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Preface

Digital communication has found an increasing interest in the past 70 years starting
with the telephone network on copper wires, the development of the optical trans-
mission, and the emerging Internet based on wire-line and wireless transmission
technologies. Today, the trend to serve an increasing number of mobile users and
also machines with information through digital networks is unbroken.

The new book Introduction to Digital Communications is aiming at graduate
students, scientists, and engineers, who are interested in getting an introduction to
modern digital communications. The main focus is on the fundamentals of the phys-
ical layer from the perspective of the theory of linear time-invariant as well as time-
variant systems. The book draws a bow from single input single output to multiple
input multiple output systems with an emphasis on wireless transmission over time-
variant channels. The main concern lies on an accurate mathematical description,
wherein the findings and lemmas are proven in detail. Various chapters are enriched
by numerical examples and also illustrated with results from computer simulations
provided by the open platform “webdemo” of the Institute of Telecommunications
at the University of Stuttgart, http://www.inue.uni-stuttgart.de.

Organization of the Book

The book covers three main parts and a fourth part with two Appendices.

Part I

Deals with the principles of digital transmission, which are important for wire-line
as well as wireless communications. It describes the main building blocks for Single
Input Single Output (SISO) systems. The concept of quadrature amplitude modula-
tion is introduced. An important part is the design of the overall system for minimal
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intersymbol interferencewithNyquist’s first criterion. The introduction of the equiva-
lent baseband system allows the concise definition of the link between the transmitter
input and the receiver output as a “black box” without details of the modulation, the
spectral signal shaping, and the channel. For the receive signal, several detection
methods are described in detail, such as threshold decision, maximum likelihood,
and maximum a posterior detection. Also the difference between symbol-by-symbol
and sequence detection is addressed and themaximum likelihood sequence estimator
is described as an example. With an adequate model of the noise at the receiver, the
symbol error probability is calculated.

The following chapters in Part I are devoted to the wireless transmission. The
main difference is the wireless channel, which changes its characteristic with time.
Therefore, the theory of linear time-variant systems is introduced to describe the
building blocks of the system with time-variant impulse responses and delay spread
functions. As not all students and engineers are frequently involved with this topic,
the book contains an own Part II devoted to the theory of linear time-variant systems.
Selected points are briefly reported for Part I, hence the reader is not required to
study Part II beforehand. However, for a deeper understanding, the reader should get
involved in Part II. The introduction of the equivalent baseband system, which is then
time-variant, follows. With this model the increase of the output signal bandwidth at
the receiver compared to the transmit signal is shown as an example. The multipath
channelmodel is described in detail.As thewireless transmission link ismultifaceted,
a statistical characterization of the channel is helpful. To this end, various channel
models are reviewed, such as the Rayleigh and Nakagami-m fading as well as the
model according to Clarke and Jakes.

Part II

Is devoted to the theory of linear time-variant systems. In many cases, this topic is
just touched upon during the education of graduate students in Electrical Engineering
and Computer Science. Therefore, this dedicated Part II is provided. The input-
output relation given by the time-variant convolution is addressed in detail and the
mathematical properties are derived. We outline the relation with the well-known
(time-invariant) convolution used by engineers inmost applications. The time-variant
impulse response and the delay spread function turn out to be the proper system
descriptions in the time domain. Also the system functions in the frequency domain
are presented, such as the time-variant transfer function and the Doppler spread
function. For the statistical description of randomly changing time-variant systems
autocorrelation functions as well as power spectral densities of the system functions
are studied.
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Part III

Deals with Multiple Input Multiple Output (MIMO) systems. First, the input-output
relation is derived using matrix notation. We discuss the principle MIMO channel
models, such as the time-variant finite impulse response and the i.i.d.Gaussianmodel.
Furthermore, spatial correlations at the transmitter and the receiver are incorporated
leading to the Kronecker model. Linear and nonlinear MIMO receivers are investi-
gated in detail, such as the zero-forcing, the minimum mean squared error, and the
maximum likelihood receiver. An important question is how many bits per channel
use can be transmitted over MIMO channels. This issue is studied together with the
maximization of the channel capacity. Next, the principles of spatial prefiltering and
space-time encoding are investigated to improve transmission quality and to increase
the data rate. In the last chapter, we leave the single-user transmission and consider
the MIMO principle for a multitude of users in a network. Various multi-user MIMO
schemes for the uplink and downlink are discussed, which can reduce the interference
when the users transmit their signals in the same time slots and frequency bands.

Appendix

In Appendix A a summary on the characterization of random variables and stochastic
processes is given.

Appendix B provides an overview on the most important lemmas of linear algebra
required for the understanding of some topics of this book.

Second Edition of the Book

In Part I of the Second Edition, a new chapter deals with block-wise digital signal
transmission over channels with finite impulse response (FIR) and the corresponding
matrix descriptions are derived. As an alternative to Nyquist impulses for reduc-
tion of intersymbol interference, block-wise transmission with and without cyclic
prefixes is studied. An introduction of the Discrete Fourier Transform (DFT) enables
equalization in the DFT domain. On top of that the Second Edition is enhanced
by a new chapter on Multicarrier Modulation and Orthogonal Frequency Division
Multiplexing (OFDM). Part II contains more examples and diagrams on time-variant
systems. In several other parts of the book an increased number of examples, tables,
graphs, and figures illustrates the material. Finally, a nomenclature list is provided
and extended by a summary of formulas, transforms, and important definitions used
throughout this book.
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Autocorrelation of
Doppler Spread Function

RGtGt (t, t′; fτ , fτ ′) = E
[
G∗

t (t, fτ )Gt(t′, fτ ′)
]

Autocorrelation of
Time-Variant Transfer
Function

RGτGτ
(ft, ft ′; τ, τ ′) = E

[
G∗

τ (ft, τ )Gτ (ft ′, τ ′)] Autocorrelation of Delay
Doppler Spread Function

Rxx(τ ) = E[X ∗(t)X (t + τ)] Autocorrelation function
of X (t)

Rxx(t, t′) = E[X ∗(t)X (t′)] Autocorrelation of input
signal of X (t)

Ryy(t, t′) = E[Y ∗(t)Y (t′)] Autocorrelation of output
signal of Y (t)

Rxy(τ ) = E[X (t + τ)Y ∗(t)] Cross-correlation
function of X (t) and Y (t)

ρ Correlation coefficient
r(k) MIMO receive signal

vector
ru Receive signal vector of

user u
RHH Covariance matrix of H

R
1
2
HH Square root matrix of

RHH

Rnn Covariance matrix of
noise vector n

Rss Covariance matrix of
signal vector s

Rsn Cross-correlation matrix
of s and n

Rtx, Rrx Transmit, receive
correlation matrix, resp.

s Instant of Dirac impulse
δ(t − s)

sinc(x) = sin(πx)
πx sinc function

sinc(fct) � 1
fc
rect( f

fc
) Fourier transform of

sinc (fct)
sj(k) Transmit symbol of

antenna j

Sgc(ft ′; τ, τ ′) �t
� Rgg(�t; τ, τ ′) Cross Power Spectral

Density of g(t, τ )
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SgD(ft, τ )
�t
� Pg(�t; τ) Doppler Power Spectrum

of g(t, τ )

SnCnC (f ) =
{ N0

2 ; f0 − fI ≤ |f | ≤ f0 + fI
0 ; else Power spectral density of

receiver noise
Sxx(f ) Power spectral density of

X (t)
Sxx(ft) Input Power Spectral

Density
Syy(ft) Output Power Spectral

Density
σ 2
x Variance of X

s(k) MIMO transmit signal
vector

ŝ Estimate of s
s̃, r̃, ñ MIMO eigenmodes
S Space-time coding matrix
t Continuous time
T Symbol interval
tr(W) Trace of matrix W
T [...] Linear transmission

operator
τ Delay variable
τν(t) Delay of channel path ν

tu Beamforming vector of
user u

T, Tu Multi-user downlink
precoding matrix

u(n) Input of FIR channel
uj(t) Output signal of transmit

antenna j
unk Sample n of channel

input vector (block) k
uT (t) Transmit signal
U

(
ej2π f /fS

)
Multicarrier transmit
spectrum

u = (
u0 u1 · · · uN−1

)T
Input signal vector of FIR
channel

u(k) = (
u0k u1k · · · uN−1,k

)T
Input signal vector
(block) k of FIR channel

u0(k) =
(
u(k)
0L

)

Input vector k with zero

padding
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upre(k) = (
u−G,k · · · u−1,k

)T
Vector k of prefix
samples

uc(k) =
(
upre(k)
u0(k)

)

Compound input vector k

u(k) = Fu(k) DFT of vector u(k)
U Left hand singular value

decomposition matrix
vec(H) Column vector stack ofH
v(n) Output of discrete-time

equivalent baseband FIR
channel

vB Bitrate (bit/s)
vS = vB

κ
Symbol rate (Baud rate,
symbol/s)

v0 speed of mobile terminal
vi(t) Receive signal of branch i
vnk Sample n of channel

output vector (block) k

v(k) = (
v0k v1k · · · vN−1+L,k

)T
Output vector k of FIR
channel

vpre(k) = (
v−G,k · · · v−1,k

)T
Prefix part of output
vector k

vc(k) =
(
vpre(k)
v(k)

)

Compound output

vector k
vN (k) = (

v0k v1k · · · vN−1,k

)T
Output vector k reduced
to N samples

‖v‖2 = vHv Squared norm of a
vector v

VH Right-hand singular value
decomposition matrix

w(t, s) Impulse response of
time-variant system

wC,ij(t, s) Time-Variant Channel
Impulse Response
between transmitter j and
receiver i

we(t, s) Overall impulse response
of equivalent time-variant
baseband system

W(k) MIMO receiver matrix
W(ν) Receiver matrix at

iteration step ν
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WZF
u Multi-user zero-forcing

uplink receive matrix of
user u

y(t) Output signal
y(k) Receiver output vector
z Variable
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Digital Communications over Single Input

Single Output Channels



Chapter 1
Transmission System with Quadrature
Amplitude Modulation

1.1 Introduction

This chapter presents an overview on the principles of digital communications. We
focus on a system with one transmitter and one receiver, i.e. for a channel with a
single input and a single output (SISO). Thiswill also provide the necessary basics for
multiple input multiple output (MIMO) systems investigated in Part III. Depending
on the characteristics of the transmission medium we have to differentiate between a
wire-line and a wireless connection. Both channel types exhibit different properties
and therefore will be treated separately. We start with the wire-line transmission
link and in Chap.4 the wireless system will be discussed in detail. Also the transfer
functions of the transmission media differ in general. They can have a lowpass or
a bandpass characteristic. An electrical line, e.g.., a twisted pair or a coaxial cable
exhibits a lowpass magnitude response, because the d.c. current can travel from the
input to the output. In contrast, a wireless channel is characterized by a bandpass
transfer function, because only high frequency spectral components can be emitted
and received by the antennas. The optical transmission on a glass or a plastic fiber
is similar but the transmission spectrum lies in the multi-THz frequency region.
However, it should be noted that a connection over an electrical line may contain
transformers at the transmitter or at the receiver side for galvanic isolation between the
transmission line and the electronic equipment. Then the overall transfer function
becomes a bandpass characteristic. The same is true, if decoupling capacitors are
connected in series to the electrical transmission line. As the source signal at the
transmitter normally has a lowpass spectrum, a frequency shift into the passband of
the channel by dedicated pulse shaping or modulation is required. In the following
we focus on a bandpass channel with a passband around the mid frequency f0 and
employ a modulator with a carrier signal

ej2π f0t = cos(2π f0t) + j sin(2π f0t) (1.1)
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4 1 Transmission System with Quadrature Amplitude Modulation

at the transmitter, where the carrier frequency is f0. This complex carrier con-
tains an “in-phase” component with cos(2π f0t) and a “quadrature” component with
sin(2π f0t), which are orthogonal. Therefore the scheme is called quadrature ampli-
tudemodulation (QAM)or I-Qmodulation.Wewill introduce an equivalent baseband
(or lowpass) system model providing the overall characteristic of a lowpass transfer
function. With this approach lowpass and bandpass transmission schemes can be
treated elegantly in a uniform way and the transmission scheme, which does not
require modulation, is included for f0 = 0. Then, only real-valued transmit symbols
are applicable also called (multi-level) pulse amplitude modulated (PAM) symbols.
We will also see that the principle methods for wire-line and wireless transmission
have quite a lot in common and we focus in the next chapters on the basic principles
of both.

1.2 The Transmitter

Figure1.1 shows the principle block diagram of a transmission system. The output
of the data source at the transmitter is a sequence of bits bS(l ′). The forward error
correction (FEC) encoder allocates redundant bits to the input, which are thereafter
temporally interleaved to prepare for burst errors. The resulting output bit sequence
is denoted as b(l). l and l ′ are discrete-time variables. The amount of redundancy can
be defined by the temporal code rate rt ≤ 1, which is the ratio between the number of
input and output bits in the same time frame. Then the output bit sequence contains
(1 − rt ) · 100% redundancy with respect to the input. The large number of methods
and codes for forward error correction are not considered here. The reader is referred
to the dedicated literature, e.g., [1–10]. The mapper periodically allocates tuples of
κ successive bits to a symbol a(k) and outputs the complex symbol sequence

a(k) = Re[a(k)] + jIm[a(k)] (1.2)

at periodic intervals of duration T with the symbol rate vS = 1
T . The Fourier spectrum

of the discrete-time signal a(k) can be calculated with the help of the z-transform of
a(k), which is

A(z) =
∞∑

k=−∞
a(k)z−k (1.3)

and for z = ej2π f T the Fourier spectrum

A
(
ej2π f T

) =
∞∑

k=−∞
a(k)e−j2π f T k (1.4)
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Fig. 1.1 Principle block diagram for digital transmission over a bandpass channel

is obtained. Obviously, A
(
ej2π f T

)
is a periodic function of the natural frequency f

with period 1
T , because the argument ej2π f T is periodic with f = 1

T . Consequently,
the spectrum of the symbol sequence a(k) exhibits an infinite bandwidth, which has
to be limited by a transmit lowpass filter with cut-off frequency f I . This filter shall
be linear and time-invariant with the impulse response gI (t) and can be used to shape
the output impulses uI (t), for which reason the filter is called impulse shaper or pulse
shaper. As is well known, the transfer function of a linear, time-invariant system is
defined by the Fourier transform of its impulse response and in general the spectrum
of a continuous-time signal can be obtained by the Fourier transform, [11]. In the
following we denote the transform by the symbol � and assume that the reader is
familiar with the Fourier transform calculus.

Thus, we obtain the spectrum of gI (t) as

gI (t) � GI ( f ) =
∫ ∞

−∞
gI (t)e

−j2π f t dt (1.5)

and the inverse transform is given by

GI ( f ) � gI (t) =
∫ ∞

−∞
GI ( f )e

j2π f t d f (1.6)
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To check the existence of the integral (1.5) one of the sufficient Dirichlet conditions
can be applied

∫ ∞

−∞
|gI (t)| dt ≤ M1 < ∞ or

∫ ∞

−∞
|gI (t)|2 dt ≤ M2 < ∞ (1.7)

where M1 and M2 are finite real numbers. The second condition confirms that all
signals with finite energy are equipped with a Fourier spectrum. GI ( f ) is also called
the transfer function of the pulse shaper and shall have the lowpass property

GI ( f )

{
�= 0 ; | f | ≤ f I
= 0 ; else

(1.8)

where f I is the cut-off frequency. The continuous-time signal at the input of the pulse
shaper is described as

ua(t) =
∞∑

k=−∞
a(k)δ(t − kT ) (1.9)

where δ(t) is the Dirac impulse. Then follows for the signal at the pulse shaper output

uI (t) = ua(t) ∗ gI (t) =
∞∑

k=−∞
a(k)gI (t − kT ) (1.10)

where ∗ denotes the convolution

ua(t) ∗ gI (t) =
∫ ∞

−∞
ua(τ )gI (t − τ )dτ (1.11)

We obtain the output signal of the modulator with (1.10)

uM(t) = uI (t)e
j2π f0t =

( ∞∑

k=−∞
a(k)gI (t − kT )

)
ej2π f0t (1.12)

where f0 is the carrier frequency.Anyphysical channel exhibits a real-valued impulse
response denoted as gC(t) in Fig. 1.1. If not otherwise stated, the channel shall be
characterized as a linear, time-invariant system. In Chap.4 we will focus on the
wireless channel, which is characterized as linear and time-variant.1

If the complex signal uM(t) is directly input to the channel, a separation of the
real and imaginary part at the receiver is not possible. Thus, only the real or the

1In case of a baseband transmission system with a lowpass channel, no modulation is required,
thus we set f0 = 0. Figure1.1 still holds, wherein the modulator, the real-part operator Re[...], the
demodulator, and the gain factors

√
2 are dropped. All signals including the symbols a(k) take on

real values only.
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Fig. 1.2 Implementation of a QAM transmitter with exclusively real signals

imaginary part of uM(t) is feasible as the channel input signal. In Fig. 1.1 the real part
is selected and

√
2 is just an amplification factor to achieve an overall amplification

of one between the transmitter and the receiver. In the following we apply the general
property for complex numbers

Re[uM ] = 1

2

(
uM + u∗

M

)
(1.13)

where the superscript denotes the conjugate complex operation. With (1.12), (1.13),
and assuming a real impulse response gI (t) a straightforward calculation yields the
transmit signal

uT (t) = √
2

(∑∞
k=−∞ Re[a(k)] gI (t − kT )

)
cos(2π f0t)

−√
2

(∑∞
k=−∞ Im[a(k)] gI (t − kT )

)
sin(2π f0t)

(1.14)

From (1.14) we recognize that the transmit signal can carry two independent
symbol sequences Re[a(k)] and Im[a(k)]. Furthermore, as depicted in Fig. 1.2, we
can implement an alternative QAM transmitter, which contains only real-valued
signals and provides the same output signal uT (t).

The reader can convince oneself easily that the spectrumUT ( f ) of uT (t) in (1.14)
satisfies

UT ( f )

{
�= 0 ; f0 − f I ≤ | f | ≤ f0 + f I
= 0 ; else

(1.15)
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1.3 Signal Constellation Diagrams

The mapper in Figs. 1.1 and 1.2 assigns to each tuple of κ incoming bits
b(l), b(l − 1), ..., b(l − κ + 1) a complex symbol a(k). The allocation of these sym-
bols in the complex plane constitutes the signal constellation diagram. The a(k) is
also denoted as signal point and encoded by a codeword with κ bits. Hence the
number of different symbols is

L = 2κ (1.16)

and therefore this scheme is referred to as L-ary quadrature amplitude modulation or
L-QAM. There is an infinite number of possible distributions of L signal points in the
complex plane. The example in Fig. 1.3 shows the 4-level phase shift keying (4-PSK),
where the signal points are distributed on a circle. In the following we present some
more examples of important constellation diagrams used for digital transmission.
The relation between the bitrate vB and the symbol rate vS = 1

T obviously is

vS = vB

κ
= vB

log2 L
(1.17)

and is measured in “symbols per second”, which is also referred to as “Baud” accord-
ing to the French engineer Baudot. Consequently, with L-QAM the clock rate is by
factor 1

log2 L
lower than the bitrate, which also holds for the required transmission

bandwidth.

Fig. 1.3 a Constellation diagram of 4-PSK. Pairs of bits are allocated to four signal points b
Constellation turned by π

4 and with c = b√
2
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Fig. 1.4 Constellation
diagram of 16-QAM

4-QAM and 4-PSK

Figure1.3 shows the constellation diagram of 4-PSK as a special case of 4-QAM.
The four signal points are located on a circle and thus they differ only in their
angles β(k)ε

{
0, π

2 ,π,
3π
2

}
, which justifies the name phase shift keying. For illustra-

tion, if the binary sequence b(l) shall be 0100110110..., the mapper output a(k) is
−b, jb,−jb,−b, b, .... Another special case is 2-PSK, where only two signal points
are used. If they are allocated on the real axis of the complex plane, the scheme is
very simple to implement. The symbol alphabet then is B = {−b, b} and the angles
are β(k)ε {0,π}. Consequently, for the transmit signal in (1.14) follows

uT (t) = √
2

∞∑

k=−∞
Re[a(k)] gI (t − kT ) cos(2π f0t) ; with Re [a(k)] ε {−b, b}

(1.18)

16-QAM

Figure1.4 shows another constellation diagram, the 16-QAM, where 4-tuples of bits
b(l), b(l − 1), b(l − 2), b(l − 3) are allocated to the sixteen different signal points
a(k). The scheme is frequently used in many applications for wire-line and wireless
digital transmission.

1.4 Transmission Channel

The transmission channel shall be characterized by its time-invariant and real-valued
impulse response gC(t). The bandpass shaped transfer function GC( f ) is obtained
by the Fourier transform of gC(t) and characterized as
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gC(t) � GC( f )

{
�= 0 ; f0 − f I ≤ | f | ≤ f0 + f I
= 0 ; else

(1.19)

The channel passband is located around the center frequency± f0 and the bandwidth
is 2 f I . Thus, the carrier frequency f0 of the modulator and the cut-off frequency f I
of the pulse shaper have to be determined in such a way that the transmit spectrum
UT ( f ) in (1.15) fully covers the passband of the channel transfer function GC( f ).
Models of a wireless channel are given in Chap.4.

1.5 Receiver

In Fig. 1.1 the receiver is composed of a demodulator, which multiplies the receive
signal uR(t)with the complex demodulation carrier e−j(2π f0t+ϕ0). The frequency f0 is
exactly the same as for the modulating carrier and the phase ϕ0 of the demodulation
carrier is constant. Thus, the receiver operates synchronously with the transmitter.
In the following we assume ϕ0 = 0. The lowpass filter with real impulse response√
2gR(t) selects the baseband out of the demodulated signal uD(t) resulting in the

complex baseband signal qR(t). At the receiver there is no interest in the complete
waveform of this analog signal. Only the samples taken with the symbol rate 1

T are
required. Therefore a sampling device provides the sequence

q(k) = qR(t0 + kT ) (1.20)

where t0 is the signal delay between the transmitter and receiver, which has to be
estimated at the receiver. The sampling clockwith frequency 1

T has to be synchronous
with the symbol rate vS at the transmitter. It is extracted by a special clock recovery
circuit from the receive signal to guarantee synchronism and to control deviations.
Synchronization methods [12] as well as sampling rates higher than 1

T , which can
meet the sampling theorem for advanced digital signal processing at the receiver, are
not considered here.

The receiver input signal is corrupted by real-valued additive noise nC(t) coming
from the channel and the electronic equipment of the receiver. We will just call it
channel noise. Using the superposition principle we obtain the total receive signal

uR(t) = uT (t) ∗ gC(t) + nC(t) (1.21)

We will show that the output signal of the receive lowpass filter with the impulse
response

√
2gR(t) and the transfer function

√
2GR( f )

{
�= 0 ; | f | ≤ fR
= 0 ; else

(1.22)
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is given by
qR(t) = ua(t) ∗ he(t) + nR(t) (1.23)

where
he(t) = gI (t) ∗ (

gC(t)e
−j2π f0t

) ∗ gR(t) (1.24)

and
nR(t) = √

2
(
nC(t)e

−j2π f0t
) ∗ gR(t) (1.25)

nR(t) represents the demodulated and lowpass filtered noise. (1.23) can be recognized
as the input-output relation of the signals between the node (I) and the node (II) in
Fig. 1.1.Consequently, he(t) is the equivalent impulse response between (I) and (II) in
case of no noise, nC(t) = 0. Although this section is time-variant on the first glance
due to the synchronous modulation and demodulation the convolution operation
ua(t) ∗ he(t) still holds, as will be proven in the following. This kind of convolution
operation will change, if the phase of the demodulation carrier varies with time due to
some phase noise or in case of a time-varyingwireless channel, as outlined inChap.4.
Please note that uI (t), uM(t), he(t), and nR(t) are complex-valued signals and noise
in general, whereas gI (t), gC(t), gR(t), and nC(t) are real-valued, respectively.

We also show that the spectrum QR( f ) of the signal qR(t) at the output of the
receiver lowpass is given in case of no noise as

QR( f ) = UI ( f )GC( f + f0)GR( f ) (1.26)

where uI (t) � UI ( f ) is the lowpass spectrum of the output signal uI (t) of the pulse
shaper

UI ( f ) = GI ( f )Ua( f ) (1.27)

where ua(t) � Ua( f ) holds. Obviously, QR( f ) is a lowpass spectrum. From (1.26)
follows with (1.27)

He( f ) = QR( f )

Ua( f )
= GI ( f )GC( f + f0)GR( f ) (1.28)

which is the overall transfer function between the nodes (I) and (II). We recognize
that He( f ) represents a lowpass and is called the transfer function of the equivalent
baseband (or lowpass) system.2

2sometimes referred to as “equivalent baseband (or lowpass) channel”.
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Proof of (1.24) and (1.26)

We start with the output uI (t) � UI ( f ) of the pulse shaper, which has a lowpass
spectrum with the cut-off frequency f I given by (1.8). Then we obtain the modulator
output signal

uM(t) = uI (t)e
j2π f0t (1.29)

and with (1.13) the transmit signal

uT (t) =
√
2

2

[
uI (t)e

j2π f0t + u∗
I (t)e

−j2π f0t
]

(1.30)

We proceed in the frequency domain and get with

u∗
I (t) � U ∗

I (− f ) (1.31)

and with the frequency shifting property of the Fourier transform the transmit signal

uT (t) � UT ( f ) =
√
2

2

[
UI ( f − f0) +U ∗

I (− f − f0)
]

(1.32)

As expected, the spectrum UT ( f ) is located in the passband of the channel transfer
function around the mid frequencies − f0 and f0.

The spectrum of the receive signal in case of no noise at the output of the channel
can be found as

uR(t) � UR( f ) =
√
2

2

[
UI ( f − f0) +U ∗

I (− f − f0)
]
GC( f ) (1.33)

After demodulation the spectrum at the input of the receiver lowpass filter in case of
no noise is UD( f ) = UR( f + f0) and finally the spectrum of qR(t) follows

QR( f ) = √
2UR( f + f0)GR( f ) (1.34)

Plugging in (1.33) yields

QR( f ) = [
UI ( f )GC( f + f0) +U ∗

I (− f − 2 f0)GC( f + f0)
]
GR( f ) (1.35)

The second term U ∗
I (− f − 2 f0)GC( f + f0) is a spectrum with passband around

the center frequency −2 f0. Multiplied with the lowpass transfer function GR( f )
the product is zero and we obtain from (1.35) QR( f ) = UI ( f )GC( f + f0)GR( f ),
which finalizes the proof of (1.26).

We recognize that the overall amplification factor for QR( f ), excluding the noise,
is

√
2
√
21
2 = 1, which justifies the introduction of the amplification factor

√
2 both

at transmitter and receiver.
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The inverse Fourier transform of He( f ) in (1.28) results in
he(t) = gI (t) ∗ (

gC(t)e−j2π f0t
) ∗ gR(t) and the proof of (1.24) is finished.

Proof of (1.23) and (1.25)

We directly conclude from the left-hand side of (1.28) QR( f ) = He( f )Ua( f ) and
the inverse Fourier transform yields qR(t) = ua(t) ∗ he(t). This finalizes the proof
of (1.23) in case of no noise.

The proof of (1.25) is straightforward. If the transmitter sends no signal, i.e.
uT (t) = 0, then the output signal of the receiver lowpass is the filtered noise
qR(t) = nR(t) = √

2
(
nC(t)e−j2π f0t

) ∗ gR(t). IfnC(t) = 0, thenqR(t) = ua(t) ∗ he(t)
holds. In the general case that the transmit signal and the noise are present the superpo-
sition principle can be applied to this linear system yielding qR(t) = ua(t) ∗ he(t) +
nR(t), which completes the proof of (1.23).

1.6 Equivalent Baseband System Model

The block diagram in Fig. 1.1 is rather detailed. We take advantage of (1.23) and
find the much simpler structure in Fig. 1.5a. Details of modulation, demodulation
and filtering does not show up anymore. The input-output relation of the “black box”
between node (I) and (II) is given by (1.23) to (1.25). he(t) is denoted as the impulse
response of the continuous-time equivalent baseband system model. Finally, we are
only interested in the discrete-time relation between the input sequence a(k) and the
sampled output sequence q(k) defined already in (1.20).

To this end, we insert (1.9) into (1.23) and obtain

Fig. 1.5 a Continuous-time
equivalent baseband system
model between nodes (I) and
(II) with reference to Fig. 1.1
b Discrete-time equivalent
baseband system model
between nodes (I) and
(III) with reference to
Fig. 1.1
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qR(t) =
∞∑

m=−∞
a(m)he(t − mT ) + nR(t) (1.36)

Now we take samples at t = t0 + kT and get

qR(t0 + kT ) =
∞∑

m=−∞
a(m)he (t0 + (k − m)T ) + nR(t0 + kT ) (1.37)

With

h(k) = he(t0 + kT ) = {
gI (t) ∗ (

gC(t)e
−j2π f0t

) ∗ gR(t)
}
t=t0+kT (1.38)

and
n(k) = nR(t0 + kT ) (1.39)

follows from (1.37) with (1.20)

q(k) =
∞∑

m=−∞
a(m)h (k − m) + n(k) (1.40)

which is the discrete-time input-output relation of the “black box” between nodes (I)
and (III) in Fig. 1.1. This leads to the discrete-time equivalent baseband system (or
channel) model depicted in Fig. 1.5b, which is very helpful, because it focuses our
consideration on only a few characteristic parameters of the system. h(k) is called
the discrete-time impulse response of the equivalent baseband system model. The
noises nR(t) and n(k) are investigated in quite some detail in Sect. 2.6.
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Chapter 2
Intersymbol Interference and Noise

2.1 Intersymbol Interference

With the help of the discrete-time equivalent baseband system model we can now
get insight into the two major impairments a signal incurs from the transmitter to the
receiver, namely intersymbol interference and noise. For that purpose we separate
the term for m = k from the sum in (1.40) and obtain

q(k) = a(k)h(0) +
∞∑

m = −∞
m �= k

a(m)h (k − m) + n(k) (2.1)

We see that the receive sample q(k) is composed of the transmit symbol a(k) multi-
plied by h(0) of the discrete-time impulse response h(k), the distortion term

I (k) =
∞∑

m = −∞
m �= k

a(m)h (k − m) (2.2)

and the noise n(k). I (k) is called intersymbol interference, because it consists of
the previous and in case of a non-causality of h(k) the future a(m) weighted by the
samples h(k − m) of the equivalent baseband impulse response.

2.2 Nyquist’s First Criterion in the Time Domain

To remove the intersymbol interference I (k) defined in (2.2) we may not impose
any constraint on the symbol sequence a(k), because the system design should hold
for any sequence given by the user at the transmitter. Therefore we can only touch
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Fig. 2.1 Example of a
real-valued impulse he(t)
satisfying Nyquist’s first
criterion (2.3)

upon the impulse response h(k). Looking at (1.38) the system is prepared already
with two degrees of freedom, gI (t) and gR(t). Hence, for a given impulse response
gC(t) of the physical channel we can design the overall impulse response in such a
way that

h(k − m) = he (t0 + (k − m)T ) =
{

0 ; m εZ ; m �= k

h(0) = he(t0) �= 0 ; m = k
(2.3)

(2.3) is called Nyquist’s first criterion in the time domain [1] and the corresponding
impulse is referred to as Nyquist impulse. An example of a real-valued impulse
response satisfying (2.3) is depicted in Fig. 2.1. Obviously, he(t) owns equidistant
zeros except at t = t0.

Inserting the Nyquist condition (2.3) into (2.2) yields

I (k) = 0 ; ∀k εZ (2.4)

and we obtain from (2.1)
q(k) = a(k)h(0) + n(k) (2.5)

As expected, the signal q(k) at the receiver output suffers not anymore from inter-
symbol interference and the symbol sequence a(k)h(0) is only corrupted by additive
noise n(k).

2.3 Nyquist’s First Criterion in the Frequency Domain

An interesting question is: “How does the spectrum He( f ) of a Nyquist impulse look
like?”We give the solution for the case of a real-valued spectrum He( f )with the con-
sequence that the corresponding impulse is real and an even function,he(−t) = he(t).
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Fig. 2.2 Real-valued
transfer function He( f ) of a
Nyquist lowpass. Roll-offs
exhibit odd symmetry with
respect to points
P1 ( fN , 0.5) and
P2 (− fN , 0.5)

Thus, in the following t0 = 0 is assumed. Given these prerequisites the necessary
and sufficient condition for the spectrum He( f ) is

∞∑

m=−∞
He( f − m

1

T
) = he(0)T ; ∀ f ; he(0)T = He(0) (2.6)

which is called Nyquist’s first criterion in the frequency domain and will be proven
in the following. (2.6) requires that the sum of all periodic repetitions of He( f ) is
a constant, He(0) = he(0)T . A lowpass satisfying the condition (2.6) is also called
a Nyquist lowpass. From (2.6) directly follows the solution for a lowpass spectrum
with cut-off frequency

fc = fN + � f (2.7)

He( f )

⎧
⎪⎨

⎪⎩

= A ; | f | ≤ fN − � f

He (| fN | − x) + He (| fN | + x) = A ; 0 < x ≤ � f

= 0 ; | f | > fN + � f

(2.8)

where we have set A = He(0). Obviously, He( f ) is an even function,
He(− f ) = He( f ). The principle spectrum of He( f ) is depicted in Fig. 2.2

The relation between the Nyquist frequency fN and the symbol interval T is given
by

fN = 1

2T
(2.9)

The second condition in (2.8) requires a roll-off function from the passband to
the stop-band, which exhibits odd symmetry with respect to the points P1 and P2.
� f defines half of the roll-off bandwidth

0 ≤ � f ≤ fN (2.10)
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For � f = 0 the spectrum He( f ) is an ideal lowpass filter and shows the minimal
cut-off frequency fc = fN . On the contrary, the maximum cut-off frequency is 2 fN
and is obtained for � f = fN . In that case the roll-off starts already at f = 0 and
covers the whole passband. For a given symbol rate vS = 1

T the Nyquist frequency
(2.9) results in

fN = 1

2
vS (2.11)

For example, if we strive for a symbol rate of 1 Gsymbol/s a minimal cut-off fre-
quency of 500 MHz is required to satisfy Nyquist’s criterion.

For the filter design the following definition of a roll-off factor is helpful

α = � f

fN
(2.12)

From (2.10) we see that 0 ≤ α ≤ 1 holds and the cut-off frequency becomes
fc = (1 + α) fN .

If we drop the previous prerequisite and consider an impulse with t0 > 0, as depicted
in Fig. 2.1, then He( f ) turns into He( f )e−j2π f t0 according to the shifting property
of the Fourier transform. Then the spectrum is equipped with a linear phase term
e−j2π f t0 .

As a conclusion, we can achieve the transmission of the symbol sequence a(k) with-
out intersymbol interference, if the overall transfer function He( f ) of the system is
a Nyquist lowpass defined in (2.8). An adequate design is

f I = fR = (1 + α) fN (2.13)

where fR is the cut-off frequency of the receive lowpass filter GR( f ) and 2 f I the
bandwidth of the channel.

It is worth mentioning that also transfer functions with other than lowpass char-
acteristics can be deduced from (2.6). For illustration the following example of a
bandpass

B( f ) = 1

2
He( f + 2 fN ) + 1

2
He( f − 2 fN ) (2.14)

is given, which is composed of the Nyquist lowpass He( f ) according to (2.8). The
reader can assure oneself easily that

∑∞
m=−∞ B( f − m2 fN ) = He(0) ; ∀ f holds

and thus B( f ) fulfills the first Nyquist criterion (2.6).
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Proof of (2.6)
In the following we assume t0 = 0 and first prove that (2.3) is a sufficient condition
for (2.6), i.e. that (2.6) follows from (2.3). Ideal sampling of he(t) yields
he(t)

∑∞
k=−∞ δ(t − kT ) andwith (2.3) followshe(t)

∑∞
k=−∞ δ(t − kT ) = he(0)δ(t).

Applying the Fourier transform on both sides results in
He( f ) ∗ 1

T

∑∞
m=−∞ δ( f − m 1

T ) = he(0), where we have used the transform pairs∑∞
k=−∞ δ(t − kT ) � 1

T

∑∞
m=−∞ δ( f − m 1

T ) and δ(t) � 1. With the convolution
integral follows He( f ) ∗ 1

T

∑∞
m=−∞ δ( f − m 1

T ) =
1
T

∑∞
m=−∞

∫ ∞
−∞ He(τ )δ( f − m 1

T − τ )dτ = 1
T

∑∞
m=−∞ He( f − m 1

T ).Hence,weend
up with

∑∞
m=−∞ He( f − m 1

T ) = he(0)T , which validates (2.6).
Next we prove that (2.3) is a necessary condition for (2.6), i.e. we have to show

that from (2.6) follows (2.3). This is easily done by starting from (2.6) and executing
the steps done before in reverse direction using the inverse Fourier transform, which
finally results in (2.3). This finalizes the proof that (2.3) and (2.6) are necessary and
sufficient conditions.

2.4 Raised Cosine Nyquist Lowpass Filter

Nowwe consider a special Nyquist filter He( f ), which is frequently used as a design
goal for digital communication systems

He( f )

He(0)
=

⎧
⎪⎪⎨

⎪⎪⎩

1 ; | f | ≤ fN (1 − α)

1
2

[
1 + cos

(
π
2

| f |− fN (1−α)

α fN

)]
; fN (1 − α) < | f | < fN (1 + α)

0 ; | f | ≥ fN (1 + α)

(2.15)
and portrait in Fig. 2.3. For an overall gain of one we have to determine He(0) = 1.
The function 1 + cos(...) is called raised cosine. Significant are the roll-offs, which
possess an odd symmetry with respect to the points (± fN , 1

2 ). The corresponding
Nyquist impulses are obtained by inverse Fourier transform

he(t)

he(0)
= sinc

(
t

T

)
cos

(
πα t

T

)

1 − (
2α t

T

)2 (2.16)

where he(0) = 1
T He(0) and

sinc (x) = sin (πx)

πx
(2.17)
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Fig. 2.3 Raised cosine
transfer function He( f ) of a
Nyquist lowpass filter with
various roll-off factors α

Fig. 2.4 Impulse response
he(t) of raised cosine
Nyquist lowpass filter with
various roll-off factors α

In Fig. 2.3 He( f ) is shown for various roll-off factors α and the corresponding
impulse responses he(t) are depicted in Fig. 2.4. As expected from the properties of
the Fourier transform, the smoother the roll-off of He( f ) the smaller the magnitudes
of the over- and under-shoots of the impulse responses are. The ideal lowpass filter
with α = 0 exhibits a step function at the transition from the passband to the stop-
band and therefore the over- and under-shoots are the largest. In this case (2.16)
yields the well known sinc-function as the impulse response

he(t)

he(0)
= sinc

(
t

T

)
(2.18)

However, this response is not well suited for digital communications, because even a
small deviation of the sampling phase at the receiver introduces strong intersymbol
interference, which even approaches infinity theoretically. α = 1 yields the maximal
cut-off frequency fc = 2 fN and the roll-off is very smooth. Consequently, he(t) is
almost zero for |t | > T and therefore is often approximated by a symmetrical trian-
gular impulse with duration 2T . For all α the periodic zero crossings of he(t) for
|t | ≥ T , also called “Nyquist zeros” are clearly visible, which avoid the intersymbol
interference completely.
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Fig. 2.5 Receiver output signal qR(t) according to (1.36) with raised cosineNyquist impulses he(t)
from (2.16), roll-off factor α = 0.3, without noise, and binary transmit symbols a(k) ε {−1,+1}.
No intersymbol interference is present at the sampling instants t/T = 0, 1, 2, ... . Source: Online
platform “webdemo” [2]

Fig. 2.5 shows an example of the receiver output signal qR(t) in (1.36) without
noise, simulated with the online platform “webdemo” [2], which also enables to
adjust various system parameters online. The impulse response he(t) of the equiv-
alent baseband system is chosen as a raised cosine Nyquist impulse (2.16) with
roll-off factor α = 0.3 . The transmit symbol sequence a(k) is binary with the alpha-
bet {−1,+1} and indicated with red color. Each transmit symbol a(m) arrives at
the receiver as an impulse a(m)he(t − mT ) and qR(t) is the superposition of the
received impulses. Apparently, the Nyquist impulse guarantees that no intersymbol
interference is present in qR(t) at the sampling instants t/T = 0, 1, 2, ... . Hence, the
transmit symbol sequence can be recovered without distortion in case of no noise.

2.5 Eye Diagram

Figure 2.6 portraits the eye diagram, which is an important measure for diagnosis of
the receive signal quality for data transmission. Symbols a(k) ε {−1,+1} are sent. At
the receiver an oscilloscope with memory is triggered with the symbol rate 1/T and
one receive impulse upon the other is recorded. On the display the shape of an eye can
be seen in |t | ≤ T/2. If the eye is vertically open, then intersymbol interference is low.
The vertical eye opening of Nyquist impulses is even 100% at the sampling instant
t = 0 and thus the margin of additive noise is maximal. If a jitter of the sampling
clock phase moves the sampling instant aside from zero, the vertical eye opening
reduces. Thus, the larger the vertical and horizontal eye openings are, the greater
the tolerance for additive noise and phase jitter will be, respectively. Furthrtmore,
the difference between the maximum and the minimum of qR(t) is a measure of the
dynamic range of the receive signal.
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Fig. 2.6 Eye diagram of
raised cosine Nyquist
impulse with roll-off factor
α = 0.3, without noise, and
binary transmit symbols
a(k) ε {−1,+1}. Source:
Online platform “webdemo”
[2]
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2.6 Characterization of the Noise at the Receiver

Before we are going to discuss various detection algorithms for the receiver output
signal q(k) we have to characterize the noise nC(t) in Fig. 1.1. The main sources of
noise are the resistors and the electronic components, such as transistors or the photo
diode in an optical receiver. In a wireless system the receive antenna collects noise
coming from the channel. In most cases the first stage of a receiver is composed
of an amplifier associated with a bandpass filter to limit the noise spectrum to the
passband of the transmit signal, which is given by the channel transfer function in
(1.19). The resulting real-valued noise nC(t) is demodulated and lowpass filtered
with

√
2GR( f ) yielding the complex-valued noise nR(t) with a lowpass spectrum.

The noise sequence n(k) results after sampling and is depicted in the discrete-time
equivalent baseband system in Fig. 1.5 (b). In the following we analyze the noise
at the receiver step by step. For the basics on stochastic processes we refer to the
Appendix A.

2.7 Channel Noise nC(t)

A very likely model for the noise nC(t) at the receiver is the zero mean additive
Gaussian noise with a bandpass shaped power spectral density. nC(t) is regarded as
a sample function of a stationary stochastic bandpass process. In the Appendix A we
show that this noise can be characterized by the following properties: 1

In general the real-valued stationary bandpass noise is given in the time-domain
by

nC(t) = x1(t) cos(2π f0t) − x2(t) sin(2π f0t) (2.19)

where x1(t) and x2(t) are real-valued lowpass noises with the same Gaussian prob-
ability density function

1Different from Appendix A we denote the stochastic processes and their sample functions with
the same lowercase letters to simplify the notation.
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Fig. 2.7 Gaussian
probability density function

px (x) = 1√
2πσx

e
− x2

2σ2x with

various standard deviations
σx

pxi (xi ) = 1√
2πσx

e
− x2i

2σ2x ; i = 1, 2 (2.20)

also called normal distribution. Fig. 2.7 shows the typical bell-shaped curve for three
different standard deviations σx . The half-width (at 50% of the maximum) is known
as �x = 2

√
2 ln(2)σx ≈ 2.4σx . Thus, the larger σx the wider the density function

is. Please note,
∫ ∞
−∞ px (x)dx = 1 holds in general.

It goes without saying that the probability density function holds for every fixed
time instant t of the stationary stochastic process. nC(t), x1(t), and x2(t) possess
zero mean

E [nC(t)] = E [x1(t)] = E [x2(t)] = 0 (2.21)

and the same mean power

σ2
x = E

[
n2C(t)

] = E
[
x21 (t)

] = E
[
x22 (t)

]
(2.22)

Moreover we assume x1(t) and x2(t) as uncorrelated, i.e. the cross-correlation func-
tion is

Rx1x2(τ ) = E [x1(t)x2(t + τ )] = E [x1(t)]E [x2(t)] (2.23)

and because of (2.21) Rx1x2(τ ) = 0 holds. As shown in the Appendix A, Gaussian
processes with this property are even statistically independent.

The power spectral densities of x1(t) and x2(t) are identical. They are given by
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Sxi xi ( f ) =
{
N0 ; | f | ≤ f I
0 ; else

; i = 1, 2 (2.24)

where 2 f I is the bandwidth of the channel transfer function GC( f ) in (1.19). The
noise spectrum is step-wise constant. Although misleading, it is therefore sometimes
called “band-limited white” Gaussian noise. The relation between Sxi xi ( f ) and the
mean noise power is

σ2
x =

∫ ∞

−∞
Sxi xi ( f )d f = 2 f I N0 ; i = 1, 2 (2.25)

As shown in the Appendix A, the power spectral density of nC(t) can be determined
with Sxi xi ( f ) as

SnCnC ( f ) = 1

2

[
Sxi xi ( f − f0) + Sxi xi ( f + f0)

] =
{

N0
2 ; f0 − f I ≤ | f | ≤ f0 + f I
0 ; else

(2.26)

Thus, we have a strictly band-limited bandpass shaped noise spectrum with the
passband in the region of the transmission channel (1.19). This noise can be simulated
by a frequency flat broadband noise at the input of an ideal bandpass filter with cut-
off frequencies given in (1.19). Sometimes nc(t) is also called “band-limited white”
noise, although misleading.

2.8 Noise After Demodulation and Lowpass Filtering

According to Fig. 1.1 after demodulation and lowpass filtering with
√
2gR(t) the

real-valued channel noise nC(t) turns into a complex noise nR(t) given by (1.25).
Rewriting (2.19) using cos(2π f0t) = 1

2

[
ej2π f0t + e−j2π f0t

]
and

sin(2π f0t) = 1
2j

[
ej2π f0t − e−j2π f0t

]
we obtain from (1.25)

nR(t) =
√
2
2

[
x1(t) + jx2(t)

] ∗ gR(t)+

+
√
2
2

{[
x1(t) − jx2(t)

]
e−j4π f0t

} ∗ gR(t)

(2.27)

The term in the second line of (2.27) represents the convolution of a bandpass noise
in the frequency range around f = 2 f0 with a lowpass impulse response gR(t) with
a cut-off frequency fR 
 2 f0. Thus, the result is zero. Consequently we obtain

nR(t) =
√
2

2

[
x1(t) + jx2(t)

] ∗ gR(t) (2.28)
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Now we assume that gR(t) is the impulse response of an ideal lowpass filter with
cut-off frequency fR . From the viewpoint of noise reduction we wish to make fR
small. However, please note that in this case we limit the bandwidth of the signal,
which is f I , at the same time. As this is not adequate, we have to accept

fR = f I (2.29)

according to (2.13), where 2 f I is the bandwidth of the bandpass channel transfer
function. Let

GR( f ) =
{
1 ; | f | ≤ f I
0 ; else

(2.30)

be the ideal lowpass receive filter. Then its output is the complex-valued lowpass
noise

nR(t) =
√
2

2

[
x1(t) + jx2(t)

]
(2.31)

nR(t) and thus x1(t) as well as x2(t) remain Gaussian, because a complex Gaus-
sian process passing through a linear system remains Gaussian, only the variance
may change. Noting that the real and the imaginary part of nR(t) are statistically
independent nR(t) has the mean power

E
[|nR|2] = σ2

x (2.32)

To simplify the notation we introduce new components of the complex noise incor-
porating the factor

√
2
2

ñi (t) =
√
2

2
xi (t) ; i = 1, 2 (2.33)

Then the output noise of the receive lowpass can be written as

nR(t) = ñ1(t) + jñ2(t) (2.34)

Obviously, ñ1(t) and ñ2(t) have identical Gaussian probability density functions

pñi (ñi ) = 1√
2πσn

e
− ñ2i

2σ2n ; i = 1, 2 (2.35)

and the variance σ2
n of ñi (t) is obtained from (2.33) with (2.22)

σ2
n = E

[
ñ2i

] = 1

2
E

[
x2i

] = 1

2
σ2
x ; i = 1, 2 (2.36)

The power spectral density of the noise at the output of the receive lowpass then
follows from (2.24)
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Sñi ñi ( f ) =
{

N0
2 ; | f | ≤ f I
0 ; else

; i = 1, 2 (2.37)

As shown in the Appendix A, the autocorrelation function follows from the power
spectral density by applying the inverse Fourier transform. Thus, we obtain the auto-
correlation function Rñi ñi (τ ) of ñi (t)

Sñi ñi ( f ) � Rñi ñi (τ ) = N0 f I sinc (2 f I τ ) ; i = 1, 2 (2.38)

2.9 Noise After Sampling

For the detection of the QAM symbols the statistics of the real and imaginary part of
the noise after sampling is important to know. At the output of the sampling device
in Fig. 1.1 we obtain the noise sequence from (2.34)

nR(t0 + kT ) = ñ1(t0 + kT ) + jñ2(t0 + kT ) (2.39)

To simplify the notation we introduce

n(k) = nR(t0 + kT ) (2.40)

and
ni (k) = ñi (t0 + kT ) ; i = 1, 2 (2.41)

Then (2.39) turns into
n(k) = n1(k) + jn2(k) (2.42)

As the Gaussian noise is stationary, the probability density function is independent
of any time instant. Consequently, the samples ni (k) possess the same probability
density functions as ñi (t) ; i = 1, 2, which are given in (2.35) and (2.36)

pni (ni ) = 1√
2πσn

e
− n2i

2σ2n ; E
[
n2i

] = σ2
n = 1

2
σ2
x ; i = 1, 2 (2.43)

Furthermore, both noise components have zero mean

E [ni ] = 0 ; i = 1, 2 (2.44)

The probability density function of n(k) can be obtained with the following consid-
eration. As x1(t) and x2(t) are statistically independent, this also holds for n1(k) and
n2(k). Consequently, we obtain the density function of the complex noise n(k) as
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pn(n) = pn1(n1)pn2(n2) = 1

2πσ2
n

e
− n21+n22

2σ2n = 1

2πσ2
n

e
− |n|2

2σ2n (2.45)

As shown in the Appendix A, sampling of a stochastic process with the sampling
rate 1

T results in a discrete-time autocorrelation function with samples at
τ = mT ; m εZ.2 Thus, the autocorrelation function of ni (k) is
Rñi ñi (mT ) = Rnini (m) and with (2.38) we obtain

Rnini (m) = N0 f I sinc (2 f I Tm) ; i = 1, 2 ; m εZ (2.46)

If we choose the cut-off frequency f I = (1 + α) fN = 1+α
2T as discussed in (2.13)

we get

Rni ni (m) = N0 (1 + α) fN sinc ((1 + α)m) ; i = 1, 2 ; m εZ (2.47)

The reader can convince oneself easily that for α = 0 and α = 1 the autocorrelation
function is zero for m = ±1,±2, ..., thus,

Rnini (m) =
{
N0 (1 + α) fN ; m = 0

0 ; m = ±1,±2, ...
(2.48)

We conclude from (2.48) that two samples ni (k) and ni (k + m), which can be consid-
ered as random variables, are uncorrelated form �= 0. Hence, the sampling operation
with the sampling frequency 1

T acts as a decorrelation. Because the uncorrelated ran-
dom variables ni (k) and ni (k + m) are also Gaussian, they are even statistically
independent. However, α = 0 is not feasible for a practical implementation, as dis-
cussed earlier.

According toAppendixA the corresponding power spectral density of a discrete-time
stochastic process is periodic and given by

Sni ni ( f ) =
∞∑

ν=−∞
Sñi ñi ( f − ν

1

T
) (2.49)

Example 1

One expects that the power spectral density of an uncorrelated stochastic process is
white. Consequently, Sni ni ( f ) = const. must hold for α = 0 and α = 1.

2As mentioned in the footnote of Appendix A, the sampling function is defined as
T

∑∞
k=−∞ δ(t − kT ).
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Solution

For α = 0 the cut-off frequency of Sñi ñi ( f ) in (2.37) is f I = 1+α
2T = 1

2T . The peri-
odic repetition of Sñi ñi ( f ) in (2.49) yields Sni ni ( f ) = N0

2 = const. In case of α = 1
follows f I = 1

T and the spectral parts in (2.49) overlap resulting in Sni ni ( f ) = N0 =
const.

2.10 Summary

We summarize the results to complete the noise properties for the equivalent base-
band system models given in Sect. 1.6. The original block diagram and that of the
equivalent system are shown in Figs. 1.1 and 1.5, respectively.

Continuous-Time Equivalent Baseband System Model
The bandpass noise nC(t) at the input of the receiver is characterized by (2.19).
The lowpass in-phase x1(t) and quadrature component x2(t) are assumed to be sta-
tistically independent Gaussian noises with the same probability density function
defined in (2.20), zero mean (2.21), and identical mean power (2.22). After demod-
ulation and lowpass filtering nC(t) turns into a complex-valued Gaussian noise
nR(t) = ñ1(t) + jñ2(t) according to (2.34). Due to the amplification factor

√
2 of

the receive lowpass the noise components possess the mean powerE
[
ñ2i

] = 1
2E

[
x2i

]

in (2.36) and the power spectral density given in (2.37) with lowpass characteris-
tics. ñ1(t) and ñ2(t) are statistically independent with Gaussian probability density
function (2.35).

Discrete-Time Equivalent Baseband System Model
The complex-valued, discrete-time noise n(k) = n1(k) + jn2(k) is given by (2.42),
in which ni (k) = ñi (t0 + kT ) ; i = 1, 2. The n1(k) and n2(k) exhibit the same zero
mean Gaussian probability density function (2.43) and they are statistically inde-
pendent. If the cut-off frequency of an ideal lowpass filter (2.30) at the receiver is
chosen as f I = (1+α)

2T with α = 0 or α = 1 and the noise input spectrum is flat, then
the output samples ni (k) and ni (k + m) are statistically independent (m �= 0) and
the power spectral density Sni ni ( f ) in (2.49) is white (i = 1, 2).
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Chapter 3
Detection Methods

3.1 Receive Signal Under Detection

In the following a survey on the most important detection methods is presented. We
differentiate in principle between the symbol-by-symbol and the sequence or sequen-
tial detection. With the first method the receive signal q(k) in Figs. 1.1 and 1.5 is
decided at every time instant k. The sequential detection scheme takes decisions peri-
odically after the observation of K past samples, e.g., afterq(0), q(1), . . . , q(K − 1).
In this section we illustrate the key detection methods and consider 4-PSK depicted
in Fig. 3.1 as an example. Assume that the intersymbol interference is completely
removed and that the signal at the input of the detector is q(k) given by (2.5). For
simplification let h(0) = 1. Then we obtain from (2.5) the signal under decision as

q(k) = a(k) + n(k) (3.1)

which is composed of the symbol sequence a(k) sent by the transmitter and the addi-
tive Gaussian noise n(k) = n1(k) + jn2(k) with zero mean and probability density
function pni (ni ) ; i = 1, 2 in (2.43). Each a(k) can represent one signal point out of
the symbol alphabet B = {a1, a2, a3, a4}. Figure3.1 illustrates (3.1) in the complex
plane for the case that the symbol a(k) = a1 was sent.

3.2 Maximum Likelihood Symbol-by-Symbol Detection

3.2.1 Maximum Likelihood Detection

To show the principle let us assume that the symbol a(k) = aν was sent at time instant
k. In the followingwe drop k to simplify notation. For maximum likelihood detection
a likelihood function is defined, which is the conditional probability density function
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Fig. 3.1 QAM signal points
a1, a2, . . . , a4, receive signal
q(k), and noise n(k) for
4-PSK

pL (q | aν) or a monotonic function of it, e.g., the logarithmic function. pL (q | aν)

relates the density function of q under the condition that the symbol aν was sent.
With pn(n) in (2.45) and with (3.1) follows

pL (q | aν) = pn(q − aν) = 1

2πσ2
n

e
− |q−aν |2

2σ2n ; ν = 1, 2, . . . , 4 (3.2)

Please note that (3.2) describes for the signal constellation in Fig. 3.1 a set of four
density functions, each one shifted by aν . The maximum likelihood detection (or
decision) rule is:

Select that symbol aν , which is associated with the largest pL (q | aν). Thus, the
output of the detector is

â = arg

{
max

ν=1,...4
[pL (q | aν)]

}
(3.3)

Looking at (3.2) the maximal density function results for minimal |q − aν |2, as the
exponent of the exponential function is negative. Consequently, (3.3) is equivalent
to

â = arg

{
min

ν=1,...4

[|q − aν |2
]}

(3.4)

and the probabilistic approach turns into the calculation of the squared Euclidean
distance between two complex numbers, namely q and aν for ν = 1, 2, . . . , 4. It is
also worth noting that the solution (3.4) does not depend on the mean power σ2

n of
the noise n.



3.2 Maximum Likelihood Symbol-by-Symbol Detection 33

3.2.2 Threshold Detection

From the regular signal constellation given inFig. 3.1we see that the distance between
the various aν and a given q is minimal in the first quadrant Q1 of the complex
plane. Consequently, we can formulate a detection criterion alternative to (3.4) by
introducing decision regions in the complex plane. In our example these are the
four quadrants Q1, Q2, . . . , Q4, if the symbols have equal a-priori probabilities.
The decision regions are separated by decision thresholds, which are the real and the
imaginary axis in the example of Fig. 3.1. The decision rule for a correct decision
then is

â = aν if q ε Qν ; ν = 1, 2, . . . , 4 (3.5)

otherwise the decision is in error. If q is located on the decision threshold, no unique
result is achieved. For low magnitudes of n we recognize a more reliable decision
the closer q is located to a symbol. Therefore, advanced detection techniques take
this fact into consideration and introduce “soft decision” as opposed to the described
“hard decision” in particular together with forward error correction encoding [1–3].

3.2.3 Symbol Error Probability for Threshold Detection

The Gaussian Q-Function

The symbol error probability can be formulated with the Gaussian Q-function, which
is introduced in the following. Let X be a random variable with Gaussian probabil-
ity density function px (x) given in (2.20), where we set xi = x . As shown in the
AppendixA, the probability that the random variable X is larger than a given real
number α is

P [X > α] =
∫ ∞

α

px (x)dx = 1√
2πσx

∫ ∞

α

e
− x2

2σ2x dx (3.6)

where P [...] denotes the probability operator. With the substitution u = x
σx

follows

P [X > α] = 1√
2π

∫ ∞

α
σx

e− u2

2 du = Q

(
α

σx

)
(3.7)

with the Q-function

Q(α) = 1√
2π

∫ ∞

α

e− u2

2 du (3.8)

It is straightforward to show the following properties of the Q-function
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Fig. 3.2 Q-function Q(α) = 1√
2π

∫ ∞
α e− x2

2 dx together with approximations and upper bounds

Q(−∞) = 1 ; Q(0) = 1

2
; Q(∞) = 0 ; Q(−α) = 1 − Q(α) (3.9)

and the relation with the error function erf(x) = 2√
π

∫ x
0 e−u2du is

Q(α) = 1

2

[
1 − erf(

α√
2
)

]
= 1

2
erfc(

α√
2
) (3.10)

where erfc(x) = 1 − erf(x) is defined. There is no closed form solution for the
integral Q(α) for arbitrary α. Hence, we have to rely on numerical calculations. The
result is depicted in Fig. 3.2 together with some helpful approximations and upper
bounds. Obviously, the Q-function is declining strongly with increasing α.
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Fig. 3.3 Superposition of the Gaussian conditional probability density functions pL (q | aν) in
(3.2) of the receiver output signal q for the 4-PSK symbols aν with equal a-priori probabilities

(ν = 1, 2, 3, 4) and 10 log
(

1
2σ2

n

)
= 5 dB. Source Online platform “webdemo” [4]

Example 2: Symbol Error Probability for 4-PSK

We consider Fig. 3.1, which depicts the signal points a1, . . . , a4 for 4-PSK in the
constellation diagram. Obviously, these points are located on a circle with radius
b = √

2c around the origin. Figure3.3 shows the surface diagramof the superposition
of the conditional probability density functions pL (q | aν) in (3.2) of the receiver
output signal q for the 4-PSK symbols aν with equal a-priori probabilities (ν =
1, 2, 3, 4). In this diagram 10 log

(
1

2σ2
n

)
= 5 dB is assumed. It is generated with the

online platform “webdemo” [4], which also enables to adjust different parameters.
Apparently, the individual probability density functions centered around each PSK
symbol overlap and hence we expect quite some decision errors.

Assume for the moment that only the symbol a1 = c + jc is transmitted, which
shall be known at the receiver. Then the signal (3.1) under decision will be with
(2.42)

q(k) = a1 + n(k) = c + n1(k) + j (c + n2(k)) (3.11)

at time instant k.
According to the decision rule (3.5) the decision for a1 is correct, if q(k) is located

in the first quadrant Q1 of the complex plane. The following equivalent relations are
true (k is dropped to simplify notation)

q ε Q1 ⇔ Re [q] > 0 ; Im [q] > 0 ⇔ n1 > −c ; n2 > −c (3.12)

Then follows for the probability Pa1 that a1 is decided correctly
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Pa1 = P [n1 > −c , n2 > −c] (3.13)

Using the assumption that n1 and n2 are statistically independent follows with (2.43)
and the Q-function (3.7), (3.9)

Pa1 = P [n1 > −c] P [n2 > −c] =
[
1 − Q

(
c

σn

)]2

(3.14)

Consequently, the probability of a wrong decision of a1 is

PS,1 = 1 − Pa1 = 2Q

(
c

σn

)
− Q2

(
c

σn

)
(3.15)

We can execute this procedure for the remaining symbols a2, a3, a4 and achieve the
same results, because the constellation in Fig. 3.1 is symmetrical. To get an idea about
the symbol error probability when all symbols are transmitted over a long period of
time we take the expected value. The symbols are sent by the transmitter with the
a-priori probabilities P [aν], for which in general

4∑
ν=1

P [aν] = 1 (3.16)

holds. Then we obtain the mean symbol error probability

PS =
4∑

ν=1

P [aν] PS,1 = PS,1 = 2Q

(
c

σn

)
− Q2

(
c

σn

)
(3.17)

Obviously, the minimal distance c from the decision threshold of each PSK symbol
in Fig. 3.1 and σn determine the mean symbol error probability. It can be shown that
this also holds in principle for higher order PSK or QAM constellations.

For high signal-to-noise ratios, c
σn

� 1, we conclude Q2
(

c
σn

)
� 2Q

(
c
σn

)
and

the mean symbol error probability approximately is

PS = 2Q

(
c

σn

)
(3.18)

PS is depicted as a function of c
σn

in Fig. 3.4, which shows only minor differences
between the exact solution given by (3.17) and the approximation (3.18).

For stochastic transmit data each symbol aν is a discrete random variable
with probability of occurrence P [aν]. The mean power of the symbol alphabet

B = {a1, . . . , a4} is
∑4

ν=1 |aν |2 P [aν] = ∑4
ν=1

(√
2c

)2
P [aν] = 2c2, in which we

have used (3.16). Hence, the mean symbol error probability can also be expressed

as PS = 2Q
(√

γ
2

)
− Q2

(√
γ
2

)
where γ = 2c2

σ2
n
is the signal-to-noise power ratio.
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Fig. 3.4 Symbol error
probability PS for 4-PSK;
“exact” according to (3.17),
“approximation” (3.18)

3.3 Maximum A-Posterior Symbol-by-Symbol Detection

The signal under decision at time instant k is q given in (3.1) and depicted in Fig. 3.1
for the example of 4-PSK. We define the a-posterior probability

PAPP (aν | q) = P [aν | q] ; ν = 1, 2, . . . , 4 (3.19)

as the conditional probability of the symbol aν to be detected under the condition that
the signal q is observed. Equation (3.19) defines a set of probabilities. The maximum
a-posterior probability (MAP) detection rule is as follows,

Select that symbol aν , which is associated with the largest PAPP (aν | q). Then
the output of the MAP detector is

â = arg

{
max

ν=1,...4
[PAPP (aν | q)]

}
(3.20)

According to the decision theory this method provides the best symbol-by symbol
detection of unknown events a1, a2, . . . in the stochastic signal q, because the detector
deduces the cause aν from the effect q, which is expressed by the term a-posterior
or “a posteriori”. Obviously, the likelihood decision strategy in (3.3) argues with
pL (q | aν) the other way round.

Using a special form of the Bayes rule given in the AppendixA we can rewrite
(3.19) as

PAPP (aν | q) = pL (q | aν)P [aν]

pq(q)
; ν = 1, 2, . . . , 4 (3.21)
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where pq(q) is the probability density function of q. For the maximization of
PAPP (aν | q) we have to find the maximal numerator in (3.21), because pq(q) does
not depend on the decision of the detector. Consequently, we can rewrite the decision
rule (3.20) as

â = arg

{
max

ν=1,...4
[pL (q | aν)P [aν]]

}
(3.22)

Unlike the maximum likelihood detection rule in (3.3) we have to look for the max-
imal product composed of the likelihood probability density function pL (q | aν)

and the a-priori probabilities P [aν]. Consequently, the detector at the receiver has to
know all P [aν], which are normally only available at the transmitter, if at all. This
is the main hurdle for the application of a maximum posterior probability detec-
tor. However, in many cases the transmit symbols have equal a-priori probabilities
P [aν] = 1

L for an L-ary QAM. Then themaximum posterior turns into the maximum
likelihood criterion (3.3), because from (3.22) follows

â = arg

{
1

L
max

ν=1,...4
[pL (q | aν)]

}
(3.23)

where the factor 1
L can be dropped, as it does not depend on ν. Another critical point

is that the maximum posterior detection requires the knowledge of the mean power
σ2
n of the noise n, which has to be estimated at the receiver. This will be evident with

an example using the Gaussian noise. To this end we replace pL in (3.22) by (3.2)
yielding the rather complex maximum posterior decision rule

â = arg

{
max

ν=1,...4

[
1

2πσ2
n

e
− |q−aν |2

2σ2n P [aν]

]}
(3.24)

To execute (3.24) we can use the fact that the maximization is equivalent to the
minimization of the reciprocal. In addition we take a monotonic function, such as
the natural logarithm ln(...) and obtain

â = arg

{
min

ν=1,...4

[ |q − aν |2
2σ2

n

− ln (P [aν])

]}
(3.25)

wherewe have dropped the term ln
(
2πσ2

n

)
, because it does not affect the result. Equa-

tion (3.25) clearly reveals that the result â of the minimization procedure depends on
the a-priori probabilities P [ai ] and on the mean noise power σ2

n . The MAP detector
is optimal in the sense that it can minimize the symbol error probability [5].
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3.4 Maximum Likelihood Sequence Detection

A sequence detector takes a decision after considering K receive samples
q(0), q(1), . . . , q(K − 1). The algorithm for maximum likelihood sequence detec-
tion will be best explained with the help of an example as follows.

3.4.1 System Model

Example 3
Given the simplified discrete-time transmission system depicted in Fig. 3.5 with the
real-valued symbol sequence a(k) and the symbol alphabet B = {−1, 1}. Hence,
the modulation scheme is 2-PSK, which allocates symbols only on the real axis of
the complex plain. The equivalent baseband system is modeled as a finite impulse
response (FIR) filter with real-valued impulse response

h(k) =

⎧⎪⎨
⎪⎩

1 ; k = 0

− 1
2 ; k = 1

0 ; k = −1,±2,±3, . . .

(3.26)

The input signal to the sequential detector is

q(k) = w(k) + n(k) (3.27)

where n(k) is real-valued Gaussian noise with zero mean and probability density
function

pn(n) = 1√
2πσn

e
− n2

2σ2n (3.28)

Fig. 3.5 Discrete-time equivalent baseband model of a digital transmission system with sequence
detection (Viterbi equalizer)
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The noise samples are statistically independent. The output of the decoder is referred
to as â(k). The FIR system outputs

w(k) = a(k) ∗ h(k) = a(k) − 1

2
a(k − 1) (3.29)

which contains strong intersymbol interference owing to the term − 1
2a(k − 1).

3.4.2 State Space Trellis Diagram

Now we are going to describe the input-output relation in the state space. For that
purpose a trellis diagram depicted in Fig. 3.6 is used, which is a state transition
diagram annotated by the discrete time k. The key component is the state variable,
which is always associated with the output of the system memories. If each state
variable can take on L different values and ifM is the number of independentmemory
elements of the systemmodel, then the number of states is NS = LM . In our example
the state variable is a(k − 1), as there is only a single memory. Consequently, M = 1
and with L = 2 we have NS = 2 states, which we indicate freely as Sν , ν = 1, 2.

In general, the trellis diagram consists of nodes and transitions. The nodes rep-
resent the states and the transitions, which are labeled by (a(k) | w(k)), indicate
the change of the output signal w(k) depending on the input signal a(k). As already
defined,w(k) is the output of the equivalent channel model without noise. The detec-
tor has to know the channel impulse response h(k) in (3.26). To illustrate the trellis
diagram in Fig. 3.6 assume that the system is in state S1, thus a(k − 1) = 1. If the
input a(k) keeps to be 1 for the next time instances k = 1, 2, . . ., then the system
remains in state S1 indicated by the horizontal arrows and w(k) remains 1

2 . In case
the input a(k) changes to−1 the systemmoves from state S1 to state S2 and provides
the output w(k) = − 3

2 . The system remains in state S2, when the input keeps going
to be −1 until the input changes to 1 resulting in a state transition from S2 to S1

Fig. 3.6 Trellis diagram for the input-output relation of the equivalent baseband system in Fig. 3.5
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and the output will be w(k) = 3
2 . We recognize that the trellis diagram in Fig. 3.6 is

periodic with time period 1 and the same annotation repeats for k > 1, which is not
shown.

3.4.3 Maximum Likelihood Sequence Detection

The detector estimates the transmit symbol sequence a(0), a(1), . . . , a(K − 1)
from the receive sequence q(0), q(1), . . . , q(K − 1) in the maximum likelihood
sense. Hence, the detection method is also called maximum likelihood sequence
estimation (MLSE). As the receiver knows the channel coefficients h(k), it can cal-
culate the sequence w(0), w(1), . . . , w(K − 1) for all possible symbols a(k) of
the symbol alphabet B. This is indicated in the trellis diagram in Fig. 3.6, where
w(k) can take on four different values 1

2 ,− 3
2 ,

3
2 ,− 1

2 . For a given symbol sequence
a(0), a(1), . . . , a(K − 1) the trellis illustrates the sequence
w(0), w(1), . . . , w(K − 1) as a path through the diagram from k = 0 to K − 1
and the trellis shows the set of all such sequences. In the example we have chosen
K − 1 = 5.

As for the symbol-by-symbol detection described previously, we also define a
likelihood probability density function

pK (q(0), q(1), . . . , q(K − 1) | w(0), w(1), . . . , w(K − 1)) (3.30)

which is the multivariate density function of the observation
q(0), q(1), . . . , q(K − 1) conditioned on w(0), w(1), . . . , w(K − 1). There is a
combinatorial multitude of sequences in the argument of (3.30). For the detec-
tion algorithm the set of density functions is relevant, which reflects all possi-
ble paths through the trellis diagram. Then the sequence detector is looking for
that sequence w(0), w(1), . . . , w(K − 1), which is maximal likely to the observa-
tion q(0), q(1), . . . , q(K − 1) and from that dedicated path in the trellis diagram
the sequence of optimal estimates â(0), â(1), . . . , â(K − 1) is derived. Assuming
q(0), q(1), . . . as statistically independent and also independent of w(0), w(1), . . .
yields the density function

pK (q(0), q(1), . . . , q(K − 1) | w(0), w(1), . . . , w(K − 1)) =
K−1∏
k=0

pn (q(k) − w(k))

(3.31)
with pn given in (3.28). Then follows

pK (... | ...) =
(

1√
2πσn

)K

e
− 1

2σ2n

∑K−1
k=0 [q(k)−w(k)]2

(3.32)

Now we introduce the branch metric

dk = [q(k) − w(k)]2 (3.33)



42 3 Detection Methods

Fig. 3.7 Trellis diagram with branch metrics dk = [q(k) − w(k)]2 ; k = 1, 2, . . . , 5

and the path metric

DK =
K−1∑
k=0

dk (3.34)

and obtain

pK (... | ...) =
(

1√
2πσn

)K

e
− 1

2σ2n
DK (3.35)

The calculated numbers for the branch metrics dk are indicated in the trellis diagram
in Fig. 3.7. Consequently, the path metrics DK for all possible paths through the
trellis can be found with (3.34) and also the set of conditional probability density
functions in (3.35). Please note that DK is positive.

The criterion for maximum likelihood detection is to select the maximal density
function pK out of the set. Equivalently, we can search for that path in the trellis,
which exhibits minimal path metric DK owing to the negative exponent in (3.35).
Thus, the most likely symbol sequence â(0), â(1), . . . , â(K − 1) is deduced from
the sequence of transitions in the trellis in Fig. 3.6

{(a(0) | w(0)) , (a(1) | w(1)) , . . . , (a(K − 1) | w(K − 1))}min[DK ] (3.36)

where the procedure is executed over all paths starting at k = 0 and ending at k =
K − 1.

3.4.4 Solution Using the Viterbi Algorithm

A straightforward way to find the solution (3.36) is the calculation of all branch met-
rics dk and all path metrics DK of the trellis. Then we take the path with the smallest
metric and deduce the estimated symbol sequence â(0), â(1), . . . , â(K − 1) using
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the trellis in Fig. 3.6. However, the computational amount with this “brute search”
can be very large and this procedure is not effective, because we calculate all path
metrics although we just require one, the minimal one. Consequently, more effective
procedures have been the topic of research. A task similar to sequential detection
is known from operations research as the “traveling salesman problem”, where a
salesman has to visit customers at various places spending minimal total traveling
cost. The solution for the salesman problem was first given by Bellman in 1957. He
formulated an optimality principle saying that “an optimal policy has the property
that whatever the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first decision“
[6, 7]. The procedure to get the solution is called “dynamic programming”. Similar
tasks are known from computer science and solved with the algorithm proposed by
Dijkstra [8].

For digital communicationsA.Viterbi has found a similar algorithm for the decod-
ing of data, which are encoded with convolutional codes [9]. The Viterbi algorithm
can be applied for many optimization problems based on a trellis diagram to find
the most probable sequence of a hidden Markov model. For example it is applied
for pattern recognition in bio-informatics and artificial intelligence. Here we focus
on the maximum likelihood sequence detection. There are several formulations of
the mathematical algorithm and as a program. Let us indicate the nodes in the trellis
by its state Sν and the time instant k, i.e. by (Sν, k) ; ν = 0, 1, . . . , NS , in which NS

is the number of states, in our example NS = 2. All paths, which start at the begin-
ning of the trellis and are entering that node are called partial paths. The principle
strategy of the Viterbi algorithm is not to calculate all paths through the trellis up to
the end k = K − 1, but to dynamically dismiss all those partial paths entering the
node (Sν, k), which exhibit larger partial path metrics compared to the partial path
with minimal metric at that node. If there are more than one partial paths with the
same minimum, the final decoding result will be ambiguous. The discarded “dead
paths” are skipped from the trellis diagram. This procedure has to be executed for
all nodes (Sν, k) ; ν = 1, 2 . . . , NS and k = 1, 2, . . . , K − 1 step by step. For the
initialization at k = 0 the partial path metrics are set to zero at all nodes (Sν, 0).
Of course, the partial path metrics can be calculated recursively by adding the new
branch metric in each step. At the end all branches are traced back from the end of
the trellis and the “surviving” branches provide the optimal path (or paths), from
which the sequence (3.36) is deduced.

Programs are adequately explained with an example. Therefore we go back to the
trellis in Fig. 3.7. The various steps of the algorithm are explained in Fig. 3.8. In step
1 the branch metrics at nodes (S1, 1) and (S2, 1) are calculated. We notice that the
partial path with metric 2.56 can be discarded at node (S1, 1), because 2.56 > 0.36.
With the similar argumentwe discard at node (S2, 1) the partial pathwithmetric 1.96.
In step 2 the partial path metrics are updated by adding the respective branch metrics
of the second segment of the trellis. At node (S1, 2) the partial path with metric 9.16
can be dismissed as dead path. Similarly at node (S2, 2) we drop the partial path
with metric 1.16. This procedure is continued until step 5, in which we cancel two
partial paths with metrics 2.21 and 7.01, respectively. The algorithm finally reveals
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Fig. 3.8 Steps of the Viterbi algorithm with partial paths and associated metrics. Step 6 shows path
with minimal metric and the detected sequence â(k)
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the result in step 6 from the path with minimal path metric 1.81 terminating in node
(S1, 5). From the trellis diagram in Fig. 3.6 we allocate the input symbols a(k) to the
nodes crossed by the final path from k = 1, . . . , 5 resulting in the estimated symbol
sequence â(k)

1,−1, 1, 1, 1 (3.37)

For comparison a symbol-by-symbol threshold detector applied on q(k) with
threshold level q = 0 and decision rule

â(k) =
{

1 ; q(k) ≥ 0

−1 ; q(k) < 0
(3.38)

shall be employed, which yields the sequence â(k) after the decision

− 1,−1, 1,−1, 1 (3.39)

Both results differ in the first and next to last symbol indicating that the symbol-by-
symbol and the sequence detection can provide different results.

