of the hemagglutinin (HA) gene of strain 1734 with serotype 
H5N1 isolated from duck in Fujian in 2005 with GenBank/EBI/DDBJ acc. no. DQ095629. 
Download the sequence from NCBI or similar database as described in 7 Chap. 3. Cut 
and paste the DNA sequence into the window. You first have to select “Pick left primer” 
and “Pick right primer,” and at Product size ranges, delete all ranges except for 100–300, 
and leave other settings as defaults. Press “Pick Primers.” Two primers are suggested with 
a predicted PCR product of 203 bp. Inspect the location and orientation of the primers 
(marked with >>>>> on output). Four more sets of primers are further suggested.

5.8.2  Diagnostic Primers with PrimerBLAST

The program is provided by NCBI to select specific PCR primers for one taxon and avoid 
amplification of others.

This server application at NCBI is based on Primer3 and BLAST. Open the program 
from: 7 http://www. ncbi. nlm. nih. gov/tools/primer-blast/

For this example we will design specific PCR primers for the serotype H7N2 of influ-
enza virus. Download GenBank/EBI/DDBJ acc. no. U20461 in FASTA format (7 Chap. 2). 
Include the target sequence by “pasting” in the window or “choosing a file,” or simply write 
the GenBank acc. no. in the yellow field.
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In the section Primer Pair Specificity Checking Parameters at
Search mode, change Automatic to User guided.
At Organism select family or the specific organisms you are working with (for pro-

karyotes the genus name), in this case Influenzavirus A.
At Database select nr
Mark Show results in new window
Press Get primers
When the search is completed, look at the list to remove unwanted targets and to 

include more similar targets of the same type (H7N2) (your PCR template is highly simi-
lar to the following sequence(s) from the search database. To increase the chance of find-
ing specific primers…). In this case you can mark the three H7N2 sequences (CY006029, 
CY067681, and AB302789).

Mark Show results in a new window
Then proceed by pressing Submit.
Review the list and consider if a specific primer pair can be designed (it should look 

like . Fig. 5.6). Are all primers of Products of intended targets for Primer pair 1 match-
ing the type H7N2? Are all Products of un-intended targets forming mismatches that are 
expected not to result in generation of product? (Look at Kwok’s rules . Fig. 5.4.)

Note that this is an automatic prediction and you need to judge if the suggestions would 
be useful in real PCR tests. Among the unintended targets (see also . Fig. 5.7), the forward 

       .Fig. 5.6 Output from primerBLAST as expected from 7 Activity 5.8.2. You see the graphical view of  
suggested primers for specific amplification of the hemagglutinin gene of the H7N2 type of type A influenza 
virus. (BLAST [Internet]. Bethesda (MD), National Library of Medicine (USA), National Center for Biotechnology 
Information; 2004 – [cited 25 18 04]. Available from 7 https://www. ncbi. nlm. nih. gov/tools/primer-blast/)
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primer is matching, and mismatches are only observed on the reverse primers, and even 
for them, it is questionable if they will actually not lead to PCR amplification in a real PCR 
since the C-T mismatch in the 5′ end is expected to result in amplification (. Fig. 5.4).

       . Fig. 5.7 Output from primerBLAST as expected from 7 Activity 5.8.2. You see the list of predicted 
primers matching unintended targets for specific amplification of the hemagglutinin gene of the H7N2 
type of type A influenza virus. (BLAST [Internet]. Bethesda (MD), National Library of Medicine (USA), 
National Center for Biotechnology Information; 2004 – [cited 25 18 04]. Available from 7  https://www. 
ncbi. nlm. nih. gov/tools/primer-blast/)

 Take-Home Messages

 5 Oligonucleotides are called primers when used for PCR and probes when used 
for hybridization.

 5 Primers and probes can either be for exploratory applications or for diagnostic 
applications.

 5 Sequence comparisons of oligonucleotides and their binding to template DNA 
can either be done by string comparison by score or by nearest neighbor com-
parisons using the thermodynamic properties of nucleotide hybridization.

 5 Special applications of primers relate to degenerate PCR, nested PCR, gene 
cloning, diagnostic applications, and primers for multiplex PCR.

 5 Computer programs are available for the different applications related to PCR 
as well as for hybridization such as microarrays and in situ hybridization.

Primer Design

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/


100

5

References

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W.and Lipman, D. J. 1997. Gapped 
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 
3389–3402.

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, Sayers EW. 2018. GenBank. Nucleic 
Acids Res. 46(D1):D41–D47.

Borer, P.  N., Dengler, B., Tinoco, I.  Jr. and Uhlenbeck, O.  C. 1974. Stability of ribonucleic acid double- 
stranded helices. J. Mol. Biol. 15, 843–853

Breslauer, K. J., Frank, R., Blocker, H. and Marky, L. A. 1986. Predicting DNA duplex stability from the base 
sequence. Proc. Natl. Acad. Sci. U. S. A. 83, 3746–3750.

Büssow, K., Hoffmann, S., Sievert, V. 2002. ORFer – retrieval of protein sequences and open reading frames 
from GenBank and storage into relational databases or text files. BMC Bioinformatics 23:40

Chen, S. H., Lin, C. Y., Cho, C. S., Lo, C. Z. and Hsiung, C. A. 2003. Primer Design Assistant (PDA): A web-based 
primer design tool. Nucleic Acids Res. 31, 3751–3754.

Gadberry M. D., Malcomber S. T., Doust A. N., and Kellogg E. A. 2005. Primaclade--a flexible tool to find 
conserved PCR primers across multiple species. Bioinformatics 21:1263–1264.

Dieffenbach, C.  W., Lowe, T.  M. J. and Dveksler, G.  S. 1995. General concepts for PCR primer design. 
pp. 133–142. In PCR primer a laboratory manual. Cold Spring Harbor Lab. Press.

Feng, S. and Tillier, E. R. 2007. A fast and flexible approach to oligonucleotide probe design for genomes 
and gene families. Bioinformatics 23, 1195–1202.

Fredslund, J., Schauser, L., Madsen, L. H., Sandal, N. and Stougaard, J. 2005. PriFi: using a multiple align-
ment of related sequences to find primers for amplification of homologs. Nucleic Acids Res. 33, 
W516 - W520.

Gibson, G. and Muse, S. V. 2004. A primer of genome science. Sinauer, Sunderland.
Grunenwald, H. 2003. Optimization of polymerase chain reactions. In PCR Protocols. 2nd ed. ed. Bartlett, 

J. M. S. and Stirling, D. pp. 89–99. Methods in Molecular Biology 226. Humana Press, Totowa.
Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for 

Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41:95–98.
Huggett, J. F., Foy, C. A., Benes, V., Emslie, K., Garson, J. A., Haynes, R., Hellemans, J., Kubista, M., Mueller, 

R. D., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., Wittwer, C. T., Bustin, S. A. 2013. The digital 
MIQE guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments. Clin 
Chem. 59, 892–902. doi: https://doi.org/10.1373/clinchem.2013.206375.

Hyndman, D. L. and Mitsuhashi, M. 2003. PCR Primer Design. In PCR Protocols. 2nd ed. ed. Bartlett, J. M. S. 
and Stirling, D. pp. 81-88 Methods in Molecular Biology 226. Humana Press, Totowa.

Ikuta, S., Takagi, K., Wallace, R. B., and Itakura, K. 1987. Dissociation kinetics of 19 base paired oligonu-
cleotide-DNA duplexes containing different single mismatched base pairs. Nucleic Acids Res. 15, 
797–811.

Karsch-Mizrachi I, Takagi T, Cochrane G; International Nucleotide Sequence Database Collaboration. 2018. 
The international nucleotide sequence database collaboration. Nucleic Acids Res. 46(D1):D48-D51.

Ke, X., Collins, A. and Ye, S. 2001. PIRA PCR designer for restriction analysis of single nucleotide polymor-
phisms. Bioinformatics 17, 838–839.

Kibbe, W.  A. 2007. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35, 
W43–6.

Kodama Y, Mashima J, Kosuge T, Kaminuma E, Ogasawara O, Okubo K, Nakamura Y, Takagi T. 2018. DNA 
Data Bank of Japan: 30th anniversary. Nucleic Acids Res. 46(D1):D30-D35.

Kwok, S., Kellogg, D. E., McKinney, N., Spasic, D., Goda, L., Levenson, C., and Sninsky, J. J. 1990. Effects of 
primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 
1 model studies. Nucleic Acids Res. 18, 999–1005.

Kwok, S., Chang, S-Y., Sninsky, J.  J. and Wang, A. 1995. Desing and use of mismatched and degenerate 
primers. In Dieffenbach, C. W. and Dveksler, G. S. PCR primer a laboratory manual. pp. 143-155. Cold 
Spring Harbor Lab. Press.

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm 
A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007): Clustal W and Clustal X version 2.0. 
Bioinformatics 23: 2947–2948.

Lathe, R. 1985. Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical 
and practical considerations. J. Mol. Biol. 183, 1–12.

 H. Christensen and J. E. Olsen

https://doi.org/10.1373/clinchem.2013.206375


101 5

Lawyer, F. C., Stoffel, S., Saiki, R. K., Myambo, K., Drummond, R., and Gelfand, D. H. 1989. Isolation, charac-
terization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. 
J. Biol. Chem. 264, 6427–6437.

Li, F. and Stormo, G. D. 2001. Selection of optimal DNA oligos for gene expression arrays. Bioinformatics 
17, 1067–76

Ludwig, W., Strunk, O., Westram, R. and 29 other authors. 2004. ARB: a software environment for sequence 
data. Nucleic Acids Res. 32, 1363–71.

McConaughy BL, Laird CD, McCarthy BJ. 1969. Nucleic acid reassociation in formamide. Biochemistry 8, 
3289–3295.

Meinkoth, J. and Wahl, G. 1984. Hybridization of nucleic acids immobilized on solid supports. Anal. 
Biochem. 138, 267–284.

NCBI Resource Coordinators. 2016. Database resources of the National Center for Biotechnology 
Information. Nucleic Acids Res. 44(D1):D7–19.

NCBI Resource Coordinators. 2018. Database resources of the National Center for Biotechnology 
Information. Nucleic Acids Res. 46, D8-D13.

Newton, C.  R., Graham, A., Heptinstall, L.  E., Powell, S.  J., Summers, C., Kalsheker, N., Smith, J.  C. and 
Markham, A. F. (1989) Analysis of any point mutation in DNA. The amplification refractory mutation 
system (ARMS). Nucleic Acids Res 17, 2503–2516.

Nielsen, H. B. and Knudsen, S. 2002. Avoiding cross hybridization by choosing nonredundant targets on 
cDNA arrays. Bioinformatics 18, 321–322.

Onodera, K. and Melcher, U. 2002. VirOligo: a database of virus-specific oligonucleotides. Nucleic Acids 
Res. 30, 203–204.

Owczarzy, R., Tataurov, A.V., Wu, Y., Manthey, J.A., McQuisten, K.A., Almabrazi, H.G., Pedersen, K.F., Lin, Y., 
Garretson, J., McEntaggart, N.O., Sailor, C.A., Dawson, R.B., Peek, A.S. 2008. IDT SciTools: a suite for 
analysis and design of nucleic acid oligomers. Nucleic Acids Res. 36, W163–9.

Pearson, W.  R. and Lipman, D.  J. 1988. Improved tools for biological sequence comparison. Proc. Natl. 
Acad. Sci. U. S. A. 85, 2444–2448.

Pozhitkov, A., Noble, P. A., Domazet-Loso, T., Nolte, A. W., Sonnenberg, R., Staehler, P., Beier, M. and Tautz, 
D. 2006. Tests of rRNA hybridization to microarrays suggest that hybridization characteristics of oligo-
nucleotide probes for species discrimination cannot be predicted. Nucleic Acids Res. 34, e66.

Rachlin, J., Ding, C., Cantor, C. and Kasif, S. 2005. MuPlex: multi-objective multiplex PCR assay design. 
Nucleic Acids Res. 33, W544 - W547.

Rice P, Longden I & Bleasby A. 2000. EMBOSS: The European Molecular Biology Open Software Suite. 
Trends Genetics 16:276–277.

Rose, T.  M., Henikoff, J.  G. and Henikoff, S. 2003. CODEHOP (COnsensus-DEgenerate Hybrid 
Oligonucleotide Primer) PCR primer design. Nucleic Acids Res. 31, 3763–3766.

Rouillard, J. M., Zuker, M., and Gulari, E. 2003. OligoArray 2.0: design of oligonucleotide probes for DNA 
microarrays using a thermodynamic approach. Nucleic Acids Res. 31, 3057–3062.

Rozen, S. and Skaletsky, H. 2000. Primer3 on the WWW for general users and for biologist programmers. 
pp.  365-386 In Misener, S. and Krawetz, S.  A. Bioinformatics Methods and Protocols. Methods in 
Molecular Biology 132. Humana, Totowa.

Rychlik, W. and Rhoads, R. E. 1989. A computer program for choosing optimal oligonucleotides for filter 
hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 17, 8543–8551.

Rychlik, W., Spencer, W.  J. and Rhoads, R.  E. 1990. Optimization of the annealing temperature for DNA 
amplification in vitro. Nucleic Acids Res. 18, 6409–6412.

SantaLucia, J. 1998. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor 
thermodynamics. Proc. Nath. Acad. Sci. U. S. A. 95, 1460–1465.

Schildkraut, C. 1965. Dependence of the melting temperature of DNA on salt concentration. Biopolymers 
3, 195–208.

Sharkey, F. H., Banat, I. M. and Marchant, R. 2004. Detection and quantification of gene expression in envi-
ronmental bacteriology. Appl. Environ. Microbiol. 70, 3795–3806.

Suggs, S. V., Hirose, T., Miyake, E. H., Kawashima, M. J., Johnson, K. I. and Wallace, R. B. 1981. In ICN-UCLA 
Symp. Dev. Biol. Using Purified Genes. Brown, D. D. (ed.) Acad. Press., New York. vol. 23, 683-693.

Szostak, J. W., Stiles, J. I., Tye, B.-K., Chiu, P., Sherman, F. & Wu, R. 1979. Hybridization with synthetic oligo-
nucleotides. Methods Enzymology 68, 419–428.

Tsai, M. F., Lin, Y. J., Cheng, Y. C., Lee, K. H., Huang, C. C., Chen, Y. T. and Yao, A. (2007) PrimerZ: streamlined 
primer design for promoters, exons and human SNPs, Nucleic Acids Res. 35, W63–W65).

Primer Design



102

5

Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R. and Leunissen, J. A. M. (2007) Primer3Plus, an 
enhanced web interface to Primer3. Nucleic Acids Res. 35, W71 - W74.

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Rozen, S.G. 2012. Primer3-new 
capabilities and interfaces. Nucleic Acids Res. 40:e115.

Urakawa, H., Noble, P. A., El Fantroussi, S., Kelly, J. J., Stahl, D. A. 2002. Single-base-pair discrimination of 
terminal mismatches by using oligonucleotide microarrays and neural network analyses. Appl. 
Environ. Microbiol. 68, 235–244.

Weckx, S., De Rijk, P., Van Broeckhoven, C. and Del-Favero, J. 2004. SNPbox: web-based high-throughput 
primer design from gene to genome. Nucleic Acids Res. 32, W170–2.

Weckx, S., De Rijk, P., Van Broeckhoven, C. and Del-Favero, J. 2005. SNPbox: a modular software package 
for large-scale primer design. Bioinformatics 21, 385–7.

Wong, M. L. and Medrano, J. F. 2005. Real-time PCR for mRNA quantitation. Biotechniques 39, 75–85.
Xu, D., Li, G., Wu, L., Zhou, J. and Xu, Y. 2002. PRIMEGENS: robust and efficient design of gene-specific 

probes for microarray analysis. Bioinformatics 18, 1432–1437.

Further Readings

Introduction to practical work with PCR as well to the historical background is found in Sambrook and 
Russell (2001).

Sambrook and Russell. 2001. Molecular Cloning. A laboratory manual. CSHL Pres.

 H. Christensen and J. E. Olsen



© Springer Nature Switzerland AG 2018
H. Christensen (ed.), Introduction to Bioinformatics in Microbiology, Learning Materials in Biosciences, 
https://doi.org/10.1007/978-3-319-99280-8_6

103

Short Introduction 
to Phylogenetic Analysis 
of Molecular Sequence Data
Henrik Christensen and John Elmerdahl Olsen

6.1  Background – 104

6.2  Understanding the Phylogenetic Tree – 105

6.3  Assumptions About Data in Order to Perform 
Phylogenetic Analysis – 108

6.4  Phylogenetic Model Parameters – 109
6.4.1  The Tree Structure – 109
6.4.2  Substitution Matrix and Evolutionary Models – 110
6.4.3  Weighting of Characters – 111

6.5  Phylogenetic Methods – 111
6.5.1  Maximum Parsimony – 111
6.5.2  Distance Matrix/Neighbor Joining – 112
6.5.3  Maximum Likelihood – 114
6.5.4  Bayesian (MrBayes) Inference of Phylogeny – 114

6.6  Comparison of Phylogenetic Methods – 114
6.6.1  Bootstrap – 115

6.7  Data Formats – 116

6.8  Phylogenetic Program Packages – 118

6.9  Activities – 118
6.9.1  Neighbor Joining Phylogeny – 118

 References – 119

6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99280-8_6&domain=pdf


104

6

What You Will Learn in This Chapter
You will learn how to read a phylogenetic tree and evaluate the nature of the data that are 
suitable for phylogenetic analysis. The models required for phylogenetic analysis such as 
the substitution matrix, the tree shape, and the weights that can be put on different posi-
tions in the multiple alignment are introduced. You are then presented for the different 
types of phylogenetic methods in order to learn their basic principles and the program 
packages from where they can be used. You are guided to evaluate the strengths of phylo-
genetic trees and to optimize model parameters. In the activity you will learn how to con-
struct a neighbor joining phylogenetic tree on your own computer.

6.1  Background

Phylogeny (Phylo- from Greek, family, tribe; -geny, ancestry) has become one of the 
most fundamental bioinformatical tools. The definition of phylogeny is that it is a model 
of the relationships between organisms, genes, protein, and other structures based on 
common ancestry. Lamarck (1809) was first to present an evolutionary tree. The tree was 
based on bifurcating lines connecting different invertebrate animal groups as well as ver-
tebrates such as fish, birds, mammals, and subdivisions within the mammals. Darwin 
(1859) used a hierarchical tree-like structure to illustrate common ancestry among 
organisms, alternating processes of variation and selection, and geological stratification 
of organisms. The hierarchical tree and Darwin’s conceptual “tree of life” was used by 
Haeckel (1875) graphically to illustrate the relationships between organisms. Hennig 
(1950, 1966) developed concepts statistically to analyze biological data in a phylogenetic 
perspective.

Phylogenetic analysis will only make sense if the characters compared are homolo-
gous. DNA and protein sequences are homologous if they share common ancestry. The 
justification for homology based on DNA sequence data comparison has promoted 
phylogenetic analysis tremendously. Other reasons to the frequent use of phylogenetic 
analysis are the easy access to molecular sequencing and access to sequence data through 
the Internet and that hierarchical data representation and dichotomies fit well into 
construction of computer programs.

Phylogeny sensu stricto is dealing with the ancestral relationships of species. Currently 
“phylogeny” is also used about numerous biological relationships between populations, 
genes, and groups of organisms. Data expected to include phylogenetic information are 
DNA or protein sequences of homologous genes and morphological characters shown to 
be homologous, while most restriction patterns (PFGE, AFLP, ribotyping) and most DNA 
hybridization data (micro-array, Southern blot, etc.) are data with dubious phylogenetic 
information.

Phylogenetic analysis involving molecular sequence comparisons has at least four uses 
which are central to a range of downstream bioinformatic analysis (. Fig. 6.1):

 5 Classification (taxonomy)
 5 Grouping of genes, proteins, and other molecular sequences including noncoding 

sequences
 5 Epidemiological investigations
 5 Analysis of parallel evolution between host and parasite
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6.2  Understanding the Phylogenetic Tree

In its most simple form, a phylogenetic tree is represented by straight lines joined as bifur-
cations. The free ends of lines represent observed sequences (or any other character com-
pared), and the junctions between lines (nodes) represent the hypothetical ancestors for 
the observed sequences (. Fig. 6.2). The lengths of lines to each sequence reflect sequence 
divergence; however, they can also be of equal length and only show the relationships 
between species.

The tree can either be on a radial form or on a dendrogram form (. Fig. 6.3). On the 
dendrogram form, all lines from the radial tree are represented vertically, and the 
 horizontal lines included have the purpose only of showing the relationships between 
the   horizontal branches. A radial tree can always be represented as a dendrogram with 
the same information and vice versa (. Fig. 6.3).

To get the most obvious information out of a dendrogram, it needs to be rooted with the 
out-group. The out-group is a branch selected to be unrelated to all other branches of the 
tree meaning that it is a branch with a free end which is remarkably longer than the other 
branches. The root is selected as the vertical line at the most far left of the tree. The root is 
selected as the starting point of the dendrogram (. Fig.  6.4). In the example shown on 
. Fig. 6.4, the internal branch is rotated 180° which will bring the longest branch to the root.

In the strict sense, a root is deliberately selected as a branch with a free end without any 
label (see . Figs.  6.5 and 6.6); however, in practice, all methods demonstrated in the 
following are producing unrooted trees, and it will not make sense further to consider true 
rooted trees in this chapter.

4.2 Multiple alignment

6 Phylogeny

8 16S amplicon 11 Molecular typing

7 Classification

9 Full DNA 
metagenomics

       . Fig. 6.1 Relation of this chapter to the other chapters in the book. Phylogeny is based on multiple 
alignment of sequences, and it can be used for classification. Phylogenetic analysis is included as a tool 
in many other applications such as 16S rRNA amplicon sequencing, full DNA metagenomics, and 
molecular typing
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Leaves (vertices) (terminal nodes)
represent sequences compared (genes, proteins)

Nodes (vertices) (internal nodes) are
bifurcations representing speciation events
and hypothetical ancestor sequences

100

78

bootstrap values Branches (edges) are linear and represent sequence diversity (sequence
variation, time and rate of change) but can also be of unit length

The root (vertice) is optional and represents the (hypothetical) ancestor

Linear form of tree: ((A, B), (C, D));

D

C

A B

       . Fig. 6.2 Phylogeny linked to its graphic representation the “tree.” A, B, C, and D represents some kind 
of homologous character that can be compared. In the current context of bioinformatics, they can be 
DNA or protein sequences. The linear formula for the tree shown below is in Newick format (named after 
7 http://www. newicks. com/). This is the most simple way to instruct a computer program to handle a 
phylogenetic tree

Radial tree

A A
A

B

C

C

C

D

D D

B

B

Dendrogram

Free rotation
around all nodes

       . Fig. 6.3 Illustration of free rotation around nodes and visualization as radial tree or dendrogram. All 
three unrooted trees show exactly the same information. The branch lengths are proportional to 
sequence divergence or other similar characters. In the radial tree, all branch lengths are related to the 
sequence diversity. In the dendrogram, it is only the horizontal lines that are related to sequence 
divergence. The vertical lines are inserted to show how the horizontal branches are related. The 
calculation of the distance from A to C is illustrated by the stippled orange line, and it is seen that only 
the lengths of the horizontal lines count in the dendrogram
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Rooting and the outgroup

A
A

B

D

C
D

C

B

Not rooted with outgroup
(should be corrected)

Outgroup

Rooted with outgroup
(correct)

Root

Outgroup

Root

       . Fig. 6.4 Illustration of 
rooting with the out-group. The 
internal branch is mirrored 
placing the longest branch 
leading to D at the root. Note 
that the information obtained 
from the tree before and after 
rooting is the same. The rooting 
with the out-group is only 
performed to improve the 
reading of the tree

A B D E

F

C

       . Fig. 6.5 Definition of monophyletic groups (clades). A monophyletic group (clade) is characterized 
by common descent of all members (at least two) and by all members sharing one and only one 
common branch (dot). This tree includes four monophyletic groups marked in different colors. Note that 
this tree is rooted. The monophyletic group concept applies both to rooted and unrooted trees
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The most important information that can be read from a phylogenetic tree is the loca-
tion of monophyletic groups (. Fig. 6.5). A monophyletic group (clade) is characterized 
by common descent of all members (at least two) and by all members sharing a common 
branch. A phylogenetic tree contains many different monophyletic groups. Only some will 
have biological meaning. Paraphyletic groups have two ancestors, and groups are poly-
phyletic if they have more than two ancestors (. Fig. 6.6). Ancestral taxa tend to be para-
phyletic since they are very difficult to resolve. Polyphyletic groups are without a common 
ancestor, and polyphyletic groups are normally just considered for their negative nature.

