

Introduction to
Bioinformatics with R

Chapman & Hall/CRC Mathematical and Computational Biology

About the Series

This series aims to capture new developments and summarize what is known over the entire spectrum

of mathematical and computational biology and medicine. It seeks to encourage the integration of

mathematical, statistical, and computational methods into biology by publishing a broad range of

textbooks, reference works, and handbooks. The titles included in the series are meant to appeal to

students, researchers, and professionals in the mathematical, statistical, and computational sciences

and fundamental biology and bioengineering, as well as interdisciplinary researchers involved in the

field. The inclusion of concrete examples and applications and programming techniques and examples

is highly encouraged.

Series Editors

Xihong Lin

Mona Singh

N. F. Britton

Anna Tramontano

Maria Victoria Schneider

Nicola Mulder

Introduction to Proteins

Structure, Function, and Motion, Second Edition

Amit Kessel, Nir Ben-Tal

Big Data in Omics and Imaging

Integrated Analysis and Causal Inference

Momiao Xiong

Computational Blood Cell Mechanics

Road Towards Models and Biomedical Applications

Ivan Cimrak, Iveta Jancigova

An Introduction to Systems Biology

Design Principles of Biological Circuits, Second Edition

Uri Alon

Computational Biology

A Statistical Mechanics Perspective, Second Edition

Ralf Blossey

Computational Systems Biology Approaches in Cancer Research

Inna Kuperstein and Emmanuel Barillot

Introduction to Bioinformatics with R

A Practical Guide for Biologists

Edward Curry

For more information about this series please visit:

Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R

Hongmei Zhang

https://www.crcpress.com/Chapman--HallCRC-Mathematical-and-

Computational-Biology/book-series/CHMTHCOMBIO

https://www.crcpress.com/
https://www.crcpress.com/

Introduction to
Bioinformatics with R
A Practical Guide for Biologists

Edward Curry

First edition published 2020
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

c© 2021 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the conse-
quences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if
permission to publish in this form has not been obtained. If any copyright material has not
been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and record-
ing, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, access
www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rose-
wood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC
please contact mpkbookspermissions@tandf.co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trade-
marks, and are used only for identification and explanation without intent to infringe.

ISBN: 9781138498952 (hbk)
ISBN: 9781138495715 (pbk)
ISBN: 9781351015318 (ebk)

Typeset in CMR
by Nova Techset Private Limited, Bengaluru & Chennai, India

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk

Contents

Acknowledgements xi

1 Introduction 1
1.1 Why informatics is important for biologists 1
1.2 How to use this book . 2

2 Introduction to R 5
2.1 Obtaining R . 5

2.1.1 Downloading R . 5
2.1.2 Installing R . 6

2.2 R console . 6
2.2.1 Starting the R console 7

2.3 The R workspace . 7
2.3.1 Creating/deleting objects 8
2.3.2 The working directory 8

2.4 Data handling . 10
2.4.1 Basic data types . 10
2.4.2 Vectors . 11
2.4.3 Arrays . 11
2.4.4 Lists . 12
2.4.5 Data frames . 14
2.4.6 Data input/output . 15

2.5 More advanced concepts: Scripts and functions 16
2.5.1 Simple scripts . 16
2.5.2 Functions . 17
2.5.3 Using ‘apply’ . 19

2.5.3.1 apply . 19
2.5.3.2 sapply . 20
2.5.3.3 lapply . 22
2.5.3.4 mapply . 23

2.6 Plots . 24
2.6.1 Simple scatterplot . 24
2.6.2 Arguments of plot() 25
2.6.3 Multiple plots on one graph 25
2.6.4 Scatterplots of multiple variables 25
2.6.5 Box plots . 25
2.6.6 Saving images to file 27

v

vi Contents

2.7 More advanced graphics with ggplot2 27
2.8 Using R help . 30

3 An Introduction to LINUX for Biological Research 31
3.1 UNIX . 31
3.2 Linux survival guide . 32
3.3 Useful dependencies and programs 37

4 Statistical Methods for Data Analysis 39
4.1 What are statistical methods, and why do we use them in

biological research? . 39
4.1.1 A worked example . 40
4.1.2 A brief summary . 43

4.2 What do I need to understand statistics? 43
4.2.1 Probability . 43

4.2.1.1 Random variables 43
4.2.1.2 Probability distributions 45
4.2.1.3 Hypothesis testing 47

4.2.2 Linear algebra . 52
4.2.3 Summary . 53

4.3 Normalization: Removing technical variation 53
4.3.1 Centering and scaling 55
4.3.2 An illustrative example 58
4.3.3 Quantile normalization 59
4.3.4 Batch effects . 59

4.4 Correlation . 60
4.4.1 Pearson correlation coefficient 60
4.4.2 Spearman’s rank correlation 61
4.4.3 Examples . 61

4.5 Clustering . 65
4.5.1 Clustering illustration using R 66

4.6 Linear regression models . 69
4.6.1 Limma . 72

4.6.1.1 Installing limma 73
4.6.1.2 Categorical explanatory variables 73
4.6.1.3 Continuous explanatory variables 76

4.7 Multiple hypothesis testing 78
4.8 Survival analysis . 79

4.8.1 Kaplan-Meier plots . 79
4.8.2 Cox proportional hazards regression models 81

4.9 Projection methods . 81
4.9.1 PCA . 82
4.9.2 PLS . 85

4.10 Resampling: Permutation tests and the bootstrap 86

Contents vii

4.11 Stability and robustness . 87
4.12 Summary . 87

5 Analyzing Generic Tabular Numeric Datasets in R 89
5.1 Introduction . 89
5.2 Loading data into R . 89
5.3 Data visualisation . 92

5.3.1 Scatter plots . 92
5.3.2 Box plots . 93
5.3.3 Bar charts . 94

5.4 Correlation and clustering 94
5.4.1 Correlation . 95
5.4.2 Clustering . 98
5.4.3 Heatmaps . 101

5.5 Statistical analysis using linear models 103
5.5.1 Comparison of two groups 104
5.5.2 Alternative models . 106

5.6 Summary . 107

6 Functional Enrichment Analysis 109
6.1 Introduction . 109
6.2 Loading gene sets into R . 109
6.3 Over-representation . 112

6.3.1 Online tools . 113
6.3.2 Testing gene sets in R 113

6.4 Systematic enrichment . 117
6.4.1 Online tools . 117
6.4.2 Testing gene sets in R 117

6.5 Summary . 120

7 Integrating Multiple Datasets in R 121
7.1 Introduction . 121
7.2 Data import . 123
7.3 Exploratory data analysis . 123
7.4 Integrating multiple datasets 131

7.4.1 Survival analysis . 134
7.5 Multiple molecular endpoints 141
7.6 Summary . 143

8 Analyzing Microarray Data in R 145
8.1 Bioconductor . 146
8.2 Accessing microarray data from GEO 147
8.3 Single-channel array analysis 148
8.4 Loading data . 148
8.5 Data visualisation . 149

8.5.1 Image plots . 150

viii Contents

8.5.2 MA plots . 151
8.5.3 Scatterplots . 151
8.5.4 Box plots . 153

8.6 Normalizing data . 155
8.7 Differential expression (linear models) 158

8.7.1 Design matrix . 159
8.7.2 Fitting linear models 160
8.7.3 Making use of the results 161
8.7.4 Postscript: Assumptions 164

8.8 Clustering and correlation 164
8.8.1 Expression profiles . 164
8.8.2 Correlation . 165

8.9 Clustering . 169
8.9.1 Filtering . 171

8.10 Survival analysis . 175
8.10.1 Kaplan-Meier plots . 178
8.10.2 Cox proportional hazards regression 183

8.11 Footnote: Correlation to explore associated functions 187

9 Analyzing DNA Methylation Microarray Data in R 189
9.1 Introduction . 189
9.2 Importing raw data . 190
9.3 Quality control . 191
9.4 Normalization and estimating methylation level 193
9.5 Analyzing beta values . 194
9.6 Using previously preprocessed data 197
9.7 Further analyses using minfi 200

10 DNA Analysis with Microarrays 203
10.1 Introduction . 203
10.2 Genotyping . 203

10.2.1 Normalization . 204
10.2.2 Genotype calling . 205
10.2.3 Downstream analysis: Genome-wide association tests . 208

10.3 Copy number analysis . 210
10.3.1 Normalization . 211
10.3.2 Copy number estimation 212
10.3.3 Segmentation . 212

10.3.3.1 Hidden Markov model 213
10.3.3.2 Circular binary segmentation 216

10.3.4 Downstream analysis 217
10.3.4.1 Mapping CNA data to genes 217
10.3.4.2 Finding frequently-mutated genes 220

10.4 Summary . 221

Contents ix

11 Working with Sequencing Data 223
11.1 Introduction . 223
11.2 Sequence data analysis tasks 224
11.3 Quality control . 224

11.3.1 Base call quality filtering 226
11.3.2 Adapter trimming . 228

11.4 Alignment . 230
11.4.1 Bowtie . 231
11.4.2 BWA . 232
11.4.3 Post-alignment filtering 233
11.4.4 Removing duplicate reads 233

11.5 Obtaining sequencing data from the SRA 235

12 Genomic Sequence Profiling 239
12.1 Introduction . 239
12.2 SNV: Single nucleotide variants 239
12.3 Variant filtering and annotation 241
12.4 Indels: Short insertions and deletions 244
12.5 SV: Structural variants . 245
12.6 Making use of variant calls 246
12.7 Summary . 256

13 ChIP-seq 259
13.1 Introduction . 259
13.2 Cross-correlation . 259
13.3 Filtering blacklisted reads . 263
13.4 Peak calling . 263
13.5 Peak annotation . 265
13.6 Quantitative comparisons of ChIP-seq libraries 267
13.7 Summary . 270

14 RNA-seq 271
14.1 Introduction . 271
14.2 Obtaining RNA-seq data from GEO 272
14.3 Transcript quantification via pseudoalignment 273

14.3.1 Building a transcript index 273
14.3.2 Quantifying transcripts using reads 274
14.3.3 Downstream analysis 275

14.4 Analysis with transcriptome assembly 278
14.4.1 Building the transcriptome directly 279
14.4.2 Transcript quantification 280
14.4.3 Downstream analysis 282

14.5 Summary . 285

x Contents

15 Bisulphite Sequencing 287
15.1 Introduction . 287
15.2 Alignment and methylation calls 289
15.3 Downstream analysis . 290
15.4 Summary . 293

16 Final Notes 295

Index 297

Acknowledgements

This book would not have been possible without the excellent students I taught
over nearly a decade at Imperial College London. I consider myself extremely
grateful to have had the opportunity to teach them, and to learn from them.
Likewise, to work with and learn from colleagues who have become life-long
friends: Adam Beech, Emma Bell, Charlotte Wilhelm-Benartzi, Nair Bonito,
Paula Cunnea, Kirsty Flower, Ian Garner, Ian Green, Erick Loomis, Alun
Passey, Euan Stronach, Angela Wilson and many others. I feel I particularly
need to thank Professor Bob Brown for his professional support and guidance,
and James Flanagan for running the MRes Cancer Informatics course with
me. I am also grateful to Philippe Sanseau and the Computational Biology
team at GSK, for welcoming me into an exciting research environment.

Special thanks to my wife Vaughan and my family for their invaluable per-
sonal support, and to David Grubbs at Taylor & Francis for giving me the
opportunity to turn my collection of tutorials into this book.

xi

http://taylorandfrancis.com

1

Introduction

1.1 Why informatics is important for biologists

This is really all about data. In particular, it’s about working with so much
data that learning to program computers to perform calculations for us will
save a lot of time, and probably make possible analysis that would other-
wise be impossible. In biological research, the amount of data available to
researchers has increased so much over recent years this has been described
as a ‘data explosion’[1].

Much of this biological data is freely available for any researcher to access
and use in their own work. Therefore, any biological scientist who learns skills
to enable obtaining, preprocessing and analyzing publically-available datasets,
is giving themselves an advantage when it comes to making the most out of
their own opportunities.

One consequence of this increase in biological data is that many of the recent
paradigms of molecular biology come from computational analysis of large col-
lections of data. In terms of developing an intuition for what is shown when
results from computational analysis is presented in a paper, there is no substi-
tute for first-hand experience of using a method for data analysis in your own
research (of course, a theoretical understanding of the method in question is
also important!). In reality, it is becoming increasingly difficult to understand
the current state of the art in biological research without some experience and
understanding of computational biology.

In 2014, the UK’s MRC and BBSRC (Medical Research Council and Biotech-
nology & Biological Sciences Research Council) produced a report of ‘skills
vulnerabilities’, which reflected important research capabilities lacking in the
UK. Both in 2014 and in a 2017 update1, computational methods for biolog-
ical research were identified as key weaknesses. In fact, the following specific
points were highlighted:

• Data analytics, especially bioinformatics, appear to be particularly
vulnerable.

1https://mrc.ukri.org/documents/pdf/review-of-vulnerable-skills-and-capabilities/

1

https://mrc.ukri.org/

2 Introduction

• Informatics skills are applicable to many areas of both the biosciences and
the medical sciences.

• Maths, statistics and computational biology skills are lacking particu-
larly at the postgraduate and postdoctoral levels, with many respondents
reporting difficulties in recruiting adequately skilled researchers at these
levels; shortages are not just restricted to the UK.

So there is a recognized international shortage of bioinformatics skills, and
these skills are increasingly fundamental across all areas of biological research.
You were probably already aware of this given you’re reading this, but it
hopefully serves as a motivating reminder that learning the bioinformatics
skills taught in this book will be worth the effort you put in!

1.2 How to use this book

This book was developed over a decade of my experience training biologists to
empower their own research through making better use of computers. I think
there are three key aspects of this training, which are in essence the intended
learning outcomes of this book:

1. theoretical understanding of how a set of computational analysis
steps produce a result that yields biological insight

2. ability to plan a set of analysis steps that, when carried out on a
given dataset, will yield biological insight

3. practical experience of enacting those plans on real datasets to pro-
duce novel, valuable research results

For the first of these, reading the chapters of this book should help. Reading
this book should also help with the second. But the only way to gain the skills
to carry out data analysis to give research results is to do it. There is simply
no substitute for practical experience. Furthermore, the more experience you
get carrying out data analysis, the more instinctively you will be able to plan
analyses for your own research and to think of the best datasets to work with.
Because there is no substitute for practice, this book is designed to give all
the practical guidance someone needs to be able to carry out a set of analysis
procedures. We will cover the procedures that are particularly useful for har-
nessing different types of biological data.

Because a lot of data analysis tools are not implemented in tools with con-
venient graphical user interfaces (GUIs), there is no avoiding a bit of coding.
While at first this will almost certainly be frustrating to those new to a com-
mand line interface, with time and practice you will find that the automation

How to use this book 3

you can implement empowers you to achieve all sorts of things that would
otherwise be impossible (or at least impractical). To help in this process, (all)
required computer code is provided, which are effectively individual commands
given to the computer. Each line2 of code is followed with detailed descriptions
of every part of every command.

The first chapters of this book introduce R and the Unix command shell,
which will be indispensible tools for data analysis. This will involve learn-
ing some of the building blocks for programming computers to perform many
tasks in one go, without requiring continued instruction from a human. Many
of the methods we use are theoretically simple enough to calculate by hand
with a small set of observations, but the beauty of using command-line tools is
that you can program them to perform huge numbers of repetitive tasks very
quickly and automatically. One should also not underestimate the importance
and power of ‘data wrangling’, which acknoweldges that the format in which
you obtain data is rarely exactly the format that you need it in to perform
the analyses you want.

The fourth chapter explains the mathematical theory behind the analysis
methods that are employed throughout this book. To understand the the-
ory, we’ll make use of the R environment to look at a few practical examples.
Generally, I take the philosophy that a solid understanding of a few very ver-
satile methods is the best strategy to enable a great variety of applications
with as little effort as possible. A recurring theme of my research supervision
is that the simpler your approach to demonstrate a finding, the better (as long
as it’s appropriate): it will be understandable to more people, and therefore
have greater impact, and will be less likely to be misinterpreted.

Chapters 5 to 7 use real research examples to build up your practical expe-
rience of obtaining and analyzing biological datasets, utilizing the statistical
analysis methods described in Chapter 4. The examples use already-processed
datasets, so that the focus is on the analysis rather than worrying about for-
mats. The complexity of the tasks and the datasets involved builds through
these chapters, so that by the end of Chapter 7 we are systematically evaluat-
ing patterns of variation of hundreds of features from multiple platforms used
to characterize different aspects of the same samples.

And finally, the bulk of this book by volume guides you through the specifics
of working with different types of biological datasets. I have included those I
think are the most frequently-encountered across molecular biology research,
but this is certainly influenced by my own background in cancer research.
The choice of data types to cover also balances the accessibility of obtaining,

2Note that this is a line as the computer sees it, which really means one complete set of
instructions. A line of code may span multiple lines on a page or screen!

4 Introduction

pre-processing and analyzing the data, so that we get the most out of the least
effort.

A word of warning: it is easy to feel isolated in research, and that can be prob-
lematic when you find yourself, still new to bioinformatics, as the expert for
your research group or team. There is an excellent blog post from Mick Wat-
son3 on problems facing ‘lonely bioinformaticians’. Most importantly, don’t
be afraid of looking to others for help.

You can do this! Stick with it, and you should find that you’re able to make
more use of the data you generate and the vast accumulation of molecular
biology data that is already in the public domain.

Bibliography

[1] V Marx. “The big challenges of big data,” Nature 498:255-260 (2013).

3http://www.opiniomics.org/a-guide-for-the-lonely-bioinformatician/

http://www.opiniomics.org/

2

Introduction to R

In a practical guide to data analysis, we will help to learn how to use some tools
that enable us work with data. As any collection of information can potentially
become a dataset that we can use to find answers to real-world questions, one
of the things that will create opportunities to utilize data is a tool to create and
structure datasets from a wide range of sources. Another thing that will create
opportunities is a tool to perform a large number of repetitive tasks without
requiring individual instruction each time: this enables searching for informa-
tive patterns within datasets. And another thing that will create opportunities
for us is a tool that performs statistical calculations for us, without having to
look up tables of distributions.

In this book, we make use of R, because it incorporates all the useful tools
mentioned in the previous paragraph. R has excellent capabilities for bioin-
formatics in particular, and for data analysis more generally. Using R involves
working in a command-line environment, writing instructions to the computer
to tell it what tasks you want it to perform. These written instructions can be
incredibly powerful, as they can be complex computer programs in themself,
but this way of working is probably unfamiliar to most of the target audience
for this book. So this first chapter guides you through obtaining and setting up
R (it’s free and available on any operating system), and familiarizing yourself
with some of the capabilities which we will come to rely on later.

2.1 Obtaining R

R is a statistical programming environment with a wide range of pre-coded
functions available through downloadable packages. A large number of func-
tions useful for statistical analysis of data are available in the pre-installed
packages, and there is a great resource of packages developed and main-
tained by the academic community, which can be accessed through the R
environment.

2.1.1 Downloading R

Being community-maintained, the R program itself is constantly being
updated. Sometimes these updates will mean code that worked on a previous

5

6 Introduction to R

version of R no longer runs as it used to. Sometimes, the contributed packages
for R are updated in a way that means they will no longer be compatible with
older versions of R. In practice, this is usually the reason to prompt me to
update my base R environment. The home of R is CRAN1: the Comprehensive
R Archive Network.

Links to download pages for different computer platforms (Linux/Mac/
Windows) are available on the CRAN website, the address of which is given as
a footnote to this page. In particular, the webpages with installation instruc-
tions for Mac and Windows are:

• Mac – http://cran.r-project.org/bin/macosx/

• Windows – http://cran.r-project.org/bin/windows/base/

All the code presented in this tutorial was tested for use with R version
3.5.2, and all contributed packages (from either CRAN or Bioconductor) as of
November 2018. If you have problems with executing the code in these tuto-
rials, and have exhausted mistakes in copying the code as a cause, then you
may wish to obtain R version 3.5.22. You will need to install this from source,
which is a little more complicated, but instructions can be found at:
https://cran.r-project.org/doc/manuals/r-release/R-admin.html.

2.1.2 Installing R

Platform-specific instructions for installing R are provided at the following
locations.

2.2 R console

Assuming you now have R successfully installed, it’s time to start exploring
how to use it! The interface with the R program is achieved through the
text-based console. We will use the standard interface that comes with R,
and which doesn’t need a graphical interface. Many people find the RStudio3

environment helpful, so after you’ve tried a few of the chapters in this book
you might want to see if the RStudio interface suits you more. RStudio still
contains the main R console, so all the R code in this book applies in exactly
the same way.

1http://cran.r-project.org
2source code found at https://cran.r-project.org/src/base/R-3/
3https://www.rstudio.com/products/rstudio/download/

http://cran.r-project.org
https://cran.r-project.org/
https://www.rstudio.com/
http://cran.r-project.org/
http://cran.r-project.org/
https://cran.r-project.org/

The R workspace 7

2.2.1 Starting the R console

This depends a bit on the platform: for a Windows machine the ‘RGui’ pro-
gram should have been created during the install process; for Mac and Linux
you can start R simply by entering ‘R’ at the command prompt. When the
R program starts up, you’ll be presented with a command console. This is
the place you can enter your commands, on the line starting with the prompt
>. In a Windows environment, the R console looks like Fig. 2.1. Throughout
these tutorials, commands to be entered into the R console will be written in
terminal font and will follow the command prompt >.

FIGURE 2.1
The R console in Windows.

2.3 The R workspace

R is a statistical programming environment which stores all objects it can work
on in its workspace. The general concept in using R is that you enter com-
mands which will relate to some objects that you have specified: the command
will search through the workspace to find the object(s) you specify, it will then
perform some operation that uses the information contained in the specified
object(s), and then provides some output. This output can be assigned to a new

8 Introduction to R

object on the workspace, or it will simply be printed out to the console. To view
the contents of the current workspace, use the ls function:

> ls()

The general structure of an R command, assuming you wish to keep the result,
is made of three parts:

1. Output variable name: this is the name you wish to give the new
object that is created from the output of the command.

2. Assignment operator: a left-facing arrow (made from the less-than
symbol followed by the minus symbol) '<-' tells R that you wish
to create a new object with the output of the command4.

3. Function call: this is the main content of the command. To call
a function to be executed by R, you enter its name immediately
followed by brackets5 (...). In between the brackets are any pieces
of information that you wish the function to use: the values of these
‘arguments’ may be references to objects on the workspace, or they
may be new objects that are created ‘on the fly’ (which can be
something as simple as a single number).

2.3.1 Creating/deleting objects

We can therefore use this general structure of an R command to create objects
to reside on the workspace. An annotated workthrough of some simple exam-
ples is shown in Fig. 2.2.

The workspace can be saved to file using the ‘save.image’ function, specifying
the name of the file you wish to create6.

> save.image("filename.Rdata")

2.3.2 The working directory

In addition to manipulation of the objects in the workspace, R can also interact
with files on your computer (or in fact on other computers, if it has access!).
The interaction with files on the computer occurs through reading/writing to
specified locations. An example of changing the working directory is shown
in Fig. 2.3.

4It is also possible to use a single equal sign '='.
5The exceptions to this rule are the basic mathematical and logical operators:

+,-,/,*,>,etc...
6When creating any file with R you always need to specify the extension!

The R workspace 9

(a) List the workspace contents

(b) Creating a new object

(c) Viewing the new object

(d) List the workspace contents (again)

(e) Remove an object from workspace

(f) Try to view the now non-existant object

FIGURE 2.2
Some simple examples of R commands that are creating, showing or removing
objects from the R workspace.

10 Introduction to R

For R to know where to find the file you want to use, the complete address
of the file on your filesystem must be specified: this is known as the full or
complete ‘path’ to the file. The first example given in Fig. 2.3 shows the path
of a directory called ‘teaching’ on my Windows computer’s filesystem. The
exception to this is the ‘working directory’: this is when R will look for any
files referred to without reference to the full path. Out of context this may seem
confusing, but the examples of Fig. 2.3 should clarify the difference between
a full path and a direct reference to a file/folder in the working directory.

FIGURE 2.3
An illustration of the tools within R used to manipulate the working directory.

2.4 Data handling

The objects that can be manipulated in R come in a wide variety of types.
These can be thought of in terms of basic data types, which can be organised
into higher-order data structures.

2.4.1 Basic data types

• character – any combination of characters can be a ‘character’-type object,
delimited by quotes ""

• numeric – a number value

• logical – TRUE or FALSE

Single objects of one of the basic data types can be ogranised together into a
number of different structures, some of which will be described below.

Data handling 11

2.4.2 Vectors

In the context of R, a vector is a simple one-dimensional list of objects which
are all of the same basic type. To create a vector, use the ‘concatenate’ func-
tion c():

> vec <- c(1,4,3)

> vec

[1] 1 4 3

Vectors of sequential integers can be created using a colon (:) between the
initial and final numbers:

> vec2 <- c(2:11)

> vec2

[1] 2 3 4 5 6 7 8 9 10 11

One of the major utilities of creating vectors is that each object within a
vector has a specified position, and so the objects can be retrieved through
indexing. Indexing of vectors in R is done with square brackets.

> vec[1]

[1] 1

In the above case, we are retrieving the first object from vector we called
vec.

To retrieve multiple elements at once, an index can in fact be a vector itself:

> vec2[vec]

[1] 2 5 4

Negative indices mean that the indexed elements won’t be returned:

> vec2[-1]

[1] 3 4 5 6 7 8 9 10 11

> vec2[-vec]

[1] 3 6 7 8 9 10 11

This becomes a remarkably powerful tool!

2.4.3 Arrays

Arrays are multi-dimensional vectors, which can be thought of as a table
of objects which are all the same basic data type. Arrays are created in R

12 Introduction to R

using the function array and filled with any specified values in order of the
dimension (i.e. row first, column second, higher dimensions subsequently...):

> A <- array(c(1:6),dim=c(2,3))

> A

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Just like vectors, arrays are also indexed with square brackets, but with each
dimension given its own index separated by a comma.To get the second col-
umn of the first row of A:

> A[1,2]

[1] 3

Entire rows or columns of an array may be retrieved by leaving the corre-
sponding index empty.

> A[2,]

[1] 2 4 6

Vectors may be used to index particular elements, rows or columns of an
array. The following example creates a vector ‘on the fly’ in order to retrieve
the first and third columns of array A:

> A[,c(1,3)]

[,1] [,2]

[1,] 1 5

[2,] 2 6

2.4.4 Lists

A ‘list’ in R refers to a particular data structure, which differs from a vector
in that the individual elements can be of different basic data types. In fact,
the individual elements of lists may be data structures such as vectors or lists
themselves. This makes lists powerful tools, but because the elements may be
of different types they are more difficult to use.

> mylist <- list(1,2,3)

> mylist

[[1]]

[1] 1

Data handling 13

[[2]]

[1] 2

[[3]]

[1] 3

To index one of the elements from within a list, you need to use TWO sets of
square brackets [[index]].

> mylist[[1]] <- c(1,2,3)

> mylist

[[1]]

[1] 1 2 3

[[2]]

[1] 2

[[3]]

[1] 3

An individual element of a list in R may be a list itself, which opens up
the possibility of having one object that is a list of lists of lists of lists....
For those interested, this property means that the list is what is known as a
‘recursive’ data structure. As an illustration:

> mylist[[2]] <- list(1,2,3)

> mylist

[[1]]

[1] 1 2 3

[[2]]

[[2]][[1]]

[1] 1

[[2]][[2]]

[1] 2

[[2]][[3]]

[1] 3

[[3]]

[1] 3

Now the second element of the list mylist above is itself a list. You can
see that indexing of successive levels of lists are done sequentially, such that
[[2]][[1]] refers to the first element of a list that is itself the second ele-
ment of the list being indexed. The use of lists can become arbitrarily complex,
although it is rare that you will need to be familiar with such use.

14 Introduction to R

The final point regarding lists that may be relevant is that elements can
be named when they are created. Naming an element means that it can be
indexed by its name. In the example below, we create a list with three ele-
ments, the third of which is called foo. Referring to named elements of lists
can be done with the dollar sign $:

> mylist <- list(1,2,foo=3)

> mylist

[[1]]

[1] 1 2 3

[[2]]

[1] 2

$foo

[1] 3

> mylist$foo

[1] 3

2.4.5 Data frames

Vectors, arrays and lists are all quite common data structures across many
computer programming languages, but there is an additional data structure
that is particular to R: the ‘data frame’. A data frame is a bit of a cross between
an array and a list: it is essentially a list in which the elements must all be
the vectors of the same length, although they can be of different basic data
types. This enables the data frame to represent tables across which objects
of different types may be considered related. Indexing of data frames may be
done exactly as for an array (in which case a smaller data frame is retrieved),
or as for a list (in which case a vector corresponding to the indexed column
is retrieved).

As an example, we’ll create a data frame with two columns, one of which
represents the numbers one to three in their numeric form, and the other in
their textual form:

> mydf <- data.frame(numbers=c(1:3),names=c("one","two","three"))

> mydf

numbers names

1 1 one

2 2 two

3 3 three

You’ll see from the above that R automatically gives row numbers to data
frames, but these row numbers (or names, as they can be character objects
too) are treated separately from the indexable columns.

Data handling 15

The special thing about data frames is that this is the standard format in R
for tables of data, as it can represent multiple attributes of a set of things
(with one row per ‘thing’).

2.4.6 Data input/output

To write an object (here mydf) from the workspace to a file (here specified as
“mydf.txt”) in the working directory use:

> write.table(mydf,file="mydf.txt",sep="\t",quote=FALSE,row.names=FALSE)

The argument sep="\t" specifies that the file should be a tab-separated table,
which is a useful format as it can easily be loaded into Excel. The argument
quote=FALSE is used because otherwise R places double quotes " around all
characters in the table, and it’s generally a good policy to remove these.
Finally, the write.table function automatically writes an additional row to
the top of the table, containing the column names, and an additional column
column at the left-most end of the table, containing the row names/numbers.
If you wish to get rid of either of these, you have to specify row.names=FALSE

and/or col.names=FALSE as appropriate. If you wish to include both column
names and row names, the column names will be offset from the columns they
refer to unless you specify col.names=NA7.

To read in a tab-separated table from a file and store it as an object (here
called B), use:

> B <- read.table(file="mydf.txt",sep="\t",header=TRUE)

Again, we need to specify the sep argument of the function to be the tab
character (which is referred to as "\t"). Additionally, the header=TRUE argu-
ment explains that the first row of the file should be used as the column
headers. Now the object B is created on the workspace as a data frame. In
fact, B is now exactly the same as mydf. We can index the new object as we
would any data frame:

> B$names

[1] one two three

Levels: one three two

The last line of output above is included because when a data frame is cre-
ated, character vectors are actually converted to a slightly different structure
known as a factor. This is done because factors are like vectors that can
contain objects of a mix of basic data types, and so is safer for R to use when

7In practice, I take the policy that if a row name is worth keeping it should probably be
stored as a variable in the data frame anyway, and so typically I just specify not to include
any row names.

16 Introduction to R

it is reading objects from a file. It can cause problems though: the individual
elements of a factor may not be treated as characters or numbers, even if they
are. While the columns of a data frame may be stored as factors when read in
from file, it is generally safer to convert these to the correct basic data type
when using the column, for example:

> as.character(B$names)

[1] "one" "two" "three"

N.B. If converting a factor in a data frame to a numeric vector, check that this
has been done correctly: it will not work properly if there are any non-numeric
values in the corresponding column of the data table, although R will complete
the operation and will not throw up any error messages8.

2.5 More advanced concepts: Scripts and functions

R can be used as a statistical data analysis program, but it is so much more:
as a functional programming environment, you can combine sequences of com-
mands together to create programs within R. This can be an incredibly pow-
erful tool for automating tasks that would otherwise be impractically time-
consuming, soul-destroyingly boring or mind-bogglingly complex!

2.5.1 Simple scripts

A sequence of commands may be loaded or pasted into the R console and run
as a ‘script’. Some particularly useful functions to be used for scripts include
if conditional statements and for loops. In conjunction, these can be used to
search through a list or vector of elements to find all those elements for which
a particular property is true.

For example, if we had a vector of characters x that contained the names
of fruit:

> x <- c("apple","orange","banana","mango","pineapple")

And we wanted to know the positions in the vector of the element "mango"

and store them in the vector position, we could run the simple script:

position <- c()

> for(i in 1:length(x)){
8I have personally found this to be problematic before when loading data tables from

third parties, where numbers and non-numeric characters had been muddled up into the
same column. The take-home message: check your data outside R too!

More advanced concepts: Scripts and functions 17

+ if(x[i]=="mango"){
+ position <- c(position,i)

+ }
+}
> position

[1] 4

An alternative approach would be to use logical indexing, which returns the
vector elements with positions corresponding to TRUE values in the logical
index vector. To illustrate the use of this technique, the same problem as
above could be addressed with the single line of code:

> position <- c(1:length(x))[x=="mango"]

> position

[1] 4

In practice, the simplest way to do this would be to use the inbuilt func-
tion ‘which’:

> position <- which(x=="mango")

> position

[1] 4

2.5.2 Functions

In addition to using R’s in-built functions, or those provided through packages,
you can define your own functions to perform certain operations on objects
to be specified. Functions will not affect ‘global variables’ so all side-effects
must be made by returning affected variables as the result of the function.
Functions are treated in a similar way to variables, including their assignment
and deletion.

> foo1 <- function(arg1,arg2){}

Here, foo1 is a trivial function taking two arguments (arg1 and arg2) and
doing nothing. The commands specifying what the function will do are spec-
ified within the curly brackets ({}) following the arguments. Functions in R
should only be used to manipulate objects passed to them as arguments as
this ensures the correct inputs are always present. As stated above, functions
in R only have an effect through the object they return.

To run a function, you enter its name and its arguments supplied inside nor-
mal brackets. For example, if we wanted to run the function foo1 defined
above, we would enter:

> foo1(arg1="a",arg2=2)

18 Introduction to R

Now, in this case, it wouldn’t matter what we supplied for the two named
arguments of the function as it doesn’t use them. But this would almost never
arise, because if a function doesn’t use an argument then there’s no need to
include it in the definition. So our function foo1 could instead be defined:

> foo1 <- function(){}

Now we can call the function as follows:

> foo1()

And we get the output:

NULL

To demonstrate returning objects using functions, here is another example
function:

> foo2 <- function(arg1,arg2){
> + if (arg1 > arg2) {
> + out <- arg1 }
> + else {
> + out <- arg2 }
> + out

> +}

This function, foo2, takes arguments (arg1 and arg2) and returns whichever
of these is greater (but if they are equal it will return arg2). The returned
object is specified in the last line before the closing bracket (}). So now if we
run the function to return the larger of two numbers:

> foo2(arg1=1,arg2=2)

We get this output:

[1] 2

That is, a single numeric object with value 2.

We could try it again, but with different numbers (note, while you don’t
actually need to specify which argument is which when invoking the function,
it’s good practice because they won’t necessarily get used in the order you
expect!):

> foo2(arg1=4,arg2=2)

[1] 4

More advanced concepts: Scripts and functions 19

2.5.3 Using ‘apply’

There is a family of functions in R: apply, sapply, lapply and mapply, which
can be used to apply any other function (where appropriate) simultaneously
to a large number of different inputs. We will consider each in turn, with
examples to illustrate how they can be used. Given that you’re taking a lot
on board in a short space of time, this is likely to seem complicated. Don’t
worry, that’s completely reasonable! But the apply function can be extremely
useful in the analysis of numerical data tables, so do try to get familiar with
it and how it can be used. You shouldn’t need to worry too much about the
others: they are included here because they work in a similar way.

2.5.3.1 apply

The apply function takes as its input arguments: a numeric matrix, a func-
tion to apply to each row/column of that matrix, and a ‘margin’ indicator to
denote whether to apply the function to each row (MARGIN=1) or each col-
umn (MARGIN=2). Let’s illustrate this by creating a 4×5 matrix containing
the numbers 1 to 20:

> A <- array(1:20,dim=c(4,5))

We could alternatively make the same matrix using the matrix function, but
this time specifying the dimensions as separate arguments nrow (the number
of rows) and ncol (the number of columns):

A <- matrix(1:20,nrow=4,ncol=5)

We can inspect the matrix A:

> A
[,1] [,2] [,3] [,4] [,5]

[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20

Note that the table’s values are filled in column-by-column. Now let’s say we
simply want to add up each row and find the totals. We can use the inbuilt
function sum and apply this across the matrix row-wise (MARGIN=1):

> apply(A,MARGIN=1,sum)

We get the output:

[1] 45 50 55 60

This is a numeric vector with one value for each row.

20 Introduction to R

We could instead apply the sum function across each column, just by changing
‘MARGIN=1’ to ‘MARGIN=2’:

> apply(A,MARGIN=2,sum)

We should then get the output:

[1] 10 26 42 58 74

Using inbuilt functions (e.g. mean, median, sum, product, sd9, etc.) in this
way can be extremely powerful, but apply even allows us to apply arbitrarily
defined functions that we can create for specific purposes. Let’s say that for
some reason, for each row in the table we needed to take the largest value
from the first 3 columns and add it to the smaller value from the second 2
columns. We could define a new function to do this, calling its numeric vector
input argument x for simplicity’s sake:

> newfun <- function(x){
+ max(x[1:3])+min(x[4:5])

+ }

Now we can use apply again to obtain the result of applying this function to
each row of matrix A:

> apply(A,MARGIN=1,newfun)

[1] 22 24 26 28

A final cautionary note: in these simple function definitions we haven’t told R
to carry out type-checking of the arguments. That means it doesn’t know that
the argument x to the function newfun is supposed to be a numeric vector,
nor that it needs to be of length (at least) 5. If we supply an inappropriate
argument, R will attempt to evaluate the function on the arguments that are
provided, only throwing an error if it comes across a function call which is
constrained to certain types. For this reason, along with many others, it is
always advisable to construct a test scenario for your script or program and
making sure that the output is as expected.

2.5.3.2 sapply

Where apply evaluates a function using each row or column of a matrix as its
input, sapply evaluates a function using each individual element of a vector
or list. I tend to use this most when manipulating character variables. For
example, let’s go back to the character vector used in Section 5.1:

> x <- c("apple","orange","banana","mango","pineapple")

9calculates standard deviation

More advanced concepts: Scripts and functions 21

We can append a set of characters to these, for example if we wanted to add
‘ juice’ to each, using the paste function:

> y <- paste(x,"juice",sep=" ")

Here we have created a new object y, which is the character vector created by
the paste inbuilt function. This takes a number of character (vector) argu-
ments and appends them together with a separator specified by the argument
sep= (in this case, an underscore). Let’s look at this:

> y

[1] "apple juice" "orange juice" "banana juice" "mango juice"

[5] "pineapple juice"

To remove these from each, we will make use of the strsplit function. This
splits up a character string, based on a specified delimiter. For example, if we
wanted to split the first element of y around the underscore, we could run:

> strsplit(y[1],split=" ")

This gives us output:

[[1]]

[1] "apple" "juice"

Notice that the result returned is a list with one element, a vector containing
two character strings. We could return just the first part of this by indexing
the first element of the list (with double square brackets), and the first char-
acter string (with a single square bracket):

> strsplit(y[1],split=" ")[[1]][1]

Now we just get:

[1] "apple"

This is the point at which we have the function we are looking for. Let’s
define the function separately and call it fruit :

> fruit <- function(x){
+ strsplit(x,split=" ")[[1]][1]

+ }

Note that the argument for the function, even through it’s called x, won’t
get confused with our character vector called x.

22 Introduction to R

So now we can use sapply to apply the function to each element of the vec-
tor y :

> sapply(y,fruit)

This gives us the output we are looking for, which should be the same as
what we started with.

2.5.3.3 lapply

lapply is very similar to sapply, but the output is returned as a list. This
is particularly useful when the function we are applying, or the list we are
applying the function to, may have elements of varying lengths. To illustrate
this use, we will start with a list of three numeric vectors of different lengths:

> x <- list(1,c(1,2,3),c(4,5))

This should give us the following:

> x

[[1]]

[1] 1

[[2]]

[1] 1 2 3

[[3]]

[1] 4 5

Say we have a function where we want to filter out all appearances of the
value 2:

> notwos <- function(x){
+ setdiff(x,2)

+ }

Here we make use of the set difference operator, which will return the
first argument but having removed all elements that match any elements of
the second argument (in this case, a numeric vector with one element, the
number 2).

So we can apply this function to the input list using lapply:

> lapply(x,notwos)

[[1]]

[1] 1

More advanced concepts: Scripts and functions 23

[[2]]

[1] 1 3

[[3]]

[1] 4 5

So we see that we have results that are of different lengths, and we need
to represent this result as a list. As a matter of fact, the sapply function
can deal with such situations, by running lapply instead. Try it for yourself,
replacing lapply above with sapply. So the main reason you would want to
stick to lapply is if you wanted to keep the resulting output as a list, even if
it would be possible to keep the output as a table.

2.5.3.4 mapply

The mapply function takes multiple input arguments and applies the function
using the first element of each argument, then the second, and so on. For a
simple example, we will make two numeric vectors of length 3:

> x <- c(1:3)

> y <- c(2:4)

Now x has the values 1 to 3, and y has the values 2 to 4. We can define
a simple function to take two input arguments and add them together:

> addtwo <- function(x,y){
+ x+y

}

Now we can use mapply to add the first element of x to the first element
of y, then the second element of x to the second element of y, and finally the
third elements of each:

> mapply(x=x,y=y,FUN=addtwo)

Note that here we have specified the function with the named argument FUN,
and we have named each of x and y. We should see the output:

[1] 3 5 7

Now, some of you may notice that this is in fact the same way that the simple
addition operator + handles vector arguments, and so is a rather redundant
application of mapply. Situations that do require using mapply do not occur
that frequently, and so this is only really included here for completeness: there
is no need to become particularly familiar with this part!

24 Introduction to R

2.6 Plots

One of the main advantages of using R for data analysis is its relatively sim-
ple yet powerful graphical capabilities. This is particularly useful in scientific
research, where we often lean on visual representations of data to support our
theoretical arguments. It is also very helpful when working with large vol-
umes of data, where it is rarely feasible to develop an intuitive understanding
of dataset by looking at vast tables of numbers.

2.6.1 Simple scatterplot

The command plot() will plot the values of an input vector in sequence,
automatically scaling the axes. The values of each element in the vector will
be shown on the y-axis, with the x-axis values coming from the positions of
each element in the vector. If we create a vector and then plot it as follows,
the resulting figure should be created as in Fig. 2.4:

FIGURE 2.4
Illustration of the most basic of the plotting capabilities of R.

Plots 25

> vec <- c(1,4,3)

> plot(vec)

2.6.2 Arguments of plot()

There are many arguments that can be specified for the plot() function.
Commonly useful examples are provided below:

• type="l": plots a line, connecting each point

• col="red": plots the points in red. Other colours may be specified (e.g.
“green”, “blue” etc.)

• xlim=c(0,10): sets the x-axis to go from 0 to 10

• ylim=c(0,10): as above, but for the y-axis

2.6.3 Multiple plots on one graph

If there is a plot already drawn, the function points() can be used in place
of plot() in order to draw subsequent plots on the same graph.

> plot(vec2,type="l",ylim=c(1,11))

> points(vec,type="l",col="red")

2.6.4 Scatterplots of multiple variables

In the above examples, the vectors are being shown on the y-axis of a scatter
plotting the values of the elements in the vector against their corresponding
position indices (shown on the x-axis). We can use the same plot function
to plot two vectors against each other. The result of the following example
is shown in Fig. 2.5, which plots the elements of vec squared on the y-axis
against the corresponding elements of vec on the x-axis. It should be noted
that for such plots, the two vectors must be of the same length.

> plot(x=vec,y=vec^2)

In fact, the earlier examples can all be thought of as plotting the vector as
y with x set to the sequence of integers from 1 to the length of the plotted
vector.

2.6.5 Box plots

Creating box plots in R is relatively simple, although it is based around the
list data structure. By using lists, each element of the list can be represented

26 Introduction to R

FIGURE 2.5
Illustration of basic two-variable scatter plotting capabilities of R.

by its own box, and thus doesn’t need to be the same length. For example, if
we create a new list called mylist2 as follows:

> mylist2 <- list(c(1:3),2,c(1:5))

[[1]]

[1] 1 2 3

[[2]]

[1] 2

[[3]]

[1] 1 2 3 4 5

Now we can easily create a boxplot of these elements, which should appear as
Fig. 2.6:

> boxplot(mylist2)

More advanced graphics with ggplot2 27

FIGURE 2.6
Illustration of a simple boxplot in R.

2.6.6 Saving images to file

The default graphical device on which to draw the output of any graphing func-
tion is a window that will open on the user’s display. There is a set of functions
in R that can create a file in which to draw graphical outputs: png(), jpeg(),
bitmap(). These functions open a file of the corresponding type, and once the
graphing commands have been completed, the file must be closed using the sep-
arate function dev.off(). For example, we could save the result of Fig. 2.6 to
a png file called ‘MyBoxplot.png’ with the following set of commands:

> png(file='MyBoxplot.png')

> boxplot(mylist2)

> dev.off()

2.7 More advanced graphics with ggplot2

The graphical capabilities presented in the previous section are very useful,
but the appearance is somewhat functional. A very nice set of graphing tools

28 Introduction to R

has been developed for R, called ggplot2. The manual can be found at:
https://ggplot2.tidyverse.org.

The ggplot2 package is based on the concept of a ‘grammar of graphics’, a
formal framework to use for data visualization. In R, this comes in the form
of using the ggplot function to set up a graph using a data frame as input, and
specifying aesthetics: mappings of columns from the data frame to attributes
of the graph. Then additional layers can be added, which determine how the
data frame is represented. For ideas of how the ggplot2 package can be used
to visualize data, browse the reference section of the manual (especially the
geom functions): https://ggplot2.tidyverse.org/reference/index.html.

We will illustrate one relatively simple example, which will create a plot that
would take a lot more effort using the basic R graphing capabilites. First
though, we need to install the package:

> install.packages('ggplot2')

Now we’ll make a data frame with a numerical value, let’s say this is the
viability of a cell line, treated with a drug in two different cell culture con-
ditions. Because we will draw the viability values randomly, we are setting
the seed of the random number generator to a specific value: this works as a
‘cheat’ to make sure the random numbers that you create are the same as the
ones I created. So the graphs should look the same.

> set.seed(10)

This is how to use the set.seed function, which you’ll not is a rare func-
tion in R in that it doesn’t create an output directly. Instead, it alters the
internal state of the R workspace. Now we can generate some (pseudo-)random
numbers to draw:

> viability <- rnorm(40)

We have created a vector called viability, with 40 values drawn from a
standard normal distribution, using the rnorm function.

> treatment <- rep(c('control','treated'),20)

Now we have created a vector called treatment, repeating the two character
strings ‘control’ and ‘treated’ 20 times. Note, we have one character for each
viability value.

> culture <- rep(c('media1','media2'),each=20)

https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org/

More advanced graphics with ggplot2 29

This command creates the final information we need, a vector called culture

that repeats the character string ‘media1’ 20 times, then the character string
‘media2’ 20 times. We will combine these together into a data frame:

> plotdf <- data.frame(viability=viability,

+ treatment=treatment,culture=culture)

We have used the function data.frame to create a data frame with three
named columns. This is only possible because the three vectors we used for
the columns are all the same length. You can inspect the first few rows of the
data frame plotdf using the head function:

> head(plotdf)

viability treatment culture

1 0.01874617 control media1

2 -0.18425254 treated media1

3 -1.37133055 control media1

4 -0.59916772 treated media1

5 0.29454513 control media1

6 0.38979430 treated media1

Now we can use the ggplot2 package to create a set of boxplots, drawing
the viability for each treatment, for each culture medium:

> library(ggplot2)

First, load the ggplot2 package.

> ggplot(plotdf,aes(x=culture,y=viability,

+ fill=treatment)) +

+ geom boxplot() +

+ geom point(position=position jitterdodge())

This has used the ggplot function with the first argument being the data
frame to use, and the second argument the output of a function called aes.
This function maps columns of the input data frame to characteristics of the
plot: in this case, the value of the ‘culture’ column gives the x-axis position;
the value of the ‘viability’ column gives the y-axis position; the value of the
‘treatment’ column gives the colour to fill the boxplots, and also will be used
to resolve the x-axis position. The result should look like that in Fig. 2.7.
Hopefully this illustrates how powerful the ggplot2 package can be. But it can
be a bit complex, so we’ll mostly use the basic graphical capabilities in the
examples throughout this book, to focus on the data analysis.

30 Introduction to R

FIGURE 2.7
Illustration of a more complet boxplot using the ggplot2 package.

2.8 Using R help

The R manual contains detailed instructions on any function provided in R.
The entry for any particular function can be obtained through the R console
simply by entering a question mark ? immediately followed by the function
name. For example, if I wanted to learn more about the histogram function
hist I would enter:

> ?hist

Additionally, a more detailed R tutorial is provide by CRAN at http://cran.r-
project.org/doc/manuals/R-intro.html. This is a very useful resource for
exploring in greater depth the topics introduced here, although given its detail
it may be slightly harder to follow.

http://cran.r-project.org/
http://cran.r-project.org/

3

An Introduction to LINUX for Biological
Research

Hopefully after the introduction to working with R, you should now be a
little more comfortable with a command-line interface. You may be more
used to working with a graphical environment in Windows or MacOS, or per-
haps a Linux distribution, but there are some data processing tasks you may
encounter in biological research for which it really helps to use the command-
line interface of a Linux environment. If you don’t find yourself in a situation
where you need this, you might prefer to skip onto the next chapter for now.
You can always come back to this short reference chapter when you need it.

3.1 UNIX

Technological advances have resulted in computer hardware getting cheaper
at a rate that means the computational power available for a given cost has
increased exponentially over most of the last century. In this context, consid-
ering that next-generation sequencing platforms first found mainstream use
around 10 years ago, a computer that would be capable of analyzing the
dataset you have just received from your sequencing facility might be on your
desk now but in the early days of next-gen sequencing it would only have
been available through a high-performance computing facility. Many of the
software tools that have been created for analysis of sequencing data were
therefore developed for high-performance computing machines, which tend
to be set up on UNIX-based operating systems that scale up very well. The
downside of this scalability is that these operating systems tend not to be as
easy to use as those developed for the era of personal computing, like Win-
dows and MacOS1. The most likely situation is that you will be able to access
a computer running a Linux distribution, you might even install Linux on
your own computer. Linux is an open-source operating system that has been
developed by different communities into different distributions (e.g. Ubuntu,
Debian, RedHat, CentOS, Gentoo, etc.). For what it’s worth, I currently run

1Mac OSs are actually based on UNIX too, but they are best known for their graphical
windowing system.

31

32 An Introduction to LINUX for Biological Research

two CentOS computers and one RedHat computer which I use myself and run
as servers for other researchers in my department to use. I have happily used
Ubuntu in the past. If you have a powerful computer running Windows and
plenty of spare disk space, you may wish to create a Linux partition for that
computer. An alternative if you don’t want to ‘dual-boot’ (i.e. have a computer
that can choose between two different operating systems) is Cygwin2, which is
a program that creates an environment providing a lot of Linux functionality
and can run through Windows. Regardless of what system you have access to,
the fact that you will now be familiar with command-line–based computing
(thanks to our use of R) will stand you in good stead for running commands
on a Linux system. These systems will have a ‘shell’, which will typically open
as you log in. If not, you can start the shell by opening a terminal. This is your
interface with the computer, in which you can view and enter text, navigate
through the file system by changing your working directory much as you do
in R, and through which you enter commands to run. The most common shell
environment is the ‘Bourne Again SHell’ (bash). There is a great tutorial at
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/.

3.2 Linux survival guide

For working in a Linux environment, knowledge of a few shell commands is
absolutely essential. You will find it incredibly useful to develop some more
advanced use of the shell as a scripting/programming environment, but for
now let’s stick with the essentials. As mentioned in the previous section, the
shell is your text-based interface to the operating system, and the Linux-based
functionality of your computer. Throughout these tutorials, we will show bash
commands with the dollar-sign prompt $ in much the same way as we show
R commands with the > prompt. I would say that the things you will need to
do in the course of analyzing sequence data will be:

• get information about a bash command with man

• navigate through the filesystem by changing directories with cd

• create new directories on the filesystem with mkdir

• move/rename files with mv

• copy files with cp

• list files in the current working directory with ls

• download files from the internet with wget

• extract .zip files with unzip

2http://www.cygwin.com/

http://www.tldp.org/
http://www.cygwin.com/

Linux survival guide 33

• extract .gz files with gunzip

• extract .tar files with tar

• write the output of a command to a new file with >

Additional utilities I think you will find the most helpful to use:

• viewing text files with less or more

• displaying the current working directory with pwd

• counting the number of words or lines in a file with wc

• extracting only one column from a text file with cut

• displaying only lines in a text file that contain some specified pattern with
grep

• passing the output of a command directly to another command with the
‘pipe’ character '|'

• running Java executables (.jar files) with java

• running Python scripts (.py files) with python

• running Perl scripts (.pl files) with perl

In the rest of this section of the tutorials, we will go through a series of exam-
ple tasks that show us how we use these commands to achieve the things we
will probably need to do if we are to analyze sequencing data on a Linux
machine. The first thing to say is that you can find information about how to
use any bash command by entering man followed by the command in question.
For example, if I wished to find out about the man function itself, I would enter:

$ man man

The output from this would be:

man(1)

NAME

man - format and display the on-line manual pages

SYNOPSIS

man [-acdDfFhkKtwW] [--path] [-m system] [-p string] [-C

config file] [-M pathlist] [-P pager] [-B browser] [-H htmlpager]

[-S section list] [section] name ...

34 An Introduction to LINUX for Biological Research

And then a description of what the man command does and how it is used.

The long line following ‘SYNOPSIS’ is the instruction of how to use the com-
mand: you enter the command itself (in this case man) followed by any of the
possible options which may change how the command executes, then finally
the argument ‘name’, which it describes as the name of the manual page you
wish to display. All the square brackets [...] indicate that what’s inside is
optional, and so in this case you can just use the command with two words as
we did in our example. You will see that options are generally preceded with
a dash -, and some of them tell the command how to use the bit that follows
(for example, '-B firefox' would tell the man command to use Firefox as
the program to open up HTML manual files).

Navigating through the filesystem with only a text interface perhaps takes a
little getting used to, but you’ll soon find it seems natural. The cd function is
pretty simple to use, in that you enter ‘cd’ and then the directory you wish to
move into (this obviously is based around the concept that the shell and pro-
grams invoked from it read and write files in the current working directory,
unless explictly specified otherwise). To set up a sensible example, we will also
use the command pwd to tell us what directory we are currently in and the com-
mand ls to show what files there are in this directory. Let’s say I have just logged
into my system and want to see what directory the shell has started in:

$ pwd

/home/ed

The output here says that shell started in a directory called ‘ed’ within the
directory ‘home’. I can then look at what files are in this directory by simply
entering ‘ls’:

$ ls

Desktop Downloads work

As a trivialized example, this shows me three files which are all directories. If
I wish to enter the directory ‘work’, I enter:

$ cd work

Now when I ask what directory I am in, it tells me that I’m in the ‘work’
directory inside ‘ed’ inside ‘home’:

$ pwd

/home/ed/work

The output of the pwd command is known as a path, and is effectively the
address of the file on the filesystem. There are a couple of special paths: .

Linux survival guide 35

means the current directory and .. means the directory containing the current
directory. Therefore we can navigate up through the filesystem hierarchy3 by
entering:

$ cd ..

If we are not sure what directory we are starting (or more likely we are writing
a script and don’t know where we may be starting from in the future), then
we could tell the shell to go straight to the ‘work’ directory by specifying the
full (absolute) path:

$ cd /home/ed/work

Now let’s say we wanted to create a new directory called ‘testing’. We can
do this using the mkdir command:

$ mkdir testing

If we list the files in the (previously-empty) ‘work’ directory, we see:

$ ls

testing

As an example that will help illustrate a number of other tasks at once, we
will download a zipped tar archive (i.e. a compressed directory containing
files we wish to use on our computer) from an internet address. Let’s say that
we want to use the Samtools set of programs for manipulating sequence data
files. We first need to retrieve the file from the internet. Many files hosted
on projects such as SourceForge or GitHub are easiest to retrieve through a
standard browser (e.g. Firefox or Chrome), downloading the file either directly
onto the Linux computer or to a local computer then transferring the file via
an scp client (such as WinSCP or FileZilla). The Samtools download page
is at http://sourceforge.net/projects/samtools/files/samtools/1.2/samtools-
1.2.tar.bz2. Your Linux computer may have a text-based browser such as
ELinks installed, which can be invoked from the shell as follows:

$ elinks http://sourceforge.net/projects/samtools/files/latest/

download

However you have downloaded it, let’s say we have the file ‘samtools-
1.2.tar.bz2’ on the filesystem of our Linux machine. First we need to
decompress the zipped file with bzip:

$ bunzip2 samtools-1.2.tar.bz2

3Note that when you are already in the root directory / then you cannot go any higher.

http://sourceforge.net/
http://sourceforge.net/
http://sourceforge.net/
http://sourceforge.net/

36 An Introduction to LINUX for Biological Research

Now if we list the files in our current directory that start ‘samtools,’ we see
that there is a file ‘samtools-1.2.tar’:

$ ls samtools*

samtools-1.2.tar

We extract the tar archive as follows:

$ tar -xf samtools-1.2.tar

Now the files are all extracted to a newly-created directory ‘samtools-1.2’.
We can enter this directory and look at the files contained therein:

$ cd samtools-1.2

$ ls

If an archive such as this contains a file called ‘README’ then as a gen-
eral rule it is worth reading before trying anything else. This can be inspected
by invoking the bash program more:

$ more README

This tells us we need to see the file ‘INSTALL’ for building and installa-
tion instructions. So we need to open that file (this time we’ll use the bash
program less):

$ less INSTALL

A bit more complicated, this file tells us we need to compile samtools. This
is because the samtools kit is provided as a set of source code files. These are
computer code written in a programming language (in this case C), which need
to be converted into executable instructions the computer can use directly. We
see from the instructions that installation can be carried out with these simple
steps:

$ make

$ make install

Note, these steps require a C compiler (e.g. gcc) to be installed on the sys-
tem, and may require administrator privileges on the machine. There may be
additional dependencies (programs on which the thing you’re trying to install
rely), and unfortunately these will vary depending on your exact setup. I find
a lot of headaches can be resolved with an internet search of the exact error
message thrown!

Useful dependencies and programs 37

Assuming the install was successful, we can now invoke samtools from bash:

$ samtools

(Of course, without supplying any input, the program will just print out its
usage instructions.)

It is important to remember that for many programs you can invoke them
via shell commands in any directory, provided you specify the absolute path
to the executable file for the program you are running. When this happens,
most programs will by default write their output to the directory from which
you called the shell command, not the directory in which the executable file
is kept. There are a host of tools accessible through the shell that can enable
creation of very powerful scripts that will carry out a great deal of work in
an automated fashion, but such shell scripting tools would require a detailed
course to themselves, and that is outside the scope of our learning here. The
TLDP bash tutorial4 should be a reference guide to assist with queries you
may have, but at the very least you should now be able to install and run the
sequence data analysis tools referred to in the rest of this tutorial.

3.3 Useful dependencies and programs

Sir Isaac Newton was not the only one to stand on the shoulder of giants. As
a central practice of software engineering, it means there exists a great wealth
of scientific programming packages which have been created to make other
programming tasks easier. Many of the tools that you will use for processing
sequence data will make use of some of these programs or ‘libraries’ and while
I can’t give an exhaustive list, the following are sufficiently frequently used
that it will be handy to have them installed5 (either by yourself or by your
sysadmin):

• gcc – C is one of the most widely-used programming languages in the world.
The Gnu C Compiler, and in particular its developer resources are needed
to configure, make and install many programs written in C.

• Java – Java is another widely-used programming languages. A difference
between Java and C is that most Java programs won’t actually need to be
separately installed on your computer but can be downloaded as a jar file
which can be run directly through Java.

4http://www.tldp.org/LDP/Bash-Beginners-Guide/html/
5The process of installing these will depend very much on your computer.

http://www.tldp.org/

38 An Introduction to LINUX for Biological Research

• Python – Python is a relatively recently developed programming language
which has really taken off in popularity. A number of HTS programs use
Python. There are two main releases of Python currently in use, Python
2.7 and Python 3. If you are using a Python-dependent program, do ensure
you have the required version installed. Along with Python, the numerical
programming library NumPy and scientific programming library SciPy are
also worth installing.