3.4.5 Viterbi Equalizer

In several practical applications the impulse response gR(t) of the receive lowpass in
Fig. 1.1 is designed in such a way that the overall impulse response of the equivalent
baseband system satisfies the first Nyquist criterion to eliminate the intersymbol
interference. In this case the receive lowpass is called an equalizer. In the example
of Fig. 3.5 the overall impulse response h(k) shows a strong post cursor h(1) =
− 1

2 , which causes severe intersymbol interference. No separate equalizer is present.
However, the sequence detector takes this intersymbol interference together with the
noise n(k) into account and provides an optimal decision. Consequently, the tasks
of equalization and detection under the impact of noise and intersymbol interference
have beenmergedwith this approach and the presented sequence detector is therefore
often denoted as a Viterbi equalizer.
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Chapter 4
Digital Transmission over Wireless,
Time-Variant Channels

4.1 Transmission System with Time-Variant Channel

Digital signal transmission over a wireless channel has become an important field
due to the high flexibility and comfort of wireless connections for many users with
the motto “telecommunications anytime and anywhere”. Therefore, in the following
chapters we describe the principles of such systems and their design in some detail. A
significant part is devoted to the wireless channel. The parameters of electrical cables
or optical fibers are approximately constant over time. Consequently, they have been
characterized as time-invariant and described by an impulse response gc(t) in Fig. 1.1
of Sect. 1.2. As we will see in detail, a wireless channel is significantly different and
multifaceted. The transmit signal travels on a multitude of different paths from the
transmitter to the receiver, undergoes reflections and scattering at objects, such as
buildings.Moreover, if the transmitter or the receiver aremoving, the signal suffers by
the Doppler effect. There is quite a lot of knowledge on the basis of wave propagation
and electromagnetic field theory. We will build upon these findings and emphasize
a system-theoretical approach, which allows together with adequate channel models
the effective design of algorithms for signal transmission and reception. We focus
on single-input single output (SISO) channels in this Part I and prepare the ground
for the wireless multiple input multiple output (MIMO) systems discussed in Part III
well knowing that the MIMO channel is composed of many channels of the SISO
type.

We start with the block diagram for the wireless transmission scheme and empha-
size on the mathematical description of the input-output relation. The wireless chan-
nel is described as a time-variant system with the two-dimensional impulse response
w(t, s) or the delay spread function gC(t, τ ), also called modified impulse response.
Wewill use and resume the principle results from Part II on the theory of time-variant
systems. Part II is self-contained and readers not familiar with time-variant systems
are encouraged to switch to that part beforehand or on demand during the study of
the following chapters, because we shall merely quote those results here.
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Fig. 4.1 Block diagram of a transmission systemwith a time-variant channel with impulse response
wC (t, s) and delay spread function gC (t, τ )

Figure4.1 shows the block diagram of a system for wireless transmission. We
recognize the strong similarity to Fig. 1.1 in Sect. 1.2. However, the differences are
the time-variant channel and the different notations for the impulse responses. As
outlined in Part II, linear and time-variant systems are completely characterized
by their response w(t, s) at observation time t to an input Dirac impulse δ(t − s),
which is active at the time instant s ≤ t . One denotesw(t, s) as time-variant impulse
response. s and t are independent variables. It can be observed thatw as a function of
t exhibits different shapes depending on the initial time instant s of theDirac impulse.
This is quite in contrast to a linear time-invariant system, where the shape does not
change and the response is just shifted by s on the t-axis. Thus, a time-invariant
system is characterized by the impulse response w(t, s) = w(t − s).

As outlined in Part II, the Fourier transformofw(t, s) does not providemeaningful
system functions in the frequency domain, such as a transfer function. Therefore, the
transformation of variables s = t − τ was proposed, which yields the delay spread
function also called modified impulse response

w(t, t − τ ) = g(t, τ ) (4.1)
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This function can be regarded as the response of the time-variant system at observa-
tion time t to an input Dirac impulse effective at t − τ ≤ t .

For time-invariant systems w(t − s) = w(τ ) = g(τ ) holds. g(τ ) and not g(t) is
formally required, if a time-invariant system is described in the framework of time-
variant systems, e.g., in case of a cascade of such systems. If the system is composed
solely of time-invariant building blocks, τ can be replaced by t . Of course, g(t) and
g(τ ) exhibit the same shape, because mathematically we can use any variable to
describe a function. In Part II various input-output relations and Fourier spectra are
derived in quite some detail, which we will use also in the following.

4.2 Overall Time-Variant Impulse Response

As in Sect. 1.6 for the time-invariant channel, we are now going to derive the impulse
response between the nodes (I) and (II) in Fig. 4.1. For that purpose we excite
the system at the input of the pulse shaper by δ(t − s) and allocate to all blocks
impulse responses. The time-variant systems get impulse responses with the argu-
ment t, s and the time-invariant systems with t − s. Thus, the impulse responses of
the time-invariant pulse shaper and receive lowpass filter are wI (t, s) = wI (t − s)
and wR(t, s) = wR(t − s), respectively. The reader assures oneself easily of the
time-variant impulse response of the modulator

wM(t, s) = δ(t − s)ej2π f0t (4.2)

and the demodulator
wD(t, s) = δ(t − s)e−j2π f0t (4.3)

Wemerely quote somemore properties fromPart II of time-variant systems before
going into the details of the Fig. 4.1. Let x(t) be the input signal of a time-variant
system with impulse response w(t, s). Then the output signal y(t) is given by the
“generalized convolution integral” or “time-variant convolution”

y(t) = x(t) � w(t, s) =
∫ ∞

−∞
x(s)w(t, s)ds (4.4)

Equation (4.4) actually incorporates the “conventional” or “time-invariant” convolu-
tion, if we set w(t, s) = w(t − s) resulting in

y(t) = x(t) � w(t − s) =
∫ ∞

−∞
x(s)w(t − s)ds (4.5)

The overall time-variant impulse response of a cascade of systems with w1(t, s) and
w2(t, s) is given by
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w1(t, s) � w2(t, s) =
∫ ∞

−∞
w1(ζ, s)w2(t, ζ)dζ (4.6)

If one system is time-invariant, e.g.,w1(t, s), thenwe just writew1(t, s) = w1(t − s)
and replace the comma by theminus sign. In Part II we also show that the time-variant
convolution is non-commutative in general. Hence, we have to respect the sequen-
tial arrangement of time-variant systems. This is in contrast to the time-invariant
convolution.

Furnished with these basics we can focus on the system in Fig. 4.1. The cascade of
the pulse shaper and themodulator with (4.2) owns the time-variant impulse response

wI (t − s) � wM(t, s) =
∫ ∞

−∞
wI (ζ − s)wM(t, ζ)dζ = wI (t − s)ej2π f0t (4.7)

which we could have directly concluded from the Fig. 4.1. Then follows the time-
variant impulse response at the output of the real part operator

√
2Re[...]

w1(t, s) =
√
2

2

[
wI (t − s)ej2π f0t + w∗

I (t − s)e−j2π f0t
]

(4.8)

Next we determine the impulse response of the cascade of the channel wC(t, s) and
the demodulator wD(t, s) yielding with (4.3) and (4.6)

w2(t, s) = wC(t, s) � wD(t, s) = wC(t, s)e
−j2π f0t (4.9)

Finally, the overall time-variant impulse response between the nodes (I) and (II) in
Fig. 4.1 is

we(t, s) = w1(t, s) � w2(t, s) � wR(t − s)
√
2 (4.10)

where we have used the associative property of the time-variant convolution. Plug-
ging in (4.8) we get

we(t, s) = we1(t, s) + we2(t, s) (4.11)

with

we1(t, s) = (
wI (t − s)ej2π f0t

)
�

(
wC(t, s)e−j2π f0t

)
� wR(t − s)

we2(t, s) = (
w∗

I (t − s)e−j2π f0t
)
�

(
wC(t, s)e−j2π f0t

)
� wR(t − s)

(4.12)

In Sect. 4.4.2 we consider the spectrum Ge2( ft , fτ ) of the delay spread function
ge2(t, τ ) corresponding towe2(t, s) and show thatGe2( ft , fτ ) is zero for usual system
parameters. As a consequence one can assume ge2(t, τ ) = 0 and thus we2(t, s) = 0
in the following. Then we obtain the overall time-variant impulse response between
the nodes (I) and (II) in Fig. 4.1 using (4.11) and (4.12)

we(t, s) = (
wI (t − s)ej2π f0t

)
�

(
wC(t, s)e

−j2π f0t
)
� wR(t − s) (4.13)
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4.3 Overall Delay Spread Function

Now we are interested in the overall delay spread function between the nodes (I) and
(II) in Fig. 4.1. As pointed out in Part II, the time-variant impulse response has no
meaningful Fourier spectrum for signal processing. This can be overcome with the
transformation of variables

s = t − τ (4.14)

which turns the time-variant impulse responses into delay spread functions as follows

we(t, s) = ge(t, τ ), wI (t − s) = gI (τ ), wc(t, s) = gC(t, τ ), wR(t − s) = gR(τ )
(4.15)

We show at the end of this section that from (4.11) and (4.12) the overall delay spread
function follows as

ge(t, τ ) = ge1(t, τ ) + ge2(t, τ ) (4.16)

with
ge1(t, τ ) = gI (τ ) �

(
gC(t, τ )e−j2π f0τ

)
� gR(τ )

ge2(t, τ ) = g∗
I (τ ) �

(
gC(t, τ )e−j4π f0tej2π f0τ

)
� gR(τ )

(4.17)

In Sect. 4.4 the associated Fourier spectra are discussed. There we show that a usual
choice of the cut-off frequencies results in

ge2(t, τ ) = 0 (4.18)

yielding from (4.16)

ge(t, τ ) = gI (τ ) �
(
gC(t, τ )e

−j2π f0τ
)
� gR(τ ) (4.19)

Please note, we use the same symbol � for the time-variant convolution of delay
spread functions and for the time-variant impulse responses. However, their integral
representations are different.

As shown in Part II, the time-variant convolution of two delay spread functions
g1(τ ) and g2(t, τ ) is given by

g12(t, τ ) = g1(τ ) � g2(t, τ ) =
∫ ∞
−∞

g1(τ − ζ)g2(t, ζ)dζ =
∫ ∞
−∞

g1(η)g2(t, τ − η)dη (4.20)

and

g21(t, τ ) = g2(t, τ ) � g1(τ ) =
∫ ∞

−∞
g2(t − ζ, τ − ζ)g1(ζ)dζ (4.21)

Both relations apply for (4.17) and apparently are non-commutative. Thus, the
sequential arrangement may not be interchanged. For the input-output relation we
obtain from (4.4) with s = t − τ and w(t, t − τ ) = g(t, τ )
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y(t) = x(t) � g(t, τ ) =
∫ ∞

−∞
x(t − τ )g(t, τ )dτ (4.22)

Proof of (4.16) and (4.17)
We use the definition of the time-variant convolution (4.6) and obtain for the upper
line in (4.12)
we1(t, s) = (∫ ∞

−∞ wI (ζ − s)wC(t, ζ)e−j2π f0(t−ζ)dζ
)
� wR(t − s). Introducing the

substitution ζ = t − u ; dζ = −du yields
we1(t, s) = (∫ ∞

−∞ wI (t − u − s)wC(t, t − u)e−j2π f0udu
)
� wR(t − s).

With s = t − τ and (4.15) follows
we1(t, t − τ ) = ge1(t, τ ) =(∫ ∞

−∞ gI (τ − u)gC(t, u)e−j2π f0udu
)
� gR(τ ). Using the

definition (4.20) we obtain ge1(t, τ ) = gI (τ ) �
(
gC(t, τ )e−j2π f0τ

)
� gR(τ ) and the

first equation in (4.17) is proven.
In a similar way we prove ge2(t, τ ). We start with the lower line in (4.12)

we2(t, s) = (∫ ∞
−∞ w∗

I (ζ − s)e−j2π f0ζwC(t, ζ)e−j2π f0t dζ
)
� wR(t − s) and the sub-

stitution ζ = t − u ; dζ = −du yields
we2(t, s) = (∫ ∞

−∞ w∗
I (t − u − s)wC(t, t − u) e−j4π f0tej2π f0udu

)
� wR(t − s).

With s = t − τ , we2(t, t − τ ) = ge2(t, τ ), wC(t, t − u) = gC(t, u),
g′
C(t, u) = gC(t, u)e−j4π f0tej2π f0u , and wR(t − s) = gR(τ ) follows

ge2(t, τ )=
(∫ ∞

−∞ g∗
I (τ − u)g′

C(t, u)du
)
� gR(τ ) fromwhich we obtain with (4.20) the

symbolic notation
ge2(t, τ ) = g∗

I (τ ) � g′
C(t, τ ) � gR(τ ) = g∗

I (τ ) � (gC(t, τ ) e−j4π f0tej2π f0τ
)
� gR(τ )

and the proof is finished.

4.4 Overall Doppler Spread Function

4.4.1 Fourier Transform of the Overall Delay Spread
Function

To get inside into (4.17) and to define alternative system functions we consider the
frequency domain. To this end we will apply the Fourier transform with respect to
the variables t and τ . Therefore we define the corresponding variables as

t ↔ ft ; τ ↔ fτ

and use the symbol � for the transform. In wireless communications ft is called
Doppler frequency, as it illustrates the time-variance of the channel. fτ is the “natural”
frequency, also used for the ordinary frequency response of a time-invariant system
or the spectrum of a signal. In Part II the delay spread functions and their Fourier
transforms are discussed in detail, where the table in Sect. 11.6 presents a summary.
We shall merely quote the results here without proof. We define with capital letters
the transfer function of the pulse shaper
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gI (τ )
τ

� GI ( fτ ) (4.23)

the transfer function of the receive filter

gR(τ )
τ

� GR( fτ ) (4.24)

the Doppler spread function of the channel

gC(t, τ )
t,τ
� GC( ft , fτ ) (4.25)

and the overall Doppler spread function

ge(t, τ )
t,τ
� Ge( ft , fτ ) (4.26)

On top of the arrows we indicate the direction of the Fourier transform with respect
to the t- and the τ -coordinate.

We quote from Sect. 11.5 of Part II the following transform pairs:

Let g1(τ )
τ

� G1( fτ ) and g2(t, τ )
t,τ
� G2( ft , fτ ), then

g1(τ ) � g2(t, τ )
t,τ
� G1( fτ )G2( ft , fτ ) (4.27)

g2(t, τ ) � g1(τ )
t,τ
� G2( ft , fτ )G1( ft + fτ ) (4.28)

With these findings the following Fourier transforms of (4.16) and (4.17) are proven
at the end of this section,

ge(t, τ )
t,τ
� Ge( ft , fτ ) = Ge1( ft , fτ ) + Ge2( ft , fτ ) (4.29)

with

ge1(t, τ )
t,τ
� Ge1( ft , fτ ) = GI ( fτ )GC( ft , fτ + f0)GR( ft + fτ )

ge2(t, τ )
t,τ
� Ge2( ft , fτ ) = G∗

I (− fτ )GC( ft + 2 f0, fτ − f0)GR( ft + fτ )
(4.30)

In the following it will be shown that the cut-off frequencies of the pulse shaper and
the receive filter can be determined in such a way thatGe2( ft , fτ ) ≈ 0, which results
in the overall Doppler spread function

Ge( ft , fτ ) = GI ( fτ )GC( ft , fτ + f0)GR( ft + fτ ) (4.31)

Apparently,Ge( ft , fτ ) is composed of the frequency shiftedDoppler spread function
of the time-variant channel, GC( ft , fτ + f0), filtered by GI ( fτ ) and GR( ft + fτ ).
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4.4.2 Principal System Model Parameters

Cut-Off Frequencies

To bring the relevance of (4.29) and (4.30) to light, we impose the following model
parameters. The impulse shaper and the receive lowpass shall possess transfer func-
tions with ideal stop-bands

GI ( fτ )

{
	= 0 ; | fτ | ≤ f I
= 0 ; else

; GR( fτ )

{
	= 0 ; | fτ | ≤ fR
= 0 ; else

(4.32)

f I and fR are the cut-off frequencies of the pulse shaper and the receive filter,
respectively. The Doppler spread function of the channel shall have a bandpass shape
with a passband around the carrier frequency fτ = ± f0 and shall be strictly band-
limited as follows

GC( ft , fτ )

⎧⎪⎨
⎪⎩

	= 0 ; f0 − fτ ,C ≤ | fτ | ≤ f0 + fτ ,C
	= 0 ; − ft,C ≤ | ft | ≤ ft,C
0 ; else

(4.33)

2 fτ ,C defines the transmission bandwidth and ft,C themaximalDoppler frequency
of the time-variant channel.

Overall Doppler Spread Function Without Receive Filter

For a better understanding we first define an intermediate delay spread function and
a Doppler spread function from the input of the pulse shaper (node I) to the receive
filter input in Fig. 4.1 as ge,D(t, τ ) andGe,D( ft , fτ ).With (4.16) and (4.17) we obtain

ge,D(t, τ ) = gI (τ ) �
(
gC(t, τ )e

−j2π f0τ
) + g∗

I (τ ) �
(
gC(t, τ )e

−j4π f0tej2π f0τ
)
(4.34)

With (4.29) and (4.30) follows

Ge,D( ft , fτ ) = GI ( fτ )GC( ft , fτ + f0) + G∗
I (− fτ )GC( ft + 2 f0, fτ − f0)

(4.35)
where we do not take account of the gain factor

√
2 of the receive filter at the

moment. In Fig. 4.2 the top view of the spectral components of Ge,D( ft , fτ ) in
(4.35) is illustrated. This busy figure needs some comments. To show the principle
we assume real-valued spectra. As defined in (4.33), the passbands of the channel
Doppler spread function GC( ft , fτ ) are rectangles located around fτ = ± f0 and
exhibit a bandwidth of 2 fτ ,C and 2 ft,C . The passband of GI ( fτ ) is shown as a
horizontal stripe. Please note, if a one-dimensional function GI ( fτ ) is plotted in a
two-dimensional diagram we have to keep GI ( fτ ) constant along the ft -axis. The
inside of the stripe represents the passband and the outside the stop-band of this filter.
G∗

I (− fτ ) in principle has the same shape.
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The frequency shifted Doppler spread function GC( ft + 2 f0, fτ − f0) is illus-
trated in the upper left part of Fig. 4.2. For the defined cut-off frequencies we can
substantiate that all spectral parts for | fτ | > f I are canceled byGI ( fτ ) andG∗

I (− fτ ).
The important baseband GI ( fτ )GC( ft , fτ + f0) lies as a rectangle around the ori-
gin in the frequency range | fτ | ≤ f I and | ft | ≤ ft,C . Apparently, also a main part
of the annoying two- dimensional spectrumG∗

I (− fτ )GC( ft + 2 f0, fτ − f0) around
(−2 f0, 0) contributes toGe,D( ft , fτ ). It does not overlap with the baseband, because
normally the carrier frequency is much larger than the maximal Doppler shift of the
channel, 2 f0 
 ft,C .

Impact of the Receive Filter

Now we introduce the receive filter gR(τ ) and consider the overall delay spread
function, which is

ge(t, τ ) = ge,D(t, τ ) � gR(τ ) (4.36)

as well as the overall Doppler spread function

Ge( ft , fτ ) = Ge,D( ft , fτ )GR( ft + fτ ) (4.37)

Figure4.3 illustrates the remaining spectral components from Fig.4.2. The transfer
function of the receive lowpass is defined in (4.32) with the cut-off frequency fR . In
(4.37) it is represented as GR( ft + fτ ) and thus as a diagonal stripe in the top view
of Fig. 4.3. The inside of the stripe indicates the passband and the outside is the stop-
band withGR( ft + fτ ) = 0. Apparently, the receive filter cancels the remaining part
of G∗

I (− fτ )GC( ft + 2 f0, fτ − f0) located around (−2 f0, 0) and cuts even some
corners of the channel baseband. As a result

G∗
I (− fτ )GC( ft + 2 f0, fτ − f0)GR( ft + fτ ) = Ge2( ft , fτ ) = 0 (4.38)

and Ge( ft , fτ ) in (4.31) is verified. From Ge2( ft , fτ ) = 0 follows ge2(t, τ ) = 0 and
(4.18) is proven as well.

The top view of Ge( ft , fτ ) in Fig. 4.3 results as a baseband spectrum with a
rectangle or a hexagon shape in our example depending on the cut-off frequencies
and indicated by dashed lines. The interesting question is, whether or not the filter
GR( ft + fτ ) can limit the maximal Doppler shift ft,C of the fading channel. We see
from Fig. 4.3 that the border lines of GR( ft + fτ ) cut the ft -axis at ± fR as well as
the fτ -axis. A reduction of fR is able to limit the Doppler frequency of the channel
on the ft -axis, however simultaneously also the transmission bandwidth along the
fτ - axis. Therefore a time-invariant receive lowpass is not effective in reducing the
impact of the fading other than the spectral parts ofG∗

I (− fτ )GC( ft + 2 f0, fτ − f0).
Finally, please note that f I in Fig. 4.3 can not be considered as the final bandwidth

of the receiver output signal qR(t). The reason is the Doppler shift ft,C of the fading
channel, which increases the bandwidth of qR(t) beyond f I , as will be discussed in
the next section.
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Fig. 4.2 Top view of spectral parts of the Doppler spread function Ge,D( ft , fτ ) in (4.35) between
node I and the input of the receive lowpass in Fig. 4.1. All spectra shall be real-valued. GC ( ft , fτ ),
Doppler spread function of time-variant channel; GC ( ft , fτ + f0), version of GC ( ft , fτ ) shifted
on fτ -axis; GC ( ft + 2 f0, fτ − f0), version of GC ( ft , fτ ) shifted on ft - and fτ -axis; GI ( fτ ),
transfer function of the pulse shaper

Proof of (4.29) and (4.30)
We start with the first line in (4.17) and obtain with the frequency shifting property

of the Fourier transform gC(t, τ )e−j2π f0τ
t,τ
� GC( ft , fτ + f0). Using (4.27) yields

gI (τ ) �
(
gC(t, τ )e−j2π f0τ

) t,τ
� GI ( fτ )GC( ft , fτ + f0) and with the help of (4.28)

we obtain
[
gI (τ ) �

(
gC(t, τ )e−j2π f0τ

)]
� gR(τ )

t,τ
�

[GI ( fτ )GC( ft , fτ + f0)]GR( ft + fτ ) which proves the first line of (4.30).
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Fig. 4.3 Top view of spectral parts of the overall Doppler spread function Ge( ft , fτ ) in (4.29)
with (4.30). All spectra shall be real-valued. GR( ft + fτ ), Doppler spread function of receive
filter; GI ( fτ ), transfer function of the pulse shaper

For the second line we go back to (4.17) and start with gC(t, τ )e−j4π f0tej2π f0τ
t,τ
�

GC( ft + 2 f0, fτ − f0). With g∗
I (τ )

τ
� G∗

I (− fτ ) and using (4.27) results in

g∗
I (τ ) � gC(t, τ )e−j4π f0tej2π f0τ

t,τ
� G∗

I (− fτ )GC( ft + 2 f0, fτ − f0) and with the

help of (4.28) we obtain
[
g∗
I (τ ) �

(
gC(t, τ )e−j4π f0tej2π f0τ

)]
� gR(τ )

t,τ
�[

G∗
I (− fτ )GC( ft + 2 f0, fτ − f0)

]
GR( ft + fτ ), which proves the second line of

(4.30).
The proof of (4.29) is straightforward.

4.5 Equivalent Time-Variant Baseband System and
Receiver Output Signal

4.5.1 Equivalent Time-Variant Baseband System

Equipped with the overall impulse response we(t, s), the delay spread function
ge(t, τ ), and the overall Doppler spread functionGe( ft , fτ ) summarized in Table4.1
we can illustrate the previous results with the block diagram in Fig. 4.4. It shows the
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Table 4.1 Summary—system functions and output signal of the equivalent time-variant baseband
system, input signal x(t) with spectrum X ( ft ), time-variant convolution �

Impulse response
we(t, s) = (

wI (t − s)ej2π f0t
)
�(

wC (t, s)e−j2π f0t
)
� wR(t − s)

(4.13)

Delay spread function ge(t, τ ) = gI (τ ) �
(
gC (t, τ )e−j2π f0τ

)
� gR(τ ) (4.19)

Doppler spread function Ge( ft , fτ ) = GI ( fτ )GC ( ft , fτ + f0)GR( ft + fτ ) (4.31)

Output signal qR(t) = x(t) � ge(t, τ ) + nR(t) (4.40)

Sampled output signal

q(k) = a(k)g(k, 0)+
∑∞

m = −∞
m 	= k

a(m)g(k, k − m) + n(k) (4.44)

Output spectrum QR( ft ) = ∫ ∞
−∞ X (u)Ge( ft − u, u)du (4.46)

Noise nR(t) = √
2

(
nC (t)e−j2π f0t

) ∗ gR(t) (4.41)

Fig. 4.4 Equivalent time-variant baseband system for wireless transmission with impulse response
we(t, s) and delay spread function ge(t, τ )
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equivalent time-variant baseband system between nodes (I) and (II) of Fig. 4.1. In
the last column of Table4.1 the equation numbers are given as a reference. The noise
nR(t) is investigated in quite some detail in Sect. 2.6. This equivalent model provides
a condensed system description between the input and the output as a “black box”
with just one system function, without details of filtering, modulation, and demod-
ulation. We will use this scheme in the next section to determine the output signal
qR(t) and its Fourier spectrum QR( ft ).

4.5.2 Receiver Output Signal

Receiver Output Signal in the Time Domain

With the time-variant convolution (4.4) quoted from Part II and using the overall
impulse response we(t, s) of the equivalent time-variant baseband system model in
Fig. 4.4 we obtain

qR(t) = ua(t) � we(t, s) + nR(t) =
∫ ∞

−∞
ua(s)we(t, s)ds + nR(t) (4.39)

With the introduction of s = t − τ and the delay spread function
ge(t, τ ) = we(t, t − τ ) follows

qR(t) = ua(t) � ge(t, τ ) + nR(t) =
∫ ∞

−∞
ua(t − τ )ge(t, τ )dτ + nR(t) (4.40)

where nR(t) is the lowpass noise given earlier in (1.25) as

nR(t) = √
2

(
nC(t)e

−j2π f0t
) ∗ gR(t) (4.41)

With the input signal ua(t) of the pulse shaper (1.9) follows from (4.40)
qR(t) = (∑∞

m=−∞ a(m)δ(t − mT )
)
� ge(t, τ ) + nR(t) and the time-variant convo-

lution yields qR(t) = ∑∞
m=−∞ a(m)

∫ ∞
−∞ δ(t − τ − mT )ge(t, τ )dτ + nR(t) result-

ing in

qR(t) =
∞∑

m=−∞
a(m)ge(t, t − mT ) + nR(t) (4.42)

As depicted in Fig. 4.4, qR(t) is sampled at t = t0 + kT . With

ge(t0 + kT, t0 + kT − mT ) = g(k, k − m) (4.43)

qR(t0 + kT ) = q(k), and nR(t0 + kT ) = n(k) the receive signal at observation
instant k is obtained as



60 4 Digital Transmission over Wireless, Time-Variant Channels

q(k) = a(k)g(k, 0) +
∞∑

m = −∞
m 	= k

a(m)g(k, k − m) + n(k) (4.44)

where g(k,m) is denoted as discrete-time delay spread function of the equivalent
time-variant baseband system between node (I) and (III) in Fig. 4.4. Equation (4.44)
is an interesting result and is quite similar to (2.1) of a transmission system with
time-invariant channel. We recognize that q(k) is composed of the transmit symbol
a(k), the intersymbol interference

I (k, k) =
∞∑

m = −∞
m 	= k

a(m)g (k, k − m) (4.45)

and the additive noise n(k). The receive sample a(k) is weighted by g(k, 0). In
contrast to h(0) of the time-invariant system in (2.1), g(k, 0) changes with time due to
the fading of the channel. Also the intersymbol interference I (k, k, ) is characterized
by fading compared to I (k) in (2.2).

In summary, the receive signal q(k) of a wireless time-variant connection suffers
from three impairments, namely the fading of the gain coefficient g(k, 0), the time-
variant intersymbol interference I (k, k), and the additive noise n(k).

Spectrum of the Receiver Output Signal

Now we are interested to see the change of the transmit spectrum when passing
through the time-variant channel. To this end we input the signal ua(t) = x(t) with
spectrum X ( ft ) to the pulse shaper and determine the spectrum QR( ft ) of the receive
signal qR(t). Of course, we take advantage of the equivalent time-variant system
model in Fig. 4.4 with the Doppler spread function Ge( ft , fτ ).

Please note, in contrast to time-invariant systems QR( ft ) is not the product of
a “transfer function” Ge( ft , fτ ) and the input spectrum X ( ft ). In Part II we show
in quite some detail that the correct input-output relation is given by an integral as
follows

QR( ft ) =
∫ ∞

−∞
X (u)Ge( ft − u, u)du (4.46)

This equation has some similarities with a convolution integral (except for the second
argument u inGe) and is the reasonwhy the output spectrum QR( ft ) can have awider
bandwidth than the input spectrum X ( ft ), as will be demonstrated in the Example4.
We insert (4.31) into (4.46)

QR( ft ) =
∫ ∞

−∞
X (u)GI (u)GC( ft − u, u + f0)GR( ft − u + u)du (4.47)
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and obtain

QR( ft ) = GR( ft )
∫ ∞

−∞
X (u)GI (u)GC( ft − u, u + f0)du = GR( ft )UD( ft )

(4.48)
where

UD( ft ) =
∫ ∞

−∞
X (u)GI (u)GC( ft − u, u + f0)du (4.49)

is the Fourier spectrumof the output signal uD(t) of the demodulator in Fig. 4.1. Thus,
(4.46) boils down to (4.48), which clearly reveals that the receive lowpass GR( ft )
filters its input signal UD( ft ), as expected. Moreover, in contrast to time-invariant
systems we cannot determine a quotient QR( ft )

X ( ft )
from (4.48), such as the transfer

function of a time-invariant system in (1.28). All findings are briefly summarized in
Table4.1.

Example 4

The top view of the real-valued Doppler spread function Ge( ft , fτ ) of an equivalent
time-variant baseband system is given in Fig. 4.5a. The time-variance is revealed by
the maximumDoppler frequency (Doppler shift) ft,G , which is the cut-off frequency
on the ft -axis. The higher the speed of the transmitter or receiver the larger ft,G will
be. If the physical channel would be time-invariant and thus refrains from tempo-
ral fading, then ft,G = 0. The cut-off frequency of the Doppler spread function in
the fτ -direction shall be fτ ,G and indicates the transmission bandwidth. We have
assumed an input signal x(t) of the pulse shaper with real-valued spectrum X ( fτ )
and the cut-off frequency fτ ,X < fτ ,G . In principle, for any one-dimensional spec-
trum X we can allocate either frequency variable, ft or fτ , because the functions
are mathematically the same. However, in a two-dimensional diagram the argument
indicates in what frequency direction the filtering is effective. When we plot X ( fτ )
as a two-dimensional function, we have to consider X ( fτ ) as constant with respect
to ft . Consequently, X ( fτ ) is a horizontal stripe in Fig. 4.5a. The magnitudes of the
two spectra are unequal to zero in the shaded areas and outside they are zero with
sharp transitions. For simplicity we assume real-valued spectra. Figure4.5b shows
Ge(0, fτ ) and X ( fτ ) as a function of fτ and Fig. 4.5c illustrates Ge( ft − u, u) in
the integrand of (4.46) for various ft to calculate QR( ft ). Figure4.4d depicts the
resulting output spectrum QR( ft ). Apparently, its cut-off frequency

ft,Q = fτ ,X + ft,G (4.50)

is by the quantity ft,G larger than fτ ,X of the input X ( fτ ). The reason clearly is
the time-variance of the channel, because for the case of time-invariance, ft,G = 0
and no excess bandwidth can be observed. As a conclusion, the stronger the time
variance of the channel is the larger ft,G and ft,Q will be.
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Fig. 4.5 a Top view of the Doppler spread function Ge( ft , fτ ) of the equivalent time-variant
baseband system together with the spectrum X ( fτ ) of its input signal b Ge(0, fτ ) and X ( fτ ) as a
function of fτ c Steps to determine the integrand in (4.46) d Spectrum QR( ft ) of the output signal
of the equivalent time-variant baseband system

According to (4.48), the bandwidth fR of the receive filter must cover fτ ,X + ft,G
and not just the bandwidth fτ ,X of the transmit signal, as in the case of a time-invariant
system. Hence, the receive lowpass must be designed with the cut-off frequency
fR ≥ fτ ,X + ft,G otherwise the filter limits its input spectrum.



Chapter 5
Basic Parameters of Wireless
Transmission and Multipath Propagation

In this chapter we summarize the main facts, which characterize a single input single
output wireless link. Such channels can be partitioned into different segments. The
inner part is the wave propagation channel, which is characterized by the free space
between the output of the transmit antenna and the input to the receive antenna.
The next level includes the characteristics of the transmit and the receive antenna,
such as radiation pattern and antenna gains. Finally, the equivalent baseband system
incorporatesmodulation, demodulation, and filtering, as described in Sect. 4.1. In the
following we first characterize the main transmission effects of wireless and mobile
channels with adequate models. There are several physical details for refinements,
which are beyond our scope here, such as specific indoor and outdoor scenarios as
well as details of electromagnetic field theory. The interested reader is referred to
dedicated material, such as [1–4]. Finally, the input-output relation for a wireless
system with multipath channel is outlined.

5.1 Path Loss

Anelectromagneticwave traveling from the transmit to the receive antenna undergoes
free space path loss, scattering, refraction and defraction from surfaces of buildings,
hills, vegetation, rain, and various objects. These effects are well understood and
investigated theoretically and by measurements using two- and tree-dimensional
modeling of the landscape, ray tracing and Snell’s law [2, 5]. Friis’ law [6] for free
space transmission relates the receive mean power Pr to the mean transmit power Pt
as

Pr
Pt

= GtGr
1

PL
(5.1)
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whereGt andGr are the effective antenna gains for the transmit and receive antenna,
respectively. PL = (

4πd
λ

)2
denotes the path loss. λ = c

f0
is the wavelength of the

electromagnetic waves, which are assumed to be planar waves in the far field. c
denotes the speed of light in the air and f0 is the carrier frequency of the modulator.
The path loss PL increases proportional to the square of the distance d between the
transmitter and the receiver. However, for more complex propagation environments
highly sophisticated and empirical models are required, such as the COST 231 Hata
model or the Walfisch–Ikegami model, which are frequently used for the planning
of cellular networks. Often, simple and experimental path loss models will do, in
which the proportionality

PL ∼
(
d

d0

)n

(5.2)

is used approximately, where n is the path loss exponent and d0 a reference. The range
of n is reported to be about 2 . . . 6 and it depends on the environment for indoor and
outdoor communications. As can be seen from (5.1) and (5.2), on a logarithmic scale
the receive power Pr declines linearly with the distance d. On the basis of this path
loss the necessary power budget between the transmit and the receive antenna can
be calculated including antenna gains and also some margin for additional effects,
such as small scale fading. This approach provides the bottom line of the system
design and mainly reflects an area denoted as path loss region, which is beyond the
multitude of local scattering and reflections close to the antennas. On top of that
statistical fluctuations of the receive power is observed, which is called fading. The
main source of fading are scattering and reflections of the propagating waves at
objects on the transmitter and the receiver side as well as due to statistical movement
of the transmitter and/or the receiver. This is briefly outlined in the next section.

5.2 Shadowing

An effect, which causes a fluctuation of the receive power is shadowing also called
shadow fading. It can be characterized by a long-term power loss ψ and the main
reason is the movement of the transmitters and/or receiver behind some shielding
objects in the propagation path. Also changing surfaces of objects, scatterers, and
reflectors contribute to this effect. Shadow fading normally is a stochastic effect
and the resulting path loss ψ > 0 is often modeled satisfactorily by a log-normally
distributed random variable with probability density function

p0(ψ) = 10

ln(10)
√
2πσ0ψ

e
− (10 log10(ψ)−μ0)

2

2σ20 (5.3)
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in which μ0 and σ2
0 are the mean and the variance, respectively [5]. μ0 and σ0 in dB

and are the result ofmeasurements or analyticalmodels. Typical values areμ0 = 0dB
and σ0 = 8dB [3]. Shadow fading loss ψ and path loss PL can be multiplied to get
approximately the overall path loss.

In particular for broadband applications, where the signal bandwidth is a notice-
able fraction of the carrier frequency and where sophisticated modulation and detec-
tion methods have to be used, the receiver does not only require a sufficient mean
power but also a reasonable approximation of the impulse responsewe(t, s) or delay
spread function ge(t, τ )of the equivalent time-variant baseband system. In the follow-
ing we consider the link budget design as given and focus on additional impairments,
such as the frequency and the time dependent fading. Practical examples are modern
cellular networks, where the carrier frequency and the signal bandwidth are around
2 and 0.1GHz, respectively. Given an omni-directional antenna pattern the electro-
magnetic waves are continuously distributed over thewhole space. For a typical wave
propagation area in a city with many buildings there is no line of sight between the
base stations and the mobile stations. In this scenario reflections and scattering of
the waves are favorable for sufficient signal reception. Other propagation scenarios,
e.g., according to the COST 207 channel model already used for GSM and the COST
259 model differentiate between “rural area”, “typical urban” with approximately
no significant reflections and scattering, as well as “bad urban”. The model “hilly
terrain” accounts for significant reflections [1, 3, 7]. Difficult propagation conditions
can occur, if there is just a narrow “key hole” between the transmitter and the receiver
[8].

5.3 Multipath Model of Time-Invariant Channel

Let us nowconsider the propagation scenario depicted inFig. 5.1,which is amodel for
finding the propagation channel parameters approximately by measurement with ray
tracing. Assume that the transmitter emits an electromagnetic wave as a narrow beam
received by the mobile station. Consequently, discrete paths ν from the transmitter
to the receiver result, where the waves undergo path losses and all kinds of scattering
and reflections, which are investigated using the wave propagation theory. Often
there is also a direct path between transmitter and receiver, called line of sight path.
Each ray ν can be characterized approximately by its path loss coefficient αν and
its delay time τν . The delay τν = lν

c is given by the path length lν and the speed of
light c in the air. The path loss coefficient 0 < αν ≤ 1 depends on lν as given by the

path loss model in (5.2), thus αν ∼
(

1
τν

)n
holds approximately with n as the path

loss exponent. Consequently, a long path exhibits a high loss and thus can often be
dropped for approximation. Now assume that the transmit antenna emits the signal
uT (t), which is traveling on ray ν and arrives at the receive antenna as ανuT (t − τν).
At the receiver the signals of all paths superimpose yielding the receive signal
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Fig. 5.1 Wireless downlink multipath propagation

uR(t) =
NP∑

ν=1

ανuT (t − τν) (5.4)

where in (5.4) only the NP strongest paths are kept.
This model characterizes a linear and time-invariant system. Consequently it

can be fully described by its impulse response. Let uT (t) = δ(t) then the impulse
response is

h(t) =
NP∑

ν=1

ανδ(t − τν) (5.5)

We substantiate that the singleDirac impulse at the input results in a chain of impulses,
which superimpose and the output can be considered as a broad impulse with a
duration given approximately by the difference between the largest and the smallest
delay, also called delay spread. Hence, the multipath channel is broadening the input
signal in the time domain.

It should be mentioned that the presented model characterizes a channel with an
infinite transmission bandwidth, which is not realistic. However, the pulse shaper at
the transmitter and the lowpass filter at the receiver finally limit the bandwidth of the
overall system.
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5.4 Multipath Model of Time-Variant Channel

5.4.1 Delay Spread Function of the Time-Variant Multipath
Channel

If the receiver moves and/or scattering, reflections, and shadowing effects are time
variant, the path loss coefficients and the delays depend on time, αν = αν(t) and
τν = τν(t), respectively. Hence, the change of the receive signal uR(t) is not only
caused by the variations of the transmit signal uT (t) but also by the temporal varia-
tions of the channel parameters. Consequently, the channel model has to be refined
and described as a time-variant system. As outlined in Part II, time-variant systems
are characterized by the delay spread function gC(t, τ ). By definition gC(t, τ ) is the
response at observation time t to a Dirac impulse at the time instant t − τ ≤ t . We
first consider the input Dirac impulse uT (t) = δ (t − (t0 − τ )) active at the instant
t0 − τ . Then we proceed with t0 → t . Hence, on the basis of the model in Fig. 5.1
we obtain the delay spread function

gC(t, τ ) =
NP∑

ν=1

αν(t)δ (t − (t0 − τ ) − τν(t)) |t0→t =
NP∑

ν=1

αν(t)δ (τ − τν(t)) (5.6)

which shows some differences compared to (5.5). The multipath model in Fig. 5.1
with (5.6) is widely accepted for wireless communications. As all path loss coef-
ficients αν(t) are real-valued, also the delay spread function gC(t, τ ) shows this
property and is in line with the fact that any physical channel exhibits a real-valued
impulse response or delay spread function. It is readily appreciated that the delay
spread function in (5.6) of the multipath channel is much simpler than the general
form gC(t, τ ) treated in Sect. 4.1, because (5.6) is almost separated into the product
of a function of t and a function of τ . The separation is perfect, if we can assume
τν(t) = τν = const. that is often fulfilled approximately. We follow this special case
later and will see that the results are becoming rather simple.

The input-output relation is given by the time-variant convolution defined in
(4.22). Consequently, we obtain the channel output signal uR(t) as a function of
the input signal uT (t) with the help of (4.22)

uR(t) = uT (t) � gC(t, τ ) =
∫ ∞

−∞
uT (t − τ ) gC(t, τ )dτ (5.7)

Plugging in (5.6) yields uR(t) = ∑NP
ν=1

∫ ∞
−∞ uT (t − τ )αν(t)δ (τ − τν(t)) dτ and the

result is

uR(t) =
NP∑

ν=1

αν(t)uT (t − τν(t)) . (5.8)
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Hence, the channel output signal for path ν is αν(t)uT (t − τν(t)) determined by the
input signal, which is delayed by the time-variant path delay and attenuated by the
time-variant path loss coefficient.

As a special case, if all path delays are constant, τν(t) = τν , the delay spread
function of the path ν in (5.6) is

gC,ν(t, τ ) = αν(t)δ(τ − τν) ; ν = 1, 2, . . . , NP (5.9)

and is separated into the product of solely time and delay depending functions αν(t)
and δ(τ − τν), respectively.

5.4.2 Delay Spread Function of the Equivalent Time-Variant
Multipath Baseband System

Now we are going to determine the delay spread function ge(t, τ ) of the equivalent
baseband system between the nodes (I) and (II) in Figs. 4.1 and 4.4 for a wireless
channel with time-variant multipath propagation. The channel delay spread function
is given by (5.6). We prove at the end of this section that

ge(t, τ ) =
NP∑

ν=1

ge,ν(t, τ ) (5.10)

holds, in which

ge,ν(t, τ ) = [
α̃ν(t)gI (τ − τν(t))

]
� gR(τ ) ; ν = 1, 2, . . . , NP (5.11)

is the equivalent baseband delay spread function of path ν and

α̃ν(t) = αν(t)e
−j2π f0τν (t) ; ν = 1, 2, . . . , NP (5.12)

defines the complex path loss coefficient. As can be seen, ge(t, τ ) in (5.10) is the
superposition of NP delay spread functions ge,ν(t, τ ) of the various paths, which are
composed of the delay spread function gI (τ − τν(t)) of the pulse shaper weighted
by α̃ν(t) and filtered by the receive lowpass gR(τ ).

Proof of (5.10) and (5.11)
We plug (5.6) into the general form of the equivalent delay spread function (4.19)

and obtain ge(t, τ ) = gI (τ ) �
(∑NP

ν=1 αν(t)δ (τ − τν(t)) e−j2π f0τ
)

� gR(τ ). As the

time-variant convolution is distributive, we obtain ge(t, τ ) = ∑NP
ν=1 ge,ν(t, τ ) with

ge,ν(t, τ ) = gI (τ ) �
[
αν(t)δ (τ − τν(t)) e−j2π f0τ

]
� gR(τ ). To execute the first time-

variant convolution we use (4.20) and obtain gI (τ ) �
[
αν(t)δ (τ − τν(t)) e−j2π f0τ

]
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= ∫ ∞
−∞ gI (η)αν(t)δ (τ − η − τν(t)) e−j2π f0(τ−η)dη = gI (τ − τν(t))α̃ν(t),with α̃ν(t)

= αν(t)e−j2π f0τν (t). Finally, ge,ν(t, τ ) = [
α̃ν(t)gI (τ − τν(t))

]
� gR(τ ) follows and

the proof is finished.

5.4.3 Doppler Spread Function of the Equivalent
Time-Variant Multipath Baseband System

The Doppler spread function Ge( ft , fτ ) of the equivalent time-variant multipath
baseband system is obtained by the Fourier transform of ge(t, τ ) in (5.10) with
respect to t and τ . To this end we make the following presuppositions. Firstly,
all complex path loss coefficients α̃ν(t) exhibit the Fourier spectrum Ãν( ft ) with
lowpass characteristic and secondly, all path delays are constant, τν(t) = τν = const.
(ν = 1, 2, . . . , NP). We proof at the end of this section thatGe( ft , fτ ) is determined
by

ge(t, τ )
t,τ
� Ge( ft , fτ ) =

NP∑

ν=1

Ge,ν( ft , fτ ) (5.13)

with

ge,ν(t, τ )
t,τ
� Ge,ν( ft , fτ ) = GI ( fτ ) Ãν( ft )e

−j2πτν fτ GR( ft + fτ ) ; ν = 1, 2, . . . , NP
(5.14)

where the Ge,ν( ft , fτ ) are the Doppler spread functions of the individual paths. The
term e−j2πτν fτ reflects the signal delay on each path.

Proof of (5.13) and (5.14)
We consider (5.11). Under the given prerequisite τν(t) = τν = const. the Fourier

transform is applicable andwe get α̃ν(t)gI (τ − τν)
t,τ
� Ãν( ft )GI ( fτ )e−j2πτν fτ . Next,

we apply the transform pair (4.28) on (5.11) and obtain

ge,ν(t, τ )
t,τ
� Ãν( ft )GI ( fτ )e−j2πτν fτ GR( ft + fτ ) = Ge,ν( ft , fτ ),whichproves (5.14).

The summation over all NP paths,
∑NP

ν=1 Ge,ν( ft , fτ ), finalizes the proof.

5.4.4 Receiver Output Signal qR(t)

With the help of ge(t, τ ) in (5.10), (5.11), and the general input-output relation (4.22)
for a time-variant system we obtain the signal at the receiver output

qR(t) =
NP∑

ν=1

qR,ν(t) + nR(t) (5.15)
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with the signal component of path ν

qR,ν(t) = ua(t) �
[
α̃ν(t)gI (τ − τν(t))

]
� gR(τ ) ; ν = 1, 2, . . . , NP (5.16)

and the transmit signal ua(t).

5.4.5 Fourier Spectrum QR( ft) of the Receiver Output
Signal

The Fourier spectrum QR( ft ) of qR(t) is obtained with the general input-output
relation (4.46) and the Doppler spread function (5.13) under the prerequisite
τν(t) = τν = const. With the spectrum X ( ft ) of the signal ua(t) = x(t) at the input
of the pulse shaper we get without considering the receiver noise
QR( ft ) = ∫ ∞

−∞ X (u)
∑NP

ν=1 Ge,ν( ft − u, u)du. Interchanging integration and sum-
mation yields

QR( ft ) =
NP∑

ν=1

QR,ν( ft ) (5.17)

where

QR,ν( ft ) =
∫ ∞

−∞
X (u)Ge,ν( ft − u, u)du (5.18)

is the receiver output spectrum allocated to path ν. With (5.14) follows

QR,ν( ft ) = ∫ ∞
−∞ X (u)GI (u)GR( ft )e−j2πτνu Ãν( ft − u)du

=
[(
X ( ft )GI ( ft )e−j2πτν ft

) ∗ Ãν( ft )
]
GR( ft )

(5.19)

We recognize that the spectrum QR,ν( ft ) of the ν th receive signal is given by the
convolution of X ( ft )GI ( ft )e−j2πτν ft and the path loss spectrum Ãν( ft ) with respect
to ft , subsequently filtered byGR( ft ). As expected from the convolution, the tempo-
ral fading of the multipath channel results in an excess bandwidth of the input signal
of the receive filter compared to the transmit signal. The difference is given by the
bandwidth of the path loss Ãν( ft ). For more details please see Example 5. The rea-
son why the time-variant convolution boils down to the time-invariant convolution
in (5.19) is the fact that the Doppler spread function Ge,ν( ft , fτ ) in (5.14) excluding
GR is a product of isolated functions of ft and fτ , respectively, which holds for the
given prerequisite of constant delays τν . Again, we recognize that a quotient

QR,ν ( ft )
X ( ft )

like the transfer function of a time-invariant system cannot be defined owing to the
integral in (5.18).
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Example 5
(a) Let the cut-off frequencies of X ( ft ), GI ( ft ), Ãν( ft ), and GR( ft ) be fX , f I =
fX , f Ãν

, and fR > f I + f Ãν
, respectively. Find the maximal cut-off frequency of

QR,ν( ft ).
(b) Determine the output spectrum QR,ν( ft ) of path ν, if the channel is approxi-

mately static, i.e. its parameters do not change with time.

Solution:
(a) In general the convolution operation in (5.19) yields a maximal cut-off frequency,
which is the sum of the cut-off frequencies of the spectra under convolution. Hence,
f I + f Ãν

is the cut-off frequency of QR,ν( ft ) as a maximum. If we determine fR >

f I + f Ãν
, the receive lowpass GR( ft ) is not cutting its input spectrum.

(b) If the channel is showing long periods, in which there is no fading the path loss
is almost constant, say α̃ν(t) = 1 and consequently Ãν( ft ) = δ( ft ). Then follows
from (5.19) QR,ν( ft ) = X ( ft )GI ( ft )e−j2πτν ft GR( ft ), which is the output spectrum
of a time-invariant systemwith channel transfer functionGC( ft ) = e−j2πτν ft , similar
to (1.26) of Sect. 1.5. Consequently, fR = f I suffices in this case.

5.5 Multipath Channel and Mobile Receiver

5.5.1 System Model

An important practical case is considered in Fig. 5.2 for a wireless time-variant multi-
path channel. The fading of the parametersαν(t) and τν(t) is caused by themovement
of the receiver with the velocity v0. Only the path ν of the multipath propagation
is depicted. The receiver starts at time instant t0 = 0 at the location P0 and moves
with the velocity v0 to arrive at the location P at the time instant t > 0. We assume
the speed |v0| = v0 = constant . Within a short interval t − t0 the receiver moves
approximately on a straight line in the direction indicated by ϕν .

Fig. 5.2 Downlink
transmission over a
multipath wireless channel to
a receiver, which moves with
velocity v0
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The delay of the receive signal at time instant t in location P is determined
approximately by

τν(t) = τν(t0) + v0 cos(ϕν)

c
t (5.20)

where c is the speed of light in the air.

5.5.2 Doppler Shift

Plugging (5.20) into (5.11) and (5.12) results in the delay spread function of the
equivalent baseband system for the path ν

ge,ν(t, τ ) =
[
αν(t)e

−j2π f0τν (t0)e−j2π fD,ν tgI

(
τ − τν(t0) − v0 cos(ϕν)

c
t

)]
� gR(τ )

(5.21)
where

fD,ν = f0
v0

c
cos(ϕν) (5.22)

is denoted as the Doppler frequency or the Doppler shift for the path ν. From (5.22)
we conclude the following,

• The Doppler shift fD,ν is proportional to the speed v0 of the receiver and to the
carrier frequency f0 of the modulator. Consequently, if the receiver stands still,
then fD,ν = 0. The same holds, if no modulation is present, f0 = 0.

• For −π
2 < ϕν < π

2 the receiver moves away from the transmitter and fD,ν > 0.
For ϕν = 0 the Doppler shift is maximal,

fD,max = f0
v0

c
(5.23)

• For π
2 < ϕν < 3π

2 the receiver moves towards the transmitter and fD,ν < 0.
• For ϕν = ± π

2 the receiver does not change the distance to the transmitter and
fD,ν = 0.

5.5.3 Delay Spread Function

For a small time interval t − t0 and
v0
c � 1 we can neglect v0 cos(ϕν )

c t and obtain from
(5.21) approximately the delay spread function of the equivalent baseband system
for the path ν

ge,ν(t, τ ) = [
αν(t)e

−j2π f0τν (t0)e−j2π fD,ν tgI (τ − τν(t0))
]
� gR(τ ) (5.24)



5.5 Multipath Channel and Mobile Receiver 73

Obviously, the delays τν(t0) = τν in (5.24) are constant. Plugging in (5.12) yields

ge,ν(t, τ ) = [
α̃ν(t)e

−j2π fD,ν tgI (τ − τν)
]
� gR(τ ) (5.25)

with α̃ν(t) = αν(t)e−j2π f0τν .
Regarding (5.25) with (5.22) the movement of the receiver causes a modulation

of the path loss coefficient α̃ν(t) with the “carrier” e−j2π fD,ν t and consequently the
spectrum Ãν( ft ) of α̃ν(t)will experience a frequency shift, also called Doppler shift

α̃ν(t)e
−j2π fD,ν t

t
� Ãν( ft + fD,ν) (5.26)

As can be seen the main difference between (5.25) and (5.11) is the Doppler shift
e−j2π fD,ν t and the constant delay τν(t) = τν(t0) = τν . Hence, we can use the terms
for ge,ν(t, τ ) and qR,ν(t) derived earlier, if we just replace α̃ν(t) by α̃ν(t)e−j2π fD,ν t

and take τν(t0) = τν . This will be done in the next section.

5.5.4 Receiver Output Signal qR(t) with Doppler Shift

For the receiver output signal qR(t) (5.15) is valid

qR(t) =
NP∑

ν=1

qR,ν(t) + nR(t) (5.27)

and with (5.25) follows

qR,ν(t) = x(t) �
[
α̃ν(t)e

−j2π fD,ν tgI (τ − τν)
]
� gR(τ ) ; ν = 1, 2, . . . , NP

(5.28)
where ua(t) = x(t) is the transmit signal at the pulse shaper input. Compared to
(5.16) the Doppler shift e−j2π fD,ν t is effective and τν(t) = τν(t0) = τν holds.

From (5.24) and (5.28) we derive the equivalent time-variant baseband system
model depicted in Fig. 5.3. Each path ν is composed of a delay τν , a complex path loss
coefficient αν(t)e−j2π f0τν and a modulator with carrier e−j2π fD,ν t , which represents
the Doppler shift of the spectrum. In this tapped delay line model the signals at the
input and at the output are filtered by the pulse shaper gI (τ ) and the receive lowpass
filter gR(τ ), respectively. The resulting output signal qR(t) is given by (5.27) and
(5.28) without considering the receiver noise.

Example 6
Find the Doppler spread function Ge,ν( ft , fτ ) of the equivalent baseband system of
path ν for a receiver with velocity v0 and constant path delay in Fig. 5.2. How large
is the maximal Doppler shift, if a person is moving with v0 = 1 m/s (=3.6 km/h)
and a fast train with 360 km/h?
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Fig. 5.3 Tapped delay line model of equivalent time-variant baseband system with multipath chan-
nel and moving receiver

Determine the receiver output spectrum QR( ft ) associated to path ν.

Solution:
We can determine Ge,ν( ft , fτ ) from (5.25) by the Fourier transform with respect to t
and τ or alternatively from (5.14), if we replace Ãν( ft ) by Ãν( ft + fD,ν). The result
is

ge,ν(t, τ )
t,τ
� Ge,ν( ft , fτ ) = GI ( fτ )e

−j2πτν fτ Ãν( ft + fD,ν)GR( ft + fτ ) (5.29)

Compared to the baseband of Ge( ft , fτ ) in Fig. 4.3 the the spectrum Ãν( ft + fD,ν)

is shifted to the left by fD,ν on the ft -axis and subsequently filtered by GR( ft + fτ ).
With (5.23) the maximal Doppler shifts are fD,max ≈ 7 Hz and 700 Hz.
Output spectrum: We apply (5.19) and replace Ãν( ft ) by Ãν( ft + fD,ν) yielding

QR,ν( ft ) =
[(
X ( ft )GI ( ft )e

−j2πτν ft
) ∗ Ãν( ft + fD,ν)

]
GR( ft ) (5.30)

Example 7
Consider a harmonic transmit signal ua(t) = x(t) = x̂ej2π fX t with the frequency
fX < f I < fR , where f I and fR are the cut-off frequencies of the pulse shaper
gI (t) and the receive lowpass gR(t), respectively. Find the spectrum QR,ν( ft ) at the
receiver output for path ν, if the receiver moves with the velocity v0 given in Fig. 5.2.

Solution:
We take advantage of the frequency domain. Knowing that

x(t)
t

� X ( ft ) = x̂δ( ft − fX ) we find with (4.46)
QR,ν( ft ) = ∫ ∞

−∞ X (u)Ge,ν( ft − u, u)du = x̂
∫ ∞
−∞ δ(u − fX )Ge,ν( ft − u, u)du.
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With the sifting property of the Dirac impulse we obtain

QR,ν( ft ) = x̂Ge,ν( ft − fX , fX ) (5.31)

Plugging in (5.29) yields

QR,ν( ft ) = [
x̂G I ( fX )e−j2πτν fX

]
Ãν( ft − fX + fD,ν)GR( ft ) (5.32)

The term in brackets is a constant factor. The remaining part of QR,ν( ft ) represents a
continuous spectrum rather than just a Dirac impulse as X ( ft ) owing to the temporal
fading of α̃ν(t).

5.6 Frequency Selective Fading of Multipath Channel

In this sectionwe consider the time-variant transfer function of themultipathwireless
channel and investigate its frequency response for a constant time instant t . We will
see that it can change significantly as a function of fτ . This effect is called frequency-

selectivity or frequency selective fading. With the transform pair δ (τ − τν(t))
τ

�
e−j2πτν (t) fτ the Fourier transform yields from the delay spread function in (5.6) the
time variant transfer function

gC(τ , t)
τ

� GC,t (t, fτ ) =
NP∑

ν=1

αν(t)e
−j2πτν (t) fτ (5.33)

With the following simple example we show that this channel transfer function can
be strongly frequency selective.

Example 8
Assume a two-path channel model with NP = 2, α1(t) = α2(t) = 1, and τ1(t) = 0
for a fixed time instant t . We rename fτ as f and obtain from (5.33)

GC,t (t, f ) = 2 cos (π f τ2(t)) e
−jπτ2(t) f (5.34)

We recognize deep notches
∣∣GC,t (t, fm)

∣∣ = 0 for f = fm = 1+2m
2τ2(t)

; m = 0,±1, . . ..
This is attributed as a fading effect and denoted as frequency selective fading or
multipath fading. Hence, the term fading is not exclusively used for temporal fading.

Example 9: Time and Frequency Selective Fading
We consider a channel incorporating time and frequency selective fading and charac-
terize this channel by its time-variant transfer function GC,t (t, fτ ). Figure5.4 shows
the squared magnitude

∣∣GC,t (t, fτ )
∣∣2 of the time-variant transfer function of a typ-

ical channel for the wireless local area network standard WLAN IEEE 802.11 in
the indoor office environment. The frequency range is at around 2400 MHz. The
graph is generated by the open online simulation platform “webdemo” [9]. Appar-
ently, for a fixed time instant the magnitude response is changing with respect to the
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Fig. 5.4 Squared magnitude
∣∣GC,t (t, fτ )

∣∣2 of the time-variant transfer function of a typical indoor
channel for the WLAN IEEE 802.11 standard in the office environment. Source Online platform
“webdemo” [9]

frequency and thus is frequency selective. On the other hand, for a given frequency∣∣GC,t (t, fτ )
∣∣2 varies with time. Hence, the channel is time and frequency selective

often denoted as double selective.

5.7 Statistical Description of Wireless Multipath Channel

In the following we are going to describe the time-variance of a multipath channel
by statistical parameters. We assume a multipath channel with delay spread function
gc(t, τ ) given in (5.6) and neglect the receiver noise in the following. For the receive
signal (5.15) then holds with (5.16) and ua(t) = x(t)

qR(t) =
NP∑

ν=1

x(t) �
[
α̃ν(t)gI (τ − τν(t))

]
� gR(τ ) (5.35)

As can be seen, even for a constant transmit signal x(t) = const. the receiver output
signal changes with time, due to the temporal fading of the path loss coefficients
α̃ν(t) and the path delays τν(t). Because there are many impacts, which are caus-
ing this fading, such as the polymorphic environment in the first place, a statistical
description is adequate. Nevertheless, the deterministic approach outlined in the pre-
vious chapters is helpful to understand the interaction of the various building blocks
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of the wireless transmission system. For an introduction on stochastic processes the
reader is referred to the Appendix A.

5.7.1 Complex Gaussian Multipath Model

To derive the complex Gaussian multipath model the following prerequisites shall
apply,

• αν(t) and τν(t) change independently at random,
• The NP paths are independent,
• The number of independent paths grows to infinity, NP → ∞.

Then the conditions of the central limit theorem [10] are fulfilled resulting in the
following properties:

• qR(t) in (5.35) becomes a complex-valued Gaussian process,
• Re [qR(t)] and Im [qR(t)] are statistically independent, real-valued Gaussian pro-
cesses each with variance σ2.

5.7.2 Channel Model with Rayleigh Fading

The multipath channel model with Rayleigh fading is determined under the prereq-
uisites in Sect. 5.7.1.

If there is no line of sight or if there are no fixed scatterers or reflectors between
the transmit and the receive antenna, then the Gaussian process qR(t) has zero mean,
E [qR] = 0.

Let z = |qR(t)| and φ = arg [qR(t)], then the probability density function pz(z)
is a Rayleigh density given by

pz(z) =
{

z
σ2 e

− z2

2σ2 ; z ≥ 0

0 ; z < 0
(5.36)

with
pz(z) = 0 ∀ z < 0, as z is the absolute value of qR(t).
E [z] = σ

√
π
2 the expected value

E
[
z2

] = 2σ2 the mean power
var [z] = E

[
(z − E [z])2

] = σ2
(
2 − π

2

)
the variance of z.

The probability density function pφ(φ) of φ is uniform with

pφ(φ) =
{

1
2π ; −π ≤ φ ≤ π

0 ; else
(5.37)
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It should be pointed out that the Rayleigh fading model is applicable to each branch
of the tapped delay line model in Fig. 5.3, because in reality each branch can be
regarded as a composition of an infinite number of independent sub-paths, for which
the central limit theorem also applies. One of the first implementations of Rayleigh
fading has been given by Clarke and Jakes, as described later in Sect. 5.7.5.

pz(z) is depicted in Fig. 5.5a. Obviously, the density function is zero for z = 0
and approaches zero for z → ∞. For increasing values of σ the magnitudes decrease
and we see a wider distribution.

5.7.3 Channel Model with Rice Fading

If there are line of sight or dominant fixed scatterers or reflectors present between
the transmit and the receive antenna, the receive signal qR(t) exhibits a mean value
unequal to zero. The probability density function of z = |qR(t)| is modeled by

pz(z) =
{

z
σ2 e

− z2+s2

2σ2 I0
(
zs
σ2

) ; z ≥ 0

0 ; z < 0
(5.38)

where s εR is called the non-centrality parameter. The term I0(x)defines themodified
Bessel function of the first kind and zero order. I0(x) ismonotonically increasingwith
x and not oscillating as the ordinary Bessel functions Jm(x). Please note, I0(0) = 1
and the approximation I0(x) ≈ 1√

2πx
ex holds for x � 1 [11] . It is straightforward

to show that
E [z] = σ

√
π
2 + s expected value

E
[
z2

] = 2σ2 + s2 mean power
pz(z) is depicted inFig. 5.5b. For s = 0 theRiceian density boils down to theRayleigh
density in Fig. 5.5a. Roughly speaking, the parameter s > 0 initiates a shift to the
right combined with a change of the shape. This will be outlined in Example 10.
Please note that s also increases the mean power of z.

Example 10
Show that the parameter s > 0 approximately shifts the Riceian probability density
function in (5.38) to the right associated with a change of the shape.

Solution:
We decompose the dominant exponential function e− z2+s2

2σ2 = e− (z−s)2

2σ2 e− zs
σ2 and see that

the first term represents a shift and the second term changes the shape.

5.7.4 Channel Model with Nakagami-m Fading

An interesting andversatile statisticalmodel for z = |qR(t)| is givenby theNakagami-
m probability density function [12]
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Fig. 5.5 a Probability density function of Rayleigh fading given by (5.36). b Probability density
function of Rice fading given by (5.38) with σ = 1

pz(z) =
{

2
�(m)

(
m
�

)m
z2m−1e− m

�
z2 ; z ≥ 0

0 ; z < 0
; m ≥ 1

2 (5.39)

�(m) is the gamma function defined by Euler’s integral �(m) = ∫ ∞
0 tm−1e−t dt ,

where in general m εC, Re [m] > 0. For real m > 0 this function can be calcu-
lated recursively by �(m + 1) = m�(m) with �(1) = 1. Then, �(m) is positive and
exhibits a bathtub shape with a pole atm = 0 while strongly approaching infinity for
m → ∞. In case of integer m ≥ 1 the gamma function turns into �(m) = (m − 1)!
and is monotonically increasing [11]. In (5.39) � = E

[
z2

]
defines the mean power

of z and m is called the Nakagami fading parameter. pz(z) is depicted in Fig. 5.6 for
various � and m. With the parameter m the impact of the fading is adjusted.

E.g., form = 1 and� = 2σ2 the probability density function (5.39) turns into the
density of the Rayleigh fading given by (5.36). With increasingm the fading strength
is lowered and form → ∞ it can be shown that the Nakagami-m model resembles no
fading, i.e. a time-invariant channel [13]. We observe from Fig. 5.6 that for m > 0.5
an increasing mean power � shifts the main lobe of the density function to the
right and the Nakagami-m density can provide a reasonable approximation of the
Riceianprobability density function formanyapplications [14]. Form = 0.5,�( 12 ) =√

π, and � = σ2 the Nakagami density represents the one-sided Gaussian density

pG(z) = 2 1√
2πσ

e− z2

2σ2 for z ≥ 0 and pG(z) = 0 else. In summary, the Nakagami-m
fading model can be adapted rather flexible to a variety of realistic fading channels.
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Fig. 5.6 Probability density
function pz(z) of
Nakagami-m fading given by
(5.39) for various mean
powers � and fading
parameters m

5.7.5 Channel Model of Clarke and Jakes

Clarke considers in his approach [15] Gaussian distributed I- and Q-signals at the
output of the multipath channel. The result is a Rayleigh distributed magnitude of the
envelope. It is one of the first implementations of Rayleigh fading channel models.

With the model of Jakes [16] the receiver is located in the middle of a circle and
receives NP signals from reflectors, which are uniformly distributed on the circle
with an angular spacing of 2π

NP
. Hence, the angles of arrival, equivalent to π − ϕν

in Fig. 5.2, are equally distributed. Each receive signal consists of the I- and Q-
component of the complex envelope and all signals superimpose at the receiver. The
I- and Q-component signals are equipped with constant amplitudes and their phases
are assumed to be equally distributed in the interval from 0 to 2π. There is a variety
of enhancements of this channel model. Some are using additional filters for a higher
decorrelation of the signal components [17].

In the following we focus again on the scenario in Fig. 5.2 with a receiver moving
at the velocity v0. For small noise the receiver output signal qR(t) in (5.27) is

qR(t) =
NP∑

ν=1

qR,ν(t) (5.40)

All delays τν are assumed to be constant. From (5.28) followswith x(t) � gI (τ − τν)

= x(t) ∗ gI (t − τν) = uI (t − τν) the receiver output signal for path ν

qR,ν(t) = [
α̃ν(t)e

−j2π fD,ν t u I (t − τν)
]
� gR(τ ) ; ν = 1, 2, . . . , NP (5.41)
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In the following gR(τ ) shall represent the delay spread function of an ideal lowpass
receive filter with a cut-off frequency large enough to pass its input signal without
any distortions to the output. Therefore we will drop gR(τ ) and get from (5.41) the
receive signal for path ν

qR,ν(t) = αν(t)e
jΘνe−j2π fD,ν t u I (t − τν) (5.42)

where we have substituted α̃ν(t) = αν(t)ejΘν with Θν = −2π f0τν . The Doppler
shift fD,ν is defined by (5.22). The following prerequisites shall apply:

1. All signals are described as wide sense stationary (WSS) stochastic processes.
As outlined in Appendix A, a wide sense stationary process owns a (joint) prob-
ability density functions and a mean value, which are independent of the time
t . Furthermore, the auto- and cross-correlation functions R depend on a time
difference ζ = t2 − t1 rather than on the distinct time instants t1 and t2, thus
R(t1, t2) = R(ζ) is true. The statistical description of the signals holds for any
time instant t , which is skipped in some cases to simplify notation.

2. As with the Jakes model, a multitude of signals shall be present at the receiver in
Fig. 5.2 with angles of arrival π − ϕν . Allϕν , ν = 1, 2, . . . , NP , are uniformly
distributed with the probability density function

pϕ(ϕ) =
{

1
2π ; |ϕ| ≤ π

0 ; else
(5.43)

where ϕ stands for ϕν .
3. Each �ν shall be uniformly distributed with the density function (5.43), where

ϕ stands for �ν .
4. αν , ejΘν , e−j2π fD,ν t , and uI (t − τν) are uncorrelated ∀ ν.
5. ejΘν and ejΘμ are uncorrelated ∀ ν = μ.
6. The transmit signal at the output of the pulse shaper shall be uI (t) with autocor-

relation function
RuI uI (ζ) = E

[
u∗
I (t)uI (t + ζ)

]
(5.44)

With these prerequisites we can determine the autocorrelation function of qR(t) and
obtain

RqRqR (ζ) = E
[
q∗
R(t)qR(t + ζ)

] = RuI uI (ζ)J0
(
2π fD,maxζ

) NP∑

ν=1

Rαναν
(ζ) (5.45)

where
Rαναν

(ζ) = E [αν(t)αν(t + ζ)] (5.46)

represents the autocorrelation function of αν(t). If we can assume that the changes
of the αν(t) are small, αν(t) ≈ αν(t + ζ), we obtain approximately
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RqRqR (ζ) = PαRuI uI (ζ)J0
(
2π fD,maxζ

)
(5.47)

where

Pα =
NP∑

ν=1

E
[
α2

ν

]
(5.48)

is the totalmean power of the path loss coefficients. J0 (x) denotes theBessel function
of the first kind and zero order defined as

J0 (x) = 1

2π

∫ π

−π

ejx cos(β)dβ (5.49)

with J0(0) = 1 and J0 (x) ≈
√

2
πx cos

(
x − π

4

) ; x � 1
4 [11]. The proof of (5.45)

and (5.47) is given at the end of this section. RqRqR (ζ) in (5.47) is determined approx-
imately by the total mean power Pα of the path losses, the autocorrelation function
RuI uI (ζ) of the transmit signal at the output of the pulse shaper, and the Bessel
function J0

(
2π fD,maxζ

)
. As outlined in Appendix A, the Fourier transform of the

autocorrelation function provides the power spectral density. Thus, for the power
spectral density SuI uI ( ft ) of uI (t) holds

RuI uI (ζ)
ζ

� SuI uI ( ft ) (5.50)

and with the convolution operation in the frequency domain follows from (5.47) the
power spectral density SqRqR ( ft ) of qR(t)

RqRqR (ζ)
ζ

� SqRqR ( ft ) = Pα

π fD,max
SuI u I ( ft ) ∗

rect
(

ft
2 fD,max

)

√

1 −
(

ft
fD,max

)2
(5.51)

where we have used the Fourier transform pair

πaJ0 (2πat)
t

�
rect

(
ft
2a

)

√

1 −
(

ft
a

)2
; a = 0 (5.52)

The rectangular function is defined as rect
(

ft
2a

)
= 1 for | ft | ≤ a, and zero else.

The second term of the convolution operation in (5.51) exhibits poles at
ft = ± fD,max . However, the power spectral density SuI uI ( ft ) of realistic transmit
signals uI (t) owns a lowpass characteristic and thus the result SqRqR ( ft ) of the con-
volution shows a smooth transition at the band edges and no poles.

To get a rough idea about the correlation property of the receiver output signal
qR(t)we discuss RqRqR (ζ) in Example 11 for a simple input signal, which is constant,
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uI (t) = 1. Its autocorrelation function is RuI uI (ζ) = 1 and from (5.47) follows

RqRqR (ζ) = Pα J0
(
2π fD,maxζ

)
(5.53)

Figure5.7a portraits RqRqR (ζ). The envelope of J0(x) declines approximately with√
2
πx for increasing x and we conclude that the sample qR(t) at time instant t and

the sample qR(t + ζ) at t + ζ are increasingly less correlated the larger ζ is. Hence,
uncorrelated scattering of the samples of qR(t) is valid approximately. Computer
simulations with the online platform “webdemo” [18], verify approximately the
Rayleigh probability density function and the Bessel shaped autocorrelation function
of the magnitude of a fading receive signal.

Example 11
We consider the special transmit signal uI (t) = 1 with constant amplitude and look
for the power spectral densities SuI uI ( ft ) and SqRqR ( ft ).

We obtain the autocorrelation function of uI (t) from (5.44) as RuI uI (ζ) = 1, from

which the power spectral density follows RuI uI (ζ)
ζ

� SuI uI ( ft ) = δ( ft ). Then we
get from (5.51)

SqRqR ( ft ) = Pα

π fD,max

rect
(

ft
2 fD,max

)

√

1 −
(

ft
fD,max

)2
(5.54)

which is shown in Fig. 5.7b. Apparently, SqRqR ( ft ) ≈ const. for | ft | � fD,max

and SqRqR ( ft ) → ∞ for ft → ± fD,max . Measured power spectral densities verify
the shape of SqRqR ( ft ) approximately, however, with maxima rather than poles at
± fD,max [2]. Anyhow, in reality, transmit signals uI (t) are not constant and their
power spectral density SuI uI ( ft ) in (5.51) shows a lowpass characteristicwhichmakes
SqRqR ( f ) more smooth at the edges of the frequency band.

Proof of (5.45)
For RqRqR (ζ) follows with (5.40)

RqRqR (ζ) = E

⎡

⎣
NP∑

ν=1

NP∑

μ=1

q∗
R,ν(t)qR,μ(t + ζ)

⎤

⎦ (5.55)

As outlined in Appendix A, the cross-correlation function of two wide sense station-
ary and uncorrelated stochastic processes X (t) and Y (t) is
RXY (ζ) = E[X∗(t)Y (t + ζ)] = E[X∗(t)]E[Y (t)]. As the expectation operator is lin-
ear we obtain with (5.42)
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Fig. 5.7 a Autocorrelation function RqRqR (ζ) in (5.53) of receive signal qR(t). b Power spectral
density SqRqR ( ft ) in (5.54) of receive signal qR(t) (normalized to 1/π fD,max )

RqRqR (ζ) = ∑NP
ν=1

∑NP
μ=1

{
E

[
αν(t)αμ(t + ζ)

]
E

[
e−jΘνejΘμ

]} ·
{
E

[
ej2π fD,ν te−j2π fD,μ(t+ζ)

]
E

[
u∗
I (t − τν) uI

(
t − τμ + ζ

)]} (5.56)

in which we have accounted for the precondition 4 with the consequence that the
expected value of the product is equal to the product of the expected values. Next,
we make use of the prerequisite 5 and obtain

E
[
e−jΘνejΘμ

] =
{
E

[
e−jΘν

]
E

[
ejΘμ

] ; ν = μ

1 ; ν = μ
(5.57)

Before we are going to determine E
[
e−jΘν

]
let us review some theorems from

Appendix A.
Given a random variable X with probability density function px (x). Then

E [g(X)] = ∫ ∞
−∞ g(x)px (x)dx holds, in which g(. . .) is a given function.

Using this property and prerequisite 3 for �ν one can find

E
[
e−jΘν

] =
∫ ∞

−∞
e−jΘν pϕ(Θν)dΘν = 1

2π

∫ π

−π

e−jΘνdΘν = 0 (5.58)

yielding from (5.57)

E
[
e−jΘνejΘμ

] =
{
0 ; ν = μ

1 ; ν = μ
(5.59)

Then follows from (5.56) with (5.44) and (5.46)
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RqRqR (ζ) =
NP∑

ν=1

Rαναν
(ζ)E

[
e−j2π fD,ν ζ

]
RuI uI (ζ) (5.60)

With the Doppler frequency in (5.22) and the density function (5.43) for ϕν we
obtainE

[
e−j2π fD,ν ζ

]=E
[
e−j2πζ fD,max cos(ϕν )

]= 1
2π

∫ π

−π e
−j2πζ fD,max cos(ϕν )dϕν .With the

Bessel function J0 (x) = 1
2π

∫ π

−π e
jx cos(β)dβ = 1

2π

∫ π

−π cos (x cos(β)) dβ = J0 (−x)
follows E

[
e−j2π fD,ν ζ

] = J0(2π fD,maxζ), which is true for all ν. Then we get from

(5.60) RqRqR (ζ) = RuI uI (ζ)J0(2π fD,maxζ)
∑NP

ν=1 Rαναν
(ζ) and the proof of (5.45)

ends. For the case αν(t) ≈ αν(t + ζ) we conclude from (5.46) Rαναν
(ζ) = E

[
α2

ν

]
.

From (5.45) follows with (5.48) the result (5.47) and the proof is finished.
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Chapter 6
Block-Wise Signals with/without Prefix
over FIR Channels

6.1 Finite Impulse Response Channel

In the following we consider channels, which can be modeled by a causal impulse
response with finite duration, what we call finite impulse response (FIR)

h(n) =
{
hn ; n = 0, 1, . . . , L

0 ; else
; hL �= 0 (6.1)

We say, h(n) owns the length L + 1, which is also the dimension of a corresponding
signal vector. The channel parameters hn shall be time-invariant. n represents discrete
time. All properties of FIR filters known from signal processing apply. Furthermore,
we study discrete-time input signals with finite duration, which can be described by a
signal vector also called block of samples. Long signals will be structured block-wise
and the principle of block-wise transmission is discussed in quite detail. Finally, we
introduce a guard interval between the signal blocks by means of a prefix or a cyclic
prefix and study important properties.

6.2 Channel Input-Output Relation with Convolution

For the moment we neglect the noise nR(n) at the receiver. According to Fig. 6.1a
we obtain with discrete-time convolution the output signal

v(n) = u(n) ∗ h(n) =
∞∑

m=−∞
u(m)h(n − m) =

∞∑
m=−∞

u(n − m)h(m) (6.2)

Now, assume an input signal with length N
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Fig. 6.1 a Transmission link with FIR channel impulse response h(n), b Block-wise transmission
with channel matrix H0 and zero-forcing equalizer E = H−1

0

u(n) =
{
un ; n = 0, 1, . . . , N − 1

0 ; else
; uN−1 �= 0 (6.3)

Then follows from (6.2)

v(n) =
N−1∑
m=0

u(m)h(n − m) =
{
vn ; n = 0, 1, . . . , N − 1 + L

0 ; else
(6.4)

Apparently, the length of v(n) is N + L and by L larger than the length N of the
input u(n).