6.3  Assumptions About Data in Order to Perform  
Phylogenetic Analysis

A list of nine conditions can be made about the demands to data to make a phylogenetic 
tree (. Table 6.1). All nine assumptions will probably never be satisfied, or it cannot be 
tested if they all are satisfied. The first two about homology and multiple alignment are 
obligatory. It will only make sense to compare homologous sequences based on a good 
multiple alignment.

If some conditions cannot be met in order to construct a phylogeny, a network can be 
made. A network is characterized by trifurcations instead of bifurcations. The program 
SplitsTree (Huson 1998) (7 http://www. splitstree. org/) can be used to analyze the data. It 
is used on data that are related by a network. If a tree of the seven species A–G is compared 
and a “split” between F and B evaluated, ACDF| BEG, “to satisfy a phylogeny, the distances 
across the split should be pairwise higher than on each side; if this is not possible, it must 
be a network.” A weakness of the method is that it is distance matrix based and cannot 
account for all different positions of the alignment individually. The main reason to form 
network structures is weakly defined, but some are related to horizontal gene transfer 

Polyphyletic group members do not share common descent
(C, D, F and E are not included in the group)

PolyphyleticA

C

D
E

F

B

Paraphyletic
Paraphyletic

A paraphyletic group do not include all taxa with common descent
(A is not included with C and D and B is not included with F and E)

       . Fig. 6.6 Para- and polyphyletic trees. Note that this tree is rooted. The para- and polyphyletic group 
concepts apply both to rooted and unrooted trees. Like for the monophyletic groups in . Fig. 6.5, many 
para- and polyphyletic groups can be identified in a phylogenetic tree; however, only a few examples are 
given above since these groups are less interesting compared to the monophyletic
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(HGT). Horizontal gene transfer is a violation of condition 3 in . Table 6.1. HGT will be 
reflected in a network structure, but a network structure will not always have been caused 
by HGT.

6.4  Phylogenetic Model Parameters

6.4.1  The Tree Structure

When we see a tree, we often take it for granted. However, in phylogenetic analysis, the 
tree is only one out of many model parameters that we try to optimize given our data – the 
multiple alignment. We want to identify the tree which best reflects our data. For some 

       . Table 6.1 Assumptions about data

No. Assumption Tests

1 Sequences compared are homologous The homology of molecules can normally 
be verified by high-scoring pairwise 
alignments, for example, by BLAST or by 
analysis of shared domains in relation to 
proteins

2 Positional homology can be established Sequences can be aligned (multiple 
alignment)

3 Sequences have been selected in a way that 
they are representative for the units they are 
meant to represent (species, genes, proteins)

More sampling with stratified representa-
tion of groups at the same level should 
give the same result

4 Independent sampling of the units in 3 such 
as species and genes has been performed

Better stratified representation of groups 
at the same level should give the same 
result

5 Sequences compared have evolved 
independently whether they represent 
species, genes, or proteins

Comparison of other related species, 
genes, or proteins should give the same 
result

6 Nucleotide or amino acid positions have 
evolved independently

Comparison of other related genes should 
give the same result

7 Events are rare Comparison of more conserved 
sequences or conserved regions of 
sequences compared should give the 
same result

8 Same rate of evolution in all sequences 
(some methods)

Further testing of model parameters

9 Long branch attraction can be handled 
(some methods). Long branch attraction is if 
the phylogeny includes very short and very 
long branches, then the risk for the methods 
to reverse long branches on short branches 
increases

Reduced mixing of short and long 
branches should give the same result
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phylogenetic methods, this means we can test different trees against our data. It is shown 
in the right part of the model on . Fig. 6.7. There are two problems with the statistical 
analysis of tree structures. The first is that the statistical distribution of phylogenetic trees 
is very complex and cannot be compared to known statistical distributions like the 
normal – or gamma –distributions. Another problem is that there are unrealistic high 
numbers of trees to compare (Felsenstein 2004). The solution most often chosen is heuris-
tic tree search where only the trees with the highest probability to represent the data are 
compared.

6.4.2  Substitution Matrix and Evolutionary Models

The probability of changing one nucleic acid or one amino acid to another is defined by 
comparing the actual data to a substitution matrix. For this reason, the substitution matrix 
should be selected to represent the data closely. Substitution matrices were described in 
7 Chap. 4. For DNA, an equal probability for exchange of nucleotides is assumed by the 
Jukes and Cantor matrix, whereas compensation for a transition/transversion bias is 
possible by other substitution models. For protein the PAM (point accepted mutations) 
matrix is most suitable for evolutionary and phylogenetic analysis. With maximum 
parsimony and maximum likelihood methods described below, the substitution matrix is 
incorporated into the methods, whereas for the distance matrix/neighbor joining method, 
calculation of the distance matrix is always the first step later followed by the construction 
of the phylogenetic tree.

‘Algorithmic’ ‘Optimality criterion’

‘Tree space’

1
2

3

4
5

1
2

3

4
5

       . Fig. 6.7 Phylogenetic methods. To make a tree from the multiple alignment or to fit a tree to the 
multiple alignment
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6.4.3  Weighting of Characters

The weighting of characters is sometimes included as an additional model parameter. 
Weighting of characters is done with the different columns of the multiple alignment, and 
such weighting is performed to place less weight on characters or nucleotides or amino 
acids with frequent changes. Different weights w1, w2, w3,..., wn are placed on n positions 
of the multiple alignment. For example, with codon positions in DNA, the weights w1 = 3, 
w2 = 4, and w3 = 1 can be added accounting for higher variation in the third codon position 
compared to first and second.

6.5  Phylogenetic Methods

Algorithmic (numeric) methods such as neighbor joining analysis work by simply 
“calculating” a tree based on the data. Only one tree is generated. A specific sequence 
of steps (algorithm) is defined that leads to the tree (. Fig. 6.7). The alternative proce-
dure used in maximum parsimony, maximum likelihood, and Bayesian methods is 
based on a so-called optimality criterion. An optimality criterion (described by an 
objective function) is a procedure for evaluating a given tree in relation to the data 
(. Fig. 6.7).

The interpretation of a phylogeny according to the second approach is not always 
unequivocal. Especially for complex phylogenies, many trees can be considered to reflect 
the phylogeny given the data. The trees accepted according to certain statistical limits can 
be interpreted as the tree “space” given the data (. Fig. 6.7).

6.5.1  Maximum Parsimony

The maximum parsimony tree represents the minimum number of nucleotide or amino 
acid changes given the data (multiple alignment) (. Table 6.2). This method was the first 
phylogenetic method to be used with molecular sequences (Eck and Dayhoff 1966). Two 
fundamentally different ways of comparing data by parsimony exist. One is based on the 
separation of data into shared and derived characters and use of only the derived common 
characters (synapomorphs) for parsimony analysis (Hennig 1966). This procedure cannot 
be used with molecular sequence data because differences between ancestral and derived 
change are normally unknown. The alternative choice with these data is to relax initial 
assumptions about the direction of character changes.

The most strict parsimony method is the Camin and Sokal (1965) parsimony. The 
ancestral state must be known, and only single character changes in one direction are 
allowed. The method can be used to make a phylogeny of small DNA deletions that are not 
assumed to revert but cannot be used with sequences per se. Dollo parsimony refers to 
Dollo’s law: “A complex character once attained cannot be attained in that form again” 
(evolution is irreversible). Only unidirectional changes are allowed although reversals are 
possible but minimized. This method can be used with restriction sites in DNA but not 
sequences. The Fitch-Wagner algorithm allows fully reversible changes and for this reason 
can be used with sequences. It is implemented as DNAPARS and DNAPROT in the 
PHYLIP package (see . Tables 6.2 and 6.3) as well as other programs.
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Most parsimony methods work by “post-order tree traversal” meaning that a tree is 
evaluated in relation to the data starting with the branch tips and moving toward the base 
through all nodes.

6.5.2  Distance Matrix/Neighbor Joining

The first distance matrix method was published by Fitch and Margoliash (1967). Neighbor 
joining (Saito and Nei 1987) belongs to the clustering methods originally developed for 
numeric taxonomy (Sneath and Sokal 1973) (. Table 6.3). It is now one of the most simple 

       . Table 6.2 Phylogenetic methods used with molecular sequence data

Methods Principle Benefit Drawback Use and 
limitations

Options for 
extension

Neighbor 
joining

Algorithmic Simple and fast 
in relation to 
computational 
power

Only one tree Routine draft 
phylogeny

Bootstrap

Maximum 
parsimony

Optimality 
criteria

Includes all 
informative 
positions of 
alignment and 
more trees are 
compared 
based on 
statistical 
criterion

More trees can 
be “equally 
parsimonious”

Routine 
phylogeny of 
closely related 
sequences

Bootstrap

Maximum 
likelihood

Optimality 
criteria

Includes all 
informative 
positions of 
alignment and 
more trees are 
compared 
based on 
statistical and 
probabilistic 
(likelihood 
criterion)

With complex 
phylogenies 
the “maximum 
likelihood” 
tree will never 
be found

Routine 
phylogeny 
with fewer 
sequences

Bootstrap 
and 
likelihood 
ratio tests

Bayesian
(MrBayes)

Optimality 
criteria

Includes all 
informative 
positions of 
alignment and 
more trees are 
compared 
based on 
statistical and 
probabilistic 
(Bayesian) 
criterion)

Very complex 
phylogenies 
are not fully 
resolved

For complex 
phylogenies 
but not too 
complex
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and most frequently used routine methods. First a distance matrix is calculated based on 
pairwise comparison of all sequences with each other. Then the neighbor joining algo-
rithm constructs the tree. Clustering by the neighbor joining algorithm does not need a 
molecular clock (ultra-metric data). Neighbor joining analysis is used for draft phylogenies. 
Neighbor joining analysis can be performed directly from ClustalX (see below in activity 
7 Sect. 6.9.1).

       . Table 6.3 Most commonly used programs and program packages. For a comprehensive list 
of all packages and programs, see 7  http://evolution. genetics. washington. edu/phylip/software. 
html

Purpose Program/
package

URL, references and notes

Neighbor joining, 
maximum parsimony,  
and others

PHYLIP 7 http://evolution. genetics. washington. edu/
phylip. html

The use of the package is free with open 
source code. PC version for use with DOS is 
available. The programs on the package can also 
be used from server

Maximum likelihood and 
maximum likelihood ratio 
test

fastDNAml 7 http://iubio. bio. indiana. edu/soft/molbio/evolve/
fastdnaml/fastDNAml. html (Olsen et al. 1994)

Maximum likelihood and 
maximum likelihood ratio 
test

PhyML 7 http://www. atgc-montpellier. fr/phyml/(Guindon 
et al. 2010)

Neighbor joining, 
maximum parsimony, 
maximum likelihood

MEGA7 7 https://www. megasoftware. net/ (Kumar et al. 
2016). For simple analysis of phylogeny and 
population genetics, the use of MEGA is 
described in the book of Nei and Kumar (2000)

Maximum parsimony 
advanced and others

PAUP 7 http://paup. phylosolutions. com/get-paup/
Source code hidden but see DNAPARS and 

PROTPARS in PHYLIP. Runs best on MAC. Without 
preliminary knowledge, the most easy way to 
start using PAUP is to modify one of the 
examples included when the program is 
downloaded

Maximum likelihood 
advanced applications 
linked to the
specialized population 
genetics program

PAML 7 http://abacus. gene. ucl. ac. uk/software/paml. html

HyPhy 7 http://hyphy. org/w/index. php/Download

Maximum likelihood with 
large datasets

FastTree 7 http://www. microbesonline. org/fasttree/ 
(Price et al. 2010)

RAxML 7 https://sco. h-its. org/exelixis/software. html 
(Stamatakis 2014)

Tree manipulation MacClade 7 http://macclade. org/macclade. html
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6.5.3  Maximum Likelihood

The likelihood is the probability of the parameters (tree structure, substitution model) 
given the data (multiple alignment), and the tree is this way part of the model maximiz-
ing the likelihood in relation to data (. Tables 6.2 and 6.3). Maximum likelihood analy-
sis of phylogeny was first proposed by Cavalli-Sforza and Edwards (1967). It was later 
used on molecular sequences by J. Felsenstein and implemented in the PHYLIP package 
as the DNAML program. An extension including many scripts is available at the fastD-
NAml program (Olsen et al. 1994) (7 ftp://ftp. bio. indiana. edu/molbio/evolve/fastdnaml/) 
(. Table 6.3).

For up to approx. 25 sequences, it is possible for the tree search algorithm to find the 
tree that will give the highest lnL. It can be verified by the loop script with fastDNAml. For 
more sequences it becomes difficult to justify if the tree with the highest lnL is achieved. 
One solution is to accept a cloud of trees with likelihood above a certain threshold. 
Another way to come around the problem is to use Bayesian inference (7 Sect. 6.5.4).

The easiest way to run maximum likelihood analysis is to use the PhyML program 
implemented on the server at 7 http://www. atgc-montpellier. fr/phyml/ (Guindon et  al. 
2010). RAxML is another implementation of maximum likelihood found at 7 https://sco. 
h-its. org/exelixis/software. html (Stamatakis 2014). For large datasets up to a million of 
sequences, FastTree (Price et al. 2010) (. Table 6.3) can be used. It infers approximately 
maximum likelihood phylogenetic tress from multiple alignments of DNA or protein 
sequences.

6.5.4  Bayesian (MrBayes) Inference of Phylogeny

This method is recommended to complex phylogenies not resolved fully by maximum 
likelihood (. Table 6.2). The method is based on the Bayesian statistical principle and is 
nicknamed MrBayes. The method starts with a best guess of a tree to calculate the prior 
probability. Trees are simulated by MCMC (Markov Chain Monte Carlo), and all the best 
trees are kept. The posterior probabilities for the branches in all these best trees are then 
written on to the final tree. These numbers are true probabilities in a statistical sense say-
ing, for instance, that the branch leading to taxon 1 has 93% probability. The program is 
available from 7 http://mrbayes. sourceforge. net/. At this website a very good and compre-
hensive manual can be found (. Table 6.3). The installation and execution of the program 
are not always running so smoothly related to conflicts between versions of the program 
and versions of Windows. To solve this and similar problems in bioinformatics, great 
patience is needed.

6.6  Comparison of Phylogenetic Methods

Phylogenies are in most cases hypothesis about evolution, and appropriate approaches to 
test phylogenetic methods are few. One can either use simulated data to define a phylogeny 
and then compare methods against this, or one can use real evolution of organisms with 
fast evolution, for example, virus. Exact phylogenies for organisms with really well-defined 
paleontologic evidence may also be used.
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A phylogenetic method is consistent for an evolutionary model if the results obtained 
by the method converge on the correct tree as the data become infinite. A phylogenetic 
method has high efficiency if it quickly converges on the correct solution as more data are 
applied to the problem. A phylogenetic method is robust if it converges on the correct 
solution even with violations of the assumptions about the evolutionary model (Hillis 
1995). Given the assumptions about data have been optimally handled (. Table 6.1), we 
will of course prefer a phylogenetic method which is consistent, efficient, and robust.

Identical sequences should be avoided since it will only extend the time of computa-
tion and not add any new information to the analysis. For complex phylogenies all taxa 
should be included since it will be very difficult to judge which ones to exclude. A sym-
metric topology is said to indicate a balance between speciation and extinction, whereas a 
more comp-like topology should indicate either very high speciation or very high extinc-
tion rates.

Probably mainly for prokaryotes, a standard operating procedure for phylogenetic 
inference (SOPPI) using rRNA marker genes has been described by Peplies et al. (2008).

6.6.1  Bootstrap

Bootstrap analysis is a permutation test. The aim of permutation tests is to show how well 
supported the branches are by the data. The bootstrap estimates the sampling distribution 
of a group of sequences by generating new samples by drawing with replacement from the 
original data (. Fig.  6.8). The alternative jackknife analysis computes the statistic of 

The original data are simulated by drawing columns randomly with replacement
100 times (or a higher number). The phylogenetic analysis is repeated and the
number of branched common in all 100 trees summarized.

All 100 trees are compared and the frequency of the same branches in the
simulated tree are labelled on to the original tree eg. 100 and 78 on Fig. 6.2.

       . Fig. 6.8 A simple example with five short sequences (species) of only four nucleotides in length to 
show how bootstrap analysis works. Three replicates of the original multiple alignment are shown (the 
original multiple alignment is not shown). The simulated multiple alignments are each constructed by 
drawing (with replacement) one column at a time from the original multiple alignment. For each 
simulated multiple alignment, a phylogenetic tree has been constructed. The frequency that each 
branch occurs in the simulated trees is the bootstrap value. The bootstrap value can then labelled on 
the same branch in the original tree
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interest for all combinations of the data where one (or more) of the original data points is 
removed. It will not be further described here.

For the bootstrap, the original multiple alignment data are simulated by drawing col-
umns randomly with replacement 100 or 1000 times. The phylogenetic analysis is repeated 
for each of the 100 or 1000 simulated alignments (. Fig. 6.8) and the number of branches 
common in all 100 or 1000 trees summarized in a consensus tree. These values are then 
compared to and written on the original tree.

The result of the bootstrap is a support for a particular internal branch in the original 
tree. As a consequence, the out-group receives no bootstrap since it is not an internal 
branch but a terminal. If reviewers who are not familiar with phylogenetic analysis 
request a bootstrap value to the out-group, you can use two out-group taxa, and then 
their common branch will receive an out-group. Unfortunately, this contradicts the gen-
eral rule that there should be one and only one out-group of appropriate distance and 
relatedness to the taxa investigated for monophyly. The bootstrap values cannot be 
evaluated in a strictly probabilistic sense since it is just a parameter indicating the 
robustness of the branches in the tree. Bootstrap values at 90% or higher are very “good,” 
those within 50–89% are acceptable, and those below 50% are not considered. Some 
branches may not receive a bootstrap value at all. This can happen if this branch has not 
been simulated in the permutation test. With closely related sequence, another problem 
can be rather low bootstrap values simply because the simulation imposes random noise 
into the data.

6.7  Data Formats

The most common format is the classical PHYLIP format.

 z Example of PHYLIP Interleaved Format:

On the first line are the number of species (four in this example) and sequence length 
(20 in this example). On the next line the sequences are listed. Each sequence starts with 
a name no longer than ten characters. The sequence starts on position 11. Longer sequences 
continue in blocks separated by a blank line shift but without the species name. In the 
classic PHYLIP format, all blank spaces after position 11 should be removed. The alterna-
tive is PHYLIP, non-interleaved, where sequence after sequence is listed with line breaks. 
Remember to add “I” on the first line.

  4 20
  Species001aggcgctagc
  Species002agtagctagc
  Species003agtccctagc
  Species004agtcgttagc

  aggcgctagc
  aggcgctagc
  aggcgctagc
  aggcgctagc
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 z Example of PHYLIP Non-interleaved:

For more advanced use of the PHYLIP format, different options in the form of a capi-
tal letter can be added on the first line and further instructions given on the second. For 
example, J for jumble on the first line changes the order that the lines in the alignment are 
read into the phylogenetic analysis.

Another common format is the NEXUS format originally used with PAUP (. Table 6.3) 
but now also required for many other phylogeny programs including MrBayes.

The format looks like this:

If there are problems getting a “new” phylogeny program to work, one can first try to 
match an implementation of the program to the correct operating system (Windows, Mac, 
Linux). The next step will be to look at the data format and try to optimize. It is always a 
good idea to run a small test data set and even better to run example datasets included with 
the program. Two main problems often realized with data formats are that the output of the 
multiple alignments is interleaved but the program only reads non-interleaved and the 
other that the output of multiple alignments is with line breaks but the program only works 
without line breaks. Different solutions can be tried. In ClustalW/X it is possible to specify 
different output formats. For instance, in ClustalX, this can be specified under Alignment 
(top menu bar) and then selecting Output Format Options. Here is Clustal shown as default; 
however, for phylogenetic applications, PHYLIP, NEXUS, and FASTA are also relevant.

The final hard way is “manual” editing. Search and replace (space with nothing) from 
text editor. Lines can be joined with the UNIX text editor, vi. If these procedures are to be 
used more frequently, it should be considered to write scripts for editing.

  4 20 I
  Species001aggcgctagc
  aggcgctagc

  Species002agtagctagc
  aggcgctagc

  Species003agtccctagc
  aggcgctagc

  Species004agtcgttagc
  aggcgctagc

#NEXUS
   BEGIN DATA;
   dimensions ntax=11 nchar=1495;

   format datatype=dna interleave=yes gap=-;

   matrix
   HinfluNPxx  AGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCTTAACACATG
   HinflKW20   AGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCTTAACACATG
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6.8  Phylogenetic Program Packages

Several hundreds of packages are available, but only a few are widely used (. Table 6.3). 
The classical package PHYLIP has been used for decades. It includes programs for variants 
of parsimony analysis, distance matrix analysis, tools to make consensus trees, as well as 
maximum likelihood analysis. For more advance maximum likelihood analysis, packets 
like fastDNAml, PhyML, FastTree, and RAxML are available. PAUP is the classical package 
for parsimony analysis, and MEGA7 can both perform the main phylogenetic analysis and 
analysis needed in population genetics.

6.9  Activities

6.9.1  Neighbor Joining Phylogeny

Install ClustalX on your PC from 7 ftp://ftp. ebi. ac. uk/pub/software/clustalw2/2. 0. 10/.
Download 7 clustalx-2. 0. 10-win. msi, install, and locate the icon to the desktop.
Mac users should use the big file (9.5 Mb).
Do multiple alignment with ClustalX (if not already done in 7 Chap. 4).
Open the program by double-clicking on the icon.

File | Load sequences and select the sequences in FASTA format from the location on 
your computer. The sequences that you want to use as input should be in one file only with 
all sequences in FASTA format:

Alignment | Do complete Alignment | ok
Choose Trees | Draw Tree and then Trees | Bootstrap N-J tree. In both cases confirm 

by “ok” if output files are stored where you expect. The output is automatically saved in the 
same folder as the input file, and this folder should have write access (if you define 1000 
bootstrap replicates (default), the output will be numbers of 1000 and not %).

To draw the tree, you need to install MEGA7.
From 7 http://www. megasoftware. net/, press Download at Windows (or what operat-

ing system you prefer). Write the required information, download to PC, install the pro-
gram, and locate the icon to the desktop.

Open MEGA7 by the icon.
User Tree | Display Newick Trees, browse to the directory where you stored the 

ClustalX input/output, and choose the file with extension “*.phb” (or any other exten-
sion). At this step the tree should be graphically presented with bootstrap values.

Mark “Place root on branch” tool to the left and select an out-group.
Manipulate the tree by “Swap” or “Flip” to root the tree with the out-group and to 

bring the rest of tree in shape. Often rotation around a branch horizontally can give better 

>sequence1
ATGACGATAC...
>sequence2
GATAGATAGACS...
etc.
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order. It is also possible to adjust the graphics such as line thickness and fonts in View | 
Options.

Save the tree from Image | Save as EMF. The tree can be inserted into PowerPoint or 
Word by Insert | Picture, and select the file in emf-format. In PowerPoint you can manip-
ulate text and lines in the tree further: mark the picture with the tree inserted, right click 
and select ungroup and then again ungroup, and then you should be able to move text 
boxes and lines as well as to edit the text.

Note: in the example above, ClustalX is used for multiple alignment and construction 
of the tree, whereas MEGA7 is only used to construct the tree. MEGA7 can also be used 
for the whole analysis including multiple alignment and tree construction.
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 Take-Home Messages

 5 A phylogeny is a model of the relationships between organisms, genes, pro-
teins, and other structures based on common ancestry.

 5 An unrooted phylogenetic tree is constructed as a system of lines where the 
free ends represent actual sequences compared and the ends joined by bifur-
cations represent hypothetical ancestors.

 5 The most important information read from a phylogenetic tree is the location 
of the monophyletic groups.

 5 A monophyletic group has one and only one common branch, whereas para-
phyletic groups have two common branches.

 5 The basic assumptions about data in order to perform phylogenetic analysis 
are that sequences compared are homologs meaning that they shared (or are 
thought to have shared) a common ancestor and that they can be aligned.