• Samtools – Samtools, BCFtools and HTSlib are available from
http://www.htslib.org/, and Samtools in particular is very useful (if not
essential) for working with sequencing data.

• BEDtools – BEDtools contains a lot of functionality that is especially useful
for ChIP-seq studies and their results. It can be obtained from
https://github.com/arq5x/bedtools2 and the documentation at
http://bedtools.readthedocs.org/ is extensive.

http://www.htslib.org/
https://github.com/
http://bedtools.readthedocs.org/

4

Statistical Methods for Data Analysis

In this chapter we will try to get a good understanding of some analytical
tools that will empower you to use datasets to answer real-world questions.
You will see how some of the programming tricks can be used with R’s built-in
number-handling functions to put the theory into a practical context.

We start with an illustration of why we use statistical methods in research,
to introduce the theory of probabilities, then describe some methods that use
probabilities to help us attach confidence to observations in data.

4.1 What are statistical methods, and why do we use
them in biological research?

In applying statistical methods to data analysis, we are typically aiming to
describe some properties of the data, or we wish to infer properties of what
the data represent. I find the distinction between these aims quite reveal-
ing about why statistical methods are important in biological research. It
should be intuitive that descriptive statistics are useful: these are the means
of characterizing or summarizing properties of the data we have collected. But
assuming we undertake research according to a traditional scientific method,
we can advance knowledge through testing hypotheses: we use data to help
us determine whether a hypothesis is supported by observation or should be
rejected.

Because it is rarely possible to obtain perfectly accurate measurements, nor
to have complete control over all potential sources of variation in the systems
being measured, we have to consider the fact that if we obtained more data, it
probably wouldn’t be the same as the data we already have. The measurements
we have are just representatives (this is a sample) of all such measurements
that could have been obtained, if we had repeated the experiment infinitely
(this is a population). We use statistical inference to estimate properties of that
infinite set of all measurements that could have been obtained, by modelling
these uncontrolled variations in the data as randomness. In expanding on this
concept, the following paragraph may seem complicated, but it is probably
the most important part of this book....

39

40 Statistical Methods for Data Analysis

Say we obtained three repeat measurements of a gene’s expression in two exper-
imental conditions (e.g. a transformed cell line and a control cell line), we could
use descriptive statistics to show that the mean measurements from the two
experimental conditions were different. This observation from the samples we
have obtained could lead us to a hypothesis regarding the populations they rep-
resent: do the measurements we have obtained suggest that the means of the two
populations are different? We are now thinking about what we’d find if we had
repeated the experiment an infinite number of times, which acknowledges the
fact that the data we have includes some uncontrolled variation. Typically we
evaluate the extent to which the data supports a hypothesis by considering the
opposite of our hypothesis: in this case, that the means of the two populations
are the same. This is termed the null hypothesis. Using our example, the prin-
ciple of statistical hypothesis testing can be outlined as follows:

• Use the properties of the samples to infer the distribution of values that the
populations would take if the null hypothesis is true (in this case, that the
means were the same).

• Work out the probability that any two samples of three measurements (one
from each population) would have as big a difference in their means as the
measurements we obtained from our experiment.

• Based on this probability, does our experimental data provide sufficient evi-
dence to reject the null hypothesis?

Most readers of this book will be familiar with this procedure, as it’s what
you’ve done if you’ve ever applied a t-test. When doing this, were you aware
that the p-value from the t-test is the probability that any two samples drawn
from normally-distributed populations with the same mean and with the vari-
ances of the observed samples would have as big a difference in their means
as the observed samples? If not, does knowing that now change your interpre-
tation of t-test p-values?

4.1.1 A worked example

Assuming we are now at least a little familiar with R, we can use some simple
programming to illustrate this theory. We can try sampling two sets of three
measurements from the same normally-distributed population and compare
their means. For this, we will use the rnorm function which draws random
numbers from a specified normal distribution. Just before we try this, we can
use a bit of a cheat to make sure the random numbers you create are the same
as the ones I create, by using a function called set.seed to specify a state for
R’s random number generator:

> set.seed(10)

> a <- rnorm(3,mean=1,sd=1)

> b <- rnorm(3,mean=1,sd=1)

What are statistical methods, and why do we use them in biological research? 41

These two lines of code each create an object (one called a, one called b), each
storing a vector of three numbers.

Let’s look at the means of each set of three numbers:

> mean(a)

[1] 0.487721

> mean(b)

[1] 1.028391

Here we have used the function mean to compute the mean of a vector of
numbers. Are these means the same? Are they significantly different? What
do we even mean by a statistically significant difference? We actually know
that the population from which each sample was drawn is the same, so if the
means of the samples are estimates of the means of the populations they were
drawn from, they should be the same. But they won’t be exactly the same,
because we have randomly drawn only three numbers from these distributions.
This random variation is what we are trying to quantify using statistical the-
ory. Let’s consider what happens if we draw samples of three numbers from
two different popuations (represented by normal distributions with different
means, but the same standard deviation)?

> x <- rnorm(3,mean=1,sd=1)

> y <- rnorm(3,mean=2,sd=1)

Let’s look at the means of each set of three numbers:

> mean(x)

[1] -0.06614162

> mean(y)

[1] 2.533694

What is the difference between them?

> mean(x) - mean(y)

[1] -2.599836

Are these now significantly different? We can get into the meaning of statis-
tical significance by making use of the capabilites of programming computers
for data analysis. Let’s say we would consider the observed difference in the
means between our two sets of three numbers significant if it would be a 1/100
event if the two population means were the same. So, let’s repeat our compar-
ison of three numbers drawn from the same normally distributed population,
say, 100 times:

> meanDiffs <- c()

42 Statistical Methods for Data Analysis

Here we have made an empty vector, to which we will add our results. We will
use a for loop to run the same sequence of commands (between the brackets
{ and }) a specified number of times (in this case 100 times).

> for(i in 1:100){
+ x <- rnorm(3,mean=1,sd=1)

+ y <- rnorm(3,mean=1,sd=1)

+ meanDiffs <- c(meanDiffs,

+ abs(mean(x)-mean(y)))}

Let’s consider this line-by-line: the first line establishes that there is going
to be a loop, in which an object called i is given each value from 1 to 100;
each time, a vector called x is created from three numbers randomly drawn
from a normal distribution with mean=1 and standard deviation=1; each
time, another vector called y is created the same way; the vector meanDiffs

is reassigned a new value, which is the old vector meanDiffs concatenated1

to the result of a sum: the absolute value of the difference between the mean
of x and the mean of y. So at the end of this, we should have a vector called
meanDiffs that has 100 numbers in it. How many of those are at least as
big (in magnitude, we will ignore the sign) as the one we originally observed
between the two variables sampled from different populations?

> sum(meanDiffs>=2.599836)

[1] 1

We use the sum function because the greater-than-or-equal-to operator >= will
return a vector of TRUE or FALSE values, one for each element of meanDiffs,
and a sum of TRUE/FALSE values gives the number of TRUE values. So the
difference we observed would have been a 1 in 100 event if the populations
that our samples x and y came from had the same mean: this is quite unlikely,
so we could feel fairly confident in assuming that they had come from different
distributions.

This was quite a crude example of statistical hypothesis testing. In real appli-
cations, most people will assume the observed samples were drawn from nor-
mally distributed populations, compute the statistic t, and then check the
value against a theoretical distribution (e.g. how many values would be as big
as our observed one if we had an infinite for loop) to estimate the p-value.
Or people would use a computer to perform this calculation. We will discuss
distributions more in this chapter.

1To concatenate means to stick together.

What do I need to understand statistics? 43

4.1.2 A brief summary

You may be wondering why so much discussion of statistics in an introductory
book on bioinformatics. It’s partly because we use bioinformatics to help us
deal with large amounts of data, and it typically gets more difficult to con-
trol all sources of variation the larger a dataset gets. And it’s partly because
bioinformatics enables us to test large numbers of different hypotheses and
find which are best supported by the available data. By understanding how
these statistical analysis methods work, you will be able to think of ways
to apply them to collections of data in ways which will provide evidence for
answers to previously unanswered questions. By linking a biological question
to a set of data with a statistical analysis method, you will advance your field
of research.

4.2 What do I need to understand statistics?

Two basic areas of mathematics underpin a lot of statistical analysis of biolog-
ical data. As these really are fundamental to understanding how the current
knowledge of molecular biology has been attained, they are worth serious
attention. Some mathematical expressions may use funny-looking symbols,
but if the symbols are appropriately defined (as they always should be) then
the expression should make logical sense. In fact, you may come to appre-
ciate the convenience of having so many unambiguous definitions! So please
don’t be put off by any equations, and please do put the effort into working
out what they all mean. Students invariably say that one of the most valu-
able things they learn from my courses is finding methods presented in the
scientific literature more accessible to understand and to use.

4.2.1 Probability

This section may seem quite abstract, but it is crucial in helping you under-
stand exactly what the results mean for all the statistical tests you will apply
in this work. As mentioned in the previous section, one of the principal moti-
vations for bioinformatics is enabling computational applications of statistical
hypothesis tests and evaluations of different models fitted to large datasets.
Being able to apply statistical methods is useful but can have serious adverse
consequences if you don’t truly understand what the results represent.

4.2.1.1 Random variables

You may have seen in the example of the t-test that the result and its interpre-
tation refer to probability. In my opinion, you can’t understand much statistics
unless you have a basic grasp of probability theory. Probability theory involves

44 Statistical Methods for Data Analysis

the study of random variables. Randomness is one of those concepts which is
quite often misunderstood: just because there is randomness in some set of
observations, it doesn’t mean the observations lack any patterns. Nor does it
mean that observations of a random variable aren’t predictable in any way.
As described in the introduction of this chapter, incorporating randomness in
analysis of data is the way to account for uncontrolled sources of variation
affecting the observations.

As a loose definition, a random variable refers to some quantity that can
take certain values and individual observations of its values can be made.
More formally, this means the random variable is a mathematical function
that produces measurable outputs (these will be our samples) from the set
of all possible values. So to define a random variable, one needs to define the
values it may take. To give an example, if a question that we may ask people
is ‘Have you seen the film Jurassic Park? (answer yes or no)’ then we can
consider the responses to be a random variable (R.V.) X, taking values yes

or no. To use notation to define this, we would write:

X ∈ {yes, no}. (4.1)

In this equation, the ∈ symbol means that the RV’s values are taken from
the set defined on its right-hand side. The curly brackets {...} defines a set
through listing its elements. We may additionally define properties of the RV’s
values, such as if it is more likely that observations of the RV will have certain
values. It may also be possible to define conditions on when the RV may be
more likely to take certain values. This variable can be represented in R as an
object of the logical data type.

To describe a specific sample (let’s call it x) from the random variable X,
we may define the set of observed values. We would again define our variable
X, now stating that it could be observed n times, and each time its value
would be either yes or no:

x = {x1, x2, ..., xn}.∀i ∈ {1, ..., n}, xi ∈ {yes, no}. (4.2)

In Equation 4.2, the ∀ symbol means for all values of i in the set {1, ..., n}, the
following condition is met. As we haven’t yet defined n, this is not any more
informative than the definition given in Equation 4.1. We have used the under-
scored numbers (or letters) to refer to elements in the set, which as defined
here are ordered. x1 is the 1st observation of X, x2 is the 2nd, and xi is the ith.
Why do this? It enables us to give more explicit conditions on the variables
we are defining: for example, one can define sequences of observations.

Now, this sample x could be represented in the R environment by a vector
of 10 elements, each taking a logical value. Let’s try this, making use of R’s

What do I need to understand statistics? 45

pseudo-random number generation again. First, we’ll set the random number
generation seed:

> set.seed(10)

Next, we can generate a vector of logical (True/False) values by using the
fact that a comparison of two numbers results in a logical value. Rather like
the rnorm function, the runif function draws random numbers from a uni-
form distribution: this just means that any value within the specified range
(typically from 0 to 1) is as likely as each other. So if we draw 10 random
numbers from the range (0, 1), each will have an equal chance of being less
than or greater than 0.5. Putting this together, if we draw 10 random num-
bers from this uniform distribution and test each one in turn for being greater
than 0.5, we will have a vector of 10 observations from the population of our
theoretical random variable X :

> x <- runif(10)>0.5

4.2.1.2 Probability distributions

Having only defined the values the random variable can take, it isn’t partic-
ularly helpful yet. We don’t know whether a given person is more likely to
answer ‘yes’ or ‘no’. We don’t really know how the random variable, or the
property it is modelling, behaves. Random variables are useful because they
give us a way of modelling events. To make the model useful, we can define
the behaviour of the random variable. This is done through defining the prob-
ability of the RV taking certain values, potentially under certain constraints
or conditions. If there were a 50% chance of any given person answering ‘yes’
or ‘no’ to the question of having seen Jurassic Park, this would correspond to
the example we just created in the R environment. In mathematical notation,
this random variable would be described as follows:

For random variable X,

Pr(X =yes) =0.5

Pr(X =no) =0.5.

(4.3)

In this equation, Pr(...) denotes the probability of some condition being met.
For example, the probability that the random variable X takes the value yes.
The distribution of any random variable is defined through a function, known
as the probability distribution function, which gives a formula to calculate the
probability of observing a given value, for all possible values the random vari-
able could take. In the example above, there are only two possible values that
the RV X could take, so the probability distribution function is fairly easy to
define. This RV X is actually an example of a well-known and well-defined
probability distribution, known as the Bernoulli distribution. A Bernoulli dis-
tribution is a random variable with two possible values, so that the probability
of the second value is 1 minus the probability of the first. Why?

46 Statistical Methods for Data Analysis

Probabilities define our understanding of how likely some outcome is to be
observed. A probability of 1 represents complete certainty that the given out-
come will be observed, and a probability of 0 represents complete certainty
that it won’t. For any given event, the sum of the probabilities of all possible
outcomes must necessarily equal 1. This is because we have complete certainty
that one of the possible outcomes will be observed.

So the random variable X follows a Bernoulli distribution, which we could
define using the probability of a ‘yes’ (which we will denote p):

X ∼ Bernoulli(p). (4.4)

The notation ∼ denotes that a random variable follows some given distribu-
tion. As there are many convenient probability distributions that can describe
commonly-occurring types of random variable, this given distribution will
often be a previously-defined distribution. In that case, the specific instance
will be defined using parameters of the model. In Equation 4.4, the Bernoulli
distribution has one parameter, p.

Let’s say that we know want to study the total number of ‘yes’ and ‘no’
answers across a group of people asked the same question. As every individ-
ual who didn’t answer ‘yes’ answered ‘no’, we only need to consider the total
number of one of the answers. Let’s consider the total number of ‘yes’s. It
will help if we consider the True/False observations of the random variable X
to represent the numbers 1 and 0, respectively. This is a sufficiently common
convention that it is encoded into R: follow the steps in the previous section
to create the object x, and inspect the values.

> x

[1] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE

Now convert the logical values to numbers using the as.numeric function,
and you should see that the ‘TRUE’ elements become the number 1 and the
‘FALSE’ elements become the number 0:

> as.numeric(x)

[1] 1 0 0 1 0 0 0 0 1 0

Using this convention, we can define a new random variable Y as the sum
of the numerical values (0 or 1) represented by a sample from the random
variable X :

Y =
n∑
i=1

Xi.∀i ∈ {1, ..., n}, Xi ∼ Bernoulli(p = 0.5). (4.5)

What do I need to understand statistics? 47

This definition has used some more symbols:
n∑
i=1

Xi means to add up the values

of X1, X2, and so on up to Xn. The variable i allows us to refer to elements
in a sequence. The definition in Equation 4.5 is still vague: we haven’t defined
the number of people who are answering the question n. But even so, we can
use the fact that a sum of independent and identically distributed2 Bernoulli
random variables, as this has some known properties characterized with a
binomial distribution:

Y ∼ B(n, p = 0.5). (4.6)

How is the binomial distribution defined? It will be defined through a proba-
bility distribution function, and for the binomial distribution this is expressed
through a single mathematical formula with three parameters:

For Binomially-distributed random variable X,

Pr(X =k) =

(
n

k

)
pk(1− p)n−k. (4.7)

In this equation, Pr(X = k) means the probability of the RV X taking the
value k. With this expression, we can calculate the probability that any sum
of n Bernoulli RVs, each with probability of a success being p, is equal to
the value k. The symbol

(
n
k

)
is a combinatorial function, giving the number of

possible combinations of k elements taken from a set of n elements. The details
of this expression aren’t really important for us, one of the useful capabilities
of the R environment is that it has inbuilt functions for computing all sorts
of probability distributions. The real point of this example is to show that we
have a way of calculating the probability of different outcomes from a random
variable, or from a set of samples of random variables. This opens the door to
statistical inference....

4.2.1.3 Hypothesis testing

Coming back to our question of whether or not people had seen the film Juras-
sic Park, we can use this statistical model for inference. Let’s say we asked 10
people: 7 answered ‘yes’ and 3 answered ‘no’. This represents a sample from
Y created by adding together the results of sampling from X 10 times. Seeing
this data, we may suspect that there is a bias towards the answer ‘yes’ across
the population (that is, all possible people we could have asked). One might
be inclined to state that as the sample wasn’t split evenly into 5 ‘yes’s and 5
‘no’s, it shows that the probability of an individual answering ‘yes’ was not
0.5. But now we can use the probability distribution function for Y to quantify
the uncertainty in this assertion, given the data. We do this by constructing
a null hypothesis that the probability of any one person answering ‘yes’ was
50% (that is X ∼ Bernoulli(p), and therefore Y ∼ B(10, p = 0.5)). Then we

2This is an important property, often abbreviated to i.i.d.

48 Statistical Methods for Data Analysis

can compute the probability that a sampled value of Y would be at least that
different to a 50/50 split. Our sampled value was Y = 7, meaning that to be at
least that different to a 50/50 split, we would need Y ∈ {0, 1, 2, 3, 7, 8, 9, 10}.
We can compute the probability that one randomly-sampled Y might take
any of these values by adding together the probabilities for each of the values.
This can be summed up succinctly using mathematical notation:

If an individual’s answer is equally likely to be ‘yes’ or ‘no’, model X as
random variable

X ∼ Bernoulli(p = 0.5)

models total number of ‘yes’ responses across a sample as Y

Y ∼ B(n, p = 0.5)

Pr(Y ≤ 3, OR Y ≥ 7) =
∑

i∈{0,1,2,3,7,8,9,10}

Pr(Y = i) = 0.344. (4.8)

Let’s see how we can calculate this using R. We will use the dbinom func-
tion, which computes the probability distribution function for a binomially-
distributed random variable, once you have specified the number of samples
from the Bernoulli-distributed variable and that Bernoulli distribution’s prob-
ability of a True value. To calculate the probability of observing exactly 7 ‘yes’
responses to 10 yes/no questions, for which each question has equal probabil-
ity of yes or no (probability of yes is 0.5):

> dbinom(7,prob=0.5,size=10)

[1] 0.1171875

We specify the Bernoulli distribution’s probability of a ‘True’ result (a ‘yes’
answer to our question) with the argument prob=, and we specify the number
of times we are sampling from the Bernoulli distribution (the number of peo-
ple we ask the question) using the argument size=. Now, if the probability of
a yes or no response is equal (both 0.5), then presumably the probability of
7 no responses would be the same as the probability of 7 yes responses? Let’s
check this (7 no responses would mean 3 yes responses):

> dbinom(3,prob=0.5,size=10)

[1] 0.1171875

That should hopefully be reassuring. Now we know how the function works,
let’s sum up the probabilities for each possible value we are interested in:

> sum(dbinom(c(0,1,2,3,7,8,9,10),prob=0.5,size=10))

[1] 0.34375

The total probability is 0.34375, so there’s just over a 1 in 3 chance of a
random sample of 10 individuals yielding as unequal a distribution of ‘yes’s

What do I need to understand statistics? 49

and ‘no’s as 7 to 3. In a statistical hypothesis test, this probability of the null
hypothesis is often referred to as the p-value. I would be very surprised if you
hadn’t come across a p-value before, but did you know that this is exactly
what it represents?

It may help to illustrate the example with a visual examination of the prob-
ability distribution functions. Let’s plot the probability of an outcome on the
y-axis against the outcome in question on the x-axis. The Bernoulli distribu-
tion with probability 0.5 will be as shown in Fig. 4.1.

And the corresponding Binomial distribution for the sum of 10 independent
samples from the Bernoulli distribution is shown in Fig. 4.2.

FIGURE 4.1
Probability distribution for Bernoulli trial with equal chance of ‘yes’ or ‘no’.

50 Statistical Methods for Data Analysis

FIGURE 4.2
Probability distribution for sum of 10 independent samples from a Bernoulli
trial with equal chance of ‘yes’ (which is assigned value 1) and ‘no’ (which is
assigned value 0).

We have used a model of expected observations under a null hypothesis to
perform a statistical test. This helped us consider whether or not to reject the
null hypothesis that our sample of 10 responses were drawn from a popula-
tion in which the answers ‘yes’ and ‘no’ were equally likely. This is the essence
of statistical hypothesis testing. There are many different types of statistical
hypothesis test that have previously been defined (and often named), using
different models of different characteristics of sets of observations (modelled
as samples from random variables). But every statistical test involves using
probability models for random variables to find out how unlikely the observed
result would be under the null hypothesis.

Often, this process involves calculating a statistic, which is a value that repre-
sents a characteristic of interest in the observed data. In our example, in effect
we have calculated a statistic that quantifies the bias of responses towards one
outcome or the other: the difference (regardless of the direction) between the
two totals. We could express this as S = |Y − (10 − Y)|, where the notation
|x| means the absolute value of some number x. The point of producing this
statistic is that it is a number that summarizes the property we are inter-
ested in, and for which we know the distribution under the null hypothesis.

What do I need to understand statistics? 51

The probability of a random sample from the modelled distribution having a
statistic greater than or equal to the one we observe from our sample (i.e. the
p-value of the hypothesis test) is equivalent to the area under the probability
distribution for the statistic3. This is illustrated in Fig. 4.3, with panel (a)
showing the values of the statistic for each value of Y , and the final p-value
equal to the sum of the heights of the bars shaded red in panel (b)4.

(a) Statistic S, computed for all
possible totals of ‘yes’ responses
from 10 independent samples from a
Bernoulli trial.

(b) Probability distribution for
statistic S, characterizing the
inequality of the responses in our
sample from a Bernoulli trial.

FIGURE 4.3
Illustrations of the concept of computing a statistic relating to a random
variable, and the probability distribution of that statistic. In this case, the
statistic represents the imbalance of ‘yes’ vs ‘no’ responses when 10 people
are asked the same (yes/no) question.

A final comment on this matter illustrates why sample size is important. If we
were instead to have asked 100 people whether or not they had seen Jurassic
Park, found the same proportion answering yes (70%), and repeated our test,
what would the probability be of observing that result under the null hypoth-
esis? Now this p = 7.8× 10−5.

My aim with this section was to introduce the formal aspects of statistical
analysis methods in a way which is accessible to people who haven’t previ-
ously been taught statistics. This should actually make it easier to understand
all the analyses performed throughout the rest of the book. The following
section briefly introduces another set of mathematical notations which will
help understand methods which are useful for analysis of biological data.

3Note that this also applies for continuous-valued statistics, such as the t statistic that
is calculated in order to perform a student’s t-test.

4If this had been a continuous-valued probability distributions, the p-value would be
calculated as the area shaded in red.

52 Statistical Methods for Data Analysis

4.2.2 Linear algebra

Because many biological datasets can be thought of as values of the same
set of variables (e.g. levels of expression of different genes) in a set of bio-
logical samples (e.g. cell lines with different treatment protocols), it is often
convenient to think of these datasets as matrices. Some widely-used statisti-
cal methods involve performing mathematical operations on matrices (termed
linear algebra), so it is worth becoming just a little familiar with these prin-
ciples. A matrix is a grid of numbers, each of which can be referred to by
row and column indices (in that order). As an example, let’s say A is a 3× 2
matrix (this means it has 3 rows and 2 columns):

A =

[
A11 A12

A21 A22

]
. (4.9)

With matrices defined in this way, it can be convenient to use a special form of
multiplication, even though this seems at first quite complicated! To multiply
two matrices involves creating a new matrix with the number of the first
matrix, and the number of columns of the second matrix. The result of the
multiplication is best expressed with the formula:

If AB = C, Cij =

p∑
k=1

Aik ∗Bkj . (4.10)

So the value of the first column for the first row of AB will be the sum of each
value of the first row of A multiplied by the corresponding value in the first
column of B. And so on. Note that it is only possible to multiply two matrices
together if the second matrix has the same number of rows as the number of
columns in the first matrix. That is, if A is an n× p matrix and B is a p×m
matrix, AB will then be an n×m matrix.

Here’s an illustration using R:

> A <- matrix(c(1,2,3,4,5,6),nrow=3,ncol=2)

We have made an object A, containing a matrix of the numbers 1-6. A is
a 3× 2 matrix, because it has 3 rows and 2 columns. Now we’ll make another
matrix and call it B:

> B <- matrix(c(1,2,3,4,5,6),nrow=2,ncol=3)

Now we’ve made an object B, which is another matrix of the numbers 1-6,
but this time with 2 rows and 3 columns. So the result of a matrix multipli-
cation between A and B should be a matrix with 3 rows and 3 columns. The
matrix multiplication operator in R is %*%. Let’s check:

> A%*%B

[,1] [,2] [,3]

Normalization: Removing technical variation 53

[1,] 9 19 29

[2,] 12 26 40

[3,] 15 33 51

This definition of multiplication for matrices means that to invert a matrix
means to find the matrix which, when multiplied to the original will produce
a vector with a value of 1 for each diagonal element and 0 for all others. This
matrix of diagonal 1s is known as the identity matrix, as it is the matrix which,
when multiplied to any other matrix will result in that matrix unchanged.

A matrix with just one row or one column is usually referred to as a vector,
and this can be helpful as a way of describing a set of observed measure-
ments. That is, a set of values sampled from a population of values modelled
as a random variable. And if multiple measurements are obtained from the
same objects, the set of vectors representing each measurement’s values can
be treated as a matrix. This is usually the case for the datasets we will be
working with.

4.2.3 Summary

A little familiarity with linear algebra will help with understanding the way
statistical methods are applied to biological datasets, and will make a lot of
the code for invoking these methods using computer programs more intuitive.
Understanding the principles of statistical methods, in terms of probability
models for random variables, is essential for understanding the consequences
and limitations of almost any analysis you perform. Use this section as a refer-
ence to refer back to, to help understand any of the methods described later on.
We will now describe a set of statistical methods that are particularly useful
in biological investigations. These will include both descriptive and inferential
statistics. As mentioned in the introduction to this book, my philosophy in
training people to be effective biological researchers involves covering a fairly
small set of methods which are very broadly applicable. There will be methods
that you come across which aren’t mentioned here, but if you understand these
methods and are comfortable applying them to biological datasets, by think-
ing of interesting biological hypotheses that you can use available datasets to
investigate, you can achieve a lot!

4.3 Normalization: Removing technical variation

The main advantage of many modern measurement technologies is that they
enable automated data capture on a scale that would be impossible manu-
ally. The other side to this scale of data generation is the fact that individual

54 Statistical Methods for Data Analysis

measurements haven’t been curated. If you make a set of measurements your-
self, you will typically take repeated measurements and use controls to help
distinguish technical variation, which are the differences between measure-
ments that arise from the process of making the measurement, rather than
differences between levels of the feature being measured. To give an example
that will hopefully be familiar to many, consider using qRT-PCR to quantify
expression of a gene in two cell lines. Technical variation could arise from dif-
ferences in the amounts of starting material, from differences in amplification
efficiency. Repeated measurements are used to be able to obtain representative
values, which can be considered as sampling from a population of all possible
values of taking the same measurements from the same cells. Control measure-
ments are taken from each sample to adjust for some technical bias, for exam-
ple differences in reagent volumes or efficiency. Some high-throughput mea-
surement platforms include internal control measurements, but we can also use
the fact that so many measurements are obtained to adjust for technical varia-
tion. And while most widely-used technologies have associated procedures for
detecting outlier measurements5 along with other quality control steps, the
process of normalization refers to attempts to remove systematic biases that
otherwise confound comparisons between different measured entities.

One very simple example is in comparing the results of high-throughput
sequencing assays. The measurement values from such assays are usually
counts of reads that map to particular genomic features. Given that the total
number of reads per sequencing run is typically variable, would it be fair to
compare counts of a feature (say, a gene) from two samples with different
total numbers of reads? Making the example more concrete, let’s say we had
sequenced cDNA from two samples and wanted to compare the levels of expres-
sion of a gene: one sample has 500 reads mapping to the gene, but 1 million
reads overall; the other sample has 400 reads mapping to the gene, but 500,000
reads overall. Given the first sample has more reads overall, but we assume
both samples started with the same total amount of RNA (to be converted to
cDNA before sequencing), we would expect any randomly-chosen gene to be
likely to have more reads from that sample. So we should take into account
this source of technical variation (or bias), and we could normalize the read
counts to make comparisons more fair simply by dividing the counts for each
sample by the total number of reads for that sample. Dividing a set of mea-
surements by a factor is known as scaling, which we will look at shortly. The
concept of counts-per-million-mapped-reads, or ‘tags per million’, sometimes
abbreviated (CPM or TPM, respectively) is widely seen in the presentation
of sequencing-based assay results.

As another example, microarrays provide a convenient platform for automat-
ing the process of collecting large numbers of measurements based on the

5those so far from what would be expected that they are almost certainly erroneous

Normalization: Removing technical variation 55

intensity of fluorescence of individual spots on a slide. These intensity mea-
surements from a microarray can be influenced by variations in the sample
preparation process, the manufacture of the array, the hybridization process
and the fluorescence quantification, in addition to the property of interest: the
abundance of each transcript in the sample [3]. When comparing expression
measurements from different arrays it is therefore appropriate to ‘normalize’
the measurements to reduce as much of the variation due to technical reasons
(rather than biological differences between the samples). A demonstration of
the need for normalization of Affymetrix GeneChip data is given in [4] along
with the description of the widely-used robust multi-array average (RMA)
measure of expression from GeneChips. RMA corrects for array-specific back-
ground intensity, performs quantile normalization to ensure that the distribu-
tion of intensity values across each array is the same, and then uses a simple
additive linear model to estimate the expression level of each transcript based
on the normalized measurements from each probe in the corresponding probe
set and each probe’s specific hybridization affinity estimates. Owing to the
normalization of probe-level measurements, RMA can only be applied to nor-
malize measurements from different arrays of the same platform (so that the
same probes are present on all arrays to be normalized).

4.3.1 Centering and scaling

If normalization is the removal of systematic bias across sets of measurements
to facilitate comparison, the simplest approach to this is to make sure the val-
ues you are trying to compare occupy the same range. Centering is the process
of making a distribution centred on (i.e. the average value is) zero. It will not
change the spread of the values, which may well be skewed in favour of one
side of the average. Subtracting the mean of the distribution from all values
will centre a distribution on zero, although the median tends to be a more
robust estimator of population mean from a small sample size and ensures an
equal number of points either side of zero after centering.

Scaling is the process of standardizing the spread of values from a distribu-
tion, so that differences representing a similar proportion of a distribution’s
range result in a difference with a similar magnitude. The simplest way to
scale different distributions is to divide all the values by the standard devia-
tion. Like centering, scaling a distribution in this way won’t affect the pattern
of the spread of values, so will preserve any skew or multi-modality (multiple
distinct peaks around which values are more commonly observed).

When we are dealing with normal distributions, the process of centering and
scaling is referred to as standardization, because it will result in a standard
normal distribution (i.e. with mean zero and standard deviation of 1).

Let’s look at the effects of centering and scaling using R: we will create two
variables and compare their distributions using boxplots, before and after

56 Statistical Methods for Data Analysis

centering and scaling. Remember the set.seed function to make sure the
results are reproducible, even though we’re using random numbers.

> set.seed(10)

> x <- rnorm(10,mean=1,sd=2)

In this command, after having set the seed for the random number gener-
ator (to the completely arbitrary value of 10), we create an object x which
contains a vector of 10 numbers randomly sampled from a normal distribution
with mean 1 and standard deviation 2.

> y <- rnorm(10,mean=2,sd=1)

And now we have another object y which contains a vector of 10 numbers
randomly sampled from a normal distribution with mean 2 and standard
deviation 1. So we should find that the values of y tend to be higher than
the values of x, but that the x values have a larger spread. We can investigate
this using a boxplot:

> boxplot(list(x=x,y=y))

Remember that the boxplot function will draw a separate box for each ele-
ment of the list supplied as the argument to the function. In this case, we
have created a new list as the argument for the boxplot function, which has
two named elements: the element called x contains the values of our vector x,
and the element called y contains the values of our vector y. The result should
appear as in the top left-hand panel of Fig. 4.4.

Now we can center the vectors x and y by subtracting the median:

> xc <- x-median(x)

So we have created a new object called xc, which contains the difference
between each value of x and the median of x. We can take the same approach
with the vector y:

> yc <- y-median(y)

With our centred vectors xc and yc, we can now draw another boxplot to
compare these distributions. The result should appear as in the top right-
hand panel of Fig. 4.4, and we should see that the two distributions are now
both centred on zero.

> boxplot(list(x=xc,y=yc))

Normalization: Removing technical variation 57

(a) Distribution of values in the vec-
tors x and y, illustrated with a box-
and-whiskers plot

(b) Distribution of values in the
median-centred vectors xc and yc,
illustrated with a box-and-whiskers
plot

(c) Distribution of values in the
standard deviation-scaled vectors xs

and ys, illustrated with a box-and-
whiskers plot

(d) Distribution of values in the
standardized vectors xz and yz, illus-
trated with a box-and-whiskers plot

FIGURE 4.4
Illustration of the effect of centering and scaling variables.

As for scaling, this will be similar to centering, but instead of subtracting the
median we divide by the standard deviation:

xs <- x/sd(x)

So we have created a new object called xs, which contains each value of x

divided by the standard deviation of x. Similarly for y:

ys <- y/sd(y)

58 Statistical Methods for Data Analysis

Again, let’s use a boxplot to compare the scaled distributions of xs and ys,
which should appear as the bottom-left panel of Fig. 4.4:

> boxplot(list(x=xs,y=ys))

Finally, we can apply both centering and scaling, which will standardize the
distributions so that they both have the same mean and standard deviation.
Standardized values are sometimes referred to as z-scores:

> xz <- (x-median(x))/sd(x)

> yz <- (y-median(y))/sd(y)

Note the use of the brackets here: it is usually safe to make explicit which
order you want operators to be applied. Finally, we will make another box-
plot, which should appear as the bottom-right panel of Figure 4.4. Hopefully
it will be clear how this would make individual values more directly compa-
rable between the two vectors?

> boxplot(list(x=xz,y=yz))

It is important to remember that this approach assumes that the two sets
of values would have the same spread, in the absence of technical variation.
This is not necessarily the case, although one typically expects it to be if a
very large number of values are being compared. We will consider this in more
detail in the following section.

4.3.2 An illustrative example

As with any normalization procedures, a decision needs to be made how to
apply these to minimize variation within/between variables due to technical
causes, whilst maintaining as much of the variation due to our experimen-
tal factors (e.g. biological causes) as possible. To provide an example, let us
imagine that we have results from an siRNA screen measuring viability of a
panel of cell lines following parallel transfections with hundreds of different
knock-down constructs. It would be expected that we may see one construct
which consistently causes more lethality than another, across all the cell lines.
But because we are not confirming the transfection and knock-down efficiency
resulting in each measurement, we wouldn’t be able to tell whether this is
due to the impact of an equivalent level of knock-down, or if one construct is
consistently more effective than the other. This reflects the drawback of high-
throughput experiments: they generate a lot of data, but there will almost
inevitably be unknown sources of technical variation. So if we were to centre
and scale all the siRNA screen viability scores, for each construct, then we
will highlight differences between the profiled cell lines in such a way that
minimizes technical variation in the knock-down and measurement process.

Normalization: Removing technical variation 59

However, we might also consider that some cell lines may have greater trans-
fection efficiency (across our whole screen) than others: so after centering and
scaling each construct’s distribution of viability scores, we may then want to
center and scale each cell line’s distribution of (already centred and scaled)
viability scores. Then our subsequent analysis will focus on only relative differ-
ences between constructs and cell lines, but will be considerably more robust
to technical variation. So it is worth being aware of the trade-off between
interpretability and reliability.

4.3.3 Quantile normalization

Centering and scaling can be useful tools for normalization, but they will not
alter the shape of a distribution, just the range across which its values lie. If
we have a dataset in which we are comparing sufficiently many values that
we expect the overall shapes of a number of distributions to be similar, for
example when we have thousands of measurements of gene expression lev-
els obtained for a number of samples that each had the same total amount
of mRNA, then we can use quantile normalization to make the distributions
the same shape. Using quantile normalization across a number of distribu-
tions works by ranking each distribution’s values in turn, then one-by-one
from top- to bottom-ranked features in each distribution setting all the dis-
tributions’ equivalently-ranked values to the average value at that rank. To
clarify that, the top-ranked feature in each distribution will all have the same
value, which will be the average of each distribution’s top-ranked values prior
to normalization. The second-ranked feature in each distribution will all take
the same value, which will be the average of each distribution’s second-ranking
values prior to normalization. And so on, so that the patterns of the distri-
butions all end up the same, but preserve their original ranking of values. We
are utilizing the fact that we have a large number of measurements for each
sample to infer that there is a very low probability of seeing systematic shifts
from one sample to another due to anything other than technical bias.

4.3.4 Batch effects

There exist subtle sources of technical variation which can arise due to changes
in measurement platforms or processes from one batch to the next. Some plat-
forms are more prone to such batch effects than others, but it is always worth
assuming that samples processed in different batches will have some differences
that are due to batch effects and not any experimental variables. How do we
then mitigate against these? There are various normalization procedures which
attempt to remove batch effects from datasets, such as COMBAT and SVA.
Such approaches will only work when study designs are suitably balanced
across batches, so that a model can be constructed to find what variation
exists across the experimental factors within each batch and then assume that
any remaining systematic variation from batch to batch should be removed.

60 Statistical Methods for Data Analysis

One approach to treating batch effects is to include the batch as a term in a
linear model as you would a possible confounding variable. But never forget: if
experimental variables are separated across different batches, there is no way
of telling which differences are due to the experimental variable of interest
and which differences are purely due to batch effects.

4.4 Correlation

An intuitive approach to the task of extracting biologically relevant infor-
mation from a whole set of gene expression data involves grouping together
genes that share similar expression patterns, as discussed in [5]. There exist a
great many approaches to gene expression data analysis based on the principle
that, if the expression of a number of genes is changing in similar ways across
a group of microarrays, they are likely to be involved together in some sort of
biological process(es) that are occurring. This is colloquially known as ‘guilt-
by-association’. One of the simplest ways of assessing similarity in expres-
sion pattern is by calculating the Pearson correlation coefficient between the
expression profiles of each possible pair chosen from genes represented in the
dataset.

4.4.1 Pearson correlation coefficient

The Pearson correlation coefficient measures the linear dependence between
two random variables. It is defined as the covariance of the two variables
divided by the product of their standard deviations, as shown in Equation 4.11.

ρx,y =
E[(X − µx)(Y − µy)]

σxσy
. (4.11)

The resulting ρx,y value lies between −1 (when the variables are perfectly
negatively-correlated) and 1 (when the variables are perfectly correlated), and
has the property that it is invariant to changes in location and/or scale of
either variable. This means that either variable may be multiplied by some
constant factor, or have some constant added to all the values, without chang-
ing the correlation coefficient between the two variables.

The values of Pearson correlation coefficients calculated from samples of n
observations each from two independent, normally-distributed random vari-
ables will follow a student’s t-distribution with n− 2 degrees of freedom. The
corresponding student’s t-distribution can therefore be used to estimate the
statistical significance of an observed correlation, in the form of the probabil-
ity that at least as extreme a Pearson correlation coefficient would be obtained
from a random sample of two independent, normally distributed variables.

Correlation 61

The Pearson correlation coefficient reflects the extent of a linear correlation
between two variables. This means that two variables are perfectly correlated
if and only if every pair of objects with different values for one of the vari-
ables also have a proportional difference between their values for the other
variable. It also means that a small number of objects with very large dif-
ferences from the average values in either (or both) variables will contribute
more to the result than a large number of objects with small differences from
the averages. If either of these characteristics are likely to be undesirable for
a given analysis, then it may be worth considering rank-based correlation as
an alternative.

4.4.2 Spearman’s rank correlation

A common trick for making certain statistical hypothesis tests more readily gen-
eralizable is to consider the ranks of a set of objects when ordered on their values
for a given variable, rather than the values themselves. This can be convenient
because the properties of statistics computed on the ranks will always be the
same, regardless of the properties of the underlying values. By computing the
Pearson correlation coefficient between the ranks of each measured object in
the two variables under consideration, we obtain the Spearman correlation coef-
ficient. This value lies between 1 and −1. A value of 1 means that the variables
monotonically increase together: if an object has a higher value than another
object in one variable, it also has a higher value in the other variable. That is,
with two variables x and y, if:xi > xj then yi > yj ,∀i, j. A value of −1 means
that one variable monotonically decreases as the other increases.

The statistical significance of an observed Spearman correlation coefficient
can be computed. This represents the probability that two sets of randomly
sorted rankings would have a trend at least as close to monotonic as the
real rankings based on the two observed variables. Computation of exact p-
values is a combinatorial problem (i.e. very high computational complexity)
and is therefore only possible for relatively small numbers of observations,
although approximations can be derived for larger values of n. It is worth
being aware that when using rank-based statistics it can be important to
consider how frequently ties will occur, and how they will be resolved. As an
extreme example, if a variable only takes a few discrete values, ties will be
very frequent, and statistics such as the Spearman correlation coefficient will
not be particularly meaningful.

4.4.3 Examples

Let’s use the R environment to show how we can calculate correlations, and
statistical inference involving correlations. The approach I’ve taken to illus-
trate this is to generate two random samples from a given distribution. These
should be independent, and so should have a very low correlation. But if we

62 Statistical Methods for Data Analysis

create a third variable from the first random sample with a small amount of
noise (random variation) added, then this third variable should be highly cor-
related to the first (with the extent of correlation determined by the standard
deviation of the random noise added). This should all become clear as we go
through the example. Again, as we’re using random number generator, we will
set the random seed so that the results are reproducible.

> set.seed(10)

> x <- rnorm(20)

> y <- rnorm(20)

So we’ve set the random seed, then created two vectors x and y, each indepen-
dently sampled from a normal distribution with mean 0 and standard devia-
tion 1. We can use the R function cor to compute the correlation between two
vectors (of equal length). The default mode for this function is to compute
the Pearson correlation coefficient.

> cor(x,y)

[1] -0.106711

So it appears that these two vectors are slightly negatively correlated to each
other. On average, the positions with the higher values of x tend to have the
lower values of y. It is often helpful to visualize the relationship between two
sets of values like this using a scatterplot. This is very simple using the R
function plot. The results will appear as in Fig. 4.5.

> plot(x,y)

(a) Corresponding values of the ele-
ments in the independently sampled
(uncorrelated) vectors x and y, plot-
ted against each other

(b) Corresponding values of the ele-
ments in the correlated vectors x and
z, plotted against each other

FIGURE 4.5
Illustration of uncorrelated and correlated variables.

Correlation 63

Should we consider this negative correlation between the vectors meaningful:
was our random sample of two vectors actually highly correlated? Let’s con-
sider this a question of statistical inference, which we will evaluate through
hypothesis testing. The null hypothesis is that the two vectors x and y were
independently drawn from two normal distributions. Note: correlations are
invariant to centering and scaling, as they give the relative change in one vari-
able as there is a change in the other variable. So our statistical significance
p-value will be the probability that we would observe a correlation with as
big magnitude (we don’t mind whether it’s positive or negative) from any two
independent random samples from a normal distribution. We could attempt
to approximate this probability distribution by setting up a for loop to com-
pute a large number of correlation coefficients from random samples of this
size, and computing the proportion that had an absolute value at least as
large as 0.106711 (the absolute value of the correlation we observed between
x and y). But, because the distribution of correlation coefficients is actually
well characterized, R can compute it directly using the function cor.test:

> cor.test(x,y)

You should see in the output from this function that, as well as giving the
correlation coefficient, it has computed 95% confidence intervals on the cor-
relation coefficient, a t-statistic value and degrees of freedom, and a p-value
corresponding to this distribution. So a p-value of 0.654 implies that we would
expect to observe correlations of this magnitude more than half of the time
we randomly sampled 20 values from two independent normal distributions,
so the observed correlation is not very remarkable!

Now let’s try creating a third variable which does depend on the variable x:

> z <- x+rnorm(20,sd=0.1)

So we have added to the vector x another random sample of 20 values from a
normal distribution, but this time the standard deviation is only 0.1, so these
values should be a lot smaller than the values of x they are being added to.
We have saved the result of this as an object in our R workspace called z.
Now let’s compute the correlation between x and z:

> cor(x,z)

[1] 0.9949293

Given that correlation coefficients range from −1 to +1, a value of 0.995
seems very high! What is the probability of observing such high a correlation
coefficient from independently sampled variables:

> cor.test(x,z)

64 Statistical Methods for Data Analysis

The result of this function states p-value < 2.2e-16, i.e. p < 2.2 × 10−16.
This says the p-value is so small that it might not be possible to estimate it
exactly, and it should be enough to consider that it is very small. So these
variables are very highly positively correlated. Again, it is probably helpful to
visualize these with a scatterplot, and you can use the two plots from Fig. 4.5
to get a sense of what correlation between variables represents.

> plot(x,z)

In the above example, we knew that the variables were normally distributed,
because we had sampled them from normal distributions. So the inference
from the Pearson correlation coefficient was exact. What about if we repeated
the same approach, but had sampled the variables from uniform distributions:
these will be very much not normally-distributed? Let’s try it, where all we
need to do is replace the function rnorm used to create x and y with the func-
tion runif. Note, we still add normally-distributed random noise to x to get
z (this is to ensure the offsets between z and x will typically be small and
centred on zero).

> set.seed(10)

> x <- runif(20)

> y <- runif(20)

> cor(x,y)

[1] -0.02601963

> z <- x+rnorm(20,sd=0.1)

> cor(x,z)

[1] 0.919642

So again, we have the two independent samples x and y with very little corre-
lation (the fact that it is also negative is purely coincidental), but the variable
z (created by applying small offsets to the sample x) is highly positively cor-
related with x. What about estimating statistical significance? We know that
the samples were not normally-distributed, so the p-values derived from the
Pearson correlation coefficient will not be exactly appropriate. Perhaps we
should instead use the Spearman correlation coefficient for inference, as this
doesn’t assume that the variables are normally distributed? Let’s try both,
and see how different the results are:

> cor.test(x,y)

This performs hypothesis testing against a null hypothesis of independently
sampled variables, based on the Pearson correlation coefficient. It gives a p-
value of 0.9133.

> cor.test(x,y,method='spearman')

Clustering 65

By setting the argument method to 'spearman', we perform hypothesis test-
ing against a null hypothesis of independently sampled variables, but based
on the Spearman correlation coefficient. It gives a p-value of 0.8016. So this
isn’t that different to the value based on the Pearson correlation coefficient.
How about for the deliberately correlated variables x and z?

> cor.test(x,y)

Hypothesis test based on Pearson correlation coefficient gives a p-value of
9.886× 10−09.

> cor.test(x,z,method='spearman')

Hypothesis test based on Pearson correlation coefficient gives a p-value of
4.506× 10−06. So we have very small estimated probabilites of observing such
correlated variables as a result of independent samples from any (unspecified)
distributions, similar to when we use an incorrect assumption of normally
distributed variables.

4.5 Clustering

Based on the principle of ‘guilt by association’, one of the most widely used
methods of illuminating order from a large set of data is that of cluster-
ing . Its goal is to classify entities into (unspecified) groups based on their
profiles. These entities could either be the objects represented in a dataset
or the attributes available for each object. Clustering is generally a form of
unsupervised learning6 in which a distance metric (a measure of dis-similarity
between a pair of entities) is used to allow the most similar entities to be
grouped together.

One common distance metric for numerical data is known as the Euclidean
distance: this is the square root of the sum of squared differences between
each element of the two entities. Say we had two vectors x= {x1, ...xn}
and y= {y1, ..., yn}, then the Euclidean distance would be expressed as∑n
i=1

√
(xi − yi)2. This may seem quite complicated, but think about what

it represents if n = 2: x and y then each have two elements, and the distance
between x and y is the length of the line connecting the points if the first
element gives a horizontal co-ordinate and the second element gives a vertical
co-ordinate. Then the formula for Euclidean distance is Pythagoras’ theo-
rem, where the distance is the hypotenuse of the triangle. Another distance

6so called because we don’t use any known assignment of some entities to groups in order
to estimate the others: that would be supervised learning

66 Statistical Methods for Data Analysis

metric can be derived from the correlation between variables. Remember that
perfectly linearly-correlated vectors of values have a Pearson correlation coef-
ficient of 1, independent vectors have a Pearson correlation coefficient of 0,
and perfectly anti-correlated vectors have a Pearson correlation coefficient of
−1. We cn compute a distance between two vectors just by subtracting their
correlation coefficient from 1: then perfectly-correlated vectors will have dis-
tance 0, and the distance increases with decreasing correlation up to perfectly
anti-correlated vectors with distance 2.

Using the Pearson correlation coefficient to identify genes with similar expres-
sion patterns across a dataset is a simple, but effective form of clustering.
There are many different approaches for performing clustering on a whole
dataset at once, which is a little more complicated, and one of the most widely
used of these clustering approaches is described below.

Hierarchical clustering was applied to gene expression microarray data to great
effect in [2] and has since become one of the most widely-used methods to anal-
yse high-dimensional molecular datasets. It works toward a goal of producing
a ‘binary tree’ representation of the features (e.g. genes) and/or samples in
the dataset. For example, a binary tree for the samples in the dataset might
be produced on the basis of a similarity score between each sample and the
others. This consists of a recursive7 organisation of the entities through merg-
ing them into pairs. One advantage of applying the hierarchical clustering
technique to complex, high-dimensional datasets is that the tree structure
enables examination of different levels of clustering, which can lead to classi-
fications and visualisations of the data that are both intuitive and useful for
exploration [2]. A hierarchical cluster dendrogram (a tree diagram, example
as in Fig. 4.6) can be used to assign the objects to clusters by cutting the
tree horizontally at a specified height, and each branch of the tree at that
height represents a different cluster. An example of such a hierarchical clus-
tering of the samples from a microarray dataset has been used in the heatmap
shown in Fig. 4.7. A heatmap is a way of visualizing a (potentially large)
matrix of numbers all together: the numbers are mapped to a colour scale,
so we can see differences in the patterns of colours across rows and columns.
This is particularly useful when clustering has been applied to order the rows
and columns.

4.5.1 Clustering illustration using R

To practise clustering datasets, it will illustrate this better if we create a
dataset that has some structure. We could create a dataset with structure in

7A recursive method is one which is applied to an input, then applied again to the
result of this application, and so on until some criterion for finishing is met. In the case of
producing a binary tree by merging entities into pairs, the process finishes when the two
entities being merged contain all the individual entities between them.

Clustering 67

FIGURE 4.6
Clustering dendrogram representing a hierarchical grouping of columns of a
data matrix, based on their profile across rows.

a similar way to creating 2 correlated variables, or alternatively we could load
one of a handful of example datasets in R. You can list the available datasets,
or load one of those datasets, using the R function data:

> data()

This lists the names of all the inbuilt datasets, and a brief description of the
data they contain. Because it is a relatively convenient size for this demon-
stration, we will use the dataset ‘swiss’, which includes fertility rates and
socioeconomic indicators from Swiss towns in 1888.

> data(swiss)

Now an object swiss has been added to the workspace, which contains a
data.frame. Note that, unlike most molecular biology datasets, this data frame
is structured with the features in the columns and the objects (the towns) in
the rows.

If we recall that clustering will need some measure of the dissimilarity between
all pairs of entities, we can use the function dist to compute the Euclidean
distance between all rows of a numeric matrix (or in this case, a data frame
with exclusively numeric columns).

> dist(swiss)

68 Statistical Methods for Data Analysis

FIGURE 4.7
Heatmap of a high-dimensional dataset, with each sample represented by
a column and each feature represented by a row. Connected lines above
the heatmap form the sample clustering dendrogram, with the dissimilar-
ity between two samples reflected by the height above the heatmap at which
respective branches of the tree join. The level of each feature in each sample
is represented by the colour scale from green (low) to red (high).

Note, the output of this will be quite a large (47 × 47) matrix, as the data
frame has 47 rows. We can apply a hierarchical clustering algorithm to the
distance matrix using the R function hclust:

> hclust(dist(swiss))

In the previous command we have first applied the dist function to the
data frame called swiss, and then applied the hclust function to the result.

Linear regression models 69

This creates the clustering dendrogram, but it would help to visualize this.
Helpfully, the function plot knows how to deal with a dendrogram, and the
result should appear as in Fig. 4.6.

> plot(hclust(dist(swiss)))

Remember that the inbuilt dataset swiss has the features as columns, and
most molecular biology dataset have the features as rows, but if we wanted to
cluster the columns of the matrix then we just need to calculate the distance
matrix on the transpose of the matrix, using the R function t:

> hclust(dist(t(swiss)))

4.6 Linear regression models

A linear model represents the values of some observed variable as a linear
combination (consider this as a weighted sum) of any number of (independent)
‘explanatory variables’, and an error term. This is commonly defined as in
Equation 4.12:

Y = β0 + β1X1 + · · ·+ βNXN + ε. (4.12)

In Equation 4.12: Y is the observed variable, β0 is the intercept, β1...N a set of
N coefficients, X1...N a set of N variables included in the model (each with a
corresponding coefficient), and ε the residual error (the discrepancy between
the value explained by the model and the actual value of Y).

You can think about this in terms of the formula for a straight line in a two-
dimensional co-ordinate system. Y is a vector of y-axis co-ordinates, expressed
as an intercept (β0) plus some multiple (β1) of the x-axis co-ordinates (X1). In
a situation where there is not a perfect fit between the two variables X1 and
Y (that is, the Pearson correlation coefficient between them is not 1 or −1),
then a vector of offsets ε needs to be included. Between any two numerical
vectors, we can use this formula to express one as a linear function of the
other, and find the best value for the intercept β0 and the coefficient β1 by
finding the values which minimize the sum of the squared errors

∑n
i=1 ε

2
i (in

model fitting, these individual errors εi are known as the residuals). From this
we can see that the square root of this sum-of-squared errors would be the
Euclidean distance between Y and the linear model’s estimate for Y , which
is given by β0 + β1 ∗X1.

Let’s try fitting a linear model using R. We will start by loading the ‘swiss’
dataset again:

> data(swiss)

70 Statistical Methods for Data Analysis

Now we have added a pre-built data frame to our workspace, called swiss.
To fit a linear model, we can use the function lm. The first argument of this
function is a formula, which is specified with the tilde symbol ∼. You may
recognize this from our earlier descriptions of the distribution of random vari-
ables. In a formula specification in R, the ∼ is placed between the outcome
variable and the explanatory variable(s). We can either give vectors in the
formula specifications, or names of columns in a dataframe. If the latter, then
we also need to pass an argument to the lm function specifying what data
frame to use. So if we wanted to fit a linear model of the fertility rate of the
Swiss towns based on education levels as an explanatory variable, using the
1888 data frame:

> lm(Fertility ∼ Education, data=swiss)

The output of this function are the values of the coefficients for the inter-
cept (β0) and the one explanatory variable, ‘Education’ (β1). We can see that
this coefficient is −0.8624: meaning that as the value of the Education vari-
able increases by 1, on average the value of the Fertility variable decreases
by 0.8624. That’s the average effect8, but it doesn’t give us an indication of
the extent to which this average effect applies across all the points in the
dataset. We can use linear models to perform statistical inference, and will do
so shortly.

The real convenience of the linear model framework is that it allows arbitrar-
ily complex experimental designs to be implemented in the same way as a
straightforward comparison of two groups. It becomes very hard to visualize a
line where one co-ordinate is expressed as a function of more than 1 or 2 other
co-ordinates, but using the formula in Equation 4.12, it is easy to add any num-
ber of X variables and corresponding coefficients β to the model. Explanatory
variables in the model (the different Xi vectors) could for example be a set of
clinical variables, or in the case of a comparison between two groups, a single
indicator variable (taking values 1 or 0) representing which group each object
belongs to. As we have seen, linear regression software implemented in R will
find the maximum likelihood estimates for the values of the model coefficients
(these estimates are referred to as β̂i), which are the values of the βis which
minimize the sum-of-squared errors. But from the fitted models, we can use
the convenient property that if the residuals are normally distributed, and the
coefficients are normally distributed under the null hypothesis (that is, if we
obtain samples from independent distributions), then the coefficient estimates
divided by the standard error of the coefficient estimate gives a statistic that
follows a t-distribution under the null hypothesis. It probably isn’t necessary
to know all these details, but for completeness sake, the standard error of the

8N.B. We actually need to be very careful using words like ‘effect’ which apply some
causality, because this model can only assess a linear association between variables. There
is no way to know what, if anything, is causing this observed association.

Linear regression models 71

coefficient is computed as the square root of the standard error of the resid-
uals (let’s call this s) divided by the variance estimate for the explanatory
variable in question (let’s call this Vi =

∑
j(xij − x̄i)). So the full equation

for the t statistic for an explanatory variable in a linear model is given by
Equation 4.13:

ti =
β̂i√
s
Vi

. (4.13)

You will not need to know the precise details of these computations, as R
computes them for you. But it is good to have an idea how the linear model
can be used for statistical inference regarding linear association (dependence)
between pairs of variables. Going back to our example in R, if we use the
swiss dataset again to fit the linear model, but this time save the result as
an object on the workspace:

> data(swiss)

> m1 <- lm(Fertility ∼ Education, data=swiss)

> summary(m1)

Here we have made use of the summary function for linear model objects (such
as the one we have created and called m1). You will see the output includes the

distribution of the residuals, and the values for the β̂i coefficient estimates,
their corresponding standard error, t-statistics and p-values. It also lists the
residual standard error, the R-squared value and an F-statistic and corre-
sponding p-value. With only one explanatory variable in the model (apart
from the intercept), this p-value should be the same as that derived from the
t-statistic for the explanatory variable.

But what if we include more variables in the model? The F statistic (and
moderated F statistic) can be derived for any combination of terms in the
model, enabling estimation of the significance of the entire model. This is par-
ticularly helpful when we have categorical variables that can take more than
2 values, or when we have a model that includes a number of variables of
interest. Let’s try fitting another model on the same dataset, but this time
including 2 explanatory variables: the level of education and the infant mor-
tality rate.

> m2 <- lm(Fertility ∼ Education + Infant.Mortality, data=swiss)

We have included multiple explanatory variables in the formula through use
of the addition + symbol. The summary function will work as before, but now
for the new model object we have created called m2:

> summary(m2)

72 Statistical Methods for Data Analysis

Now you should see that there is a coefficient, a t-statistic and a p-value for
each explanatory variable, which characterizes the association between that
variable and the outcome variable adjusting for the other explanatory variables
in the model (effectively, the expected average effect if the other variables were
held constant). Interestingly, if you compare the results of m2 with those from
m1, you can see that adding the additional explanatory variable has reduced
the magnitude of the coefficient estimate for the Education variable, but as it
has also reduced the standard error of the estimate the association is actually
more statistically significant when adjusting for the Infant.Mortality variable.
And we can see that this model has an F-statistic derived p-value which dif-
fers from either individual variable’s corresponding t-statistic p-value, because
now the F-statistic summarizes the association between both explanatory vari-
ables and the outcome.

One final note on linear models with multiple explanatory variables, the cau-
tionary tale of collinearity. If two explanatory variables are themselves very
strongly associated (i.e. they have a Pearson correlation coefficient close to 1
or −1), then the computations made to estimate the coefficients end up being
very unstable. We’ll look a bit at stability later, but in this case it is suffi-
ciently bad that if two perfectly-correlated explanatory variables are included
in the model, the calculation for the coefficient estimates is impossible! R will
not necessarily warn you of this potential pitfall, so it is good to test for
associations between the explanatory variables before fitting such models.