6.3 Channel Input-Output Relation with Matrix Notation

To this end we introduce signal vectors u, v, and h for the finite length signals u(n),
v(n), and h(n), respectively.

u = (
u0 u1 · · · uN−1

)T ; v = (
v0 v1 · · · vN−1+L

)T ; h = (
h0 h1 · · · hL

)T (6.5)

For block-wise transmission it is beneficial to have vectors for input u and output v
with the same dimension (length of signal). Just to delete the last L samples from
v(n) would leave the output signal premature and different from the convolution
result, which makes no sense. The general solution is to allocate L new elements
uN = uN+1 . . . = uN−1+L = 0 to u(n), what we call zero padding. The result v(n)

is not affected, because the last L samples vN+L , vN+L+1, . . . , vN+2L−1 turn out to
be always zero. The channel vector h is padded with N − 1 zeros increasing the
dimension to L + N as well without any change of the output v(n). In summary,
after zero padding the vectors are

u0 =
(
u
0L

)
= (

u0 u1 · · · uN−1 � 0TL )T ; h0 =
(

h
0N−1

)
= (

h0 h1 · · · hL � 0TN−1

)T
(6.6)
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where 0m is a column vector withm zeros. Please note, u(n) and h(n) still keep their
original lengths, N and L + 1, respectively, because tail end zeros do not count. The
following example illustrates the presented method.

Example 12

A channel impulse response h(n) with L = 2 and an input signal u(n) with length
N = 4 shall be given. Calculate the output signal v(n), (a) using convolution, (b)
using matrix notation. (c) How can the receiver reconstruct the transmit signal
u0, . . . , u3? The noise at the receiver shall be small and be neglected.

Solution:

(a) From (6.4) follows v(n) = u0hn + u1hn−1 + u2hn−2 + u3hn−3 and n = 0, 1,
. . . , 5 yields the result v0, . . . , v5 in (6.7 left), which can also be expressed as v = Hu.

⎛
⎜⎜⎜⎜⎜⎜⎝

h0 0 0 0
h1 h0 0 0
h2 h1 h0 0
0 h2 h1 h0
0 0 h2 h1
0 0 0 h2

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
H

⎛
⎜⎜⎝
u0
u1
u2
u3

⎞
⎟⎟⎠

︸ ︷︷ ︸
u

=

⎛
⎜⎜⎜⎜⎜⎜⎝

v0
v1
v2
v3
v4
v5

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
v

⇐⇒

⎛
⎜⎜⎜⎜⎜⎜⎝

h0 0 0 0 0 0
h1 h0 0 0 0 0
h2 h1 h0 0 0 0
0 h2 h1 h0 0 0
0 0 h2 h1 h0 0
0 0 0 h2 h1 h0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
H0

⎛
⎜⎜⎜⎜⎜⎜⎝

u0
u1
u2
u3
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
u0

=

⎛
⎜⎜⎜⎜⎜⎜⎝

v0
v1
v2
v3
v4
v5

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
v

(6.7)
Apparently, v(n) has length N + L = 6, as predicted by (6.4).
(b) We obtain from (6.2)
v(n) = u0hn + u1hn−1 + u2hn−2 + u3hn−3 + u4hn−4 + u5hn−5, where the zero
padding elements are u4 = u5 = 0 and h3 = h4 = h5 = 0. The matrix notation is
derived with n = 0, 1, . . . , 5 and shown in (6.7 right). The reader convinces oneself
easily that both output vectors v in (6.7) provide the same result. Please note, H has
dimension 6 × 4 whereas H0 is a 6 × 6 square matrix.
(c) Only the first four equations in (6.7) are sufficient to determine u0, . . . , u3, result-
ing in ⎛

⎜⎜⎝
h0 0 0 0
h1 h0 0 0
h2 h1 h0 0
0 h2 h1 h0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
u0
u1
u2
u3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

v0
v1
v2
v3

⎞
⎟⎟⎠ (6.8)

The solution is straightforward, owing to the lower triangularmatrixwith determinant
h40. Thus, an inverse matrix exists for h0 �= 0.

Channel Matrix

From (6.7 right) we can generalize the input-output relation of an FIR channel as
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H0u0 = v

u0 u1 u2 · · · uL uL+1 · · · uN uN−1 0 · · · 0 0 =
h0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 v0
h1 h0 0 · · · · · · 0 v1

· · · · · · · · · · · · · · · · · · ...

0

hL hL−1 · · · h0 0 · · · · · · 0 vL

0 hL hL−1 · · · h1 h0 · · · 0 vL+1
... 0 hL

. . .
. . . · · · ...

. . .

0 · · · h1 h0 0 · · · 0 vN−1

· · · . . .
. . . · · · ...

. . .
. . .

0 0 0 · · · 0 0 0 hL hL−1 · · · h1 h0 vN−1+L

← H0 →

(6.9)

where u0, h0, and v own the same dimensions N + L according to (6.6). We use
an alternative matrix notation in tabular form, in which the vector u0 is written on
the top with entries straight above the corresponding matrix entries to be multiplied
with. This allows an easy identification of the structure.

The (N + L) × (N + L) channel matrix H0 shows a lower triangular form. The
entries along the main diagonal and along each off-diagonal are identical, which
characterizes a Toeplitz matrix. We can construct H0 by filling the main diagonal
with h0, the lower next diagonal with h1 etc. up to a last diagonal filled with hL . The
remaining entries are zero. Please note that vN+L ,vN+L+1, . . . are always zero due to
zero padding of u0 and h0, hence not shown. The determinant of a lower triangular
matrix is the product of the main diagonal entries

det (H0) = hN+L
0 (6.10)

Thus,H−1
0 exists for h0 �= 0 and a solution u0 of (6.9) is guaranteed. Finally, wemen-

tion that in case of an infinite impulse response (IIR) channel, L → ∞, the dimension
of H0 tends to infinity, but the lower triangular Toeplitz structure is maintained.
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6.4 Block-Wise Transmission

In reality, the channel input signal can be very long. Therefore, we consider a method
to divide the message into blocks. “Block” is just the technical term for a vector. To
this end we allocate to the blocks u, v, and u0 in (6.5) and (6.6) a block number k as

u0(k) =
(
u(k)
0L

)
; u(k) = (

u0k u1k · · · uN−1,k
)T

v(k) = (
v0k v1k · · · vN−1,k vNk · · · vN−1+L ,k

)T
, k = 0, 1, 2, . . .

(6.11)

The entries are
unk and vnk (6.12)

where the timing of the samples inside a block is denoted by n with time interval TS .
As illustrated in Fig. 6.2a of Example 13, consecutive blocks do not overlap, i.e. no
inter-block interference is present at the channel output, if the input block length is
made identical to the output block length by zero padding. The input-output relation
for block-wise transmission then follows from (6.9)

v(k) = H0u0(k) (6.13)

The receive signal with additive noise n(k) ε C
(N−1+L)×1 is v(k) + n(k) and illus-

trated in Fig. 6.1b.
In case that no zeros 0L are used in the transmit blocks the block length is N .

Then, the first L samples of the response to transmit block k + 1 overlap with the
last L samples of the response to the previous transmit block k, as demonstrated in
Fig. 6.2b of Example 13.

Fig. 6.2 Block-wise transmission of u0(k) and u(k), k = 0, 1, 2 over FIR channel with L = 2.
a Input u0(k) with length N = 4 and zero padding, block length 6, no inter-block interference. b
Input u(k) with length N = 4, no zero padding, block length 4, inter-block interference indicated
with color, only output samples v2k , v3k without interference
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Example 13
A channel impulse response h(n) with L = 2 and an input signal u(n) with length
N = 4 shall be given, as in Example 12. Define a sequence of input and output blocks
all with the same length. Demonstrate the block structure with blocks k = 0, 1, 2 for
the following cases: (a) Zero padding of u(k), block length 6, (b) no padding of u(k)
and block length 4. The timing interval corresponding to n shall be TS .

Solution:
(a) From (6.7 right)we conclude that each blocku0(k) and v(k) is composed of 6 sam-
ples and the block rate is 1

6TS
. In Fig. 6.2a, the input block

(
u00 u10 u20 u30 0 0

)T =
u0(0) generates the output

(
v00 v10 u20 v30 v40 v50

)T = v(0) listed beneath. The next

input
(
u01 u11 u21 u31 0 0

)T = u0(1) results in the output
(
v01 · · · v51

)T = v(1) etc.
As the channel is linear, the channel output sequence is obtained by superposition
yielding v00,v10, . . . , v50, v01, v11, . . . , v51, . . . with no overlap, thus, no inter-block
interference. The same holds for all following blocks. Please note that inside a receive
block the samples normally have suffered intersymbol interference, because the chan-
nel impulse response is not ideal, h(n) = δn .
(b) Figure6.2b shows the input sequences, which are structured into blocks of length
4. The zero padding part is not transmitted to avoid unuseful samples. The dedicated
responses vnk obtained by convolution are shown beneath. The superposition of all
responses results in the channel output sequence
v00, v10,. . ., v30, (v40+v01), (v50+v11), v21, v31, (v41+v02), (v51+v12), v22, v32,. . .,
which exhibits inter-block interference indicated by brackets and at positions illus-
trated with color in Fig. 6.2b. If the transmit block length 4 is used at the receiver,
the first two samples of the response to the actual transmit block (e.g. k = 2) overlap
with the last two samples of the response to the previous transmit block (e.g. k = 1).
In general, the first L samples of response k + 1 overlap with the last L samples
of the previous response k, etc. Consequently, in Fig. 6.2b only the receive samples
v2k, v3k are free of inter-block interference.

6.5 Block-Wise Time-Variant Channel

Parameters of strictly time-variant channels change from time instants n to n + 1,
e.g., on wireless communication links between base stations and fast trains and
airplanes. For a large number of other applications, e.g., cars, pedestrians or indoor
users, block-wise time-variance can serve as an acceptable approximation, when the
channel parameters do not change significantly during a block. Practically, this is
fulfilled, if the coherence time of the fading channel is larger than the block length.
Hence, the channel matrix changes just with k and not with n resulting approximately
in

v(k) ≈ H0(k)u0(k). (6.14)
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6.6 Equalization of Block-Wise Receive Signals

Now, we are interested in getting rid of intersymbol interference for block-wise
transmission with zero padding and a transmit block length N + L . To reconstruct
u0(k) a receive filter, called zero-forcing equalizer with matrix

E = H−1
0 (6.15)

can be accommodated, as illustrated in Fig. 6.1b. Using the identity matrix
I = H−1

0 H0 the equalizer output

y(k) = E (v(k) + n(k)) = u0(k) + H−1
0 n(k) (6.16)

is composed of the original transmit block u0(k) corrupted by noiseH−1
0 n(k). Please

note that the resulting noise can be enhanced by H−1
0 . For low noise, n(k) ≈ 0, we

get y(k) ≈ u0(k). An equalizer matrix E exists for h0 �= 0, owing to (6.10).

6.7 Block-Wise Channel Input with Prefix

Separation of consecutive blocks of the channel input sequence can be accomplished
by insertion of prefix samples at the beginning of each block. In the following, we
introduce the concept of a prefix with fixed length G per block, extend it later to a
cyclic prefix with G = L , and derive the channel input-output relation. To simplify
notation the block number k is dropped. In principle, an input block with prefix
contains

u−G, . . . ,u−1︸ ︷︷ ︸
prefix

, u0, u1, . . . , uN−1︸ ︷︷ ︸
useful samples

(6.17)

We obtain with convolution (6.2) the channel output signal

v(n) =
−1∑

m=−G

u(m)h(n − m) +
N−1∑
m=0

u(m)h(n − m) ; n = −G, . . . , −1, 0, 1, . . . , N − 1 + L

(6.18)
representing a block with elements

v−G, . . . , v−1, v0, v1, . . . , vN−1+L (6.19)

As will be shown, v−G, . . . , v−1 depend only on the prefix u−G, . . . , u−1 and not on
the remaining input samples un , thus, determine the response of the channel to the
prefix. The principle is explained with the next example.



94 6 Block-Wise Signals with/without Prefix over FIR Channels

The prefix provides a kind of guard interval between blocks. However, it wastesG
samples, which do not carry useful information. Thus, the relative number of useful
samples per input block

η = N

N + G
(6.20)

falls below one. If N is chosen much larger than G, the quotient η tends to one
and becomes feasible for practical system design. Insertion of a guard interval is
the task of a multiplexer. Let TS be the interval between samples un . A memoryless
multiplexer generates an output block with the same duration as the input block,
NTS = (N + G)T ′

S , where T
′
S is the time interval between output samples. Thus, the

rate 1/T ′
S at the output is increased by factor 1 + G/N .

Example 14

Consider a channel impulse response h(n) with L = 2, as in Example 13. To the
useful input signal u(n) with length N = 4 a prefix with G = 2 is allocated gener-
ating the sequence u−2, u−1, u0, u1, u2, u3, where u−2, u−1 defines the given prefix.
Apparently, a guard interval with length G = L is introduced between successive
input blocks. Find the output signal (a) with convolution and (b) with matrix nota-
tion. (c) Demonstrate that the useful receive samples v0, . . . , v3 are not corrupted by
inter-block interference in case of a transmit block length N + G.

Solution:
(a) From (6.18) follows
v(n) = u−2hn+2 + u−1hn+1 + u0hn + u1hn−1 + u2hn−2 + u3hn−3;
n = −2,−1, 0, 1, . . . , 5.
(b) We easily construct the channel matrix applying lower triangular Toeplitz form
resulting in (6.21 left).

u−2 u−1 u0 u1 u2 u3 0 0 =
h0 0 v−2

h1 h0 0 0 v−1

h2 h1 h0 0 v0
0 h2 h1 h0 0 v1

0 h2 h1 h0 0 v2
0 h2 h1 h0 0 v3

0 0 h2 h1 h0 0 v4
0 h2 h1 h0 v5

⇒

u0 u1 u2 u3 =
h0 0 0 0 v0 − h2u−2 − h1u−1

h1 h0 0 0 v1 − h2u−1

h2 h1 h0 0 v2
0 h2 h1 h0 v3

(6.21)

The vector u is zero padded to ensure the same length as v. We use a matrix notation
in tabular form. Obviously, the first two receive samples, v−2 and v−1, solely depend
on the prefix. v6 and v7 are automatically zero, owing to zero padding of the input
block and thus not shown. There are various ways to recover u0, . . . , u3, e.g., for
a given prefix the linear equations for v0, . . . , v3 will do, resulting in (6.21 right).
Their solution is straightforward.
(c) We transmit the input block k as

(
u−2k u−1k u0k u1k u2k u3k

)T
without zero

padding, as zeros carry no useful samples. The received block still is
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Fig. 6.3 Block-wise transmission of unk and reception of vnk , k = 0, 1, 2. FIR channel impulse
response with L = 2, prefix with G = L = 2, input block length N + G = 6, block rate 1

6TS
.

Receive samples v0k , . . . , v3k , k = 0, 1, . . . without block overlap

(
v−2k v−1k v0k v1k v2k v3k v4k v5k

)T
. For k = 0, 1, . . . we obtain the sequence of

blocks in Fig. 6.3. Apparently, v−21 overlaps with v40 and v−11 with v50. In other
words, the prefix responses of output block k + 1 overlap with the last two elements
of output block k, but the useful samples v0k, . . . , v3k do not suffer from interference.

Guided by this example we generalize the vector notation, define the prefix vector,

upre(k) = (
u−G,k · · · u−1,k

)T
(6.22)

and get the compound input vector

uc(k) =
(
upre(k)
u0(k)

)
= (

u−G,k · · · u−1,k � u0k · · · uN−1,k � 0TL )T
(6.23)

with zero padding 0L conforming to convolution and to achieve a square matrix. The
vectors of output and noise are also structured into a main and a prefix part

vc(k) =
(
vpre(k)
v(k)

)
= (

v−G,k · · · v−1,k � v0k · · · vN−1+L ,k
)T

(6.24)

nc(k) =
(
npre(k)
n(k)

)
= (

n−G,k · · · n−1,k � n0k · · · nN−1+L ,k
)T

(6.25)

The channel input-output relation (without noise) then follows as

vc(k) = Hcuc(k) (6.26)

and vc(k) + nc(k) is the noisy receive signal. Hc is a lower triangular
(G + N + L)x(G + N + L) Toeplitz matrix similar toH0 in (6.9) with h0 along the
main diagonal. The block diagram in Fig. 6.4 shows the processing steps startingwith
the attachment of upre(k). At the receiver the prefix part in vc(k) + nc(k) is finally
detached resulting in v(k) + n(k) and the input-output relation between u0(k) and
v(k) is given again by (6.13).
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Fig. 6.4 Block-wise transmission with prefix upre(k) and channel matrix Hc

6.8 Block-Wise Transmission with Cyclic Prefix

6.8.1 Input Signal with Cyclic Prefix

Now, a special prefix called cyclic prefix will be attached, which is the copy of the
last L useful samples of the input block, yielding

uN−L , . . . ,uN−1︸ ︷︷ ︸
cyclic prefix

, u0, . . . , uN−L−1, uN−L , . . ., uN−1︸ ︷︷ ︸
useful samples

(6.27)

where G = L . Block index k is dropped to simplify notation. Before we look at the
general solution we study the principle with the following example.

Example 15

Consider a channel impulse response h(n)with L = 2, as in Example 14. To the use-
ful input signal u(n) with length N = 4 a cyclic prefix with G = L = 2 is allocated.
Noise shall be neglected.
(a) Determine the input sequence and (b) the output signal using matrix notation.
(c) Find the set of equations to recover the useful samples and show that the channel
matrix has become circulant.

Solution:
(a) The input sequence is u−2, u−1, u0, u1, u2, u3 andwith the cyclic prefix u−2 = u2
and u−1 = u3 we get u2, u3, u0, u1, u2, u3.
(b) We refer to (6.21 left), which is copied in (6.28 left) ignoring the new entries
marked in red color. The new entries arise owing to the following operations: Accord-
ing to linear algebra, setting u−2 = u2 eliminates u−2 and the first column of the
matrix is added to the fifth one (below u2). In the same way, condition u−1 = u3
results in an addition of the second to the sixth column (below u3). In a next step,
first and second column of the matrix as well as first and second equation can be
dropped, because they are now redundant. The final result is given in (6.28 right).
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u−2 u−1 u0 u1 u2 u3 0 0 =
h0 0 0 0 h0 0 0 0 v−2

h1 h0 0 0 h1 h0 0 0 v−1

h2 h1 h0 0 h2 h1 0 0 v0
0 h2 h1 h0 0 h2 0 0 v1

0 h2 h1 h0 0 0 0 v2
0 h2 h1 h0 0 0 v3

0 0 0 h2 h1 h0 0 v4
0 0 0 h2 h1 h0 v5

⇒

u0 u1 u2 u3 0 0 =
h0 0 h2 h1 0 0 v0
h1 h0 0 h2 0 0 v1
h2 h1 h0 0 0 0 v2
0 h2 h1 h0 0 0 v3
0 0 h2 h1 h0 0 v4
0 0 0 h2 h1 h0 v5

(6.28)

(c) Only the equations for v0, . . . , v3 are required to calculate the useful samples
u0, . . . , u3. Samples v4 and v5 are of no interest. Thus, the last two equations and
the last two columns in (6.28 right) can be dropped yielding

u0 u1 u2 u3 =
h0 0 h2 h1 v0
h1 h0 0 h2 v1
h2 h1 h0 0 v2
0 h2 h1 h0 v3

(6.29)

Compared to the matrix in (6.21 right), the cyclic prefix has caused new entries in
the upper right corner marked in red color. Apparently, a circulant matrix occurs in
(6.29) with the property that the rows from top to bottom can be generated by a shift
to the right and the matrix element dropping out becomes the first one in the next
row. Circulant matrices own interesting properties useful for digital transmission and
are discussed next.

6.8.2 Circulant Channel Matrix and Cyclic Convolution

Circulant Channel Matrix

Consider again a channel impulse response h(n) with length L + 1 and the input
signal in (6.27) with cyclic prefix of length L . The determination of the useful output
samples v0, . . . , vN−1 as a function of the useful input samples u0, . . . , uN−1 can be
generalized from (6.29) with the following matrix notation
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u0 u1 . . . uL−1 uL uL+1 . . . uN−L uN−L+1 . . . uN−2 uN−1 =
h0 0 · · · 0 0 0 · · · hL hL−1 · · · h2 h1 v0
h1 h0 · · · 0 0 0 · · · 0 hL · · · h3 h2 v1
...

... · · · 0 0 0 · · · 0 0 · · · ...
...

...

hL−1 hL−2 · · · h0 0 0 · · · · · · 0 hL vL−1

hL hL−1 · · · h1 h0 0 · · · · · · 0 0 vL

0 hL · · · h2 h1 h0 · · · 0 0 · · · 0 0 vL+1
...

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
...

...

0 0 · · · . . . hL−2 hL−3
. . . h0 0 vN−2

0 0 0 0 0 0 · · · hL−1 hL−2 · · · h1 h0 vN−1

← Hcirc →

vN = Hcircu

(6.30)

with
vN = (

v0 v1 · · · vN−1
)T

(6.31)

where k was dropped to simplify notation. In general, u = u(k) and vN = vN (k)
holds with a second index k in their entries. As expected, the N × N channel matrix
Hcirc consists of a lower triangular part with h0 in the main diagonal and in the
upper right corner a sub-matrix of upper triangular form with hL in the main diago-
nal displayed in color. Hcirc is a circulant Toeplitz matrix. Circulant matrices show
interesting properties [1], which are summarized shortly and applied in the follow-
ing sections. Finally, please note that an extension of the derivation for G > L is
straightforward by “virtually” increasing the length of h(n) with zeros and notional
replacement of L by G.

Cyclic Convolution

As is well known from signal processing, (6.30) can be expressed by the cyclic (or
circulant) convolution

v(n) = u(n)�h(n) =
N−1∑
m=0

u(m)h ((n − m) mod N ) (6.32)

where h ((n − m) mod N ) defines the periodic (cyclic) repetitions of h(n) with
period N . Cyclic convolution is an operation defined for periodic signals. Apply-
ing the DFT on (6.32) results in the product of the DFTs of u(n) and h(n). This holds
for cyclic convolution only and not in general for standard convolution.
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Properties of Circulant Matrices

• Acirculant (or cyclic) matrix is a Toeplitz matrix. From top to bottom each row can
be generated from the previous row by a right shift and the matrix entry dropping
out becomes the first one in the next row. After arriving at the last row the cycle
continues with the first row.

• The eigenvalues λμ and eigenvectors pμ of an N × N circulant matrix with entries
h0, . . . , hL are given by

λμ = ∑N−1
n=0 hnwμn , pμ = 1√

N

(
1 w−μ w−2μ · · · w−(N−1)μ

)T
w = e−j2π/N ; μ = 0, 1, . . . , N − 1

(6.33)

see [1]. A general introduction on eigenvalues and eigenvectors is summarized in
Appendix B. Apparently, the eigenvectors pμ do not depend on h(n), thus are valid
for any channel impulse response of length L + 1.

• λμ has an interesting property. The frequency response of a channel with impulse
response h(n) of length L + 1 ≤ N is H

(
ej2π f/ fS

) = ∑N−1
n=0 hne−j2πn f/ fS . By com-

parison with λμ = ∑N−1
n=0 hne−j 2πN μn in (6.33) and using fS = N/T we get

λμ = H
(
ej2π f/ fS

) | f =μ 1
T

= H
(
ej2πμ 1

N

)
; μ = 0, 1, . . . , N − 1 (6.34)

which is the channel transfer function at multiples μ of the QAM symbol rate 1/T .
• As iswell known from signal processing, the N × N matrix of theDiscrete Fourier
Transform (DFT) is defined as

F = 1√
N

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 w1 w2 · · · w(N−1)

1 w2 w4 · · · w2(N−1)

...
...

... · · · ...

1 w(N−1) w2(N−1) · · · w(N−1)2

⎞
⎟⎟⎟⎟⎟⎠ = (

p∗
0 p∗

1 p∗
2 · · · p∗

N−1

)
(6.35)

where ∗ indicates the complex conjugation. The Inverse Discrete Fourier Trans-
form (IDFT) is given by the matrix

F−1 = F∗ = (
p0 p1 p2 · · · pN−1

)
(6.36)

because F is unitary and symmetric (for details of unitary matrices, please see
Appendix B). Let x = (

x0 x1 · · · xN−1
)T

ε C
N×1, then the DFT results in

x = (
X0 X1 · · · XN−1

)T = Fx (6.37)

by executing
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xn � Xν = 1√
N

N−1∑
n=0

xnw
νn ; ν = 0, 1, . . . , N − 1 (6.38)

This set represents the discrete Fourier spectrum of the finite length signal
x0, x1, . . . , xN−1. Apparently, the DFT maps N samples xn to N spectral coef-
ficients Xν . Multiplying (6.37) from the left by F−1 yields with F−1F = I

x = F∗x (6.39)

which is accomplished by

Xν � xn = 1√
N

N−1∑
ν=0

Xνw
−νn ; n = 0, 1, . . . , N − 1 (6.40)

DFT and IDFT are also applicable to the primitive period of sequences xn and Xν ,
which are periodic with N yielding the same results (6.38) and (6.40), respectively.

6.8.3 Transmission Scheme with Cyclic Prefix

The various steps to achieve transmission with a cyclic prefix are summarized as
follows. At the transmitter in Fig. 6.5a the cyclic prefix with length G = L

upre(k) = (
uN−L ,k · · · uN−1,k

)T
(6.41)

is attached to each input blocku0(k) =
(
u(k)
0L

)
,whereu(k) = (

u0k u1k · · · uN−1,k
)T

contains the N useful samples of transmit block k. The result is uc(k) =
(
upre(k)
u0(k)

)
.

The output vc(k) = Hcuc(k) of the channel Hc is corrupted by noise nc(k) yielding

vc(k) + nc(k) =
(
vpre(k)
v(k)

)
+

(
npre(k)
n(k)

)
(6.42)

with v(k) = (
v0k v1k · · · vN−1,k vNk · · · vN−1+L ,k

)T
in (6.11). The receiver detaches

the prefix part vpre(k) + npre(k) as well as the last L samples from v(k) + n(k)
resulting in the output

vN (k) + nN (k) = (
v0k · · · vN−1,k

)T + (
n0k · · · nN−1,k

)T
(6.43)
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Fig. 6.5 Block-wise transmission with cyclic prefix upre(k) of length G = L . a Principal scheme
with channelmatrixHc.bEquivalentmodelwith circulant channelmatrixHcirc . cEquivalentmodel
with eigenmode channel matrix � =FHcircF−1 and optional DFT-domain equalizer E = �−1

Then the system can be modeled as in Fig. 6.4b with input u(k), circulant matrix
Hcirc in (6.30), noise nN (k), and output of Hcirc

vN (k) = Hcircu(k) (6.44)

All vectors own the dimension N × 1.

6.9 Transmission with Cyclic Prefix and DFT

6.9.1 DFT Domain System Model

The diagonalization of a matrix is defined in Appendix B and requires the matrix of
eigenvalues and eigenvectors. For the circulant matrix Hcirc the diagonal form then
is

Hcirc = F−1�F , � = diag (λ0,λ1, . . . ,λN−1) (6.45)

where the λμ are given by (6.33). The corresponding block diagram is portrait in
Fig. 6.5b. Plugging (6.45) into (6.44) yields with additive noise vN (k) + nN (k) =
F−1�Fu(k) + nN (k).Applying theDFTonboth sides results inF (vN (k) + nN (k)) =
�Fu(k) + FnN (k) and with

u(k) = Fu(k) = (
u0k u1k · · · uN−1,k

)T
, vN (k) = FvN (k) = (

v0k v1k · · · vN−1,k
)T

nN (k) = FnN (k)
(6.46)
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follows
vN (k) + nN (k) = �u(k) + nN (k) (6.47)

which is the output including noise in the DFT domain. Hence, a channel model
based on eigenmodes with a diagonal matrix � depicted in Fig. 6.5c is obtained. For
the νth component we write without noise

vνk = λνuνk (6.48)

Thus, the spectral component vνk of the output signal is just the input uνk multiplied
by factor λν .

6.9.2 DFT Domain Equalizer

Equation (6.48) gives rise to a simple equalizer, which multiplies the receive spectral

component by factor 1/λμ = 1/H
(
ej2πμ 1

N

)
to achieve vνk = uνk . For all spectral

components an equalizer with matrix

E = �−1 = diag

(
1

λ0
,
1

λ1
, . . . ,

1

λN−1

)
(6.49)

has to be employed, as shown in Fig. 6.5c for transmit signals with cyclic prefix.
The output block y(k) is readily determined as y(k) = F−1(E�Fu(k) + EnN (k))
yielding with (6.49)

y(k) = u(k) + H−1
circnN (k) (6.50)

with F−1�−1F = H−1
circ. Apparently, intersymbol interference caused by the FIR

channel is completely removed by this zero-forcing equalizer and the receiver output
is just corrupted by noise, which may be enhanced by H−1

circ.
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Chapter 7
Multicarrier Modulation and OFDM

7.1 Introduction

The division of a frequency band into dedicated channels by modulation, called
frequency-division multiplexing (FDM), has a long history. Prominent examples are
the analog telephone networks until the 1970s. They were replaced by digital tele-
phony, operating with time-division multiplex (TDM), in which dedicated time slot
are allocated to each application. Moreover, the analog and later the digital tele-
vision broadcasting networks—terrestrial, satellite and cable based—operate with
FDM. Most mobile and cellular networks today utilize combinations of FDM and
TDM. Conventionally, the channels in FDM schemes are strictly separated by filters
to avoid cross-talk of information. To this end guard spaces are required between the
different frequency bands, however, they reduce spectral efficiency. Furthermore, the
analog filters and modulators in the past were bulky, costly and a hurdle for micro-
electronic integration. Therefore, research work started already in the late 1960s
to allow overlapping signal spectra and the development towards digital circuits.
Weinstein [1] gives a comprehensive survey on the history. Fundamental ideas on
multicarrier FDM with orthogonal signals have been published by Chang [2] and
Saltzberg [3] already at the end of the 1960s. Zimmermann and Kirsch [4] designed
a high frequency transceiver (KATHRYN) using a discrete Fourier transform (DFT),
which was implemented with analog circuits. Weinstein and Ebert [5] showed how
Inverse DFT and DFT can be used for Orthogonal Frequency-Division Multiplexing
(OFDM) modulation and demodulation, respectively. The efficient Cooley–Tukey
algorithm and others known as Fast Fourier Transform (FFT) reduced the number of
operations from O(N 2) to O(N log N ) and opened the path for widespread appli-
cations [6]. But it took quite some time until the 1990s for first industrial hardware
prototypes [7], e.g., for Digital Subscriber Line (DSL) [8], Digital Audio Broadcast-
ing (DAB), and Digital Video Broadcasting (DVB) [9–11]. Several wireless local
area and metropolitan area network standards, WLAN IEEE 802.11 and WiMAX
IEEE 802.16 followed with OFDM at the end of the 1990 and the standardization of
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new versions is still ongoing [12, 13]. Also the main developments of Ultra Wide-
band (UWB) systems adopt OFDM [14–16]. Furthermore, systems for information
transmission over power line [17] and several solutions for fiber optic transmission
and visible light communications utilize OFDM today [18, 19]. Starting in the early
2000s with releases for Third Generation 3G/UMTS/IMT2000, later Fourth Gener-
ation 4G/LTE and around 2017 followed by Fifth Generation 5G, the multicarrier
scheme OFDM and some of its variants entered into the technology of wireless
cellular networks [20, 21].

7.2 Discrete-Time Multicarrier Modulation

7.2.1 System Overview

Modern transmitters and receivers are implemented with discrete-time digital cir-
cuits or by software programs running on processors. A multicarrier modulation
scheme is shown in Fig. 7.1. The inputs of the transmitter are parallel sequences
of QAM symbols aν(k), ν = 0, . . . , N − 1, each with symbol rate vS = 1

T coming
from QAM modulators, as described in Sect. 1.2. The sequences are transmitted in
separate frequency bands divided by the carrier frequencies 0 � f0 < f1 · · · < fN−1

over a single channel and the method is therefore also called Frequency-Division
Multiplexing (FDM). Each of the N parallel branches is equipped with a transmit
lowpass filter and a modulator. An adder yields the transmit signal u(n). The chan-
nel is modeled as an equivalent baseband channel with lowpass characteristic and
a cut-off frequency larger than the highest carrier frequency fN−1. Time-invariant

Fig. 7.1 Discrete-time transmitter and receiver with multicarrier modulation (upper part). Details
of front ends with high frequency modulation fRF as interface to a physical bandpass channel
(lower part)
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channels are characterized by the discrete-time impulse response h(n). Most wire-
less channels are time-variant and thus modeled by the discrete-time delay spread
function h(n,m) as in Sect. 4.5, where n is discrete time and m discrete delay. To
simplify the mathematical notations throughout the following sections we use h(n).
It will be clear from the context or by notice whether it has to be replaces by h(n,m)

in case of time-variance. The receive signal v(n) corrupted by additive noise nR(n)

is entering N branches with demodulator, receive lowpass filter, and down-sampling.
Finally, the output signals undergo QAM symbol decision. Synchronous demodula-
tion is applied. Thus, the demodulator frequencies f0, f1, . . . , fN−1 are exactly the
same as those of the modulators.

Details of the physical link are depicted in the lower part of Fig. 7.1. Several
physical channels provide transmission only at high frequencies around fRF , such
as the UHF bands for digital television, the satellite frequency bands or the fre-
quency regions 2.4, 5, 30 or 60GHz for cellular and wireless local area networks.
An optical fiber even operates around 190THz. For an economic digital implemen-
tation of the multicarrier scheme, the carriers must have much lower frequencies
f0, . . . , fN−1 than fRF . For that reason the spectrum of the output signal u(n) has
to be shifted to the higher transmission band around fRF by a second modulator
stage mostly implemented by analog circuits, called radio frequency (RF) modulator
or up-converter. To this end the signal u(n) first undergoes digital-to-analog (D/A)
conversion with a clock frequency N/T and after lowpass filtering (LP) modulation
by a carrier ej2π fRF t = cos(2π fRF t) + j sin(2π fRF t) follows. The real part of the
modulator output feeds the RF bandpass channel with impulse response gC(t) for
time-invariant or gC(t, τ ) for time-variant channels. At the receiver side the reverse
operations take place in principle and after analog-to-digital (A/D) conversion the
signal v(n) + nR(n) is available. In case of an optical fiber a Laser accomplishes the
up-conversion. In the following the digital multicarrier transmission scheme (upper
part of Fig. 7.1) is described in more detail.

7.2.2 Single Input Single Output

Transmitter
Firstly, only one sequence of QAM symbols aν(k) shall be sent with symbol rate
vS = 1/T and solely branch ν is active at the transmitter. Apparently, together with
the receiver branch μ = ν a single input single output (SISO) transmission scheme
with QAM results, similar as in Fig. 1.1 of Sect. 1.2, but here with a discrete-time
implementation. The sequence aν(k) must first undergo pulse shaping and lowpass
filtering using a transmit filter with impulse response gT (n). According to the theory
of digital signal processing, these operations have to be executed at a higher sampling
rate compared to the symbol rate vS . To this end an up-sampler is installed, which
introduces N − 1 zero samples between two symbols aν(k) and aν(k + 1) , k εZ. In
addition to the discrete-time variable k we introduce
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Fig. 7.2 a QAM symbol aν(k) = aνδk , b aνδn after up-sampling with N , c Example of transmit
filter impulse response gT (n), d Continuous time axis t

n = kN (7.1)

representing the new sampling interval

TS = T

N
= 1

fS
(7.2)

after up-sampling, where fS is the sampling rate. We select the up-sampling factor
identical to the number of parallel branches, N , and will witness later that this defini-
tion helps to simplify the scheme, in particular when we implement the modulators
by the inverse discrete Fourier transform for OFDM. As an example, in Fig. 7.2a one
real symbol aν shall be sent, thus aν(k) = aνδk , where δk is the unit impulse equal to
one for k = 0 and zero for k = ±1,±2, . . .. Then we obtain aνδn after up-sampling
in Fig. 7.2b and a response gT (n) in Fig. 7.2c, as an example. The relation (7.1) is
evident from the Figs. 7.2a, b. The continuous time axis t in Fig. 7.2d reveals the
QAM symbol interval T and the sampling interval T

N .
For a symbol sequence aν(k) at the input of branch ν in Fig. 7.1 the up-converter

outputs
∑∞

k=−∞ aν(k)δn−kN and the transmit filter output is∑∞
k=−∞ aν(k)gT (n − kN ). This signal is multiplied by the discrete-time carrier

ej2π fνnT/N yielding the transmitter output
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Table 7.1 z- transform and Fourier transform of discrete-time signals

Signal z- Transform Fourier transform
(
z = ej2π f/ fS

)

x(n) X (z) = ∑∞
n=−∞ x(n)z−n X

(
ej2π f/ fS

) =
∑∞

n=−∞ x(n)e−j2πn f/ fS

δn 1 1

x(n)ej2πn f0/ fs X
(
ze−j2π f0/ fs

)
X

(
ej2π( f − f0)/ fS

)

x(n − p) X (z)z−p X
(
ej2π f/ fS

)
e−j2π p f/ fs

x(n) ∗ y(n) X (z)Y (z) X
(
ej2π f/ fS

)
Y

(
ej2π f/ fS

)

u(n) = ej2π fνnT/N
∞∑

k=−∞
aν(k)gT (n − kN ) (7.3)

u(n) is composed of successive impulses gT (n) as in Fig. 7.2c, shifted by kN and
equipped with complex amplitude aν(k)ej2π fνnT/N . For the following analysis we
use the frequency domain and summarize beforehand some helpful relations from
digital signal processing in Table7.1.

LetGT
(
ej2π f/ fS

)
be the Fourier transform (also called discrete-time Fourier trans-

form) of gT (n) and thus the filter transfer function. For the Fourier transform of
(7.3) followsU

(
ej2π f/ fS

) = GT
(
ej2π( f − fν )/ fS

)∑∞
k=−∞ aν(k)e−j2πk( f − fν )N/ fS and the

Fourier spectrum of a(k) is

Aν(e
j2π f N/ fS ) =

∞∑

k=−∞
aν(k)e

−j2πk f N/ fS (7.4)

noting the sampling rate fS/N of a(k). Then we get

U
(
ej2π f/ fS

) = Aν(e
j2π( f − fν )N/ fS )GT

(
ej2π( f − fν )/ fS

)
(7.5)

As an example, Fig. 7.3a shows the transfer function of the transmit filter, which
shall be real, with ideal lowpass shape of the baseband, and cut-off frequency fg .
In general, any discrete-time signal owns a spectrum, which is periodic with the
sampling frequency fS , as indicated by the argument ej2π f/ fS . Figure7.3b depicts
U

(
ej2π f/ fS

)
indicated by filled color, if only branch ν = 0 is active with input

a0(k) = a0δk , A0(ej2π f N/ fS ) = a0, and real a0 yielding from (7.5)
U

(
ej2π f/ fS

) = a0GT
(
ej2π( f − f0)/ fS

)
. Apparently, GT

(
ej2π f/ fS

)
is shifted by f0 and

weighted by a0. Please ignore the other spectral components for the moment.
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Fig. 7.3 a Example of a transfer function GT
(
ej2π f/ fS

)
of the transmit lowpass filter. b Output

spectrum U
(
ej2π f/ fS

)
in (7.13) of the transmitter for real-valued input signals aν(k) = aνδk , ν =

0, 1, . . . , N − 1

Receiver
Branch μ of the receiver in Fig. 7.1 is composed of a demodulator with carrier
e−j2π fμnT/N , which shifts the input spectrum by fμ to the left on the frequency
axis. After the receive filter with impulse response gR(n) and transfer function
GR

(
ej2π f/ fS

)
the down-sampling unit decimates the sampling rate to the symbol

rate 1/T . The resulting samples undergo decision yielding estimates âμ(k) of the
transmit symbols. We prefer calculation in the frequency domain and neglect the
additive noise nR(n) for the moment. The spectrum of the receive filter output qμ(n)

can be obtained easily as

Qμ

(
ej2π f/ fS

) = U
(
ej2π( f + fμ)/ fS

)
H

(
ej2π( f + fμ)/ fS

)
GR

(
ej2π f/ fS

)
(7.6)

where H
(
ej2π f/ fS

)
is the transfer function of the time-invariant equivalent baseband

channel. Inserting (7.5) yields

Qμ

(
ej2π f/ fS

)
= Aν(ej2π( f − fν+ fμ)N/ fS )GT

(
ej2π( f − fν+ fμ)/ fS

)
GR

(
ej2π f/ fS

)
H

(
ej2π( f + fμ)/ fS

)

(7.7)
If the receive filters own a similar lowpass characteristic as the transmit filters with
cut-off frequencies ± fg and if the carrier frequencies are selected in such a way that
the passbands of GT

(
ej2π( f − fν+ fμ)/ fS

)
and GR

(
ej2π f/ fS

)
do not overlap for fμ �= fν ,

then

GT
(
ej2π( f − fν+ fμ)/ fS

)
GR

(
ej2π f/ fS

) =
{
GT

(
ej2π f/ fS

)
GR

(
ej2π f/ fS

) ; μ = ν

0 ; μ �= ν

(7.8)
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holds, which is a strict form of orthogonality also called condition for removal of
intercarrier interference. Then follows from (7.7) for the receiver output μ = ν

Qν

(
ej2π f/ fS

) = Aν(e
j2πk f N/ fS )GT

(
ej2π f/ fS

)
GR

(
ej2π f/ fS

)
H

(
ej2π( f + fν )/ fS

)
(7.9)

and Qμ

(
ej2π f/ fS

) = 0 for μ �= ν.
From (7.9) the time-domain signal is readily determined using Table 7.1

qν (n) =
( ∞∑

k=−∞
aν(k)δn−kN

)

∗ gT (n) ∗ gR(n) ∗
(
h(n)e−j2πn fν/ fs

)
+ gR(n) ∗

(
nR(n)e−j2πn fν/ fs

)

(7.10)
for μ = ν and qμ(n) = 0 for μ �= ν. The second term in (7.10) characterizes the
additive noise.

7.2.3 Multiple Input Multiple Output

Transmitter Output Signal
If all N branches of the transmitter are active with input sequences
aν(k), ν = 0, 1, . . . , N − 1, the output signal follows with (7.3)

u(n) =
N−1∑

ν=0

ej2π fνnT/N
∞∑

k=−∞
aν(k)gT (n − kN ) (7.11)

and the Fourier spectrum is obtained with (7.5)

U
(
ej2π f/ fS

) =
N−1∑

ν=0

Aν(e
j2π( f − fν )N/ fS )GT

(
ej2π( f − fν )/ fS

)
(7.12)

using the superposition principle for the linear transmitter. In Fig. 7.3b an example is
depicted,where the input to each branch ν is a single realQAMsymbol aν(k) = aνδk .
Then follows for the output

U
(
ej2π f/ fS

) =
N−1∑

ν=0

aνGT
(
ej2π( f − fν )/ fS

)
(7.13)

Because the baseband of GT
(
ej2π f/ fS

)
in Fig. 7.3a is strictly bandlimited, the partial

spectra of U
(
ej2π f/ fS

)
in Fig. 7.3b do not overlap for the given carrier frequencies

f0, . . . , fN−1. In contrast, for OFDM discussed in Sect. 7.3 and Fig. 7.5 overlapping
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and even not bandlimited spectra will be employed. Therefore, in that case recovery
of the transmit signals can not be done just by lowpass filtering with GR

(
ej2π f/ fS

)

after demodulation. An additional orthogonality condition has to be imposed on the
carriers.

Receiver Output Signal
Plugging (7.12) into (7.6) yields the spectrum of qμ(n) in branch μ

Qμ

(
ej2π f/ fS

)
=

N−1∑

ν=0

Aν (ej2π( f− fν+ fμ)N/ fS )GT

(
ej2π( f− fν+ fμ)/ fS

)
GR

(
ej2π f/ fS

)
H

(
ej2π( f + fμ)/ fS

)

(7.14)
With condition (7.8) follows again Qν

(
ej2π f/ fS

)
in (7.9) and qν(n) in (7.10), which

hold for ν = 0, 1, . . . , N − 1.

7.3 Orthogonal Frequency DivisionMultiplexing (OFDM)

7.3.1 OFDM Transmitter with IDFT

We build upon the multicarrier scheme in Fig. 7.1, however, the carriers shall have
equidistant frequency spacing � f coupled with the symbol rate according to

� f = 1

T
(7.15)

The carrier frequencies are

fν = ν� f = ν
1

T
; ν = 0, 1, . . . , N − 1 (7.16)

and the N carriers 1, ej2πn/N , . . . , ej2πμn/N , . . . , ej2π(N−1)n/N are pairwise orthogonal.
The first carrier is constant, hence the corresponding signal remains unmodulated.

Consider in Fig. 7.1 QAM sequences aν(k) , ν = 0, 1, . . . , N − 1 at all transmit-
ter inputs. Then follows from (7.11) with (7.16) the transmitter output

u(n) =
∞∑

k=−∞

(
N−1∑

ν=0

ej2πνn/Naν(k)

)

gT (n − kN ) ; n εZ (7.17)

Apparently, u(n) is composed of successive impulses gT (n) shifted by kN and with
amplitudes indicated by brackets (. . .). Let gT (n) be a rectangular impulse of length
N
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gT (n) =
{

1√
N

; n = 0, 1, . . . , N − 1

0 ; else
(7.18)

resulting in the block-wise signal

u(n) = 1√
N

N−1∑

ν=0

ej2πνn/Naν(k) ; kN ≤ n < (k + 1)N ; k εZ (7.19)

where k is the blocknumber.Comparingwith (6.40)we recognize thatu(n) resembles
in each block k the IDFT of the set aν(k), ν = 0, 1, . . . , N − 1

1√
N

N−1∑

ν=0

aν(k)e
j2πνn/N = ãn(k) , n = 0, 1, . . . , N − 1 ; k fixed (7.20)

where n can run just from 0 to N − 1, because ej2πνn/N is periodic with N . With
vector notation we write

a(k) = (
a0(k) a1(k) · · · aN−1(k)

)T
IDFT ã(k) = (

ã0(k) ã1(k) · · · ãN−1(k)
)T

(7.21)
ã(k) is called OFDM symbol or OFDM block. Alternatively, we can formulate the
IDFT as

ã(k) = F−1a(k) (7.22)

using the inverse DFT matrix F−1 in (6.36). Inserting (7.20) into (7.19) yields the
block-wise transmitter output

u(n) = ãn(k) ; kN ≤ n < (k + 1)N ; k εZ (7.23)

Artificially, we have to interpret the QAM symbols aν(k) as elements in the DFT
domain, whereas the ãn(k) are in the original domain. The multicarrier transmitter in
Fig. 7.1 can be modified as shown in Fig. 7.4. The parallel branches and the summing
node are replaced by a processor executing an IDFT and a parallel-to-serial (P/S)
converter, which translates the column vector ã(k) into a row vector uT (k) = ãT (k)
for serial transmission. For the moment we do not consider the insertion of a cyclic
prefix. Hence, the P/S converter ignores the prefix. Block-wise transmission with
cyclic prefix and the IDFT are treated in detail in Sects. 6.7–6.9. Here, we just give
references and the reader not familiar with block-wise processing is recommended
to study details in Chap.6.
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Fig. 7.4 OFDM transmitter and receiver for block-wise transmission. Cyclic prefix
ãN−G(k), . . . , ãN−1(k) (upper part). Details of front ends with high frequency modulation fRF
as interfaces to a physical bandpass channel (lower part)

7.3.2 OFDM Output Spectrum

The z-transform of gT (n) in (7.18) is GT (z) = ∑N−1
n=0 gT (n)z−n = 1√

N
z−N−1
z−1−1 , using

the sum formula of a finite geometric series. Then follows the frequency response

GT
(
ej2π f/ fS

) = 1√
N

sin(πN f/ fS)

sin(π f/ fS)
e−jπ(N−1) f/ fS (7.24)

with G
(
ej2π f/ fS

) = 0 for f = fμ = μ fS
N , μ εZ \ μ �= 0,±N ,±2N , . . . and∣

∣GT
(
ej2π f/ fS

)∣
∣ = 1√

N
for f = μ fS , μ εZ. fS = N

T was defined in (7.2). Apparently,
∣
∣GT

(
ej2π f/ fS

)∣
∣ is periodic with fS , as expected. For an input signal aν(k) = δk , ν =

0, 1, . . . , N − 1 the output spectrum of the multicarrier transmitter, now an OFDM
transmitter, follows from (7.13) as

U
(
ej2π f/ fS

) =
N−1∑

ν=0

GT
(
ej2π( f − fν )/ fS

)
(7.25)

The magnitudes of the spectral parts are depicted in Fig. 7.5. Owing to the zeros
of GT

(
ej2π f/ fS

)
, there is no overlap with other spectral components at positions of

the maxima, which is typical for OFDM. Hence, sampling in the frequency domain
at fμ = μ fS

N , μ = 0, 1, . . . , N − 1, what is inherently done by a DFT, does not
suffer from spectral aliasing. TheD/A converter in Fig. 7.5 owns the principal transfer
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Fig. 7.5 Spectral parts
∣
∣GT

(
ej2π( f − fν )/ fS

)∣
∣ of output Fourier spectrum U

(
ej2π f/ fS

)
in (7.25) for

multicarrier (OFDM) transmitter with fν = ν fS
N and magnitude response

∣
∣GD/A ( f )

∣
∣ of the D/A

converter. Curves normalized with respect to maxima

functionGD/A ( f ) = sinc( f/ fs)with zeros at integer multiples of fs , except f = 0,
and provides a smooth lowpass filtering.

7.3.3 OFDM Transmission over Ideal Channel

To show the principle of OFDM transmission, assume an ideal channel, h(n) = δn ,
with no noise. Furthermore, no prefix shall be used. Thus, the channel input vector is
u(k) = ã(k) and the receiver gets the vector vN (k) = u(k) = ã(k). To recover a(k)
an OFDM receiver has to be furnished with a DFT that outputs

a′(k) = FvN (k) = Fã(k) = a(k) (7.26)

and the original QAM symbol vector a(k) is perfectly reconstructed in this ideal
case.
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7.3.4 OFDM Transmission over FIR Channel with
Equalization

We consider an FIR channel with impulse response h(n) of length L + 1. As portrait
in Fig. 7.4, a cyclic prefix ãpre(k) = (

ãN−L(k) · · · ãN−1(k)
)T

according to Sects. 6.8
and 6.9 with G = L is allocated to ã(k) yielding the compound transmit vector

uc(k) =
⎛

⎝
ãpre(k)
ã(k)
0L

⎞

⎠ = (
ãN−L (k) · · · ãN−1(k) � ã0(k) · · · ãN−L (k) · · · ãN−1(k) � 0TL )T

(7.27)
where 0L is a column vector composed of L zeros. Zero padding with 0L is only
required for proper notation with the channel matrix Hc in (6.26) and the zeros are

not really transmitted.

(
ãpre(k)
ã(k)

)

is called OFDM symbol with cyclic prefix. The

receive block follows according to (6.24) and (6.25)

vc(k) + nc(k) =
(
vpre(k)
v(k)

)

+
(
npre(k)
n(k)

)

(7.28)

where signal vc(k) and noise nc(k) are separated into a pefix and a main part. Fur-
thermore

vc(k) = Hcuc(k) (7.29)

holds as in (6.26). Hc is a lower triangular (N + 2L)x(N + 2L) Toeplitz matrix
similar to H0 in (6.9) with h0 along the main diagonal. The S/P converter at the
receiver drops the prefix part as well as the last L samples from the receive block
vc(k) + nc(k) resulting in

vN (k) + nN (k) = (
v0k · · · vN−1,k

)T + (
n0k · · · nN−1,k

)T
(7.30)

given by (6.43) with signal part

vN (k) = Hcircu(k) (7.31)

from (6.44). u(k) = ã(k) is the transmit vector and nN (k) a residual Nx1 noise
vector. As outlined in Sect. 6.8.2 in quite detail, the transmission scheme with cyclic
prefix can be described equivalently by the input-output relation vN (k) = Hcircu(k)
in the noise free case, where Hcirc is an NxN cyclic matrix defined in (6.30).

The DFT device with NxN matrix F in Fig. 7.4 outputs

a′(k) = F (vN (k) + nN (k)) = FHcircã(k) + FnN (k) (7.32)

With Hcirc = F−1�F from (6.45) and ã(k) = F−1a(k) of (7.22) follows
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a′(k) = �a(k) + FnN (k) (7.33)

where � = diag (λ0,λ1, . . . ,λN−1) represents the matrix of eigenvalues of Hcirc.

The DFT domain equalizer E = �−1 = diag
(

1
λ0

, 1
λ1

, . . . , 1
λN−1

)
in (6.49) provides

the output
Ea′(k) = a(k) + �−1FnN (k) (7.34)

Apparently, the output of the equalizer Ea′(k) in Fig. 7.4 is composed of the transmit
QAM symbol vector a(k) corrupted by the DFT spectrum of the noise, filtered and
possibly enhanced by the equalizer E = �−1. Finally, the equalizer output is subject
to QAM symbol detection.

The eigenvalues are derived in Sect. 6.8.2 and own the interesting property,
λμ = ∑N−1

n=0 h(n)e−j 2πN μn = H
(
ej2π f/ fS

) | f =μ 1
T
in (6.34), where H

(
ej2π f/ fS

)
is the

transfer function of the FIR channel with impulse response h(n). In the noise free
case, the vector components of the equalizer output Ea′(k) are simply a′

μ(k)/λμ, as
indicated in Fig. 7.4. This low complexity equalizer is a major advantage of OFDM
transmission with cyclic prefix. However, it comes with the penalty that a prefix with
length G in the transmit block reduces the number of useful samples by η = N

N+G ,
as discussed earlier in (6.20). Finally, it should be mentioned that the clock rate at
channel input and output in Fig. 7.4 is N

T (1 + G
N ). Hence, the relation (7.1) between

n and k changes to n = (N + G)k.

7.3.5 Summary on OFDM

OFDM is a powerful transmission scheme for N parallel input sequences of QAM
symbols. Modulation and demodulation is done with processors executing an NxN
IDFT and DFT, respectively. Fast and efficient computational methods are present,
such as the Cooley–Turkey algorithm [6]. The available transmission frequency band
is separated by N “carrier” frequencies of the IDFT, which outputs a vector, called
OFDM symbol, with N components. A cyclic prefix of length G samples can be
attached to theOFDMsymbols before transmission. Equalization at the receiver after
DFT is enabled by simply dividing each output μ by λμ = H

(
ej2π f/ fS

) | f =μ 1
T
, where

H
(
ej2π f/ fS

)
is the transfer function of the equivalent baseband channel and 1/T

the QAM symbol rate. Given an FIR channel impulse response with length L + 1,
the cyclic prefix must consist of G � L samples to completely remove intersymbol
interference in the receive signal. The prefix samples span a guard interval that
reduces the number of useful samples by factor η = N/(N + G), because the cyclic
prefix just allocates redundancy. On the other hand, if N is made large, the loss is
tolerable and, in addition, the transmission frequency band is separated into even
smaller and thus almost flat sub-bands. This is the major reason why OFDM became
the dominant method for mobile wireless communications allowing a frequency
selective fading channel to be handled as a piece-wise frequency flat fading channel.
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Some examples for the number N of carriers are: Digital Audio Broadcasting (DAB)
1576, Digital Video Broadcasting Terrestrial (DVB-T) about 8000, Wireless LAN
802.11a about 48, and 4G/LTE up to 1200 carrier frequencies.

VeryHighSpeedDigital Subscriber Line (VHDSL) on twisted pair telephone lines
is using Digital Multitone (DMT) modulation with 4096 carrier frequencies. DMT
is the baseband version of OFDM, where no RF up-conversion is required. Details
of DMT are considered, e.g., in [22]. There, also a method for dedicated power
allocation to the N transmit signals is described for maximization of the signal-to-
noise ratio at the receiver. The water-filling algorithm is used, which is described in
detail for MIMO systems in Sect. 17.5. Besides many advantages, also some critical
points in the development of OFDM and DMT had to be solved, in particular the
Peak-to-Average Power Ratio (PAPR) of the transmit signal. Due to the superposition
of a large number of modulated carriers, the instantaneous output peak signal can be
rather high, thus, driving theD/A converter out of range or the transmit amplifiers into
the non-linear regime. Various methods have been found to minimize PAPR, such as
rough clipping, signal shaping, e.g., by statistical methods, linear and nonlinear pre-
emphasis, and the use of a few dedicated QAM input sequences specially designed
to “flatten” the output signal over time.

The transmitter in Fig. 7.1 can also be implemented as a filter bank without dedi-
cated modulators, where the gT (n)ej2π fνnT/N , ν = 1, 2, . . . , N − 1 are interpreted as
filters. This method is useful for the design of transmitter output spectra to achieve
low interference with neighboring spectra and applied in principle for the 5G cellu-
lar system. Also combinations of filter banks and OFDM have become interesting
solutions [23].
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Part II
Theory of Linear Time-Variant Systems



Chapter 8
Introduction and Some History

Time-variant systems are of general interest, because they play an important role in
communications due to the emerging wireless networks for in-house and outdoor
applications. As a matter of fact a wireless channel can change its parameters with
time depending on the position of the mobile transmitter, the receiver, and on the
change of the surroundings. During the education of electrical engineers the main
focus is on time-invariant systems and the topic of time-variant systems is not always
strongly alluded. Thus, also from this perspective a general view on time-variant
systems and their mathematical description is favorable.

First contributions to the subject have been made by Carson [1], later by the
seminal papers ofZadeh [2],Bello [3],Kailath [4, 5], andGersho [6]. Zadeh considers
electrical circuits which he calls “variable networks” if their circuit elements vary
with time. He points out that the fundamental characteristic of “fixed networks”,
which have constant elements, is the fact that their impulse response w(t − s) is
dependent solely upon the “age variable” t − s that is the difference between the
instant t of the observation of the response at the output and the instant s of a Dirac
impulse at the input. Furthermore, he argues that no such property is possessed by
variable networks and he concludes that in those the response must be of the general
formw(t, s) characterizing a two-dimensional function of the independent variables
t and s. For the first time he defines a time-variant transfer function H( f, t) =∫ ∞
−∞ w(t, s)e−j2π f (t−s)ds, where t acts as a parameter and he interprets H( f, t) as the
natural extension of the transfer function H( f ) = ∫ ∞

−∞ h(t − s)e−j2π f (t−s)ds, which
is the Fourier transform of h(t) of a fixed network. To find the relation between
the input x(t) and the output y(t) of variable networks Zadeh [2] takes the model
of a linear electrical circuitry with time-variant circuit elements and describes these
networks by an ordinary linear differential equation of higher order with time-variant
coefficients. He reports that the general solution of this equation has the form
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y(t) =
∫ ∞

−∞
w(t, s)x(s)ds (8.1)

where x(t) and y(t) are the input and the output signals, respectively. Furthermore,
he shows thatw(t, s) is the response at observation instant t to an input Dirac impulse
at instant s and calls it impulse response of the time-variant system. The integral in
(8.1) is denoted as general superposition integral, generalized convolution integral,
or time-variant convolution.

With the Fourier transform X ( f ) of x(t) he concludes that

y(t) =
∫ ∞

−∞
H( f, t)X ( f )ej2π f t d f (8.2)

holds and that many operations can be performed with H( f, t) just like H( f ). While
the focus of Zadeh [2] is on the description of variable networks in the frequency
domain Bello [3] starts his considerations with the time domain and he builds upon
the work of [2, 4, 5]. Bello added three more input-output relations to (8.1), where
two pairs of them turn out to represent Fourier transform pairs and he showed that all
are equivalent for the description of linear time-variant systems [7]. In this chapter
we follow only the first one which is

y(t) =
∫ ∞

−∞
K1(t, s)x(s)ds (8.3)

where K1(t, s) is identical with w(t, s) in (8.1). Bello denotes K1(t, s) as kernel
system function or time-variant impulse response and as already stated by Zadeh he
interprets K1(t, s) as the response of the system at observation time instant t to an
input Dirac impulse δ(t − s) applied at time instant s. However, he also points out
that K1(t, s) has some drawbacks for system modeling in electrical engineering and
therefore takes over the transformation of variables proposed already by Kailath [4,
5]

s = t − τ (8.4)

yielding the “modified impulse response”

g(t, τ ) = K1(t, t − τ ) (8.5)

which Bello [3] calls (input) delay spread function.1 Then (8.3) results in

y(t) =
∫ ∞

−∞
K1(t, t − τ )x(t − τ )dτ (8.6)

1Please note that several authors of later literature denote g(t, τ ) bewildered as impulse response.
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Bello [3] gives an interpretation using an analog, densely tapped delay line with
an infinite number of taps and the input signal x(t). The differential output signals
K1(t, t − τ )x(t − τ )dτ of the taps are “summed up” by integration yielding the
output signal y(t). Later we will show that the Fourier transform of g(t, τ ) provides
the time-variant transfer function H( f, t) proposed by Zadeh [2]. Using the previous
explanation for K1(t, s) we can interpret g(t, τ ) as the response of the system at the
observation instant t to an input Dirac impulse applied at the instant t − τ , thus the
quantity τ earlier, which has also elicited the name age variable or delay time for τ
and output time or simply time for t . Please note that the time variation of the system
parameters is also determined by t .

In the next chapter we present an alternative derivation for (8.3), which is different
from [2, 3]. Firstly,we derive an input-output relation for time-variant systems using a
system theoretic approach and next we present the input-output relation of a discrete-
time, time-variant system with the help of a discrete-time delay-line filter. Furnished
with the latter results we will construe the discrete-time system as the sampled
version of a continuous time one. With these approaches we can prove (8.3) directly.
Then we discuss several important properties of the time-variant convolution, such
as linearity, associativity, commutativity, and apply them for cascading time-variant
and time-invariant systems. An important subject will be the Fourier spectrum of the
modified impulse response g(t, τ ), which results in the time-variant transfer function
and the Doppler spread function. Of great interest is also the Fourier spectrum of the
output signal. Two examples will illustrate that the output spectrum of a time-variant
system, e.g., a wireless fading channel, can have a larger bandwidth than the input
spectrum. This fact is quite in contrast to linear time-invariant systems. Finally, we
close with a thorough consideration of important correlation functions for randomly
changing time-variant systems and address in particular also stationary random time-
variant systems. These considerations allow us to formulate useful parameters for
the characterization of time-varying channels, such as coherence time and coherence
bandwidth. We are going to describe time-variant systems from the perspective of
system theory for communications and do not consider electrical circuits with time-
variant elements as in [2] and later in [8].
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Chapter 9
System Theoretic Approach for the
Impulse Response of Linear
Time-Variant Systems

9.1 Continuous Time, Time-Variant Impulse Response

Let T [. . .] be a linear system operator, which maps the input signal x(t) of a linear
dynamic system to an output signal y(t) as

y(t) = T [x(t)] (9.1)

We assume empty system memories for t → −∞. First consider the case of a linear
time-invariant systemwith impulse responsew(t). TheDirac impulse δ(t − s) yields
the output response

w(t − s) = T [δ(t − s)] (9.2)

with the property that the shape of w does not change if s is varied, because the
response w(t) is just shifted by s along the time axis t . No such relation is possessed
by a linear time-variant system. The shape of its responsew depends also on the time
instant s. Thus, as outlined previously, the response of a time-variant system is more
general and given by

T [δ(t − s)] = w(t, s) (9.3)

as a function of the two independent variables t and s.
To derive the input-output relation of a linear time-variant system we start with

the identity using the sifting property of the Dirac impulse

x(t) =
∫ ∞

−∞
x(ζ)δ (t − ζ) dζ (9.4)

In the next step we apply the linear system operator T [. . .] on both sides
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T [x(t)] = T [
∫ ∞
−∞

x(ζ)δ (t − ζ) dζ] =
∫ ∞
−∞

T [x(ζ)δ (t − ζ)]dζ =
∫ ∞
−∞

x(ζ)T [δ (t − ζ)]dζ (9.5)

noting that the system operator acts only with respect to t . With (9.1) and (9.3)
follows

y(t) =
∫ ∞

−∞
x(ζ)w(t, ζ)dζ =

∫ ∞

−∞
x(s)w(t, s)ds = x(t) � w(t, s) (9.6)

where we have just replaced ζ by s in the second step. Obviously, (9.6) with (9.3)
prove (8.1) in a different way. We denote the operation in (9.6) as the time-variant
convolution and indicate it by � to differentiate from the well known time-invariant
convolution ∗.

In summary, a linear time-variant system is determined by an impulse response
w(t, s), which is a function of the independent variables t and s. Furthermore,w(t, s)
is the response observed at time instant t to an input Dirac impulse δ(t − s), which
is active at time instant s. To fully describe a time-variant system an infinite number
of responses w(t, s) as functions of t with the parameter s εR must be considered
compared to a time-invariant system, where only one impulse response w(t, 0) =
h(t) suffices.

Example 1
Show that w(t, s) is the response to x(t) = δ (t − s).

Solution:
Using (9.6) and the sifting property of the Dirac impulse yields∫ ∞
−∞ δ (ζ − s) w(t, ζ)dζ = w(t, s).

Example 2
We consider the time-variant impulse response of a fading transmission channel

w(t, s) =
{
sinc

(
f1(t − s − 1

f1
)
)
sinc ( f2s) ; t � s � 0

0 ; else
(9.7)

where sinc (x) = sin(πx)/πx .
(a) Sketch w(t, s) and δ (t − s).
(b) Show that w(t, s) is zero for s = t − 2

f1
, t − 3

f1
, . . .(lines parallel to diagonal

s = t) and for s = 1
f2
, 2

f2
, . . . (lines orthogonal to s-axis).

Solution:
(a) w(t, s) is shown in Fig. 9.1a. For the moment please ignore the three planes at s1,
s2, and s3. Apparently, the Dirac impulse δ (t − s) is a Dirac plane along the diagonal
s = t in the tree-dimensional space.

The impulse response is causal, because w(t, s) = 0 for t < s holds. We also
recognize w(t, s) → 0 for s, t → ∞.
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Fig. 9.1 a Time-variant impulse responsew(t, s) given by (9.7) with f1 = 4, f2 = 1 and stimulat-
ing Dirac plane δ(t − s) b Isolated impulse responses wi (t) as cutting curves of the surface w(t, s)
with the planes at s = si , i = 1, 2, 3, in a

(b) The zeros are obtained from the conditions f1(t − s − 1
f1
) = 1, 2, 3, . . . ,

and f2s = 1, 2, 3, . . . . e.g., w(t, s) = 0 for s = s2 = 1 is clearly visible.

Example 3
The system with time-variant impulse response (9.7) shall be stimulated by an iso-
lated Dirac impulse δ1 at t = s1 and s = s1.

(a) Determine δ1.
(b) Find the isolated response w1(t) = w(t, s1) to δ1 and sketch it as a function of

t in a two-dimensional diagram.
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Solution:

(a) In a three-dimensional diagram with abscissas t and s the Dirac impulse δ1
occurs at position (s1, s1). Thus, δ1 = δ(t − s1, s − s1), which is equal to δ1 =
δ(t − s1)δ(s − s1).

(b) In principle, the isolated response w1(t) is obtained by cutting the surface
w(t, s) with the plane s = s1, which is shown in Fig. 9.1a at location s = s1
in parallel to the front plane given by the ordinate and the t-axis. w1(t)
is indicated by a curve in bold. In the same way the cutting curves w2(t)
and w3(t) are created and depicted in Fig. 9.1b, which shows three sepa-
rate two-dimensional diagrams with parameters s1, s2, and s3. As expected
from a time-variant system, we clearly see that the responses w1(t), w2(t),
and w3(t) are different, in particular w2(t) = 0 holds. Mathematically, we
can use (9.6) and get with the input x(ζ) = δ(ζ − si )δ(s − si ) the output
yi (t) = ∫ ∞

−∞ δ(ζ − si )δ(s − si )w(t, ζ)dζ = w(t, si )δ(s − si ). Thus, each cut-
ting plane can be defined by a Dirac plane δ(s − si ) and the cutting curves then
are w(t, s)δ(s − si ) = w(t, si )δ(s − si ), i = 1, 2, 3, if Fig. 9.1b shall represent
a three dimensional diagram with continuous s.

9.2 Modified Time-Variant Impulse Response—The Delay
Spread Function

The time-variant impulse responsew(t, s) has some drawbacks in signal processing.

• The causality condition, which is important for a realizable system, requires two
variables, t and s. The system is causal, ifw(t, s) = 0 for t < s, because the effect
cannot occur before the cause.

• The Fourier transform of w(t, s) does not directly provide meaningful frequency
responses, such as the time-variant transfer function or theDoppler spread function
of the system, which are introduced in Chap. 11.

• Furthermore, a minor point is as follows. If the system is time-invariant, the input-
output relation (9.6) does not turn elegantly into the conventional convolution
integral by just dropping one variable of w(t, s), as will be the case for the delay
spread function discusses next.

To overcome these drawbacks the transformation of variables (8.4) is proposed.With
s = t − τ follows from (9.6)

y(t) =
∫ ∞

−∞
x(t − τ )w(t, t − τ )dτ (9.8)

We introduce the modified time-variant impulse response also called delay spread
function g(t, τ ) as

w(t, t − τ ) = g(t, τ ) (9.9)
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and with τ = t − s follows on the other hand

w(t, s) = g(t, t − s) (9.10)

With (9.9) we get from (9.8)

y(t) =
∫ ∞

−∞
x(t − τ )g(t, τ )dτ =

∫ ∞

−∞
x(ζ)g(t, t − ζ)dζ = x(t) � g(t, τ ) (9.11)

where the substitution ζ = t − τ was used for the second integral. (9.8) and (9.11)
are equivalent, because they provide the same output signal y(t).
Important Remark
Please note that the time-variant convolutions x(t) � w(t, s) in (9.6) and x(t) �
g(t, τ ) in (9.11) are executed by slightly different integral operators. Nevertheless,
we use the same symbol � just to simplify the notation. What operator has to be
used will become clear from the context.

Finally, we see from (9.11) that the third drawback listed before can be overcome
with g(t, τ ). If the system is time-invariant, we can just skip the first argument t in
g(t, τ ). Then the delay spread function turns into the impulse response g(τ ). We can
rename τ by t andwrite g(t). Hence, from (9.11) follows thewell known input-output
relation of the time-invariant convolution

y(t) =
∫ ∞

−∞
x(t − τ )g(τ )dτ =

∫ ∞

−∞
x(ζ)g(t − ζ)dζ = x(t) ∗ g(t) (9.12)

Fig. 9.2 Time-variant impulse response w(t, s) for f1 = 4 and f2 = 1 cut by the plane s = t − τ
to generate w(t, t − τ ) = g(t, τ )
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Example 4
We consider again the time-variant impulse response w(t, s) in (9.7).

(a) Find the delay spread function g(t, τ ).
(b) Show the interrelation between w(t, s) and g(t, τ ). Sketch the cutting curves.

Solution:

(a) Plugging s = t − τ into (9.7) yields

g(t, τ ) =
{
sinc

(
f1(τ − 1

f1
)
)
sinc ( f2(t − τ )) ; τ � 0

0 ; else
(9.13)

Figure9.2 shows the surface of the time-variant impulse responsew(t, s), which
is cut by the plane s = t − τ . By varying τ the delay spread function g(t, τ )

results and is depicted in Fig. 9.3a. Please ignore the diagonal planes there at
the moment. As expected from (9.13), we recognize g(t, τ ) approaching zero
for t, τ → ∞. We also see that the diagonal Dirac plane δ(t − s) in Fig. 9.2
has turned into the Dirac plane δ(τ ) along the t-axis. Apparently, the distributed
Dirac impulses along the Dirac plane are all active at the same delay τ = 0
rather than at different delays along the diagonal s = t − τ as in Fig. 9.2. This is
amajor advantage of g(t, τ ) compared tow(t, s) for themodeling of time-variant
systems.

(b) Now we consider the three diagonal planes along τ = t − si in Fig. 9.3a, which
cut out the curves g(t, t − si ), i = 1, 2, 3, indicated in bold, from the surface
g(t, τ ). The isolated cutting curves are shown in Fig. 9.3b in detail. From (9.10)
we conclude that g(t, t − si ) = w(t, si ) must hold. The reader can convince
oneself by comparing g(t, t − si ) in Fig. 9.3b for τ � 0 with wi (t) = w(t, si )
in Fig. 9.1b for t � si . In essence, this example again demonstrates that a time-
variant system can be described by the delay spread function g(t, τ ) owing to
the direct relation (9.10).

9.3 Discrete-Time, Time-Variant System

9.3.1 Discrete-Time Delay Spread Function

We consider the discrete-time system in Fig. 9.4, which is a discrete-time tapped
delay-line filter also called a finite impulse response (FIR) filter. The discrete-time
input and output signals are denoted as xs(k) and ys(k), respectively. The index s
stands for sampled. The K + 1 taps are the filter coefficients indicated by gs(k,m)

with k,m εZ and gs(k,m) = 0 for m > K and m < 0. Obviously, all parts in the
filter are linear namely the delay elements with the delay �τ , the multiplication of
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Fig. 9.3 a Delay spread function g(t, τ ) given in (9.13) with f1 = 4 and f2 = 1 as well as stimu-
lating Dirac plane δ(τ ) b Isolated delay spread functions g(t, t − si ) as cutting curves of the surface
g(t, τ ) with the diagonal planes τ = t − si , i = 1, 2, 3, in a

the delayed inputs xs(k − m)with the filter coefficients yielding gs(k,m)xs(k − m),
and the addition of all component signals. Consequently, we get the output signal

ys(k) =
K∑

m=0

gs(k,m)xs(k − m) = xs(k) � gs(k,m) (9.14)

The reader is encouraged to convince oneself of the linearity by using the super-
position of two input signals. We denote the relation (9.14) as the discrete-time,
time-variant convolution between gs(k,m) and xs(k) and allocate the the symbol �
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Fig. 9.4 Discrete-time, time-variant finite impulse response filter

to prevent from confusion with the time-invariant convolution operation ∗. For sim-
plicity of the notation the same symbol � for the discrete-time and the continuous-
time convolution is used. We clearly see that the filter is time-variant, because at the
time instant k the set of coefficients is gs(k, 0), gs(k, 1), . . . , gs(k, K ) and at the next
instant k + 1 the coefficients change to gs(k + 1, 0), gs(k + 1, 1), . . . , gs(k + 1, K ).

As is well known from signal processing, a discrete-time system can be described
in general by a recursive filterwith an infinitely long impulse response.With K → ∞
and if we also allow non-causality, m → −∞, follows from (9.14)

ys(k) = xs(k) � gs(k,m) =
∞∑

m=−∞
gs(k,m)xs(k − m) (9.15)

By substituting k − m = ζ and finally replacing ζ by m follows

ys(k) = xs(k) � gs(k,m) =
∞∑

m=−∞
gs(k, k − m)xs(m) (9.16)

Now we define the unit impulse

δk =
{
1 ; k = 0

0 ; k = ±1,±2, . . .
(9.17)

and apply at the input of the filter a unit impulse active at time instant k0 − m, i.e.
xs(k) = δk−(k0−m). The observed output ys(k) at time instant k ≥ k0 − m follows
from (9.15)

ys(k) =
∞∑

ν=−∞
gs(k, ν)xs(k − ν) =

∞∑
ν=−∞

gs(k, ν)δk−(k0−m)−ν = gs(k, k − k0 + m)

(9.18)
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For k0 → k the unit impulse at the input is active at time instant k − m and the
response observed at instant k follows from (9.18)

ys(k) = gs(k,m) (9.19)

Hence, gs(k,m) can be considered as the response of the discrete-time, time-
variant system at observation time k to a unit impulse applied at instant k − m, i.e.m
time intervals earlier. According to our previous nomenclature for continuous-time
systems we can call gs(k,m) as discrete-time modified impulse response or discrete-
time delay spread function. A causal system cannot react before the instant of the
unit impulse, i.e. at k < k − m, which is equivalent to m < 0. Thus

gs(k,m) = 0 ∀m < 0 (9.20)

must hold for a causal time-variant system.
We see that the discrete-time, time-variant system is fully defined by its delay

spread function gs(k,m). The two variables k εZ and m εZ specify two different
time coordinates. k characterizes the time variable of the input and output signal, in
addition also the temporal change of the system parameters gs(k,m). The variablem
is called delay time or just delay, because the observation instant is m time intervals
later than the active unit impulse. Sometimesm is also referred to as integration time,
because the summation in (9.15) and (9.16) is taken over m.

To grasp the mechanism of a time-variant system more closely assume that we
would like tomeasure the coefficients gs(k,m) of the FIRfilter in Fig. 9.4. In principle
they can be found with a series of measurements using (9.19). To get gs(k,m) as a
function of m, we can measure the output at a fixed instant k and change the instant
k − m of the unit impulse by varying m = 0, 1, 2, . . . , K . The result are output
samples ys(k) = gs(k, 0) up to gs(k, K ). In the next round the same procedure has
to be executed for k + 1 with the measurement of ys(k + 1) = gs(k + 1, 0) up to
gs(k + 1, K ) and so on.

This is quite in contrast to a time-invariant filter with coefficients gs(k,m) =
g′
s(m), which are independent of k. As a consequence (9.14) turns into

ys(k) =
K∑

m=0

g′
s(m)xs(k − m) = xs(k) ∗ g′

s(k) (9.21)

which is the well known convolution operation for linear, discrete-time, time-
invariant systems. An example is a wire-line channel or a static wireless channel,
where the transmitter and the receiver are non-moving and all scatterings and reflec-
tions of the electromagnetic waves do not change with time k. To find the time-
invariant coefficients g′

s(k) only one unit impulse xs(k) = δk suffices, yielding from
(9.21) the output sequence

ys(k) = g′
s(k) (9.22)
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which is called the impulse response.
If we apply xs(k) = δk to the time-variant system, we readily deduce from (9.15)

that ys(k) = gs(k, k), which does not completely determine the system, because
gs(k, k) is just the delay spread function evaluated along the axis m = k. Therefore
gs(k,m) should not be called impulse response.