 5 Model parameters required for phylogenetic analysis include the substitution 
matrix, the tree shape (topology), and the weights put on different positions in 
the multiple alignment to account for variable and conserved regions.

 5 The most frequently used statistical principles for phylogenetic methods to 
construct unrooted trees are parsimony, neighbor joining, maximum likeli-
hood, and Bayesian.

 5 The robustness of a phylogenetic tree given a dataset can be evaluated by 
bootstrap analysis which is a comparison of simulated trees based on simula-
tions with replacement of the original multiple alignment.
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What You Will Learn in This Chapter
You will be introduced to the classification of prokaryotes from species to the higher levels 
of class and phyla. You will learn that the 16S rRNA gene sequence comparison including 
phylogenetic analysis provides the main characteristics for classification. For control of the 
16S rRNA classification, DNA-DNA hybridization and more recently increasing use of 
multilocus sequence analysis on the whole genomic level are used. You will learn how DNA- 
DNA hybridization can be performed in silico by comparison of whole genomic sequences. 
In the activity you will learn to identify an isolate by 16S rRNA sequence in the EzBioCloud 
server.

7.1  Introduction

Bioinformatics is important for classification and identification since all prokaryotes have 
been classified based on the phylogeny of the 16S rRNA gene sequence. This gene sequence 
has also to great extent been the gold standard for identification. Now whole genomic 
sequences are increasingly used for classification and identification. The analysis of 16S 
rRNA gene sequences and also whole genomic sequences involves bioinformatics 
described in many other chapters of this book (. Fig. 7.1). Unfortunately we cannot cover 
the classification and identification of microfungi and other eukaryotic microorganisms 
in this chapter; however, the same principles apply to these organisms as well.

2.1 Assembly 3.1–3.5 Datbases 4.2 Multiple alignment

4.3 BLAST7 Classification
and identification

8 16S rRNA amplicon 9 Full DNA 
metagenomics

6 Phylogeny

       . Fig. 7.1 Relationships between sequence-based classification and identification and the other 
chapters of the book. DNA sequence-based classification involves assembly of sequences, multiple 
alignments, phylogeny, and search in the databases. 16S rRNA-based identification also involves 16S 
rRNA amplicon sequencing described in the next chapter. Full DNA metagenomics both include 
information from the 16S rRNA gene sequence and from all other genes
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The phenotype is still important in classification. New species cannot be classified and 
named without at least two phenotypic differences to existing species. Phenotypic proper-
ties include such diverse characteristics as micromorphology, physiology, biochemistry, 
and chemotaxonomy. Attempts are being made to predict the phenotype from the whole 
genomic sequence. Unfortunately only few phenotypic characteristics can be precisely 
predicted from the gene sequences.

Identification is the part of taxonomy that associates a bacterial strain with a species 
name (. Fig. 7.2). The traditional biochemical and physiological methods used for identi-
fication of bacteria have serious limitations with respect to accuracy, and they are very 
time-consuming. Although fast high-throughput versions of these methods are available, 
there are still problems with the accurate identification of prokaryotes including some 
human pathogens and food contaminants. Especially prokaryotes of veterinary impor-
tance have been underrepresented in the databases of the fast phenotypic identification 
systems.

The comparison of 16S rRNA gene sequences has been the first choice to identify iso-
lates that have been problematic to identify by other means. Other gene sequences, for 
instance, of the rpoB gene have often been the choice to identify problematic isolates 
belonging to species with narrow 16S rRNA gene sequence relationships (Adékambi et al. 
2009; Korczak et al. 2004; Case et al. 2007).

7.2  Classification of Prokaryotes

7.2.1  Classification Based on 16S rRNA Gene 
Sequence Comparison

16S rRNA sequence comparison is the primary character to classify bacteria at species and 
genus level as well as into the higher taxonomic categories (family, order, class). The reason 
for the choice of the 16S rRNA gene is that it forms the backbone of the ribosomes and 

Classification

Identification

Nomenclature

- name a unique taxon

- recognize named species

- group bacterial strains into units (taxa)
that share a unique set of
characteristics

16S rRNA gene sequences are the
most important for classification

16S rRNA gene sequences can be
used for Identification

Family

Genus

Species

       . Fig. 7.2 Taxonomy of prokaryotes
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ribosomes are of only one type in all organisms. The comparison of the 16S rRNA sequence 
can therefore be used to model the natural relationships and evolution of bacteria. rRNA 
can be sequenced (DNA) and allow separation of all bacteria to genus (and species) level. 
For the most there is less than 97% 16S rRNA gene sequence similarity between species 
and less than 95% 16S rRNA gene sequence similarity between genera. As mentioned 
some species are closer related than 97% 16S rRNA gene sequence similarity, and for them 
other genetic methods such as DNA-DNA hybridization need to be performed to confirm 
species status in regard to classification (see above).

Members of Archaea are so different in their 16S rRNA genes that they need other 
primer sets. The most simple starting point is a colony of an isolate from an agar plate 
transferred under sterile conditions to the tube with the PCR mix. For some bacteria, 
DNA needs to be purified before the PCR.  The traditional starting point is PCR 
amplification of the 16S rRNA gene with conserved primers that in principle can be used 
for all Bacteria (. Table 7.1). Some of the PCR product is used for agarose gel electrophoresis 
to confirm that a PCR product has been generated and that fragments are of expected size 
(. Table 7.1). The rest of the DNA in the PCR tube is purified to reduce the content of 
PCR primers and sent to a sequencing company with the sequencing primers (. Table 7.1) 
(Edwards et al. 1989), or you can do it yourself if equipment is available. Traditional Sanger 
sequencing is the most robust choice in the moment although high-throughput methods 
such as PacBio and Nanopore should provide full-length 16S rRNA gene sequences on 
the genomic level. The DNA sequence can be assembled by a relevant computer program 
(see 7 Chap. 2). It is important to assemble the consensus sequence from reads made both 
by forward and reverse sequencing primers. When the consensus sequence is generated, it 
is stored in text format and used as a query for comparison to all “subjects” in a database 
and be used further for multiple alignments and phylogeny (7 Chaps. 4 and 6).

Full-length 16S rRNA sequence can often not be extracted from the genomic sequence 
if it has not been fully closed. The 16S rRNA gene is in multiple copies which limit the full 
assembly of the whole genomic sequence. In this case the 16S rRNA gene sequence needs 
to be determined by traditional Sanger sequencing (Chun et al. 2018).

7.2.2  Classification Based on DNA-DNA Hybridization  
Between Total DNA

The way a mixture of denatured DNA preparations from two different bacterial strains 
hybridize can be used to classify the strains at species level. The degree of DNA-DNA 
reassociation (DDN) also referred to as DNA-DNA hybridization or DNA-DNA binding 
is measured by heating the DNA preparations for the two strains to be compared. 
Heating will denature the double-stranded DNA to single-stranded DNA.  Then the 
DNA preparations are mixed in equal amounts and slowly cooled. The DNA will then 
start to renature to double-stranded DNA. The DNA of the mixture of the two strains 
will renature less perfectly compared to DNA from the same strain. The DNA-DNA 
hybridization between strains of the same species will be more than 70%, whereas the 
DNA-DNA hybridization between strains of the different species will be less than 70%. 
DNA-DNA hybridization or the alternative methods are used as a control to classify 
species when their 16S rRNA gene sequence similarity is higher than 97%. Traditional 
DNA hybridization is time-consuming and costly, and alternative procedures have been 
used to estimate.
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Whole genome sequence comparison has become a new kind of standard to esti-
mate DDN. The use of whole sequence comparison to separate species was first formu-
lated as average nucleotide identity (ANI) (Konstantinidis and Tiedjem 2005) and later 
modified by Goris et al. (2007). This index is based on the BLAST (7 Chap. 3) program 

       . Table 7.1 Primers for 16S rRNA PCR and sequencing (Sanger)

Primer Application Sequence 5′ – 3′ References

The classical set for Bacteria

8-27fa PCR and 
sequencing

AGAGTTTGATCCTGGCTNAG Edwards et al. 
(1989) and 
Weisburg et al. 
(1991)

1390-1408r PCR and 
sequencing

TGACGGGCGGTGTGTACAA Lane et al. (1985)

518-536r Sequencing GTATTACCGCGGCTGCTGG Lane et al. (1985)

785-805r Sequencing GACTACCNGGGTATCTAATCC Dewhirst et al. 
(1992)

785-805f Sequencing GGATTAGATACCCNGGTAGTC

Alternatives for Bacteria

5f PCR and 
sequencing

TTGGAGAGTTTGATCCTGGCTC Simmon et al. 
(2006)

810r Sequencing GGCGTGGACTTCCAGGGTATCT Simmon et al. 
(2006)

1194f Sequencing ACGTCATCCCCACCTTCCTC Simmon et al. 
(2006

rD1r PCR and 
sequencing

AAGGAGGTGATCCAGCC Edwards et al. 
(1989) and 
Weisburg et al. 
(1991)

16SUNIr PCR and 
sequencing

GTGTGACGGGCGGTGTGTAC Lane et al. (1985) 
and Kuhnert et al. 
(2002)

Archaea

SDArch0333aS15f PCR and 
sequencing

TCCAGGCCCTACGGG Lepp et al. (2004)

SDArch0958aA19r PCR and 
sequencing

YCCGGCGTTGAMTCCAATT Barns et al. (1994) 
and DeLong (1992)

SDArch1378aA20r PCR and 
sequencing

TGTGTGCAAGGAGCAGGGAC Lepp et al. 2004

f forward, r reverse
aNumbering follows E. coli rrnB (NCBI/DDBJ/EBI acc. no. J01696)
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with certain rules for the fragment length compared and for the sorting of output. The 
program compares fragments of 1020  nt from one genome against all fragments of 
similar length in the other genome. It is then calculated how many fragment with at 
least 30% identity and match in length of at least 70% can be identified out of total frag-
ments compared. Investigations of correlation to DDN have showed that an ANI of 
95% corresponds to the conventional 70% DDH cutoff (Richter and Rosello-Mora 
2009). For practical applications, an ANI range of 93–96% should “be treated cau-
tiously” (Rosselló-Móra and Amann 2015), and species should only be separated based 
on this very narrow interval if DDN data are supported by other very stable phenotypic 
characteristics.

Later the tool GGDC (genome-to-genome distance calculator) has been setup on a 
server with public access offering the same opportunities as ANI (7 http://ggdc. gbdp. 
org/). The principle behind this program is also based on BLAST; however, this program 
uses the comparison of high-scoring sequence pairs (HSP) (7 Sect. 4.3) for the compari-
son, and DDN can be estimated. Therefore the output from GGDC is sometimes referred 
to as digital DDN (dDDN).

JSpecies (7 http://www. imedea. uib. es/jspecies/download. html) (Richter and Rosello- 
Mora 2009) has facilities for ANI using both BLAST and MUMmer approaches 
(. Table  7.2). The MUMmer approach is only for closed genomes. With the BLAST 
approach, non-closed genomes can be used; however, the use of more than 50% of the 
genome is recommended.

The GC content is of taxonomic value in the way that species of the same genus nor-
mally will not differ more than 5% in GC content. However, different genera can have the 
same GC content. It is standard to determine the GC content for the type strain of the type 
species of a genus. The GC content can be determined based on the whole genomic 
sequence which is easier and more precise than previous biochemical methods like HPLC 
or buoyant density centrifugation methods (Kim et al. 2015) (. Table 7.3).

Minimal standards have been formulated for the requirements to the quality of whole 
genomic sequences to be used for taxonomic studies (. Table 7.3). The coverage used to 
determine the assembled sequence should be a minimum of 50. Information about 
genome size, GC content, number of contigs, and N50 need to be provided in publications 
including this type of information. It is a prerequisite that the assembled genomic sequence 
is deposited with a public database (7 Chap. 3).

       . Table 7.2 Bioinformatic tools to predict DNA-DNA renaturation based on whole genomic 
sequences

Name Content References URL

JSpecies ANI, 
MUMmer

Richter and Rosello-Mora (2009), Goris 
et al. (2007)

7 http://imedea. uib-
csic. es/jspecies/

GGDC GGDC Auch et al. (2010a, b) 7 http://ggdc. dsmz. de/
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7.2.3  Classification Based on Multilocus Sequence  
Analysis (MLSA)

For classification based on phylogenetic relationships, many conserved genes can be used 
to complement the 16S rRNA analysis. Multilocus sequence analysis (MLSA) is based on 
DNA sequences of conserved genes which are then concatenated meaning that they are 
joined end by end. MLSA has been used for control of 16S rRNA classification during the 
past two decades based on up to ten genes. The increased availability of whole genomic 
sequences has allowed the comparison of full gene sequences of in principle all conserved 
genes or protein sequences of a taxonomic unit. For whole genomic MLSA, a lower limit 
of 31 genes or protein has been proposed (. Table 7.3). MLSA for classification is used on 
species level and higher taxonomic levels. In 7 Chap. 11, we will see that MLSA also can 
be used below the species level for typing.

7.3  Classification of the Taxonomic Hierarchy

7.3.1  Classification of Species

The species represent the main taxonomic unit in classification. Species include pro-
karyotes with 16S rRNA gene sequence similarities higher than 97.0%. If 16S rRNA 
sequence similarity higher than 97% between different species are found, then DNA-
DNA hybridization or comparable methods have been used to confirm the diversity of 
such species since members of a species also need to be related with more than 70% 
DNA reassociation (Tindall et al. 2010). Whole genomic sequence comparison to group 
species at the genotypic level is now replacing experimental DNA-DNA hybridization 
(see 7 Sect. 7.2.2).

       . Table 7.3 Proposed minimal standards for use of genomic taxa for taxonomy of prokaryotes 
(Chun et al. 2018)

Parameter Minimum requirements to documentation in 
scientific publications

GC content Needs to be stated

Genome size Needs to be stated

Number of contigs Needs to be stated, limit depends on taxon

N50 Needs to be stated, limit depends on taxon

Coverage More than 50

Deposition of sequence Assembled DNA sequence

Number of conserved genes for phylogeny More than 30

Sequence-Based Classification and Identification of Prokaryotes
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The comparison of housekeeping gene sequences has recently been used for genotypic 
definition of species. Based on the work of Zeigler (2003), Kuhnert and Korczak (2006) 
proposed that sequence comparison of the three genes recN, rpoA, and thdF could replace 
DNA-DNA hybridizations. They further showed that even sequencing of a single gene, 
recN, might serve this purpose.

7.3.2  Classification of Genera

The rules and recommendations are less strict compared to species. As mentioned, usually 
less than 95% 16S rRNA gene sequence similarity have been determined between genera 
(Yarza et al. 2008). In metagenomic analysis based on partial 16S rRNA gene sequence, a 
96% cutoff has been practiced (Ley et al. 2008). In parallel to ANI for nucleotides, there is 
also an ANI based on protein comparison (Qin et al. 2014). The percentage of conserved 
proteins (POCP) formulated by Qin et al. (2014) has been used to verify the classification 
at genus level. Different genera should have less than half of their proteins in common 
according to that definition.

7.3.3  Classification of Families, Orders, Classes, and Phyla

The rules and recommendations are again less strict for the higher hierarchical units 
of families, orders, classes, and phyla. Sometimes families have been created to find a 
home for a new genus which again has created a new order. Analysis of 16S rRNA 
gene sequence showed a minimum of 87.5% identity between type strains of type spe-
cies of type genera of different families (Yarza et al. 2008) (. Fig. 7.3). There are no 
16S rRNA gene sequence limits; however, families, orders, classes, and phyla should 

Prokaryotes: Bacteria (renum nov.) and Archae (regnum nov.)

‘Phylum’ [Proteobacteria]

Class (klasse) [Gammaproteobacteria]

Order (orden) [Enterobacteriales]

Family (familie) [Enterobacteriaceae]
Prokaryotic Code

Genus (slaegt) [Escherichia]

Species (art)

Subspecies (underart)

[Escherichia coli]

       . Fig. 7.3 Taxonomic categories of prokaryotes. The ones covered by the International Code of 
Nomenclature of Prokaryotes are validated names written in italics font and they are universal in all 
scientific publishing. For new classes the naming should follow the genus (ICNP rule 8). There is a 
proposal to include phylum as a validated name. Examples are included in brackets

 H. Christensen and J. E. Olsen



129 7

be monophyletic (see 7 Chap. 6). Work is in progress to define families, orders, 
classes, and phyla based on whole genomic comparison using the MLSA approach 
with a weight on the conserved genes. Names of families, orders, and class are covered 
by the International Code of Nomenclature of Prokaryotes, whereas phyla are not. For 
new names of families, orders, and classes, the type taxon has to carry the genus 
names. This has not been made retrospective in order not to cause too much confu-
sion (Escheriaceae, Escherichiales, Pseudomonadia instead of Enterobacteriaceae, 
Enterobacteriales, and Gammaproteobacteria) (Oren et al. 2015, 2016).

7.4  Rules for the Naming of a New Prokaryote

The way prokaryotes (Bacteria and Archaea) are named is a consequence of International 
Code of Nomenclature of Prokaryotes (Parker et al. 2015). There are rules for naming of 
prokaryotes but not for their classification. Names published in International Journal of 
Systematic and Evolutionary Microbiology (IJSEM) are directly validly names, whereas 
names validly published outside IJSEM can become validly named if accepted for the 
validation list (VL) in IJSEM. All scientific publishers follow this nomenclature, and they 
are used as identifiers in databases including those dealing with bioinformatics.

Very few species are homotypic synonyms (two different names can be used for the 
same species). Klebsiella mobilis and Enterobacter aerogenes have the same type strain and 
therefore are homotypic synonyms, and as a consequence either name can be used. Users 
of the names seem to favor Enterobacter aerogenes with 48,200 hits in Google Scholar 
(7 https://scholar. google. dk/) compared to only 6860 for the other. Each of the species has 
its own circumscription, and one can use the name that fits the circumscription one finds 
most correct. A heterotypic synonym is when the same taxon that has two names but dif-
ferent type strains. In this case the name first published will normally have priority.

Prokaryotic scientific names are put in italic font since they are derived from Latin. 
They are binary combinations of a genus followed by a single specific epithet. The 
taxonomy of prokaryotes was originally derived from botanical rules; however, 
independent rules have existed for bacteria for nearly 100 years. Only names included 
with the Approved Lists of Bacterial Names in 1980 (Skerman et al. 1980) are valid. Names 
after 1980 are on List of Prokaryotic names with Standing in Nomenclature (LPSN) 
(7 http://www. bacterio. net/) (Parte 2014).

7.4.1  Bacterial Species Names Are Linked to the Type Strain

The type strain is one and only one well-characterized strain from the species. To secure 
loss and access to the strain, it needs to be deposited in at least two culture collections with 
public access. Such cultures are copies of the same strain but have different strain 
designations in the form of a letter and number code. The type strain is a “name bearer,” 
and it follows the species even when it is transferred to a new genus. For example, when 
Streptococcus faecalis (type strain ATCC 19433) was transferred to Enterococcus faecalis 
(type strain ATCC 19433), the type strain was unchanged. The type strain may have lost 
virulence properties due to repeated transfers in culture collections, and it is mostly only 
a good reference for taxonomic purposes. The type strain should always be included as a 
reference for classification and identification.

Sequence-Based Classification and Identification of Prokaryotes
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7.4.1.1  Example of an Old Bacterial Name that Never Changed
Staphylococcus aureus was validly published by Rosenbach 1884, and it is the type species 
of the genus Staphylococcus. The name is valid since it was included in the Approved Lists 
of Bacterial Names (Skerman et  al. 1980). The type strain is ATCC 12600  =  ATCC 
12600-U = CCM 885 = CCUG 1800 = CIP 65.8 = DSM 20231 = HAMBI 66 = NCAIM 
B.01065 = NCCB 72047 = NCTC 8532. The different numbers reflect the deposition of the 
same strain in different culture collections with public access (List of Prokaryotic names 
with Standing in Nomenclature).

7.4.1.2  Example of a Taxon with Many Reclassifications 
and Changes in Genus Name

Brachyspira hyodysenteriae was reclassified from Treponema by Ochiai et al. (1997). It was 
originally named Treponema hyodysenteriae (Harris et al. 1972). This name is its baso-
nym, meaning first name (Harris et al. 1972). The name was included with the Approved 
Lists in 1980 (Skerman et al. 1980). In between it was named Serpula hyodysenteriae by 
Stanton et al. (1991) since it was reclassified from Treponema hyodysenteriae. This name 
had to be changed 1 year later to Serpulina hyodysenteriae by Stanton (1992) since Serpula 
is illegitimately being used for a fungal genus Serpula. In between, Brachyspira had been 
named by Hovind-Hougen et al. (1982) and had to be used instead of Serpulina since 
Brachyspira was an earlier synonym of Serpulina. Despite of the changes, the type strain 
of the species was always the same: B78 = ATCC 27164 = CCUG 46668 = NCTC 13041 
(List of Prokaryotic names with Standing in Nomenclature) (7 http://www. bacterio. net/) 
(Parte 2014).

7.5  The Benefits of Sequence-Based Identification

The comparison at DNA sequence level is definitive. DNA sequences can be compared on 
global scale and handled as electronic public information that for many applications 
substitute the analysis of live strains. Besides the applications of DNA sequences for 
identification to the species level, DNA sequence-based identification can be useful for 
molecular epidemiology and population genetics (see 7 Chap. 11), and annotations of 
DNA sequences can be used to predict phenotypic properties.

7.5.1  16S rRNA Sequence-Based Identification, Step-by-Step

The principles for sequencing of the 16S rRNA gene was outlined in 7 Sect. 7.2.1. When 
the 16S rRNA gene sequence has been determined, comparison in EzBioCloud (Yoon 
et al. 2017 (7 https://www. ezbiocloud. net/) allows identification by comparison to all type 
strains of bacterial species with a validated name (7 Activity 7.6). Often such comparison 
is more precise than comparison in GenBank by BLAST search since the status of strains 
used to generate the sequence in GenBank is often not known. A phylogenetic 16S rRNA 
sequence-based analysis can be needed if similarity is obtained to more closely related 
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species (see 7 Chap. 6). The combination of database search and phylogenetic analysis can 
be used to improve the identification of an isolate to species and genus level. Matrix- 
assisted laser desorption ionization (MALDI) time-of-flight mass spectrometry (TOF 
MS) has recently become an alternative method for fast and cheap identification of bacte-
ria. Current limitations are with limited databases and limited resolution between some 
species. 16S rRNA sequence identification is a gold standard to make the MALDI- TOF 
database.

7.5.2  16S rRNA-Based Identification Without Culture

In the late 1980s, it became possible to characterize prokaryotes from their natural habitat 
without culture. The rRNA was extracted, reverse transcribed to DNA, cloned, and 
sequenced (Ward et al. 1990). Later, PCR was used to amplify the 16S rRNA genes from 
environmental DNA, and it was then cloned and sequenced. Recently high-throughput 
sequencing technology has been combined with 16S rRNA target regions V1–V3 to deep 
sequence environmental samples (see 7 Chap. 8). The technology is part of metagenomics 
and probably the most rapidly evolving field of microbiology. The current drawback with 
16S rRNA-targeted metagenomics is the short-read length providing low accuracy for 
species-level identification.

7.6  Activity

Sometimes you end up with a bacterial isolate that is difficult to identify by phenotypic 
means, or you do not believe in the result from the identification by a kit. Then you PCR 
amplify the 16S rRNA gene and sequence the DNA. After assembly of the sequence, you 
want to perform a database search to obtain the most accurate identification. Traditional 
nucleotide BLAST in, e.g., GenBank, can be performed. The problem is that so many 
sequences are deposited and you cannot always rely on the species name associated with a 
sequence. The optimal reference is the sequence of the type strain. However, it is not 
always so easy to locate in a BLAST output. To overcome this, a server has been set up by 
professor Chun and his team where a search is performed against 16S rRNA sequences of 
type strains only. For the activity we will download a 16S rRNA gene sequence from NCBI 
and assume it is unknown and recently determined in the lab. Download the sequence 
with acc. no. KX858032 from NCBI like described in 7 Chap. 3. Use EzBioCloud (7 http://
www. ezbiocloud. net/identify) to identify the sequence. You need to register for a free 
account. Press Identify single sequence and paste the sequence in FASTA format into the 
window, leave other parameters default, and Next and then Submit when the sequence has 
been verified.