4.6.1 Limma

The limma package in R provides computationally efficient tools for fitting
large numbers of linear models to high-dimensional datasets. Examples of its
application will appear throughout the later chapters of this book, but it is
worth mentioning here that it involves a final step beyond the linear model fit-
ting and inference. It makes use of a Bayesian approach to statistics, in which
the observed evidence refines our prior beliefs. In this example, the prior belief
is that it is very unlikely that the random variable populations from which
our observed data has been drawn are perfectly associated. So this prior belief
is used to provide a moderation of the observed t-statistics, based on sharing
information of the sample variances (and therefore the standard errors for the
coefficients) across all fitted models, to reduce the possibility of large statis-
tics arising from very low estimates of sample variance. This is important for
many high-dimensional datasets, because such large statistics are particularly
likely to occur when the experiment involves large numbers of measurements
from small numbers of samples.

One of the utilities of the limma package is that by defining one set of values
for the explanatory (X) variables, a single function will fit linear models and
extract statistics for the corresponding coefficients for any number of different
outcome (Y) variables in turn. The package works using a design matrix

Linear regression models 73

that you have to create, specifying the values of the explanatory variables
(X1, ..., XN in Equation 4.12) for each instance, and expects a matrix giving
the values for each of the outcome variables (each outcome variable repre-
sents a different Y as in Equation 4.12) for each instance. Because limma was
designed for application to datasets with large numbers of measured features
(e.g. genes) in a relatively small number of instances (e.g. biological samples),
it assumes the different outcome variables will be in the rows of a matrix9.
This may all seem rather complicated, but we can illustrate the process of
using the limma package with the same ‘swiss’ dataset as for the previous
part of this section.

These are somewhat arbitrary examples, but they should make it clear how
you would use the approach to work with a high-dimensional molecular biology
dataset. We’ll try two different forms of explanatory variable, one categorical
and one numeric. If these seem a bit complex, don’t worry for now. We will
revisit this a number of times through real applications in biological research,
and with repetition it will become clear.

4.6.1.1 Installing limma

The limma package is part of Bioconductor , which is a set of R packages
specifically for computational biology. To install the limma package, we can
load the code for the biocLite function directly from the Bioconductor web-
site, then run the function specifying we want to install the package ‘limma’:

> source("http://bioconductor.org/biocLite.R")

> biocLite("limma")

Alternatively, there is a newer package manager for Bioconductor called Bioc-
Manager. This can be installed using the standard install.packages func-
tion, and then a function install can be called from this package using a
double-colon (::):

> install.packages("BiocManager")

> BiocManager::install("limma")

4.6.1.2 Categorical explanatory variables

For the categorical variable, let’s say we wanted to use linear models to see
if any of the variables recorded in the Swiss towns dataset had significantly
different values for towns with a letter ‘y’ in the name, compared with towns
without a letter ‘y’ in the name. It is a very arbitrary example!

First, we have to create a design matrix. This will have one column for each
explanatory variable, including an intercept. We can create a matrix by using

9Arrays in R work better when the number of rows is much larger than the number of
columns, rather than the other way round.

http://bioconductor.org/

74 Statistical Methods for Data Analysis

the R function cbind to combine vectors together as columns of an array. In
this case, our first column will be the intercept, which takes a value 1 for every
town.

> intercept <- rep(1,nrow(swiss))

Here we create an object called intercept, which contains a vector where
each element is the value 1, and it has the length of the number of rows in
the swiss data frame.

The second column will be our variable interest specifying which of the two
groups each town belongs to: those with a ‘y’ in the name, and those without.
Group membership can be encoded in explanatory variables of a linear model
using values 0 and 1 to represent the two groups, respectively. We can create
a vector in which every value is 0, and then replace the values with 1s for each
element corresponding to the second group. In the case of this example, that
means finding the towns which have a ‘y’ in their name. We will make use
of R’s regular expression search function grep: this function looks through a
vector and returns the indices for the elements of the vector which match the
specified pattern (in our case, the pattern will be ‘includes a letter y’).

> lettery <- rep(0,nrow(swiss))

First, we have created an object called lettery, which contains a vector
where each element is value 0. Now we need to find which town names (the
rownames of the data frame swiss) contain a letter ‘y’:

> lettery[grep('y',rownames(swiss))] <- 1

In this command, we have used the grep function to find the indices (more
than one index) of the elements in the vector lettery to set to the value 1.

Now, we can combine the two columns together to form the design matrix:

> design1 <- cbind(intercept,lettery)

Here we have used the cbind function to combine two vectors together as
columns of an array. The result is then used to create an object called design1.

With a design matrix created, we can load the limma package10 and then
use the lmFit function to fit the specified linear model for each variable in
the dataset:

> fit1 <- lmFit(t(swiss),design1)

10It is a Bioconductor package, for instructions see https://bioconductor.org/packages/
release/bioc/html/limma.html.

https://bioconductor.org/
https://bioconductor.org/

Linear regression models 75

An object called fit1 has been created, storing the linear model coefficients
for each row of the input matrix (swiss has been transposed with the func-
tion t), with the explanatory variables specified in the design1 matrix. To
compute the empirical Bayes moderated statistics for the model fits, we still
need to apply the eBayes function.

> fit1 <- eBayes(fit1)

We have created a new fit1 object (replacing the old one), now storing the
moderated t-statistics for each model.

Finally, we can inspect the results using the topTable function. This returns
the computed statistics for a specified set of explanatory variables (columns
of the design matrix), for all of the outcome variables (rows of the input data
matrix). In this example, we want to view the statistics for the second column
of the design matrix, which corresponds to the indicator for whether or not
the town had a ‘y’ in its name. Within the topTable function, we will specify
that we wish to extract statistics for model coefficient 2:

> results1 <- topTable(fit1,coef=2)

We have created an object called results1, storing the results of the lin-
ear model fit for each row of the input matrix (i.e. each column of the original
swiss data frame). Now inspect this object just by entering the object names:

> results1

It should give the following output:

logFC AveExpr t P.Value adj.P.Val B

Education -4.547619 10.97872 -1.511452 0.1374733 0.3227601 -4.593995

Catholic 16.314329 41.14383 1.250145 0.2175324 0.3227601 -4.594620

Infant.Mortality 1.200866 19.94255 1.215578 0.2303116 0.3227601 -4.594695

Fertility 4.700433 70.14255 1.195725 0.2378960 0.3227601 -4.594737

Examination -2.833333 16.48936 -1.118879 0.2689668 0.3227601 -4.594895

Agriculture 6.822727 50.65957 0.952495 0.3457954 0.3457954 -4.595204

This table includes columns for:

• log fold-change: average increase in the outcome variable as the explanatory
variable increases by 1)

• the average value of the outcome variable

• t-statistic for the term in the fitted model

76 Statistical Methods for Data Analysis

• corresponding p-value and adjusted p-value (because many models have been
tested, it is prudent to apply multiple hypothesis testing adjustment, which
will be explained in more detail next)

• the Bayesian log-odds of an association between the outcome and explana-
tory variables: this tends to be less intuitive to interpret than the p-values,
so I wouldn’t worry about it (you’ll notice the ordering is the same as the
ordering by unadjusted p-values anyway)

So it appears that none of the variables in this dataset are significantly differ-
ent for towns with a ‘y’ in the name, as compared to towns without a ‘y’ in
the name. That’s not surprising, as it was a totally arbitrary characteristic on
which to group the towns, with no reason at all to believe any of the recorded
attributes would be different. But it shows how to create a design matrix with
a categorical variable. The results in this case are equivalent to applying a
t-test for each recorded attribute, comparing the values across the two groups
of towns, with the empirical Bayes moderation. However, it is trivial to eval-
uate more complex models in exactly the same way, incorporating multiple
explanatory variables just by adding more columns to the design matrix. Then
the statistical hypothesis testing extends beyond what could be achieved with
a t-test, because associations between variables can be tested while adjusting
for other potential confounding factors.

4.6.1.3 Continuous explanatory variables

While the previous example used a numeric vector of 1s and 0s to repre-
sent membership of different groups, the model fitting and evaluation process
is exactly the same for evaluating associations between continuous (numeric)
variables. Let’s say now that we wanted to find which of the recorded attributes
of the towns in the Swiss 1888 dataset were most strongly associated with the
infant mortality rate. We will still need to create a design matrix with one col-
umn for the intercept and one column for the value of the infant mortality rate.

> intercept <- rep(1,nrow(swiss))

As in the previous example, we create an object called intercept, which
contains a vector where each element is the value 1, and it has the length of
the number of rows in the swiss data frame.

Next, we want to obtain the values for the explanatory variable of interest,
which in this case is the 6th column of the swiss data frame:

> infm <- swiss[,6]

Here we have created an object called infm, containing a vector with the
values of the 6th column of the data frame swiss, which correspond to the

Linear regression models 77

infant mortality rates, our explanatory variable of interest to include in the
models.

Then we create the design matrix by binding the two vectors together as
columns:

> design2 <- cbind(intercept,infm)

As in the previous example, we have used the cbind function to create an
array called design2, which is our design matrix for this task.

We now want to use this design matrix to fit linear models (with the lmFit

function), but we need to consider that our explanatory variable is one of the
outcome variables to be tested! So in this case, our input data matrix will
only be made up of the first 5 columns of the swiss data frame, transposed
so that the variables to be tested are the rows:

> fit2 <- lmFit(t(swiss[,1:5]),design2)

In this command, the lmFit function has been used to fit linear models with
explanatory variables defined by the design matrix design2, and outcome
variables as columns 1 to 5 of the swiss data frame (then transposed with
the t function so that the variables are the rows, and the instances (towns)
are the columns).

We then compute the empirical Bayes moderated statistics with the eBayes

function, and extract the values with the topTable function (again specifying
that it is the coefficients for the second column of the design matrix that we
are interested in):

> fit2 <- eBayes(fit2)

> results2 <- topTable(fit2,coef=2)

You should note that these steps appear exactly as with the fit1 model that
was fitted using the design1 matrix. If we inspect the results, they should
appear as follows:

> results2

logFC AveExpr t P.Value adj.P.Val B

Fertility 1.7864860 70.14255 3.0751656 0.003504682 0.01752341

-1.923477

Catholic 2.5128022 41.14383 1.2184526 0.229150537 0.57287634

-5.365024

Examination -0.3123054 16.48936 -0.7549719 0.454043429

0.63692306 -5.797767

78 Statistical Methods for Data Analysis

Education -0.3278817 10.97872 -0.6646396 0.509538451 0.63692306

-5.859141

Agriculture -0.4745338 50.65957 -0.4152930 0.679822741

0.67982274 -5.988589

So in this more realistic application, where the explanatory variable of interest
was actually meaningful in the context of the study the data came from, we
find one of the outcome variables (‘Fertility’) to be significantly associated
with the explanatory variable (‘Infant.Mortality’) after adjusting for the fact
that we have performed multiple independent hypothesis tests. More on that
in the next section.

4.7 Multiple hypothesis testing

Consider a hypothesis test such as the ones described throughout this chap-
ter. We typically use the distribution of a statistic under the null hypothesis
against which we are testing (e.g. complete independence between two vari-
ables) to compute a p-value, and then use this p-value to inform our belief
in the alternative hypothesis (e.g. that the two variables weren’t independent
because they showed a linear correlation). Then remember that if a statis-
tical test of the association between two variables yields a p-value of 0.01,
this implies that there was a 1 in 100 chance that random samples from two
independent variables would show such an association. This means that if you
looked at 100 pairs of unassociated variables, you’d only expect 1 to show
as strong an association as the variables of interest. But when working with
high-dimensional datasets, such as those arising frequently in molecular biol-
ogy, we may be testing the association between hundreds, thousands or even
millions of pairs of variables!

Let’s say we had data from a genome-wide association study (GWAS), which
measured 2 million single-nucleotide polymorphisms (SNPs) and the disease
status of a cohort of individuals. If we tested each SNP in turn for an asso-
ciation between the genotype and the disease status of the corresponding
individuals, we would expect 20,000 unassociated SNPs to appear associated
with p < 0.01, just through random sampling (2 million × 0.01 = 20,000).

This issue is the concept of a Family-Wise Error Rate: what is the probability
of a set of hypothesis tests yielding any individually significant results when
applied to data following the null hypothesis (in this case, no association).
Fortunately, there are a number of methods which deal with this problem,
which are known as multiple hypothesis testing adjustment (or multiple test-
ing correction). The simplest such approach, known as Bonferroni adjustment,

Survival analysis 79

is just to multiply the p-value from each test by the number of tests performed.
There are more sophisticated methods too, including the false discovery rate
estimating methods. R implements these in the p.adjust function. For exam-
ple, if we had a vector of p-values p:

> p.adjust(p,method='fdr')

This will implement the Benjamini-Hochberg procedure for estimating false
discovery rate across a set of hypothesis tests. This is the method which is
applied in the limma package.

4.8 Survival analysis

Many investigations of data from clinical samples involve estimating the asso-
ciation between some measured values (e.g. expression level of a particular
gene) and clinical variables describing the time until occurrence of a particu-
lar event, if that event occurred. Such clinical variables are generally described
as survival variables, because a common example is that of the recorded time
until death of the patient. Because patients may still be alive when analysis is
performed, or may have died for some reason unrelated to the investigation, or
may have left the study so that follow-up data cannot be obtained, this type
of variable must be treated with care. Cases where the patient has died for
some unrelated reason or have left the study are described as being censored.

The goal of survival analysis is typically based around estimation of the sur-
vival function: the probability of survival beyond time, t. With estimates for
the survival function, the influence of a particular variable of interest on the
survival probability can be investigated.

4.8.1 Kaplan-Meier plots

The Kaplan-Meier estimator provides a method for estimating the survival
function of an event, in the presence of censored data. It is the non-parametric
maximum likelihood estimate for probability of survival of a member of a given
population beyond specified time t, given in Equation 4.14:

S(t) =
∏
ti<t

ni − di
ni

. (4.14)

In Equation 4.14, ni is the number of survivors at time ti minus the number
who have been censored by time ti, and di is the number of (relevant) deaths
at time ti.

80 Statistical Methods for Data Analysis

FIGURE 4.8
Example of a Kaplan-Meier plot showing survival function curves for two
groups of patients. Censored samples are indicated with vertical tick-marks
on the plot.

The Kaplan-Meier estimate of the survival function can be used to produce
a plot illustrating patient survival, and for comparing the survival functions
of two groups of patients (as shown in Fig. 4.8). The application to analysis
of molecular data can be in the form of estimating the significance of the
difference between the survival function for patients with low expression of
a given gene and the survival function for patients with high expression of
that gene. The logrank test can be used to estimate the significance of the
difference in survival between two distinct groups. This evaluates the prob-
ability that we would observe as uneven a number of events in each group,
relative to the total observation time across all the patients in the group, if
the patients in each group were randomly sampled from populations with the
same survival function (S(t) in Equation 4.14). Alternatively, regression mod-
els may be used to estimate the quantitative influence of the actual values

Projection methods 81

of explanatory variables (such as expression of a given gene) on the survival
function.

4.8.2 Cox proportional hazards regression models

The proportional hazards regression approach to analysis of survival data,
introduced in [1], is based on the hazard function. The hazard function is
related to the survival function in that it defines the probability density func-
tion for the event (e.g. death) occurring in relation to time – this can be used
to calculate the estimated probability that the event will occur in a given time
interval. The Cox proportional hazards regression model is based on assump-
tions that there is a baseline hazard function, Λ0(t) that describes the change
in probability of the event occurring over time for constant values of the
explanatory variables, that the effect of changing each explanatory variable
by a constant value is independent of the time t, and that the effects of the
individual explanatory variables multiply together to give the overall effect on
hazard function. With these assumptions, a model can be formulated similar
to the linear models described in the previous section, but that quantitatively
characterise the relationship between each explanatory variable and the haz-
ard. The proportional-hazards regression model is shown in Equation 4.15.

Λ(t|X) = Λ0(t)eβ1X1+···+βNXN (4.15)

The coefficients βi of the regression model give rise to a hazard ratio eβi for
each explanatory variable: the increase in probability of event occurrence at
any time t arising from a unit increase in the value of the variable. The sig-
nificance of each variable’s hazard ratio can be evaluated in a similar way11

to the estimation of statistical significance of linear model coefficients.

It is difficult to illustrate performing survival analysis in R without real cen-
sored datasets. As these will require a bit more processing, we’ll save them for
later chapters. But don’t worry, complete examples will be provided.

4.9 Projection methods

In datasets that feature a large number of variables, to describe the relation-
ship between entities precisely requires a very high-dimensional space. Imagine
we have a measurement for expression of two proteins from each of a collection
tissue samples: the measurement of each protein can represent one axis in a

11Although the mathematics are more complicated, as we have to deal with the fact that
we have a limited observation of the outcome variable for any cases where the event has not
occurred (e.g. when a patient was still alive at the last follow-up).

82 Statistical Methods for Data Analysis

co-ordinate system in which we can plot all the tissue samples, reflecting all
the information we have about the relationships between them. When we have
measurements for thousands of genes or proteins per sample, these represent a
co-ordinate system in thousands of dimensions. It can be of considerable value
to find ways of representing each point in fewer dimensions. This is achieved
through constructing ‘latent variables’, which are combinations of each indi-
vidual dimension of the original dataset. A transformation to latent variables
can be especially useful when groups of individual variables are highly cor-
related with each other, as this can make some multivariate analysis tasks
difficult and means that a few latent variables can represent a reasonably
large proportion of the information contained in the dataset. By prioritizing
latent variables that capture a larger proportion of the information contained
in the dataset, it is possible to represent key features with less data.

4.9.1 PCA

The most well-known example of a projection method is Principal Component
Analysis (PCA). In technical terms, PCA uses the eigenvector decomposition
of the pair-wise covariance matrix to construct a system of orthogonal12 latent
variables which can be ordered by the proportion of the total variation of the
dataset that each explains. In practical terms, this means that by using a
few tricks of linear algebra, we can find combinations of the original variables
which each characterize a distinct aspect of the variation across all the data.
These combinations of the original variables are the latent variables, in which
the samples can now be represented: this carries the advantage that a few
latent variables are a lot more likely to be of value in describing the relation-
ships between the objects; the disadvantage is that these latent variables no
longer represent any readily-interpretable features (e.g. level of expression of
a particular gene).

Performing PCA for a matrix involves creating a loadings matrix, which has
a row for each column of the original matrix and a column for each principal
component. The values are the weights by which each object represented by
the original matrix (one row) can be represented in a principal component
by a weighted sum of all the values. So by multiplying the original matrix by
the loadings matrix, a new matrix is obtained with the values for each object
projected onto each principal component.

It is important to note that representations of high-dimensional entities in only
a few latent variables may only capture a small part of the similarities and dif-
ferences between them across the full set of variables, and should therefore be
interpreted with caution. In fact, the proportion of variance in the full dataset

12Completely uncorrelated with one another.

Projection methods 83

explained by each principal component can be calculated relatively easily13,
and should be reported. Additionally, each principal component is a linear
combination of all input variables in the dataset, which is typically a small
contribution of many individual variables. It is very difficult to assign a spe-
cific real-world interpretation of such a combination of variables, so be wary of
over-interpreting correlations between principal components and experimen-
tal variables, such correlations don’t imply that the component ‘means’ or
‘represents’ the correlated variable(s).

We can illustrate some of the utility of performing PCA using the pre-loaded
numeric dataset on fertility rate of Swiss towns in 1888. The R function for
performing PCA is prcomp:

> data(swiss)

> swisspc <- prcomp(swiss)

The above command (after having loaded the swiss dataset into the
workspace) applies the prcomp function to the resulting numeric dataframe,
and stores the result in an object that we have called swisspc. This object is
a list, and we can get a clue as to what the elements represent by inspecting
their names:

> names(swisspc)

[1] "sdev" "rotation" "center" "scale" "x"

The element sdev gives the square roots of the eigenvalues of the principal
components. Given the relationship between the eigenvalues and the propor-
tion of variance explained by each component, we can compute this proportion
as follows:

> (swisspc$sdev2̂)/sum(swisspc$sdev2̂)

[1] 7.232244e-01 1.947375e-01 6.255898e-02 1.132090e-02

I have only included the first four values here, but this shows that the first
principal component explains 72% of the variation in the dataset. The second
principal component explains another 19% of the variation in the dataset, and
so on.

The element rotation gives what are sometimes referred to as the loadings of
the variables in the dataset onto the principal components. That is, how each
principal component is calculated from the individual variables in the dataset.
As it is a simple linear combination (i.e. a weighted sum), to find the projec-
tion of the first entity of the dataset onto the first principal component we just

13The proportion of variance explained by each component is its squared eigenvalue
divided by the sum of squared eigenvalues for all components.

84 Statistical Methods for Data Analysis

multiply the first row of the data matrix to the first column of the rotation
matrix. With one slight complication: the prcomp function first centers the
columns of the data matrix. But conveniently, the offsets to use (remember
that centering subtracts the mean from the data) are given as the element
center in the output of the prcomp function. So let’s try this:

> sum((swiss[1,]-swisspc$center)*swisspc$rotation[,1])

[1] 37.02011

Which conveniently leads to the other output of the prcomp function, the
element x. This is the projection of the rows of the data matrix onto each
principal component. Let’s look at these values for the first 4 rows, for the
first 3 principal components:

> swisspc$x[1:4,1:3]

PC1 PC2 PC3

Courtelary 37.088222 -14.53971 -24.34887

Delemont -42.758618 -13.77867 -13.34005

Franches-Mnt -51.282839 -16.46204 -25.00101

Moutier 7.427068 -2.54634 -21.61737

The element x of the list swisspc is a matrix, so the above command used
square brackets [and] to index rows 1 to 4 and columns 1 to 3. We should
be able to see that the value for the first row in the data table, for the first
principal component, is almost identical to the one we calculated earlier.

The projections of elements onto principal components can be useful for pro-
viding a lower-dimensionality representation of a dataset. For example, we
know that the first two principal components of this dataset reflect over 90%
of the variation of the dataset, so considering only those two principal compo-
nents doesn’t lose a large amount of information. Representing entities using
only two variables is useful for visualization, because it is easy to produce
two-dimensional plots. So let’s use the matrix x from this PCA calculation to
provide x and y co-ordinates for a plot. We can then use the R function text

to draw text labels on a plot system, so I’ll start with the seemingly unusual
step of drawing invisible points in a two-dimensional space:

> plot(x=swisspc$x[,1],y=swisspc$x[,2],type='n')

Here the argument type tells R how to display each point, and setting
type='n' results in no points being shown. That is what we want, as it creates
the co-ordinate system and the graphical window into which we can draw the
text labels.

> text(rownames(swisspc$x),x=swisspc$x[,1],

+ y=swisspc$x[,2])

Projection methods 85

FIGURE 4.9
Projection of Swiss towns from 1888 dataset onto first two principal compo-
nents from PCA.

In this command, we have used the text function with three arguments: the
text to draw, for which we have used the row names of the x projection
matrix; an x-coordinate and a y-coordinate, for which we have used the first
and second column of the projection matrix, respectively. The result should
appear as in Fig. 4.9.

4.9.2 PLS

A related method called Projection onto Latent Structures (PLS, also known
as Partial Least Squares Regression) can be used to find a set of orthogo-
nal latent variables which are ordered on decreasing proportion of variation in
some outcome variable. (Where in contrast PCA finds latent variables ordered
on decreasing proportion of variation across the variables of the input dataset).
In a simple two-class case where the outcome variable takes values 0 or 1, this
is known as Linear Discriminant Analysis (LDA). Such projections can be
especially useful in attempting to build a classifier based on a large number
of input variables, whilst reducing the tendency to place too much empha-
sis on only a few values (which can give rise to over-fitting). As with PCA
though, caution should be maintianed when interpreting the loadings of the

86 Statistical Methods for Data Analysis

discriminant/predictive latent structures: a single latent structure may have a
large contribution from a few variables, but those contributions will still often
only capture a small part of the variation represented by the whole latent
variable.

4.10 Resampling: Permutation tests and the bootstrap

If the hypothesis tests we have covered use a specific model for the distribution
of a statistic under a null hypothesis, what can we do if we don’t know of an
appropriate model to use for the statistic? Computing power gives us one pos-
sible solution, which is to use available data to create random samples under
the null hypothesis, and to use many such samples to estimate the distribution
of the statistic. This approach is called resampling , and the estimated distri-
bution is known as the empirical distribution, because we are not explicitly
modelling the distribution, just assuming that our randomly-generated sam-
ple under the null hypothesis is representative of the whole population.

Reverting to our earlier example, we could take this approach if we wished
to test how unlikely a sample of 10 answers to a yes/no question resulted in
as uneven a distribution as 7 to 3, if the probability of any response being
‘yes’ or ‘no’ was equal (both 0.5). Remember that our statistic of interest was
S = Y − (10 − Y), so compute this statistic from a large number of (say
1000) random samples, each selecting 10 answers from ‘yes’ or ‘no’ randomly
and with equal probability. We will then have 1000 values of the statistic S,
representing its distribution under the null hypothesis, and so our p-value is
just the proportion of those 1000 values which are greater than or equal to
our observed value. Putting this formally, and adding 1 to both parts of the
fraction to make sure we never estimate a p-value of 0:

Pr(S ≥ s) =
1

1 + n
1 +

∑
i∈{1,...,n}

Si ≥ s, for large n. (4.16)

One approach for generating samples under a null hypothesis is to permute
the data (labels). A permutation is a random re-ordering. So if we were using a
correlation coefficient to assess the association between two variables observed
for a set of samples, we could re-order one of the variables and compute the
correlation coefficient. Repeating this a large number of times will give us an
empirical distribution for the correlation coefficient under a null hypothesis
of no association. Such permutation tests are very helpful for estimating sta-
tistical significance of observations from data for which there is no standard
hypothesis test, or for which the assumptions in such tests are expected to be
invalid. But note, it relies on having a large number of possible combinations
of the observed variables. If we only have data from a few samples to re-order,

Stability and robustness 87

we will only ever get a limited number of values for the statistic, no matter
how many permutations we perform.

4.11 Stability and robustness

One thing to consider with any application of a statistical method, is how
stable were the results? In this context, stability represents the extent to
which the results would change if the input values changed. Obviously, if our
observed data (e.g. sample from a random variable) changes, the results of
a given hypothesis test are likely to change. And the distribution of objects
across clusters is likely to change. But by how much? If a small change in
one value from the observed data makes a big difference in the outputs from
a statistical analysis method, then this may suggest that we should interpet
the result with caution. It is often possible to try this yourself, deliberately
making small changes or excluding some values for some of the objects being
measured, repeating your analysis and checking that the results aren’t com-
pletely different.

4.12 Summary

The limited set of statistical tools described in this document can be an incred-
ibly powerful means of discovering patterns and making inferences based on
the wealth of biological data provided by high-throughput platforms, partic-
ularly in the context of publicly available resources.

As detailed in the accompanying set of tutorials, the R statistical programming
environment provides a means of performing the analyses described above. If
a potential user of these tools does not understand the essential mathemati-
cal concepts presented in this document, they are strongly advised to study
further reference material in order to understand the results of data analyses!

Bibliography

[1] D.R. Cox, “Regression models and life-tables,” J. Royal Stat. Soc. B
34(2):187-220 (1972).

88 Statistical Methods for Data Analysis

[2] M. Eisen et al, “Cluster analysis and display of genome-wide expression
patterns,” PNAS 95:14863-14868 (1998).

[3] A. Hartemink et al, “Maximum likelihood estimation of optimal scaling
factors for expression array normalization,” Proceedings of SPIE 4266:132
(2001).

[4] R. Irizarry et al, “Exploration, normalization and summaries of high den-
sity oligonucleotide array probe level data,” Biostatistics 4:249-264 (2003).

[5] J. Quackenbush, “Computational analysis of microarray data,” Nature
Reviews Genetics 2:418-427 (2001).

5

Analyzing Generic Tabular Numeric
Datasets in R

5.1 Introduction

This chapter will give an example of some of the basic data-handling aspects
of R, and how these can be used to work with tables of numerical data that
arise very frequently in biological research. Though each worked example in
this tutorial is a specific case, the methods used can be extrapolated to other
situations and thus the examples are intended to illustrate how certain features
of R can be used to facilitate analysis of virtually any numeric data table. Such
data tables are typically plain text files (the file extension is usually .txt or
.csv, but in fact it can be anything) with a row on each line and the boundaries
of each column marked by some delimiter (most commonly a tab or comma).

5.2 Loading data into R

Obviously, a critical step in using R to perform numerical analysis of a dataset
is loading the data into the R workspace. There is one function that can be
used in most circumstances, which is read.table. An important fact that
should always be remembered when attempting analysis of tabular data is
that R will convert any table of values read into the workspace from a file
into a dataframe: every row must have an entry for every column, and vice
versa, or the table will not be read in. In a practical sense, this means that
any blank or missing values should be explicitly entered ‘NA’. It can often be
helpful to use a spreadsheet program like Excel to produce the table.

To provide an accessible example from molecular biology, we will obtain data
from Iorns et al (2009), an siRNA screen performed on a panel of cancer cell
lines1. The study was published in PLoS ONE, and a table giving the changes
in cell viability following transfection of each of 779 siRNAs is freely available

1http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005120

89

http://www.plosone.org/

90 Analyzing Generic Tabular Numeric Datasets in R

FIGURE 5.1
Excel table of siRNA screen data.

from the journal’s website. We will download Table S12, which should open
in any spreadsheet program3 and appear as in Fig. 5.1.

Now if we copy the cells making up the data table (C5:I784) and paste this
into a new sheet, as in Fig. 5.2, then we can save the sheet as a tab-separated
text file. Be sure to specify the file extension when naming the file: let’s call
it siRNAscreen data.txt.

Now we can open an R workspace and read in the table. Make sure the work-
ing directory is set to the folder where you saved the siRNA screen data table,
then enter the following command:

> siRNA.screen <-read.table("siRNAscreen data.txt",sep="\t",header=TRUE)

The read.table function takes a number of arguments, some of which we
haven’t used here, but the most important ones are included.

• file: the full name of the file to read in (specified within double-quotes)

• sep: the field delimiter (specified within double-quotes)4

2http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/
10.1371/journal.pone.0005120.s001

3For a spreadsheet program I have used Microsoft Excel, but free alternatives include
OpenOffice or Google Sheets.

4You may notice that a tab is encoded as "\t". A comma or space can simply be entered
as is ("," or " ", respectively), and a new line is encoded "\n".

http://www.plosone.org/

Loading data into R 91

FIGURE 5.2
Excel table of siRNA screen data.

• header: a logical value indicating whether or not the first row contains
column headers rather than data

Now we can inspect the first few rows of the data frame siRNA.screen that
has been created read in from the file using the head function:

> head(siRNA.screen)

GENE Ac MCF7. HELA. CAL51. A549. H226.

1 AAK1 NM_014911 1.00 0.01 -1.27 -0.47 -0.69

2 AATK XM_375495 -0.37 -1.43 -0.76 -0.44 -0.16

3 ABI1 NM_005470 -1.51 0.67 -2.64 -1.02 -2.17

4 ABL1 NM_007313 -0.89 0.40 0.03 -0.94 -0.22

5 ABL2 NM_005158 1.05 0.16 0.36 0.06 -1.16

6 ACK1 NM_005781 0.00 -0.20 -0.01 -1.68 -0.36

In addition to the cell viability z-scores, this data frame contains both the Gene
Symbols and RefSeq IDs for each siRNA’s target. For our calculations it can
often be helpful to separate annotation information from the purely numerical
data. For this purpose, we will create a separate table called siRNA.zscores.
As these values are all numeric, we can convert the resulting data frame to
a two-dimensional numeric array using the as.matrix function. Finally, we
can annotate the rows of this array with the corresponding GeneSymbol.

> siRNA.zscores <- as.matrix(siRNA.screen[,-c(1,2)])

> rownames(siRNA.zscores) <- as.character(siRNA.screen$GENE)

92 Analyzing Generic Tabular Numeric Datasets in R

5.3 Data visualisation

In the initial stage of data analysis, it can be very helpful to examine your
data visually to check that there are no obvious anomalies. We will investigate
a number of characteristics of the dataset using a few simple techniques.

5.3.1 Scatter plots

The cell viability measurements can simply be plotted as numeric values using
the plot function. In the following example, we compare the z-scores following
each transfection in MCF7 cells with the corresponding transfection in HeLa
cells. The result should be the plot given in Fig. 5.3.

FIGURE 5.3
Scatter plot showing the distributions of cell viability z-scores of the MCF7
and HeLa cell lines under each siRNA transfection.

Data visualisation 93

> plot(x=siRNA.zscores[,1],y=siRNA.zscores[,2],

+ xlab=colnames(siRNA.zscores)[1],ylab=colnames(siRNA.zscores)[2])

5.3.2 Box plots

In this dataset we have a lot of measurements for each cell line. If the assay is
unbiased and comprehensive enough, we may expect that, averaged across all
the siRNAs, the cell lines would have similar sensitivities. We can inspect this
by producing box plots showing the distribution of all cell viability z-scores
for each cell line, using the boxplot function. The result should appear as in
Fig. 5.4.

> boxplot(lapply(c(1:5),function(x)siRNA.zscores[,x]),

+ names=colnames(siRNA.zscores))

FIGURE 5.4
Box-and-whiskers plot showing the distributions of cell viability z-scores for
each cell line, over all the siRNA transfections.

94 Analyzing Generic Tabular Numeric Datasets in R

In the above command, we have used the lapply function to convert each
column of the siRNA.zscores object into a separate element of a list object,
which is the required argument of the boxplot function. This is done using
the lapply function by applying, to each number from 1 to 5, a simple func-
tion that outputs the corresponding column from the siRNA.zscores object.

These box plots show that the distribution of scores for each cell line seem to
have been centred and scaled so that they each have a median of zero and a
similar range. You can use the apply function to compute different statistics
for each column of the matrix of z-scores to confirm this. For example, find
the median value from each cell line:

> apply(siRNA.zscores,MARGIN=2,median)

And the standard deviation:

> apply(siRNA.zscores,MARGIN=2,sd)

Had inspection of the distributions shown systematic differences between some
of the cell lines, it might have been worth applying some normalization pro-
cedure to minimize the potential impact of technical biases that could cause
such differences. For example, if one cell line has a low transfection rate, this
will affect all (or at least most) of the shRNA constructs’ viability scores, yet
is not necessarily related to sensitivity of the cell line to knock-down of each
target gene.

5.3.3 Bar charts

Bar charts represent a common way to illustrate visually differences in values.
For example, we can use the barplot function to create a bar chart showing
the first row of the data matrix: this shows the cell viability scores of each
cell line following transfection with AAK1 siRNA. The resulting plot should
appear as in Fig. 5.5.

> barplot(siRNA.zscores[1,])

5.4 Correlation and clustering

Statistical correlation measures provide a means of assessing the similarity
between trends in data. Clustering is generally the task of associating similar
entities from a dataset: this could involve finding groups of genes with similar
expression levels across a set of samples, or it could involve finding groups of

Correlation and clustering 95

FIGURE 5.5
Bar chart showing the cell viability z-scores for each cell line, following trans-
fection of siRNA to AAK1.

samples with similar expression levels of certain sets of genes. Both correla-
tion and clustering are therefore concepts that can help us with the task of
characterising similarity between elements from a dataset, but they are quite
different concepts and must be applied in different ways.

5.4.1 Correlation

There are many different effects that can manifest in correlated data. In this
siRNA screen, genes with correlated profiles (similar trends in cell viability
z-scores across the panel of cell lines) may be part of the same pathway, such
that addictions to certain pathways may result in a number of genes being
synthetically-lethal in combination with some characteristic of the cell lines.

If we pick a gene of interest, say PIK3CA, we can calculate correlation coef-
ficients of any other genes’ viability profiles with that of PIK3CA, using the

96 Analyzing Generic Tabular Numeric Datasets in R

cor function. Approximate statistical significance can also be obtained using
the cor.test function, with the caveat that this assumes normally distributed
data and there are so few samples that it is impossible to tell how unrealistic
this assumption may be. It may be useful in our research to test all features
for their similarity in trend (changes across the dataset) to a particular feature
of interest. In this example, we can evaluate the correlation of each gene in
turn for its linear correlation with PIK3CA. This will be done by calculating
each gene’s correlation coefficient, the corresponding p-value, and an adjusted
p-value taking into account the fact that we have performed multiple statis-
tical tests (using the Benjamini-Hochberg method). Finally, the results will
be summarized in a data frame. Given that we want to apply the same func-
tion (computing the Pearson correlation coefficient) to each row of the z-score
matrix in turn, this example will make use of the apply function. For a recap
of this function, see Section 2.5.3.

> PIK3CA.cors <- apply(siRNA.zscores,MARGIN=1,function(x)

+ cor(x,siRNA.zscores[which(rownames(siRNA.zscores)=="PIK3CA"),]))

Here we use the apply function to apply another function to each row of
the data table in turn. In this case, the function being applied computes the
correlation coefficient between a set of values and the cell viability z-scores
from PIK3CA siRNA transfection.

If you didn’t want to use the apply function, we could have obtained the
same result using a for loop, having first created a vector of missing values
to store the results for each row of the table:

> PIK3CA.cors <- rep(NA,nrow(siRNA.zscores))

> for(i in 1:nrow(siRNA.zscores)){
+ PIK3CA.cors[i] <- cor(siRNA.zscores[i,],

+ siRNA.zscores[which(rownames(siRNA.zscores)=="PIK3CA"),])}

Next, we can use a similar approach (either apply or a for loop) to com-
pute the p-value estimates for hypothesis of the two tested genes’ z-scores
being more correlated than would be expected for two variables independently
sampled from normal distributions. Here is the way to calculate these esti-
mates using apply:

> PIK3CA.corPvals <- apply(siRNA.zscores,MARGIN=1,function(x)

+ cor.test(x,siRNA.zscores[which(rownames(siRNA.zscores)=="PIK3CA"),

+])$p.value)

Again apply is used, but this time we obtain the p-value from the corre-
lation test by selecting the p.value field from the result of cor.test using
the $ symbol.

Correlation and clustering 97

To perform the same calculations without the apply function, but using a for

loop instead:

> PIK3CA.corPvals <- rep(NA,nrow(siRNA.zscores))

> for(i in 1:nrow(siRNA.zscores)){
+ PIK3CA.corPvals[i] <- cor.test(siRNA.zscores[i,],

+ siRNA.zscores[which(rownames(siRNA.zscores)=="PIK3CA"),])$p.value}

Whichever approach was used to compute these results, we can now create a
data frame to store the correlation test results along with the gene names:

> PIK3CA.df <- data.frame(Gene=rownames(siRNA.zscores),

+ cor=PIK3CA.cors,p.value=PIK3CA.corPvals)

This command creates the data frame listing the gene names, correlation
coefficients and p-values.

> PIK3CA.df <- PIK3CA.df[order(PIK3CA.df$p.value,decreasing=FALSE),]

> PIK3CA.df$adj.p.val <- p.adjust(PIK3CA.df$p.value,method="BH")

Following sorting of the table on p-value, the adjusted p-values are calcu-
lated using the p.adjust function, then added to the table. The first few
rows of the table should now look like this:

> head(PIK3CA.df)

Gene cor p.value adj.p.val

534 PIK3CA 1.0000000 0.0000000000 0.00000000

209 DUSP22 0.9978449 0.0001200562 0.04676191

619 PTPN5 -0.9907038 0.0010744492 0.23591179

694 STK22C -0.9895644 0.0012777074 0.23591179

302 HIPK1 -0.9882775 0.0015209038 0.23591179

516 PFKFB2 -0.9867994 0.0018170356 0.23591179

It is always a good idea to inspect the underlying data giving rise to a result
from statistical analysis. In this case, a line graph for the most correlated gene
(DUSP22) and PIK3CA itself may be informative. This will give rise to the
plot shown in Fig. 5.6:

> plot(siRNA.zscores[which(rownames(siRNA.zscores)=="PIK3CA"),],

+ type="l",col="red",ylab="z-score",xlab="cell line")

> points(siRNA.zscores[which(rownames(siRNA.zscores)=="DUSP22"),],

+ type="l",col="blue")

> legend("topright",legend=c("PIK3CA","DUSP22"),lty=c(1,1),

+ col=c("red","blue"))

98 Analyzing Generic Tabular Numeric Datasets in R

FIGURE 5.6
Line graph showing profiles of cell line viability effect of siRNA transfection
for PIK3CA and DUSP22.

5.4.2 Clustering

Clustering is the principle of grouping similar entities together, but in any
situation there are typically many ways of defining the notion of similarity5.
Any individual approach will have strengths and weaknesses, and subtleties
associated with correct interpretation of the results. For simplicity’s sake, we
will just use one type of approach: hierarchical clustering. This is actually
a clustering task, utilizing a dissimilarity measure (a distance metric) and a
linkage method. The examples provided here will use complete linkage method
(the default implementation in R’s hclust function) with two different dis-
tance metrics, in order to demonstrate some use in exploratory data analysis.

The first metric we will try is the Euclidean distance, which is the sum of the
squared differences in each individual characteristic’s value from one entity

5In fact, most clustering algorithms use dissimilarity, rather than similarity, but this is
a purely technical distinction.

Correlation and clustering 99

FIGURE 5.7
Hierarchical clustering dendrogram showing similarity between cell lines in
terms of their shared siRNA sensitivities, based on Euclidean distance.

(set of values) to the other. The dist function in R creates a matrix of all the
pairwise Euclidean distances between the rows of a data table. The result can
be passed to the hierarchical clustering function hclust, which will produce
a cluster dendrogram based on the distance matrix, as in Fig. 5.7.

> plot(hclust(dist(t(siRNA.zscores))))

Note, we use the matrix transpose function t() to generate distance matrix
for the columns, rather than the rows, of the siRNA screen data table.

As the Euclidean distance is based on adding squared differences in individual
measurements, certain measurements can contribute to the overall distance a

100 Analyzing Generic Tabular Numeric Datasets in R

lot more than others. In some situations, giving more weight to larger abso-
lute differences (which typically come from high-valued measurements) is pre-
ferred, but in this case we may not wish for any individual siRNAs to con-
tribute too much to the overall distances. An alternative approach is to use
correlation as a measure of similarity, and as we know a correlation coefficient
will lie between −1 and 1, subtracting the correlation coefficient from 1 will
give us a single distance for any two sets of values. More similar sets of values
have higher correlation coefficients and thus lower distances. We can re-create
the hierarchical clustering dendrogram now using the correlation-based dis-
tance, giving rise to Fig. 5.8.

> plot(hclust(as.dist(1-cor(siRNA.zscores))))

FIGURE 5.8
Hierarchical clustering dendrogram showing similarity between cell lines in
terms of their shared siRNA sensitivities, using correlation-based distance.

Correlation and clustering 101

In the above command, the cor function produces a matrix of the pair-
wise column-to-column correlation coefficients from the data table, and the
as.dist function has to be used to convert the matrix into the object required
by the hclust function. Note, this example bases the dissimilarity values on
the Pearson correlation coefficients, but it would be possible to use the Spear-
man correlation coefficients instead, by setting the method argument in the
cor function: cor(siRNA.zscores,method="spearman").

When the resulting dendrogram (Fig. 5.8) is compared with that from Fig. 5.7,
we see that the similarities between HeLa and CAL51, and between A549 and
H226, are consistent across these two definitions of similarity. This exploratory
analysis suggests that it may be interesting to look at what genes are most
clearly responsible for these similarities, to provide some biological insight on
the similarity of gene addictions in the different cell lines.

5.4.3 Heatmaps

Heatmaps represent a useful tool to assist visual inspection of large tables
of values, particularly in conjunction with clustering techniques that group
together similar rows and columns from within the table. A heatmap consists
of a grid of coloured blocks, with each block representing a single measure-
ment. The utility comes from defining a colour scheme such that low-valued
measurements show up in one colour, high-valued measurements in another,
and the shade of the colour indicates where on this scale each value lies.

As a purely illustrative example, we will construct a heatmap of all values
from the siRNA screen. I personally find that the best way to draw heatmaps
in R is using the aheatmap function from the NMF package. This must first
be installed (if not already):

> install.packages("NMF")

Then the package can be loaded into the workspace:

> library(NMF)

Finally, the heatmap command can be entered:

> aheatmap(siRNA.zscores,Rowv=NA,scale="row")

You can see the result in Fig. 5.9, which shows that there are some patterns
in the sensitivities of the cell lines to the knock-down of individual genes,
represented by visible ‘blocks’ of colour. However, there are so many genes
plotted that this particular heatmap probably doesn’t improve our under-
standing of the cell lines, or the genes in the screen, in any great way. A
heatmap is often a more informative tool when some selection of the data is

102 Analyzing Generic Tabular Numeric Datasets in R

FIGURE 5.9
Heatmap showing clustering of cell viability effects from sets of siRNAs in
each cell line.

applied, in order to extract features of interest. We will see such an application
in the following section.

By default, the aheatmap function clusters both rows and columns of the table.
While we do want this, the gene-wise (row) dendrogram involves too many
elements to be informative, so we have instructed the function to draw only
the column dendrogram. This is achieved by passing the argument Rowv=NA.
Finally, scaling the values on each row (with scale="row") forces the heatmap
to show relative values for each gene. Skipping this row-wise scaling (setting
scale="none") offers the advantage of the fact that a given colour in the grid
implies a single underlying value, regardless of what gene the measurement
relates to. However, it allows the possibility of a single outlying value to skew
the colour scale sufficiently that most of the plot is meaningless. By way of

Statistical analysis using linear models 103

FIGURE 5.10
Heatmap showing clustering of cell viability effects from sets of siRNAs in
each cell line, with an absolute (rather than relative) colour scale.

an example, Fig. 5.10 shows the same heatmap as Fig. 5.9 but without the
row-wise scaling, generated with the following command:

> aheatmap(siRNA.zscores,Rowv=NA,scale="none")

5.5 Statistical analysis using linear models

Even though limma stands for ‘Linear Models for Microarray Analysis’, the
package from Bioconductor6 can be used to apply the linear modelling frame-
work for statistical analysis to any numerical dataset, not just microarrays7.

6http://bioconductor.org
7Later on we’ll make use of some of its functionality designed specifically for sequencing

data.

http://bioconductor.org

104 Analyzing Generic Tabular Numeric Datasets in R

It is particularly suited to ‘high-dimensional’ datasets that have a large num-
ber of measurements taken from a relatively small sample set, as is the case
in this siRNA example. If the reader is unfamiliar with the use of linear mod-
els (and the limma package), you are referred to Section 4.6. There are more
applications of the limma package in Chapter 8, so if it still seems a bit obscure
don’t worry, there will be more opportunities for it to make sense.

5.5.1 Comparison of two groups

It was observed in the clustering analysis that the HeLa and CAL51 cell lines
shared similarities in terms of siRNA sensitivities, as did A549 and H226. One
question we may have is ‘what genes are primarily responsible for these sim-
ilarities and differences?’. This is a standard two-class problem in which we
wish to find measurements that have consistent, clearly different values across
two sets of entities. In this case the entities are the cell lines, and the mea-
surements are the cell viability z-scores. If we define the HeLa and CAL51 cell
lines as one group and the A549 and H226 cell lines as another group, we can
fit a linear model for each gene, with the relative viability effect described as a
linear function of a group membership variable (taking value 1 for one of the
groups and 0 for the other group). First, a design matrix needs to be created
to define the values of the explanatory variables (in this case, an intercept
term and the group membership). Then we can use the lmFit function from
the limma package to fit linear models to the data and use these to evaluate
statistical significance that each siRNA’s viability score clearly discriminates
between the two groups. The statistics extracted from such linear models for
two-class analysis are t-statistics, and thus this is equivalent to performing a
t-test.

Let’s first look at the column names of the siRNA.zscores matrix, to decide
which of the columns correspond to each of our two groups.

> colnames(siRNA.zscores)

We should see:

[1] "MCF7." "HELA." "CAL51." "A549." "H226."

So the first column isn’t in either group (we should exclude it from our anal-
ysis), the 2nd and 3rd columns belong to the first group, and the 4th and 5th
columns belong to the second group. If we exclude the first column from the
table, then our explanatory variable of interest could take value 0 for the first
two columns of the new table and 1 for the last two columns. We will use
the cbind function to create the design matrix, as in section 6 of Chapter 4.
Using this function, we can give names to the columns we are binding together:

> design2 <- cbind(intercept=1,grp2=c(0,0,1,1))

Statistical analysis using linear models 105

So we have created an array called design2 by binding together two vectors:
one, called intercept always takes value 1; the other, called grp2, is created
by concatenating (the function c) together two 0s and then two 1s.

Now we can use the lmFit function to fit the linear models for every row
of the siRNA.zscores matrix, remembering that we wish to exclude the first
column:

> grpfit <- lmFit(siRNA.zscores[,2:5],design=design2)

The lmFit is the main numerical part of the data analysis, in which lin-
ear models are fitted for each row in the table to see how closely their values
match each output variable defined in the design matrix.

We then want to use the eBayes function performs empirical-Bayes modera-
tion of the t-statistics, essentially ‘borrowing’ information across the models:
generally, this is a good idea when there is a large number of rows in the
table and relatively few columns. And finally the topTable function displays
a table of the elements from the table with the most statistically significant
association with the specified model and contrast, as shown in Fig. 5.11. We
can see that the gene with the most consistent difference between these two
groups of cell lines is WEE1, which features prominently in the Iorns et al
2009 paper from which the data was obtained.

> grpfit2 <- eBayes(grpfit)

> topTable(grpfit2,coef=2)

Having identified a list of genes that discriminate the HeLa & CAL51 cell lines
from A549 & H226, we can use a heatmap to visualise the patterns involved:

FIGURE 5.11
Annotated table of siRNAs with different effects on cell viability in HeLa &
CAL51, compared to A549 and H226.

106 Analyzing Generic Tabular Numeric Datasets in R

FIGURE 5.12
Heatmap showing clustering of cell viability effects from siRNAs that best
discriminate HeLa and CAL51 from A549 and H226.

> aheatmap(siRNA.zscores[topTable(grpfit2)$ID,],scale="row")

Here we obtain the gene names from the output of the topTable function
using the $ operator, and use these names to index the corresponding rows
from the siRNA screen data table. The resulting heatmap should appear as
in Fig. 5.12.

5.5.2 Alternative models

The MCF7 cell line doesn’t appear to cluster particularly closely with any
other cell lines, so it might be interesting to find genes that are specifically
critical to MCF7 cells and none of the other profiled cell lines. We take a

Summary 107

FIGURE 5.13
Annotated table of siRNAs with MCF7-specific effects on cell viability.

similar approach to the one for the two-group test, but rather than using
a contrast matrix we specify the contrast in the design matrix by using an
intercept and a second variable to indicate whether the column represents the
MCF7 cell line or not. The output variable from the design matrix needn’t
necessarily be an indicator variable (taking only 1 or 0 as a value), but in this
case it is8.

> library(limma)

> design <- cbind(Intercept=1,MCF7=c(1,0,0,0,0))

> mcf7.fit <- lmFit(siRNA.zscores,design=design)

> mcf7.fit <- eBayes(mcf7.fit)

> topTable(mcf7.fit,coef=2)

The results of the final topTable command should be as in Fig. 5.13, showing
that PIK3CA is quite clearly MCF7-specific in its effect on cell viability. We
know this already from the line graph shown in Fig. 5.6, with most of the
z-scores for PIK3CA around zero apart from cell line 1 (MCF7) which had
markedly reduced viability upon PIK3CA siRNA transfection. This observa-
tion is also highlighted in the Iorns et al 2009 paper.

5.6 Summary

The purpose of this tutorial is to show how R can be used to apply a set
of simple statistical analysis tools to a wide range of data, provided it is in
a tabular form. An important step is the formatting of the data table and

8In fact, this is another two-class problem, with one class being MCF7 and the other
being everything else.

108 Analyzing Generic Tabular Numeric Datasets in R

loading into the R workspace, for which guidelines have been given. While the
example dataset used throughout this tutorial came from an siRNA screen,
it could as well have been a normalised table of data from microarrays, a
proteomics array, or many others. DNA methylation data represents a special
case, for which all these analysis are applicable following a transformation of
the data, covered in the appendix.

As a final caveat to all of the statistical analysis demonstrated in this tutorial,
this study involves no replicates and the sample size is so small that the actual
value of the statistics have little meaning in relation to traditional statistical
significance thresholds: the study is so under-powered to detect any reasonable
statistical associations. However, I hope that these examples demonstrate the
fact that even in the absence of application of signficance thresholding criteria,
this sort of statistical analysis is still a very useful tool to identify important
features from large numerical datasets.

6

Functional Enrichment Analysis

6.1 Introduction

When analyzing large datasets, we sometimes find there are so many features
showing some characteristics of interest that it can be difficult to get a sense of
what these mean at a functional level. To assist in higher-level interpretation
of systematic differences reflected in a dataset, we can make used of defined
sets of genes that each represent some known biological characteristics. By
testing the enrichment of gene sets, which means evaluating how much more
those specific genes are reflected in the results than would be expected just
by chance.

In this tutorial we will look at two different approaches to testing enrich-
ments: over-representation takes two lists and counts the overlap between
them; systematic enrichment uses a scoring (or ranking) of all the features in
a dataset, and evaluates how skewed the scoring (or ranking) is for a specific
subset of those features (e.g. a defined gene set). There are a number of widely
used online tools for performing both of these types of enrichment analysis,
which have conveniently pre-loaded gene sets and all you need to do is upload
a list of genes, with or without scores. It is also useful to be able to perform
the relevant statistical tests yourself, so that you can evaluate enrichments
involving gene sets not already defined in any online tools, and so that you
can evaluate enrichments in results that aren’t directly mappable to annota-
tions using existing tools. This tutorial will also enable you to compare the
results of analyses of different datasets to see if they agree more than would
be expected by chance.

6.2 Loading gene sets into R

The first part of this tutorial involves accessing defined lists of genes in
R, which can be used for functional enrichment analysis. There are many

109

110 Functional Enrichment Analysis

databases containing such gene sets, including: MSigDB (http://software
.broadinstitute.org/gsea/msigdb/), ConsensusPathDB (http://www.consen
suspathdb.org/), KEGG (http://www.genome.jp/kegg), Gene Ontology
(http://geneontology.org/).

Because it is freely and easily accessible without registration, we will download
the table of biological pathway annotations from ConsensusPathDB. Open a
browser and go to the website at http://www.consensuspathdb.org/, then click
on the ‘download / data access’ link on the left-hand panel, as indicated in
Fig. 6.1.

In the main frame of the page, select ‘gene symbol (HGNC symbol)’ from the
drop-down menu appearing in the line of text saying ‘Biological pathways (as
defined by source databases) with their genes identified with...’, then click on
the text. This will download a text file called ‘CPDB pathways genes.tab’.
Move this file into a directory you can access and then start R.

We can read the text file into R using the read.table function:

> cpdb.pathways <- read.table("CPDB pathways genes.tab",

+ sep="\t",head=T)

This command creates a data frame called cpdb.pathways from the text file
‘CPDB pathways genes.tab’, using a tab to separate the columns, and treat-
ing the first row of the file as the table’s header (i.e. the data frame’s column
names). Take a look at the first row of the data frame:

> cpdb.pathways[1,]

We can see that the fourth column ‘hgnc symbol ids’ contains the list of gene
symbols for each pathway, separated by commas. As the gene sets may be of
different lengths, we ideally want to have a list where each element is a vector
of the gene symbols belonging to the corresponding pathway. We can apply
an R function called strsplit to the comma-separated gene symbols from
the ‘cpdb.pathways’ data frame, which splits each single character object into
a vector of separate characters. So we can a list of gene symbol vectors with
the following command:

> cpdb.genes <- strsplit(as.character(cpdb.table$hgnc symbol ids),

+ split=",")

In this command, we have created an object called cpdb.genes from the
output of the strsplit function. I have added an extra function call to apply
as.character to the comma-separated gene symbol sets we access from the
data frame, because the data frame structure may not specifically know that

http://www.consensuspathdb.org/
http://www.consensuspathdb.org/
http://geneontology.org/
http://software.broadinstitute.org/
http://software.broadinstitute.org/
http://www.genome.jp/
http://www.consensuspathdb.org/

Loading gene sets into R 111

F
IG

U
R

E
6
.1

C
on

se
n

su
sP

at
h

D
B

w
eb

si
te

sh
ow

in
g

li
n

k
to

d
ow

n
lo

ad
.

112 Functional Enrichment Analysis

each element object can be treated as a character. The other argument we have
passed to the strsplit function specifies that the symbol to use to split up
each character object (into a vector of smaller character objects) is a comma.

We now have a data frame which includes the names of each pathway, and a
list of character vectors containing the gene symbols that have been annotated
as belonging to each pathway. From this point, we can use these objects to test
for enrichments of each pathway in some other selected set of gene symbols.

6.3 Over-representation

In over-representation analysis, we are testing whether the overlap between
two lists is greater than what we would expect by chance (if the two lists were
sampled from the same distribution completely independently). For this we
need to know not only the contents of the two lists, but also the full set of
potential items that the lists could have included. For example, this could be
the set of all genes in the genome according to the annotations we used for our
analysis. Or it could be the set of all genes represented on a given measurement
platform that was used to produce our dataset. This is important to remember,
because it is quite possible for the set of measured entities to be already biased
towards some biological processes, if those were of particular interest to the
designers of the platform. In such circumstances, without taking that bias
into consideration, you would expect randomly selected lists of features to
show similar enrichments. The over-representation problem is relatively easy
to define in terms of probabilities, and is often described as like drawing
coloured balls from an urn (a bag may be more relatable, but for some reason
the probability theorists love their urns). If we randomly choose a certain
number of balls out of a container that has in it a certain number of white
balls and a certain number of black balls, then we want to know what is the
probability of seeing at least as many black balls as we have. Relating that back
to the case of gene sets, if we have a set of genes selected on the basis of some
analysis of a dataset and we look at the overlap with an annotated gene set: the
container of balls is the set of all genes we could have selected from our analysis
(i.e. all the mapped features); the black balls are the genes in the annotated
gene set we are testing for enrichment; the balls that are drawn from the
container are the genes in our list of features of interest obtained from analysis
of our dataset. This situation is decribed by the hypergeometric probability
distribution, which gives us computable probabilities for any settings of the
variables in the problem.

Over-representation 113

6.3.1 Online tools

DAVID (https://david.ncifcrf.gov/) and ConsensusPathDB (http://www.
consensuspathdb.org/) both have easy-to-use interfaces enabling upload of a
list of identifiers and selection (or upload) of a reference set of all possible iden-
tifiers you could have selected. They will then perform the over-representation
analysis for you, testing all their defined gene sets one after the other, and
presenting the results of tests which showed significant enrichment.

6.3.2 Testing gene sets in R

Being able to test for over-representation yourself will enable you to test asso-
ciations that don’t involve standard gene sets, such as comparing the results
of separate analyses performed across two different datasets. In order to test
the significance of an observed overlap between two sets, we need four values
that we will describe using mathematical notations for sets:

• |A ∩B|: the number of elements that appear in both sets

• |A ∩ C|: the number of elements in the first set that could have been in the
second set

• |B ∩ C|: the number of elements in the second set that could have been in
the first set

• |C|: the number of elements that could have been in either set

These descriptions use the notation |...| to describe the size of a set, and refer
to three specific sets that are relevant for over-representation analysis: A is the
first gene set, B is the second gene set, C is the set of identifiers from which A
and B were both selected. It is not always entirely obvious how to represent
C. If A and B are sets of identifiers selected from analyses of two different
datasets, then C is the set of all identifiers that have values in both datasets.
If B is a set of gene symbols representing a given pathway, then how do we
know which gene symbols could be in any pathway? We can make an assump-
tion that any defined gene symbol could appear, or perhaps we instead use
for C the full list of gene symbols that appear in any pathway gene sets from
the database we have obtained set B. Because there is not always one way to
do this, make sure you are clear of your process when describing your analyses.