9.3.2 Transition to Continuous-Time Delay Spread Function

In the following we extend our considerations to continuous-time, time-variant sys-
tems. For that purpose we interpret gs(k,m) as the result of a two-dimensional
sampling of the continuous function g(t, τ ) at t = k�t and τ = m�τ with m, k εZ.
�t and �τ are the sampling intervals for the time t and delay-time τ , respectively.
Hence

g(k�t ,m�τ ) = gs(k,m) (9.23)

and g(t, τ ) can be ideally reconstructed from gs(k,m), if the sampling theorem is
fulfilled. The continuous-time input signal of the continuous-time system shall be
x(t) and the relation with the discrete-time version is

x(k�t ) = xs(k) (9.24)

and similarly for the output signal y(t)

y(k�t ) = ys(k) (9.25)

Roughly andwithout going into all mathematical details for�t → 0 and�τ → 0 the
discrete-time variables k and m are approaching the continuous-time variables t and
τ , respectively. Moreover, the summations in (9.15) and (9.16) turn into integrals.
Thus, the discrete-time, time-variant convolution becomes the continuous-time, time-
variant convolution integral

y(t) = x(t) � g(t, τ ) =
∫ ∞

−∞
g(t, τ )x(t − τ )dτ (9.26)

where the same symbol � as in (9.15) is used to simplify notation. By changing the
integration variable τ = t − ζ we obtain alternatively

y(t) = x(t) � g(t, τ ) =
∫ ∞

−∞
g(t, t − ζ)x(ζ)dζ (9.27)

From these equations it is quickly determined that g(t, τ ) is the response at obser-
vation time instant t to an input Dirac impulse at time instant t − τ .
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For the proof we apply a Dirac impulse at t0 − τ , i.e. the input signal is x(t) =
δ (t − (t0 − τ )), and obtain from (9.26)

y(t) =
∫ ∞

−∞
g(t, η)δ (t − (t0 − τ ) − η) dη = g (t, t − t0 + τ ) (9.28)

For t0 → t the Dirac impulse is active at t − τ , which yields the output signal

y(t) = g(t, τ ) (9.29)

and the statement is proven.
Referring to the substitution s = t − τ of variables in (8.4) g(t, τ ) is found by

cutting the surface of the two-dimensional impulse response w(t, s) with the plane
τ = t − s. Hence g(t, τ ) is a two-dimensional function of t and the new axis τ =
t − s. Furthermore, we conclude from (9.20) for a causal delay spread function

g(t, τ ) = 0 ∀ τ < 0 (9.30)

as illustrated in Fig. 9.3.
We still owe some explanation how to find w(t, s) practically. To this end, let us

stimulate the system with a Dirac impulse at t = s, consider the response w(t, s)
as a function of t and continue this procedure for a large variety of parameters s,
−∞ < s < ∞. Here again we recognize the main difference to an impulse response
of a time-invariant system, for which an input Dirac impulse at a single s, in particular
s = 0, suffices. Please note that according to (9.9) a Dirac impulse with s = 0 at
the input of a time-variant system would just result in an output response y(t) =
w(t, 0) = g(t, t) and the determination of the system would not be complete.



Chapter 10
Properties of Time-Variant Convolution

In this chapter we proof some important properties of the time-variant convolution
in detail. The results are also summarized in Tables10.1 and 10.2.

10.1 Relation Between Time-Variant and Time-Invariant
Convolution

It is interesting to check whether the time-variant convolution encompasses the time-
invariant convolution. By definition, the impulse response h(t) of a time-invariant
system is the response to an input Dirac impulse δ(t). If the system is excited by the
time-shifted Dirac impulse δ(t − s), the response h(t − s) also incorporates a shift
without changing its original shape. This holds for any s. Therefore w(t, s) turns
into a one-dimensional function of t

w(t, s) = w(t − s) = h(t − s) (10.1)

where only one parameter value s = 0 suffices resulting in the impulse response
h(t). Consequently, the time-variant convolution (9.6) migrates to the time-invariant
convolution as

y(t) = x(t) � w(t, s) = ´ ∞
−∞ x(s)w(t, s)ds

= ´ ∞
−∞ x(s)w(t − s)ds = ´ ∞

−∞ x(s)h(t − s)ds = x(t) ∗ h(t)
(10.2)

and we recognize that we can just replace w(t, s) by w(t − s) in (9.6), if the system
is time-invariant. Thus, the name “general convolution” mentioned earlier for (8.1)
and (9.6) is justified.
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The relation (10.2) can also be formulatedwith the delay spread function g(t, τ ) =
h(τ ) using the substitution t − s = τ

x(t) � g(t, τ ) = x(t) � h(τ ) = x(t) ∗ h(t) (10.3)

Proof of (10.3)

The time-invariant system shall be described in general by the delay spread function
g(t, τ ) = h(t − s) = h(τ ). The time-variant convolution (9.11) yields
x(t) � g(t, τ ) = ´ ∞

−∞ g(t, τ )x(t − τ )dτ . As is well known, the time-invariant con-
volution is defined as x(t) ∗ h(t) = ´ ∞

−∞ h(τ )x(t − τ )dτ . Both integrals are iden-
tical, if g(t, τ ) = h(τ ). As any one-dimensional function h(x) can be defined with
any variable, x = τ or x = t , the proof of (10.3) is complete.

10.2 Properties

Linearity

The time-variant convolution (9.6) is linear. Let

x(t) = a1x1(t) + a2x2(t) (10.4)

and
yi (t) = xi (t) � w(t, s) ; i = 1, 2 (10.5)

then
y(t) = a1y1(t) + a2y2(t) (10.6)

The proof is straightforward, because the convolution integral represents a linear
operation.

Convolution of Two Time-Variant Impulse Responses

As depicted in Fig. 10.1a, we can model the convolution of two time-variant impulse
responsesw1(t, s) andw2(t, s) by a cascade of two time-variant systems. The overall
impulse response shall be w12(t, s). In the upper line we have indicated the input
signal x0(t) as well as the output signals x1(t) and x2(t). Using (9.6) we get

xi (t) = xi−1(t) � wi (t, s) ; i = 1, 2 (10.7)

In the lower line of Fig. 10.1a we indicate the input x0(t) = δ(t − s) resulting in the
impulse responses w1(t, s) and w12(t, s). We proof that the system possesses the
overall impulse response
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Fig. 10.1 Cascade of two
time-variant systems a with
impulse responses w1(t, s)
and w2(t, s), b with delay
spread functions g1(t, τ ) and
g2(t, τ )

w12(t, s) = w1(t, s) � w2(t, s) =
ˆ ∞

−∞
w1(ζ, s)w2(t, ζ)dζ (10.8)

which is the time-variant convolution of the individual impulse responses. It is readily
appreciated that the convolution integral (9.6) can be directly applied by interpreting
w1(t, s) as a function of t with a parameter s, thus taking over the role of x(ζ) in
(9.6).

Proof of (10.8)

Let w12(s, t) denote the overall impulse response. Then the response to the input
signal x0(t) is according to (9.6)

x2(t) =
ˆ ∞

−∞
x0(s)w12(t, s)ds (10.9)

Similarlywe obtain x1(t) = ´ ∞
−∞ x0(s)w1(t, s)ds and x2(t) = ´ ∞

−∞ x1(ζ)w2(t, ζ)dζ.
Inserting x1(t) yields x2(t) = ´ ∞

−∞
´ ∞

−∞ x0(s)w1(ζ, s)w2(t, ζ)dsdζ. Assuming that
the integrals converge absolutely we can interchange the order of integration and get
x2(t) = ´ ∞

−∞ x0(s)
[´ ∞

−∞ w1(ζ, s)w2(t, ζ)dζ
]
ds. From the comparison with (10.9)

we conclude that the inner integral is w12(t, s) yielding the result w12(t, s) =´ ∞
−∞ w1(ζ, s)w2(t, ζ)dζ and the proof ends.

Convolution of Two Delay Spread Functions

In Fig. 10.1b the two time-variant systems are characterized by their delay spread
functions

gi (t, τ ) = wi (t, t − τ ) ; i = 1, 2 ; g12(t, τ ) = w12(t, t − τ ) (10.10)

We proof that the overall delay spread function is

g12(t, τ ) = g1(t, τ ) � g2(t, τ ) = ´ ∞
−∞ g1(t − η, τ − η)g2(t, η)dη (10.11)

Please note, to simplify notation we use the same symbol � for the convolution of
the impulse responses in (10.8) and the delay spread functions in (10.11) although
the integral notations are different.
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Proof of (10.11)

We start from (10.8) and obtain with s = t − τ and (10.10) for the left-hand side
w12(t, t − τ ) = g12(t, τ ) = g1(t, τ ) � g2(t, τ ). For the integral in (10.8) the substi-
tution ζ = t − η, dζ = −dη yields
g12(t, τ ) = ´ ∞

−∞ w1(t − η, t − τ )w2(t, t − η)dη. The term w1(t − η, t − τ ) has to
be changed to the form w1(x, x − u) = g1(x, u) as follows,
w1(t − η, t − τ ) = w1(t − η, t − η − τ + η) = w1 (t − η, t − η − (τ − η))
resulting in

w1(t − η, t − τ ) = g1 (t − η, τ − η) (10.12)

Then follows with w2(t, t − η) = g2(t, η) the result
g12(t, τ ) = ´ ∞

−∞ g1(t − η, τ − η)g2(t, η)dη and the proof is finished.

Commutativity

• The time-variant convolution of two time-variant impulse responses w1(t, s) and
w2(t, s) is in general non-commutative.

w1(t, s) � w2(t, s) �= w2(t, s) � w1(t, s) (10.13)

• The time-variant convolution of two delay spread functions g1(t, τ ) and g2(t, τ )
is in general non-commutative.

g1(t, τ ) � g2(t, τ ) �= g2(t, τ ) � g1(t, τ ) (10.14)

• From an engineering point of view we conclude that a change of the sequential
arrangement of the two time-variant systems in Figs. 10.1a, bwill result in different
overall responses in general.

• The time-variant convolution of two impulse responses w1(t, s) = h1(t − s) and
w2(t, s) = h2(t − s) of time-invariant systems is commutative.

h1(t − s) � h2(t − s) = h2(t − s) � h1(t − s) (10.15)

As can be seen, the time-variant convolution boils down to the time-invariant
convolution, where s = 0 suffices.

h1(t) ∗ h2(t) = h2(t) ∗ h1(t) (10.16)

With s = t − τ we can also conclude from (10.15)

h1(τ ) � h2(τ ) = h2(τ ) � h1(τ ) (10.17)

• Please note, if we consider an arrangement with time-variant and time-invariant
systems, h(τ ) characterizes the delay spread function of a time-invariant system
and not a signal such as x(t). In case of solely time-invariant systems the impulse
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response h(t) can be treated just as a signal and the convolution operation is com-
mutative, x(t) ∗ h(t) = h(t) ∗ x(t). Thus, for time-variant systems a differentia-
tion between a signal and an impulse response or delay spread function is required
before executing the convolution. The following statement is an illustration:

• The time-variant convolution of a time-variant impulse response w(t, s) and a
signal x(t) in general is non-commutative.

x(t) � w(t, s) �= w(t, s) � x(t) (10.18)

or equivalently
x(t) � g(t, τ ) �= g(t, τ ) � x(t) (10.19)

The proof is quite straightforward, because the two integrals x(t) � w(t, s) =´ ∞
−∞ x(ζ)w(t, ζ)dζ = y1(t) andw(t, s) � x(t) = ´ ∞

−∞ w(ζ, s)x(ζ)dζ = y2(s) are
executed over different variables of w(t, s). Anyhow, w(t, s) � x(t) makes not
much sense technically, as a system will only be cascaded by another one and not
by a signal.

Proof of (10.13)

For the left-hand side we obtain w12(t, s) = ´ ∞
−∞ w1(ζ, s)w2(t, ζ)dζ according to

(10.8). For the right-hand side follows w21(t, s) = ´ ∞
−∞ w2(η, s)w1(t, η)dη. We see

that in general both integrals are different. e.g., in w12(t, s) the integration is done
over the first variable ofw1(t, s)whereas inw21(t, s) the integration is executed with
respect to the second variable of w1(t, s).

Proof of (10.14)

The proof is similar as before. For the left-hand side of (10.14) we obtain g12(t, τ ) =´ ∞
−∞ g1(t − η, τ − η)g2(t, η)dη according to (10.11). For the right-hand side follows

g21(t, τ ) = ´ ∞
−∞ g2(t − η, τ − η)g1(t, η)dζ. We see that in general both integrals are

different.

Proof of (10.15) and (10.16)

From (10.8) follows for the left-hand side h12(t − s) = h1(t − s) � h2(t − s) =´ ∞
−∞ h1(ζ − s)h2(t − ζ)dζ = ´ ∞

−∞ h1(η)h2(t − s − η)dη, where we have used the
substitution ζ − s = η. The right-hand side of (10.15) is given by h21(t − s) =
h2(t − s) � h1(t − s) = ´ ∞

−∞ h2(ζ − s)h1(t − ζ)dζ = ´ ∞
−∞ h1(η)h2(t − s − η)dη,

where the substitution t − ζ = η was used. Obviously, h12(t − s) = h21(t − s) is
true. We also see that we get an overall impulse response which is just delayed by s,
which is not surprising, because at the input of the system the delayed Dirac impulse
δ(t − s) is active. For s = 0wedirectly obtain the time-invariant convolution (10.16).
This finalizes the proof.
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Associativity of Time-Variant Convolution

• The time-variant convolution of a signal x(t)with a time-variant impulse response
is associative,

[x(t) � w1(t, s)] � w2(t, s) = x(t) � [w1(t, s) � w2(t, s)] (10.20)

• The time-variant convolution of a signal x(t) with a delay spread functions is
associative,

[x(t) � g1(t, τ )] � g2(t, τ ) = x(t) � [g1(t, τ ) � g2(t, τ )] (10.21)

• The time-variant convolution of time-variant impulse responses is associative,

[w0(t, s) � w1(t, s)] � w2(t, s) = w0(t, s) � [w1(t, s) � w2(t, s)] (10.22)

• The time-variant convolution of delay spread functions is associative,

[g0(t, τ ) � g1(t, τ )] � g2(t, τ ) = g0(t, τ ) � [g1(t, τ ) � g2(t, τ )] (10.23)

• The associativity also holds, if one or more systems are time-invariant character-
ized by wi (t, s) = wi (t − s) and gi (t, τ ) = gi (τ ) , i = 1, 2, respectively.

Proof of (10.20) and (10.21)

For the left-hand-side of (10.20) we get in a first step
x(t) � w1(t, s) = ´ ∞

−∞ x(ζ)w1(t, ζ)dζ = y1(t) and in a second step
u1(t) = y1(t) � w2(t, s) = ´ ∞

−∞ y1(η)w2(t, η)dη =
˜ ∞

−∞ x(ζ)w1(η, ζ)w2(t, η)dηdζ. Similarly for the right-hand side we obtain
w1(t, s) � w2(t, s) = ´ ∞

−∞ w1(η, s)w2(t, η)dη = w12(t, s) and
u2(t) = x(t) � w12(t, s) = ´ ∞

−∞ x(ζ)w12(t, ζ)dζ =
˜ ∞

−∞ x(ζ)w1(η, ζ)w2(t, η)dηdζ. A comparison shows that u1(t) = u2(t) and the
proof of (10.20) is finished.
With s = t − τ we obtain wi (t, s) = wi (t, t − τ ) = gi (t, τ ) ; i = 1, 2. Then from
(10.20) directly follows (10.21), which finalizes the proof of (10.21).

Proof of (10.22) and (10.23)

For the left-hand side of (10.22) we get
w0(t, s) � w1(t, s) = ´ ∞

−∞ w0(ζ, s)w1(t, ζ)dζ = y1(t, s) and
u1(t, s) = y1(t, s) � w2(t, s) = ´ ∞

−∞ y1(η, s)w2(t, η)dη =
˜ ∞

−∞ w0(ζ, s)w1(η, ζ)w2(t, η)dηdζ.
Similarly the right-hand side yields with w12(t, s) from proof (10.20)
u2(t, s) = w0(t, s) � w12(t, s) = ´ ∞

−∞ w0(ζ, s)w12(t, ζ)dζ =˜ ∞
−∞ w0(ζ, s)w1(η, ζ)w2(t, η)dηdζ. Obviously, u1(t, s) = u2(t, s) holds and we

conclude that the left and the right-hand side of (10.22) are identical, which finalizes
the proof. The proof of (10.23) is similar to (10.21).
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Distributivity of Time-Variant Convolution
The time-variant convolution is distributive,

w0(t, s) � [w1(t, s) + w2(t, s)] = [w0(t, s) � w1(t, s)] + [w0(t, s) � w2(t, s)]
(10.24)

g0(t, τ ) � [g1(t, τ ) + g2(t, τ )] = [g0(t, τ ) � g1(t, τ )] + [g0(t, τ ) � g2(t, τ )]
(10.25)

The proof is straightforward, because � is a linear operator.

10.3 Summary

Table10.1 summarizes important convolution operations and properties between
impulse responses of time-variant and/or time-invariant systems. With the substi-
tution s = t − τ of (8.4) the corresponding relations for the delay spread functions
of the system are summarized in Table10.2.

The convolution integrals in Table10.2 for g1(τ ) � g2(t, τ ) and g1(t, τ ) � g2(τ )
are proven together with their Fourier transforms in Sect. 11.5. We recognize that we

Table 10.1 Summary of time-variant convolution and properties. Impulse response wi (t, s) of
time-variant system, impulse response wi (t − s) of time-invariant system, input x(t) and output
signal y(t), i = 0, 1, 2

y(t) = x(t) � wi (t, s) = ´ ∞
−∞ x(s)wi (t, s)ds

y(t) = x(t) � wi (t − s) = ´ ∞
−∞ x(s)wi (t − s)ds

w1(t, s) � w2(t, s) = ´ ∞
−∞ w1(ζ, s)w2(t, ζ)dζ

w1(t − s) � w2(t, s) = ´ ∞
−∞ w1(ζ − s)w2(t, ζ)dζ = ´ ∞

−∞ w1(η)w2(t, η + s)dη

w1(t, s) � w2(t − s) = ´ ∞
−∞ w1(ζ, s)w2(t − ζ)dζ = ´ ∞

−∞ w1(t − η, s)w2(η)dη

w1(t − s) � w2(t − s) = ´ ∞
−∞ w1(ζ − s)w2(t − ζ)dζ

x(t) � wi (t, s) �= wi (t, s) � x(t)

w1(t, s) � w2(t, s) �= w2(t, s) � w1(t, s)

w1(t − s) � w2(t − s) = w2(t − s) � w1(t − s)

[x(t) � w1(t, s)] � w2(t, s) = x(t) � [w1(t, s) � w2(t, s)]

[w0(t, s) � w1(t, s)] � w2(t, s) = w0(t, s) � [w1(t, s) � w2(t, s)]

w0(t, s) � [w1(t, s) + w2(t, s)] = [w0(t, s) � w1(t, s)] + [w0(t, s) � w2(t, s)]
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Table 10.2 Summary of time-variant convolution and properties. Delay spread functions gi (t, τ ) =
wi (t, t − τ ) of time-variant system, delay spread function gi (τ ) = wi (t − s) of time-invariant sys-
tem, input x(t) and output signal y(t), i = 0, 1, 2

y(t) = x(t) � gi (t, τ ) = ´ ∞
−∞ x(t − η)gi (t, η)dη = ´ ∞

−∞ x(ζ)gi (t, t − ζ)dζ

y(t) = x(t) � gi (τ ) = ´ ∞
−∞ x(t − τ )gi (τ )dτ

g1(t, τ ) � g2(t, τ ) = ´ ∞
−∞ g1(t − ζ, τ − ζ)g2(t, ζ)dζ

g1(τ ) � g2(t, τ ) = ´ ∞
−∞ g1(τ − ζ)g2(t, ζ)dζ = ´ ∞

−∞ g1(η)g2(t, τ − η)dη

g1(t, τ ) � g2(τ ) = ´ ∞
−∞ g1(t − ζ, τ − ζ)g2(ζ)dζ

g1(τ ) � g2(τ ) = ´ ∞
−∞ g1(τ − ζ)g2(ζ)dζ

x(t) � gi (t, τ ) �= gi (t, τ ) � x(t)

g1(t, τ ) � g2(t, τ ) �= g2(t, τ ) � g1(t, τ )

g1(τ ) � g2(τ ) = g2(τ ) � g1(τ )

[x(t) � g1(t, τ )] � g2(t, τ ) = x(t) � [g1(t, τ ) � g2(t, τ )]

[g0(t, τ ) � g1(t, τ )] � g2(t, τ ) = g0(t, τ ) � [g1(t, τ ) � g2(t, τ )]

g0(t, τ ) � [g1(t, τ ) + g2(t, τ )] = [g0(t, τ ) � g1(t, τ )] + [g0(t, τ ) � g2(t, τ )]

can just drop t in the delay spread function, if the system is not time-variant. Please
note that the same symbol � is used for the time-variant convolution of impulse
responses wi and of delay spread functions gi , although the integral notations differ.

10.4 Examples

Furnished with the theory of time-variant systems we are now going to discuss some
applications for signal transmission.

Example 5

A frequent application in communications is the cascade of a time-invariant transmit
filter w1(t − s), a time-variant channel w2(t, s), and a time-invariant receive filter
w3(t − s). We are interested in the overall impulse response w13(t, s), the corre-
sponding delay spread function g13(t, τ ) and the response y(t) to an input signal
x(t).

Solution:

Firstly please note, if time-variant and time-invariant systems are combined, the over-
all impulse response is the response to the Dirac impulse δ(t − s). Consequently,
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Fig. 10.2 Example of a
time-variant channel with
impulse response w2(t, s)
embedded between a
modulator with w1(t, s) and
a demodulator with w3(t, s)

all the impulse responses should be defined with two variables t and s including
wi (t, s) = wi (t − s) , i = 1, 3 of the time-invariant systems, in which we just inter-
pret the comma as the minus sign.

Regarding w2(t, s) in (10.8) as w2(t, s) � w3(t − s) and with
w1(t, s) = w1(t − s) follows the overall impulse response of the cascade

w13(t, s) = w1(t − s) � w2(t, s) � w3(t − s) (10.26)

which obviously characterizes an equivalent time-variant system.
We obtain the overall delay spread function from (10.26) by inserting s = t − τ

g13(t, τ ) = g1(τ ) � g2(t, τ ) � g3(τ ) (10.27)

Next we are interested in the output signal y(t) for a given input signal x(t). With
(9.6) and equivalently with (9.11) we obtain

y(t) = x(t) � w13(t, s) = x(t) � g13(t, τ ) (10.28)

Example 6

Figure10.2 shows a modulator, a time-variant channel, and a demodulator. Deter-
mine the time-variant impulse response w1(t, s) of the modulator, which multiplies
its input signal x(t) with the complex carrier ej2π f0t . Then find the overall impulse
responsew13(t, s) of the cascade of themodulator, the channelwith impulse response
w2(t, s), the demodulator with complex carrier e−j2π f1t , and impulse response
w3(t, s). Discuss the important case that the demodulator is synchronous with the
modulator, f1 = f0, and determine the output signal y(t).

Solution:
The output signal of the modulator is

x1(t) = x(t)ej2π f0t (10.29)

With the input Dirac impulse x(t) = δ(t − s) the time-variant impulse response can
be determined as

w1(t, s) = δ(t − s)ej2π f0t (10.30)
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Similarly, the impulse response of the demodulator follows as

w3(t, s) = δ(t − s)e−j2π f1t (10.31)

Then we get according to (10.8) the impulse response of the cascade

w13(t, s) = w1(t, s) � w2(t, s) � w3(t, s)
= (

δ(t − s)ej2π f0t
)
� w2(t, s) �

(
δ(t − s)e−j2π f1t

) (10.32)

Making use of the associativity (10.22) one can first calculate with (10.8)w12(t, s) =
w1(t, s) � w2(t, s) = ´ ∞

−∞ δ(ζ − s)ej2π f0ζw2(t, ζ)dζ, which represents the cascade
of the modulator and the time-variant channel, resulting in

w12(t, s) = ej2π f0sw2(t, s) (10.33)

Next we determine
w13(t, s) = w12(t, s) � w3(t, s) = ´ ∞

−∞ ej2π f0sw2(η, s)δ(t − η)e−j2π f1t dη andget the
final result

w13(t, s) = e−j2π f1tej2π f0sw2(t, s) (10.34)

which is a time-variant impulse response, as expected. We can interpret this result
as a modulation of w2(t, s) with respect to both coordinates s and t .

In the following we are going to writew13(t, s) in terms of the delay spread func-
tion g13(t, τ ). With s = t − τ ,w13(t, t − τ ) = g13(t, τ ), andw2(t, t − τ ) = g2(t, τ )
follows from (10.34)

g13(t, τ ) = e−j2π( f1− f0)te−j2π f0τ g2(t, τ ) (10.35)

The output signal of the cascade is obtained with (10.2) as y(t) = x(t) � w13(t, s)
and after some manipulation with the convolution integral follows

y(t) = [
x(t) �

(
w2(t, s)e

j2π f0s
)]
e−j2π f1t = [x1(t) � w2(t, s)] e

−j2π f1t (10.36)

with x1(t) = x(t)ej2π f0t . This result is plausible directly fromFig. 10.2, because x1(t)
and x2(t) = x1(t) � w2(t, s) are the output signals of the modulator and the channel,
respectively.

Finally, for synchronous demodulation, f0 = f1, we obtain

w13(t, s) = w2(t, s)e
−j2π f0(t−s) (10.37)

With s = t − τ follows the overall delay spread function

g13(t, τ ) = g2(t, τ )e
−j2π f0τ (10.38)

in which the modulation shows up only with respect to the delay variable τ .
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Verification of Noncommutativity: This example is also a good opportunity to
demonstrate that the time-variant convolution is noncommutative in general. Assume
that we have a cascade of two systems, a modulator with ej2π f3t and w2(t, s)
in Fig. 10.2. Then we obtain from (10.34) with f0 = f3 and f1 = 0 the over-
all impulse response w13(t, s) = ej2π f3sw2(t, s). If we interchange the sequential
order, the overall impulse response is given by (10.34) with f0 = 0 and f1 = − f3
yielding w′

13(t, s) = w2(t, s)ej2π f3t , which is clearly different. In a similar way we
obtain the delay spread functions from (10.35) as g13(t, τ ) = g2(t, τ )ej2π f3(t−τ ) and
g′
13(t, τ ) = g2(t, τ )ej2π f3t .



Chapter 11
System Functions and Fourier Transform

We have already discussed the time-variant impulse response w(t, s) and the delay
spread function g(t, τ ), which characterize a linear time-variant system completely
and hence are called system functions. Now we will see that the latter provides
meaningful Fourier transforms for applications in electrical engineering and thus
system functions in the frequency domain. In the following sections we will apply
the Fourier transform with respect to the variables t and/or τ . Therefore we define
the corresponding variables as

t ↔ ft ; τ ↔ fτ

and use the symbol � for the transform. On top of the arrow we indicate in what
respect the Fourier transform is executed. In wireless communications ft is called
Doppler frequency and fτ is the “natural” frequency also used for the ordinary
frequency response of a time-invariant system or the spectrum of a signal. The system
functions as well as cascades of different systems are summarized in Table10.2 of
Sect. 10.3 and discussed in the following in quite some detail.

11.1 Time-Variant Transfer Function

The time-variant transfer function Gt (t, fτ ) is defined as the Fourier transform of
the delay spread function g(t, τ ) with respect to τ

g(t, τ )
τ

� Gt (t, fτ ) =
ˆ ∞

−∞
g(t, τ )e−j2π fτ τdτ (11.1)
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It represents the transfer function of a time-variant system at a fixed observation
instant t , where t has to be regarded as a parameter. So Gt (t, fτ ) can help to under-
stand the temporal change of the transfer function of a time-variant system. If the
system parameters are slowly varying with time t , then Gt (t, fτ ) is approximately
constant with respect to t during a short time interval �tCoh , which is called coher-
ence time. In this time interval the transfer function Gt (t, fτ ) could be measured as
a function of fτ similar to a time-invariant system.

For the output signal y(t) we proof that in general

y(t) =
ˆ ∞

−∞
Gt (t, ζ)X (ζ)ej2πζt dζ (11.2)

holds, where

x(t)
t

� X ( ft ) =
ˆ ∞

−∞
x(t)e−j2π ft t dt (11.3)

is the Fourier transform of the input signal x(t).1 It should be pointed out that (11.2)
does not represent the inverse Fourier transform of G(t, ζ)X (ζ), although it looks
similar on the first glance. Consequently, Gt (t, ft )X ( ft ) �= Y ( ft ), where Y ( ft ) is
the Fourier transform of y(t).

Proof of (11.2)
From (11.3) follows by inverse Fourier transform

x(t) =
ˆ ∞

−∞
X (ζ)ej2πζt dζ (11.4)

which will be inserted into (9.26) yielding
y(t) = ´ ∞

−∞ g(t, τ )
´ ∞

−∞ X (ζ)ej2πζ(t−τ )dζdτ . For this proof and all the following we
assume that the integrals are absolutely convergent and thus the interchange of the
integration order is allowed. Then follows
y(t) = ´ ∞

−∞ X (ζ)
´ ∞

−∞ g(t, τ )e−j2πζτdτej2πζt dζ. According to (11.1) the inner inte-
gral is Gt (t, ζ) resulting in y(t) = ´ ∞

−∞ Gt (t, ζ)X (ζ)ej2πζt dζ, which finalizes the
proof.

11.2 Delay Doppler Spread Function

The delay Doppler spread function Gτ ( ft , τ ) also called Doppler-variant impulse
response is determined by the Fourier transform of the delay spread function g(t, τ )

with respect to t

1Please note, for the one-dimensional Fourier transform of a one-dimensional function it does not
matter whether the pair t, ft or τ , fτ is used, because x(t) and x(τ ) are the same functions and
also the spectra X ( ft ) and X ( fτ ) are mathematically the same.
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g(t, τ )
t

� Gτ ( ft , τ ) =
ˆ ∞

−∞
g(t, τ )e−j2π ft t dt (11.5)

It represents the frequency response along the ft -axis for a fixed delay τ as a param-
eter. In the field of wireless communications Gτ ( ft , τ ) is also called spreading func-
tion.

11.3 Doppler Spread Function

TheDoppler spread function G( ft , fτ ) also calledDoppler-variant transfer function
is defined as the two-dimensional Fourier transform of the delay spread function

g(t, τ )
t,τ
� G( ft , fτ ) =

∞̈

−∞
g(t, τ )e−j2π( ft t+ fτ τ )dtdτ (11.6)

G( ft , fτ ) can also be obtained by the Fourier transformation of the time-variant
transfer function Gt (t, fτ ) with respect to t

Gt (t, fτ )
t

� G( ft , fτ ) =
ˆ ∞

−∞
Gt (t, fτ )e

−j2π ft t dt (11.7)

or by the transformation of the delay Doppler spread function Gτ ( ft , τ )with respect
to τ

Gτ ( ft , τ )
τ

� G( ft , fτ ) =
ˆ ∞

−∞
Gτ ( ft , τ )e−j2π fτ τdτ (11.8)

Example 7
Given the delay spread function

g(t, τ ) = sinc

(
f1

(
τ − 1

f1

))
sinc ( f2(t − τ )) , −∞ < t, τ < ∞ (11.9)

similar to (9.13) in Example 4, but with an extended range for t and τ .
(a) Calculate the delay Doppler spread function Gτ ( ft , τ ) of the system. (b) Find
the Doppler spread function G( ft , fτ ).

Solution:

(a) We use the Fourier transform pair a· sinc(at) t
�rect

(
f
a

)
=

{
1 ; | f | ≤ a

2
0 ; else

, a �= 0

and obtain with the shifting property of the Fourier transform for the second term
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Fig. 11.1 Top view of the
magnitude |G( ft , fτ )| of the
Doppler spread function for
f1 = 4 and f2 = 1. Inside
the parallelogram
|G( ft , fτ )| = 1

f1 f2
and

outside |G( ft , fτ )| = 0

in (11.9) sinc ( f2(t − τ ))
t

� 1
f2
rect

(
ft
f2

)
e−j2π ft τ and thus the final result g(t, τ )

t
�

Gτ ( ft , τ ) = 1
f2
sinc

(
f1

(
τ − 1

f1

))
rect

(
ft
f2

)
e−j2π ft τ

(b) We apply the Fourier transform on Gτ ( ft , τ ) with respect to τ . In a first step

we get sinc
(
f1

(
τ − 1

f1

))
τ

� 1
f1
rect

(
fτ
f1

)
e−j2π fτ / f1 . Multiplication in the original

domain with e−j2π ft τ results in a frequency shift to the left by ft of the spectrum.
Thus,

G( ft , fτ ) = 1

f1 f2
rect

(
ft
f2

)
rect

(
fτ + ft

f1

)
e−j2π( fτ + ft )τ (11.10)

is thefinal result. For themagnitudewefind |G( ft , fτ )| = 1
f1 f2

rect
(

ft
f2

)
rect

(
fτ + ft
f1

)
.

The first term is a constant factor. As depicted in Fig. 11.1 the second term describes
a vertical stripe in the ft - fτ -plane and the third term represents a diagonal stripe
from north-west to south-east. Consequently, the top view of |G( ft , fτ )| portraits
a parallelogram. In reality, the transmission bandwidth f1/2 of a broadband wire-
less channel is much larger than the bandwidth f2/2 of the temporal fading and
consequently, |G( ft , fτ )| is much more slim.
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11.4 Spectrum of the Output Signal

Below we prove that the Fourier spectrum

Y ( ft ) =
ˆ ∞

−∞
y(t)e−j2π ft t dt (11.11)

of the output signal y(t) of a time-variant system with Doppler spread function
G( ft , fτ ) is

y(t)
t

� Y ( ft ) =
ˆ ∞

−∞
X ( fτ )G( ft − fτ , fτ )d fτ =

ˆ ∞

−∞
X (ζ)G( ft − ζ, ζ)dζ

(11.12)
By substituting ft − fτ = η we get the alternative form

Y ( ft ) =
ˆ ∞

−∞
X ( ft − η)G(η, ft − η)dη (11.13)

If we replace η by fτ we can write (11.13) as

Y ( ft ) =
ˆ ∞

−∞
X ( ft − fτ )G( fτ , ft − fτ )d fτ (11.14)

The interesting Eqs. (11.12)–(11.14) show the relation between the input and the
output spectrum of a time-variant system determined by its Doppler spread function.
It is well known that Y ( f ) = H( f )X ( f ) holds for time-invariant systems with the
transfer function H( f ). In contrast, the relation (11.12) for time-variant systems con-
tains an integral which shows some similarities to a convolution with respect to one
frequency variable. From (11.12) and (11.13), where “neutral” variables ζ and η are
used for integration, it is quite clear that the spectrum for any one-dimensional signal
y(t) can be given as a function of ft or fτ , as it makes no difference mathematically.

Proof of (11.12)
Inserting (11.2) into (11.11) yields
Y ( ft ) = ´ ∞

−∞
´ ∞

−∞ Gt (t, ζ)X (ζ)ej2πζte−j2π ft t dζdt . Provided that the integrals con-
verge absolutely, the order of integration can be changed resulting in Y ( ft ) =´ ∞

−∞ X (ζ)
(´ ∞

−∞ Gt (t, ζ)e−j2π( ft−ζ)t dt
)
dζ. The inner integral is related to theDoppler

spread function given in (11.7) and recognized as G( ft − ζ, ζ). Then we obtain the
result Y ( ft ) = ´ ∞

−∞ X (ζ)G( ft − ζ, ζ)dζ and the proof is finished.
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11.5 Cascades of Time-Variant and Time-Invariant
Systems

11.5.1 Cascade of Time-Invariant g1(τ ) and Time-Variant
System g2(t, τ )

We consider the cascade in Fig. 10.1b of Sect. 10.2 with the prerequisite that the first
system is time-invariant with g1(t, τ ) = g1(τ ).

Delay Spread Function

g12(t, τ ) = g1(τ ) � g2(t, τ ) =
ˆ ∞
−∞

g1(τ − ζ)g2(t, ζ)dζ =
ˆ ∞
−∞

g1(η)g2(t, τ − η)dη

(11.15)

Fourier Transform with Respect to τ

g12(t, τ ) = g1(τ ) � g2(t, τ )
τ

� G1( fτ )G2t (t, fτ ) (11.16)

where G1( fτ ) is the transfer function of the time-invariant system g1(τ ) and
G2t (t, fτ ) represents the time-variant transfer function of the time-variant system
g2(t, τ ) according to (11.1).

Fourier Transform with Respect to t and τ

g12(t, τ ) = g1(τ ) � g2(t, τ )
t,τ
� G1( fτ )G2( ft , fτ ) (11.17)

where G2( ft , fτ ) is the Doppler spread function of the time-variant system g2(t, τ )

defined in (11.6) and G1( fτ ) is the transfer function of the time-invariant system
g1(τ ).

Proof of (11.15)
In the following we are going to build upon the basic time-variant impulse responses.
We start with (10.8), definew1(t, s) = w1(t − s) and obtainw1(t − s) � w2(t, s) =´ ∞

−∞ w1(η − s)w2(t, η)dη. With the substitution η = t − ζ follows
w1(t − s) � w2(t, s) = ´ ∞

−∞ w1(t − ζ − s)w2(t, t − ζ)dζ. The transformation of
variables (8.4), s = t − τ , yieldsw1(t − s) = g1(τ ),w2(t, s)=g2(t, τ ), andw2(t, t −
ζ) = g2(t, ζ). Then we find w1(t − s) � w2(t, s) = g1(τ ) � g2(t, τ ) =´ ∞

−∞ g1(τ − ζ)g2(t, ζ)dζ. The last term in (11.15) follows directly with the substi-
tution τ − ζ = η and the proof is finished.

Proof of (11.16)
Let g1(τ )

τ
� G1( fτ ), then g1(τ − ζ)

τ
� G1( fτ )e−j2π fτ ζ . From (11.15) follows

´ ∞
−∞ g1(τ − ζ)g2(t, ζ)dζ

τ
�

´ ∞
−∞ G1( fτ )e−j2π fτ ζg2(t, ζ)dζ =
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G1( fτ )
´ ∞

−∞ g2(t, ζ)e−j2π fτ ζdζ = G1( fτ )G2t (t, fτ ), where
G2t (t, fτ ) = ´ ∞

−∞ g2(t, ζ)e−j2π fτ ζdζ is the Fourier transform of g2(t, τ )with respect
to τ and represents the time-variant transfer function of the time-variant system
according to (11.1). This finalizes the proof of (11.16).

Proof of (11.17)
We take the Fourier spectrum in (11.16) and execute a transform with respect to t

yielding with G2t (t, fτ )
t

� G2( ft , fτ ) the result (11.17) and the proof is finished.

11.5.2 Cascade of Time-Variant g1(t, τ ) and Time-Invariant
System g2(τ )

Again we consider the cascade in Fig. 10.1b of Sect. 10.2, however with the prereq-
uisite that the second system is time-invariant with g2(t, τ ) = g2(τ ).

Delay Spread Function

g12(t, τ ) = g1(t, τ ) � g2(τ ) =
ˆ ∞

−∞
g1(t − ζ, τ − ζ)g2(ζ)dζ (11.18)

Fourier Transform with Respect to t and τ

g12(t, τ ) = g1(t, τ ) � g2(τ )
t,τ
� G1( ft , fτ )G2( ft + fτ ) (11.19)

where G1( ft , fτ ) represents the Doppler spread function of the time-variant system
g1(t, τ ) defined in (11.6) and G2( fτ ) is the transfer function of the time-invariant
system g2(τ ).

Proof of (11.18)
A quick proof is obtained by just skipping the argument t in g2(t, τ ) and to directly
apply the time-variant convolution integral (10.11).However,wewill startwith (10.8)
and obtain w1(t, s) � w2(t − s) = ´ ∞

−∞ w1(η, s)w2(t − η)dη. With the substitution
η = t − ζ follows w1(t, s) � w2(t − s) = ´ ∞

−∞ w1(t − ζ, s)w2(ζ)dζ. The transfor-
mation of variables (8.4), s = t − τ , yields with (10.12)
w1(t − ζ, t − τ ) = g1(t − ζ, τ − ζ) and w2(ζ) = g2(ζ). Then we find
w1(t, s) � w2(t − s) = g1(t, τ ) � g2(τ ) =´ ∞

−∞ g1(t − ζ, τ − ζ)g2(ζ)dζ.

Proof of (11.19)
Let

g1(t − ζ, τ − ζ)
t,τ
� G1( ft , fτ )e

−j2π( ft+ fτ )ζ (11.20)

then follows the transform of (11.18)

g12(t, τ )
t,τ
� G1( ft , fτ )

´ ∞
−∞ g2(ζ)e−j2π( ft+ fτ )ζdζ = G1( ft , fτ )G2( ft + fτ ),

where the integral represents G2( ft + fτ ) and the proof is finished.
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11.5.3 Cascade of Two Time-Variant Systems g1(t, τ ) and
g2(t, τ )

Finally, both systems in Fig. 10.1b of Sect. 10.2 shall be time-variant. We prove the
following:

Fourier Transform with Respect to τ

g12(t, τ ) = g1(t, τ ) � g2(t, τ )
τ
� G12t (t, fτ ) =

ˆ ∞
−∞

G1t (t − η, fτ )g2(t, η)e−j2π fτ ηdη

(11.21)
where G12t (t, fτ ) and G1t (t, fτ ) are time-variant transfer functions.

Fourier Transform with Respect to t and τ

g12(t, τ ) = g1(t, τ ) � g2(t, τ )
t,τ
� G12( ft , fτ ) = ´∞

−∞ G1(ζ, fτ )G2( ft − ζ, fτ + ζ)dζ

(11.22)
Here we can see the difference between the time-variant convolution (10.11) and the
two-dimensional convolution between g1(t, τ ) and g2(t, τ ). For the latter the Fourier
transform is G1( ft , fτ )G2( ft , fτ ).

Proof of (11.21) and (11.22)
g12(t, τ ) is defined in (10.11) as g12(t, τ ) = ´ ∞

−∞ g1(t − η, τ − η)g2(t, η)dη.Wewill
execute the transform with respect to t and τ in two steps. First, we transform with
respect to τ and obtain

g12(t, τ )
τ

� G12t (t, fτ ) = ´ ∞
−∞ G1t (t − η, fτ )e−j2π fτ ηg2(t, η)dη, where

g1(t, τ )
τ

� G1t (t, fτ ) and the proof of (11.21) is finished.
Next, the transformation is done with respect to t . As we recognize, the integrand

in (11.21) is the product of two functions of t , namely G1t (t − η, fτ ) and g2(t, η).
Thereforewe use the property that a product of functions in the time domain results in

a convolution of their spectra after Fourier transform. Hence, withG1t (t − η, fτ )
t

�
G1( ft , fτ )e−j2π ftη and g2(t, η)

t
� G2τ ( ft , η) we obtain G1t (t − η, fτ )g2(t, η)

t
�

G1( ft , fτ )e−j2π ftη ∗ ft G2τ ( ft , η) = ´ ∞
−∞ G1(ζ, fτ )e−j2πζηG2τ ( ft − ζ, η)dζ. Then

follows from (11.21)

g12(t, τ )
t,τ
� G12( ft , fτ ) = ´ ∞

−∞ G1(ζ, fτ )
´ ∞

−∞ e−j2π(ζ+ fτ )ηG2τ ( ft − ζ, η)dηdζ. The
inner integral is G2( ft − ζ, fτ + ζ) and we get the final result G12( ft , fτ ) =´ ∞

−∞ G1(ζ, fτ )G2( ft − ζ, fτ + ζ)dζ, which finalizes the proof of (11.22).

11.6 Summary

Table11.1 summarizes the Fourier transforms of delay spread functions and for some
cascades. Please note that G1( fτ ) and G2( fτ ) represent transfer functions of time-
invariant systems. If we consider these functions isolated, we can use any frequency
variable, such as ft and fτ that is true for any one-dimensional function. However,
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Table 11.1 Summary of Fourier transforms of delay spread functions g(t, τ ) = w(t, t − τ ) of
time-variant system, delay spread function g(τ ) = w(t − s) of time-invariant system, signals x(t)
and y(t)

in the context of cascading systems the frequency variable makes the difference and
indicates in what direction the filtering takes place.

11.7 Applications

In the following we consider some examples to show the impact of the Doppler
spread function G( ft , fτ ) of a time-variant system on the output spectrum Y ( ft ) for
a given input spectrum X ( ft ). As already pointed out, G( ft , fτ ) is not just limiting
the input spectrum in ft - and fτ -direction. Due to the integral in (11.12) we expect
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that the output spectrum Y ( ft ) can even have a larger bandwidth compared to the
input signal, which does not occur for time-invariant systems. To show the details in
principle we take simple rectangular shaped spectra as examples.

Example 8
In Fig. 11.2a the top view of the input spectrum X ( fτ ) and the Doppler spread
function

G( ft , fτ ) =
{
1 ; | ft | ≤ ft,G , | fτ | ≤ fτ ,G

0 ; else
(11.23)

is given as a function of ft and fτ . Inside the shaded area the functions are equal to
one and outside equal to zero. All spectra shall be real-valued. G( ft , fτ ) is equipped
with the cut-off frequencies fτ ,G and ft,G . For a wireless channel ft,G represents the
impact of the temporal fading and is normally much smaller than the transmission
bandwidth fτ ,G of the channel. The spectrum

X ( fτ ) =
{
1 ; | fτ | ≤ fτ ,X

0 ; else
(11.24)

owns the cut-off frequency fτ ,X . Please note that X ( fτ ) is constant with respect to
ft . We also have assumed that fτ ,G > fτ ,X so that the system is not limiting the input
spectrum. Figure11.2b shows G(0, fτ ) and X ( fτ ) as a function of fτ . In Fig. 11.2c
the term G( ft − u, u) of the output spectrum
Y ( ft ) = ´ ∞

−∞ X (u)G( ft − u, u)du in (11.12) is illustrated. Similar to a convolution
operation G( ft − u, u) “moves” along the u-axis for various ft and covers X (u)

to compose the integrand X (u)G( ft − u, u). Please note the dashed line indicates
that G( ft − u, u) = 0 for |u| > fτ ,G . For the indicated ft the integrand starts to be
unequal to zero and Y ( ft ) in Fig. 11.2d begins to rise. For ft = − (

fτ ,X − ft,G
)
both

spectra completely overlap and consequently Y ( ft ) is maximal. Obviously, Y ( ft ) is
an even function. The spectral parts of G( ft , fτ ) in ft -direction increase the cut-off
frequency ft,Y of the output spectrum andmake it larger than fτ ,X of the input signal,
in our example ft,Y = fτ ,X + ft,G . In wireless communications this effect is called
Doppler spread. Thus, for a wireless, fading channel the larger the bandwidth ft,G
of the temporal fading is, the more the cut-off frequency of the output spectrum is
increased compared to the input. Note, we can use any frequency variable for a one-
dimensional spectrum. Hence, the abscissa in Fig. 11.2d may alternatively be named
as fτ .

The reader can assure oneself that the solution is valid also, if the cut-off frequency
fτ ,G of the system is equal to fτ ,X .

Example 9
We are now considering the example in Fig. 11.3a where the cut-off frequency fτ ,G

of the Doppler spread function G( ft , fτ ) of the system limits the input spectrum
and thus fτ ,G < fτ ,X holds compared to Fig. 11.2a. The cut-off frequency ft,G of
the temporal fading is unchanged. In Fig. 11.3b X ( fτ ) and G(0, fτ ) are shown.
Figure11.3c depicts the shifted spectrum G( ft − u, u) as part of the integrand in
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Fig. 11.2 a Top view of input X ( fτ ), Doppler spread functionG( ft , fτ ), fτ ,G ≥ fτ ,X bDetails of
G( ft , fτ ) and X ( fτ ) for ft = 0 c G( ft − u, u) of Y ( ft ) = ´ ∞

−∞ X (u)G( ft − u, u)du in (11.12)
d Output spectrum Y ( ft )
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Fig. 11.3 a Top view of input X ( fτ ), Doppler spread functionG( ft , fτ ), fτ ,G < fτ ,X bDetails of
G( ft , fτ ) and X ( fτ ) for ft = 0 c G( ft − u, u) of Y ( ft ) = ´ ∞

−∞ X (u)G( ft − u, u)du in (11.12)
d Output spectrum Y ( ft )
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(11.12), where fτ is renamed as u. Please note the dashed line indicates that
G( ft − u, u) = 0 for |u| > fτ ,G . The resulting output spectrum Y ( ft ) is shown in
Fig. 11.3d. Its cut-off frequency ft,Y = fτ ,G + ft,G is solely given by the parameters
of the Doppler spread function of the system and exceeds the transmission bandwidth
fτ ,G by the maximal Doppler frequency ft,G . Again we recognize that the time-
variance of the channel is the cause of the excess bandwidth of the output signal. As
mentioned before, we can use any frequency variable for a one-dimensional spectrum
Y , hence denote the abscissa in Fig. 11.3d also as fτ .

Example 10
Now we consider a similar arrangement as in Fig. 11.2, however, the Doppler spread
function G( ft , fτ ) shall have the cut-off frequency ft,G = 0. Hence, the system is
time-invariant and in case of a transmission channel it would show no temporal
fading. Thus an adequate model is

G( ft , fτ ) = δ( ft )G(0, fτ ) (11.25)

Then we obtain from (11.12)

Y ( ft ) =
ˆ ∞

−∞
X ( fτ )δ( ft − fτ )G(0, fτ )d fτ = X ( ft )G(0, ft ) (11.26)

As mentioned earlier for a one-dimensional signal, we can use any variable. To adapt
to Fig. 11.2 we rename ft as fτ and get

Y ( fτ ) = X ( fτ )G(0, fτ ) (11.27)

which is the well known frequency response of a time-invariant system. If fτ ,G and
fτ ,X are the same as in Fig. 11.2, then Y ( fτ ) = X ( fτ ), because the system is not
limiting the input spectrum. Thus, no Doppler spread is present, as expected.

Example 11
Let us now discuss an artificial system, which has zero transmission bandwidth
fτ ,G = 0. As G( ft , fτ ) still has spectral components in ft direction with cut-off
frequency ft,G , it is interesting to know the output spectrum of the system. We
model the Doppler spread function as

G( ft , fτ ) = G( ft , 0)δ( fτ ) (11.28)

which yields from (11.12)

Y ( ft ) =
ˆ ∞

−∞
X ( fτ )G( ft − fτ , 0)δ( fτ )d fτ = X (0)G( ft , 0) (11.29)

Obviously, the output spectrum is non-zero and given by the frequency response of
G( ft , fτ ) along the ft -axis multiplied by the mean value X (0) of the input signal.
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Hence, the output spectrum solely exhibits a Doppler spread. The system is not very
practical for signal transmission, as only the spectral component X (0) of the input
is transferred to the output.

Example 12
Given the time-variant system in Fig. 10.2. Find the Doppler spread function
G13( ft , fτ ) between input and output as well as the spectrum Y ( ft ) of the out-
put signal y(t).

Solution

From (10.35) follows g13(t, τ )
t,τ
� G13( ft , fτ ) = G2( ft + f1 − f0, fτ + f0).

Table11.1 provides the relation for output spectrum
Y ( ft ) = ´ ∞

−∞ X (ζ)G13( ft − ζ, ζ)dζ and with G13( ft , fτ ) the final result
Y ( ft ) = ´ ∞

−∞ X (ζ)G2( ft + f1 − f0 − ζ, ζ + f0)dζ. With the substitution
ζ = u − f0 , dζ = du follows alternatively
Y ( ft ) = ´ ∞

−∞ X (u − f0)G2( ft + f1 − u, u)du.

In case, the system G2 is time-invariant with delay spread function. g2(t, τ ) =
h(τ ) we obtain g2(t, τ )

t,τ
� G2( ft , fτ ) = δ( ft )H( fτ ) and the output spectrum turns

intoY ( ft ) = ´ ∞
−∞ X (u − f0)δ( ft + f1 − u)H(u)du=X ( ft + f1 − f0)H( ft + f1),

which is a well known result.

11.8 Interrelation Between Time-Variant and
Two-Dimensional Convolution

11.8.1 Input-Output Relation

We lookback to the input-output relation of a time-variant system in (9.26) and (9.27),
where we have recognized that a one-dimensional function x(t) has to be convolved
with a two-dimensional function g(t, τ ) using a special form of the convolution
operation. One may raise the question, whether we can apply the conventional two-
dimensional convolution in some way, well bearing in mind that the input and the
out signals finally must be interpreted as one-dimensional signals.

Following this idea we start to define the input signal as x(t, τ ) and the output
signal as y(t, τ ). Then the two-dimensional convolution provides

y(t, τ ) = x(t, τ ) ∗ g(t, τ ) =
∞̈

−∞
g(u, v)x(t − u, τ − v)dudv (11.30)

How can we extend x(t) to a two-dimensional function? A similar question has
already been touched upon in the Examples 8 and 9 in Sect. 11.7. There we had
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to plot in Figs. 11.2a and 11.3a the spectrum X ( fτ ) of x(t) in the two-dimensional
frequency space ft , fτ together with the Doppler spread functionG( ft , fτ ). We have
interpreted X ( fτ ) as a constant with respect to ft . Consequently we can extend x(t)
in the following way

x(t, τ ) = δ(t)x(τ ) (11.31)

because then its Fourier transform X ( ft , fτ ) is constant with respect to ft . This is
easily verified as

X ( ft , fτ ) =
∞̈

−∞
δ(t)x(τ )e−j2π( ft t+ fτ τ )dtdτ =

ˆ ∞

−∞
x(τ )e−j2π fτ τdτ = X ( fτ )

(11.32)
From (11.30) results with (11.31)

y(t, τ ) =
∞̈

−∞
g(u, v)δ(t − u)x(τ − v)dudv =

ˆ ∞

−∞
g(t, v)x(τ − v)dv (11.33)

which yields for τ = t the time-variant convolution integral

y(t, t) = y(t) =
ˆ ∞

−∞
g(t, v)x(t − v)dv (11.34)

where we use the short hand notation y(t) for y(t, t).
In summary we can operate with the two-dimensional input signal (11.31), apply

the two-dimensional convolution integral (11.30) and set τ = t to get the final result
(11.34).

11.8.2 Fourier Spectrum of the Output Signal

Now we are going to determine the Fourier spectrum Y ( ft ) of the output signal y(t)
of the time-variant system. To this end we consider (11.30) again. Knowing that the
Fourier transform turns the two-dimensional convolution in the original domain into
the product of the spectra in the frequency domain we get for the two-dimensional
Fourier spectrum of y(t, τ )

Y ( ft , fτ ) = X ( ft , fτ )G( ft , fτ ) = X ( fτ )G( ft , fτ ) (11.35)

To introduce the condition t = τ used in (11.34) we consider the inverse transform

y(t, τ ) =
∞̈

−∞
X ( fτ )G( ft , fτ )e

j2π( ft t+ fτ τ )d ftd fτ (11.36)
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With t = τ and the substitution ft = η − fτ , d ft = dη follows
y(t, t) = y(t) = ˜ ∞

−∞ X ( fτ )G(η − fτ , fτ )d fτej2πηt dη. Next, we rename the inte-
gration variable η as ft and get

y(t) =
ˆ ∞

−∞

(ˆ ∞

−∞
X ( fτ )G( ft − fτ , fτ )d fτ

)
ej2π ft t d ft (11.37)

The inner integral must be the Fourier transform Y ( ft ) of y(t)

Y ( ft ) =
ˆ ∞

−∞
X ( fτ )G( ft − fτ , fτ )d fτ (11.38)

Hence, with (11.38) we have confirmed our earlier result (11.12) in a different way.



Chapter 12
Randomly Changing Time-Variant
Systems

12.1 Prerequisites

Hitherto we have considered signals and characteristic functions of time-variant sys-
tem, in particular the delay spread function g(t, τ ), as deterministic. With the Fourier
transform different spectra or transfer functions, such as the Doppler spread function
G( ft , fτ ), have been defined. In many applications, e.g., wireless communications
the time-variant channel can take on a fast of different characteristics depending on
the environment, the speed of the transmitter or receiver, and other effects. Hence,
there is a need for the introduction of a statistical description for the most impor-
tant system parameters. The use of multivariate probability density functions could
help in principle. However, it would be hard or even prohibitive to determine them
exhaustively in many applications. For most practical cases second order statistics
provide reasonable approximations, at least for the performance comparison of sys-
tems and can still be handled, as proposed in [1]. Several functions characterizing
the time-variant system, such as the Doppler spread function, can be separated into a
deterministic part, identified by its mean value and a pure stochastic part. In the fol-
lowing we are only interested in latter and therefore assume stochastic signals with
zero mean. Consequently, we focus on the correlation rather than the covariance
functions. For details of stochastic processes the reader is relegated to the survey
given in the Appendix A.

In the following we start with the definitions of the autocorrelation functions with
no restriction whether the processes are stationary or not. In a second step we focus
on stationary processes in the wide sense. Finally, we consider the case that the
stochastic processes under consideration are uncorrelated with respect to the delay
time τ , which is also called uncorrelated scattering in case of a time-variant wireless
channel.
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12.2 Correlation Functions of Randomly Changing
Time-Variant Systems

We define the autocorrelation functions for various system functions of a randomly
changing time-variant system.

Autocorrelation Function of the Delay Spread Function g(t, τ )

Rgg(t, t
′; τ , τ ′) = E

[
g∗(t, τ )g(t ′, τ ′)

]
(12.1)

If not otherwise noted, the expected value E [...] is considered with respect to all
time and delay instants t , t ′, τ , and τ ′, respectively. This holds similarly also for the
following.

Autocorrelation Function of the Time-Variant Transfer Function Gt(t, fτ )

RGtGt (t, t
′; fτ , f ′

τ ) = E
[
G∗

t (t, fτ )Gt (t
′, f ′

τ )
]

(12.2)

Autocorrelation Function of the Delay Doppler Spread Function Gτ ( ft, τ )

RGτGτ
( ft , f ′

t ; τ , τ ′) = E
[
G∗

τ ( ft , τ )Gτ ( f
′
t , τ

′)
]

(12.3)

Autocorrelation Function of the Doppler Spread Function G( ft, fτ )

RGG( ft , f ′
t ; fτ , f ′

τ ) = E
[
G∗( ft , fτ )G( f ′

t , f ′
τ )

]
(12.4)

With the autocorrelation function Rgg(t, t ′; τ , τ ′) of g(t, τ ) in (12.1) we show at the
end of this section that

RGG( ft , f ′
t ; fτ , f ′

τ ) =
∞̆

−∞
Rgg(t, t

′; τ , τ ′)e−j2π(− ft t+ f ′
t t

′− fτ τ+ f ′
τ τ

′)dtdt ′dτdτ ′

(12.5)
holds. Hence, RGG( ft , f ′

t ; fτ , f ′
τ ) can be interpreted as the four-dimensional Fourier

spectrum of Rgg(t, t ′; τ , τ ′), evaluated at the frequency positions− ft , f ′
t , − fτ , and

f ′
τ .

Interrelation Between the Autocorrelation Functions

Because the frequency domain system functions Gt (t, fτ ), Gτ ( ft , τ ), and G( ft , fτ )
are the result of the one- or two-dimensional Fourier transform of the delay spread
function g(t, τ ), it is evident that the autocorrelation functions will also show some
interrelations through theFourier transform.We just give the following twoexamples.

Rgg(t, t ′; τ , τ ′)
τ ,τ ′
� RGtGt (t, t

′; − fτ , f ′
τ ) with

RGtGt (t, t
′; − fτ , f ′

τ ) = ˜ ∞
−∞ Rgg(t, t ′; τ , τ ′)e−j2π( fτ τ+ f ′

τ τ
′)dτdτ ′ (12.6)
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Rgg(t, t ′; τ , τ )
t,t ′
� RGτGτ

(− ft , f ′
t ; τ , τ ′) with

RGτGτ
(− ft , f ′

t ; τ , τ ′) = ˜ ∞
−∞ Rgg(t, t ′; τ , τ ′)e−j2π( ft t+ f ′

t t
′)dtdt ′

(12.7)

The proof of (12.6) and (12.7) is given at the end of this section.

Autocorrelation Function of the Output Signal y(t)

The autocorrelation function of the output signal y(t) is given by

Ryy(t, t
′) = E

[
y∗(t)y(t ′)

] =
∞̈

−∞
Rgg(t, t

′; τ , τ ′)Rxx (t − τ , t ′ − τ ′)dτdτ ′ (12.8)

with the autocorrelation function of x(t)

Rxx (t, t
′) = E

[
x∗(t)x(t ′)

]
(12.9)

We recognize from (12.8) that this relation has some similarities to the Wiener–Lee
relation for time-invariant systems outlined in the Appendix A.

Proof of (12.5)
From (12.4) follows with (11.6) RGG( ft , f ′

t ; fτ , f ′
τ ) =

E
[˜ ∞

−∞ g∗(t, τ ) ej2π( ft t+ fτ τ )dtdτ
˜ ∞

−∞ g(t ′, τ ′)e−j2π( f ′
t t

′+ f ′
τ τ

′)dt ′dτ ′] =
ˇ ∞

−∞ E
[
g∗(t, τ )g(t ′, τ ′)

]
e−j2π( f ′

t t
′+ f ′

τ τ
′− ft t− fτ τ )dtdτdt ′dτ ′. Plugging in

Rgg(t, t ′; τ , τ ′) from (12.1) yields the final result
RGG( ft , f ′

t ; fτ , f ′
τ )=

ˇ ∞
−∞ Rgg(t, t ′; τ , τ ′)e−j2π(− ft t+ f ′

t t
′− fτ τ+ f ′

τ τ
′)dtdt ′dτdτ ′ and

the proof is finished.

Proof of (12.6)

With (12.1) we obtain Rgg(t, t ′; τ , τ ′)
τ ,τ ′
�˜ ∞

−∞ E
[
g∗(t, τ )g(t ′, τ ′)

]
e−j2π( fτ τ+ f ′

τ τ
′)dτdτ ′. Due to the linearity we can exchange

the expectation operation and the integration and get
E

[´ ∞
−∞ g∗(t, τ )e−j2π fτ τdτ

´ ∞
−∞ g(t ′, τ ′)e−j2π f ′

τ τ
′
dτ ′]. With (11.1) the first integral is

identified asG∗
t (t,− fτ ) and the second one asGt (t ′, f ′

τ ). Hence, Rgg(t, t ′; τ , τ ′)
τ ,τ ′
�

E
[
G∗

t (t,− fτ )Gt (t ′, f ′
τ )

] = RGtGt (t, t
′; − fτ , f ′

τ ) results and the proof is finished.

Proof of (12.7)

With (12.1) we obtain Rgg(t, t ′; τ , τ ′)
t,t ′
�˜ ∞

−∞ E
[
g∗(t, τ )g(t ′, τ ′)

]
e−j2π( ft t+ f ′

t t
′)dtdt ′. Due to the linearity we can exchange

the expectation operation and the integration and get
E

[´ ∞
−∞ g∗(t, τ )e−j2π ft t dt

´ ∞
−∞ g(t ′, τ ′)e−j2π f ′

t t
′
dt ′

]
. With (11.5) the first integral is

identified asG∗
τ (− ft , τ ) and the second one asGτ ( f ′

t , τ
′). Hence, Rgg(t, t ′; τ , τ ′)

t,t ′
�

E
[
G∗

τ (− ft , τ )Gτ ( f ′
t , τ

′)
] = RGτGτ

(− ft , f ′
t ; τ , τ ′) results and the proof is finished.
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Proof of (12.8)
With (9.26) follows
Ryy(t, t ′) = E

[
y∗(t)y(t ′)

]= E
[˜ ∞

−∞ g∗(t, τ )x∗(t − τ ) g(t ′, τ ′)x(t ′ − τ ′)dτdτ ′] =
˜ ∞

−∞ E
[
g∗(t, τ )g(t ′, τ ′)x∗(t − τ )x(t ′ − τ ′)

]
dτdτ ′.

We can assume that g(t, τ ) and x(t) are uncorrelated yielding
E

[
g∗(t, τ )g(t ′, τ ′)x∗ (t − τ )x(t ′ − τ ′)

] =
E

[
g∗(t, τ )g(t ′, τ ′)

]
E

[
x∗(t − τ )x(t ′ − τ ′)

]
. With (12.1) and (12.9) follows

Ryy(t, t ′) = ˜ ∞
−∞ Rgg(t, t ′; τ , τ ′)Rxx (t − τ , t ′ − τ ′)dτdτ ′ and the proof is finished.

12.3 Wide Sense Stationary Time-Variant Systems

12.3.1 Wide Sense Stationary

We are now specializing on the case that the system function g(t, τ ) is a wide sense
stationary (WSS) stochastic processwith respect to the time t . The same shall hold for
the input and output signal x(t) and y(t) of the system, respectively. In Appendix A a
wide sense stationary process is characterized by the (joint) probability density func-
tion and the mean value, both independent of time. Furthermore, the autocorrelation
functions depend on t and t ′ just through the time difference

�t = t ′ − t (12.10)

Please note, when the delay variables τ and τ ′ are present the autocorrelation func-
tions still depend on τ and τ ′ separately and not automatically on the difference
�τ = τ ′ − τ . The latter is only true, if the delay spread function g(t, τ ) is also
stationary with respect to the delay variable.

12.3.2 Autocorrelation Functions and Power Spectral
Densities

With t ′ = t + �t from (12.10) we define the following functions for wide sense
stationary processes

Autocorrelation Function of the Delay Spread Function g(t, τ )
from (12.1)

Rgg(�t; τ , τ ′) = E
[
g∗(t, τ )g(t + �t, τ ′)

]
(12.11)

Autocorrelation Function of the Time-Variant Transfer Function Gt(t, fτ )
from (12.2)

RGtGt (�t; fτ , f ′
τ ) = E

[
G∗

t (t, fτ )Gt (t + �t, f ′
τ

]
(12.12)
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Power Spectral Density of the Delay Spread Function

According to the Wiener–Khintchine theorem in Appendix A the cross-power spec-
tral density Sgc( f ′

t ; τ , τ ′) between g(t, τ ) and g(t ′, τ ′) can be defined by the Fourier
transform of the autocorrelation function Rgg(�t; τ , τ ′) of g(t, τ )with respect to�t

Rgg(�t; τ , τ ′)
�t
� Sgc( f ′

t ; τ , τ ′) with
Sgc( f ′

t ; τ , τ ′) = ´ ∞
−∞ Rgg(�t; τ , τ ′)e−j2π f ′

t �t d(�t)
(12.13)

For τ = τ ′ this function just depends on two variables and we use the short hand
notation Sgc( f ′

t ; τ , τ ) = Sgc( f ′
t ; τ ), which can be interpreted as a form of the power

spectral density of the delay spread function g(t, τ ). Please note that τ and τ ′ are
parameters, which are not touches by the Fourier transform in (12.13).

Relation Between RGτ Gτ
( ft, f ′

t ; τ , τ ′) and Sgc( f ′
t ; τ , τ ′)

We prove that the autocorrelation function of the delay Doppler spread function is
given by

RGτGτ
( ft , f ′

t ; τ , τ ′) = Sgc( f
′
t ; τ , τ ′)δ( f ′

t − ft ) (12.14)

According to Appendix A we can conclude from (12.14) that the delay Doppler
spread functions Gτ ( ft , τ ) and Gτ ( f ′

t , τ
′) are uncorrelated with respect to any of

the two Doppler frequencies ft �= f ′
t .

Proof of (12.14)
From (12.7) follows with the WSS property (12.10), t ′ = t + �t , dt ′ = d(�t),
and by replacing − ft by ft the autocorrelation function RGτGτ

( ft , f ′
t ; τ , τ ′) =´ ∞

−∞ e−j2π( f ′
t − ft)t dt

´ ∞
−∞ Rgg(�t; τ , τ ′)e−j2π f ′

t �t d(�t). Knowing that
´ ∞

−∞ e−j2π( f ′
t − ft)t dt = δ( f ′

t − ft ) and using (12.13) yields the result
RGτGτ

( ft , f ′
t ; τ , τ ′) = Sgc( f ′

t ; τ , τ ′)δ( f ′
t − ft ), which finalizes the proof.

Input-Output Relation of Correlation Functions and Power Spectral Densities

In the following, we assume that the input signal x(t) and the time-variant system
are WSS. Then the autocorrelation function (12.9)

Rxx (t, t
′) = Rxx (�t) (12.15)

is just a function of t ′ − t = �t and for the argument of Rxx in (12.8) follows
(t ′ − τ ′) − (t − τ ) = �t − (τ ′ − τ ). Then we obtain from (12.8)

Ryy(�t) =
∞̈

−∞
Rgg(�t; τ , τ ′)Rxx

(
�t − (τ ′ − τ )

)
dτdτ ′ (12.16)
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which is the final relation between the input and the output correlation function of
a time-variant system. It has some similarities with the Wiener–Lee theorem for
time-invariant systems given in Appendix A.

Next we are going to consider the Fourier transforms with respect to �t

Rxx (�t)
�t
� Sxx ( ft ) ; Ryy(�t)

�t
� Syy( ft ) (12.17)

which are the power spectral density functions of x(t) and y(t) according to the
Wiener–Khintchine theorem in the Appendix A, respectively. With (12.13) and

Rxx
(
�t − (τ ′ − τ )

) �t
� Sxx ( ft )e−j2π ft (τ ′−τ ) follows for the Fourier transform of the

integrand in (12.16)

Rgg(�t; τ , τ ′)Rxx
(
�t − (τ ′ − τ )

) �t
� Sgc( ft ; τ , τ ′) ∗

(
Sxx ( ft )e

−j2π ft (τ ′−τ )
)

(12.18)
where ∗ indicates the time-invariant convolution with respect to ft . Please note that
we changed the argument of Sgc to ft , because for a one-dimensional function we
can take any variable, ft or f ′

t . Finally we obtain from (12.16) the power spectral
density

Syy( ft ) =
∞̈

−∞
Sgc( ft ; τ , τ ′) ∗

(
Sxx ( ft )e

−j2π ft (τ ′−τ )
)
dτdτ ′ (12.19)

We recognize that (12.19) is an extension of the Wiener–Khintchine theorem in
Appendix A, whereby the time-variance of the system implies the additional inte-
gration with respect to τ and τ ′, as is also the case in (12.16).

12.4 Time-Variant Systems with Uncorrelated Scattering

The term uncorrelated scattering (US) stems from wireless channels and we apply
it here for the general time-variant system. The condition defines a system with a
delay spread function g(t, τ ) and functions derived thereof, which are uncorrelated
with respect to the delay variable τ . As shown in the Appendix A for white noise, the
autocorrelation functionmust feature aDirac impulse δ(τ ) in principle. In this section
we review some important properties of uncorrelated scattering. Then in Sect. 12.5
we combine the characteristics of processes showing both, wide sense stationarity
and uncorrelated scattering (WSSUS).
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12.4.1 Delay Cross Power Spectral Density of g(t, τ )

For awireless channelwith uncorrelated scattering, the delay spread functions g(t, τ )

and g(t, τ ′) are by definition uncorrelated for any delay τ �= τ ′. Thus, the autocor-
relation function (12.1) of g(t, τ ) must possess the following form

Rgg(t, t
′; τ , τ ′) = Rgg;US(t, t

′; τ , τ ′) = Pg(t, t
′; τ )δ(τ ′ − τ ) (12.20)

Pg(t, t ′; τ ) is called delay cross power spectral density of g(t, τ ) and obviously can
still be a function of time. Next we show that Pg(t, t ′; τ ) is represented by the Fourier
transform of Rgg(t, t ′; τ , τ ′) in (12.1) with respect to τ ′ at f ′

τ = 0. This results in

ˆ ∞

−∞
Rgg;US(t, t

′; τ , τ ′)dτ ′ = Pg(t, t
′; τ ) (12.21)

Proof of (12.21)
We apply the Fourier transform on (12.20) and obtain´ ∞

−∞ Rgg(t, t ′; τ , τ ′)e−j2π f ′
τ τ

′
dτ ′ = Pg(t, t ′; τ )

´ ∞
−∞ δ(τ ′ − τ )e−j2π f ′

τ τ
′
dτ ′=

Pg(t, t ′; τ )e−j2π f ′
τ τ . Then we set f ′

τ = 0 and get the final result, which finalizes the
proof.

12.4.2 Autocorrelation Function of Time-Variant Transfer
Function

Now we are going to consider the autocorrelation function RGtGt (t, t
′; fτ , f ′

τ ) of
the time-variant transfer function Gt (t, fτ ) in (12.2) for the case of uncorrelated
scattering specified by (12.20). In the following we prove that the autocorrelation
function of Gt (t, fτ ) then depends on the frequency difference

� fτ = f ′
τ − fτ (12.22)

and hence must exhibit the form

RGtGt (t, t
′; fτ , f ′

τ ) = RGtGt (t, t
′;� fτ ) (12.23)

Proof of (12.23)
We first make use of (12.6) and obtain RGtGt (t, t

′; fτ , f ′
τ ) =˜ ∞

−∞ Rgg(t, t ′; τ , τ ′)e−j2π(− fτ τ+ f ′
τ τ

′)dτdτ ′. Plugging in (12.20) yields
RGtGt (t, t

′; fτ , f ′
τ )=

˜ ∞
−∞ Pg(t, t ′; τ )δ(τ ′ − τ )e−j2π(− fτ τ+ f ′

τ τ
′)dτdτ ′ =

´ ∞
−∞ Pg(t, t ′; τ )e−j2π� fτ τdτ . The last term is just a function of � f rather than fτ
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and f ′
τ . Consequently RGtGt (t, t

′; fτ , f ′
τ ) = RGtGt (t, t

′;� fτ ), which finalizes the
proof.

12.5 Wide Sense Stationary Processes with Uncorrelated
Scattering

12.5.1 Delay Cross Power Spectral Density of g(t, τ )

Now we consider a time-variant system with a delay spread function g(t, τ ), which
represents a wide sense stationary process (with respect to the time t) and exhibits
uncorrelated scattering (with respect to the delay time τ ). To this end the conditions
(12.11) for the wide sense stationarity and (12.20) for the uncorrelated scattering
must be true simultaneously. Then follows from (12.20) with the replacement of t, t ′
by �t the autocorrelation function of g(t, τ )

Rgg;WSSUS(t, t
′; τ , τ ′) = Rgg(�t; τ , τ ′) = Pg(�t; τ )δ(τ ′ − τ ) (12.24)

Pg(�t; τ ) is denoted as the delay cross power spectral density of g(t, τ ) that just
depends on the time difference �t and features a Dirac impulse at τ ′ = τ .

12.5.2 Doppler Power Spectrum

The Fourier transform of Pg(�t; τ ) with respect to �t yields another power density
spectrum of g(t, τ ), which is called Doppler power spectrum SgD( ft , τ )

Pg(�t; τ )
�t� SgD( ft , τ ) =

ˆ ∞

−∞
Pg(�t; τ )e−j2π ft τ�t d�t (12.25)

12.5.3 Autocorrelation Function of Time-Variant Transfer
Function

From (12.23) we can directly obtain the autocorrelation function of the time-variant
transfer function Gt (t, fτ ) for the case of WWSUS, if the argument t, t ′ is replaced
by �t

RGtGt ,WSSUS(t, t
′; fτ , f ′

τ ) = RGtGt (�t;� fτ ) (12.26)

and is also called time-frequency correlation function.
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12.6 Simplified Parameters for Time-Variant Systems

In several applications, such as wireless communications, different categories of the
time-variance of a system can be distinguished. In case of a slow change of the
environment and/or slow movement of the transmitter or receiver, the time-variant
system can be considered as quasi static during time periods or blocks, which are
much larger than the duration of a transmit symbol. The time-variance is then denoted
as block fading. For other use cases, such as fast moving terminals in cars, trains
or even airplanes, the channel characteristics are changing rapidly. Consequently,
there is a need to differentiate between these applications and use dedicated, yet
simple parameters. In many applications the coherence bandwidth � fτ ,coh and the
coherence time �tcoh turn out to be useful indicators and therefore frequently used.
In the following we discuss these parameters for deterministic and stochastic system
functions.

12.6.1 Coherence Bandwidth

We define the coherence bandwidth as the frequency interval � fτ ,coh , in which the
magnitude of the time-variant transfer function Gt (t, fτ ) does not change signif-
icantly. Thus, in case of a deterministic system we can just take the 3dB cut-off
frequency and define

∣
∣Gt (t,� fτ ,coh)

∣
∣2 = 1

2
|Gt (t, 0)|2 (12.27)

for a fixed time instant t , or a small time interval. Alternatively the coherence band-
width can also be defined by means of the Doppler spread function G( ft , fτ ) along
the fτ -axis.

For a randomly changing time-variant system we have to apply statistical mea-
sures. Presuming a channel with wide sense stationary uncorrelated scattering we
can make use of the autocorrelation function RGtGt (�t;� fτ ) of the time-variant
transfer function given in (12.26) and define a 3dB cut-off frequency as coherence
bandwidth � fτ ,coh

∣∣RGtGt (�t;� fτ ,coh)
∣∣ = 1

2

∣∣RGtGt (�t; 0)∣∣ (12.28)

for a fixed time, e.g., �t = 0. Please note that �t = 0 reflects the time instant t = t ′
according to (12.10). Often RGtGt (�t;� fτ ) is frequency selective with many ripples
rather than monotonic with respect to � fτ . In this case adequate root mean square
values are useful [2]. Inside the coherence bandwidth the spectral components of
RGtGt (�t;� fτ ) are strongly correlated.Recall that fτ characterizes the frequency for
the transmission spectrum. Hence, the larger fτ ,coh is the more spectral components
can be conveyed from the input to the output of the time-variant system.
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12.6.2 Coherence Time

The coherence time �tcoh can be defined as that time interval, in which the delay
spread function g(t, τ ) does not change significantly with respect to time t for any
fixed delay time τ . For a deterministic system we may determine a 3dB cut-off
frequency ft,coh using the Doppler spread function G( ft , fτ ) as

∣∣G( ft,coh, fτ )
∣∣2 = 1

2
|G(0, fτ )|2 (12.29)

for any fixed fτ . For illustration let us consider the following example.