What is the top hit taxon and similarity %? Also click at “+” in the Task column to see 
alternative less likely identifications. In this activity the expected result is 96.1% similarity 
which is lower than the species threshold. Based only on the 16S rRNA-based identifica-
tion, this strain would represent a new species.
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What You Will Learn in This Chapter
The experimental setup to use of 16S rRNA amplicon sequencing will be introduced. The 
different steps in the bioinformatical analysis will be explained with background in the 
major pipelines mothur and QIIME 2. We have extracted examples from mothur in the text, 
and we have chosen to demonstrate QIIME 2 in more detail in 7 Activity 8.10.1. You will be 
able to get a good start with the analysis of 16S rRNA amplicon data with QIIME 2.

8.1  Use of 16S rRNA Amplicon Sequencing, Generation of Data, 
and Bioinformatics Pipelines

8.1.1  Use of 16S rRNA Amplicon Sequencing and Generation 
of Raw Data

The 16S rRNA gene sequence is used to classify all prokaryotes as described in 7 Chap. 7, 
and 16S rRNA amplicon sequencing is an application of the 16S rRNA sequence-based 
classification concept to characterize biodiversity and to investigate the ecological 
characteristics of all sample types. The benefit of 16S rRNA amplicon sequencing is that 
comparison can be made to the extremely detailed and well-curated taxonomic databases. 
The 16S rRNA amplicon approach to metagenomic analysis started in 2007–2008 by a 
synergy between the use of high-throughput pyrosequencing analysis by the “454” 
methodology, bar coding, and the existing framework of 16S rRNA classification of the 
prokaryotes. The brilliant idea was to amplify a variable region of the 16S rRNA gene from 
the whole microbiome of a sample and then to barcode samples allowing sequencing of 
multiple samples in one run and this way to reduce the cost with the “454” method. The 
theoretical background for this concept was first described by Liu et al. (2007), and later 
the use was published from the group of professor Rob Knight (Liu et al. 2008; Hamady 
et al. 2008; McKenna et al. 2008). The combination of high throughput related to “454”- 
and later Illumina sequencing, relatively low cost related to the use of barcoding, and the 
high information gained by coupling to the huge 16S rRNA taxonomy databases has revo-
lutionized microbiology, and the technique is now in use in most labs dealing with the 
metagenomics characterization of diverse environments – from environmental samples to 
the intestinal microbiome (. Fig. 8.1).

The procedures used for DNA extraction are dependent on the type of sample mate-
rial. For the extraction of DNA from fecal samples and similar complex organic matrices, 
we can recommend MO BIO PowerMag® Soil DNA Isolation Kit (Qiagen) and FastDNA 
Spin Kit (MP Biomedicals). We refer the reader to Anderson et al. (2016) for an overview 
of all lab works related to 16S rRNA amplicon sequencing. Further descriptions of sample 
preparation and the procedures for DNA sequencing will unfortunately not be described 
here since the focus will be on the bioinformatical analysis.

Mock samples can be included in the analysis. They are constructed from known pro-
karyotic isolates pooled at even concentrations. The mock sample is included as a control 
sample in downstream analysis.

The primers used for PCR amplification depend on the desired degree of variability 
and length of product. Usually the higher variability of the 16S rRNA gene is near the 5′ 
end (. Table 8.1). Primers are constructed with adaptors of ca. 50 bp which are needed to 
attach the DNA amplicons to the solid support of the flow cell (. Fig. 8.2). In addition, 
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barcodes on the 16S rRNA amplicons (multiplexing) are needed in order to include many 
samples on one flow cell. The final product is called the 16S rRNA amplicon sequencing 
library. Forward adaptors each with a unique index combined with similar reverse adap-
tors will give 96 unique indexes meaning that up to 96 independent samples can be 
sequenced at one time. Bar coding is further outlined in Hamady et al. (2008). Actually, 
MiSeq allows up to 400 16S rRNA amplicon libraries (50,000 reads per sample) in a single 

       . Table 8.1 Primers for 16S rRNA metagenomicsa

Target Forward 5′-3′ Reverse 5′-3′ Sizec Reference

V3b CCTACGGGAGGCAGCAG ATTACCGCGGCTGCTGG 194 Lane (1991); 
Danzeisen et al. 
(2011)

V1–V3 AGAGTTTGATCCTGG ATTACCGCGGCTGCTGG 527 Lane (1991);

Danzeisen et al. 
(2011)

V3–V4 GGAGGCAGCAGTRRGGAAT CTACCTGGGTATCTAATCC 457 Nossa et al. (2010)

V4–V5 GTGYCAGCMGCCGCGGTA CCCGYCAATTCMTTTRAGT 413 Tang et al. (2014)

aThe paper of Soergel et al. (2012) presents an exhaustive list of primer combinations and 
comparisons
bInformation on V1-V9 (Ashelford et al. 2005)
cReferring to acc. no. J01695 of E. coli rrnB

2.1 Assembly

4.2 Multiple alignment

5 Primer design 6 Phylogeny  9 Full DNA 
metagenomics

7 Identification

3.1–3.5 Databases

8 16S amplicon

4.3 BLAST

       . Fig. 8.1 16S rRNA amplicon sequencing relates to nearly all other topics in the book
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sequencing run. As a rule of thumb, there should at least be 50,000 reads per sample and 
more than 100 reads per bacterium of interest. The main limitation with MiSeq sequenc-
ing is the short sequence length of the 16S rRNA gene. Attempts have been made to 
sequence nearly full-length 16S rRNA genes with PacBio to improve the information con-
tent (Schloss et al. 2016; Wagner et al. 2016; Karst et al. 2018).

This chapter focuses on the characterization of the prokaryotes. The same concept can 
be used with microfungi and other eukaryotic microorganisms; however, other primers 
need to be used for the initial PCR amplification.

8.1.2  Bioinformatical Pipelines to Analyze Data

The microbiome pipelines allow users to analyze raw DNA sequence data, produce results, 
apply statistics, and visualize results for publications. A common theme in the analysis of 
16S rRNA amplicon sequence data is that all samples can be analyzed at one time as well 
as the differences between samples can be compared. The two options are possible, thanks 
to the use of the barcoding of all reads analyzed.

Mothur (Schloss et al. 2009) (7 https://www. mothur. org/) was developed to satisfy the 
need to analyze high-throughput sequence datasets in a modular way and to speed up  
the existing algorithms. The program is written in C + +. The most simple way to use the 

Forward adaptor
Index2

Pad1

Pad2
Index

Forward primer

Reverse primer

3¢3¢3¢

Reverse adaptor

Complementary strand
3¢

Complementary strandOriginal strandOriginal strand

Index2 (8 types)

Forward primer

Read 1

Remove
complementary strand

Index primer

Index read
(12 types)

Cluster nn

Index2
Primer grafted

Make
complementary
strand Reverse

primer

Read 2

V1-V3 region of 16S rRNA

Flow cell surface Flow cell surface Flow cell surface Flow cell surface

       . Fig. 8.2 Use of adaptor (fixing the sequence to the flow cell) and index primers (separation of 
different samples) for Illumina platform sequencing of a genomic DNA fragment which includes the  
V1-3 region of 16S rRNA gene
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package is from the command (dos) prompt of Windows PC. All material is included in 
one folder including the raw data and program. The program is started with the mothur 
icon. The commands can then be copied from the SOP available from the website and full 
analysis of 16S rRNA amplicon libraries carried out in a series of steps. The program keeps 
track on all read files and sample types in the “Stability.files.” You need to edit this file with 
a text editor to get started.

QIIME (quantitative insights into microbial ecology) (pronounced chime) (Caporaso 
et al. 2010) (7 http://qiime. org) is a pipeline for analysis of high-throughput sequence data 
in microbiological ecology studies. From January 1, 2018, QIIME 2 is the supported ver-
sion of this pipeline. QIIME 2 is based on the computer language Python and is set up 
with a series of modules which allow the user to handle, manipulate, and analyze the large 
multiplexed high-throughput datasets.

In this chapter, we will mainly refer to mothur in the text and work with QIIME 2 in 
the activity. Other equally important pipelines are available such as USEARCH (Edgar 
2010) and UPARSE (Edgar 2013). The latter includes quality filtering, trimming, merging 
of identical reads (dereplication), and clustering. VSEARCH (Rognes et al. 2016) is an 
open-source version of USEARCH. Sometimes modules from pipelines are combined. 
For instance, mothur is using the chimera filter from VSEARCH.  QIIME 2 makes it 
possible to easily run VSEARCH via plug-ins.

CLC Genomics Workbench (Qiagen) provides a module for 16S rRNA microbiome 
analysis. It is recommended for users without past experience. The program will carry 
out a standard analysis and is a good way to start and save time in the steep learning 
that is required in this field. Unfortunately the software is licensed and relatively 
expensive; however, the cost probably pays off in time. The Microbial Genomics 
Module needs to be added to the CLC Genomics Workbench package. The Help func-
tion will provide guidance. The module is accessed from the top menu bar. The follow-
ing steps should be followed starting with raw data: trim, merge paired reads, trim to 
fixed length, filter samples based on number of reads, OTU clustering, α- diversity, and 
β-diversity. Finally, PCoA analysis is offered, however, with limited functionality. The 
software allows the user to perform a standard 16S rRNA microbiome analysis with a 
set of samples. For further use, readers are recommended to contact the company’s 
hotline.

8.2  Data Analysis

8.2.1  Quality Trim by Sequence

Denoising is quality filtering of individual reads to remove low-quality reads, and it can also 
include removal of chimeras (this will be discussed in 7 Sect. 8.3), foreign DNA, and indi-
vidual bases with low-quality scores. In UPARSE, a limit of Phred score (see 7 Sect. 2.2.1) 
was set at 16 (Edgar 2013). Trimming is invoked if two or more adjacent low-quality base 
calls are identified. If some paired reads are longer than the expected size based on the PCR 
primers (. Table 8.1), the sequences that are too long are excluded for analysis (scree.seqs 
command, maxlength=) in mothur.

At this step, some reads will be completely removed for further analysis, and others 
will be trimmed in length removing the low-quality regions.

 H. Christensen et al.
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8.2.2  Pairing of Reads

At this initial step, forward and reverse paired reads are paired to contigs. With mothur, 
this is done with the “make.contigs” command. USEARCH also includes this procedure.

8.3  Removal of Chimeras and DNA from Other Domains or Life

Chimeras are biased merged read sequences from two origins. These sequences can artifi-
cially increase the diversity of the samples and need to be identified and removed during 
the bioinformatical analysis. In addition to the tools included in mothur and QIIME 2 
pipelines, chimeras can be removed by UCHIME (Edgar et al. 2011).

Filters can be included to remove eukaryotic DNA from mitochondria and chloro-
plasts and DNA from Archaea if one is only interested in Bacteria.

  (remove.lineage in Mothur) .

8.4  Grouping of Reads into OTUs

Dereplication is the grouping of identical reads (unique.seqs in Mothur). UPARSE also 
includes this procedure. Singletons were recommended to be discarded (Edgar 2013).

Reads are grouped into OTUs with a 97% similarity threshold (cluster.split in 
Mothur). The 97% limit is based on the 16S rRNA threshold between prokaryotic species 
(7 Chap. 7). OTU clustering is also used to improve precision of the analysis since the 
error of sequencing can be as high as 0.1% per nucleotide in a single read.

8.5  Alignment of OTUs and Association of OTUs  
with Taxonomic Units

First, a multiple alignment (7 Chap. 4) is performed to further reduce noise and prepare 
the dataset for phylogenetic analysis. The multiple alignment will include a mask that 
allows comparison with the specific formats of the databases. Three main databases, 
SILVA (Quast et al. 2013), Greengenes (DeSantis et al. 2006; McDonald et al. 2012), and 
RDP (Cole et al. 2014), are commonly used.

The SOP of mothur will guide you through how to align to the SILVA database. In 
QIIME 2, MAFFT and FastTree are used for multiple alignment and phylogenetic analysis, 
respectively. Greengenes is used as the standard database for alignment as described in 
7 Activity 8.10. The QIIME 2 tutorial also explains the eventual need to train a classifier 
tailored for sample preparation and sequencing parameters, including the primers that 
were used for amplification as well as the length of the sequenced reads.

Variations between databases have been found to associate OTUs with taxonomic 
units. The highest assignment success on genus level was obtained with MiDAS-SILVA, 
whereas Greengenes came second, and RDP was least efficient. However, MiDAS-SILVA 
required more computing time compared to RDP (Popp et al. 2017).
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Unidentified OTUs in the databases are not identified further. The short length of 
sequence makes further characterization of such unassigned OTUs very difficult.

8.6  α- (Within Group) and β-Diversity  
(Between Groups) Comparison

Before these indices can be calculated, normalization is needed. The numbers of sequences 
in all samples are normalized to include the same number. This number is usually set as 
the number of sequences in the samples with the lowest number.

For α-diversity analysis, different comparisons can be used. In QIIME 2, the choices 
are Faith’s phylogenetic diversity (Faith 1992), Pielou’s evenness, observed OTUs, and 
Shannon’s diversity (further explained in 7 Activity 8.10, . Fig. 8.16). Pielou’s evenness is 
a measure for how much the different species in a sample resembles in terms of numbers, 
i.e., a low value (scale 0–1) meaning less evenness and more dominant species and vice 
versa. Qualitative measurements of community richness are Faith’s phylogenetic diversity, 
where the phylogenetic tree is incorporated, and observed OTUs. In Shannon’s diversity 
index for quantitative measure, both richness and evenness are taken into account.

For β-diversity analysis, UniFrac can be used in both mothur and QIIME 2. UniFrac 
requires a phylogenetic tree to have been constructed, which is why this module is 
included in both pipelines. UniFrac is based on comparison of the branch length fraction 
of distances of shared and unshared branch lengths in the phylogenetic tree between the 
compared samples. A UniFrac distance of zero suggests that the compared samples are 
identical. There are two types of UniFrac distance metrics – unweighted and weighted. 
Unweighted UniFrac measures the presence and absence of taxa/OTUs, whereas weighted 
UniFrac also incorporates the abundances of taxa/OTUs. Bray-Curtis calculates the 
dissimilarity in the samples composition but is not based on phylogeny.

8.6.1  Rarefaction Analysis

This analysis is performed to see if some samples are represented with low sequencing depths. 
Based on the analysis, a cutoff read depth is chosen for the following alpha diversity analysis. 
Samples below a certain threshold are not included in further analysis (. Figs. 8.3, 8.4, and 8.16).

The chosen cutoff read depth should be at the state when the slope of the diversity 
curve approaches 0, which indicates that the maximum diversity is represented at the 
given read depth.

The phyloseq R package (McMurdie and Holmes 2012) can produce rarefaction curves 
with different α-diversity metric units, including observed number of OTUs, Shannon 
diversity index, Simpson diversity index, and Chao1 (. Fig. 8.3).

Initial analysis using rarefaction curves can give a visual overview and comparison of 
the quality of the samples. Samples which demonstrate significantly low sequence depth 
or α-diversity can be identified and excluded if necessary.

. Figure  8.4 demonstrates the rarefaction curves of four different microbiota treat-
ments, using three different α-diversity metric units: observed no. of OTUs, Shannon 
diversity index, and Simpson diversity index.

The figure demonstrates that the samples have different maximum read depth, with 
the lowest at app. 20,000 reads and the highest exceeding 50,000 reads. Hence the highest 
cutoff value can be 20,000 read depth if all samples are included.

 H. Christensen et al.



143 8

The different α-diversity metrics demonstrate slopes reaching 0 at different read 
depths. . Figure  8.4 visualizes the same dataset, however, with different read depths 
depending on the α-diversity metric.

While the observed richness (. Fig. 8.4a) never reaches a maximum, both the Shannon 
diversity index curve and Simpson diversity index curve (. Fig. 8.4b, c) reaches asymp-
totes at read depths <1500 reads.

Both the Shannon diversity index and Simpson diversity index demonstrate that over-
all α-diversity do not significantly change by increasing the read depth after 1500 reads. 
However, one might suggest that the full α-diversity is not reached even at a read depth of 
50,000 reads due to the stump observed richness curves, which demonstrate an increase 
in identified OTUs when increase read depth.

Similar results can also be visualized when producing boxplots of the alpha diversity at 
different read depths. The Ampvis2 package can produce boxplots at different read depths 
and alpha diversity metrics (. Fig. 8.5).
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       . Fig. 8.3 Rarefaction curves for all samples from four different groups, using three alpha diversity 
metrics: observed richness, Shannon diversity index, and the Simpson diversity index. All plots are 
visualized at 25,000 read depth
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       . Fig. 8.4 Rarefaction curves with different maximum read depth to demonstrate the slope of the 
curves
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Both the rarefaction curves and boxplots demonstrate that increasing the read depth 
only increases the observed richness but not the overall α-Shannon or Simpson diversity. 
Hence, these results suggest that all samples are suitable to be included in the further 
analysis.

These findings suggest that the significant OTUs are already represented at a read depth 
of 1500–2500 reads, and only OTUs which are only identified in very low and insignificant 
numbers are added at higher read depths. Especially the Control and Treatment 1 samples 
indicate a lower observed richness compared to the Treatment 2 and Treatment 1  +  2. 
Additionally, the Simpson diversity index, which is more weighted on evenness, indicates a 
more uneven diversity in the Control and Treatment 1. This could be due to an overrepre-
sentation and high abundance of a few OTUs in the Control and Treatment 1 samples.

8.7  Taxonomic Comparisons

The number of OTUs for each best taxonomic match will provide the raw data for this 
analysis (classify.otu in Mothur). The output file from mothur can be opened in Microsoft 
Excel.

8.7.1  Generation and Interpretation of Heatmaps and Boxplots

Heatmaps and boxplots (. Figs.  8.6 and 8.7) can generate an overview of the samples 
taxonomic makeup. Simple heatmaps of the most abundant OTUs can be useful to  
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       . Fig. 8.6 Heatmap of the ten most abundant genera in the analyzed sample set. All three heatmaps 
are based on the same dataset and presented in three different ways. a Includes all samples, with the % 
read abundance represented by the color temperature of the cell. b Each treatment group has been 
summed up, and the average is represented in the heatmap. c Similar to B but with the average % read 
abundance presented in each cell
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identify if there are OTUs with very high abundance and for presenting results. The 
Ampvis2 package can produce heatmaps and boxplots that present a chosen number of 
OTUs at different taxonomic levels.

Similar to the heatmaps, boxplots are excellent to demonstrate the scale of the pre-
dominant OTUs in a sample set.

Both the heatmaps and boxplots can give an overview of the composition of OTUs and 
the predominant groups, as well as an initial idea of the microbiota similarity of the sam-
ples within the group as well as between the groups.

As demonstrated in both the boxplots and heatmaps, all four treatment groups dem-
onstrate high abundance of Firmicutes, especially bacilli and specifically Lactobacillus. 
However, especially the Control and Treatment 1 groups demonstrate very high abun-
dance of Lactobacillus, which agrees with the indication of overrepresentation of few 
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       . Fig. 8.7 Boxplots of the most predominant OTUs on phylum, class, and genera level in four different 
groups. All boxplots are based on the average of the samples of the respective group
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OTUs in the observed richness alpha diversity from the rarefaction curves and α-diversity 
boxplots (. Figs. 8.3 and 8.4). These results further underlines that increasing the cutoff 
read depth would not improve the analysis in any way, as the only OTUs with insignificant 
abundance would be added to the analysis.

Both the boxplots and heatmaps suggest a more similar microbiota composition in 
Treatment_2 and Treatment_1 + 2 compared to the Control and the Treatment_1 groups. 
These results confer with the results from the α-diversity boxplots, which demonstrated 
signs of similar α-diversity in the Treatment_2 and Treatment_1 + 2 and the Control and 
Treatment_1 groups (. Figs. 8.3 and 8.4).

Before β-diversity analysis such as PCoA (7 Sect. 8.8), initial comparison of the simi-
larity/dissimilarity of the samples within each group, based on non-metric or semi- metric 
distance, can give an indication of how uniform the samples of the group are. The Ampvis2 
extra package offers a simple β-diversity comparison analysis using Bray-Curtis similarity 
distances (. Fig. 8.8).

8.8  Principal Coordinates Analysis (PCoA)

Principal coordinates analysis (PCoA) is a tool to explore 16S rRNA amplicon sequence 
data visually by reducing a multidimensional sample vector (for 16S data, the feature 
counts for a sample) to principle components (PCs). PC can be understood as a combina-
tion of features capturing a certain degree of variance within all samples. By visualizing 
with a PCoA plot, sample clusterings can be observed, i.e., similarities or dissimilarities of 
the data (. Fig. 8.9). QIIME 2 offers plotting samples in three dimensions. In the QIIME 
2 activity later in this chapter, some of the diversity analysis results are shown as PCoA 
(. Figs. 8.14 and 8.15).

Similar to the initial α-diversity analysis as well as the heatmaps and boxplots, the 
Treatment_2 and Treatment_1 + 2 demonstrate a similar microbiota composition, with 
overlaps in PC1, PC2, and PC3. Meanwhile, the Control and Treatment_1 groups also 
demonstrate an overlap in both PC1 and PC3.
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8 Collectively, these results indicate that Treatment 1 induces a similar microbiota as the 
Control group. Meanwhile, Treatment 2 induces distinct microbiota, different from the 
Control and Treatment 1. Both Treatment 1 and Treatment 2 simultaneously result in a 
microbiota similar to Treatment 2 alone, suggesting that Treatment 1 has no or a very 
weak effect on the microbiota.

To verify some of the conclusions drawn above, a permutational multivariate analysis 
of variance (PERMANOVA) is needed. This is a nonparametric multivariate statistical 
test, and it is used to compare groups of objects and test the null hypothesis that the cen-
troids and dispersion of the groups as defined by measure space are equivalent for all 
groups.

8.9  Prediction of Function

It is possible to some extent to predict information about function based on comparison 
to taxonomic profiles. This is a shortcut to full DNA microbiome analysis (7 Chap. 9). The 
drawbacks are that the same functions can often be undertaken by different and even 
diverse taxonomic groups. For activated sludge, a species taxonomic prediction of func-
tion is possible at: 7 www. midasfieldguide. org.

PICRUSt (7 http://picrust. github. io/picrust/) predicts abundance of gene families in 
host-associated and environmental communities (Langille et al. 2013).

8.10  Activity QIIME 2

QIIME is one of the major software packages for 16S rRNA microbiome analysis as described 
in 7 Sect. 8.1.2. QIIME 1 was replaced with QIIME 2 in 2018 (current version: 7 https://
docs. qiime2. org/2018. 2/), and it is the version to be installed when working with QIIME. There 
are continuously updated versions of QIIME 2, with improvements of the pipeline. The user 
needs to be aware of the version as it has to be specified while working with QIIME 2. The 
developers recommend the users to work with the latest version available.
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       . Fig. 8.9 PCoA of the samples from all four treatment groups, visualized by the first three PCs. To the 
left, PC1 and PC2 visualize 71.9% of the analysis model. To the right, PC1 and PC3 visualize 68.4% of the 
model

 H. Christensen et al.

http://www.midasfieldguide.org
http://picrust.github.io/picrust
https://docs.qiime2.org/2018.2/
https://docs.qiime2.org/2018.2/


149 8

There is an official forum for QIIME 2 where users can address questions about differ-
ent problems encountered. It is a good idea to start searching this forum for questions and 
problems already discussed and solved before adding a new subject.

There are several tutorials on QIIME’s website addressing various aspects of 16S rRNA 
microbiome analysis. We would recommend starting with the “Moving Pictures” tutorial. 
“Moving Pictures” was a time series study of the microbial communities of different ana-
tomical sites of humans. This dataset is used as a case for the tutorial. The manual is best 
suited for macOS, and we recommend that you get access to a new Mac computer with a 
lot of RAM before starting. The subset of the Moving Pictures dataset includes only five 
time points and four anatomical sites totaling 20 samples. The tutorial will take you 
through most relevant analysis for 16S rRNA amplicon sequencing including alternative 
approaches for some analysis steps. You can use the tutorial to learn and understand 16S 
rRNA amplicon sequencing.

The commands used in this book can change depending on the version (current ver-
sion 2018.2). All commands can, however, be found on the version specific documenta-
tion site.

8.10.1  Installation

If you try this for the first time, it is recommended to do exactly as the manual says 
even though the names for directories seem a little odd. You can copy the whole com-
mand strings from the QIIME 2 tutorial including the \ that will join lines on the 
command prompt. You can get the command prompt from Go | Utilities select 
Terminal. App. You can copy commands from the tutorial by using copy-paste  
functions.