As a fairly trivial example, we will go back to the list of gene symbol vec-
tors that we have obtained from ConsensusPathDB earlier in this tutorial.
We can look at the name of the first pathway in the table cpdb.table by
telling R to show us the first row from the ‘pathway’ column:

> cpdb.table[1,"pathway"]

http://www.consensuspathdb.org/
http://www.consensuspathdb.org/
https://david.ncifcrf.gov/

114 Functional Enrichment Analysis

We should see the following output:

[1] Alanine, aspartate and glutamate metabolism - Homo sapiens

(human)

So we know that the first set of genes reflects the alanine, aspartate and
glutamate metabolism pathway. A look back at the entire first row of the
data frame shows us this is defined in the database KEGG. Let’s now look at
the 32nd row in the table:

> cpdb.table[32,]

This gene set reflects the arginine and proline metabolism pathway, as defined
in the KEGG database. So we can use the 1st vector of gene symbols from our
list cpdb.genes to be our set A, and the 32nd vector of gene symbols from
cpdb.genes to be our set B. After finding the number of gene symbols that
overlap between these two vectors, and the list of all possible gene symbols,
we can then compute the probability that there would be so large an overlap
purely by chance.

First, compute |A ∩ B|, the number of overlapping elements across the two
lists. We can use the function intersect(A,B) to find elements that are in
both A and B:

> intersect(cpdb.genes[[1]],cpdb.genes[[32]])

We can see that three gene symbols overlap, but to avoid having to count
this by hand in case it’s much larger, we can use the length function:

> length(intersect(cpdb.genes[[1]],cpdb.genes[[32]]))

We see the output:

[1] 3

It is trivial to find the lengths of A and B:

> length(cpdb.genes[[1]])

[1] 35

> length(cpdb.genes[[32]])

[1] 49

So |A ∩ B| = 3, |A| = 35 and |B| = 49. What about set C? Let’s assume
that the full set of gene symbols that could have been in any pathway is the
set of gene symbols which are annotated in at least one pathway. We can find

Over-representation 115

this using the unique function (which removes duplicates from a vector), and
the unlist function, which will collapse a list of multiple vectors into a single
(long) vector:

> length(unique(unlist(cpdb.genes)))

[1] 11196

So |C| = 11196. We can now use these values to give as arguments to the
phyper function, which computes the cumulative density function from the
hypergeometric distribution. That is, P (X ≤ x): the probability of observing
an overlap less than or equal to some specified value x in some random vari-
able X. Because the p-value we want to indicate the statistical significance of
the overlap is the probability of a randomly-chosen set of identifiers from C
having greater than or equal overlap to A as the observed overlap between A
and B, we actually want to find P (X ≥ x) = 1 − P (X ≤ x − 1). One other
subtlety of using this function is that the arguments it needs are |A∩B|, |A|,
|B| and |C \ A| (this means the elements in C not in set A), but we can use
these as follows:

> 1-phyper(3-1,35,11196-35,49)

And we see the output:

[1] 0.0004672633

So the probability of observing so large an overlap purely by chance is less
than 1 in 1000. Now, by itself that can be fairly useful, but really comes into
its own when we combine it with some simple scripting. Let’s use this to find
which other pathways have the most significant overlaps with the alanine,
aspartate and glutamate metabolism pathway. First, for neatness, let’s create
a function that will calculate this p-value for us, given 3 gene sets A, B and C:

getORpval <- function(A,B,C){
+ overlap = length(intersect(A,B))

+ sizeA = length(intersect(A,C))

+ sizeC = length(setdiff(C,A))

+ sizeB = length(intersect(B,C))

+ 1-phyper(overlap-1,sizeA,sizeC,sizeB)}

It should hopefully be clear how this new function, which we have called
getORpval, just goes through each of the calculations we made for the pre-
vious example. We can check this, by using the new function to repeat the
example:

> getORpval(cpdb.genes[[1]],cpdb.genes[[32]],unlist(cpdb.genes))

[1] 0.0004672633

116 Functional Enrichment Analysis

So we see this gives us the same answer as before. NB: it is always a good
idea to create examples like this to check any code that you write, particularly
when setting up a script to perform many analyses in one go.

To compute the p-values for all the gene sets, we could create a vector of
all missing values, then fill in the values one-by-one using a for loop:

> allpath.pvals <- rep(NA,nrow(cpdb.table))

This creates a vector called allpath.pvals by repeating the special NA value
once for each row in the cpdb.table data frame.

> for(i in 1:length(allpath.pvals)){
+ allpath.pvals[i] = getORpval(cpdb.genes[[1]],cpdb.genes[[i]],

+ unlist(cpdb.genes))}

Here we have created a loop over an iterator variable i, which takes val-
ues from 1 up to the length of the allpath.pvals vector, which is the same
length as the number of rows in the cpdb.table data frame. Within the loop,
it applies the function we have defined called getORpval with set A being the
vector of gene symbols from the first pathway, set B being the set of gene
symbols from the ith pathway (i.e. each pathway in turn), and set C being
the set of gene symbols in any pathway, as before. This may take a little time
to run, but the end result will be a vector of p-values, one for each pathway.

We can now use R to help present these p-values in a more useful format,
as a sorted table listing the pathway names, the corresponding p-values, and
because we have applied many identical hypothesis tests, a multiple-testing-
adjusted p-value. Let’s create a data frame to present these outputs:

> OR.df <- data.frame(pathway=cpdb.table$pathway,p.value=allpath.pvals,

+ adj.P.val=p.adjust(allpath.pvals))

Here we have used the p.adjust function to perform multiple testing cor-
rection across our vector of p-values, using its default settings (which use the
FDR method). We can use the order function to re-order the rows of the
table from smallest p-value to largest:

> OR.df <- OR.df[order(OR.df$p.value,decreasing=F),]

Now inspect the first rows of the table:

> OR.df[1:5,]

Systematic enrichment 117

6.4 Systematic enrichment

To avoid limiting our analyses to approaches that require setting arbitrary
thresholds for selecting output gene lists, we can alternatively evaluate the
unlikelihood of an observed trend or systematic shift towards extreme values
of any given test statistic. Because these approaches use as their input a list
of scores for all measured features in the dataset, and compare the scores for
the gene set of interest against all the other features, any bias towards which
features are represented in the dataset is automatically taken into account.
There can be many ways of defining a systematic shift towards extreme values
of a test statistic, and therefore many (each valid) ways of testing a hypothesis
of enrichment of a given set of identifiers. We will give examples of some
approaches.

6.4.1 Online tools

The best known tool for enrichment analysis is GSEA1, although Consensus-
PathDB2 also has an enrichment analysis interface as part of its ‘gene set
analysis’ tools. As with over-representation analysis, these resources have pre-
loaded gene sets that make functional annotation through enrichment analyis
relatively simple to perform.

6.4.2 Testing gene sets in R

There are tools in R packages that make it relatively straightforward to test
the statistical significance of systematic trends in sets of results. We will make
use of some here, which will hopefully provide you with some valuable tools
for your own research. In order to test a systematic shift in the values of a test
statistic for some subset of the features in a dataset, we need three things:

• a vector of identifiers for all features represented in the dataset

• a vector of values of the statistic of interest, one value for each feature of
the dataset

• a set of identifiers denoting the features to evaluate for enrichment over
randomness

For the vector of test statistic values, we need a way of computing a number
to reflect some characteristic of interest for each feature. Examples could be a
t-statistic from a linear model comparing the values of the feature across two

1http://software.broadinstitute.org/gsea/index.jsp
2http://www.consensuspathdb.org/

http://software.broadinstitute.org/
http://www.consensuspathdb.org/

118 Functional Enrichment Analysis

sets of samples, a fold-change between the averages across two sets of sam-
ples, the frequency of mutation of a gene across a population, or potentially
anything that is of interest. For a simple example to run through here, we
will re-load the siRNA screen data that was analyzed in Chapter 5 ‘Analyzing
generic tabular numeric data in R.’

Open an R workspace and read in the table. Make sure the working direc-
tory is set to the folder where you saved the siRNA screen data table, then
enter the following command:

> siRNA.screen <- read.table("siRNAscreen data.txt",sep="\t",
header=TRUE)

Convert the resulting data frame to a two-dimensional numeric array using
the as.matrix function. Finally, we can annotate the rows of this array with
the corresponding GeneSymbol.

> siRNA.zscores <- as.matrix(siRNA.screen[,-c(1,2)])

> rownames(siRNA.zscores) <- as.character(siRNA.screen$GENE)

Now let’s use the limma package to compute t-statistics that characterize
the statistical significance of the difference in viability score for the MCF7
cell line compared to all others:

> library(limma)

> design <- cbind(Intercept=1,MCF7=c(1,0,0,0,0))

> mcf7.fit <- lmFit(siRNA.zscores,design=design)

> mcf7.fit <- eBayes(mcf7.fit)

Now we’ll save all the statistics into a data frame so we can use them later:

> allMCF7stats <- topTable(mcf7.fit,coef=2,

+ number=nrow(siRNA.zscores))

To evaluate enrichments of defined gene sets in the results of this analysis,
we need to define some gene sets of interest. Let’s use the ConsensusPathDB
pathway annotations. Repeat the steps in Section 6.2 of this chapter to create
the data frame cpdb.table and the list of gene sets cpdb.genes.

The limma package also includes a function that can be used for evaluat-
ing the statistical significance of enrichments according to some defined test
statistic. It does this using a rank sum method: after ranking all the dataset’s
features based on their values of the provided test statistic, it compares the
sum of those ranks for the selected features against the expected distribution

Systematic enrichment 119

of sums of ranks for randomly-chosen sets of (the same number of) features.
The function to perform this is called geneSetTest. In the following example,
we will use this function to test for enrichment of the ‘alanine, aspartate and
glutamate metabolism’ pathway genes in terms of their MCF7-specific impact
on viability, among the 779 genes targeted in the siRNA screen:

> geneSetTest(statistics=allMCF7stats$t,

+ index=which(allMCF7stats$ID %in% cpdb.genes[[1]]),

+ alternative="down")

In this command, we have passed three arguments to the geneSetTest func-
tion: ‘statistics’ is the vector of values of the test statistics, which in this case
are the t-statistics from the MCF7-specific linear model we fit using limma;
‘index’ is a vector stating which of the values represent the subset we are test-
ing for enrichment, which in this case are the ones for which the gene symbol
is in the CPDB gene vector corresponding to the pathway; ‘alternative’ states
which alternative hypothesis to test against, where the null hypothesis is no
difference from the sum of ranks of randomly selected genes. The above com-
mand evaluates the probability that a randomly-selected subset of genes from
the siRNA screen would have as least as high a sum of ranks (reflecting low
values of the test statistic) as that observed for the pathway in question: in
other words, how unlikely is it to see as great a systematic shift towards smaller
values in MCF7 than the other cell lines (i.e. MCF7-specific cell killing), across
the entire set of genes reflecting the pathway. Having run the command above,
you should see the resulting p-value:

[1] 1

So the corresponding term is not enriched at all in these statistics. This pro-
cedure forms the basis of testing enrichment analyses, but again we may wish
to screen a whole database of gene sets to see which ones are most enriched.
We can do this in a similar way to the over-representation analysis. However,
given we only have 779 genes represented in the dataset, it is quite likely that
some pathways may have no genes at all represented in the datset. Because of
this, we may wish to only perform the tests for pathways that map to at least
a few (say, 3 or 4) genes in the siRNA screen. We can easily implement this by
making use of a conditional statement using the if function. To compute the
p-values for all the gene sets, we could create a vector of all missing values,
then fill in the values one-by-one using a for loop:

> allpath.pvals2 <- rep(NA,nrow(cpdb.table))

This creates a vector by repeating the special NA value once for each row
in the cpdb.table data frame.

120 Functional Enrichment Analysis

Now set up a loop to go through each pathway in turn, testing them for
systematically low relative viability values in MCF7:

> for(i in 1:length(cpdb.genes)){
+ if(length(intersect((allMCF7stats$ID,cpdb.genes[[i]])))>3){
+ allpath.pvals2[i] <- geneSetTest(statistics=allMCF7stats$t,

+ index=which(allMCF7stats$ID %in% cpdb.genes[[i]]),

+ alternative="down")}
}

Note that in this loop we have two curly brackets opened and closed: one
marking which code to execute within the for function and one marking
which code to execute if the conditions for the if function are met.

We can now use R to help present these p-values in a more useful format,
as a sorted table listing the pathway names, the corresponding p-values, and
because we have applied many identical hypothesis tests, a multiple-testing-
adjusted p-value. Let’s create a data frame to present these outputs:

> enrichment.df <- data.frame(pathway=cpdb.table$pathway,

p.value=allpath.pvals2,

+ adj.P.val=p.adjust(allpath.pvals2[!is.na(allpath.pvals2)]))

Here we have used the p.adjust function to perform multiple testing cor-
rection across our vector of non-missing p-values, using its default settings
(which use the FDR method). Note, the statement within the square brackets
is indexing elements from the allpath.pvals2 vector which are not missing
(! denotes negation of a logical test). As before, we can use the order function
to re-order the rows of the table from smallest p-value to largest:

> enrichment.df <- enrichment.df[order(enrichment.df$p.value,

decreasing=F),]

6.5 Summary

In this chapter we have explored ways of testing for greater-than-expected
overlap or systematic shift in values for some set(s) of features of interest.
These examples should hopefully have illustrated how a database of gene sets
can be used to get a sense of the bigger picture represented by the trends
discovered in some analysis of a high-dimensional dataset.

7

Integrating Multiple Datasets in R

7.1 Introduction

It really is a useful skill to be able to manipulate datasets so they can be
loaded into R, then explore structures and patterns in the data, relating dif-
ferent entities to each other. Having said that, often the real power in ana-
lyzing a dataset is to look for associations with characteristics of a different
dataset. For example, it is interesting to see the samples in a molecular pro-
filing dataset segregate into clearly distinct clusters, but it adds a lot to our
interpretation of these clusters if the samples in different clusters tend to have
different phenotypic traits. As another common example, we may wish to find
proteins or genes whose expression levels in tumours are associated with the
patients’ clinical outcomes: this typically necessitates integration of data from
multiple sources.

This tutorial is based around an example analyzing data from The Cancer
Genome Atlas (TCGA). It is designed to illustrate a practical scenario which
is likely to arise frequently in cancer research, although the principles will
apply to virtually any analysis of molecular biology datasets, especially those
with a clinical context. The TCGA data is all available from UCSC’s Xena
browser, which can be found at: https://xenabrowser.net/heatmap/

The default viewer will have a dataset pre-loaded, but it is not necessarily
the one we want, so click on the ‘Add Datasets’ button on the left-hand side,
as illustrated in Fig. 7.1.

Clicking on this button will open a new window, with all the cancer datasets
processed for the browser listed. Scroll down to the dataset ‘TCGA Glioblas-
toma (GBM)’, and click on this link. This will take you to another page
listing all the available datasets for this cohort. Click on the links for ‘Phe-
notypes’ and ‘RPPA (replicate-base normalization)’. For each dataset, you
should see an information page which includes a download link, highlighted in
Fig. 7.2.

121

https://xenabrowser.net/

122 Integrating Multiple Datasets in R

FIGURE 7.1
Screenshot showing Xena Browser, with ‘Data Sets’ link indicated by arrow.

FIGURE 7.2
Screenshot showing Xena Browser, with download link for TCGA Glioblas-
toma RPPA dataset indicated by arrow and box.

If you download the files for both of these datasets, you will also need to
unzip them with a tool that can unzip gzip-compressed files. With the files
downloaded and extracted, we should be in a position to load the data into R
as tables.

Exploratory data analysis 123

7.2 Data import

The first file we wish to load in is called ‘RPPA RBN’ as this contains the
feature-level data from all the tumour samples in the dataset. In this instance,
the features represent proteins (or antibodies to proteins). We can read in the
file as follows:

> rppa.data <- read.table("RPPA RBN",sep="\t",head=TRUE,row.names=1)

This command creates a data frame object called rppa.data1, using the
contents of the file ‘RPPA RBN’. It specifies that the separator between
columns should be a tab (sep="\t"), that the first row gives column headers
(head=TRUE), and that the first column gives the row names (row.names=1).
We can check the dimensions of the data frame using the function dim:

> dim(rppa.data)

[1] 131 215

This tells us that the data frame rppa.data has 131 rows and 215 columns.

This is all well, but we probably want to perform some numerical operations
on the data. Many of the functions that R provides to do this will not work on
data frames, because they need to know that the data contained in the table
are all numerical values. To enable this, we simply convert the data frame to
a matrix:

> rppa.data <- as.matrix(rppa.data)

Note that if the rppa.data object had contained any non-numerical values
for anything other than column or row names, then this conversion would not
work properly.

7.3 Exploratory data analysis

With the glioblastoma protein data loaded into R, we may wish to explore
some of the properties of the dataset. For example, we could look to see if there
is any clear grouping of the samples or proteins into clusters. Creating a cluster

1I have called it this because the protein expression data in TCGA comes from a Reverse
Phase Proteomics Array (RPPA) platform, from MD Anderson.

124 Integrating Multiple Datasets in R

dendrogram for the either samples or proteins is relatively straightforward. For
the proteins, this would be:

> plot(hclust(dist(rppa.data)))

This uses the dist function to create a matrix of the pairwise Euclidean
distances (i.e. the sum of the squared differences between each sample’s val-
ues for the two proteins in question), then the hclust function to produce a
hierarchical clustering structure, and finally the plot function to draw this.
The result should look like the dendrogram shown in Fig. 7.3.

As the Euclidean distances are based on the differences in absolute values for
each pair of proteins, if the data hasn’t been centred so that the average values
for each protein are the same, differences in antibody affinity might bias the
results. If the distances are based on the pairwise correlations, they wouldn’t
be affected by this. So we can create the same structure using a different dis-
tance metric:

> plot(hclust(as.dist(1-cor(t(rppa.data)))))

Here we convert the correlation matrix produced by cor into a distance matrix
object using the as.dist function. You should notice that the cor function
was applied to t(rppa.data) rather than just rppa.data, this is because it
operates column-wise where the dist function operates row-wise. The result
should be as appears in Fig. 7.4.

FIGURE 7.3
Hierarchical clustering dendrogram showing similarity structure between pro-
teins in TCGA glioblastoma RPPA dataset, using Euclidean distance.

Exploratory data analysis 125

FIGURE 7.4
Hierarchical clustering dendrogram showing similarity structure between pro-
teins in TCGA glioblastoma RPPA dataset, using correlation-based distances.

You can see that the results are different, but these dendrograms are perhaps
not the most useful because they contain rather too many labels to be inter-
preted readily! We could create dendrograms showing structure of the samples
simply by taking away the 't()' from the correlation distance matrix com-
putation, and by adding it into the Euclidean distance computation (so that
the command becomes dist(t(rppa.data))).

Let’s say we have decided that we would like to look for clusters of tumours
that have similar protein expression profiles as measured on this RPPA plat-
form, and that the sample-wise hierarchical clustering dendrogram reveals
three major groups. To assign samples to groups, we can use the function
cutree() to ‘cut’ the dendrogram at a given height, so that all the samples
in the same branch at that height are assigned to the same cluster. We can
run this example in two parts:

> rppa.hclust <- hclust(dist(t(rppa.data)))

> rppa.clusters <- cutree(rppa.hclust,k=3)

Here we have first created an object which we have named rppa.hclust,
which contains the result of the hierarchical clustering applied to the sample-
wise Euclidean distance matrix. The second command then creates an object
called rppa.clusters, which is a vector of the cluster IDs for each sample
(column) of the rppa.data matrix.

A benefit of generating cluster assignments in R is that we can use these
in subsequent analyses. For example, we may wish to look at the overall dis-
tribution of protein expression values using a heatmap, and can then label

126 Integrating Multiple Datasets in R

the heatmap with the cluster assignments. To create the heatmap, there is
a helpful package called gplots which provides functions to generate a colour
gradient. We load the package using:

> library(gplots)

If the gplots package isn’t installed on your system, try installing it using:

> install.packages("gplots")

You should be able to load the package once it is successfully installed2.
Then to draw the heatmap of the RPPA dataset, we can use the following
command:

> heatmap(rppa.data,col=bluered(100),scale="none")

Here the heatmap function generates the plot, with colours in a 100-
point scale from blue (lowest) to red (highest). The colours are generated
by bluered(100). You could use greenred(100) for the green-red colour
scheme, but the blue-red scheme is generally considered better as fewer peo-
ple are affected with colourblindness in this spectrum. We have specified
scale="none" to make the colours in the heatmap directly reflect the val-
ues from the data matrix. In many cases this makes some rows or columns
appear entirely high or low, and so sometimes scaling by row (scale="row")
or by column (scale="col") helps.

To add the cluster assignments to the heatmap, we need to create a vector of
values that says which colour to make each sample. We could use the numeri-
cal cluster assignments as indices to select from a vector of colour names that
we specify:

rppa.cols <- c("yellow","red","green")[rppa.clusters]

Here we have used the c() function to create a vector with three colour
names, which are then selected from using the cluster assignments. We can
add this to the heatmap using the ColSideColors argument:

> heatmap(rppa.data,col=bluered(100),scale="none",ColSideColors=

rppa.cols)

2Note that if you do not have access priviliges to install packages, for whatever reason,
you can tell R to use your current (writeable) directory instead by entering the command
.libPaths(getwd()). The ‘.’ here before libPaths is essential!

Exploratory data analysis 127

We might want to add a figure legend to this plot:

> legend("topleft",legend=c("C1","C2","C3"),fill=c("yellow","red",

+ "green"))

This command puts a figure legend in the top-left corner of the plot win-
dow, specifying the legend text to contain C1, C2 and C3, represented by
boxes filled with the colours yellow, red and green, respectively. Using the
cluster assignments he end result should resemble Fig. 7.5.

If we are particularly interested in the clustering structure that emerged from
our initial exploratory analysis of the data, we might wish to characterize
these clusters further. One way to do that would be to find the proteins which
best discriminate between the samples of different clusters. We could achieve

FIGURE 7.5
Heatmap showing RPPA-derived protein expression levels for TCGA glioblas-
toma tumour samples, with cluster assignments indicated by colour bar.

128 Integrating Multiple Datasets in R

this by using the linear model framework available in the limma package. We
first need to load the limma package into R:

> library(limma)

If limma is not already installed, it can be obtained directly through R (from
Bioconductor):

> source("http://bioconductor.org/biocLite.R")

> biocLite("limma")

Once it is installed, it should now be possible to load the package.

With limma loaded, the first step in fitting linear models to all rows of a large
dataset involves creating a design matrix. This is a representation of all the
explanatory variables we wish to include in our linear model. This approach
was covered in Section 4.6, and used for a molecular biology application in
Section 5.5. In this example, if we want to construct a linear regression model
relating protein expression levels to the hierarchical clustering assignments in
the TCGA glioblastoma RPPA dataset, we should use three variables in the
design matrix: one for the intercept (this will allow for differences in the base-
line/background protein expression levels), one to represent expression specific
to cluster 2, and one to represent expression specific to cluster 3. Note that
we don’t need to consider expression specific to cluster 1, because if a sample
isn’t in cluster 2 or cluster 3 then it has to be in cluster 1 (therefore a 4th
variable would be redundant). You might wonder why we don’t just have one
variable for the intercept and one variable for the cluster assignment: because
we are using linear regression, this would attempt to find protein expression
levels that increase or decrease sequentially from cluster 1 to cluster 2 and
then to cluster 3, as the assignments would be treated as numeric values.
Cluster membership is a binary (in-out) variable, and so we need one variable
for each cluster (beyond the default case where all samples belong to a sin-
gle cluster). So, with that explained, we construct our design matrix as follows:

> design <- cbind(intercept=1,c2=as.numeric(rppa.clusters

==2),c3=as.numeric(rppa.clusters==3))

This rather long command is putting 3 columns together to form a table (using
cbind). The first column (which we have labelled ‘intercept’) has all values
equal to 1. The second and third columns are converted from TRUE/FALSE

values to 0/1, with the second column equal to 1 when the corresponding
sample is assigned cluster 2 and equal to 0 otherwise (and similarly for the
third column, but for cluster 3). If you run dim(design) you should see that
this table has 214 rows (one for each column of the protein expression data
matrix) and 3 columns.

http://bioconductor.org/

Exploratory data analysis 129

Fitting linear models to each protein’s expression levels is trivial once the
design matrix has been created appropriately. We first use the lmFit function
to create a model fit object:

> rppa.cluster.fit <- lmFit(rppa.data,design=design)

Then we use the eBayes function to generate moderated t-statistics for each
model fit (this borrows information across the whole set of model fits in order
to estimate where significance of a fit has been overly optimistic, or not opti-
mistic enough):

> rppa.cluster.fit <- eBayes(rppa.cluster.fit)

We can now inspect the most significant proteins to discriminate between
the clusters by using the topTable function:

> topTable(rppa.cluster.fit,coef=c(2,3))

The additional argument coef=c(2,3) specifies that the linear model coeffi-
cients we are interested in correspond to the second and third columns of the
design matrix (we are not interested in the statistics associated with the inter-
cept). Helpfully, the statistics corresponding to the terms of the model fits for
the cluster assignments are combined, and a p-value for the joint effect is dis-
played. To store the names of the proteins showing this differential expression,
we can extract the row names from this table, but we may wish to specify a
number of proteins to include and an adjusted p-value threshold (in case the
specified number includes features that weren’t significantly associated with
the specified variables):

> rppa.cluster.proteins <- rownames(topTable(rppa.cluster.fit,coef

=c(2,3),n=40,p.val=0.05))

With a set of proteins most significantly discriminating between the clus-
ters, the first step in interpreting the clusters would probably be to look at
what those proteins are and which clusters have high/low expression. We may
wish to visualize the expression values though, and so we can re-create our
heatmap, this time using only the most differentially-expressed proteins:

> heatmap(rppa.data[rppa.cluster.proteins,],col=bluered(100),scale

="row",ColSideColors=rppa.cols)

You should see that all we needed to do to select only a subset of the rows
from the data table was to use square brackets [rppa.cluster.proteins,]

to specify our list of row names to select (indexing arrays is described in Chap-
ter 2 of these tutorials). One other change to the previous heatmap command

130 Integrating Multiple Datasets in R

FIGURE 7.6
Heatmap showing RPPA-derived protein expression levels for TCGA glioblas-
toma tumour samples, with hierarchical cluster assignments indicated by
colour bar. Only the 40 most differentially-expressed proteins (i.e. those dis-
criminating between the cluster assingments) were used for this plot.

is that here we have specified scale="row", this is to highlight the protein-
wise differences between the clusters. The result should appear as in Fig. 7.6,
which seems to show that one cluster (C2) has very high EGFR and pEGFR
expression and one cluster (C1) has largely distinct expression across all other
proteins in the panel (non-EGFR proteins are either higher or lower than in
the other two clusters).

In Chapter 5, we encountered the aheatmap function from the NMF package
as another way of drawing heatmaps. To make more complex heatmaps, such
as Figure 6, this function can in fact be simpler. We don’t necessarily need
to specify the colour-schemes for either the main heatmap or the annotation
bars, and it’s possible to add as many annotation bars (to columns or rows)
as desired. First, load the NMF package:

> library(NMF)

Integrating multiple datasets 131

FIGURE 7.7
Heatmap showing RPPA-derived protein expression levels for TCGA glioblas-
toma tumour samples, with hierarchical cluster assignments indicated by
colour bar. Drawn using the aheatmap function from the /textitNMF package.

Then, call the aheatmap function to draw the specified matrix, with anno-
tation variables passed as factor -valued columns of a data frame:

> aheatmap(rppa.data[rppa.cluster.proteins,],scale="row",

+ annCol=data.frame(cluster=factor(rppa.clusters)))

This should result in Figure 7.7.

7.4 Integrating multiple datasets

The previous analysis looks quite nice for a quick exploration of a dataset
with no prior knowledge. However, what we would really like to do is relate

132 Integrating Multiple Datasets in R

the protein expression to clinical characteristics of the tumours, or patient
outcomes. For this we need to access a different dataset and integrate values
from the RPPA data table to the clinical data. This will require constructing
a mapping from the features of one dataset to the features of the other. In our
example, we will use the tumour TCGA barcodes (which are the column names
of the ‘RPPA RBN’ file) which are also present in the ‘GBM clinicalMatrix’
file. So first we load the clinical data file into the R workspace:

> clin.data <- read.table("GBM clinicalMatrix",sep="\t",
head=TRUE,row.names=1)

As with the RPPA data, we have specified tab-separated columns, column
headers and that the first column gives the row names. As this data table
contains non-numeric values, we do not wish to try to convert it to a numeric
matrix. We can inspect the first few rows and columns of the newly-created
data frame clin.data by indexing it with square brackets:

> clin.data[1:5,1:3]

This shows us that the tumour barcodes are in the rows and the clinical
characteristics are in the columns. We can check the dimensions of the whole
data frame:

> dim(clin.data)

This command should give the following output:

[1] 629 138

We see here that there is data here for 138 clinical characteristics of 629
tumours, which is a lot more than we need here! You can get an idea of what
the different clinical characteristics are by inspecting the column names of the
data frame:

> colnames(clin.data)

Our first hurdle will be to align the rows of the clinical data frame
with the columns of the RPPA data matrix. If we inspect the output of
rownames(clin.data) and colnames(rppa.data), we see that the column
headers of the RPPA data matrix have ‘.’ where the rownames of the clinical
data frame have ‘-’. We can correct this using the gsub function in R, which
finds all instances of a pattern in the elements of a character vector and swaps
them for a specified replacement:

> rownames(clin.data) <- gsub(rownames(clin.data),pattern="-",

+ replace=".")

Integrating multiple datasets 133

Now we can test to see how many of the column names of the RPPA dataset
have a matching row name in the clinical dataset:

> sum(colnames(rppa.data) %in% rownames(clin.data))

This command uses the slightly odd-looking operator %in%, which sees if there
is any element in the object following the operator which matches each ele-
ment of the object preceding the operator. In this case, the output is:

[1] 215

This indicates that every column from rppa.data has a corresponding row in
clin.data. The reverse will not be the case, as there are so many more rows
in clin.data than there are in rppa.data.

Now that the clinical data can be matched with the protein expression data,
perhaps we wish to find out if there are any proteins that vary according to
the sex of the patients. Then we could set up a design matrix with a column
for the intercept and a column for the sex term (e.g. taking value 1 if the
patient’s sex field is ‘FEMALE’):

> sex.design <- cbind(intercept=1,female=as.numeric(clin.data[

+ colnames(rppa.data),"gender"]=="FEMALE"))

Here we have used the column names of the RPPA data matrix to select
rows of the clinical data frame, and selected the column ”gender” from the
clinical data frame (which gives the patients’ sex), then tested each value to
see if it is ‘FEMALE’. Now we can proceed with the linear model fit:

> sex.lm <- lmFit(rppa.data,design=sex.design)

> sex.lm <- eBayes(sex.lm)

And we can inspect the top hits for the sex term:

> topTable(sex.lm,coef=2)

We can see that there are no proteins with so clear a difference based purely
on sex, as nothing retains significance after multiple testing corrections. We
can inspect this visually using a heatmap, given a colour-code to label the
tumour samples:

> sex.cols <- c("yellow","green")[sex.design[,2]+1]

What I have done here is to create an index for the character vector spec-
ifying the two colours for our label, where the index uses the sex term of the

134 Integrating Multiple Datasets in R

design matrix (1 if the corresponding clinical data field was ‘FEMALE’, 0
otherwise) plus 1, so that the value is 2 for tumours with the clinical data
field ‘sex’ equal to ‘FEMALE’ and 1 otherwise. For convenience, we can select
the IDs of the most differentially-expressed proteins:

> sex.proteins <- topTable(sex.lm,coef=2)$ID

Here we have used the ID field of the output from topTable as the row names
appeared to be just numbers. Then we can create the heatmap:

> heatmap(rppa.data[sex.proteins,],col=bluered(100),

+ ColSideColors=sex.cols)

> legend("topleft",legend=c("male","female"),fill=c("yellow",

"green"))

The resulting plot shows that actually even with only the proteins with the
most sex-distinct expression profiles, the tumour samples don’t segregate very
clearly by sex. That’s probably reassuring in a way, but I have used this as
an example because it can sometimes be worth checking factors that aren’t
part of your hypothesis, just to make sure they don’t affect things too much.
If they do, you can always take them into account in your models: in the
limma context, that would mean adding a column to the design matrix for
the variable that is not part of your hypothesis but may affect the expres-
sion levels, then not selecting the corresponding coefficient when extracting
statistics using topTable.

7.4.1 Survival analysis

When investigating associations with clinical outcomes, not all information
can be treated the same way. A particularly distinct example is that of sur-
vival times. Because patient survival (and some other events such as relapse)
is only observed until the most up-to-date follow-up information, for all those
patients who haven’t had the event (in this case, death) occur within the
observation window, we can’t know how much longer they would have gone
without the even occurring. We only know that it didn’t occur in the time
from them entering the study until the last follow-up. There have been math-
ematical methods developed for dealing with this situation, some of which are
described in Section 4.8. These are implemented in the R package survival ,
which should be installed and loaded as follows:

> install.packages("survival")

> library(survival)

The survival package needs to know both the event time (or time to last fol-
lowup) and whether or not the event occurred within the observation window.

Integrating multiple datasets 135

In the case of finding proteins with expression associated to patient survival
in the TCGA glioblastoma multiforme dataset, we could use the column
‘days to last followup’ from the clinical data frame for our event time and
the column ‘vital status’ for our event indicator. We then use the function
Surv to create the required object:

> os.time <- clin.data[colnames(rppa.data),"days to last followup"]

Here we have created a numeric vector called os.time, with the values of
the ‘days to last followup’ column of the clinical data frame, matched to the
tumour samples in the RPPA data matrix.

> os.event <- as.numeric(clin.data[colnames(rppa.data),

+ "vital status"]=="DECEASED")

Here we have created a numeric vector called os.event, taking value 1

when the ‘vital status’ column of the clinical data frame has the value
‘DECEASED’, and taking value 0 otherwise.

> gbm.os <- Surv(os.time,os.event)

Finally, we have created a survival object called gbm.os using the two vectors
created previously.

Cox Proportional Hazards models can be fitted using the survival package
in R, which enables a statistical evaluation of the relationship between a pre-
dictor variable (e.g. protein expression) and a censored outcome (e.g. patient
survival). It is relatively simple to invoke, as the following example producing
a proportional hazards regression model for patient survival predicted by the
expression level corresponding to the first row of the RPPA data matrix (an
arbitrarily-chosen example):

> coxph(gbm.os ∼ rppa.data[1,])

The tilde ∼ is used to describe that we wish to associate the outcome on
the left hand side with the predictor(s) on the right hand side. In this case
we have only one predictor, but it is possible to include more. You should see
that this example produces a model with a hazard ratio of 0.64 and a p-value
of 0.27. This hazard ratio means that on average, an increase in the expression
measurement for that protein (‘14-3-3 epsilon’) of 1 decreases the probabil-
ity of death having occurred during any given time interval by 1

0.64 = 1.56.
However, there is sufficient variation in the observed effect that there is a
27% chance that a randomly-generated variable would associate with the out-
come to the same degree of accuracy (i.e. the model fit wasn’t good enough to
read much into the result). On its own this can be moderately useful, but is

136 Integrating Multiple Datasets in R

especially powerful when we combine it with some programming functionality
within R. For example, we can use a for loop to fit a model for each row of
the RPPA data matrix in turn (provided we first create vectors to store the
results):

> all.hrs <- rep(NA,nrow(rppa.data))

> all.pvals <- rep(NA,nrow(rppa.data))

> for(i in 1:nrow(rppa.data)){
+ coxphmodel <- coxph(gbm.os ∼ rppa.data[i,])

+ all.hrs[i] <- summary(coxphmodel)$coef[1,2]

+ all.pvals[i] <- summary(coxphmodel)$coef[1,5]}

In this series of commands, we have first used the rep function to make a
vector full of missing values (‘NAs’), with the same length as the number of
rows in the data matrix rppa.data. Then a for loop is set up to use the iter-
ator variable i to select each row of the rppa.data matrix and each element
of the vectors all.hrs and all.pvals in turn. The loop runs the sequence
of commands between the curly brackets { and }, changing the value of the
variable named in the for function. In this case, there are three commands
to be run:

1. Create an object called coxphmodel which stores the result of fitting
a Cox proportional hazards regression model (using the function
coxph) to the censored survival times (gbm.os) to row i of the
matrix rppa.data.

2. Apply the summary function to the object that stores the fitted
model coxphmodel, in order to extract statistics. This results in a
list of outputs, from which the coef element is an array storing
the model coefficients, hazard ratios and p-values for each variable
included in the model. The 2nd column of the 1st row of this array
is the hazard ratio for the association between the first variable in
the model (in this case, row i of the matrix rppa.data) and the
outcome. So we set element i of the vector all.hrs to be the 2nd
column of the 1st row of the coef element of the result from the
summary function.

3. The same as the previous command, just set value i of the vector
all.pvals to the 5th column of the 1st row of the coef array, as
this corresponds to the p-value for the association between the first
variable and the outcome.

We should now have fitted 171 proportional hazards models, and summa-
rized each by obtaining the hazard ratios and the p-values, using the function
summary. We may wish to use these values to find the most interesting model
fits (i.e. the proteins with the strongest association between expression level

Integrating multiple datasets 137

and patient survival time). We can do this by combining the results together
into a data frame, along with the corresponding protein names:

> rppa.coxph.df <- data.frame(Protein=rownames(rppa.data),

+ HR=all.hrs,p.value=all.pvals)

Each column of the data frame is provided as a separate argument to the
data.frame function, with the column names being specified as the argument
names. It is probably more useful if we sort the table so that the proteins with
the smallest p-values are at the top:

> rppa.coxph.df <- rppa.coxph.df[order(rppa.coxph.df$p.value,

+ decreasing=FALSE),]

We use the order function to find the order of the values in the first argument
(in this case the p-values), specifying decreasing=FALSE because we want the
lowest values at the top (not the highest). To look at the first few rows of this
table we run the following command:

> rppa.coxph.df[1:4,]

Then see the output:

Protein HR p.value

128 PAI1 1.3204615 0.0004154699

66 IGFBP2 1.3917282 0.0005891653

36 CHK2 0.4511387 0.0042050539

7 ACC1 0.6666609 0.0080703250

This looks encouraging, but we should remember that actually we performed
171 identical hypothesis tests, and therefore purely by chance we’d expect
171 ∗ 0.05 (more than 8) randomly generated variables to have an association
to our outcome variable with a p-value of less than 0.05. We should take this
into consideration by applying multiple testing correction, which can be done
easily in R using the p.adjust function. We can add the adjusted p-values
into the data frame as follows:

> rppa.coxph.df$adj.p.val <- p.adjust(rppa.coxph.df$p.value,

method="fdr")

Here we specified the values of a new element in the data frame rppa.coxph.df
(as the column name ‘adj.p.val’ didn’t already exist), and so it created a new
column with the values generated by the p.adjust function. There are a num-
ber of possible options for methods to use for multiple testing adjustment, but

138 Integrating Multiple Datasets in R

the ‘fdr’ (estimated family-wise false discovery rate) is usually a reasonable
choice. We can now re-inspect the model fit statistics:

> rppa.coxph.df[1:4,]

Protein HR p.value adj.p

128 PAI1 1.3204615 0.0004154699 0.05442656

66 IGFBP2 1.3917282 0.0005891653 0.07659148

36 CHK2 0.4511387 0.0042050539 0.54245195

7 ACC1 0.6666609 0.0080703250 1.00000000

So, interestingly, only the first two proteins have a strong enough associa-
tion that we expect it to be very unlikely to have appeared by chance, even
when we test the association of 171 different variables.

To get an idea of what this represents, we can stratify patients based on
expression level of the outcome-associated protein and visualize the survival
curves of the two groups using a Kaplan-Meier plot. First, let’s create an
indicator variable that says whether or not each tumour’s expression level of
the top hit from the proportional hazard regression model fitting (‘PAI1’) is
greater than its median expression value (this ensures that the patients are
stratified into two equally-sized groups, although it does disregard the actual
distribution of the expression values):

> pai1.high <- as.numeric(rppa.data["PAI1",]

+ >median(rppa.data["PAI1",]))

This command creates a numeric vector pai1.high that contains value 1

when the corresponding column of the ‘PAI1’ row of the rppa.data matrix is
greater than the median value of the whole ‘PAI1’ row, and contains value 0

when the corresponding column is not greater than the median. Next, we can
use the survfit function to create the Kaplan-Meier survival curves for each
of the two groups:

> plot(survfit(gbm.os ∼ pai1.high),col=c("black","red"),lwd=2)

Here we have specified that the two survival curves should be plotted with
black and red lines (corresponding to expression ≤ median and expression
> median, respectively) with width twice as thick as default (by specifying
lwd=2). We probably also want to add a legend to the plot, saying which
colour represents which patient group:

> legend("topright",legend=c("low-PAI1","high-PAI1"),fill=c("black"

+ ,"red"))

Integrating multiple datasets 139

FIGURE 7.8
Kaplan-Meier plot showing overall survival for glioblastoma multiforme
patients in TCGA dataset whose tumours had lower (black line) or higher
(red line) expression of SERPINE1 as measured on the RPPA platform.

The result should appear as in Fig. 7.8, and illustrates the fact that patients
whose tumours had higher expression of the PAI1 protein were more likely to
die sooner than those with lower expression.

Not satisfied that we have found something interesting, it may be pertinent
to think of possible confounding factors that might explain the result we see.
The data we downloaded contains a range of clinical information about the
patients and tumour samples, which may explain either protein levels or some
of the other clinical variables. To pick an example, we can see that one of
the columns of the clinical data frame is called ‘chemo therapy’. If we use the
function table to look at the distribution of values of this variable across the
patients whose tumours were profiled on the RPPA platform, we see:

> table(clin.data[,"chemo therapy"])

NO YES

139 95 395

140 Integrating Multiple Datasets in R

So 139 don’t have information about whether they received chemotherapy or
not, 95 hadn’t received chemotherapy, and 395 had received chemotherapy. It
may not make sense to include survival data from patients who didn’t have
chemotherapy along with those who did, so perhaps we should repeat the
model fit using only the patients who had received chemotherapy? To do this,
we could create a vector containing the column numbers for tumours whose
patients received chemotherapy:

> had.chemo <- which(clin.data[colnames(rppa.data),

+ "chemo therapy"]=="YES")

Then we can repeat the model fit using only the subset of the patients who
definitely received chemotherapy:

> coxph(gbm.os[had.chemo] ∼ rppa.data["PAI1",

+ had.chemo])

It looks like the relationship in this subset of patients is pretty similar to
the one we saw before. Perhaps there are other confounders though?

One last example for this tutorial is included to show how to include potential
confounder variables into survival models in R. You simply add these terms
into the formula following the ∼ (tilde). For example, we could repeat the
previous model fit but include age as a possible factor that might influence
patient survival. First it makes it a little more convenient if we create a vector
containing the ages for the patients in question:

> gbm.age <- clin.data[colnames(rppa.data)[had.chemo],

+ "age at initial pathologic diagnosis"]

Here we use the vector of indices had.chemo to select only column names
corresponding to the patients who had received chemotherapy, then use this
to look up the appropriate rows in the clinical data frame. Perhaps it would
be informative to look at a histogram of the ages in this cohort? Let’s leave
that for now, and go straight on to re-evaluating the proportional hazards
model fit to take into account the effect of age on patient survival:

> coxph(gbm.os[had.chemo] ∼ gbm.age +

+ rppa.data["PAI1",had.chemo])

You will see that all we have done in relation to the previous model fit is added
in the term gbm.age after the ∼, followed by a + (plus sign). The results of this
model fit seem to suggest that there is a strong association between age and
patient survival, and when taking that into account the association between
SERPINE1 expression and patient survival is rather weaker than originally

Multiple molecular endpoints 141

estimated. In fact, if we had included age as an additional variable in the orig-
inal set of model fits across the whole RPPA dataset (using only data from
the cohort of patients who received chemotherapy) and then adjusted for the
multiple hypothesis tests that were carried out, then the association between
SERPINE1 expression and shorter patient survival would no longer be much
stronger than the sort of associations you would expect to see appearing purely
by chance when looking for associations among that many proteins.

7.5 Multiple molecular endpoints

In this tutorial so far we have seen integration of a molecular dataset (RPPA)
with clinical data. Another situation which arises is one in which we have mul-
tiple ‘layers’ of molecular and genetic characteristics for the same samples, and
wish to look for patterns in how one type of measurement influences another.
For example, the Xena Browser lists multiple datasets for the Glioblastoma
Multiforme cohort from TCGA, including: DNA copy number (SNP arrays),
cytosine methylation (Illumina HumanMethylation arrays), gene expression
(Affymetrix arrays and RNA-seq), gene-level somatic mutation (from sequenc-
ing) and protein expression (RPPA). If we had identified a protein from our
RPPA dataset as being of particular interest, one way to characterize its
behaviour would be to find genes whose expression is associated with the pro-
tein expression level. We could perform this analysis by downloading a gene
expression dataset from the Xena Browser, following the steps in Sections 1–2
of this tutorial, but instead of downloading the ‘RPPA RBN’ dataset shown
in Fig. 7.3, download the ‘gene expression array - AffyU133a’ dataset (this is
the gene expression dataset with the most samples, and therefore has greatest
likelihood of overlapping most samples with the RPPA dataset). Once you
have downloaded the file ‘HT HG-U133A.gz’, unzip it so that you have a file
‘HT HG-U133A’ and then read this matrix into R:

> gx.data <- as.matrix(read.table("HT HG-U133A",sep="\t",
head=TRUE,row.names=1))

This will take a bit longer than the RPPA dataset as this dataset is much
larger! With the two molecular datasets (RPPA and Affymetrix array) loaded
into R, analysis begins by finding the patients whose tumour samples match
between the two datasets:

> shared.samples <- intersect(colnames(rppa.data),colnames(gx.data))

This command uses the intersect function to return the elements of the
two vectors of column names which are present in both matrices.

142 Integrating Multiple Datasets in R

Now it will be possible to find genes whose expression is significantly corre-
lated with a candidate’s protein expression (say, SERPINE1, to follow on from
our previous example). We can make use of the fact that correlation between
the measured levels of different molecular entities will be detectable as a linear
association between variables: we can use the limma package to evaluate these
relationships simultaneously. First we load the limma package:

> library(limma)

Then we need to set up our design matrix. For this we want to include an
intercept and a variable giving the candidate’s protein expression level, to
which each gene’s measured expression level will be fit using a linear regres-
sion model:

> cor.design <- cbind(intercept=1,PAI1=rppa.data[

+ "PAI1",shared.samples])

In this command, we have created a matrix called cor.design by joining
two columns: the first column (named ‘intercept’) always takes value 1, and
the second column (named ‘PAI1’) has the values from the matrix rppa.data

for the row ‘PAI1’ and the columns listed in the vector shared.samples which
we created previously. The cor.design table should have 185 rows.

With an appropriate design matrix created, we can fit linear regression models
to all rows of the gene expression data matrix:

> cor.fit <- lmFit(gx.data[,shared.samples],design=cor.design)

You will see that in this command we have indexed the gx.data matrix by the
shared column names (shared.samples). This is very important as it ensures
that we are comparing the PAI1 protein expression in the design matrix to
the gene expression from the same tumours (having used the same shared col-
umn names to index the values from rppa.data which went into the design
matrix).

> cor.fit <- eBayes(cor.fit)

Now cor.fit contains all the statistics derived from the individual linear
model fits. We can inspect these statistics for the two most significantly cor-
related probes from the gene expression dataset:

> topTable(cor.fit,coef=2,number=2)

logFC AveExpr t P.Value adj.P.Val B

SERPINE1 1.0462033 7.371430 12.526891 1.787062e-26 2.151980e-22 49.01303

LOX 0.6583057 5.323454 8.969556 3.263406e-16 1.493561e-12 26.22687

Summary 143

We can see which genes these are (which encouragingly includes SERPINE1,
the gene encoding the PAI1 protein), and that they are both positively-
correlated with the PAI1 protein expression (we know this because the log2
fold-change logFC and the t statistic t are both greater than zero), which
means that tumours with higher PAI1 protein level also had higher SER-
PINE1 and LOX gene expression. We could write out a list of the 100 most
significantly-correlated genes3:

> pai1.100cor.genes <- rownames(topTable(cor.fit,coef=2,number=100))

> write.table(pai1.100cor.genes,file="GBM PAI1 correlated100genes.txt"

+ ,quote=FALSE,row.names=FALSE,col.names=FALSE)

With a list of correlated genes, looking for biological processes which are
known to involve an unusually large number of genes in the list can offer insight
into what functions the protein of interest might be involved with in the sam-
ples that we are investigating. A helpful resource for this sort of exploratory
functional enrichment analysis is DAVID [2]. Visit the webpage http://david.
ncifcrf.gov/summary.jsp, and you can upload the file you just created (‘GBM
PAI1 correlated100genes.txt’) by clicking on the ‘Browse...’ button in the left-
hand panel, and selecting ‘OFFICIAL GENE SYMBOL’ from the drop-down
list under ‘Step 2: Select Identifier’. Then upload the gene list, select species
(Homo sapiens) and click on the button ‘Functional Annotation Chart’.

It would be equally feasible to create a design matrix with the levels of a
protein of interest and use the lmFit function to fit linear models to each of
the proteins from the RPPA dataset in turn. The resulting model fit statistics
should have the protein of interest perfectly-correlated with itself (i.e. a p-value
of 0), but could be used to find potential regulators. The few most significantly-
associated proteins could be uploaded to STRING (visit http://string-db.org/
and click the ‘multiple names’ tab, then upload using the ‘Browse...’ button),
and you can visualize interactions among the protein network. Another poten-
tial application would be to download the gene-level mutation indicators from
the UCSC Cancer Genomics Browser, and find proteins or genes significantly
correlated with mutation status of a gene of interest: this could give insight
into the role of the gene in that tumour type. With a relatively simple set of
data analysis tools at your command, and an ability to obtain data from the
public access repositories, you can achieve a lot!

7.6 Summary

The aim of this particular tutorial is to give a working example of how straight-
forward it can be to explore datasets and even to search for patterns of

3Why 100? It’s more or less completely arbitrary, although it is usually enough to give
a signal in function enrichment analysis

http://david.ncifcrf.gov/
http://david.ncifcrf.gov/
http://string-db.org/

144 Integrating Multiple Datasets in R

association between multiple features from different datasets. The R syntax
takes a bit of practice to get used to, and there are usually some little things
that need to be done before different datasets can be linked together by com-
mon identifiers, but hopefully this shows you that a small set of analytical
tools can be used in a whole variety of situations and can produce all sorts of
results, including ones that may be of genuine interest in a field such as can-
cer research. The example using survival data is intended to illustrate the fact
that there are often subtleties in the associations between variables in large
datasets, which can be revealed through a process of exploration. Ultimately,
the more data you have available, the more you can draw upon to explain
the associations you see, and the more things you can rule out as confound-
ing factors, the more likely the association you identified is to validate in a
real-world setting!

Bibliography

[1] J Zhu et al, “The UCSC Cancer Genomics Browser,” Nature Methods
6:239-240 (2009).

[2] DW Huang & BT Sherman & RA Lempicki, “Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources,” Nature
Protocols 4:44-57 (2009).

8

Analyzing Microarray Data in R

The availability of affordable, reliable gene expression microarrays through the
1990’s and 2000’s in many ways brought bioinformatics into the mainstream of
molecular biology research. It became cheap enough for most research groups
to generate tens to hundreds of thousands of measurements from their biologi-
cal samples in an individual experiment. While microarrays for gene expression
have largely been superceded by RNA-seq, there remains a vast wealth of data
in the public domain from microarray platforms, and being able to analyze
that data is rather like reading scientific literature. In fact, because there is
so much information contained in these high-throughput molecular profiling
studies, it is quite likely that a different scientific question would lead to dif-
ferent analyses and different findings being reported from the same dataset.
There is much to be gained from revisiting previous data in the context of a
new study!

Gene expression microarrays also benefit from standardized platforms with
standardized pre-processing pipelines, which mean that it is relatively straight-
forward to go straight from a raw dataset to a normalized matrix of gene
expression measurements. From that point, it becomes possible to apply the
anayltical methods we have already covered in the earlier chapters of this
book. The examples provided in this chapter should also help consolidate
what you have recently learned, and help develop an understanding of the
ways analysis of large datasets can inform biological understanding. It is prob-
ably worth noting that there are two main designs of microarray: one-channel
arrays measure intensity for a single fluorescent marker, and therefore one
measurement is assigned to each probe (where each probe represents a unique
target mRNA sequence); two-channel arrays label two different mRNA (usu-
ally actually cDNA) libraries with different fluorescent markers, and therefore
two intensity signals (and two measurements) can be assigned to each probe.
For the sake of simplicity, this chapter focuses on analysis of single-channel
microarrays produced by Affymetrix, which are by far the most abundant in
terms of publically-available gene expression data. There are of course other
manufacturers of gene expression microarrays, but as all records on the GEO
repository (which we will discuss in this chapter) require processed datasets to
be made available, platform-specific instructions for pre-processing and nor-
malizing all kinds of microarrays is unnecessary.

145

146 Analyzing Microarray Data in R

The first parts of this chapter will focus on obtaining publically-available
microarray data in its raw (unprocessed) form, getting a sense of what the
measurements represent, and preprocessing the data into a more readily-usable
form. Then we will walk through a few standard analytical tasks: identifying
genes that are differentially-expressed according to some experimental condi-
tion (variable) of interest; identifying features correlated to a gene of interest;
exploring global transcriptomic relationships between samples using cluster-
ing; and finally accessing a dataset from a clinical study, complete with sample
annotations, for performing survival analysis. These should cover the majority
of applications routinely encountered in biomedical research.

8.1 Bioconductor

The computational tools in this chapter rely on the Bioconductor project.
The preferred way to install the latest version of Bioconductor is to use the
BiocManager package. This is obtained using the install.packages function:

> install.packages("BiocManager")

Then the function install can be called from the package. With no argu-
ments specified, this function will install the core Bioconductor packages. Spe-
cific packages (and all their dependencies) can be installed by specifying the
required package(s) as arguments to the install function. For example, to
install the Bioconductor package gcrma:

> BiocManager::install("gcrma")

For older versions of R, the BiocManager package may not be available. There
is another way to install the Bioconductor packages into your R environment
from within the R console, using the commands:

> source("http://bioconductor.org/biocLite.R")

> biocLite()

The first command loads the function biocLite that is defined on one of
the Bioconductor organisation’s computers. Then the second command runs
this function to install the default set of Bioconductor packages to your sys-
tem. If you ever need to install additional Bioconductor packages that aren’t
included in the basic installation, such as the packages gcrma and annotate
that will appear later, simply enter the name of the package (in quotes) as an
argument to the biocLite function like this:

> biocLite('gcrma')

http://bioconductor.org/

Accessing microarray data from GEO 147

8.2 Accessing microarray data from GEO

The Gene Expression Omnibus1 is a comprehensive repository for functional
genomics data. You may still be wondering if it’s worth learning how to ana-
lyze data from gene expression microarrays, given that RNA-seq has become
the industry standard for transcriptomic profiling. Hopefully a search of the
GEO repository will help convince you of this: open the GEO web page in
a browser, and click on the link to Browse by Platform. Sort the resulting
table by number of samples, and see the number of samples for which data
from different platforms is available. As of November 2018, a single microarray
platform had 143,762 samples, as shown in Fig. 8.1.

FIGURE 8.1
Screenshot showing table of platforms by number of samples.

For the worked example in this tutorial, we will use a gene expression microar-
ray experiment that is on GEO with the experiment accession GSE25191. To
find the record for this experiment, go to the GEO website and enter the
accession number into the ‘GEO accession’ field.

You can download the raw data in a zipped ‘tar’ archive by clicking on one of
the links near the bottom of the page, as illustrated in Fig. 8.2.

When the file has downloaded, you may need to extract the archive and decom-
press the individual compressed files (which will have the ‘.CEL.gz’ extention).
The affy package can read in these compressed files, and it is probably easier

1http://www.ncbi.nlm.nih.gov/geo/

http://www.ncbi.nlm.nih.gov/

148 Analyzing Microarray Data in R

FIGURE 8.2
Screenshot showing link to click to download raw data archive for GEO
microarray experiment GSE25191.

to leave these as they are because the precise way to decompress the files will
depend on your software (one common example is WinZip). It will make the
rest of the exercise easier if all the individual raw data files (compressed or
uncompressed) are placed into the same folder somewhere on your computer.
The simplest application of Bioconductor’s tools for manipulating Affymetrix
data will typically load in ALL the ‘.CEL’ (or ‘.CEL.gz’) files from the current
working directory.

8.3 Single-channel array analysis

The R package affy in Bioconductor provides most tools for reading, normaliz-
ing and analyzing single-channel microarrays (such as the Affymetrix genechip
oligonucleotide arrays). Load the affy package in R using:

> library(affy)

8.4 Loading data

Raw data from Affymetrix microarrays is provided in ‘cel’ file format. If you
wish to load into the workspace all raw data .CEL files currently in the working

Data visualisation 149

directory, the ‘ReadAffy’ function exists to do this. This command is included
here in case you wish to do some exploration of the raw data, although in
practice it is rare that you would need to do this2. Note: in most cases you
will want to jump straight to Section 8.6 to load data and normalize
in a single step, then move onto Section 8.7. Sections 8.4–8.6 are
included for educational purposes only.

Use of the ‘ReadAffy’ function is straightforward:

> rawdata <- ReadAffy()

Now the object rawdata is created on the R workspace, and this contains
all the information from the raw data files structured in a way that facilitates
manipulation within R. The actual object is a sort of modified data frame
called an AffyBatch object: this is particular to the Bioconductor packages.

All but the most recent Affymetrix microarrays have two versions of each
probe on the array: the perfect match probe is the exact complement of the
target sequence, but the mismatch probe differs by one base from the exact
complement. The mismatch probes were included to get an estimate of non-
specific binding from each probe. To obtain the intensity values of the perfect
match or mismatch probes for each chip, use pm() or mm(), respectively. For
most purposes of examining raw data, the perfect match values alone will suf-
fice, so to avoid unnecessary complication we will ignore the mismatch values3.
Therefore, to obtain raw expression values for the dataset:

> exprs <- pm(rawdata)

8.5 Data visualisation

With any microarray data, it is useful to examine your data visually to check
that there are no obvious anomalies – there are plenty of possible sources for
problems that can affect microarray experiments! Normalizations will usually
smooth over such anomalies, so it is often worth having a look at the data
before normalization.

2As you’re loading all the information for each microarray, the data files tend to be very
large.

3The later Affymetrix microarrays no longer contain any mismatch probes, largely
because it was found that the best normalization of the data didn’t use the mismatch
probes.

150 Analyzing Microarray Data in R

8.5.1 Image plots

Assuming the layout of the chip is included in the ‘chip definition file’ that the
affy package will access when loading the data, the raw data for each chip can
be converted back into an image and plotted using the image() function. If we
have the raw expression data in an object rawdata, as created in Section 8.3,
to look at the image of the first array use:

> image(rawdata[,1])

In the above command, we have used the same method of indexing to get
just one array’s worth of data from the AffyBatch object rawdata as the
indexing that applies to arrays and data frames. The result of the command
should be a figure like that shown in Fig. 8.3. The function image can be
used to draw an unclustered heatmap of any numeric matrix, defaulting to a
greyscale colour scheme.

FIGURE 8.3
Reconstructed raw image from the first microarray in our experiment. This
would show any obvious spatial biases affecting the intensity measurements
from the array.

Data visualisation 151

8.5.2 MA plots

An MA plot, or M vs. A plot, is a simple way of checking an array for intensity-
dependent effects. For a two-channel array, it plots the log-ratio of intensity
from one dye (Red) to the intensity from the other dye (Green) for each
probe against the overall intensity of each spot, thus M = log2

(
R
G

)
and

A = log2(R)+log2(G)
2 . If there are no intensity-dependent effects, which is what

we would hope for, the MA plot should resemble a horizontal line around
M = 0.

For a single-channel array like the Affymetrix chips, pairs of microarrays have
to be used to construct an MA plot. The M values are defined as the ratio of
intensities between the two chips for each probe, and the A values are the cor-
responding average intensities across the two chips. As with the two-channel
case, if the MA plots involving a chip depart from the horizontal line around
M = 0, it is likely that the intensity of the hybridisations measured on that
chip may not be representative of the expression levels.

For MA plots of all pairwise combinations of chips in the experiment, given
a table of expression values, you would use the function plotMA(). But as
this may take quite a while, we will inspect a single MA plot comparing two
individual arrays. We use the table of perfect match probes from our experi-
ment, which we called exprs, selecting an appropriate subset of the expression
table’s columns. For example, to compare the first and third chips:

> plotMA(exprs[,c(1,3)])

This should result in Fig. 8.4. Again, you should note that the standard
approach to indexing arrays applies to the object exprs.