Example 12
Given a Doppler spread function G( ft , fτ ), which shall exhibits the ideal lowpass
spectrum

G( ft , fτ ) =
{
1 : | ft | ≤ ft,c , | fτ | ≤ fτ ,c

0 ; else
(12.30)

with the cut-off frequencies ft,c and fτ ,c. Of course due to the step-wise transition
there is no 3dB point. Therefore we alternatively take ft,c. If we apply the two-
dimensional inverse Fourier transform we obtain

g(t, τ ) = 4 ft,c fτ ,c sinc(2 ft,ct) sinc(2 fτ ,cτ ) (12.31)

Roughly speaking, we consider the function sinc(2 ft,ct) approximately as constant
up to the first zero at t0 = 1

2 ft,c
and can find the coherence time as

�tcoh = t0 = 1

2 ft,c
(12.32)

Apparently, �tcoh is inversely proportional to the maximal Doppler frequency ft,c.
As already mentioned for the coherence bandwidth, in case of a randomly time-

variant system we have to work on the basis of the autocorrelation and the power
spectral density functions. Then we define the coherence time as the time interval
�tcoh , in which the delay spread function g(t, τ ) is strongly correlated. For a wide
sense stationary system with uncorrelated scattering the delay cross power spectral
density Pg(�t; τ ) given in (12.24) is of significance and should be large in the
interval �tcoh . Equivalently in the frequency domain we can consider the 3dB cut-
off frequency ft,c of the Doppler power spectrum SgD( ft , τ ) in (12.25) as a measure

∣∣SgD( ft,c, τ )
∣∣ = 1

2

∣∣SgD(0, τ )
∣∣ (12.33)
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for any fixed delay τ , mostly taken at τ = 0. Similar to the example above, if
SgD( ft , τ ) is a rectangular lowpass as a function of ft and with cut-off frequency
ft,c, then the coherence time �tcoh can be defined likewise as in (12.32).
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Chapter 13
Principles of Multiple Input Multiple
Output Transmission

13.1 Introduction and Background

After the first demonstrations of electromagnetic waves in the year 1887 by the
physicist Heinrich Hertz at the Technical University of Karlsruhe in Germany wire-
less telegraphy transmission was demonstrated at the end of the 19th century by
the radio pioneer and founder of the later company Guglielmo Marconi. Besides
quite some important developments of different antenna technologies the early ideas
for Multiple Input Multiple Output (MIMO) schemes using multiple antennas trace
back to Kaye and George [1], Branderburg and Wyner [2], and van Etten (1975),
[1–3]. A concise survey is given in [4]. Later in 1984 and 1986 Winters and Salz
considered beamforming techniques at Bell Laboratories, [5]. In 1994 Paulraj and
Kailath introduced a patent on the concept of spatial multiplexing using multiple
antennas. Raleigh and Cioffi investigated the transmission of multiple data streams
using spatial-temporal coding, [6]. In the same year Foschini introduced the concept
of Bell Labs Layered Space-Time (BLAST), [7], whichwas refined and implemented
later in 1999 by Golden et al. [8]. The digital cellular system GSM (Global System
for Mobile Communications) put into operation around 1992 in Europe did not yet
use the MIMO principle. However, later standards such as the 3.5 Generation (3.5G,
UMTS advanced, IMT 2000), the 4G, and the 5G cellular systems adopt this key
technology. Similar developments and standards prevailed for the wireless local area
network WLAN and WIMAX IEEE 802.11.

Starting around the year 2000 ideas came up to introduce the MIMO principle
not only in the area of wireless broadcasting but also in the field of wire-line digital
transmission. There the multiple antennas are replaced in principle by wire-line
multiple transceivers. Today applications and standards are present in the field of
digital transmission on power-lines [9, 10], and digital subscriber lines (vectoring),
[11]. A survey on advances in wireless MIMO research and technology is also found
in [12]. In the following sections we introduce the principles of signal transmission
over a Multiple Input Multiple Output (MIMO) channel and emphasize on wireless
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links. We will derive a block diagram of a MIMO system and compact it using the
concept of the equivalent baseband channel, which is described in Part I for single
input single output (SISO) channels. We characterize the physical channels between
the various inputs and outputs of the MIMO system by the delay spread functions,
which are functions of two variables t and τ to prepare for the case of time-variant
wireless channels. For time-invariant MIMO channels, such as cables composed of
many two-wire electrical lines or optical fibers, the delay spread function turns into
the impulse response and just depends on the delay variable τ , which is then renamed
as t .

13.2 MIMO Transmission System with Quadrature
Amplitude Modulation

13.2.1 System Model

Figure13.1 shows the principle block diagram of a MIMO transmission system.
The transmitter and the receiver are equipped with M and N parallel branches,
respectively. In principle, the branches on one side are composed of the same building
blocks. Only transmit branch j and receive branch i are shown in more detail.

Fig. 13.1 Principle block diagram of a digitalMIMO transmission systemwith single carrier QAM
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Single Input Single Output Link

Assume for the moment that only the transmit branch j is active and that all other
transmit signals are zero, sp(k) = 0 ∀ p �= j . Then the link from transmit branch j to
receive branch i represents a single input single output scheme, which is described in
quite some detail in Part I. Briefly, its operation is as follows. The binary bit stream
b j (l), which contains the information bits and in most cases redundancy bits for
forward error correction (FEC), is fed into a mapper, which periodically allocates
κ j consecutive bits to a complex symbol s j (k). We denote l εZ and k εZ as the
discrete-time of the bit and the symbol sequence, respectively. Thus, the symbol
alphabet B consists of L j = 2κ j symbols, which can be portrait in the complex
domain. Together with the complex modulation carrier ej2π f0t the scheme constitutes
a quadrature amplitude modulation (QAM) transmitter. The pulse shaper, which is a
lowpass filter, limits the infinite bandwidth of the symbol sequence s j (k) to at most
half the symbol rate vS = 1

T . We call T the symbol interval, i.e. every T a symbol
leaves the mapper. The modulator with the carrier frequency f0 shifts the spectrum
to the channel passband with the center frequency f0. As all physical channels own
real-valued impulse responses, only the real part of the complex modulator output
signal can be transmitted. Consequently, the modulator in Fig. 13.1 also contains a
unit, which selects this part to create the real-valued output signal u j (t). The channel
will be discussed later in more detail. For the moment it shall be characterized by
the delay spread function gC,i j (t, τ ).

In the receiver branch i a bandpass filter may be employed to limit the noise
spectrum to the channel passband, yet leaving the signal part of the receive signal
unchanged. After synchronous demodulation with the complex carrier e−j2π f0t the
demodulated signal is lowpass filtered yielding the complex-valued signal r̃i (t),
which is sampled with symbol rate 1

T at t = t0 + kT , resulting in

ri (k) = r̃i (t0 + kT ) ; i = 1, 2, ..., N (13.1)

where the delay t0 between the transmitter and the receiver has to be estimated at the
receiver.

Physical Single Input Single Output Channel

Electrical cables or optical fibers are in general time-invariant andwill be describedby
an impulse response gC,i j (t). Awireless andmobile channel is time-variant due to the
temporal change of the environment and the movement of the transmitter or receiver.
As is known from Part I and II, such a channel can be characterized by a time-variant
impulse response wC,i j (t, s), which is the response at observation time t to a Dirac
impulse active at time instant s ≤ t , [13, 14]. The variables t and s are independent.
The use ofwC,i j (t, s) has some drawbacks for signal processing, in particular it does
not provide ameaningful Fourier spectrum. Therefore the transformation of variables
s = t − τ is applied yielding themodified impulse response or delay spread function

wC,i j (t, t − τ ) = gC,i j (t, τ ) (13.2)
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which can then be interpreted as the response at observation time t to an input Dirac
impulse at t − τ ≤ t . We call t the observation time or just time and τ is referred to
as delay time or age variable. The input-output relation between u j (t) and vi (t) in
Fig. 13.1 is given by the time-variant convolution

vi (t) =
∫ ∞

−∞
u j (s)wC,i j (t, s)ds =

∫ ∞

−∞
u j (t − τ )gC,i j (t, τ )dτ (13.3)

where we have used s = t − τ and (13.2). In case of time-invariance the delay spread
function turns into the impulse response, gC,i j (t, τ ) = gC,i j (τ ). It just depends on
the variable τ , which is then renamed as t yielding gC,i j (t). Then the time-variant
convolution boils down to the well known convolution for time-invariant systems

vi (t) =
∫ ∞

−∞
u j (t − τ )gC,i j (τ )dτ (13.4)

Equivalent Baseband System Model

To obtain a compact mathematical description without details of impulse shaping,
modulation, demodulation etc., the described SISO link from transmitter j to receiver
i in Fig. 13.1 can be simplified by allocating between the input symbol sequence s j (k)
of the impulse shaper and the output signal r̃i (t) of the receive lowpass an equivalent
baseband model with overall impulse response w̃i j (t, s) or with the delay spread
function h̃i j (t, τ ) = w̃i j (t, t − τ ) using s = t − τ . Similarly, h̃i j (t, τ ) is the response
observed at time instant t to a Dirac impulse at instant t − τ ≤ t . After sampling at
t = t0 + kT and τ = τ0 + mT we define h̃i j (t0 + kT, τ0 + mT ) = hi j (k,m), which
we call in the following the discrete-time modified impulse response of the equivalent
baseband system or discrete-time delay spread function of the equivalent baseband
system. In Fig. 13.1 hi j (k,m) characterizes the SISO link from the input sequence
s j (k) at the transmitter to the output sequence ri (k) of the sampling device at the
receiver. Similarly, it can be interpreted as the response observed at discrete-time
instant k to a unit impulse at instant k − m ≤ k. This leads to the simplified block
diagram in Fig. 13.2 of the MIMO system with discrete-time equivalent baseband
channels.

In case of a time-invariant channel, such as a cable, the equivalent baseband
system impulse response h̃i j (t) and its sampled version h̃i j (t0 + kT ) = h(k) are
representing the SISO link. To simplify the notation in the remainder we always use
the general term hi, j (k,m) and whether we mean hi j (m) of a time-invariant link will
become clear from the context. Please note that due to modulation and demodulation
with a complex carrier, hi j (k,m) is complex in general.

If all M transmit signals s j (k) in Fig. 13.2 are active, the receive signal ri (k)
is the superposition. This holds for all receive signals r1(k), ..., rN (k). They are
“combined” by the building block detector and demapper in Fig. 13.1,which provides
the estimates b̂ j (l) of the transmit bit sequences b j (l) ; j = 1, 2, ..., M . Various
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Fig. 13.2 Principle block
diagram of a MIMO system
with discrete-time equivalent
baseband channels
characterized by the delay
spread functions hi j (k,m)

signal combiners and detection methods for MIMO receivers are described in the
Chaps. 14 and 15 in detail.

13.2.2 Input-Output Relation of MIMO System with
Time-Variant Channel

Single Input Single Output (SISO)

Let us assume that only the transmit branch j is active. As mentioned before, we
characterize the SISO channel composed of the transmit branch j , the physical
channel, and the receive branch i by the equivalent delay spread function hi j (k,m).
Then we obtain at the output of the receive branch i

ri (k) = s j (k) � hi j (k,m) + ni (k) (13.5)

where ni (k) is the additive noise at the receive branch i and � denotes the discrete-
time, time-variant convolution defined as

s j (k) � hi j (k,m) =
∞∑

m=−∞
hi j (k,m)s j (k − m) (13.6)

We have introduced the operator� to prevent from confusion with the time-invariant
convolution, which we indicate by ∗. The prove of (13.6) is evident from (13.10),
which is discussed later. The time-variant and the time-invariant convolution look
similar, however, they differ in several properties. The two variables k andm specify
two different time variables.m is called delay time, age variable, or integration time,
as the summation in (13.6) is executed over m, and k characterizes the time variable
of the output signal of the system and in addition also the temporal change of the
system parameters. If the channel is time-invariant, then hi j (k,m) does not depend
on k. Hence, we can just skip k in hi j (k,m) of (13.5) as well as (13.6) and write
hi j (k,m) = h(m), as is shown in Part II. Consequently, � turns into the well known
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convolution operation ∗ for linear time-invariant systems. An example for hi j (k) is a
wire-line channel or a static wireless channel, where the transmitter and the receiver
are non-moving and all scatterers or reflectors of the electromagnetic waves do not
vary with time k.

Multiple Input Single Output (MISO)

Now we consider that all transmit branches j = 1, 2, ..., M and one receive branch
i are active. Then we obtain for the receive branch i with (13.5)

ri (k) =
M∑
j=1

s j (k) � hi j (k,m) + ni (k) (13.7)

Multiple Input Multiple Output (MIMO)

Finally all transmit and all receive branches are active. Consequently, (13.7) holds
for i = 1, 2, ..., N , which gives rise to a matrix notation, in which (13.7) represents
the i th equation

⎛
⎜⎜⎜⎜⎜⎜⎝

r1(k)
...

ri (k)
...

rN (k)

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
r(k)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

h11(k,m) · · · h1 j (k,m) · · · h1M (k,m)

...

hi1(k,m) · · · hi j (k,m) · · · h1M (k,m)

...

hN1(k,m) · · · hN j (k,m) · · · hNM (k,m)

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
H(k,m)

�

⎛
⎜⎜⎜⎜⎜⎜⎝

s1(k)
...

s j (k)
...

sM (k)

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
s(k)

+

⎛
⎜⎜⎜⎜⎜⎜⎝

n1(k)
...

ni (k)
...

nN (k)

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
n(k)
(13.8)

which can be written as

r(k) = H(k,m) � s(k) + n(k) (13.9)

r(k) is the receive vector, H(k,m) the matrix of the delay spread functions of the
discrete-time equivalent MIMO channel model, s(k) the transmit signal vector, and
n(k) the vector of the additive noise. Please note that� turns thematrixmultiplication
into the convolution operation defined in (13.6), where the order of operation is
s j (k) � hi j (k,m) and has to be respected, because� is in general non-commutative.

13.3 Deterministic Models for Wireless MIMO Channels

In Part I on digital wireless communications various models for SISO channels and
their properties are outlined in quite some detail. There are deterministic and stochas-
tic models. All these findings can be applied for any link between the transmit branch
j and the receive branch i in Figs. 13.1 and 13.2. The significance needs no detailed
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explanation and we restrict ourselves to a brief introduction of the finite impulse
response channel model. Furthermore, we emphasize on the spatial interrelation of
these SISO channels by considering their correlation properties.

13.3.1 Uniform Linear and Uniform Circular Antenna
Arrays

Figure13.3 shows in principle the configurations of MIMO antennas, which are
frequently used, the uniform linear and the uniform circular array antenna. In both
antennas the distance between adjacent elements is equal. These antennas can be
applied for transmission and reception. From the theory of electromagnetic waves
we know that the signals emitted by the antenna elements can interact and then are
correlated, if approximately l ≤ λ0

2 holds,whereλ0 = c
f0
is the operatingwavelength,

c is the speed of light in the air, and f0 is the carrier frequency, [15]. The closer the
antenna elements are, the higher the correlation of the signals can be, because in case
of a transmit MIMO antenna the waves of neighboring elements overlap. Correlation
also allows the shaping of the emitted electromagnetic beam into the direction of a
hot spot of users by appropriate antenna feeding signals generated by a precoding
vector. This technique is called transmit beamforming. In case of a receive MIMO
antenna adjacent narrow elements are excited by signals, which are quite similar and
thus receive correlation is introduced.

If the distance between adjacent antenna elements is increased, the correlation
among the signals decreases. For l ≈ λ0 micro diversity starts and for larger distances
such as l > 3λ0 the correlation almost vanishes. This mode of operation is used for
spatial diversity, which allows the transmission or reception of almost independent
signals. Depending on the applications MIMO antennas with narrow and far spaced
elements can also be combined.

Fig. 13.3 Arrays with M antenna elements spaced by l, a uniform linear array, b uniform circular
array
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13.3.2 Finite Impulse Response Channel Model

As is well known from signal processing a linear discrete-time system is charac-
terized by an impulse response with infinite duration (infinite impulse response,
IIR). In addition, if the system is non-causal and time-invariant the input-output
relation for the SISO link between transmitter j and receiver i is given by ri (k) =∑∞

m=−∞ hi j (m)s j (k − m). Typically, the magnitude of the impulse response hi j (m)

of a time-invariant equivalent baseband channel declines with increasing m. There-
fore an adequate approximation can be obtained by pruning the response atm = K ′

i j
resulting in a finite impulse response (FIR) filter model.

Similarly, the magnitude of the delay spread function hi j (k,m) of the equivalent
baseband wireless channel approaches zero for increasingm and thus we can discard
the samples hi j (k,m) form > Ki j to obtain an approximationwith respect tom. This
simplified channel model is depicted in Fig. 13.4 and shows the structure of a finite
impulse response (FIR) filter, which is also called tapped delay line or transversal fil-
ter. The Ki j + 1 channel coefficients are given by hi j (k,m), wherem = 0, 1, ..., Ki j .
In contrast to a time-invariant filter the coefficients (taps) can change their values at
every time instant k.

All operations in the filter are linear namely the delay �τ of the input signal
s j (k − m), the multiplication with the tap hi j (k,m) yielding hi j (k,m)s j (k − m),
and the addition of all component signals. Consequently, the output signal is

ri (k) =
Ki j∑
m=0

hi j (k,m)s j (k − m) ; i = 1, 2, ..., N ; j = 1, 2, ..., M (13.10)

where we have imposed the requirement that the delay �τ corresponds to the time
base T of the input and output signal,

�τ = T (13.11)

Fig. 13.4 Time-variant transversal filter for modeling the equivalent baseband SISO channel
between transmitter j and receiver i
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The reader is encouraged to convince oneself of the linearity by using the superposi-
tion of two input signals. Please note that the considered FIR filter is causal, because
hi j (k,m) = 0 ∀m < 0. A physical interpretation of (13.10) is a wireless channel
where the transmit signal s j (k) is spread over Ki j + 1 different paths on its way to
the receiver. Each path m introduces a dedicated delay mT and a path loss indicated
by the complex channel coefficient hi j (k,m). Such a channel is called a time-variant
multipath channel. It should be mentioned that the described modeling is done on
the basis that the delay of each physical path is quantized by multiples of �τ=T , as
indicated by (13.11), where T is the symbol interval.

As portrait in Fig. 13.2, a wireless MIMO system is characterized by N · M of
such multipath SISO channel models, where j = 1, 2, ..., M and i = 1, 2, ..., N .

13.3.3 Spatial Channel Models

As outlined in Chap. 5 in most cases the transmit signal propagates along a multitude
of paths with reflections and scattering. For MIMO systems several studies have
been made to find models, which incorporate spatial parameters of the delay spread
function. Among others each propagation path is divided into a large number of sub-
paths and their signals are characterized by the angle of depature from the transmit
antenna, the angle of arrival at the receive antenna, the distances of the antenna
elements, the phase difference of the waves, and the direction of the velocity of
the moving receiver, [16]. Assuming that the angles change statistically, angular
spread functions have been defined, similar to the statistical parameters discussed in
Sect. 13.4.

13.3.4 Spectral Properties of the Channel Model

Time-Variant Transfer Function

Weconsider again the SISO channelmodel between the transmitter j and the receiver
i with its delay spread function hi j (k,m). As described in Part II, a time-variant
transfer function H̃i j (k, ej2π fτ T ) can be defined by the Fourier transform of hi j (k,m)

with respect tom. To this end we first apply the z-transform on hi j (k,m)with respect
to m resulting in H̃i j (k, z) = ∑∞

m=0 hi j (k,m)z−m and then substitute z = ej2π fτ T

yielding

hi j (k,m)
m
� H̃i j (k, e

j2π fτ T ) =
∞∑

m=0

hi j (k,m)e−j2π fτ Tm (13.12)
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where the discrete delay variable mT corresponds to the frequency variable fτ .
Obviously, H̃i j (k, ej2π fτ T ) is periodic with period fτ= 1

T . Its baseband is located

in | fτ | ≤ 1
2T . If

∣∣∣H̃i j (k, ej2π fτ T )

∣∣∣ varies in this frequency interval significantly with

fτ for any fixed k, then we call this channel frequency selective and the effect as
frequency selective fading. Given the fact that this property is owned by at least one
SISO channel of the MIMO scheme in Fig. 13.2, the MIMO channel is referred to as
frequency selective.

In contrast, if
∣∣∣H̃i j (k, ej2π fτ T )

∣∣∣ is approximately constant with respect to fτ in the

aforesaid interval up to a certain cut-off frequency for any fixed k, then the SISO
channel is referred to as non-frequency selective or frequency flat. Then we conclude
from (13.12) that all channel coefficients must be zero except one, e.g.,

hi j (k, 0) = hi j (k) (13.13)

where hi j (k) has to be understood as a short hand notation. Hence, the SISO channel
is just time-variant and from (13.5) follows with (13.6) the input-output relation

ri (k) = s j (k)hi j (k) + ni (k) (13.14)

Here we can study easily the effect of a time-variant channel. Assume there is no
noise. Even if we sent a constant signal s j , we get from (13.14) the response ri (k) =
s j hi j (k) which varies with time.

If all SISOchannels of theMIMOsystemare frequencyflat, at least approximately,
then the MIMO scheme is called frequency flat and from (13.9) follows

r(k) = H(k)s(k) + n(k) (13.15)

withH(k,m) = H(k, 0) = H(k) as a short handnotation.Obviously, the time-variant
convolution turns into the multiplication.

Delay Doppler Spread Function

As is known from the theory of time-variant systems in Part II, we obtain the delay
Doppler spread function also calledDoppler-variant impulse response, if we consider
the Fourier spectrum of the delay spread function with respect to the time t or k. We
start with the z-transformwith respect to k yielding H̄i j (z,m) = ∑∞

k=0 hi j (k,m)z−k .
Substituting z = ej2π ft T results in

hi j (k,m)
k

� H̄i j (e
j2π ft T ,m) =

∞∑
k=0

hi j (k,m)e−j2πftTk (13.16)

where k of the original domain corresponds to the Doppler frequency variable ft in
the frequency domain. We see that H̄i j (ej2π ft T ,m) is periodic with period ft = 1

T

and its baseband is located in the interval | ft | ≤ 1
2T . If the cut-off frequency of
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Fig. 13.5 Dividing the
magnitude of the
time-variant transfer function∣∣∣H̃i j (k, ej2π fτ T )

∣∣∣ of the
equivalent baseband channel
into small regions of
approximately flat segments
using multi-carrier
modulation with carrier
frequencies f0, 2 f0,...

∣∣H̄i j (ej2π ft T ,m)
∣∣ in this interval is small, then the variations of hi j (k,m)with respect

to k are slow. In this case the channel exhibits a weak temporal fading. The contrary
is true, if the cut-off frequency is large resulting in fast changes.

Step-Wise Frequency Flat Channel Transfer Function

Frequency flat regions of the channel transfer function can be achieved, if multi-
carrier modulation such as orthogonal frequency division multiplexing (OFDM) is
applied discussed in Chap. 7. As illustrated in Fig. 13.5, this modulation technique
subdivides the total transmission band into approximately flat segments between
adjacent carriers ej2π f0t, ej2π2 f0t, ej2π3 f0t, ..., which are in case of OFDM generated
by an inverse discrete Fourier transform (IDFT) as a modulator and by a discrete
Fourier transform (DFT) as a demodulator.

To this end each transmit and receive branch in Fig. 13.1 is composed of an IDFT
and a DFT, respectively. In each flat frequency region an input-output relation similar
to (13.14) holds per SISO channel. We will focus for all further considerations on
MIMO systems with frequency flat fading channels described by (13.15).

13.4 Statistical Models for MIMO Channels

13.4.1 i.i.d. Gaussian MIMO Channel Model

As outlined in [15] and summarized in Part I on digital communications over single
input single output links, multipath propagation, rich scattering, and reflections lead
to a multitude of scenarios which in most cases cannot be described by detailed
deterministic models. Suitable are statistical models, which will be reviewed in the
following. As already stated, all SISO channels of the MIMO system shall exhibit

a flat frequency response,
∣∣∣H̃i j (k, ej2π fτ T )

∣∣∣ = const. with respect to fτ , for any k.

Therefore only the temporal fading of the complex-valued delay spread functions

hi j (k) = Re
[
hi j (k)

] + jIm
[
hi j (k)

] ; j = 1, 2, ..., M ; i = 1, 2, ..., N (13.17)
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has to be considered, which are now stochastic processes. A summary on the defi-
nitions and properties of random variables and stochastic processes is given in the
Appendix A.

Assume that the output signal of an unidirectional transmit antenna element j
undergoes rich scattering and reflections resulting in a multipath propagation with
an infinite number of statistically independent paths carrying signals, which super-
impose at the receive antenna element i resulting in the stochastic process hi j (k).
Then the conditions of the central limit theorem are fulfilled, which states that hi j (k)
exhibits a complex Gaussian probability density function. If there is no line of sight
between the transmitter and the receiver, the receive signal has zero mean. In detail
we can model each delay spread function in (13.17) as follows:

1. All hi j (k) exhibit zero mean,

E
[
hi j (k)

] = 0 (13.18)

from which follows that real and imaginary part of hi j (k) have zero mean. This
prerequisite is fulfilled, if there is no line of sight between transmitter and receiver.

2. All hi j (k) are independent and identically distributed (i.i.d.) according to a Gaus-
sian probability density function given by

px (x) = 1√
2πσx

e
− x2

2œ2x (13.19)

where x stands for Re
[
hi j (k)

]
and Im

[
hi j (k)

]
for any fixed k. The corresponding

variances are var(x) = E
[
(x − E [x])2

] = σ2
x .

3. All hi j (k) are circular symmetric Gaussian processes, i.e.

var
(
Re

[
hi j (k)

]) = var
(
Im

[
hi j (k)

])
(13.20)

4. All hi j (k) are pairwise spatially uncorrelated,

E
[
h pqh

∗
rs

] =
{

1 ; p = r ; q = s

E
[
h pq(k)

]
E
[
h∗
rs(k)

] = 0 ; else
(13.21)

The channel matrixH(k) is therefore denoted asHw(k), where the index w stand
for white and shall indicate the uncorrelated entries hi j (k). The second line in
(13.21) is zero, because of (13.18). As the hi j (k) are Gaussian, they are even
statistically independent.

The requirements above characterize a wide sense stationary (WSS) Gaussian pro-
cess. The prerequisite (13.21) is often denoted as uncorrelated scattering. Therefore
the considered channel model is also named wide sense stationary uncorrelated
scattering (WSSUS) model.



13.4 Statistical Models for MIMO Channels 191

With these prerequisites it can be shown that all
∣∣hi j ∣∣ exhibit aRayleigh probability

density function and that arg
[
hi j

]
is equally distributed in the interval [−π,π]. If

there is a line of sight between transmitter and receiver, thenE
[
hi j (k)

] �= 0 and
∣∣hi j ∣∣

shows a Rice distribution.

13.4.2 Covariance Matrix of the MIMO Channel

If we use the term correlation, we always mean spatial correlation in the following.
First we define the covariance matrix RHH of our channel matrixH(k). As a covari-
ance matrix is defined on vectors, we have to rearrange the matrix H(k) as a vector
by stacking all column vectors of the matrix one over the other. In the following we
drop k to simplify the notation. Let

H = (
h1 h2 · · · hM

)
(13.22)

be the channel matrix decomposed into column vectors h j εC
Nx1 ; j = 1, 2, ..., M .

Then the stacking operation is defined as

vec (H) =

⎛
⎜⎜⎜⎝

h1
h2
...

hM

⎞
⎟⎟⎟⎠ (13.23)

and the covariance matrix of H is

RHH = E
[
vec (H) (vec (H))H

]
(13.24)

where the superscript H denotes the Hermiteian1 operation also called conjugate
transposition. The reader can find a summary of useful theorems on matrix calcu-
lus in the Appendix B. Given the matrix X then XH = (

XT
)∗ = (

X
∗)T

, where the
superscript T stand for the transposition. In a similar way the Hermiteian operation
can also be applied on vectors v. With a column vector v the product vvH defines a
matrix whereas vHv is the scalar product of the two vectors resulting in a scalar. A
matrix X is said to be Hermiteian, if XH = X. One convinces easily that RHH is a
Hermiteian matrix.

Example 1

As an example we calculate the covariance matrix for a 2x2 channel matrix

H =
(
h11 h12
h21 h22

)
= (

h1 h2
)

(13.25)

1Charles Hermite, French mathematician.
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and get from (13.24)

RHH = E
[(

h1
h2

) (
hH
1 hH

2

)] = E

⎡
⎢⎢⎣

⎛
⎜⎜⎝
h11
h21
h12
h22

⎞
⎟⎟⎠
(
h∗
11 h

∗
21 h

∗
12 h

∗
22

)
⎤
⎥⎥⎦ (13.26)

finally resulting in

RHH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E
[|h11|2] E

[
h11h∗

21

]
E
[
h11h∗

12

]
E
[
h11h∗

22

]

E
[
h21h∗

11

]
E
[|h21|2] E

[
h21h∗

12

]
E
[
h21h∗

22

]

E
[
h12h∗

11

]
E
[
h12h∗

21

]
E
[|h12|2] E

[
h12h∗

22

]

E
[
h22h∗

11

]
E
[
h22h∗

21

]
E
[
h22h∗

12

]
E
[|h22|2]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13.27)

A square matrix X is called Hermiteian, if XH = X. Apparently, RHH is a Her-
miteian matrix. Moreover, we generalize from (13.27) that RHH εCNMxNM holds,
if H εCNxM . For an uncorrelated MIMO channel with channel matrix H = Hw the
property (13.21) results in the covariance matrix

RHwHw
=

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ = I4 (13.28)

which is the 4x4 identity matrix I4. Please note, if the stochastic process hi j (k) is at
least wide sense stationary, then RHH does not depend on time k.

13.4.3 MIMO Channel Model with Correlation

With Hw and its covariance matrix RHwHw
= INM in (13.28) we have introduced

a spatially uncorrelated MIMO channel. In the following we prove that a channel
matrix H εCNxM defined with the stacked column vectors

vec (H) = GHvec (Hw) (13.29)

has the covariance matrix
RHH = GHG (13.30)

where G = R
1
2

HH is called the square root matrix of RHH .
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Proof of (13.30)

From (13.24) follows with (13.29) RHH = E
[
GHvec (Hw) (vec (Hw))H G

]
. As G

shall be non-random, this matrix is not subject to the expected value. Consequently
RHH = GHE

[
vec (Hw) (vec (Hw))H

]
G follows and E

[
vec (Hw) (vec (Hw))H

] =
RHwHw

= INM results in RHH = GHG, which finalizes the proof.

Example 2

Given a single input multiple output (SIMO) system with M = 1 transmit and

N = 2 receive antennas. The channel matrix shall be H = (
h11 h21

)T = (
1 j

2

)T
and approximately constant in a considered time interval. We are looking for the
decomposition of the covariance matrix RHH = GHG with the square root matrix

G = R
1
2
HH .

Solution:

First we determine the covariance matrix

RHH = E
[(

h11
h21

) (
h∗
11 h

∗
21

)] = E
[(

1
j
2

) (
1 − j

2

)] =
(
1 − j

2
j
2

1
4

)
(13.31)

AsRHH is a Hermiteian matrix, we know fromAppendix B that this matrix is unitar-
ily diagonalizable with the eigenvalues λi ≥ 0 ; i = 1, 2 and the unitary transform
matrix V with V−1 = VH

RHH = V�VH = V�
1
2

(
�

1
2

)H

VH (13.32)

From the comparison with (13.30) we conclude V�
1
2 = GH and get the square root

matrix G = �
1
2 VH = R

1
2
HH knowing that the entries of the diagonal matrix �

1
2 are

real. Apparently, R
1
2
HH is not a Hermiteian matrix in general. The diagonal matrix

� = diag (λ1,λ2) contains the eigenvalues of RHH . The characteristic equation for
the eigenvalues is ∣∣∣∣1 − λ − j

2
j
2

1
4 − λ

∣∣∣∣ = 0 (13.33)

which yields λ1 = 0, λ2 = 5
4 and thus

� =
(
0 0
0 5

4

)
; �

1
2 =

(
0 0

0
√
5
2

)
(13.34)

The matrix V is composed of the eigenvectors vi = (
v1i v2i

)T
corresponding to the

two eigenvalues and determined by
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(
1 − λi − j

2
j
2

1
4 − λi

)(
v1i
v2i

)
= 0 (13.35)

For λ1 we obtain v1 = ( j
2v21 v21

)T
. In the same way we get v2 = (−j2v22 v22

)T
.

The entries v21 εC and v22 εC are free parameters, however, asRHH is a Hermiteian
matrix, the two eigenvectors must be orthogonal, see Appendix B. Orthogonalization
and normalization of these vectors will not be done at this point. Thus we obtain the
transform matrix

V = (
v1 v2

) =
( j

2v21 −j2v22
v21 v22

)
(13.36)

With (13.34) follows

G = R
1
2
HH = �

1
2 VH = √

5v∗
22

(
0 0
j 1

2

)
(13.37)

R
1
2
HH is not a Hermiteian matrix, as R

1
2
HH �=

(
R

1
2
HH

)H
holds. With the condition

RHH = GHG the parameter v22 = |v22| e−j� is determined as v22 = 1√
5
e−j� with

arbitrary �. Then the result of the matrix decomposition is

G = R
1
2
HH = ej�

(
0 0
j 1

2

)
(13.38)

Moreover, UG is the general solution, where U is a unitary matrix. The reader
convinces oneself easily with UHU = I that GHG = RHH is true.

13.4.4 MIMO Channel Model with Transmit and Receive
Correlation (Kronecker Model)

The wireless transmitter and receiver may operate in environments with different
scattering and reflections at the transmitter and the receiver side. Then a description
of the correlation close to the antenna elements by dedicated transmit and receive
covariance matrices,Rt x andRr x , rather than by only one channel correlation matrix
RHH is reasonable.

The resulting channel model is depicted in Fig. 13.6 as a block diagram, where
the matrices B εCMxM and A εCNxN shall enhance the uncorrelated MIMO channel
with matrix Hw(k) by the square root matrices B = R

1
2

t x and A = R
1
2

r x , where

Rt x = BHB (13.39)
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Fig. 13.6 Wireless link with an uncorrelated channel Hw(k) enhanced by matrices B = R
1/2

t x and

A = R
1/2

r x introducing transmit and receive correlation, respectively

and
Rr x = AHA (13.40)

holds.
Obviously, the channel matrix for this model is then described by

H(k) = AHHw(k)B (13.41)

The correlation matrices Rt x and Rr x are determined from the channel matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

h11 · · · h1 j · · · h1M
...

hi1 · · · hi j · · · hiM
...

hN1 · · · hN j · · · hNM

⎞
⎟⎟⎟⎟⎟⎟⎠

= (
h1 · · · h j · · · hM

) =

⎛
⎜⎜⎜⎜⎜⎜⎝

gT1
...

gTi
...

gTN

⎞
⎟⎟⎟⎟⎟⎟⎠

(13.42)

using the column vector

h j = (
h1 j · · · hi j · · · hN j

)T
(13.43)

and the row vector
gTi = (

hi1 · · · hi j · · · hiM
)

(13.44)

The channel vector gTi determines the multiple input single output (MISO) channel
depicted in Fig. 13.7a and h j describes the single input multiple output (SIMO)
scheme in Fig. 13.7b.

Then the transpose of the transmit covariance matrix is defined as

RT
tx = E

[
gigH

i

] ; i = 1, 2, ..., N (13.45)

which shall be unchanged irrespective of what antenna element i is receiving. Simi-
larly, the receive covariance matrix is determined as

Rr x = E
[
h jhH

j

] ; j = 1, 2, ..., M (13.46)
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Fig. 13.7 a Multiple input single output (MISO) channel determined by row vector gTi =(
hi1 · · · hi j · · · hiM

)
. b Single input multiple output (SIMO) channel determined by column

vector h j = (
h1 j · · · hi j · · · hN j

)T

and shall be the same irrespective of what transmit antenna element j is emitting.
Furthermore, we assume that all main diagonal entries tii of Rt x and r j j of Rr x are
normalized equal to one.

Below we show that from the channel model (13.41) the stacked vector of the
channel matrix can be derived as

vec (H) = (
BT ⊗ AH

)
vec (Hw) (13.47)

With the covariance matrices (13.45) and (13.46) the covariance matrix RHH of the
channel follows as

RHH = R∗
t x ⊗ Rr x (13.48)

where ⊗ symbolizes the Kronecker product. The proof is also found below. Given
the matrix R∗

t x εCMxM with elements t∗lm ; l,m = 1, 2, ..., M and Rr x εCNxN then
the Kronecker product is defined as

RHH =

⎛
⎜⎜⎝

t∗11Rr x t∗12Rr x · · · t∗1MRr x

t∗21Rr x t∗22Rr x · · · t∗2MRr x

· · ·
t∗M1Rr x t∗M2Rr x · · · t∗MMRr x

⎞
⎟⎟⎠ εCMNxMN (13.49)

Furthermore it is straightforward to show with (13.45) that

R∗
t x = RT

tx (13.50)

holds. In the following proofs of (13.47) and (13.48) we use three Lemmas of linear
algebra, [17]: Let Q, R, S, and T be matrices of compatible dimensions. Then
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vec (QRS) = (
ST ⊗ Q

)
vec (R) (13.51)

(Q ⊗ R)H = QH ⊗ RH (13.52)

(Q ⊗ R) (S ⊗ T) = QS ⊗ RT (13.53)

Proof of (13.47)

With (13.51) follows directly from the channel model defined by (13.41) vec (H) =
vec (AHHwB) = (

BT ⊗ AH
)
vec (Hw) and the proof is finished.

Proof of (13.48)

From (13.24) we obtain with (13.47) RHH = E
[((

BT ⊗ AH
)
vec (Hw)

) ((
BT ⊗ AH

)
vec (Hw)

)H ]

and using (13.52) RHH = E
[((

BT ⊗ AH
)
vec (Hw)

)
(vec (Hw))H (B∗ ⊗ A)

] =(
BT ⊗ AH

)
E
[
(vec (Hw)) (vec (Hw))H

]
(B∗ ⊗ A).WithE

[
(vec (Hw)) (vec (Hw))H

]
= IMN and (13.53) follows RHH = BTB∗ ⊗ AHA. Inserting (13.39) and (13.40)
eventually yields the result RHH = R∗

t x ⊗ Rr x and the proof is finished.

Proof of (13.46)

We proof in the following that the channel model determined by (13.41) results in
a receive correlation matrix Rr x given by (13.46), which is identical for all transmit
antenna indices j . First we write RHH from (13.26) for the general case

RHH = E

⎡
⎢⎣
⎛
⎜⎝

h1
...

hM

⎞
⎟⎠(

hH
1 · · · hH

M

)
⎤
⎥⎦ =

⎛
⎜⎝

E
[
h1hH

1

] · · · E
[
h1hH

M

]
... · · · ...

E
[
hMhH

1

] · · · E [
hMhH

M

]

⎞
⎟⎠ (13.54)

When we compare the main diagonal entries of (13.49) and (13.54) we see that
E
[
h1hH

1

] = Rr x ,...,E
[
hMhH

M

] = Rr x are independent of j , becausewehave assumed
that the main diagonal elements of Rt x are t11 = · · · = tMM = 1. This finalizes the
proof.

Proof of (13.45)

RT
tx is defined in (13.45) through the vectors gi and we can determine the transpose

of the channel matrix (13.42) as

HT = (
g1 · · · gN

)
(13.55)

Please note that gi is the column vector associated to gTi . Then follows

RHT HT = E
[
vec (HT )

(
vec (HT )

)H] =
⎛
⎝ E

[
g1gH

1

] · · · E [
g1gH

N

]
· · ·

E
[
gNgH

1

] · · · E [
gNgH

N

]
⎞
⎠ (13.56)
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Next we show that from the channel model (13.41) follows

RHT HT = Rr x ⊗ R∗
t x (13.57)

(13.41) provides vec (HT ) = vec (BTHT
wA

∗) and with Lemma (13.51) follows

vec (HT ) = (
AH ⊗ BT

)
vec (HT

w). ThenweobtainwithLemma (13.52)
(
vec (HT )

)H
= (

vec (HT
w)
)H

(A ⊗ B∗), and for the covariance matrix of HT follows RHT HT =
E
[(
vec (HT )

) (
vec (HT )

)H] = (
AH ⊗ BT

)
IMN (A ⊗ B∗) = AHA ⊗ BTB∗, where

we have used Lemma (13.53) in the last step. With (13.39) and (13.40) we obtain
eventually RHT HT = Rr x ⊗ R∗

t x and the proof of (13.57) ends.
Let Rr x εCNxN be equipped with the entries rpq ; p, q = 1, 2, ..., N , then the

Kronecker product in (13.57) yields

RHT HT =

⎛
⎜⎜⎝

r11R∗
tx r12R∗

tx · · · r1NR∗
t x

r21R∗
t x R∗

t x · · · r2NR∗
t x

· · ·
rN1R∗

t x rN2R∗
t x · · · rNNR∗

t x

⎞
⎟⎟⎠ εCMNxMN (13.58)

When comparing the main diagonals of (13.56) and (13.58) taking the prerequisite
r11 = ... = rNN = 1 into account we conclude R∗

t x = E
[
g1gH

1

] = · · · = E
[
gNgH

N

]
,

which is independent of the index i of the receive antenna element. With R∗
t x = RT

tx
from (13.50) the proof is finished.

Example 3

We come back to the Example 2 in Sect. 13.4.3 and askwhether the channel meets the
conditions of the Kronecker model. We find from (13.46) for the receive covariance
matrix Rr x = E

[
h1hH

1

] = RHH given in (13.31). The transmit covariance matrices
defined in (13.45) are RT

tx,1 = E
[
g1gH

1

] = E
[
h11h∗

11

] = 1 and RT
tx,2 = E

[
g2gH

2

] =
E
[
h21h∗

21

] = 1
4 . Obviously, they are different and we conclude that the channel

matrix in Example 2 does not fulfill the conditions of the Kronecker channel model.

13.4.5 Exponential Covariance Matrix Model

This model also follows the idea of separate covariance matrices at the transmitter
and the receiver. However, instead of determining these matrices by a MISO and a
SIMO scheme, as applied by the Kronecker model, fixed covariance matrices with
an exponential decay of the magnitudes of the correlation coefficients outside of the
main diagonals is presumed.

Let

(Rt x )pq = ρ
|p−q|β
t x ; p, q = 1, 2, ..., M ; q ≥ p ; Rt x = RH

tx (13.59)
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be the covariance coefficients with |ρt x | ≤ 1 and be the entries of the transmit covari-
ance matrix Rt x . Similarly,

(Rr x )pq = ρ|p−q|β
r x ; p, q = 1, 2, ..., N ; q ≥ p ; Rr x = RH

rx (13.60)

are the entries of the receive covariancematrixRr x with |ρr x | ≤ 1 andβ typically is in
the range from 1 to 2. Only for themain diagonal elements the equal sign holds. Small
magnitudes |ρt x | and |ρr x | characterize low correlation and values close to 1 indicate
a strong correlation of the delay spread functions between the antenna elements p
and q. Obviously, with this model the magnitudes of the covariance coefficients
decay exponentially with the distance |p − q| between the antenna elements with
numbers p and q. This model is motivated from measurements of the local transmit
and receive region. RHH is then given by (13.48).

Finally, the exponential covariance model is also applicable directly to the entries
of RHH in (13.24) without the differentiation between the transmit and the receive
correlation, [18].

Example 4

An example of a transmit correlation matrix for a transmit antenna with M = 4
elements follows from (13.59) assuming β = 1,

Rt x =

⎛
⎜⎜⎝

1 ρt x ρ2t x ρ3t x
ρ∗
t x 1 ρt x ρ2t x(

ρ2t x
)∗

ρ∗
t x 1 ρt x(

ρ3t x
)∗ (

ρ2t x
)∗

ρ∗
t x 1

⎞
⎟⎟⎠ (13.61)
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Chapter 14
Principles of Linear MIMO Receivers

14.1 Introduction

As depicted in the block diagram of Fig. 14.1, we consider a MIMO system with
frequencyflat and in general time-varying channelwith channelmatrixH(k) εCN×M ,
input signal vector s(k) εCM×1, noise vector n(k) εCN×1, and receive vector r(k) ε
C

N×1. At the receiver a linear filter described by a matrixW(k) εCM×N is employed
to obtain at its output a good replica y(k) of the transmit signal vector s(k). We
assume that a channel estimator not shown in Fig. 14.1 has provided perfect channel
state information so that the instantaneous channel matrix H(k) is known for every
discrete-time instant k at the receiver.

From Fig. 14.1 we obtain

r(k) = H(k)s(k) + n(k) (14.1)

and
y(k) = W(k)r(k) (14.2)

By inserting (14.1) into (14.2) we get

y(k) = W(k)H(k)s(k) + W(k)n(k) = G(k)s(k) + n′(k) (14.3)

with the interference matrix
G(k) = W(k)H(k) (14.4)

and the noise
n′(k) = W(k)n(k) (14.5)

Let G(k) = (
gi j (k)

)
M×M and W(k) = (

wi j (k)
)
M×N , then we obtain the i th line

of the system of Eqs. (14.3)
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Fig. 14.1 Block diagram of
a MIMO system with
channel matrix H(k) and
linear receiver with matrix
W(k)

yi (k) = gi i (k)si (k) +
M∑

j = 1, j �= i

gi j (k)s j (k) + ∑M
j=1 wi j (k)n j (k) ; i = 1, ..., M (14.6)

The first term in (14.6) is the desired signal si (k) of the transmit antenna i with some
weighting coefficient gi i (k).The second term is denoted as inter-channel interference
composed of the signals from all other transmit antennas and the last contribution is
the noise component at the receiver output. Please note that the gi j (k) are functions
of the receive matrix elements wi j (k). The task of the linear receiver is to adjust
its matrix W in such a way that the inter-channel interference is reduced or even
completely removed.

14.2 Operation Modes for MIMO Systems

Before we are going into more details of the MIMO receivers we first take the
opportunity with (14.1) to get some inside into the options provided by MIMO
systems. For that purpose we first take a simple example with M = N = 2 and
rewrite (14.1) in detail.

r1(k) = h11(k)s1(k) + h12(k)s2(k) + n1(k) (14.7)

r2(k) = h21(k)s1(k) + h22(k)s2(k) + n2(k) (14.8)

Spatial Multiplexing to Increase Symbol Rate
In this MIMO transmission mode two independent signals s1(k) and s2(k) from
antenna 1 and antenna 2 can be sent, respectively. Consequently, we can increase
the symbol rate provided that the receiver is able to recover s1(k) and s2(k) from
the receive signals r1(k) and r2(k), and the spatial correlation of the delay spread
functions hi j is small.

Spatial Diversity to Improve Transmission Quality
As a starting point, let us consider that only one antenna at the transmitter and one
antenna at receiver are available. Then, the receive signal is

r1(k) = h11(k)s1(k) + n1(k) (14.9)
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If the delay spread function h11(k) is zero due to fading at time instant k, it is
impossible to recover s1(k), because we just have received noise n1(k). This can
be overcome by providing more than one antenna either at the transmitter or at the
receiver or at both sides provided that the spatial correlation of the delay spread
functions is small.

Simple Transmit Diversity
Let us consider the case of a simple transmit diversity scheme with M = 2 transmit
and N = 1 receive antennas and that on each of the transmit antennas the same signal
is sent, thus s2(k) = s1(k). The receive signal then is

r1(k) = (h11(k) + h12(k)) s1(k) + n1(k) (14.10)

We see even if one of the channel coefficients is zero due to fading the transmit signal
s1(k) can still be recovered, owing to the redundant channel path established by the
other transmit antenna. The probability that both paths h11(k) and h12(k) are zero at
the same time instant k due to fading is rather small, if the two channels are almost
independent. Therefore, transmit diversity helps to increase transmission quality by
providing spatial redundancy.

Simple Receive Diversity
Consider now the case of a simple receive diversity with N = 2 receive and M = 1
transmit antennas, which allows us to transmit one signal s1(k). Then we obtain at
the receiver

r1(k) = h11(k)s1(k) + n1(k) (14.11)

r2(k) = h21(k)s1(k) + r2(k) (14.12)

and we can argue in a similar way as before. Therefore, receive diversity can also
help to improve transmission quality. However, we see that in both cases of simple
transmit and receive diversity only one signal s1(k) can be transmitted and no increase
of the symbol rate is achieved.

Beamforming
With more than one antenna at the transmitter the emitted electro-magnetic beam
can be steered in a certain direction, e.g., to a “hot spot” of many mobile users. The
principle is that amatrixA changes the direction of a vector x after multiplicationAx.
This technique is called beamforming and in most cases only one receive antenna is
used.

Combining Spatial Multiplex and Diversity or Beamforming
The generalMIMO approach can take advantage of all these features, namely, spatial
multiplex to increase data rate, diversity to improve transmission quality, or beam-
forming in the sense of a compromise. In case of M = N = 2 the Eqs. (14.7) and
(14.8) describe the input-output relation of the MIMO system.

In the next sections, we will discuss methods how to recover the transmit from
the receive signals. For that purpose, we assume perfect channel knowledge at the
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receiver, i.e., we impose the prerequisite that the complete channel matrix H(k) is
known at every time instant k. Furthermore, we drop the discrete-time variable k to
simplify the notation.

14.3 Zero-Forcing Receiver for Equal Number of Transmit
and Receive Antennas

In this section we derive the matrix W of a zero-forcing (ZF) receiver for the case
that the transmitter and the receiver are equipped with the same number of antennas,
i.e.,

M = N (14.13)

Consequently, H εCM×M is a square matrix. Furthermore, assume a channel matrix
with full rank

rank (H) = M (14.14)

Then, the inverse matrix H−1 exists. Moreover, if we consider very small noise at
the receiver, n ≈ 0, we get from (14.3) approximately

y = WHs (14.15)

With WH = IM the inverse matrix

W = H−1 (14.16)

provides the solution. Then, we obtain the output signal of the receiver from (14.3)

y = s + H−1n (14.17)

We see the inter-channel interference (14.3) is completely removed,G(k) = IM , and
the receiver output signal y is just corrupted by the noise Wn = H−1n. To check
how the noise has changed, we calculate the mean noise power

E
[‖Wn‖2] (14.18)

and find that in some cases this value can be larger than the original mean noise
power E

[‖n‖2] making the detection of the bit sequence in the receive signal more
inaccurate.
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14.4 Zero-Forcing Receiver for Unequal Number of
Transmit and Receive Antennas

14.4.1 Receiver with More Antennas Than Transmitter,
N > M

Solving the System of Linear Equations

Example 1
Let us first consider a simple example with M = 2 transmit and N = 3 receive
antennas and assume small noise n ≈ 0. Then we obtain from the basic input-output
relation (14.1)

r1 = h11s1 + h12s2 (14.19)

r2 = h21s1 + h22s2 (14.20)

r3 = h31s1 + h32s2 (14.21)

Obviously, this is an over-determined system with N = 3 equations for the M = 2
unknowns. The channel matrix H is non-square and consequently an inverse matrix
does not exist. We know from linear algebra that such a system of equations can only
be solved exactly, if and only if at least N − M equations are linearly depending
on each other. In other words, for the rank of the matrix H, which is the number of
linearly independent lines or columns, rank(H)≤ M must be true. Consequently, we
can cancel N − M superfluous equations. The remaining system with M equations
for the M unknowns can be solved conventionally. Whether this remaining system
has one unique solution or an infinite manifold of a parametric solution depends on
the rank of the remaining M × M square matrix.

If the three equations are all independent, no solution exists. This fact is easily
understood, because in our example we could take two equations out of the three
and solve them. Then we insert the resulting s1 and s2 into the third equation and are
faced with a contradiction indicating that the obtained “solution” is not feasible for
the original 3 × 2 system of equations.

This is the mathematical view. But what happens in a real system? Are the three
equations linearly depending or are they independent? For the answer we can think
of an experiment, where we sent two known signals s1(k) and s2(k) from the two
antennas over the channel with the known coefficients h11 and h12. Then we measure
the received signals r1(k), ..., r3(k). Equations (14.19)–(14.21) must hold because
every element in these equations is physically valid. Thus, we conclude that in reality
the three equations must be linearly depending on each other. However, if additive
noises, which are independent of each other and independent of all signals come
into play, then the resulting equations may no longer be linearly depending and the
over-determined system will have no solution.
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Solution with the Pseudo Inverse
The fact that a system of equations can have no solution was somehow disappointing
in mathematics. Therefore, in early 1920 the mathematician E. H. Moore came up
with an approximate solution, [1]. However, it is reported that his notationwas hard to
understand, because of the telegraphic style and the idiosyncratic notation. Therefore
his work was not recognized enough, until a formulation by Penrose [2, 3] appeared.
Penrose formulated four axioms for a special kind of an inverse matrix, which is
denoted as Moore–Penrose inverse in the literature. It is applicable in general for
finding an inverse of rectangular matrices of any dimension approximately and is
also called pseudo inverse matrix.

Our problem can be formulated as follows. We are looking for a general not
necessarily exact solution, which gives us the transmit signal vector s or an estimate
of it from the receive signal vector r at every time instant k. As the system of Eq.
(14.1) is over-determined for N > M , we can obtain an approximate solution in the
sense that the left-hand side of (14.1) is just approximately equal to the right-hand
side. As a prerequisite, the channel matrix H εCN×M shall have full rank, i.e.

rank (H) = M (14.22)

In the following we also assume small noise, i.e. n ≈0, and minimize the difference
between the left and the right-hand side of (14.1),

�=r − Hs (14.23)

in the mean squared error sense,

‖�‖2 = �H� = min
s

(14.24)

The result is
s = (

HHH
)−1

HHr (14.25)

and we find the matrix of the zero-forcing receiver as

H+ = (
HHH

)−1
HH = W εCM×N (14.26)

The proof is given at the end of this section. Plugging (14.26) into (14.4) yields

G = H+H = (
HHH

)−1
HHH = IM (14.27)

Hence,H+acts as a kind of inverse matrix with respect toH. ThereforeH+ is called
(left-hand sided) pseudo inverse orMoore–Penrose inversematrix. From the perspec-
tive of linear algebra we are solving the modified system of equationsH+Hs = H+r
rather than the original oneHs = r given in (14.19)–(14.21). This provides the exact
solution s. As a consequence for our MIMO system, we have to equip the receiver



14.4 Zero-Forcing Receiver for Unequal Number of Transmit and Receive Antennas 207

with the matrixW in (14.26) yielding the output signal

y = Wr = s + H+n (14.28)

Again we see that the output signal vector y of the zero-forcing receiver contains
the original transmit signal vector, which is corrupted by additive noise. The inter-
channel interference is completely canceled. As in the previous case M = N , the
mean power of the resulting noise

n′ = H+n. (14.29)

can be increased compared to n by the receiver matrix H+.
From our assumption (14.22) follows that HHH has also full rank M and conse-

quently
(
HHH

)−1
exists.

Example 2
Show that the minimum squared error is

‖�‖2min = rH
(
IN − HH+)

r (14.30)

Solution:
From (14.24) follows with (14.23) ‖�‖2 = (rH − sHHH ) (r − Hs). Owing to the
solution s =H+r from (14.25) with (14.26) and knowing that

(
HH+)H =HH+ fol-

lows‖�‖2 = ‖�‖2min =rHr − rHHH+r. This is equal to‖�‖2min = rH
(
IN − HH+)

r,
which finalizes the proof. As expected, the minimal squared error depends on the
matrix H, the left-hand side r of the system of equations, and is in general not zero.

Example 3
To illustrate the problem of an over-determined system of equations let us consider
the following example of three equations with two unknowns s1 and s2.

Hs = r ;
⎛

⎝
1 1
1 −1
2 1

⎞

⎠
(
s1
s2

)
=

⎛

⎝
0
1
1

⎞

⎠

Obviously, the three equations are linearly independent. We can follow the path out-
lined above and derive a solution from the first and the second equation yielding
s1 = 1

2 and s2 = − 1
2 . By plugging those into the third equation results in the contra-

diction 1
2 = 1. Alternatively, we can start with another pair of equations and proceed

as before ending up with a contradiction again. Consequently, there is no solution. If
we calculate the squared error between the left and the right-hand side of the system
of equations, we obtain ‖�‖2 = 1

4 .
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As shown before, the pseudo inverse (14.26) can provide an approximation

by minimizing ‖�‖2. We calculate HHH =
(
6 2
2 3

)
and the inverse1

(
HHH

)−1 =
1
14

(
3 −2

−2 6

)
. Then follows H+ = 1

14

(
1 5 4
4 −8 2

)
. The minimal squared error is

obtained from (14.30) as ‖�‖2min = 1
14 which is well below ‖�‖2 = 1

4 .
For MIMO transmission the reduction of inter-channel interference is decisive.

The reader assures oneself easily that the cascade of the channel and receive matrix

results in H+H = 1
14

(
1 5 4
4 −8 2

)
⎛

⎝
1 1
1 −1
2 1

⎞

⎠ =
(
1 0
0 1

)
and the inter-channel interfer-

ence is completely removed by the pseudo inverse H+.
This example verifies that the exact solution s is obtained by multiplying the

receive vector r by the pseudo inverse matrix of the channel. However, the lin-
ear system of equations r = Hs is solved only approximately with a squared error
between left and right-hand side of ‖�‖2 = 1

4 .

Example 4
IsW = H+ also valid for N = M?

The answer is yes, because for N = M the channel matrix is a square matrix and
the prerequisite (14.22) guarantees that H−1 exists. Consequently, we obtain for the
pseudo inverse from (14.26)

H+ = H−1
(
HH

)−1
HH = H−1IM = H−1 (14.31)

and the pseudo inverse boils down to the inverse matrix (14.16). Furthermore, we
conclude from (14.31) HH+ = IN and from (14.30) we find that the squared error
then is zero, ‖�‖2min = 0, as expected.

Proof of the Pseudo Inverse Matrix H+ in (14.26)
For the proofwe set the first partial derivative of our target functionwith respect to the
free parameters equal to zero. To follow this line we use the trace of a matrix, which
we differentiate with respect to a matrix or a vector, as outlined in the Appendix B,
and rewrite the squared error of (14.24) as

‖�‖2 = tr
(
��H

)
(14.32)

Please note that the product of a column vector � and a row vector �H results in a
matrix. With (14.23) we obtain

��H = rrH − rsHHH − HsrH + HssHHH (14.33)

1Given A =
(
a b
c d

)
, then A−1 =

(
d −b

−c a

)
1/ detA with detA = ad − bc
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We recognize that all terms are elements ofCN×N . According to the Appendix B the
trace of the sum of matrices is identical to the sum of the traces. To find the minimum
we set the partial derivative equal to zero,

∂ tr(��H)
∂ s∗ = 0, which is a necessary and

sufficient condition here, because our quadratic error tr
(
��H

)
is a convex function

of s or s∗. The partial derivation yields

∂ tr
(
��H

)

∂ s∗
= ∂ tr

(
rrH

)

∂ s∗
− ∂ tr

(
rsHHH

)

∂ s∗
− ∂ tr

(
HsrH

)

∂ s∗
+ ∂ tr

(
HssHHH

)

∂ s∗
= 0

(14.34)
and with the differentiation Lemmas for traces shown in the Appendix B we obtain
for the individual terms

∂ tr
(
rrH

)

∂ s∗
= 0 (14.35)

∂ tr
(
rsHHH

)

∂ s∗
= HHr (14.36)

∂ tr
(
HsrH

)

∂ s∗
= 0 (14.37)

∂ tr
(
HssHHH

)

∂ s∗
= HHHs (14.38)

Inserting (14.35)–(14.38) into (14.34) yields

HHr = HHHs (14.39)

from which we conclude by multiplication from the left-hand side with
(
HHH

)−1

s = (
HHH

)−1
HHr (14.40)

and consequently H+ = (
HHH

)−1
HH = W in (14.26) follows, which finalizes the

proof.

An Alternative Derivation of the Pseudo Inverse Matrix
Motivated by the fact that HHH is a square matrix with full rank, M , we can come
to a straightforward derivation of the pseudo inverse as follows. We consider (14.1)
with n = 0

r = Hs (14.41)

and multiply from the left with HH resulting in

HHr = HHHs (14.42)
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In mathematics (14.42) is called the Gaussian normal equation. HHH is a square
matrix with the dimension M × M . Then the task is to solve a system of linear
equations defined by a non-singular square matrix. The solution is straightforward.
We multiply from the left with the inverse matrix

(
HHH

)−1
, which exists due to the

fact that HHH has full rank, resulting in

(
HHH

)−1
HHr = (

HHH
)−1

HHHs (14.43)

from which we conclude
s = (

HHH
)−1

HHr (14.44)

and finally the pseudo inverse

H+ = (
HHH

)−1
HH (14.45)

As a final remark, if H does not have full rank M , a special pseudo inverse can be
determined from a singular value decomposition, [4].

14.4.2 Receiver with Less Antennas Than Transmitter,
N < M

Solving the System of Linear Equations

Example 5
Let us consider a simple example with M = 3 transmit and N = 2 receive antennas.
Assuming small noise, n ≈ 0, we obtain from the basic input-output Eq. (14.1)

r1 = h11s1 + h12s2 + h13s3 (14.46)

r2 = h21s1 + h22s2 + h23s3 (14.47)

and recognize an under-determined system of equations. Mathematically this can be
solved by assuming any value for one variable, e.g., s3. Then we can move h13s3
and h23s3 to the left-hand side and obtain a 2 × 2 system of equations with a square
matrix, which can be solved conventionally. If this matrix has full rank two, the
solutions for s1 and s2 contain one free parameter s3, which can be set to any value.
However, from a communications point of view the selection of an arbitrary s3 at
the receiver is useless and the third transmit antenna could be dropped. Another way
would be to keep M = 3 and to introduce redundancy by sending one signal s1 or s2
also from the third antenna as a kind of transmit diversity. However, the total symbol
rate is reduced.
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Solution with the Pseudo Inverse
In general, the N × M under-determined system of linear equations can have an
exact solution with at least M − N free parameters, which give rise to an (M − N )

infinite linearmanifold. From a technical point of view,M − N transmit antennas are
redundant. Alternatively, we look for an approximation, as for the over-determined
system of equations discussed in the previous section and follow the line of a pseudo
inverse here as well. For that purpose we take the prerequisite that H has full rank,
which is

rank (H) = N ≤ min {M, N } (14.48)

Then the M × M matrix HHH in (14.26) can only have rank N . Because N < M ,
the inverse

(
HHH

)−1
does not exist and consequently H+given by (14.26) is not

applicable. However, a Moore–Penrose pseudo inverse also exists and is given by

H++ = HH
(
HHH

)−1
εCM×N (14.49)

HHH is an N × N matrix with full rank N , if H exhibits the full rank N . Hence,(
HHH

)−1
exists and the pseudo inverse H++ can be calculated. Equation (14.49) is

proven by checking the four Moore–Penrose axioms for which we refer to [3, 5]. We
will give an alternative proof in the next section using some results from theminimum
mean squared error receiver. An approach similar to (14.24) is not successful. For
M = N follows H++ = H−1.

As a final remark, ifH does not have full rank N , a special pseudo inverse can be
determined from a singular value decomposition, [4].

Receiver Output with H++ as Receive Filter
The output signal y(k) = G(k)s(k) + n′(k) of the receiver is given by (14.3). With
W = H++, we calculate the inter-channel interference term from (14.4) resulting in
G = HH

(
HHH

)−1
H and see that in general G �= IM holds, which means that the

receive matrix H++cannot remove inter-channel interference in general.

Receive Signal with H++ as Transmit Prefilter
We recognize thatHH++ = IN holds. Hence, if we allocate a filter with matrixH++
at the transmitter as a prefilter, we obtain the transmit signal s =H++c, where c =c(k)
defines the vector of QAM transmit symbols. The receive signal follows from (14.1)

r = c + n (14.50)

Obviously, the inter-channel interference is completely removed. Prefilters in general
are discussed in Chap.18 in more detail. Consequently, we do not consider H++ as
a receive filter for practical applications any more.

Example 6
Given a system with M = 3 transmit and N = 2 receive antennas. The channel with

matrix H =
(

1 0 j
2

− j
2 1 0

)
shall be time-invariant in the time interval under considera-
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tion. (a) Find the matrix H++. Calculate the inter-channel interference matrix G, if
H++ is used (b) as receive filter and (c) as transmit prefilter.

Solution:

(a)WecalculateH++ in several steps:HHH = 1
4

(
5 2j

−2j 5

)
,
(
HHH

)−1 = 4
21

(
5 −2j
2j 5

)

and finally obtain H++ = 2
21

⎛

⎝
8 j
j4 10

−j5 −2

⎞

⎠.

(b) If we apply H++ as a receive filter, the inter-channel interference term follows

from (14.4) asG = H++H = 17
21

⎛

⎝
1 j 2

17 j 8
17−j 2

17
20
17 − 4

17−j 8
17 − 4

17
5
17

⎞

⎠.Disregarding the factor,G devi-

ates from the identity matrix I3. Thus we confirm that in general the zero-forcing
receiver with pseudo inverse H++ is not able to remove inter-channel interference.
(c) Now we consider a transmit prefilter with the matrix H++ and obtain the corre-
sponding inter-channel interference termHH++ = I2. The prefilterH++ completely
removes inter-channel interference.

14.5 Signal-to-Noise Ratio of Linear Receivers

14.5.1 General Relations

We consider Fig. 14.1 and are going to calculate the signal-to-noise ratio γy of the
signal y(k) at the output of the receive filter W, which is the input of the decision
device. As is well known from the theory of digital communications, the higher γy

the lower the bit error ratio can be at the output of the decision device. The signal
part of y(k) in (14.3) is

ys(k) = W(k)H(k)s(k) (14.51)

which is superimposed by the noise part

yn(k) = W(k)n(k)

In the following we define the covariance matrix of the signal s(k) and the noise
n(k), respectively,

Rss = E
[
ssH

]
εCM×M ; Rnn = E

[
nnH

]
εCN×N (14.52)

Furthermore, we drop k to simplify the notation. As shown in the Appendix B, the
mean power of a signal is given by the trace of its covariance matrix. Consequently,
for the mean power of ys follows
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E
[‖ys‖2

] = tr
(
E

[
ysyH

s

])
(14.53)

With (14.51) we get tr
(
E

[
ysyH

s

]) = tr
(
E

[
WHssHHHWH

])
and using (14.52) pro-

vides the result
E

[‖ys‖2
] = tr

(
Rss (WH)H WH

)
(14.54)

where we have used the cyclic permutation rule for the trace outlined in the Appendix
B. Similarly, we obtain for the noise part yn the mean power

E
[‖yn‖2

] = tr
(
RnnWHW

)
(14.55)

and finally the signal-to-noise ratio

γy = E
[‖ys‖2

]

E
[‖yn‖2

] = tr
(
RssHHWHWH

)

tr
(
RnnWHW

) (14.56)

For comparison the signal-to-noise ratio at the receiver input is

γr = E
[‖Hs‖2]

E
[‖n‖2] = tr

(
RssHHH

)

tr (Rnn)
(14.57)

14.5.2 Normalization of the Channel Matrix H

To facilitate a fair comparison of the signal-to-noise ratios of different MIMO
schemes a normalization of the channel matrix H is adequate. For that purpose
we define the power gain gP of the channel as the relation between its mean out-
put power E

[‖Hs‖2] and mean input power E
[‖s‖2]. The input signal shall be

uncorrelated, thus E
[‖s‖2] = tr (Rss) = MES and the mean output power then is

E
[‖Hs‖2] = EStr

(
HHH

)
. We know from Appendix B that tr

(
HHH

) = ‖H‖2F =
∑M

j=1

∑N
i=1

∣∣hi j
∣∣2is the Frobenius norm of a matrix. Thus, we can define the power

gain as

gP = E
[‖Hs‖2]

E
[‖s‖2] = tr

(
HHH

)

M
= ‖H‖2F

M
(14.58)

Please remember that the entries of H are delay spread functions representing the
link from the transmitter to the receiver including all building blocks, such as radio
channel, filters, modulator, amplifier etc. Therefore the overall gain can be adjusted
to achieve the normalized channel matrix

HN = 1√
gP

H =
√

M

‖H‖2F
H (14.59)
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The entries of H represent amplitudes rather than powers, which gives rise to apply
the square root of gP . If a given channel owns the power gain gp = 1, then its channel
matrix is normalized and fullfills tr

(
HHH

) = M in (14.58).

With (14.59)wefindHHH = gPHH
NHN ,

(
HHH

)−1 = 1
gP

(
HH

NHN
)−1

, and similar
relations for the traces. Then follows from (14.56) the signal-to-noise ratio of HN

γy,N = γy

gP
(14.60)

14.5.3 Signal-to-Noise Ratio with Zero-Forcing Receiver for
M ≤ N

We have found that in general the zero-forcing receiver with H++ for M > N in
(14.49) cannot reduce inter-channel interference. Hence, we focus on systems with
receivers H+ for M ≤ N in (14.26) in the following and obtain

WH = H+H = IM ; M ≤ N (14.61)

Then the mean power (14.54) of the signal part at the receiver output is

E
[‖ys‖2

] = tr (Rss) ; M ≤ N (14.62)

For the mean power (14.55) of the noise part we have to determine

WHW = (
H+)H

H+ = H
(
HHH

)−1 (
HHH

)−1
HH ; M ≤ N (14.63)

and mean power of the noise part follows as

E
[‖yn‖2

] = tr
(
RnnH

(
HHH

)−1 (
HHH

)−1
HH

)
; M ≤ N (14.64)

Plugging (14.62) and (14.64) into (14.56) yields the signal-to-noise ratio at the zero-
forcing receiver output

γy = E
[‖ys‖2

]

E
[‖yn‖2

] = tr(Rss )

tr
(
RnnH(HHH)

−1
(HHH)

−1
HH

) ; M ≤ N (14.65)

The mean noise power E
[‖yn‖2

]
in (14.64) is worth to be commentated. If the

determinant of HHH owns rather small absolute values, then the entries of the cor-
responding inverse matrix can take on large numbers. As a consequence, the noise
power at the output of the receive filter can get much larger than that of the input, see
Example 8. A matrix with such an unfavorable property is called ill conditioned. It
gets even worse, if the channel matrixH does not have full rank, because det(HHH)
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approaches zero. Note that rank(H) =rank
(
HHH

) ≤ min {M, N }. Similarities are
discussed in Chap. 18 for the output signal of a precoder.

Example 7: Uncorrelated Signal and Uncorrelated Noise, M ≤ N
Consider aMIMOschemewithM ≤ N and a zero-forcing (ZF) receiver for the usual
case that transmit signal s and also noise n are uncorrelated. Thus, the covariance
matrices areRss = ESIM andRnn = σ2

nIN . Find the mean signal and noise power as
well as the singal-to-noise ratio at input and output of the zero-forcing receiver.

Solution:
From (14.62) we get the mean signal power at the ZF receiver output

E
[‖ys‖2

] = tr (Rss) = E
[‖s‖2] = MES ; M ≤ N (14.66)

With the cyclic permutation rule we otain from (14.64)

σ2
n tr

((
HHH

)−1 (
HHH

)−1
HHH

)
and the mean noise power at the ZF receiver out-

put

E
[‖yn‖2

] = σ2
n tr

((
HHH

)−1
)

; M ≤ N (14.67)

Then follows the SNR at the ZF receiver output

γy = E
[‖ys‖2

]

E
[‖yn‖2

] = MES

σ2
n tr

((
HHH

)−1
) ; M ≤ N (14.68)

and (14.57) yields the SNR at the ZF receiver input

γr = E
[‖Hs‖2]

E
[‖n‖2] = EStr

(
HHH

)

σ2
n N

(14.69)

Example 8
(a) Given a transmission scheme with M = 2 transmit, N = 3 receive antennas, a

zero-forcing (ZF) receiver, and a normalized channel matrix H =
√

32
37

⎛

⎝
1 0
1 j/2
0 − j/4

⎞

⎠,

which is constant in a considered time interval. Signal s and noise n are uncorrelated,
and ES/σ

2
n = 4 holds. Calculate the mean power of signal and noise at the input and

output of the receiver. Find the signal-to-noise ratios (SNR) γr and γy at the receiver
input and output, respectively.

Solution:

We calculate HHH = 32
37

(
2 j/2

−j/2 5/16

)
from which follows

(
HHH

)−1 =
37
12

(
5/16 −j/2
j/2 2

)
. At the receiver inputweobtain themean signal powerE

[‖Hs‖2] =
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EStr
(
HHH

) = 2ES and the mean noise power E
[‖n‖2] = Nσ2

n = 3σ2
n . At the

receiver output one gets the mean signal power E
[‖ys‖2

] = 2ES and the mean noise
powerE

[‖yn‖2
] = 7.1σ2

n . Finally, the SNR are γr = 2
3
ES
σ2
n

= 2.7 and γy = 0.28 ES
σ2
n

=
1.1. Apparently, with this channel the ZF receiver enhances the mean noise power
at the output significantly, whereas the mean signal power at input and output of a
ZF receiver are the same. Thus, the output SNR γy gets smaller than γr at the input.
This is the burden payed for the perfect rejection of inter-channel interference.

The design goal of the mean squared error receiver, which will be discussed in
the next section, takes the noise into account and hence can provide a compromise
between inter-channel interference and output noise.

14.6 Minimum Mean Squared Error Receiver

14.6.1 Prerequisites

In contrast to the zero-forcing receiver we now follow a strategy to minimize the
quadratic error between the transmit signal s and the receiver output signal y and
thus include the noise in our design criterion from the beginning. Hence, the target
function of the Minimum Mean Squared Error (MMSE) receiver is

J = E
[‖�‖2] = min

W
(14.70)

with the error vector
� = s−y (14.71)

The squared error then is

‖�‖2 = �H� = tr
(
��H

)
(14.72)

From (14.70) follows

J = E
[
tr

(
��H

)] = tr
(
E

[
��H

]) = min
W

(14.73)

where we have used the fact that the trace and the expectation operator are linear and
thus can be applied in reverse order. In the course of the computation of the optimal
receiver matrixWwewill need the covariance matrixRss of the transmit signal s and
the covariance matrix Rnn of the noise n defined in (14.52). We state the following
prerequisites. In the first place the noise has zero mean, i.e.

E [n] = 0 (14.74)
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and secondly, the transmit signal s is statistically independent of the noise n, i.e. the
cross-correlation matrix is

Rsn = E
[
snH

] = E [s]E
[
nH

]
(14.75)

and with (14.74) follows
Rsn = 0 (14.76)

Similarly
Rns = E

[
nsH

] = RH
sn = 0 (14.77)

We further assume that the channel matrix H and the receiver matrix W are deter-
ministic but still can be functions of discrete time k.

14.6.2 Receiver Matrix

The partial derivative of J with respect to W∗ set to zero provides the necessary
and sufficient condition for the minimum, because the quadratic error is a convex
function of W or W∗. The optimal receiver matrix, which minimizes the squared
error, then is

W = RssHH
(
HRssHH + Rnn

)−1
εCM×N (14.78)

provided that the matrixHRssHH + Rnn is non-singular. Before we outline the proof
a special case is considered.

In many applications we can assume that the signals emitted by the transmit
antenna elements are spatially uncorrelated and each with mean power ES , thus
Rss = ESIM holds. Also the noise at each receive antenna element can be con-
sidered to be spatially uncorrelated each with mean power σ2

n resulting in the
covariance matrix Rnn = σ2

nIN . Then we get the optimal MMSE receiver matrix

W = ESHH
(
HESHH + σ2

nIN
)−1

and finally2

W = HH
(
HHH + αIN

)−1
εCM×N (14.79)

with the ratio of the mean noise power per receive antenna and themean signal power
per transmit antenna

α = σ2
n

ES
(14.80)

According to communication theory the receive matrix describes a MIMO matched
filter.W is applicable, if the inverse matrix in (14.79) exists.

2Note (αA)−1 = 1
αA

−1 ; α �= 0.
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Now we apply the following matrix inversion lemma (Woodbury identiy), [4, 6,
7]. Let A, B, C, and D be non-singular matrices with compatible dimensions. Then

(A + BCD)−1 = A−1 − A−1B
(
C−1 + DA−1B

)−1
DA−1 (14.81)

holds and we obtain the alternative MMSE receive matrix

W = (
HHH + αIM

)−1
HH εCM×N ; α �= 0 (14.82)

The proof is given at the end of this section. We see that both solutions (14.79) and
(14.82) respect the noise. For low noise, α → 0, we obtain from (14.79)

HH
(
HHH

)−1 = H++ (14.83)

and from (14.82) (
HHH

)−1
HH = H+ (14.84)

Obviously, these are the identical matrices, which we achieved also for the zero-
forcing receiver. Hence, we conclude that the MMSE receiver degrades to the zero-
forcing receiver for high signal-to-noise ratio. With the MMSE receiver matrix
(14.82) the receiver output signal (14.3) is

y = Gs + n′ (14.85)

with
G =WH = (

HHH + αIM
)−1

HHH (14.86)

as the remaining inter-channel interference term and the output noise is

n′ =Wn=
(
HHH + αIM

)−1
HHn (14.87)

Please note thatG approaches IM for low noise α → 0. Thus, the lower the noise the
better the reduction of the inter-channel interference will be. We are not surprised,
because the MMSE solution approaches the zero-forcing matrix. Similar considera-
tions can be done, if the transmitter is furnished with a precoder owing to the matrix
W in (14.79).

The signal-to-noise ratio at the MMSE receiver output can be found by inserting
the receive matrix (14.82) or its variants into (14.56). In the same way we obtain the
mean noise power at the receiver output with (14.55). However, the formulas remain
not very transparent and therefore a discussion for specific α is more adequate.

For α �= 0 the MMSE receiver in (14.82) owns the additional term αIM com-
pared to the zero-forcing receiver, which in many cases can enable a proper inverse(
HHH + αIM

)−1
even in the case, where H and thus HHH do not have full rank or
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are ill conditioned. Hence, the MMSE receiver often provides an adequate solution
in case of a rank deficient channel matrix, where the zero-forcing receiver fails.

Example 9
Given a MIMO system with M = 2, N = 3, a normalized channel matrix H =
√

32
37

⎛

⎝
1 0
1 j/2
0 − j/4

⎞

⎠ as in Example 8, uncorrelated transmit signal s with mean power

2ES , uncorrelated receiver noise nwith mean power 3σ2
n , and ES/σ

2
n = 1/α = 4. (a)

Determine theMMSE receiver in (14.82). (b) Calculate the inter-channel interference
G = WH. (c) Find the mean power of the receiver input and output signal. Calculate
the mean power of the receiver input and output noise. (d) Find the signal-to-noise
ratio at input and output of the receiver. Compare the figures with the zero-forcing
receiver of Example 8.