Open the manual 7 https://docs. qiime2. org/2018. 2/, and select Getting started and 
Install QIIME 2. Select Natively install QIIME 2 and install Miniconda and then QIIME 2 
within a Miniconda environment. Select macOS. From the command prompt, run source 
activate qiime2-2018.2 (or actual version).

If you are a Windows user, install MobaXTerm (serves as your terminal), and then use 
the manual Installing QIIME 2 using virtual machines.

8.10.2  Running QIIME 2

The first time you start QIIME 2, you will have to open the terminal window and write or 
copy-paste source activate qiime2-2018.2 (or actual version). Then continue to do 
exactly as the tutorial says: mkdir qiime2-moving-pictures-tutorial and then the 
command cd qiime2-moving-pictures-tutorial. It will create the directory “qiime2-
moving-pictures- tutorial” and place you in that directory.

The next time you start QIIME 2, you will have to open the terminal window and write 
or copy-paste source activate qiime2-2018.2 (or actual version). Then continue with the 
cd qiime2-moving-pictures-tutorial.

There are three choices for downloading data in general in the tutorials. “Browser” 
clicking on the link and download data. “wget” and “curl” are utilities to download data 
conveniently via a terminal. Copy-paste the “wget” or “curl” command to your command 
prompt, and the data is saved in your directory.

16S rRNA Amplicon Sequencing for Metagenomics
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Download URL: 7 https://data. qiime2. org/2018. 2/tutorials/moving-pictures/sample_
metadata. tsv

Save as: sample-metadata.tsv
OR

wget-O “sample-metadata.tsv””https://data.qiime2.org/2018.2/tutori-
als/moving-pictures/sample_metadata.tsv

OR

curl -sL "https://data.qiime2.org/2018.2/tutorials/moving-pictures/
sample_metadata.tsv" > "sample-metadata.tsv"8.3. Download metadata

The metadata file contains information about the samples that are necessary for fur-
ther analysis. For example, the categories included in the tutorial are Sample-ID, 
BarcodeSequence, and BodySite. If you analyze your own samples, this file has to be 
created to fit your own analysis. The file has to be in TSV format (tab separated values) and 
saved in your working directory. For more information about this topic, see “Metadata in 
QIIME 2” tutorial.

Choose one of the three alternatives for downloading the sample metadata. For the 
rest of this exercise, the curl command will be used.

8.10.3  Download Data

First, you need to make a subdirectory emp-single-end-sequences to the one you are 
standing in (qiime2-moving-pictures-tutorial). This is done by the same procedure as 
used in 7 Sect. 8.10.2:

mkdir emp-single-end-sequences

Now, you download the data from the QIIME 2 homepage to this directory by the 
command:

curl -sL "https://data.qiime2.org/2018.2/tutorials/moving-pictures/
emp- single- end-sequences/sequences.fastq.gz" > "emp-single-end-
sequences/sequences.fastq.gz"

At this step, it can be a good idea to check if the files are located in your working  
directory.

cd emp-single-end-sequences
ls –l

Here, you should see the two files barcodes.fastq.gz at a size of around 3783785 bytes 
and sequences.fastq.gz of 25303756 bytes. Remember to navigate back to the qiime2- 
moving- pictures-tutorial directory by the command cd.
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https://data.qiime2.org/2018.2/tutorials/moving-pictures/sample_metadata.tsv
https://data.qiime2.org/2018.2/tutorials/moving-pictures/sample_metadata.tsv


151 8

8.10.4  Change Data Format to QIIME 2 Artifacts

The imported data is multiplexed and has to be converted into “QIIME 2 artifacts” before 
continuing the analysis:

qiime tools import --type EMPSingleEndSequences --input- path emp-
single-end-sequences --output-path emp-single-end-sequences.qza

8.10.5  Demultiplexing Sequences

Demultiplexing is the step where the barcodes of all the single-end-reads are associated 
with their samples as described above.

qiime demux emp-single --m-barcodes-file sample-metadata.tsv --m-bar-
codes-column BarcodeSequence --o-per-sample- sequences demux.qza

Create a summary of the distribution of results from demultiplexing. The important 
information is the summary of the sequence quality at each base in the reads (interactive 
quality plot in demux.qzv artifact).

qiime demux summarize --i-data demux.qza --o-visualization demux.qzv

See the results with command:

qiime tools view demux.qzv

This command will invoke the browser and show the result in a browser window 
(Firefox). The graphics can be downloaded in pdf format. As the manual elaborates, you 
can visualize all similar graphics output by the command:

qiime tools view new_file.qzv

where new_file means that the file names will change for different outputs for the dif-
ferent analysis.

If your own project data is already demultiplexed, refer to 7 Sect. 8.10.14.1 to proceed.
When working with paired-end reads, it is a good idea to merge the forward and 

reverse read; refer to 7 Sect. 8.10.14.2.

8.10.6  Denoising

Denoising is quality filtering of individual reads to remove low-quality reads. In QIIME 2, 
one can choose to use DADA2 or Deblur. Here, DADA2 is used.

qiime dada2 denoise- single --i-demultiplexed-seqs demux.qza 
--p-trim-left 0 --p-trunc-len 120 --o-representative-sequences 
rep-seqs-dada2.qza --o-table table-dada2.qza
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Then, rename the two files created with the command:

mv rep-seqs-dada2.qza rep- seqs.qza
mv table-dada2.qza table.qza

In this example, all reads are truncated to 120 nucleotides. The dataset is from the 
early 2010s when reads were shorter than the current 250 nucleotides. The truncation 
value of 120 is chosen based on the quality scores that dropped at this base number. 
To choose this value, inspect the demux.qzv artifact with the command qiime tools 
view demux.qzv, and in this visualization, view the interactive quality plot 
(. Fig. 8.10).

8.10.7  Visualization Summaries of the Data

In the previous exercise you created FeatureTable (table.qza) and FeatureData (rep-seqs.
qza) artifacts. Now, you want to view the content in these files. To do this, use the com-
mand below.

qiime feature-table summarize --i-table table.qza--o-visualization 
table.qzv--m- sample- metadata-file sample-metadata.tsv
qiime feature-table tabulate-seqs --i-data rep-seqs.qza --o-visual-
ization rep-seqs.qzv

The output files are table.qzv and rep-seqs.qzv that can be viewed with qiime tools 
view as described earlier.

In table.qzv, there are three main summaries: overview, interactive sample detail, and 
feature detail (. Fig. 8.11).
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       . Fig. 8.10 Sequence quality control of the DNA sequences in DADA2: 7 https://qiime2. org/
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8.10.8  Phylogenetic Tree

The α- and β-diversity metrics such as Faith’s phylogenetic diversity and UniFrac use the 
phylogenetic tree, and therefore this tree has to be created before these diversity metrics 
can be performed.

qiime alignment mafft --i-sequences rep-seqs.qza --o-alignment 
aligned-rep-seqs.qza
qiime alignment mask --i-alignment aligned-rep-seqs.qza --o-masked-
alignment masked-aligned-rep-seqs, qza
qiime phylogeny fasttree --i-alignment masked-aligned-rep-seqs.qza 
--o-tree unrooted-tree.qza
qiime phylogeny midpoint-root --i-tree unrooted-tree.qza --o-rooted-
tree rooted- tree.qza

For the next exercise, the rooted-tree.qza artifact is used.

8.10.9  α- and β-Diversity Analyses

For the different diversity metric calculations, you have to choose the value for the 
p- sampling depth by viewing the table.qzv artifact (interactive sample detail). The num-
ber of reads in each sample has to be normalized, i.e., rarified. This is done by the com-
mand --p-sampling-depth. It can be difficult to choose this value. The chosen sampling 
depth should reflect the balance between capturing the alpha diversity in your samples 

       . Fig. 8.11 Feature detail from the artifact table.qzv shown below with feature IDs (OTUs) and their 
corresponding frequency and samples observed in 7 https://qiime2. org/
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with high number of reads but low enough to not exclude too many samples with low 
depths. In this example, 1109 was used as threshold.

qiime diversity core-metrics- phylogenetic --i-phylogeny rooted-tree.
qza--i-table table.qza --p-sampling-depth 1109--m-metadata-file 
sample-metadata.tsv --output-dir core-metrics-results

A new directory (core-metrics-results) is created, and it contains all the necessary files 
you need to explore for the α- and β-diversity (. Figs. 8.12 and 8.13).

Shannon’s diversity for category BodySites from the tutorial is shown as example 
(. Fig. 8.12). The statistical test used in the boxplots for the different α-diversity metrics is 
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       . Fig.  8.12 Boxplot for Shannon’s diversity index for category BodySite from the tutorial “Moving 
Pictures” in QIIME 2: 7 https://qiime2. org/
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nonparametric Kruskal-Wallis test, with p-value at 0.05 considered as statistical signifi-
cant. Shannon’s diversity indexes were significant for BodySites (p = 0.001). The highest 
Shannon value, i.e., greater diversity, was observed for palms when compared to the 
tongue and gut. However, the gut/right palm comparison was not significant.

For β-diversity, weighted UniFrac and Bray-Curtis dissimilarity were used as example 
(. Fig. 8.13). Bray-Curtis is a non-phylogenetic method using the abundance information 
of OTUs, where the distance metric is calculated by the species difference of abundance 
divided by total abundance in both samples. The PCoA plot shows relatively stable 
microbial communities during the time period (. Figs. 8.14 and 8.15). PERMANOVA is 
used as significance test with p-value at 0.05 as statistical significant.

8.10.10  Alpha Rarefaction Plotting

This step in the analysis process is to explore if you have sequenced deep enough, i.e., 
captured the diversity in the samples. The rarefaction curve demonstrates that the sequenc-
ing depth (1109) was sufficient for almost all samples (. Fig. 8.16). The sample with the 
highest sequence count was not sequenced deep enough as the curve is not plateauing as 
the rest of the samples. So for this sample, the richness would be underestimated for the 
top curve in red (. Fig. 8.16).
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       . Fig. 8.13 Boxplot for β-diversity with weighted UniFrac as output example for category BodySites 
from the “Moving Pictures” tutorial in QIIME 2. PERMANOVA was used as statistical significance test 
(7 https://qiime2. org/)
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       . Fig. 8.15 Plots of PCoA 
based on Bray-Curtis dissimilarity 
of microbial communities in the 
gut, left palm, right palm, and 
tongue during 
DaysSinceExperimentStart. 
“Moving Pictures” tutorial in 
QIIME 2 (7 https://qiime2. org/) 
(Colors: red = gut, blue = left 
palm, orange = right palm, 
green = tongue)
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       . Fig. 8.16 Alpha rarefaction curve from the “Moving Pictures” tutorial in QIIME 2: 7  https://
qiime2. org/

       . Fig. 8.14 Plots of PCoA 
based on UniFrac distance 
matrices of microbial 
communities in the gut, left 
palm, right palm, and tongue 
from the “Moving Pictures” 
tutorial in QIIME 2: 7 https://
qiime2. org/ (Colors: red = gut, 
blue = left palm, orange = right 
palm, green = tongue)
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8.10.11  Taxonomic Analysis

In this step, the bacterial DNA is annotated to the Greengenes database using the classifier 
(gg-13-8-99-515-806-nb-classifier.qza). The rep-seqs.qza artifact is used here; it contains 
the feature IDs and direct link to the NCBI database.

To improve taxonomic classification, creating your own classifier might be beneficial. 
To do that please follow the instructions in the tutorial “Training feature classifiers with 
q2-feature-classifier” in 7 Sect. 8.10.14.3.

Results from this analysis are shown in . Fig. 8.17 (genus level).

8.10.12  Exporting Data

QIIME 2 is a good tool to start analyzing your data. However, to further explore and 
visualize your data, we recommend you to export relevant files from QIIME 2.

To do this, you have to convert the QIIME 2 artifacts into formats that are suited for 
export and visualization in other programs. Use the “Exporting data tutorial” in QIIME 2 
to export your files, e.g., exporting the feature table (table.qza):

qiime tools export table.qza –output-dir exported-table

Note: you might also have to convert your BIOM table to TSV format for convenience.

biom convert exported/feature-table.biom --o-feature-table.tsv --to-tsv
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Sample

k¾Bacteria;p¾Bacteroidetes;c¾Bacteroidia;o¾Bacteroidales;f¾Bacteroidaceae;g¾Bacteroides;s¾

k¾Bacteria;p¾Bacteroidetes;c¾Bacteroidia;o¾Bacteroidales;f¾Bacteroidaceae;g¾Bacteroides;s¾ovatus

k¾Bacteria;p¾Actinobacteria;c¾Actinobacteria;o¾Actinomycetales;f¾Corybevacteriaceae;g¾Corynebacterium;s¾

k¾Bacteria;p¾Bacteroidetes;c¾Bacteroidia;o¾Bacteroidales;f¾Bacteroidaceae;g¾Bacteroides;s¾uniformis

k¾Bacteria;p¾Fusobacteria;c¾Fusobacterila;o¾Fusobacteriales;f¾Fusobacteriaceae;g¾Fusobacterium;s¾

k¾Bacteria;p¾Proteobacteria;c¾Betaproteobacteria;o¾Neisseriaies;f¾Neisserlaceae;g¾Neisseria;¾

k¾Bacteria;p¾Proteobacteria;c¾Gammaproteobacteria;o¾Pasteurellales;f¾Pasteurellaceae;g¾Haemophilus;s¾parainfluenzae

k¾Bacteria;p¾Firmicutes;c¾Bacilli;o¾Lactobacillales;f¾Streptococcaceae;g¾Streptococcus;¾

k¾Bacteria;p¾Firmicutes;c¾Clostridia;o¾Clostridiales;f¾Ruminococcaceae;g¾Faecalibacterium;s¾prausnitzll

k¾Bacteria;p¾Firmicutes;c¾Bacillll;o¾Bacillales;f¾Staphylococcaceae;g¾Staphylococcus;¾
k¾Bacteria;p¾Bacteroidetes;c¾Bacteroidia;o¾Bacteroidales;f¾Prevoltellaceae;g¾Prevotella;s¾meianinogenica

k¾Bacteria;p¾Proteobacteria;c¾Gammaproteobacteria;o¾Pseudomonadales;f¾Pseudomonadaceae;g¾Pseudomonas;s¾veronil

k¾Bacteria;p¾Firmicutes;c¾Bacilll;o¾Lactobacillales;f¾Streptococaceae;g¾Streptococcus;s¾
k¾Bacteria;p¾Firmicutes;c¾Clostridia¾Clostridiales;f¾Lachnospiraceae;g¾Lachnospira;s¾

k¾Bacteria;p¾Firmicutes;c¾Clostridia¾Clostridiales;f¾Veillonellaceae;g¾Phascolartobacterium;s¾
k¾Bacteria;p¾Cyanobacteria;c¾Chloroplast;o¾Steptophyta;f¾:g¾:s¾

k¾Bacteria;p¾Firmicutes;c¾Clostridia;o¾Clostridales;f¾Veillnoellaceae;g¾Veillonella;s¾parvula

k¾Bacteria;p¾Firmicutes;c¾Clostridia;o¾Clostridales;f¾[Tissierellaceae];g¾Anaerococcus;s¾
k¾Bacteria;p¾Proteobacteria;c¾Betaproteobacteria;o¾Burkhoideriales;f¾Comamonadaceae:¾:¾

k¾Bacteria;p¾Firmicutes;c¾Clostridia;o¾Clostridales;f¾Ruminococcaceae;g¾Oscillospira;s¾
k¾Bacteria;p¾Actinobacteria;c¾Actinobacteria;o¾Actinomycetales;f¾Micrococcaceae;g¾Rothia;s¾mucilaginosa

k¾Bacteria;p¾Bacteroidetes;c¾Bacteroidia;o¾Bacteroidales;f¾[Paraprevotellaceae]:g¾[Prevotella]:s¾

k¾Bacteria;p¾Firmicutes;c¾Clostridia;o¾Clostridales;f¾Lachnospiraceae;g¾Roseburia:s¾faecis

k¾Bacteria;p¾Proteobacteria;c¾Gammaproteobacteria;o¾Pseudomonadales;f¾Moraxellaceae;g¾Acinetobacter:¾
k¾Bacteria;p¾Firmicutes;c¾Clostridia;o¾Clostridales;f¾[Tisslerellaceae];g¾Peptoniphilus;s¾
k¾Bacteria;p¾Proteobacteria;c¾Gammaproteobateria;o¾Pasteurellales;f¾Pasteurellaceae;g¾Haemophilus;s¾

k¾Bacteria;p¾Firmicutes;c¾Clostridia;o¾Clostridales;f¾Veillonellaceae;g¾Veilloneall;s¾dispar

k¾Bacteria;p¾Firmicutes;c¾Clostridia;o¾Clostridales;f¾Lachnospiraceae;g¾;s¾
k¾Bacteria;p¾Bacteroidetes;c¾Bacteroidia;o¾Bacteroidales;f¾Rikenellaceae;g¾;s¾

k¾Bacteria;p¾Proteobacteria;c¾Gammaproteobacteria;o¾Pasteurellales;f¾Pasteurellaceae;g¾;s¾
k¾Bacteria;p¾Firmicutes;c¾Clostridia;o¾Clostridiales;f¾[Tisslerellaceae];g¾Finegoldia;s¾
k¾Bacteria;p¾Verrucomicrobia;c¾Verrucomicrobiae;o¾Verrucomicrobales;f¾Verrucomicrobiaceae;g¾Akkermansia;s¾muciniphila

k¾Bacteria;p¾Fusobacteria;c¾Fusobacterila;o¾Fusobacteriales;f¾Leptotrichiaceae;g¾;s¾
k¾Bacteria;p¾Firmicutes;c¾Clostridia;o¾Clostridiales;f¾Lachnospiraceae;g¾Blautia;s¾
k¾Bacteria;p¾Firmicutes;c¾Clostridia;o¾Clostridiales;f¾Lachnospiraceae;g¾Boseburia;s¾

k¾Bacteria;p¾Firmicutes;c¾Clostridia¾Clostridiales;f¾Lachnospiraceae:¾:¾

       . Fig. 8.17 Taxa bar plot with classified bacteria and their relative abundance in the samples for 
category BodySites. (Example from the “Moving pictures” tutorial in QIIME 2 (7 https://qiime2. org/))
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8.10.13  Filtering Data

The tutorial “filtering data” in QIIME 2 explains how to filter feature tables, sequences, and 
distance matrices, e.g., if you want to modify a taxa bar plot (. Fig. 8.10). The q2-taxa 
plug-in sorts the taxa as you want to display the results.

An alternative for this step is to convert the taxonomy.qza file to TSV format (see 
above) and import into your favorite statistics program (e.g., R).

8.10.14  Good to Know When Working with QIIME 2

8.10.14.1  Already Demultiplexed Data
Your project data might already be demultiplexed and still paired. Use the “Importing 
data” tutorial and create a “Fastq manifest” file in CSV format, and then follow the instruc-
tions for single-end reads or paired-end reads. The final output files are paired- end- 
demux.qza (or single-end-demux.qza for single-end reads). Paired-end reads with 
PHRED offset 33 were chosen as the shown example from the tutorial.

The manifest file must be in CSV format with the header line sample-id, absolute- 
filepath, and direction. There can only be one line per sample-id as shown below:

sample- id, absolute-filepath, direction
sample-1, $PWD/some/filepath/sample1_R1.fastq, forward
sample-1, $PWD/some/filepath/sample1_R2.fastq, reverse

Import the manifest file (e.g., pe-33-manifest) you have created with command:

qiime tools import --type 'SampleData [SequencesWithQuality]' 
--input-path se-33-manifest --output-path single-end-demux.qza 
--source-format SingleEndFastqManifestPhred33

When you have converted the manifest file to a QIIME artifact, visualize it with:

qiime demux summarize --i-data paired-end-demux.qza  --o-visualiza-
tion paired-end- demux.qzv

If you use Deblur instead of DADA2, continue to the step merging reads (refer to the 
following Chap. 8.10.14.2); otherwise follow the instructions in “Sequence and quality 
control and feature table construction” for “Moving Pictures.”

8.10.14.2  Merging of Paired-End Reads
The sequence quality control can be performed either with DADA2 or Deblur. If you use 
Deblur, the forward and reverse reads have to be merged first as it only works for single- 
end reads. The plug-in vsearch join-pairs is used for this step of the analysis (7 https://
docs. qiime2. org/2018. 2/plugins/available/vsearch/). The commands for join pairs are 
shown below.

qiime vsearch join-pairs --i-demultiplexed-seqs paired-end-demux.
qza --o-joined-sequences demux-joined.qza

 H. Christensen et al.
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qiime demux summarize --i-data demux-joined.qza --o-visualization 
demux-joined.qzv

Now, you can run the demux-joined.qza through the sequence quality control with 
Deblur (refer to “Moving Pictures” tutorial in QIIME 2).

8.10.14.3  Train Your Classifier
The tutorial “Training feature identifiers with q2-feature-classifier” guides you through 
the steps that create the specific classifier for your dataset (7 https://docs. qiime2. 
org/2018. 2/tutorials/feature-classifier/). The elements required are Greengenes reference 
sequences, your own rep-seqs.qza, primer sequences used for your dataset, and the length 
of the reads (value chosen in Deblur’s quality check).

8.10.14.4  Plug-Ins
If you cannot find the desired functions in the tutorials provided, view the available plug- 
ins (7 https://docs. qiime2. org/2018. 2/plugins/). For example, heatmaps are often used for 
visualization of the count data. In QIIME 2, there is a plug-in called feature-table (with 
heatmap) for this purpose. Bar plots generate an overview of the samples taxonomic 
makeup. These plots can, however, be difficult to read on lower taxonomic levels. The 
plug-in “feature-table” in QIIME 2 can be used to plot heatmaps from the features tables.

8.10.14.5  Decontamination
Contamination disrupts the accuracy of microbiome studies and is a known problem in this 
field. Upon until recently, there was no standard statistical method to handle these contami-
nants in the bioinformatical analysis. Davis et al. (2017) published a study about a new avail-
able open-source R package, decontam, that they created for the purpose to identify and 
remove the contaminants in marker gene (especially low-biomass samples) and metage-
nomics (Davis et al. 2017). Download it from (7  https://github. com/benjjneb/decontam).

 Take-Home Messages

 5 The 16S rRNA amplicon sequencing technique is a microbiota analysis of 
prokaryotes where different samples are analyzed at the same time using mul-
tiplexing.

 5 16S rRNA amplicon sequencing results can be used to evaluate microbial 
diversity at species, genus, family, order, class, and phylum levels.

 5 The main limitation of 16S rRNA amplicon sequencing is related to the short 
read length of 250 nucleotides inhered from the Illumina sequencing tech-
niques which results in insufficient taxonomic prediction of the species level.

 5 Raw data for 16S rRNA amplicon sequencing are mainly generated on the Illu-
mina sequencing platform and bioinformatical pipelines used to analyze data 
include quality trimming of reads, removal of chimeras and sequences from 
other domains of life, grouping of reads into OTUs with a threshold of 97%, 
alignment of OTUs with a database, and association of OTUs with taxonomic 
units.

 5 The data analysis allows the diversity within samples, called α-diversity to be 
calculated, and the diversity between samples which is the β-diversity.
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What You Will Learn in This Chapter
Full DNA metagenomics includes the ultimative way to sequence all DNA of a sample and 
to obtain all information of the microbiome. The microbiome can be analyzed with respect 
to taxonomic comparison and to functional characteristics. We will mainly focus on the 
pipeline MG-RAST to demonstrate different steps in the analysis. MG-RAST can also be used 
to archive data, to download data and to share data with the scientific community.

9.1  Background

Full DNA metagenomics is the sequencing of all DNA from a sample followed by assem-
bly of DNA sequence reads and annotation and assignment of sequence information to 
known organisms and functions. The assembly attempts to reconstruct genome fragments 
to draft genomes. The technique involves most of the other subjects described in the book 
(. Fig. 9.1).

The first real shotgun sequencing project was performed by Tyson et al. (2004). A very 
simple microbial community (with respect to diversity) of acid mine drainage was 
investigated (. Fig. 9.2). The scientists managed to assemble two major bacterial genomes, 
Leptospirillum groups II and III (Bacteria) and a third composed of populations of 
Ferroplasma type II (Archaea). The study was based on 103,462 reads obtained by Sanger 
sequencing of plasmid inserts.