8.5.3 Scatterplots

A simple way to explore the relationships between different chips is to plot
a scatter of the expression values for each probe-set in two chips. This is in
fact equivalent to an MA plot rotated 45-degrees so that the horizontal line
around M = 0 becomes the line X = Y (where Xs are the expression values
for the first chip and Ys are the values for the second). This can be done using
the basic plot function, and can take any of the usual parameters. To plot
the same individual comparison as in the MA plot above, which should result
in Fig. 8.5, enter:

> plot(x=exprs[,1],y=exprs[,3])

As the first and third arrays are both non side-population samples, we would
probably expect to see less variation than if we plotted the first array against

152 Analyzing Microarray Data in R

FIGURE 8.4
MA plot showing intensity ratios for all probes in a pair of microarrays, plotted
against their average intensity. A departure from a horizontal line along M = 0
indicates intensity-dependent bias in the expression measurements from the
arrays, but in this case we can see that aside from a handful of possible outliers,
the general trend is as expected.

the sixth (which comes from a side-population sample). Sure enough, repeat-
ing the step above but replacing the third array with the sixth, we get the
plot shown in Fig. 8.6.

However, you may have spotted that the scale on the y-axis is different between
Fig. 8.5 and Fig. 8.6, and this may potentially make the difference seem greater
than it is. In order to compare the scatter plots more reliably, we should plot
them in the same space. The following example uses the points function to

Data visualisation 153

FIGURE 8.5
Scatter plot relating all probes’ values in the first microarray of our experiment
to those in the third microarray.

overlay a new set of points on an existing plot, and by specifying the colour
as an argument to the plotting functions we can highlight which points come
from which comparison:

> plot(x=exprs[,1],y=exprs[,6],col="blue")

> points(x=exprs[,1],y=exprs[,3])

Now we can make a fairer comparison, and in Fig. 8.7 we still see that the scat-
ter comparing the first and sixth arrays (blue) is wider than that comparing
the first to the third arrays (black).

8.5.4 Box plots

It is relatively straightforward to explore systematic bias in the overall dis-
tributions of intensity values from each microarray through the use of box

154 Analyzing Microarray Data in R

FIGURE 8.6
Scatter plot relating all probes’ values in the first microarray of our experiment
to those in the sixth microarray. The scatter between two more biologically
dissimilar samples will tend to be wider than for pairs of more biologically
similar samples.

plots. The simplest application to our dataset can explore the perfect match
intensities from each array:

> boxplot(exprs)

As we see in Fig. 8.8, the vast majority of the values from each array are so
much lower than the largest values that it becomes very difficult to see the
main distinctions between the arrays. If we repeat on the log-transform of the
intensity values as in Fig. 8.9, any bias will be much easier to see.

> boxplot(log(exprs,base=2))

In the above command, the argument base=2 specifies that we wish to use
base 2 logarithms (often abbreviated log2). Logarithms with any base will
typically have the same effect, but it has become standard with microarrays
to use base 2 logarithms.

Normalizing data 155

FIGURE 8.7
Combined figures showing two scatter plots that each compare the intensity
values of probes from a pair of microarrays.

8.6 Normalizing data

Normalization of microarray data will remove systematic technical bias that
affects the raw values. Bioconductor has implementations of a number of nor-
malization methods for single-channel arrays. This includes (among others):

• mas5() – Affymetrix’s own normalization program.

• rma() – ‘Robust Multi-Chip’ average.

• gcrma() – A version of RMA that corrects for biases due to probe GC-
content. This is provided in a package of its own, called gcrma. Install this
with the command biocLite('gcrma'), and load the package with the com-
mand library(gcrma).

156 Analyzing Microarray Data in R

FIGURE 8.8
Box plot of the intensity values from each array.

FIGURE 8.9
Box plot of the log-transformed intensity values from each array.

Normalizing data 157

GCRMA is good but takes significantly longer than RMA, so you may just
want to use RMA now:

> normdata <- rma(rawdata)

If you have a particularly large dataset, it is worth knowing about the justRMA
command, which bypasses loading all the raw data into the workspace before
normalization. Instead of the steps given in Section 8.4, an alternative would
be to change R’s working directory (using the function setwd())to the folder
containing the ‘.CEL’ (or compressed ‘.CEL.gz’) files, then enter:

> normdata <- justRMA()

The result of either of the above applications of the RMA method is an object
on the R workspace normdata, which is a data structure called an Expres-
sionSet. This is another custom data structure used by Bioconductor, used
because it conveniently organises the information required to work with a
normalized microarray dataset. To obtain an array containing the normalized
expression values, use the exprs() function:

> normexprs <- exprs(normdata)

Now we can repeat the box plot we performed in the previous section, using
the RMA-normalized values. This will give us the result seen in Fig. 8.10,

FIGURE 8.10
Box plot of the RMA-normalized expression values from each array.

158 Analyzing Microarray Data in R

in which we can see the overall distributions from the individual arrays have
been transformed to fit the same pattern:

> boxplot(normexprs)

Vectors of the names of the samples and the identifiers for the probes on
the microarrays can be retrieved using the functions sampleNames() and
featureNames(), respectively. The outputs will be listed in the same order as
they occur in the array of normalized expression values normexprs.

> samples <- sampleNames(normdata)

> probesets <- featureNames(normdata)

8.7 Differential expression (linear models)

The limma package uses linear models to analyse microarray data, which is
a particularly powerful idea as the same framework can be used for both
simple comparisons and arbitrarily complex experimental designs. The prin-
ciple of limma is to evaluate how well the expression of each gene (Y in
Equation 8.1) can be explained by some specified variables (X in Equation
8.1). The linear model framework is shown in Equation 8.1, which should be
familiar:

Y = β0 +X1β1 + ...+Xnβn + ε. (8.1)

In the equation, each X refers to a variable of interest for which we wish
to consider an affect on gene expression, and the corresponding β values
are the (unknown) coefficients that characterise the affect of each of these
variables. β0 is a special case, that of the intercept, which will capture the
baseline level of expression of the gene across the dataset. The final compo-
nent of the model is ε, which is the residual of the model fit: essentially all
the variation of the gene’s expression that is not explained by the rest of
the model, this can be used to characterise how well the specified model fits
the data.

In the process of evaluating linear models from microarray data analysis, the
values of the X variables in the model framework of Equation 8.1 must be
specified. This is done through the creation of a design matrix to be passed
as an argument to the core limma function that does the linear model fitting
and evaluation: lmFit.

Differential expression (linear models) 159

8.7.1 Design matrix

The design matrix indicates, for each of the arrays in the dataset, which val-
ues of the various experimental variables (the Xs in Equation 8.1) apply. It is
both the reason for the power of the limma approach and the reason it seems
a bit complicated at the start. The design matrix can be constructed in a
number of ways, but the principle is that it will be a table with a column for
each experimental variable and a row for each microarray in the dataset.

If there is only one experimental variable, the design matrix can be as simple
as a vector with a number value for each microarray in the experiment. How-
ever, even if there is only one explicit experimental variable we normally need
to include an intercept term.

For numeric variables, such as a simple indicator like the variable ‘SidePop’
specified in the targets file shown in Fig. 8.2, a design matrix can be con-
structed using the cbind function. This function in R constructs an array
through combining the vectors passed to it as individual columns, as should
be illustrated in the following example:

> design <- cbind(c(1,1,1,1,1,1),c(0,0,0,1,1,1))

> design

[,1] [,2]

[1,] 1 0

[2,] 1 0

[3,] 1 0

[4,] 1 1

[5,] 1 1

[6,] 1 1

In the above example, each of the two columns of the array design represent
the values of one of the variables in our experiment, for each of the microarrays
in the dataset. The first column is the intercept, which has a constant value
of 1 across all microarrays. The second column indicates whether the corre-
sponding microarray profiled samples from side-populations (value = 1) or
non-side-populations (value = 0). Using this design to fit linear models with
limma will enable us to evaluate the significance of impact on each gene’s
expression of whether or not the samples are isolated side-populations or not.

In cases with categorical variables like this, each element of the design matrix
takes a value of 1 if the microarray corresponding to that row of the matrix
has the value corresponding to the column of the matrix (e.g. in this example
the 2nd column effectively encodes does this sample have the variable ‘Side-
Pop’=1?, so that design[4,2]=1 and design[3,2]=0). For a slightly more
complex example (with named columns), see below:

160 Analyzing Microarray Data in R

> design2 <- cbind(intercept=1,pair2=c(0,1,0,0,1,0),

pair3=c(0,0,1,0,0,1))

> design2

intercept pair2 pair3

1 1 0 0

2 1 1 0

3 1 0 1

4 1 0 0

5 1 1 0

6 1 0 1

Now in the new design matrix design2 the second column encodes does this
sample have the variable ‘Pair’=2? and the third column encodes does this
sample have the variable ‘Pair’=3?. When it comes to calculating the coeffi-
cients and significances corresponding to these two values of the ‘Pair’ variable,
they will characterise how a gene’s expression varies between those samples
with ‘Pair’=1 and those samples with the value corresponding to each col-
umn. When we come to using the results of limma’s linear modelling, these
individual coefficients can be combined to perform an ANOVA-type analysis
on the categorical variable. Naming the vectors that will make up the columns
of the design matrix is generally a good idea, as it helps us remember which
coefficient in the model corresponds to which experimental variable. You can
alter the column names after creating a design matrix using the colnames

function. For example, if we wanted to go back to add column names for the
first design matrix:

> colnames(design) <- c("Intercept","Sidepop")

8.7.2 Fitting linear models

The main part of the limma analysis is fitting and evaluating linear models of
each gene’s expression, using the lmFit function. Assuming we have a normal-
ized expression data matrix normexprs and a design matrix design, a model
is simply fitted using the commands:

> fit <- lmFit(normexprs, design)

> fit <- eBayes(fit)

The second command performs an empirical Bayes moderation of the t-
statistics associated with each coefficient in the linear model. Moderation of
t-statistics makes the resulting analysis more robust to over-inflated signifi-
cance estimates due to the fact that there are typically only a few measure-
ments for each gene with each value of the linear model variables, and the
variance estimate (which is part of the denominator of the t-statistic) can be
artificially low.

Differential expression (linear models) 161

Lists of the top differentially-expressed genes for specified coefficients can
be obtained using the topTable() command. To find the top differentially-
expressed genes corresponding to the difference between side-populations and
non side-population samples, enter:

> topTable(fit,coef=2,adjust="fdr")

Here coef specifies which column of the design matrix to use for the com-
parison, and adjust specifies what statistical adjustments should be used to
take into account the considerable multiple testing (in this case ‘false discovery
rate’). In fact, it was unnecessary specifying this as fdr is the default multiple
testing adjustment in the topTable function.

If we instead wished to examine the effect of the cultures from which the
samples were isolated, we would have to fit a different set of linear models,
using the design matrix design2:

> fit2 <- lmFit(normexprs,design2)

> fit2 <- eBayes(fit2)

Now we could find genes with expression variation best explained by changes
to the categorical variable Pair, by specifying that we wish to include effects
from both the second and third model terms. You may notice that this table
has a column for F rather than t as before: this is because the significance
of the combined effect of multiple linear model terms is evaluated with an F
statistic rather than a t-statistic.

> topTable(fit2,coef=c(2,3))

8.7.3 Making use of the results

While it is exciting that we have been able to identify lists of probesets
with significant differential expression, it is clear that in its current state
the list output from the topTable function is of limited use. The first
question most people have upon seeing such a table is: ‘what are those
genes?’ The automatic annotation microarray experiments that performed
by the ReadAffy or justRMA functions do not extend as far as looking
up the gene symbols, so this is something we have to add to the results.
First we need to load additional Bioconductor packages: one called anno-
tate, and another that contains the annotation information for the microar-
ray platform that has been used for the experiment. A list of the available
annotation packages and the platforms they correspond to can be found
at http://www.bioconductor.org/packages/release/data/annotation/, and the
one to use for this purpose will have a name ending in ‘.db’. Once the
appropriate packages have been loaded, you can add the gene symbols to

http://www.bioconductor.org/

162 Analyzing Microarray Data in R

FIGURE 8.11
Annotated table of differentially-expressed genes.

the output of a linear model fit that has already been constructed. For exam-
ple, to add gene symbol annotation to the first linear model that was fitted in
Section 7.3, we first load the annotation package hgu133plus2.db:

> library(annotate)

> library(hgu133plus2.db)

We can use the topTable command (in the same way we did before) to create
the output, but then add an additional column to the resulting table, speci-
fying the gene symbol that corresponds to the probe-set in question:

> fit.out <- topTable(fit,coef=2,number=20)

> fit.out$Symbol <- unlist(mget(rownames(fit.out),hgu133plus2SYMBOL))

This command uses the mget function to look up the gene symbol annotations
for each rowname in the fit.out data frame, then add this as an additional
column. Inspecting the first few rows of the table fit.out, we should see the
table shown in Fig. 8.11. A description of the various columns included in the
table follows:

• ID – this is the identifier for the probe-set from which the corresponding
measurements come.

• Symbol – the official symbol for the gene into which the probe-set maps.

• logFC – the log fold-change associated with the contrast, this is equivalent
to the β term in the linear model given in Equation 8.1, and represents the
typical change in expression value for the probe-set resulting from a unit
increase of the variable associated with the term (X in Equation 8.1)4.

4To illustrate, if we have a two-class categorical variable then logFC is the average log
fold-change of the probe’s expression value between the two classes. However, if we were
modelling the effect of age (in years, this is a numerical variable) on expression then logFC

will be the average amount the probe’s expression value increases with a one-year increase
in age.

Differential expression (linear models) 163

• AveExpr – the average expression value for the probe-set.

• t – the t statistic derived from the value of the coefficient and the residual.

• P.Value – the p-value associated with the t statistic for the term, an indi-
cation of how unlikely such a clear trend as that observed would arise in a
random set of normally-distributed data.

• adj.P.Val – the adjusted p-value to take into account multiple testing, this
gives an indication of the family-wise error rate for all probesets where the
model fit was at least as good as it is for this one (i.e. all probes in the table
from the top down to this one).

• B – the log odds of differential expression, the actual values of this depend
on an assumption of a certain proportion of the probesets on the array are
differentially expressed, which may be erroneous, but it is normally a good
way of ordering the genes. In addition, as it is less intuitive to interpret than
the p-value, typically it is the p-values and adjusted p-values that are used
to summarise the goodness of the model fit.

The default use of the topTable command only returns information for the
most significant 10 probesets, but in practice we will often wish to obtain
information for many more. It is fairly straightforward to specify the number
of probesets to include in the table, for example:

> topTable(fit,coef=2,number=20)

In addition, you can specify filters so that the table includes only those probe-
sets with an adjusted p-value below a certain threshold, or those with a log
fold-change above a certain threshold, or some combination of the above. For
example, if we wished to return ALL probesets where the model fit had an
adjusted p-value less than 0.05 and a fold-change of at least 2:

> topTable(fit,coef=2,number=nrow(normexprs),p.value=0.05,

+ lfc=log(2,base=2))

In the above command, the specified number of nrow(normexprs) is the total
number of rows in the whole data matrix, which will correspond to the num-
ber of probesets on the microarray. Additionally, a two-fold expression change
threshold was specified as lfc=log(2,base=2) because the models are fitted
in terms of expression values that are base 2 logarithms.

For using the output in downstream analyses, or for publication purposes,
you will need to export the table to file from R. This can be done using
the write.table command that was introduced in the Introduction to R
tutorial. To write the default table (removing the row numbers) out to a

164 Analyzing Microarray Data in R

tab-separated text file called ‘fit2table.txt’ in the current working directory,
you could enter:

> fit.fullout <- topTable(fit,coef=2,number=nrow(normexprs),

+ p.value=0.05,lfc=log(2,base=2))

> fit.fullout$Symbol <- unlist(mget(rownames(fit.fullout),

+ hgu133plus2SYMBOL))

> write.table(fit.fullout,file="fittable.txt",sep="�",
+ quote=FALSE,row.names=FALSE)

8.7.4 Postscript: Assumptions

It should not go without comment that the statistics provided by limma are
calculated on the basis of assumptions about underlying distributions of the
data. One of the assumptions that can be tested is that the errors in each
fitted linear model are normally distributed. We can also assume that if most
genes don’t have expression associated with a given experimental variable, the
distribution of p-values derived from fitting linear models to all genes should
be uniform between 0 and 1.

8.8 Clustering and correlation

Statistical correlation measures provide a means of assessing the similarity
between trends in data. This can, for example, be a useful way of associating
different genes together based on the ‘shape’ of their expression profiles across
the dataset. Clustering is generally the task of associating similar entities from
a dataset: this could involve finding groups of genes with similar expression
levels across a set of samples, or it could involve finding groups of samples with
similar expression levels of certain sets of genes. Both correlation and cluster-
ing are therefore concepts that deal with the task of characterising similarity
between elements from a dataset, but they are quite different concepts and
must be applied in different ways.

8.8.1 Expression profiles

As correlations reflect trends in data, it is useful to be able to get an idea
of what a trend in an expression dataset might represent. An ‘expression
profile’ for a given probe-set simply shows that probe-set’s measurements
across the individual microarrays in a dataset, and can easily be plotted
using the plot function. If we know the probe-set identifier for a particu-
lar gene and want to see how its expression values vary across the dataset,
first find the relevant row of the expression table and then plot it as a line.
For example, if we wished to inspect the expression profile for the most

Clustering and correlation 165

significantly differentially-expressed probe-set (“244829 at”, as shown in the
table in Fig. 8.11) in the side-population gene expression dataset:

> gIndex <- which(featureNames(normdata)=="244829 at")

> plot(normexprs[gIndex,],type="l")

This is particularly useful when used in conjunction with the ylim=... param-
eter and successive calls to the points() function with different line colours
to compare how different genes vary across the experimental samples in the
dataset.

8.8.2 Correlation

Based on the ‘guilt-by-association’ principle, an assumption that genes shar-
ing a similar trend in their expression values are likely to be regulated in a
similar way or involved in similar processes, we can use R’s correlation func-
tion to get a quantitative measure of similarity between the trends exhibited
by two different probesets. At its simplest, we can compare two probesets with
corresponding rows in the expression table gIndex and gIndex2:

> gIndex2 <- which(featureNames(normdata)=="201667 at")

> cor(normexprs[gIndex,],normexprs[gIndex2,])

[1] 0.9903677

The cor function returns the Pearson correlation coefficient between two vec-
tors of numbers. This gives an indication of how ‘similar’ the profiles are across
the samples of the dataset, in a scale from 0 (no correlation) to 1 (perfectly
correlated) or −1 (perfectly anti-correlated). How to interpret the actual value
of Pearson correlation really depends on the context. In some instances you
would expect a reasonable correlation to manifest with a Pearson correlation
coefficient of 0.4, and in other circumstances anything below 0.99 would imply
a fair degree of dissimilarity. Therefore, the interpretation of the correlation
coefficient depends on what you expect. This can be influenced by the expected
level of heterogeneity in the data, the acceptable experimental or technical
variation in the values, and the number of data points. This last issue can
be incorporated into a test for significance of correlation, assuming both both
vectors of numbers are normally-distributed. In R this is implemented in the
cor.test function:

> cor.test(normexprs[gIndex,],normexprs[gIndex2,])

This provides both the correlation coefficient and a statistical significance
estimate p-value. It is important to recall that this is based on an underly-
ing assumption that the two sets of values are independent and normally-
distributed. It is also important to remember that this p-value indicates the

166 Analyzing Microarray Data in R

statistical significance only: even if it would be highly unlikely to see such a
correlation between two random normally-distributed variables of the appro-
priate size, it doesn’t necessarily mean that the sets of values are actually well
correlated. Again, the true significance of the level of correlation depends on
what degree of correlation you might expect.

Returning to a theme that we visited earlier, it is always useful to explore
a statistical analysis with visualisations of the underlying data. To investigate
the expression patterns giving rise to the high correlation observed between
the two probe-sets’ profiles, we can repeat the plot from Fig. 8.12, adding
in the profile for the second probe-set in a different colour using the points

function.

> plot(normexprs[gIndex,],type="l")

> points(normexprs[gIndex2,],type="l",col="green")

You should be able to see that this plot is of limited use: the Pearson cor-
relation coefficient doesn’t measure the similarity between sets of values, it

FIGURE 8.12
Profile plot showing expression of probe-set 244829 at across the side-
population experiment.

Clustering and correlation 167

measures the similarity of the trend across each set of values. The expression
values for the 2nd probe-set are on a different scale to those of the 1st probe-
set. Therefore for an informative plot, we need to rescale the y-axis so as to
include all values from both probe-sets:

> ymin <- min(normexprs[c(gIndex,gIndex2),])

> ymax <- max(normexprs[c(gIndex,gIndex2),])

> plot(normexprs[gIndex,],type="l",ylim=c(ymin,ymax))

> points(normexprs[gIndex2,],type="l",col="green")

> legend("topright",legend=c("244829 at","201667 at"),

fill=c("black","green"))

Following the addition of the legend, the plot should look like that shown
in Fig. 8.13.

One application of correlation methods that can be useful to explore patterns
of gene expression is to obtain an ordered list of all the probesets represented

FIGURE 8.13
Plot showing expression profiles of two highly correlated probe-sets across the
side-population microarray experiment.

168 Analyzing Microarray Data in R

on the array, sorted by their correlation to a gene of interest. For this we
can utilise a for loop. Let us suppose we wish to find which genes have most
highly-correlated expression with the probe “201667 at”, mapping to the gene
GJA1, which was the 2nd most significantly differentially-expressed feature
shown in the table in Fig. 8.11. First we can create a numeric vector with one
element for each probe-set in the dataset:

> correlationScores <- rep(NA,nrow(normexprs))

Next we construct a for loop to calculate the correlations between the val-
ues from each probe-set in turn and the values from the probe-set measuring
GJA1 expression:

> for(i in 1:nrow(normexprs)){
> correlationScores[i] <- cor(normexprs["201667 at",],normexprs[i,])

> }

Now we can construct a data frame to contain the correlation coefficients
and the probe-set annotations:

> corTable <- data.frame(probeID=rownames(normexprs),

cor=correlationScores)

Given the probeIDs, we can add annotations of the gene symbols to these
as in Section 8.7.3:

> corTable$symbol <- unlist(mget(corTable$probeID,hgu133plus2SYMBOL))

So now we have a data frame called corTable, with the probeIDs, Pear-
son correlation coefficients and gene symbols for each probe-set in the dataset
(each row in the normexprs matrix). Finally, we sort the table according to
the correlation values, then can use the functions head and tail to inspect
the probe-sets most strongly positively correlated and most strongly nega-
tively correlated with the GJA1 probe-set, respectively:

> corTable.sorted <- corTable[order(corTable$cor),]

> head(corTable.sorted)

> tail(corTable.sorted)

Positive correlation indicates that the shapes of the profiles are the same.
Probe-sets exhibiting opposite trends of expression will have highly negative
correlation.

Clustering 169

If you are interested in both positive and negative correlation, sort on the
absolute value (magnitude) of the correlation score:

> corTable.sorted2 <- corTable[order(abs(corTable$cor)),]

8.9 Clustering

Given the high-dimensionality of microarray datasets (i.e. there are a lot of
probe-set measurements for each sample), it can be informative to separate the
measurements into groups based on their similarity. This approach is called
clustering, and can be performed on both the probe-sets and the samples of
the expression dataset. An important consideration with clustering is that
the way different entities are grouped together will depend not only on the
method of clustering (for which there are many) but also, and possibly more
importantly, the definition of the notion of dissimilarity or distance between
the elements.

For example, to see a hierarchy or dendrogram representing the overall simi-
larities of each chip in the dataset to the others, try:

> plot(hclust(dist(t(normexprs))))

The above command transposes the gene expression data matrix so that the
probe-sets are the columns and the samples are the rows, so that the dist

function will calculate the distances between the samples. As used above, the
dist function calculates distance between any two rows of the table by adding
up the squares of the differences between each column’s value for the two rows
in question. This has the effect that larger absolute differences in value will
contribute more to the overall measure of dissimilarity between each pair of
samples: probe-sets with a wider range of expression value will typically have
greater influence on the resulting clustering than probe-sets with a lower range
of expression. This is not necessarily a bad thing, in fact it may well be a useful
feature, it just depends on the application! As this first command may well
be illegible due to the long names of the samples (which were created from
their raw data file names), you can specify the labels for each sample:

> plot(hclust(dist(t(normexprs))),

+ labels=c("nSP1","nSP2","nSP3","SP1","SP2","SP3"))

This will give the plot shown in Fig. 8.14, which provides some interesting
insights.

170 Analyzing Microarray Data in R

FIGURE 8.14
Dendrogram from hierarchical clustering of samples from the microarray
experiment GSE25191.

Firstly, it appears that the side-population sample 1 is more similar to two
of the non-side-population samples than it is the other side-populations.
Also, the 2nd non-side-population sample appears more similar to 2 of the
side-population samples than it is the other non-side-populations. Therefore,
we may wish to repeat the earlier analysis while omitting these seemingly
‘mis-placed’ samples, illustrating the role that clustering can have in quality
control. However, we may wish to keep all the samples in the analysis, as the
differences may reflect a biological heterogeneity that should not be forgotten
about in future consideration. Once again, the correct action to take depends
on what you actually wish to use the analysis results for, but it is useful to
be aware of the issues so that you can make the appropriate decision!

Clustering 171

In order to see the overall (global) clustering of genes and chips, use the
heatmap() function (which automatically computes hierarchical clusterings
of both rows and columns of the expression table). For better colours (red-
green as opposed to red-yellow) I use the greenred() function in the package
gplots5. If you have an incredibly powerful computer, it may be possible to
draw the appropriate heatmap, but typically the construction of the distance
matrix used to make pair-wise comparisons between every possible combina-
tion of probe-sets is too big to process (in this case it will include nearly 1.5
billion numbers). Were we to wish to create this heatmap, you would use the
commands (but be warned, this may stall):

> library(gplots)

> heatmap(normexprs,col=greenred(100),scale="row")

So for a simpler illustration of the utility of a heatmap, we can construct
one to show the expression values of the two probe-sets we utilised earlier in
this section exploring expression profiles, which should look like Fig. 8.15:

> library(gplots)

> heatmap(normexprs[c(gIndex,gIndex2),],col=greenred(100),scale="row",

+ labCol=c("nSP1","nSP2","nSP3","SP1","SP2","SP3")

In fact, heatmaps can be a useful means of visualising differential-expression.
We can draw the heatmap of the most differentially-expressed probe-sets
using:

> diffexpIDs <- as.character(topTable(fit2,coef=2)$ID)

> diffexprows <- which(featureNames(normdata) %in% diffexpIDs)

> heatmap(normexprs[diffexprows,],col=greenred(100),scale="row",

+ labCol=c("nSP1","nSP2","nSP3","SP1","SP2","SP3"))

This should appear as in Fig. 8.16.

8.9.1 Filtering

As we have seen in the previous example, performing certain types of analysis
on the datasets we work with can be computationally infeasible. This is not
really surprising, as there’s really a staggering amount of information that
is being processed. It may be a waste of effort including information which
may not be desperately relevant, such as probe-sets that will not impact much
upon the clustering because they are expressed at such a low level or show only
minimal variation across the samples. What’s more, if there is a large number

5This is not a Bioconductor package, so you may need to install it using the command
install.packages('gplots').

172 Analyzing Microarray Data in R

FIGURE 8.15
Heatmap showing per-sample clustering with expression levels from two probe-
sets in the microarray experiment GSE25191.

of such uninformative probe-sets, they may actually add up to obscure some
of the more important similarities and distinctions between the samples of the
dataset. There are a number of reasons why it may be beneficial to omit some
probe-sets or samples from the analysis:

• Reduce computational requirements

• Remove ‘noise’ from unreliable (low-level) measurements

• Omit samples that do not fit classification required for some analysis

• Increase power to detect significant patterns by reducing the numbers of
tests performed, and thus reducing the family-wise error rate

Clustering 173

FIGURE 8.16
Heatmap showing per-sample clustering with expression levels of the most
differentially-expressed probe-sets in the microarray experiment GSE25191.

Some filtering requirements may involve context-specific knowledge, such as
selecting a subset of the probe-sets on the microarrays to perform analysis on
candidate genes only. However, two fairly standard criteria often apply:

1. Remove probe-sets recording only background expression levels

2. Remove probe-sets showing minimal variation across the dataset

For the first criterion, filtering out probe-sets with only low-level expression,
the most common approach is to define some essentially arbitrary cut-off
and discard all probe-sets with median value across the dataset lower than
this threshold. For Affymetrix microarray datasets, such a threshold set to a
log2 normalized expression value of 5 is fairly common. While this is rather

174 Analyzing Microarray Data in R

arbitrary and could involve discarding potentially very interesting probe-sets,
such an approach is surprisingly widely used because it is nevertheless an
effective way of minimising the contribution of noise to clustering patterns.
We could find such probe-set by setting up a for loop to calculate the median
for each probe-set in turn:

> medianexprs <- numeric(nrow(normexprs))

> for(i in 1:nrow(normexprs)){
+ medianexprs[i] <- median(normexprs[i,])}
> lowexprs <- which(medianexprs<5)

However, we can also do this more easily by making use of the R function
apply, which applies a function to every row (specifying MARGIN=1) or col-
umn (specifying MARGIN=2) of a data matrix in turn:

> medianexprs <- apply(normexprs,MARGIN=1,median)

> lowexprs <- which(medianexprs<5)

For the second filter mentioned above, removing probe-sets with a low range
of expression across a dataset, it is fairly standard practice to discard a certain
proportion (say, 25%) of the probe-sets on a microarray. Again this is a totally
arbitrary way of filtering out probe-sets, and all considerations that applied
to the previous case also apply to this approach to filtering. We can perform
this filtering by first calculating the standard deviation across the dataset for
each probe-set:

> exprsds <- apply(normexprs,MARGIN=1,sd)

Then by sorting the resulting values, we can find which rows of the data
matrix correspond to the lowest variation:

> sdorder <- order(exprsds,decreasing=FALSE)

And finally we can find out how many we wish to filter out, in this case I
have specified 25%:

> numberToKeep <- round(nrow(normexprs)*0.25)

> lowsd <- sdorder[c(1:numberToKeep)]

Now we can combine the two filters and repeat the previous clustering but
with these probe-sets removed from the dataset. The resulting dendrogram
should appear as in Fig. 8.17:

> plot(hclust(dist(t(normexprs[-c(lowexprs,lowsd),]))),

+ labels=c("nSP1","nSP2","nSP3","SP1","SP2","SP3"))

Survival analysis 175

FIGURE 8.17
Hierarchical clustering dendrogram of side-population experiment, having fil-
tered out low-level and low-variation probe-sets.

First we can note that the clustering appears very similar to that which was
done previously, indicating that those low-level and low-variation probe-sets
weren’t significantly contributing to the clustering and that the differences
seen come from the more reliable measurements.

8.10 Survival analysis

An introduction to microarray analysis for cancer research would not be com-
plete without mention of survival analysis. To relate gene expression levels

176 Analyzing Microarray Data in R

to survival times, or any ‘time to event’ variable which involves incomplete
follow-up, we need two pieces of information for each sample: one giving the
time til the last follow-up, and one indicating whether at last follow-up the
event had occurred or not. In a survival context, the indicator variable states
whether the indicated time to last follow-up corresponds to the patient’s death
or the patient leaving the study. A different method of analysis is needed for
this type of variable, so that information from samples where the event hasn’t
occurred (e.g. patient is alive at the end of the study) can be included.

One thing that became apparent when I was putting this together was that it is
actually rather difficult to find publically available cancer datasets for which
the patients’ clinical characteristics are available in a user-friendly manner!
Usually accessing this data requires downloading multiple tables, creating
separate spreadsheets and cross-referencing against each other. However, the
Gene Expression Omnibus dataset with accession GSE2034 has the required
clinical characteristics in a table, which can be reached from the GEO record
on http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2034, and this
dataset will provide illustrative examples for analysis that will typically be
carried out on in-house datasets. Accessing even this clinical data is not totally
straightforward: click on the ‘View full table...’ button towards the bottom of
the page, copy all the text that appears and paste into a blank spreadsheet
using a spreadsheet program (e.g. Excel, LibreOffice, etc.). Once the text is
pasted in, remove all the header rows (those starting with a #), and even
the column names. The remaining data should be in a single column: select
this column then use the ‘Text to Columns’ feature to split the data across
multiple columns using a space delimiter. Following these steps, you should
have a table like that in Fig. 8.18. Save this table as a tab-delimited text
file: to be compatible with the code in the rest of this chapter, name the file
“GSE2034clinical.txt”.

We can read this information into R as we would any table. We want to make
sure we have the sample identifier (GEO accession number in column B), the
time until progression/followup (column D), the numerical indicator of pro-
gression (column E) and the ER status (column F). With this information, we
can load the raw gene expression microarray data, preprocess it, match the
microarrays to clinical subjects, and perform survival analysis (adjusting for
ER status and lymph node status if we so wished). First, read in the annota-
tion file:

> clin.data <- read.table("GSE2034clinical.txt",sep="\t",head=F)

Note that we set head=F, as we removed the column names from the table.
Let’s add column names back in, using the colnames function:

> colnames(clin.data) <- c('pID','filename','nodes',

+ 'PFStime','Progression','ERstatus','brainmets')

http://www.ncbi.nlm.nih.gov/

Survival analysis 177

FIGURE 8.18
Table of clinical characteristics for GEO dataset GSE2034, following removal
of headers and splitting of single data column using a space as a delimiter.

Now we can use the GEO accession numbers to specify which CEL files to
read in and apply RMA normalization. But we need to use the paste func-
tion to add ‘.CEL.gz’ onto the end of each GEO accession number in order to
specify the gzipped CEL files. Of course, we also need to have downloaded and
extracted the tar archive of raw data from the GEO web page (as in Section 2).

> clinexprs <- justRMA(filenames=

+ paste(clin.data$filename,".CEL.gz",sep=""))

See how we’ve used the paste function to add ‘.CEL.gz’ onto the end of
each GEO accession number? This will result in a vector of file names being
passed to the justRMA function, telling it which files to read and preprocess.

Now the expression data is loaded and preprocessed, it would be useful to
attach gene symbols to the probe-set identifiers. We previously added annota-
tion information to a model fit object through the annotate package in section
7.3 of this chapter, but an alternative is to add the gene information to the
whole dataset. This involves a similar process to that used earlier:

> library(annotate)

> library(hgu133a.db)

> ID <- featureNames(clinexprs)

178 Analyzing Microarray Data in R

> Symbol <- getSYMBOL(ID,"hgu133a.db")

> fData(clinexprs) <- data.frame(ID=ID,Symbol=Symbol)

In the above commands we have loaded the appropriate annotation packages,
created a vector ID listing the probe-set identifiers from our dataset, created
a vector Symbol listing the Gene Symbols matching each probe-set identifier,
then annotated the clinexprs dataset with a data frame listing both probe-
set identifier and gene symbol. This uses the function fData to access the
feature annotation information associated with the clinexprs dataset, and
will be useful when we wish to look up the genes later.

Finally, in order to work with the dataset we need to create a table of expres-
sion values from the object that was created by justRMA, which we do using
the exprs function:

> normexprs2 <- exprs(clinexprs)

To analyse survival data in R, we need to load the survival package. This
contains the functions needed:

> library(survival)

An underlying object used by the survival package is created with the Surv

function, associating the numeric variable giving the time to event with the
numeric indicator variable:

> clinsurv <- Surv(clin.data$PFStime,

+ clin.data$Progression)

8.10.1 Kaplan-Meier plots

A helpful way to investigate survival data involves producing the familiar
Kaplan-Meier plots, which show how the probability of a patient from the
given population surviving beyond a particular point decreases as the time
goes on. In R, a Kaplan-Meier plot is based around a model fit that is created
using the survfit function. For example, we can create a simple Kaplan-Meier
plot for the whole patient cohort by relating the survival times to a constant
(in this case 0):

> plot(survfit(clinsurv∼0))

This will result in the plot shown in Fig. 8.19, which has for its y-axis the
proportion of the population that haven’t progressed and its x-axis the time
in number of weeks. This plot includes 95% confidence intervals, which while

Survival analysis 179

FIGURE 8.19
Kaplan-Meier plot showing probability of patient recurrence in relation to
time in number of weeks, for the whole of the cohort profiled in experiment
GSE2034.

useful can clutter the plot, so we can repeat the plot without the confidence
intervals as follows:

> plot(survfit(clinsurv∼0),conf.int=FALSE)

While this utility is neat, it is the ability to explore differences in survival
that is typically of more interest. The only modification we need to the previ-
ous command is on the right hand side of the tilde ∼. We need to specify what
separates the different cohorts, using a factor. For example, we can use the
ER status included in the clinical data targets file to see if disease progression
is related to ER status:

> survfit(clinsurv∼clin.data$ERstatus)
Call: survfit(formula = clinsurv ∼ clin.data$ERstatus)

records n.max n.start events median 0.95LCL 0.95UCL

clin.data$ERstatus=ER- 77 77 77 27 NA NA NA

clin.data$ERstatus=ER+ 209 209 209 80 NA NA NA

180 Analyzing Microarray Data in R

The previous command gives a summary of the median survival time, with
confidence intervals. However in the example given, not enough events occur
to be able to estimate a median survival time (as less than half of either popu-
lation have progressed by the end of the follow-up). We can test the statistical
significance of the difference between the two populations by performing a
logrank test, using the survdiff function in the same way as we used the
survfit function before:

> survdiff(clinsurv∼clin.data$ERstatus).

And the survfit function can be used to produce a comparative Kaplan-
Meier plot with both curves:

plot(survfit(clinsurv∼clin.data$ERstatus),lty=c(1,2))

The lty=c(1,2) argument to the plotting function tells R that you wish
to use a dotted line for the second value of the factor (in this case ER+), and
gives the plot shown in Fig. 8.20.

While separating the patients according to clinical characteristics may be of
some interest, we have not yet used the gene expression data at all. As the
above methods require categorical variables, the incorporation of gene expres-
sion data is dependent on discretization of the continuous numerical expres-
sion values. This will always involve introducing some essentially arbitrary
cut-off to separate the samples, and is most commonly done using the median
expression value so as to ensure an even split of the samples between the two
groups. To repeat the Kaplan-Meier plot showing survival according to the
level of expression of the first probe-set on the microarray, enter:

> plot(survfit(clinsurv ∼ as.numeric(normexprs2[1,]

>median(normexprs2[1,]))))

The above command creates a numerical indicator for whether each value in
the first row of the normalized gene expression dataset normexprs2 is greater
than the median or not. This is a perfectly reasonable way to use the appro-
priate R functions, but it is perhaps easier to see what we are doing when the
process is broken down into multiple steps:

First we select only the row of the expression dataset that corresponds to
our gene of interest:

> exprow <- normexprs2[1,]

Next we find the median expression value for the chosen probe-set:

> expmedian <- median(exprow)

Survival analysis 181

FIGURE 8.20
Kaplan-Meier plot showing the difference in survival curves for the two patient
cohorts separated by ER status.

Next we create an indicator stating whether or not each expression value
from the chosen probe-set is above its median:

> expIndicator <- as.numeric(exprow>expmedian)

Now you can create a survfit object that contains the information necessary
for the figure:

> expFit <- survfit(clinsurv ∼ expIndicator)

And finally you can make a plot using the object just created:

> plot(expFit)

182 Analyzing Microarray Data in R

The same principles used for plotting Kaplan-Meier curves in R can be used
to test the significance of the difference in survival between the patients
with above-median expression measurements from the first probe-set on the
microarray and the patients with below-median expression measurements:

> survdiff(clinsurv ∼ as.numeric(normexprs2[1,]

>median(normexprs2[1,])))

As a more useful example, say we wished to investigate the association between
expression of STARD5 and disease progression. Then we could first find which
of the rows of the dataset correspond to the gene of interest:

> STARD5row <- which(fData(clinexprs)$Symbol=="STARD5")

Because a single equals sign = in R can be used as an assignment operator,
similar to <-, if you wish to test for equality between two objects you must
use a double equals sign ==. This test for equality only works when comparing
two single objects of the same basic data type.

Now we know which row we want to inspect, we can continue as before to
evalute the significance of the difference in disease progression times between
patients with above-median expression of the gene and those with below-
median expression of the gene:

> survdiff(clinsurv ∼ as.numeric(normexprs2[STARD5row,]

>median(normexprs2[STARD5row,])))

Similarly, the following code will create a Kaplan-Meier plot characterising
the difference in disease progression times between patients with above-median
expression of STARD5 vs those without:

> plot(survfit(clinsurv ∼ as.numeric(normexprs2[STARD5row,]>

+ median(normexprs2[STARD5row,]))),lty=c(1,2))

The above use of the plot function has been split over two lines (which intro-
duces the R prompt + to indicate that the command is incomplete6) solely for
display purposes, and again has the argument to specify lty=c(1,2), which
tells R to draw the first data series as a solid line and the second data series
as a dashed line. NB: the plus symbol + above is a prompt from R, it is not
part of the command. Therefore, if you are copying this command into the R
console in a single line, you do not enter the plus symbol.

6R can tell a command is incomplete if there is an open bracket that doesn’t have a
matched closing bracket.

Survival analysis 183

FIGURE 8.21
Kaplan-Meier plot showing time-to-progression of patients partitioned into
two equally-sized groups based on expression of STARD5.

The two data series correspond to the survival curve for patients with below-
median expression of STARD5 and the survival curve for patients with above-
median expression of STARD5, respectively. To show this on the plot we can
construct a legend:

> legend("topright",legend=c("low-expression","high-expression"),

lty=c(1,2))

This command using the legend function first specifies where on the plot to
draw the legend, then the text to describe the different elements, and finally
the way to draw the symbol for each element in the legend. Following this
command, the plot should look like Fig. 8.21.

8.10.2 Cox proportional hazards regression

While Kaplan-Meier plots and logrank tests are useful to investigate differ-
ences in survival that correspond to differences in gene expression or clinical

184 Analyzing Microarray Data in R

variables, being restricted to referring to gene expression as a categorical vari-
able limits the possible analysis and makes it dependent on arbitrary thresh-
olds. A more quantitative approach involves the use of proportional hazards
regression models. The mechanism of fitting so-called cox models for survival
analysis in R is similar to that used for producing Kaplan-Meier plots. To fit
a cox proportional hazards regression model relating time to progression to
the quantitative measurement of expression from the first probe-set on the
microarray:

> coxph(clinsurv ∼ normexprs2[1,])

Or to assess the quantitative association between STARD5 expression and
time to progression:

> coxph(clinsurv ∼ normexprs2[STARD5row,])

One of the strengths of the limma package is being able to fit and evaluate
linear models for tens of thousands of probesets in one command. Unfortu-
nately it doesn’t implement survival models, so we have to evaluate these one
probe-set at a time. However, we can utilise the following simple for -loop to
create a list in R where each element is a cox model fit relating the time to
progression to the expression measurement from the corresponding probe-set
on the microarray:

> phmodels <- list()

This command creates an empty list to start with.

> for(i in 1:nrow(normexprs2)){

This sets up a loop, creating a variable i that at each step through the loop
takes the next value in a sequence from 1 to the number of rows in the nor-
malized gene expression dataset.

+ phmodels[[i]] <- coxph(clinsurv ∼ normexprs2[i,])}

This creates a new element in the list phmodels at each step through the
loop, setting its value to the output of the coxph function. The curly bracket
{ closes the loop.

We can inspect the Cox proportional hazards regression model fit for any
probe-set in the dataset by indexing the corresponding element from the list.
For example, if we wished to see the model corresponding to STARD5 expres-
sion:

> phmodels[[STARD5row]]

Survival analysis 185

Again, this is all very well, but we don’t have a real indication of which genes
have a significant expression association with disease progression. For this, we
can use the Cox model fit objects in the list phmodels and a for loop in a
similar manner to the one used above:

> phmodels.pvals <- numeric(length(phmodels))

First we create a vector of the same length as the phmodels object.

> for(i in 1:length(phmodels)){

This sets up the loop over variable i from 1 to the length of the phmodels

object.

+ phmodels.pvals[i] <- summary(phmodels[[i]])$coefficients[5]}

The above command explains that to each Cox model fit object in turn,
first apply the summary function to the Cox model fit object to access var-
ious aspects of statistical information regarding the model, then select the
coefficients element of the result, and finally take only the 5th column of
the resulting table, which is the p-value associated with the model term... far
from being particularly user-friendly! However, the reason for needing all this
extra is the fact that there is an awful lot more information provided about
each model fit, and it is worth remembering that it is not only the p-value
that matters.

So the above tells us the p-value associated with the proportional hazards
regression model, but it doesn’t indicate whether higher expression of the
gene is associated with better or worse prognosis! For this, we need to find
the hazard ratio or the coefficient value (β in the proportional hazards regres-
sion model). We can find these values in a very similar way to the approach
applied above to obtain the p-values. For example, to get the model coefficient:

> phmodels.coefs <- numeric(length(phmodels))

> for(i in 1:length(phmodels)){
+ phmodels.coefs[i] <- summary(phmodels[[i]])$coefficients[1]}

The only difference to the commands used to obtain the p-values is in the
final step it is the 1st element of the coefficients element of the model sum-
mary we wish to retain. Now we can see for any probe-set if the corresponding
model coefficient is greater than zero then higher expression corresponds with
an increased risk of disease progression, but if the model coefficient is less
than zero then higher expression corresponds with a decreased risk of disease
progression.

186 Analyzing Microarray Data in R

As the final part of this analysis, we may wish to find which of the genes
have a significant expression association with disease progression. There is an
inbuilt R function order that can be used to obtain the ordering of the p-
values:

> survorder <- order(phmodels.pvals,decreasing=FALSE)

The above command uses the fact that the sort function can either return
the sorted values or the ordering that indicates which value comes at each
ranked position when sorted.

We can find the probe-set identifiers corresponding to each gene simply by
using the survorder object that we have created as an index to the list of all
probe-sets on the microarrays:

> survIDs <- featureNames(clinexprs)[survorder]

Similarly, we can get the corresponding gene symbols:

> survGenes <- fData(clinexprs)$Symbol[survorder]

Finally, I would advise using the p.adjust function to take into account
the fact that we’ve performed a large number of statistical tests and so the
family-wise error rate is importantindexhypothesis testing!multiple hypothe-
sis testing. This can be done simply using:

> coxpvals.adj <- p.adjust(phmodels.pvals,method="fdr")

You can inspect the probesets with expression measurements most signifi-
cantly associated with a difference in disease progression, and their corre-
sponding p-values, by constructing an array with the cbind function and then
re-ordering according to the sort that was performed earlier:

> survtable <- cbind(fData(clinexprs),phmodels.coefs,phmodels.pvals,

+ coxpvals.adj)[survorder,]

It may also be helpful to specify the column names for this table:

colnames(survtable) <- c("ID","Symbol","coef","P.Value","adj.p.val")

Now entering head(survtable) will print out the top few rows of the table
to the display in the R console. The table survtable can be written out to
file as any array object.

Note: all survival analyses illustrated in this section correspond to univariate
analysis: we are only evaluating the relationship between gene expression (or a

Footnote: Correlation to explore associated functions 187

single clinical variable) and the survival variable (time to disease progression),
ignoring all other influences. In many situations we would expect certain other
clinical characteristics (these are sometimes described as confounding variables
and may include age, tumour stage etc.) to have a considerable impact upon
some survival variable, and multivariate models can be constructed to evaluate
the association between the survival variable to your variable of interest (say,
expression of a candidate gene) whilst simultaneously taking into account the
effects due to the confounding clinical variables. Multivariate survival anal-
ysis is not altogether different from the univariate analyses described in this
section, but they will be covered later in an ‘advanced topics’ tutorial.

8.11 Footnote: Correlation to explore associated
functions

One way of gaining insight into the functional roles of a given gene in a given
context is to obtain a set of genes with correlated expression in the biological
context of interest (assuming there is sufficient variation to make this worth-
while), and test the resulting list of genes for over-representation of functional
annotations (e.g. pathways) as outlined in chapter 6. For this we can repeat
the correlation analysis applied in section 8 of this chapter, but let’s see how
this would work for the clinical gene expression dataset. Suppose we wish to
find which genes have most highly-correlated expression with STARD5 across
this whole cohort of breast tumours. First we create a vector of missing values,
with one element for each probe-set in the dataset:

> correlationScores <- rep(NA,nrow(normexprs2))

Next we construct a for loop to calculate the correlations between the val-
ues from each probe-set in turn and the values from the probe-set measuring
STARD5 expression:

> for(i in 1:nrow(normexprs2)){
> correlationScores[i] <- cor(normexprs2[STARD5row,],normexprs2[i,])

> }

Now we can construct a table (a data frame) to contain the correlation coeffi-
cients and the probe-set annotations, by using the cbind function to append
the correlation coefficients to the data frame of feature annotations associated
with the clinexprs object, which we access with the fData function:

> corTable <- cbind(fData(clinexprs),correlationScores)

188 Analyzing Microarray Data in R

Finally, we can sort the table according to the correlation values, then use
the functions head and tail to inspect the probe-sets most strongly posi-
tively correlated and most strongly negatively correlated with the STARD5
probe-set, respectively:

> corTable.sorted <- corTable[order(correlationScores,decreasing=T),]

> head(corTable.sorted)

> tail(corTable.sorted)

Positive correlation indicates that the shapes of the profiles are the same.
Probe-sets exhibiting opposite trends of expression will have highly negative
correlation.

We may then wish to test for functional enrichment among the highly-
correlated genes, or to look for other possible drivers of the observed asso-
ciation with survival.

9

Analyzing DNA Methylation Microarray
Data in R

9.1 Introduction

The addition of methyl groups to cytosine residues in DNA forms part of
the mechanisms by which cells can regulate their patterns of gene expression.
As such, the profile of which CpG loci (so-called because it is only the CG
dinucleotides that can become methylated) are methylated in a set of cells
has become a well-studied characteristic of biological variation. Such varia-
tion in DNA methylation profiles has been shown to be a key molecular driver
of some cancers, and underpins cellular specification in mammalian devel-
opment. With interest in DNA methylation profiles has come technology to
profile the levels of multiple CpG loci simultaneously, in an attempt to build
up such profiles. One widely-used approach is based on bisulphite conversion
and microarrays, where sodium bisulphite converts unmethylated Cs to Us
but affects no change on methylated Cs, then microarray probes can distin-
guish between targeted sequences with a C in the query CG site or those with
a T. While there have been a range of platforms for this purpose, Illumina’s
‘450K’ array (and the subsequent ‘EPIC’ array) is sufficiently dominant that
we can focus on this platform.

This tutorial assumes familiarity with R and the analytical methods described
in previous chapters of this set. It will walk through the process of import-
ing Illumina 450K data files into R using the package minfi [1], carrying out
quality control and normalization, ultimately resulting in representations of
the methylation profiles which can be analyzed using any of the techniques
applied in previous chapters. The minfi package is obtained through R as fol-
lows:

> source("http://bioconductor.org/biocLite.R")

> biocLite("minfi")

> biocLite("IlluminaHumanMethylation450Kmanifest")

This second package we are installing is required by the minfi package to
perform some of its functions.

189

http://bioconductor.org/

190 Analyzing DNA Methylation Microarray Data in R

9.2 Importing raw data

The raw data format from Illumina methylation microarrays is the IDAT file.
These can be imported into R using the minfi package. As an example to
illustrate how simple this can be, let’s download some data to try it out on...
There is DNA methylation data available in GEO just as there is gene expres-
sion data. We can obtain data from a study with accession GSE691181, which
contains the data used to show that ER-regulated enhancers show differential
methylation in endocrine therapy resistant cell lines relative to drug sensitive
parent cell lines [2]. The raw data can be downloaded by clicking on the link
illustrated by the arrow in Fig. 9.1.

Having downloaded the TAR archive, you will need to extract the raw data
files. There will be two IDAT files for each sample, this is because the microar-
rays use two dyes: one to quantify the ‘methylated’ probes and one to quan-
tify ‘unmethylated’ probes. Let’s use only the two replicates of the parental
line MCF7 and the two replicates of the Tamoxifen resistant derivative
TamR (these have accessions ‘GSM1693089’, ‘GSM1693090’, ‘GSM1693091’
and ‘GSM1693092’). Start R in the ‘GSE69118’ directory containing the IDAT
files, load the minfi package and then read in the IDAT files:

> library(minfi)

> basenames <- unique(substr(list.files(),start=1,stop=28))

FIGURE 9.1
Gene Expression Omnibus record for experiment GSE69118. Click on link
shown with arrow to download tar archive of raw data.

1http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69118

http://www.ncbi.nlm.nih.gov/

Quality control 191

minfi expects a list of one identifier per sample, which it will use to look for
files ending in ‘ Grn.idat’ and ‘ Red.idat.’ This command lists the files in the
directory, takes the first 28 characters of them (using the substr function),
then keeps only one instance of each identifier. This should look as follows:

> basenames

[1] "GSM1693089 8769527090 R01C01" "GSM1693090 8769527090 R06C01"

[3] "GSM1693091 8769527090 R03C01" "GSM1693092 8769527090 R02C02"

> RGSet <- read.metharray(basenames)

This is the part which actually reads in the data, creating an ‘RGset’ object
with four samples. This is the structure that minfi uses to manage the raw
data, and we will want to use some of the package’s features to the data before
we can perform any meaningful analysis.

9.3 Quality control

The first step in processing data is to make sure that there aren’t any obvious
signs that there are problems (remembering the old adage ‘rubbish in, rub-
bish out’). minfi has inbuilt functionality precisely designed for this purpose
with Illumina 450K methylation arrays. You can use the qcReport function
to create a PDF report outside R, for example:

> qcReport(RGSet,sampNames=c("MCF7.rep1","MCF7.rep2","TamR.rep1",

+ "TamR.rep2"),sampGroups=rep(c("MCF7","TamR"),each=2),

pdf="GSE69118QC.pdf")

Here we have specified the names of the samples.

I tend to find it more convenient to generate certain QC figures within R.
The first of these is a density plot, showing the distribution of methylation
‘beta’ values from each sample:

> densityPlot(RGSet,sampGroups=c("MCF7","MCF7","TamR","TamR"))

Here we have specified the fact that each set of replicates comes from the
same sample group. This should produce the plot shown in Fig. 9.2. You can
see that most values are either less than 0.2 or greater than 0.8, which reflects
the fact that most CpG sites in the genome are pretty consistently methylated
or unmethylated across each sample.

192 Analyzing DNA Methylation Microarray Data in R

FIGURE 9.2
Density plot showing the distribution of values from each sample in a study.
The two groups of replicates have been labelled with separate colours.

The next plot it can be important to check is the controlStripPlot. This
compares the intensity values of different control probes on the array. There
are sets of different control probes2, but the default ones are the bisulphite
conversion controls, which will be plotted with the following command:

controlStripPlot(RGSet,sampNames=c("MCF7.rep1","MCF7.rep2",

+ "TamR.rep1","TamR.rep2"))

The results of this can be seen in Figure 9.3, and should not differ too much
from one sample to the next. A sample with outliers should be treated with
caution, if not left out of analysis completely.

2See the manual at http://bioconductor.org/packages/release/bioc/html/minfi.html for
details.

http://bioconductor.org/

Normalization and estimating methylation level 193

FIGURE 9.3
Strip plot showing the values from the bisulphite conversion control probes
for each sample in a study.

9.4 Normalization and estimating methylation level

Having checked that there is nothing untoward in the data for each sample,
it is usually pertinent to normalize the dataset, which will attempt to remove
technical biases resulting in variation in the methylation values from one sam-
ple to the next. If we don’t wish to perform any normalization, we can obtain
methylation estimates for each probe in each sample:

> MSet <- preprocessRaw(RGSet)

> betaVals <- getBeta(MSet,type="Illumina")

The methylation values are termed ‘beta’ values because the density plots of
these values are characterized by a β distribution.

194 Analyzing DNA Methylation Microarray Data in R

Assuming that we want to remove the background signal from the arrays,
which is almost ubiquitous, we carry out the following instead:

> MSet.bgnorm <- preprocessIllumina(RGSet,bg.correct=TRUE,

normalize="no")

NB: this may take a long time! Following this step, running the getBeta

function will give beta values that have been background-corrected.

Another normalization that is sometimes applied to large datasets is quan-
tile normalization. This ensures that each column of a data matrix follows
the same distribution, under the assumption that overall total signal should
be similar. This is almost always appropriate for gene expression studies,
where the same total amount of RNA is used for each sample, but is not
necessarily the case with DNA methylation: even in the same amount of
DNA, some samples may have more or less methylation than others. How-
ever, if we don’t expect this to be the case for predominantly biological rea-
sons, then we can perform quantile normalization. There is a function called
normalize.quantiles in the package preprocessCore3 which will perform
generic quantile normalization on a data matrix, but there is one further
peculiarity of the 450K arrays that means it is well to use a bespoke method.
That is, the arrays actually contain two different types of probes, which will
have different distributions, and so should be quantile-normalized separately.
Helpfully, the minfi package makes it easy for us to apply a quantile normal-
ization approach that takes this into account:

> MSet.qnorm <- preprocessSWAN(RGSet,MSet.bgnorm)

Note that this has used both the RGSet and the background-normalized MSet

object we created previously. So our final processed methylation beta values
would be generated:

> betaVals.final <- getBeta(MSet.qnorm)

9.5 Analyzing beta values

Many statistical methods assume that observed data reflect samples from
normally-distributed random variables. Especially when the sample sizes are
small, or when each entity being measured may have very different distri-
butions, this is often a useful if not altogether accurate assumption. How-
ever, the measurements from quantitative DNA methylation assays (such as

3available from Bioconductor

Analyzing beta values 195

quantitative bisulphite sequencing or Illumina microarrays) are known to be
beta-distributed. This means that the values are typically sufficiently differ-
ent from a normal-distribution that transforming beta-distributed values to
normally-distributed values can improve the appropriateness of the statistical
analysis tools used in this tutorial[3]. A simple calculation can do just this,
known as the M-transform:

M = log2

(
β

1− β

)
. (9.1)

In fact, when working with Illumina methylation data in minfi, we can simply
generate M-values from an MSet with the getM function. For example, assume
we had the object MSet.qnorm in the R workspace as produced in the previous
section:

> MVals <- getM(MSet.qnorm)

Then with the M-values, we could apply the empirical Bayes moderated
t-statistic linear regression implemented in limma, as described in Section
4.7. Nevertheless, I will illustrate the principle here: first creating a design
matrix, then fitting the linear models to each probe, and finally extracting
the statistics for differentially-methylated probes.

> library(limma)

We need the limma package to proceed, if you don’t have this then install
from Bioconductor4.

> design <- cbind(intercept=1,tamR=c(0,0,1,1))

Here we construct a matrix called design with two columns: the first, called
‘intercept’, has all values equal to 1; the second, called ‘tamR’, has value 0
for the first two rows (corresponding to the two MCF7 cell lines) and value 1
for the second two rows (corresponding to the two TamR cell lines). This is a
simple way of setting up a two-group comparison.

> tamR.fit <- lmFit(MVals,design=design)

This command uses the lmFit function from the limma package, which fits a
linear model to every row in the matrix of M-values that we created using the
functionality from minfi.

> tamR.fit <- eBayes(tamR.fit)

Here we generate moderated t-statistics, taking into account the fact that we
have large numbers of measurements from a small number of samples, in an

4> biocLite("limma")

196 Analyzing DNA Methylation Microarray Data in R

attempt to get better estimates of the variability in each probe’s measure-
ments we would have seen if we had more replicates.

> topTable(tamR.fit,coef=2)

This creates a table of the most significantly differentially-methylated probes,
specifying that we are only interested in the second column of the design
matrix, which will characterize the differences between the two MCF7 repli-
cates and the two TamR replicates. In order to return the full table of all
differentially-methylated probes (with adjusted p < 0.05), use the following
slight alteration:

> fulldiffmeth <- topTable(tamR.fit,coef=2,number=nrow(MVals),

p.value=0.05)

A list of Illumina probe identifiers is all well and good, but what do these
actually represent? Where in the genome are they situated? As with most
of the other datasets we have analyzed, we need to find a representation of
the data that means something to us. In this case, we can find the genomic
co-ordinates of the probes, official symbol of the nearest gene(s), and addi-
tional annotation information (such as whether the CpG locus lies within
a ‘CpG Island’, ‘shore’ etc) in the platform annotation file from GEO. The
450K array has GEO accession GPL13534, and the annotation file can be
downloaded directly from:

“http://www.ncbi.nlm.nih.gov/geo/download/?acc=GPL13534&format=
file&file=GPL13534 HumanMethylation450 15017482 v.1.1.csv.gz”.