Solution:
Lengthy matrix calculation are done with computer algebra. HHH is the same

as in Example 8. Furthermore, we obtain HHH + 0.25I2 =
(

1.98 0.43 j
−0.43 j 0.52

)
and

(
HHH + 0.25I2

)−1 =
(
0.62 −0.51 j
0.51 j 2.34

)
.

(a) For the MMSE receiver matrix in (14.82) we getW =
(
0.6 0.3 0.1
0.5 −0.6 j 0.5 j

)
.

(b) G = WH = 0.9

(
1 0.15 j

−0.15 j 0.5

)
approximates the unity matrix, but deviates

noticeable.
(c) Mean signal power at receiver input is the same as in Example 8, E

[‖Hs‖2] =
EStr

(
HHH

) = 2ES and from (14.54) follows at the output E
[‖ys‖2

] =
EStr

(
(WH)H WH

) = 0.95ES .Meanpower of the receiver input noise isE
[‖n‖2] =

3σ2
n and (14.55) yields at the output E

[‖yn‖2
] = σ2

n tr
(
WHW

) = 1.3σ2
n .

(d) From (14.57) we obtain γr = 2
3
ES
σ2
n

= 2.7 at the input and γy = 0.7 ES
σ2
n

= 2.8 from
(14.56) at the output. Compared to the ZF receiver in Example 8 the SNR at the output
of the MMSE receiver has improved from 1.1 to 2.8, but inter-channel interference
is not fully reduced, as expected.

Proof of MMSE Receiver Matrix (14.78)
We insert (14.71) into (14.73) and obtain with (14.2)

J = tr
(
E

[
��H

]) = tr
(
E

[
(s − Wr)(sH − rHWH )

])
(14.88)

and with (14.1)

J = tr
(
E

[
(s − WHs − Wn)(sH − sHHHWH − nHWH )

])
(14.89)

After expanding we get
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J = tr
(
Rss − RssHHWH−RsnWH − WHRss + WHRssHHWH

) +

+ tr
(
WHRsnWH − WRns + WRnsHHWH + WRnnWH

)
(14.90)

Inserting (14.76) and (14.77) and employing the linear property of the trace operator
yields

J = tr (Rss) − tr
(
RssHHWH

)
− tr (WHRss) + tr

(
WHRssHHWH

)
+ tr

(
WRnnWH

)

(14.91)
We see that J is a quadratic and convex function ofW. Therefore setting the partial
derivative with respect to W∗ equal to zero is a necessary and sufficient condition
for the minimum. With the cyclic permutation Lemma given in the Appendix B we
move W to the end of the string of matrices in the traces and can directly apply the
differentiation Lemmas outlined in the Appendix B. We obtain

∂ tr (Rss)

∂ W∗ = 0 ; ∂ tr
(
RssHHWH

)

∂ W∗ = RssHH ; ∂ tr (WHRss)

∂ W∗ = 0 (14.92)

∂ tr
(
WHRssHHWH

)

∂ W∗ = WHRssHH ; ∂ tr
(
WRnnWH

)

∂ W∗ = WRnn (14.93)

Setting the partial derivative of J with respect toW∗ equal to zero yields with (14.92)
and (14.93)

∂ J

∂ W∗ = −RssHH + W
(
HRssHH + Rnn

) = 0 (14.94)

from which we conclude the proposition (14.78)

W = RssHH
(
HRssHH + Rnn

)−1
(14.95)

and finalize the proof.

Proof of (14.82)
Let A = αIN , B = H, C = IM , and D = HH , then follows from (14.79) with

(14.81)HH
(
HHH + αIN

)−1 = HH
(
A−1 − A−1H

(
IM + HHA−1H

)−1
HHA−1

)
=

HHA−1−HHA−1H
(
IM + HHA−1H

)−1
HHA−1. Now we multiply the first term

from the left with the identity matrix
(
IM + HHA−1H

) (
IM + HHA−1H

)−1 = IM
andobtain

(
IM + HHA−1H

) (
IM + HHA−1H

)−1
HHA−1−HHA−1H

(
IM + HHA−1

H)−1 HHA−1. After factoring out
(
IM + HHA−1H

)−1
HHA−1 the intermediate

result is IM
(
IM + HHA−1H

)−1
HHA−1. With A−1 = 1

α
IN follows

(
IM + HH 1

α
H

)−1
HH 1

α
= (

HHH + αIM
)−1

HH and the proof is finished. Please
note that α �= 0 must hold otherwise A−1 does not exist.
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14.7 Linear Combiner for Single Input Multiple Output
System

14.7.1 Principle of Linear Combining and the
Signal-to-Noise Ratio

As depicted in Fig. 14.2, we are now considering a single input multiple output
(SIMO) system with M = 1 transmit and N > 1 receive antennas. The transmit
signal is denoted as s with themean powerE

[|s|2] = ES . The noise shall be spatially
uncorrelatedwithmean powerσ2

n per antenna and the covariancematrixRnn = σ2
nIN .

The channel matrix of this SIMO system is just a column vector

h =

⎛

⎜
⎜⎜
⎝

h1
h2
...

hN

⎞

⎟
⎟⎟
⎠

(14.96)

The linear combiner is described by its receive matrix, which is reduced to a row
vector

W = (
w1 w2 · · · wN

)
(14.97)

with complex components wi ; i = 1, 2, ..., N . For the output signal of the linear
combiner we obtain

y = Whs + Wn (14.98)

with the signal part
ys = Whs (14.99)

and the noise part
yn = Wn (14.100)

Please note that the output of the receiver is a scalar rather than a vector. The signal-
to-noise ratio is defined as

Fig. 14.2 Single input
multiple output (SIMO)
transmission with linear
combiner receiver
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γ = E
[|ys |2

]

E
[|yn|2

] (14.101)

For the mean power of ys we obtain

E
[|ys |2

] = E
[
(Whs)H Whs

] = ES(Wh)H Wh (14.102)

and the mean power of the noise part yn is

E
[|yn|2

] = E
[
yHn yn

] = WE
[
nnH

]
WH = σ2

nWWH (14.103)

As yn is just a complex scalar, yHn = y∗
n holds. Then follows the signal-to-noise ratio

from (14.101)

γ = E
[|ys |2

]

E
[|yn|2

] = ES

σ2
n

(Wh)H Wh
WWH

(14.104)

14.7.2 MMSE Receiver for SIMO System (Maximum Ratio
Combiner)

Wewould like to find theMMSE receiver matrix, which is a row vector. First we have
to clarify, whether (14.79) or (14.82) is applicable. Our solution should hold also for
low noise, α → 0, i.e. for the zero-forcing receiver. Because of M = 1, we have to
select the zero-forcing receiver (14.84), which holds for M ≤ N . Consequently we
apply (14.82). With (14.96) we obtain

hHh = |h1|2 + |h2|2 + · · · + |hN |2 = ‖h‖2 (14.105)

which is a scalar and thus invertible, if ‖h‖2 �= 0. Then (14.82) yields the receive
matrix

W = (‖h‖2 + α
)−1

hH = hH

‖h‖2 + α
= 1

‖h‖2 + α

(
h∗
1 h∗

2 · · · h∗
N

)
(14.106)

with the entries

wi = h∗
i

‖h‖2 + α
, i = 1, 2, ..., N (14.107)

Obviously, they show up as conjugate complex channel coefficients with some real-
valued factor. We see that the optimal receiver is a matched filter known from com-
munications theory. As is well known, a matched filter maximizes the signal-to-
noise ratio at its output. This property has given rise to the designation “maximum
ratio combiner” for this receiver type. The calculation of the signal-to-noise ratio is
straightforward from (14.104). We find for the numerator
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E
[|ys |2

] =
( ‖h‖2

‖h‖2 + α

)2

ES (14.108)

and for the denominator

E
[|yn|2

] = ‖h‖2
(‖h‖2 + α

)2 σ2
n (14.109)

Then the signal-to-noise ratio of the maximum ratio combining scheme follows as

γMRC = E
[|yS|2

]

E
[|yn|2

] = ‖h‖2 ES

σ2
n

= 1

α

(|h1|2 + |h2|2 + ... + |hN |2) (14.110)

Finally we obtain the combiner output signal from (14.98)

y = ‖h‖2
‖h‖2 + α

s + hH

‖h‖2 + α
n (14.111)

We substantiate that the maximum ratio combiner can completely cancel the inter-
channel interference, because the signal part of the combiner output is just composed
of the transmit signal s associatedwith a real-valued factor. For low noise,α 
 ‖h‖2,
follows

y = s + hH

‖h‖2 n (14.112)

Figure14.3 shows the symbol error rate of two arrangements. Firstly, we consider a
SIMO system with N = 2 receive antannas and a MRC receiver. Secondly, a SISO
systemwith one antenna on each side serves for comparison.We consider the symbol
error rate of two scenarios, in the presence of white Gaussian noise (AWGN) only
and for AWGN together with Rayleigh fading. The modulation scheme is 2-PSK and
the receiver employs a threshold detector. A computer simulation was done with the
open online platform “webdemo” [8]. To verify the results, the error rates have also
been calculated, indicated by “theory” in Fig. 14.3, and the curves coincide perfectly.
As expected, the additional impairment of Rayleigh fading requires significantly
more signal-to-noise ratio at the receiver to achieve an adequate symbol error rate in
comparison to a channel, which is just corrupted by AWGN. It is widely appreciated
that the introduction of the SIMO scheme with maximum ratio combining provides
a large improvement compared to the SISO system.



224 14 Principles of Linear MIMO Receivers

Fig. 14.3 Symbol error rate as a functionof signal-to-noise ratio (SNR) forSISOsystem (M = N =
1) compared to SIMO system (M = 1, N = 2) with maximum ratio combining (MRC), channel
with AWGN only and with additional Rayleigh fading, 2-PSK, theoretical and simulated results fit
well. Source: Online platform “webdemo” [8]

14.7.3 Equal Gain Combiner

The channel vector of the SIMO system is given by (14.96) and by introducing
magnitudes and phases follows

h = ( |h1| ejφ1 |h2| ejφ2 · · · |hN | ejφN
)T

(14.113)

The vector of the equal gain combiner is defined by

W = 1

‖h‖2 + α

(
e−jφ1 e−jφ2 · · · e−jφN

)
(14.114)

which means that all receiver coefficients wi have the same gain
(‖h‖2 + α

)−1
. This

has motivated the name “equal gain combiner”. However, the receiver coefficients
own different phases, which correspond to the negative phases of the respective
channel coefficients. In other words, the receiver does not care about the absolute
values of the individual channel coefficients. Consequently, W is technically rather
simple to implement. To determine the signal-to-noise ratio at the receiver output we
use (14.104). For that purpose we find
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Wh = 1

‖h‖2 + α
(|h1| + |h2| + ... + |hN |) (14.115)

which is a real scalar. For the denominator of (14.104) we obtain

σ2
nWWH = σ2

n N
(‖h‖2 + α

)2 (14.116)

Consequently, the signal-to-noise ratio is

γEGC = E
[|ys |2

]

E
[|yn|2

] = ES

Nσ2
n

(|h1| + |h2| + ... + |hN |)2 (14.117)

Finally, we obtain for the output signal of the equal gain combiner from (14.98)
making use of (14.115) and (14.114)

y = 1

‖h‖2 + α
(|h1| + |h2| + ... + |hN |) s+

+ 1

‖h‖2 + α

(
e−jφ1 e−jφ2 · · · e−jφN

)
n (14.118)

As we can see, the equal gain combiner output contains the transmit signal s associ-
ated with a real-valued factor and thus no inter-channel interference is present.

Example 10
Compare the signal-to-noise ratios of the maximum ratio combiner, γMRC , and the
equal gain combiner, γEGC .

Solution:
We find with (14.110) and (14.117)

γMRC

γEGC
= N

|h1|2 + |h2|2 + ... + |hN |2
(|h1| + |h2| + ... + |hN |)2 (14.119)

Obviously, the right-hand side is ≤ N . Consequently, the signal-to-noise ratio of the
maximum ratio combiner is at most by factor N larger than that of the equal gain
combiner. The equal sign holds for a SISO channel (one coefficient, N = 1).

Example 11
Determine the signal-to-noise ratio for a normalized channel vector.

Solution:
We introduce a normalization of the channel matrix using the channel power gain
defined in (14.58).WithM = 1 and tr

(
hHh

) = ‖h‖2 from (14.105) we get the power
gain for the SIMO channel as gP = ‖h‖2. To find the normalized results we have to
replace h by h√

gP
= h

‖h‖ in the relevant formulas, which means that all entries of the
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vector are divided by ‖h‖. Then follows from (14.110) the normalized signal-to-noise
ratio for a maximum ratio combining receiver

γMRC,N = ES

σ2
n

= 1

α
(14.120)

Replacing |hi | by |hi |
‖h‖ ; i = 1, 2, ..., N in (14.117) yields the normalized signal-to-

noise ratio for the equal gain combining scheme

γEGC,N = 1

Nα

(|h1| + |h2| + ... + |hN |)2
‖h‖2 (14.121)

and finally from (14.119) the ratio

γMRC,N

γEGC,N
= γMRC

γEGC
(14.122)

which remains unchanged as in (14.119), because the normalization factor gP drops
out.

14.8 Decision of Receiver Output Signal

As we have seen, a linear receiver with matrixW tries to minimize the inter-channel
interference and to some extend also the noise in the signal components yi (k) of the
output vector (14.2)

y(k) = (
y1(k) y2(k) · · · yM(k)

)T
(14.123)

However, the signal components are still corrupted by some noise. As depicted in
Fig. 14.1, a decision device following the linear receiver is required to recover the
QAM symbols in each component yi (k). This process is also called signal detection
and there are various detection strategies known from communications theory and
outlined in Part I. The simplest one is threshold decision, where the complex signal
plane can be structured by a rectangular grid with the grid lines as the decision
thresholds. The decision device allocates to yi (k) an estimate ŝi (k) of the transmit
signal alphabet. Depending on the noise and the fading of the channel coefficients,
quite some false decisions may occur, which can be quantified by a symbol error
probability. Another strategy is maximum likelihood detection of the yi (k) or of
the whole vector y(k). This method can minimize the error probability either on a
“symbol by symbol” basis at every time instant k or by considering finite sequences of
symbols, after which a “sequence detection” using the Viterbi algorithm is executed.
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We know from communications theory that a cascade of a linear receiver and a
decision device is sub-optimal for achieving minimal symbol error probability. An
optimal solution is the a-posterior, in special cases also the maximum likelihood
detector, which are applied directly on the receive signal r(k) in (14.1). This will
lead to a nonlinear receiver and will be presented in the next Chapter.
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Chapter 15
Principles of Nonlinear MIMO Receivers

15.1 Maximum Likelihood MIMO Receiver

Principle
As we have seen in the previous chapter, a linear receiver tries to reduce the impact
of inter-channel interference and partially of the noise in the receive signal y(k) of
Fig. 14.1. Next, the signal is subject to a decision also called detection to recover
the QAM symbols in each component yi (k). Various decision strategies are known
from communications theory and outlined in Part I. In this section we will consider
a Maximum Likelihood (ML) detector as a receiver. In contrast to the linear receiver
the signal ŝ(k) will be estimated directly from the receive vector

r(k) = (
r1(k) r2(k) · · · rN (k)

)T
(15.1)

Hence, a receive matrixW is not present. In the following we drop the discrete-time
k to simplify the notation. The observed receive vector

r = Hs + n (15.2)

is corrupted by additive noise n, whereHs is the receive signal in case of a noise-free
channel. As for the linear receivers, we assume that the channel matrixH is precisely
known to the receiver. In a practical system the entries of H have to be estimated
by a separate channel estimator, which is not considered here. The transmit signal
vector is given by

s = (
s1 s2 · · · sM

)T
(15.3)

in which each component s j is taken from a finite QAM symbol alphabet B, e.g.,
B= {1, j, − 1,−j} for 4-ary phase shift keying (4-PSK) or B = {1,−1} for 2-PSK.
We assume an additive white Gaussian noise (AWGN) vector n = (n1 n2 . . . nN )T

with the following properties,

© Springer Nature Switzerland AG 2021
J. Speidel, Introduction to Digital Communications,
Signals and Communication Technology,
https://doi.org/10.1007/978-3-030-67357-4_15

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67357-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-67357-4_15


230 15 Principles of Nonlinear MIMO Receivers

• statistically independent with covariance matrix

Rnn = σ 2
n IN (15.4)

• all noise components ni possess the same mean power σ 2
n and zero mean E [ni ] =

0 ; i = 1, 2, . . . , N .
• the real part nR,i and the imaginary part nI,i of the noise ni = nR,i + jnI,i are

statistically independent, have the same mean power σ 2
n
2 , and the same Gaussian

probability density function

px (x) = 1√
2πσx

e
− x2

2σ2x ; σ 2
x = σ 2

n

2
(15.5)

where x stands for nR,i and nI,i , i = 1, 2, . . . , N . Consequently, the density func-
tion of the noise ni is given by the product

pni (ni ) = pnR,i (nR,i )pnI,i (nI,i ) = 1

πσ 2
n

e
− |ni |2

σ2n ; i = 1, 2, . . . , N (15.6)

• the multivariate probability density function of the noise vector n then follows as
the product

pn (n1, n2, . . . , nN ) =
(

1

πσ 2
n

)N

e
− |n1|2+|n2|2+···+|nN |2

σ2n (15.7)

or with short hand notation

pn (n) =
(

1

πσ 2
n

)N

e
− ‖n‖2

σ2n (15.8)

For the decision process we first define the following conditional probability density
function

pL (r |Hs) (15.9)

which is also called likelihood probability density function. It can be interpreted as
the density function of r under the condition that s was sent, knowing H. Please
note that pL (r |Hs) describes a finite set of probability density functions generated
by all possible transmit vectors s ε A, where A is the set of all possible transmit
vectors. Be it that each of the M components of s can take on LQ different QAM
symbol values, then A contains LM

Q different vectors sm, m = 1, 2, . . . , LM
Q . The

maximum likelihood detector selects out of all possibleHs that estimate s = ŝ, which
is maximal likely to the receive vector r, i.e. which has the largest pL (r |Hs). Hence,
the detection criterion is

pL (r |Hs) = max
s ε A

(15.10)
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from which the optimal estimate

ŝ = argmax
s ε A

pL (r |Hs) (15.11)

results. As is well known from communications theory, if the transmit vectors s ε A
are equally distributed, then ŝ also maximizes the a-posterior probability and thus
minimizes the symbol error probability.With (15.2) and (15.8) we obtain from (15.9)

pL (r |Hs) = pn (r − Hs) =
(

1

πσ 2
n

)N

e
− ‖r−Hs‖2

σ2n (15.12)

The argument of the exponential function is always negative. Consequently, the
maximal pL (r |Hs) must fulfill the condition

‖r − Hs‖2 = min
s ε A

(15.13)

and the solution formally is

ŝ = argmin
s ε A

‖r − Hs‖2 (15.14)

Obviously, the statistical detection problem (15.10) translates into the minimization
of the Euclidean distance between two vectors, namely the receive vector r and the
vectorHs, which is the transmit signal s having passed through the known channelH.
Hence, a maximum likelihood detector can be implemented as an algorithm, which
calculates a squared error according to (15.13) for all possible transmit signal vectors
s ε A and selects that s = ŝ, which yields the minimal quadratic error. Of course, the
receiver has to know the transmit vector alphabet A, which is quite normal for the
design of a digital communications system.

Just a few words about the computational complexity. As already mentioned, if
the transmitter is equipped with M antennas and each antenna output signal can take
on LQ different values, then there are LM

Q different vectors s, for which the detector
has to execute (15.13). We conclude that the number of operations in the maximum
likelihood detector grows exponentially with the number M of transmit antennas.

Example 1

As a simple example we take a MIMO transmitter with M = 2 antennas. The modu-
lation scheme shall be 2-PSK with the symbol alphabet B = {1,−1}. Consequently
LQ = 2 and each component of s can take on one value out of B at time instant k.
The channel matrix shall be given as

H =
⎛

⎝
1 0.5
0 1
1 1

⎞

⎠
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Table 15.1 Example, calculation steps for maximum likelihood detection

s

(
1

1

) (
1

−1

) (
−1

1

) (
−1

−1

)

Hs

⎛

⎜
⎝
1.5

1.0

2.0

⎞

⎟
⎠

⎛

⎜
⎝

0.5

−1.0

0

⎞

⎟
⎠

⎛

⎜
⎝

−0.5

1.0

0

⎞

⎟
⎠

⎛

⎜
⎝

−1.5

−1.0

−2.0

⎞

⎟
⎠

r − Hs

⎛

⎜
⎝

−0.4

−2.1

−1.1

⎞

⎟
⎠

⎛

⎜
⎝

0.6

−0.1

0.9

⎞

⎟
⎠

⎛

⎜
⎝

1.6

−2.1

0.9

⎞

⎟
⎠

⎛

⎜
⎝

2.6

−0.1

2.9

⎞

⎟
⎠

‖r − Hs‖2 5.78 1.18 7.78 15.81

and the noisy receive vector is observed as r = (
1.1 −1.1 0.9

)T
. The receiver knows

the set A of all LM
Q = 4 different transmit vectors.

A =
{(

1
1

)
,

(
1

−1

)
,

(−1
1

)
,

(−1
−1

)}
(15.15)

Then the maximum likelihood receiver calculates all vectors Hs and r − Hs as well
as the squared error ‖r − Hs‖2 in Table15.1. Finally, the minimal ‖r − Hs‖2, which
is 1.18 in our example, is selected and the detector concludes that most likely

ŝ =
(

1
−1

)

was sent.

15.2 Receiver with Ordered Successive Interference
Cancellation

Prerequisites

We are now coming back to the transmission system depicted in Fig. 14.1 and are
going to combine the linear receiver with the decision device. Our target is to succes-
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sively detect the transmit signal components s j (k), j = 1, 2, . . . , M of the transmit
vector s(k). Again, to simplify notation we drop k. The starting point of our consid-
erations is the linear receiver. The receive signal is given by

r = Hs + n (15.16)

with the channel matrix
H = (

h1 h2 · · · hM
)

(15.17)

in which h j ε C
Nx1 , j = 1, . . . , M are the column vectors. The receiver matrix

W =

⎛

⎜⎜⎜
⎝

w1

w2
...

wM

⎞

⎟⎟⎟
⎠

(15.18)

is structured by its row vectors wi ε C
1xN , i = 1, . . . , M and can be calculated as

the pseudo inverse or the MMSE receive matrix of the channel matrix. Finally, we
get the output of the receiver filter

y =

⎛

⎜⎜⎜
⎝

y1
y2
...

yM

⎞

⎟⎟⎟
⎠

(15.19)

by multiplication
y = Wr (15.20)

Hence, the output signal component yi is obtained as

yi = wir ; i = 1, 2, . . . , M (15.21)

According toFig. 14.1, a decision device follows andwe characterize the input-output
relation by the decision function q(...) yielding

ŝi = q(yi ) ; i = 1, 2, . . . , M (15.22)

The decision device can be a simple threshold detector but also a more sophisticated
maximum likelihood detector. If the receiver applies the receivematrixW, the system
of equations is solved for all y1, y2, . . . , yM in one step and the decided signal
components ŝ1, ŝ2, . . . , ŝM are obtained in parallel. Now we are going to discuss
a method, in which the system of linear equations (15.20) is solved successively in
several steps, where in each step the decision operation (15.22) is applied.
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Ordered Successive Interference Cancellation (OSIC)

As outlined before, we are looking for an algorithm, with which the ŝi = q(yi ), i =
1, 2, . . . , M are calculated one after the other rather than in one step. For example,
the natural “order” r1, r2, . . . , rN of equations is taken in the following. In principle,
operations (15.20) and (15.22) are merged. With (15.17) we obtain from (15.16)

(
h1 · · · hν · · · hM

)

⎛

⎜⎜⎜⎜
⎜⎜
⎝

s1
...

sν
...

sM

⎞

⎟⎟⎟⎟
⎟⎟
⎠

+ n = r (15.23)

which is equivalent to

h1s1 + · · ·+hν−1sν−1+hν+1sν+1 + · · · + hMsM + n = r − hνsν (15.24)

and is the key equation, in which we havemoved hνsν to the right-hand side. The idea
is first to find a solution for sν , e.g., s1, and then reduce the dimension of the system
of linear equations by one. It matters to introduce ν as an index for the iteration step
ν.

The algorithm is best explained with M = 3 as an example. LetH = (
h1 h2 h3

)
,

r, and the decision rule q(...) be given. In the course of the iterations the matrix H
will change and therefore it will be indicated as H(ν). In each step only the first row
vector w(ν)

1 of the receive matrix

W(ν) =
⎛

⎝
w(ν)

1

w(ν)
2

w(ν)
3

⎞

⎠ (15.25)

has to be calculated either from the pseudo inverse or the MMSEmatrix with respect
to H(ν). The iteration steps are as follows,

step ν = 1:

Let H(1) = (
h1 h2 h3

)
, r(1) = r

then H(1)

⎛

⎝
s1
s2
s3

⎞

⎠ + n = r(1)

calculate w(1)
1 fromH(1), using (15.25)

calculate y1 = w(1)
1 r(1) using (15.21)

decide ŝ1 = q(y1) using (15.22)
set s1 = ŝ1 and the new equation system is

(
h2 h3

) (
s2
s3

)
+ n = r(1) − h1ŝ1
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step ν = 2:

Let H(2) = (
h2 h3

)
, r(2) = r(1) − h1ŝ1

then H(2)

(
s2
s3

)
+ n = r(2)

calculate w(2)
1 fromH(2) using (15.25)

calculate y2 = w(2)
1 r(2) using (15.21)

decide ŝ2 = q(y2) using (15.22)
set s2 = ŝ2 and the new equation system is

h3s3 + n = r(2) − h2ŝ2

step ν = 3:

Let H(3) = h3 , r(3) = r(2) − h2ŝ2
then H(3)s3 + n = r(3)

calculate w(3)
1 fromH(3) using (15.25)

calculate y3 = w(3)
1 r(3) using (15.21)

decide ŝ3 = q(y3) using (15.22)
set s3 = ŝ3
end In our example with N = 3 the algorithm terminates.

The advantage of this algorithm is its low computational complexity and the feature
that it reduces inter-channel interference in every decision step. However, decision
errors, which may occur at low signal-to-noise ratios are critical, because they can
impact the next decision and thus may cause an error propagation for the following
steps. This effect can be mitigated by utilizing an appropriate order, justifying the
name OSIC, e.g., by taking the ri with the largest SNR first. We notice that the
algorithm is in principle based on the triangulation of a matrix into a lower or an
upper triangular form also called L-U decomposition [1], which is continuously
applied from one step to the next. This is in principle a linear operation. However,
the described OSIC algorithm gets nonlinear owing to the decision made in each
step. The algorithm has been practically used in several systems, such as the layered
space-time architecture.

15.3 Comparison of Different Receivers

The design criteria for linear and nonlinear receivers have quite some similari-
ties which are now going to be discussed for the zero forcing (ZF), the minimum
mean squared error (MMSE), the OSIC, and the maximum likelihood (ML) receiver.
Table15.2 shows a survey of the different design criteria.

The design of the zero forcing receiverwith andwithoutOSIC does not include the
noise at the receiver. Computation of the receiver matrix W for the MMSE receiver
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Table 15.2 Comparison of design criteria for various receivers
Receiver Target function Noise Result Output Method

Zero-forcing (ZF)
‖r − Hs‖2

= mins ε CMx1
Not included Matrix W y = Wr Linear

MMSE
E

[
‖Wr − s‖2

]

= mins ε CMx1
Included Matrix W y = Wr Linear

Maximum likelihood
‖r − Hs‖2
= mins ε A

Included Symbol ŝ ŝ ε A Non-linear

OSIC ZF As ZF Not included Symbol ŝ ŝ ε A Non-linear

OSIC MMSE As MMSE Included Symbol ŝ ŝ ε A Non-linear

requires the knowledge of the signal-to-noise ratio 1
α
, which is not needed for the

maximum likelihood detection. This method operates without any receiver matrix.
Moreover, on the first glance the target functions of the zero forcing algorithm using
the pseudo inverse matrix and the maximum likelihood receiver look the same. Both
receivers minimize the squared error ‖r − Hs‖2. However, the zero forcing receiver
provides a “soft” output signal y ε CMx1 with continuous amplitude and phase com-
pared to the output of the maximum likelihood receiver, which is a discrete vector
ŝ ε A. Hence, the maximum likelihood schememinimizes the same target function as
the zero forcing receiver, however, as the result of a discrete minimization problem
with the constraint ŝ ε A. This can be formulated as an integer least squares problem
for which several mathematical algorithms from the area of integer programming are
known, [2, 3]. Such methods have been used for lattice decoding and are summa-
rized as sphere decoding algorithm, because they search in a limited hyper sphere
of the complex vector space rather than performing an overall brute search [4–6]
and thus do not always provide the global optimum. In principle, the hyper sphere
is centered around the receive vector r and for an efficient search the sphere should
cover the lattice points given by the vectors (Hs ; s ε A) located in the vicinity of r.
As a result, the complexity of the maximum likelihood algorithm can be significantly
reduced and sphere decoding became an important alternative to the much simpler
but sub-optimal linear receivers.

On the other hand the complexity of the zero forcing and the minimum mean
squared error (MMSE) receiver can also be considerably reduced by introducing
successive interference cancellation (OSIC), because only parts of an inverse matrix
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Fig. 15.1 Typical symbol
error rate of various receivers
for a 2x2 MIMO channel
corrupted by white Gaussian
noise and Rayleigh fading
using 2-PSK, Source Online
platform “webdemo” [7]

have to be calculated rather than a full inverse or pseudo inverse matrix. However, it
should be kept in mind that in case of ill conditioned matrices the calculation of the
inverse matrices may turn out to be numerically not stable.

Figure15.1 shows a rough comparison of the symbol error rate for various
receivers as the result of a computer simulation using the platform “webdemo” [7].
According to our expectations, the maximum likelihood detector (ML) demonstrates
the best performance followed by the nonlinear receiver with OSIC. Compared to
the zero forcing receiver (ZF) the minimum mean squared error approach (MMSE)
takes the noise into account and thus outperforms the ZF receiver in general.
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Chapter 16
MIMO System Decomposition into
Eigenmodes

In this chapter we allude to a topic, which gives quite some inside into the functional-
ity of a MIMO system. As we have seen, the MIMO channel matrixH(k) introduces
inter-channel interference to the receive signal

r(k) = H(k)s(k) + n(k) (16.1)

We are now interested in the decoupling of the receive signal. To achieve this goal
H(k) has to be transformed into a matrix, in which only one diagonal is covered by
entries unequal to zero and all remaining elements have to be zero. In the following
we drop the discrete time k to simplify the notation.

16.1 MIMO System Transformation Using Singular Value
Decomposition

A first idea to transform the channel matrix H into diagonal form is the application
of the eigenvalue decomposition, as outlined in the Appendix B.

H = V�V−1 (16.2)

where � is a diagonal matrix containing the eigenvalues of H in its main diagonal.
V is composed of eigenvectors associated with the respective eigenvalues. However,
this approach has various drawbacks both from a mathematical and a technical point
of view. First of all H must be a square matrix and this fact would restrict the
approach to a system with the same number of antennas at transmitter and receiver,
M = N . Secondly, not all square matrices can be transformed to diagonal form
mathematically. An alternative is the Singular Value Decomposition (SVD), which
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can be applied to any matrix and which is outlined in detail in the Appendix B. In
this chapter we recall the principle steps.

The singular value decomposition of the channel matrix H ε CNxM is given by

H = UDVH (16.3)

with

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
λ1 0 0 · · · 0 0 · · · 0
0

√
λ2 0 · · · 0 0 · · · 0

. . .

0 0 0 · · · √
λP 0 · · · 0

0 0 0 · · · 0 0 · · · 0
... · · · . . .

0 0 0 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

�
1
2
P 0 · · · 0
0 0 · · · 0

. . .

0 0 · · · 0
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

ε RNxM (16.4)

where λ1 ≥ λ2 ≥ · · · λP > 0 and λP+1 = λP+2 = · · · = λN = 0 are the N eigenval-
ues of the matrix

QN = HHH ε CNxN (16.5)

Please note thatQN is a Hermiteian matrix, becauseQH
N = QN and consequently all

eigenvalues are positive or zero.

P = rank (QN ) (16.6)

is the rank of the matrix QN . In general the rank of a matrix Hε CNxM is defined as
the number of linearly independent rows or columns and thus

rank (H) ≤ min{M, N } (16.7)

holds. With (16.5) follows
P ≤ N (16.8)

√
λi ; i = 1, ..., P are called the singular values of the matrix H.
U ε CNxN and V ε CMxM are unitary matrices, thus

U−1 = UH ; V−1 = VH (16.9)

hold. Furthermore, U is the matrix of the normalized eigenvectors with respect to
the eigenvalues λ1, λ2, · · · , λN . Let

�N = diag (λ1, λ2, ..., λP , 0, ..., 0) ε RNxN (16.10)
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be a diagonalmatrix composed of the eigenvalues ofQN . Then the eigenvalue decom-
position of QN is

UHQNU = �N (16.11)

One method to find the matrix V in (16.3) is the eigenvalue decomposition of the
matrix

QM = HHH ε CMxM (16.12)

which is
VHQMV = �M (16.13)

with the diagonal matrix

�M = diag (λ1, λ2, ..., λP , 0, ..., 0) ε RMxM (16.14)

V is the matrix of eigenvectors with respect to the eigenvalues λ1, λ2, · · · , λM . Note
that the eigenvalues λ1, λ2, ..., λP are the same as for the matrix QN . Furthermore

rank (QM) = rank (QN ) = rank (H) = P (16.15)

holds and the matrices �M and �N contain the same diagonal matrix

�P = diag (λ1, λ2, ..., λP) ε RPxP (16.16)

of the P eigenvalues, which are unequal to zero. Please note in (16.4)

�
1
2
P = diag

(√
λ1,

√
λ2, ...,

√
λP

)
(16.17)

holds. We obtain from the input-output relation (16.1) with (16.3)

r = UDVH s + n (16.18)

and by multiplication of this equation from the left with UH follows

UHr = UHUDVH s + UHn (16.19)

With UHU =IN and the transformed signals

r̃ = UHr (16.20)

s̃ = VH s (16.21)

and the transformed noise
ñ = UHn (16.22)
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a new description of the system referred to as eigenmode system based on the eigen-
modes can be given as

r̃ = Ds̃ + ñ (16.23)

The new eigenmode channel is described by the matrixD, which has entries unequal
to zero only in a diagonal. All other entries are zero. Equation (16.23) clearly reveals
that the eigenmode branches and thus the signal and noise components are decoupled,
which is the basic idea of the approach. This can be even better seen when we write
down the i th equation of (16.23)

r̃i = √
λi s̃i + ñi ; i = 1, 2, ..., P (16.24)

and
r̃i = ñi ; i = P + 1, P + 2, ..., N (16.25)

16.2 Implementation of the MIMO Eigenmode
Decomposition

Both Eqs. (16.24) and (16.25) can be implemented with the block diagram depicted
in Fig. 16.1a.

Fig. 16.1 a Block diagram of MIMO system decomposed into parallel eigenmodes. b Block dia-
gram of the MIMO eigenmodes using vector and matrix notation
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Fig. 16.2 Block diagram of
the MIMO system with
eigenmodes s̃, ñ, and r̃ as
input and output,
respectively

In essence the branches with indices i = 1, 2, ..., P are called the eigenmodes
of the MIMO system, because they carry the information from the transmitter to
the receiver. The remaining branches i = P + 1, P + 2, ..., N contain only noise
rather than information and are therefore often not included in the definition of the
MIMO eigenmodes in the narrow sense. Hence, these branches do not contribute to
the MIMO channel capacity. Figure 16.1b represents the implementation of (16.18)
as a block diagram.

An alternative implementation of (16.23) is shown in Fig. 16.2, where the kernel
is given by the original MIMO system. From (16.20)–(16.22) follows

r = Ur̃ (16.26)

s = Vs̃ (16.27)

n = Uñ (16.28)



Chapter 17
Channel Capacity of Single-User
Transmission Systems

In this chapter, we allude to a topic which is important for the design of a communi-
cations system. We will answer the question how many bit/s can be transmitted per
symbol or equivalently per channel use. For a certain bandwidth of the channel the
interesting point is howmany bit/s per Hz bandwidth can be achieved as a maximum.
The channel capacity was introduced by Shannon in his pioneering work [1] in the
year 1948 for single input single output (SISO) channels. The extension to MIMO
channels was given by Telatar [2]. The capacity of various models for stochastic
MIMO channels have been intensively studied, e.g., in [3]. In the following we start
with the SISO channel capacity for a real-valued signal, extend it to complex signals,
and finally derive the channel capacity of a MIMO scheme.

17.1 Channel Capacity of SISO System

17.1.1 AWGN Channel with Real Signals and Noise

We shortly review the basics of the channel capacity C given by Shannon [1]. In
general C is formulated as the maximal mutual information I (X,Y ) between an
input X and an output Y in Fig. 17.1a.

C = max I (X,Y ) (17.1)

where X and Y are random variables or stochastic processes. Maximization is done
over all degrees of freedom of the system. The mutual information is a measure,
which quantifies the information we can get about X by the observation of Y . This is
actually the situation in information transmission, as we can just observe the signal
Y at the receiver and try to retrieve as much as possible information about X . The
© Springer Nature Switzerland AG 2021
J. Speidel, Introduction to Digital Communications,
Signals and Communication Technology,
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Fig. 17.1 a Noisy channel
with input X and output Y ,
b Additive White Gaussian
Noise (AWGN) channel

capacityC is measured in bit/channel use or bit/symbol. In Fig. 17.1bwe consider the
simple arrangement, which is the additive white Gaussian noise (AWGN) channel.
First we assume that the transmit signal s(t) = sR(t), the noise n(t) = nR(t), and
the receive signal r(t) = rR(t) are real-valued. Obviously r(t) = s(t) + n(t) holds.
For the AWGN channel the maximization operation in (17.1) can be done only over
the probability density function of the input signal s(t), because it is the only degree
of freedom here. Often the maximization is dropped, and just I (X,Y ) is called
channel capacity, which is not precise enough, and should be better denoted just as
a system capacity. However, we will still use the term “channel capacity” and the
actual meaning will be understood from the context. The signal and the noise shall
have the following mean power

E[s2R] = ES

2
(17.2)

E[n2R] = σ2
n

2
(17.3)

The transmit signal contains discrete symbols with a spacing T on the time axis.
Hence, the symbol rate is

vS = 1

T
(17.4)

Consequently, we can define alternatively the channel capacity C ′ in bit/s as

C ′ = vSC = 1

T
C (17.5)

We persuade ourselves that C ′ is measured in bit
s simply by checking the dimension

on the right-hand side of (17.5), symbol
s

bit
symbol = bit

s .
Now we introduce a strict bandwidth limitation with cut-off frequency fc to the

channel and assume that the receive signal sR(t) and also the noise nR(t) are strictly
band-limited with fc. We know from the first Nyquist condition that we can transmit
without intersymbol interference over an ideal lowpass channel with the frequency
response

G( f ) =
{
1 ; f ≤ fc
0 ; f > fc

(17.6)
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with cut-off frequency fc at the maximal symbol rate

1

T
= 2 fc (17.7)

Obviously the same condition results, if we limit the spectrum of the signal and the
noise to fc with the ideal lowpass filter (17.6) and use a sampling frequency 1

T , which
just satisfies the sampling theorem. Then we get from (17.5)

C ′ = 2 fcC (17.8)

If we would sample above the lower limit given by the sampling theorem, i.e. 1
T >

2 fc, the discrete-time signal would contain additional samples. However, they are
redundant, as they contain no additional information. Shannon has shown [1] that C
is given by the logarithm of the signal-to-noise ratio as

C = 1

2
log2

(
1 + E[s2R]

E[n2R]
)

(17.9)

from which we conclude with (17.2) and (17.3)

C = 1

2
log2

(
1 + ES

σ2
n

)
(17.10)

and (17.8) yields

C ′ = fc log2

(
1 + ES

σ2
n

)
(17.11)

Without proof themaximumofC occurs if the signal sR(t) has aGaussian probability
density function. We clearly see from (17.11) that C ′ increases linearly with the
cut-off frequency fC of the signal, however only logarithmic with respect to the
signal-to-noise ratio ES

σ2
n
.

17.1.2 AWGN Channel with Complex Signals and Noise

Now we are going to extend the previous considerations to the case of a complex
modulation scheme known as quadrature amplitude modulation QAM with a com-
plex carrier ej2πf0t and complex signals. We know from the modulation theory that
we can describe this scheme by means of complex baseband signals and noise after
demodulation. We define the signal and the noise by its real parts (index R), its
imaginary parts (index I), and with the following properties

Signal
s = sR + jsI (17.12)
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• sR and sI are statistically independent and both with zero mean

E [sR] = E [sI ] = 0 (17.13)

• Mean power

E
[
s2R

] = E
[
s2I

] = ES

2
(17.14)

Then follows

E
[|s|2] = E

[
ss∗] = E

[
s2R + s2I

] = E
[
s2R

] + E
[
s2I

] = ES (17.15)

A complex stochastic process with this property is called cyclic symmetrical.

Noise
n = nR + jnI (17.16)

• nR and nI are statistically independent AWGN and both with zero mean

E [nR] = E [nI ] = 0 (17.17)

• Mean power

E
[
n2R

] = E
[
n2I

] = σ2
n

2
(17.18)

Similar to (17.15) follows

E
[|n|2] = E

[
nn∗] = E

[
n2R + n2I

] = E
[
n2R

] + E
[
n2I

] = σ2
n (17.19)

We also see that n is a cyclic symmetrical stochastic process.

Channel Capacity

The real and imaginary part carry independent information. Therefore we get twice
the capacity as in (17.9)

C = log2

(
1 + E

[|s|2]
E

[|n|2]
)

= log2

(
1 + ES

σ2
n

)
(17.20)

and with (17.7) follows

C ′ = 1

T
C = 2 fc log2

(
1 + ES

σ2
n

)
(17.21)
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Please note that 2 fc is the bandwidth of the transmit signal spectrum aftermodulation
measured in the frequency range | f | ≥ 0 and fc is the cut-off frequency of the
equivalent baseband system.

17.2 Channel Capacity of MIMO Systems with Statistically
Independent Transmit Signals and Noise

17.2.1 Prerequisites

As depicted in Fig. 17.2 we are now considering a MIMO system with the input
signal vector s(k) εCMx1, a frequency flat fading channel with matrix H(k) εCNxM ,
an additive noise vector n(k) εCNx1, and the receive vector r(k) εCNx1. In the course
of our investigation we will introduce a prefilter with matrix A εCMxM . Then the
transmit signal changes from s(k) to s˜(k). However, if not otherwise stated, we first
drop the prefilter, thus in Fig. 17.2

A = IM (17.22)

holds and we will come back to the prefilter in Sects. 17.3 and 17.5. To simplify the
notation we drop k in the following.

The signal and the noise shall comply with the following prerequisites,

Original Transmit Signal

s = (
s1 s2 · · · sM

)T ; s j = sR, j + jsI, j ; j = 1, 2, . . . , M (17.23)

sR, j ; sI, j ; j = 1, 2, . . . , M statistically independent, zero mean (17.24)

E
[
s2R, j

] = E
[
s2I, j

] = ES

2
⇒ E

[∣∣s j ∣∣2] = ES ; j = 1, 2, . . . , M (17.25)

s j ; sm ; j,m = 1, 2, . . . , M ; j �= m ; statistically independent (17.26)

From (17.26) follows the spatial covariance matrix of s

Rss = E
[
ssH

] = ESIM (17.27)

Fig. 17.2 MIMO system
with statistically independent
input signal s, noise n,
prefilter A, and channel H
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Consequently, the total mean transmit power is

E
[‖s‖2] = tr (Rss) = MES (17.28)

Noise
n = (

n1 n2 · · · nN
)T ; ni = nR,i + jnI,i ; i = 1, 2, . . . , N (17.29)

nR,i ; nI,i ; i = 1, 2, . . . , N statistically independent, zero mean (17.30)

E
[
n2R,i

] = E
[
n2I,i

] = σ2
n

2
⇒ E

[|ni |2] = σ2
n ; i = 1, 2, . . . , N (17.31)

ni ; nm ; i,m = 1, 2, . . . , N ; i �= m ; statistically independent (17.32)

From (17.32) follows the spatial covariance matrix of n

Rnn = E
[
nnH

] = σ2
nIN (17.33)

and the total mean power of the noise at the receiver is

E
[‖n‖2] = tr (Rnn) = Nσ2

n (17.34)

Let us give some remarks on these prerequisites. Statistical independence of real and
imaginary part of the transmit signal is mostly in compliance with reality, because the
user allocates to the QAM symbols independent data streams to fully exploit channel
capacity. The statistical independence of the output signals of the different antenna
elements strongly depends on the spatial correlation condition at the transmitter of
a wireless link, such as a rich scattering environment. To allocate the same mean
signal power ES to every transmit antenna output signal, is a good starting point.
However, we will see in Sect. 17.5 that a power allocation prefilter with matrix A at
the transmitter can maximize the channel capacity. The assumption of the noise with
zero mean and equal mean noise power at each receive antenna element fits well with
reality. This also holds for the statistical independence of the real and the imaginary
part of the noise and the noise at different antennas.

17.2.2 Instantaneous MIMO Channel Capacity

We have seen in the previous section that the output signals of the transmit antennas
can be assumed as statistically independent. The same holds for the noise at the
receiver. If the receive signals of the N branches would also be statistically indepen-
dent, then the total capacity could be calculated easily as the sum of the individual
capacities of the branches. However, the transmit signals are passing through the
channel, undergo inter-channel interference, and thus the receive signals are spa-
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tially correlated. Nevertheless, the idea of independent receive signals is attractive
and we follow this approach by applying the decomposition of the MIMO scheme
into independent eigenmode branches.

Capacity of the MIMO Eigenmodes

We briefly review the main results of the eigenmode decomposition outlined in
Chap.16. The singular value decomposition (SVD) of the channel matrix H εCNxM

is given by
H = UDVH (17.35)

with

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
λ1 0 0 · · · 0 0 · · · 0
0

√
λ2 0 · · · 0 0 · · · 0

. . .

0 0 0 · · · √
λP 0 · · · 0

0 0 0 · · · 0 0 · · · 0
... · · · . . .

0 0 0 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

εRNxM (17.36)

λ1 ≥ λ2 ≥ · · · λP > 0, and λP+1 = λP+2 = · · · = λN = 0 are the N eigenvalues of
the Hermitian matrix QN = HHH εCNxN and P = rank (QN ) ≤ N is the rank of
QN .√

λi , i = 1, . . . , P are called the singular values of H. The unitary matrix
U εCNxN is the matrix of the normalized eigenvectors with respect to the eigen-
values λ1,λ2, · · · ,λN of QN . The matrix QN can be decomposed into the diagonal
matrix

�N = diag (λ1,λ2, . . . ,λP , 0, . . . , 0) εRNxN (17.37)

The unitary matrix V εCMxM in (17.35) can be found by the eigenvalue decomposi-
tion of the matrix QM = HHH εCMxM using the diagonal matrix

�M = diag (λ1,λ2, . . . ,λP , 0, . . . , 0) εRMxM (17.38)

with the eigenvalues λ1,λ2, · · · ,λM ofQM . Then V represents the matrix of eigen-
vectors with respect to the eigenvalues of QM . Note that rank (QM) = rank (QN ) =
rank (H) = P holds and that the matrices �M and �N contain the same diagonal
matrix

�P = diag (λ1,λ2, . . . ,λP) εRPxP (17.39)

of the P eigenvalues,which are unequal to zero. Thenweobtain from the input-output
relation of the MIMO system (no prefilter)

r = Hs + n (17.40)
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Fig. 17.3 MIMOsystemdecomposition into eigenmodeswith statistically independent input signal
s, noise n, prefilter A, and channel H (for n = 0)

the input-output relation of the eigenmode system

r̃ = Ds̃ + ñ (17.41)

with the eigenmode signals
r̃ = UHr (17.42)

s̃ = VH s (17.43)

and the eigenmode noise
ñ = UHn (17.44)

Equation (17.41) represents the linear system of equations

r̃i = √
λi s̃i + ñi ; i = 1, 2, . . . , P (17.45)

r̃i = ñi ; i = P + 1, P + 2, . . . , N (17.46)

where (17.45) determines the eigenmodes in the narrow sense. The remaining eigen-
modes in (17.46) do not carry information and thus provide no contribution to the
channel capacity. Figure17.3 illustrates the eigenmode decomposition of the MIMO
system as a block diagram.

Before we calculate the total capacity, let us first check the statistical properties
of s̃ and ñ. We obtain with (17.43) and by assuming that V is deterministic

Rs̃ s̃ = E
[
s̃s̃H

] = E
[
VH ssHV

] = VHRssV (17.47)

As we would like to have statistically independent eigenmode branches to follow
our goal to calculate the total channel capacity from the sum of the P individual
eigenmodes, we have to make sure that the components s̃ j of s̃ are independent and
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have the same mean power.

E
[∣∣s̃ j ∣∣2] = ES ; j = 1, 2, . . . , M (17.48)

Hence the covariance matrix must be

Rs̃ s̃ = ESIM (17.49)

This is fulfilled if Rss = ESIM , which is the prerequisite given by (17.27). Further-
more, we derive the mean value from (17.43) with (17.24)

E
[
s̃
] = VHE [s] = 0 (17.50)

which indicates that all components s̃ j have zeromean in compliancewith the require-
ment (17.24). In a similar way we get for the eigenmode of the noise assuming that
U is deterministic

Rññ = UHRnnU (17.51)

and with (17.33)
Rññ = σ2

nIN (17.52)

from which we see that the components ñi of ñ are independent, and have the same
mean power σ2

n . Also the mean value is zero, because we get from (17.44) with
(17.30)

E
[
ñ
] = UHE [n] = 0 (17.53)

Furthermore, if n is AWGN with zero mean, we can substantiate that the same holds
for ñ, because a linear operation with a matrixU in (17.44) keeps the noise Gaussian.

As a conclusion the individual eigenmodes are statistically independent and ful-
fill the same requirements as s and n given in Sect. 17.1.2. Consequently, they are
adequate for the calculation of the total channel capacity as the sum of the individual
and independent eigenmode branches. For branch i we can apply (17.20), which
requires the mean power of the signal and noise part of r̃i in (17.45), which are

E
[∣∣∣√λi s̃i

∣∣∣2] = λiE
[
|s̃i |2

]
= λi ES (17.54)

and
E

[
|ñi |2

]
= σ2

n (17.55)

respectively. Then we obtain the channel capacity of the eigenmode branch i from
(17.20)

Ci = log2

(
1 + λi ES

σ2
n

)
(17.56)
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and the total MIMO system capacity becomes

C =
P∑

i=1

Ci =
P∑

i=1

log2

(
1 + λi ES

σ2
n

)
(17.57)

measured in bit/symbol or in bit/channel use. Applying (17.21) yields

C ′ = 2 fc

P∑
i=1

log2

(
1 + λi ES

σ2
n

)
(17.58)

and is measured in bit/s.

Discussion of MIMO Channel Capacity (17.57)

• We see that only P eigenmode paths contribute to the channel capacity, although
there are M transmit and N receive antennas. As P = rank

(
HHH

)
= rank

(
HHH

) = rank (H), the number of linearly independent lines or columns
in the channel matrix determine the number of contributing eigenmodes rather
than the number of transmit and receive antennas.

• Let λ1 = λ2 = · · · = λP = λ and H with full rank. Then C = P log2
(
1 + λES

σ2
n

)
is proportional to P = min {M, N }. In case of M = N and a full rank channel

matrixwith P = M the capacity isC = M log2
(
1 + λES

σ2
n

)
and hence proportional

to the number of transmit (and receive) antennas.
• Letλmax be the largest eigenvalue ofHHH and assume that the remaining eigenval-
ues are very small compared to λmax . Then the eigenmode corresponding to λmax

dominates and the channel capacity approximately is C = log2
(
1 + λmax ES

σ2
n

)
.

• As H(k) is time varying, also all eigenvalues and thus the capacity C(k) depend
on time. This is the reason why C(k) is called instantaneous capacity.

17.2.3 Alternative Formulas for the MIMO Channel Capacity

Now we are going to derive some useful alternative formulas for the MIMO channel
capacity.

Channel Capacity as a Function of Eigenvalues

We start with (17.57) and use the basic relation of the logarithm, log(x1x2) =
log(x1) + log(x2) yielding

C = log2

[
P∏

i=1

(
1 + λi ES

σ2
n

)]
(17.59)
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Moreover, the argument of the logarithm can be interpreted as the determinant of the
diagonal matrix IP + ES

σ2
n
�P , where �P is given in (17.39). Accordingly we find

C = log2

[
det

(
IP + ES

σ2
n

�P

)]
(17.60)

Now we introduce �M or �N , which have additional zeros in their main diagonal
compared to �P . However, the argument of the logarithm in (17.59) will just get
some additional factors 1, which do not change the result. Hence (17.60) is identical
to

C = log2

[
det

(
IM + ES

σ2
n

�M

)]
(17.61)

and

C = log2

[
det

(
IN + ES

σ2
n

�N

)]
(17.62)

Channel Capacity as a Function of the Channel Matrix

We are now looking for a relation between the channel capacity and the channel
matrixH. Such a formula would be useful, because no singular values of the channel
matrix would have to be calculated. We first give the result and then the proof:

C = log2

[
det

(
IN + ES

σ2
n

HHH

)]
(17.63)

and

C = log2

[
det

(
IM + ES

σ2
n

HHH
)]

(17.64)

Proof of (17.63)

To this end we consider (17.61). We know that the eigenvalue decomposition of
QM = HHH is given by VHHHHV =�M . Then we obtain from (17.61)

C = log2
[
det

(
IM + ES

σ2
n
VHHHHV

)]
. Next we use the cyclic permutation rule for

determinants from Appendix B.
Given A εCMxN and B εCNxM , then det (IM + AB) = det (IN + BA) is true.

Thus, we can rewrite the capacity as C = log2
[
det

(
IN + ES

σ2
n
HVVHHH

)]
and

use the fact that V is a unitary matrix to get the final result

C = log2
[
det

(
IN + ES

σ2
n
HHH

)]
. In a similar way (17.64) can be proven.
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17.3 MIMO Channel Capacity for Correlated Transmit
Signals

We are now going to abandon the requirement that the input signal of the channel
is spatially uncorrelated. According to Fig. 17.2 we assume an original signal s as
in Sect. 17.2 with Rss = ESIM , however we introduce the prefilter matrix A εCMxM

that generates a channel input signal s˜ εCMx1 with covariance matrix

Rs˜s˜
= E

[
s˜s˜

H

]
(17.65)

Please note thatRs˜s˜
is a Hermitian matrix, else arbitrary. The input signal s complies

with the prerequisites for the calculation of the total channel capacity using singular
value decomposition, as outlined in the Sect. 17.2. The output signal is given by

r = HAs + n (17.66)

With s˜ = As the covariance matrix Rs˜s˜
is given by

Rs˜s˜
= ARssAH = ESAAH (17.67)

where the last step holds for Rss = ESIM . If we partition

Rs˜s˜
= R

1
2
s˜s˜

(
R

1
2
s˜s˜

)H

(17.68)

a comparison with (17.67) yields the precoding matrix

A = 1√
ES

R
1
2
s˜s˜

(17.69)

R
1
2
s˜s˜

is the square root matrix of Rs˜s˜
.

As we recognize from (17.66), the system capacity with prefilter can be easily
determined from (17.63) and (17.64), if H is replaced there by HA yielding

C = log2

[
det

(
IN + ES

σ2
n

HAAHHH

)]
(17.70)

and
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C = log2

[
det

(
IM + ES

σ2
n

AAHHHH
)]

(17.71)

where we have used the cyclic permutation rule for determinants in (17.71). Hence,
with the prefilter matrix A the covariance matrix Rs˜s˜

of the channel input signal s˜
and the system capacity can be adjusted. Then we obtain with (17.67) from (17.70)
and (17.71) two equivalent forms for the channel capacity

C = log2

[
det

(
IN + 1

σ2
n

HRs˜s˜
HH

)]
(17.72)

C = log2

[
det

(
IM + 1

σ2
n

Rs˜s˜
HHH

)]
(17.73)

17.4 Channel Capacity for Correlated MIMO Channel

Weare going to determine the channel capacity of aMIMOchannel with transmit and
receive correlation. To this end we can use the Kronecker model from Sect. 13.4.4

with the channel matrix given by (13.41) resulting inH =
(
R

1
2

r x

)H
HwR

1
2

t x . Then we

obtain from (17.63)

C = log2

[
det

(
IN + ES

σ2
n

HwR
1
2

t x

(
R

1
2

t x

)H

HH
wR

1
2

r x

(
R

1
2

r x

)H
)]

(17.74)

where we have used the cyclic permutation rule. In general, correlation of the delay
spread functions of the channel results in a loss of the channel capacity, as detailed
investigations with short term and long term statistical parameters have shown, [3].
The reader can convince oneself by experimenting some scenarios using the platform
“web demo” provided by [4]. An example is depicted in Fig. 17.4 for aMIMO system
with two transmit and two receive antennas.

The MIMO channel is corrupted by Gaussian noise. Transmit and receive cor-

relation is present with the correlation matrices Rt x = Rr x =
(
1 ρ
ρ 1

)
and ρ = 0.8.

The degradation of the channel capacity under channel correlation (lower curve) is
clearly visible.
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Fig. 17.4 Capacity of a MIMO system with M = 2 transmit and N = 2 receive antennas under
Gaussian noise, transmit and receive correlation ρ = 0.8. Upper curve without (w/o) and lower
curve with (w/) transmit and receive correlation, equal transmit power (without water filling WF).
Source Online platform “webdemo” [4]

17.5 Maximizing MIMO System Capacity Using the Water
Filling Algorithm

17.5.1 Prefilter for Transmit Power Allocation

In the previous sections we have not maximized the MIMO system capacity using
the degrees of freedom. Among others we have assumed that the mean output power
ES is the same for all M transmit antenna elements. Now we are going to distribute
the total mean transmit power MES individually over the antenna elements with the
goal to maximize the capacity of the MIMO system. In Fig. 17.2 we have already
taken precaution by introducing a filter with the matrix A, which we will call power
allocation filter. The block diagram in Fig. 17.3 shows also the decomposition of the
MIMO channel matrixH into eigenmodes according to (17.35). We assume that the
input signal s is still spatially uncorrelated with mean power MES and covariance
matrix Rss = ESIM . The matrix A together with VH shall generate an input signal s̃
of the eigenmode channel D with a covariance matrix

Rs̃ s̃ = ES diag (a1, a2, . . . , aM) (17.75)

where
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Fig. 17.5 i th branch of the
eigenmode decomposition of
the MIMO system with
individual transmit power
allocation coefficient ai

M∑
j=1

a j = M , and a j ≥ 0 ; j = 1, 2, . . . , M (17.76)

So, we are going to weight the input power of each eigenmode with a dedicated pos-
itive coefficient a j , j = 1, 2, . . . , M . We substantiate from (17.75) that the vector
s̃ remains spatially uncorrelated, as required for the calculation of the total capacity
as the sum of the individual and independent capacities of the eigenmodes. It will be
shown that a precoding matrix A, which is generating the covariance matrix (17.75)
is given by

A = 1√
ES

VR
1
2
s̃ s̃ = Vdiag

(√
a1,

√
a2, . . . ,

√
aM

)
(17.77)

From Fig. 17.3 we see that
s̃ = VHAs (17.78)

and with (17.77) follows

s̃ = diag
(√

a1,
√
a2, . . . ,

√
aM

)
s (17.79)

Please note that the power allocationmatrixA shows up as a full rather than a diagonal
matrix due to V. We can write (17.79) in component form as

s̃i = √
ai si ; i = 1, 2, . . . , M (17.80)

and from the input-output relation (17.45) of the eigenmode channelDwe obtain for
the i th branch of the eigenmode decomposition

r̃i = √
λi

√
ai si + ñi ; i = 1, 2, . . . , P (17.81)

This is portrait in Fig. 17.5. The resulting total capacity is given by

C = log2

[
det

(
IM + ES

σ2
n

diag (a1, a2, . . . , aM)�M

)]
(17.82)

The proof is given at the end of this section.
In the next section we are going to calculate the optimal coefficients ai .
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Proof of (17.77)
With (17.78) and (17.27) we obtain Rs̃ s̃ = E

[
s̃s̃H

] = VHAAHVES . From the

decomposition Rs̃ s̃ = R
1
2
s̃ s̃

(
R

1
2
s̃ s̃

)H
= √

ESVHA
(
VHA

)H √
ES we conclude

R
1
2
s̃ s̃ = √

ESVHA yielding with (17.75) the result

A = 1√
ES
VR

1
2
s̃ s̃ = Vdiag

(√
a1,

√
a2, . . . ,

√
aM

)
and the proof is finished.

Proof of (17.82)

We apply (17.71) and insert A from (17.77) yielding with
AAH = Vdiag(a1, a2 . . . , aM)VH and with the cyclic permutation rule for determi-

nants C = log2
[
det

(
IM + ES

σ2
n
diag(a1, a2 . . . , aM)VHHHHV

)]
. As

VHHHHV = �M the proof of (17.82) ends.

17.5.2 Computation of the Optimal Power Allocation
Coefficients ai

Maximization with Constraints

From Fig. 17.5 and the prerequisites we see that (17.57) can be used for determining
the total capacity, if we replace λi by λi ai . Then the capacity with transmit power
loading prefilter A in (17.77) is obtained as

C =
P∑

i=1

log2

(
1 + aiλi ES

σ2
n

)
(17.83)

which has to be maximized with respect to a1, . . . , aP and under the two constraints

P∑
j=1

a j = M ⇐⇒ g (a1,a2, . . . , aP) =
P∑
j=1

a j − M = 0 (17.84)

and
a j ≥ 0 ; j = 1, 2, . . . , P (17.85)

Please note that we have restricted (17.76) to P ≤ M , because there are only P
eigenmodes and hence only P free coefficients ai are left for the maximization. The
remaining coefficients ai ; i = P + 1, . . . , M are set equal to zero.

General Solution with Lagrange Method

TheLagrangemethod defines a new target function composed as a linear combination
of the previous function C and the constraint g(a1,a2, . . . , aP)

J = C + L g = max{a1,...,aP ,L} (17.86)
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L is the Lagrangemultiplier and is considered as a new free parameter. The constraint
(17.85), which is an inequality, has to be treated separately in a second step. We rec-
ognize J as a concave function of the free parameters a1, . . . , aP , L . Consequently,
setting the partial derivatives of J with respect to the parameters equal to zero is a
necessary and sufficient condition for the maximum

∂ J

∂am
= ∂C

∂am
+ L

∂g

∂am
= 0 ; m = 1, 2, . . . , P (17.87)

We express log2(x) = η ln(x) with η = 1
ln(2) and knowing that ∂ ln(bx)

∂x = b 1
x we

obtain from (17.87)

η
1

1 + amλm ES
σ2
n

λmES

σ2
n

+ L = 0 (17.88)

from which follows

am = − η

L
− σ2

n

λmES
; m = 1, 2, . . . , P (17.89)

Next we calculate
∂ J

∂L
= g = 0 (17.90)

which yields the constraint (17.84)

P∑
j=1

a j = M (17.91)

as is typically for the Lagrange method. Because L is a free parameter, we can
redefine the Lagrange multiplier as K = − η

L and consider K as a new parameter.
Then (17.89) yields

am = K − σ2
n

λmES
; m = 1, 2, . . . , P (17.92)

Equation (17.91) and (17.92) are P + 1 equations for the P + 1 unknowns a1, . . . ,
aP , and K . However, the second constraint (17.85) still has to be met. Therefore we
conclude from (17.92) the optimal solution in a first approach

aoptm =
(
Kopt − σ2

n

λmES

)
+

; m = 1, 2, . . . , P (17.93)

with the function
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( x )+ =
{
x ; x > 0

0 ; x ≤ 0
(17.94)

and from (17.91) follows
P∑
j=1

aoptj = M (17.95)

Let

aoptm

{
> 0 ; m = 1, 2, . . . , P0
= 0 ; m = P0 + 1, . . . , P

(17.96)

Then we conclude from (17.93)

aoptm =
{
Kopt − σ2

n
λm ES

; m = 1, 2, . . . , P0
= 0 ; m = P0 + 1, . . . , P

(17.97)

Inserting (17.97) into (17.95) yields

P0∑
j=1

(
Kopt − σ2

n

λ j ES

)
= M (17.98)

from which we obtain

Kopt = M

P0
+ 1

P0

P0∑
j=1

σ2
n

λ j ES
(17.99)

In summary, (17.96), (17.97), and (17.99) represent the final conditions for the solu-
tion.

17.5.3 Graphical Interpretation of the Water Filling Solution

λ1 ≥ λ2 ≥ · · · ≥ λP > 0 shall be given. As depicted in Fig. 17.6, the terms
σ2
n

λm ES
; m = 1, 2, . . . , P are modeled to built up the ground of a vessel. If we are

pouring water with a volume of
∑P

j=1 a j into that vessel, the level will rise up to
Kopt given in (17.99).

However, for the given shape of the ground, the total “water”M distributes in such
a way that

∑P0
j=1 a

opt
j = M holds, because no more water is available. Consequently,

aoptm = 0 for m = P0 + 1, . . . , P . From (17.97) we also conclude

aoptm + σ2
n

λmES
= Kopt ; m = 1, 2, . . . , P0 (17.100)
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Fig. 17.6 Graphical interpretation of thewater filling algorithm tomaximize capacity. Note b = σ2
n

ES

and Kopt is determining the final water level. From Fig. 17.6 we see for m > P0 the

ground of the vessel σ2
n

λm ES
exceeds the final water level, because no more water is

available and the remaining am are zero. In general, the solution is iterative. With the
optimal coefficients we obtain the maximal capacity from (17.83) as

C opt =
P0∑
i=1

log2

(
1 + aopti λi ES

σ2
n

)
(17.101)

For a small b in Fig. 17.6 i.e. a high signal-to-noise ratio ES
σ2
n
all aoptj tend to have

the same size and thus the water filling algorithm can not change the capacity sig-
nificantly. A similar result is obtained, if all singular values

√
λi are approximately

equal. This is reflected in Fig. 17.7 as the result of a computer simulation using the
“webdemo” [4]. The lower two curves represent a 2x2 MIMO channel with strong

transmit and receive correlation (Rt x = Rr x =
(
1 ρ
ρ 1

)
, ρ = 0.95). Apparently, the

capacity gains vanish for increasing SNR ES
σ2
n
.

17.5.4 Iterative Solution and Example

In the following the principle algorithm is given as a pseudo code.

Begin Set aP+1 < 0
For m = P, P − 1, ..., 1 do

if am+1 > 0 set Km = Kopt else Km = 1
m

(
M + σ2

n
ES

∑m
j=1

1
λ j

)
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am = Km − σ2
n

λm ES

if am > 0 set aoptm = am and Km = Kopt

if am ≤ 0 set aoptm = 0
End

End

Fig. 17.7 Capacity of a MIMO system with M = 2 transmit and N = 2 receive antennas under
Gaussian noise, transmit and receive correlation ρ = 0.95. Upper two curves without (w/o) and
lower two curves with (w/) transmit and receive correlation, with and without water filling (WF).
Source Online platform “webdemo” [4]

Example 1
Given a MIMO system with M = 8 transmit antennas and σ2

n
ES

= 19. The channel
matrixH has the rank P = 4.A singular value decomposition has provided the eigen-
valuesλ1 = 19, λ2 = 19

2 , λ3 = 19
10 , λ4 = 1, λ5 = λ6 = λ7 = λ8 = 0. Find theopti-

mal power allocation coefficients and the maximal capacity.

Solution: The iteration steps according to the pseudo code are as follows.

m = 4 K4 = 10
a4 = −9, aopt4 = 0

m = 3 K3 = 7
a3 = −3, aopt3 = 0

m = 2 K2 = 11
2

a2 = 7
2 aopt2 = 7

2 K2 = Kopt = 11
2

m = 1 a1 = 9
2 aopt1 = 9

2

The remaining coefficients are a5 = a6 = a7 = a8 = 0. We also see that P0 = 2.
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Now we are going to calculate the resulting capacity in bit/channel use taking
(17.83) with the result

C opt ≈ log2

(
11

2

)
+ log2

(
11

4

)
≈ 2.46 + 1.46 = 3.92

Without optimal power loading the capacity (bit/channel use) is

C = log2 (2) + log2

(
3

2

)
+ log2

(
11

10

)
+ log2

(
20

19

)
≈ 1.79

according to (17.57). In this example the channel capacity has doubled by employing
the optimal transmit power loading.

Example 2

Given the results from Example 1, ES = 1 and the transform matrix V. Find the
matrix A of the power allocation filter and the covariance matrix Rs̃ s̃ of the input
signal s̃ of the eigenmode channel D. Calculate the covariance matrix Rs˜s˜

of the

input signal s˜ of the channel H.

Solution: A can be calculated with (17.77) as the 8 × 8 matrix

A = V diag
(√

9
2 ,

√
7
2 , 0, 0, 0, 0, 0, 0

)
and Rs̃ s̃ follows from (17.75) as

Rs̃ s̃ = diag
(
9
2 ,

7
2 , 0, 0, 0, 0, 0, 0

)
.

The covariance matrix Rs˜s˜
is given by (17.67) as Rs˜s˜

= ESAAH from which

follows Rs˜s˜
= Vdiag

(
9
2 ,

7
2 , 0, 0, 0, 0, 0, 0

)
VH , which is in general not a diagonal

matrix. Thus, the output signal s˜ of the prefilter is spatially correlated, as expected.
As a conclusion, the power allocation filter A is condensing the available total

mean power 8ES covered by the output signal vector s of the eight transmit antenna
elements to just two eigenmodes. All other eigenmodes do not carry power. However,
this does not mean that we can switch off any transmit antenna element.

Example 3

Given the matrices V and the diagonal matrix F. Show with the following example
that G = VFVH is a diagonal matrix only if F = I2 is the identity matrix.

V =
(
1 j
j 1

)
, F =

(
1 0
0 f

)

Solution:

We obtainG = VFVH =
(

1 + f j( f − 1)
−j( f − 1) 1 + f

)
and recognize thatG is a diagonal

matrix only for f = 1 resulting in F = I2.
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17.6 Capacity of a Stochastic MIMO Channel

We have already pointed out that the capacity C(k) considered so far is the instan-
taneous capacity, as it depends on time. Capacity is an important parameter for the
quality of service and therefore the instantaneous capacity is of limited value for
guaranteeing a satisfying operation of a system over a long time period. To this end
two new measures have been introduced for characterizing quality of service of a
MIMO system namely the “ergodic capacity” and the “outage capacity”, which will
be addressed briefly in the following.

17.6.1 Ergodic Channel Capacity

We consider H(k) as a stochastic process and define the ergodic capacity as the
expectation of C(k)

Cerg = E [C] =
∞∫
0

CpC(C)dC (17.102)

where pC(C) is the probability density function of the capacity C . Please note that
C ≥ 0 and hence the integration starts at zero. pC(C) can be found from adequate
channel models or measurements of the MIMO system, which is not considered here
in more detail.

17.6.2 Outage Capacity

Knowing the probability density function pC(C) of the capacity C we can define the
outage capacity Cout to be considered as the capacity threshold where the system
starts to leave the guaranteed quality of service. This event will occur with the outage
probability

Pout = Pr [0 ≤ C ≤ Cout ] =
Cout∫
0

pC(C)dC (17.103)

As an example, if the system is required to operate at full quality with a probability
of ≥99.99%, the required outage probability has to be Pout ≤ 0.01%.
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Chapter 18
MIMO Systems with Precoding

18.1 Principle of MIMO Precoding

In Chap.14 we have investigated the zero-forcing and the minimum mean squared
error (MMSE) receiver, which are able to remove or at least minimize the inter-
channel interference to the expense of a potential increase of the mean noise power at
the receiver output. To maximize the channel capacity we have already investigated
a prefilter in Chap.17, which acts as a power allocation filter at the transmitter.
Now we are going to consider prefilters also denoted as precoders to reduce inter-
channel interference and thus move the receive filter in principle to the transmitter.
As for single input single output wire-line and wireless systems, one motivation is
to relocate the hardware complexity of the receiver to some extend to the transmitter
[1–3]. This strategy is advantageous in the downlink scenario from the base station
to the user, where the receivers are the individual user terminals, which then could
be less complex. In most cases the resulting hardware increase of the base station
transmitter can be afforded, because its cost is shared among the large number of the
users. However, there is a significant burden, because precoding requires knowledge
about the channel parameters at the transmitter side to be able to adjust the precoder.
Consequently, the channel estimator, which is located at the receiver, has to sent
appropriate channel parameters, e.g., the full channel matrix H to the transmitter
via a feedback channel. This arrangement is thus denoted as closed loop scheme.
Precoding is also used in the downlink of multi-user scenarios and described in
Chap.20. Precoders, which do not require channel knowledge, are called space-time
encoders, are open loop schemes, and discussed in Chap.19.

In Fig. 18.1 the principle block diagram of aMIMO downlink transmission with a
prefilter matrixA(k) is shown. c(k) is the input signal vector containing the symbols
from a QAM mapper.

The output of the precoder emits the signal vector s(k) ε CMx1 using a MIMO
antenna with M elements. The fading channel is modeled by the channel matrix
H(k) ε CNxM ,which owns a frequency-flat spectrum. r(k) ε CNx1 is the receive vector
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Fig. 18.1 MIMO
transmission with precoding
matrix A at the transmitter

and n(k) ε CNx1 the additive noise with zero mean. While the dimensions of s, H,
n, and r are the same as in the previous chapters, the selection of the dimension of
A and c deserves consideration. If we would define A as a MxM matrix such as
in Chap.17 on MIMO capacity, it would be prohibitive to apply the pseudo inverse
H+ or H++ (both MxN ) of H, which could play the role as a prefilter in our further
investigations. Therefore we define A ε CMxN and as a consequence c ε CNx1.

In the next section we will discuss a scheme, which just requires the precoding
matrix, and the receive matrixW in Fig. 18.1 is not present. Alternatively, we investi-
gate in Sect. 18.3 also some precoding schemes, which require an additional receive
matrix. In the following we first consider the general block diagram in Fig. 18.1 and
specialize later. We drop the discrete time variable k to simplify the notation and
obtain for the transmit signal

s = Ac (18.1)

and for the receive vector r ε CNx1

r = HAc + n (18.2)

We recognize that the signal part of the receive signal is

rs = HAc (18.3)

where HA characterizes the inter-channel interference. Please recall that the inter-
channel interference is completely removed, if HA is a diagonal matrix, HA = IN ,
or a scalar. The noise part in the receive signal is just

rn = n (18.4)

and obviously untouched by the precoder. For the mean power of rs we obtain

E
[‖rs‖2

] = tr
(
Rcc (HA)H HA

)
(18.5)

with the covariance matrix of c

Rcc = E
[
ccH

]
ε CNxN (18.6)

Equation (18.5) is easily shown with (18.3) as follows.
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E
[‖rs‖2

] = E
[
tr

(
rsrHs

)] = tr
(
HAE

[
ccH

]
(HA)H

) = tr
(
HARcc(HA)H

) =
tr

(
Rcc (HA)H HA

)
, where we have used for the last term the cyclic permutation rule

for the trace of a matrix product, as outlined in the Appendix B.
With the mean noise power

E
[‖rn‖2

] = E
[‖n‖2] (18.7)

we finally obtain the signal-to-noise ratio at the receiver

γr = E
[‖rs‖2

]

E
[‖rn‖2

] = tr
(
Rcc (HA)H HA

)

E
[‖n‖2] (18.8)

For a system with receive filter W we get from Fig. 18.1 and with (18.2)

y = Wr = WHAc + Wn (18.9)

with the signal part
ys = WHAc (18.10)

and the noise part
yn = Wn (18.11)

The mean power of ys is easily obtained from (18.5) by just replacing H by WH

E
[‖ys‖2

] = tr
(
Rcc (WHA)H WHA

)
(18.12)

The mean noise power is

E
[‖yn‖2

] = tr
(
RnnWHW

)
(18.13)

where we have used again the cyclic permutation rule. Consequently, for the signal-
to-noise ratio at the receiver output follows

γy = E
[‖ys‖2

]

E
[‖yn‖2

] = tr
(
Rcc (WHA)H WHA

)

tr
(
RnnWHW

) (18.14)

The mean power of the transmit signal s is also of interest and we obtain the result
just by replacing in (18.12) WHA by A yielding

E
[‖s‖2] = tr

(
RccAHA

)
(18.15)

We observe thatE
[‖s‖2] could be enhanced by the precoderA compared to themean

power
E

[‖c‖2] = tr (Rcc) (18.16)
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of c. This may cause an overload of the channel input and even a violation of power
limits for wireless transmitters. In this case the mean power of c must be reduced,
which impacts the signal-to-noise ratio at the receiver accordingly. Another remedy
to overcome this drawback is the use of the Tomlinson-Harashima scheme, which can
limit the amplitudes of the components of the transmit signal vector s = (

s1 · · · sM
)T

by applying modulo operations on the input symbols, [4–6].

18.2 Zero-Forcing and MMSE Precoding

A single prefilter matrixA shall be designed to reduce the inter-channel interference
without the need for a receive filter. Thus, the matrix W in Fig. 18.1 is dropped and
we focus on the receive signal r.

18.2.1 Zero-Forcing Precoder

In the following we check whether the pseudo inverse of the channel matrixH from
Chap.14 depending on the number of transmit and receive antennas, M and N , can
remove inter-channel interference.