Another outstanding study was the in silico assembly of the genome of the organism 
Candidatus Chloracidobacterium thermophilum, an aerobic phototrophic acidobacterium 
(Bryant et al. 2007). The metagenomic data from the phototrophic microbial mats of an 
alkaline siliceous hot spring in Yellowstone National Park allowed the assembly of this 

2.1 Assembly

4.3 BLAST 9 Full DNA metagenomics

8 16S rRNA amplicon

6 Phylogeny

11 Molecular typing

4.2 Multiple alignment

7 Identification

2.2 Annotation 3.1–3.5 Databases

       . Fig. 9.1 Full DNA metagenomics is related to nearly all other chapters in the book
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distinctive bacteriochlorophyll (BChl)  – synthesizing phototrophic bacterium without 
any previous isolation and cultivation.

The full DNA metagenomics concept has early on been used to diagnose infections 
caused by microorganisms in relation to human and animal medicine (Nakamura et al. 
2008). In that investigation, Campylobacter jejuni was identified in a patient with diarrhea. 
A similar investigation of Shigella was reported more recently (Liu et al. 2018). A full DNA 
metagenomic approach to clinical diagnostics will overcome the problems with non- 
culturable bacteria that are problematic to identify by other methods. The level of detection 
is depending on the sequencing “depth” meaning the sequenced coverage of an expected 
target. This relationship is not yet standardized but has to be evaluated from case to case.

Also in food production, full DNA metagenome has been tested for detection of 
Escherichia coli, Salmonella enterica, and Clostridium botulinum (Yang et  al. 2016). 
However, it was recognized that the technique was impractical for routine use.

The benefit of full DNA metagenomics is that the general diversity of all organisms can 
be investigated. The most serious drawback with the full DNA metagenomic technique is 
the limitations of the databases in particular with respect to taxonomy. Some pipelines are 
not able to extract 16S rRNA sequence information and provide search in the 16S rRNA 
databases which is further limiting the analysis. Another drawback is the higher cost of 
sequencing the full DNA metagenome compared to 16S rRNA amplicon sequencing.

9.2  Sequencing Strategies and Data Types

For experimental design and DNA extraction in general, we refer to other publications. 
Here as well as for 16S rRNA amplicon sequencing (7 Chap. 8), we will refer to the MO 
BIO PowerMag® Soil DNA Isolation Kit (Qiagen) that has been used for DNA extraction. 
For the investigation of microbial communities, the output of DNA after extraction for 
sequencing should include at least 50% microbial DNA.

       . Fig. 9.2 Picture of acid mine 
discharge. This type of sample 
was used for the first full DNA 
metagenome study of Tyson 
et al. (2004). US Geological 
Survey: 7 http://wwwbrr. cr. usgs. 
gov/projects/GWC_chemtherm/
ironmtn. htm, Public Domain, 
7 https://commons. wikimedia. 
org/w/index. php?curid=2085336
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For sequencing strategies, see . Table  9.1. In the past, before high-throughput 

sequencing was invented, full DNA shotgun sequencing of cloned libraries was used. 
. Figure  9.3 shows an example of such analysis where a dataset of the microbiome of 
mother and child was generated by sequencing of fosmid libraries. The taxonomic groups 
were predicted by searching GenBank.

End sequencing was a shortcut to the analysis of the cloned libraries of BAC (bacterial 
artificial chromosome) or fosmid libraries. Conserved primers complementary to the 
cloning vector are used to sequence the 5′ and 3′ ends of the inserts in the vectors. Such a 
sequence can be used to determine the type of organisms inserted and maybe to locate the 
insert on a fully sequenced organism. The information generated from the end reads have 
been used to select clones for full sequencing.

The benefit of full DNA shotgun sequencing with cloned libraries is that the cloned 
libraries can be kept and reanalyzed compared to the approach of using extracted DNA 
without cloning where the possibility for reanalysis ends when the DNA tube is empty. 
However, the sequencing capacity with cloned libraries is very limited compared to 
sequencing of DNA directly by high throughput without cloning.

Full DNA shotgun high-throughput sequencing without cloning is now the preferred 
method for sequencing. Sequencing platforms from Illumina are the most frequently 
used. DNA extracts from samples can be processed with the Nextera XT DNA sample 
Prep Kit (Illumina). The same principles of barcoding and indexing samples as used for 
16S rRNA amplicon sequencing (7 Chap. 8) are used. Paired-end sequencing can, for 
instance, be performed on the MiSeq Platform (Illumina).

       . Table 9.1 Sequencing strategies in full DNA metagenomics

Strategy Outline Benefit Drawback Application

Full DNA 
shotgun

All DNA of a 
sample is 
high-throughput 
sequenced

High 
information 
content

Costly and 
analysis 
demanding

Main method

Full DNA with 
cloning

All DNA of a 
sample is 
shotgun cloned 
and sequenced

High 
information 
content, 
libraries can be 
kept

Extremely 
costly and 
demanding to 
analysis

Used before 
high-throughput 
sequencing. Now 
only used for special 
applications where 
libraries are needed

Full DNA with 
cloning and 
end 
sequencing

All DNA of a 
sample is 
shotgun cloned, 
but clones are 
only end 
sequenced

Less work 
demanding 
compared to 
sequencing of 
full libraries

Lower 
information 
content (only 
end reads of 
clones)

Used for initial 
screening of full 
libraries
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Kingdom Phylum Order Family Genus

Bacteria: 69

Bacteroidetes: 27 Bacteroidales. 20

Lachnospiraceae: 35

Clostridiales: 182
Firmicutes: 254

Bacteria: 365
Cellular organisms: 369

Dorea: 16

Firmicutes: 55 Lactobacilales: 38 Steptococcus: 34

No hits (13) &
removed MGE hits (6): 19

root: 88

Bacteroides: 9

tet(O): 129 (76.3%)

tet(O): 2 (100%)

tet(O): 8 (100%)

tet(O): 1 (100%)

tet(O): 5 (55.6%)
tet(w): 2 (22.2%)

tet(X): 

tet(O): 
tet(w): 

1 (0.5%)
20 (11.0%)

147 (79.3%)
tet(O): 211 (83.1%)
tet(w): 26 (10.2%)
tet(X): 2 (0.8%)

tet(O): 408 (74.0%)
tet(w): 42 (7.7%)
tet(X): 34 (6.3%)

tet(O): 

tet(M): 100%

273 (74.0%)
tet(w): 37 (10.0%)
tet(X): 23 (6.2%)

tet(O): 272 (74.5%)
tet(w): 37 (10.1%)
tet(X): 21 (5.8%)

5 (2.9%)
11 (6.5%)

tet(w): 

tet(O): 8 (80%)

tet(W): 2 (100%) 

2 (20%)tet(w): 

tet(O): 3 (33.3%)
3 (33.3%)tet(X): 

tet(O): 3 (15%)

tet(O): 14 (87.5%)
tet(w): 2 (12.5%)

tet(O): 29 (82.9%)
tet(w): 6 (17.1%)

13 (65%)tet(X): 
tet(O): 3 (11.1%)

18 (66.7%)tet(X): 

tet(X): 

Ruminococcaceae: 10

No hits (138) &
removed MGE hits (31): 169

Faecalibacterium: 2

Ruminococcus: 8

Eubacterium: 1

Clostridium: 9

Root: 544
1

Not assigned: 2

a

b

       . Fig. 9.3 Microbial diversity of tetracycline resistance fosmid clones in infant a and mother b. The 
MEGAN (Huson et al. 2016) (. Table 9.2) tree is collapsed at genus level and summarizes the numbers of 
reads assigned at different taxonomical levels with the size of the node proportional to the number of 
reads assigned to the specific node. For each taxon level, the number of reads assigned to different 
tetracycline resistance genes is shown (From de Vries et al. 2011) (7 http://journals. plos. org/plosone/
article?id=10. 1371/journal. pone. 0021644)

Full Shotgun DNA Metagenomics
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9.3  Analysis of Full DNA Shotgun Sequence Data

After sequencing, the raw reads need to be de-multiplexed (to associate barcodes with 
samples) and converted to FASTQ format files. This step can be done on the MiSeq 
sequencing platform. Further handling of data requires a bioinformatic pipeline. It is 
recommended to perform a control for completeness and contamination by CheckM 
(Parks et al. 2015) (7 http://ecogenomics. github. io/CheckM/) or similar program.

Quality guidelines have been published for metagenome-assembled genomes (Bowers 
et al. 2017). According to the paper, there are a range of criteria but no strict definition or 
guidelines to assemble genomes from metagenomes. Like for whole genomes from 
cultured bacterial isolates, key parameters are total assembly size, contig N50, and 
maximum contig length. Sequences should be assembled to the longest possible contigs 
(7 Chap. 2). The assembly may involve assembly of scaffolds (genome frame).

For high-throughput sequencing data, the initial steps in the bioinformatical analysis 
with quality control and filtering are the same as described for 16S rRNA amplicon 
sequencing (7 Chap. 8). Full DNA metagenomics differs from 16S rRNA amplicon 
sequencing in that open reading frames (ORF) are predicted to encode for proteins that 
are identical. ORFs are compared to the existing databases (7 Chap. 3). The database 
search can link information about organism (taxonomy) with function. This way taxonomy 
is predicted from the ORF in the databases.

The pipelines QIIME and Mothur described in relation to 16S rRNA amplicon 
sequencing (7 Chap. 8) can be used; however, for full DNA shotgun sequencing, other 
pipelines are also available (. Table 9.2). MEGAN was introduced linking taxonomy with 
function (. Fig. 9.3). The platform has been updated (Huson et al. 2016). MEGAN assigns 
taxonomic relationships by comparison to NCBI taxonomy (7 https://www. ncbi. nlm. nih. 
gov/taxonomy) using the (lowest common ancestor) LCA algorithm. Comparison can be 
made to the most common databases for functional identification. However, the focus in 
this chapter will be on another pipeline, MG-RAST (metagenomics RAST).

9.4  MG-RAST

The focus in this chapter will be on MG-RAST (metagenomics RAST) (Meyer et al. 2008) 
since it is probably the most user-friendly pipeline. MG-RAST can automatically perform 
assessment of sequence quality and annotation with respect to multiple databases based on 
uploaded raw metagenomic sequence data (Keegan et al. 2016). In MG-RAST, preprocess-
ing including removal of low-quality reads, dereplication (merging of identical reads), 
DRISEE, screening, and removal of host-specific sequences including human and gene call-
ing, AA clustering, protein identification, annotation mapping, and abundance profiling are 
done in the pipeline. DRISEE (duplicate read inferred sequencing error estimation) accounts 
for artificial overrepresentation of certain genes (PCR artifact). AA clustering is clusters of 
proteins build on 90% similarity. This is done to simplify the computational analysis.

MG-RAST has several databases available, for instance, can functional annotation be 
done against a multi-source protein database M5nr (MD5 based on nonredundant protein 
databases) (. Fig. 9.4). Subsystems under SEED (see description of RAST in 7 Sect. 2.5) 
can be used for further functional annotation (Keegan et al. 2016) (. Fig. 9.5). The search 
in the databases is performed by BLAST (7 see Chap. 4) or BLAT (Kent 2002). If 16S 
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       . Table 9.2 Bioinformatics pipelines for analyzing full DNA shotgun data

Name Functions URL References

Blast2GO® Functional annotation and 
analysis

7 https://www. 
blast2go. com/

Conesa et al. 
(2005)

EBI 
metagenomics

Analysis and archiving of 
metagenomic data. 
Phylogenetic diversity as 
functional and metabolic 
potential of a sample

7 https://www. ebi. 
ac. uk/metagenomics/

Mitchell et al. 
(2018)

GhostKOALA Metagenomic annotation in 
the KEGG database

7 http://www. 
kegg. jp/ghostkoala/

Kanehisa et al. 
(2016)

IGC Dedicated human microbiome 
analysis

7 http://meta. 
genomics. cn/meta/
home

Li et al. (2014)

Kraken Default database is NCBI 
RefSeq complete genome 
database. To investigate 
environments with well-known 
target organisms

7 https://www. 
kraken. com/

Wood and 
Salzberg (2014)

MEGAN Linking taxonomy with 
function

7 http://ab. inf. uni-
tuebingen. de/
software/megan6/

Huson et al. (2016)

MetaPh1An Human microbiome project 7 http://
huttenhower. sph. 
harvard. edu/
metaphlan

Segata et al. (2012) 
and Huttenhower 
et al. (2012)

Metavir 2 Viral metagenome analysis 7 http://metavir- meb. 
univ- bpclermont. fr/

Roux et al. (2014)

Mothur Analysis of data 7 https://www. 
mothur. org/

Schloss et al. 
(2009)

MG-RAST Automatic quality control, 
storage of data, annotation, 
and comparative analysis of 
samples on a simple interface

7 https://www. mg-
rast. org/

Meyer et al. (2008)

QIIME Analysis of data 7 http://qiime. org/ Caporaso et al. 
(2010)

rRNA sequences can be extracted from the dataset, the databases SILVA, Greengenes, or 
RDP can be used for taxonomic identification like described in 7 Chap. 8. The abundance 
plot shows the abundances of specific taxonomic categories (. Figs. 9.6 and 9.7). MG-RAST 
is able to calculate α-diversity (. Fig. 9.8).

Full Shotgun DNA Metagenomics
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       . Fig. 9.4 Distribution of database hits based on the MG-RAST (Meyer et al. 2008). An example is 
shown based on the acc. no. mgm4629274.3 reported in Young et al. (2016) (7 https://www. mg-rast. 
org/). The sample is from cat’s feces, and the figure shows how many annotated sequence reads are 
found in the different databases. The annotated reads are finding most hits in the databases PATRIC (part 
of MG-RAST), RefSeq, IMG, TrEMBL, and GenBank. The expected value, e, indicates the chance that the 
sequence is present in the database (see explanation of e in 7 Sect. 4.3.4)

Clustering-based subsystems - 396,399 (16.43%)
Carbohydrates - 305,118 (12.65%)
Protein Metabolism - 228,675 (9.48%)
Miscellaneous - 186,282 (7.72%)
Amino Acids and Derivatives - 141,896 (5.88%)
DNA Metabolism - 136,977 (5.68%)
Cofactors, Vitamins, Prosthetic Groups, Pigments - 133,
RNA Metabolism - 126,486 (5.24%)
Cell Wall and Capsule - 112,740  (4.67%)
Nucleosides and Nucleotides - 87,070 (3.61%)
Membrane Transport - 68,363 (2.83%)
Stress Response - 59,184 (2.45%)
Virulence, Disease and Defense - 57,722 (2.39%)
Fatty Acids, Lipids, and Isoprenoids - 54,083 (2.24%)

       . Fig. 9.5 Distribution of subsystem in MG-RAST (Meyer et al. 2008) using acc. no. mgm4629274.3 
reported in Young et al. (2016) (7 https://www. mg-rast. org/) as an example. The sample is from cat’s 
feces, and the figure shows the distribution of annotated sequence reads on the functional protein 
subsystem categories in the databases of MG-RAST
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Clostridia - 1,714,713 (68.10%)
Bacteroidia - 281,178 (11.17%)
Fusobacteria (class) - 268,208 (10.65%)
Negativicutes - 69,309 (2.75%)
Erysipelotrichi - 48,620 (1.93%)
Gammaproteobacteria - 44,925 (1.78%)
Bacilli - 40,055 (1.59%)
Actinobacteria (class) - 18,107 (0.72%)
Deltaproteobacteria - 12,203 (0.48%)
Epsilonproteobacteria - 6,367 (0.25%)
Betaproteobacteria - 2,839 (0.11%)
unclassified (derived from Bacteria) - 1,696 (0.07%)
Alphaproteobacteria - 1,253 (0.05%)
Spirochaetes (class) - 1,089 (0.04%)

       . Fig. 9.6 Distribution of taxonomic hits based on the MG-RAST (Meyer et al. 2008) based on an 
example with acc. no. mgm4629274.3 reported in Young et al. (2016) (7 https://www. mg-rast. org/). The 
sample is from cat’s feces, and the figure shows the distribution of sequence reads on class level of 
prokaryotes
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       . Fig. 9.7 Distribution of taxonomic hits at genus level based on the MG-RAST (Meyer et al. 2008) 
using acc. no. mgm4629274.3 reported in Young et al. (2016) (7 https://www. mg-rast. org/) as an 
example. The sample is from cat’s feces, and the figure shows the abundance of sequence reads with 
respect to genera of prokaryotes
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       . Fig. 9.8 Rarefaction plot a and α-diversity b based on the MG-RAST analysis (Meyer et al. 2008) of 
the sample with acc. no. mgm4629274.3 reported in Young et al. (2016). The sample is from cat’s feces, 
and the plot in A shows the total number of distinct species annotations as a function of the number of 
sequences sampled. The more flat the curve, the less likely it is to find additional species. When this type 
of curve levels off, a sufficient number of reads have been sequenced for a given sample. The plot in B 
shows that the α-diversity is 79 (red spot) in this example meaning that the 79 different species 
have been estimated. The min, max, and mean values are shown, with the standard deviation ranges  
(σ and 2σ) (7 https://www. mg-rast. org/)

MG-RAST allows both taxonomy prediction based on the approach in 7 Chap. 8 
based on the rRNA databases SILVA, Greengenes, and RDP as well as the prediction 
achieved from the ORF.  The databases used for the ORF are very much limited with 
respect to organism diversity, and for data where a high degree of non-cultured prokary-
otes are expected, the 16S rRNA function in MG-RAST will probably improve the taxo-
nomic prediction.

9.5  Activities

9.5.1  Full DNA Metagenome: Shotgun DNA Metagenomics

We will use data reported in Young et al. (2016) which are available from MG-RAST. This 
is a metagenomics study of feces from 20 cats. The 20 datasets are listed in the paper, and 
we will only look at the first dataset mgm4629274.3. This is the MG-RAST acc. no., and 
you can view a lot of information about the dataset in MG-RAST.

Open MG-RAST from 7 https://www. mg-rast. org/ (. Fig.  9.9). Type in the number 
mgm4629274.3  in the search field, and press the search bottom. Note that some of the 
metadata seems odd (temperate broadleaf and mixed forest biome). It is just because we 
expect something about cats. These metadata are referring to the geographic location of 
the cats including the natural vegetation type.
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Use no. t174 in the column “study” as link. Here you will get a list of all 20 datasets 
including mgm acc. numbers. Note that the initial no. mgm4629274.3 is on the list as the 
first cat. At each line in this table, an overview of number of reads and number of total 
nucleotides is provided. For the first sample, use number BY170 as link. This brings you to 
a paradise of graphics including taxonomic overview and breakdown on functional cate-
gories all in nice pie charts. These representations have been used for the figures of this 
chapter.

       . Fig. 9.9 MG-RAST (Meyer et al. 2008) pipeline with the simple interface of download, upload, and 
analyze bottoms (7 https://www. mg-rast. org/)

  Take-Home Messages

 5 Full DNA metagenomics is the sequencing of all DNA from a sample followed 
by assembly and annotation and assignment of sequence information to 
organisms and functions.

 5 The assembly of DNA sequence reads attempts to reconstruct genome frag-
ments to draft genomes.

 5 The microbiome is the common gene pool of all microorganisms in a sample 
analyzed by full DNA metagenomics and the microbiota the organisms pre-
dicted based on the microbiome.

 5 The computer program MG-RAST can be used to analyze, archive, and down-
load data and to share data with the scientific community.

Full Shotgun DNA Metagenomics
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What You Will Learn in This Chapter
A gene is active when it is being transcribed to mRNA. mRNA is acting as a template for 
protein synthesis. Measuring of how much mRNA is transcribed can be used to estimate 
how active a gene is under a given circumstance. It is possible to get insight to the regulation 
status of all genes of a prokaryotic strain at the same time by sequencing the total amount 
of mRNA (the transcriptome) and annotating the sequences against the fully sequenced 
genome of the prokaryotic strain. The method is called RNA sequencing (RNA-seq), and this 
chapter will teach you methods on how to prepare RNA material for sequencing, 
considerations on experimental design, and how data are analyzed.

10.1   Introduction to Transcriptomics

The ability to measure how genes are regulated under certain developmental stages or 
physiological conditions has expanded the knowledge of the biology of both human and 
prokaryotic cells tremendously. A technique called Northern blotting, developed in 1977, 
was the first method to study gene expression (Alwine et  al. 1977). More methods to 
investigate the regulation of genes, including quantitative PCR (qPCR) and microarrays 
have become available. The methods, however, have several limitations, for instance, in 
qPCR analysis, only few genes can be studied at the same time. For all the methods, the 
major drawback is hybridization probes (needed, e.g., for Northern blotting and 
microarrays), and specific primers (for qPCR) need to be manually designed, and 
consequently “you only find what you are looking for.” Despite the bias that the researcher 
has to decide which contents to put on the hybridization plate, microarrays have been the 
gold standard to study differential gene expression during the 2000s. As the price of novel 
high-throughput sequencing has decreased promptly in the same period, RNA sequencing 
(RNA-seq) is now rapidly replacing hybridization techniques in genome-wide expression 
studies (Wang et al. 2009).

RNA-seq relies on high-throughput sequencing, and it will allow a genome-wide 
detection of “active” genes by measuring the level of the genes transcribed. The technique 
relates to many bioinformatic techniques already described including sequencing, 
annotation, databases, alignments, and BLAST (. Fig. 10.1).

For RNA-seq experiments, often different conditions of the same prokaryotic strain 
are compared, for instance, the highly oxacillin-resistant strain of Staphylococcus aureus, 
USA300, cultured in normal growth media can be compared to growth media with 
therapeutic concentrations of oxacillin (the concentration of oxacillin normally used to 
treat infections with oxacillin-sensitive S. aureus). RNA-seq will enable the identification 
of differently expressed (DE) genes between the two conditions. Such an experiment will 
allow the identification of DE genes in S. aureus under exposure to oxacillin compared to 
control condition and may elucidate the mechanism to why S. aureus USA300 is able to 
withstand the exposure to oxacillin. Apart from this example on how RNA sequencing can 
be used for functional studies, RNA-seq may also be applied for detection of SNPs, finding 
of novel genes, or a total transcriptome assembly, just to give some examples of the use of 
transcriptomic data.

In overview, the workflow for RNA-seq is relatively simple: extracted RNA is con-
verted to cDNA; cDNA is sequenced on a next-generation sequencing platform (NGS) 
such as either Illumina, Helicos, or SOLiD; and finally, the sequence data are matched to 
genes by sequence alignment (7 Chaps. 2 and 4).
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The application of NGS has several advantages. In contrast to hybridization-dependent 
methods, the transcription is studied in an unbiased manner, since no probe sequences 
are needed to be specified. Secondly, the experimental design does not need to be altered 
in accordance with differences in genome sequences. Finally, the probe-less sequencing 
allows the discovery of new genetic features (Buermans and Dunnen 2014). Although the 
analysis is slightly more user-friendly for microarray data than for RNA sequencing data, 
RNA-seq is giving a more comprehensive overview of the transcriptome and a better 
dynamic range and gives the possibility to detect SNPs (Merwe et al. 2013). These features 
taken together are probably the key reasons of why RNA-seq has exceeded microarrays as 
the method of choice to analyze gene expression (Malone and Oliver 2011).

10.2   Experimental Design

There are several types of RNA that can be sequenced such as total RNA, small RNA, or 
mRNA. mRNA only constitutes about 2% of the total RNA in the cell; however, the 
assumption for transcription profiling is that changes in the transcriptional mRNA level 
correlate with the phenotype (protein expression). This chapter is only focusing on the 
sequencing of mRNA in a single culture and sequencing by the Illumina short-read 
technology, although mixed samples (metagenomics) and other sequencing platforms 
may also be suitable for RNA sequencing (Chu and Corey 2012).

The first thing to do before beginning an experiment is to decide on the experimental 
design (. Fig. 10.2). The prokaryotic growth phase needs to be considered to assess gene 
expression since gene expression may vary significantly under exponential – compared to 
stationary growth phase (Rolfe et al. 2012). The number of replicates of each sample needs 

2.1 Assembly 2.2 Annotation

10 Transcriptomics

4.2 Multiple alignment 4.3 BLAST 4.1 Pair-wise alignment

3.1–3.5 Databases

       . Fig. 10.1 Relationship of the chapter to other chapters of the book. RNA-seq relates to many 
preceding chapters dealing with sequence assembly, annotation, databases, alignments, and BLAST
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to be considered. It needs to be considered if rRNA needs to be removed. The sequencing 
depth required to answer a particular research/biological question needs to be defined. 
The optimal read length needs to be considered, and it needs be considered if samples can 
be pooled. The type of library needs to be selected and the sequencing platform decided 
including if single-end or paired-end sequencing is required.