Then we can use this file in R, setting the probe identifiers as row names
of the resulting data frame:

> gpl13534.annot <- read.table("GPL13534 HumanMethylation450 15017482

v.1.1.csv",sep=",",skip=7,head=TRUE,row.names=1,fill=TRUE)

With the table loaded in, it is actually pretty simple to add the annotation
information. For example, to add gene symbols to the table of differentially
methylated probes:

> fulldiffmeth$Symbol <- as.character(gpl13534.annot[rownames

(fulldiffmeth),

"UCSC RefGene Name"])

And to add the characterization of whether the CpG site is in the gene body,
promoter, or further upstream:

> fulldiffmeth$Group <- as.character(gpl13534.annot[rownames

(fulldiffmeth), "UCSC RefGene Group"])

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/

Using previously preprocessed data 197

Now if we inspect the top few probes, we see:

> head(fulldiffmeth[,c(1,4,5,7)],n=5)

logFC P.Value adj.P.Val Symbol

cg04455286 9.596053 4.419923e-07 0.008245484

cg26764180 9.356045 4.766909e-07 0.008245484 FAM122C

cg09813276 9.172361 5.461757e-07 0.008245484 ARMCX1

cg18245890 8.294991 9.093927e-07 0.008245484 BCL6

cg00518941 8.760508 9.675355e-07 0.008245484 PRKCE

You can carry out any of the other data analysis steps detailed in Chapter 4,
or in Chapter 8 (Sections 7 onwards), using either beta or M values as you
consider more appropriate. As a final example, we will generate a heatmap
to visualize the methylation values of the 100 most significantly differentially-
methylated probes. By default, the heatmap function in R performs unsu-
pervised hierarchical clustering using a Euclidean distance metric (for more
details, see Section 4.10). This means that if the samples split by group, then
the probes we have selected do indeed separate the samples. Convenient plot-
ting colours are accessed through the package gplots5:

> heatmap(betaVals.final[rownames(fulldiffmeth)[1:100],]

,col=bluered(100),ColSideColors=rep(c("cyan","pink"),each=2))

This uses bluered(100) to create a colour gradient from blue (lowest) to red
(highest). We also specify a colour bar to code the samples by their group:
cyan for MCF7, pink for TamR.

> legend("topleft",legend=c("MCF7","TamR"),fill=c("cyan","pink"))

This has added a legend to the plot, so we know what the colour code means.
The result should be as seen in Fig. 9.4.

9.6 Using previously preprocessed data

For another example, to illustrate the fact that we are not restricted to the use
of Illumina 450K datasets, we will use a publicly available Illumina Human-
Methylation27 BeadChip array dataset, profiling frozen tissue samples from
normal ectocervix and squamous cell carcinoma of the cervix. This dataset can
be retrieved from GEO with accession GSE366376. The normalised beta-values

5Install with: > install.packages("gplots").
6http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36637

http://www.ncbi.nlm.nih.gov/

198 Analyzing DNA Methylation Microarray Data in R

FIGURE 9.4
Heatmap of methylation beta values, for 100 most significantly differentially
methylated in comparison between MCF7 and TamR cell lines. As almost all
are in the same direction (more methylated in TamR than MCF7) it suggests
that perhaps there was some bias in the data which our normalization didn’t
remove.

can be obtained from the Series Matrix File on the GEO webpage for the
experiment. After downloading and unzipping this Series Matrix File (which
is a gzipped text-file with extension .txt.gz), you will need to open the file with
a spreadsheet tool and strip out the header information: this takes up the first
69 rows and the very last row of the table. I have saved the resulting file as
a tab-delimited text file called “GSE36637 dataonly.txt”. As a check that the
data has been loaded correctly, take note that the final table has 10 columns
(one of which gives the probe identifiers) and 27,579 rows (one of which gives
the column headers).

Using previously preprocessed data 199

We can load this data table into the R workspace using the read.table func-
tion, as we have seen before:

> meth.table <- read.table("GSE36637 dataonly.txt",sep="\t",
header=TRUE)

> dim(meth.table)

[1] 27578 10

We have used the dim function, which returns the dimensions of an array or
data frame, to check that the table does indeed have the dimensions expected
(27,578 rows and 10 columns).

As with the siRNA screen dataset used as an example earlier in this tuto-
rial, it will be helpful to create a purely numeric data matrix containing the
methylation beta values, with each row labelled by the probe identifier:

> beta.values <- as.matrix(meth.table[,-1])

> rownames(beta.values) <- meth.table$ID REF

It is relatively straightforward to use the M-transform to create a table of
more normally-distributed M-values from the table of beta-values:

> m.values <- log(beta.values/(1-beta.values),base=2)

Now if we use limma to identify probes with statistically significant differences
in methylation measurement between the normal ectocervix samples and the
cancer samples, we can compare the results from performing the analysis on
the beta-values to those from the m-values. First, we need to create the design
matrix. Given that the first four columns in the matrix correspond to non-
cancerous samples, and the remaining five columns correspond to cancerous
samples, our explanatory variable of interest could be numerically encoded as
a vector of four 0s then five 1s:

> design <- cbind(intercept=1,cancer=c(rep(0,4),rep(1,5)))

Here we have created a design matrix specifying an intercept and a variable
cancer indicating whether or not the sample was cancerous.

> beta.fit <- lmFit(beta.values,design)

> beta.fit <- eBayes(beta.fit)

Here we have used the design matrix to fit linear models to the table of
beta-values.

> m.fit <- lmFit(m.values,design)

> m.fit <- eBayes(m.fit)

200 Analyzing DNA Methylation Microarray Data in R

We have fitted linear models as before, but to the table of m-values. So now
we can compare the most significantly differentially-methylated probes from
each of the two tables:

> topTable(beta.fit,coef=2)

ID logFC AveExpr t P.Value adj.P.Val

13187 cg13270853 0.6065 0.6744444 52.64286 3.031232e-11 8.359531e-07

7415 cg07442479 0.4950 0.3700000 27.53366 4.656947e-09 5.197644e-05

20596 cg20645065 0.5930 0.3544444 25.63057 8.101947e-09 5.197644e-05

3603 cg03574571 -0.1800 0.7200000 -24.88095 1.018951e-08 5.197644e-05

23653 cg23694248 0.5240 0.3711111 24.67005 1.088162e-08 5.197644e-05

> topTable(m.fit,coef=2)

ID logFC t P.Value adj.P.Val

7422 cg07447922 5.376914 29.59677 1.066920e-09 1.328091e-05

20596 cg20645065 6.014610 28.36971 1.510658e-09 1.328091e-05

13829 cg13877915 5.313083 26.92885 2.317002e-09 1.328091e-05

13972 cg14011639 4.148885 26.84753 2.375191e-09 1.328091e-05

18880 cg18888520 5.272871 26.80282 2.407882e-09 1.328091e-05

You should be able to observe from these tables that the results are different,
demonstrating the fact that performing this transformation of the data is not
a pointless task. However, it is always a good idea to produce plots using
the beta values, as these are far more readily interpretable (multiply the beta
value by 100 to get the percentage)! For example, we can create a boxplot
to inspect the difference in methylation levels between the cancer and normal
samples, according to one of the most significant probes from the differen-
tial methylation analysis. The following command should give rise to the plot
shown in Fig. 9.5:

> boxplot(list(normal=beta.values[7422,c(1:4)],

+ cancer=beta.values[7422,c(5:9)]))

9.7 Further analyses using minfi

The minfi package enable a range of other analysis tasks to be performed on
DNA methylation datasets, including identification of differentially-methylated
regions (rather than individual CpG sites), estimation of chromatin compart-
mentalization based on long-range correlations of methylation, and a number
of methods for application to human blood DNA samples (typically obtained
for epidemiological studies). Rather than give examples for these further

Further analyses using minfi 201

FIGURE 9.5
DNA methylation beta-values from probe cg07447922, comparing normal ecto-
cervix to cervical cancer samples.

analytical procedures here, we refer the reader to the minfi documentation
on the Bioconductor website:

“https://bioconductor.org/packages/minfi/”.

We will revisit analysis of DNA methylation data in Chapter 15, which will
demonstrate how to work with bisulphite-sequencing data.

Bibliography

[1] MJ Aryee et al, “Minfi: a flexible and comprehensive Bioconductor package
for the analysis of Infinium DNA methylation microarrays”, Bioinformat-
ics 30(10):1363–1369.

https://bioconductor.org/

202 Analyzing DNA Methylation Microarray Data in R

[2] A Stone et al, “DNA methylation of oestrogen-regulated enhancers defines
endocrine sensitivity in breast cancer,” Nature Communications 6:7758
(2015).

[3] P Du et al, “Comparison of Beta-value and M-value methods for quan-
tifying methylation levels by microarray analysis,” BMC Bioinformatics
11:587 (2010).

10

DNA Analysis with Microarrays

10.1 Introduction

Allele-specific hybridisation of microarray probes can be used to determine
SNP genotypes (commonly polymorphic positions in the genome). Genotyp-
ing microarrays typically work with sets of polymorphic probes: a number of
near-identical probe sequences matching the target genomic sequence, but
varying in a single base (that of the target SNP position). Each probe will
hybridise more efficiently to the exact complementary sequence, and thus the
ratio of intensities arising from the different forms of the polymorphic probes
can be used to estimate ratios of the SNP alleles present in the sample. While
individual probe sets may have particularly high or low intensities due to a
number of technical effects, a region of consecutive probe sets with elevated or
lower intensities than expected (according to the overall average) can indicate
a region of DNA copy-number gain or loss. Therefore, this tutorial covers both
aspects of analysis of high-density DNA hybridisation arrays: genotyping and
copy-number analysis.

In this tutorial we will focus on the most widely-used platform, the Affymetrix
SNP 6.0 microarray. Although, owing to the size of many datasets it is likely
that the majority of the analysis topics covered in this tutorial will need to
be carried out by a bioinformatics support facility.

10.2 Genotyping

Genome-wide SNP arrays generate a lot of data... after data processing and
genotype-calling there will be of the order of a million measurements for every
sample! Additionally, because there are so many measurements for every sam-
ple, adequately powering a genome-wise association (GWAS) study to de-
convolute the shared genotypic differences between samples and detect signif-
icant associations between individual SNP alleles and some phenotypic trait
of interest requires a large number of samples. Many GWAS studies involve
thousands of samples. Processing all this data, even for individual arrays, in

203

204 DNA Analysis with Microarrays

R can cause considerable computational burden. In order to perform this data
processing for SNP arrays, the crlmm package in R makes use of a package
called ff, which keeps the data on the hard disk rather than loading it all into
memory. To install and load the required packages, follow these steps (this
may take a while):

> source("http://bioconductor.org/biocLite.R")

> biocLite("crlmm")

> library(crlmm)

> biocLite("genomewidesnp6Crlmm")

The biocLite function, downloaded from Bioconductor’s website, installs the
crlmm package and all of its dependencies. In order to process raw data from
any microarray, we need to install the annotation package corresponding to the
array, in this case genomewidesnp6Crlmm provides the required annotation
information to run CRLMM on Affymetrix Genomewide SNP 6.0 microarrays.

The goal in processing genome-wide SNP arrays is to estimate the genotype
call for each SNP, for each sample. The genotype call refers to the relative
number of major/minor alleles, and is commonly represented ‘AA’ (homozy-
gous major allele), ‘AB’ (heterozygous) or ‘BB’ (homozygous minor allele).
Details on how the CRLMM (Corrected Robust Linear Model with Maxi-
mum likelihood distance) algorithm calculates these can be found in [1]. In an
ideal world, with intensities of the different probes being directly proportional
to the number of copies of each allele present in the sample, simple thresholds
could be applied to tell if the ratio of intensities most closely represented 1:0
(AA), 1:1 (AB) or 0:1 (BB). However, owing to technical sources of varia-
tion such as background noise, spatial artefacts and off-target hybridization,
a more sophisticated approach must be taken. With the CRLMM approach, a
set of arrays are normalized together to remove technical variation, then the
genotype calls are generated on the basis of log-ratios between the A and B
alleles for each SNP, adjusting for probe sequence, fragment length and total
signal intensity effects.

10.2.1 Normalization

As with gene expression microarrays, individual probe-level measurements
from genotyping arrays need to be normalized to remove as much technical
variation from the data as possible, without obscuring any underlying biolog-
ical signal. The reader is referred to Chapter 8 for a description of some of the
sources of technical bias in microarray measurements.

The crlmm package implements a modified version of the RMA algo-
rithm, known as snpRMA, which has been specifically adapted to work on
Affymetrix Genotyping arrays. In fact, the raw data (CEL file) normalization

http://bioconductor.org/

Genotyping 205

is incorporated as part of the genotype-calling function crlmm, and does not
need to be called explicitly. However, it is worth knowing that this normaliza-
tion is performed during this process.

10.2.2 Genotype calling

In practical terms, using the crlmm package to generate genotype calls is quite
straightforward. However, a number of things need to be put in place first.
Our example dataset for this section will be a set of 24 small cell lung can-
cer cancer cell line samples. Results of the study have been published [3] and
the data is publicly available from GEO with accession number GSE40142.
Download and unpack all the raw data: note, this will require 2GB of hard
disk space. Once the .CEL files have been extracted, set the R working direc-
tory to the one containing these .CEL files. Make sure the crlmm package is
loaded into the R workspace, then proceed with the genotype calling as follows:

> celFiles <- list.celfiles(full.names=TRUE)

> genotypeCalls <- crlmm(celFiles)

Here we define the list of cel files to be analysed, then invoke the crlmm

function.

There is a chance that one or more of the CEL files may be corrupted in
the course of downloading and extracting into the filesystem. You can use the
validCEL function to find any corrupted files before running the genotype
calling. If, for example, the file GSM986170.CEL was corrupted, you would
see the following:

> validCEL(celFiles)

Problem reading ./GSM986170.CEL

Corrupted file won’t be read in correctly and would cause an error in the
genotype calling procedure, preventing any result from being created. We can
remove any corrupted files using the setdiff function:

> celFiles <- setdiff(celFiles,"./GSM986170.CEL")

The setdiff function returns as its output what is left of the first argu-
ment (in this case celFiles) after removing any elements that match the
second argument (in this case, "./GSM986170.CEL", which is the location of
the corrupted file). Now when we rerun the file check, it reports no errors:

> validCEL(celFiles)

[1] "Successfully read all cel files"

206 DNA Analysis with Microarrays

In this case, we can now attempt to rerun the genotyping function on the
new vector of CEL file names:

> genotypeCalls <- crlmm(celFiles)

Assuming that the crlmm function has been run successfully on the raw data
files, to retrieve the genotype calls from the output, use the calls function
(indexing the first three rows and first three columns of the resulting matrix,
just to make it readable):

> calls(genotypeCalls)[c(1:3),c(1:3)]

SNP A-2131660 3 3 3

SNP A-1967418 3 3 3

SNP A-1969580 3 3 3

As seen in the above command, the calls function returns a matrix of numer-
ical values, in which 1 represents an AA genotype for the corresponding SNP,
2 represents AB and 3 represents BB. By itself, the result is perhaps of little
value. However, with annotation of the SNPs, we may be able to interpret
more from the data! The probe set identifier corresponding to each row can
be retrieved using the featureNames function:

> SNPids <- featureNames(genotypeCalls)

To use the data a little more wisely, we need to know what these SNP IDs
actually represent. For this, we need to access annotation information. A table
with annotation listing the chromosome, position and dbSNP ID correspond-
ing to each SNP array probe IDs is available for download from GEO, under
the record GPL6801. Download this table and save it on your filesystem in
the current working directory. Load the table into R, and then put the corre-
sponding rows in order:

> snp.annot <- read.table("GPL6801-4019.txt"),sep="\t",header=TRUE
> snp.annot <- snp.annot[as.character(snp.annot$ID) %in% SNPids,]

> dbSNPids <- as.character(snp.annot$SNP ID)

> SNPchromosomes <- snp.annot$Chromosome

> SNPlocations <- as.numeric(as.character(snp.annot[,7]))

Here we have kept only annotated SNP probes which are measured in the
dataset (i.e. they are in the vector SNPids). Then for convenience, we have
extracted the columns in the annotation table giving dbSNP IDs, chromosome
and position, respectively.

Now, if we were particularly interested in SNP alleles in the region of a partic-
ular gene, say PIK3CA, we can find the corresponding genotype calls. First,
we need to look up the gene’s location, using the same genome build as that

Genotyping 207

used for the microarray annotation package (in this case, hg19)! Doing this
using the UCSC genome browser1 tells us that the genomic co-ordinates of
the gene are Chr3:178,866,311-178,952,497. We can use the which function to
find the relevant rows from the genotype call table:

> PIK3CA.SNPs <- which(SNPchromosomes==3 & SNPlocations>178866311

+ & SNPlocations<178952497)

Now we can inspect the genotype calls for each tumour sample by using this
PIK3CA.SNPs object to index the full table:

> calls(genotypeCalls)[PIK3CA.SNPs,]

And we can find how many of the cell lines have each genotype, for each
SNP, using the function table. For example, for the first SNP mapping to the
PIK3CA gene:

> table(calls(genotypeCalls)[PIK3CA.SNPs[1],])

In this function, one row of the matrix resulting from applying the func-
tion calls to the object genotypeCalls has been indexed. Then the function
table counts the number of elements in the vector passed to it which have
each value. The output should appear as below:

1 2 3

19 3 2

The table function outputs a vector of named numeric elements, one for
each unique value of the input. In this example, all possible values (1=AA,
2=AB, 3=BB) have been observed, with the respective counts 19, 3 and 2.
But if we want to specify all the values that could have been observed, we can
first convert the input into Rs factor datatype, specifying the levels (i.e. the
values) that the factor will take. This is particularly useful when comparing
sets of genotype counts, as it ensures we will be comparing like with like. To
repeat the previous command but using the factor to specify the possible
genotypes as 1 (AA), 2 (AB) or 3 (BB):

> table(factor(calls(genotypeCalls)[PIK3CA.SNPs[1],],levels=1:3))

The factor function has been used here with two arguments: the first is the
vector of values, the second (called levels) is the vector of possible values. If
the vector of values includes some elements not in the list of possible values,
those impossible values will be replaced with NAs to denote missing values.

1http://genome.ucsc.edu/cgi-bin/hgGateway

http://genome.ucsc.edu/

208 DNA Analysis with Microarrays

10.2.3 Downstream analysis: Genome-wide association tests

For the dataset in question, we do not have any further data associated with
the samples. If we did, it would be possible to apply the limma methods for
analysis using linear models just as were used for gene expression microarray
data in Sections 8.6 and 8.7. In this way, we could find SNP alleles associ-
ated with any desired variables. However, it is worth bearing in mind that
the hypothesis testing from linear models as in the limma framework is best
suited to variables which are at least approximately normally-distributed. For
the case of genotyping data, we know that is not the case. Instead, for a two-
class comparison we may wish to test statistical independence of the genotype
with the variable of interest: we can do this using a χ2 (Chi-squared) test.

As mentioned, in this example we do not have any functional data associ-
ated with the genotyped samples. However, let’s pretend that half of the cell
lines were derived from patients affected by a disease, and half from unaffected
individuals. For convenience, let’s say that columns 1–12 were the patients,
and columns 13–24 were the unaffected individuals. What we want to test
then, is for each genotyped locus what the probability would be of obtain-
ing such different proportions of genotypes (the relative frequency of AA, AB
and BB calls) across the two groups of individuals if the calls for each group
had been sampled from the same distribution. To illustrate the process for a
single SNP locus, we can compare the distributions of genotypes for the first
locus mapping to the PIK3CA gene (using the mappings from the previous
section):

> ctab <-cbind(table(factor(calls(genotypeCalls)[PIK3CA.SNPs[1],

1:12],levels=1:3)),

+ table(factor(calls(genotypeCalls)[PIK3CA.SNPs[1],13:24],

levels=1:3)))

Note how this repeats the previous command to count the different geno-
types of the selected SNP, having converted the vector of genotype calls to a
factor, specifying the possible values with the levels argument. But rather
than counting the genotypes across all columns of the matrix returned by the
calls function, it first counts only across columns 1 to 12 and then counts
only across columns 13 to 24. The cbind function is used to combine these two
vectors of genotype counts to form the columns of an array, which is stored
on the workspace as the object ctab. This is the 3× 2 contingency table that
can be tested for independence.

The final part of the procedure for testing for independence of two distri-
butions is to apply the Chi-squared test using the chisq.test function.

> chisq.test(ctab)

Genotyping 209

Output should appear as follows:

Pearson’s Chi-squared test

data: ctab

X-squared = 2.386, df = 2, p-value = 0.3033

Warning message:

In chisq.test(ctab) : Chi-squared approximation may be incorrect

As with many applications, once you are able to evaluate associations for
a single molecular feature (in this case a SNP), it becomes relatively simple
to extend this to all available features. To perform a genome-wide association
evaluation, create vectors of missing values to store the Chi-squared test p-
values, and then we can put these into a data frame along with any feature
annotations, and sort the table.

> gwas.pvals <- rep(NA,nrow(calls(genotypeCalls)))

This command creates a vector called gwas.pvals, with the same number
of elements as the number of rows in the matrix resulting from applying the
calls function on the genotypeCalls object. The next step is to run the
for loop to compute the chi-squared p-values for each SNP having genotypes
for which we can reject the null hypothesis of independence between geno-
types and the phenotype of interest (in this example, the phenotype is just an
arbitrary distinction of the cells into two groups, but in real applications this
could be something meaningful).

> for(i in 1:nrow(calls(genotypeCalls))){
> ctab <- cbind(table(factor(calls(genotypeCalls)[i,1:12],

levels=1:3)),

+ table(factor(calls(genotypeCalls)[i,13:24],levels=1:3)))

+ gwas.pvals[i] <- chisq.test(ctab)$p.value}

In this set of commands, a for loop is run with a variable i taking values
from 1 to the number of genotyped features. For each value of i, a new array
(still called ctab) is created containing the genotype call counts for the two
groups (each group of samples represented as a column in this array). The ith
element of the gwas.pvals vector is then set to the p-value from the result of
applying a Chi-squared test for independence to the contingency table ctab.
Now a data frame can be created containing the SNP IDs and any available
annotation information:

> gwas.table <-data.frame(probeID=rownames(calls(genotypeCalls)),

+ SNP.ID=dbSNPids,chr=SNPchromosomes,loc=SNPlocations,

p.value=gwas.pvals)

210 DNA Analysis with Microarrays

So we have used the data.frame function to create a data frame called
gwas.table, containing named columns: probeID, SNP.ID, chr, loc and
p.value, using vectors created throughout this section. Finally, we can add
adjusted p-values to the data frame using the p.adjust function, and sort
the table so that the loci with the most significant associations are at the top.

> gwas.table$adj.p <- p.adjust(gwas.table$p.value)

> gwas.table <- gwas.table[order(gwas.table$p.value,decreasing=F),]

The output of p.adjust function has been added as a new column of the
gwas.table data frame, and named adj.p. Then the gwas.table object has
been replaced by a version of the same data frame but with the rows sorted
on increasing values of the p.value column. What are the 3 SNPs with the
genotypes most significantly-associated with (that is, a difference in the pro-
portions of genotypes across) the specified sample grouping?

> gwas.table[1:3,]

One limiting factor in the utility of such downstream analysis is the effect
of multiple comparisons: applying the same statistical test a million times
makes it quite likely that at least something would appear statistically sig-
nificant purely by chance. So false-positives can be a real problem because
so many more variables are measured than there are samples for which mea-
surements are available. In order to reduce vulnerability to this effect, it is
normal to apply some filtering in order to select just a subset of the profiled
SNPs, which some prior information suggests are more likely to be function-
ally relevant if observed to associate with the output variables. Such filters
could be selecting SNPs lying in or near candidate genes (such as commonly
mutated genes), selecting only non-synonymous SNPs, or selecting SNPs with
previously-described disease associations. A wealth of information can be
found from the dbSNP database2, with SNP IDs mappable back to rows of
the genotype calls table through the microarray annotation provided by GEO
under the accession GPL6801.

10.3 Copy number analysis

While high-density DNA microarrays were originally conceived with geno-
typing in mind, working with genetic copy number analysis is, in many
ways, easier to manage. In fact, genotyping microarrays usurped array-based

2http://www.ncbi.nlm.nih.gov/projects/SNP/

http://www.ncbi.nlm.nih.gov/

Copy number analysis 211

Comparative Genomic Hybridization (aCGH) platforms as the standard tool
for copy-number profiling, and are only now beginning to be replaced by low-
coverage whole genome sequencing. There is a fairly wide range of programmes
available for determining copy number from genotyping arrays, and a number
of common platforms used for genotyping analysis. However, for simplicity
and consistency with the other tutorials in this set, we will focus on using
the R package crlmm, available through Bioconductor3 and the Affymetrix
Genome-wide SNP 6.0 microarray platform.

Some data processing steps apply to both oligonucleotide SNP arrays and
aCGH platforms: normalization of probe-level measurements to reduce the
impact of technical variation on copy-number calls, some (typically model-
based) estimation of genetic copy number at each profiled position/region,
and the application of a segmentation algorithm to transform the individ-
ual copy-number estimates into a genome-wide profile by predicting the most
likely positions of breakpoints around each copy-number aberration (CNA).
aCGH platforms require {test,control} pairs of samples by design, but with
SNP arrays if the samples being profiled consist of {test,control} pairs, the
data processing steps may utilise information from the control to identify
regions of difference between the two samples. Without control samples, data
analysis aims to identify regions of consistently deviating intensity relative to
the individual sample’s average. Some strategies involve using a single control
sample to provide a common reference for a large set of test samples, but the
methods described here have been shown to work effectively even without a
control sample.

10.3.1 Normalization

While the normalization procedure was performed as part of the genotype
calling in crlmm, copy number estimation using this package requires explicit
data normalization. We must first read the raw data and create an object on
the workspace (the data is stored the file system, but we need an R object to
point to the right files):

> library(ff)

> cnSet <- genotype(celFiles,cdfName="genomewidesnp6",

+ batch=rep("batch",length(celFiles)))

To use the genotype function, we must specify the chip definition file to be
"genomewidesnp6" and indicate that all samples belong to the same batch.
Also, the ff library must be loaded for these functions to operate properly.

3http://bioconductor.org

http://bioconductor.org

212 DNA Analysis with Microarrays

10.3.2 Copy number estimation

The copy number estimation implemented in the crlmmCopynumber function
is described in detail in [2]. Invocation of this function to calculate the seg-
mented genome-wide copy number estimates is simple, but execution may take
a long time, particularly for larger datasets:

> crlmmCopynumber(cnSet)

The cnSet object we have just created contains information mapping each
row in the numerical output table to genomic co-ordinates. For example, we
can obtain a subset of all the copy number estimates by selecting only those
rows mapping to chromosome 8:

> chr8.cnset <- cnSet[which(chromosome(cnSet)=="8"),]

We can use the totalCopynumber function to get the copy number calls for
each probe from the cnSet object:

> CNcalls <- totalCopynumber(cnSet,j=c(1:length(sampleNames(cnSet))))

The totalCopynumber function requires you to specify which samples you
wish to tabulate the copy number estimates from: in this case, that is all of
the samples in the dataset.

The resulting table has a very large number of measurements. These can
be taken straight into downstream analysis, with annotation for each row of
the table provided with a few functions:

> cnv.probes <- featureNames(cnSet)

> cnv.chromosomes <- chromosome(cnSet)

> cnv.positions <- position(cnSet)

This table can be taken straight into downstream analysis, but the results
may be liable to probe-specific effects as the copy-number calls have not been
smoothed out over regions (which makes the results far more robust).

10.3.3 Segmentation

Following raw copy number estimation, the final stage of processing SNP array
data to obtain copy number estimates is to use information from the consec-
utive copy number estimates arising from individual SNP probes in order to
estimate region-wide copy-number. In essence, this smooths out the individ-
ual calls to make them less prone to errors arising from technical variation in
probe-level intensity measurements. There are two main approaches to copy
number segmentation with relatively easy to use implementations in R. We
will look at one example of each.

Copy number analysis 213

10.3.3.1 Hidden Markov model

One common approach to segmentation is to apply Hidden Markov Model
(HMM) methods, such as implemented in the VanillaICE package. These
methods tend to work best when non-contaminated data is available. For
processing data from primary tumour samples, you are advised to follow the
instructions in the Circular Binary Segmentation section, which follows this.
To run the HMM algorithm, first we must install and load the VanillaICE
package4:

> biocLite("VanillaICE")

> library(VanillaICE)

The hmm function only runs on the chromosomes 1-22, so we subset the cnSet

object with only those copy-number calls representing chromosomse 1-22:

> CNVmodel <- hmm(cnSet[which(chromosomes(cnSet)

+ %in% c(1:22)),])

The CNVmodel object created with this command is in the RangedData class
of R objects: this allows values to be defined over many regions of different
sizes in some set of spaces. In this case, the space and ranges part of the
object are somewhat abstract, but other values in the RangedData table are
readily interpretable:

• chrom: the chromosome in which the CNA region lies

• num.mark: the number of markers (that is probes) lying in the region

• id: the sample to which the region refers

• state: the inferred HMM state for the region. With default settings, the
states 1-6 correspond to copy-numbers 0,1,2,2,3,4

• LLR: the log-likelihood ratio. The higher the value, the more significant the
call of aberrant copy number in the region.

The CNVmodel object can be indexed to obtain a subset of the segmented copy-
number regions. For example, to obtain all the CNA regions from one par-
ticular sample (e.g. GSM986170 CBE ROM3-P1-1 H196 031209 GWS6.CEL)
enter:

> CNVmodel[which(CNVmodel[[3]]==

+ "GSM986170 CBE ROM3-P1-1 H196 031209 GWS6.CEL"),]

4The biocLite function needs to be loaded using: source("http://bioconductor.

org/biocLite.R").

http://bioconductor.org/
http://bioconductor.org/

214 DNA Analysis with Microarrays

Here we have used the fact that the third value term of the CNVmodel object
listed the sample names for each region, so the which function returns the
indices of those regions that correspond to the chosen sample.

To find the genomic positions covered by the probes in a given segment (or
set of segments), you can use the annotation provided in the cnSet object.
However, first you must find which of the probes are covered by the segment.
To obtain this information for the first segment in the CNVmodel table, we
would proceed as follows:

> biocLite(oligoClasses)

> library(oligoClasses)

First, the oligoClasses package must be installed (if necessary) and loaded
into the workspace.

> reg1.markers <- as.matrix(findOverlaps(CNVmodel[1,],

+ subject=cnSet[autosomal,]))

In this command, we have used the findOverlaps function from the oligo-
Classes package to obtain the probe indexes contained in the region defined by
the first segment of the CNVmodel object. The subject=cnSet[autosomal,]

argument specifies the object that was passed to the hmm function in order to
calculate the copy number segments.

Now we can construct a data frame containing the probe ID, chromosome
name and chromosomal position of each probe, using the reg1.markers object
created in the previous command to index the cnSet annotation information:

> reg1.probes <- data.frame(ID=featureNames(cnSet[autosomal,])

+ [reg1.markers[,2]],chr=chromosome(cnSet[autosomal,])

+ [reg1.markers[,2]],pos=position(cnSet[autosomal,])

+ [reg1.markers[,2]])

The first few rows of this annotated data frame should appear as follows:

> head(reg1.probes)

ID chr pos

1 SNP A-1991776 10 291134

2 SNP A-1991777 10 294953

3 SNP A-1991778 10 309526

4 SNP A-4266693 10 514032

5 SNP A-1991794 10 514138

6 SNP A-1991801 10 533331

Copy number analysis 215

It would help to have a vector containing the copy-number states represented
by each HMM state (we will use this later):

> CNstates <- c(0,1,2,2,3,4)

Copy-numbers for individual samples, and for individual genes can therefore
be looked up according to which region of the CNVmodel object applies to
them. However, most downstream analysis is greatly simplified if we convert
these probe-wise or segment-wise representations of copy number into gene-
wise representations. This will be covered in the final section of this tutorial.

It may be useful to create a table containing the full, segmented copy-number
representation in probe-wise format. This will likely require a lot of mem-
ory to create, especially for datasets with many samples. One way to do this
would be first to create the table, initialising all values to a copy number of
2 (normal). Then, for each region of the CNVmodel object in turn, find which
rows (probes) and column (sample) of the new table are referred to, and set
the relevant values to the appropriate copy number:

> fullCNVtable <- array(2,dim=dim(calls(cnSet[autosomal,])))

> rownames(fullCNVtable) <- featureNames(cnSet[autosomal,])

> colnames(fullCNVtable) <- sampleNames(cnSet[autosomal,])

We need to be explicit with the fact that the CNVmodel object refers only to
regions from the subset of the cnSet object that is indexed by the autosomal

vector.

> for(sID in sampleNames(cnSet)){
+ for(region in which(CNVmodel[[3]]==sID)){
+ probeIndex <- as.matrix(findOverlaps(CNVmodel[region,],

+ subject=cnSet[autosomal,]))[,2]

+ fullCNVtable[probeIndex,which(colnames(fullCNVtable)==sID)]

+ <- CNstates[state(CNVmodel)[region]]

+ }}

This sequence of commands sets up two nested for -loops: the first goes through
each sample in turn, referring to the sample in question as sID, the second
goes through each region of the CNVmodel object that refers to the sample in
question, referring to the region in question as region. Then two commands
are executed for every region, for every sample: the first creates an index object
called probeIndex, which finds which of the probes are covered by the region
(this is as we have done previously). The final command sets the values of the
table fullCNVtable indexed by the probeIndex object and the sample name
sID to be the copy-number state estimate provided by the CNVmodel object
(this is the sixth set of values associated with each region) for the specified

216 DNA Analysis with Microarrays

region. This loop may take a long time to run, but the output can be written
to file using the write.table function and is a simple table of values that can
be analysed using the methods covered in previous tutorials for other numeric
data tables (such as gene expression data).

10.3.3.2 Circular binary segmentation

Another standard approach to segmentation, the Circular Binary Segmenta-
tion algorithm, as implemented in the DNAcopy package, can be used. This
is particularly appropriate for tumour datasets, where sample heterogeneity
is likely to give rise to fractional copy-number gains or losses.

> CNcalls <- totalCopynumber(cnSet,j=c(1:length(sampleNames(cnSet))))

> autosomal <- which(chromosome(cnSet) %in% c(1:22))

These first commands create a table of the copy number calls from the cnSet

object, then index only those on chromosomes 1 to 22.

> CNV.object <- CNA(CNcalls[autosomal,],chrom=

+ chromosome(cnSet[autosomal,]),maploc=position(cnSet[autosomal,]))

> CNV.smoothed <- smooth.CNA(CNV.object)

> CNV.out <- segment(CNV.smoothed)

The CNV.out object created by the above command contains a data frame,
which is very similar to the CNVmodel object described in the HMM section
immediately prior to this. The only real differences lie in the ways to access
the information contained in the object. We can inspect the first few rows of
this data frame using $out to refer to the object:

> head(CNV.out$out)

The segments data frame contained in CNV.out$out can be used for any-
thing that the segment regions object CNVmodel can be used for in terms of
downstream analysis, as will be covered in the next section. There are plotting
tools provided in the DNAcopy package that make creating graphical repre-
sentations of the output relatively simple. To produce a plot of the estimated
copy number at each position in a sample, you can use the following command
(which should give rise to the plot shown in Fig. 10.1):

> plotSample(CNV.out,sampleid=sampleNames(cnSet)[1])

Additionally, with the CNV.out object, frequencies of gain or loss of segments
can be retrieved using the glFrequency function:

> glFrequency(CNV.out)

Copy number analysis 217

FIGURE 10.1
Plot of copy number estimates in sample GSM986170 CBE ROM3-P1-
1 H196 031209 GWS6.CEL from the circular binary segmentation algorithm.
Separate chromosomes are shown in different colours.

10.3.4 Downstream analysis

10.3.4.1 Mapping CNA data to genes

Genetic copy number data is often available in probe-wise or segment-wise
representations. Probe-wise representations contain all the information from
a dataset, but suffer the same limitations as genome-wide genotyping data
in having extremely large numbers of measurements for every sample. Addi-
tionally, adjacent probes will typically have the same values in most samples.
So there may be many thousands of probes with exactly the same statistical
association to some variable of interest. Add this to the fact that a biological

218 DNA Analysis with Microarrays

interpretation of genetic copy number typically revolves around the genes cov-
ered by regions of CNA, and obtaining a gene-wise representation of the results
of copy number analysis seems to make sense.

To create a gene-wise representation from segment-wise or probe-wise rep-
resentations of copy number data, a table of all genes’ chromosomes and posi-
tions is required (or another mapping from probeID to gene symbol). For
this, we will make use of the biomaRt package in R: BioMart is a tool from
Ensembl which enables download of selections of the genome-wise annotation
information that is displayed in the Ensembl genome browser, and biomaRt
provides a simple way to access all this information directly through R.

First, install (if necessary) and load the biomaRt package:

> biocLite("biomaRt")

> library(biomaRt)

Using the biomaRt package requires specification of a database in which to
look up the required information, then (if required) specifying filters so that
only relevant information is returned. We will start by creating an object that
points to the appropriate database (the human gene annotation data) for our
query:

> ensembl <- useMart("ensembl",dataset="hsapiens gene ensembl")

One function, getBM allows us to retrieve desired information. It requires the
specification of attributes to include in the output. A full list of attributes can
be viewed with the following command:

> listAttributes(ensembl)

The information we need is: gene symbol, chromosome, start position and
end position. We can specify the appropriate attributes and obtain the table
of annotation information:

> geneInfo <- getBM(attributes=c("hgnc symbol",

+ "chromosome name","start position","end position")

+ ,filters="chromosome name",values=c(1:22),mart=ensembl)

In the above command, the getBM function has been used with arguments
filters and values specified to restrict the output to only those genes on
chromosomes 1 to 22 (i.e. those genes for which we actually have segmented
copy number estimates).

Copy number analysis 219

Before we use this table, we will filter out those entries without gene symbols:

> geneInfo <- geneInfo[which(!geneInfo$hgnc symbol==""),]

We may also wish (or need) to include only one entry per unique gene symbol.
Any selection is likely to be arbitrary, so we could just choose the first entry
in the table for each gene:

> geneInfo <- geneInfo[(!duplicated(geneInfo$hgnc symbol)),]

This command uses the duplicated function to find the indexes of all non-
duplicated gene-symbols, and therefore removes all duplicate rows from the
geneInfo table.

With the requisite gene annotation information, constructing a gene-wise copy
number table for the dataset is very similar to constructing a probe-wise rep-
resentation from the segmented data (as was carried out previously). We first
construct a table with a row for each gene and a column for each sample, with
values initialised to copy number 2 (normal). Then we find which region in
the segmented table corresponds to each gene, for each sample, and places the
copy number estimate into the appropriate position in the table.

For the output from the HMM algorithm, the table CNVmodel, use the follow-
ing sequence of commands:

> CNVcalls.byGene <- array(2,dim=c(nrow(geneInfo),

+ length(sampleNames(cnSet))))

> rownames(CNVcalls.byGene) <- geneInfo$hgnc symbol

> colnames(CNVcalls.byGene) <- sampleNames(cnSet)

> for(segment in c(1:nrow(CNVmodel))){
+ segment.genes <-which(geneInfo$chromosome name==CNVmodel[[1]][segment]

+ & geneInfo$start position>start(ranges(CNVmodel[segment,])[[1]])

+ & geneInfo$end position<end(ranges(CNVmodel[segment,])[[1]]))

+ segment.sample <- which(sampleNames(cnSet)==CNVmodel[[3]][segment])

+ CNVcalls.byGene[segment.genes,segment.sample] <-

+ CNstates[state(CNVmodel)[segment]]

}

This complex command is straightforward when broken down into its parts.
There is one loop that goes through each segment listed in the CNVmodel

object in turn, finding which genes lie in the region covered by the segment
and which sample the segment refers to. To get a list of the genes lying in a
given region, the which function is used to combine three tests (with a & sym-
bol): which genes are on the same chromosome as the segment, which genes
have start positions higher than the genomic co-ordinate of the beginning of

220 DNA Analysis with Microarrays

the segment, and which genes have end positions less than the genomic co-
ordinate of the end of the segment. Thus, all (and only those) genes lying
entirely within the segment will satisfy all three tests and be output by the
which function.

For output from the CBS algorithm, the procedure is almost identical, just
with slightly different ways to access the appropriate results from the CNV.out
function:

> CNVcalls.byGene <- array(2,dim=c(nrow(geneInfo),

+ length(sampleNames(cnSet))))

> rownames(CNVcalls.byGene) <- geneInfo$hgnc symbol

> colnames(CNVcalls.byGene) <- sampleNames(cnSet)

> for(segment in c(1:nrow(CNV.out$out))){
+ segment.genes <-which(geneInfo$chromosome name==CNV.out$out[segment,2]

+ & geneInfo$start position>CNV.out$out[segment,3]

+ & geneInfo$end position<CNV.out$out[segment,4])

+ segment.sample <- which(sampleNames(cnSet)==CNV.out$out[segment,1])

+ CNVcalls.byGene[segment.genes,segment.sample] <-

+ CNV.out$out[segment,6]

}

The resulting table, CNVcalls.byGene, can be used just as any other numeric
data table for downstream analysis as detailed in Chapters 5 and 8. For exam-
ple, the limma package can be used to evaluate associations between gene-level
copy number estimates and any experimental variables of interest, as specified
through a design matrix for a linear model.

10.3.4.2 Finding frequently-mutated genes

A simple analysis that is particularly useful with copy number data is calcu-
lation of the frequencies of copy-number aberrations (CNAs) are for each gene.

> amplification.counts <- apply(CNVcalls.byGene,MARGIN=1,

+ function(x)sum(x>2))

Here we have used the apply function to count the number of times each
row in the table (i.e. each gene) has a copy number greater than 2 (i.e. it is
amplified). We could use a similar command to count deletion events:

> deletion.counts <- apply(CNVcalls.byGene,MARGIN=1,

+ function(x)sum(x<2))

Now we can create a data frame and find the most common events:

> CNA.frame <- data.frame(ID=rownames(CNVcalls.byGene),

+ AmpCount=amplification.counts, DelCount=deletion.counts)

Summary 221

Ordering on the number of CNA events shows which positions are most com-
monly amplified or deleted.

> head(CNA.frame[order(CNA.frame$AmpCount,decreasing=TRUE),])

ID AmpCount DelCount

TET1P1 TET1P1 24 0

RPL29P29 RPL29P29 24 0

LINC00433 LINC00433 24 0

MRPS29P2 MRPS29P2 24 0

RAPGEF4-AS1 RAPGEF4-AS1 24 0

ALDH7A1P2 ALDH7A1P2 24 0

If we had a gene of interest (e.g. MYC), we could look up the correspond-
ing row in the table to count the amplifications and deletions:

> CNA.frame[which(CNA.frame$ID=="MYC"),]

This analysis could also be performed on a table of gene expression data, with
some set threshold, in order to find genes that are commonly over-expressed
(or silenced) in a particular set of samples. However, determination of an
appropriate threshold for such data is difficult, because there is no way to
estimate a reference background level (as there is with copy number data).

10.4 Summary

Owing to its extremely high density of information, analysis of high-
throughput genotyping microarray data can be fairly complex. As the com-
putational resources required to process large datasets may be prohibitive, it
is likely that many of the steps covered in this tutorial will be carried out by
a bioinformatics service from the facility running your microarrays. However,
there is still a great wealth of datasets available for which analysis would be
computationally feasible, but even the basic steps of data processing to obtain
tables of values that can be used for subsequent downstream analysis can be
difficult.

It is therefore the aim of this tutorial to give you the tools to be able to
process raw Affymetrix SNP array data to the stage at which downstream
analysis is possible, and therefore to enable you to utilise more of the data
available to you in domain data repositories (such as GEO) or from your
own research centres. The end-points of the data processing described in this
tutorial can feed directly into data analysis techniques detailed in the earlier
tutorials from this set, and so hopefully you will be able to use these together

222 DNA Analysis with Microarrays

to harness the wealth of data that is publically available to gain insight into
genetic events relevant to your biological and clinical research questions.

Bibliography

[1] B Carvalho, H Bengtsson, TP Speed and RA Irizarry, “Exploration, nor-
malization, and genotype calls of high-density oligonucleotide SNP array
data,” Biostatistics 8(2):485–499 (2007).

[2] RB Scharpf, I Ruczinski, B Carvalho, B Doan, A Chakravarti and RA
Irizarry, “A multilevel model to address batch effects in copy number esti-
mation using SNP arrays,” Biostatistics 12(1):33-50 (2011)

[3] ML Sos et al, “A framework for identification of actionable cancer genome
dependencies in small cell lung cancer,” PNAS 109(42):17034-9 (2012).

11

Working with Sequencing Data

11.1 Introduction

This chapter of the tutorials is not like the other chapters so far. I have
tried to make these tutorials a complete introduction for each topic covered,
with instructions for downloading and installing R and all required packages
and data. Unfortunately, because of the sheer amount of data generated in
today’s typical sequencing experiments, analysis within R is not always feasi-
ble because it is designed to process all data in memory (RAM). Even using
more memory-efficient tools, processing next-generation sequencing data will
usually require the use of a very powerful computer. And even if you have such
a computer at your disposal, it will quite often be administered by someone
else. In fact, because of these difficulties I chose not to include sequence data
analysis in my written tutorials for quite some time! I have tried to include
walkthroughs of processes in R where possible, although I will also show how
all steps can be performed using other software tools. This will include links
to download pages for the tools, but exact installation instructions will often
vary from platform to platform, and so you may need to request your local
sysadmin or bioinformatician to ensure the installation of the tools and depen-
dencies (other programs the tools need to run) for you. In order to simplify
use of the many standalone software tools developed for analysis of high-
throughput sequencing data, the examples given in these chapters assume
that a UNIX-type environment is available. This could be through running
the commands directly on a computer running a Linux distribution, through
using the Terminal App in MacOS, or through a Linux Virtual Machine in
Windows1. If all else fails, nearly all the data processing steps here (but not the
downstream analysis) can be performed online thanks to the Galaxy Project:
https://usegalaxy.org. There will be limits on the sizes of datasets you can
upload to the Galaxy Project servers, but it provides a graphical interface
for applying many tools to the data you have uploaded, and you could then
download the results and follow the R-based downstream analysis instructions
in the subsequent chapters of this book.

1If this seems difficult, it is even possible to run Linux operating systems directly from
external media: look up creating a LiveCD, LiveDVD or LiveUSB.

223

https://usegalaxy.org

224 Working with Sequencing Data

11.2 Sequence data analysis tasks

There are a number of tasks which need to be performed to get the most
out of a sequencing experiment, which are frequently linked together into
‘workflows’. The nature of these workflows varies for the different applications
of high-throughput sequencing (e.g. genome sequencing, ChIP-seq, RNA-seq),
in that these require different tasks. However, there are some tasks which
are universally required across most applications. The main content of this
tutorial will be to go through these tasks one by one, starting off with the
universal tasks before progressing through workflows for each of the main
applications of high-throughput sequencing (HTS). Note, there will be many
ways of performing each of these tasks, I am only showing you the ways
that I find work best for me! You may find that your sequencing facility or
collaborators have already carried out a number of these tasks for you, or
if you’re obtaining publically available data it may be most convenient to
download ready-processed datasets. It is still worthwhile knowing what tasks
ought to have been carried out in order to generate the processed data, and
hence familiarize yourself with the whole of this tutorial, but for quick results
you might want to jump to the relevant chapter: this might be Chapter 12 if
you already have variant calls in VCF files, or Chapter 13 if you have ChIP-seq
peaks in BED files.

11.3 Quality control

The real advantage of the so-called next-generation sequencing platforms is
their throughput, not particularly their accuracy. While the platforms cer-
tainly are pretty accurate sequencers, their throughput means that typical
values on an Illumina HiSeq 2000 of 1 in 500 bases called erroneously could
mean that a single run of 600 Gb of sequence would contain over a billion
errors! If the error rate is low and the errors are evenly distributed through-
out the reads, then this should be fairly easy to work around. However, if the
errors are particularly concentrated around certain features, or if the sequenc-
ing itself is biased to certain features, it may be worth specifically taking this
into account. Fortunately, the technologies have been developed to help us out
in this respect, in that the certainty of the base-calling is one of the pieces
of information that is stored for each base-call of sequence data (in the Fastq
format). These quality scores are encoded in a number Q such that the prob-

ability of base-call error P = 10
−Q
10 . As a guide, Q = 20 means 1% expected

probability of error, while Q = 30 means 0.1% expected probability of error.
Q = 30 or above is often considered a ‘rule-of-thumb’ for good quality reads.

Quality control 225

There are other aspects of the sequencing chemistry that can cause the read
sequences that are returned to misrepresent the actual sequences of the DNA
fragments in the library. The most common of these is probably the (partial)
sequencing of the adapters and/or PCR primers that were used in order get
a measurable signal for the sequencer.

There are a few general-purpose tools that generate QC reports directly from
the Fastq files which is the standard ‘raw’ output from the sequencers. One
simple but effective such tool is FastQC from the Babraham Institute, which is
available to download at http://www.bioinformatics.babraham.ac.uk/projects
/fastqc/.

FastQC has a graphical interface and produces a traffic-light-based navigator
through the tests it carries out, for which an example is shown in Fig. 11.1. In
Fig. 11.1 you can see that the quality scores across this library tend to decrease
towards the end of the reads: that trend is typical of high-throughput sequenc-
ing runs, but the extent to which the quality scores decrease in this example
is not typical and suggests there may be some problems with the input.

FIGURE 11.1
Per-base quality score chart produced from FastQC. Each boxplot shows the
distribution of base call quality scores at that position in all reads in the input
Fastq file.

http://www.bioinformatics.babraham.ac.uk/
http://www.bioinformatics.babraham.ac.uk/

226 Working with Sequencing Data

Note that FastQC is a tool to draw to your attention potential problems with
a sequence library, it doesn’t include functionality to take action according to
these problems. Additionally, as it is based around visual reports presented
through a GUI, it would be extremely time-consuming to apply to a very large
set of libraries in turn. If you plan an analysis of a large number of datasets it
would perhaps be better to use processed data from a trusted research group
or consortium (e.g. ENCODE), or to implement rule-based filtering and read
trimming as we’ll come to next.

11.3.1 Base call quality filtering

As we have based most of this tutorial set on the use of R, it makes sense to
take advantage of the relevant functionality in R that comes from the Bio-
conductor project for working with sequence data [1]. One such area is in
handling Fastq files, for which the ShortRead package can import Fastq files
and access both sequence characters and numeric quality scores for all reads in
the resulting object. Install the ShortRead package by running the following
within the R environment:

> source("http://bioconductor.org/biocLite.R")

> biocLite("ShortRead")

Now, say we have a sequenced library in a file called ‘cancertest.fq’ and we wish
to remove the poor-quality reads. The file I have used2 is available for down-
load from: https://github.com/edcurry/bioinfo-book/cancertest.fq. Once that
file is downloaded, we can first import the file after loading the ShortRead
package:

> library(ShortRead)

> reads <- readFastq("cancertest.fq")

There, that was easy! But we now need to access the quality scores, which is
where things get slightly more complicated. The function quality returns the
quality scores within a BStringSet object, which we can make more usable by
converting it to a matrix3:

> quals <- as(quality(reads),"matrix")

In some recent versions of Bioconductor, that command will not work. If this
is the case for you, the following work-around creates the same output:

> quals <- array(NA,dim=c(length(reads),width(reads[1])))

> for(i in 1:nrow(quals)){
2Derived through randomly-sampling reads from publically-available ChIPseq runs
3NB: there is a limit on the size of matrices it can create like this, and so if your Fastq

file has over 20 million reads then you will have to break it into 20 M read chunks and apply
the filtering separately, then combine the filtered read sets at the end.

http://bioconductor.org/
https://github.com/

Quality control 227

+ quals[i,] <- as.numeric(quality(reads)[[i]])-33

+ }

This approach creates an array full of missing values, with a row for each
read in the reads object and a column for each sequencing cycle (assuming
the first read is representative). The for loop steps through each read in turn,
extracts the quality scores, converts them to a numeric vector and subtracts
33 to convert to the correct scale (if any scores end up less than zero, omit
this subtraction).

We can in fact use R to create a similar plot to the one generated by FastQC,
the result of which is shown in Fig. 11.2, and shows that in this instance it
is the start of each read which tend to have lower quality scores, albeit these
are still mostly above our Q = 30 ‘good-quality’ standard:

> boxplot(lapply(1:ncol(quals),function(x)quals[,x]))

FIGURE 11.2
Per-base quality score boxplot produced in R. Each boxplot shows the dis-
tribution of base call quality scores at that position in all reads in the input
Fastq file.

228 Working with Sequencing Data

How you actually choose to filter reads may depend on what you expect of
the sequence library and what you are using it for. To provide an example,
if the ‘cancertest.fq’ file represents 50 bp Illumina reads, and I expect them
to be pretty good quality, I might say that I want to discard any reads that
have more than 5 base calls with quality lower than Q = 30. To achieve this
I make use of the apply function to count the number of values below 30 in
each row:

> goodq.reads <- reads[apply(quals,MARGIN=1,function(x)

+ sum(as.numeric(x<30))<=5)]

A quick examination of the length of the resulting filtered set tells us about
65% of the reads in this library pass the quality filter: that is not a lot! How-
ever, by trimming the ends of the reads (which are often where base call
quality scores degrade) it may be possible to improve this number whilst
applying exactly the same filter.

> length(goodq.reads)/length(reads)

[1] 0.64435

We might also want to discard any reads with ‘N’ base-calls (i.e. the sequencer
couldn’t work out which base was in the corresponding position). For this we
can use the sread function to get the individual base calls as a DNAStringSet
object, to which we can apply the alphabetFrequency function and extract
the column of the resulting matrix which represents ‘N’s:

> goodq.reads.noN <- goodq.reads[alphabetFrequency(

+ sread(goodq.reads))[,"N"]==0]

We can now export the filtered set of reads back out to file:

> writeFastq(goodq.reads.noN,file="cancertest filtered.fq",

+ compress=FALSE)

11.3.2 Adapter trimming

As mentioned earlier, ‘contamination’ of adapter or primer sequences in
read files can occur for a number of reasons, although is particularly com-
mon when short DNA fragments are being sequenced (so that the read
length is longer than the fragment length). There are a number of tools
for identifying recurring short sequences and removing these from reads
in a Fastq file. One such example is the tool Trimmomatic [2], which
is written in Java and can be obtained from http://www.usadellab.org/
cms/index.php?page=trimmomatic. Download the Trimmomatic binary zip
and then extract on a Linux system:

http://www.usadellab.org/
http://www.usadellab.org/

Quality control 229

$ wget http://www.usadellab.org/cms/uploads/supplementary/

Trimmomatic/Trimmomatic-0.33.zip

$ unzip Trimmomatic-0.33.zip

$ cd Trimmomatic-0.33

Then you can run the Trimmomatic program on the ‘cancertest filtered.fq’
file by copying it into the Trimmomatic directory and then invoking:

$ java -jar trimmomatic-0.33.jar SE cancertest filtered.fq

cancertest trimmed.fq ILLUMINACLIP:adapters/TruSeq3-SE.fa:2:30:10

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:25 MINLEN:36

Note that as well as specifying the input file cancertest filtered.fq, an
output file cancertest trimmed.fq is also named: this output file doesn’t
need to exist yet, the program will create it. The ‘ILLUMINACLIP’ argu-
ment tells the program to trim out known sequences from adapters used in
the Illumina TruSeq3 chemistry. The numbers ‘2:30:10’ in the argument each
specify a threshold to be used in the trimming. First: up to two mismatches
between read and adapter sequence should be allowed. Second: palindromic
adapter sequences in paired-end reads will be removed if the have a match-
ing score of at least 30. Third: any sequence to be trimmed must match an
adapter sequence with a score of at least 10. The matching score algorithm
is given in the Trimmomatic documentation, but it recommends setting this
last value in the range 7–15, so 10 seems like a reasonable compromise. The
other arguments specify additional read-trimming instructions: ‘LEADING’
removes consecutive bases that are lower than the specified quality score
(therefore 3 is a very tolerant threshold!), starting at the beginning of the
read. ‘TRAILING’ does the same but starting at the end of the read. ‘SLID-
INGWINDOW’ will cut reads if they have a run of 4 consecutive bases with
average quality Q̄ < 25. The final argument ‘MINLEN’ specifies that reads
should be discarded entirely if they are trimmed (in any way) to a length of
less than 36 bp.

Paired-end reads are generated when each DNA fragment is sequenced from
both ends at the same time. These libraries are often used when accurately
mapping reads is more important than having a high resolution of coverage,
for example in variant calling or bisulphite-sequencing. Trimmomatic can also
be used for paired-end read libraries, which will have the sequenced ends of
each fragment (known as ‘mate pairs’) kept in two separate files. If we instead
had two Fastq files ‘cancertest mate1.fq’ and ‘cancertest mate2.fq’ which are
the left and right ends of each pair of reads, then we could apply the same
Trimmomatic approach as follows:

$ java -jar trimmomatic-0.33.jar PE cancertest mate1.fq

cancertest mate2.fq

http://www.usadellab.org/
http://www.usadellab.org/

230 Working with Sequencing Data

cancertest trimmed ILLUMINACLIP:adapters/TruSeq3-SE.fa:2:30:10

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:25 MINLEN:36

In this command, rather than specifying a single output file, an output ‘base
name’ is given: the program will use this base to name four separate out-
put files: two files of paired reads (in this case they will be called ‘can-
certest trimmed 1P.fq’ and ‘cancertest trimmed 2P.fq’), then two additional
files for the reads in each input file that don’t have a mate-pair (because the
other mate-pair may have been filtered out).

Note that Trimmomatic allows you to specify what adapter sequences
you wish to remove, which could be any over-represented k-mer sequence
as highlighted in the FastQC report (for example). Another widely-
used tool for adapter trimming is cutadapt, which can be obtained from
http://cutadapt.readthedocs.org.

11.4 Alignment

HTS technologies make use of parallelism in sequencing, in that rather than
sequencing the entirety of a chromosome’s DNA in one pass, the DNA is split
into millions of short fragments that are each sequenced simultaneously. The
cDNA that is sequenced for an RNA-seq experiment, which is itself created
from RNA, is split into short fragments. In order to make use of a vast number
of short reads, we need to find out where in the profiled genome these reads
map. This is the key to quantifying the numbers of fragments spanning any
given genomic position or feature (a given TSS, for example), the key to work-
ing out which positions in the genome are reliably showing polymorphisms or
mutations, and the key to working out any structural rearrangements of the
sequenced genome (or transcriptome). Alignment involves assessing the close-
ness of matching of each sequence read to be matched against every possible
position in the reference genome, then annotating each read with the best-
matching position(s) or no position (if none was found to match sufficiently
well). This process is typically based around some scoring criteria to determine
how badly each mismatch between the read and matched reference sequence
affects the mapping, which may vary according to the nature of the library
being sequenced. Of course, this process requires a reference genome against
which the sequence reads can be mapped. The most recent human reference
genome release is known as GRCh38, but as there is a lot more annotation and
existing experimental data available for hg19 (GRCh37) you may wish to use
this instead. There are a number of reference genomes for different organisms
available from UCSC at http://hgdownload.soe.ucsc.edu/downloads.html.

http://cutadapt.readthedocs.org
http://hgdownload.soe.ucsc.edu/

Alignment 231

Alignment will usually be carried out by a sequencing facility as it is often a
computationally intensive task, but if you want to perform alignment yourself
the tools Bowtie and BWA are effective and widely-used. The output of align-
ment will be in SAM format (or BAM, which is just a compressed non-human-
readable version of a SAM file). A SAM file consists of a header containing
information about the collection of aligned reads and one row for each read,
including: an identifier for the read, the mapped genomic co-ordinates, the
sequence mapped, the number of mismatches to the reference, whether or not
the read is part of a pair, and additional information. Full details can be found
at http://samtools.github.io/hts-specs/SAMv1.pdf.