A =
{

H+ = (
HHH

)−1
HH ε CMxN ; M ≤ N

H++ = HH
(
HHH

)−1
ε CMxN ; M ≥ N

(18.17)

The prerequisites for this investigation are the full rank of HHH and HHH

i.e. rank
(
HHH

) = M , if M ≤ N and rank
(
HHH

) = N if M ≥ N , respectively.
Otherwise the inversematrices in (18.17) do not exist. Please note that rank

(
HHH

) =
rank (H) and rank

(
HHH

) = rank (H) hold in each of the two cases.
Then the inter-channel interference in the receive signal (18.2) is given by

HA =
{
HH+ = H

(
HHH

)−1
HH �= IN ; M ≤ N

HH++ = IN ; M ≥ N
(18.18)

and we substantiate that only the pseudo inverse H++ as a prefilter owns the ability
to completely remove inter-channel interference in general and we get from (18.2)
the receive signal

r = c + n ; M ≥ N (18.19)

which is composed of the transmit vector c just corrupted by the noise n. Therefore
the prefilter withH++ is the most interesting one. However, it is restricted to systems
with M ≥ N .
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Apparently the precoder matrix A = H++ is the same as for the zero-forcing
receiver investigated in Chap. 14. However, the receive signal (18.19) is significantly
different, because the noise n is untouched by the precoder. Remember, the use of
a zero-forcing receive matrix W without a precoder results in y = s + Wn with a
potential enhancement of the noise by the receive filter.

The signal-to-noise ratio at the receiver of the precoding schemewithH++ directly
follows from (18.19)

γr = E
[‖c‖2]

E
[‖n‖2] ; M ≥ N (18.20)

which can also be deduced from (18.8) with (18.16) and (18.18).
Another interesting observation, albeit critical, is that the mean power E

[‖s‖2]
of the transmit signal s could be increased compared to the mean power of c. This is
discussed shortly in the following. To this end we refer to (18.15) and first determine
AHA with (18.17). For the sake of completeness we do not drop the case with the
prefilter H+ in the following. It is straightforward to show that

AHA =
{(

H+)H
H+ = H

(
HHH

)−1 (
HHH

)−1
HH ; M ≤ N

(
H++)H

H++ = (
HHH

)−1 ; M ≥ N
(18.21)

holds yielding from (18.15)

E
[‖s‖2] =

⎧
⎨

⎩

tr
(
RccH

(
HHH

)−1 (
HHH

)−1
HH

)
; M ≤ N

tr
(
Rcc

(
HHH

)−1
)

; M ≥ N
(18.22)

For illustration we consider the following example.

Example 1
We are going to discuss themean power of the transmit signal s. Inmany applications
c is uncorrelated with covariance matrix

Rcc = ESIN (18.23)

and consequently its mean signal power is obtained from (18.16) as

E
[‖c‖2] = NES (18.24)

From (18.22) then follows

E
[‖s‖2] =

⎧
⎨

⎩

EStr
((
HHH

)−1
)

; M ≤ N

EStr
((
HHH

)−1
)

; M ≥ N
(18.25)



274 18 MIMO Systems with Precoding

where the cyclic permutation rule was applied for the case M ≤ N . We assume that
thematricesHHH andHHH have the full rank, say P= min {M, N }. As thematrices
are Hermiteian, their eigenvalues λ1, λ2, . . . , λP are positive and unequal to zero.
Then from (18.25) follows with (18.24)1

E
[‖s‖2] = E

[‖c‖2]
N

P∑

i=1

λ−1
i (18.26)

We clearly recognize that the mean power of s can be significantly larger than that
of c, if some eigenvalues λi exhibit small values. This is equivalent to say that
the determinants of the two matrices HHH and HHH are small. Matrices with this
property are called ill conditioned.Themean signal power of swill be enhanced in this
case and may even cause an overload of the channel input. To make matters worse, if
the matrices do not have full rank, P < min {M, N }, then some eigenvalues are zero
and the mean power of the transmit signal s even approaches infinity, theoretically.
Finally, please note that not only the mean power but also the magnitude of the signal
s at the output of the zero-forcing precoder can be enhanced in case of ill conditioned
matrices.

18.2.2 MMSE Precoder

In this section we are looking for a precoder which minimizes the difference �

between the original transmit signal c and the receive signal r in Fig. 18.1

� = c−r (18.27)

in the mean squared error (MMSE) sense similar to an MMSE receiver discussed in
Chap.14. Thus, the minimization problem can be formulated as

J = E
[‖�‖2] = tr

(
E

[
��H

]) = min
A

(18.28)

Below we prove that the squared error is

J = tr
{
Rcc + (

RH
cn − Rcc

)
(HA)H + HA (Rcn − Rcc)

}

+tr
{
HARcc (HA)H − Rcn − RH

cn + Rnn
} (18.29)

with the covariance matrices Rcc in (18.6) of the signal and Rnn = E
[
nnH

]
of the

noise as well as the cross-correlation matricesRcn = E
[
cnH

]
andRnc = E

[
ncH

] =
RH

cn . The precoder matrix minimizing J turns out to be

1Note from Appendix B: For an MxM matrix Q with eigenvalues λ1, λ2, . . . , λM holds
tr (Q) = ∑M

i=1 λi , tr
(
Q−1

) = ∑M
i=1 λ−1

i (if non zero eigenvalues ), and det(Q) = λ1λ2 · · · λM .
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A = (
HHH

)−1
HH

(
Rcc − RH

cn

)
R−1

cc ; M ≤ N (18.30)

Now we assume that c and n are uncorrelated yielding Rcn = E [c]E
[
nH

] = 0,
where the last term follows from the zero mean of the noise. Then the MMSE
precoding matrix finally is

A = (
HHH

)−1
HH = H+ ; M ≤ N (18.31)

and identical with the zero-forcing precoding matrix for M ≤ N . Please note that
the condition M ≤ N in (18.30) and (18.31) guarantees that

(
HHH

)−1
exists, if H

has full rank M .
However, from (18.18) we see that the inter-channel interference cannot be

removed by an MMSE precoding matrix A = H+. Below we determine the MMSE
from (18.29) under the realistic assumption that c and n are uncorrelated, Rcn =
E [c]E

[
nH

] = 0, and Rcc = ESIN as

J (H+) = Jmin = E
[‖n‖2] (18.32)

Approach (18.28) has provided a precoder matrix only for the case M ≤ N . One
may speculate that

A = H++ = HH
(
HHH

)−1 ; M ≥ N (18.33)

could be the solution for M ≥ N . This is really true, because we show that the same
MMSE as in (18.32) is achieved. This result is not surprising, as the prefilter H++
is completely removing the inter-channel interference according to (18.18), second
line, resulting in the receive signal r = c + n yielding � = c−r = −n and thus

J (H++) = E
[‖n‖2] = Jmin (18.34)

In summary, we conclude that the precoding matrices for the zero-forcing and the
MMSE precoder are identical. Consequently, the same holds for the signal-to-noise
ratios at the receiver given by (18.20). Both MMSE precoders provide the same
MMSE under the condition of an uncorrelated transmit signal c, uncorrelated noise
n, and Rcn = 0 . Only the precoder matrix H++ can completely remove the inter-
channel interference.

Example 2
Given a transmit signal cwith covariancematrixRcc = ESIN . Show that bothMMSE

precoders, H+ and H++, deliver the same signal-to-noise ratio γr = E[‖c‖2]
E[‖n‖2] at the

receiver.

Solution:
We just have to show that both precoders provide the same mean power of the signal
rs at the receiver, because the mean noise power always is E

[‖n‖2]. From (18.5)
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follows E
[‖rs‖2

] = EStr
(
(HA)H HA

)
. For A = H+ we get with (18.18) and the

cyclic permutation rule E
[‖rs‖2

] = NES = E
[‖c‖2]. The same result is obtained

for A = H++.

Proof of (18.29) and (18.30)
With (18.27) and (18.2) we obtain ��H= (c−HAc − n)

(
cH − cHAHHH − nH

)
.

After multiplication, the expected value follows as
E

[
��H

] = Rcc + (
RH

cn − Rcc
)
AHHH + HA (Rcn − Rcc) + HARccAHHH −

Rcn − RH
cn + Rnn . Next we apply the trace operator yielding (18.29) and differentiate

with respect to A∗ using the differentiation rules summarized in Appendix B. Then
follows ∂ J

∂ A∗ = HH
(
RH

cn − Rcc
) + HHHARcc. Setting this derivative equal to zero

yields
A = (

HHH
)−1

HH
(
Rcc − RH

cn

)
R−1

cc and the proof is finished.

Proof of (18.32)
From the first line of (18.18) follows HA = HH+ = (HA)H . Then we obtain from
(18.29) with the prerequisite Rcn = 0
J = tr (Rcc) + tr (Rnn) − 2tr

(
RccHH+) + tr

(
RccHH+HH+)

.With the prerequisite
Rcc = ESIN and the cyclic permutation rule follows

tr
(
RccHH+) = EStr

(
H

(
HHH

)−1
HH

)
= EStr

((
HHH

)−1
HHH

)
= NES .

In a similar way we get

tr
(
RccHH+HH+) = EStr

(
H

(
HHH

)−1
HHH

(
HHH

)−1
HH

)
= NES .

Finally, we obtain J = tr (Rnn) = E
[‖n‖2] and the proof ends.

18.3 Precoding Based on Singular Value Decomposition

18.3.1 SVD-Based Precoder and Receiver

Precoder and Receiver Matrix
Using the theory of the eigenmode decomposition we now determine the precoder
matrix as

A = V (18.35)

where the unitary matrix V ε CMxM stems from the right-hand side of the singular
value decomposition of H ε CNxM

H = UDVH (18.36)

Then the receive signal (18.2) is

r = HVc + n (18.37)



18.3 Precoding Based on Singular Value Decomposition 277

Though the inter-channel interference HV is not completely reduced, we require a
receive filter with matrix W, which we select according to the left hand side matrix
of (18.36)

W = UH ε CNxN (18.38)

The output signal of the receiver is y =Wr and with (18.37) and (18.38) follows

y = UHHVc + n′ (18.39)

with the filtered noise
n′ = UHn (18.40)

Please note that the dimensions of the matrices and vectors partly differ from
Sect. 18.1, namely c ε CMx1, A = V ε CMxM , and y ε CNx1. On the first glance it
seems not plausible that the input and output vectors, c and y, of the system have dif-
ferent dimensions,M and N , respectively.Wewill see later that |N − P| components
of y will be zero, where P is the rank of H.

ReplacingH in (18.39) by (18.36) and knowing thatU andV are unitary matrices
we get the final result

y = Dc + n′ (18.41)

with

D =

⎛

⎜
⎜⎜⎜⎜
⎝

√
λ1 0 0 0
0

√
λ2 0 0

. . . 0
0 0 0

√
λP

0 0

⎞

⎟
⎟⎟⎟⎟
⎠

ε RNxM (18.42)

√
λi ; i = 1, 2, . . . , P are the singular values ofH and P = rank (H) ≤ min{M, N }

holds. The matrix D contains at the bottom N − P lines with zeros and on the right-
hand side M − P columns with zeros . Therefore (18.41) boils down to

yi = √
λi ci + n′

i ; i = 1, 2, . . . , P (18.43)

Obviously, to recover c1, c2, . . . , cM from the replicas y1, y2, . . . , yM the channel
matrix must have the rank P = M . The remaining receiver output signals

yi = n′
i ; i = M + 1, . . . , N (18.44)

just contain noise and have to be discarded by the receiver. We substantiate that the
multi-user interference is completely removed, because the transmit signal ci is just
multiplied by a factor

√
λi .
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Example 3
We consider a MIMO system with M = 3 transmit and N = 4 receive antennas. H
shall have rank P . Then we can write (18.41) as

⎛

⎜⎜
⎝

y1
y2
y3
y4

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

√
λ1 0 0
0

√
λ2 0

0 0
√

λ3

0 0 0

⎞

⎟⎟
⎠

⎛

⎝
c1
c2
c3

⎞

⎠ +

⎛

⎜⎜
⎝

n′
1

n′
2

n′
3

n′
4

⎞

⎟⎟
⎠ (18.45)

The last row will be discarded, because y4 is just noise. If the channel matrix has full
rank P = 3, all symbols c1, c2, c3 can be recovered. In case of P = 2 the singular
value

√
λ3 = 0 and y3 = n′

3 follow. Consequently, c3 cannot be recovered. We also
see that a weak eigenmode λi provides a low signal part

√
λi ci .

Signal-to-Noise Ratio
To determine the signal-to-noise ratio of the SVD-based precoding scheme we con-
sider in (18.39) the signal part

ys = UHHVc (18.46)

and the noise part
yn = n′ = UHn (18.47)

Then we obtain the mean signal power at the receiver

E
[‖ys‖2

] = E
[
tr

(
ysyH

s

)] = tr
(
RccVHHHHV

)
(18.48)

Using (18.36) yields E
[‖ys‖2

] = tr
(
RccDTD

)
. With

DTD = �M = diag (λ1, λ2, . . . , λP , 0, . . . , 0) ε RMxM (18.49)

follows the result
E

[‖ys‖2
] = tr (Rcc�M) (18.50)

In case of a channel matrix H with M ≤ N and full rank, P = M holds.
The mean power of the noise part yn does not change, because in the Appendix

B it is shown that a unitary matrix maintains the mean power. Consequently

E
[‖yn‖2

] = E
[‖n‖2] (18.51)

holds and for the signal-to-noise ratio at the receiver output follows with (18.48) and
(18.50)

γy = E
[‖ys‖2

]

E
[‖yn‖2

] = tr
(
RccVHHHHV

)

E
[‖n‖2] = tr (Rcc�M)

E
[‖n‖2] (18.52)
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With the same argument as for (18.51) we substantiate that the SVD-based precoder
does not change the mean power of the transmit signal s, hence

E
[‖s‖2] = E

[‖c‖2] = tr (Rcc) (18.53)

holds.

Example 4
In many applications the symbol vector c ε CMx1 is uncorrelated with covariance
matrix Rcc = ESIM . Then we obtain for the signal-to-noise ratio from (18.52) with
the cyclic permutation rule

γy = E
[‖ys‖2

]

E
[‖yn‖2

] = EStr
(
HHH

)

E
[‖n‖2] = EStr (�M)

E
[‖n‖2] = ES

∑P
i=1 λi

E
[‖n‖2] (18.54)

Table 18.1 Comparison: Singular value decomposition (SVD) versus zero-forcing/MMSE based
precoder for uncorrelated transmit signal c with Rcc = ESIM
Feature SVD-based precoding Zero-forcing (and MMSE)

precoding

Precoder matrix A = V A = H++ = HH
(
HHH

)−1

M ≥ N

Receive matrix W = UH Not required

Receive signal y = Dc + UHn r =c + n

Inter-channel interference Completely removed Completely removed

Signal-to-noise ratio γy = ES tr
(
HHH

)

E
[‖n‖2] γr = NES

E
[‖n‖2] ; M ≥ N

Mean power of transmit signal MES ES tr
((
HHH

)−1
)

; M ≥ N

Mean power of receive noise E
[‖n‖2] E

[‖n‖2]



280 18 MIMO Systems with Precoding

18.3.2 Comparison of Zero-Forcing and SVD-Based
Precoding

In Table18.1 the main features of the zero-forcing and the SVD- based precoding
for an uncorrelated transmit signal c are compared. As seen before, the zero-forcing
and the MMSE precoder own the same matrices. Therefore we just mention the
first one in the following. The zero-forcing precoder with A = H++ can completely
cancel the inter-channel interference,which is also true for the SVD-based precoding.
Moreover, both schemes are not enhancing the noise at the receiver. The SVD-
based method leaves the transmit mean power unchanged, whereas the zero-forcing
precoder can cause an unfavorable enhancement of the transmit power. The zero-
forcing precoding scheme does not require a receive filter.
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Chapter 19
Principles of Space-Time Coding

19.1 Space-Time Block Coding

Figure19.1 shows the principle block diagram of a MIMO transmitter with space-
time encoding. The incoming bit sequence b(n) is fed into the QAM mapper, which
periodically maps κ consecutive bits to a QAM symbol c(k ′), constituting a 2κ -ary
QAM. b(n) may contain redundancy bits from a forward error correction encoder,
[1, 2].

We focus on the description of the space-time encoder, which allocates to the
input QAM symbols c(k ′) dedicated redundancy symbols in the space-time domain
to improve transmission quality. The operation of the encoder is block-wise. The
sequence c(k ′) of symbols from a QAM mapper shall occur at time instances t =
k ′T ′ ; k ′ ε Z with symbol rate vS = 1

T ′ . The space-time encoder outputs a sequence
of space-time symbol vectors, which appear at time instances t = kT ; k ε Z and
with rate vST = 1

T . In the time frame NcT ′, which we also call block length, a QAM
symbol vector

c(k ′) = (
c(k ′) c(k ′ + 1) · · · c(k ′ + Nc − 1)

)T
(19.1)

is mapped to the output matrix

S(k) = (
s(k) s(k + 1) · · · s(k + L − 1)

)

=

⎛

⎜
⎜⎜⎜⎜⎜
⎝

s1(k) s1(k + 1) · · · s1(k + L − 1)
...

...
. . .

...

s j (k) s j (k + 1) · · · s j (k + L − 1)
...

...
. . .

...

sM(k) sM(k + 1) · · · sM(k + L − 1)

⎞

⎟
⎟⎟⎟⎟⎟
⎠

(19.2)
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Fig. 19.1 Principle block diagram of a MIMO system with space-time encoding and decoding

in time frame LT . In other words, Nc QAM symbols are mapped to L space-time
symbol vectors

s(k + l) = (
s1(k + l) s2(k + l) · · · sM(k + l)

)T ; l = 0, 1, . . . , L − 1 (19.3)

which are the column vectors of S(k). There are various denominations for S(k)
either transmission matrix, space-time coding matrix, space-time codeword matrix,
or space-time code block. The mapping of the vector c(k ′) to the matrix S(k) can
be done in various ways, which is the subject of the space-time coding theory and
will be addressed in the following sections in more detail. e.g., a linear space-time
block encoder employs linear combining on the input symbols, such as addition and
subtraction of the original symbols, their real or imaginary parts, or their conjugate
complex values. For a (nonlinear) trellis space-time encoder the input-output relation
is defined by a trellis diagram.

We recognize that in general there are different time basis at the input and at the
output of the space-time encoder indicated by the discrete time variables k ′ and k,
respectively. For synchronous block-wise operation between input and output,

NcT
′ = LT (19.4)

must hold. Please note that the definition of S(k) in (19.2) does not respect causality.
Consequently from an implementation point of view the space-time symbol vectors
s(k), s(k + 1), . . . have to be delayed by NcT ′ time intervals, because in general the
space-time encoder can start the mapping operation not before all Nc QAM symbols
have been entered.

From (19.2) we see that row j of S(k) represents a sequence of L samples sent
out by the transmit antenna j . On the other hand column k + l is the space-time
symbol vector emitted by all M transmit antenna elements at the same time instant
k + l. An important parameter of any encoder is the code rate, which is defined as
the ratio between the number of symbols at the input and the number of symbols at
the output, both considered in the same time frame LT . In contrast to an encoder for
temporal forward error correction on bit level the output of the space-time encoder
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is a vector, which is counted as one element despite of the fact that it is composed of
M components. Hence, the spatial code rate of the space-time encoder is defined as

rs = number of input symbols in time frame LT

number of output symbol vectors in time frame LT
(19.5)

For synchronous block-wise operation specified by (19.4) the spatial code rate is

rs = Nc

L
(19.6)

As already mentioned, the time basis at the input and the output of the space-time
encoder are in general different. Given the QAM symbol rate at the input as

vS = 1

T ′ (19.7)

we conclude from (19.4) and (19.6) for the space-time symbol vector rate

vST = 1

T
= L

Nc
vS = vS

rs
(19.8)

We can determine the redundant symbols allocated by the space-time encoder in
the time frame (19.4) recognizing that we have in total LM symbols at the output

and Nc QAM symbols at the input yielding LM − Nc = Nc

(
M
rs

− 1
)
redundant

output symbols. From this consideration follows that the space-time encoder allocates
redundancy, if LM > Nc or with (19.6)

rs < M (19.9)

There is no redundancy if LM = Nc. From L εN follows for this special case that
Nc has to be an integer multiple of M and we obtain

rs = M (19.10)

This is exactly the code rate of a serial-to-parallel converter, as will be outlined in
Sect. 19.2. From the viewpoint of classical forward error correction for bit streams,
where the maximal code rate is one, a code rate larger than one of the space-time
encoder is surprising. Obviously, systems with more than one transmit antenna can
demonstrate that property.

We conclude from (19.8), if rS = 1 then the clock rates of the output and the input
sequences are identical, vST = vS . As a consequence, the bandwidth of the baseband
of the space-time symbol sequence s(k) is not increased compared to the bandwidth
of the QAM symbol sequence c(k ′) although Nc(M − 1) redundant symbols are
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contained in each output block of length LT . For rs < 1 the speed of the output
sequence and accordingly the bandwidth increase by factor 1

rs
= vST

vS
.

For the sake of completeness we calculate the code rates of the building blocks of
the transmitter in Fig. 19.1. Assume that in the time interval (19.4), the data source
feeds κNb information bits into the forward error correction encoder (not depicted in
Fig. 19.1) and that we have at its output κNc bits including κ(Nc − Nb) redundancy
bits. Furthermore, the QAMmapper shall assign one QAM symbol to a sequence of
κ consecutive input bits, which results in a 2κ -ary QAM scheme with κ bit/symbol.
Then, the code rates are as follows:

• code rate of (temporal) forward error correction including temporal interleaving,
rt = Nb

Nc• “code rate” of QAM mapper, rm = κ

• overall code rate at the output of the space-time encoder,
rtotal = κNb

L = κ Nb
Nc

Nc
L = rm rt rs

As depicted in Fig. 19.1, at the receiving end a linear space-time decoder with N
receive antennas can be employed, which performs in principle the reverse operation
of the encoder. Alternatively, a nonlinear receiver with N receive antennas and a
maximum likelihood detector is feasible. Then, under ideal conditions the original
bit sequence is recovered, b̂(n) = b(n).

The receive signal can be determined as follows. The transmit signal vector at
time instant k + l is s(k + l) according to (19.3). Then the receive vector is

r(k + l) = H(k + l)s(k + l) + n(k + l) ; l = 0, 1, . . . , L − 1 (19.11)

where H(k + l) is the channel matrix and n(k + l) is the noise vector. Now, we can
assemble all receive vectors in a receive matrix, which is the response to the transmit
signal matrix S(k) in (19.2)

(
r(k) · · · r(k + L − 1)

) =

= (
H(k)s(k) · · · H(k + L − 1)s(k + L − 1)

) + (
n(k) · · · n(k + L − 1)

)

(19.12)
If the channel exhibits only block fading, its channel matrix is approximately
unchanged in the time interval of the block, say from time instant k to k + L − 1,

H(k + l) ≈ H(k) ; l = 1, . . . , L − 1 (19.13)

Then follows from (19.12)with (19.2) thematrix of the receive vectors approximately

(
r(k) · · · r(k + L − 1)

) = H(k)S(k) + (
n(k) · · · n(k + L − 1)

)
(19.14)

In summary, we see that multiple transmit antennas enable the concatenation of
symbols of the input symbol sequence c(k ′) in the spatial and temporal domain,
which justifies the name space-time coding. This method is a powerful alternative
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to binary forward error correction. As an example, it can be seen from (19.9) that a
spatial code rate rs = 1 adds redundancy to the output sequence for M ≥ 2 without
increasing the symbol vector rate vST in (19.8) of the output signal. The space-
time encoder can be combined with a multi-antenna receiver to exploit additional
receive diversity. In principle, the scheme can even be equipped with forward error
correction as a layered space-time coding technique, as discussed in Sect. 19.5 or as
a concatenated encoding scheme allowing iterative (Turbo) decoding at the receiver.
Obviously, space-time coding is an open loopprocedure, as it does not require channel
information at the transmitter through feedback from the receiver. A comprehensive
survey on space-time coding is given by [3]. In the next sections we will outline
some examples of space-time coding schemes in more detail.

19.2 Spatial Multiplexing

Spatial multiplexing can be considered as a simple form of linear space-time encod-
ing. As no redundancy is allocated to the information symbols c(k ′), this scheme
is often not ranked as a space-time encoder. The principle is shown in Fig. 19.2. At
the transmitter a spatial demultiplexer is employed, which is just a serial-to-parallel
converter.

The input QAM symbol sequence

c(k ′), c(k ′ + 1), . . . , c(k ′ + M − 1), . . . (19.15)

with symbol rate vS = 1
T ′ is entering a shift register. After MT ′ clock cycles (block

length) the space-time symbol vector

Fig. 19.2 Principle of a transmitter with spatial demultiplexer



286 19 Principles of Space-Time Coding

s(k) = (
c(k ′) c(k ′ + 1) · · · c(k ′ + M − 1)

)T
(19.16)

is available at the parallel outputs of the shift register and each component is for-
warded to the respective antenna. In the following MT ′ clock cycles the next space-
time symbol vector

s(k + 1) = (
c(k ′ + M) c(k ′ + M + 1) · · · c(k ′ + 2M − 1)

)T
(19.17)

is generated and so forth. Please note that in contrast to the general scheme in Fig. 19.1
no processing other than storage and serial-to-parallel conversion is performed. Fur-
thermore, the clock rate of the output space-time symbol vectors is vST = 1

MT ′ = vS
M

and thus by factor 1
M lower than the QAM symbol rate vS at the input. We easily

check that for M = 1 the clock rates are identical, as expected. Similarly as depicted
in Fig. 19.1, at the receiving end a zero-forcing, MMSE, or maximum likelihood
receiver with N receive antennas can be employed providing M output signals to
the space-time decoder, which in this case is just a spatial multiplexer. It operates as
a simple parallel-to-serial converter and outputs a serial symbol sequence, which is
identical to (19.15), if no transmission errors are present. We can easily calculate the
spatial code rate as follows: M QAM symbols c(k ′) are entering in the time interval
MT ′ = LT (with L = 1) and one symbol vector is going out. Thus

rs = M (19.18)

With spatial multiplexing one original QAM symbol is transmitted by no more than
one antenna. Consequently, there is no transmit diversity and we say the transmit
diversity has order one. However, if the receiver is equipped with N receive antennas,
they can provide receive diversity of order N , because each transmit symbol is
received by all N receive antennas. The maximum diversity order of the total spatial
multiplexing scheme then is N .

19.3 Orthogonal, Linear Space-Time Block Coding

We are now considering space-time encoders, which apply linear combining on the
input symbols, such as addition or subtraction of the original symbols, their real or
imaginary parts, or their conjugate complex values, respectively. Motivated by the
Alamouti encoding scheme [4] described in the next section, the rows of the space-
time coding matrix S turn out to be pairwise orthogonal. The same holds for the
columns.
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19.3.1 The Alamouti Encoder for MISO System with Two
Transmit Antennas

The Transmission Scheme

The Alamouti space-time encoder was presented in [4] and is a simple but effective
technique to achieve transmit diversity. It can be shown that this scheme is unique,
as it employs the only 2 × 2 space-time block coding matrix with complex entries to
achieve full spacial code rate rs = 1 and full transmit diversity of the order two. In
this section we consider a multiple input single output (MISO) transmission scheme
withM = 2 transmit and N = 1 receive antennas. In the next section this approach is
extended to aMIMO system with two receive antennas. The principal block diagram
is depicted in Fig. 19.3. Themultiple input single output (MISO) channel is described
by the channel matrix, which is actually a row vector

H(k) = hT (k) = (
h11(k) h12(k)

)
(19.19)

The Alamouti space-time encoding scheme operates under the assumption of block
fading. This means that the channel coefficients do not change during a block time,
here from time instants k to k + 1. Consequently

h11(k) ≈ h11(k + 1) ; h12(k) ≈ h12(k + 1) ⇒ hT (k) ≈ hT (k + 1) (19.20)

Furthermore, we assume that the channel coefficients are exactly known at the
receiver. In reality they can only be estimated with some deviation from the actual
values. However, the channel estimation scheme is not considered here and not shown
in Fig. 19.3.

We will see that the time basis of the input and the output of the encoder are the
same, thus k ′ = k. The space-time encoder maps the input QAM symbol vector

c(k) = (
c(k) c(k + 1)

)T
(19.21)

Fig. 19.3 Block diagram of a 2 × 1 multiple input single output (MISO) transmission scheme with
Alamouti space-time encoder
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to the space-time coding matrix with L = 2

S(k) =
(
s1(k) s1(k + 1)
s2(k) s2(k + 1)

)
= (

s(k) s(k + 1)
)

(19.22)

where we have introduced the space-time coding vectors at the output

s(k) = (
s1(k) s2(k)

)T ; s(k + 1) = (
s1(k + 1) s2(k + 1)

)T
(19.23)

as column vectors of S(k). In Fig. 19.3 the row vectors sTj (k) = (
s j (k) s j (k + 1)

)

of S(k) are shown, which indicate the output symbols of the antenna j for the time
instants k and k + 1 , where j = 1, 2. The encoder responds to the input symbol c(k)
by the vector s(k), and the receive signal is

r(k) = hT (k)s(k) + n(k) (19.24)

The next input symbol c(k + 1) generates the output vector s(k + 1) and the receive
signal

r(k + 1) = hT (k + 1)s(k + 1) + n(k + 1) (19.25)

The block-wise processing can be simply described by introducing the following
vector notation with (19.24) and (19.25)

(
r(k)

r(k + 1)

)
=

(
hT (k)

hT (k + 1)

) (
s(k) s(k + 1)

) +
(

n(k)
n(k + 1)

)
(19.26)

With (19.22) follows

(
r(k)

r(k + 1)

)
=

(
hT (k)

hT (k + 1)

)
S(k) +

(
n(k)

n(k + 1)

)
(19.27)

The space-time coding matrix is designed such that the signal vector s(k) can be
recovered at the receiver in the noise-free case by multiplying (19.27) from the left
by an appropriate matrix. The Alamouti space-time coding matrix is defined for
block fading channels (19.20) as

S(k) =
(
c(k + 1) −c∗(k)
c(k) c∗(k + 1)

)
=

(
s1(k) −s∗

2 (k)
s2(k) s∗

1 (k)

)
(19.28)

where the last term is just a short hand notation. Obviously, the space-time encoder
keeps the first output vector s(k) and determines the second vector as

s(k + 1) = (−s∗
2 (k) s

∗
1 (k)

)T
(19.29)
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Now we introduce (19.19), (19.20), and (19.28) in (19.27) and obtain after some
simple manipulations

(
r(k)

r∗(k + 1)

)

︸ ︷︷ ︸
r(k)

=
(
h11(k) h12(k)
h∗
12(k) −h∗

11(k)

)

︸ ︷︷ ︸
U(k)

(
s1(k)
s2(k)

)

︸ ︷︷ ︸
s(k)

+
(

n(k)
n∗(k + 1)

)

︸ ︷︷ ︸
n(k)

(19.30)

Beforewe are going to investigate the receivematrixW(k)we look at someproperties
of S(k).

Properties of the Alamouti Space-Time Coding Matrix S(k)

In the following we drop k to simplify the notation.

• S has the property
SSH = αI2 (19.31)

with
α = |s1|2 + |s2|2 (19.32)

Consequently 1√
α
S is a unitary matrix and the rows of S are orthogonal. The proof

is straightforward. Similarly,
SHS = αI2 (19.33)

holds and the columns of S are orthogonal as well.
• S has full rank 2 and thus the Alamouti precoder can provide full transmit diversity
of order two.

Determination of Receive Signal and Receiver Matrix

Obviously, U(k) in (19.30) has the property

UHU = βI2 (19.34)

where
β(k) = |h11(k)|2 + |h12k)|2 ≥ 0 (19.35)

Similar to (19.33) we conclude that 1√
β
U is a unitary matrix. To recover the signal

vector s(k) the linear receiver in Fig. 19.3 is equipped with a matrix

W(k) = UH (k) =
(
h∗
11(k) h12(k)

h∗
12(k) −h11(k)

)
(19.36)

which yields the output signal vector

y(k) =
(

y(k)
y(k + 1)

)
= UH (k)

(
r(k)

r∗(k + 1)

)
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and with (19.30) and (19.34) follows

y(k) = β(k)s(k) + UH (k)n(k) (19.37)

Obviously, the output of the receive filter is composed of the signal part β(k)s(k)
and the noise part n′(k)= UH (k)n(k).

The coefficient β(k) demonstrates the expected transmit diversity. As we can see
from (19.35), the signal part only fades out, if h11(k) = 0 and h12(k) = 0 at the same
time.However, this event occurswith small probability. Consequently, the space-time
coding scheme with two transmit antennas is very effective to achieve low symbol
error rate in particular for situations, where the (temporal) forward error correction
cannot help, because one link is in deep fade. The removal of the inter-channel
interference in (19.37) by the receive matrix is also appreciated.

Unitary matrices preserve the mean power of signals, as is shown in the Appendix
B. If the channel coefficients in (19.35) are normalized such thatβ = 1, then themean
powers of the signal and the noise part in the receive signal (19.37) are not enhanced
by the receive matrix.

The signal y(k) in Fig. 19.3 is subject to a final decision, e.g., using the maximum
likelihood detection algorithm. Please note that there is no need to feedback the
channel coefficients to the transmitter, because the space-time encoding matrix is
independent of the channel coefficients. This is different from closed loop systems,
which use a transmit filter for allocating individual power to the antennas or a zero
forcing precoder.

We also recognize that in the time interval [k, k + 1] two QAM symbols c(k)
and c(k + 1) are input and two space-time coding vectors are output resulting in the
spatial code rate rs = 1. Therefore also the clock rates at the input and at the output
are identical, vST = vS . The space-time encoder adds redundancy, because the two
input symbols generate four output samples contained in the coding matrix S(k),
which results in a redundancy of two symbols. As already pointed out, to calculate
the spatial code rate for space-time coding we consider all transmit antennas as a
single unit emitting a vector rather than counting the individual samples. In contrast,
a code rate 1 indicates for conventional forward error correction that no redundancy
is allocated to the information bits.

Please note that the definition of S(k) does not respect the causality of a real
system. Causality can be simply obtained by introducing an adequate delay to ensure
that all QAM symbols have entered the encoder before the output is generated. The
Alamouti scheme has found frequent applications both for wireless and wire-line
digital communications, [5]. In [6, 7] an application for digital transmission over
more than two copper wires is described, which became part of the final standard to
establish MIMO in-home power line communications.
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19.3.2 The Alamouti Space-Time Encoder for a 2 × 2 MIMO
System

The principle block diagram of the system is depicted in Fig. 19.4. The transmitter
is unchanged and operates with two antennas. As the receiver employs also two
antennas, the 2 × 2 MIMO channel matrix is

H(k) =
(
h11(k) h12(k)
h21(k) h22(k)

)
(19.38)

Similar to (19.27) the signal at the receiver i is given by

(
ri (k)

ri (k + 1)

)
=

(
hT
i (k)

hT
i (k + 1)

)
S(k) +

(
ni (k)

ni (k + 1)

)
; i = 1, 2 (19.39)

with the channel row vectors hT
i (k) = (

hi1(k) hi2(k)
) ; i = 1, 2 and the same

space-time coding matrix S(k) as given in (19.28). Obviously, the upper branch
of the receiver was already investigated in Sect. 19.3.1 and the lower branch is quite
similar. Therefore we allocate an index i to r, n, U,W, y and replace h11 by hi1, and
h12 by hi2. Then follows from (19.30)

(
ri (k)

r∗
i (k + 1)

)

︸ ︷︷ ︸
ri (k)

=
(
hi1(k) hi2(k)
h∗
i2(k) −h∗

i1(k)

)

︸ ︷︷ ︸
Ui (k)

(
s1(k)
s2(k)

)

︸ ︷︷ ︸
s(k)

+
(

ni (k)
n∗
i (k + 1)

)

︸ ︷︷ ︸
ni (k)

; i = 1, 2

(19.40)
where i = 1 and i = 2 indicate the upper and the lower branch in Fig. 19.4, respec-
tively. Furthermore

UH
i Ui = βi I2 ; i = 1, 2 (19.41)

and
βi (k) = |hi1(k)|2 + |hi2(k)|2 ≥ 0 ; i = 1, 2 (19.42)

hold. Hence, 1√
βi
Ui is a unitary matrix. The receiver matrices follow from (19.36) as

Wi (k) = UH
i (k) =

(
h∗
i1(k) hi2(k)

h∗
i2(k) −hi1(k)

)
; i = 1, 2 (19.43)

The output of the receiver is

yi (k) =
(

yi (k)
yi (k + 1)

)
= UH

i (k)

(
ri (k)

r∗
i (k + 1)

)
; i = 1, 2 (19.44)

and with (19.40) it can be written as
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Fig. 19.4 Block diagram of 2 × 2 MIMO transmission scheme with Alamouti space-time encoder

yi (k) = βi (k)s(k) + UH
i (k)ni (k) ; i = 1, 2 (19.45)

The receive signal of both branches exhibits a signal part βi (k)s(k) and a noise part
n′
i (k) = UH

i (k)ni (k) ; i = 1, 2.
According to Fig. 19.4 we calculate the total receiver output signal block-wise as

y3(k) =
(

y(k)
y(k + 1)

)
= y1(k) + y2(k) =

(
y1(k) + y2(k)

y1(k + 1) + y2(k + 1)

)
(19.46)

With (19.45) and the Frobenius norm of the channel matrix H(k)

‖H(k)‖2F =
2∑

i=1

2∑

j=1

∣
∣hi j (k)

∣
∣2 = β1(k) + β2(k) (19.47)

the output vector eventually is

y3(k) = ‖H(k)‖2F s(k) + UH
1 (k)n1(k) + UH

2 (k)n2(k) (19.48)

Consequently, the signal part in y3(k) only vanishes, if all four channel coefficient are
zero at the same time and the resilience against fading is significantly increased by
using a second receive antenna. If the channel coefficients in (19.42) are normalized
such thatβ1 = β2 = 1, then the noise part in the receive signal (19.48) is not enhanced
by the receiver matrices.

Figure19.5 shows the symbol error rate (SER) as a function of the signal-to-noise-
ratio (SNR). An i.i.d. channel model with Rayleigh fading, frequency flat spectrum,
and 4-PSK are used. Apparently, the 2 × 1 Alamouti precoding with one receive
antenna (2nd curve from top) outperforms the SISO system (1st curve from top). As
expected, a further improvement is achieved by using the Alamouti precoding with
two receive antennas (2 × 2 Alamouti, 4th curve from top). For comparison an 1 ×
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Fig. 19.5 Symbol error rate (SER) as a function of the signal-to-noise ratio (SNR) for the Alam-
outi space-time coding scheme with one and two receive antennas. A frequency flat channel with
Rayleigh fading and 4-PSK are used. For comparison a 1 × 1 (SISO) and a 1 × 2 SIMO system
without precoding are also shown

2 SIMO scheme (3rd curve from top) without precoding and two receive antennas is
also given, providing respectable performance as well.

19.3.3 Orthogonal Space-Time Block Codes for More Than
Two Transmit Antennas

This mathematically demanding subject goes back to [8]. We introduce the short
hand notation for the input QAM symbols in (19.1) as

c(k ′ + l) = cl+1 ; l = 0, 1, . . . , Nc − 1 (19.49)

For linear space-time block codes the entries of the M × L space-time coding matrix
S are composed of±cl and±c∗

l as with the Alamouti encoder and±Re [cl ],±Im [cl ]
as well as linear combinations thereof, l = 0, 1, . . . , Nc − 1. Major design targets
are: The decoding should be simple, i.e. a linear decoder should employ a unitary
matrix to avoidmatrix inversion processing. Furthermore, the scheme should achieve
full transmit diversity M and full receive diversity N resulting in a total maximum
diversity order of MN .
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Motivated by the 2 × 2 Alamouti space-time coding matrix, a generalization can
be done using M × L space-time coding matrices S with orthogonal rows, which
fulfill the condition

SSH = αIM (19.50)

with
α = |c1|2 + |c2|2 + · · · + ∣

∣cNc

∣
∣2 (19.51)

Hence, 1√
α
S is unitary. In [8] the authors show that full transmit diversity M can be

achieved with a spatial code rate rs = Nc
L .

Some Examples of Space-Time Codes

Without proof we review some important space-time coding matrices with complex
entries, which meet the above requirements [3, 8].

• Space-time coding matrix for M = 2 and rs = 1 (Alamouti scheme)

S =
(
c1 −c∗

2
c2 c∗

1

)
= (

s1 s2
)

(19.52)

Two input symbols c1, c2 are mapped to two output space-time symbol vectors
s1, s2. As there are M = 2 transmit antennas, S has two rows. The input and
output clock rates are equal, thus there is no bandwidth increase. The mapping by
the space-time encoder cannot start until the last QAM symbol c2 is cached at the
input. Consequently, the output signal has a delay of two time intervals.

• Space-time coding matrix for M = 3 and rs = 1
2

S =
⎛

⎝
c1 −c2 −c3 −c4 c∗

1 −c∗
2 −c∗

3 −c∗
4

c2 c1 c4 −c3 c∗
2 c∗

1 c∗
4 −c∗

3
c3 −c4 c1 c2 c∗

3 −c∗
4 c∗

1 c∗
2

⎞

⎠

= (
s1 s2 s3 s4 s5 s6 s7 s8

)
(19.53)

Four input symbols c1, c2, . . . , c4 are mapped to eight output space-time symbol
vectors s1, s2, . . . , s8. The matrix has three rows, because of M = 3. The output
speed is increased by factor 2, also the required bandwidth. The encoder has a
delay of four input time intervals. The second half of S is the conjugate complex
of the first half.

• Space-time coding matrix for M = 4 and rs = 1
2

S =

⎛

⎜
⎜
⎝

c1 −c2 −c3 −c4 c∗
1 −c∗

2 −c∗
3 −c∗

4
c2 c1 c4 −c3 c∗

2 c∗
1 c∗

4 −c∗
3

c3 −c4 c1 c2 c∗
3 −c∗

4 c∗
1 c∗

2
c4 c3 −c2 c1 c∗

4 c∗
3 −c∗

2 c∗
1

⎞

⎟
⎟
⎠
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= (
s1 s2 s3 s4 s5 s6 s7 s8

)
(19.54)

Four input symbols c1, c2, . . . , c4 are mapped to eight output space-time symbol
vectors s1, s2, . . . , s8. The matrix has four rows because of M = 4. The output
speed is increased by factor 2 and also the required bandwidth. The output signal
has a delay of four input time intervals. The second half of S is the conjugate
complex of the first half.

• Space-time coding matrix for M = 3 and rs = 3
4

S =
⎛

⎜
⎝

c1 −c∗
2

√
2
2 c∗

3

√
2
2 c∗

3

c2 c∗
1

√
2
2 c∗

3 −
√
2
2 c∗

3√
2
2 c3

√
2
2 c3 −Re[c1] + jIm[c2] Re[c2] + jIm[c1]

⎞

⎟
⎠

= (
s1 s2 s3 s4

)
(19.55)

Three input symbols c1, c2, c3 aremapped to four output space-time symbol vectors
s1, s2, . . . , s4. The matrix has three rows, because of M = 3. The output speed is
increased by factor 4

3 , also the required bandwidth. The mapping cannot start until
the last QAM symbol c3 is cached at the input. Consequently, the output signal
has a delay of three input time intervals.

• Alternative space-time coding matrix for M = 3 and rs = 3
4 , [9].

S =
⎛

⎝
c1 c∗

2 c∗
3 0

−c2 c∗
1 0 −c∗

3
c3 0 c∗

1 c∗
2

⎞

⎠

= (
s1 s2 s3 s4

)
(19.56)

Three input symbols c1, c2, c3 aremapped to four output space-time symbol vectors
s1, s2, . . . , s4. As M = 3 the matrix has three rows. The output speed is increased
by factor 4

3 , also the required bandwidth. The output signal has a minimal delay
of three input time intervals.

• There exist also space-time coding matrices for real symbols ck only, which are
feasible for amplitude shift keying or real valued phase shift keying. In case ofM =
2, the Alamouti matrix (19.52) can be employed by setting c∗

i = ci ; i = 1, 2.
For M = 3 the matrix (19.53) is applicable, if all conjugate complex elements are
dropped resulting in a 3 × 4 matrix. Similarly for M = 4, (19.54) can provide the
solution, if reduced to a 4 × 4 matrix by deleting the conjugate complex elements.

• For all given space-time coding matrices it is easy to check that the rows are
pairwise orthogonal with property (19.50).

Layered space-time coding is an enhancement of spatial multiplexing. We will dis-
cuss such schemes in a separate Sect. 19.5, because they paved the way for the first
applications of MIMO systems in wireless communications.
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19.4 Principle of Space-Time Trellis Coding

Space-time trellis codes are an extension of conventional trellis codes [10] to MIMO
systems. They have been introduced by [11]. Since then a large number of codes
and their design have been widely explored and the improved coding gain and spec-
tral efficiency have been demonstrated for fading channels. However, it was also
recognized that the decoder is much more complex compared to the orthogonal
space-time block codes. A survey is available in [3]. Here we are outlining the prin-
ciple by showing an example. In general, the input-output relation is given by a
trellis diagram which is a state transition diagram enhanced by a discrete-time coor-
dinate k. As in the case of sequential detection of a data signal, a trellis decoder is
also used here employing the Viterbi algorithm. Figure19.6 shows an example of
a space-time trellis encoder with 4-PSK, which provides transmit delay diversity.
We maintain the general term QAM symbol also for the PSK symbols. Consecutive
pairs of bits (κ = 2) of the input bit stream b(n) are mapped to one QAM symbol
c(k) by the mapper. The space-time encoder allocates to each c(k) a space-time sym-
bol vector s(k)=

(
s1(k) s2(k)

)T
. In case of the transmit delay diversity s1(k) = c(k)

and s2(k) = c(k − 1) hold. As in the same time frame one QAM symbol is going
in and one space-time symbol vector is output, the spatial code rate is rs = 1 and
consequently for the space-time coding matrix follows S(k) = s(k).

We describe the space-time trellis encoder by means of a trellis diagram. To
this end we determine all independent state variables, which are associated with
the storage elements. The encoder in Fig. 19.6 owns only one state variable s2(k) =
c(k − 1). With 4-QAM the symbol alphabet consists of 2κ = 4 distinct signal points,
which we denote as {a1, a2, a3, a4} and which are shown in the complex domain in
Fig. 19.7 (left). The state variable can take on these 4 values.Consequently, the system
can stay in 4 different states, which can be denoted arbitrarily such as state 1, state 2,
state 3, and state 4. The state transitions are shown in the trellis diagram depicted in
Fig. 19.7 (right). Depending on the input signal the system can remain in the present
state or change into another state. At the bottom the time instants k − 1 and k are
indicated enhancing the state transition diagram to a trellis diagram. The transitions
are labeled as (c(k) | s2(k)), where the first element indicates the input QAM symbol
and the second element is the output symbol s2(k) = c(k − 1). Horizontal arrows

Fig. 19.6 Principle block diagram of a space-time trellis encoder and decoder for delay diversity
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Fig. 19.7 Signal constellation diagram for 4-PSK (left), trellis diagramof space-time trellis encoder
(right)

reveal that the systemmaintains the present state, if a new symbol comes in, whereas
oblique arrows illustrate a change of the state from time instants k − 1 to k. Please
note that not all transitions are sketched in Fig. 19.7 to avoid an overload of the graph.
In our notation of the states and the state variables the transitions are indicated as(
a j | ai

)
, which means, if the encoder is in state i and the new input signal is a j ,

then the encoder moves to state j . The output signals are s2(k) = ai and s1(k) = a j .
As already mentioned, the receiver acts as a trellis decoder. Its complexity grows
exponentially with the number of states, in our example 2κ .

19.5 Layered Space-Time Architecture

The layered space-time architecture is based on the demultiplexing of the incoming
bit stream into parallel layers, each feeding a transmit antenna. The bit stream can
undergo forward error correction and mapping to symbols before or after the demul-
tiplexing operation. In essence, layered space-time coding employs spatial multi-
plexing as described in 19.2 and is categorized in vertical, horizontal, and diagonal
layered space-time coding, but with some ambiguity, [3, 12].

19.5.1 Vertical Layered Space-Time Coding

This scheme originates from the Bell Laboratories [13] and is also called Bell Labs
Layered Space-Time (BLAST). The principle block diagram is straightforward and
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Fig. 19.8 Block diagram of
the original vertical layered
space-time encoder
(V-BLAST)

depicted in Fig. 19.8. The main building block is a demultiplexer 1 : M as described
in Sect. 19.2, which divides the incoming bit sequence b(n) into M parallel output
streams. Their bit rates are reduced by factorM compared to the inputb(n). TheQAM
mapper allocates κ−tuples of consecutive bits to QAM symbols, which are directly
the output signals s1(k), . . . , sM(k) composing the space-time symbol vector s(k). In
view of the vertical shape of this column vector, which allocates the QAM symbols
to each transmit antenna from top to bottom the scheme is denoted as vertical layered
space-time coding or V-BLAST. First versions have even abstained from temporal
encoding and have employed the same QAM signal constellations for each layer
[13]. If the information bit sequence b′(n′) is input to a forward error correction
encoder including a temporal interleaver and the code rate between b′(n′) and b(n)

is rt , then the overall code rate of the layered space-time transmitter results in

rtotal = rtκM (19.57)

Obviously, rtotal can be larger than M . For example, if we take 16-QAM (κ = 4) and
a typical temporal code rate of rt = 1

2 for wireless communications the overall code
rate is rtotal = 2M . A vertical layered space-time encoder without temporal forward
error correction (rt = 1) is just a spatial demultiplexer and thus exhibits no transmit
diversity. We then say the transmit diversity order is one. If temporal encoding is
uses, i.e. rt < 1, the transmit diversity order can exceed one and consequently the
total diversity order of the overall system will be larger than the number of receive
antennas N .

In Fig. 19.9 an equivalent structure of a V-BLAST encoder is shown. It results
from the scheme in Fig. 19.8, if the QAM mapping is moved to the input of the
demultiplexer. Figure19.10 shows a receiver for a MIMO signal with vertical space-
time encoding. The first building block can be a linear zero-forcing or a MMSE
receiver. TheM output signals y1,y2, . . . , yM enter a spatial multiplexerM : 1, which
operates as a parallel-to-serial converter providing estimates ĉ(k ′) of the transmit
QAM symbols. After demapping the estimates b̂(n) of the encoded bit stream are
available, which are fed into a forward error correction decoder yielding the estimates
b̂′(n′). Obviously, the output signal of the spatial multiplexer is processed as in case
of a digital single input single output (SISO) receiver. Consequently, all advanced
techniques can be applied for improved demapping and decoding, such as iterative
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Fig. 19.9 Block diagram of an alternative vertical layered space-time encoder

Fig. 19.10 Block diagram of a linear receiver for vertical layered space-time decoding

(Turbo) decoding or soft demapping [14] using the Turbo principle indicated by
the dashed feedback lines in Fig. 19.10. Alternatively, the linear receiver including
the spatial multiplexer can be enhanced by an iterative a-posterior detector for the
receive vector

(
r1 r2 · · · rN

)T
. Then the complexity of the receiver is significantly

increased. The original V-BLAST receiver employed the “BLAST algorithm” [13,
15] with ordered successive interference cancellation (OSIC).

19.5.2 Horizontal Layered Space-Time Coding

As outlined in the previous section, the vertical layered space-time coder operates
with only one temporal encoder, if at all. Alternatively, the scheme in Fig. 19.8 can
be equipped with dedicated forward error correction encoders and QAM mappers
for each layer at the output of the 1 : M demultiplexer. In view of the horizontal
arrangement and the fact that coding and mapping are independent from one layer to
the other the resulting scheme in Fig. 19.11 is referred to as horizontal layered space-
time coding or horizontal Bell Labs layered space-time (H-BLAST). Please note
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Fig. 19.11 Block diagram of horizontal layered space-time encoding. The spatial interleaver is in
operation only for diagonal layered space-time coding

that the spatial interleaver indicated by dashed lines is only present for the diagonal
layered space-time encoder described in the next section. Obviously, the temporal
encoder and the QAM mapper are M-fold compared to Fig. 19.9, if M transmit
antennas are used. This is an increase of complexity. However, the processing of the
signals is at clock rates, which are by a factor M lower compared to the input b′(m)

of the demultiplexer. The overall code rate can be easily calculated and is the same as
for the vertical layered space-time coding scheme given by (19.57). As the signals in
the different layers are independent and because each antenna sends no other signal
than that of its own layer, there is no transmit diversity available on symbol level.
Hence, the transmit diversity order of H-BLAST is one. The signals coming from
each of the M transmit antennas are received by all N receive antennas resulting in
a receive diversity order of N . Consequently, we conclude that the diversity order of
the horizontal layered space-time coding scheme on a symbol basis can not be larger
than N . Besides the diversity order, also the coding gain of a transmission scheme is
of importance for achieving superior transmission quality. The coding gain depends
on the selected forward error correction code and the performance of the decoding
algorithm.

Figure19.12 shows the principle block diagram of a linear receiver for horizontal
layered space-time decoding. After a linear zero-forcing or MMSE receiver the M
output signals y1, y2, . . . , yM can be processed separately using conventional single
input single output decoding principles.Asmentionedbeforewith the vertical layered
system, also maximum likelihood joint decoding of the components of the receive
vector

(
r1 r2 · · · rN

)T
is an alternative here, however, with much higher complexity.

19.5.3 Diagonal Layered Space-Time Coding

This scheme builds upon the horizontal layered space-time system. By inserting a
spatial interleaver, as shown by dashed lines in Fig. 19.11, symbols of different layers
can be interleaved crosswise. This cross layer operation has motivated the nomencla-
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Fig. 19.12 Block diagram of a linear receiver for horizontal layered space-time decoding. The
spatial deinterleaver is in operation only for diagonal layered space-time coding

ture diagonal layered space-time coding or diagonal (D-) BLAST. In [13] a stream
rotator with periodic antenna allocation is preferred as an interleaver. If the code
words are made large enough, bits or even codewords of each layer are transmitted
over all M antennas and the transmit diversity order approaches M . An appropriate
receiver with N antennas then can get full diversity order MN of the overall system.
The total code rate is the same as in (19.57). The receiver is more complex than
that of the horizontal layered system owing to the spatial interleaving. V-, H-, and
D-BLAST schemes have been one of the first MIMO systems introduced in the sec-
ond half of the 1990’s starting with zero-forcing or MMSE receivers combined with
successive interference cancellation.

19.5.4 Iterative Receivers for Layered Space-Time Systems

Iterative detection using the Turbo principle can significantly increase the perfor-
mance of a receiver. Turbo codes and their iterative decoding (also referred to as
Turbo decoding) have been first introduced by [16] in the framework of two con-
catenated codes for forward error correction. A comprehensive survey on the Turbo
principle is given in [18].A serially concatenatedTurbo coding scheme consists of the
cascade of a first encoder (outer encoder), an interleaver, and a second encoder (inner
encoder). Ideally, the interleaver generates an input signal for the inner encoder,which
is statistically independent of the output signal of the outer encoder. Thus, in the ideal
case the two encoders operate with input bit streams, which do not hang together
statistically. Similarly at the receiver the Turbo decoder is equipped with a cascade
or a parallel arrangement of two decoders called inner and outer decoder separated
by a deinterleaver. The two decoders do not operate isolated and mutually exchange
reliability information on the intermediate decoding results through a feedback loop,
which has motivated the term “Turbo”. The reliability information exchange is done
as extrinsic and intrinsic information on the basis of log-likelihood values [17]. To
decode one bit the decoding process is operated several times also referred to as
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decoding iterations. After each iteration the decoding result has improved, i.e. the
mean bit error rate has decreased. Depending on the convergence conditions the
iteration cycle is finally abandoned and the output of the outer decoder, which is an
a posterior probability (APP) decoder, is subject to hard decision and provides the
final decoded bit. For APP decoding the BCJR algorithm invented by [19] is opti-
mal. Owing to its high computational complexity several sub-optimal solutions have
been proposed, such as the soft-output Viterbi algorithm [20]. For code design and
convergence properties the EXIT chart has proven to be a powerful method [21–23].

An effective yet not very complex method is a MIMO receiver with soft demap-
ping, as indicated in Fig. 19.10. Only the middle feedback loop depicted by dashed
lines is employed. The multiplexed samples ĉ(k ′) are entering the demapper. A con-
ventional demapper would perform a hard decision and would output the associated
binary codewords from a look-up table. To apply soft demapping at the receiver the
transmitter is equipped with a forward error correction encoder, which is named as
outer encoder and the mapper plays the part of the inner encoder. Likewise for
soft demapping at the receiver the forward error correction decoder operates as
outer decoder and the demapper acts as the inner decoder. In contrast to a con-
ventional demapper, the output of the soft demapper provides log-likelihood values
[17]. Through a recursive loop the outer decoder provides a-prior information for the
soft demapper. After several iterations the output signal of the outer decoder under-
goes a hard decision resulting in the output bits b̂′(n′). With an increasing number of
iterations the Turbo cliff builds up, which is characterized by a steep decent of the
mean bit error probability as a function of the signal-to-noise ratio.
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Chapter 20
Principles of Multi-user MIMO
Transmission

20.1 Introduction

Hitherto, we have considered theMIMO transmission between a base station and one
user, which we call single-user MIMO transmission. In a communications network
the base station has to serve a large number of users, e.g., in an in-house area with
a wireless local area networks (WLAN) according to the standard IEEE 802.11.
Also in outdoor scenarios a multitude of users has to be addressed with the cellular
networks of the type 3G (year 2004), 4G (year 2010), and 5G (year 2020) with data
rates of about 8 Mbit/s, 100 Mbit/s, and up to 1 Gbit/s, respectively. In this Chapter
we investigate methods for data communication between the base station and the
users. Each transmitter and receiver shall be equipped with multiple antennas to
benefit from the MIMO principle, which we call multi-user MIMO (MU MIMO)
transmission. Also in the case that each user equipment has only one antenna, the
term MIMO is used, because the antennas of all users taken together are considered
as multiple input or multiple output. We differentiate between the directions from
the base station to the users called the downlink and between the link from the
users to the base station, which is referred to as uplink. Conventionally, without the
MIMO principle the base station allocates certain time slots or frequency bands to
the users. With multiple antennas a multi-user MIMO scheme can serve all users at
the same time and in the same frequency band, hence providing a higher efficiency.
While the WLAN standards IEEE 802.11 a, b, g, and n do not support multi-user
MIMO techniques, the later versions AC-WLAN or AC Wave 2 own these benefits.
However, the transmission of different signals in the same frequency band and in the
same time slots in the downlink gives rise to interference at the user terminals. Of
course, a similar situation will occur in the uplink, when many users are going to
address the same base station. Hence, an important question for the system designer
is how to overcome or at least minimize the impact of the interference. Several
methods for multi-user MIMO systems are described in [1, 2] as a survey. In the next
sections we outline some selected principles in more detail. On top of these methods
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protocols of the higher system layers, such as the data link and the network layer can
reduce residual interference by proper scheduling of the user access. However, this
is beyond the scope of this Chapter.

20.2 Precoding for Multi-user MIMO Downlink
Transmission

20.2.1 Precoding by “Channel Inversion”

As the base station transmits signals to the various users in the same frequency band
and at the same time,we have tomake sure that each user gets the individually devoted
signal without interference from the other users. Hence, for each user terminal the
multi-user interference also called multi-access interference has to be minimized.
Several schemes operate with precoding at the transmitter to keep the complexity at
the the cost sensitive user equipment low. In Chap. 18 linear precoding is discussed
in quite some detail as an alternative to a linear receiver for the reduction of the
inter-channel interference for single-user MIMO systems. The prefilter for multi-
user applications, which will be outlined in the following, shall provide a reduction
of the multi-user interference at all receive terminals. We will see that even the
inter-channel interference can be canceled by some of these methods.

The principle block diagram is depicted in Fig. 20.1. Apparently, the downlink
transmission can be regarded as a broadcast or point-to-multi-point mode, in which
the base station transmits signals to all users. Hence, the combined channel with
matrix H(k) is also called broadcast channel. Let us start with the receiver, where
U user terminals also denoted as user equipment and indicated by the index u =
1, 2, ...,U have to be served.

The user terminal u shall be equipped with Nu receive antennas and its receive
signal is denoted as ru(k) εCNux1. In the following we drop the discrete-time variable
k to simplify the notation. The combined receive column vector can be written as

r =

⎛
⎜⎜⎜⎜⎜⎜⎝

r1
...

ru
...

rU

⎞
⎟⎟⎟⎟⎟⎟⎠

εCNx1 (20.1)

and the total number of receive antennas for all users shall be

N =
U∑
u=1

Nu (20.2)
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Fig. 20.1 Block diagram of a multi-user MIMO downlink transmission between a base station and
various user terminals

Similarly, the additive noise vector for the user terminal u is nu εCNux1 and the
combined noise vector is defined as

n =

⎛
⎜⎜⎜⎜⎜⎜⎝

n1
...

nu
...

nU

⎞
⎟⎟⎟⎟⎟⎟⎠

εCNx1 (20.3)

At the transmitter side the base station has structured its MIMO antennas into
U groups, where the group u owns Mu antenna elements and the associated trans-
mit signal vector is su εCMux1 , u = 1, 2, ...,U . Then the total number of transmit
antenna elements at the base station is

M =
U∑
u=1

Mu (20.4)

We assume a fading channel with frequency-flat spectrum defined by an NxM matrix
H εCNxM and introduce the combined vector of all transmit signals
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s =

⎛
⎜⎜⎜⎜⎜⎜⎝

s1
...

su
...

sU

⎞
⎟⎟⎟⎟⎟⎟⎠

εCMx1 (20.5)

The input signals to the precoder are the QAM symbols devoted to the various users
and are also structured as vectors cu εCNux1, u = 1, 2, ...,U . Hence, cu represents
the vector of Nu streams of QAM symbols entering the precoder. Then the combined
input signal vector of the precoder can be defined as

c =

⎛
⎜⎜⎜⎜⎜⎜⎝

c1
...

cu
...

cU

⎞
⎟⎟⎟⎟⎟⎟⎠

εCNx1 (20.6)

Consequently, as portrait in Fig. 20.1 the precodingmatrixTmust have the dimension
MxN with in general complex entries. T εCMxN maps the input signal vector c to
the output vector s yielding

s = Tc (20.7)

Please note, at the moment no individual mapping of an input cu to an output s j is
required. We obtain for the receive signal vector

r = Hs + n (20.8)

Plugging (20.7) into (20.8) yields

r = HTc + n (20.9)

As described in Sect. 18.2, the zero-forcing and the MMSE precoder with matrix

T = H++ = HH
(
HHH

)−1 ; M ≥ N (20.10)

completely removes the interference, where H++ is the pseudo inverse matrix of H.
Please note that the channel matrixHmust have full rank N otherwise the inverse in
(20.10) does not exist. Hence, the total number M of transmit antennas at the base
station must be equal to or larger than the sum N of the receive antennas of all user
equipment

U∑
u=1

Mu ≥
U∑
u=1

Nu (20.11)
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With
HT = HH++ = IN (20.12)

follows the receive signal
r = INc + n = c + n (20.13)

and the multi-user interference as well as the inter-channel interference are com-
pletely canceled. The right hand side of (20.13) can be interpreted as the diagonal-
ization of the system of equations (20.9), where the diagonalmatrix is just the identity
matrix IN . From (20.13) the individual signal for the user u can be decomposed with
the help of (20.1), (20.3), and (20.6) as

ru = cu + nu ; u = 1, 2, ...,U (20.14)

showing that the noise nu remains as the only impairment for the receive sig-
nal. (20.14) requires that the dimension of cu equals the dimension of ru . Conse-
quently, the number Nu of signal components constituting the transmit symbol vec-
tor cu εCNux1 determines the number Nu of receive antennas for the user u, which
is a prerequisite of our derivation. Apparently, the base station devotes Nu parallel
symbol streams to user u. Furthermore, we recognize that no individual mapping of
an input cu to an output s j is required at the transmitter.

Now, consider an application, in which only one user u is part of the system. Then
M = Mu and N = Nu and from the condition M ≥ N in (20.11) follows

Mu ≥ Nu (20.15)

This scenario can occur for any terminal. Therefore (20.15) must hold for all users
u = 1, 2, ...,U .

As shown in Fig. 20.1, the last stage is the detector at the user terminals, in many
cases a maximum likelihood detector, which takes ru as the input and decides for
the most likely QAM symbol vector ĉu . Of course, if the channel matrix is a square
matrix H εCNxN with full rank N the pseudo inverse matrix H++ turns into the
inverse matrix resulting in T = H−1. This is the reason why the described method
for multi-user interference reduction is also called channel inversion.

Furthermore, for all precoding techniques discussed in this Chapter the transmitter
must have the full knowledge about the channel matrixH. Hence, channel estimation
at the receiver has to be performed and the entries of the estimated matrix are then
sent as channel state information (CSI) to the transmitter via a separate feedback
loop. Therefore, this technique is called closed loop precoding. Depending on the
number of users and antennas per user terminal the dimension ofH can be reasonably
large and the calculation of the inverse or pseudo inverse becomes expensive. In the
next section a transmitter consisting of an individual precoder per user is discussed.
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Example 1
Consider themulti-user downlinkwithU = 3 user terminals. User 1will be provided
with two and the other two users with one symbol stream. The channel matrix H is
estimated at the receivers and in a small time interval

H =

⎛
⎜⎜⎝

1 0.2 −0.1 0.1 0
−0.2 1 0.1 0 0.1
0.1 −0.1 1 0.2 −0.1
0 −0.1 −0.2 1 0.2

⎞
⎟⎟⎠ (20.16)

is given. For simplicity we assume real matrix entries. Precoding with a matrix T
shall be applied to minimize the multi-user interference. Find T using the method of
“channel inversion”.

Solution:
From the channel matrix we conclude M = 5 and N = 4. Furthermore, N1 = 2 and
N2 = N3 = 1 are given. Thus, in Fig. 20.1 c1 and r1 are 2 × 1 vectors whereas c2,
c3, r2, and r3 are scalars. Apparently,H is non-quadratic and hence no inverse matrix
exists. Therefore we calculate the precoding matrix as the pseudo inverse (20.10) of
H. The result is

T = HH
(
HHH

)−1 =

⎛
⎜⎜⎜⎜⎝

0.95 −0.19 0.09 −0.10
0.20 0.94 −0.07 −0.02

−0.08 0.11 0.94 −0.16
0.01 0.09 0.20 0.93

−0.02 0.11 −0.09 0.19

⎞
⎟⎟⎟⎟⎠

; HT =

⎛
⎜⎜⎝
1 0 10−4 0
0 1 0 10−4

0 0 1, 0001 0
0 10−4 0 1

⎞
⎟⎟⎠

(20.17)

Apparently, HT is a good approximation of the identity matrix I4. Then follows
from (20.9) with c1 = (

c11 c12
)T
, r1 = (

r11 r12
)T
, and n1 = (

n11 n12
)T

⎛
⎜⎜⎝
r11
r12
r2
r3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
c11
c12
c2
c3

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
n11
n12
n2
n3

⎞
⎟⎟⎠ (20.18)

where the elements with double indices belong to user 1. It is well appreciated that
the multi-user as well as the inter channel interference are completely removed and
the multi-user downlink turns into three independent single-user links with receive
signals r1, r2, and r3.
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20.2.2 Precoding with Block Diagonalization

Input–Output Relation of the Downlink

An interesting closed form method to cancel the multi-user interference at each user
terminal in the downlink is the design of a precoding matrix T in such a way that
the interference term HT in (20.9) becomes a block-diagonal matrix. According to
linear algebra a matrix G is said to be block diagonal, if

G = diag (G1G2 . . .GU ) (20.19)

holds, where the Gi are matrices with smaller dimensions than the dimension of
G. We consider the block diagram of the multi-user MIMO downlink in Fig. 20.2.
The receiver side with the U user terminals is the same as in Fig. 20.1. How-
ever, at the transmitter the base station employs individual precoders with matrices
Tu εCMxζu , u = 1, 2, ...,U .

The input signals at the base station are cu εCζux1 , u = 1, 2, ...,U , where cu
represents the column vector composed of ζu QAM symbols. Obviously,

ζu ≤ Nu , u = 1, 2, ...,U (20.20)

guarantees that all transmit symbols for user u are covered by the receive antennas
of this user. The precoder output vector is xu εCMx1

xu = Tucu ; u = 1, 2, ...,U (20.21)

Fig. 20.2 Multi-user MIMO downlink transmission between a base station with individual pre-
coders and various user terminals
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where M is the number of transmit antennas at the base station. The U precoder
outputs are added component by component yielding the transmit signal vector

s =
U∑
u=1

xu =
U∑
u=1

Tucu (20.22)

with
s = (

s1 · · · sM
)T

εCMx1 (20.23)

Apparently, all xu must have the same number M of components, otherwise they
cannot be added.As a consequence,Tu εCMxζu , u = 1, 2, ...,U holds. Furthermore,
we can define the combined precoding matrix

T = (
T1 · · · Tu · · · TU

)
εCMxζ (20.24)

which contains U vertical slices and

ζ =
U∑
u=1

ζu ≤ N (20.25)

holds. The inequality follows from (20.2) and (20.20). Between the transmitter and
the receiver the broadcast channel with the combined matrix H(k) is present again.
However, individual sub-matrices Hu εCNuxM are effective characterizing the chan-
nels from the M transmit antenna outputs of the base station to the Nu inputs of the
user terminal u , u = 1, 2, ...,U . Hence, we define the combined channel matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

H1
...

Hu
...

HU

⎞
⎟⎟⎟⎟⎟⎟⎠

(20.26)

and recognize that the sub-matricesHu are horizontal slices ofH. Next, we determine
the receive signals. The signal vector for user u is

ru = Hus + nu (20.27)

and with (20.22) follows

ru = HuTucu + Hu

U∑

i = 1
i �= u

Tici + nu ; u = 1, 2, ...,U (20.28)
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where nu is the additive noise at the user terminal u. We have decomposed ru already
into the desired receive signal HuTucu and the multi-user interference for user u

Hu

U∑

i = 1
i �= u

Tici ; u = 1, 2, ...,U (20.29)

With the combined vectors (20.1), (20.6) and the matrices (20.24), (20.26) follows
the matrix notation

r = HTc + n =

⎛
⎜⎜⎜⎜⎜⎜⎝

H1
...

Hu
...

HU

⎞
⎟⎟⎟⎟⎟⎟⎠

(
T1 · · · Tu · · · TU

)
c + n (20.30)

We can executeHT just like the multiplication of a column vector with a row vector
using the block matrices as entries and obtain

⎛
⎜⎜⎜⎜⎜⎜⎝

r1
...

ru
...

rU

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

H1T1 · · · H1Tu · · · H1TU

. . .
. . .

HuT1 · · · HuTu · · · HuTU

. . .
. . .

HUT1 · · · HUTu · · · HUTU

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

c1
...

cu
...

cU

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

n1
...

nu
...

nU

⎞
⎟⎟⎟⎟⎟⎟⎠

(20.31)

Apparently, HT εCUxU is a block matrix composed of sub-matrices or blocks
HiT j εC

Nixζ j .

Cancellation of the Multi-user Interference

Regarding (20.31) the multi-user interference is given by the blocks HiT j with
unequal indices i �= j . If we can find precoding matrices, which fulfill the condition

HiT j = 0 ; i, j = 1, 2, ...,U ; i �= j (20.32)

where 0 is the null matrix, then (20.31) results in

⎛
⎜⎜⎜⎜⎜⎜⎝

r1
...

ru
...

rU

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

H1T1 · · · 0 · · · 0
. . .

. . .

0 · · · HuTu · · · 0
. . .

. . .

0 · · · 0 · · · HUTU

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

c1
...

cu
...

cU

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

n1
...

nu
...

nU

⎞
⎟⎟⎟⎟⎟⎟⎠

(20.33)
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Fig. 20.3 Multi-user MIMO
downlink decoupled into U
parallel single-user links
with block diagonalization.
The precoding matrices are
given by Tu = VuAu , u =
1, 2, ...,U in (20.41)

and HT becomes a block diagonal matrix of the type (20.19). Of course, for the
precoding matrices T j �= 0 ∀ j must hold, otherwise the transmit signals will be
zero. The condition (20.32) turns the multi-user downlink into a parallel structure of
decoupled single-user MIMO links

ru = HuTucu + nu , u = 1, 2, ...,U (20.34)

as depicted in Fig. 20.3. Then

r = diag (H1T1, ...,HuTu, . . . ,HUTU ) c + n (20.35)

looks similar to an eigenmode transmission scheme. The interference defined in
(20.29) is zero for arbitrary transmit symbol vectors c1, ..., cU . The interesting ques-
tion now is how the precoder matrices can be found.

Determining the Precoder Matrices for Block Diagonalization

In principle, we have to look for a linear mapping with a matrix T, which transforms
H into the block diagonal form. For the multi-user MIMO downlink the solution was
first described in [1, 3–5]. We restrict ourselves to the principal computational steps.
The precoding matrix Tu for user u is the solution of the system of equations (20.32)
and formally given by

Tu = arg

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1Tu = 0
...

Hu−1Tu = 0
Hu+1Tu = 0

...

HUTu = 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20.36)
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FromHiTu = 0 , i = 1, 2, ...,U , i �= u follows that each column vector ofTu must
be orthogonal to the corresponding row vectors of all Hi , i �= u. The solution is
obtained from a singular value decomposition of the matrix H−

u , which contains all
sub-channel matrices except Hu

H−
u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1
...

Hu−1

Hu+1
...

HU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= UuDu
(
Ṽu Vu

)H ; Du =
(

�
1
2
u 0
0 0

)
(20.37)

With Hu εCNuxM we conclude that H−
u εC(N−Nu)xM and Du εR(N−Nu)xM hold. Sup-

pose rank
[
H−

u

] = Lu , then the diagonal matrix�
1
2
u contains the Lu nonzero singular

values of H−
u and Vu owns the dimension Mx (M − Lu). The matrix

(
Ṽu Vu

)
con-

tains the right hand singular vectors ofH−
u , whereVu assembles the M − Lu vectors,

which form an orthogonal basis for the null space of H−
u . The column vectors of Tu

must be located in this null space. Consequently, the precoder can be determined by

Tu = V′
u (20.38)

composed of the first ζu eigenvectors of Vu . The described procedure has to be
executed for all Tu , u = 1, 2, ...,U . The receive vector for the user u is obtained
by inserting (20.38) into (20.34) resulting in

ru = HuV′
ucu + nu , u = 1, 2, ...,U (20.39)

The described solution is valid for the following sufficient condition on the number
of transmit and receive antennas, [5]

M > max [
U∑

i = 1
i �= u

Ni ; u = 1, 2, ...,U ] (20.40)

To obtain the symbol vector cu from (20.39) variousmethods known from single-user
MIMO transmission can be applied, such as the linear precoding techniques with a
matrix Au described in Chap.18 yielding the total precoder matrix

Tu = V′
uAu , u = 1, 2, ...,U (20.41)

The decoupling of the single-user links is not affected, because (20.32) guarantees
also HiT jA j = 0 , i �= j . Then we obtain the receive signal vector of user u from
(20.34)
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ru = HuV′
uAucu + nu , u = 1, 2, ...,U (20.42)

Example 3 addresses all numerical steps in quite some detail. The matrix Au can
be determined in different ways also to maximize the system capacity by transmit
power loading using the water filling algorithm.

Finally, it should be mentioned that the channel inversion method described in the
previous section can be applied as well for the multi-user MIMO scheme depicted in
Fig. 20.2. The precoder is then defined by the matrix T in (20.10), where the channel
matrix is given by (20.26).

20.2.3 Alternative Multi-user MIMO Precoding

As we have seen, block diagonalization can completely remove the multi-user inter-
ference. However, the system capacity is not taken into account with this procedure.
Therefore, alternative approaches try to find a good compromise between low inter-
ference and high capacity. This could be done by just minimizing the multi-user
interference rather than canceling it. Then the resulting matrix in (20.33) still shows
some nonzero off-diagonal elements. Hence, theU single-user links are not anymore
decoupled precisely and show some “leakage” to the other links. Several approaches
have been investigated, such as precoding with minimummean squared interference
or successive interference cancellation to minimize this leakage. In addition to the
precoder the receiver terminals can also be equipped with a filter and both filters
are adapted in a closed control loop between the base station and the user terminal.
These methods also have the potential to relax the stringent conditions (20.11) and
(20.40), which require an increase of the total number of transmit antennas M , if the
number of users and/or user antennas is elevated in the system.

As outlined in Chap.18, zero-forcing precoding is designed on the basis of low
noise at the receiver. Therefore precoders have been investigated, which use the
matrix HH

(
HHH + αIN

)−1
known from the single-user minimum mean squared

error (MMSE) receiver, and this modification is called “regularized channel inver-
sion”. The parameter α is used to maximize the signal-to-interference-plus-noise
ratio at the receiver, [1].

In Chap.18 we have discussed that the output of a linear precoder can generate
signals s with large magnitudes, in particular if the channel matrix is ill conditioned.
This was recognized as a general drawback of the linear precoding methods. A
remedy is achieved by the introduction of nonlinear operations, such as the dirty paper
precoder or the Tomlinson–Harashima precoder, which is able to reduce the transmit
signal level by modulo operations on the input symbols, e.g., [1, 6]. A challenge
for all precoding techniques is also the precise channel estimation combined with an
effective provision of significant channel parameters for the transmitter via a feedback
channel or adequate reciprocity conditions of the downlink and uplink channels.
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20.3 Beamforming for Multi-user Downlink

Multi-user transmit beamforming canbe considered as a special case of the previously
discussed multi-user precoding in the downlink. The block diagram in Fig. 20.2 still
holds in principle with some changes. The precoder matrix is reduced to just a
beamforming vector

Tu = tu εCMx1 ; u = 1, 2, ...,U (20.43)

The base station is still equipped with M transmit antennas, but only one symbol
stream per user is allocated. Thus, ζu = 1 holds and the symbol vector per user u is

cu = cu ; u = 1, 2, ...,U (20.44)

containing only one symbol. Although the first multi-user beamforming schemes
started with only one receive antenna per user, each user terminal can still maintain
Nu antennas for a more general case, where the total number is given by (20.2). The
individual channel from the M transmit antennas to the user terminal u is Hu and
(20.26) holds for the total channel matrix H. From (20.22) follows with (20.43) and
(20.44) the transmit signal vector

s =
U∑
u=1

tucu (20.45)

which represents the superposition of all symbols cu of the users weighted by the
different precoding vectors. The receive signal of user u is obtained from (20.28)

ru = Hutucu + Hu

U∑

i = 1
i �= u

ti ci + nu ; u = 1, 2, ...,U (20.46)

where the first term on the right hand side is the desired signalHutucu and the second
one characterizes the multi-user interference. With the same methods as discussed
in Sect. 20.2.2 the multi-user interference can be completely removed. Again, the
individual channel matricesHu must be known at the base station via a feedback link
from each user terminal, where the channel matrix is estimated.

Actually, beamforming with vectors was the first precoding technique and was
later extended to full precoding matrices. Consequently, the comments given in the
previous sections apply. In particular the condition (20.40) on the number of anten-
nas and users still holds for perfect cancellation. Again, to overcome this stringent
requirement schemes have been investigated for which the interference is only min-
imized rather than canceled using different minimization criteria, such as the mini-
mal squared interference power or the maximization of the signal-to-leakage-power
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ratio, [7, 8]. The beamforming method allows an illustrative explanation, which is
discussed in the following example.

Example 2
Consider a multi-user downlink with beamforming vectors tu εCMx1 ;
u = 1, 2, ...,U . The user terminals are equipped with Nu receive antennas, u =
1, 2, ...,U . The noise at the receivers shall be zero. Determine the transmit signal
vector, if only one user u is active and all other user symbols are zero, c j = 0 ∀ j �= u.
Find the receive signal of user u.

Solution:
From (20.45) follows s = tucu . The user u receives the signal vector ru = Hutucu ,
which is obtained from (20.46). As is well known, a matrix changes the magnitude
and the direction of a vector after multiplication. On the other hand, by selection of
tu the direction of the receive vector ru can be adjusted for a given channel matrix
Hu and we are able to steer the beam of the electro-magnetic wave in the direction
of the user u. As a consequence, the impact for the remaining users is significantly
reduced. If a second user signal c j is active, the corresponding beamforming vector
should be aligned in such a way that the receive vector r j is almost orthogonal to ru ,
which results in minimal interference. In summary, beamforming can increase the
transmission quality in a multi-user downlink.

Example 3
With this exercise we investigate the block diagonalization described in Sect. 20.2.2
in quite some detail. Consider themulti-user downlink scheme in Fig. 20.2 andExam-
ple 1with the broadcast channelmatrix (20.16). User 1 shall be servedwith twoQAM
symbols per symbol vector. Thus, ζ1 = 2 and owing to (20.20) at least N1 = 2 receive
antennas are required. For user 2 and 3 one symbol per symbol vector has to be trans-
mitted, hence ζ2 = ζ3 = 1 and N2 = N3 = 1 are given, respectively. The base station
is equipped with M = 5 antennas. The channel matrix in (20.16) is decomposed into
horizontal stripes as in (20.26), which indicate the individual channels from the M
transmit to the dedicated receive antennas of each user terminal

H1 =
(

1 0.2 −0.1 0.1 0
−0.2 1 0.1 0 0.1

)
(20.47)

H2 = (
0.1 −0.1 1 0.2 −0.1

)
(20.48)

H3 = (
0 −0.1 −0.2 1 0.2

)
(20.49)

The multi-user interference shall be canceled by individual precoders with the matri-
ces T1, T2, and T3 using the method of block diagonalization.

(a) Find the precoder matrices.
(b) Determine the receive signals. The noise shall be neglected.
(c) Reduce the inter-channel interference, if any, with an additional zero-forcing

precoder.
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Solution:
(a)
Calculation of T1

According to (20.37) we determine

H−
1 =

(
H2

H3

)
=

(
0.1 −0.1 1 0.2 −0.1
0 −0.1 −0.2 1 0.2

)
(20.50)

For the singular value decomposition a computer program is used yielding

H−
1 = U1

(
1.05 0 0 0 0
0 1.03 0 0 0

)

︸ ︷︷ ︸
D1

⎛
⎜⎜⎜⎜⎝

� � −0.98 −0.11 0.11
� � −0.97 0.97 0.18
� � 0.10 0.06 0.13
� � −0.01 0.14 −0.15
� � 0.02 −0.16 0.96

⎞
⎟⎟⎟⎟⎠

H

︸ ︷︷ ︸
(
Ṽ1 V1

)H

(20.51)

D1 incorporates two nonzero singular values. ThereforeH−
1 has full rank L1 = 2.

The M − L1 = 3 vectors on the right of
(
Ṽ1 V1

)
determine the matrix V1. Entries

indicated by � belong to Ṽ1 and are of no interest. Also the matrix U1 is not needed
in detail. Because ζ1 = 2, we only require two of the three vectors in V1 taken from
the left to determine T1,

T1 =

⎛
⎜⎜⎜⎜⎝

−0.98 −0.11
−0.97 0.97
0.10 0.06

−0.01 0.14
0.02 −0.16

⎞
⎟⎟⎟⎟⎠

(20.52)

We easily calculate the interference terms

H1T1 =
(−1.19 0.09

−0.76 0.98

)
; H2T1 = (

0.1 0
) ; H3T1 = (

0.07 0
)

(20.53)

Calculation of T2

H−
2 =

(
H1

H3

)
=

⎛
⎝

1 0.2 −0.1 0.1 0
−0.2 1 0.1 0 0.1
0 −0.1 −0.2 1 0.2

⎞
⎠ (20.54)
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H−
2 = U2

⎛
⎝
1.11 0 0 0 0
0 1.02 0 0 0
0 0 0.97 0 0

⎞
⎠

︸ ︷︷ ︸
D2

⎛
⎜⎜⎜⎜⎝

� � � 0.09 0.06
� � � −0.06 −0.10
� � � 0.96 0.20
� � � 0.22 −0.16
� � � −0.17 0.96

⎞
⎟⎟⎟⎟⎠

H

︸ ︷︷ ︸
(
Ṽ2 V2

)H

(20.55)

Three singular values are unequal to zero. Therefore H−
2 has full rank L2 = 3.

Consequently, the M − L2 = 2 vectors on the right of
(
Ṽ2 V2

)
determine the matrix

V2. Because ζ2 = 1, we just require one vector of V2 taken from the left to compose
T2,

T2 =

⎛
⎜⎜⎜⎜⎝

0.09
−0.06
0.96
0.22

−0.17

⎞
⎟⎟⎟⎟⎠

(20.56)

Then we obtain

H1T2 =
(
0
0

)
; H2T2 = 1.04 ; H3T2 = 0 (20.57)

Calculation of T3

H−
3 =

(
H1

H2

)
=

⎛
⎝

1 0.2 −0.1 0.1 0
−0.2 1 0.1 0 0.1
0.1 −0.1 1 0.2 −0.1

⎞
⎠ (20.58)

H−
3 = U3

⎛
⎝
1.05 0 0 0 0
0 1.03 0 0 0
0 0 1.02 0 0

⎞
⎠

︸ ︷︷ ︸
D3

⎛
⎜⎜⎜⎜⎝

� � � −0.11 0.03
� � � −0.01 −0.10
� � � −0.18 0.08
� � � 0.98 0.01
� � � 0.01 0.99

⎞
⎟⎟⎟⎟⎠

H

︸ ︷︷ ︸
(
Ṽ3 V3

)H

(20.59)

Three singular values are unequal to zero. Hence, H−
3 has full rank L3 = 3. The

M − L3 = 2 vectors on the right of
(
Ṽ3 V3

)
determine the matrix V3. Because

ζ3 = 1, we just require one vector of V3 taken from the left and get

T3 =

⎛
⎜⎜⎜⎜⎝

−0.11
−0.01
−0.18
0.98
0.01

⎞
⎟⎟⎟⎟⎠

(20.60)
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We easily calculate

H1T3 =
(
0
0

)
; H2T3 = 0 ; H3T3 = 1.02 (20.61)

(b)
Receive vectors
We insert the numerical results into (20.28) and obtain

⎛
⎜⎜⎝
r1
r2
r3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(−1.19 0.09
−0.76 0.98

) (
0
0

) (
0
0

)

(
0.1 0

)
1.04 0(

0.07 0
)

0 1.02

⎞
⎟⎟⎠

⎛
⎜⎜⎝
c1
c2
c3

⎞
⎟⎟⎠ (20.62)

We recognize the block diagonal structure of the combined systemmatrix. For r2 and
r3 marginal multi-user interference is present owing to numerical errors. Neverthe-
less, we clearly see that the precoders T1, T2, and T3 turn the multi-user downlink
into three single-user links, which are almost completely decoupled.
(c)
The receive signal r1 still contains inter channel interference caused by the matrix

G11 =
(−1.19 0.09

−0.76 0.98

)
(20.63)

AsG11 is a square matrix with full rank 2, we can employ the inverse as an additional
precoder in the zero-forcing sense

A1 = G−1
11 =

(−0.89 0.08
−0.69 1.08

)
(20.64)

and the combined precoding matrix for link 1 then is

TZF
1 = T1A1 =

⎛
⎜⎜⎜⎜⎝

0.95 −0.2
0.19 0.97

−0.13 0.07
−0.09 0.15
0.09 −0, 17

⎞
⎟⎟⎟⎟⎠

(20.65)

The new multi-user interference terms associated with TZF
1 then are

H1TZF
1 =

(
1 0
0 1

)
; H2TZF

1 = (
0.09 0

) ; H3TZF
1 = (

0 0
)

(20.66)
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Furthermore, we use 1
1.04T2 instead of T2 as well as 1

1.02T3 instead of T3 and obtain
from (20.62) finally

⎛
⎝
r1
r2
r3

⎞
⎠ =

⎛
⎜⎜⎝

(
1 0
0 1

) (
0
0

) (
0
0

)

(
0.09 0

)
1 0(

0 0
)

0 1

⎞
⎟⎟⎠

⎛
⎝
c1
c2
c3

⎞
⎠ (20.67)

showing that just a minor distortion of 0.09 remains in r2.

20.4 Principles of Multi-user MIMO Uplink Transmission

20.4.1 System Model of the Uplink

In this section we consider the uplink transmission from U user terminals to the
base station. The block diagram is depicted in Fig. 20.4. The scenario is similar to
Fig. 20.2, however, the transmission signals flow in the reverse direction from the
right to the left. The user terminal u is equipped with Mu transmit antennas and
allocates the QAM symbol vector cu εCMux1 to the transmit signal vector su εCMux1,
where u = 1, 2, ...,U . The combined transmit signal vector s is defined in (20.5).

The uplink channel is characterized by the channel matrix

H = (
H1 · · · Hu · · · HU

)
εCNxM (20.68)

Fig. 20.4 Multi-user MIMO uplink transmission between individual user terminals and the base
station
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which is separated into horizontal blocks Hu εCNxMu , where Hu determines the
uplink channel from the output of the Mu terminal antennas of the user u to the N
receive antennas of the base station. Please note that we use the same notation for
H and Hu as in the case of the downlink, although different in general. The total
number of transmit antennas of all the users is M and defined in (20.4). The receive
signal vector r εCNx1 is given by

r = (
r1 r2 · · · rN

)T
(20.69)

At the base station we apply linear processing using a bank of receive filters
W1, ...,WU , where one filter is associated to each user. Thus, we abandon a pre-
filter at each user terminal to keep the amount of the hardware, the software and the
power consumption of cost-conscious mobile terminals low. A higher complexity
of the base station is adequate owing to the fact that its cost is shared among all
users in the network. r is also the input of the receive filters with matrixWu εCMuxN

generating the output signal vector

yu εCMux1 (20.70)

where u = 1, 2, ...,U . Each receive filter is followed by a signal detector, which
outputs an estimate ĉu εCMux1 of the transmit symbol vector cu .

20.4.2 Receive Signal at the Base Station

From Fig. 20.4 we determine the receive signal as

r = Husu +
U∑

i = 1
i �= u

Hi si + n (20.71)

and recognize the desired signalHusu for user u, which is corrupted by themulti-user
interference given by the second term on the right hand side and the noise n at the
base station. Please note that according to Fig. 20.4 r = r1 = r2 = · · · = rU holds.
The similarity with the downlink in (20.28) needs no explanation. In principle, the
base station has to perform a multi-user detection.
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20.4.3 Zero-Forcing Receiver for Multi-user Uplink
Interference Reduction

The filter output signal for user u at the base station is

yu = Wur = WuHusu + Wu

U∑

i = 1
i �= u

Hi si + Wun (20.72)

The multi-user interference can be written with matrix notation as

Wu

U∑

i = 1
i �= u

Hi si = WuBubu (20.73)

with

Bu = (H1 · · ·Hu−1Hu+1 · · ·HU ) ; bu = (s1 · · · su−1su+1 · · · sU )T (20.74)

Below we prove that the zero-forcing receive filter

WZF
u = HH

u

(
IN − BuB+

u

)
(20.75)

can completely remove the multi-user interference independently of s, where

B+
u = (

BH
u Bu

)−1
BH
u (20.76)

is the pseudo inverse matrix of Bu . Please note, BH
u Bu must have full rank, otherwise

its inverse does not exist. Under this prerequisite

WZF
u Bu = HH

u

(
IN − BuB+

u

)
Bu = 0 (20.77)

holds and we obtain the filter output signal

yu = WZF
u Husu + WZF

u n ; u = 1, 2, ...,U (20.78)

Apparently, the multi-user MIMO uplink turns intoU decoupled single-user MIMO
links defined by (20.78). yu still suffers some inter-channel interference given by
WZF

u Hu . This impairment can be reduced by conventional single-user design meth-
ods, such as an additional zero-forcing or MMSE filter, which follows the WZF

u
filter and both can be combined to one unit. The last stage in the uplink processing
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in Fig. 20.4 is the decision device, which will mostly be a single-user maximum
likelihood detector.

Motivated by the fact that the multi-user MIMO uplink can be turned into a
parallel arrangement of single-user connections opens up several alternativemethods,
which try to find a good compromise between interference and noise reduction, in
principle. Hence, a target is to maximize the signal-to-interference-plus-noise ratio
at the receiver. Linear methods furnish a minimum mean squared error (MMSE).
Then a maximum likelihood detection per user can follow. Other approaches employ
additional precoders at the transmitter, which are adapted jointly with the receive
filters.Dependingon the statistics of the noise and the interference anoptimal solution
is the joint multi-user maximum likelihood detection, yet expensive owing to the
complexity, which grows exponentially as a function of the system parameters.

Proof of (20.77)
With (20.75) and (20.76) follows from the left hand side of (20.77)

WZF
u Bu = HH

u

(
Bu − Bu

(
BH
u Bu

)−1
BH
u Bu

)
=HH

u (Bu − Bu) = 0 and the proof is

finished.

20.5 Outlook: Massive MIMO for Multi-user Applications

The ever increasing demand for high speed communications has motivated the
research on methods to further increase the system capacity or spectral efficiency
measured in bit/s per Hz bandwidth of a wireless network. A cell is composed of a
base station with M antenna elements andU user equipment with in total N antenna
elements. Marzetta [9] investigated theoretically the effect of a drastic increase of
the number of base station antennas, M → ∞, yet his findings are also applicable
for M < ∞. He showed the large potential, which was then verified by computer
simulation and with first test beds, [10–13]. With the term massive MIMO or large
MIMO we characterize a multi-user MIMO scheme with a very large number of
antennas at the base station and in total at the user equipment side, typically more
than one hundred. Existing antenna masts for the 4G cellular networks carry already
four MIMO antennas with about twenty antenna element arrays each. There are also
ideas to integrate a large number of planar antennas into the facade of buildings or
into the wallpaper in the in-house area. Research and development are ongoing in
this field. Of course, the hardware complexity as well as the cost play an important
part. In the following we just give a survey on the principles.

First, we consider the downlink scenario in Fig. 20.2 with M transmit antennas at
the base station and U user equipment. The total number N of antennas at the user
side is defined in (20.2). To determine the system capacity we can apply (17.57) in

Sect. 17.2 and find C = ∑P
i=1 log2

(
1 + λi ES

σ2
n

)
, where P ≤ min {M, N } is the rank

of the channel matrix in (20.26). Assume M > N and a channel matrix H with full
rank N . Then follows P = N and the system capacity for the cell
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C =
N∑
i=1

log2

(
1 + λi ES

σ2
n

)
(20.79)

increases with the total number N of user equipment antennas and thus with the
number U of users. We observe that M must ascend as well owing to M > N .
Hence, with a massive MIMO antenna at the base station we can serve a large
number of users and achieve a high system capacity. If the base station operates
with beamforming, narrow beams between the base station and the individual user
equipment can be generated showing very small overlap. This also accounts for a
higher energy efficiency and transmission quality.

The situation is similar in the case of an uplink transmission depicted in principle
in Fig. 20.4. Please note that M and N change their role according to our definitions,
where the total number M of antennas at the user side is then given by (20.4) and N is
the number of base station antennas. “Asymptotic favorable transmission” has been
observed meaning that 1

N h
H
u h j , u �= j tends to zero for very large N in the case of

a Rayleigh fading and a line of sight channel. hu = Hu εCNx1 are the vectors of the
channel matrix H in (20.68), if only one antenna per user equipment is present. The
property 1

N h
H
u h j ≈ 0 can be used by a maximum ratio combiner at the base station

with the matrixWu = hH
u , u = 1, 2, ...,U to minimize the multi-user interference.

In the research and development field on massive MIMO for multi-user systems
work is ongoing to circumvent some obstacles, such as pilot contamination, hardware
complexity and channel hardening. Pilot contamination can be present in a multi-cell
system, in which the pilot signal of a user is reused in neighboring cells for other
users, in cases where not sufficient orthogonal pilot signals are present. Then the
users with the same pilots cannot be differentiated and thus cause impairments.

The large number of antenna elements increases the hardware complexity. Special
designs for antennas and radio-frequency amplifiers are subject to intensive work.
As a workaround, antenna switching techniques can be introduced and only the
instantaneously active antenna is connected to an amplifier. This will reduce the
number of amplifiers compared to the number of antennas.

Furthermore, asymptotic channel hardening is an observed effect, when the chan-
nel gain gets approximately constant for an increased number N of base station
antennas,

‖hu‖2
E

[‖hu‖2
] → 1 for N → ∞ (20.80)

Thus, individual channels between the base station and the user equipment tend to
become deterministic. However,many solutions for all these obstacles are in progress
so that massiveMIMOwill become an integral part of a variety of wireless networks,
[14].



References 327

References

1. Spencer, Q.H., Peel, C.B., Swindlehurst, A.L., Haardt, M.: An introduction to the multi-user
MIMO downlink. IEEE Commun. Mag. (2004)

2. Khalid, F., Speidel, J.: Advances in MIMO techniques for mobile communications - a survey.
Int. J. Commun., Netw. Syst. Sci. 3 (2010)

3. Choi, L.-U., Murch, R.D.: A downlink decomposition transmit preprocessing technique for
multi-user MIMO systems. Proc. IST Mob. Wirel. Telecommun. Summit (2002)

4. Spencer, Q., Haardt, M.: Capacity and downlink transmission algorithms for a multi-user
MIMO channel. In: Proceedings of 36th Asilomar Conference on Signals, Systems, and Com-
puters (2002)

5. Choi, L.-U., Murch, R.D.: A transmit preprocessing technique for multiuser MIMO systems
using a decomposition approach. IEEE Trans. Wirel. Commun. (2004)

6. Fischer, R., Windpassinger, C., Lampe, A., Huber, J.: Space-time transmission using
Tomlinson-Harashima precoding. In: 4th ITG- Conference on Source and Channel Coding
(2002)

7. Tarighat, A., Sadek, M., Sayed, A.: A multi-user beamforming scheme for downlink MIMO
channels based on maximizing signal-to-leakage ratios. In: Proceedings IEEE International
Conference on Accoustic, Speech, and Signal Processing (ICASSP) (2005)

8. Bjoernson, E., Bengtsson, M., Ottersten, B.: Optimal multi-user transmit beamforming: a dif-
ficult problem with a simple solution structure. IEEE Signal Proc. Mag. (2014)

9. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station anten-
nas. IEEE Trans. Wirel. Commun. (2010)

10. Hoydis, J., ten Brink, S., Debbah, M.: Massive MIMO in the UL/DL of cellular networks: How
many antennas do we need? IEEE J. Select. Areas Commun. (2013)

11. Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next generation
wireless systems. IEEE Commun. Mag. 52 (2014)

12. Marzetta, T., Larsson, E.G., Yang, H., Ngo, H.Q.: Fundamentals ofMassiveMIMO.Cambridge
University Press (2016)

13. Bjoernson, E., Larsson, E.G., Marzetta, T.L.: Massive MIMO: Ten myths and one critical
question. IEEE Commun. Mag. (2016)

14. Bjoernson, E., Hoydis, J., Sanguinetti, L.: Massive MIMO Networks: Spectral, Energy, and
Hardware Efficiency. Now Publishers (2017)



Appendix A
Some Fundamentals of Random Variables
and Stochastic Processes

In the following we give a brief overview on random variables and stochastic pro-
cesses. It should be understood as a summary of the most important findings, which
are needed in digital communications and signal processing. For some lemmas the
derivations and proofs are outlined. Beyond that the reader is referred to dedicated
textbooks such as [1, 2].

A.1 Continuous Random Variables

We start with some basics on random variables. Let X be a real-valued random
variable and x an event.

A.1.1 Probability Density Function and Probability

p(x) is denoted as probability density function (in short density function or density)
with the property p(x) ≥ 0 and

∫ ∞
−∞ p(x)dx = 1. We call F(x) = ∫ x

−∞ p(u)du the
(cumulative) distribution function. F(b) is the probability of the event that the random
variable is located in the interval −∞ < X < b and we write with the probability
operator P,

P [X < b] = P [−∞ < X < b] =
∫ b

−∞
p(x)dx (A.1)

from which we conclude

P [a < X < b] =
∫ b

a
p(x)dx = F(b) − F(a) (A.2)
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Please note, if the density function p(x) contains no Dirac impulses at the boarders
a and b, then also the equal sign holds for the interval. With b → ∞ we obtain

P [X > a] = P [a < X < ∞] =
∫ ∞

a
p(x)dx (A.3)

A.1.2 Two Random Variables

Joint Probability Density Function

For the two random variables X1 and X2 we define the (two-dimensional) joint prob-
ability density function p12(x1, x2). The density functions of the individual random
variables Xi are pi (xi ) , i = 1, 2 and called marginal probability density functions.
They are calculated as

p1(x1) =
∫ ∞

−∞
p12(x1, x2)dx2 ; p2(x2) =

∫ ∞

−∞
p12(x1, x2)dx1 (A.4)

Conditional Probability Density Function

We define p1/2 (x1 | X2 = x2) or with short hand notation p1/2 (x1 | x2) as the con-
ditional probability density function of X1 under the condition X2 = x2.

p1/2 (x1 | x2) = p12(x1, x2)

p2(x2)
(A.5)

Conditional Probabilities

With the conditional densities we can calculate conditional probabilities

P [X1 < x1 | X2 = x2] =
∫ x1

−∞
p1/2 (u1 | x2) du1 (A.6)

Bayes Theorem

The Bayes theorem relates the two conditional densities as

p1/2 (x1 | x2) = p2/1 (x2 | x1) p1(x1)
p2(x2)

, p2(x2) �= 0 (A.7)
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Statistical Independence of Random Variables

We call two random variables statistically independent, if and only if p1/2 (x1 | x2) =
p1(x1) is independent of x2. Then follows from (A.5)

p12(x1, x2) = p1(x1)p2(x2) (A.8)

A.2 Statistical Parameters for Random Variables

A.2.1 Expected Value

The expected value (or in short expectation) of a real-valued random variable X with
density function p(x) is defined as

E[X ] =
∫ ∞

−∞
xp(x)dx = mx (A.9)

E[X ] is also called first moment or mean value of X . We see that E[...] is a linear
operator.

A.2.2 Function of a Random Variable, nth Moment

Let g(...) be a function of the random variable X yielding the new random variable
Y = g(X). Then

E[Y ] = E [g(X)] =
∫ ∞

−∞
g(x)p(x)dx (A.10)

holds. On that basis we can define the nth moment of X as

E[Xn] =
∫ ∞

−∞
xn p(x)dx (A.11)

and in particular for n = 2 we obtain E[X2], which is the quadratic mean and phys-
ically the mean power of the random variable X .

The nth central moment is defined as

E
[
(X − mx)

n
] =

∫ ∞

−∞
(x − mx)

n p(x)dx (A.12)

which yields for n = 2 the variance of X



332 Appendix A: Some Fundamentals of Random Variables …

var[X ] = σ2
x = E

[
(X − mx )

2
]

(A.13)

σx is known as standard deviation. It is straightforward to show that

σ2
x = E

[
X2] − m2

x (A.14)

is true. If the random variable has zero mean, then the variance equals the mean
power.

A.2.3 Covariance and Correlation of Two Random Variables

For two real-valued random variables Xi with E [Xi ] = mi , the marginal density
functions pi (xi ) ; i = 1, 2, and the joint density function p12(x1, x2) we define the
joint central moment of order (k, n) as

E
[
(X1 − m1)

k (X2 − m2)
n
] =

∫ ∞

−∞

∫ ∞

−∞
(x1 − m1)

k (x2 − m2)
n p12(x1, x2)dx1dx2

(A.15)
from which follows for k = n = 1 the covariance between X1 and X2 as

μ12 = E [(X1 − m1) (X2 − m2)] =
∫ ∞
−∞

∫ ∞
−∞

(x1 − m1) (x2 − m2) p12(x1, x2)dx1dx2

(A.16)
It is straightforward to show that

μ12 = E [X1X2] − m1m2 (A.17)

holds.
The correlation coefficient is defined as

ρ12 = μ12

σ1σ2
= E [X1X2] − m1m2

σ1σ2
(A.18)

Two randomvariables X1 and X2 are called uncorrelated, if and only if the covariance
is zero

μ12 = 0 (A.19)

which yields ρ12 = 01 and finally

E [X1X2] = m1m2 (A.20)

1This is the reason why ρ12 is called correlation coefficient.
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Consequently, if wewould like to seewhether two randomvariables are uncorrelated,
we have to check, if their covariance is zero.

The Correlation between X1 and X2 is defined as

c12 = E [X1X2] =
∫ ∞

−∞

∫ ∞

−∞
x1x2 p12(x1, x2)dx1dx2 (A.21)

We call two random variables orthogonal, if

E [X1X2] = 0 (A.22)

Let X1 and X2 be two random variables each with zero mean m1 = m2 = 0. If they
are uncorrelated, then their covariance (A.19) is zero and from (A.20) follows for
the correlation c12 = E [X1X2] = 0.

Let X1 and X2 be statistically independent random variables. Then (A.8) holds
and from (A.21) follows

E [X1X2] =
∫ ∞

−∞

[∫ ∞

−∞
x1 p1(x1)dx1

]

x2 p2(x2)dx2 = E [X1]E [X2] = m1m2

(A.23)
which yields ρ12 = 0. Hence, we conclude that statistically independent random
variables are also uncorrelated. In general, the reverse is not true.

A.3 Stochastic Processes

A.3.1 Definition of a Stochastic Process

For engineers a stochastic process is best explained with the help of a physical
experiment. Consider a large number N→ ∞ of identical resistors, each resistor i
generating a randomnoise voltage Xi (t) as a function of time t , where i = 1, 2, ..., N .
The stochastic process X (t) = {X1(t), X2(t), ..., XN (t)} represents the family also
called ensemble of all voltages and Xi (t) is the i th sample function or i th realization
of the process. All sample functions (i = 1, 2, ..., N ) belonging to the process have
the same statistical parameters, such as probability density function, autocorrelation
etc. To characterize the stochastic process statistical parameters can be defined in
two ways, namely along the time axis of a dedicated sample function Xi (t) or over
all sample functions of X (t) at a fixed time instant tν . Then X (tν) is a continuous
random variable. In our measuring campaign we can further look at the stochastic
process X (t) at different time instants t1 < t2 < t3 < ... < tM yielding a sequence
of random variables

X (t1), X (t2), .., X (tM ) (A.24)
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and the stochastic process X (t) can be regarded for each fixed time instant t as a
random variable. Consequently, the corresponding definitions for random variables
can be applied to describe the statistical parameters of the stochastic process. The
set of random variables in (A.24) is characterized by its joint probability density
function

p1M
(
xt1 , xt2 , ..., xtM

)
(A.25)

where xtν = x(tν) is the short hand notation of an event of the random variable
X (tν) ; ν = 1, 2, ..., M . In general, the probability density function depends on the
time instances t1,t2,..., tM , if the process is non-stationary, see Sect.A.3.4.

A.3.2 Autocovariance, Auto-, and Cross-Correlation
Function

Single Stochastic Process X(t)

The autocovariance functionμxx (t1, t2) of a stochastic process X (t) is defined similar
to the covariance (A.16) of two random variables X (t1) and X (t2)

μxx (t1, t2) = E [(X (t1) − mx (t1)) (X (t2) − mx (t2))] =
= ∫ ∞

−∞
∫ ∞
−∞

(
xt1 − mx (t1)

) (
xt2 − mx (t2)

)
p12

(
xt1 , xt2

)
dxt1dxt2

(A.26)

where p12
(
xt1 , xt2

)
is the joint probability density function of X (t1) and X (t2).

The expected values are mx (ti ) = E [X (ti )] ; i = 1, 2. It is straightforward to
show that

μxx (t1, t2) = E [X (t1)X (t2)] − mx(t1)mx (t2) (A.27)

The autocorrelation function of the process X (t) is defined similar to (A.21) as

Rxx (t1, t2) = E [X (t1)X (t2)] =
∫ ∞

−∞

∫ ∞

−∞
xt1xt2 p12

(
xt1 , xt2

)
dxt1dxt2 (A.28)

Two Stochastic Processes X(t) and Y(t)

We consider two stochastic processes X (t) and Y (t) with the corresponding random
variables

X (ti ) ; i = 1, 2, ..., Mx ; t1 < t2 < t3... (A.29)

Y (t̃ j ) ; j = 1, 2, ..., My ; t̃1 < t̃2 < t̃3... (A.30)

The joint set of random variables is characterized by the joint probability density
function
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pxy
(
xt1 , xt2 , ..., xtMx

; yt̃1 , yt̃2 , ..., yt̃My

)
(A.31)

where xtν = x(tν) and yt̃ν = y(t̃ν). Then the cross-correlation function can be defined
as

Rxy(t1, t2) = E [X (t1)Y (t2)] =
∫ ∞

−∞

∫ ∞

−∞
xt1 yt2 pxy

(
xt1 , yt2

)
dxt1dyt2 (A.32)

where we have renamed t̃2 as t2.

A.3.3 Time-Domain Parameters and Ergodicity

As already alluded, we can define parameters for a stochastic process X (t) along the
time axis of a dedicated sample function Xi (t) or over the ensemble at a fixed time
instant tν , yielding X (tν). As a consequence, we differentiate between time-domain
averages (or moments) on one hand and ensemble values also called expected values
on the other hand. On the basis of a sample function Xi (t), in general complex, we
get the following time-domain parameters:

Mean Value

x̄ = lim
T0→∞

1

2T0

∫ T0

−T0

xi (t)dt (A.33)

Autocovariance Function

cxx (τ ) = lim
T0→∞

1

2T0

∫ T0

−T0

(xi (t) − x̄)∗ (xi (t + τ ) − x̄) dt (A.34)

Autocorrelation Function

Rxx (τ ) = lim
T0→∞

1

2T0

∫ T0

−T0

x∗
i (t)xi (t + τ )dt (A.35)

For τ = 0 follows the Mean Power

Rxx (0) = lim
T0→∞

1

2T0

∫ T0

−T0

|xi (t)|2 dt (A.36)

Ergodicity

A wide sense stationary stochastic process (see Sect. A.3.4) is called ergodic, if
all statistical parameters calculated on the basis of the ensemble and with respect
to time of any sample function X j (t) are identical. Thus, an ergodic process can
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be statistically described by just one realization. In engineering ergodicity is often
assumed as a hypothesis, because the experimental proof in many cases is difficult,
although important. In the following we exclusively consider ergodic processes and
focus on the ensemble values.

A.3.4 Stationary Stochastic Process

Strict Sense Stationary (SSS) Stochastic Process

• A stochastic process X (t) is “strict sense stationary” (SSS), if X (t) and
X (t + a) ∀ a have the same statistical parameters. In other words their statistics
do not depend on time. This holds for all probability density functions such as
(A.25) and all M ,

p1M (x(t1), x(t2), .., x(tM )) = p1M (x(t1 + a), x(t2 + a), .., x(tM + a)) (A.37)

• Two stochastic processes X (t) and Y (t) are jointly strict sense stationary, if the
joint statistics of X (t) and Y (t) are equal to the joint statistics of X (t + a) and
Y (t + a), ∀ a, respectively.

• A complex-valued stochastic process Z(t) = X (t) + jY (t) is strict sense station-
ary, if this condition holds jointly for the real and imaginary part.

Wide Sense Stationary (WSS) Stochastic Process

The conditions for a “wide sense stationary” (WSS) process are much weaker than
for a strict sense stationary process, as they just impose conditions on the first
and second order moments. Higher moments are not touched. From (A.37) follows
that p1

(
xt1

) = p1
(
xt1+a

) ∀ a with xtν = x(tν) as before. Consequently, the expected
value is constant. Furthermore (A.37) results in p12

(
xt1 , xt2

) = p12
(
xt1+a, xt2+a

) ∀a
and thus the density function, the second moments and the autocorrelation function
depend only on a time difference t2 − t1 = τ .
Definition:

• A stochastic process X (t) is wide sense stationary, if its expected value is constant

E[X ] = mx = const. (A.38)

• and if its autocorrelation function just depends on a time difference τ = t2 − t1.
Then follows from (A.28) by using t2 − t1 = τ and replacing t1 by the fixed time
instant t

Rxx (t1, t2) = Rxx (t, t + τ ) = E [X (t)X (t + τ )] = Rxx (τ ) (A.39)

where Rxx (τ ) is a short hand notation.
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For a complex stochastic process we define

Rxx (τ ) = E
[
X∗(t)X (t + τ )

]
(A.40)

In general the autocorrelation function exhibits the following properties

Rxx (−τ ) = R∗
xx (τ ) ; Rxx (0) ≥ |Rxx (τ )| (A.41)

Rxx (0) = E[|X (t)|2] is always a real value and is called the mean power of X (t).
We also see that a SSS stochastic process is also WSS.

A.3.5 Uncorrelated WSS Stochastic Processes

A Single Process X(t)

To check whether a WSS stochastic process X (t) is uncorrelated, we have to extend
the definition of the covariance of a random variable in (A.16) to a process.

The autocovariance function of the WSS process X (t) is thus given by

Cxx (t, t + τ ) = Cxx (τ ) = E
[(
X∗(t) − m∗

x

)
(X (t + τ ) − mx )

] = Rxx (τ ) − |mx |2
(A.42)

where mx = E [X (t)] is the expected value of X (t).
The autocovariance function Cxx (τ ) specifies the expected value of the product of
the two random variables X∗(t) − m∗

x and X (t + τ ) − mx for any given time shift
τ �= 0. Similar to (A.19) we can say that the two random variables are uncorrelated, if
Cxx (τ ) = 0. However, we have to exclude τ = 0, because in this case both random
variables just differ in the sign of the imaginary part and of course are strongly
correlated. Consequently, we can formulate the following meaningful definition:

A WSS stochastic process X (t) is uncorrelated, if its autocovariance function
meets the condition

Cxx (τ )

{
�= 0 ; τ = 0

= 0 ; τ �= 0
(A.43)

For the autocorrelation function of an uncorrelated process then follows with (A.43)
and Rxx (0) = E

[|X (t)|2]

Rxx (τ ) =
{
E

[|X (t)|2] ; τ = 0

|mx |2 ; τ �= 0
(A.44)

Now, consider a WSS process with zero mean, mx = 0. Then we find from (A.44)
that this process is uncorrelated, if
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Rxx (τ ) = 0 ∀ τ �= 0 (A.45)

Two Processes X(t) and Y(t)

The statistical interrelation between twoWSS processes X (t) and Y (t) is defined by
the cross-covariance function similar to (A.16)

Cxy(τ ) = E
[
(X (t + τ ) − mx )

(
Y ∗(t) − m∗

y

)] =

= Rxy(τ ) − mxm
∗
y (A.46)

with mx = E [X (t)], my = E [Y (t)], and the cross-correlation function

Rxy(τ ) = E
[
X (t + τ )Y ∗(t)

]
(A.47)

Using similar arguments as beforewithCxx (τ ), but no exception for τ = 0 is required
here, we define:

Two (WSS) processes X (t) and Y (t) are uncorrelated if

Cxy(τ ) = 0 ∀ τ (A.48)

Then follows from (A.46)

Rxy(τ ) = mxm
∗
y ∀ τ (A.49)

If at least one stochastic process has zero mean, then the processes are referred to as
orthogonal

Rxy(τ ) = 0 ∀ τ (A.50)

It is straightforward to show that the cross-correlation function has the following
symmetry property

Rxy(τ ) = R∗
yx (−τ ) (A.51)

A.3.6 Statistically Independent Processes

Two stochastic processes X (t) and Y (t) are statistically independent, if and only if
for any choice of ti and t̃ j as well as Mx and My

pxy
(
xt1 , xt2 , ..., xtMx

; yt̃1 , yt̃2 , ..., yt̃My

)
= px

(
xt1 , xt2 , ..., xtMx

)
py

(
yt̃1 , yt̃2 , ..., yt̃My

)

(A.52)

holds,where px
(
xt1 , xt2 , ..., xtMx

)
and py

(
yt̃1 , yt̃2 , ..., yt̃My

)
are the joint density func-

tions of xt1 , xt2 , ..., xtMx
and yt̃1 , yt̃2 , ..., yt̃My

, respectively. From the statistical inde-



Appendix A: Some Fundamentals of Random Variables … 339

pendence follows that the two processes are uncorrelated, but this does not hold
reversely.

In summary, two WSS stochastic processes X (t) and Y (t) with joint probability
density function pxy(x, y) are statistically independent, if and only if

pxy(x, y) = px (x)py(y) (A.53)

where px (x) and py(y) are themarginal probability density functions of the stochastic
processes X (t) and Y (t), respectively.

A.4 Stochastic Processes and Linear Time-Invariant
Systems

A.4.1 Input–Output Relation of Linear System in Time
Domain

Let h(t) be the (deterministic) impulse response of a linear time-invariant system.
At its input the sample function x(t) of a WSS stochastic process X (t) is active.
Throughout the following we always consider stationary processes. Then the out-
put process Y (t) with sample function y(t) is also stationary [1] and given by the
convolution

y(t) = x(t) ∗ h(t) =
∫ ∞

−∞
x(u)h(t − u)du (A.54)

However, as the stochastic signals cannot be expressed by a mathematical formula
we are not in a position to explore this equation further and have to find a statistical
description using autocorrelation functions and power spectral densities.

A.4.2 Wiener–Lee Theorem for Input–Output
Autocorrelation Functions

Let Rxx (τ ) and Ryy(τ ) be the autocorrelation functions of the input and output
stochastic process x(t) and y(t), respectively. We calculate the autocorrelation func-
tion Rhh(τ ) of the deterministic (and thus also ergodic) impulse response h(t) accord-
ing to (A.35)

Rhh(τ ) = E
[
h∗(t)h(t + τ )

] =
∫ ∞

−∞
h∗(t)h(t + τ )dt (A.55)
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where we have dropped limT0→∞ 1
2T0

, because h(t) is a deterministic signal with

finite energy Rhh(0) = ∫ ∞
−∞ |h(t)|2 dt . The integral for Rhh(τ ) can be considered as

the convolution between h(τ ) and h∗(−τ )

Rhh(τ ) = h(τ ) ∗ h∗(−τ ) (A.56)

The Wiener–Lee theorem describes the relation between the input and the output
autocorrelation function of a linear time-invariant system as follows

Ryy(τ ) = Rhh(τ ) ∗ Rxx (τ ) = h(τ ) ∗ h∗(−τ ) ∗ Rxx (τ ) (A.57)

A.4.3 Wiener–Khintchine Theorem for Power Spectral
Density

For communications engineers spectra of signals are important to get an idea about the
required bandwidth. For deterministic signals with finite energy the Fourier spectrum
exists according to the sufficient Dirichlet condition. However, a random signal x(t)
has infinite energy, because in general

lim
T0→∞

∫ T0

−T0

|x(t)|2 dt → ∞ (A.58)

On the other hand an ergodic stochastic process X (t) exhibits finite mean power
which is

E
[|X |2] = Rxx (0) = lim

T0→∞
1

2T0

∫ T0

−T0

|x(t)|2 dt < ∞ (A.59)

TheWiener–Khintchine theorem provides the power spectral density Sxx ( f ) of X (t)
by means of the Fourier transform of the autocorrelation function of X (t),

Rxx (τ ) � Sxx ( f ) =
∫ ∞

−∞
Rxx (τ )e−j2π f τdτ (A.60)

From the symmetry Rxx (−τ ) = R∗
xx (τ ) follows the property that Sxx ( f ) is real and

moreover
Sxx ( f ) ≥ 0 (A.61)

holds. With h(t) � H( f ) and h∗(−t) � H∗( f ) follows from (A.56) with the
Fourier transform

Rhh(τ ) � Shh( f ) = |H( f )|2 (A.62)
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andwith Ryy(τ ) � Syy( f )weobtain the power spectral density of the output process
Y (t) with (A.57)

Syy( f ) = |H( f )|2 Sxx ( f ) (A.63)

With the inverse Fourier transform we obtain the from (A.60)

Rxx (τ ) =
∫ ∞

−∞
Sxx ( f )e

j2π f τd f (A.64)

and for τ = 0 the mean power of X (t)

Rxx (0) =
∫ ∞

−∞
Sxx ( f )d f (A.65)

Example:
White noise X (t) is defined by its constant power spectral density,

Sxx ( f ) = a = const. ∀ f (A.66)

Consequently, the autocorrelation function is

Rxx (τ ) = aδ(τ ) (A.67)

and we see that Rxx (τ ) = 0 ∀ τ �= 0. Thus, all pairs of random variables X (t) and
X (t + τ ) are uncorrelated for τ �= 0. We observe that a is also the mean power of
X (t).

A.5 Modulation and Demodulation of a Stationary
Stochastic Process

A.5.1 Modulation

We consider a WSS stationary process X (t), which shall be modulated with the
carrier ej2π f0t . Then we obtain

Y (t) = X (t)ej2π f0t (A.68)

X (t) shall have the autocorrelation function Rxx (τ ) = E [X∗(t)X (t + τ )]. For the
autocorrelation function of the process Y (t) we obtain

Ryy(τ ) = E
[
Y ∗(t)Y (t + τ )

] = E
[
X (t + τ )X∗(t)ej2π f0τ

]
(A.69)
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Noting that ej2π f0τ is deterministic yields the final result

Ryy(τ ) = Rxx (τ )ej2π f0τ (A.70)

This shows that the modulation of a stationary stochastic process translates into the
modulation of its autocorrelation function. With the frequency shifting property of
the Fourier transform we obtain

Ryy(τ ) � Syy( f ) = Sxx ( f − f0) (A.71)

outlining that the modulation of X (t) results in a frequency shift of its power spectral
density Sxx ( f ) by the carrier frequency f0.

A.5.2 Demodulation

We consider the modulated stationary process Y (t) and apply the synchronous
demodulationwith the carrier e−j2π f0t resulting in the demodulated stochastic process
Z(t),

Z(t) = Y (t)e−j2π f0t = X (t) (A.72)

Consequently, we obtain

Rzz(τ ) = Ryy(τ )e−j2π f0τ = Rxx (τ ) (A.73)

and
Szz( f ) = Syy( f + f0) = Sxx ( f ) (A.74)

We also see thatmodulation and demodulation does not change themean power of the
processes, becausewithE[|X |2] = Rxx (0),E[|Y |2] = Ryy(0), andE[|Z |2] = Rzz(0)
follows

E
[|X |2] = E

[|Y |2] = E
[|Z |2] (A.75)

A.6 Stationary, Real-Valued Bandpass Process

As is well known, e.g. [3], any real-valued bandpass signal can be written in general
as

n(t) = x(t) cos(2π f0t) − y(t) sin(2π f0t) (A.76)

where x(t) and y(t) are real-valued lowpass signals with cut-off frequency fc. This
model shall be adopted to a stochastic bandpass process N (t) with power spectral
density Snn( f ) andwith the passband in the range of f0 − fc ≤ | f | ≤ f0 + fc, where
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f0 > fc is the center frequency. X (t) and Y (t) shall be WSS lowpass processes with
the power spectral densities

Sxx ( f ) ; Syy( f )

{
�= 0 ; | f | ≤ fc
= 0 ; else

(A.77)

A.6.1 Condition for Stationarity

We would like to know under which conditions this bandpass process N (t) is wide
sense stationary. Therefore we have to check whether E[N (t)] = const. holds and
whether the autocorrelation function

Rnn(τ ) = E [N (t)N (t + τ )] (A.78)

is independent of t .

Expected Value

With (A.76) follows

E[N (t)] = E[X (t)] cos(2π f0t) − E[Y (t)] sin(2π f0t) (A.79)

E[N (t)] = const. ∀ t holds, if

E[X (t)] = E[Y (t)] = 0 (A.80)

Consequently from (A.79) also follows

E[N (t)] = 0 (A.81)

Autocorrelation Function
Next, please consider (A.78). By applying basic trigonometric formulas and using
the fact, that terms with sin(), cos(), and the arguments 2π f0t and 2π f0(t + τ ) are
non-random and therefore can be taken out from the expectation operator, we obtain
finally with (A.76)

Rnn(τ ) = 1
2

[
Rxx (τ ) + Ryy(τ )

]
cos(2π f0τ )+

+ 1
2

[
Rxx (τ ) − Ryy(τ )

]
cos(4π f0t + 2π f0τ )−

− 1
2

[
Rxy(τ ) − Ryx (τ )

]
sin(2π f0τ )−

− 1
2

[
Rxy(τ ) + Ryx (τ )

]
sin(4π f0t + 2π f0τ )

(A.82)

To get Rnn(τ ) independent of t the following conditions must hold
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Rxx (τ ) = Ryy(τ ) (A.83)

and
Rxy(τ ) = −Ryx (τ ) (A.84)

Then we obtain from (A.82)

Rnn(τ ) = Rxx (τ ) cos(2π f0τ ) − Rxy(τ ) sin(2π f0τ ) (A.85)

Knowing that an autocorrelation function provides the mean power of the process
for τ = 0 we conclude from (A.85) and (A.83)

E
[|N (t)|2] = E

[|X (t)|2] = E
[|Y (t)|2] (A.86)

Furthermore, we can find another property by applying (A.51) on (A.84) yielding

Ryx (−τ ) = −Ryx (τ ) (A.87)

which indicates that Ryx (τ ) is an odd function. Consequently, Ryx (0) = 0 must be
true and the property (A.84) yields

Rxy(0) = 0 (A.88)

Thismeans that the randomvariables X (t) and Y (t) for any given t are not correlated.
Please note that Rxy(0) = 0 does not require X (t + τ ) and Y (t) to be uncorrelated
for any τ . However, if the zero mean processes X (t) and Y (t) are assumed to be
uncorrelated for any τ , Rxy(τ ) = 0 ∀ τ holds and from (A.85) follows

Rnn(τ ) = Rxx (τ ) cos(2π f0τ ) (A.89)

Using the Wiener–Khintchine theorem (A.60) and the frequency shifting property
of the Fourier transform we obtain from (A.89) the power spectral density of the
process N (t)

Snn( f ) = 1

2
[Sxx ( f − f0) + Sxx ( f + f0)] (A.90)

which clearly exhibits a bandpass shape.

A.6.2 Summary on Stationary Bandpass Process

AWSS bandpass process N (t) exhibits zero mean and is composed of the in-phase
component X (t) and the quadrature component Y (t), which are zero mean WSS
lowpass processes. Moreover, N (t), X (t), and Y (t) have the same mean power.
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For the cross-correlation holds Rxy(0) = E[X (t)Y (t)] = 0, which means that the
random variables X (t) and Y (t) are uncorrelated for any fixed t .

A.6.3 Complex Envelope of a Bandpass Process

It is straightforward to show that (A.76) can be written as

N (t) = Re
[
Z(t)ej2π f0t

]
(A.91)

where
Z(t) = X (t) + jY (t) (A.92)

is called the complex envelope. If X (t) and Y (t) are WSS lowpass processes, then
Z(t) is aWSS complex lowpass process. It is easy to show that for the autocorrelation
function of Z(t) follows with (A.83) and (A.84)

Rzz(τ ) = E
[
Z∗(t)Z(t + τ )

] = 2
[
Rxx (τ ) − jRxy(τ )

]
(A.93)

A.7 Two-Dimensional Gaussian Random Process

A.7.1 Joint Gaussian Probability Density Function

We consider now two real-valued SSS Gaussian processes X (t) and Y (t). For any
fixed t they represent randomvariables [1] with theGaussian joint probability density
function

pxy(x, y) = 1

2πσxσy

√
1 − ρ2

e
− (x−mx )2σ2y−2(x−mx )(y−my )ρσx σy+(y−my)2σ2x

2σ2x σ2y(1−ρ2) (A.94)

with the mean values mx and my ,
the variances

σ2
x = E[X2] − m2

x ; σ2
y = E[Y 2] − m2

y (A.95)

the normalized cross-covariance (correlation coefficient)

ρ = Rxy(0) − mxmy

σxσy
(A.96)

and the marginal probability density function of X (t)
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px (x) = 1√
2πσx

e
− (x−mx )2

2σ2x (A.97)

as well as of Y (t)

py(y) = 1√
2πσy

e
− (y−my)2

2σ2y (A.98)

A.7.2 Uncorrelated Gaussian Random Processes

Let X (t) and Y (t) be two WSS, real and uncorrelated Gaussian processes. Then
Rxy(τ ) = mxmy holds according to (A.49). This is valid for any τ , including τ = 0.
With Rxy(0) = mxmy follows from (A.96)

ρ = 0 (A.99)

and consequently from (A.94) with (A.97) and (A.98) follows

pxy(x, y) = px (x)py(y) (A.100)

Hence, we conclude that uncorrelated Gaussian processes X (t) and Y (t) are even
statistically independent.

A.7.3 Complex Gaussian Random Process

Let X (t) and Y (t) be WSS real-valued Gaussian lowpass processes with proper-
ties given in Sect.A.7.1. Then they constitute a complex Gaussian random lowpass
process

Z(t) = X (t) + jY (t) (A.101)

A.7.4 Gaussian Bandpass Process

Any real-valued bandpass process in general is given by (A.76)

n(t) = x(t) cos(2π f0t) − y(t) sin(2π f0t)

If X (t) and Y (t) are stationary Gaussian lowpass processes with properties given in
Sect.A.7.1, we denote N (t) as aGaussian bandpass process.We know fromSect.A.6
that N (t), X (t), and Y (t) have zero mean and identical mean power. Furthermore,
if the two Gaussian lowpass processes X (t) and Y (t) are uncorrelated then they are
even statistically independent.
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A.8 Sampling of a Stochastic Process

The receive signal in a digital communication system is a random process. Before
detection the signal is sampled. In this section the main basics for sampling of a
stochastic process are summarized.

A.8.1 Prerequisites

X (t) shall be a WSS stochastic process. Then X (t) and X (t + a) ∀ a have the same
density function, because px (x) is independent of t . Consequently, after sampling
with a sampling frequency fS = 1

T the resulting samples X (kT ) exhibit the same
probability density function px (x) as X (t). Furthermore, X (kT ) = XS(k) can be
considered as a sequence of equidistant random variables of the the process X (t),
which constitute a stationary discrete-time stochastic process, where k εZ is the
discrete-time.

A.8.2 Auto- and Cross-Correlation Function
of a Discrete-Time Stochastic Process

X (kT ) for every fixed k εZ can be considered as a randomvariable. Consequently,we
apply (A.40) to get the autocorrelation function as Rxx (τ ) = E[X∗(kT )X (kT + τ )].
Obviously, X (kT ) = XS(k) is only defined for discrete-time arguments. Therefore
Rxx (τ ) can take on defined values only for τ = lT with l εZ and the autocorrelation
function (autocorrelation sequence) of XS(k) will become a function of a discrete
variable to be be written as

RxSxS (l) = E[X∗
S(k)XS(k + l)] (A.102)

Interestingly
RxSxS (l) = Rxx (lT ) (A.103)

can also be considered as the sampled version of the continuous-time autocorrelation
function Rxx (τ ). It is straightforward to show that the properties of (A.41) hold
similarly as

RxSxS (−l) = R∗
xS xS (l) ; RxSxS (0) ≥ ∣

∣RxSxS (l)
∣
∣ (A.104)

With the same arguments as for (A.47) we can define the cross-correlation function
of two discrete-time WSS stochastic processes XS(k) and YS(k) as

RxS yS (l) = E[XS(k + l)Y ∗
S (k)] (A.105)
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Symmetry properties and conditions for uncorrelated processes are similar as for the
continuous time processes.

A.8.3 Power Spectral Density

According to the Wiener–Khintchine theorem we find the power density spectrum
SxSxS ( f )of theWSSstochastic process XS(k)by theFourier transformof the sampled
autocorrelation function. Applying ideal sampling on Rxx (τ ) yields2

Rxx,S(τ ) = Rxx (τ )

∞∑

l=−∞
T δ(τ − lT ) (A.106)

With the Fourier correspondence

∞∑

l=−∞
T δ(τ − lT ) �

∞∑

m=−∞
δ( f − m

1

T
) (A.107)

and with Rxx (τ ) � Sxx ( f ) we obtain from (A.106)

Rxx,S(τ ) � SxSxS ( f ) = Sxx ( f ) ∗
∞∑

m=−∞
δ( f − m

1

T
)

which results after executing the convolution integral in

SxSxS ( f ) =
∞∑

m=−∞
Sxx ( f − m

1

T
) (A.108)

We see that the spectrum is a periodic repetition of the baseband power spectral
density Sxx ( f ), where the period is given by the sampling frequency 1

T .

2We multiply the Dirac impulses by T to ensure that the autocorrelation functions on both sides of
the equation have the same physical dimension.



Appendix B
Some Fundamentals of Linear Algebra

B.1 Eigenvalue Decomposition

In this section we review some properties of the eigenvalue decomposition of a
matrix A, assuming for the moment that such a decomposition shall exist for the
given matrix. The eigenvalue-eigenvector problem of linear algebra can be stated as
follows: Given aNxN matrixAεCNxN with in general complex entries ai j , a column
vector viεCNx1, and a scalar factor λi . We are looking for the vector Avi , which is
equal to the vector λivi

Avi = λivi ; i = 1, ..., N (B.1)

with vi �= 0, otherwise we would have the trivial solution, which is of no interest. A
matrix can change the length (by its determinant) and the direction of the vector after
multiplication. Thus, we are looking for the vector Avi with the same direction as
vi but with the length changed by λi . The non-trivial solutions λi and vi are called
eigenvalues and eigenvectors of the matrix, respectively. The set of all eigenvalues
is denoted as spectrum and the absolute value of the largest eigenvalue is referred to
as spectral radius. We can rewrite (B.1) with matrix notation as

AV = V� (B.2)

where
V = (

v1 v2 ... vN
)

εCNxN (B.3)

is the matrix of eigenvectors and

� = diag (λ1,λ2, ...,λN ) (B.4)

© Springer Nature Switzerland AG 2021
J. Speidel, Introduction to Digital Communications,
Signals and Communication Technology,
https://doi.org/10.1007/978-3-030-67357-4

349

https://doi.org/10.1007/978-3-030-67357-4


350 Appendix B: Some Fundamentals of Linear Algebra

is a diagonal matrix composed of the eigenvalues of A. To solve the eigenvalue-
eigenvector problem (B.1) can be written as

Avi − λivi = 0 ⇐⇒ (A − λi IN ) vi = 0 ; i = 1, ..., N (B.5)

This system of homogeneous equations has a non-trivial solution only if

det (A − λi IN ) = 0 ; i = 1, ..., N (B.6)

with the NxN identity matrix IN . Equation (B.6) is called characteristic equation for
the matrixA and the left-hand side is the characteristic polynomial with degree N as
a function of λi . We can conclude that the eigenvalues of the matrix A are the roots
of the characteristic polynomial. After all λi are calculated from (B.6) we can insert
each into (B.5) and find the corresponding eigenvectors vi . Note that the solution for
each vi contains at least one free parameter, because (B.5) is a homogeneous system
of equation and thus the rank of the matrix A − λi IN is

rank (A − λi IN ) ≤ N − 1 (B.7)

The free parameters have to be used to normalize all eigenvectors such that

vH
i vi = ‖vi‖2 = 1 ; i = 1, ..., N (B.8)

Please note that the resulting eigenvectors associated to different eigenvalues are
non-orthogonal in general, i.e.

vH
i v j = 0 ; i = 1, ..., N ; i �= j (B.9)

does not hold. Equation (B.9) is true for Hermiteian and symmetric matrices with
real entries, see Sect.B.3. On the other hand we will see later that the singular value
decomposition of a matrix yields pairwise orthogonal eigenvectors. The components
of the eigenvectors are in general complex, where vH

i = (
v∗
i

)T = (
vTi

)∗
is the conju-

gate transpose vector (Hermiteian vector) to vi . The inverse matrix V−1 is obtained
from the relation

V−1V = VV−1 = IN (B.10)

TakingVwe can now transformA into diagonal form�. The procedure is also called
principal axis transformation or eigenvalue decomposition ofA. For that purpose we
multiply (B.2) from the left by V−1and obtain with (B.10)

V−1AV = � (B.11)

V is therefore called transform matrix. We see that there is no need for orthogonal
eigenvectors. If we multiply (B.11) in a first step from the left with V and secondly



Appendix B: Some Fundamentals of Linear Algebra 351

from the right with V−1 we get
A = V�V−1 (B.12)

which is another form of the eigenvalue decomposition or diagonalization ofA. Such
an eigenvalue decomposition will not exist for all square matrices, in other words not
all square matrices are diagonalizable. In any case the inverse matrixV−1 must exist.
Alternative formulation are: V must be a non-singular matrix or all eigenvectors vi
are linearly independent of each other. In the following let us pinpoint some special
NxN matrices, which are diagonalizable, and which are of importance for MIMO
systems.

B.2 Normal Matrices

By definition A is a normal matrix, if and only if

AHA = AAH (B.13)

AH is called the Hermiteian matrix3 or conjugate transpose matrix of A. The Her-
miteian operator (...)H is defined as

AH = (
A∗)T = (AT )∗ (B.14)

It can be shown [4] that every normal matrix is unitarily diagonalizable, i.e., an
eigenvalue decomposition exists, where the transform matrix V is a unitary matrix
defined by

VHV = VVH = IN ⇐⇒ VH = V−1 (B.15)

Then from (B.11) follows
� = VHAV (B.16)

It should be noted that (B.13) is only a sufficient and not a necessary condition for
diagonalizable matrices. That means there are diagonalizable matrices which are not

normal. An example is the matrix

(
0 1
4 0

)

. Please note that the Hermiteian operator

can also be applied to non-square matrices AεCMxN and BεCNxM with the property
similar to the transposition operation

(AB)H = BHAH (B.17)

3Charles Hermite, French mathematician.
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B.3 Hermiteian Matrices

Definition of a Hermiteian Matrix

By definition, A εCNxN is called a Hermiteian matrix, if and only if

AH = A (B.18)

It is easy to show that a Hermiteian matrix is also a normal matrix. For the proof, we
insert (B.18) into (B.13) and obtain

AHA = AA = AAH (B.19)

As a consequence, Hermiteian matrices are also unitarily diagonalizable given by
(B.16).

Quadratic Form

Let A εCNxN be a Hermiteian matrix with eigenvalues λi ; i = 1, ..., N . Then this
matrix can be defined as

A = aaH (B.20)

with the column vector a εCNx1. With the column vector z εCNx1 we define the
quadratic form

zHAz (B.21)

which has the property
zHAz ≥ 0 ∀ z �= 0 (B.22)

For the proof we insert (B.20) into (B.22) and find

zHAz = zHaaHz = zHa
(
zHa

)H = ∣
∣zHa

∣
∣2 ≥ 0 ∀ z �= 0 (B.23)

Eigenvalues of a Hermiteian Matrix

All eigenvalues λi of a Hermiteian matrix are positive, i.e.

λi ≥ 0 ; i = 1, ..., N (B.24)

This implies that all eigenvalues of a Hermiteian matrix are real. For the proof let vi
be the eigenvector associated with the eigenvalue λi . Then

Avi = λivi (B.25)

The corresponding positive semi-definite quadratic form according to (B.23) then is
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vH
i Avi = vH

i λivi = λi ‖vi‖2 ≥ 0 (B.26)

from which we conclude the proposition (B.24).

Eigenvectors of a Hermiteian Matrix

Lemma
The eigenvectors vi εCNx1 and v j εC

Nx1 of a Hermiteian matrix A associated with
two different non-zero eigenvalues λi �=λ j �= 0 are (pairwise) orthogonal, i.e.

vH
i v j = 0 ; i = 1, ..., N ; i �= j (B.27)

For the proof we use the definition of the eigenvectors Avi = λivi and Av j = λ jv j .
Then we calculate

vH
i v jλi = (λivi )H v j = (Avi )H v j = vH

i A
Hv j = vH

i Av j = vH
i v jλ j (B.28)

and the result is vH
i v jλi = vH

i v jλ j . As the eigenvalues are unequal and unequal to
zero, proposition (B.27) follows and the proof is finished.

Please note that (B.27) also holds, if the eigenvectors are not normalized, which
can be easily proven by checking (B.27) with the vectors αivi and α jv j .

Orthogonal and normalized vectors are called orthonormal. For the matrix V of
eigenvectors in (B.3) then follows

VHV =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

vH
1

vH
2
...

vH
N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(
v1 v2 ... vN

) = IN (B.29)

and with (B.10) we conclude that V is unitary, VH = V−1.

B.4 Unitary Matrices

Definition
VεCNxN is called a unitary matrix, if and only if

V−1 = VH (B.30)
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The inverse matrix V−1 is the solution of

V−1V = VV−1 = IN (B.31)

Consequently, with (B.30) follows

VHV = VVH = IN (B.32)

V is composed of orthonormal column vectors.

V = [
v1 v2 ... vN

]
(B.33)

satisfying (B.8) and (B.9), i.e.

vH
i v j =

{
1 ; i = j = 1, ..., N

0 ; i , j = 1, ..., N ; i �= j
(B.34)

Properties

• An inverse matrix is defined only for a square matrix. Therefore, all unitary matri-
ces are square matrices.

• (B.32) is also the property of a normal matrix. Consequently, unitary matrices
are a subset of normal matrices and thus unitarily diagonalizable. With a unitary
transform matrix V the eigenvalue decomposition of (B.12) can be written as

A = V�VH (B.35)

• All eigenvalues �i of a unitary matrix VεCNxN have absolute values equal to 1

|�i | = 1 ; i = 1, ..., N (B.36)

Proof: We calculate the scalar product of the two vectors and obtain with (B.32)

(Vvi )H Vvi = vH
i V

HVvi = ‖vi‖2 (B.37)

On the other hand the eigenvalue-eigenvector condition

Vvi = �ivi (B.38)

holds. The left-hand side of (B.37) yields with (B.38)

(Vvi )H Vvi = �∗
i �iv

H
i vi = |�i |2 ‖vi‖2 (B.39)
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The left-hand sides of (B.37) and (B.39) are identical. Consequently, this must
also hold for the right-hand sides

‖vi‖2 = |�i |2 ‖vi‖2 (B.40)

from which the proposition (B.36) directly follows and the proof is finalized.
• The input signal s and output signal y =Vs of a system described by a unitary
matrix V have the same mean power

E
[‖y‖2] = E

[‖s‖2] (B.41)

Proof:

E
[‖y‖2] = E

[
(Vs)H Vs

] = E
[
sHVHVs

] = E
[
sH IN s

] = E
[‖s‖2] (B.42)

B.5 Norm of a Vector, Norm of a Matrix

The squared norm of a vector v = (
v1 v2 · · · vN

)T
with complex components is

given by the sum of the squared absolute values of the components

‖v‖2 =
N∑

i=1

|vi |2 (B.43)

The squared norm (Frobenius norm) of a matrix A εCMxN with complex entries ai j
is given by the sum of the squared absolute values of the entries

‖A‖2F =
M∑

i=1

N∑

j=1

∣
∣ai j

∣
∣2 =

N∑

j=1

∥
∥a j

∥
∥2

(B.44)

Alternatively, the Frobenius norm can be calculated as the sum of the squared norms
of the column vectors a j or row vectors of A, respectively.

B.6 Singular Value Decomposition

The Procedure
The Singular Value Decomposition (SVD) of a matrix HεCNxM is given by

H = UDVH (B.45)
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with

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
λ1 0 0 · · · 0 0 · · · 0
0

√
λ2 0 · · · 0 0 · · · 0

. . .

0 0 0 · · · √
λP 0 · · · 0

0 0 0 · · · 0 0 · · · 0
... · · · . . .

0 0 0 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

�
1
2

P 0 · · · 0
0 0 · · · 0
...

... · · · ...

0 0 · · · 0

⎞

⎟
⎟
⎟
⎠

εRNxM (B.46)

λ1 ≥ λ2 ≥ · · · λP > 0, and λP+1 = λP+2 = · · · = λN = 0 are the N eigenvalues of
the Hermiteian matrix

QN = HHH εCNxN (B.47)

and
P = rank (QN ) (B.48)

is the rank of the matrix QN . In general the rank of a matrix HεCNxM is defined as
the number of linearly independent rows or columns of the matrix, thus

rank (H) ≤ min{M, N } (B.49)

From this definition follows for (B.48)

P ≤ N (B.50)

√
λi ; i = 1, ..., P are called the singular values of the matrix H.

UεCNxN and VεCMxM are unitary matrices, thus

U−1 = UH ; V−1 = VH (B.51)

hold. Furthermore, U is the matrix of the normalized eigenvectors with respect to
the eigenvalues λ1,λ2, . . . ,λN . Let

�N = diag (λ1,λ2, ...,λP , 0, ..., 0) εRNxN (B.52)

be a diagonalmatrix composed of the eigenvalues ofQN . Then the eigenvalue decom-
position of QN is

UHQNU = �N (B.53)

One method to find the matrix V in (B.45) is the eigenvalue decomposition of the
matrix

QM = HHH εCMxM (B.54)
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which is
VHQMV = �M (B.55)

with the diagonal matrix

�M = diag (λ1,λ2, ...,λP , 0, ..., 0) εRMxM (B.56)

V is thematrix of eigenvectors ofQM with respect to the eigenvaluesλ1,λ2, . . . ,λM .

Note that the eigenvalues λ1,λ2, . . . ,λP are the same as for the matrix QN . Fur-
thermore

rank (QM) = rank (QN ) = P (B.57)

holds and �M as well as �N contain the same diagonal matrix

�P = diag (λ1,λ2, ...,λP) εRPxP (B.58)

of the P eigenvalues, which are unequal to zero. Note that in (B.46)

�
1
2

P = diag
(√

λ1,
√

λ2, ...,
√

λP

)
(B.59)

holds.

Notes

• In contrast to the eigenvalue decomposition, which is only feasible for square
matrices (M = N ), the SVD in (B.45) can be done for any matrix HεCNxM with
arbitrary M and N .

• Exercise: Consider the SVD of a square matrix H εCMxM .

• The matrix D in (B.46) contains the square matrix �
1
2

P εRPxP defined in (B.59).
As the remaining elements in D are zero, the SVD can also be formulated with

D = �
1
2

P , a non-square matrices U εCNxP , and V εCMxP .

Proof of SVD Lemma
Proof of (B.45) and (B.46). We prove that with the eigenvalue decomposition (B.53)
ofQN andwith a unitarymatrixV εCMxM the proposition (B.45)with (B.46) follows.
First we easily see that QN in (B.47) is a Hermiteian matrix, i.e. QN = QH

N holds.
We know from Sects. B.2 and B.3 that for any Hermiteian matrix an eigenvalue
decomposition exists according to (B.53). By inserting (B.47) we obtain

UHHHHU =�N (B.60)

Now we introduce the following identity matrix I = VVH making use of the prereq-
uisite (B.51) that V is a unitary matrix, which yields

UHHVVHHHU = UHHV
(
UHHV

)H = �N (B.61)
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Next we decompose the diagonal matrix on the right-hand side into the product of
two matrices

�N = DDH (B.62)

Inserting (B.62) into (B.61) results in

UHHV
(
UHHV

)H = DDH (B.63)

and by comparison of the left- and right-hand part we obtain

UHHV = D (B.64)

from which we conclude the proposition H = UDVH and the proof ends. The only
condition we have imposed so far onV εCMxM is the requirement that V is a unitary
matrix.Moreover we see that the derived SVDholds for arbitrarymatricesH εCNxM .

Proof of (B.55)

We now prove that V εCMxM can be obtained by the eigenvalue decomposition of
QM = HHH. Assume that the singular value decomposition ofH is given by (B.45).
From this equation follows by applying the Hermiteian operation on both sides

HH = VDHUH (B.65)

Multiplying (B.65) from the right-hand sidewith (B.45) and knowing thatUHU = IN
results in

HHH = VDHUHUDVH = VDHDVH (B.66)

From (B.46) follows
DHD = �M (B.67)

and we obtain from (B.66)

QM = HHH = V�MVH (B.68)

From (B.68) follows bymultiplicationwithVH andV directly the eigenvalue decom-
position VHQMV = �M of QM in (B.55). Consequently, V must be the matrix of
eigenvectors associated to the eigenvalues given in �M . As QM is a Hermiteian
matrix, we know from Sect. B.3 that V is unitary. Furthermore, we see from (B.68)
and (B.53) together with (B.52) and (B.56) that QM and QN have the same posi-
tive eigenvalues λ1,λ2, ...,λP and that their remaining eigenvalues are zero. This
finalizes the proof.
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B.7 Some Lemmas of Determinants

The proofs can be found in [4].
In the following, we assume “compatible” matrices A, B, C, and I, which means

that their dimensions allow multiplication and addition.

• Determinant of the product of two matrices

det (AB) = det (A) det (B) (B.69)

• Determinant of the sum of matrices

det (A + BC) = det (A + CB) ; if AB = BA (B.70)

• Determinant of the sum of matrices with cyclic permutation

det (I + ABC) = det (I + BCA) = det (I + CAB) (B.71)

• Let λ1,λ2, ...,λN be the eigenvalues of the matrix A εCNxN . Then

det (A) = λ1λ2, ...,λN (B.72)

B.8 Trace of a Matrix

Definition of Trace
Given the square matrix

A = (aik) εCNxN (B.73)

The trace of A is defined as

tr (A) = a11 + a22 + . . . + aNN (B.74)

With a scalar factor α follows

tr (αA) = α tr (A) (B.75)

Note, for a non-square matrix the trace does not exist, because there is no main
diagonal. The proof of the following Lemmas is straightforward.

Cyclic Permutation
LetA ε CNxM ; B εCMxN andC εCNxN . Consequently, the productABC is anNxN
square matrix. Then
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tr (ABC) = tr (BCA) = tr (CAB) �= tr (ACB) (B.76)

In particular
tr (AB) = tr (BA) (B.77)

This also holds for M = N .

Trace of the Sum of Matrices
Let A εCNxN and B εCNxN be square matrices of the same dimension. Then

tr (A + B) = tr (A) + tr (B) (B.78)

With (B.77) follows

tr (AB − BA) = 0 (B.79)

Trace and Eigenvalues
Let λ1,λ2, ...,λN be the eigenvalues of the matrix A εCNxN . Then

tr (A) =
N∑

i=1

λi (B.80)

and

tr (A−1) =
N∑

i=1

λ−1
i (B.81)

For the latter, the eigenvalues must be unequal to zero.

B.9 Differentiation of a Scalar Function f (Z) with Respect
to a Matrix Z

For the proof see [5].

Definition
Differentiation of a scalar function with respect to a matrixZ is a short-hand notation
meaning that the scalar function is partially differentiated with respect to all matrix
elements of Z and arranged in a matrix. Example:

Z =
(
z11 z12 z13
z21 z22 z23

)

; f (Z) = f (z11, z12, z13, z21, z22, z23) ; zik εC (B.82)

Obviously, f (Z) is a multi-variate scalar function of z11, ...,z23. Then we define
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∂ f

∂Z∗ =
⎛

⎜
⎝

∂ f
∂z∗

11

∂ f
∂z∗

12

∂ f
∂z∗

13

∂ f
∂z∗

21

∂ f
∂z∗

22

∂ f
∂z∗

23

⎞

⎟
⎠ (B.83)

For complex variables zik we define

∂ f

∂z∗
ik

= 1

2

(
∂ f

∂Re (zik)
+ j

∂ f

∂Im (zik)

)

(B.84)

Differentiation of the Trace of a Matrix with Respect to a Matrix
We start with the differentiation of a constant α

∂α

∂Z∗ = 0 ; Z εCNxM ; α εC (B.85)

Please note in the following that the argument of tr (...) has to be a square matrix.

∂tr (ZH )

∂Z∗ = IN ; Z εCNxN (B.86)

∂tr (Z)

∂Z∗ = 0 ; Z εCNxN (B.87)

∂tr (AZH )

∂Z∗ = A ; A εCNxM ; Z εCNxM ; AZH εCNxN (B.88)

∂tr (AZ)

∂Z∗ = 0 ; A εCMxN ; Z εCNxM ; AZ εCMxM (B.89)

∂tr (ZZH )

∂Z∗ = Z ; Z εCNxM ; ZZH εCNxN (B.90)

∂tr (AZZH )

∂Z∗ = AZ ; A εCNxN ; Z εCNxM ; AZZH εCNxN (B.91)

With cyclic permutation Lemma (B.76) we obtain from (B.91)

∂tr (ZZHA)

∂Z∗ = ∂tr (AZZH )

∂Z∗ = AZ ; A εCNxN ; Z εCNxM ; ZZHA εCNxN

(B.92)
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∂tr (ZAZHB)

∂Z∗ = BZA ; A εCMxM ; Z εCNxM ; B εCNxN ; ZAZHB εCNxN

(B.93)
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Cross-power spectral density, 169
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Dead path, 43
Delay, 65
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Delay time, 123
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Demodulation of stochastic process, 342
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Diagnosis, 23
Diagonal form, 101
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Digital Multitone, 116
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Dirac impulse, 48
Dirty paper precoder, 316
Discrete Fourier Transform, 99
Discrete-time carrier, 106
Discrete-time delay spread function h(n,m),

105
Discrete-time equivalent baseband system

model, 14, 30

Discrete-Time Fourier Transform (DTFT),
107

Discrete-time, time-variant system, 130
Distributivity, 143
Doppler effect, 47
Doppler power spectrum, 172
Doppler shift, 72
Doppler spread function, 69, 151
Doppler-variant impulse response, 150
Doppler-variant transfer function, 151
Down-sampling, 108
Dynamic range, 23

E
Eigenmode decomposition, 239, 252
Eigenmodes, 102
Eigenmode system, 242
Eigenvalue decomposition, 349
Eigenvalues, 254, 349, 359, 360
Eigenvectors, 99, 349
Equal gain combiner, 224
Equalization, 93
Equalizer, 45
Equivalent baseband, 11, 13
Equivalent baseband system model, 182
Equivalent model, 101
Equivalent time-variant baseband system, 57
Equivalent time-variant multipath baseband

system, 68
Ergodic capacity, 266
Ergodicity, 335
Euler’s integral, 79
EXIT chart, 302
Expected value, 331
Exponential covariance model, 198
Eye diagram, 23

F
Fast Fourier Transform (FFT), 103
Fiber optic transmission, 104
Filter bank, 116
Finite Impulse Response (FIR), 87, 186
Finite impulse response channel model, 186
Fixed networks, 121
Forward error correction, 4
Frequency-Division Multiplex (FDM), 103,

104
Frequency flat channel, 189
Frequency selective fading, 75
Frobenius norm, 213, 355
Function of random variable, 331
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G
Gamma function, 79
Gaussian bandpass process, 346
Gaussian joint probability density function,

345
Gaussian multipath model, 77
Gaussian noise, 26, 28
Gaussian process, 345
Generation 3G/UMTS/IMT2000, 104
Generation 4G/LTE, 104
Generation 5G, 104

H
Hermiteian matrix, 351, 352
Hermiteian operator, 351
Horizontal eye opening, 23

I
Identity matrix, 93, 350
IEEE 802.11, 305
i.i.d. Gaussian MIMO channel, 189
Ill conditioned matrix, 316
Impulse response, 48, 125
Input-output relation, 162
Inter-block interference, 91, 92
Intercarrier interference, 109
Inter-channel interference, 202, 211, 272,

275
Intersymbol interference, 17
Intersymbol interference, time-variant, 60
Inverse Discrete Fourier Transform, 99
Iterative MIMO detection, 301

J
Jakes’ model, 80
Joint central moment, 332
Joint probability density function, 330

K
Kronecker MIMO channel model, 194

L
Lagrange method, 260
Lagrange multiplier, 261
Layered space-time (BLAST), 297
Layered space-time (D- BLAST), 300
Layered space-time (H-BLAST), 299
Layered space-time (V-BLAST), 297
Leakage, 316

Likelihood function, 31
Likelihood probability density function, 41
Linear combiner, 221
Linearity, 138
Linear MIMO receivers, 201
Linear time-variant systems, 125

M
Mapper, 4
Massive MIMO, 325
Matrix notation, 88
Matrix of eigenvectors, 349
Maximum a-posterior probability detection,

37
Maximum likelihood detection, 31
Maximum likelihood detector, 230, 232
Maximum likelihood MIMO receiver, 229,

231
Maximum likelihood sequence detection,

39, 41
Maximum likelihood sequence estimation,

41
Maximum ratio combiner, 222
Mean noise power, 26
Mean power, 331
MIMO operation modes, 202
MIMO precoding, 269
MIMO prefilter, 269
MIMO soft demapping, 302
Minimum mean squared error receiver, 216
MMSE precoder, 274
MMSE receiver, 216
MMSE receiver matrix, 218
Mobile receiver, 71
Modified Bessel function, 78
Modified impulse response, 122, 123
Modified time-variant impulse response, 128
Modulation of stochastic process, 341
Modulator, 6
Moore-Penrose inverse, 206
Multicarrier modulation, 103
Multipath model, 65
Multipath propagation, 63
Multiple Input Multiple Output (MIMO),

179, 184
Multiple Input Single Output (MISO), 184,

287
Multi-user detection, 323
Multi-user interference, 306, 313
Multi-user maximum likelihood detection,

325
Multi-user MIMO, 305, 306
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