It is important to make a distinction between biological and technical replicates. The 
biological replicates assess variations between samples, whereas the technical replicates 
can determine variation within sample preparations. RNA extracted from one sample and 
divided into three samples to be sequenced would be three technical replicates, whereas 
three samples of RNA harvested from three independently cultured colonies treated under 
similar conditions would represent three biological replicates. More biological replicates 
should always be favored over technical replicates, but be aware to stratify samples over 
time. Hence, do not extract RNA for all control samples Monday and all treated samples 
Wednesday, as factors such a humidity in the weather or even slight changes of the 
temperature in the culture water bath may influence the RNA profile. Differences between 
control and treated samples in this setup could then be due to external (environmental) 
factors rather than due to the treatment. More biological replicates (at least two, three is 
better) will increase the statistical power in the subsequent analysis.

The adequate read depth needed has to be assessed from experiment to experiment, 
depending on prokaryotic species and the research question under investigation. If you do 
not have sufficient read depth, the vast majority of reads will be associated with the highly 
expressed genes, which may not be the biologically most important genes needed to 
answer your research question, e.g., how does antibiotic x affect genome-wide gene 
expression (Depardieu et al. 2007). That being said, there is a trade-off between more read 
depth and replicates, meaning you can add more replicates rather than increase the read 
depth (Sims et al. 2014).

For highly expressed genes, little effect of an increased sequencing depth is gained on 
the number of differentially expressed (DE) genes detected. In this case increasing the 
number of biological replicates will be more beneficial. However, for low-expressed genes, 
both sequencing depth and biological replicates increase the power to detect DE. According 
to ENCODE guidelines, 10–20 million reads are sufficient for differential genes expression, 
but additional unique transcripts are still being found at one billon read (Lui et al. 2014). 

Experimental
design
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library Sequence Analysis
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experi-
ment to
answer
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research
question

Purify
high-
quality
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Convert
RNA to
cDNA; add
sequencing
adaptors
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cDNA on a
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throughput
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Analysis of
the raw
reads

       . Fig. 10.2 Overview of RNA sequencing workflow
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The online tool named “Scotty” may guide for in the determination of sufficient reads for 
your RNA experiment (7 http://scotty. genetics. utah. edu/).

The Illumina platform can perform single-end or paired-end sequencing. Paired end 
is more expensive than single end but improves mapping to reap sequences and improve 
the accuracy for detection of differential expression for low-expressed genes.

10.3   Preparing a RNA-seq Library

The Illumina TruSeq RNA protocol is the most commonly used protocol. Using the 
Illumina TruSeq RNA protocol, there are six steps in preparing an RNA-seq library: Step 
1, isolation of RNA; Step 2, depletion or removal of rRNA; Step 3, conversion of rRNA into 
complementary, double-stranded DNA (cDNA); Step 4, addition of sequencing adaptors; 
Step 5, PCR amplification (enrichment); Step 6, quality control of the library.

 z Step 1: Isolation of RNA
There are several companies offering sequencing of RNA, e.g., ZF Genomics, 
Netherlands. It is, however, the responsibility of the researcher to provide a high RNA 
sample quality, which is essential for successful RNA-seq experiments. Many methods 
are available for purification of RNA from prokaryotic cells, including different manual 
protocols (e.g., an acidic phenol-chloroform RNA extraction protocol) and commercial 
kits (e.g., Qiagen RNA extraction kit). It is important to use the same RNA extraction 
protocol for all samples to be compared, since differences between protocols may 
slightly influence the RNA material (Sultan et  al. 2014; Kumar et  al. 2017). It is also 
important to acknowledge that irrespectively of protocol, RNA extraction is much more 
fragile than DNA extraction due to the ubiquitous and hard RNases that degrade 
RNA. Furthermore, RNA extraction is a challenging task due to the short half-life of 
mRNA (Tan and Yiap 2009). Gloves should always be used when handling/isolating 
RNA (human skin carries RNases) and all samples be kept on ice. It is acceptable to spin 
down prokaryotic cells at room temperature, but as soon as the cells have lysed, the 
temperature should be kept low (by keeping samples on ice) which will inhibit the activ-
ity on any luring RNases. Preferably use pipettes that are only handled for work with 
RNA. If that is not possible, at least make sure always to use RNase-free tips with filter. 
Be aware that RNases are very stable and will not be eliminated by autoclaving; hence, 
do only use certified RNase-free water.

The RNA quantity and purity can be evaluated to measuring the UV absorption of the 
sample using a spectrophotometer, e.g., on a NanoDrop spectrophotometer (Thermo 
Fisher Scientific). RNA has a maximum absorption at 260 nm, and the RNA concentration 
is determined by the OD reading at 260 nm. In addition to the OD260, measurements 
should also be taken at 280 nm and 230 nm. The A260/A280 ratio provides an indication 
of the level of protein contamination in the sample. Pure RNA has an A260/A280 ratio of 
2.1; however, values between 1.8 and 2.0 are considered acceptable for many protocols. Be 
aware that OD absorbance measurements can change depending upon the pH of the RNA 
solution. The best results are obtained when RNA is solubilized in TE buffer. In general, 
RNA concentrations must be above 20 μg/mL to give reliable readings.

It is needed to control the integrity of the RNA preparation since RNA may be degraded 
and not perform well in downstream applications. The easiest and cheapest way to assess 
RNA integrity is by the means of a 1% standard agarose gel and examining the ribosomal 
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RNA (rRNA) bands. The upper ribosomal band (23S in prokaryotic cells) should be about 
twice the intensity compared to the lower band (16S in prokaryotic cells) and should be 
crisp and tight. If the rRNA bands are of equal intensity, then it suggests that some 
degradation has occurred. mRNA runs between the two ribosomal bands and might be 
seen as a smear. This is acceptable; however, smearing below the rRNA bands suggests that 
you have poor-quality RNA. Higher molecular weight bands that might indicate that the 
RNA is contaminated with DNA must not be observed.

A second method to control the integrity of your RNA that has become more pop-
ular, especially with in microarray analyses, is to use a bioanalyzer, such as the Agilent 
Bioanalyzer. Bioanalyzers use small amounts of RNA (1–2 μL) and microfluidics to 
determine the quantity and quality of RNA samples. The analyzer measures the sizes of 
the rRNA bands and determines an RNA integrity number (RIN) to standardize 
between RNA samples. Bioanalyzers are expensive, but they can often be found in core 
facilities.

The input needed for the TruSeq-stranded mRNA kit (Illumina) is 0.1–4 μg of total 
RNA. Using the Agilent Bioanalyzer, the RNA integrity number (RIN) value should be 
greater than or equal to 8.

 z Step 2: Depletion or Removal of rRNA
The majority of the total RNA is rRNA, and rRNA must either be depleted from the sam-
ple, or alternatively, mRNA must be captured. For the latter, the selection of mRNA can be 
done by poly(A) selection, which is done by filtering RNA with 3′ polyadenylated poly(A) 
tails. The RNA with 3′ poly(A) tails is a mature, processed, coding sequence. Poly(A) 
selection is performed by mixing RNA with poly(T) oligomers covalently attached to a 
substrate, typically magnetic beads (Cui et  al. 2010). If whole RNA is to be sequenced 
instead, rRNA must be depleted. There are a number of commercially available kits for 
rRNA depletion, such a RiboZero (TaKaRa).

 z Step 3: Conversion of RNA into Complementary DNA (cDNA)
The first stage is fragmentation of the RNA to be sequenced. Fragmentation is achieved by 
using divalent cations, under elevated temperature, which ensures good coverage of the 
transcriptome. The cleaved RNA fragments are copied into first strand cDNA using 
reverse transcriptase and random primers.

One of the advantages of the Illumina TruSeq protocol is that it is “stranded” mean-
ing that it will provide information from which of the two DNA strands a given RNA 
is derived. This provides a large, complete picture of the transcriptome (Wang et al. 
2009).

The strand specificity of the samples is achieved by replacing dTTP with dUTP in the 
second strand synthesis process, which quenches the subsequent amplification of this 
strand because the polymerase used in the assay will not incorporate past this nucleotide. 
The final product of this step is blunt-ended, double-stranded cDNA molecules. The 
addition of an A-base to the ends of the cDNA prevents the blunt-ended fragments from 
ligating to one another during the adapter ligation reaction.

 z Step 4: Addition of Sequencing Adaptors
A ligation reaction takes place, which ligates multiple indexing adapters to the ends of the 
DNA fragments, preparing them for hybridization onto a flow cell.
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 z Step 5: PCR Amplification (Enrichment)
The adaptor-added products are purified and enriched with PCR to create the cDNA 
library. This step is necessary to ensure that the sequencing signal will be strong enough to 
be detected unambiguously for each base of each fragment.

 z Step 6: Quality Control of the Library
To assess library quality, 1 μl of the post-enriched library is loaded on one of the following 
instruments: Advanced Analytical Technologies Standard Sensitivity NGS Fragment 
Analysis Kit (Advanced Analytical, Heidelberg, Germany) or Agilent High Sensitivity 
DNA chip (Agilent, Santa Clara, USA). The size of the library is controlled for distribution 
of the DNA fragments with a size range from approximately 200  bp–1  kb. The 
manufacturer’s instructions should be followed for the respective instruments depending 
on the kit you are using.

10.4   Sequencing

When preparation of cDNA is done with TruSeq RNA, cDNA sequencing can be done on 
Illumina MiSeq or HiSeq platform as descripted elsewhere in the book (7 Chap. 2). 
Overall, the sequencing of RNA does not differ from sequencing of genomic DNA. The 
suggested read length is 50–250 bp.

10.5   Data Management (Sequence Reads)

Data from sequencing will be provided in FASTQ format. Data management includes 
assessing data for the quality, alignment of the reads to a reference genome and 
normalization of the data, before the differential gene expression analysis can be conducted. 
Some of the most important bioinformatical programs are listed in . Table  10.1, and 
examples on their use will be given in the text.

10.5.1   Raw Data

The Illumina platform provides raw sequence reads in FASTQ format, which may be 
stored directly at the Sequence Read Archive (SRA) (7 Chap. 3). When assessing the raw 
data, start by checking whether the FASTQ file is consistent. The format can be validated 
with software such as FastQValidator (7 https://github. com/statgen/fastQValidator). Then 
the base calling quality score, which is part of the sequencing data output, needs to be 
assessed. Quality scores reflect how confidently the right bases have been called. FastQC 
(part of the FastQValidator) is an excellent tool for assessing the quality of the sequencing 
run. The base calling quality score is called a Phred score, Q, which is proportional to the 
probability p that a base call is incorrect, where Q = −10 log10(p). For example, a Phred 
score of 10 corresponds to one error in every 10 base calls (Q = −10 log10(1/10)), or 90% 
accuracy; a Phred score of 20 corresponds to one error in every 100 base calls, or 99% 
accuracy. A higher Phred score thus reflects higher confidence in the reported base. There 
is no defined cutoff on how low an acceptable Phred score can be, but one should aim for 
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Phred scores higher than 33. FastQC can also be used to confirm graphically that the GC 
content is represented by a nicely bell-shaped form.

If the quality score of the run is low, it may be possible to remove unwanted parts of 
the raw data. The unwanted parts are either technical contaminations such as low-quality 
read parts or technical sequences such as the adaptors or biological contamination like 
poly(A) tails, rRNA, mitochondrial RNA, or tRNA. When these parts are removed, then 
FastaQC is run again, and it should be decided if you want to proceed with the data or do 
a rerun.

If you decide that the quality of the reads is sufficient to proceed, the sequences are 
ready to be aligned to a reference genome.

10.5.2   Alignments of Sequence Reads

Now the reads needs to be aligned to the genome(s) which provided the RNA sample(s); 
this is called read alignment or mapping. While the term “alignment” describes the process 
of finding the position of a sequencing read on the reference genome, “mapping” refers to 
assigning already aligned reads to transcripts which is also called quantification. The 
general challenge of short-read alignment is to map millions of reads accurately and in a 
reasonable time, despite the presence of sequencing errors, genomic variation, and 
repetitive elements. There are several tools to assist in the alignment, depending on 
whether the reads are aligned to a genome or the reads are assembled de novo, in which 
the reads need to be assembled first into longer contigs. These contigs can then be 
considered as the expressed transcriptome to which reads are remapped for quantification.

       . Table 10.1 Examples of software programs to manage and analysis RNA sequencing data

Design of 
RNA-seq 
experiment

Quality control Alignment Normalization

Scotty
7 http://
scotty. genetics. 
utah. edu/

FastQC
7 http://www. 
bioinformatics. 
babraham. ac. uk/
projects/fastqc/

Bowtie
7 http://
bowtie- bio. 
sourceforge. net/
index. shtml

EdgeR
7 http://www. 
bioconductor. org/
package/release/bic/
html/edgeR. html

RNAtor
7 https://
github. com/
binaypanda/
RNAtor

dupRadar
7 http://bioconductor. 
org/packages/devel/
bioc/html/dupRadar. 
html

GNUMAP
7 http://
dna. cs. byu. edu/
gnumap/

DESeq
7 http://bioconductor. 
org/packages/release/
bioc/html/DESeq. html

PROspective 
Power
7 https://rdrr. io/
bioc/PROPER/

RNA-SeQC
7 http://archive. broad
7 ituteute. org/cancer/
cga/rna-seqc

PerM 7 https://
code. google. com/
archive/p/perm/

BaySeq
7 http://www. 
bioconductor. org/
packags/release/bic/
html/baySeq. html
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10.5.3   Normalization of Data

Normalization is a process designed for adjustment for sequencing depth and composi-
tional bias. It is done, to identify and remove systematic technical differences between 
samples that occur in the data and to ensure that technical bias has minimal impact on the 
results. The most common need for normalization is related to differences in the total 
number of aligned reads.

Library size influences read counts. If one library is sequenced to 20  M reads and 
another to 40  M, in the latter case, most genes will be approximately double in their 
counts. Also, the library composition has importance as highly expressed genes may be 
overrepresented at cost of lowly expressed genes. One way to normalize data is by the use 
of read per kilobase million (RPKM) (for SE-RNA-seq) of fragments per kilobase million 
(FPKM) (for PE-RNA-seq). RPKM is calculated by dividing the reads for gene A by the 
length of gene A times the total number of reads.

RPKM = Reads for gene A/(Length of gene A × Total number of reads)
This formula normalizes read counts for (1) the sequencing depth, since sequencing 

runs with more depth will have more reads mapping to the gene, and (2) the length of the 
gene, since longer genes will have more reads mapping to them.

An alternative that might be considered as a better solution is TPM (transcripts per 
kilobase million). TPM is very similar to RPKM/FPKM. The only difference is the order 
of operations:
 1. Divide the read counts by the length of each gene in kilobases. This gives you reads 

per kilobase (RPK).
 2. Count up all the RPK values in a sample, and divide this number by 1,000,000. This is 

your “per million” scaling factor.
 3. Divide the RPK values by the “per million” scaling factor. This gives you TPM.

Normalization for the library size may also be done using different software, such as 
DESeq2 and Edger R (. Table 10.1).

Gene length influences the count, as longer transcripts generate more reads. However, 
the transcript length does not differ between samples. Since it is the relative difference that 
is of interest, gene length counts do not need to be normalized.

10.6   Differential Gene Expression

RNA-seq is a relative abundance measurement technology. The primary goal of the dif-
ferential gene expression analysis is to quantitatively measure differences in the levels of 
transcripts between two or more treatments or groups.

Step one in any analysis is always the same: plot the data! You may use a principal 
component analysis (PCA) or something similar to plot the data. This plot gives a nice 
overview of how similar the different replicates are in the RNA composition (the closer, 
the better) and will give a first impression if you can expect to find interesting difference 
between you samples (. Fig. 10.3).

The actual identification of DEG is typically done using the statistical program R with 
either edgeR or DESeq and will result in a plot similar to . Fig. 10.4. In . Fig. 10.4, black 
dots represent genes that are expressed the same, while each red dot is a gene that is 
expressed differently between the two sample conditions (“C” and “S” in . Fig. 10.4). The 
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x-axis tells you how much each gene is transcribed, while the y-axis tells you how big the 
relative difference is between “C” and “S.” The red genes are therefore your interesting 
genes. If you know what you are looking for, you can see if the experiment is validating 
you hypothesis. If you don’t know what you are looking for, you can see if certain pathways 
are enriched under the different sample conditions using, e.g., KEGG Mapper (7 www. 
genome. jp/kegg/mapper. html) or Cytoscape (Cline et al. 2007).

10.7   Conclusion

Since the first reported studies using RNA-seq were published in 2008, our understanding 
of gene expression has to be taken to a new level. However, there are still some technical 
issues awaiting resolution such as the PCR amplification stage of the library construction, 
which may result in redundant sequence read and bias in the final dataset. Nevertheless, 
RNA-seq holds the promise to continue to replace other genome-wide expression analysis 
in the future and will likely add in refining our understanding of gene regulation in pro-
karyotes.
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What You Will Learn in This Chapter
You will learn some background of why sequence-based typing of microorganisms is per-
formed. You will learn about sequence-based identification and characterization of popula-
tions based on multilocus sequence typing (MLST). You will then learn how the MLST 
concept has been transferred to whole genomic sequence comparison. You will learn about 
single-nucleotide polymorphism (SNP) analysis based on the whole genomic sequences as 
well as organism-specific servers enabling the prediction of serotype, antibiotic resistance 
gene profile and MLST type.

11.1   Background of Prokaryotic Populations 
and Population Genetics

In this chapter the background of population genetics mainly related to bioinformatics 
will be presented (. Fig. 11.1). Population genetics is the study of the evolutionary change 
in the genetic composition of populations (Whittam 1995). According to Whittam (1995), 
population genetics applies both to how the mechanisms (mutation, natural selection, 
migration, genetic drift) influence the evolutionary rate of change in the populations 
(. Fig.  11.2) as well as to historical investigations of how and when pathogens have 
evolved. The outcomes of such investigations will be definition of population structures, 
knowledge of the nature of allelic variation, and the role of different modes of recombination 
in generating genotypic variation (Milkman 1973; Selander and Levin 1980; Whittam 
1995).

11 Molecular typing

3.1–3.5 Databases2.1 Assembly

6 Phylogeny 7 Identification 9 Full DNA metagenomics

       . Fig. 11.1 Relationship of the chapter to other chapters of the book. Molecular typing based on 
sequence comparison relates to many preceding chapters dealing with sequence assembly, databases, 
phylogeny, and identification. For the future, molecular typing could probably also be linked to full DNA 
metagenomics
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In animals, a population is defined as a group of individuals with a potential for sexual 
reproduction often limited to a certain geographic region at a certain time point. However, 
this definition cannot be used for prokaryotes due to the lack of sexual reproduction. 
Groupings of prokaryotes are better reflected by clonal relationships than physical barriers. 
A prokaryotic clone was originally defined as a group of prokaryotic isolates “showing so 
many identical phenotypic and genetic traits that the most likely explanation for this 
identity is a common origin” (Ørskov and Ørskov 1983). Clonal populations are also 
called genetic lineages.

The most difficult task with prokaryotes is to set up the limits for the population. A 
practical solution might be to define the population borders according to the role that 
their members have in causing disease or other properties useful for epidemiology and for 
the investigation of pathogenesis. However, populations need to be identified by certain 
genotyping methods, and their principles are very much determining for how we observe 
the populations. These methodological problems with identification of clonal populations 
are illustrated in . Fig. 11.3. Method 1 is optimal in linking genotypic clusters with isolate 
properties in relation to host and disease association. Method 2 has slightly lower 
resolution than method 1 and results in the lack of separation of populations 1 and 2. The 
non-disease-related isolates 3 and 4 are therefore included in this population which is 
confusing compared to method 1 that allowed the separation of population-associated 
disease from the nonpathogenic. Method 3 has higher resolution than method 1, and this 
will not contribute with any error as long as it is taken care of that some clusters might 
belong to the same population. Method 4 has the same resolution as method 1; however, 
isolates are clustered differently, and methods 4 will give another interpretation about 
their role in disease.

Mutation
(point mutation and
horizontal gene transfer)

Evolution

Selection
(Factors: host,
vaccination,
medication,
disinfectants,
environmental
tolerance, nutrients
etc.)

Genetic drift

Migration
(potential for
horizontal gene
transfer and
change in allelic
frequency)

       . Fig. 11.2 Population genetic mechanisms relevant for the prokaryotes. The mechanisms of selection, 
mutation, and genetic drift contribute to the evolution of populations by shaping their genetic 
properties. Migration may also contribute if allelic frequencies are affected
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The term “strain” is sometimes misused to equal a population or a clone. In the strict 

sense, a strain is an isolate that has been further characterized, archived, and documented. 
The term “strain” refers to the culture or subcultures of it. The misuse is related to the fact 
that two isolates that share phenotype and genotype in principle must be considered as 
belonging to the same strain.

11.1.1   Mutation

The most likely starting point for an event affecting the genetics of a population is a muta-
tion (. Fig.  11.2). The progeny of a prokaryotic cell should in principle be genetically 
identical to its ancestor. Two genetic mechanisms, point mutations and horizontal gene 
transfer (HGT), tend to abolish this identity over time. Mutations will increase genetic 
diversity between individuals. Point mutations accumulate with a nearly constant rate at 
random positions in the sequence, and we can analyze them by sequence comparison 
until a certain level of divergence. HGT, however, is more problematic to analyze, since 
large fragments of sequences are exchanged between individuals and events of transfer 
cannot easily be traced since the origin of such fragments are often unknown.

Recombination in prokaryotes has a completely different meaning compared to 
eukaryotes. In eukaryotes, recombination refers to the results of crossing over in a sym-
metrical way between chromosomes during the zygotene stage of meiosis. This happens 
between members of the same species and even with members of the same population.

Method 1: used to define populations

Method 4: loss of accuracy

Method 3: increased resolution

Method 2: reduced resolution

Host A

Host A

Host A

Host B

Host B
Host B

Host B

Host A

Disease X

Disease X

Disease X

Disease X

Disease Y

Disease Y

Disease Y

Disease Y

Disease Y

Population 1
(isolates 1,2) Population 1

(isolate 2)
Population 1
(isolate 1)
Population 2
(isolate 3)
Population 2
(isolate 4)

Population 1
(isolates 1,2)

Population 2
(isolates 3, 4)

Population 3
(isolates 5)

Population 4
(isolates 6, 7)

Population 5
(isolates 8)

Population 3
(isolate 5, 6)
Population 4
(isolate 7)
Population 5
(isolate 8)

Population 1
(isolates 1,2, 3, 4)

Population 3
(isolates 5, 6)
Population 4
(isolate 7)
Population 5
(isolate 8)

Population 2
(isolates 3,4)

Population 3
(isolates 5,6)

Population 4
(isolate 7)

Population 5
(isolate 8)

other species

other species

other species

other species

DiseaseHostIsolate
1
2
3
4
5
6
7

A
A

X
X

Y
Y

A and B

A
A
B
B
B

8

       . Fig. 11.3 Model illustrating dilemmas between methodological and biological relevance of 
populations. Clonal population are defined according to method 1 providing optimal biological 
interpretation (hosts A, B, disease associations X, Y) for the isolates investigated in the table
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Recombination in prokaryotes includes HGT, and it can take place between prokary-
otes by transformation, transduction, and conjugation and usually occurs as an asym-
metrical exchange events between the partners. Some bacteria like Haemophilus influenzae 
are naturally transformable meaning that they can take up DNA directly from the envi-
ronment. In bacteria with a double-wall structure (Gram negative), DNA is taken up as 
double stranded across the outer membrane and as a linear single-stranded across the 
inner membrane, and uptake signal sequences (USS) have been found to favor uptake 
(Maughan et al. 2008). Transduction is the transfer of genetic material by bacteriophages. 
There is high variability in the ability of bacteriophages to cross-react with strains within 
the same species, between different species of the same genus and between different gen-
era of the same family (Jones and Sneath 1970). Conjugation is when genetic material is 
transferred between two prokaryotes on a conjugational plasmid. This is the most fre-
quent mechanism for horizontal transmission of antibiotic resistance genes.