11.4.1 Bowtie

Bowtie is a fast, freely-available alignment tool initially described in [3]. It now
comes in two flavours, Bowtie 1 and Bowtie 2 [4]. We will focus on Bowtie 2,
which is probably better for alignment of longer reads, particularly those that
have multiple-base insertions or deletions relative to the reference genome,
as is often the case in cancer genomes. Bowtie 2 mapping is filtered accord-
ing to a score which considers the number of matching bases, the number
of mismatching bases, the number and length of gaps in the alignment, and
the uniqueness of the alignment (i.e. the number of possible positions in the
genome the read could have mapped). In Bowtie 1 filtering is carried out
according to user-specified thresholds of the number of mismatches, and num-
ber of possible matched positions in the reference genome.

The Bowtie 2 project homepage is http://bowtie-bio.sourceforge.net/
bowtie2/index.shtml, and the current release can be downloaded from
http://sourceforge.net/projects/bowtie-bio/files/bowtie2/2.2.6/.

To install on a Linux machine, download the file bowtie2-2.2.6-linux-
x86 64.zip. Save this file into the desired directory and run:

$ unzip bowtie2-2.2.6-linux-x86 64.zip

This download comes with a number of precompiled reference genomes indices,
including the standard human reference hg19 (GRCh37). If you wish to
align sequence reads to a reference genome not included in the Bowtie 2
bundle, for example another organism or a specific human genome assem-
bly, you will need to download it from a repository (many are available at
http://support.illumina.com/sequencing/sequencing software/igenome.html)
or to create an index yourself. Say, for example, I had the sequence for a can-
certest genome with chromosomes 1, 2, X and Y in separate Fasta files in the
same directory as the bowtie2-build executable, I would create an index thus:

$./bowtie2-build -f chr1.fa,chr2.fa,chrX.fa,chrY.fa cancertest

http://samtools.github.io/
http://bowtie-bio.sourceforge.net/
http://bowtie-bio.sourceforge.net/
http://sourceforge.net/
http://support.illumina.com/

232 Working with Sequencing Data

To run Bowtie 2 to align a Fastq file ‘cancertest.fq’ from single-end sequencing
to the reference genome we just indexed, I would enter:

$./bowtie2 -x cancertest -U cancertest.fq -S cancertest aligned.sam

Then we can look at the sam file:

$ head cancertest aligned.sam

We can convert SAM to BAM files using samtools:

$./samtools view -bS cancertest aligned.sam > cancertest aligned.bam

Paired-end reads need to be aligned slightly differently. Let’s say we have
two Fastq files ‘cancertest mate1.fq’ and ‘cancertest mate2.fq’ which are the
forward and reverse ends for each pair of reads, then we would proceed:

$./bowtie2 -x cancertest -1 cancertest mate1.fq -2

cancertest mate2.fq -S cancertest alignedPE.sam

11.4.2 BWA

Another fast, freely-available alignment tool is BWA, the Burrows-Wheeler
Aligner [5]. Again there are multiple versions of BWA that are optimized
for different sorts of alignment tasks, which are explained in the BWA man-
ual at http://bio-bwa.sourceforge.net/bwa.shtml, but it should be obvious
which we are using. There are a number of parameters that can be speci-
fied, such as a maximum number of gaps in each alignment and a maximum
allowed number of mismatches: I would recommend reading about these in the
manual if you suspect you might want to use something other than the default
values. To obtain the BWA program, download the latest archive (currently
‘bwa-0.7.12.tar.bz2’) from http://sourceforge.net/projects/bio-bwa/files/ and
save this to the computer you wish to work on. Unzip and unpack the archive
(you will need to have installed the bzip2-devel package for your Linux distri-
bution):

$ bunzip2 bwa-0.7.12.tar.bz2

$ tar -xf bwa-0.7.12.tar

Now you will have the BWA programs and associated data in a directory
called bwa-0.7.12 (or the number of whichever version you obtained). Tell
the Linux shell you wish to enter this directory with:

$ cd bwa-0.7.12

http://bio-bwa.sourceforge.net/
http://sourceforge.net/

Alignment 233

The BWA-MEM algorithm is recommended for generating either single-end
or paired-end alignments from Fastq files. To run BWA-MEM to align a Fastq
file ‘cancertest.fq’ from single-end sequencing to the custom reference genome,
again we first need to index the reference (after using the cat command in
Linux to combine the individual chromosome sequences together into a genome
reference file):

$ cat chr1.fa chr2.fa chrX.fa chrY.fa > cancertest Reference.fa

$./bwa index -p cancertest cancertest Reference.fa

Now with an indexed reference genome, I would enter:

$./bwa mem cancertest Reference.fa cancertest.fq

> cancertest aligned.sam

Let’s say now we have two Fastq files ‘cancertest mate1.fq’ and ‘can-
certest mate2.fq’ which are the left and right ends of each pair of reads, then
we would proceed:

$./bwa mem -M cancertest cancertest mate1.fq cancertest mate2.fq

>

cancertest alignedPE.sam

Another approach using BWA that works is to first obtain the co-ordinates
of each read in the pairs directly from the reference genome, then generate
alignments from the resulting mappings:

$./bwa aln cancertest Reference.fa cancertest mate1.fq > 1.sai

$./bwa aln cancertest Reference.fa cancertest mate2.fq > 2.sai

$./bwa sampe cancertest Reference.fa 1.sai 2.sai cancertest mate1.fq

cancertest mate2.fq > cancertest alignedPE.sam

11.4.3 Post-alignment filtering

As well as the quality scores associated with each base call in a sequence read,
the information gained through attempting to match a sequence against a
reference genome can also indicate possible errors in the sequenced library
that will want to be removed before further analysis of the data. Alignment
statistics can also indicate the presence of problems that make an entire library
unreliable.

11.4.4 Removing duplicate reads

Amplification artifacts during the library preparation or sequencing processes
can result in multiple reads reflecting a single DNA fragment. These can bias

234 Working with Sequencing Data

any analysis based on quantifying reads, such as RNA-seq, identifying peaks
in ChIP-seq data or setting a minimum number of supporting reads for variant
calls. Due to the fact that sequencing errors can occur after duplication events,
not all duplicate reads may even have exactly the same sequence. Unfortu-
nately, this means that it is impossible to distinguish between an artificially
duplicated stack of sequence reads mapping to the same genomic co-ordinate
or multiple reads of identical DNA fragments. When wishing to quantify the
numbers of reads mapping to certain regions, it becomes a point of analy-
sis strategy whether or not to discard duplicate reads. This decision may be
guided by the library complexity (i.e. number of distinct reads in the library
relative to the total number of reads), for if the complexity is low it can be
an indication of over-amplification of the input DNA and duplication arti-
facts may be a big problem. If one decides to remove duplicates from a set
of aligned sequence reads, there are a number of ways to carry this out. One
such method is available through Picard Tools, which can be downloaded from
http://broadinstitute.github.io/picard/. The MarkDuplicates program can be
run in such a way as to keep only one read mapping to each distinct set of
genomic co-ordinates from an input SAM/BAM file. Start by downloading
and unpacking the Picard Tools suite:

$ wget https://github.com/broadinstitute/picard/releases/download/

1.139/picard-tools-1.139.zip

$ unzip picard-tools-1.139.zip

$cd picard-tools-1.139

Now we have a directory called ‘picard-tools-1.139’ which includes the jar
Java package file ‘picard.jar.’ This program can be run through invoking java
from the shell:

$ java -jar picard.java

(Running the program with no arguments or inputs will result in the usage
documentation being printed to screen.)

Assuming we have an aligned read SAM file called ‘cancertest aligned.sam,’
we first want to create a binary BAM file and then make sure the reads are
sorted, for which we use samtools view and samtools sort, respectively:

$ samtools view -b cancertest aligned.sam > cancertest aligned.bam

$ samtools sort cancertest aligned.bam cancertest sorted.bam

Now we can call the MarkDuplicates program:

$ java -jar PicardTools/picardtools.jar MarkDuplicates

I=cancertest sorted.bam O=cancertest noDups.bam

M=duplicationMetrics REMOVE DUPLICATES=TRUE ASSUME SORTED=true

http://broadinstitute.github.io/
https://github.com/
https://github.com/

Obtaining sequencing data from the SRA 235

This is rather a long command call, in which we specify: an input file with
the argument I=, an output filename with the argument O=, a file to create
with additional information about the duplicates with the argument M=, the
fact that we wish to remove the duplicates from the output is specified with
REMOVE DUPLICATES=TRUE and we pass an additional argument in the form
ASSUME SORTED=true as PicardTools has very stringent rules about its input
files and if we have previously sorted the bam file with Samtools this is more
likely to run smoothly!

An alternative approach when analyzing data downstream in R is using the
ShortRead package, but at present there is not a satisfactory implementation
of an export from R to SAM/BAM, so I would generally recommend trying
to get the PicardTools functionality to work. Within R:

> library(ShortRead)

> cancertest.unfiltered <- readAligned("cancertest aligned.bam",

+ type="BAM",filter=nFilter())

> cancertest.filtered <- cancertest.unfiltered[

+ !srduplicated(sread(cancertest.unfiltered)) & !is.na(position(

cancertest.unfiltered))]

This will create an AlignedRead object in the workspace called cancertest.

filtered which doesn’t include any duplicated reads.

11.5 Obtaining sequencing data from the SRA

The Sequence Read Archive (SRA), https://www.ncbi.nlm.nih.gov/sra is the
NCBI’s major repository for sequencing data, including from high-throughput
sequencing experiments. In fact, the Gene Expression Omnibus links to SRA
for retrieval of raw data from sequencing-based experiments whose processed
data is described in a GEO record.

Sequencing data stored on SRA is highly-compressed, and therefore repre-
sents an efficient source for downloading the raw sequencing data, but requires
special tools to decompress these records into usable fastq files. The SRA-
toolkit provides functionality to retrieve data from the SRA, and to extract the
retrieved records to Fastq files. Instructions for obtaining the SRAtoolkit can
be found at: https://github.com/ncbi/sra-tools/wiki/01.-Downloading-SRA-
Toolkit.

Note that precompiled binaries are available for two Linux distributions
(CentOS and Ubuntu), for MacOS and for Windows. These should cover most
examples, and can therefore be downloaded and used straight away. If these

https://www.ncbi.nlm.nih.gov/
https://github.com/

236 Working with Sequencing Data

won’t work for you, try following the instructions for downloading the source
code from the GitHub repository and then compiling4: https://github.com/
ncbi/sra-tools/wiki/Building-and-Installing-from-Source.

Once installed, there are two tools we need to use in order to obtain data
from the SRA. The first of those, prefetch, retrieves the data as compressed
by the SRA. Let’s say we wanted to obtain the ChIP-seq data from an ovarian
cancer DNA sample, cited in [6]. The manuscript lists an SRA accession for
the project of ‘SRP016075’. Searching for the corresponding record on the
SRA database, we find a list of the runs. Specifically look at the ChIP-seq
with the H3K4me3 antibody, which can be found at: https://www.ncbi.nlm
.nih.gov/sra/SRX193578.

From the corresponding web page, there is a run identifier listed: ‘SRR600956’.
To download the corresponding data, call the prefetch program (from the loca-
tion into which it has been installed, which we will assume is from the current
directory ‘sra-tools/’) with the run accession number as its only argument:

$ sra-tools/prefetch SRR600956

Then to obtain use this data to reconstruct the Fastq file(s), use the fastq-
dump program:

$ sra-tools/fastq-dump SRR600956

The result should be a Fastq file which constitutes the raw data from the
corresponding sequencing run. In Chapter 14, there is an example of recon-
structing two Fastq files from a paired-end sequencing run retrieved from SRA.
Hopefully these examples show how publically-available sequencing data can
be retreived and processed in terms of quality control, filtering and alignment.
Downstream processing differs for different applications of high-throughput
sequencing, and so these will be covered in subsequent chapters.

Bibliography

[1] W Huber et al, “Orchestrating high-throughput genomic analysis with
Bioconductor,” Nature Methods 12:115-121 (2015).

[2] AM Bolger & M Lohse & B Usadel, “Trimmomatic: a flexible trimmer for
Illumina sequence data,” Bioinformatics 30(15):2114-2120 (2014).

4This is aimed at UNIX-based computers.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://github.com/
https://github.com/

Obtaining sequencing data from the SRA 237

[3] B Langmead et al, “Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome,” Genome Biology 10:R25 (2009).

[4] B Langmead & SL Salzburg, “Fast gapped-read alignment with Bowtie2,”
Nature Methods 9:357-359 (2012).

[5] H Li & R Durbin, “Fast and accurate short read alignment with Burrows-
Wheeler transform,” Bioinformatics 25(14):1754-1760 (2009).

[6] N Chapman-Rothe et al, “Chromatin H3K27me3/H3K4me3 histone marks
define gene sets in high-grade serous ovarian cancer that distinguish malig-
nant, tumour-sustaining and chemo-resistant ovarian tumour cells,” Onco-
gene 32(38):4586 (2013).

http://taylorandfrancis.com

12

Genomic Sequence Profiling

12.1 Introduction

Representing what is probably the most obvious application of high-
throughput sequencing technology, the DNA sequences from a population of
cells can be identified. Working out a full genome sequence directly from a
library of short reads is known as de novo genome assembly. This is computa-
tionally very challenging and requires an extremely large amount of sequence
data, and is also rather rare, so we won’t cover it here. Instead, by mapping
sequence reads to an appropriate reference genome it is possible to use the
information about where the reads don’t match the reference in order to infer
the correct sequence of the DNA being profiled. This approach to DNA profil-
ing is known as variant calling and can be carried out at a genome-wide level,
or for only targeted (captured) genomic regions, in largely the same way. Dif-
ferent types of genetic variation tend to be discovered and characterized in
different ways, and so there are separate processing steps in order to discover
SNVs, Indels and large structural variation. As with all the topics covered
in this tutorial, there is a plethora of available software tools for carrying
out these tasks, and the ones I describe represent just one or two examples
of widely-used tools. These may be widely used on account of their software
availability and reliability as much as anything to do with the algorithms
underpinning them.

12.2 SNV: Single nucleotide variants

Far from sharing a single ‘reference’ genome, there is a great deal of variation
in the exact sequence of DNA from different individuals, and even from dif-
ferent cells within the same individual as they age or are affected by disease.
Most of the characterized human genetic variation exists in the form of single
nucleotide variants (SNVs), which are single bases that vary from the major-
ity allele (defined by populations that have been profiled through a number
of international genome sequencing consortia). By identifying the set of SNVs
for a DNA sample, it becomes possible to look for genetic causes of phenotypic

239

240 Genomic Sequence Profiling

characteristics of the cells from which the DNA was obtained. When the DNA
samples are blood from patients suffering from a given disease and a matched
healthy cohort, one might be able to identify genetic variants predisposing
individuals to risk of suffering from the disease. When the DNA samples are
taken from a panel of tumour cell lines with differential response to a drug,
it might be possible to identify genetic variants underpinning drug resistance
or sensitivity. Of course, there will typically be a large number (potentially
millions) of SNV differences between any pair of DNA samples from different
genetic backgrounds (i.e. not clonally related), and so working out which of
these seem most likely to contribute to the phenotype(s) of interest can be
a challenge. In the next section we will cover some computational tools to
attempt this, but as with so many things there is no wizardry that can take
the place of a well-designed study.

There are many tools that can perform SNV identification, two of the most
widely used seem to be VarScan [1] and the GATK [2]. The GATK is a
very powerful toolkit containing functionality for performing a wide range
of sequence data analysis tasks, with more information at https://www
.broadinstitute.org/gatk/.

In the examples to follow we will use VarScan as I have found this to be
the easiest to configure to run successfully on mapped sequence read files gen-
erated by different alignment tools on different machines. In order for VarScan
to compute variant calls, we need to generate multi-way alignment files known
as ‘pileups’. This can be done using the mpileup program from samtools. Sam-
tools needs to be downloaded from http://htslib.org and then installed onto
your computer before proceeding, following the instructions (for help, refer
to the guide on using UNIX systems in Chapter 3). Once samtools has been
installed, you can invoke the mpileup program to run on an aligned read
BAM file.

As an example, say we have a file ‘cancertest aligned.sam’ on our filesystem,
which we have converted to BAM format, sorted and removed duplicate reads
as in Chapter 11. Next we need to generate the pileup file:

$ samtools mpileup -f cancertest Reference.fa cancertest noDups.bam

> cancertest.pileup

From the pileup file we can now use VarScan to identify SNVs with
evidence to support statistically significant occurrence relative to random
sequencing errors. VarScan needs to be downloaded from https://github.com/
dkoboldt/varscan. If you open this page in a browser, you should see a link
to download the folder as a ZIP archive. Move the file you download (using
the bash command mv) so that you have a file called ‘varscan.zip’ in your
directory. Unzip the file:

$ unzip varscan.zip

https://www.broadinstitute.org/
https://www.broadinstitute.org/
http://htslib.org
https://github.com/
https://github.com/

Variant filtering and annotation 241

This will create a directory which may have a long name, but you can rename
the directory (again with the bash command mv) so that it is just called
‘varscan’. Now you can run the VarScan program through Java as it is sup-
plied as a jar package (as was the case for PicardTools).

$ java -jar varscan/VarScan.v2.3.7.jar mpileup2snp cancertest.pileup

--output-vcf > cancertest snvs.vcf

Note that the name of this VarScan jar file will vary depending on the version.
You can see that I have used version 2.3.7, but be prepared to change this
part of the command if you use a different version.

VarScan has a large set of configurable arguments which can alter the mode
of operation, the type of information reported in the output, or the criteria
for calling variants. The reader is referred to the VarScan manual for details,
but you will see how we use some of these throughout this chapter.

You may notice that the pileup file is very large on the file system. You can
see this if you use the shell to list files in your working directory, listing their
size in a human-readable format:

$ ls -sh

We can avoid keeping this large file on the filesystem by using the Unix ‘pipe’
to pass the output from the mpileup command directly as input to the varscan
command. This is particularly useful when running analyses on large numbers
of files or on particularly large files.

$ samtools mpileup -f cancertest Reference.fa cancertest noDups.bam|java
-jar varscan/VarScan.v2.3.7.jar mpileup2snp --output-vcf >

cancertest2.vcf

12.3 Variant filtering and annotation

If we have a large set of variant calls from a sample, we may wish to attempt
to narrow these variants down to a subset that are most likely to be making
a phenotypic impact. A number of filtering and annotation steps can assist
with this, and there is an array of computational tools to perform these tasks.
Filtering involves removing those variants that don’t (or in some cases do)
meet some specified criteria. Examples of common criteria include:

• number of supporting reads

• variant allele frequency

242 Genomic Sequence Profiling

• presence in database of common variants

• non-synonymous variant in protein-coding gene

• conservation across multiple species

• overlap with identified regulatory region

• predicted phenotypic consequence

The first two of the listed criteria are more about distinguishing clonal variants
from sequencing errors or rare sub-clonal variants that may affect too few cells
to impact on the phenotype. These filters can typically be applied in the vari-
ant calling pipeline. If we are using VarScan to call SNVs from a pileup, we can
specify a number of criteria using the following arguments: --min-coverage,
--min-reads2, --min-avg-qual, --min-var-freq and --p-value. For exam-
ple, if we wished to find SNVs from the file ‘cancertest.pileup’ with a minimum
of 20 unique reads supporting each variant, a maximum p-value (estimating
the probability of seeing that level of support for the variant by chance) of
0.001, and a minimum allele frequency of 0.1 (i.e. 1 in 10), we would adapt
the example from Section 12.2 to the following:

$ java -jar varscan/VarScan.v2.3.7.jar mpileup2snp cancertest.pileup

--min-reads2 20 --min-var-freq 0.1 --p-value 1e-3

--output-vcf > cancertest snvs filtered.vcf

Any real DNA sample is likely to vary substantially in sequence from the
appropriate organism’s reference genome, but many of those variantions are
likely to represent common genetic characteristics of different populations
within a species. As such common sequence variations must be at least widely-
tolerated (if not advantageous in certain environments) it is less likely that
they are pathogenic. If we are studying variants associated with disease,
as is common in human genetic studies, we may wish to flag SNVs that
reflect common genetic variation. A number of initiatives have set out to
characterize common human genetic variation, including the HapMap and
1000 Genomes Project, and there is a wealth of information in dbSNP [3] at
http://www.ncbi.nlm.nih.gov/SNP/.

The dbSNP collection of common human genetic variation can be downloaded
in VCF format straight onto a Linux computer as follows:

$ wget ftp://ftp.ncbi.nih.gov/snp/organisms/human 9606 b144

GRCh37p13/VCF/common all 20150605.vcf.gz

$ gunzip common all 20150605.vcf.gz

This table of known common variants can be used to add annotation to a
VCF file using the tool SnpSift [4]. SnpSift is implemented in Java and can

http://www.ncbi.nlm.nih.gov/

Variant filtering and annotation 243

be downloaded as part of the SnpEff package from http://sourceforge.net/
projects/snpeff/files/snpEff latest core.zip/download. The ZIP archive needs
to be extracted:

$ unzip snpEff latest core.zip

Then a VCF file can be annotated with known variants from dbSNP as fol-
lows, with this example assuming we downloaded and unpacked the dbSNP
common variants into the current directory, we have extracted the SnpEff
ZIP file so that the SnpSift jar file is in the directory ‘snpEff,’ and in our
current working directory we have the VCF file we wish to annotate, ‘can-
certest snvs filtered.vcf’:

$ java -jar snpEff/SnpSift.jar annotate -v common all 20150605.vcf

cancertest snvs filtered.vcf > cancertest snvs annotated.vcf

We can use the bash tool grep (regular expression search) to take this a step
further and provide us a new VCF file that contains only those variants that
were not in the dbSNP database:

$ grep -v rs cancertest snvs annotated.vcf > cancertest snvs novel.vcf

The grep command will find all rows in the input file (in this case ‘can-
certest snvs annotated.vcf’) that contain the search pattern (in this case ‘rs’).
When used with the argument -v it returns only those rows that don’t match
the search pattern, which in this case will be all the entries in the VCF file
that haven’t had a dbSNP ID (which begins ‘rs’) associated with them.

A set of novel, well-supported SNVs identified from a DNA sample could
be extremely interesting for us, but there are likely to be a large number
of non-functional variants (or at least those less likely to have a dramatic
phenotypic impact). It may be that the most important variants to us are
those which change a protein-coding gene sequence in such a way that is
likely to cause an amino acid substitution. There are tools to help prioritize
such variation, and one such example is the Ensembl Variant Effect Predic-
tor, which is a very powerful tool implemented in Perl and can be down-
loaded from http://www.ensembl.org/info/docs/tools/vep/script/index.html.
One of the useful things about Variant Effect Predictor is that it can add SIFT
and PolyPhen functional effect predictions (along with many others) directly
from the Linux shell, and can therefore be scripted to run automatically on a
large number of files. In fact, the Variant Effect Predictor is available online
with a graphical interface, at http://www.ensembl.org/Multi/Tools/VEP.
But to install the command-line version of the tool, which will enable
scripted processing of large numbers of input files, follow the instructions
at http://www.ensembl.org/info/docs/tools/vep/script/index.html:

http://www.ensembl.org/i
http://www.ensembl.org/
http://www.ensembl.org/
http://sourceforge.net/
http://sourceforge.net/

244 Genomic Sequence Profiling

$ wget https://github.com/Ensembl/ensembl-tools/archive/

release/86.zip

$ unzip ensembl-tools-release-86.zip

$ cd ensembl-tools-release-86/scripts/variant effect predictor/

perl INSTALL.pl

To run the tool to generate usable output, use perl to run the program, remem-
bering to specify the full path to the ‘ensembl-tools-release-86’ directory in
which the program’s code now sits. For example:

$ perl ensembl-tools-release-86/scripts/variant effect predictor/

variant effect predictor.pl -i cancertest snvs novel.vcf

-o cancertest snvs novel VEP.vcf --vcf --cache --merged

To include the SIFT and PolyPhen annotations:

--sift b --polyphen b

We may need to specify the port to the established database (mine is 3337):

--port 3337

Add the following argument to tell the annotation tool to use the GRCh37
version of the human genome (hg19):

--assembly GRCh37

The output of running this as one command will be another VCF file, but
with a host of additional columns of annotation information for each variant,
where available. We can use these in conjunction with the regular expression
search tool grep in order make a new VCF file with only the rows (i.e. vari-
ants) featuring a given text term (e.g. ‘deleterious’):

$ grep deleterious cancertest snvs novel VEP.vcf >

cancertest snvs novelDeleterious VEP.vcf

12.4 Indels: Short insertions and deletions

As well as single nucleotide variants, short insertions and deletions (or Indels)
are another common form of genetic variation. While fundamentally very sim-
ilar to SNVs in concept, the challenge of identifying such differences between
a sequence represented by a set of short reads and a reference genome is

https://github.com/
https://github.com/

SV: Structural variants 245

computationally different from that of identifying SNVs. Having said this,
one advantage of the VarScan tool we used in the previous section to call
SNVs is that the same program can be used to call Indels with only slight
differences. Let’s say we have the same pileup file that we used to call SNVs
in Section 4.1, called ‘cancertest.pileup.’ We use the mpileup2indel mode of
VarScan to generate another VCF file, this time detailing the indels:

$ java -jar varscan/VarScan.v2.3.7.jar mpileup2indel cancertest.pileup

--output-vcf > cancertest indels.vcf

It should be reassuring to note that Indels in a VCF file can be filtered and
annotated in the same way as SNVs, and so all of Section 12.3 applies to
the output generated here. In fact, you may wish to merge SNVs and Indels
together into one VCF file, which can be done using the cat shell command.
For example, if we had SNVs in a file ‘cancertest snvs.vcf’ and Indels in a file
‘cancertest indels.vcf’ we could merge these as follows:

$ cat cancertest snvs.vcf cancertest indels.vcf

> cancertest allvariants.vcf

12.5 SV: Structural variants

As well as the small-scale variation in genetic material across a population, a
cell’s DNA can be affected by large-scale structural rearrangements. This is
particularly prevalent in cells which have compromised DNA damage check-
point and repair pathways as in cancer, such that replicating DNA from dis-
tinct chromosomes can be aberrantly joined. These structural variants (SVs)
manifest as large-scale deletions, duplications or translocations of DNA. An
(extreme) illustration of the extent of structural variation that can arise in a
cell is shown in [7] (Figure 12.1A in the paper), to show structural variants
identified in the HeLa cell line. Identification of translocation breakpoints can
suggest genes whose transcription may be disrupted, or may suggest potential
fusion genes that could be created. Increased DNA copy number is typically
linked to increased transcription, and therefore copy number variation (CNV)
represents a means of genetic influence on phenotypes.

As with all the sequence data analysis tasks we are attempting in these
tutorials, there are many tools available for use to identify SVs. One such
tool is DELLY [8], which can be found online at https://github.com/ tobi-
asrausch/delly. There are a number of Linux executable files, and source
code bundles available at https://github.com/tobiasrausch/delly/releases/.
As with other GitHub-hosted projects, you can download the folder as a ZIP

https://github.com/
https://github.com/
https://github.com/

246 Genomic Sequence Profiling

archive by clicking the ‘Download ZIP’ button. If you unzip this archive, you
will need to install it by entering the directory (with cd) and running the
following from the shell:

$ make all

Then Delly can be run on an input BAM file in a number of modes, pre-
fixed with the argument -t, with each mode specifying a different type of SV
to identify:

• DEL: deletions

• DUP: tandem duplications

• INV: inversions

• TRA: translocations

For example, if we wished to identify translocations from an aligned read BAM
file ‘cancertest noDups.bam’ we could execute the following (assuming that
the Delly program was installed into a subdirectory named ‘delly’ which is in
the current working directory, along with the reference genome file and the
BAM file):

$ delly/src/delly -t TRA -o cancertest translocations.vcf -g

cancertest Reference.fa cancertest noDups.bam

By replacing TRA in the above command with any of DEL, DUP or INV, and
probably renaming the output file (which follows the -o argument), we could
find deletions, duplications or inversions, respectively. There are a number of
other filters which can be applied to the output from Delly, with more details
to be found on the GitHub site, but at least the above instructions should
enable you to run the basics. Note, for identifying large-scale SVs you typ-
ically need a high-depth library of long, paired-end reads, and so these will
generally be rather expensive sequencing experiments!

12.6 Making use of variant calls

The standard file format for specifying sequence variants is VCF. Details of
the VCF format, in particular the values that the wide range of flags can
take and what these mean, can be found at http://samtools.github.io/hts-
specs/VCFv4.1.pdf. Following general information provided in a header, a
‘.vcf’ file will contain one row per called variant, listing: an ID for the variant,
its chromosome and genomic co-ordinate, the variant allele (i.e. sequenced

http://samtools.github.io/
http://samtools.github.io/

Making use of variant calls 247

base(s) that differ from reference genome), the corresponding reference allele
(i.e. expected sequence), the variant allele frequency and a list of further anno-
tations if provided (e.g. RS IDs from dbSNP). Although VCF is the standard
file format, the majority of publically-available mutation information (from
humans) do not come in VCF format. This is in part due to the fact that pro-
files of genetic variants from tissue samples could potentially identify patients
who enrolled in studies under conditions of anonymity.

If we have a set of mutation calls (either a set of individual VCF files for
each DNA sample, or a single file containing variants from a set of DNA sam-
ples) we will probably want to investigate whether any called variants are
associated with some phenotypic characteristics of the cells from which the
DNA was extracted (or clinical information corresponding to the patients from
which DNA was extracted). As this is a non-trivial process, I will provide an
example below.

Let’s say we have downloaded the annotated mutation calls from the TCGA
ovarian cancer study and we wish to look for associations between muta-
tions in the BRCA genes and chemotherapy response. First, we can go to the
ICGC1 data portal to retrieve all the data in a convenient format. Open up
the Data Portal at http://icgc.org, which should look like the screenshot in
Fig. 12.1. Click on the ‘DCC Data Releases’ tab along the top, and you should
be taken to a page looking like Fig. 12.2.

FIGURE 12.1
Screenshot from ICGC data portal.

1International Cancer Genome Consortium.

http://icgc.org

248 Genomic Sequence Profiling

FIGURE 12.2
Screenshot from ICGC data portal.

FIGURE 12.3
Screenshot from Genomic Data Commons data portal: TCGA Ovarian Cancer
project.

Select the folder ‘Current’ and then you will see a list of all the projects
for which data is available. Click on ‘OV-US (TCGA)’, which should take
you to the TCGA Ovarian Cancer project page (Fig. 12.3). Download and
unzip the files ‘simple somatic mutations.open.OV-US.tsv.gz’ and ‘donor.OV-
US.tsv.gz’.

Making use of variant calls 249

Our downstream analysis can be performed using R, although we assume that
the mutation and clinical data files are all in the working directory from which
we started R.

First, we want to find which patients have both variant calls and clinical
information downloaded. We do this by loading the individual tables, then
matching up the donor IDs from the two tables:

> snv.table <- read.table("simple somatic mutation.open.OV-US.tsv",

+ sep="\t",head=TRUE,row.names=NULL)

This creates a data frame called snv.table, containing the mutation calls and
associated information. This table has 1 row for each mutation, indicating its
genomic location and which patient the mutation call came from. So we will
first want to create a vector listing all the patients for which we have mutation
data:

> snv.patients <- unique(as.character(snv.table$icgc donor id))

Now we want to read in the clinical data table:

> clin.data <- read.table("donor.OV-US.tsv",sep="\t",

+ head=TRUE,row.names=1)

This creates a data frame called clin.data, containing the clinical follow-
up information from the ovarian cancer patients, with the patient IDs as the
row names. To match up the mutation data to the patient data, we need to
check which patients have both clinical and mutation data:

> both.patients <- intersect(snv.patients,rownames(clin.data))

> length(both.patients)

[1] 118

We can see that there are 118 patients with both mutation calls and clini-
cal information. This is in fact because there are only mutation calls from 118
patients included in the snv.file:

> length(snv.patients)

[1] 118

So we now have a table of mutations and a set of clinical characteristics,
but how can we test for associations between the two? First of all, we can
try matching the mutations to genes, to see if any mutations at given genes
associate with treatment outcomes. You will see from the mutation file we
have downloaded that this task has already been done for us, with columns of

250 Genomic Sequence Profiling

the table ‘gene affected’ and ‘transcript affected’. Run through the example
anyway because a typical VCF file may not have such information. We can
approach this task in a similar way to the copy-number segmentation table in
Chapter 10. But we’ll add in an extra step, because if we split the one table of
variant calls into a list of tables (one table per patient), then the code will be
very similar to what we’d use if we had a separate VCF file for each patient.
This will be the case if you have followed the earlier steps in this chapter.

> mutation.tables <- lapply(both.patients,function(x)snv.table[

+ which(snv.table$icgc donor id==x),])

In this command we use the lapply function to make a list, applying a func-
tion (with a single argument x) to each of the characters in both.patients

in turn, so that each element in the list is a table with the rows of snv.table
for which the patients we previously extracted from each row match the par-
ticular barcode which the function is being applied to. The result is a list
with 118 elements, each containing the mutation information corresponding
to the patient matching the corresponding barcode from both.patients. The
reason I have structured this task in such a way is so that if you were to have
a set of VCF files, you would end up with a similar list of tables if you were
to read the VCF files into R in a batch, by running the following commands
(assumes you have VCF files in your current working directory):

> vcf.filenames <- list.files(pattern=".vcf")

This creates a character vector named vcf.filenames with one entry for
each file in the current working directory that contains the pattern ‘.vcf’.

> mutation.tables <- lapply(vcf.filenames,read.table,sep="\t")

This creates a list called mutation.tables for which each element is a data
frame containing the information in the VCF file of the corresponding element
of vcf.filenames.

To map the variants to genes, we can follow an approach similar to that
taken in Section 10.3.4 on SNP Arrays. This uses the biomaRt package to
bring in data from Ensembl to R. First of all, we need to obtain the genomic
co-ordinates for each gene:

> library(biomaRt)

> ensembl <- useMart(host="feb2014.archive.ensembl.org",biomart=

+ "ENSEMBL MART ENSEMBL",dataset="hsapiens gene ensembl")

> geneInfo <- getBM(attributes=c("hgnc symbol",

+ "chromosome name","start position","end position"),mart=ensembl)

Making use of variant calls 251

The getBM function has created a data frame, which we have called geneInfo,
which lists each Ensembl-annotated gene’s official gene symbol along with its
chromosome, start and end positions. It will be more convenient for us if we
remove the Ensembl-annotated genes that don’t have an official gene symbol:

> geneInfo <- geneInfo[which(!geneInfo$hgnc symbol==""),]

And we also may wish to remove duplicate entries for different gene defi-
nitions with the same symbol:

> geneInfo <- geneInfo[!duplicated(geneInfo$hgnc symbol),]

Now we can create a matrix indicating the mutation status of each gene,
with a row for each gene and a column for each patient. A convenient way
of encoding this information is with a value of 0 in an entry indicating the
corresponding patient does not have a variant mapping to the corresponding
gene. Create a matrix of the appropriate size with all values equal to 0, then
for each patient fill in a 1 for any genes that are covered by variants:

> mut.genes <- array(0,dim=c(nrow(geneInfo),length(mutation.tables)))

> rownames(mut.genes) <- geneInfo$hgnc symbol

> colnames(mut.genes) <- both.patients

> for(i in 1:length(both.patients)){
+ this.variant.genes <- c()

+ for(j in 1:nrow(mutation.tables[[i]])){
+ this.variant.genes <- c(this.variant.genes,geneInfo$hgnc symbol[

+ which(geneInfo$chromosome name==mutation.tables[[i]][j,"chromosome"]

+ & geneInfo$start position<mutation.tables[[i]][j,"chromosome end"]

+ & geneInfo$end position>mutation.tables[[i]][j,"chromosome start"])])}
+ mut.genes[this.variant.genes,i] <- 1}

This rather intimidating-looking loop is actually relatively straightforward,
running two nested for loops. The first loop goes through each patient ID, first
creates an empty vector that will ultimately list genes that have variants map-
ping from the corresponding patient’s sample, then initiates the second loop.
This second loop goes through each row in the patient’s mutation.tables

entry, and adds any genes that span the corresponding variant co-ordinates to
the vector this.variant.genes. Finally, the values in the mut.genes matrix
corresponding to those genes are set to 1.

Some brief exploration tells us a bit about this dataset:

> sum(mut.genes)

[1] 9921

252 Genomic Sequence Profiling

Here we see that there are 9, 921 mutated genes in total, and we can break
those down into numbers for each patient with colSums:

> range(colSums(mut.genes))

[1] 16 253

So this varies between a minimum of 16 mutated genes for one patient, up to
a maximum of 253 for another.

We create a histogram of the mutation counts per gene, as follows:

> hist(rowSums(mut.genes))

The hist function plots a histogram, the result should be as shown in
Fig. 12.4.

There will be a large number of genes that are never mutated in this collection
of tumour samples, so we might as well remove these from the table:

mut.genes <- mut.genes[rowSums(mut.genes)>0,]

Now we can check the new dimensions of the mut.genes matrix:

dim(mut.genes)

[1] 6519 118

We may want to test to see if there are individual genes for which a mutation
is associated with worse outcomes. One way of representing this could be to
look at the overall survival times, in the context of the vital status indicators.
For this we need to create a special type of object in R, using the survival
package. The survival variables need to have one vector specifying the ‘time-
to-event’ and another vector indicating whether or not the event occurred. In
this case, time-to-event is donor survival time if the patient’s vital status is
deceased, but it is donor interval of last followup if the vital status is
alive. We will first create a vector called surv.time, containing the survival
time (or an NA if the patient was still alive at last followup):

> surv.time <- clin.data[both.patients,"donor survival time"]

Then create a vector with the indicator stating whether or not the event
(i.e. death) had occurred within the observation window.

> surv.event <- rep(NA,length(both.patients))

> surv.event[which(clin.data[both.patients,"donor vital status"]

+ =="deceased")] <- 1

Making use of variant calls 253

FIGURE 12.4
Histogram of mutation counts for each gene in TCGA ovarian cancer cohort
with validated mutations (118 patients).

> surv.event[which(clin.data[both.patients,"donor vital status"]

+ =="alive")] <- 0

We can use the event indicator as an index to specify which patients will
need to replace missing values from the donor survival time column of the
clinical data table:

> surv.time[which(surv.event==0)] <- clin.data[both.patients,

+ "donor interval of last followup"][which(surv.event==0)]

254 Genomic Sequence Profiling

Finally, load the survival package and create a survival object with the Surv

function”

> library(survival)

> patient.os <- Surv(surv.time,surv.event)

We can now use the survdiff function within the survival package to test
the statistical significance of the separation between the survival curves for
patients with and without a mutation in a given gene. This uses a χ2 test to
compare the counts of events (i.e. deaths) that occur in each group of patients,
scaled by the sum of observation time across all patients in the corresponding
group. The p-value returned by this hypothesis represents the probability that
a random allocation of events to patients would result in so uneven a distri-
bution of events across the two groups, taking into account the differences in
patient follow-up times.

> survdiff(patient.os ∼ mut.genes["PIK3CA",])

Call:

survdiff(formula = patient.os ∼ mut.genes["PIK3CA",])

N Observed Expected (O-E)2̂/E (O-E)2̂/V

mut.genes["PIK3CA",]=0 112 67 64.87 0.07 1.18

mut.genes["PIK3CA",]=1 6 2 4.13 1.10 1.18

Chisq= 1.2 on 1 degrees of freedom, p= 0.3

We have seen the result for an individual gene, but what about testing all
genes? It probably isn’t worth considering the differences between curves when
only a few patients have mutations, but we need to be pragmatic bearing in
mind the relatively small cohort size (118) and low prevalence of individual
point mutations in ovarian cancer. So we can apply a proportional hazards
regression model (this is another approach to test the impact of a variable,
or set of variables, on survival outcomes) to the rows of the mut.genes table
which contain more than four 1s:

coxph.pvals <- apply(mut.genes[which(rowSums(mut.genes)>4),],

+ MARGIN=1,function(x)summary(coxph(patient.os ∼ x))$coefficients[1,5])

This command uses the apply function to apply a custom function (extracting
the p-value from the Cox proportional hazards regression model fit) to each
row of the mut.genes table in turn. We can then sort the values to find the
genes with the most significant difference in patient survival:

> sort(coxph.pvals,decreasing=F)[1:3]

MYO5C BRCA2 MUC17

0.01979490 0.02729627 0.02745394

Making use of variant calls 255

If we were being strict about this we should adjust the p-values to take into
account the fact that we have run multiple hypothesis tests:

> coxph.adjusted <- p.adjust(coxph.pvals,method="BH")

Now we see if any of the individual model fits remains significant when we
take into account the number of hypothesis tests we carried out:

> sort(coxph.adjusted,decreasing=F)

In a real scenario, we would almost certainly want to compute the hazard
ratios of the models, and the confidence intervals for the fitted hazard ratios.
This would be very similar to the example presented in Chapter 7, so we leave
that here as an exercise for the reader.

Furthermore, the fact that we had so few observations to draw on mean that
any association would be tenuous at best! But, if we had a larger cohort har-
bouring a mutation, we may wish to visualize the difference in survival curves
in Kaplan-Meier plots. Again this is similar to examples shown in Chapter 8,
using gene expression data.

plot(survfit(patient.os ∼ mut.genes["BRCA2",])

+ ,lty=c(2,1),col=c("black","red"))

This command, using the function survfit, specifies the use of a dashed
black line for the group with values = 0 (i.e. patients without a validated
mutation in the BRCA2 gene) and a solid red line for the group with values
= 1. The result should look like that shown in Fig. 12.5.

As an extension to this topic, we may wish to see if combinations of mutations
are associated with outcomes, given that individual mutations may not. By
using penalized multivariate regression, we can use this approach to find the
variables (and combinations of variables) which have the biggest impact on
the outcome. This is sufficiently more complex that it would require further
study, and so we will not be covering it in this book, but I mention the concept
as something that you may wish to explore if the simpler approaches do not
yield anything. The basic principle is that by allowing the model to include
a large number of variables, but penalizing the scores of model fit for each
additional variable included, a balance can be struck between finding subtle
patterns in datasets and over-fitting to a small set of observations. You can
find more about the glmnet package which we use for penalized multivariate
regression in R here:

https://cran.r-project.org/web/packages/glmnet/vignettes/glmnet beta.html

https://cran.r-project.org/

256 Genomic Sequence Profiling

FIGURE 12.5
Kaplan-Meier plot showing overall survival curves for patients in the TCGA
ovarian cancer cohort with a BRCA2 mutation (solid red line), and patients
without a validated BRCA2 mutation (dashed black line). X-axis gives survival
time in days; y-axis gives proportion of patients in the corresponding group
surviving beyond the specified time.

12.7 Summary

This chapter covered variant calling, filtering and annotation from high-
throughput sequencing data that has been preprocessed to the point of non-
duplicated reads mapped to a reference genome (as described in the previous
chapter). The downstream analysis section hopefully illustrates with a real
example how the resulting variant calls can be used for clinical research. Of
course, HTS data can also be used to call genotypes for known polymorphic
sites, in which case associations with phenotypes can be tested as in Chap-
ter 10. This approach could also be applied to contingency tables produced
by separating samples into two groups based on the presence or absence of
specific variants (or any variant mapping to a given gene). There are also

Summary 257

specific technical errors that can be introduced through targeted sequencing
approaches, but as a starter, the methods illustrated in this chapter should
work for most applications.

Bibliography

[1] DC Koboldt et al, “VarScan: variant detection in massively parallel
sequencing of individual and pooled samples,” Bioinformatics 25(17):2283-
2285 (2009).

[2] MA DePristo et al, “A framework for variation discovery and genotyping
using next-generation DNA sequencing data,” Nature Genetics 43:491-498
(2011).

[3] ST Sherry et al, “dbSNP: the NCBI database of genetic variation,” Nucleic
Acids Research 29(1):308-311 (2001).

[4] P Cingolani et al, “Using Drosophila melanogaster as a model for genotoxic
chemical mutational studies with a new program, SnpSift,” Frontiers in
Genetics 3:35 (2012).

[5] P Kumar & S Henikoff & PC Ng, “Predicting the effects of coding non-
synonymous variants on protein function using the SIFT algorithm,”
Nature Protocols 4(7):1073-1081 (2009).

[6] K Wang & M Li & H Hakonarson, “ANNOVAR: Functional annotation
of genetic variants from next-generation sequencing data,” Nucleic Acids
Research 38:e164 (2010).

[7] JJM Landry et al, “The genomic and transcriptomic landscape of a HeLa
cell line,” G3 3(8):1213-1224 (2013).

[8] T Rausch et al, “DELLY: Structural variant discovery by integrated
paired-end and split-read analysis,” Bioinformatics 28(18):i333-i339
(2012).

http://taylorandfrancis.com

13

ChIP-seq

13.1 Introduction

The capacity for high-throughput sequencing technology to go some way
towards relative quantification of different DNA sequences in a library can
be used identify genomic locations of certain chemical modifications or DNA-
binding elements. The general principal of a chromatin immunoprecipitation
(ChIP) sequencing assay is to enrich a library through purification with an
antibody that specifically binds to a target transcription factor (or DNA fea-
ture) of interest. By counting the number of reads that map to each genomic
position, and estimating how unlikely it would be to see so many reads in a
given position purely by chance, regions of statistically significant enrichment
over background can be obtained. There are a few subtleties in the process
which can result in technical artifacts biasing the results of a ChIP-seq exper-
iment, and so this tutorial will go through some of the means of attempting
to take these into account and produce as accurate and as useful results as
possible.

13.2 Cross-correlation

Initial quality control and alignment of ChIP-seq data should be carried out as
with any high-throughput sequencing data. Following alignment, an additional
assessment strategy can be followed, exploiting the expected distribution of
reads that comes from sequencing either end of clusters of DNA fragments
centered on the structure recognized by the antibody used for the IP. Note:
this is mostly included for illustrative purposes, it’s unlikely that this would
be performed routinely. In fact, the MACS peak-calling program incorporates
a form of this analysis! Across an entire ChIP-seq library, if the IP procedure
results in isolation of many copies (from different cells) of the same DNA frag-
ments (those linked to the antibody’s target), then the count of overlapping
reads (referred to as coverage) from one strand ought to be correlated with
the coverage on the other strand, offset by the average fragment length. An
excellent description of cross-correlation in ChIP-seq can be found in [1]. We

259

260 ChIP-seq

can inspect the cross-correlation of a ChIP-seq library using R, although it is
worth bearing in mind that this is computationally-intensive work and so will
take a long time! Using the ShortRead package we can first read in an aligned
read BAM file, let’s say called ‘ChIPseq aligned.bam’:

> library(ShortRead)

> ChIP.reads <- readGAlignments("ChIPseq aligned.bam",

param=ScanBamParam())

It simplifies things to compute the cross-correlations from different chromo-
somes separately, and to speed things up in our example we may wish to keep
only data from a few chromosomes. Therefore we can define the set of chro-
mosomes we want to keep, and keep only these reads:

> chrs <- c("chr1","chr2")

Here we have created a vector chrs that includes “chr1” and “chr2”. We
can keep only reads from these chromosomes with the following:

> ChIP.reads <- ChIP.reads[chromosome(ChIP.reads) %in% chrs]

We need to separate reads from each strand:

> ChIPreads.plus <- ChIP.reads[strand(ChIP.reads)=="+"]

> ChIPreads.minus <- ChIP.reads[strand(ChIP.reads)=="-"]

We can then use the coverage function provided in the IRanges package1

which calculates coverage for readAligned objects in R:

> cov.plus <- coverage(ChIPreads.plus)

> cov.minus <- coverage(ChIPreads.minus)

Cross-correlation is the offset correlation between the coverage on the plus
and minus strands. We therefore need to calculate this correlation for differ-
ent values of the offset, which we do not know in advance (although we should
be able to make a pretty good guess due to size selection in the library prep!).
We therefore pick a range of offsets from zero to the upper end of what we
might expect of DNA fragment sizes, which we can create using the seq func-
tion in R:

> offsets <- seq(from=0,to=200,length=10)

A convenient way to store the results of this analysis in R is a matrix, with
a row for each offset and a column for each chromosome. Then it will be

1This package is included with the ShortRead packages in Bioconductor.

Cross-correlation 261

straightforward to perform mathematical operations and generate plots from
the different offsets together:

> crosscors <- array(NA,dim=c(length(offsets),length(chrs)))

We now can set up a loop running through each chromosome in turn, and
a loop inside the first running through each offset in turn, computing the
correlation between the read coverage counts for each strand and entering the
result in the appropriate cell within the matrix:

> for(i in 1:length(chrs)){
+ maxlength <- min(c(length(cov.plus[[chrs[i]]]),length(cov.minus

+ [[chrs[i]]])))

+ for(j in 1:length(offsets)){
+ crosscors[j,i] <- cor(x=cov.plus[[chrs[i]]][c(1:[maxlength-

offsets[j]])],

+ y=cov.minus[[chrs[i]]][c(offsets[j]:[maxlength-1])])}}

Once again this may look pretty formidable, but it is fairly simple when you
break it down. The first loop sets up a counter i to keep track of which chromo-
some we are looking at, then the second loop sets up a counter j to keep track
of which offset we are using. We need to consider the length of the coverage
object for the given chromosome, hence using the minimum value from either
the plus or the minus strand. Within the second loop the cross-correlation is
calculated using the cor function, passing two vectors as the arguments x and
y, one of which is the coverage values on the plus strand from position 1 to the
jth value of offsets subtracted from the maximum length value maxlength.
The second vector argument is the coverage values on the minus strand from
the jth value of offsets up to the maximum length value maxlength minus
1. This way the two vectors are always the same size, regardless of the value
of offset used, and never extend beyond the calculated coverage values for the
corresponding chromosome.

With these values calculated, we may wish to plot the averages across all
computed chromosomes for each offset, so we can compare these. To create
such a plot is relatively simple:

> plot(x=offsets,y=rowMeans(crosscors),type="l",ylab="cross-

+ correlation",xlab="offset")

The resulting plot should look like the one shown in Fig. 13.1. The peak
in the plot gives the average fragment length, which in this case is proba-
bly around 150 bp, but only if we assume that relatively high correlations at
low offsets indicate technical issues. An important point to consider is that
there is quite often a “phantom peak” at a very low offset, which can be

262 ChIP-seq

FIGURE 13.1
Plot of cross-correlation values from ChIP-seq library at different values of
offset between plus and minus strands.

seen as the cross-correlation due to non-IP fragment enrichment. The ratio
between the fragment-length peak cross-correlation and the phantom-peak
cross-correlation has been proposed as an indicator of how successfully the IP
procedure has been represented in the sequenced library [1]. Alternatively, the
tightness of the cross-correlation peak around the expected fragment length
(and the value of the cross-correlation) can also be used as an indicator of
the IP enrichment in the library. If the cross-correlation peak is very broad or
centred a lot lower than you expect the fragment length to have been based on
your library prep protocol, these are warning signs that the dataset you have
may not be very good quality. The results obtained on our dataset suggest
that there may be some issues: the next section explains one possible cause
and gives a solution.

Peak calling 263

13.3 Filtering blacklisted reads

Some regions of the genome are easier to sequence and to map than others.
The extent of this variability means that some regions of the genome are in fact
likely to dominate ChIP-seq library signals even when they are not represented
with the feature that the antibody used for the IP is supposed to recognize
[1]. For such super-alignable regions, which are helpfully well-characterized in
some genomes, it makes sense to remove reads mapping to these regions from a
ChIP-seq library prior to downstream analysis. You may find that after remov-
ing such ‘blacklisted’ regions and recalculating cross-correlations, that the
resulting plots look considerably better. The process of removing reads from
a library is actually relatively simple, provided we have a BED file containing
the blacklisted genomic regions and a BAM file containing the aligned reads
from the library we wish to analyze. You can download the blacklisted regions
bedfile from http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeMapability. Alternatively, on a UNIX-based system you can get the
file directly from the bash shell:

$ wget http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/

wgEncodeMapability/wgEncodeDukeMapabilityRegionsExcludable.bed.gz

$ gunzip wgEncodeDukeMapabilityRegionsExcludable.bed.gz

Then we can invoke the bedtools program (assuming we have it installed)
from the shell with the argument intersect -v :

$ bedtools intersect -v wgEncodeDukeMapabilityRegionsExcludable.bed

ChIPseq aligned.bam > ChIPseq aligned DACfiltered.bam

Then we can use the file ‘ChIPseq aligned DACfiltered.bam’ in our down-
stream analysis. In a real study, the cross-correlation analysis would be
expected to have much more positive results after performing this filtering!

13.4 Peak calling

The main objective with ChIP-seq experiments is to identify genomic regions
that contain the feature recognized by the antibody. That is, we wish to find
the regions that are significantly enriched during the IP process. There is a
large body of work describing ways this can be performed, but in this tutorial
we will stick with one of the most widely used programmes for so-called “peak-
finding”, known as MACS [2]. There are now two main version of MACS,
with MACS2 being what is probably the most widely-used ChIP-seq peak
finder. MACS2 is implemented in the Python programming language, and

http://hgdownload.cse.ucsc.edu/
http://hgdownload.cse.ucsc.edu/
http://hgdownload.cse.ucsc.edu/

264 ChIP-seq

specifically requires Python version 2.7 to run. The easiest way to install
MACS2 is through Python’s pip package manager:

$ pip install MACS2

If this doesn’t work, then you can download a zip archive of the source code
from: https://github.com/taoliu/MACS/archive/master.zip.

Once this archive is unzipped, in the resulting directory run the following
command:

$ python2.7 setup.py install

If you have any issues with this Python-based installation, the original version
of MACS can still be downloaded and installed as follows:

$ wget https://github.com/downloads/taoliu/MACS/MACS-1.4.2-1.tar.gz

$ gunzip MACS-1.4.2-1.tar.gz

$ tar -xf MACS-1.4.2-1.tar

MACS2 can perform a number of different tasks, but the one we are
most insterested in is the callpeak mode. This can run using just a sin-
gle input BAM file, if there is no control library against which to compare
the ChIP aligned reads. For this scenario, we could find peaks in the file
“ChIPseq aligned DACfiltered.bam” as follows:

$ macs2 callpeak -t ChIPseq aligned DACfiltered.bam

-n ChIPseq noControl

However, we will typically have an input DNA (no antibody) or IgG (control
antibody) library against which to compare the ChIP library. Let’s say we
also had a file called “InputDNA aligned DACfiltered.bam” which has been
preprocessed, aligned and filtered in exactly the same way as the ChIP reads.
Then we could find IP-enriched peaks using MACS2 as follows:

$ macs2 callpeak -t ChIPseq aligned DACfiltered.bam

-c InputDNA aligned DACfiltered.bam -n ChIPseq withControl

The result of peak-calling will typically be stored as BED files, which are
text files with one row for each peak, containing at the very least the chromo-
some, start and end positions for the peak. BED files generated by MACS will
also contain a peak ID, an enrichment p-value derived from their statistical
model of ChIP coverage relative to the genomic distribution (and possibly
the enrichment in the same region of the input library as well), and a read
count for the peak. The outputs we will typically use are in files with the
extension “.narrowPeak”, and we may just wish to extract the co-ordinates

https://github.com/
https://github.com/

Peak annotation 265

for the peak regions to save these as “.bed” files. For the previous example,
we could extract the first three columns using the UNIX command cut:

$ cut -f 1,2,3 ChIPseq withControl peaks.narrowPeak > ChIPseq peaks.bed

Now there is a file on the system which contains the genomic co-ordinates
of the regions enriched for reads in the ChIP-pulldown library relative to the
genomic DNA control. Although for many purposes, the “narrowPeak” file
could be used interchangeably. These files might be sufficient for downstream
analysis and interpretation of results, but it will often help to map the enriched
regions to genomic features of interest.

13.5 Peak annotation

Having identified regions enriched during the IP process, it is normal to wish
to associate these to known genomic features of interest. Most commonly these
are genes, although they could be regulatory features, genetic variants, or iden-
tified non-coding transcripts (etc). There are stand-alone tools for annotating
peaks with genomic features, but we can use the same strategy within R that
was used in Chapter 10 to map the variants to genes, and that taken in Sec-
tion 4.3.4 on SNP Arrays. This approach uses the biomaRt package to bring
in gene annotation data from Ensembl to R. First of all, we need to obtain
the genomic co-ordinates for each gene:

> library(biomaRt)

> ensembl <- useMart(host="feb2014.archive.ensembl.org",biomart=

+ "ENSEMBL MART ENSEMBL",dataset="hsapiens gene ensembl")

> geneInfo <- getBM(attributes=c("hgnc symbol",

+ "chromosome name","start position","end position","strand")

+ ,mart=ensembl)

The getBM function has created a data frame, which we have called geneInfo,
which lists each Ensembl-annotated gene’s official gene symbol along with its
chromosome, start and end positions, and the strand. We use the ‘feb2014’
archive of ENSEMBL as that is the most recent version still using the hg19
release of the human genome. It will be more convenient for us if we remove
the Ensembl-annotated genes that don’t have an official gene symbol:

> geneInfo <- geneInfo[which(!geneInfo$hgnc symbol==""),]

And we also may wish to remove duplicate entries for different gene defi-
nitions with the same symbol:

> geneInfo <- geneInfo[!duplicated(geneInfo$hgnc symbol),]

266 ChIP-seq

It is obviously essential to have the peak information, which we can read
into R:

> ChIP.peaks <- read.table("ChIPseq peaks.bed",sep='�',head=F)

> colnames(ChIP.peaks) <- c("Chromosome","Start position","End position")

With the data loaded into the workspace we could proceed as in the other
examples, associating genes with a peak if the peak lies within the gene itself.

> marked.genes <- c()

+ for(i in 1:nrow(ChIP.peaks)){
+ marked.genes <- c(marked.genes,geneInfo$hgnc symbol[

+ which(geneInfo$chromosome name==ChIP.peaks[j,"Chromosome"]

+ & geneInfo$start position<ChIP.peaks[i,"End position"]

+ & geneInfo$end position>ChIP.peaks[i,"Start position"])])}
> marked.genes <- unique(marked.genes)

Then the vector marked.genes lists all the genes containing peaks. Of course,
it would also be possible to use any set of regions of interest, it wouldn’t have
to be the gene annotation information from Ensembl. All you would need to
do is read in the coordinates of the named features of interest, as for the
peaks here, and then change $hgnc symbol to the appropriate column name
containing the names of the genomic features.

However, as most ChIP-seq data deals with regulatory regions, we might
instead wish to look in the regions upstream of each TSS. For this we will
start by creating a new annotation table, relabelling each gene as starting at
its TSS-2000 and ending at its TSS:

> geneInfo.TSS <- geneInfo

> geneInfo.TSS[which(geneInfo.TSS$strand==1),"end position"] <-

+ geneInfo.TSS[which(geneInfo.TSS$strand==1),"start position"]

> geneInfo.TSS[which(geneInfo.TSS$strand==1),"start position"] <-

+ geneInfo.TSS[which(geneInfo.TSS$strand==1),"start position"]-2000

> geneInfo.TSS[which(geneInfo.TSS$strand==-1),"start position"] <-

+ geneInfo.TSS[which(geneInfo.TSS$strand==-1),"end position"]

> geneInfo.TSS[which(geneInfo.TSS$strand==-1),"end position"] <-

+ geneInfo.TSS[which(geneInfo.TSS$strand==-1),"end position"]+2000

> marked.promoters <- c()

+ for(i in 1:nrow(ChIP.peaks)){
+ marked.promoters <- c(marked.promoters,geneInfo$hgnc symbol[

+ which(geneInfo$chromosome name==ChIP.peaks[j,"Chromosome"]

+ & geneInfo$start position<ChIP.peaks[i,"End position"]

+ & geneInfo$end position>ChIP.peaks[i,"Start position"])])}
> marked.promoters <- unique(marked.promoters)

Quantitative comparisons of ChIP-seq libraries 267

With a vector of gene symbols corresponding to those for which a ChIP-seq
peak was detected in the promoter region, this may be sufficient for our needs.
Such a list of genes could be evaluated for over-representation of functionally
annotated genesets (e.g. as in Chapter 6), or they could in fact be used as
a gene-set with which to test another dataset for systematic enrichment or
over-representation.