Luria and Delbruck (1943) pioneered the investigation of prokaryotic population 
genetics by investigating how bacteria become resistant to bacteriophages. They found 
resistance to develop as a random process since resistance to bacteriophages developed 
independent on the presence of bacteriophages in cultures of bacteria sensitive to bac-
teriophages. Furthermore, they analyzed mutations in a statistical framework and 
found that the distribution of mutational events followed a special distribution (Luria 
& Delbruck distribution). Mutations rates are still measured based on the principles 
laid down by Luria and Delbruck (1943). The most common procedure is the fluctua-
tion test. In this test, the distribution of mutants in a number of parallel cultures is used 
to estimate the mutation rate based on knowledge of the expected number of mutation 
events, the number of cultures, and the size of initial inoculum. A range of assumptions 
are taken in this calculation: constant probability of mutations per cell cycle, that the 
mutation rate is independent of growth phase, no cell death occur and revertants are 
not formed, only single mutants arise, wild type and mutants have the same growth 
rate, a negligible number of mutant cells are initially present compared to final numbers 
in cultures investigated, and that we are able to detect all mutants (Pope et al. 2008). The 
mutation rate is the probability of a mutation occurring per cell division. Another mea-
sure is the mutation frequency being the proportion of mutant prokaryotes present in a 
culture. The mutation rate is independent on the age of the prokaryotic culture and a 
more accurate measure of mutations compared to the mutation frequency that is related 
to the age of the prokaryotic culture. In principle we should be able to trace mutations 
directly to the DNA sequence level (Bell 2008). In practice this will require an enor-
mous DNA sequencing effort; however, next-generation sequencing technologies might 
be able to do this job in order to measure mutation rates directly and not via fluctuation 
tests.

11.1.2   Selection

Periodic selection is the most prominent population-genetic mechanism of prokaryotes. 
If a specific allele is favored in the population, and this allele results in higher fitness, then 
all members of the population with this allele will replace other populations without the 
allele in the given environment by expansion of this clone. Periodic selection is a form of 
“bottleneck” (Levin 1981). The higher rate of HGT, the less is the effect of periodic selection 
(Levin 1981).
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The degree of selection acting on a specific coding gene can in theory be predicted 
by calculation of the so-called dN/dS ratio (Nei 2005). The ratio is the ratio of non- 
synonymous nucleotide substitutions per non-synonymous site (dN) to that of syn-
onymous nucleotide substitutions per synonymous site (dS). A non-synonymous 
substitution at DNA level is a change in nucleotide leading to a change in the amino 
acid translated from the codon where it occurs. It follows that a synonymous substi-
tution is not affecting the amino acid translated from the codon. The theory is based 
on the “neutral theory”: without positive selection, dN/dS  =  1. Negative selection 
(dN/dS <1) occurs when deleterious alleles (recognized at amino acid level) are elim-
inated from the population by purifying selection and leaving only the synonymous 
changes to be observed. In positive selection (dN/dS >1), polymorphism is assumed 
to be maintained at the amino acid level, and the changes here will be relatively higher 
than those observed at synonymous sites. However, high polymorphism at the amino 
acid level might not necessarily be observed for positive selection to occur (Nei 2005). 
Textbook examples of positive selection are with peptide-binding sites of MHC genes 
from humans and mice as well as the antigenic genes of influenzae virus (Nei 2005). 
To carry out the dN/dS calculations, at least two closely related nucleotide sequences 
need to be compared pairwise. Computer programs can evaluate the substitutions in 
regard to all combinations of nucleotides that are legal for each codon. The program 
DnaSP (Librado and Rozas 2009) (7 http://www. ub. edu/dnasp/index_v5. html) can be 
used to calculate selection and many other parameters from DNA sequence data. 
MEGA7 (Kumar et  al. 2016) introduced in 7 Chap. 6 can also calculate the dN/dS 
parameter and will evaluate if the value is statistically significantly different from 
neutral.

11.1.3   Genetic Drift

“Genetic drift is a random process that can cause gene frequencies in a population to 
change over time causing evolution without natural selection” (Madigan et al. 2018). The 
random distribution of certain genotypes within a population may lead to genetic drift if 
the population is small. The limit has been suggested as 108 cells, and with high population 
size, this effect may not be important. With low population size, then clones developed by 
periodic selection may be wiped out more or less by chance. The effect is linked to selection 
in the way that the weaker and more unpredictable the periodic selection, the higher the 
effect of genetic drift.

11.1.4   Migration

Migration is the assimilation of new individuals into a population from another popula-
tion. For migration to take effect on evolution, the introduction of individuals should have 
consequences on population-genetic processes like allelic frequencies and mutation rates. 
Investigation of the spread of populations including bacterial spread between animals is 
not population genetics as long as such spread is not affecting the evolution of the 
organisms. Investigation of such spread is part of epidemiology.

 H. Christensen and J. E. Olsen
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11.1.5   The Biological Consequences of Population 
Genetics of Prokaryotes

In theory, the population structure of a prokaryote species is determined by the “ratio of 
genetic changes caused by recombination relative to de novo mutation” (Spratt and 
Maiden 1999) meaning that if HGT is relatively higher than point mutation rates, the 
population structure will be very complex and diverse, whereas low degree of recombination 
relative to point mutation will result in well-defined populations at the sequence level. 
Only in the last case are we able to recognize clonal populations (. Fig. 11.4). The ratio 
between “recombination and point mutations” can be estimated by comparing 
recombination between the alleles of the genes used in the MLST (7 Sect. 11.2) analysis to 
actual point mutations observed with the same genes.

The distribution of alleles investigated by MLST (7 Sect. 11.2) can be used to predict if 
the population structure is clonal or non-clonal (panmictic). With equal assortment of 
alleles, there should be an equal random distribution of alleles between populations of a 
species. The expected variance VE should equal the observed variance Vo. If the populations 
have evolved like clones, the alleles will be identical or highly related within clones and 
very different between clones, and Vo will be higher than VE. To compare VE and Vo, the 
index of association is calculated (IA = ((Vo/VE) − 1), and it follows that IA is not significantly 
different from 0 with a non-clonal (panmictic) population structure but significantly 
different with a clonal population structure (. Fig. 11.4).

Some clonal lineages of a species seem to have adapted to specific hosts. In addition, 
these lineages often cause disease to a higher extent than other lineages, and for 
epidemiological investigations, it is therefore of great importance to identify and 
understand prokaryotes at the population level.

Clonal:
horizontal gene transfer << point mutations

IA > 0 IA = 0

Non-clonal:
horizontal gene transfer >> point mutations

       . Fig. 11.4 Population structures are related to the ratio between recombination and point mutations. 
The expected variance of allele frequency, VE should equal the observed variance VO. If the populations 
have evolved like clones, the alleles will be identical or highly related within clones and very different 
between clones, and VO will be higher than VE. The index of association is calculated as IA = ((VO/VE) − 1)
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One outcome of population genetics investigations is more realistic diagnostic meth-
ods for prokaryotic populations involved in disease. If population structures reflect dis-
ease patterns and hosts, we will be able to determine the populations that are really 
responsible for disease and not their commensal sister groups (. Fig. 11.2).

Ecotypes are groups of prokaryotes playing ecological distinct roles defined based on 
DNA sequences. Ecotypes are analyzed by construction of phylogenetic trees based on 
housekeeping genes of isolates representing populations of a species. At a certain level of 
depth of a cluster in the tree, a group of populations that equal an ecotype is defined. 
Simulations are used to select this level of cutoff for the ecotype as well as to estimate 
periodic selection and genetic drift. Ecotypes are as a consequence one or more clonal 
populations if we refer to the current species concept of prokaryotes. Ecotypes can be 
regarded as species if we redefined the prokaryotic species concept; however, multiple 
ecotypes are usually recovered within the traditional species (Koeppel et al. 2008).

11.2   Multilocus Sequence Typing (MLST)

11.2.1   MLST

Multilocus sequence typing (MLST) is based on the comparison of DNA sequences of 
conserved genes in strains of a species (Maiden et  al. 1998). For each gene (locus), all 
different versions of sequences are scored as alleles and designated a random number. This 
number is not reflecting the quantitative difference between the sequences but just stating 
that the sequences are different. An allele profile, for instance, 1, 3, 4, 5, 2, 3, 1 is defined as 
a sequence type (ST). If there only is one difference in the allelic profiles between two STs, 
these STs are single-locus variants (SLV). This will happen if, for instance, the one ST is 1, 
1, 1, 1, 1, 1, 1 and the other 1, 1, 1, 1, 1, 1, 2. Double-locus variants (DLV) share five alleles 
and have two variants, and as the name indicates then triple-locus variants (TLV) have 
three different alleles. If a group of STs are linked as SLVs or DLVs, they form a clonal 
complex (CC). The clonal complexes are named after the ST estimated to be the ancestor 
of the complex – the founder.

MLST typing has mainly been performed on two servers 7 http://www. mlst. net/ and 
7 https://pubmlst. org/general. shtml, respectively, each dedicated to a series of species. The 
databases on these servers have been maintained by curators who have uploaded new 
sequence types and information of isolates. Users are able to upload sequences to the 
servers and to obtain a sequence type.

ClonalFrame (7 http://www. xavierdidelot. xtreemhost. com/clonalframe. htm) (Didelot 
and Falush 2007) is a program that can analyze population-genetic parameters based on 
MLST sequence data. ParseCF is used to do the final calculations of the population-genetic 
parameters that can be extracted from ClonalFrame such as the relative effect of recombi-
nation compared to mutation.

11.2.2   Multilocus Sequence Analysis

The information in the DNA sequences compared for MLST can also be directly analyzed 
by phylogeny (7 Chap. 6) and is then called multilocus sequence analysis (MLSA). For 
MLSA the DNA sequences of the genes (loci) used for each ST are concatenated meaning 
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that they are joined end by end. For instance, if a seven-locus scheme includes partial 
regions of 500  nt., the concatenated sequence will be 3500  nt. For most of the MLST 
servers, concatenated datasets can be downloaded for this type of phylogenetic analysis. 
The information gained from such an analysis differs from the MLST analysis since the 
phylogeny will show the actual evolutionary diversity of the STs. The MLSA analysis works 
best for prokaryotes with a clonal population structure (. Fig.  11.4). For a true clonal 
population structure, the phylogeny of all seven genes should be the same (congruent). 
More frequent horizontal gene transfer will lead to more linkage equilibrium and will 
result in a different phylogeny for each gene. In this case a concatenation of all genes will 
make little sense.

11.3   Whole-Genome-Based Typing

The relative low cost of generating whole genomic draft sequences has enabled the 
use of the most common typing methods based on the direct comparison of the 
whole genomic sequences. Even for MLST typing which only relies on a few kilo 
bases of sequence, it is now cheaper to sequence the whole genome and use that to 
determine the allelic profile than to sequence the seven genes by the traditional 
Sanger method. For the more common species of clinical importance, servers have 
become available that can predict serotypes, antibiotic resistance gene profiles, and 
virulence gene profiles.

11.3.1   Whole Genomic Multilocus Sequence Typing (wgMLST)

Whole genomic MLST (wgMLST) is an extension of the MLST concept to more than 
seven conserved genes of the species. In principle all conserved gene sequences can be 
included in such wgMLST scheme. We are aware that the term wgMLST in some other 
texts is used for the pangenome and cgMLST reserved only for the conserved part of the 
pangenome. For simplicity we will use wgMLST here and only consider to include the 
conserved genes of a species in such a scheme. However, if all conserved genes of the 
species are included, the number of variations in alleles and sequence types will be very 
high, and there will be a risk of too high resolution of the typing system (. Fig.  11.2 
method 3). To focus on clones with certain properties, a set of genes can be selected 
which includes genes predicted to encode for virulence or other important functional 
factors. A wgMLST typing system can be set up on the BIGSdb platform 7 https://
pubmlst. org/software/database/bigsdb/ (Jolley and Maiden 2010). This platform can be 
used both for MLST and for wgMLST. To set up the platform, you will need assistance 
from a professional system administrator. The platform allows users to upload whole 
genomic sequences and extract the sequence type. Curators of the database associated 
with BIGSdb are able to add new sequence types and information of isolates to the data-
base. The platform has, for instance, been set up for various microorganisms: 7 http://199. 
133. 98. 43/dbase_list. html.

ClonalOrigin is a parallel to ClonalFrame for whole genomic sequences (Didelot 
et al. 2010). This program should be able to model the source of specific recombination 
events.
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11.3.2   Single-Nucleotide Polymorphisms (SNP)

Single-nucleotide polymorphisms (SNP) are point mutations that only occur as single- 
nucleotide changes in sequences. The SNP concept will be introduced here in relation to 
the comparison of raw reads of isolates obtained by high-throughput sequencing to a 
reference sequence. The reference can be a fully assembled genome of a well-characterized 
strain of the bacterial species investigated. It is important that this reference is closely 
related to the isolates that are being typed. The isolates for SNP typing are whole genome 
sequenced, and the reads are mapped to the reference. All positions where SNPs are 
identified between the reads and reference are then scored. The positions can be scored as 
a multiple alignment, and it can be used to construct a phylogeny as described in 7 Chap. 6. 
To construct such a phylogeny, many isolates are compared at one time to the same refer-
ence.

The analysis can be performed at Center for Genomic Epidemiology (7 http://www. 
genomicepidemiology. org). The files with all reads of a genome can be uploaded to 
7 https://cge. cbs. dtu. dk//services/CSIPhylogeny/ (Leekitcharoenphon et  al. 2012). A 
reference genome needs to be defined, and then files with reads each representing isolates 
for typing can be uploaded. The programs on the server will extract all SNPs identified 
between the isolates compared to the reference. The SNPs can be downloaded in the form 
of a multiple alignment, and a phylogeny can be visualized by MEGA7 (Kumar et  al. 
2016). The benefit with this typing method is that is relatively easy to perform and has 
high resolution (Schürch et al. 2018). A database is not needed for this type of SNP like for 
wgMLST. Unfortunately, there are at least two drawbacks with the SNP concept. One is 
that rates of SNPs differ in different species. When Listeria monocytogenes was subcultured 
from a frozen stock every 3 months during a 3-year period, only one SNP was detected 
(Kwong et al. 2016) and almost at the same level of SNPs was found in Mycobacterium 
tuberculosis with four SNPs over 4 years, whereas Helicobacter pylori accumulated 30 SNPs 
per year (Schürch et al. 2018). The other problem is that SNP results are only valid in 
comparison with a specific reference. If another reference is selected, another result is 
obtained. For species of Salmonella, wgMLST was preferred compared to SNP in a large 
comparative study (Alikhan et al. 2018).

11.3.3   Typing of Virulence, Serotype, and Antibiotic Resistance 
Based on the Whole Genomic Sequence

This approach is only possible for certain well-characterized species where all or most 
virulence genes and antibiotic resistance genes have been identified and characterized and 
where the genetic background for the antigenic profile is well characterized. With this 
information, a typing system can be established on a server with Internet access. Such a 
tool is available Center for Genomic Epidemiology (DTU) (7 http://www. 
genomicepidemiology. org/) (Larsen et  al. 2012; Joensen et  al. 2014, 2015). Here the 
prediction of virulence genes, MLST (multilocus sequence type), and serotype on the 
basis of the whole genomic sequences can be done for selected prokaryotic species. The 
whole genomic sequences can be uploaded in different formats including assembled 
genomes or raw reads.
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11.4   Organism-Specific Platforms for Whole-Genome  
Sequence-Based Typing

SuperPhy (7 https://lfz. corefacility. ca/superphy) (Whiteside et  al. 2016) is dedicated for 
genomics investigation of E. coli that aims to link genomic information to phenotypic 
knowledge.

Enterobase is dedicated work with Escherichia, Salmonella, Clostridioides (Clostridium 
difficile), and Yersinia (7 https://enterobase. warwick. ac. uk/) (Alikhan et al. 2018). At this 
server the raw Illumina reads can be uploaded and compared to traditional MLST (legacy 
MLST) and different variants of wgMLST databases. It is also possible only to perform 
MLST based on genes encoding for the ribosomal proteins (rMLST) (Jolley et al. 2012).

At NCBI, the pathogen detection portal (7 https://www. ncbi. nlm. nih. gov/pathogens/) 
is available for identification and typing of the 22 most common human prokaryotic 
pathogens.

11.5   Activity

11.5.1   MLST Typing of Pasteurella multocida

This species is mainly an important animal pathogen; however, it can also affect humans 
if bitten by animals. A well-curated MLST scheme has been set up at 7 https://pubmlst. 
org/bigsdb?db=pubmlst_pmultocida_seqdef (Davies et al. 2003; Jolley and Maiden 2010; 
Subaaharan et al. 2010). Select Sequence query all loci, and upload a genome of P. multo-
cida. To get a genome, follow the instruction in Activity 3.8.2, and use acc. no. LT906458. 
The result should be ST13  in the RIRDC MLST scheme and ST3  in the Multiple host 
scheme. The reason for two sequence types is that there exist two MLST typing systems 
for this species. For most species, only one MLST scheme is available.

11.5.2   Graphics

PHYLOViZ (phylogenetic inference and data visualization) is used for visualization of 
results generated by sequence-based typing (7 http://www. phyloviz. net/) (Francisco et al. 
2012). It is a free-ware program that can visualize population genetics structures as a 
system of lines and circles with sizes of circles proportional to number of isolates in each 
ST (. Figs. 11.5 and 11.6). Similar facilities are only available from costly programs like 
Bionumerics (AppliedMaths) (7 http://www. applied-maths. com/bionumerics).

The program can both be used online from the URL and as a downloaded program. 
Two files are needed, one with the MLST profiles and one with the isolate information 
(auxiliary data). At least one of the columns in the isolate files needs to be labeled the same 
way as in the profiles. This can, for example, be “ST” (. Fig. 11.5).

The program can be used online, but to obtain graphics for publications, you need to 
download and install the program from the URL. For Windows, save the zip file to your 
computer, unzip to a folder on c:, for instance, c:/phyloviz. Open the folder and the “bin” 
folder, and press the phyloviz64.exe icon which will activate the program.
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Profiles file

Isolates file (note that the ST column links this file to the Profiles file)

ST isolate country host

ST gene1 gene2 gene3 gene4 gene5 gene6 gene7
1
2
3
4
5
6
7
8
9
10

1
2
3
3
3
4
5
6
7
8
9
9
10

A1
B2
C4
D5
E6
G2
H3
I1
J6
K9
L3
M7
N4

USA
Germany
Australia
Germany
Germany
Australia
Netherlands
Netherlands
Netherlands
Denmark
Germany
Netherlands
Australia

Mouse
Mouse
Mouse
Mouse
Mouse
Rat
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Rat

1
1
3
3
3
1
3
3
3
3

1
1
1
1
1
2
3
3
3
2

1
1
1
1
2
1
2
1
2
2

1
1
1
2
1
3
3
2
3
1

1
1
1
1
2
2
2
1
2
3

1
1
1
1
1
2
2
2
2
2

1
2
2
2
1
1
1
3
3
1

       . Fig. 11.5 Input files for PHYLOViZ. This example is showing ten MLST types in the “profiles file” and 
13 isolates linked to the STs in the “isolates file”

1

1

2

3
5

7
10

4

8

9

6

1

13
3

3

3

       . Fig. 11.6 Output from PHYLOViZ based on the data in . Fig. 11.5. The nodes are labeled with the 
STs, and the numbers at the branches are the number of allele differences between STs. The size of nodes 
reflect the number of isolates in each ST, and the color can be used for a legend indicating the origin of 
the isolates
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Prepare the two input files (. Fig. 11.5) with a text editor like WordPad. Separate the 
columns with one tab stroke and save each file in txt format. Start the program, and select 
File | Load dataset | Dataset name where you can select any name. Select dataset type: 
MLST, select Next, and upload the profiles file, press Open and Finish, and then the isolate 
files, and again press Open and Finish. At Datasets in the top left corner, you will now see 
the name of the dataset just uploaded. Double-click on it, and you will see the name of the 
two files with the isolate and profile (MLST) information. Right-click on the MLST set and 
select Compute | geoBURST and select Next. Select the level of links between STs, SLV, 
DLV, or TRV, for instance, TRV. Click on the key to left to the MLST name which will show 
the file geoBURST. Click on it, and you will see the graphics. Now go the upper left corner 
of the window, double-click on isolates which will show the table with isolates informa-
tion, and press Select and View. Format the information from the Options panel below 
left to the graphics by unselecting Group, and select all other options. Use control to 
adjust the line lengths and node sizes. You can arrange the nodes and lines by dragging 
with the mouse. When done press the pause (||) sign. It should result in the output like 
. Fig. 11.6. If there are problems, then control the input files with respect to profiles and 
isolate information, and make sure that columns have been separated by exactly one tab 
field. If the nodes are not nice pie-shaped, try to open the isolate table from the program, 
and press Select and View again. When the graphics is satisfactory, pause the viewer, save 
the result by clicking on the camera, and select appropriate format, for instance, jpg. Insert 
the jpg in power point as a picture (. Fig. 11.6).

You can now use this setup with the fictive dataset as a learning tool by changing the 
allelic profiles in the profile file and see the effect on the graphics. If there too few common 
alleles between the STs (less than 4), they will no longer be linked in the graphic structure.

 Take-Home Messages

 5 Sequence-based typing of prokaryotes is performed to group isolates by com-
mon properties like generic genotypic relatedness or specific genotypic prop-
erties linked to virulence, serotype, or antimicrobial resistance.

 5 Multilocus sequence typing (MLST) is based on the comparison of nucleotide 
sequences of seven or more conserved genes in a set of related isolates.

 5 In MLST analysis the nucleotide differences within each gene (locus) of the 
isolates compared is scored as alleles, and a combination of alleles (profile) for 
all loci is designated a sequence type (ST).

 5 MLST information can be compared between different laboratories and ana-
lyzed in well- curated databases on servers via the Internet.

 5 Whole genomic multilocus sequence typing (wgMLST) is extending the MLST 
concept by the analysis of the core genome which may include hundreds of 
genes.

 5 In single-nucleotide polymorphism (SNP) analyses of whole genomes, the 
reads from high- throughput sequencing of isolates are compared to a com-
mon references sequence allowing a very detailed comparison at the single-
nucleotide level in order to trace single isolates.

 5 Typing of virulence, serotype, and antibiotic resistance based on the whole 
genomic sequence can be performed for certain, mainly human pathogenic 
bacteria like Escherichia coli and Salmonella enterica, on dedicated servers that 
can be accessed via the Internet.

Sequenced-Based Typing of Prokaryotes
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 Appendix

 Abbreviation of Amino Acids

A Alanine Ala

C Cysteine Cys

D Aspartic acid Asp

E Glutamic acid Glu

F Phenylalanine Phe

G Glycine Gly

H Histidine His

I Isoleucine Ile

K Lysine Lys

L Leucine Leu

M Methionine Met

N Asparagine Asn

P Proline Pro

R Arginine Arg

Q Glutamine Gln

S Serine Ser

T Threonine Thr

V Valine Val

W Tryptophan Trp

Y Tyrosine Tyr

 Ambiguity Table Symbols

G or A R puRine

T or C Y pYrimidine

A or C M aMino

G or T K Keto

 Appendix
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G or C S Strong interaction (3 H bonds)

A or T W Weak interaction (2 H bonds)

A or C or T H not-G, H follows G in the alphabet

G or T or C B not-A, B follows A

G or C or A V not-T (not-U), V follows U

G or A or T D not-C, D follows C

G or A or T or C N aNy

 Codon Tables

The standard codon table (1) used for most animals and plants. Codons labelled with green are start 
codons and those labelled red are the stop codons.

All codon tables are listed at
7 https://www. ncbi. nlm. nih. gov/Taxonomy/Utils/wprintgc. cgi

1. The Standard Code (transl_table=l)

All code tables
http:/fmltw.ncbl.nlm.nlh.gov/Taxonomy!Utilslwprlntgc.cgi?mode=t#SGl

By default all transl_table in GenBank flatfiles are equal to id 1, and this is not shown. 
When transl_table is not equal to id 1, it is shown as a qualifier on the CDS feature.

 

Codon table 11 used for prokaryotes. Codons labelled with green are start codons and those 
labelled red are the stop codons. Compared to codon table 1, table 11 has more alternative start 
codons; however, ATG is most frequently used as start codon.

Appendix
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All codon tables are listed at
7   https://www. ncbi. nlm. nih. gov/Taxonomy/Utils/wprintgc. cgi

11. The Bacterial and Plant Plastid Code (transl_table=ll)
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Double locus variants (DLV) 196
DTU server assembly 21
Dublicate read inferred sequencing 

error estimation (DRISEE) 168
Dynamic programming
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E
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ENA, see European Nucleotide Archive 

(ENA)
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Epitope prediction 40
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Exploratory applications
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