13.6 Quantitative comparisons of ChIP-seq libraries

In some situations, the actual levels of enrichment of given genomic regions
across different ChIP libraries might be of interest. This section outlines how
counting the number of reads mapping to regions of interest, and then nor-
malizing for the sequencing depth, can create quantitative enrichment matrices
that can then be analyzed much like any other (see for example, Chapter 5).
In order to do this, we will need one BED-format file specifying the regions
of interest, and at least one BAM-file containing the mapped reads for each
ChIP sample. We may also want to control for the technical bias in sequenc-
ing coverage by including a non-IP (or non-specific antibody IP) BAM file for
each ChIP sample.

For example, let’s say we have seven files: (1) “ChIPseq peaks.bed” (the
regions of interest); (2) “ChIPseq cond1 rep1.bam” (mapped reads for ChIP-
seq library in condition 1, 1st replicate); (3) “ChIPseq cond1 rep2.bam”
(mapped reads for ChIP-seq library in condition 1, 2nd replicate); (4)
“InputDNA cond1.bam” (mapped reads for input library in condition 1); (5)
“ChIPseq cond2 rep1.bam” (mapped reads for ChIP-seq library in condition
2, 1st replicate); (6) “ChIPseq cond2 rep2.bam” (mapped reads for ChIP-seq
library in condition 2, 2nd replicate); (7) “InputDNA cond2.bam” (mapped
reads for input library in condition 2). So we have sequenced two replicate
IP samples from each condition, but only one input (no-IP) DNA control for
each condition.

First, we need to read in the BED file and define the regions of interest using
the GRanges function (in the ShortRead packages).

> library(ShortRead)

> peaks <- read.table("ChIPseq peaks.bed",sep="�",head=F)
> peaks.gr <- GRanges(seqnames=as.character(peaks[[1]]),

+ ranges=IRanges(start=peaks[[2]],end=peaks[[3]]))

The first two commands here should be self-explanatory by now, but the third
uses the GRanges function to create a special type of GRanges object on the

268 ChIP-seq

workspace, which we have called peaks.gr. This function requires at least
two arguments: the seqnames and the ranges. The first of these is typically a
vector of chromosome names, and the second is another special type of object
which we have created using the IRanges function. The IRanges function
requires a vector of start positions and end positions, with one element in
each vector for each range.

The GRanges class of object enables some very useful functionality, including
counting overlapping reads from a GenomicAlignments object. This is what
we will do next, for the first ChIP sample, after reading it into the workspace
using the readGAlignments function.

> ChIP1reads.rep1 <- readGAlignments(file="ChIPseq cond1 rep1.bam",

+ param=ScanBamParam())

> ChIP1counts.rep1 <- summarizeOverlaps(features=peaks.gr,

reads=ChIP1reads.rep1)

So in these commands, we have first created an object called ChIP1reads.rep1,
which contains the information for each mapped read in the BAM file
“ChIPseq cond1 rep1.bam”. Then we have used the summarizeOverlaps

function to count the number of reads mapping to each range specified in
the peaks.gr GRanges object.

One convenient and widely-used approach to quantifying sequencing coverage
over specified ranges is to compute the Reads Per Kilobase of region per Mil-
lion mapped reads (RPKM). For paired-end libraries, it is usual to count the
number of mapping Fragments, hence FPKM. We can obtain a vector of counts
of mapped reads for each feature using the assay function applied to the out-
put of summarizeOverlaps, we can obtain the length (in bp) of each region
of interest by applying the width function to the GRanges object, and we can
find the total number of mapped reads just by applying the length function to
the GenomicAlignments object. Therefore, we can compute the RPKM scores
for the ChIP1reads.rep1 sample in each of the peaks.gr regions as follows:

> ChIP1rpkm.rep1 <- (1000*assay(ChIP1counts.rep1)*1e6/

length(ChIP1reads.rep1))

+ /width(peaks.gr)

This command computes the expression 1, 000 ∗ 1, 000, 000 ∗
ReadCountregion

widthregion∗ReadCounttotal
, and stores the result on the workspace as a vector

called ChIP1rpkm.rep1.
As we also have an input DNA control for this sample, we may wish to com-
pute instead the log-ratio of the RPKM scores for the ChIP compared to the
control: log2(ChIPRPKM+1

inputRPKM+1). We add 1 to each of the values in the fraction
to avoid undefined measures in the event of zero-coverage in a region. In our

Quantitative comparisons of ChIP-seq libraries 269

current example, this means we need to generate the RPKM scores for the
input sample for condition 1:

> input1reads <- readGAlignments(file="InputDNA cond1_bam",

+ param=ScanBamParam())

> input1counts <- summarizeOverlaps(features=peaks.gr,reads=input1reads)

> input1rpkm <- (1000*assay(input1counts)*1e6/length(input1reads))

+ /width(peaks.gr)

With the RPKM computed for both the ChIP sample and the input DNA
control, we can now compute the log enrichment score for each region:

> ChIP1logFC.rep1 <- log(((ChIP1rpkm.rep1+1)/(input1rpkm+1)),base=2)

For the second replicate of the first sample, repeat the steps to compute the
RPKM scores per-region for the corresponding BAM file, and then compute
log-enrichment scores using the already-computed input DNA RPKM scores
(as we have specified that the ChIP replicates share the same Input DNA
control).

> ChIP1reads.rep2 <- readGAlignments(file="ChIPseq cond1 rep2.bam",

+ param=ScanBamParam())

> ChIP1counts.rep2 <- summarizeOverlaps(features=peaks.gr,

reads=ChIP1reads.rep2)

> ChIP1rpkm.rep2 <- (1000*assay(ChIP1counts.rep2)*1e6/

length(ChIP1reads.rep2))

+ /width(peaks.gr)

> ChIP1logFC.rep2 <- log(((ChIP1rpkm.rep2+1)/(input1rpkm+1)),base=2)

I leave it as an exercise for the reader to repeat all these steps for the sec-
ond ChIP condition, with the reminder that we will also need to compute
RPKM scores for the two ChIP replicates and the input DNA library for
this sample. Assuming this results in vectors of log-enrichment scores called
ChIP2logFC.rep1 and ChIP2logFC.rep2, we can use the cbind function to
create a matrix that we can then analyze using the limma package:

> logFCmat <- cbind(ChIP1logFC.rep1, ChIP1logFC.rep2,

+ ChIP2logFC.rep1, ChIP2logFC.rep2)

Let’s load the limma package, and specify a design matrix with one inter-
cept column and one column that takes values 0 for condition 1 and 1 for
condition 2:

> library(limma)

> design <- cbind(intercept=1,cond2=c(0,0,1,1))

270 ChIP-seq

Here we have used cbind to create a 2 × 2 design matrix, called design.
Now we can use the lmFit function to fit linear models using these explana-
tory variables with each region in turn as the outcome variable:

> ChIPlm <- lmFit(logFCmat,design)

This command used the lmFit function to fit models to the logFCmat values,
and stores the result in the object ChIPlm. Now we perform empirical Bayes
moderation of the linear model t-statistics and extract the statistical analysis
output for all features:

> ChIPlm <- eBayes(ChIPlm)

> diffChIPtable <- topTable(ChIPlm,coef=2,number=nrow(logFCmat))

This final command uses the topTable function with the argument coef=2

to specify that it is the 2nd column of the design matrix we are interested in:
this is the numeric indicator for whether or not the samples refer to condition
1 or condition 2. The resulting table can be mapped back to the regions of
interest, and therefore can be used to identify regions with significantly differ-
ent enrichment across the conditions of interest. By using the linear modelling
framework, we can extend this analysis to more complex designs. A similar
approach could also be used for quantitative analysis of ATAC-seq datasets,
which profile chromatin accessibility using an engineered transposase.

13.7 Summary

In this chapter we have seen how to load mapped sequence reads into R and to
perform quantitative analysis based on coverage. ChIP-seq libraries will often
need to be filtered against blacklisted ultra-accessible genomic regions, and
then we can find peak regions of interest using MACS. We have also seen how
R can be used to perform quantitative comparisons between different ChIP
libraries and identify significantly differentially-enriched regions for arbitrarily
complex experimental designs.

Bibliography

[1] TS Carroll et al, “Impact of artifact removal on ChIP quality metrics in
ChIP-seq and ChIP-exo data,” Frontiers in Genetics 5:75 (2014).

[2] Zhang et al, “Model-based analysis of ChIP-Seq,” Genome Biology
9(9):R137 (2008).

14

RNA-seq

14.1 Introduction

The quantitative nature of high-throughput sequencing platforms has also
been put to good use for measuring RNA levels. This has variously been opti-
mized for quantification of gene expression, for identifying non-coding RNAs,
for quantifying miRNAs, and probably many others. Note, there has been a
recent expansion in applications of single-cell RNA sequencing, but the mea-
surement of smaller volumes of RNA from a large number of cells introduces
a set of additional analytical challenges. Because of this, we concentrate here
on bulk RNA-seq analysis, and leave analysis of single-cell sequencing experi-
ments as a future topic. A list of different RNA-seq applications can be found
from Illumina’s website at:
http://www.illumina.com/techniques/sequencing/rna-sequencing.html.
This includes descriptions of the library prep needed to measure mRNAs,
total RNAs, and small RNAs. One distinct advantage of the RNA-seq strat-
egy is that RNAs can be quantified without knowing in advance their exact
sequences. However, because the RNA molecules to be profiled (after convert-
ing to cDNA) are derived from the genome as templates that can be combined
in different ways, transcript mapping and quantification is not a trivial task.
See [1] for a relatively old but good overview of RNA-seq experiments for gene
expression profiling. A library of short cDNA fragments with ligated sequence
adapters is then sequenced, reads are mapped to the genome: either as gapped
reads spanning splice junctions, reads mapping uniquely to exonic regions of
coding genes, or Poly-A terminal reads.

The exact data processing steps may vary for RNA-seq experiments quantify-
ing different types of RNAs, but most will involve transcriptome assembly,
transcript quantification and then normalization. Assuming measurements
are obtained from multiple samples, it is likely that we would wish to iden-
tify differentially-expressed transcripts, which will be similar but potentially
slightly different to the process of finding differentially expressed genes from
microarray data (which was covered extensively in Chapter 8 of these tutori-
als). The rich data produced in such sequencing experiments can be processed
in myriad further ways, often with specific purposes, but these are sufficiently
esoteric that it would be better to look up methodology in a publication

271

http://www.illumina.com/

272 RNA-seq

describing the specific example of interest and then attempt to replicate the
analysis, adapting core principles learned here.

14.2 Obtaining RNA-seq data from GEO

In this tutorial we will follow 2 distinct pipelines for RNA-seq data analysis.
The first will be a simple approach based on quantifying expression levels for
known transcripts, without having to go through the process of fully mapping
every read to the reference genome. The second approach will use a range of
tools from the Tuxedo Suite, which enables identification of novel transcripts,
and assessment of their differential expression.

For a practical example on which to try out our RNA-seq analysis, let’s say
we have a small RNA-seq experiment from a human cancer cell line: two repli-
cates of a cell line treated with CRISPR-Cas9 targetting a gene of interest,
and two replicates of the cell line treated with a control construct. This is
more than hypothetical, the study in question can be found at
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72001. With single-
end reads we will have one file for each sample, with paired-end reads (which
are more common in RNA-seq) we will have two files for each sample. Let’s use
the SRA toolkit to download the study’s data and extract it into Fastq format:

$ sra-tools/prefetch SRR2156848

In the above command, we use assume the SRA toolkit has been installed
to the directory ‘sra-tools’. Refer back to Chapter 11 for more details on
installing this toolkit. When you execute this (and the following) commands,
make sure you change this to the correct path to your SRA toolkit direc-
tory. The prefetch program prepares temporary files for obtaining sequence
data efficiently from the SRA. With this run, you can use the fastq-dump to
extract the data in Fastq format to a file in the current directory.

$ sra-tools/fastq-dump --split-3 SRR2156848

Note that as this sequencing run is a paired-end library, this command uses
the ‘split-3’ argument to indicate that we wish to extract separate files for the
different mate-pairs. Now if we look at the contents of the current directory,
we should see the following:

$ ls

SRR2156848 1.fastq SRR2156848 2.fastq SRR2156848.fastq

http://www.ncbi.nlm.nih.gov/

Transcript quantification via pseudoalignment 273

How would you check that these files with extension ‘.fastq’ actually look
like what we expect for a Fastq file? You could try printing the first few lines
to the shell standard output:

$ head SRR2156848 1.fastq

With the first file downloaded, we can follow the same steps to download
the other three Fastq files.

$ sra-tools/prefetch SRR2156849

$ sra-tools/fastq-dump --split-3 SRR2156849

$ sra-tools/prefetch SRR2156850

$ sra-tools/fastq-dump --split-3 SRR2156850

$ sra-tools/prefetch SRR2156851

$ sra-tools/fastq-dump --split-3 SRR2156851

14.3 Transcript quantification via pseudoalignment

A fast approach to analysis of RNA-seq data makes use of the fact that if you
only wish to quantify the expression of a gene, you don’t need to know where
in the gene the read maps to. In fact, it is enough to know which genes a
read might have come from. This is the principle behind Kallisto[2]. In brief,
Kallisto compares each RNA-seq read against an indexed table of transcript
sequences to find the sets of transcripts that each read could have come from.
These sets are then used to estimate the most likely set of transcript counts
over the whole RNA-seq library. An executable version of Kallisto can be
obtained from the Linux shell as follows:

$ wget https://github.com/pachterlab/kallisto/releases/

download/v0.43.1/kallisto linux-v0.43.1.tar.gz

$ gunzip kallisto linux-v0.43.1.tar.gz

$ tar -xf kallisto linux-v0.43.1.tar

Now you should have a directory called ‘kallisto linux-v0.43.1’ which contains
the executable file kallisto. To run Kallisto we need an indexed transcript
database and a set of RNA-seq reads to use to quantify the transcripts. We’ll
now download and index a transcript database, then use RNA-seq reads for
quantification.

14.3.1 Building a transcript index

Let’s first move the bash working directory into the folder where kallisto is
installed:

$ cd kallisto linux-v0.43.1

https://github.com/
https://github.com/

274 RNA-seq

We can now pull the hg19 Ensembl reference transcriptome directly from their
ftp site:

$ wget ftp://ftp.ensembl.org/pub/release-67/fasta/

homo sapiens/cdna/Homo sapiens.GRCh37.67.cdna.all.fa.gz

Now we need to unzip that:

$ gunzip Homo sapiens.GRCh37.67.cdna.all.fa.gz

Now we can use Kallisto’s index program to build the transcriptome index1:

$ kallisto index -i hg19.ensembl

Homo sapiens.GRCh37.67.cdna.all.fa

This command specified that we give this transcriptome index the name
‘hg19.ensembl’.

Now that we have an indexed to match the reads against, we can use Kallisto
for fast probabilistic transcript quantification from the RNA-seq libraries.

14.3.2 Quantifying transcripts using reads

To quantify transcripts with Kallisto we use the quant command in the soft-
ware, specifying a transcript index to quantify, an output directory in which
to write results to file, and a list of Fastq files to use for the transcript quan-
tification:

$ kallisto quant -i hg19.ensembl -o SRR2156848

SRR2156848 1.fastq SRR2156848 2.fastq

If this has run correctly, there should be a new directory called SRR2156848,
containing three files:

$ ls SRR2156848

abundance.h5 abundance.tsv run info.json

We can now run the quantification for the remaining samples:

$ kallisto quant -i hg19.ensembl -o SRR2156849

SRR2156849 1.fastq SRR2156849 2.fastq

$ kallisto quant -i hg19.ensembl -o SRR2156850

SRR2156850 1.fastq SRR2156850 2.fastq

1note that this will probably take some time to run

Transcript quantification via pseudoalignment 275

$ kallisto quant -i hg19.ensembl -o SRR2156851

SRR2156851 1.fastq SRR2156851 2.fastq

14.3.3 Downstream analysis

With the probabilistic transcript quantification completed, we can use Bio-
conductor tools to enable us to apply the exploratory statistical analysis and
hypothesis testing tools we are familiar with in R.

There is a function called readKallisto in the SummarizedExperiment package,
which enables straightforward import of Kallisto output. With each sample
having its own directory containing the Kallisto output, we can import the
transcript count estimates into R using:

> library(SummarizedExperiment)

> seqDirs <- c("SRR2156848","SRR2156849","SRR2156850","SRR2156851")

> kset <- readKallisto(paste(seqDirs,"abundance.tsv",sep="/"),

as="matrix")

We now have a table of estimated transcript counts for each sample. We can
see how many transcripts we have for each sample:

> colSums(kset)

SRR2156848 SRR2156849 SRR2156850 SRR2156851

2563611 2600800 2372309 2111474

And how many transcripts are detected in at least one sample:

> sum(rowSums(kset)>0)

[1] 94561

Before subsequent analysis, we might want to filter out those annotated tran-
scripts with no reads:

> kset.nonzero <- kset[which(rowSums(kset)>0),]

We can apply any exploratory analysis technique to this counts matrix, but we
should bear in mind that some samples may have more counts than others, and
some transcripts are more likely to be represented than others. As an example,
we will perform a principal component analysis of the transcriptomic profiles
of these samples. First, we will scale the counts by total transcript count:

> kset.scaled <- kset.nonzero/rep((colSums(kset)/1e6),

each=nrow(kset.nonzero))

276 RNA-seq

Now we compute the principal components, centering and scaling each tran-
script’s measured levels so that each feature contributes equally to the PCA:

> kset.pc <- prcomp(t(kset.nonzero[which(apply(

kset.nonzero,1,sd)>0),]),scale.=T)

Now we can use the first two principal components as a co-ordinate system
for visualizing the summarized transcriptomic profiles of each sample:

> plot(x=kset.pc$x[,1],y=kset.pc$x[,2],

xlab="PC1",ylab="PC2",type="n")

> text(x=kset.pc$x[,1],y=kset.pc$x[,2],

labels=rownames(kset.pc$x))

Here we have used the argument type="n" to create the plot with no symbols
drawn, then used the function text to plot text (the sample names) at the
corresponding co-ordinates. The result should look like the graph in Fig. 14.1,

FIGURE 14.1
Principal Component Analysis plot for transcript quantification from RNA-
seq using Kallisto.

Transcript quantification via pseudoalignment 277

making it clear that PC1 separates the two control samples (SRR2156848
and SRR2156849) from the two enhancer-targeting CRISPR-Cas9 samples
(SRR2156850 and SRR2156851). PC2 separates the two control samples from
each other, but you would find that PC3 separates the two enhancer-targeting
CRISPR samples from each other. This is at least slightly reassuring, imply-
ing that there are considerable differences between the treated and control
samples.

We can use the voom functionality within the limma package to make it
appropriate to apply the differential-expression statistical analysis that we
are already familiar with:

> library(limma)

> de.design <- cbind(intercept=1,eCas9=c(0,0,1,1))

> v <- voom(kset.nonzero,design=de.design)

> diffexp <- eBayes(lmFit(v,design=de.design))

We can inspect differentially-expressed transcripts using the topTable func-
tion. For example, finding the number of transcripts with statistically signifi-
cant differential expression (setting α = 0.05):

> nrow(topTable(diffexp,coef=2,number=nrow(kset.nonzero),p.value=0.05))

[1] 2369

Now let’s map these transcript IDs to gene symbols using biomaRt :

> library(biomaRt)

> ensembl <- useMart(host="feb2014.archive.ensembl.org",biomart=

"ENSEMBL MART ENSEMBL",dataset="hsapiens gene ensembl")

> enstLookup <- getBM(attributes=c("ensembl transcript id",

"hgnc symbol"),mart=ensembl)

> enstLookup <- enstLookup[!duplicated(enstLookup[,1]),]

> rownames(enstLookup) <- as.character(enstLookup[,1])

> de.transcripts <- topTable(diffexp,coef=2,

number=nrow(kset.nonzero),p.value=0.05)

> de.transcripts$SYMBOL <- enstLookup[rownames(de.transcripts),

"hgnc symbol"]

And we can draw a heatmap featuring those transcripts (which should result
in the plot shown in Fig. 14.2):

> library(gplots)

> heatmap(kset.nonzero[de.transcripts,],col=bluered(100))

278 RNA-seq

FIGURE 14.2
Heatmap for samples from CRISPR-Cas9 data in [4], based on transcript
quantification from RNA-seq using Kallisto.

14.4 Analysis with transcriptome assembly

If we wish to profile expression of non-reference transcripts, we will need to
map these reads to a genome so we know which reads came from which tran-
scripts. However, short reads from RNA-derived cDNAs are likely to contain
many informative reads that align to the reference genome with gaps (coincid-
ing with splice junctions). Given this, it is desirable to take a slightly different
approach to alignment compared to what we have used before. In fact, for pro-
cessing RNA-seq with a known reference genome, we can use tools built on
the Bowtie aligner we have already come across. The simpler strategy involves

Analysis with transcriptome assembly 279

using a predefined transcriptome, to give previously-defined coding regions of
the genome a new set of co-ordinates, then aligning reads to this transcrip-
tome as you would map DNA sequence reads to a genome. This section uses
programs from the Tuxedo Suite: Bowtie, TopHat and Cufflinks. There are
in fact a set of more recently-developed tools for the same tasks, but as they
operate in a very similar way, rather than giving instructions for these too I
refer you to the Nature Protocols paper describing these [5].

14.4.1 Building the transcriptome directly

TopHat is freely-available tool which aligns reads and identifies splice junc-
tions, thereby providing the basis for quantification of reads across the tran-
scripts that were seen in the library. It can be obtained directly from the Linux
shell as follows:

$ wget https://ccb.jhu.edu/software/tophat/downloads/

tophat-2.1.0.Linux x86 64.tar.gz

$ gunzip tophat-2.1.0.Linux x86 64.tar.gz

$ tar -xf tophat-2.1.0.Linux x86 64.tar

Now you should have a directory ‘tophat-2.1.0.Linux x86 64’ which will con-
tain everything you need to run TopHat2. However, in order to use TopHat
you need a Bowtie index for the genome against which you wish to align reads;
this is covered in Section 11.4.1. TopHat can be run on reads in Fastq files,
and it is a good idea to go through QC and filtering procedures beforehand,
as you would prior to analysis of any type of sequence data.

We can illustrate this analytical approach using the same RNA-seq experi-
ment as the previous section, which was obtained from the SRA in Section
14.2 of this chapter. TopHat assumes the paired-end read files for each sample
are given names that end ‘ 1’ for the ‘left’ mate-pairs and ‘ 2’ for the ‘right’
mate pairs. Say we have files ‘controlrep1 1.fq’ and ‘controlrep1 2.fq’ for the
left and right ends of paired reads from the first replicate of the control treat-
ment, and these are in the directory into which you downloaded and unpacked
the ‘tophat’ bundle. We also assume that Bowtie was installed with a human
reference genome index ‘hg19’. Then we could produce the alignments and
splice junction mappings for the sample as follows:

$ tophat-2.1.0.Linux x86 64/tophat -o ControlRep1TopHat

hg19 controlrep1 1.fq controlrep1 2.fq

The argument -o ControlRep1TopHat specifies that a new directory called
‘ControlRep1TopHat’ will be created. Without this, it defaults to putting the

2Assumes that Bowtie is already installed!

https://ccb.jhu.edu/
https://ccb.jhu.edu/

280 RNA-seq

output into a directory called ‘tophat out’ (which is not necessarily a bad
thing, but it probably makes sense to say which sample/experiment the out-
put has come from).

The output from this invokation of TopHat will include the following files:

• accepted hits.bam the aligned reads

• junctions.bed the called splice junctions listed in BED format

• insertions.bed novel insertions identified by TopHat

• deletions.bed novel deletions identified by TopHat

14.4.2 Transcript quantification

With splice junctions mapped (i.e. a reference transcriptome assembled) it
then becomes possible to quantify the number of distinct reads mapping to
different transcripts. This is not a straightforward task, as you can imagine
when there are multiple transcripts from a single gene and the vast majority
of reads are too short to represent a full transcript, most reads could have
come from multiple different potential transcripts. However, there are tools
that will carry out this task for us. Cufflinks is the tool that picks up where
TopHat left off. This can be obtained from the Linux shell as follows:

$ wget http://cole-trapnell-lab.github.io/cufflinks/assets/

downloads/

cufflinks-2.2.1.Linux x86 64.tar.gz

$ gunzip cufflinks-2.2.1.Linux x86 64.tar.gz

$ tar -xf cufflinks-2.2.1.Linux x86 64.tar

Invoking Cufflinks to run on aligned RNA-seq reads is simple. If we have
processed the Fastq files from the CRISPR experiment as described in the
previous section, we could generate transcript-level expression measurements
for the first replicate of the control as follows:

$ cufflinks-2.2.1.Linux x86 64/cufflinks ControlRep1TopHat/

accepted hits.bam

Cufflinks will generate three files of output:

• ‘transcripts.gtf’ – the definition of resolved transcripts from the input reads
and assembled transcriptome

• ‘isoforms.fpkm tracking’ – quantification of transcripts in terms of ‘frag-
ments per kilobase of transcript length per million reads of total sequencing
depth’ (FPKM)

http://cole-trapnell-lab.github.io/
http://cole-trapnell-lab.github.io/

Analysis with transcriptome assembly 281

• ‘genes.fpkm tracking’ – quantification of gene expression (total across all
isoforms) in FPKM

As each sample in an experiment processed in this way will have its own direc-
tory following transcriptome assembly and alignment, we can set up a shell
script to enter each directory in turn and run Cufflinks on the appropriate
input file. While doing this, it is probably sensible to name the individual
output files so we can remember which sample they came from. One way to
do this involves setting up a for loop to run through each directory that was
created:

$ for dir in ‘ls *TopHat‘;

$ do

$ cd $dir

$../cufflinks-2.2.1.Linux x86 64/cufflinks accepted hits.bam

$ cp transcripts.gtf ../${dir%TopHat}transcripts.gtf
$ done

This script creates a variable dir with each value of the expression inside
left-quotes '...', that inside the loop can be referred to with $dir. By using
curly brackets after the dollar-sign, the percent sign removes characters from
the end of the value: ${dir%TopHat} is therefore the value of variable dir but
without ‘TopHat’ on the end.

We will have run Cufflinks on each of our aligned read libraries from an
experiment, but these will each have their own ‘transcripts.gtf’, potentially all
unique. To compare different libraries (e.g. from different samples) with each
other, these transcript definitions need to be merged. The program Cuffmerge,
which is included as part of Cufflinks, can do this for us. Cuffmerge is very easy
to run, requiring only a text file listing the paths to the transcript definition
GTF files (and, of course, that those files exist). For the previous example,
given that we have copied all the individual GTF files into the same directory,
we could use the shell tools to create this list of paths:

$ ls *.gtf > transcriptfiles.txt

This command creates a file called transcriptfiles.txt from the result
of the ls command, which lists the files in the current directory matching the
specified pattern (anything that ends in ‘.gtf’).

So we can use this result to then run Cuffmerge an generate a final tran-
script definition file:

$ cufflinks-2.2.1.Linux x86 64/cuffmerge transcriptfiles.txt

The result of this will be a merged transcript definition file called ‘merged.gtf’.

282 RNA-seq

Once transcript coverage has been quantified, it may be helpful to account
for systematic differences between samples that could arise due to technical
reasons. Bias due to sequencing depth will mostly be removed by the FPKM
representation of expression level, which is the output from Cufflinks. Pre-
viously described batch-effect normalization approaches (Chapter 8 Section
11) may be effective, especially with randomized RNAseq library prep and
sequencing batches. However, there is a tool specifically designed for normal-
izing the output of Cufflinks from multiple different samples, called Cuffnorm.
Cuffnorm requires a transcript definition GTF file, such as the output from
Cufflinks, and a set of aligned sequence SAM/BAM files, which come from
TopHat. Following on from our example, we can use the merged transcript
definition file and the list of all BAM files:

$ cuffnorm merged.gtf controlrep1 aln.bam controlrep2 aln.bam

treatmentrep1 aln.bam treatmentrep2 aln.bam

14.4.3 Downstream analysis

The output of Cuffnorm will be a collection of files containing tables of tran-
script/gene quantifications and annotations. These normalized counts can now
be compared together, enabling a vast array of analytical techniques to be
applied through environments such as R. As an example, we could try working
through the isoform-level quantification data from the CRISPR experiment.
To work with this, we would need to read in the count (or fpkm) table, per-
form analysis (e.g. differential-expression analysis through limma) and then
annotate the results by reading in the annotation table and genomic feature
data (e.g. through biomaRt) and mapping these to the genes:

> rnaseq.fpkm <- as.matrix(read.table("isoforms.fpkm table",

+ sep="\t",head=TRUE,row.names=1))

Here we have read in the normalized FPKM transcript quantifications and
used the table to create a matrix called rnaseq.fpkm. We may want to double-
check which samples correspond to the column headers (q1 0,q2 0,q3 0 and
q4 0), which we can do by inspecting the file ‘samples.table’:

> sample.lookup <- read.table("samples.table",sep="\t",head=TRUE)

We can see from this annotation table that the first two columns of the
rnaseq.fpkm matrix correspond to the control samples, and the second two
columns of the matrix correspond to the CRISPR-treated samples. With this
in mind, we can load the limma package to find differentially-expressed tran-
scripts, constructing a design matrix to represent the treatment effect and
using this to fit linear models for each transcript (just as with normalized
gene expression microarray data, as in Chapter 8 of these tutorials):

Analysis with transcriptome assembly 283

> library(limma)

> design <- cbind(intercept=1,crispr=c(0,0,1,1))

This command creates a design matrix with one term for the intercept (where
all samples have value 1) and one term for the treatment (where control sam-
ples have value 0 and treated samples have value 1).

> crispr.fit <- lmFit(rnaseq.fpkm,design=design)

> crispr.fit <- eBayes(crispr.fit)

These commands first fit a linear model to the table of transcript counts,
using the design matrix created above, then apply empirical Bayes modera-
tion of t-statistics as described in [3]. We can inspect the most significantly
differentially expressed transcripts using the topTable function3:

> topTable(crispr.fit,coef=2)

We can see that the multiple testing correction drastically reduces the appar-
ent statistical significance of differential expression, and this is likely because
at transcript isoform level there are a large number of individual tests being
carried out with limited statistical power due to the small number of repli-
cates. However, we could identify the set of isoforms with adjusted p-values
less than 0.1 (meaning an estimated 1 in 10 of the resulting isoform list could
pass these differential expression criteria purely by chance):

> limma.result <- topTable(crispr.fit,coef=2,number=nrow(rnaseq.fpkm),

+ p.value=0.1)

The resulting table has statistics for 37 differentially-expressed transcript iso-
forms, but these are annotated only by identifiers which don’t mean anything
outside the context of this analysis. To make sense of the results, there is
annotation information provided by Cuffnorm, which we can load into R and
map genomic co-ordinates to genes:

> transcript.annot <- read.table("isoforms.attr table",

+ sep="\t",head=TRUE,row.names=1)
> diffexp.coords <- as.character(transcript.annot[rownames

(limma.result), + "locus"])

This command creates a character vector diffexp.coords containing the
genomic co-ordinates for the differentially-expressed transcripts. Mapping
these to genes will be similar to the approach taken to map ChIP-seq peaks
(in Chapter 11):

3For details of the output of this function, see Chapter 4.

284 RNA-seq

> library(biomaRt)

> ensembl <- useMart(host="feb2014.archive.ensembl.org",biomart=

+ "ENSEMBL MART ENSEMBL",dataset="hsapiens gene ensembl")

> geneInfo <- getBM(attributes=c("hgnc symbol",

+ "chromosome name","start position","end position","strand")

+ ,mart=ensembl)

> geneInfo <- geneInfo[which(!geneInfo$hgnc symbol==""),]

> geneInfo <- geneInfo[!duplicated(geneInfo$hgnc symbol),]

> diffexp.genes <- rep(NA,length(diffexp.coords))

> for(i in 1:length(diffexp.genes)){
+ this.chr <- gsub(strsplit(diffexp.coords[i],split=":")[[1]][1],

pattern="chr",replace="")

+ this.pos <- strsplit(diffexp.coords[i],split=":")[[1]][2]

+ this.start <- as.numeric(strsplit(this.pos,split="-")[[1]][1])

+ this.end <- as.numeric(strsplit(this.pos,split="-")[[1]][2])

+ matching.genes <- which(geneInfo$chromosome name==this.chr &

geneInfo$start position<=this.end & geneInfo$end position>=this.start)

+ if(length(matching.genes)>0) diffexp.genes[i] <- paste(geneInfo$

hgnc symbol[matching.genes],collapse=";")}

The loop here goes through each of the co-ordinates (elements of the vector
diffexp.coords) in turn, finding the chromosome (by taking only the part
before the ‘:’ then stripping out the characters ‘chr’), finding the start and end
positions (by taking only the part after the ‘:’, then only the part before the
‘-’ for start co-ordinate and only the part after the ‘-’ for the end co-ordinate),
and then finding which rows of the table geneInfo match the corresponding
co-ordinates. If there are any matches, the final command in this loop will
retrieve the gene symbols for the matches and stick them together into a sin-
gle character string (by using the function paste with argument collapse),
and put these into the corresponding element of the vector diffexp.genes.
It is probably most helpful if we add this information, and the genomic co-
ordinates, to the results table from the limma analysis:

> limma.result$locus <- diffexp.coords

> limma.result$symbol <- diffexp.genes

As a final step, we may wish to write the results out to file:
> write.table(limma.result,file="GSE72001 DiffExpTranscripts.txt",

+ sep="\t",quote=FALSE,col.names=NA)

Now we can see which isoforms of which genes were found to be differentially
expressed between these samples. A number of these look rather interesting
in the context of cancer, which hopefully illustrates how the power to analyze
RNA-seq data can be useful!

Summary 285

14.5 Summary

Two examples of processing RNA-seq data were illustrated in this chapter: one
involving pseudoalignment for direct read counting against a reference tran-
scriptome; the other involved transcriptome assembly to identify expressed
RNA isoforms and then quantify expression through counting mapped reads.
Which of these approaches you follow will depend on your priorities, although
it is probably apparent that the pseudoalignment-based quantification is sim-
pler and quicker, and for many applications will be sufficient.

Bibliography

[1] Z Wang & M Gerstein & M Snyder “RNA-Seq: a revolutionary tool for
transcriptomics,” Nature Reviews Genetics 10(1):57-63 (2009).

[2] N Bray et al “Near-optimal probabilistic RNA-seq quantification,” Nature
Biotechnology 34:525-527 (2016).

[3] G Smyth “Linear models and empirical bayes methods for assessing dif-
ferential expression in microarray experiments,” Statistical Applications in
Genetics and Molecular Biology 3(1):1-25 (2004).

[4] X Zhang et al “Identification of focally amplified lineage-specific super-
enhancers in human epithelial cancers,” Nature Genetics 48(2):176-182
(2016).

[5] M Pertea et al “Transcript-level expression analysis of RNA-seq experi-
ments with HISAT, StringTie and Ballgown,” Nature Protocols 11:1650-
1667 (2016).

http://taylorandfrancis.com

15

Bisulphite Sequencing

15.1 Introduction

Bisulphite sequencing, or the application of high-throughput sequencing tech-
nologies to bisulphite-converted DNA, has enabled new levels of resolution
to be reached in the genome-wide profiling of cytosine (DNA) methylation.
This predominantly comes in two forms: whole-genome bisulphite sequenc-
ing (WGBS) and reduced-representation bisulphite sequencing (RRBS). The
idea behind WGBS is pretty straightforward in that sodium bisulphite con-
verts unmethylated cytosines to uracils, so the proportion of methylated vs
unmethylated DNA fragments covering any given position in the genome can
be identified through counting the results of sequencing. The practicalities of
WGBS mean that working with the data is less simple: it requires a LOT
of sequence reads for enough resolution to call relatively small differences in
methylation levels across populations of cells (consider that to call methy-
lation in increments of 1% one would need 100 reads mapping to the same
cytosine, 4 reads mapping to the same cytosine would give only increments of
25% at a time). If you are starting with approximately 75 GB of fastq data for
a single sample, in the course of analysis (after qc, alignment and methylation
calling) you might expect to have comfortably more than 100 GB per sample.
And if you consider family-wise error rate across 40 million CpG sites in the
human genome, you most likely need a large number of samples for enough
power to detect significant differential methylation at individual loci! Given
the computational requirements arising from the scale of the data, working
with these results most likely requires the support of specialist facilities. Of
course, it is also possible to use WGBS to measure the average methylation
across genomic regions (such as enhancers), rather than individual CpG sites,
but even this will need quite a lot of sequencing depth.

RRBS provides a means to target sequencing to DNA fragments that are
enriched for CpG sites whilst remaining distributed across the whole genome
[1]. The dramatic reduction in required sequencing depth makes this approach
more feasible for analysis of datasets including more samples (or more biolog-
ical replicates), but with the drawback of no longer covering all CpG sites in
the genome.

287

288 Bisulphite Sequencing

Owing to the fact that the base-changes induced by bisulphite treatment are
precisely what this application of sequencing is intended to measure, it makes
sense to take a bespoke approach to alignment of the reads: so that we don’t
lose reads to ‘mismatches’ but recognize where these arise from bisulphite
conversion of unmethylated cytosines. Preliminary quality control should be
carried out as with any other high-throughput sequencing data (see Chapter
11), with an additional warning that adapter trimming is especially important
for RRBS libraries as the size selection means that individual read sequencing
will often over-run the ends of DNA fragments and into the adapters.

This chapter will utilize an example dataset that will be relatively conve-
nient for demonstrating common WGBS/RRBS analysis tasks, obtained from
the NCBI’s Sequence Read Archive (SRA), with accession SRP058260:
http://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP058260.

This dataset contains RRBS reads from the MCF7 breast cancer cell line
treated with paclitaxel (SRR2017566) and untreated control (SRR2017565).
As we have seen in previous chapters, retrieving data from SRA is a little more
complex than downloading microarray data from GEO, owing to its potential
size. In fact the data retrieval is so specific it requires use of a bespoke toolkit
produced by the SRA (called SRA Toolkit), which can be obtained from:
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software. This toolkit
contains a program called prefetch which retrieves data from the SRA (you
only need to specify an accession), and a program called fastq-dump which
extracts usable fastq files from the ‘.sra’ file. Assuming that we have installed
the appropriate SRA Toolkit into a directory called ‘sra-tools’ (the precise
name will depend on the operating system you are working from), we can
obtain the fastq files for SRR2017565 and SRR2017566 from the bash shell as
follows:

$ sra-tools/prefetch SRR2017565

$ sra-tools/fastq-dump --split-3 /ncbi/public/sra/SRR2017565.sra

Here we have to call the fastq-dump program with the argument --split-3

to give separate fastq files for the two paired ends of each read, and
I have assumed that the download destination for the prefetch tool is
‘ /ncbi/public/sra’ (this is where it is by default).

$ sra-tools/prefetch SRR2017566

$ sra-tools/fastq-dump --split-3 /ncbi/public/sra/SRR2017566.sra

Now you can inspect the quality using FastQC, remove low-quality reads using
Trimmomatic or in R, and remove adapater sequences with Trimmomatic, all
as described in Chapter 9 of these tutorials.

http://www.ncbi.nlm.nih.gov/
http://trace.ncbi.nlm.nih.gov/

Alignment and methylation calls 289

15.2 Alignment and methylation calls

Assuming that we are starting with appropriately filtered fastq files, the
first step of analysis specific to bisulphite sequencing data is the bisulphite-
aware alignment. There are a few tools which can do this, including Bis-
mark [2] and BSmooth [3]. I will provide examples using Bismark, purely
for the reason that I am more familiar with this pipeline and therefore
I know it works well. The Bismark program is available at http://www
.bioinformatics.babraham.ac.uk/projects/bismark/bismark v0.14.5.tar.gz.

The Bismark pipeline performs alignment to a bisulphite-converted reference
genome using Bowtie, then extracts the methylation calls for cytosines in dif-
ferent genomic contexts (CpG, CHG or CHH). First, this process requires
a bisulphite-converted reference genome. Let’s say we have a folder contain-
ing all the hg19 (GRCh37) sequences in fasta format, called ‘hg19’, and we
have installed Bismark into a directory called ‘bismark v0.14.5’ so that both
‘hg19’ and ‘bismark v0.14.5’ are subdirectories of our current working direc-
tory. Then we can generate a bisulphite-converted reference genome as follows:

$ bismark v0.14.5/bismark genome preparation hg19/

This should result in a subdirectory called ‘Bisulfite Genome’ being created
with ‘hg19’, which can now be used for alignment of bisulphite sequencing
reads from human samples.

The next stage is to run the main part of the Bismark pipeline. Following
on from the example retrieved from SRA in the previous section, let’s assume
that we have fastq files ‘SRR2017565 1.fastq’ and ‘SRR2017565 2.fastq’ (cor-
responding to the left and right mate pairs of reads from the untreated control
MCF7 RRBS library) and ‘SRR2017566 1.fastq’ and ‘SRR2017566 2.fastq’
(corresponding to the left and right mate pairs of reads from the paclitaxel-
treated MCF7 RRBS library) in our current working directory in a LINUX
filesystem. We can generate methylation-level aligned sequences with Bismark
as follows:

$ bismark v0.13.0/bismark ./hg19 -1 SRR2017565 1.fastq -2

SRR2017565 2.fastq

This uses default alignment options in Bowtie; for more detail on how these
can be altered see the Bismark User Guide1. The output of the bismark pro-
gram is a report (the file ending ‘report.txt’) and a SAM file containing aligned
reads along with methylation calls.

1http://www.bioinformatics.babraham.ac.uk/projects/bismark/Bismark User Guide.pdf

http://www.bioinformatics.babraham.ac.uk/
http://www.bioinformatics.babraham.ac.uk/
http://www.bioinformatics.babraham.ac.uk/

290 Bisulphite Sequencing

The SAM format for methylation calls is not particularly easy to use and con-
tains a lot of additional information, so it is best to extract the methylation
calls to a more readable format. Bismark contains a program specifically for
this purpose, so if we assume that the previous command had output a SAM
file called ‘SRR2017565.fastq bismark.sam’ in our current working directory,
we could extract the methylation calls with:

$ bismark v0.14.5/bismark methylation extractor -p SRR2017565.

fastq bismark.sam

In this command the argument -p specifies that the SAM file came from
a paired-end library. If it had been derived from single-end reads then you
would need to specify -s instead. The result from running this command
will be three text files, the one we are most likely to be most interested in
is ‘CpG context SRR2017565.fastq bismark.txt’ as this contains the methyla-
tion calls for the CpG sites (and methylation predominantly occurs at CpG
sites). These can be either used directly for downstream analysis (e.g. through
R), or converted to BedGraph format using the bismark2bedGraph tool:

$ bismark v0.14.5/bismark2bedGraph CpG context SRR2017565.

fastq bismark.txt

-o SRR2017565 CpGmethylation.bed

15.3 Downstream analysis

The BedGraph format is a tabular file with columns specifying chromosome,
start position, end position and methylation call (as a percentage) for each
CpG site covered by the sequence library. This can be loaded directly into R:

> SRR2017565.bed <- read.table("SRR2017565 CpGmethylation.bed",

+ sep="\t",head=F,skip=1)

With the genomic co-ordinates and methylation calls, it is possible to go
straight to visualizing the methylation levels across a given genomic region
of interest. For example, if we were interested in the methylation across the
gene ESR1, we could find the co-ordinates in the hg19 genome2, which are
chr6:152,128,454-152,424,408. Now, let’s say we wish to start looking at the
methylation 2 kb upstream of this, so we want chr6 152,126,454 to 152,424,408.
We can find the corresponding rows of the SRR2017565.bed data frame by

2For example, you can find any gene’s co-ordinates by entering the gene into the search
box in the appropriate UCSC genome browser.

Downstream analysis 291

searching for all values where the start occurs before the end co-ordinate of
interest and the end occurs after the start co-ordinate of interest:

> ESR1.sites <- which(SRR2017565.bed[,1]=="chr6" & SRR2017565.bed[,2]

+ <152424408 & SRR2017565.bed[,3]>152126454)

We could plot the values for these sites:

> plot(x=SRR2017565.bed[ESR1.sites,2],y=SRR2017565.bed[ESR1.sites,4])

And add a dashed vertical line to indicate the location of the TSS:

> abline(v=152128454,lty=2)

You should see the plot as in Fig. 15.1. It’s not particularly easy to see any
clear pattern in the values though, because there are so many sites with mea-
surements and the variation from position to position is quite high. It may
help our interpretation if we add a smoothed line fit through the points, rep-
resenting a sort of moving average within the region. This can be done using
the lowess function in R, or by using functionality from the bsseq package
which implements methods from BSmooth [3].

FIGURE 15.1
Methylation calls spanning ESR1 gene, plus 2 kb upstream.

292 Bisulphite Sequencing

If we use the lowess function to create a smoothed line, we can call the func-
tion using the same arguments as the plot command above:

> esr1.smooth <- lowess(x=SRR2017565.bed[ESR1.sites,2],

+ y=SRR2017565.bed[ESR1.sites,4])

And then we can recreate the plot using the co-ordinates from the smoothed
line:

> plot(x=esr1.smooth$x,y=esr1.smooth$y,type="l")

Here we specify that we want to plot a line, not points. We can add the
TSS indicator too:

> abline(v=152128454,lty=2)

Now the result should appear as in Fig. 15.2, which seems a lot more infor-
mative. However, note with caution that the appearance of the line depends
a lot on the ‘span’ of the smoother (how wide a region the moving average is

FIGURE 15.2
Smoothed methylation calls spanning ESR1 gene, plus 2kb upstream

Summary 293

calculated over). Try re-fititng the lowess smoother to the points, but varying
the span by specifying different values for the argument f in the lowess func-
tion. For example, if we wanted to use 10 points in each window, we specify
the proportion of points we want to influence the smoother at each position
to be 10 divided by the total number of points:

> esr1.smooth10 <- lowess(x=SRR2017565.bed[ESR1.sites,2],

+ y=SRR2017565.bed[ESR1.sites,4],f=10/length(ESR1.sites))

The bsseq package can be installed directly into R through Bioconductor. This
package facilitates analysis involving smoothed DNA methylation levels[3].
As we have already performed smoothed methylation calling, I will leave the
interested reader to visit the package’s documentation at:
https://www.bioconductor.org/packages/release/bioc/html/bsseq.html.

15.4 Summary

In this chapter we have seen how to use Bismark to process Bisulphite-
sequencing libraries from Fastq files through to smoothed per-base DNA
methylation percentage calls, and mapping these to features of interest. Hope-
fully by this point in the book the reader feels sufficiently comfortable with
scripting in R to create (or read in from file) a table of regions of interest
(such as the promoter regions defined in Section 13.5), find overlapping CpG
sites such as for the ESR1 gene example in this chapter, and compute average
methylation levels. From that point, if multiple samples from different condi-
tions are available, downstream analysis can proceed as with any other other
numeric data (especially the DNA methylation data from Chapter 9).

Bibliography

[1] A Meissner et al “Reduced representation bisulfite sequencing for compar-
ative high-resolution DNA methylation analysis,” Nucleic Acids Research
33(18):5868-5877 (2005).

[2] F Krueger & SR Andrews “Bismark: a flexible aligner and methyla-
tion caller for Bisulfite-Seq applications,” Bioinformatics 27(11):1571-1572
(2011).

[3] K Hansen & B Langmead & RA Irizarry “BSmooth: from whole genome
bisulfite sequencing reads to differentially methylated regions,” Genome
Biology 13:R83 (2012).

https://www.bioconductor.org/

http://taylorandfrancis.com

16

Final Notes

The objectives of this book are to help the reader develop an understanding
of computational analysis methods that are useful for biological datasets, an
ability to plan a set of analytical steps to answer specific biological questions
using appropriate data, and the experience of enacting those plans. This will
not come without work, but hopefully this book gives you a good place to start.

This book is certainly not intended to be exhaustive. There are many advanced
topics that you might be interested in if you are comfortable with the material
presented in this book, for example:

• penalised multiple regression

• distance-based multivariate statistics

• non-linear machine learning

• image processing and analysis

• spectrometry data processing

• single-cell sequencing experiments

There are also new platforms being developed for molecular biology research
all the time. This book is deliberately focused on genomics, epigenomics and
transcriptomics, because in my experience they are the areas with more stan-
dardized processing pipelines and downstream analytical procedures. But I
would hope that the chapters on R, statistical methodology and generic data
analysis are transferrable to many areas of molecular biology research, and in
fact far beyond biological research.

A final word of encouragement: it’s unlikely to be easy, but keep at it as
improving computational data analysis skills opens so many doors!

295

http://taylorandfrancis.com

Index

ATAC-seq, 270

bash, see UNIX shell
Bioconductor, 73, 146, 204, 226
Biomart, 265
biomaRt, 218
box plot, 93
boxplot, 26, 55, 58, 154, 200, 227

ChIP-seq, 259
peak calling, 263
peak annotation, 265

chromatin immunoprecipitation,
see ChIP

clustering, 65, 98
distance metric, 98, 124
hierarchical clustering, 66, 98,

169, 197
Copy Number Variation, 211
correlation, 60, 66, 95, 142, 165, 259
CRAN, 6

data frame, 14, 89
data types, 10
dendrogram, see hierarchical

clustering
differential expression, 158, 277, 282
distance metric, 65

Euclidean distance, 65
DNA methylation, 189, 287

enrichment analysis, 188

Fastq, 224
for loop, 16, 63, 136, 168, 184, 215,

251
functional enrichment, see

enrichment analysis

Gene Expression Omnibus, 197, 235,
272

GEO, see Gene Expression Omnibus
GSEA, see enrichment analysis
GWAS, 203

heatmap, 66, 101, 125, 130, 197
hierarchical clustering, 124
high-throughput sequencing, 54,

224
alignment, 231, 278, 289
filtering reads, 228
quality control, 225

hypothesis testing, 47, 63, 71
Chi-squared test, 208
multiple hypothesis testing,

76, 78, 116, 120, 161,
210

non-parametric, 64

indel, 244

linear algebra, see matrix
linear model, 69, 81

limma, 72, 103, 118, 158, 199,
269, 277, 282

linear models, 133, 142
limma, 128

Linux, see UNIX

MA plot, 151
matrix, 52, 69
microarray, 54

DNA methylation microarray,
190

gene expression microarray, 55,
66, 145

SNP array, 203

297

298 Index

normalization, 54, 155, 193, 204, 211
batch effect, 59
quantile normalization, 59
RMA, 55
z-score, 58, 91

null hypothesis, see hypothesis
testing

over-representation, see enrichment
analysis

pathways, 110, 113
permutation testing, see resampling
principal component analysis, 82, 275
probability distribution, 40, 45
pseudoalignment, 273

random variable, 44, 48
read counting, 273
reference genome, 231, 239
resampling, 86
RNA-seq, 271
RPPA, see Reverse Phase

Proteomics Array
RStudio, 6

scatter plot, 24, 62, 92, 151, 164
SCP, 35
segmentation, 211, 213, 216
Single Nucleotide Polymorphism,

see SNP
Single Nucleotide Variant, see SNV
SRA, see Sequence Read Archive
statistical inference, see hypothesis

testing
Structural Variant, see SV
survival analysis, 79, 134, 175, 252

Cox proportional hazards
regression, 81, 184

Kaplan-Meier, 79, 178

t-test, 40, 76, 104
TCGA, see The Cancer Genome

Atlas

UNIX, 31, 223
UNIX shell, 32
unsupervised learning, 65

variant annotation, 243
variant calling, 239

	Cover������������
	Half Title�����������������
	Series Page������������������
	Title Page�����������������
	Copyright Page���������������������
	Contents���������������
	Acknowledgements�����������������������
	1. Introduction����������������������
	1.1 Why informatics is important for biologists��
	1.2 How to use this book�������������������������������

	2. Introduction to R���������������������������
	2.1 Obtaining R����������������������
	2.1.1 Downloading R��������������������������
	2.1.2 Installing R�������������������������

	2.2 R console��������������������
	2.2.1 Starting the R console�����������������������������������

	2.3 The R workspace��������������������������
	2.3.1 Creating/deleting objects��������������������������������������
	2.3.2 The working directory����������������������������������

	2.4 Data handling������������������������
	2.4.1 Basic data types�����������������������������
	2.4.2 Vectors��������������������
	2.4.3 Arrays�������������������
	2.4.4 Lists������������������
	2.4.5 Data frames������������������������
	2.4.6 Data input/output������������������������������

	2.5 More advanced concepts: Scripts and functions��
	2.5.1 Simple scripts���������������������������
	2.5.2 Functions����������������������
	2.5.3 Using `apply'��������������������������
	2.5.3.1 apply��������������������
	2.5.3.2 sapply���������������������
	2.5.3.3 lapply���������������������
	2.5.3.4 mapply���������������������

	2.6 Plots����������������
	2.6.1 Simple scatterplot�������������������������������
	2.6.2 Arguments of plot()
	2.6.3 Multiple plots on one graph��
	2.6.4 Scatterplots of multiple variables���
	2.6.5 Box plots����������������������
	2.6.6 Saving images to file

	2.7 More advanced graphics with ggplot2
	2.8 Using R help�����������������������

	3. An Introduction to LINUX for Biological Research��
	3.1 UNIX���������������
	3.2 Linux survival guide�������������������������������
	3.3 Useful dependencies and programs���

	4. Statistical Methods for Data Analysis���
	4.1 What are statistical methods, and why do we use them in biological research?���
	4.1.1 A worked example�����������������������������
	4.1.2 A brief summary����������������������������

	4.2 What do I need to understand statistics?���
	4.2.1 Probability������������������������
	4.2.1.1 Random variables�������������������������������
	4.2.1.2 Probability distributions��
	4.2.1.3 Hypothesis testing���������������������������������

	4.2.2 Linear algebra���������������������������
	4.2.3 Summary��������������������

	4.3 Normalization: Removing technical variation��
	4.3.1 Centering and scaling����������������������������������
	4.3.2 An illustrative example������������������������������������
	4.3.3 Quantile normalization�����������������������������������
	4.3.4 Batch effects

	4.4 Correlation����������������������
	4.4.1 Pearson correlation coefficient
	4.4.2 Spearman's rank correlation��
	4.4.3 Examples���������������������

	4.5 Clustering���������������������
	4.5.1 Clustering illustration using R��

	4.6 Linear regression models�����������������������������������
	4.6.1 Limma������������������
	4.6.1.1 Installing limma�������������������������������
	4.6.1.2 Categorical explanatory variables��
	4.6.1.3 Continuous explanatory variables���

	4.7 Multiple hypothesis testing��������������������������������������
	4.8 Survival analysis����������������������������
	4.8.1 Kaplan-Meier plots�������������������������������
	4.8.2 Cox proportional hazards regression models���

	4.9 Projection methods�����������������������������
	4.9.1 PCA����������������
	4.9.2 PLS����������������

	4.10 Resampling: Permutation tests and the bootstrap���
	4.11 Stability and robustness������������������������������������
	4.12 Summary�������������������

	5. Analyzing Generic Tabular Numeric Datasets in R���
	5.1 Introduction�����������������������
	5.2 Loading data into R������������������������������
	5.3 Data visualisation�����������������������������
	5.3.1 Scatter plots��������������������������
	5.3.2 Box plots����������������������
	5.3.3 Bar charts�����������������������

	5.4 Correlation and clustering�������������������������������������
	5.4.1 Correlation������������������������
	5.4.2 Clustering�����������������������
	5.4.3 Heatmaps���������������������

	5.5 Statistical analysis using linear models���
	5.5.1 Comparison of two groups�������������������������������������
	5.5.2 Alternative models�������������������������������

	5.6 Summary������������������

	6. Functional Enrichment Analysis��
	6.1 Introduction�����������������������
	6.2 Loading gene sets into R�����������������������������������
	6.3 Over-representation������������������������������
	6.3.1 Online tools�������������������������
	6.3.2 Testing gene sets in R�����������������������������������

	6.4 Systematic enrichment��������������������������������
	6.4.1 Online tools�������������������������
	6.4.2 Testing gene sets in R�����������������������������������

	6.5 Summary������������������

	7. Integrating Multiple Datasets in R��
	7.1 Introduction�����������������������
	7.2 Data import����������������������
	7.3 Exploratory data analysis������������������������������������
	7.4 Integrating multiple datasets��
	7.4.1 Survival analysis������������������������������

	7.5 Multiple molecular endpoints���������������������������������������
	7.6 Summary������������������

	8. Analyzing Microarray Data in R��
	8.1 Bioconductor�����������������������
	8.2 Accessing microarray data from GEO���
	8.3 Single-channel array analysis��
	8.4 Loading data�����������������������
	8.5 Data visualisation�����������������������������
	8.5.1 Image plots������������������������
	8.5.2 MA plots���������������������
	8.5.3 Scatterplots�������������������������
	8.5.4 Box plots����������������������

	8.6 Normalizing data���������������������������
	8.7 Differential expression (linear models)
	8.7.1 Design matrix��������������������������
	8.7.2 Fitting linear models����������������������������������
	8.7.3 Making use of the results��������������������������������������
	8.7.4 Postscript: Assumptions������������������������������������

	8.8 Clustering and correlation�������������������������������������
	8.8.1 Expression profiles
	8.8.2 Correlation������������������������

	8.9 Clustering���������������������
	8.9.1 Filtering����������������������

	8.10 Survival analysis�����������������������������
	8.10.1 Kaplan-Meier plots��������������������������������
	8.10.2 Cox proportional hazards regression���

	8.11 Footnote: Correlation to explore associated functions���

	9. Analyzing DNA Methylation Microarray Data in R��
	9.1 Introduction�����������������������
	9.2 Importing raw data�����������������������������
	9.3 Quality control��������������������������
	9.4 Normalization and estimating methylation level���
	9.5 Analyzing beta values��������������������������������
	9.6 Using previously preprocessed data���
	9.7 Further analyses using minfi

	10. DNA Analysis with Microarrays��
	10.1 Introduction������������������������
	10.2 Genotyping����������������������
	10.2.1 Normalization���������������������������
	10.2.2 Genotype calling������������������������������
	10.2.3 Downstream analysis: Genome-wide association tests��

	10.3 Copy number analysis��������������������������������
	10.3.1 Normalization���������������������������
	10.3.2 Copy number estimation������������������������������������
	10.3.3 Segmentation��������������������������
	10.3.3.1 Hidden Markov model�����������������������������������
	10.3.3.2 Circular binary segmentation��

	10.3.4 Downstream analysis���������������������������������
	10.3.4.1 Mapping CNA data to genes���
	10.3.4.2 Finding frequently-mutated genes��

	10.4 Summary�������������������

	11. Working with Sequencing Data���������������������������������������
	11.1 Introduction������������������������
	11.2 Sequence data analysis tasks��
	11.3 Quality control���������������������������
	11.3.1 Base call quality filtering
	11.3.2 Adapter trimming������������������������������

	11.4 Alignment���������������������
	11.4.1 Bowtie��������������������
	11.4.2 BWA�����������������
	11.4.3 Post-alignment filtering
	11.4.4 Removing duplicate reads��������������������������������������

	11.5 Obtaining sequencing data from the SRA��

	12. Genomic Sequence Profiling
	12.1 Introduction������������������������
	12.2 SNV: Single nucleotide variants���
	12.3 Variant filtering and annotation
	12.4 Indels: Short insertions and deletions��
	12.5 SV: Structural variants�����������������������������������
	12.6 Making use of variant calls���������������������������������������
	12.7 Summary�������������������

	13. ChIP-seq�������������������
	13.1 Introduction������������������������
	13.2 Cross-correlation�����������������������������
	13.3 Filtering blacklisted reads���������������������������������������
	13.4 Peak calling������������������������
	13.5 Peak annotation���������������������������
	13.6 Quantitative comparisons of ChIP-seq libraries��
	13.7 Summary�������������������

	14. RNA-seq������������������
	14.1 Introduction������������������������
	14.2 Obtaining RNA-seq data from GEO���
	14.3 Transcript quantification via pseudoalignment
	14.3.1 Building a transcript index���
	14.3.2 Quantifying transcripts using reads���
	14.3.3 Downstream analysis���������������������������������

	14.4 Analysis with transcriptome assembly��
	14.4.1 Building the transcriptome directly���
	14.4.2 Transcript quantification
	14.4.3 Downstream analysis���������������������������������

	14.5 Summary�������������������

	15. Bisulphite Sequencing��������������������������������
	15.1 Introduction������������������������
	15.2 Alignment and methylation calls���
	15.3 Downstream analysis�������������������������������
	15.4 Summary�������������������

	16. Final Notes����������������������
	Index������������

