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Preface

We want to understand the world around us. Society and some of its
most brilliant minds invest considerable energy and resources in
finding out the laws and the origin of the universe, exposing us to
exotic concepts such as big bangs and string theories. For this
enterprise, researchers measure all sorts of signals from outer space
through huge telescopes and satellites. In science fiction movies
these devices pick up signals from extraterrestrial beings, but in
reality the signals inform us about what physical events happen very
far away around other stars and in other galaxies.

Humankind, or at least the physicists among us, is interested
not only in the big and the large, such as the borders of the universe,
but also in the small and the submicroscopic. We need to know what
happens at the smallest as much as at the largest scale before we
can truly understand the physical world. For this small scale,
scientists make inferences based on signals from events happening
at the subatomic level. Ironically, the smaller the scale, the larger the
apparatus that physicists need to use to detect these events. The
current state of the art is the Large Hadron Collider, which detected
the signal allowing scientists to infer the existence of the Higgs
boson.

This book is about other signals, signals that are perhaps even
more interesting. Of course outer space is great, as is picking up
signals from an unimaginably small particle using a machine large
and complicated enough to make every human nerd drool. However,



there is one thing we as humans want to get a grip on even more
than our environment, and that is ourselves. We want to understand
and control ourselves. For this, we have to look where our “self” is
situated, and that is in our head. It turns out that the head, and more
specifically the brain, also emits all sorts of signals. This text is about
these signals from our brain and how to measure them.

We must immediately warn the reader that these brain signals
are not simple to understand and not easy to measure. Much must
be learned. Measuring signals from outer space is complicated and
involves armies of physicists and engineers, but we also need to
learn some facts about physics and engineering to understand how
we can measure brain signals. We need bits and pieces of
knowledge from biology, neurophysiology, electricity, engineering,
advanced statistics, radiology, neurology, cognitive science, and
even philosophy. Getting the complete picture from brain signals
requires you to take a truly interdisciplinary viewpoint. You are, it is
hoped, ready for this.



Aims of This Text
The goal of this text is to bring students from a wide background to
the point where they can read human neuroscience papers and
understand all sections, including methodology – that is, how a
technique works and why it was chosen, data analysis, and
interpretation of the results. It will take hard work, but it is worth it.
We avoid complexity as much as possible, and you should not worry
about complicated formulas. For example, you do not need a physics
degree to understand the concepts of physics as they are introduced
in this book. Rather, our intent is that a motivated student who has
successfully obtained an academic bachelor’s degree in a scientific
discipline should be able to grasp most of this book.

With this knowledge in your backpack, you as a reader will have
what it takes to add human brain imaging to your own thinking, in
whatever remote subject area you are interested in (e.g.,
psychology, economics, social sciences, law) and whatever type of
neuroscience that might be most relevant to you (e.g., cognitive
neuroscience, clinical neuroscience, educational neuroscience,
neuroeconomics). And who knows, if you are particularly
adventurous, the provision of just enough details about how the
techniques are implemented and how the data are analyzed might
bring you to the point where you want to do such research yourself.
In that case, this book should be a perfect primer.



Key Features
We have included the following features to aid students and
instructors in getting the most out of this text:

Learning objectives are listed at the beginning of each
chapter.

Further reading suggestions are included, along with
explanations of their relevance.

Chapter summaries are provided at the end of each chapter
to recap the key points that students should be aware of.

Review questions are included to test knowledge as part of
homework or self-study.

A detailed glossary is supplied, with all key words also
highlighted in bold throughout the text.

Online resources include lecture slides, answers to the
review questions, and links to further tutorials and useful
websites.



Choice of Topics
This book covers the most popular neuroimaging techniques at a
level of detail that takes into account the following trade-off: On the
one hand, we want to avoid unnecessary details to make sure that
the book as a whole can be read as part of a normal course or as an
introduction to a multi-methods lab environment rather than used as
an encyclopedia-style reference. On the other hand, we aim to
include sufficient details to provide the student with a relatively in-
depth understanding of all the different domains related to human
neuroimaging – indeed, also including physics, neuroscience,
statistics, and cognition. For example, we do not abstain from a
chapter on the physics of MRI, but we focus on the basics needed to
understand a typical methods section in a paper and to know the
parameters that a non-physicist researcher might alter during
scanning. As another example, we include many examples of
applications of imaging in various research fields in order to illustrate
basic concepts, but we do not aim to provide a review of any specific
field (no chapter such as “the cognitive neuroscience of attention”).
Nevertheless, the knowledge acquired in this book will be
tremendously helpful for a better understanding of the many books
that focus on specific fields, including many of the contributions in
the series to which this book belongs: Cambridge Fundamentals of
Neuroscience in Psychology.

Our overview of brain imaging does not shy away from criticism.
Criticism can be voiced at many levels, from the general level of



philosophy of science (“Can brain imaging really help us understand
the human mind?”) all the way down to very specific criticisms about
a particular statistical method. Yet readers will notice that there is no
chapter called “Criticisms of Human Brain Imaging.” This choice
reflects our belief that a thorough, in-depth discussion of the various
pros and cons of particular approaches or methods requires
sufficient knowledge about conceptual as well as technical issues.
Thus, at the appropriate time and place, we present many important
discussions, including neuro-hypes, neo-phrenology, brain activity in
a dead salmon, reverse inference, open science or lack thereof, the
limitations of group studies, the trade-off between spatial and
temporal resolution, the relative value of different methods, and why
a neuroscientist interested in neurons would measure blood flow,
among others. This approach should help the reader not only to
become an expert in terms of conceptual and technical knowledge,
but also to apply this knowledge to develop a critical mindset when
reading about and applying human brain imaging.
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Chapter 1

Introduction and Overview
◈



Learning Objectives

Many paintings depict human figures with an aura of radiation
around their head. This tradition dates back to classic Greek and
Roman times, continues through early Christian art, and has
remained in the art of painters such as Vincent Van Gogh and even
pop culture. The depicted aura is typically reserved for figures with a
particular status, such as holy saints or, a bit more mundane, the
individual painter.

In real life, we cannot see the signals emitted by someone’s
brain. Nevertheless, the signals are there in every person, saint or
not, young or old. Sometimes the underlying physical principles

Understanding why it is important to learn more about brain
imaging methods

Understanding the general basis of the signals emitted by the
brain

Acquiring basic knowledge of how information transfer works
in the brain

Understanding why we can measure brain signals in a
noninvasive way

Acquiring a bird’s-eye view of the many different brain
imaging methods

Understanding the basic dimensions on which brain imaging
methods differ and the major groups to which they belong



sound very complex, such as “magnetic resonance imaging,” but at
other times these principles come surprisingly close to an optic
signal, as depicted in the painted auras.

In the past few decades, scientists’ ability to measure brain
signals has improved radically. A first surge came with the advent of
electroencephalography (EEG) after 1930. Since about 1970, clinical
radiology has been blessed with radiographic methods such as so-
called computerized tomography. A third wave occurred in 1980–
1990, when brain imaging techniques such as positron emission
tomography and functional magnetic resonance imaging were
developed, resulting in the Decade of the Brain (1990–2000). The
application of these brain imaging methods has only increased in
frequency since then, across all scientific disciplines investigating
mind, brain, and behavior. This is the case not only in fields such as
radiology and neurology, but also psychology, educational science,
social science, linguistics, economy, and law have started
considering neuroscientific evidence as highly relevant empirical
observations. As always, when new methods become popular, this
evolution has not been without criticism. Nevertheless, the mere fact
that so many disciplines have started to pay attention to brain
imaging makes it essential that students in these fields acquire some
basic knowledge about the methodology.

In this chapter, we start by explaining why it is important for
everyone, including the lay public, to understand a few basic facts
about these brain signals, their origin, and how they are measured.
We then introduce some important pieces of background knowledge
about how the brain works: how neurons communicate, where they



find their energy, and how they are organized. We briefly introduce
the full spectrum of brain imaging methods discussed in this book
and describe the dimensions on which they differ.



1.1 Brain Enthusiasm: The Relevance of
Distinguishing Fact from Fiction

Some basic knowledge about brain imaging will allow us to
distinguish the actual scientific potential of these methods, which is
huge, from science fiction. This is very much needed, not only for
students but also for society more generally. Here we give four
examples from the popular media in which there is a tendency to get
carried away.

In 2009, Willem Verbeke, a professor from the University of
Rotterdam, attracted the attention of the mass media by claiming
that, in five years, people applying for important jobs would undergo
brain scans as an important supplement to traditional job interviews
and behavioral testing (Fig. 1.1). According to Verbeke, a brain scan
can tell us whether a person is a good fit for a job or whether their
behavior might prove detrimental in their potential position. Using
brain scans, we could apparently avoid making someone a CEO of a
corporation, who through short-sighted behavior might cause a
worldwide recession. The statements were backed up by ongoing
functional magnetic resonance imaging (fMRI) studies, published in
peer-reviewed journals (e.g., Bagozzi et al., 2013). Verbeke claimed
his company could help recruiters by providing a brain scan for 5000
euro per person. We are 10 years beyond the point when Verbeke’s
claims were made. Job interviews and psychometric tests are still
standard practice when hiring people; brain scans are not. After
reading this book, you should be able to understand why.



Figure 1.1 Illustration of a job advertisement in the future?

As a second example, there has already been an intensive
debate about the value of brain scans as evidence in a court of law.
A first application is in the context of lie detection, a field in which
several private companies are active in the United States (e.g., No
Lie MRI). In addition, fMRI has been used to justify claims about the
personality of the accused and the degree to which they can be
expected to have control over their actions. However, these claims
are largely unsubstantiated (Kessler and Muckli, 2011; Parens and
Johnston, 2014). As will become obvious upon reading this book,
brain scans often lack the validity and reliability to justify strong
claims at the level of individual subjects in terms of lie detection as
well as personality assessment. Furthermore, the brain scans might
be overinterpreted by laypersons (including members of a jury) and
as such provide misleading evidence that negatively impacts legal
decisions making (see, e.g., Weisberg et al., 2008). For example, a
brain scan suggesting a limitation in the degree of free will and self-
control does not obviously provide more information than we learn
from a psychiatrist who, as an expert witness, comes to the same
conclusion based on a battery of standardized behavioral tests.
However, will jury members be able to make a rational comparison of
such very different types of evidence? We could doubt this, unless
all jury members were forced to read a book like this one first!



Third, in the past few years quite a bit of media attention has
been paid to research on patients either in a persistent vegetative
state or suffering from locked-in syndrome, which suggests that brain
imaging can be used to test the state of consciousness of these
patients even though they lack the ability to communicate with their
environment (e.g., Owen et al., 2006). Indeed, when lack of motor
function is complete, brain imaging may be the only way to make
such an assessment of conscious awareness. A typical experiment
starts by asking the patient to answer yes/no questions by imagining
two very different events which are so different that they can easily
be distinguished based on elicited brain activity. For example, a
patient might answer yes by imagining watching a tennis game and
no by thinking of navigating through a house. One surge of media
interest in this method arose when it was applied to the late Ariel
Sharon, the former prime minister of Israel.1 Often the results from
such scans are not sufficiently conclusive to be the basis for
important decisions about life and death, unless they are
corroborated by findings from a range of other more standard
methods. For the layperson, it is very difficult to judge the potential of
this research based on what is written by nonexpert journalists.

Finally, there are high hopes that at some point brain imaging
might be an essential and useful tool for the objective diagnosis of a
wide spectrum of diseases. This hope fits with reality in the case of
many neurological syndromes: the detection and prognosis of
tumors, cerebrovascular accidents, presurgical planning for brain
surgery. Rapid progress is being made to incorporate brain imaging
as part of the diagnostic practice for varieties of dementia (e.g.,



Alzheimer’s disease). Hopefully, this will significantly improve
diagnosis and prognosis in the earlier phases of cognitive decline
referred to as mild cognitive impairment (see, e.g., Albert et al.,
2011). Despite this great progress on neurological diseases, brain
imaging has not yet made its way into the everyday diagnosis of
psychiatric and mental syndromes such as depression, autism, and
schizophrenia. Nevertheless, there is a huge number of scientific
studies showing all sorts of differences between normal and
“diseased” brains at the group level! These findings are very exciting
and help in understanding the disorders, but the differences have not
been large and consistent enough to be useful to help in diagnosis at
the individual level. Media reports often do not recognize this nuance
when presenting and discussing the results (Fig. 1.2).

Figure 1.2 A few illustrations of headlines in the popular media about
human brain imaging.

Examples come from various sources, including the Daily Mail (Fiona
Macrae), the MIT News Office (Anne Trafton), and ScienceDaily.com.



These examples have three commonalities. First, the media
coverage is based on scientific investigations that appeared in peer-
reviewed journals. Second, the science is primarily valid and
important in its own right, and the studies advance our knowledge of
brain functioning often in a very meaningful way. However, third, the
information and claims that make it into the popular media often
stretch far beyond the original scope of these reports. Here we
recognize an important role of having an in-depth knowledge of the
implicated methodology, which is needed to judge the true potential
of these techniques. This knowledge is necessary to avoid being a
victim of overenthusiasm or, at the other end of the scale, over-
skepticism (see Box 1.1).



Box 1.1  Neuroskepticism and Neuroscience

The fact that a lot of science fiction is often portrayed as
reality in media reports has created a counter-action from
“neurosceptics.” The skepticism targets the scientific use of
the methods as well as the claims found in the popular press.

In the scientific literature, scholars have attacked the
usefulness of brain imaging in the context of many
disciplines, including psychology and other social sciences.
They argue that brain imaging only informs us about where
mental functions are in the brain. The terms
“neolocalizationism” and “neophrenology” are often used in
this context (e.g., Diener, 2010; Dobbs, 2005; Fotopoulou,
2012; Uttal, 2001), referring to the phrenologists of the
nineteenth century who claimed that outer features of the
skull were related to mental functions. However, phrenology
was a pseudoscience because the claim was never proved
empirically, so the comparison is not really fair. Still, it is valid
to ask whether knowing where things are is relevant for, e.g.,
psychology and cognitive science. We would say that it is
highly relevant as a first step, because we need to know
where a mental function resides in the brain before we can
study it further through neuroscientific techniques. However,
the next step is to investigate how the mental function is
actually implemented through neural networks and circuitry.
This next step is very relevant for constraining



psychological/cognitive models. Contrary to what is
suggested by denoting brain imaging as neo-phrenology,
brain scans are not limited to localization in the narrow sense
and can also help in this next step, often together with other
neuroscientific methods. We hope that the later sections in
this book will make this clear.

Currently, another important cause for skepticism arises
from claims made in media coverage and public discourse
that go further than the actual scientific data allow. Journalists
go a long way trying to attract attention by giving a catchy title
to an article, but such assertions have attracted a great deal
of criticism, and rightfully so. Scientists and universities are
also to blame for this situation, because the press releases
issued by them already contain simplifications and
generalizations (Sumner et al., 2014). This problem is shared
by all of science and is not restricted to neuroscience and
neuroimaging. Nevertheless, it seems that using the word
“brain” or prefix “neuro-” is considered to be a good way to
help sell a story or program (e.g., neurolinguistic
programming). This “brain” hype might have had its best time,
at least according to an analysis of the appearances of the
word “brain” in the titles on the New York Times Best-Seller
list (Box Fig. 1.1A; update of an earlier graph by Daniel
Engber at slate.com). In recent years, the number of best
sellers on the brain has gone down. This might be a good
evolution from the perspective of science. The public trust in
what scientists do is not helped by publishing books that tip



the balance too much toward fiction and away from fact.
Stated otherwise (here we are borrowing some terminology
from Brigitte Nerlich’s Making Science Public blog post,
“Making Neuroscience Public”): The neuromania of
neurophiles and neurohawks too often leads to
neurononsense, neurotrash, and worthless neurobabble.
Luckily, the number of scientific papers on the topic “brain” is
still steadily increasing year by year, now being close to 60
000 articles per year (see Box Fig. 1.1B; data from the ISI
database). Neuroscience in general and human brain imaging
in particular are thriving.



Box Figure 1.1  The use of the word “brain” in best-seller titles (A)
and in the specialized academic literature (B).

The idea of counting this word in the best-seller list is credited to
Daniel Engber of Slate.com.

This book covers many caveats that have been raised
about brain imaging, from very technical and detailed
arguments to those that are more conceptual. Nevertheless,



a comprehensive overview of the relevance of neuroimaging
for behavioral, psychological, and cognitive scientists is
beyond the scope of this book. We refer the reader to other
sources for the philosophical basis, history, and fundamental
assumptions in the study of mind/brain relationships
(Cacioppo et al., 2007; Churchland, 2007; Craver, 2007;
Shallice, 1988). Here we will suffice by clarifying our position
with an analogy. Just like an architect who designs a bridge
might not need to know about quantum physics, many
domains of psychology and behavioral science might flourish
without any reference to brain science. However, the architect
will need quantum physics for a full understanding of how
gravity works, and psychologists and cognitive scientists will
need brain science in order to come to a full understanding of
the human mind. In our humble opinion, the aspects of the
human mind that we come to understand through
neuroscience are also some of the most fascinating.



1.2 The Basis of Neural Signals
The basis of all neural signals can be found in a few fundamental
neurophysiological and metabolic phenomena. This section begins
with a short primer on neurophysiology in case the reader lacks this
background knowledge. Our summary may sound highly simplistic to
students who have had a basic course in neuroscience – and have
the luck to remember some of the lessons! However, it is the bare
minimum that you should know to understand the basics of human
brain imaging that we will be covering.

Next, we provide a short guide on how we can process these
neurophysiological signals. We do not aim to turn you into a signal-
processing expert, but it is important that you know a few
fundamental concepts that are relevant for all brain imaging
techniques. Several of these concepts are covered in more detail
later in the book. Furthermore, we introduce the presence of
additional signals related to the metabolism that correlate with neural
processing. Finally, we discuss the features of brain organization that
make these signals detectable from outside the skull.



1.2.1 Information Transfer in Neurons

We will limit ourselves to one cell type in the brain, namely, neurons,
because neurons have traditionally been seen as the most central
cell type for brain function. There are many kinds of neurons that
typically have the following parts: a dendritic tree, soma (cell body),
and axon (Fig. 1.3). The brain is organized in such a way that the
cell bodies of neurons are concentrated in particular structures.
Because these structures look grayish in the living brain, this is
referred to as gray matter. The cerebral cortex is a sheet of gray
matter and thus contains cell bodies. Other concentrations of cell
bodies beneath the cortex (hence the name “subcortical structures”)
are often referred to as nuclei. Some neurons have short axons that
remain in the gray matter, but many neurons connect to distant
neurons through long axons. All these long axons together make up
the white matter. Underneath the cortex, this white matter takes up
a large volume; in the more peripheral nervous system, the axons
form nerve bundles and tracts. Here we do not provide a further
introduction to neuroanatomy, but it is important to have sufficient
knowledge in this domain in order to study human brain imaging. We
provide further background literature in the context of Chapter 3.



Figure 1.3 Illustration of the main components of a neuron (A) and an action
potential (B).

Figure 1.4 shows at the right a schematic neuron in red with the
same major components. This neuron receives input from other
neurons, a few of which are shown on the left. The neurons in red
are neurons that provide excitatory signals that make the receiving
neuron become more “active.” The neuron in blue represents an
inhibitory neuron that makes the receiving neuron less active.



Figure 1.4 Schematic example of communication between neurons through
action potentials and changes in the membrane potential. The figure shows
three excitatory neurons in red and one inhibitory neuron in blue. The
excitatory neuron on the right receives synaptic input (postsynaptic neuron)
from the three neurons on the left. For each input neuron, we include a
timeline representing the occurrence (time stamps) of action potentials. The
plot at the bottom represents the dynamic changes in the membrane
potential in the postsynaptic neuron as a consequence of the action
potentials in the input neurons.

Without any input, our neuron is at rest. This resting state is
characterized by a resting potential at the cell membrane. This
resting potential is an electrical potential difference between the
inside and the outside of the neuron. At rest, this potential difference
is -70 millivolts (mV). This is the starting point in the schematic
potential function shown at the bottom of Figure 1.4.

Our neuron receives input from other neurons by the delivery of
a chemical substance referred to as a neurotransmitter at the
synapses (contact points between neurons) in the dendritic tree of



our neuron. Receptors in the membrane of our neuron react to these
neurotransmitters and as such disturb the resting potential. The
direction of this effect differs between neurotransmitters and,
depending on which neurotransmitter is released, neurons are
categorized as excitatory or inhibitory. The neurotransmitter input
from an excitatory neuron will make the potential difference less
negative (depolarization), so the -70 mV might become -65 mV. The
neurotransmitter from an inhibitory neuron will have the opposite
effect and make the potential difference more negative
(hyperpolarization). In the cerebral cortex, glutamate is an important
excitatory neurotransmitter, and a molecule known as GABA is the
most prominent inhibitory neurotransmitter.

The changes in the potential difference originate in the dendritic
tree of our neuron, but they are transmitted throughout the cell
membrane of the soma, toward the point where the axon begins.
This point is referred to as the “axon hillock.” Something interesting
happens when the potential difference reaches a critical level,
typically at -55 mV. When the difference between the inside and the
outside of the neuron becomes this small, a sequence of events
occurs at the cell membrane. This results in a sudden further
decrease of the potential difference, an overshoot so that the
difference even becomes positive, and then there is a very quick
restoration of a negative difference. These rapid changes in the
potential take a very characteristic form, which we know as the
action potential. An action potential is shown in more detail in
Figure 1.3B. The schematic potential below Figure 1.4 shows three



such action potentials. Given their sharpness, action potentials are
sometimes also referred to as “spikes.”

The action potentials start at the axon hillock close to the soma,
but they are quickly transported through the axon, all the way to the
other end where the axon splits into fine branches that end up at
synapses. The arrival of an action potential of our neuron triggers the
release of neurotransmitters, after which the story repeats itself in
the next neuron with changes in its membrane potential.

The postsynaptic neuron will integrate the input that it receives
across all the input neurons and across time by the effect that the
released neurotransmitters have on the postsynaptic potential. This
is also illustrated in Figure 1.4, in which the schematic potential at
the bottom shows the effect of each action potential that is “fired” by
the input neurons and results in neurotransmitter release.

Each time that there is an action potential in an excitatory
neuron (shown in red), the curve of the potential goes up and
becomes less negative. If an action potential occurs in an inhibitory
neuron (shown in blue), then we see the reverse effect: The curve
goes down toward more negative values. Upon receiving excitatory
input sufficiently frequently, the membrane potential reaches the
critical level, and an action potential is being triggered. Several
action potentials follow because more excitatory input is received.



1.2.2 Signal Processing

The changes in the membrane potential across the soma and axon
hillock as shown in Figure 1.4 constitute a signal that provides very
detailed information of what is happening with our neuron. It
summarizes how much input the neuron receives, the relative
degree of excitatory and inhibitory input, and when an action
potential is triggered. However, it does not provide the complete
story. For example, the two red neurons each result in the same
effect on the membrane potential and thus cannot be distinguished
using this signal. The fact that the postsynaptic neuron fires an
action potential does not inform you about which presynaptic neuron
caused the depolarization. Nevertheless, as just one signal, the
fluctuation in the membrane potential is very helpful to provide a
summary of what is happening.

There are methods to directly measure the membrane potential
and how it changes over time. One of them is patch clamping, which
consists of sucking part of the membrane with the tip of a pipette and
then measuring the membrane potential. Obviously, this method is
highly invasive. Furthermore, it requires a very stable substrate that
is only feasible in a highly controlled animal experiment, and most
often even applied to in vitro brain slices rather than living animals. It
is not utilized in human research. Nevertheless, patch clamping is
the only method by which we can faithfully measure changes in
membrane potential. We will use this signal to explain several



concepts about signal processing that will be a recurring theme also
for signals that we can measure in humans.

A first concept is that of frequency. Frequency refers to the rate
of change in a signal along some dimension, such as time or space.
In the time domain, frequency is expressed in hertz (Hz), for which
the unit of time is a second. A signal with frequency of 1 Hz is a
signal that goes up and down once per second. The full period
(going up and going down) takes exactly one second. Biological
signals never contain just one frequency. Artificial signals can. For
example, a pure tone exists of a sinusoidal sound wave of just one
frequency.

Biological signals contain sub-signals or frequency
components, each having a different frequency, ranging from slow
to fast. Each component is determined by three parameters:
frequency, amplitude (how much it is going up and down), and phase
(when it is going up and down). Apart from the changes that can be
induced by altering these parameters, the components are the same.
In most methods of signal processing, sinusoidal functions are used,
which are indeed characterized by frequency, amplitude, and phase.

The full signal can be seen as an addition of these components.
For example, the schematic membrane potential in Figure 1.4 can be
approximated by an addition of a slow frequency component and a
fast component, which represents the three action potentials. The
better we want the approximation to be, the more components we
will need. For example, the addition of just these two components
will not capture the small indentation caused by the one action
potential fired by the (blue) inhibitory neuron.



The range of frequencies in a signal is not infinite. The
measured range is referred to as the frequency spectrum. The
highest frequency that can be measured is ultimately limited by how
often the signal is measured, that is, the sampling frequency. As an
example, suppose that you measure your body weight once per day.
With these data, you can capture fluctuations in your weight across
days, but not the fluctuations within a day. More generally, we know
that with a frequency of once a day you can only faithfully capture
fluctuations that are slower than 2 days, or half the sampling
frequency. In engineering, this ratio of one half is given by the
Nyquist sampling theorem. Here we will not bother you with the
mathematics behind it, but it is important that you know about this
limit when you work with signals of any kind. To take another
example, it is clear that a sampling frequency of 100 Hz, which
means that you are getting a sample once every 10 milliseconds
(ms), is of not much use for a patch clamp experiment, given that an
action potential only takes 1–2 ms to complete.

The lowest frequency that can be detected is limited by how
long the signal is measured. If a signal is measured for two seconds
at a high sampling frequency, then it is possible to capture frequency
components from 0.5 Hz upward, but not frequencies below that.
The limit is given by 1 divided by the number of seconds measured.

A final concept to introduce is the notion of filtering. In the
present context, filtering means that a specific part of the measured
frequency spectrum is being attenuated. There are three important
types of filtering to know about. First, in low-pass filtering the
lower/slower frequencies are not altered, while the higher/faster



frequencies are weakened or even completely removed from the
signal. This kind of filtering is also referred to as smoothing. Second,
in high-pass filtering, the higher frequencies can pass through the
filter, and the lower frequencies are attenuated. Finally, band-pass
filtering means that only a particular range or “band” of frequencies is
allowed to pass through the filter. All frequencies below and above
this range are attenuated.

We will proceed with an illustration of signal processing, given in
Figure 1.5. The signal on display represents brain activity as
measured from outside the skull through a technique known as
electroencephalography (EEG). The details of this method are
described later. As with the schematic membrane potential, Figure
1.5A shows a signal plotted with time on the X-axis and voltage on
the Y-axis. Upon inspection of the signal, you might notice that in the
first 5 seconds the signal fluctuates relatively slowly, and fast
changes are small in magnitude. Using some of the technical terms
we just introduced, this is a signal where high-frequency components
have a low amplitude and low-frequency components have a higher
amplitude. During this time, the person from which this signal was
measured had the eyes open. After 5 seconds, the person closes the
eyes, and these high-frequency components appear to increase in
magnitude.



Figure 1.5 Example of signal processing as applied to an EEG
measurement.

(A) EEG trace (potential as a function of time). Time is counted relative to
the point in time (time zero) in which the participant closes the eyes.

(B) The decomposition of the signal into frequency components, each with a
particular amplitude. Amplitude is represented by the color scale.



Thus far, we have referred to these frequency components in a
relatively informal and descriptive manner. However, the strength of
these components can also be measured in a formal, quantitative
way. Frequency-based analyses are widespread in neuroimaging,
and we will see many examples and further details in later sections.
Here we will limit ourselves to one example that involves analyzing
how strong each frequency component is at each moment in time.
The result of such a computation is a matrix that contains the
strength of each frequency at each moment in time. This matrix is
referred to as a spectrogram. Spectrograms are often displayed by
a colored diagram such as in Figure 1.5B, with time on the X-axis
and frequency on the Y-axis. In the color scale, the zero
strength/amplitude is shown in blue and the highest amplitude in red.
The high-frequency component that we noticed through visual
inspection in the EEG signal is visible as a band stretched in time
centered on a frequency of 10 Hz. This component increases in
magnitude around time zero, when the person closes the eyes.



1.2.3 Other Signals in the Brain: Molecular and
Hemodynamic Signals

We have characterized the communication within and between
neurons as electrical signals related to changes in the membrane
potential. This is an important level of description, and it is the basis
of the many techniques that measure the electrical activity in the
brain. However, the electrophysiological changes due to neural
communication are connected to other kinds of changes that form
the basis of yet other methods.

On a smaller scale, the changes in membrane potential only
happen because of the movement of chemical substances and
molecules in and out of neurons. An action potential is a very elegant
and deceptively simple change in the membrane potential, but the
underlying fluxes of molecules across the membrane are very
complex. For example, in the rising, depolarization phase of the
action potential there is a strong influx of sodium ions (Na+), whereas
the descending repolarization phase is characterized by an outward
current of potassium ions (K+). At the synapses, there are a lot of
molecules involved in many functions, including the release and
uptake of the aforementioned neurotransmitters. One particularly
relevant molecule is calcium. It is involved in processes such as
neurotransmitter release, plasticity, and gene transcription. It moves
in and out of neurons through voltage-sensitive channels, and it is an
important intracellular messenger. Interestingly, neurons contain
much more calcium when they are electrically active than when they



are at rest. For this reason, imaging of the calcium concentration
within neurons is a very useful and widespread procedure to
measure neuronal activity. This type of imaging is performed with
optical devices, such as two-photon calcium imaging. This invasive
technique provides single-neuron resolution: The calcium
concentration of individual neurons can be determined and
differentiated from the concentration in other nearby neurons.

At a larger scale, there are nonelectrical correlates of the
electrical activity. Many of them are related to the energy
requirements of all the processes which are involved in neural
activity (for reviews, see Attwell and Iadecola, 2002; Shulman et al.,
2004). Cells need energy to stay alive. Neurons need even more
energy to perform their function. Up to 20% of our daily energy
intake is consumed by the brain. This energy is supplied to the tissue
by blood and the glucose in it. The blood supply is adjusted to the
current needs and thus changes over time. This is referred to as
hemodynamics.

The most obvious and highest-amplitude change in the
membrane potential is the action potential. However, the amplitude
of the potential changes might not be the best predictor of the
amount of energy required. In particular, to some extent the action
potential itself is a passive chain of events that does not consume
much energy. Once the critical threshold is reached at, e.g., the axon
hillock, the action potential will proceed even if little energy is
present. However, restoring the resting potential after an action
potential requires energy (Attwell and Laughlin, 2001). As a
consequence, the energy consumption of a neuron can be expected



to correlate with the number of action potentials elicited. Several
other previously mentioned processes also require energy, including
the presynaptic release of neurotransmitters, the functioning of
postsynaptic receptors, and the maintenance of a resting potential in
the absence of any action potentials or synaptic input. In particular,
there has been a lively discussion about the relative importance of
presynaptic and postsynaptic factors in the total count of consumed
energy (Attwell and Iadecola, 2002).

These issues are not easy to decide. The relative contribution of
each of these processes to the total energy consumption by neurons
will strongly depend on many factors. As a consequence, it is very
difficult to come up with one general scheme. Figure 1.6 shows two
results from studies that modeled the anatomical and physiological
data (e.g., the consumption of ATP, which is the form energy takes to
be used by a cell) in rat (left) gray matter when the mean action
potential rate of neurons is 4 Hz (Attwell and Laughlin, 2001). In one
case, the change in energy consumption when action potentials
occur accounts for 47% of the energy consumption, synaptic
transmission for 40%, and the maintenance of a resting potential for
13%. Most of the synaptic energy budget goes to postsynaptic
processes, because variations in presynaptic neurotransmitter
release (measured through presynaptic Ca2+) account for only 3% of
the energy consumption. In the other case, the budget for synaptic
transmission takes 64% of the total pie. Note that it is easy to
imagine situations in which these percentages might be very
different. For example, when a region receives a lot of inhibitory
input, then there will be many presynaptic terminals that release a



neurotransmitter (e.g., GABA, see Chapter 3) that inhibits the
postsynaptic neurons. As a result, there will be very little action
potentials fired, and the percentage of the energy consumption
related to presynaptic functioning might be much higher overall. In
addition, the numbers might depend on species and neuron type.

Figure 1.6 The energy consumption by several cellular processes as
derived from theoretical modeling and ATP consumption measurements
(see, e.g., Attwell and Laughlin, 2001). The two pie charts reflect the
outcome of different theoretical models, showing what is common to all
models (only part of energy consumption is related to action potentials) and
what is not (the exact percentages assigned to different types of processes).

Figures reproduced from Sengupta et al., 2013



1.2.4 Maps in the Brain: From the Activity of Single Neurons
to Signals without Single-Neuron Resolution

Measuring the electrical activity or metabolism of a single neuron
requires direct access to the neural tissue and to be close to the
neuron. Techniques can only achieve such resolution when the skull
is opened and material is inserted into the brain and thus are highly
invasive. Almost all human neuroscience happens with noninvasive
techniques that do not have the precision to measure what happens
in individual neurons. As a consequence, even the smallest spatial
unit of measurement will average the signal from many neurons. For
example, even a small cube of 1x1x1 millimeters (mm) centered on
gray matter already contains at least 10 000 neurons, of various
kinds (excitatory, inhibitory, …), and in addition to other cell types
(e.g., glia cells) and other tissue (e.g., blood vessels).

If the activity of each of these 10 000 neurons were completely
uncorrelated with the activity of other neurons in the same cube,
then the mean activity of all these neurons would not be very
informative about the functional properties of the neurons in the
cube. In such a situation, we would say that there is no clustering.
Clustering refers to the tendency of neurons with similar functional
properties to be physically nearby. The more neurons with similar
response properties are clustered, the more the mean activity of all
neurons in a small cube will correspond to the activity of the
individual neurons in the cube.



The sensitivity of a noninvasive imaging technique that lacks
single-neuron resolution to detect differences in activity between
conditions will depend on how much clustering is present in a region
of the brain. Luckily for human neuroscience, clustering is abundant
in the brain. Although a detailed overview of functional organization
in the brain is not within the scope of this text, it might be interesting
to point to several characteristics of brain organization that give rise
to strong clustering and that work at different spatial scales.

At a small scale below a millimeter, there is evidence for a
columnar organization in many brain regions (see, e.g., Mountcastle,
1997; Tanaka, 2003). A column is a cylinder-like volume in the cortex
that runs through all cortical layers all the way from the surface of the
brain to where gray matter is bordered by white matter. In the human
brain, this cortical thickness is 2–4 mm. The radius of the cylinder
might be only a few 100 micrometers or less. Within the column,
neurons have very similar response properties. Well-known
examples of columnar structure are ocular dominance columns and
orientation columns in primary visual cortex (which is in the back of
your head in the occipital lobe).

At a somewhat larger scale, we find topographic maps that span
several millimeters in anatomical space parallel to the cortical
surface. Examples of such maps can be found in primary sensory
regions: retinotopy (visual), tonotopy (auditory), and somatotopy
(somatosensation). In each of these modalities there is a faithful
correspondence between the ordering of the receptors and the
change in tuning properties of the cortical neurons across the cortical
surface. For example, in the case of retinotopy nearby cortical



neurons prefer similar and overlapping positions in the visual field,
and this preferred position gradually shifts when neurons are further
away in the cortex.

At an even larger scale, human neuroanatomy is divided into
nuclei (for subcortical structures) and areas (in the cortex). In most
standard examples, areas are larger than maps in the sense that
areas contain maps. For example, a full map of retinal coordinates is
found in several visual areas including and beyond primary visual
cortex. In some cases, the neurons in one and the same area tend to
have particular functional properties that are different from the
properties of neurons in other areas. A textbook example is the
middle temporal (MT) area in which neurons show a strong
selectivity for the direction of motion of a visual stimulus(Kolster et
al., 2010).

Finally, at the largest scale, areas show a preferential
connectivity and overlap in functional properties with other areas,
usually areas that have a close proximity. As such these areas form
cortical systems. Such a system can take up a large part of the
cortex. For example, the visual system takes up the whole occipital
lobe and extends into the temporal as well as the parietal lobe,
occupying close to one third of the human cerebral cortex. Systems
can also share areas/regions.

Figure 1.7 illustrates the different scales of clustering at which
we can investigate the neural response during visuospatial
navigation. In this condition, strong activity is seen in large regions of
occipital, temporal, and parietal cortex. At a finer level, this activity is
distributed across multiple visual areas, many of which contain a



retinotopic map of visual space. Each location in space is further
analyzed in a columnar structure in which single neurons tend to
prefer similar visual features.

Figure 1.7 Clustering of neurons with similar functional properties at
multiple scales. (A) Large-scale activation of cerebral cortex when a
participant is navigating through a virtual maze by means of button presses.
Prominent clusters of activation are seen in occipital, parietal, and frontal
cortex. Red/yellow and blue refer to higher and lower, respectively,
activation compared with a rest baseline (data from Op de Beeck et al.,
2013). (B) Magnified version of the size of what might be one cortical area in
(A). (C) The area might contain a topographic map of visual space, so that a
visually presented grid-like pattern might activate the extent of the cortical
area in a grid-like manner. (D) At one location in this topographic map,
where all neurons have a similar receptive field position, neurons might be
further clustered in columns according to their preference for particular
visual features. (E) One of the hundreds of neurons in a column.



The smallest spatial unit of measurement of a particular imaging
technique will determine which level of clustering can be investigated
with this technique. A technique in which the smallest unit
corresponds to a full cortical area will not be able to provide a direct
measurement of functional organization at any smaller scale, such
as columns and topographic maps. Functional properties that are
organized at a smaller scale are missed by such a technique.

To take a specific example, neurons in primary visual cortex are
known to be selective for the orientation of small bars that fall in their
receptive field. Orientation selectivity is also picked up with invasive
optical imaging, which is an invasive technique with a resolution of
20 micrometers (µm). In such an experiment, researchers measure
the optical signal when lines are shown with a different orientation.
Local clusters of pixels in the resulting image show a clear and
consistent orientation selectivity, what we have referred to as a
columnar structure. Note that optical imaging would not show any
dependency of the signal on the shown stimuli if selectivity for line
orientation would not be clustered. This image was obtained in cats,
and these animals have orientation columns (as do monkeys).
Rodents do not have orientation selectivity: Nearby neurons in the
rat or mouse primary visual cortex do not have a similar orientation
preference. As a consequence, optical imaging with a resolution of
20 µm would not show much selectivity, because the signal would
average across multiple single neurons with a different preference.
The nice selectivity at the single-neuron level would be averaged
away.



Because of the phenomenon of “averaging away,” a technique
with a spatial resolution lower than the size of an orientation column
would not allow orientation selectivity to be measured easily. A
technique with the smallest unit of measurement of 1x1x1 mm would
average the signals of multiple orientation columns. The resulting
image would be a highly blurred one in which no location would
contain the strong selectivity as is actually present at the level of
single columns.



1.3 A Short Overview of Methods in
Human Neuroscience

The previous paragraph explained that neural activity causes various
signals to emerge: local changes in membrane potential, changes in
molecular gradients, and hemodynamic changes. Each of these
signals has components at multiple spatial and temporal scales. This
multitude of signals is measured through a range of methods. Here
we will give an overview of these methods. In later chapters we
focus on the individual techniques in more detail. The current section
will enable you to put each method in the context of many of the
main methods used today.

Figure 1.8 provides a graphical summary of neuroscientific
techniques in a three-dimensional space formed by the following
dimensions: temporal resolution, spatial resolution, and
invasiveness. Temporal resolution refers to the smallest unit of
time that can be differentiated by a method. Millisecond resolution or
better is needed to measure individual action potentials, while a
resolution of several seconds might be sufficient to measure the
aggregated response elicited by a 20-second block of face images.
Spatial resolution indicates the smallest unit of space that can be
resolved. It will determine which scale of organization can be picked
up. Invasiveness is primarily a binary factor, because the majority of
methods are either fully invasive (skull needs to be penetrated) or
not invasive at all.



Figure 1.8 Graphical depiction of the spectrum of human brain imaging
techniques in three dimensions: temporal resolution, spatial resolution, and
invasiveness. The methods are grouped in four classes: hemodynamic
methods (pink), electrophysiological methods (light blue), causal methods
(orange), and anatomical methods (dark blue). Acronyms for methods are
explained in the relevant sections.

The plot is inspired by earlier figures of Churchland and Sejnowski, 1988
and Huettel et al., 2004

Each technique is given an approximate location in this space.
Similar diagrams can be found in several other sources (Churchland
and Sejnowski, 1988; Grinvald and Hildesheim, 2004; Huettel et al.,
2004). Later chapters focus on the less invasive techniques because
only these techniques can be applied in humans. The diagram in
Figure 1.8 includes the full range of techniques because the contrast
between invasive and noninvasive techniques forces us to consider
what we miss and cannot investigate with noninvasive methods. A
visual inspection of the diagram already highlights one big loss by
being restricted to the less invasive methods: There are no methods
available that have a high (single-neuron) spatial resolution



combined with a high (milliseconds) temporal resolution. The lower
left quadrant of the space contains only invasive methods.



1.3.1 Techniques to Measure Brain Structure

The traditional method used to investigate brain structure is
histology. This is an invasive methodology that involves cutting the
brain in pieces, such as slices. The slices are further processed
chemically in order to visualize the structure of interest. Histology is
still a standard method for studying brain anatomy at high spatial
resolution in nonhuman animals.

In humans, the first detailed images of the human brain were
obtained through postmortem histology of donated brains from
deceased persons. These results were of extraordinary interest for
the development of human brain imaging. All classic atlases of the
human brain (also see Chapter 3) were produced by means of
histology.

In the past 30 years, human neuroscience has shifted its focus
to noninvasive structural imaging. In these studies, structural
magnetic resonance imaging (MRI) is the method of choice.

Currently, there are two typical applications of structural MRI.
First, studies of brain function include structural imaging to relate the
functional findings to brain structure. In these studies, brain structure
is often not the primary interest, but it is a tool to increase confidence
in the anatomical localization of functional findings. A second typical
use of structural MRI is to relate anatomical structure to differences
between participants at other levels of description, such as behavior
and disease classification. In this context, structural MRI might be
performed without functional imaging. Structural MRI is an important



diagnostic tool for a variety of conditions, including a cerebrovascular
accident (Kidwell et al., 2004) and brain tumors (Weber et al., 2006).
For many other clinical conditions, brain anatomy at the group level
has been found to differ between patient and control groups. In
addition, several aspects of brain anatomy have been related to
inter-individual differences in terms of behavior.

Almost any behavior and activity that humans are involved in
can be related to brain structure – or at least it sounds reasonable
enough to let neuroscientists spend their time searching for such
evidence! To highlight one case as an example, Bickart and
colleagues (2011) investigated the relationship between neural
anatomy and the social network of their participants. For the latter,
the authors used a metric known as the social network index, which
assesses the size and the complexity (number of subgroups) of the
regular contacts with whom a person engages. Neural anatomy was
determined using structural MRI. Individuals with a larger amygdala
volume had a larger and more complex social network. The same
finding extends to online social network size, such as the number of
friends on Facebook, which was correlated significantly with gray
matter density in several regions including amygdala (Kanai et al.,
2012). If even your Facebook usage is related to your brain anatomy,
then you might understand the relevance of devoting the first part of
this book to structural MRI!



1.3.2 Techniques to Measure Hemodynamic Correlates of
Neural Activity

The aforementioned changes in energy consumption by neurons
trigger a chain of events. These events can be grouped under the
umbrella term “hemodynamic correlates”: changes in blood and
tissue oxygenation, blood flow, and blood volume. The further down
the chain of events, the more distance there is between the location
and timing of the neuronal activity and the location and timing of the
events caused by this neural activity (see Chapter 4 for more
information).

There is a variety of methods to measure one or a combination
of these hemodynamic correlates of neural activity. Here we give a
brief list. A detailed description of each of the prominent methods in
human research is given in Part II of this book, in particular in
Chapter 4. A first set of methods uses the effect of tissue
oxygenation on the reflection of light that shines on the tissue. In
nonhuman animals, this light is directed at the cortical surface to
avoid scattering of the light bundle by intermediate tissue. This
invasive optical imaging provides a resolution sufficient to measure
columnar structure. There is also a noninvasive optical imaging
technique used in humans, referred to as functional near-infrared
spectroscopy (fNIRS). This technique has a very low spatial
resolution (centimeters), which is sufficient for studying systems and,
in some cases, maps (e.g., a coarse measure of retinotopy, see
Chapter 4). Furthermore, the signal is primarily restricted to cortical



regions immediately under the skull, and as such cannot be used for
the large part of the cortex that is hidden within the sulci (the deeper
parts of the folded cortex) or on the medial surface of the
hemispheres. Nevertheless, the technique is being used more and
more frequently, in particular in infant research, because it is very
easy to set up and move.

In the 1980s, there was a surge of studies, some still carried out
today, which used radioactive labeling of blood and then measured
changes in blood volume through the emitted signal. This technique,
referred to as positron emission tomography (PET), has a spatial
resolution that is often around 1–2 cm and a very poor temporal
resolution because the signal is averaged across tens of seconds.
Today, PET is primarily used not as a measure of neural activity
through blood volume, but as a measure of the distribution of
particular molecular markers across the brain. For measuring a
hemodynamic correlate for neural activity, PET has for the most part
been replaced by functional magnetic resonance imaging (fMRI).
The fMRI signal reflects multiple hemodynamic correlates of neural
activity, as explained subsequently. It is the noninvasive imaging
technique with the highest spatial resolution, which explains its
popularity as reflected in the high number of published studies in the
best scientific journals that use this technique. It is also the brain
imaging method that underlies many of the claims that reach the
popular press, as illustrated in Figure 1.2.

This short summary highlights that the spatial resolution varies
strongly among the different measures of hemodynamic correlates
due to the exact correlate being measured (a physiological limit



imposed on the resolution) and the physical limits of the
measurement device. The range is smaller than for measures of
electrical signals: Hemodynamic imaging does not provide the
resolution of single-unit recordings, and in most cases it is better
than the workhorses of electrical imaging, EEG and scalp event-
related potential (ERP). The temporal resolution of hemodynamic
imaging is undoubtedly poorer compared with electrical imaging due
to the fact that all hemodynamic correlates are temporally smoothed
with respect to electrical activity.



1.3.3 Techniques to Measure Electrophysiological Activity

Most of the methods having a good temporal resolution shown in
Figure 1.8 measure electrophysiological activity. These methods
include patch-clamp recording, single-unit recording, multi-unit
recording, local field potentials (LFPs), human intracranial
recordings, Electrocorticogram (ECoG) and stereo EEG (sEEG),
magnetoencephalography (MEG), and scalp
electroencephalography (EEG).

At the same time, techniques to measure electrical activity vary
widely in terms of spatial resolution. The spatial resolution of a
measurement of electrical activity is related to the distance between
the electrode and the source of the signal: the further the distance,
the larger the volume that is sampled by the electrode. Another
factor is the intermediate tissue, for example, the skull scatters
electrical signals and thus is very detrimental for spatial resolution.

The optimal spatial resolution is obtained by patch-clamp
recordings, the only technique that measures changes in the
membrane potential faithfully with only very limited distortions.
Alternatively, researchers can insert an electrode into the cortex and
bring its tip very close to a single neuron to pick up the action
potentials of this neuron. With such an invasive electrode, we might
be able to perform extracellular single-unit recordings, at least
when the electrode has a high impedance so that only signals from
very nearby are picked up (“impedance” can be regarded as another
word for “resistance”). Alternatively, when a lower-impedance



electrode is inserted in the cortex, it can be useful for two types of
measurements. First, it could be used for recording the action
potentials of many nearby units at once (multi-unit recording).
Given its very transient nature, an action potential is characterized
by fast changes in the membrane potential, and for that reason a
researcher would want to filter the incoming signal so that higher
frequencies are kept (high-pass filtering). Second, the same signal
processed through a low-pass filter would contain information about
the slower changes in membrane potential of all nearby neurons,
referred to as local field potentials or LFPs.

All these techniques are very risky in a living organism, because
they require opening up the dura that surrounds the cortex and
protects it from infections. Intracranial recordings still require the
opening of the skull (craniotomy) but only to place electrodes on top
of the dura which remains intact. The craniotomy allows the
researcher to place the electrode much closer to the neural tissue,
and it avoids having the skull scatter the signal even further.

All these techniques with a higher spatial resolution are
invasive. Without opening up the skull, the distance between
electrode and the source of the signal and the further scattering by
the skull is so large that the spatial resolution is very poor, more on
the order of several or many centimeters. Rephrased in terms of
cortical structures and scales of clustering, this means that even
brain areas are hard to measure individually and often
measurements are related to the activity of multiple brain areas and
brain systems. The available methods include MEG, which



measures electrical activity through the magnetic fields produced by
electrical currents, EEG, and scalp ERPs.

We differentiated between high- and low-frequency signals in
the case of electrodes that are inserted in cortex. To some degree,
we can extend this distinction to the noninvasive methods. However,
the highest frequencies are no longer present in the noninvasive
signals. This is another effect of the distance between electrode and
signal source. Distance combines with more intermediate mediums
(tissue, skull, etc.) through which the signal has to travel, and the
scatter occurring because of these mediums is more detrimental for
higher temporal frequencies than it is for lower frequencies. For that
reason, the long-distance signals with low spatial resolution are also
restricted to lower temporal frequencies. This is disappointing,
because the different frequency bands contain very different
information. For example, the changes in membrane potential that
characterize an action potential are very fast – the action potential
starts and ends in less than 2 ms – and thus we need to measure
frequencies well above 300 Hz to measure an individual action
potential. These higher frequencies cannot be recovered through
noninvasive methods.

Figures 1.9 and 1.10 represent the full range of electrical
techniques that have been used in humans. In very rare cases,
primarily in patients with epilepsy, single-unit recordings have been
performed intermittently during sessions aimed at determining the
site of origin of the epileptic seizures. In an ideal situation with high-
quality data, the signal measured by a high-impedance electrode
after high-pass filtering looks like what is shown in Figure 1.9B. The



continuous signal at the left is composed of a background level (the
black band) that represents noise in the signal interspersed with fast
transient peaks in the signal that represent the action potentials of a
single neuron. All these action potentials are very similar (technically,
they have the same waveform), as can be seen when they are
plotted on top of each other at the right. Note that this waveform is
not the same as the standard temporal profile of the depolarization
and repolarization during an action potential, because there are
many distorting factors due to the distance between electrode and
neuron (only patch-clamp recordings represent the action potential
faithfully).



Figure 1.9 Invasive single-neuron recordings in human patients.

(A) Action potentials fired by a single neuron when a variety of complex
images were presented, including pictures of the actress Jennifer Aniston.

Figure reproduced with permission from Quiroga et al., 2005.

(B) Visualization of the type of continuous signal (left) and template
matching (right) that underlies the detection of action potentials in (A).



Figure 1.10 Face-selective, event-related potential recorded through EEG.
The ERP peaks are larger at two time points, referred to as the P1 and the
N170 component, when participants view faces (red) compared with objects
(blue).

Figure reproduced with permission from Pitcher et al., 2011

The data in Figure 1.9A come from one of the best-known
studies using human single-unit recordings (Quiroga et al., 2005).
The authors presented images while recording from single neurons.
Each image was presented multiple times. The action potentials
recorded from one particular neuron during individual trials are
shown below each image as a raster plot (each line is a trial; a blue
dot represents the occurrence of an action potential). Below these
raster plots are histograms with the summed number of action
potentials recorded in each time bin. This neuron is the famous
Jennifer Aniston neuron: It fired action potentials each time a picture



of the actress Jennifer Aniston was shown. The funny side story is
that the neuron did not respond when Jennifer Aniston was pictured
together with Brad Pitt (top row on the right), even though at the time
of the recordings these two actors were not yet divorced. The
serious conclusion of the study was that the human brain contains
neurons that are highly selective for particular objects or faces, and
often (but not always) retain their selectivity across changes in
simple image parameters such as size and viewpoint.

Data like these are impressive, but rare. There are many ethical
considerations. The recordings can be done only when the insertion
of invasive electrodes is necessary to treat patients who are
seriously ill. Invasive recordings cannot be performed in the healthy
human brain. Furthermore, even in rare cases in which the
recordings are carried out, the quality of the recordings is often much
lower than what researchers tend to acquire in animal research with
the same methods, as there is less control over where neurons are
recorded (often the data contain a mixture of neurons from very
different brain areas), and there are fewer neurons recorded, fewer
conditions tested, and fewer trials conducted per condition. The
ethical and practical complications explain why human single-neuron
recordings do not dominate human neuroscience. Still, the data are
very thought provoking and influential for formulating hypotheses
that can be tested in further experiments using other techniques and
other species.

At the other end of the dimension of spatial resolution we have
noninvasive methods such as magnetoencephalography (MEG) and
electroencephalography (EEG). These techniques are explained in



Part III of this book. A method such as EEG involves a number of
electrodes (often 32, 64, or 128) placed on top of the scalp. Each
electrode measures the accumulated electrical signal from a large
volume of the brain. This volume is so large that neighboring
electrodes, despite being separated by centimeters, measure an
overlapping volume. As a consequence, they show high correlations
in the measured signal. Figure 1.10 shows the signal that is typically
obtained in some electrodes when face images are being presented.
When experimenters show face images and average the signal in
electrodes at the back of the head across many trials, they typically
obtain the signal shown with a red line in Figure 1.10. This signal
goes up and down. A very prominent feature is the valley around 170
ms, which is referred to as the N170. This N170 has a higher
amplitude when a face image is shown than with images of other
objects (e.g., cars or chairs).

Electroencephalograms and ERPs have been very useful for
human neuroscience, but there are obvious limitations related to
their low spatial resolution. The signal reflects the activity of many
cubic centimeters of the brain and does not show the same
selectivity as single neurons do. The N170 would be there, with the
same amplitude, no matter the identity of the face: Be it Jennifer
Aniston, Brad Pitt, Angelina Jolie, or Barack Obama, the N170 would
not differentiate between them. In addition, the relationship between
neural activity at the level of neurons and the EEG/ERP signal is
highly complex, and even the most complex biophysical models are
too simplistic to provide a full understanding. Finally, determining the



exact anatomical source of a component such as the N170 is a very
complicated and controversial issue.



Summary
Findings from brain imaging are often discussed in popular
media, but a more in-depth knowledge about these methods
is needed to differentiate between fact and fiction.

Information transfer involves slow and fast (action potential)
changes in electrical membrane potentials, which in turn
change the energy requirements of neurons.

Even though individual neurons are too small to emit a signal
that can be measured noninvasively, they tend to cluster
together with other neurons, and as a population they might
be large enough to emit a detectable signal.

Functional brain imaging methods use a variety of physical
principles, including electricity, magnetism, optics, nuclear
resonance, and radiation, in order to pick up one of two types
of signals: electrical and hemodynamic.

The source of the signals, being either electrical or
hemodynamic, has a strong impact on the benefits and
drawbacks of the different brain imaging methods.

Brain imaging methods can be differentiated on three basic
dimensions: spatial resolution, temporal resolution, and the
distance from the neural tissue that emits the signal to the
detector (invasiveness).



Review Questions

1. Describe the extent to which the number of action potentials can
be measured through a hemodynamic imaging technique such as
positron emission tomography.

2. What is temporal resolution and how is it affected by the source of
neural signals (electrical or hemodynamic) and invasiveness?

3. Describe the functional clustering of neurons at multiple spatial
scales and how this relates to what can and cannot be measured by
a noninvasive brain imaging method.

4. Why do we lose more meaningful signals when we perform low-
pass filtering of extracellular single-neuron recordings compared with
low-pass filtering (with the same settings) of scalp ERPs?



Further Reading

Cambridge Fundamentals of Neuroscience in Psychology series. (Introduction
to Human Neuroimaging is a part of this series. We focus on methods more so
than on results in a particular domain. The other books in the series contain
many applications of these methods in many different domains, illustrating how
much these methods have advanced our understanding of how the human
brain works.)

Farah, M. J. (2005). Neuroethics: the practical and the philosophical. Trends in
Cognitive Sciences, 9(1), 34–40. (The examples of coverage of brain imaging
research in the popular media frequently touched on moral and ethical issues,
for which this article provides a further introduction.)

Satel, S. & Lilienfeld, S. O. (2013). Brainwashed: The Seductive Appeal of
Mindless Neuroscience, New York: Basic Books. (An enthusiastic believer in
the merits of brain imaging research should not take the universal benefits of
this research for granted but be ready to face criticism, which is what this book
provides.)



Notes

1
www.telegraph.co.uk/news/worldnews/middleeast/israel/9830203/Comatose
-Ariel-Sharon-shows-signs-of-brain-activity.html

http://www.telegraph.co.uk/news/worldnews/middleeast/israel/9830203/Comatose-Ariel-Sharon-shows-signs-of-brain-activity.html


Part I
◈

Structural Neuroimaging

Structural neuroimaging investigates the anatomy of the brain. There
are good reasons to begin a book on human brain imaging by
looking at structural imaging. This might not seem the best place to
start to some of the more impatient readers. Unless your ambition is
to become a neuroanatomist, odds are high that neuroanatomy is
not your favorite domain of study. For example, to a student who
wants to understand the determinants of human behavior,
techniques that measure brain function might seem far more
interesting compared with structural neuroimaging. Why waste time
on this and not jump immediately to functional imaging?

We have three major arguments to back up our choice. First,
functional imaging data cannot be interpreted properly without
knowledge of brain structure. A basis in anatomy is crucial even if
the eventual goal is to understand the functioning of the brain. By
analogy, when a car is having mechanical or electronic issues, the
car mechanic can start fixing the problem only when the piece to
repair has been located. It matters whether the engine is in the front
or in the back of the car. The same goes for the human brain.



Evolution could have come up with a different anatomical structure
that would have resulted in more or less the same function – for
example, a structure in which visual information would enter the
cerebral cortex in the front of the head instead of in the occipital
pole. This would even make sense, given that the eyes are also in
the front. It is not a coincidence that this is the place given to visual
faculties such as form and color by the phrenologists who localized
faculties in the head based on intuition rather than science. It could
have been true, but it is not. Any neuroscientist who wants to
investigate aspects of vision first has to know where visual
information is processed in the brain before embarking on further
investigations. Correct localization is key before further study of
function can commence.

To come to our second argument, given this primordial role of
anatomical knowledge, it is not surprising that the majority of
functional techniques are implemented in combination with structural
imaging. Later on, we will learn about fabulous functional methods
such as functional MRI, transcranial magnetic stimulation, and
magnetoencephalography, all of which are by default combined with
structural imaging.

As a third and final argument, neuroanatomy by itself, without
functional data, can be surprisingly relevant for understanding
behavior. Marked behavioral differences between people can
sometimes be traced to relatively subtle differences in
neuroanatomy. Such findings should be incorporated into theories of
human behavior.



Given that the most relevant data for these three arguments
chiefly come from the method of magnetic resonance imaging, this
technique will be the focus of interest. In Chapter 2, we first explain
the physics behind MRI. In Chapter 3, we introduce specific
methods, in particular T1-weighted imaging and analyses, diffusion
tensor imaging, and magnetic resonance spectroscopy. In each
case, we provide illustrations of correlations between such structural
data and human behavior.



Chapter 2

The Physics behind Magnetic
Resonance Imaging (MRI)

◈



Learning Objectives

In this chapter, we aim to provide a basic understanding of what
happens at the physical and biological levels when someone is
placed into a nuclear magnetic resonance (NMR) scanner. This aim
fits with the overall goal of this book: understanding typical research
papers in the literature. We do not refer to highly technical papers in
dedicated NMR journals; to understand those papers, an entire text
on NMR physics would be a more appropriate background. Still,
even the simplest papers that include magnetic resonance imaging
contain a technical section that is as unintelligible to the naïve reader
as Shakespeare’s Hamlet in sixteenth-century English would be to a
ten-year-old present-day French native.

As a very representative example, we here provide the technical
section from an MRI experiment published in the respected journal
Psychological Science (Kubilius et al., 2011):

Understanding the principles of nuclear magnetic resonance

Understanding how these principles can be used to obtain
images of the brain

Acquiring basic knowledge of the hardware and parameters
available to researchers

Understanding the factors that determine contrast in MRI
images



Functional MRI (fMRI) data were obtained using a 3-T Philips Intera
scanner with an eight-channel SENSE head coil using an echo-planar
imaging sequence. We recorded 38 slices from the first 2 participants and
37 slices from the remaining 6 participants. Slices were oriented
downward for full inferotemporal cortex coverage and covered almost the
entire brain (voxel size = 2.75 × 2.75 × 2.75 mm, interslice distance = 0.2
mm, acquisition matrix = 80 × 80). Each run consisted of 168
measurements; the interval between measurements (repetition time) was
set to 2,000 ms with an echo time of 30 ms. The T1-weighted anatomical
scan had 0.85- × 0.98-mm in-plane resolution, 1.37 mm between the
slices (acquisition matrix = 256 × 256), a 9.6-ms repetition time, a 4.6-ms
echo time, 182 coronal slices, and a duration of 383 s.

This journal is targeted at an audience of behavioral scientists;
nevertheless, having a basic understanding of this technical section
would help them enormously to understand the ins and outs of what
happened in this research and to infer what can be concluded from
it. After studying this chapter, the technical section reproduced here
will be understandable. The reader will have some understanding of
the meaning of the parameters, why certain parameters were
chosen, and how these parameters might influence the results of the
imaging experiment. Given that the physical background of MRI is
shared between structural and functional MRI imaging, most
knowledge conveyed in this chapter will also be relevant when
functional MRI is introduced in Chapter 4.



2.1 The Effect of Magnetic Fields on the
Human Body

Magnets and the magnetic field they generate have obvious and
visible repulsion and attraction effects on a range of materials. For a
brain imager, these effects can be a matter of life or death. It cannot
be stressed enough how important it is to consider these
phenomena (Kanal et al., 2007), even though they are not relevant
for the images that are obtained. Many other facts that you will learn
in this and the following chapters are highly relevant for determining
whether experiments will succeed or fail, but a failed experiment is
typically not deadly. In contrast, a fire extinguisher or a screwdriver
that contains ferromagnetic metal and that is brought into a scanner
room could very well do serious harm to a person in the scanner.
Similarly, the magnetic field would interfere with the functioning of a
pacemaker in the body of a participant, with dramatic consequences.
Instead of spending a thousand words on this point, we suggest
conducting an Internet search for the term “MRI safety,” and the
importance will soon be obvious.

In contrast to magnets’ strong effect on particular materials, it is
not immediately clear that they have any effect on biological tissue.
For example, we can stand next to an MRI scanner or slowly slide
into it and feel nothing. Nevertheless, there is an influence on the
nuclei in the body. These are not the types of effects to cause alarm,
you will not become ill in the short term, and there is no evidence for
effects at the long term. Anecdotally, a scientist had himself scanned



during 84 sessions for just one experiment (Shine et al., 2016), and
he remains healthy. This technique is sometimes referred to as
nuclear magnetic resonance (explained subsequently), but in this
case the term “nuclear” does not imply radioactivity or any increase
of cancer risks (in contrast to other imaging techniques such as X-
rays).

The most pronounced effects of a magnetic field on biological
tissue have to do with changes in the magnetic field over time. At
higher magnetic field strengths such as those generated by many
MRI scanners, for example, 3 tesla (T) or preferably even higher, it
does not take much effort for a person to feel at least some effects.
Making a series of fast movements with your head might be enough
to start feeling nauseous. This effect is due to the fact that these
magnetic fields are not perfectly homogeneous and differ depending
on where you are in the field. When you move your head, it will
experience a magnetic field that changes over time, and this is what
causes nausea. You will typically not experience this as a participant
in an experiment with scanners of 1.5T or 3T, because this effect is
small at those field strengths and because you do not make fast and
abrupt head movements.

It all starts with a property of atomic nuclei, hence the term
nuclear. The protons and neutrons in these nuclei spin among other
protons/neutrons. In nuclei with an odd number of protons/neutrons,
these spins do not cancel out, and as a consequence the nucleus
has a nonzero magnetic momentum. When placed in a magnetic
field, this magnetic momentum will align with the direction of this
field, hence the term magnetic (Fig. 2.1). In addition, the nuclei with



an odd number of protons/neutrons spin around at a particular
frequency. This frequency is referred to as the Larmor frequency.
When the magnetic field is changing periodically, thus oscillating, it
will make the nuclei absorb energy from the field if the oscillation
frequency matches the Larmor frequency of the nuclei. This is also
referred to as the resonance frequency. This explains why this
phenomenon is known as nuclear magnetic resonance (Bloch et al.,
1946, Purcell et al., 1946).

Figure 2.1 A schematic drawing of a proton, the magnetic momentum of
which is aligned with a magnetic field and which spins at a particular
frequency.

The most relevant element for brain imaging is hydrogen (1H),
which is the most abundant atom in biological tissue and as such
also provides the strongest signal. In an NMR scanner, the
oscillating magnetic field is applied, while a static magnetic field is
present all the time. The Larmor frequency depends linearly on the
strength of this static field (Schick, 2005). For hydrogen, it is 63.76
MHz at 1.5T, 127.7 MHz at 3.0T, and 298.0 MHz at 7.0T. These
frequencies are in the range of radio waves. If the other magnetic
field oscillates at that frequency, then it will have most effect on the



energy state of the 1H atoms. Hence, the oscillating magnetic field is
often referred to as an RF pulse (RF stands for “radio frequency”).

The oscillating magnetic field has two effects on the spin of the
affected atoms (Fig. 2.2). First, the spins get in phase, meaning that
they are in the same position on the cycle when they spin around.
Second, the spin changes direction and will be flipped in the
direction of the oscillating field. This flip goes together with an
increase in energy state (the nucleus absorbs energy). The angle of
this flip depends on the difference in angle between the static
magnetic field and the oscillating field. In Figure 2.2 the angle is 90
degrees. When the oscillating radio frequency field is no longer
applied, then these two effects gradually disappear. Each of these
effects has a certain time constant, which determines the time it
takes before the effect is diminished by a certain amount. The
smaller the time constant, the faster the effect changes over time.
First, the nuclei get out of phase again: dephasing. Second, the
nuclei realign with the static magnetic field by flipping back in the
direction of this static field. Each time a nucleus realigns, it emits
energy that by itself is a very small signal in the radio frequency
range. These small signals integrate over all the nuclei that realign,
and the resulting signal is stronger the less dephasing has
happened. If too much dephasing has happened, then the signals of
different nuclei will largely cancel out and no net signal will remain.



Figure 2.2 The effect of a static and an oscillating magnetic field on the
phase and spin direction of protons. The direction of the magnetic
momentum and of the spin is indicated by the black arrows, and the phase
in which a proton is spinning by the position of the red arrow.

Note that the absorption of energy by biological tissue is
coupled with a slight increase in temperature. The larger the tissue,
the more energy it can absorb without a significant increase in
temperature. This is taken into account in a safety index known as
the specific absorption rate (SAR). The parameters and safety
settings used with scanners for human imaging take this index into



account (ICNIRP, 2004). To calculate these safety margins, we need
to include the weight of a participant, the reason the weight of a
participant is always requested by experimenters prior to scanning.



2.2 From Resonance to Imaging
Over the years, physicists have come up with highly ingenious
methods to use nuclear magnetic resonance to obtain two-
dimensional and three-dimensional images of the brain. Here they
use the fact that the Larmor frequency depends on field strength. If
field strength differs across space according to a particular gradient,
then nuclei will have a Larmor frequency that depends on their
position in this static field gradient. For example, if the gradient
increases from left to right, then nuclei on the left will have a slower
Larmor frequency compared with nuclei on the right. The application
of a radio frequency (RF) wave will then only affect those nuclei that
are in a spatial position where the static field gradient gives them a
Larmor frequency that matches the frequency of the RF wave.

To use this phenomenon to obtain two-dimensional (2D) and
even three-dimensional (3D) images, scientists apply gradients of
field strength on top of the overall stationary field. For the most part,
these gradients are linear (more accurately: one tries to make them
as linear as possible). The gradients are often applied for only short
periods of time, but when applied they are stationary (they do not
oscillate).

A first gradient is referred to as a slice-selection gradient. It is
applied during the RF pulse, as illustrated in Figure 2.3A. The total
field strength Bnet experienced by a nucleus corresponds to the
static and, hopefully, homogeneous magnetic field (often referred to
as B0) plus the magnetic field G, which is characterized by the linear



gradient. The RF pulse will primarily affect those nuclei of which the
Larmor frequency matches the frequency of the pulse, and as such
influence those nuclei that experience a Bnet within a small range.
This volume of excited nuclei is referred to as a “slice.” For example,
at 3T with an RF pulse of 127.7 MHz and a slice-selection gradient
going from superior (top) to inferior (bottom) in the brain, the RF
pulse will only affect the nuclei in a horizontal slice where the
summed field strength is 3T. In two-dimensional imaging, one slice is
typically recorded per RF pulse. In that case, scanning a full 3D
volume will require as many RF pulses as the number of slices
needed. Often slices are excited in an interleaved manner
(interleaved slice acquisition) to minimize cumulative effects due to
cross-slice excitation (an RF pulse will partially excite neighboring
slices as well). Now that these nuclei are excited, the signal they
emit will be affected by the two other gradients.



Figure 2.3 The use of magnetic gradients to determine the spatial origin of
signals in three-dimensional space.

(A) A slice-selection gradient allows the selection of one slice by matching
its net magnetic field strength to the strength needed to be excited by the
radio frequency (RF) pulse.



(B) The phase-encoding gradient affects the resonance frequency, resulting
in a phase shift that is different for nuclei at different positions along the
gradient.

(C) The frequency-encoding gradient affects the resonance frequency
during readout, resulting in a resonance frequency that depends on the
position of nuclei along the gradient.

A second gradient is the phase-encoding (PE) gradient. This
gradient is applied after the RF pulse. The PE gradient will change
the spin resonance frequencies of the excited nuclei, causing
differences in phase depending on where nuclei are along the PE
gradient. When the PE gradient is removed, the resonance
frequencies will be the same again but the differences in phase will
persist. This series of events is illustrated in Figure 2.3B. All nuclei at



a certain position in the PE gradient (a row perpendicular to the
gradient) will have the same phase, thus the phase is informative
about where the nuclei are.

A third gradient is the frequency-encoding (FE) gradient. This
gradient is turned on during data acquisition and is for that reason
also referred to as the “readout gradient.” As illustrated in Figure
2.3C, all nuclei at a certain position in this gradient will have a
particular resonance frequency that deviates from nuclei at other
positions. For this reason, the resonance frequency at the time of
acquisition is informative about where these nuclei are.

The timing and duration of the gradients, together with the RF
pulse, form a pulse sequence (Bernstein et al., 2004). A schematic
example is given in Figure 2.4. This sequence is known as a
gradient-echo echo-planar imaging (GE-EPI) sequence. As part of
this sequence, we see the basic sequence of events that is shared
by many pulse sequences: an RF pulse (first line) applied together
with a slice-selection gradient (Gslice, second line), followed by a
phase-encoding gradient (Gphase, third line), and ending with a
frequency-encoding gradient at the time of readout (Gfrequency, fourth
line). This is a simplified diagram of an actual pulse sequence. Pulse
sequences can differ in a number of ways, such as what happens
prior to the RF pulse, the form and amplitude of the RF pulse, the
direction and the amplitude of the gradients, and the occurrence of
one or multiple so-called gradient reversals.



Figure 2.4 A schematic example of the pulse sequence related to gradient-
echo echo-planar imaging. From top to bottom: the RF pulse, the slice-
selection gradient, the phase-encoding gradient, the frequency-encoding
gradient, and the signal that is acquired. This signal consists of a series of
echoes elicited by the gradient reversals. A gradient reversal is depicted by
a sign reversal of the rectangles that define the timing of the gradients. The
duration of the gradient is reflected by the length of these rectangles.

A gradient reversal is a change in the direction of the gradients,
which is illustrated in Figure 2.4 by a flip of the sign of a gradient.
The gradient reversal will un-do the effect of the initial gradient. For
example, the dephasing caused by a gradient is corrected by
applying the reverse of that gradient. The acquired signal is



illustrated at the bottom of Figure 2.4. It is characterized by a series
of echoes, each of them caused by a gradient reversal.

Echoes can be induced by reversing gradients, as well as by
reversing the RF pulse. In that case, two RF pulses are presented in
succession. The first pulse tilts the spin direction with a particular
angle, while the second pulse tilts it in the opposite direction. Such a
sequence is known as a spin-echo sequence.

The pulse sequence allows us to obtain a spatial image from the
characteristics of this signal. We know that the signal comes from
one slice in the brain because of the slice-selection gradient. This
knowledge already determines one dimension of space. The two
other dimensions, horizontal and vertical in the slice, are related to
the frequency components in the signal and their phase. The pulse
sequence as shown in Figure 2.4 runs through multiple durations
and directions of the phase-encoding gradient Gphase. The phase-
encoding gradient causes protons at different rows in the slice to
have a different accumulated phase shift. The frequency-encoding
gradient causes protons at different columns in the slice to have a
different frequency. With sufficient echoes, all combinations of
phases and frequencies are characterized, resulting in all information
needed to derive an image. To reconstruct this image from the MRI
signal, the recorded signal is analyzed with frequency-decomposition
techniques known as Fourier analysis (see Box 2.1).



Box 2.1  Fourier Analysis of MRI Signals and the Concept of k-Space

Fourier analysis decomposes a signal into a spectrum of
frequency components, each with a particular amplitude
(amplitude spectrum) and phase (phase spectrum). (See also
Chapter 11.) In Chapter 1, we illustrated frequency for
temporal signals, but it works in an analogous way for spatial
signals such as an image. A low-frequency modulation in an
image refers to a property of the image that only changes
slowly if you move across the image. An example is the
brightness of the sky half an hour after sunset: brighter in the
west and then gradually darker and darker when moving
toward the east. A high-frequency modulation would be
characterized by large differences between nearby regions in
the image, such as would be seen in a photograph of a zebra.

Each image, be it a scan of the brain or a selfie on a cell
phone, can be decomposed in that way. The process can
also be applied in the other direction (inverse Fourier
transform): Given an amplitude and a phase spectrum, one
can construct an image. In MRI, Fourier analysis is first done
on the acquired temporal MRI signal in order to construct an
amplitude and phase spectrum. Next, inverse Fourier
analysis is performed to create the actual spatial image from
this amplitude spectrum and phase spectrum.

The amplitude spectrum is expressed in polar
coordinates as shown in Box Figure 2.1 (images to the left).



In this space, each point represents the amplitude of a
particular frequency component running in a particular
direction/orientation in the image. The midpoint in this
spectrum refers to frequency zero, and its brightness
represents the overall luminance (brightness) of the image.
The distance from this midpoint determines the frequency of
the component, with higher frequencies represented more
distant from this midpoint. Finally, the orientation of a point
from this midpoint determines the direction in which the
spatial frequency modulation goes (the orientation of the
sinusoidal modulation in the image/slice). Magnetic
resonance physicists refer to this spectrum as k-space.



Box Figure 2.1  The relationship between an amplitude spectrum
(left) and an image (right). See text for more explanation.

Box Figure 2.1 contains a few examples to help in
reading such a spectrum and its relationship to an image. Box
Figure 2.1A shows on the right the brain slice that
corresponds to the amplitude spectrum on the left. The
amplitude spectrum has a characteristic hill-shape form with
highest amplitudes in the middle. This reflects the general
property of most images in which lower spatial frequencies,
which are represented near the middle, have a higher



amplitude. In Box Figure 2.1B, we see what happens if one
particular point in the amplitude spectrum is distorted with an
unusually high amplitude (look for the white dot in the inset).
The consequence is the appearance of a sinusoidal
modulation in the anatomical images. The frequency and the
orientation of this modulation depend on, respectively, the
distance and orientation of the affected point compared with
the midpoint of the frequency spectrum.

Volumes obtained in this manner are not perfect. The spatial
resolution is high relative to other noninvasive methods, but
nevertheless it is limited by several factors. The unit of space in the
volumetric image is a voxel (A volumetric pixel: a pixel with a third
dimension). The size of this voxel is determined by the number of
slices, the maximum field of view (FOV), and the matrix size per slice
(number of voxels per row and column in the slice). The in-plane (or
in-slice) voxel size is equal to the field of view divided by the matrix
size. In classical pulse sequences, the number of slices depends on
the number of (sequential) RF pulses. The number of voxels per
row/column in the slice relates to the number of steps of the phase-
encoding gradient, which are again implemented sequentially.
Obviously, the shorter the time is in which a total volume has to be
taken, the lower the number of slices that can be imaged, as well as
the lower the number of steps of the phase-encoding gradient.
Depending on all these parameters, NMR images vary in the number
of steps per dimension. The number 256 is already a high one,



which would provide a three-dimensional matrix of size 256x256x256
and resolution close to 1 mm in each direction.

Furthermore, several steps in the pulse sequence, readout, and
Fourier analysis can introduce noise to the data. To give just a few
examples, there are particular artifacts related to imperfections in the
magnetic fields, the used pulse sequence, and the Fourier spectrum
analyses. MR users refer to these artifacts as spikes (white points in
the image that are often repetitive in space and as such reflect the
point in k-space where something went wrong), ghosting (the
presence of reflections/shadows of the actual anatomy), and
geometric distortions such as stretching and shearing. The didactic
example in Box Figure 2.1 is an illustration of how specific events
that affect the obtained frequency spectrum can alter the
reconstructed anatomical image. Box Figure 6.1 in Chapter 6
provides a few further examples of possible artifacts.



2.3 How Do These Physical Principles
Give Rise to an Image with Anatomical

Structure?
After the RF pulse (or later at the time of an echo), a signal is
measured that decays over time. The strength of this signal depends
not only on several parameters, for example, the flip angle and the
echo time, but also on the properties of the biological signal. This is
why we see interesting structure in the resulting images.

A first important characteristic of biological tissue is the density
of 1H protons at each position in its volume. Given that we use an
RF frequency that matches the Larmor frequency of 1H protons, the
signal in each voxel is proportional to the density of these protons.

Next, the decay of the signal over time follows an exponential
curve that depends on two time constants. First, there is the speed
at which the spins realign with the direction of the static magnetic
field, also referred to as the recovery of the longitudinal orientation or
T1 recovery. Second, there is the loss of transverse magnetization
as a result of the loss in phase coherence. This is also known as T2
decay. “T1” and “T2” are terms that refer to the time constant of the
function determining the recovery and decay as a function of the
time: the lower the number, the faster it goes.

Proton density, T1 recovery, and T2 decay differ between tissue
types. These differences give rise to signal contrast: the difference in
signal between different tissue types. The pulse sequence and the
choice of its parameters can determine which factor will have the



most weight. A careful choice of parameters can result in images in
which the contrast is almost exclusively determined by one of the
aforementioned factors, giving rise to proton density imaging, T1-
weighted imaging, and T2-weighted imaging.

T1 recovery is related to how easily individual spins give off their
energy to the surrounding environment (“spin-lattice relaxation”),
which depends on how the atoms are embedded in the tissue.
Figure 2.5A shows the recovery of longitudinal magnetization in
cerebrospinal fluid (CSF) and fat as a function of the time since
excitation. The plot illustrates that this recovery spans a relatively
long time, going up to several seconds in the case of CSF.
Cerebrospinal fluid has a long T1 and a long T2, while fat has a
markedly shorter T1. The T1 contrast will be heavily influenced by
the time between successive excitations, the repetition time (TR).
For example, if a second pulse follows a previous pulse after only 1
second, then most tissues except fat will not yet have recovered
longitudinal magnetization at the time of the second pulse.



Figure 2.5 Schematic illustration of differences between tissues in T1
recovery and T2 decay.

(A) T1 recovery of fat and cerebrospinal fluid (CSF);

(B) T2 decay of fat and CSF;



(C) T1 recovery of gray and white matter;

(D) T2 decay of gray and white matter. The dotted lines give an indication of
the repetition time (A and C) and echo time (B and D) that maximizes tissue
contrast (see text for further information).

T2 decay depends on spin-spin interactions between the spins
of neighboring atoms, which differ between tissues. For example,
CSF has a longer T2 compared with that of fat. Nevertheless,
overall, T2 decay occurs much faster than does T1 recovery. Figure
2.5B shows the signal (= transverse magnetization) in fat and CSF,
again as a function of the time since excitation. Given the speed of
T2 decay, it depends markedly on the time interval between



excitation (or refocusing by a gradient switch) and data acquisition,
the echo time (TE).

By the composition of the pulse sequence and adjusting
parameters such as repetition time and echo time, we can determine
to what extent we pick up proton density, T1-weighted contrast, or
T2-weighted contrast. To have the optimal measure of one of these
three factors, we aim to find a regime in which one factor gives the
strongest difference in magnetization between different tissues and
in which the effect of the other factors is minimized. If (for simplicity)
we ignore the additional complexity of the exact pulse sequence
used, we can derive from the plots which combination of parameters
will in general provide maximal T1 and minimal T2 differences
between CSF and fat: an intermediate TR (big difference in T1
recovery) and a very small TE (hardly any T2 decay). T2-weighted
imaging typically uses a long TR (all tissues have recovered) and an
intermediate TE (maximal contrast in T2 decay). For proton density
imaging, a very long TR (all tissues have recovered) and a very short
TE (hardly any T2 decay) are used.

For anatomical imaging, neuroscientists are often interested in
the contrast between gray matter and white matter. Gray matter and
white matter are much more similar in tissue characteristics than are
fat and CSF (see, e.g., Narasimhan and Jacobs, 2002). Figure
2.5C,D illustrates T1 recovery and T2 decay in gray matter and white
matter as a function of time since excitation. The differences are
sufficient to obtain contrast with appropriately chosen values of
TR/TE.



As an illustration, Figure 2.6 shows a T1-weighted and a T2-
weighted image. On the T1-weighted scan, the tissue with the fastest
recovery of longitudinal magnetization has the highest signal. This is
fat. White matter is relatively white because it contains fat in the form
of the myelin that surrounds axons. Gray matter is darker and CSF is
black. The T2-weighted image is the reverse: The tissues with the
fastest dephasing, fat and white matter, have the lowest signal, gray
matter is whiter than white matter, and the CSF (in the ventricles and
surrounding the cortex) is very bright.

Figure 2.6 Comparison of T1-weighted and T2-weighted images.



2.4 The Hardware of a Scanner
A diagram of an NMR scanner is shown in Figure 2.7. The static
magnetic field is generated by a large superconducting
electromagnet of which the wires are cooled by liquid helium in order
to obtain superconductance. Inside this magnet there are gradient
coils. A coil is a loop of wire. The gradients are generated by
electrical currents running through the coil. Finally, there is a radio
frequency (RF) coil around the head of the participant. Often one
and the same coil is used for emitting (transmitting) the excitation
pulse and for recording (receiving) the resulting signal. In the
previous sections, we did not mention how the MRI signal is
measured. Importantly, what we refer to as the recorded MRI signal
(e.g., the bottom line in Figure 2.4), are the electrical currents that
are induced in the receiver coil because of magnetic field changes
related to the realignment of nuclei after an RF pulse. Dedicated
hardware outside the magnet is responsible for the programming of
the RF pulse and gradients and for detecting and processing the
signal.



Figure 2.7 A photograph and a schematic illustration of the hardware of an
NMR scanner.

The hardware of the scanner has a significant impact on what
can be done and the signal that is measured. Here we will restrict
the overview to three important factors: the static field strength, the
gradient coils, and the RF coil. First, scanners vary widely in terms of
the strength of the static magnetic field. For research purposes, 3T
(tesla) scanners are the current workhorse. In clinical settings, there
are still many 1.5T scanners. Higher fields such as 7T are used less
frequently for human imaging, because they are far more expensive
to buy and to construct, they require a lot of expertise, often have
more downtime for repairs and technical service, and have an



occurrence of stronger image artifacts. Nevertheless, higher fields
can have marked benefits, such as a higher signal, more contrast
(differences in signal), higher spatial resolution (if the signal is higher
per unit of space, the units of space can be made smaller while
retaining signal per unit of space), and often a more specific
localized signal (see Chapter 4 on hemodynamic imaging).

Second, many pulse sequences require gradient coils, which
can generate strong gradients that can ramp up and shut down in
very little time. The steeper the gradients are, the higher the spatial
resolution which can be achieved.

Third, there is a large variety of RF coils. Traditional coil designs
include volumetric head coils wherein one coil surrounds the head
and surface coils. A volume coil gives a homogeneous sensitivity in
the whole volume. In the case of a surface coil, there is much higher
signal near the coil but a strong drop as the distance to the coil
increases. Surface coils are commonly used for receiving the signal
(the transmission of the RF pulse happens through another coil) in
experiments in which researchers are interested in a particular
region of the brain. Currently, many scanners include multi-channel
phased-array coils, which combine the benefit of a volumetric coil
(more homogeneous signal) with the benefit of the surface coil (high
sensitivity near the coil). In a phased-array coil, multiple surface coils
are placed around the head. Each of them provides a very good
signal near its center, and the drop-off at a larger distance is
compensated for by combining the signal across multiple coils. The
overall signal quality increases with the number of channels, but in a
sublinear manner (twice as many coils provide an improvement by



less than a factor of 2). Coils with 16 or 32 channels are very
common. The presence of multiple coils is also used by
manufacturers to speed up image acquisition time. Knowledge about
how coils differ in where they are most sensitive can compensate for
a less dense sampling of k-space. Of the main manufacturers of MR
scanners, Philips refers to this approach as sensitivity encoding
(SENSE); Siemens uses acronyms such as GRAPPA, mSENSE,
and iPAT (integrated parallel acquisition technique); and GE refers to
ARC.



2.5 Parameters That Are Chosen by the
User

When a new fMRI study is begun, the researchers have to make
several choices. In an experienced facility/lab, pulse sequences
might already exist, and one might employ most of the same
parameters used in previous experiments. Even then, it is useful to
consider why one might select different options.

First, researchers have to select which volume they want to
cover: Do they want full brain coverage, or do they want to zoom in
to specific regions? There is often a trade-off between coverage and
spatial resolution because of the maximum matrix size and number
of slices.

Second, the orientation of slices has to be chosen: coronal,
horizontal, oblique (in between horizontal and coronal). The required
coverage might determine the optimal orientation so that all the
regions of interest are included in the volume. In addition, there can
be artifacts in the images that are more problematic in some
orientations. The exact positioning of the slices is often done
manually at the start of each individual scan session. In contrast,
most of the choices in the following paragraphs are made once for a
whole study and then applied for all scan sessions.

Third, the number of slices has to be determined. In many
sequences, the number of slices is equal to the number of required
RF pulses, thus the amount of time needed to acquire a volume
increases linearly with the number of slices. In structural imaging, it



is standard to image the complete head. In functional imaging it used
to be the case that time constraints forced researchers to restrict the
number of slices, resulting in the imaging of much smaller sections.
However, in recent years, methods have become available that allow
the imaging of multiple slices after one RF pulse. These methods are
referred to as multiband or multi-echo imaging, because multiple
echoes are elicited (e.g., by repeating gradient reversals). With such
sequences, there is an extra acceleration parameter that determines
how many slices are obtained per RF pulse. Often there is little or no
loss of signal to noise as long as the acceleration factor is relatively
small (e.g., 2 or 4).

Fourth, slice thickness and inter-slice gap are chosen, often
together with the in-plane resolution to get voxels of which the
different dimensions are not too different in size (isotropic voxels).
The inter-slice gap helps to get more coverage with the same
number of slices and to avoid interference between adjacent slices
(cross-slice excitation).

Fifth, the field of view (FOV) is the spatial extent of each
dimension in a slice. The larger the field of view is, the more voxels
are needed to obtain the same voxel size. Typically, researchers try
to have the slices extend outside the brain at all sides to avoid
warping effects where the regions outside the slice field of view
intrude/warp into the imaged volume (e.g., the tip of the nose
touching the back of the head).

Sixth, the matrix size is the number of voxels in each dimension
of a slice. Again, there is an upper limit imposed by the pulse
sequence and time constraints. Furthermore, for computational



reasons related to the Fourier analyses, the possible matrix sizes are
limited to certain numbers (such as 64, 96, and 128) and
combinations (most often square matrices, such as 96x96). The in-
plane voxel size will be the field of view divided by the matrix size.
Note that a smaller voxel size is not always better. The smaller the
voxel size is, the better the spatial resolution appears to be.
However, the volume in space across which the signal is sampled is
smaller, which will be detrimental to the signal-to-noise ratio in
individual voxels.

Seventh, the repetition time (TR) is the time between RF pulses
which excite the same slice.

Eighth, there is the echo time (TE), which is the time interval
between excitation (or refocusing by a gradient switch) and data
acquisition. As we discussed in Section 2.3, TR and TE are very
important parameters that determine contrast between different
tissue types.

Finally, the flip angle is the degree to which the spin direction is
flipped by the RF pulse. A flip angle below 90 will reduce the signal
strength compared to 90 (less energy absorbed by the flipped
atoms), but it will also reduce the time needed before the tissue
returns back to equilibrium after the flip. As such there is often a
trade-off with TR, as a larger flip angle can be used when the TR is
longer.

After reading this chapter, the reader should be ready to return
to the technical description taken from Kubilius and colleagues
(2011), now with a better understanding of their methods section.



Summary
Nuclei and in particular protons behave in a very predictable
manner in the presence of stationary and oscillating magnetic
fields.

A proper combination of a uniform stationary magnetic field,
magnetic field gradients, and an oscillating radio frequency
magnetic field allows for the acquisition of images.

This pulse sequence determines the extent to which the
contrast in these images is determined by spatial differences
in proton density, speed of recovery of longitudinal
magnetization (T1-weighted imaging), and/or decay of
transverse magnetization (T2-weighted imaging).

Many hardware considerations and parameter settings
influence the properties of the obtained images.



Review Questions

1. Explain which physical phenomenon is described by “nuclear
magnetic resonance.”

2. Describe the three gradients that are used in magnetic resonance
imaging and how they help in obtaining images.

3. What is the difference between T1- and T2-weighted imaging in
terms of the underlying contrast mechanisms and in terms of how
the resulting images look?

4. A researcher aims to obtain T1-weighted images of a small brain
structure with an anatomical resolution as high as possible. Which
choices are relevant in terms of hardware and parameter settings of
the pulse sequence?



Further Reading
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description of the underlying physics.)
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interesting and partially interactive tutorials of key concepts of MRI.)
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tutorial of the physics of MRI.)
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Chapter 3

Structural Imaging Methods
◈



Learning Objectives

Noninvasive imaging of the detailed structure of the living human
brain can be extremely challenging. It is a very different perspective
compared with the histological approaches available for the fine
examination of tissue postmortem.

Historically, structural neuroimaging in its modern form started
with X-ray imaging. A derivative of X-ray imaging is still widely used
in a clinical context, often referred to as CT (computerized
tomography) scans. A CT scan involves a multitude of X-ray images
that, as a whole, provide a three-dimensional structural image of a
body part, such as the head, and can easily differentiate hard tissue,
in particular bone, from soft tissue. In addition, by targeting specific
contrast ranges typically covered by soft tissue, it also provides
some contrast between the different kinds of soft tissue in the head,
such as gray matter, white matter, and cerebrospinal fluid.
Nevertheless, this contrast is much less clear compared to the
contrast which is typically obtained in MRI, as illustrated in Figure
3.1. For this reason, CT is rarely used in the cognitive and behavioral

Understanding structural T1-weighted imaging and the main
analysis approaches

Acquiring knowledge about diffusion tensor imaging and how
structural connectivity is related to behavior

Understanding the basics and the relevance of magnetic
resonance spectroscopy



neuroscience literature. It is useful, however, to aid in the diagnosis
of a wide range of diseases (see, e.g., Lebby, 2013), such as
inflammation, demyelination, infection, and vascular conditions (as
revealed by contrast-enhanced [CE] CT) as well as traumatic head
injuries, strokes, and various tumors (often involving non-enhanced
[NE] CT). Many examples of the combination of CT and MRI in the
context of such diseases can be found in Osborn and colleagues
(2016).

Figure 3.1 A comparison of three imaging modalities that are frequently
used for clinical diagnosis: CT, T1-weighted MRI, and T2-weighted fluid-
attenuated inversion recovery (FLAIR) imaging.

Most cognitive neuroscience studies do not include CT scans
but perform structural imaging based on the principles of magnetic
resonance imaging. In this chapter, we introduce the three main
methods: structural T1-weighted MRI, diffusion tensor imaging, and
magnetic resonance spectroscopy.



3.1 Structural T1-Weighted MRI
Structural T1-weighted MRI is a component of the vast majority of
human brain imaging studies. Almost all hemodynamic imaging
studies (see Part II) include a T1-weighted anatomical scan in order
to pinpoint the anatomical location of functional activations within an
individual and/or group of individuals. The same goes for
electrophysiological imaging studies when researchers aim to
localize the source of signals (see Part III), and for the more
sophisticated causal methods mentioned in Part IV. In these studies,
the structural T1-weighted MRI is often referred to as “anatomical
imaging,” which is how we will refer to this image modality in the
remainder of this chapter.

The physical principles behind anatomical imaging and the
concept of T1 contrast were introduced in Chapter 2. The most
important concepts needed to understand the acquisition of T1-
weighted MRI have been covered already. In the current section, we
focus on the further image processing steps, give a short overview of
the most important statistical analyses, and end with some
illustrations of reported relationships between anatomy and behavior.



3.1.1 Quality Check

Before embarking on a complicated and quantitative analysis of the
anatomical volume, a researcher should first engage in a quality
check of the image as it was obtained. Often this step has already
been completed during the scan session when the image was
reconstructed and put up for display immediately after acquisition. A
few examples of possible problems that might warrant follow-up are
discussed in the following sections.

Image Artifacts

The most common artifacts have to do with the presence of objects
that distort the magnetic field. Some objects, such as a hairpin, can
be removed, readily solving the problem. Other objects might be
fixed in place – for example, orthodontic devices. (See Chapter 6,
Fig. 6.2, for an example image.) Most of the bolts, wires, and other
dental machinery that a participant might carry in the mouth are not a
contraindication for scanning, but they do affect the resulting image,
in particular in nearby regions such as the ventral frontal cortex.

Incidental Findings

Even though study participants who are selected have no prior
neurological history, and the scans for a research study are not
conducted for diagnostic purposes, the resulting images still might
reveal an unexpected abnormality. The problems can range from
tissue that should be there but is absent (lesions, gross asymmetries



in anatomy) to tissue that should not be there (e.g., tumors). The
follow-up procedure for the participant will depend on the local
institutional guidelines. For the researcher, the incidental finding will
often result in the need to remove the participant from the
experimental sample.

Image Acquisition Problems and Constraints

Anatomical scanning is based on routine pulse sequences and is
relatively robust for acquisition problems as long as no unwanted
objects are present and the head does not move. However, in
particular studies there might be circumstances that would diminish
data quality. A first example is the use of a high-field scanner such
as a 7T. High-field scanning can be beneficial for anatomical imaging
in order to visualize particular brain structures in fine detail. However,
the image will typically be optimized at a very local level, with very
inferior images of other parts of the brain. A second example is the
use of surface coils, again to optimize image quality in a particular
region of interest close to the coil, but with the side effect of inferior
data quality further away from the coil. In such circumstances, the
anatomical images might not be appropriate for some, or even most,
of the following analyses steps.



3.1.2 Finding Structure in Anatomical Images and
Normalization

Volume-Based Normalization

Normalization refers to the procedure used to bring the data of an
individual participant into a common spatial reference space. In
volume-based normalization, this alignment is done in a way that
preserves the basic three-dimensional volumetric structure of the
neural anatomy.

As is true for all of the following, whether or not a researcher
performs this analysis step depends on the research questions.
Normalization is needed when a researcher wants to compare or
pool the brains of different individuals in ways that assume that a
particular point in the volume of participant X corresponds to a point
in the volume of participant Y.

Suppose that we have an anatomical volume of two individuals
and we want to match the two as thoroughly as possible. First, we
would restrict the matching to the organ of interest by performing
brain extraction, during which the brain tissue is delineated in the
images. Other tissue such as the dura (a thick membrane around the
brain visible in brain scans) is stripped away (virtually) from the
images. Then one of the volumes is taken as reference and the
second volume undergoes a transformation to optimize the
correspondence with the first. The simplest approach is a rigid
transformation in which the second volume can be translated
(shifted in position) and rotated (turned around). To account for



differences in size, we can also add scaling (made smaller/larger).
The full transformation can be summarized by nine numbers: three
scale factors (one in each direction), three translation parameters
(one in each direction), and three rotation parameters.

This simple rigid transformation can be expanded to improve the
match. A rigid transformation will never bring the two anatomical
volumes in perfect alignment because individual brains differ in local
characteristics, such as the exact form for cortical sulci, the size of
gyri, and the exact shape of brain structures. To accommodate all
these differences, we would need to give the normalization
procedure more degrees of freedom to transform the anatomy, not
only with more global parameters (e.g., with affine transformations),
but even by allowing local deformations with a multitude of
parameters at a local level (optimized by a local fitting procedure
such as nonlinear regression or spline fitting).

Most studies transform the individual anatomies into a standard
template space, which is shared between studies. As explained
further in Box 3.1, several coordinate spaces or “templates” have
been used over the course of time.



Box 3.1  Template Reference Spaces for Normalization

Historically, the most famous template is the Talairach atlas,
which is based on the histology of one elderly woman
(Talairach and Tournoux, 1988). The atlas provides a series
of coronal, horizontal, and sagittal slices together with a
procedure to normalize other brains to the atlas. This
procedure uses several landmarks: the anterior commissure
(AC), the posterior commissure (PC), the orientation of the
midline, and the superior and inferior (temporal lobes)
boundaries. The resulting X (left-right), Y (anterior-posterior),
and Z (ventral-dorsal) coordinates are all zero at the AC.

More recently, the Talairach atlas has been replaced by
templates that are based on anatomical MRI scans of large
representative samples of participants, such as the MNI
templates developed by the Montreal Neurological Institute.
The new templates use the same coordinate frame as the old
Talairach brain, although at a detailed level the coordinates
do not exactly match. Figure 3.2A shows the ICBM152
template (based on 152 individuals) as it is used by several
software packages, and which is constructed by normalizing
and averaging the images of all 152 individuals. Because of
the large intersubject variability in anatomy, this template is
blurry.



Figure 3.2  Templates used for volume-based (A) and segmentation-
based (B) normalization.

Not all studies use this MNI-152 template. First, it is not
representative of the general human population. For example,
it does not include a good racial mix. For that reason, most
studies performed in Asia use a different template based on
Asian participants. Even more specific, many studies on
particular sub-populations have investigated the use of
population-specific templates for children or the elderly or



even worked with study-specific templates. Such templates
can improve the results for the sub-population of interest, but
might compromise direct comparisons between different
populations or at least require an additional step to normalize
the study-specific template with a more generally used
template.

Segmentation and Segmentation-Based Normalization

A lot of information is not used when the anatomical volume is
considered as a volume without any further structure. The steps
described in this section are used to reveal an increasing degree of
structure in acquired images, with the aim to improve normalization
and the amount of information that can be obtained from a structural
scan.

An important step is tissue segmentation. The brain is
separated into white matter, gray matter, and cerebrospinal fluid
(CSF). This separation can be made partially based on the T1-
weighted MRI signal value of voxels, with larger values for white than
for gray matter, and very low values for cerebrospinal fluid. However,
by itself this would not work very well. Several problems have to be
solved. First, not all voxels of a particular tissue have exactly the
same value. Second, low values would also be abundant at the outer
edge of the cortex, where no CSF is present. To solve such
problems, segmentation routines are a bit more complicated than
just taking three tissue values, and several additional steps are
incorporated in the analysis pipeline. The exact ranges of tissue



values can be optimized, possibly including manual adjustment.
Furthermore, prior knowledge is used concerning where a particular
tissue is typically located. As a final solution, manual corrections of
remaining segmentation errors are often needed, although over the
years software packages have improved considerably in terms of
fully automatic segmentation.

The segmentation results in a volume of each tissue type. In
order to proceed with segmentation-based normalization, we can
construct tissue-specific anatomical volumes and register each of
them with tissue-specific template images, so-called tissue
probability maps. Figure 3.2B shows the tissue probability maps
associated with the ICBM152 dataset. Clearly, these maps contain
much more detail than the blurry template in Figure 3.2A. As such, it
is not surprising that segmentation-based normalization overall gives
better results compared with volume-based normalization without
segmentation.

Surface Extraction and Surface-Based Normalization

Segmentation can also be used to extract and render the cortical
surface. Once we do this, we move away from volume-based
procedures toward surface-based analyses. Some software
packages, such as FreeSurfer, are very much tailored to surface-
based analyses.

The exact definition of the cortical surface varies. It would make
sense to define it as the outer edge of the cortex, where layer 1 of
the cortical gray matter ends. Often it is alternatively defined as the



edge between white matter and gray matter. When the analyses
include a “cortical thickness” parameter, the dichotomy between
these two alternatives disappears, and the surface might in fact be
an average of all values between the outer and the inner edge of the
cortical sheet. What all these definitions have in common is that the
original three-dimensional position of each point on this surface is
transformed into a two-dimensional position in this sheet. We have
one sheet per hemisphere, and the sheet itself is composed of
vertices, not voxels. Note that the value of a vertex is a weighted
combination of the signal value of neighboring voxels; thus, it is
possible to switch back and forth between a voxel and a
vertex/surface space.

This cortical sheet can be visualized in several ways, as
illustrated in Figure 3.3. Surface-based representations thus take
many forms: inflated brains, brain spheres, and flattened brains. A
common variant is to inflate the cortical surface, by which the
massive indentation of the surface is neutralized by bringing all the
sulci to the surface (Fig. 3.3A). You can understand this process
intuitively by seeing what happens when you flatten a wrinkled piece
of paper. In this variant, the two-dimensional surface is still
represented in a three-dimensional format (e.g., there still is a
medial-lateral direction in the view). Some software packages go
somewhat overboard with the inflation and create a balloon-like
representation of the surface, referred to as spheres. This step is
typically only taken as a means to put together the surfaces of
different individuals in a common reference frame, which is an
example of surface-based normalization.



Figure 3.3 Inflated and flattened visualizations of the cortical surface. (A)
Inflated surface. (B) Flattened surface. (C) Inflated surface with visual
activity from a contrast of vertical-horizontal, with vertical representing
stimulation of the visual field above and below the point of fixation (the so-
called vertical meridian) and horizontal stimulation of the visual field left and
right (the horizontal meridian). (D) Part of the flattened surface with visual
activity in the contrast vertical-horizontal. Purple lines indicate the
approximate delineation of visual areas V1–V3 based on anatomical
normalization. The color map for functional activity ranges from blue for
negative values (more activity for the horizontal meridian) to red and yellow
(more activity for the vertical meridian). CS, calcarine sulcus.

Visualizations were generated with FreeSurfer

A further step is to obtain a two-dimensional view by flattening
the surface (Fig. 3.3B). To obtain a flattened surface, a few cuts
need to be defined. To return to the paper metaphor, you can create



a flat piece of paper from a wrinkled paper because the original
paper was flat. But imagine that your paper was brought into a hat-
like formation by using a few staples, and then you had it wrinkled.
With inflation, you remove the wrinkles. To proceed with flattening,
you also have to remove the staples. After defining the cuts (the
position of the imaginary staples in the brain), we obtain a flat
surface.

The best format for visualization depends on the purpose. When
the anatomical images are used to visualize data from functional
imaging, often inflated brains are used. Inflated brains show all
activity, including activity within sulci, in a manner that is faithful to
the topology of the cortical surface and that at the same time retains
a straightforward relationship to the original three-dimensional
layout. Flattened brains, or so-called flatmaps, are more difficult to
read for the less-experienced researcher because the original three-
dimensional layout is no longer available to help orienting in the
image. It feels a bit like looking at a map of the Earth if the cuts on
the globe were made at random positions, rather than at the poles,
and if East were “up” rather than North. For this reason, the use of
flattened brains is restricted to specific domains that use very
particular landmarks. For example, in studies of visual perception,
the calcarine sulcus is a useful landmark because it is a standard cut
to generate the flattened surface and it predicts the layout of the
retinotopic organization in the visual cortex (Fig. 3.3C,D).

There are some problems associated with surface renderings.
The most general caveat should be obvious once we take a few
seconds to consider what we have learned. Surface-based analyses



pick up only cortical activity. Subcortical activity disappears from the
data when results are looked at on the surface. There is no use for
surface-based cortical analyses if you would happen to be interested
in hippocampus, amygdala, thalamus, or basal ganglia, to just name
a few subcortical regions.

As a more subtle variant of the above, surface-based analyses
are also subject to the need for a good correspondence between the
definition of the surface (e.g., edge of white and gray matter) and the
variable of interest. Take the example of functional activity that would
be displaced a bit, because it is primarily measured in a vein that
runs next to the surface and not in gray matter. A first consequence
might be that it does not intersect well with the surface edge. If it is a
relatively strong and spatially extended activation, it could also
intersect too much with the surface: It could intersect twice, once
with the closest surface edge, and with the edge of the surface at the
other side of the sulcus. Two clusters of activity would be visible on
the surface representation. We can summarize these caveats with
the general observation that surface-based analyses bring the
researcher further away from the original data format. Whenever this
is done, it is worth returning to the original data format to check
whether final conclusions are backed up not only by derivative
analyses but also in the original data.



3.1.3 Approaches to Investigate Brain Morphometry

There are two general purposes for anatomical images. First, they
are acquired as a reference for the application and analysis of other
methods, such as to coregister and visualize functional data or to
guide brain stimulation. Second, analyses can be performed directly
on the anatomical images. For this second goal, researchers
compute indices that are meant to quantify specific properties of the
anatomy, collectively known as brain morphometry.

The analysis of brain morphometry includes many steps, which
have been discussed in previous sections, such as various forms of
normalization. Because morphometry typically requires an extra level
of accuracy for some of the steps, some details of the procedures
differ systematically depending on the goal of the anatomical
processing. In general, the methods for brain morphometry can be
divided along the same lines as for normalization: volume-based
morphometry and surface-based morphometry (Greve, 2011).

Volume-based morphometry focuses on the volumetric unit of
images, the voxel, which is why this method is typically known as
voxel-based morphometry (VBM). Analysis steps for VBM include
normalization and segmentation. Extra care is taken with the
normalization, which involves nonlinear registration to a group
template separately from normalization of the group to a standard
template (e.g., MNI). The registration to the group template also
provides information about which deformations (compression,
stretching) happened to each voxel to bring it in alignment with the



group, also known as the “jacobian map.” The segmentation
specifies for each voxel in the normalized image the probability that it
belongs to a particular tissue. Such a probability map is obtained for
individual subjects for each tissue of interest. To allow a comparison
across subjects, it is necessary to first smooth the data of individual
subjects in order to compensate for remaining differences in the
location of anatomical landmarks. The better the normalization is, the
less smoothing is needed.

In surface-based morphometry, the cortical surface is
reconstructed first for each participant and aligned across
participants. Afterward, analyses are performed on surface
properties. For gray matter in particular, the surface-based analyses
allow the calculation of very specific indices, such as the thickness of
the surface, the curvature (amount of folding), and the volume.
These indices can be computed for each individual, but further
normalization (e.g., by creating a surface sphere reference frame) is
necessary before data can be compared between individuals and
groups of individuals.



3.1.4 Statistical Analysis and Interpretation

Statistics are applied to whatever property has been computed (e.g.,
a gray-matter probability map) on whatever units have been used
(voxels or vertices). The statistical approach to determine whether
any significant differences in morphometry are observed between
two groups of participants (e.g., participants with and without
depression) is very similar for the two methods and similar to the
statistical approach used in other imaging modalities. The statistical
details are described more fully in Chapter 7 in the context of
functional imaging. In short, many studies apply a voxel-wise (VBM)
or vertex-wise (surface-based) random-effects analysis. In its
simplest form, this analysis comes down to the calculation of a
simple statistical test such as the student’s t-test for each voxel or
vertex. The value of this test statistic would simply be the difference
between means of the two subject groups divided by a measure of
the error variance in the data. In a further step, the probability of
observing this value is typically corrected for multiple comparisons,
taking into account that many tests are run in parallel (many
voxels/vertices).

There are a few general concerns when performing
morphometric analyses, which are relevant to pay attention to during
the analyses and when interpreting the results. First, the outcome is
very sensitive to problems with normalization. For example, a lower
gray matter value in a particular voxel or region in a first group of
subjects compared with a second group could be interpreted as a



difference in gray matter density between the two groups, but it could
also be caused by a less accurate normalization in the first group.
One possible solution would be to obtain a measure of the quality of
normalization in each participant and use this variable as a covariate
in the statistical analyses. Quality of normalization is just one
example of a range of confounds that might affect the values
calculated locally for voxels/vertices. A second important factor is the
total brain volume. Different approaches are followed to take into
account this total brain volume, such as including it as a covariate in
the aforementioned second-level analyses or, alternatively, by
adjusting the calculated indices on which statistics are done. If an
effect is robust, then it should not matter which method is followed to
consider such confounds. It is good practice to check this, because
the interpretation of findings is complicated when effects depend on
the analysis method. To give an illustration, several brain regions
have been shown to be larger in men than women when total brain
volume is not considered, including the hippocampus. This effect
goes away when total brain volume is controlled for by using it as a
covariate, and it even reverses, with larger relative hippocampal
volumes in women, when the indices are adjusted (Perlaki et al.,
2014). Clearly, when considering the relationship between
hippocampal volume and sex, the outcome of the analysis is not
robust to the way in which analyses are performed.



3.1.5 Voxel-Based Lesion-Symptom Mapping

The aforementioned methods for brain morphometry are appropriate
when the inter-individual differences in brain anatomy are small. In
neuropsychological patients, there might be clear lesions at the
individual level. In such cases, we might wonder how the
characteristics of a voxel, in this case whether it is within or outside
the lesion zone, correlate with behavioral symptoms. This question is
addressed through voxel-based lesion-symptom mapping (VLSM)
(Bates et al., 2003). First, the lesion zone is delineated, which can be
performed manually “by hand” or automatically (the latter possibly
with further manual correction), using images as shown in Figure
3.1. Next, the anatomical images with the lesion delineation are
normalized. In this step, special attention is given to the possibility
that large lesions will complicate the normalization. Finally, statistical
analyses are performed to determine for each voxel whether the
lesion status of voxels is related to differences in symptom severity –
that is, whether patients with a lesion in a voxel show more deficit
compared with patients without a lesion in that voxel.

A specific example of this method is shown in Figure 3.4.
Lesions were delineated in aphasic stroke patients. For each voxel,
patients with lesions in that voxel were compared with those without
lesions in that voxel using a two-sample t-test on several behavioral
symptoms.



Figure 3.4 Voxel-based lesion-symptom mapping in aphasic stroke patients
for two behavioral measures: fluency (A–C) and auditory comprehension
(D–F). High t-scores indicate that a lesion to a voxel is associated with a
large effect in behavior. Deficits in fluency are associated with lesions in the
insula (B) and parietal white matter (C), whereas problems with
comprehension were related to more posterior lesions in the middle
temporal gyrus (D).

Figure reproduced with permission from Bates et al., 2003



3.1.6 The Relevance of Brain Structure for Behavior and
Mind

Structural MRI can reveal neuroanatomical abnormalities with
devastating effects on behavior. Famous examples are the medial
temporal lobe damage underlying anterograde amnesia in patient
HM (Corkin, 2002) and the lateral occipital lesion related to agnosia
in patient DF (Steeves et al., 2006). These neurological cases, with
very specific behavioral fallout, are rare. However, many people are
confronted at some point in life with various debilitating
neurodegenerative and neurovascular diseases. Major
cerebrovascular accidents can affect large parts of the brain and the
consequences will be visible on a structural MRI (see Fig. 3.1). The
same goes for later stages of dementia. Methods such as voxel-
based morphometry can quantify the structural changes caused by
these diseases.

Apart from structural changes resulting from such major events,
there are numerous studies that investigate the “normal” brain that is
not affected by disease, or diseases that are not typically viewed as
being associated with major structural abnormalities. In these
studies, quantitative aspects of brain structure are related to various
behavioral variables to find out how inter-individual or inter-group
differences in anatomy relate to inter-individual or inter-group
differences in behavior. Many relationships have been found (Kanai
and Rees, 2011). Psychologists have ranked their fellow human
beings on various dimensions, including general intelligence (the



intelligence quotient or IQ), more specific forms of intelligence (e.g.,
performant IQ and verbal IQ), and dimensions that characterize
personality such as the “big five” personality traits (extraversion,
neuroticism, openness, conscientiousness, agreeableness).
Neuroanatomical studies have attempted to relate each of these
dimensions to measures of neural anatomy, most often with success.
Indeed, higher gray-matter density in various cortical regions
(including frontal areas) is related to IQ (Frangou et al., 2004), and
extraversion, conscientiousness, and neuroticism (DeYoung et al.,
2010). The same goes for other prominent distinctions such as sex
(Joel et al., 2015).

It should be noted, however, that the effect size of these
relationships is often not very large, and it is nowhere near the effect
size observed in well-characterized neurological case studies. With a
large effect size, the intelligence or personality of an individual could
have been predicted fairly well by measuring anatomy. To give a
benchmark, the relationship between sex and height is relatively
strong. Knowing about someone’s height will allow you to guess his
or her sex reasonably well. To put it in numbers, suppose we have a
few hundred men with a mean height of 174 cm and a standard
deviation of 7 cm, and we want to distinguish them from a few
hundred women with mean height 164 cm and standard deviation 7
cm.1 Cohen’s d, a typical measure of effect size that normalizes the
difference between the means by dividing this difference with the
standard deviation, equals 1.4 for these data. We can convert this
number to a more intuitive measure: What is the maximum
performance that we could get when we would try to categorize



individuals as man or woman when we just have their height? With a
d of 1.4, guessing accuracy would be 75% correct.

The effect size of the relationship between anatomical measures
and behavior is often much smaller. It is always possible to find
individual research studies that report large effect sizes, but most
often the average effect size across multiple replications and in
meta-analyses is relatively small. For example, Cohen’s d for the
relationship between gray matter density values and sex is 0.7 or
lower (Joel et al., 2015)(see also Fig. 3.5). With a d of 0.7, you would
perform at 64% correct when trying to predict sex from gray matter
density. Note that most replicated effect sizes are notably smaller
than this example. This is the situation for simple correlations
between individual brain structures and sex. However, the two sexes
differ in anatomical characteristics in more than one region of the
brain. Depending on the region, sometimes the male brain shows a
larger gray matter density, and sometimes the female brain does. As
a consequence, better discrimination, up to 80%, is possible in the
same dataset with more complex multivariate methods that take into
account the relatively small differences not just of one brain structure
but of many brain regions (Rosenblatt, 2016). We further discuss the
potential of such multivariate methods in the context of functional
imaging in Chapter 8. We can conclude that macroscopic anatomy,
such as that revealed through structural imaging, is to some degree
related to behavior and various diseases, but it is a complex
relationship and also not the whole story.



Figure 3.5 The relationship between gray-matter volume and sex.

(A) Typical distribution of gray matter volume in males and females in the
left hippocampus. According to the data of Joel et al. (2015), the difference
in gray matter volume in this region is associated with a Cohen’s d of 0.7 at
best.

Figure adapted from Joel et al. (2015).

(B) Schematic (not actual data) to illustrate why the combination of
information from more than one brain region can improve the ability to
discriminate between males and females based on gray matter volume
data. Orange and purple dots refer to hypothetical individuals, male or
female, respectively. The marginal distributions of values show high
amounts of overlap in each single brain region, but the distinction is clear in
the bivariate distribution.

Figure adapted from Rosenblatt, 2016



3.2 Diffusion Tensor Imaging (DTI)
All neurons communicate through action potentials. However, an
action potential by itself is a meaningless entity. An action potential
(or in the real brain, a particular pattern of action potentials fired by
many neurons) could signal danger, safety, feeling worried, seeing
your dog, the memory of your grandmother, and so on. The action
potentials have meaning because of where they come from (the
input of a neuron) and where they go to (the output). As mentioned
in Chapter 1, the roads taken by action potentials on their path are
referred to as axons. A complete wiring diagram of a brain would
require tracing the path of each individual axon.

Such an enterprise is not entirely unheard of. In small animals
with a low number of neurons (such as Caenorhabditis elegans with
approximately 300), all the neurons and connections have been
traced and labeled. In the mouse, invasive methods are allowing
researchers to fully reconstruct the so-called connectome of small
volumes of tissue. However, in humans, the grand-scale application
of the implicated invasive methodology is out of the question. As
such, we are limited to noninvasive brain imaging techniques. This is
where diffusion tensor imaging (DTI) comes into the picture.

As mentioned, the restriction to noninvasive methods has grave
consequences for the level of the spatial detail that can be obtained.
With noninvasive methods such as DTI, we cannot image individual
axons. At best, we get an idea of the properties of large bundles
containing many thousands of axons. Luckily, we are again helped



by the tendency of the brain to put or keep together things that
somehow belong together. We already know that this is true for
neurons with a similar function (see Chapter 1), and with neuronal
connectivity the same tendency pops up. Axons that start in each
other’s vicinity, e.g., coming from neurons of one and the same brain
region, and that end nearby, tend to stay together and form larger
white matter pathways or tracts. As it turns out, DTI is able to provide
us with estimates of the properties of such larger tracts.



3.2.1 Data Acquisition

Diffusion tensor imaging is based on the previously explained
nuclear magnetic resonance principles. It also involves an NMR
scanner, and the application of pulse sequences that are
characterized by a succession of radio frequency (RF) pulses and
multiple magnetic gradients. In DTI, the pulse sequence is adapted
so that it becomes particularly sensitive to a biological process
referred to as diffusion and is called diffusion-weighted imaging
(DWI). What is diffusion and how does it teach us something about
brain structure?

Diffusion refers to the phenomenon in which molecules tend to
move around in a medium. The molecules spread out as evenly as
possible in the medium, moving from parts with a higher
concentration to parts with a lower concentration. From the
information in Chapter 2, the reader can infer that such movement
would typically decrease the magnetic resonance imaging (MRI)
signal. Indeed, the movement would cause dephasing because it
would change the magnetic field experienced by a molecule and
make it different for each molecule. We learned about methods to
refocus dephasing, which was induced on purpose, but the
dephasing caused by diffusion is chiefly random – at least in a
simple medium.

The brain, however, is not a simple medium. It is a complex
environment, with many barriers for molecules. In the current
context, the most relevant barrier is the cell membrane around axons



and how it constrains the mobility of protons. For a proton, it is easier
to move back and forth within an axon than it is to move from inside
to outside the axon. In more technical terms, we obtain an anisotropy
in the diffusion. When many axons are aligned with one another, we
get relatively large volumes of tissue, one or even multiple cubic
millimeters, in which proton mobility is constrained primarily to the
direction parallel to the axons. Such volumes fall in the order of
magnitude that we can resolve with noninvasive imaging.

Diffusion tension imaging is typically based on a spin-echo
echo-planar imaging (EPI) sequence. In such a sequence, a 90° RF
pulse is followed by a 180° refocusing pulse, resulting in a spin echo.
In addition, the echo-planar imaging involves multiple phase- and
frequency-encoding gradients. With a regular spin-echo sequence,
the MRI signal would be degraded by the total amount of diffusion,
independently of the direction of diffusion or the anisotropy.

With DTI, we augment the spin-echo EPI with an additional pair
of gradients (see, e.g., Alexander et al., 2007). These gradients have
a particular direction in 3D space, which is a linear combination of
the X, Y, and Z directions. The first gradient in the pair occurs before
the 180° RF pulse, the second after this RF pulse. The first gradient
dephases the protons, while the second rephases the protons, at
least if protons have not moved since the first gradient.

With this “pulsed gradient” spin-echo (PGSE) sequence, it
suddenly matters in which direction protons move. If they have
moved in the direction of the gradient, the so-called encoding
direction, the magnetic field experienced by the proton is not the
same during the first and the second gradient, and rephasing will not



be successful. Returning to the anisotropy of diffusion with an axon
bundle, the greater diffusion along the axons in a white matter tract
will result in MRI signal loss as a result of incomplete rephasing
when the pulsed gradients align with the axons. A larger MRI signal
will be preserved in encoding directions orthogonal to the axons,
because little diffusion happens in these directions. The anisotropic
diffusion results in a dependence of the obtained signal on the
gradient direction in the PGSE sequence.

To quantify the amount of diffusion in each possible direction in
3D space, the diffusion is typically viewed as a three-dimensional
ellipsoid (more or less the shape of a rugby ball) of which the shape
is described by a symmetric 3x3 matrix in which the diagonal
elements describe the variance (length) in the X, Y, and Z directions.
The three off-diagonal elements describe the covariance between
these three directions. This matrix is referred to as the tensor. With
a mathematical trick called matrix diagonalization, this matrix and its
six values are converted into a matrix of which the columns describe
the three axis directions of the ellipsoid and a diagonal matrix with
diagonal elements that describe the length of these three axes, from
the longest (λ1) to the shortest (λ3) (Alexander et al., 2007). In more
intuitive terms, these numbers describe in which direction the
ellipsoid points and how thick it is (Fig. 3.6).



Figure 3.6 The diffusion in three dimensions is characterized as an
ellipsoid. The orientation and axis lengths λ1 to λ3 of this ellipsoid are
determined in each voxel.

All these numbers have to be determined in each voxel. Given
that we have six numbers to estimate, we need to include at least six
encoding directions during image acquisition covering the full space
of directions as equally as possible. In practice, DTI sequences often
include tens of encoding directions. In addition, a reference image is
obtained without diffusion weighting.

Diffusion tensor imaging is sensitive to several types of artifacts,
in particular because of field inhomogeneities, so-called eddy
currents related to the relatively long duration of the gradients, and
subject motion. Intuitively it makes sense that DTI would be highly
sensitive to motion. The contrast of interest is related to the mobility
of molecules; thus, we have designed a sequence that is particularly
sensitive to how much stuff has moved. The use of EPI helps to



restrict this sensitivity because it allows imaging of complete slices in
a short amount of time. Various strategies exist to already minimize
artifacts during acquisition and image reconstruction.



3.2.2 Data Analysis

The data analysis of DTI data is often performed with dedicated
software packages. A (long) list can be found in (Soares et al.,
2013).

Preprocessing

As with all imaging modalities, data analysis starts with a control of
the quality of images. By scrolling over the full set of images, large
artifacts and other major problems can be detected. In extreme
cases, this might result in the removal of the full dataset or of
particular encoding directions. Smaller problems can be taken care
of with further preprocessing. Eddy current artifacts as well as small
degrees of subject motion can be corrected with registration to the
obtained reference image without diffusion weighting (Rohde et al.,
2004).

Tensor Estimation

The diffusion-related changes in the MRI signal have been
characterized per encoding direction. A model with six parameters is
fitted to these empirical data. After this model fitting, we know the
three vectors describing the direction of the three axes of the 3D
ellipse, as well as the length of these vectors/axes. Images can be
created with the values of each of these six parameters (Fig. 3.7). A
more comprehensive picture is obtained by plotting the direction of



the main axis of diffusion with a color scale. This picture already
involves a comparison between parameters.

Figure 3.7 Illustration of various images and indices that can be computed
from DTI: a diffusion-weighted image DWI with nonzero pulsed gradients
(which is consequently weighted for T2 as well as diffusion), a T2-weighted
reference image when the pulsed gradients have zero strength (DWI_b0)
mean diffusivity (MD), fractional anisotropy (FA), the amount of diffusion
along the three axes (λ1–λ3), and the direction of maximal diffusion in a
color scale (red: left/right; green: anterior/posterior; blue: superior/inferior).

Images were created with TrackVis software

Tractography

The map with the direction of the main axis of diffusion for all voxels
is a possible basis for delineating white matter tracts in individual
brains. The simplest, and most manual, approach is to define a
particular seed region as the starting point of the tract and follow the
tract by a path of voxels with smooth changes in the main diffusion
direction. This is a time-consuming enterprise even for just one tract.
Automatic algorithms exist to delineate tracts, and for multiple tracts



at a whole-brain level. After applying such an algorithm, a color map
can be created in which the color of voxels represents the tract to
which they belong

Tract delineation requires several parameters to be set, such as
the size of the seed region, the minimal anisotropy threshold, and
the maximal difference in diffusion direction between neighboring
voxels on the tract. It is underdetermined where fiber tracts cross. A
voxel in which a 0° oriented tract crosses with a 90° oriented tract
will not show a high anisotropy, because the two diffusion
anisotropies at the microscopic level cancel each other out at the
macroscopic voxel level. Automatic algorithms for tractography try to
bring in extra knowledge to solve such problems (e.g., identify
crossings from the local environment of voxels and predict how
anisotropies would be mixed at the crossing).

Useful Indices

The six numbers obtained through tensor estimation provide a
multivariate dataset that together fully describes the 3D diffusion
profile. In most DTI studies, these numbers are converted to a few
indices which are more directly related to what this diffusion profile
might tell us about the underlying neuroanatomy. All indices are
computed based on the lengths of the three vectors, starting with the
length along the direction of maximal diffusion λ1, followed by λ2 and
λ3. Example coronal images of these lengths and derived indices are
shown in Figure 3.7. A first index characterizes the overall amount of
diffusion, independent of direction, and is computed as the mean of



the lengths of the three vectors, known as mean diffusion (MD).
The second index refers to the anisotropy of the diffusion and is
computed by taking the difference between the length of each
diffusion axis and the mean diffusion, followed by a further
normalization for the total diffusion. The resulting scalar, referred to
as fractional anisotropy (FA), is 0 when the diffusion is isotropic
and 1 when there is only diffusion along the main axis. Finally, there
are two further indices that capture the amount of diffusion along the
direction of maximal diffusion, axial diffusivity (AD), or along the
other two directions, radial diffusivity (RD). In Figure 3.7, AD is
equal to λ1 and RD to the average of λ2 and λ3.

Statistics

Typically, DTI is performed to search for differences in white matter
properties between sets of scans, such as two groups of subjects
(e.g., a clinical group versus controls). Several statistical approaches
to analyze DTI data are inherited from other imaging modalities and
are described in more detail elsewhere. One approach is to take
whole-brain maps of a particular index, such as FA, and perform a
random-effects analysis followed by correction for multiple
comparisons to assess the significance of differences in this index
between the two groups (for more details, see Section 3.1.4 and in
particular Chapter 7).

A second approach is to average the values of such an index
across a region of interest (ROI; for other examples of ROI analyses,
see Chapter 7). This average provides one value per subject per



ROI. A between-group comparison could be as simple as an
unpaired t-test on these values, possibly combined with correction
for multiple comparisons if many ROIs are involved. The ROIs could
be defined based on various criteria. One common variant is first to
identify particular white matter tracts of interest and then average
indices such as FA across all voxels belonging to such a tract.

Interpretation

In optimal circumstances, changes in DTI measurements reflect
changes in diffusion, without being compromised by artifacts such as
subject motion. Changes in diffusion can be the result of different
phenomena, and the different indices described above can show a
differential sensitivity to some of these phenomena. As such, the
indices can show partial dissociations. The overall diffusion can go
up while the FA goes down, such as when we compare white matter
(low MD, high FA) with cerebrospinal fluid (high MD, low FA). When
white matter tracts are compromised, FA could go down by a
decreased AD, an increased RD, or a combination of both. In some
neuropathological conditions, the exact changes are well known,
such as diseases that affect myelination or neurodegeneration, and
specific predictions can be made about which indices should be
affected and how. For example, with decreased myelination, and
otherwise intact axons, it makes sense to find that fractional
anisotropy goes down because radial diffusivity goes up (less of a
barrier for molecules) while axial diffusivity is less affected (Song et
al., 2002).



3.2.3 The Relevance of Anatomical Connectivity for
Behavior and Mind

Sometimes a distinction is made between two major types of
hypotheses: hypotheses that refer to the decreased functioning of
particular mental processes and the brain regions relevant for these
functions on the one hand, and so-called disconnection hypotheses
that refer to changes in the connectivity or access between mental
processes and the underlying brain regions on the other hand (Boets
et al., 2013). Diffusion tension imaging is particularly relevant in
testing disconnection hypotheses. However, when articulated these
hypotheses seldom specify the nature of the underlying biological
mechanism. Connectivity could be decreased by many mechanisms,
some of a structural nature such as smaller or less numerous axons,
lower myelination, and problems with the integrity of axons, and the
other of a more functional nature such as synaptic deficiencies. As
far as structural changes are involved, the most common
operationalization of hypothesized decreased/increased connectivity
is to look at an expected decrease and, respectively, increase in
fractional anisotropy, without much further expectations for the other
indices.

Diffusion tensor imaging measures of connectivity have been
found to be related to numerous aspects of behavior and mental
functioning. Before discussing them, we will mention one an
important caveat. Small differences in DTI values do not have much
meaning at the level of individual subjects. In clinical cases, very



strong abnormalities can be visualized with DTI, e.g., during
presurgical mapping, but such massive effects are not present in
studies of the normal brain or even in most psychiatric disorders.
Research studies typically do not speak about significant
connectivity for an individual subject, but rather about differences in
connectivity between groups of subjects. Given this reliance on
between-group comparisons, the confidence in the conclusions is
strongly related to group sample size.

Given the importance of group sample size, we will give
examples of relationships between DTI measures and behavior from
meta-analyses that have combined findings from multiple studies
and thus are based on relatively large sets of participants.

Meta-analyses have primarily been applied in the context of
prominent mental disorders, for which many studies have already
been performed, and for the most frequently studied index, fractional
anisotropy. For example, schizophrenia has been linked to lower FA
values in deep white matter in the left frontal and left temporal lobes
(Ellison-Wright and Bullmore, 2009). To interpret these findings, one
has to consider the white matter tracts that cross these locations.
This implicates lower connectivity in many candidate tracts that
connect frontal regions with other cortical and subcortical regions. In
the case of major depression, a comparison of patients with controls
revealed only regions with decreased fractional anisotropy, again
implicating a variety of white matter tracts (Liao et al., 2013).

Note that it is not very obvious how to relate the reduced
fractional anisotropy in the diverse set of possibly affected tracts to
the diverse set of symptoms in the studied syndromes and the



diverse parameters on which the patients and controls differ as a
group (diagnosis, anamnesis, long-term use of medication, etc.).

Diffusion tensor imaging has also been performed in the context
of rarer or more specific syndromes or to study specific behavioral
functions or tracts. In such cases, we are confronted with a huge
number of possibly interesting relationships to study, and thus there
is typically only a small number of studies that have investigated a
particular relationship between a behavioral function/deficit and brain
regions/tracts. Many individual studies exist, but often it is too early
to tell which findings are replicated consistently and which are not,
and they tend to show some differences between individual studies,
suggesting a complex pattern of deviant connectivity. For example, if
we compare the findings from the most cited studies on differences
in anatomical connectivity between patients with autism spectrum
disorder and controls (Barnea-Goraly et al., 2004; Lee et al., 2007;
Thomas et al., 2011; Weinstein et al., 2011), then the convergence
between the actual findings is not high. Therefore, we have to
conclude that the pattern of findings is far more complex than can be
predicted in a straightforward way from the dominant theories of
autism spectrum disorders (Vissers et al., 2012).



3.3 Magnetic Resonance Spectroscopy
(MRS)

Thus far, we have defined brain structure as the spatial distribution of
different tissue classes: which voxels contain which tissue classes
and to what extent. However, there are also other biological
components that have a distinctive spatial distribution, and that
together are implicated in the processes that make the brain a living
organ. These processes are known as our metabolism, and the
biological components as metabolites, and include all the molecules
involved in neural functioning.

Any basic course in neuroscience introduces students to a
range of metabolites. Particular attention is given to
neurotransmitters because they are essential for the chemical
information transmission from one neuron to the next. In addition,
there is also a high number of other molecules keeping neurons and
other cells alive and kicking. For a small minority of these molecules,
it is possible to quantify their concentration and spatial distribution in
the brain in a noninvasive manner through a method referred to as
magnetic resonance spectroscopy (MRS).

A large proportion of behavioral scientists moving into
neuroscience might not immediately be confronted with MRS and
are more likely to have been exposed to the other methods
introduced in this book. Nevertheless, it is appropriate to cover MRS
for several reasons. First, in some fields of behavioral neuroscience,
such as animal work, it is very common to perform molecular



analyses. A combination of methods such as immunohistochemistry
and in situ hybridization allows researchers to characterize the
presence of a wide range of specific molecules in neural tissue.
Magnetic resonance spectroscopy comes nowhere near the potential
of such invasive methods, but it is useful to know what is and is not
possible in humans for a scientist trying to relate animal and human
work. Second, MRS is an interesting variant of the principles behind
magnetic resonance imaging, making it relatively straightforward to
explain the method given what the student knows already from
previous sections and to use MRS as a test of the depth of
understanding of these principles.



3.3.1 Data Acquisition

From Biological Structure to a Frequency Spectrum

Spectroscopy refers to a wide range of methods in which a signal is
decomposed into its frequency components. As such, a spectrum is
formed where the strength or amplitude of each frequency
component is determined. All of us have literally seen spectroscopy
at work in nature each time we spotted a rainbow. A rainbow comes
about when sunlight is reflected by raindrops. Light of different
frequencies, which we refer to as wavelengths, is separated because
different frequencies are reflected at a different angle. Thus, through
a rainbow we see the frequency/wavelength spectrum of sunlight.

We have seen before that magnetic resonance is also
characterized by variations in frequency. Here we will focus only on
MRS of protons (also indicated as H-MRS) because it is probably the
only type of MRS that the reader might be confronted with, but as
with other domains of MRI the same principles can also be applied to
image other nuclei. In structural MRI, there are variations in signal
frequency that are intended by the researcher as well as unintended
frequency variations. The intended variations are induced by the
frequency gradient that is applied during the readout of the signal.
Thanks to the frequency gradient, protons in different positions on
the gradient experience a different magnetic field strength and give
rise to a signal with a different frequency. As a consequence, the
frequency of a signal becomes informative about the spatial location
of the protons that elicit the signal.



In addition, there are several natural sources of variation in
frequency that are not introduced by the experimenter. One of them
is the local chemical environment of protons. Many protons are
embedded in a complex molecular structure (Govindaraju et al.,
2000). In Figure 3.8, we illustrate this complexity by showing the
chemical structure of two well-known brain metabolites, the
excitatory neurotransmitter glutamate and the inhibitory
neurotransmitter GABA. This local chemical environment influences
the spin frequency of the protons. In structural MRI, this unintended
variation in frequency can induce systematic artifacts. In MRS, we
use this variation in frequency to our advantage to measure the
chemical composition of brain tissue. Note that it is absolutely critical
to minimize other unintended sources of variation in frequency, such
as problems with the homogeneity of the magnetic field. For that
reason, the preparation for MRS includes extra procedures to
improve this homogeneity specifically in the volume of interest. This
process is typically referred to as shimming, which is also done for
other NMR imaging modalities but is particularly important for MRS.

Figure 3.8 Chemical structure of glutamate and GABA.



Single-Voxel MRS and MRS Imaging

There are several approaches to MRS (for a longer introduction, see
Bertholdo et al., 2013). The simplest form of MRS, single-voxel
MRS or single-voxel spectroscopy (SVS), images one volume of
interest or voxel. The position of the volume/voxel is typically
determined by first performing a structural T1-weighted scan. To
determine the three-dimensional position of the volume of interest,
three RF pulses are applied, each simultaneously with a magnetic
gradient in one of three orthogonal directions. Each pulse-plus-
gradient determines the position in one direction. We have seen this
principle before, when a pulse applied simultaneously with a slice-
selection gradient determines the slice that is imaged.

No gradient is applied when the signal is measured. In other
types of MRI, this is the time at which the frequency-encoding
gradient is applied so that spin frequency becomes informative about
spatial position. Magnetic resonance spectroscopy also uses the
frequency spectrum during readout, but in MRS the frequency
variations reflect the chemical composition of the imaged brain
tissue. Thus, no frequency-encoding gradient is needed. There are
several types of single-voxel MRS that are all based on this simple
scheme. They are known by acronyms such as PRESS and STEAM.
A simple introduction to these methods can be found elsewhere
(Bertholdo et al., 2013).

In addition to single-voxel MRS, there are also methods used to
obtain three-dimensional images with MRS. This approach is known
as magnetic resonance spectroscopy imaging (MRSI). In MRSI,



phase-encoding gradients are applied in up to three dimensions to
obtain information about spatial location.

Nevertheless, many studies still resort to single-voxel MRS
instead of MRSI. As one might expect, single-voxel MRS takes less
time, typically a few minutes per voxel. Many single-voxel MRS
studies also include at least one control volume, and the total scan
time goes up linearly with the number of independent volumes.
Magnetic resonance spectroscopy imaging scan time can be
shortened by using various fast imaging techniques, such as echo-
planar imaging, but often only by compromising the accuracy of the
quantification of the obtained frequency spectrum. This brings us to
the main benefit of single-voxel MRS: It provides a frequency
spectrum that is less deteriorated by various artifacts. You measure
only one or a few voxels, but you measure them well. In particular,
for the investigation of metabolites with low signal-to-noise ratio,
such as GABA, most experiments use single-voxel MRS.

Water Suppression and Editing

In both single-voxel MRS and MRSI, we are confronted with the
problem that, by far, protons are most abundantly found in water.
However, water is typically not the chemical compound of interest in
H-MRS. Without suppression of the signal from water, the frequency
spectrum as obtained from MRS would be dominated by water, and
the signals from other protons would be washed away. For this
reason, MRS applications include techniques for water
suppression. The most frequent method is known as CHESS and



includes a 90° pulse prior to the actual pulse sequence. The
frequency of this additional pulse is adjusted to match with the
resonance frequency of protons in water. As such, water protons are
saturated, and their effect on the obtained frequency spectrum is
greatly diminished.

Figure 3.9 shows a typical frequency spectrum for one voxel as
obtained by MRS before and after suppression of the signal from
water. The shifts in frequency are typically expressed in units of parts
per million (ppm). This is a unit that normalizes for the change in
frequency as a consequence of magnetic field strength. As a result,
the scale is the same no matter the field strength of the scanner.
Several peaks are seen, each at a different chemical shift. Most of
them are related to metabolites that do not sound familiar after a
basic course in neuroscience. Nevertheless, the peaks of several of
these metabolites show an altered amplitude in several neurological
diseases and thus are potentially useful for differential diagnosis.

Figure 3.9 MRS frequency spectrum (A) before and (B) after suppressing
the signal from water. Cho: choline, Cr: creatine, NAA: N-acetylaspartate.

Adapted (with permission) from Bertholdo et al., 2013



A prominent application of MRS focuses on the neurotransmitter
GABA (Puts and Edden, 2012). GABA is related to multiple peaks,
because the GABA molecule contains multiple protons that differ in
their local chemical environment (see Fig. 3.8). Each of these
individual peaks overlaps in frequency with the peaks of other
prominent metabolites, including glutamate/glutamine and N-
acetylaspartate (NAA). These other metabolites are more abundant
and thus largely obscure any effects due to GABA at the individual
peaks. There are several ways to overcome this problem. The most
popular solution involves the addition of a second sequence that
includes a frequency-specific RF pulse to suppress one of the peaks.
For most metabolites, this will not affect the signal and thus not their
peaks. However, for GABA the different peaks are coupled, and thus
the suppression of one peak will also affect the peak at other
frequencies. By comparing the results from sequences with and
without the suppression of one GABA peak, we can estimate the
contribution of GABA at other peaks. This method is referred to as
the edited detection of GABA through an edited spectrum.



3.3.2 Data Analysis

The processing of MRS data involves specific software packages.
The software tools that are useful in general for a broad spectrum of
imaging methods, such as SPM and Brainvoyager, do not contain
any functionality for MRS. This is related to the fact that MRS data
require a very specific processing stream that is different from other
imaging methods.

The data analysis starts with the MRI signal treated as a one-
dimensional frequency spectrum on which a Fourier analysis is
performed to capture the amplitude of different frequencies in this
signal. Several artifacts can compromise the signal (Bertholdo et al.,
2013). Some of them, such as eddy-current artifacts due to gradient
switches and remaining signals from water protons, are typically
removed prior to applying the Fourier transform. After the Fourier
transform, there might be a further need to adjust the obtained
baseline and to put the peak amplitudes on an interpretable scale.
Most often, the peak amplitudes are arbitrary values in an absolute
sense, and only obtain meaning when they are compared with other
values that are used as a normalization factor. For example, the
peak amplitude values of a diseased volume of interest could be
normalized by the values of a control region. Another common
solution is to normalize by the peak amplitude of metabolites that are
known to be particularly stable, such as creatine.

Magnetic resonance spectroscopy is also sensitive to subject
motion, which should be avoided as much as possible during



acquisition. In MRSI, there is some possibility for realigning the data
during processing. In single-voxel MRS, this is not possible, and we
do not have a measure of the degree of motion that can be used as
a control variable in later analyses. Magnetic resonance
spectroscopy applications that rely on edited spectra, such as GABA
MRS, are particularly sensitive to motion because at least two scan
sequences have to be compared, each of which is obtained at a
different point in time. Interleaved data acquisition can help, but,
needless to say, the best approach is prevention.



3.3.3 The Relevance of Molecular Indices for Behavior and
Mind

Magnetic resonance spectroscopy offers the exciting opportunity to
relate the concentration of particular molecules to diseases and to
behavioral variability in the healthy population.

When used as a clinical tool, what matters most is the specificity
and sensitivity of the amplitude of a particular frequency peak in the
MRS spectrum for a particular type of disease. Stagg and Rothman
(2014) illustrate the wide variety of diseases in which some of the
most prominent peaks in the MRS spectrum are affected, such as
the differentiation between classes of brain tumors, stroke, and
inflammation.

However, a downside of this approach is that these peaks are
related to metabolites or, in most cases, several metabolites
together, that have a rather general function for cellular biology. It is
not uncommon to find a complex combination of peaks, each
deviating slightly between patients and controls. As an example, mild
cognitive impairment has been related to reductions and increases of
several peaks in a number of brain regions (Tumati et al., 2013). The
peaks might reflect the integrity and general “healthiness” of the
tissue, secondary consequences of diseases such as inflammation
and neuroenergetics, and compensatory mechanisms, rather than
capturing specific aspects of neural processing.

This is the reason why neuroscience researchers often opt for
more difficult approaches and decide to measure less prominent and



more noisy peaks, such as for GABA, with MRS. The prospect of
measuring GABA, a neurotransmitter with a specific function in the
central nervous system, sounds much more exciting to a
neuroscientist compared with the prospect of measuring creatine, to
name one example.

We will illustrate this potential of GABA MRS with a study by
Yoon and colleagues (2010). In a first section of their study, Yoon et
al. investigated orientation-specific surround suppression. In this
paradigm, participants have to indicate the contrast of a local pattern
of lines that is surrounded by another larger pattern of lines that are
either oriented in the same direction (Fig. 3.10A) or in a different
direction compared with the local pattern of interest (Fig 3.10B). The
surround modulates the perceived contrast of the local pattern of
interest, with a reduction in the perceived contrast when the lines of
both patterns are in the same direction. Years of human
psychophysical and animal research have already suggested that
this surround modulation is related to intracortical inhibition through
GABA. This literature was nicely corroborated by Yoon and
colleagues, who found that the strength of this orientation-specific
surround suppression at the behavioral level was related to the
strength of the GABA signal as measured through single-voxel
GABA MRS focused on the primary visual cortex in the calcarine
sulcus.



Figure 3.10 Orientation-specific surround suppression. In reality, the
contrast of the black and white lines is the same in panels A and B, but the
contrast is perceived to be stronger in panel B. The strength of this
perceptual effect varies between observers. Yoon et al. (2010) showed that
this inter-individual variability in perceptual surround suppression is
correlated with the GABA signal as measured through MRS.

Half of the participants in this experiment were schizophrenic
patients. It has been hypothesized that reduced GABA-related
functioning would be responsible for cognitive deficits in
schizophrenia, and this hypothesis was confirmed by the findings:
lower GABA levels in MRS in the schizophrenic patients compared
with healthy controls.

No matter how interesting such findings may sound, it is
important to emphasize an important caveat when interpreting the
outcome of GABA MRS. A scientist with a basic education in
neuroscience will immediately think about the function of GABA as
explained in textbooks. GABA is an inhibitory neurotransmitter that is
present around synapses and of which the concentration is
modulated by its release in presynaptic terminals. When we read
and interpret findings such as those of Yoon and colleagues, it is this
function of GABA that we have in mind. However, the biology of the



real brain is far more complex than we learn in textbooks. Stagg and
colleagues (2011) identify at least two other functions of GABA apart
from its inhibitory and relatively phasic (short-term) role at the
synaptic level. GABA is also present extracellularly outside
synapses, where it might have a more tonic inhibitory effect through
extrasynaptic receptors. Even more remote from the first function,
GABA is also present in the cytoplasm throughout a neuron, which is
probably related to a general role in metabolism. While the
correlation with specific behaviors, as in the results of Yoon et al.,
suggests that at least part of the measured signal is related to the
first function of GABA as an inhibitory modulator of neural activity, it
is possible that the findings also reflect other pools of GABA.



Summary
Nuclear magnetic resonance–based methods can be used to
measure a variety of structural brain properties.

Structural T1-weighted MRI obtains images that are useful for
coregistration of other imaging modalities, for normalization
between subjects, for segmentation of different tissue classes,
and for various forms of brain morphometry.

Diffusion tensor imaging measures structural brain
connectivity through the local anisotropy in proton diffusion,
which is related to various properties of white matter tracts.

Magnetic resonance spectroscopy provides unique
opportunities to determine the concentration of several
metabolites important to brain function.



Review Questions

1. Describe the differences in the pulse sequences used for T1-
weighted MRI, for DTI, and for magnetic resonance spectroscopy.

2. Explain how fractional anisotropy (FA) might be related to changes
in axons, such as myelination, and to what extent other confounds
might complicate measures of FA.

3. To what extent can we state that brain anatomy as measured with
T1-weighted MRI can be a reliable source of information to infer
differences between people in terms of intelligence and personality?



Further Reading

Mai, J. K., Majtanik, M. & Paxinos, G. (2015). Atlas of the Human Brain.
London: Academic Press. (Access to a good atlas is necessary for structural
neuroimaging. This book also has very useful online resources that are even
accessible if you do not buy the book, see
www.thehumanbrain.inf/brain/sections.php.)

Soares, J., Marques, P., Alves, V. & Sousa, N. (2013). A hitchhiker’s guide to
diffusion tensor imaging. Frontiers in Neuroscience, 7, 31. (This article is a
practical guide to DTI with a lot of useful references.)

Stagg, C. & Rothman, D. L. (Eds.). (2013). Magnetic Resonance
Spectroscopy: Tools for Neuroscience Research and Emerging Clinical
Applications. London: Academic Press. (Chapters 1, 2, and 5 of this book
contain more than 100 pages with detailed technical information about the
three methods that we summarized here.)

http://www.thehumanbrain.info/brain/sections.php


Notes

1 Such a sample would be the height reported by 1259 Italian individuals in
1966; see www.econ.upf.edu/docs/papers/downloads/1002.pdf.

http://www.econ.upf.edu/docs/papers/downloads/1002.pdf


Part II
◈

Hemodynamic Neuroimaging

In Part II, we describe the human brain imaging techniques that
measure hemodynamic signals. These methods are responsible for
a large part of the hype around neuroscience since the 1990s. The
unprecedented spatial resolution offered by these methods allowed a
detailed picture of the functional organization of the human brain. In
order to grasp the enormous impact of these methods, and of
methods in neuroscience in general, it is useful to go to a university
library and check the section on human neuroscience. Try to find a
textbook from around 1980, and a recent one. One good example is
the book Principles of Neural Science by Eric Kandel and
colleagues, which has had five editions spanning the interval
between 1981 and 2012. The difference in the amount of knowledge
is amazing!

This part is structured as follows. First, in Chapter 4, we provide
a general overview about the hemodynamic events that are triggered
by neural activity, and we introduce the three imaging methods that
measure these hemodynamic events: functional MRI, positron
emission tomography (PET), and functional near-infrared



spectroscopy (fNIRS). Chapter 5 contains an introduction to a range
of considerations that are relevant when designing experiments for
hemodynamic imaging. Chapter 6 introduces the steps of image
processing that are necessary before any statistical analyses can be
performed. Chapter 7 then explains the most basic statistical
analyses and caveats for the interpretation of the findings, followed
by an introduction of more advanced statistical approaches in
Chapter 8.



Chapter 4

Hemodynamic Imaging Methods
◈



Learning Objectives

Using hemodynamics to learn something about neural processing is
not an obvious thing to do. As described by Raichle (2000), the
general relationship between neural activity and blood supply was
first observed by Roy and Sherrington (1890), but dismissed later
before becoming more universally accepted. This history contains
several odd approaches to studying this relationship, including
observations that the temperature of the brain rises during mental
exercise, and even a case study where the auditory noise made by
blood flow in an arteriovenous malformation was correlated with
effortful visual processing! Many experiments have been performed
in order to reach the current state of affairs in which hemodynamic
imaging of neural activity is virtually ubiquitous in cognitive
neuroscience. Nevertheless, this approach is still not without its
critics (see Box 4.1).

Understanding the relevance of hemodynamics as a signal for
human brain imaging

Acquiring knowledge about the components of the
hemodynamic response function

Understanding the principles behind each of the three main
hemodynamic imaging methods: functional magnetic
resonance imaging (fMRI), positron emission tomography
(PET), and functional near-infrared spectroscopy (fNIRS)



Box 4.1  Why Neuroscientists and Behavioral Scientists Measure
Blood

Hemodynamic imaging methods are not only popular but also
highly criticized. High trees take more wind.

Two important criticisms are of a methodological nature
(Farah, 2014). First, the strength of these methods is related
to the measurement of hemodynamics, and this is also their
Achilles’ heel. Sometimes it seems that almost every time
that a brain imaging study makes it into the media, there must
be someone cited saying, “Remember, these researchers are
not measuring neural activity, no, they just measure blood
supply. Imagine!”

Indeed, why would a neuroscientist care about blood
supply? Most neuroscientists do not. Nevertheless,
hemodynamic imaging is widely accepted in the scientific
community as providing insights into brain function. The
reason is explained in this chapter: Overall, there is a good
correlation between various aspects of neural activity and
hemodynamics. The relationship is complex, further work is
needed, and caveats do exist, but when properly interpreted,
it is possible to make reasonable inferences about neural
activity based on hemodynamics.

In addition to pointing to the reliance on hemodynamics,
a second frequent point of criticism refers to the complexity of
the methods and the analyses. The reasoning seems to be
that whatever is complex cannot be trusted. However, that is



not how scientists think. A better argument is this: If
something is complex, then scientists should understand it at
a deep enough level so that they can reliably discriminate
between valid and invalid ways of using the complex
methods. Chapters 5 through 8 are intended to provide the
knowledge and understanding that are needed to promote a
valid use and interpretation of hemodynamic imaging
methods.

To put the two main criticisms into perspective, let us
consider the analogy with empirical physics. No matter
whether a physics lab is interested in the infinitely small or the
infinitely large, it will often rely on indirect measurements and
on complex procedures. To find the Higgs boson, researchers
did not measure the boson itself but rather the radiation
resulting from it. Furthermore, to do so they used the Large
Hadron Collider (LHC), which is substantially more
complicated and expensive than any scanner used for human
brain imaging. Likewise, to explore the farthest parts of our
universe, again scientists rely on relatively indirect signals
picked up with very powerful and complex telescopes and
antennas. A new Earth-like planet is typically inferred from
slight and periodic dimming of the light measured from the
star around which it circles, which relies on very heavy image
processing and data analysis. No one has ever directly seen
a Higgs boson, nor has anyone ever seen an Earth-like
planet; nevertheless, we trust that the inferences of physicists



about their existence based on complex analyses of indirect
correlates are correct.

We do not dare to imply that the inferences made from a
typical human brain imaging experiment are as solid as the
work coming out of worldwide empirical physics experiments.
However, the analogy is useful to make the point that the use
of indirect measurements and complex procedures does not
necessarily invalidate an approach. What is critical, though, is
the understanding of the measurements made and
procedures conducted by the scientists who use these
methods and by everyone else interested in the implications
of human neuroscience. We need to know to what extent,
how, and under which conditions hemodynamic changes are
correlated with neural activity. Biology is messy, at least from
the point of view of physicists and mathematicians, so it is not
a surprise that our understanding of these matters is still far
from complete. It will depend on our experimental question
whether this partial understanding is sufficient to be able to
achieve interpretable results for a hemodynamic brain
imaging experiment.

In this chapter, we first describe the characteristics of the
hemodynamic signal that underlies all hemodynamic imaging
methods. We discuss how these hemodynamic events are correlated
with neural activity. Next, we provide further details on the principles
behind the three hemodynamic imaging techniques that are



commonly used in human neuroscience: functional magnetic
resonance imaging (fMRI), positron emission tomography (PET), and
functional near-infrared spectroscopy (fNIRS). We present the three
techniques at the same hierarchical level. Nevertheless, the section
on fMRI is longer despite the fact that much of its physics has
already been covered in Chapter 2. Furthermore, most of the
discussion and examples in later chapters refer to fMRI. This bias is
warranted given the massive difference in the frequency with which
most readers will likely encounter these three methods.



4.1 Hemodynamics and Its Relationship
to Neural Activity



4.1.1 The Hemodynamic Response Function

With hemodynamic imaging we measure a hemodynamic signal that
changes in response to neuronal activity, which is a hemodynamic
response. After a short pulse of neuronal activity, this hemodynamic
response unfolds over time and is known as the hemodynamic
response function (HRF). The HRF is an example of what is more
generally known as an impulse response function: a response over
time occurring after an input pulse.

We explained in Chapter 1 that the link between hemodynamics
and electrical brain activity is present because blood circulation is
responsible for providing the neuronal tissue with the energy needed
to sustain and modulate the membrane potential of neurons. The
energy supply depends on a series of biological processes. Energy
takes the form of adenosine triphosphate (ATP), which can be
produced from glucose. To function, neurons require a continuous
supply of glucose and oxygen, which is the function of blood
circulation. Blood enters the brain through the arteries and arterioles
(small arteries). The exchange of glucose and oxygen with other
cells happens in capillaries where oxygen molecules are removed
from hemoglobin, turning it into deoxyhemoglobin. The
deoxygenated hemoglobin moves to venules and from there to larger
veins.

When energy consumption increases locally because of neural
activity, several parameters change in this scheme, as summarized
in Figure 4.1. We provide only a brief sketch, as more details about
these processes can be found elsewhere (Huettel et al., 2004). The



major parameters are blood volume and blood oxygenation. The
local increase in energy consumption causes a slightly delayed local
increase in oxygen consumption. As a consequence, the ratio of
oxygenated to deoxygenated hemoglobin (blood oxygenation) will
decrease. This will generate a signal through a neurovascular
coupling mechanism that triggers an increase in the supply of
blood. This increase in blood volume and blood flow is accompanied
by a marked increase in blood oxygenation and is much larger than
in the initial decrease because much more blood flows in than is
needed. The peak in the increase in blood supply and blood
oxygenation occurs up to 6 seconds after the oxygen consumption
that triggered the increase. Furthermore, these later events expand
across a larger territory than the region in which oxygen was
consumed (even including blood vessels, which are relatively
remote). After the peak, the blood volume and oxygenation decay
again, with the latter even showing a negative overshoot to below-
baseline levels (Zhao et al., 2007).



Figure 4.1 Hemodynamic events during and following neural activity (left)
and a graphical illustration of their effect on oxy- and deoxyhemoglobin
(right).

Figure inspired by Miyapuram, 2008

This short summary makes it clear that there are several
processes that characterize the hemodynamic changes related to
neuronal activity. It is important to know about these processes and
their characteristics because they will influence the signal that is
measured by a hemodynamic imaging technique. We differentiate
two factors that will influence this hemodynamic signal. First, the
signal will be different depending on which process and parameter
dominates the measurement, such as blood volume, blood flow,
blood oxygenation, or a combination of these. Second, the signal will
depend on whether we only measure the hemodynamic changes
very near to the site of neuronal activity or, alternatively, average
across a larger area.



As a first example, we consider how the hemodynamic signal
evolves over time when a measurement is proportional to blood
oxygenation very near to the site of neuronal activity. The expected
signal is shown in Figure 4.2. Immediately after neuronal activity,
there is the local oxygen consumption, which results in decrease of
blood oxygenation and thus a decrease in the measured signal. This
decrease is also referred to as the “initial dip” (Thompson et al.,
2003). Next, there is an influx of oxygenated blood, resulting in a
strong increase in the measured signal. Afterward the blood
oxygenation decreases again, resulting in a decrease of the signal,
even to below-baseline levels.

Figure 4.2 The hemodynamic response at the site of neural activity.

After this first example, we can consider how this signal would
be different if we vary one of the two factors mentioned above. First,
suppose that we would not measure blood oxygenation but instead
blood volume. In that case, the resulting signal would be simplified,
primarily showing the positive peak but no initial dip and less
negative overshoot. Second, suppose that we would average the
signal across a larger region by using a technique with less spatial
resolution. In this case, the initial dip would most likely be missed,



while the positive peak and negative overshoot would remain. The
next sections provide more information about the hemodynamic
parameters picked up by the different hemodynamic neuroimaging
methods, which will thus determine the signal.

Thus far, we have dealt with the HRF related to a single burst of
neuronal activity. This is, of course, an artificial situation. In reality,
our brain is constantly bombarded with sensory stimulation. Even
though lab researchers tend to simplify reality a great deal and go for
a reductionist approach, most experiments are also more
complicated than a single and very short stimulus presented just one
time. What happens when multiple stimuli are presented, or one
stimulus is presented for a longer time interval? This will complicate
the neuronal activity, with multiple bursts of activity that might
continue for a while. The typical default assumption in neuroscience
is that the brain behaves like a so-called linear system. In a linear
system, the response to a complex stimulus can be estimated from
the responses to the simple stimuli that make up the complex
stimulus. Schematically, if a complex stimulus AB is composed of
two simple stimuli A and B, then the response to AB would be the
sum of the response to A and the response to B. This property is
referred to as additivity. This assumption of additivity is not taken
for granted, and many studies have already investigated to what
extent it holds and in which conditions it does not. Overall, the
evidence in favor of additivity is relatively clear (Boynton et al.,
1996), and some of the conditions under which it breaks are also
known. As an example, we expect from the principle of additivity that
increasing the number of presented stimuli increases the total



hemodynamic response. If the amount of stimuli per unit of time
goes up by a particular factor, then the measured response will be
increased by the same factor (e.g., a two times stronger response
when there are twice as many stimuli). However, if the stimuli are
presented very frequently, faster than one stimulus per second, then
the total hemodynamic response becomes less than the sum of the
responses to individual stimuli (Mukamel et al., 2004). Note that in
this case the cause of the nonlinearity might not be a nonlinearity in
how hemodynamic changes are related to neural activity, but instead
a nonlinearity in the neural activity itself.



4.1.2 The Relationship between the HRF and Different
Aspects of Neural Activity

In the previous paragraphs, we suggested that the hemodynamic
response (HR) is related to “neural activity,” up to some deformations
(e.g., some hemodynamic effects extend to a larger volume than the
neural activity). However, we have not specified what this “neural
activity” would be. In the present context, it would be all processes
that happen in a neuron and that influence how much energy is
consumed by neurons. We have seen in Chapter 1 that many
processes influence energy consumption: maintaining the (negative)
resting potential, restoring this negative potential after an action
potential, processes at the level of the synapse such as
neurotransmitter release, and so on.

When we record the action potentials of a single neuron, we
know exactly what we are measuring: the output of a neuron. When
we record the HR in a region, we are not sure whether and to what
extent the signal represents the overall action potential output in the
region. Theoretically, it is easy to think of situations in which the
overall energy consumption of a region could increase, while the
action potential output might not change. For example, a region
could receive inhibitory input. In such cases, the inhibitory activity
might cause increased energy consumption and an increased HR,
while the action potential output across the region might not change
or even decrease. This thought exercise suggests that the HR might,
in some cases, be related to other aspects of neural processing than



to action potential output. It is unclear how often it happens that clear
dissociations would exist, but it is more than just a theoretical
possibility and it can happen in practice.

Whether this is a problem for the interpretation of findings
obtained with hemodynamic imaging depends on the conclusions
that researchers want to draw from them. When two conditions are
compared and found to be associated with a different HR, then it
remains appropriate to conclude that something about the neural
processing is different between the two conditions. However, it might
not be warranted to conclude that the action potential output is
different between the two conditions.

Attempts have been made to measure the relationship between
the HR and different components of the electrical potential changes
as they are picked by an electrode (see Chapter 1): single-unit action
potential activity (SUA), multi-unit action potential activity (MUA), and
local field potentials (LFPs). Given the fast transients in membrane
potential related to action potentials, SUA and MUA are measured
by filtering the incoming signal to retain the higher temporal
frequencies (high-pass filtering), and then counting the number of
action potentials. Local field potentials include the slower changes at
frequencies below 200 Hz. Little is known about what exactly is
measured through LFPs, although it is a widely distributed belief that
LFP amplitude is very much related to the relatively slow changes in
postsynaptic membrane potential summed across all neurons in the
neighborhood of the electrode (Kajikawa and Schroeder, 2011). As
such, LFP is believed to be a measure of the synaptic input of



neurons, while SUA and MUA can be considered a measure of the
action potential (“spiking”) output of neurons.

The most important experiments in this context were performed
in animals –in rodents and cats, more often in monkeys. Without
such experiments, the HR as it is used in so many human imaging
experiments would not have sufficient empirical support. In this
respect, animal experimentation is crucial even for noninvasive
human brain imaging. Given these dependencies, it is not correct to
regard human brain imaging as an alternative for animal
experimentation. Without animal experiments, the development,
validation, and further progress of human imaging would be slower,
more difficult, and for some aspects even impossible.

The first and most famous experiment to relate the HR to
specific neural correlates was performed in monkeys and published
by Logothetis and colleagues (2001). These authors simultaneously
measured electrical activity from neurons and the HR through fMRI
(more specifically, BOLD fMRI, as is further explained in Section
4.2.1). Figure 4.3A shows part of their results. In Figure 4.3A, one
can see a brain slice with an electrode inserted into area V1. Voxels
with an increased fMRI signal after visual stimulation are shown in
color. In Figure 4.3B, the raw unfiltered signal from the electrode is
shown in black, and the variance or amplitude of changes in this
signal (root mean square [RMS]) are shown in orange. It is clear that
this unfiltered electrical signal increases as soon as and as long as a
stimulus is shown (the blue line represents the stimulus timing; in
this case, the stimulus is shown for 12 s). The temporal profile of the
fMRI signal change is different – it starts later, reaches a peak after



12 seconds, and then slowly decreases again. This temporal profile
is expected given the HRF and its additivity.



Figure 4.3 Simultaneous fMRI and invasive extracellular recordings in
monkey primary visual cortex to investigate the neuronal basis of fMRI.

(A) Visualization of the location of the electrode together with the fMRI
activation elicited by visual stimuli (color map with red-yellow-white =
moderate to high activity). The green dotted line indicates the area across
which the fMRI signal was averaged for further analyses.



(B) Percent signal change (compared with prestimulus baseline) elicited by
a 12-second visual stimulus (Stim), as a function of time. Three signals are
shown: the raw electrophysiological signal measured by the electrode
(black), the root-mean-square (RMS) variance of this signal (orange), and
the fMRI signal (pink).



(C) The fMRI signal change, local field potentials (LFPs), multi-unit activity
(MUA), and single-unit spike-density function (SDF) for three stimulus
durations: 24, 12, and 4 s.

Adapted with permission from Logothetis et al., 2001

To find out to what extent the HR is related to different
components of the electrical signal, the latter signal was further
processed to obtain MUA and LFP. This is shown in Figure 4.3C. In
most circumstances, MUA and LFP would be correlated almost
perfectly; then the fMRI signal would be correlated highly with each
of them. Thus, the authors needed to create a special circumstance.
This was done by including very long periods of visual stimulation.
The top panel represents the findings for a stimulation of 24 s. In



such a situation, MUA and LFP diverge. After a while, MUA (pink
line) falls back to the baseline spontaneous activity when there is no
stimulation at all. In contrast, LFP (black line) remains higher than
the baseline. If the HR is related to MUA, then it would be expected
to also fall back to baseline before the end of visual stimulation. The
findings are very different. Whatever the length of visual stimulation,
the HR stays well above the baseline until after the stimulus has
ended. In these special circumstances, the HR corresponds more to
the LFP signal than to MUA. Note that overall, across all data in the
experiments, the HR was also correlated with MUA, and the
correlation with LFP was only slightly higher than with MUA. Thus, in
a typical situation, all three measures tend to converge: fMRI, MUA,
and LFP. When MUA and LFP are dissociated so that MUA is low
and LFP is higher, LFP seems to be a more important driver of fMRI,
at least in the manipulation tested in this experiment.

More recently, Lee and colleagues (2010) tested whether action
potential activity by itself would be sufficient to elicit an HR as
measured through functional MRI. The authors used optogenetics:
They engineered output neurons in a cortical region so that these
neurons would respond to stimulation with light. With this approach,
the neurons fire action potentials without any synaptic input
processing or slow postsynaptic potential changes. This artificially
induced and relatively isolated action potential activity was clearly
sufficient to induce an increase in the HR signal. The temporal
envelope of this hemodynamic response was remarkably similar to
the HRF as it is observed in a typical fMRI experiment. Thus, when



MUA and LFP are dissociated so that MUA is present without LFP,
the MUA by itself is sufficient to trigger an HRF.

Another recent study by Issa and colleagues (2013) confirmed
the general agreement of HR, MUA, and LFP. The authors measured
all three signals in the inferior temporal cortex of monkeys. The
findings showed a good correspondence of the HR measured with
functional MRI and a spatially smoothed measure of action potential
output. This correspondence between HR and smoothed action
potential output was as good as the correspondence with LFPs.



4.2 Functional Magnetic Resonance
Imaging (fMRI)

Functional MRI is without doubt the functional imaging technology
that has skyrocketed in use in the past 25 years. Functional MRI
shares its physical principles with structural MRI, already introduced
in Chapter 2. The following question is addressed in the current
chapter: How can we use the physics of magnetic resonance to
measure hemodynamics?

We said in Section 4.1 that several hemodynamic parameters
are changed in relation to neural activity, including blood volume,
blood flow, and oxygenation. Each of these changes can have an
influence on the MRI signal. The relative weight of the different
parameters on the fMRI signal changes depends on the pulse
sequence (e.g., spin-echo versus gradient-echo) as well as
hardware considerations (e.g., field strength).

Here we first focus on the approach that is most prevalent in
behavioral and cognitive neuroscience, namely, the measurement
known as the blood-oxygenation-level dependent (BOLD) fMRI
signal. Then, we introduce arterial spin labeling (ASL).



4.2.1 Blood-Oxygenation-Level Dependent fMRI

Blood Oxygenation and the Physics of fMRI

The oxygenation of blood has an impact on MRI signals because
deoxygenated hemoglobin is paramagnetic (the molecule has a
magnetic moment), while oxygenated hemoglobin is not. The
paramagnetic nature of deoxyhemoglobin will alter spin-spin
interactions and result in a faster T2 decay (see Chapter 2). As a
result, an increase in oxygenation will cause an increased fMRI
signal picked up after a radio frequency (RF) pulse in a sequence
that is sensitive to T2 decay. One such sequence is spin-echo echo-
planar imaging (EPI), which was introduced in the context of
structural imaging. This is one way to obtain BOLD fMRI signals.

However, one can use other sequences that, on top of T2
decay, are also sensitive to all the other side effects of paramagnetic
particles and thus generate even larger signal changes depending
on blood oxygenation. Together, these effects speed up the
transverse magnetization decay compared with T2 decay. A spin-
echo sequence compensates for these effects by controlling the
dephasing related to them by its use of a 180° pulse signal. This spin
echo is needed to get proper T2 weighting. However, in addition to
the spin-spin interactions underlying T2, there is dephasing due to
more macroscopic differences in the local magnetic field
experienced by the nuclei. There are several factors that contribute.
A first factor is local field inhomogeneity. Even if the scanner
hardware establishes a perfectly uniform magnetic field, the



placement of biological tissue in this magnetic field will cause small
spatial variations in this field. As a consequence, different nuclei will
experience a different field strength, spin at a slightly different
frequency, and as such get a difference in phase and thus
dephasing. A second factor is tissue susceptibility. The Larmor
frequency of the same nucleus, such as protons, depends slightly on
the type of tissue it belongs to (water, fat, etc.). Again, these
differences in frequency will result in dephasing. The total dephasing
as a consequence of all these factors (spin-spin interactions, field
inhomogeneity, tissue susceptibility, etc.) is known as T2* decay. T2*
decay is always faster (more dephasing) than T2 decay.

Measuring the BOLD Contrast

Pulse sequences that are T2* weighted give more signal when blood
is more oxygenated. This was first verified in rodents by Seiji Ogawa
and his colleagues (Ogawa et al., 1990). Most BOLD fMRI studies
are based on T2*-weighted functional imaging. The most popular
sequence to obtain T2* weighting is gradient-echo echo-planar
imaging (GE-EPI) (see Fig. 2.4). The word “echo” again refers to the
fact that multiple echoes of the signal are elicited, in this case by
reversing the direction of the frequency-encoding gradient. This
reversal realigns the dephased protons, which gives rise to a strong
signal at the moment of realignment.

Most BOLD fMRI studies in the literature perform GE-EPI
imaging with a 3T field strength, an echo time (TE) close to 30 ms, a
repetition time (TR) between 1 and 4 seconds, and a more or less



isotropic voxel size between 1.5 and 3.3 mm3. Each of these
parameters has particular effects on the properties of the obtained
signal and might be relevant to reconsider for projects with particular
goals. A first important property of interest is the spatial resolution.
Spatial resolution is often derived from the so-called point-spread
function (PSF), a function that characterizes the broader spread of
signal when a very small point in the brain is activated. The PSF of
GE-EPI at 3T is about 2–3 mm. A second property of interest is the
size of the BOLD signal changes.

These two properties, spatial resolution and BOLD signal
change, are affected by the aforementioned parameters. As a first
example, GE-EPI at 3T measures a spatially less specific signal
(13% broader PSF) than spin-echo EPI, but provides a larger and
less noisy signal (Parkes et al., 2005). As a second example,
scanning at higher field strengths (e.g., 7T) increases the BOLD
signal considerably, and in addition increases the weight of small
local changes in smaller capillaries compared with the weight of
more global changes in larger blood vessels (Shmuel et al., 2007).
Combining the information from these two examples, suppose that a
researcher would want to measure the initial dip in the HRF, then
spin-echo fMRI at high field strength would be much better
compared with gradient-echo EPI at lower field strength.

With the more default parameters mentioned above, the HRF is
expected to look very much as illustrated in Figure 4.4. This HRF
does not include a clear initial dip, because the BOLD signal
changes with gradient-echo EPI at 3T are spatially not specific
enough. In addition, for each individual trial or even in the



experiment as a whole, this HRF will only be sampled sparsely. In
Figure 4.4, this sparse measurement is illustrated for a TR around
2.75 seconds for two trials (blue and pink circles) with two different
offsets between start of the trial and the first sample. The samples of
each trial allow the capture of part of the continuous function, but not
fully. For example, the offset in the pink circles causes us to miss the
peak of the function.

Figure 4.4 A typical hemodynamic response function in a BOLD fMRI
experiment. In each trial, this function is sampled with a sampling rate that
depends on the TR. Two sample schemes are shown with a TR around 2.75
s – one in which the first sample occurs exactly at stimulus onset time zero
(blue circles), and one in which it occurs later (pink circles).

The echo time is another important parameter. Its value is
important to consider when researchers are interested in brain
structures that are located in or near regions with known signal
dropout due to massive dephasing (e.g., related to field
inhomogeneity or tissue susceptibility). This is the case in regions of
the medial temporal lobe and ventral frontal cortex. More dephasing
means that the transverse magnetization is decaying much faster,



which we can compensate for by taking a shorter TE. In this
example, it also helps to increase spatial resolution in order to avoid
having too many tissue types be covered by single voxels.



4.2.2 Arterial Spin Labeling fMRI

Arterial spin labeling (ASL) (perfusion) fMRI measures blood flow by
indexing the displacement of water molecules. This displacement is
referred to as perfusion. Perfusion should not be confused with
diffusion. Diffusion is a passive movement of molecules, while
perfusion is an actively triggered fluid displacement, in this case of
blood induced by the function of the heart.

To make the MRI signal in an imaged volume sensitive to
perfusion-related displacement, the spins of protons in a nearby
location, such as an adjacent slice of the brain, are magnetized or
“labeled” by an RF pulse prior to signal acquisition. Depending on
the characteristics of this RF pulse, the labeling leads to either
saturation (no more magnetization possible of the magnetized spins)
or inversion (magnetization in the opposite direction). Molecules that
have moved from the nearby location targeted by the labeling pulse
will contribute less to the obtained MRI signal than they would have
done without the labeling. The more blood has flowed from the
labeling time point at the labeled site to the site imaged at the current
time, the lower the MRI signal will be. To quantify these effects, the
signal with ASL is compared with a stationary image that did not
involve ASL.

Arterial spin labeling has existed for some time and has many
clinical applications. However, in cognitive neuroscience it has been
used much less than BOLD fMRI, which is easier to implement.
Nevertheless, ASL also has advantages, and its popularity is



increasing as a result of recent improvements in ASL imaging
sequences (Borogovac and Asllani, 2012). Compared with BOLD,
the physiology behind ASL is simpler, because ASL depends (at
least theoretically) on blood flow only, while BOLD depends on
additional processes. Furthermore, owing to this simplicity and the
availability of a stationary reference image, ASL can be used for
quantitative imaging. Statements such as “blood flow was twice as
large” can be meaningful.



4.2.3 The Relevance of fMRI for Behavior

Functional MRI was one of the major methods responsible for the
large increase in neuroscience studies in the 1990s, the years
known as the Decade of the Brain. Functional MRI provided an
unprecedented spatial resolution for noninvasive imaging, and as
such allowed the investigation of the functional organization of the
human brain with unprecedented detail. The current end point of this
enterprise has been the recent publication of an atlas of the cerebral
cortex with 180 parcels (Glasser et al., 2016).

In parallel, fMRI has helped to differentiate the neural
processing related to a wide range of mental processes. We will give
further insight into the incremental progress over the past 25 years
for some of these domains through some selected examples in the
next chapters. For full overviews, we refer the reader to other books
in the Cambridge Fundamentals of Neuroscience in Psychology
series, many of which illustrate the impressive contribution of fMRI to
deepening our understanding of the biology of mental functioning.

In the ensuing chapters, we show how the progress in
knowledge has been facilitated by an ever-increasing sophistication
in experimental design and statistical analysis. One consequence
has been the transition of the field beyond mere localization of
function into a more computational approach that addresses not only
where but also how mental functions are implemented in the human
brain. This is an important evolution, as fMRI has in the past often
been criticized for giving undue attention to localization, localization-



focused hypotheses, and oversimplistic views of how the brain works
(Farah, 2014).

These innovations, many of which are discussed in the following
chapters, have boosted the role of fMRI in furthering our
understanding of the neural basis of human behavior. However,
many behavioral scientists want to move a step further, not only to
understand but also to predict human behavior. Functional MRI
studies have identified many correlations between brain activity and
behavior. Nevertheless, the size of these effects has sometimes
been overestimated (Vul et al., 2009). In this respect, the situation for
fMRI is not very different from that of structural imaging (Chapter 3),
with large effects being restricted to particular neurological
applications. Functional MRI has been shown to have a good
sensitivity for investigating characteristics of information processing
that are shared between individuals and also for picking up
differences between groups of individuals. However, these group
differences are often not consistent enough between subjects to
allow near-perfect prediction at the individual subject level.

In the next chapters, we will see many examples of the
application of fMRI and discuss further which inferences can be
made from the findings.



4.3 Positron Emission Tomography (PET)
At the end of the 1980s, we were still in the early days of functional
brain imaging. At that time, positron emission tomography (PET) was
the dominant hemodynamic imaging method. Convincing results had
been obtained with PET, but the first landmark papers introducing
functional MRI were yet to come. The findings resulting from PET
triggered the imagination of many. In 1994, two of the pioneers of
that period, Michael Posner and Marcus Raichle, published the book
Images of Mind, which disseminated the early results to a large
audience of scientists and laypeople (Posner and Raichle, 1994).
The content of their book highlights how much the evidence in those
days was dominated by the technique of PET rather than fMRI.
Since then, the situation has changed radically, at least for studies
that aim to obtain an index for local neural activity. However, there
are other goals for which PET has made a much more unique
contribution, such as for measuring metabolism and for the detection
of biomarkers and neurotransmitter concentrations.

Here we introduce the physics of PET, we describe how PET
can be used to measure correlates of neural activity, with attention to
the benefits and drawbacks in comparison with fMRI, and, finally, we
describe the use of PET for other kinds of measurement.



4.3.1 The Physics of PET

A schematic illustration of the PET measurement is shown in Figure
4.5. Positron emission happens in the presence of radioactive
tracers. Given that such tracers are not naturally present in the
human body, they have to be injected into the body. The tracer is not
injected as an isolated isotope, but in a form in which it is attached to
a molecule with a specific biological action. After injection, the tracer
spreads to a broader area through mechanisms that partially depend
on the site of injection and the molecule to which the tracer is
attached.

Figure 4.5 Illustration of the setup and measurement of positron emission
tomography. The top left photograph shows a PET machine. The schematic
in the middle illustrates the principle of positron emission and coincidence
detection.

Based on an image created by Jens Maus.



For PET, the radionuclides are those having a relatively short
half-life, which is the time it takes before half of the radionuclide
transforms into the more common nonradioactive form. This
transformation is referred to as “positron emission decay” because it
involves the emission of a positron. The positively charged positron
is an antiparticle of the negatively charged electron. The positron will
interact with an electron, at which point the electron and positron
annihilate. This annihilation produces a pair of photons that travel in
opposite directions. These photons are detected by the scanner by
means of photosensitive tubes or diodes. Two such photons have to
be detected at the same time (coincidence detection), as single
photons are ignored. Given the opposite direction of the two
photons, the original position of the annihilation event can be
localized along a straight line between the two detected photons.
Tens of thousands of such coincidences are detected and localized,
and together they allow for the reconstruction of an image.

The application of PET with radionuclides with a short half-life
requires the ability to create the radionuclides near the PET
machine. This production implicates a cyclotron.



4.3.2 Using PET for Measuring Neural Activity

Human brain imaging techniques are typically used to measure
neural activity or a correlate as a proxy for neural activity, such as
blood oxygenation. PET can also be used for this purpose.

To measure neural activity, PET studies typically use the
radionuclide oxygen-15, which is administered intravenously. This
radionuclide has two useful characteristics. First, oxygen-15 has a
relatively short half-life of 2 minutes, which makes it possible to
contrast the neural activity in different experimental conditions only a
few minutes apart. Second, the photons detected by the PET
machine give a measure of the distribution of oxygen-15 across the
brain, and this distribution shows a linear relationship to blood
volume. The total amount of oxygen in a brain region is an indication
of local neural activity because of the oversupply of oxygenated
blood that follows the activity after it has occurred (see Section
4.1.1).

A typical PET experiment would include a relatively low number
of conditions, with 4–8 as typical numbers. The conditions would
typically be tested in blocks of 1–2 minutes, with often only two
blocks per condition. In between blocks, there would be a short
waiting period, during which a new injection would be performed.

The resulting dataset is a collection of volumetric brain images
per participant, with their total number being equal to the number of
conditions times the number of blocks per condition. In the next
chapters, we introduce the image-processing and statistical methods



needed to analyze such datasets. Given that a PET dataset is
typically simpler than an fMRI dataset, with the latter containing
many hundreds of images per participant, the relevant processing
steps tend to be fewer for PET compared with fMRI.

Compared with fMRI, PET imaging has benefits and drawbacks
as a measure of neural activity. An important benefit of PET is its
ability to measure blood volume quantitatively. When the blood
volume in a particular voxel increases by a factor of 2, so will the
PET signal in that voxel. In contrast, the signal measured by a BOLD
fMRI sequence depends on many factors and shows no simple
relationship to blood volume. With PET imaging, we deal with less
unknown parameters in our equations when we try to relate the
measured signal to neural activity.

Positron emission tomography imaging also has a few
disadvantages compared with fMRI. First, PET requires the injection
of radionuclides. We mentioned the practical implications, such as
the need for a cyclotron and associated costs, but even more
important are the health risks associated with radioactivity. There is
no need to exaggerate the health risks, as they are limited: The
injected dose is small, and the radioactivity decays very quickly
because of the short half-life. Nevertheless, there are stringent
restrictions on the number of scans a person can be involved in
(e.g., one per year).

Second, PET imaging has a spatial resolution that is poorer than
typical fMRI scans, closer to 1 cm. This difference is actually not
necessarily as problematic as it seems, because PET neural activity
studies typically require averaging across participants because of the



low number of data points per participant. In between-subject
studies, the actual fMRI resolution is also limited by the extensive
spatial smoothing needed to compensate for anatomical variability.
Given the poor spatial resolution of PET, it is typically combined with
an anatomical MRI scan. During the data analysis, the PET scans
are coregistered with the anatomical MRI, which is used for the
normalization of all the images to a standard template space (see
Chapter 6). In most studies, the PET scans and the MRI images are
obtained by different machines, although a minority of institutes have
access to a combined PET-MRI scanner.

Third, PET imaging has a poor temporal resolution on the order
of minutes rather than seconds, which is related to the long duration
of the blocked stimulus presentation and the time in between blocks.



4.3.3 Unique Contributions of PET

The use of PET to measure neural activity has a historical
importance and provides the most clear-cut connection to brain
imaging methods such as fMRI and electroencephalography (EEG),
but it is not the most common application of PET. In nuclear
medicine, PET is most often used to measure metabolism in a
variety of tissues. Given that glucose is the molecule that is most
closely related to metabolism, these studies attach the tracer to
glucose. A common radionuclide in this context is fluorine-18, which
has a half-life of 110 minutes. It is not a drawback that fluorine’s half-
life is longer than that of oxygen-15 because these studies are not
interested in temporal resolution. The compound formed by fluorine-
18 and glucose is known as fluorodeoxyglucose (FDG).

Positron emission tomography imaging of metabolism is
important for the diagnosis of cancer. In addition, metabolism has
been shown to be related to several brain diseases. For example,
hypometabolism in the temporoparietal region is an indication of
neural degeneration in the context of Alzheimer’s disease and mild
cognitive impairment (Mosconi et al., 2008).

Imaging with other compounds might have the potential of
providing an even more direct picture of the pathological process
underlying Alzheimer’s disease. For example, several compounds,
including one known as the 11C Pittsburgh compound B PET, might
serve as a biomarker for the beta-amyloid deposits that characterize
the disease (Johnson et al., 2013).



Finally, PET imaging has the potential to target specific
neurotransmitter systems by attaching the tracer to a molecule of
which the concentration is related to the activity of one specific
neurotransmitter. Studies have focused on various systems, but for
now the enterprise seems to be most promising for dopamine,
measured through the compound 6-[18F]-fluoro-L-DOPA (Volkow et
al., 1996).



4.4 Functional Near-Infrared
Spectroscopy (fNIRS)

Functional near-infrared spectroscopy (fNIRS) is at first deceptively
simple. It involves a machine that is much less massive and much
cheaper than an MRI or PET. This machine shines a light on the
skull and measures the light’s reflection. This reflectance provides
information about activity in the brain. Measuring brain activity by
shining a light on the skull—it almost sounds too good to be true!
Nevertheless, this is actually a correct (albeit simplistic) description
of what happens.

In more scientific terms, light is directed to the skull by a set of
small photo transmitters or emitters. The subject wears a head cap
that contains many such photo transmitters as well as photo
receivers or detectors (Fig. 4.6A). The reflectance of the light is
picked up by the detectors (Fig. 4.6B). Of particular interest is the
light at the near-infrared (NIR) range of the spectrum, more
specifically 700–900 nanometers. The skin, tissue, and bone are
largely transparent to light of this wavelength, which enables the light
and its reflection to travel through these structures.



Figure 4.6 The setup and measurement of functional near-infrared
spectroscopy.

(A) An fNIRS machine with a subject wearing a head cap.

(B) Illustration of the principle of light emission and detection used in fNIRS
(from Naseer and Hong, 2015).



(C) The absorption spectra of oxy- and deoxyhemogloblin (from Wikipedia).

(D) The change in the concentration of oxy- and deoxyhemoglobin after a
short burst of neural activity.

(reproduced with permission from Gervain et al., 2011)

In contrast, hemoglobin and deoxyhemoglobin are strong
absorbers of light in this part of the spectrum. These two molecules
have a different profile of reflectance in the NIR range (Fig. 4.6C).
When the concentration of these two molecules changes, so will the
reflectance of light for different parts of the NIR range. It is important
to note the complexity of the profiles and what this means for how
we expect the absorbed light to change. A different ratio of oxy- and



deoxyhemoglobin will not result in an overall increase in the reflected
light. Instead, we will see a shift in the distribution of this reflected
light across the near-infrared spectrum.

We have explained in the context of BOLD fMRI that neural
activity is associated with a series of hemodynamic events that will
indeed change the concentration of these molecules. As a
consequence, the reflectance in the NIR range is related to neural
activity. In fact, it can be said that fNIRS picks up the same BOLD
contrast that is the basis of fMRI. The resulting measurement will
have much of the same characteristics as the HRF found with BOLD
fMRI, as illustrated in Figure 4.6D (see also Gervain et al., 2011).
There is an initial increase of deoxyhemoglobin relative to
oxyhemoglobin, similar to the initial dip mentioned earlier. It is
followed by a large increase in oxyhemoglobin and decrease in
deoxyhemoglobin with a delay of at least 4 seconds. This is followed
by a smaller negative overshoot with more deoxyhemoglobin.

The method has its limits, though, compared with fMRI. A first
important problem is that the bone scatters the light, that is
transmitted and reflected. The reflected light that is received is
spatially smoothed by this scatter and will not provide a fine spatial
localization of the source of neural activity. Second, fNIRS can only
measure superficial activity and will not pick up signals from within
the sulci or from deeper structures. These two limitations put fNIRS
at a major disadvantage compared with fMRI: poorer spatial
resolution and less uniform coverage of the brain. This is reflected in
the marked differences in the number of published papers using the
two methods. Depending on your search terms inserted in online



databases, the numbers seem to be at least 20 times smaller for
fNIRS in relevant fields such behavioral and cognitive neuroscience.

Nevertheless, fNIRS also has some advantages with respect to
fMRI. The machine is portable, it is cheaper than an MRI scanner,
and it is less intrusive to subjects (e.g., no problems encountered
with claustrophobia). In addition, some of the drawbacks of fNIRS
are alleviated in research with infants, because they have a smaller
head (most structures are not very deep) and a thinner skull (less
light scatter) – all the more reason to test infants with a portable
fNIRS machine and not in a noisy MRI scanner.



4.5 A Comparison of Research with fMRI,
PET, and fNIRS

At this point, it is relevant to give an example of actual data obtained
with the three methods on a similar research topic. As a case in
point, we turn to the study of retinotopy in the visual cortex. This
organizational principle is well known, and as such it is an ideal test
case to test the spatial resolution of different methods and make
comparisons (also see Fig. 3.3).

Retinotopy refers to the systematic mapping of the visual field
on to the cortical surface. Neurons that are nearby in the cortex have
similar receptive fields. This principle holds across all of the primary
visual cortex, and again in many visual areas around it. The mapping
works as follows: First, each hemisphere represents half of the
receptive field, left or right from the point of fixation. The position in
this hemifield is characterized by two parameters. First, there is
eccentricity, which goes from foveal (the center of gaze) to
peripheral. The second parameter is the visual angle, which goes in
a semicircle from below over horizontal to above the point of fixation.
The visual field is mapped in the primary visual cortex in such a way
that the most foveal positions (the center of the gaze) are
represented in the occipital pole. The more peripheral the position in
the visual field, the more anterior we end up in the retinotopic map
along the calcarine sulcus (medial occipital cortex). This mapping is
exactly the same in primary visual cortex and in the surrounding
areas. As a consequence, it does not matter which area in the



medial occipital cortex you are recording from, because you will
always see the same shift of cortical activity as a function of
eccentricity. Figure 4.7A (left) illustrates this eccentricity mapping as
found with fMRI.



Figure 4.7 The measurement of cortical retinotopy with the three
hemodynamic imaging methods.

(A) fMRI allows visualization of large-scale gradients, such as the mapping
of the gradient from foveal to peripheral activation (left; image adapted with
permission from Goesaert and Op de Beeck, 2010), as well as the finer
alternation between the representation of the horizontal (blue) and vertical
(yellow) meridian (right).

(B) PET is able to uncover the shift of activity when moving from foveal
(left), to parafoveal (middle), to peripheral (right) parts of the visual field
(reproduced with permission from Fox et al., 1987).

(C) Results from a single subject illustrate that fNIRS can also pick up the
gradient of foveal-to-peripheral activation (left) and the four quadrants of the
visual field.

(reproduced with permission from White and Culver, 2010)

The mapping of the visual angle is more complicated. In the
primary visual cortex, activity starts ventrally in the cortex for visual



positions far above the point of fixation, and then gradually moves up
dorsally, with the fundus of the calcarine sulcus representing the
horizontal meridian (this is the horizontal line that intersects with the
point of fixation). In the cortical area surrounding the primary visual
cortex, referred to as the second visual area (V2), the mapping of the
visual angle reverses, starting with the higher-up visual position at
the border of V1 and then moving to lower positions the more the
cortical position moves away from V1. This is illustrated in the right
panel of Figure 4.7A, which shows the representation of the vertical
meridian (in yellow) that marks the border between V1 and V2 and
the horizontal meridian (in blue) that runs along the depths of the
calcarine sulcus. The mirror-image organization for the visual angle
makes it very easy to use the vertical and horizontal meridians to
delineate the borders between visual areas.

Functional MRI has sufficient spatial resolution to uncover the
mapping of both parameters in a fair amount of detail. Figure 4.7A
illustrates why a decrease in spatial resolution will not have a major
impact on the measurement of eccentricity. A cubic centimeter
volume centered at the most posterior tip of the calcarine sulcus
would measure more foveal signals compared with a volume
centered on the anterior half of the sulcus. In contrast, a decrease in
spatial resolution will strongly harm the measurement of the visual
angle, because it changes relatively rapidly across visual areas. A
volumetric unit with a size of one cubic centimeter would average
signals from all visual angles in a particular quadrant, such as all
angles above the horizontal meridian. One aspect of the visual angle
is clear, even at lower resolutions: The lower visual field is



represented above the calcarine sulcus (also in V2), and the upper
visual field is represented below the sulcus.

These well-known mapping principles have been used to
validate PET and fNIRS. For PET, Fox and colleagues showed in
1987, long before the advent of functional MRI, that PET could
discriminate foveal from parafoveal and parafoveal from very
eccentric stimulation, as well as upper and lower field stimulation
(Fox et al., 1987) (Fig. 4.7B). At that time, this was a tremendous
step forward. Similar attempts have been made with fNIRS, which
proved successful with a high-density system including distances of
13 mm between emitters and detectors and after averaging data
from multiple sessions (White and Culver, 2010). Figure 4.7C
illustrates how fNIRS can discriminate visual quadrants and
eccentricity through this methodology. The level of detail obtained
with PET and fNIRS is less precise than what is typical for fMRI,
which allows very precise and quantitative measurements of
receptive field properties (Dumoulin and Wandell, 2008).
Nevertheless, the demonstration of retinotopic properties with PET
and fNIRS validates the use of these alternative methods in
particular niche applications.



Summary
The hemodynamic response after a short burst of neural
activity has a characteristic temporal profile that contains
several components which relate to a combination of
physiological processes.

The sensitivity of hemodynamic imaging methods to each of
these processes varies between imaging methods, and within
a method it can further depend on imaging parameters.

Functional magnetic resonance imaging is the most frequently
used hemodynamic imaging method and is the noninvasive
imaging method with the highest spatial resolution and a
temporal sampling of seconds.

Positron emission tomography measures the concentration of
radioactive particles, which can be used to measure the
hemodynamic response to neural activity at a reasonable
spatial resolution and a low temporal sampling of one
measurement per minute.

Functional near-infrared spectroscopy measures the reflection
of light and how it changes by blood oxygenation and serves
its purpose as a hemodynamic imaging technique in niche
applications such as imaging in infants.



Review Questions

1. Describe the components of the hemodynamic response function
and the extent to which they can be measured by fMRI at different
magnetic field strengths.

2. You work in a lab that has access to fMRI as well as fNIRS. What
would you consider when choosing between these methods for a
project that involves the analysis of retinotopic organization in ten-
year-old children?

3. You have a hypothesis that the hemodynamic response function in
medial temporal structures has a longer delay than in the parietal
cortex. Which hemodynamic imaging method would you apply to test
the hypothesis, and which imaging parameters might be important to
pay attention to?



Further Reading

Huettel, S.A., Song, A.W. & McCarthy, G. (2004). Functional Magnetic
Resonance Imaging. Sunderland, MA: Sinauer. (Chapters 6–7 contain
extensive explanation of neural hemodynamics and the BOLD contrast.)

Toga, A.W. & Mazziotta, J. C (Eds.). (2002). Brain Mapping: The Methods.
New York: Elsevier. (This book provides an in-depth coverage of many brain
imaging methods; particularly useful are chapter 6 on fNIRS and chapter 18 on
PET.)



Chapter 5

Designing a Hemodynamic Imaging
Experiment

◈



Learning Objectives

STOP! Before you invest any more time learning about methods
such as fMRI and PET, you need to be fully aware of what you are
getting yourself into. If your end goal is to read imaging papers and
to understand them, then the investment is reasonable – you read
this book and then off you go! However, if you feel that you are
starting to have an appetite for doing such research yourself, then
you should be fully aware of what this means: hard work. We can
back up this claim with some numbers, based on personal
experience tutoring students and interns.

Understanding the difficulties that can be encountered when
designing and implementing an imaging experiment

Understanding the subtraction logic as a fundamental building
block in many experimental designs

Understanding how the evolution over time of the
hemodynamic response function constrains experimental
design

Understanding the difference between a block design and an
event-related design, as well as the variations of these
designs

Acquiring the necessary knowledge to make informed
decisions about which design might be most appropriate in a
particular experimental context



Suppose you are a master’s degree student with a general
theoretical background in psychology, including courses in
neuroscience and statistics. You start with an internship of six
months, and the goal is to complete your own experiment from
scratch: formulating the research question, designing the study,
writing the code for the experiment, acquiring and analyzing the
data, and writing a report at the end. If the experiment is a behavioral
study involving 1–2 hours of testing of 20–40 participants, then you
will probably succeed in completing a full study. Moreover, you might
even do a series of several experiments.

If you are even more adventurous and you aim to carry out an
fMRI study, then your life as an intern would be very different. You
will need to learn much more, and reading this book is one way to
acquire at least part of this knowledge. Each step in the scientific
process will take longer compared with a behavioral study. The data
acquisition will be much more of a hassle per participant. Nothing
compares to the data analysis, however, which could easily take you
days per participant just to prepare the data. The first few subjects
might take you a week or more per subject. In a behavioral
experiment, in contrast, you might only need a few minutes to put the
numbers in an Excel spreadsheet, not days or weeks. Twenty
functional magnetic resonance imaging (fMRI) participants and an
average of three days of pre-analysis per participant, and you are
already busy for three months just on that small part of the whole
enterprise. Needless to say, we have rarely encountered an intern
who was able to complete a full study, from inception to a
manuscript, in half a year. Luckily, an experienced researcher can



proceed much faster, but even then the amount of required time,
expertise, and technical resources is not to be underestimated.

Given this investment, it is crucial to make sure that the study
you start with is worth the effort. This chapter provides important
knowledge about what needs to be considered in order to design
and implement a hemodynamic neuroimaging experiment of
sufficient quality. It introduces and then discusses the experimental
subtraction logic that is the basis for many experiments.
Furthermore, we describe the most frequent designs that are
appropriate for hemodynamic imaging. In the end, we also cover a
few important difficulties and considerations that might be
encountered when the chosen design is implemented in an actual
experiment.



5.1 Think Before You Start an
Experiment

Just because researchers have expensive MRI equipment at their
disposal does not mean that any fMRI study they carry out is
guaranteed to represent good and high-quality science. It is still up to
the scientist to formulate relevant hypotheses and design a study in
such a way that the data can be interpreted as providing evidence
for or against some hypothesis. When it comes to good experimental
design, the expensive machines do not think for you. They allow us
to pick up the signal from brains at work, but they do not have the
brains to know what these signals mean. Nor will the experimenters
know when they have not thought carefully about the design of the
study.

As do many scientific studies in general, there are also far too
many brain imaging studies that lack scientific rigor. This situation is
serious enough to elicit skeptical comments from some of the
pioneers of cognitive neuroscience, people who were overall very
positive about the potential of brain imaging.1 Stephen Kosslyn, who
started using PET and fMRI to address old questions about whether
imagery involves image-like or propositional representations, wrote:

Attending a poster session at a recent meeting, I was reminded of the old
adage “To the man who has only a hammer, the whole world looks like a
nail.” In this case, however, instead of a hammer we had a magnetic
resonance imaging (MRI) machine and instead of nails we had a study.
Many of the studies summarized in the posters did not seem to be



designed to answer questions about the functioning of the brain; neither
did they seem to bear on specific questions about the roles of particular
brain regions. Rather, they could best be described as “exploratory.”
People were asked to engage in some task while the activity in their
brains was monitored, and this activity was then interpreted post hoc.

(Kosslyn, 1999)

Kosslyn goes on to acknowledge that this strategy may
sometimes pay off. Indeed, when a new technique becomes
available, it is already of high value just to show that it works. In early
stages, validating the methodological advance might be more
important than the scientific questions that could ultimately be
answered with the novel technology. However, in the case of
noninvasive human brain imaging, there has been a tremendous
boom in the number of studies. Many of those studies could indeed
be summed up: “Now that we have this machine ready, let’s put
somebody in the scanner with this or that old paradigm and see what
happens.”

In this book, which is focused on the methods we can use to
noninvasively measure signals from the human brain, we will not go
into detail about individual theories and hypotheses that could be
tested by a good study. Nevertheless, theories are of the utmost
importance. Someone who only knows about the methods could be
of high value to further develop the methods, but this person will not
be able to design a study with high theoretical relevance. If you want
to use fMRI to advance knowledge about how mental processes are
implemented in the brain, then you do not need to know only about
how fMRI works; you also need to be a specialist in the



psychological theories of mental functioning. Scientists such as
Stephen Kosslyn are role models in this respect.



5.2 Which Conditions to Include: The
Subtraction Method



5.2.1 The Subtraction Method

Suppose a scientist is interested in how people process visual
images with a highly disturbing content, such as photographs of
soldiers in combat and dead bodies. He/she puts participants in an
MRI scanner and lets them watch a series of such photographs in
one condition and a blank screen in another condition. Afterward the
scientist compares the fMRI signal in the two conditions to find out
which brain regions are more activated by the disturbing images than
by the blank screen. Take a moment to think about how you would
interpret the resulting brain activity.

This is an example of a lousy fMRI study. Note that the problem
is not that the scientist would fail to find brain activity. In fact, there
would probably be a difference in activity in most of the brain.
However, the experiment is not designed to inform the researcher
about why there is activation in the different regions. The problem is
that the two conditions differ in so many respects that it is unclear
which of them would underlie which of the many clusters of activity.
One does not need to be a trained cognitive scientist to make a long
list of differences: The images will activate the visual system while
the blank screen will not; memory representations will be retrieved
by the images, not by the blank screen; various emotions will be
triggered by the images, but not by the blank screen, to just name a
few differences.

What the scientist did in this experiment was make a direct
comparison or subtraction of two conditions. This is referred to as
the subtraction method. To be able to interpret brain activity in such



a subtraction in terms of a particular mental process, the experiment
has to be designed in such a way that the two conditions differ with
respect to only one target mental process. The subtraction method
was first used by Franciscus Donders in 1868 using differences in
reaction time as the dependent measure (Donders, 1969): The
difference in reaction time between two conditions was used as an
indication for the time needed to complete the mental process in
which the two conditions differed. This reaction time method is
known as mental chronometry (Jensen, 2006).

The subtraction method does not limit experiments to just two
conditions. A straightforward extension is the inclusion of a series of
conditions, all of which differ from one other condition in only one
mental process. A schematic example is given in Figure 5.1. In this
case, an experiment is illustrated that includes three different
manipulations or factors. Each factor has two levels, one in which a
mental process of interest is not present and one in which this
mental process is present. In Figure 5.1A, each of the three mental
processes adds a particular amount of time to the reaction time of
participants. In statistical terms, there are three main effects in this
three-factorial design. The time spent on each of the three processes
can be estimated by taking a condition in which this process is
present and subtracting the condition in which this process is absent;
all other factors are equal.



Figure 5.1 The subtraction logic as applied in mental chronometry and brain
imaging. We illustrate a design with three factors. (A) The effect of each
factor on reaction time. In this case, each factor has a main effect on
reaction time. The main effect means that there is an increase in reaction
time when one of the factors is changed, from 0 to 1, from A to B, or from
circle to triangle, independently of the level of the other two factors. The
increase in reaction time gives an indication of the time it takes to execute
the process that is manipulated by each factor. (B) A subtraction of the
imaging signal measured in the two levels of a factor is taken as an
indication of where in the brain the process is localized.

This schematic example refers to an actual study discussed by
Posner (2005). In this experiment, the researchers presented
numbers to participants who had to indicate for each number
whether it was larger or smaller than five. Eight conditions were
generated by manipulating three factors, each with two levels: the
notation of the numbers (digits or spelled-out numbers), the distance
between the number and five (close or far away), and the responding
hand (left or right). Average response time was shortest when the
number was shown as a digit, it was far away from five, and the
participants responded with the right hand. Neuropsychological
theories explain this result using the hypotheses that reading a digit



occurs faster than reading a spelled-out number (encoding stage),
that it is easier to decide that the number is below or above five
when it is far away from five (comparison stage), and that
responding is faster with the dominant hand (response stage). Each
of these manipulations affects a different stage, and the effects are
additive. This is very clear from the reaction time plot, which shows
three main effects and no interactions. For example, the more time
that it takes to process a spelled-out number compared with a digit
can be derived by subtracting the two conditions and would be
estimated to be close to 15 ms.

The same subtraction logic can be used when participants
perform such experiments in a scanner. In this case, we do not
subtract reaction times but maps of brain activity. For each main
effect in the reaction time plot, a subtraction of all the involved
conditions can be performed. A schematic illustration is provided in
Figure 5.1B. To find the brain regions related to the mental process
manipulated through the second factor, the fMRI signal in all the
conditions in which this process is absent would be subtracted from
all the conditions in which this process is present. In the example of
Posner (2005), this could be all conditions involving spelled-out
numbers minus all conditions involving digits. This contrast will
inform us about where the encoding of the number stimuli happens
in the brain, or at least the part of the encoding that is different
between spelled-out numbers and digits.



5.2.2 Considerations about the Subtraction Method

The subtraction method makes the crucial assumption of
additivity, which in the imaging literature is also known as “pure
insertion” (Friston, Price, Fletcher, et al., 1996). According to this
assumption, it is possible to add, or insert, one mental process
without affecting other processes. In the concrete example, we have
to assume that changing something in the comparison stage will not
influence processing in the encoding stage. If the assumption is not
correct, then any brain activity (or reaction time difference) between
conditions designed to target the comparison stage would be
confounded by the unwanted influence in the encoding stage.

The empirical data can already provide some indication about
whether or not this assumption of additivity is valid. Suppose that the
reaction time data in Figure 5.1 would show not only main effects but
also interactions. This would suggest that the effect of manipulating
one mental process depends on the presence of another mental
process. Such an interaction effect would indicate that the effects of
the different factors are not additive. For example, the extra
processing involved for encoding a spelled-out number compared
with a digit might be more or less pronounced depending on whether
the comparison process proceeds rapidly or not. When the
experiment includes the appropriate control conditions and when
interaction effects are tested explicitly, then the assumption of
additivity can be put to the test and statistical interpretations can be
adapted accordingly. Testing such interactions can also be done at



the level of brain activity, following a similar logic as for reaction time
data.

Designing the perfect experiment is not straightforward and may
even be impossible. Researchers have to deal with imperfect and
incomplete knowledge about the brain and the mind. Science makes
progress in small incremental steps, and, crucially, often what is
considered as one mental process at one point in history is
subdivided further as science progresses. We can take “attention” as
an example. “Attention” is an umbrella term for many different
processes. There is the classical distinction between arousal,
distributed attention, and selective attention, and between
exogenous (stimulus-driven) and endogenous attention. Cognitive
psychologist Michael Posner and others have further divided
selective attention in subprocesses based on neuropsychological
and neuroimaging evidence (Gazzaniga, 1995). To allow the focus of
attention shift from one item to another, attention first has to be
disengaged from the current focus, then it has to shift, and finally it
has to be engaged on the new item. Needless to say, only a
cognitive scientist who has a very sophisticated knowledge of
psychological theories of attention can design an experiment that is
relevant to advance the current state of knowledge about attention.
Even then, what current theories assume to be one process might be
further divided later on.

The difficulties with designing perfect experiments and
limitations of the current state of the art do not relieve scientists from
the obligation to try to strive in the direction of the ideal scientific
experiment as much as possible. Too often, studies are published in



which conditions differ in many different aspects and yet the authors
jump to conclusions about what the results reveal. Invalid
conclusions are often based on a particular way of making
inferences (“reverse inference”; see the section on statistical
inference in Chapter 7), which is the only available fallback option
when a study was not designed properly. It is important to note that
in such cases it is not the technique itself nor the more general
neuroscientific approach to mental functions that is to blame for the
interpretational problems, but the inappropriate use by scientists who
have not designed their experiments properly. The scientist is to
blame, not the imaging method.

It is very common, and not as much of a problem, for scientists
to compare conditions that do not satisfy the “one-process-
difference” assumption as a first exploratory analysis. To return to
the experiment with the disturbing pictures of soldiers and bodies,
the contrast of this condition with a blank screen condition would be
very much acceptable as a means of getting a first exploratory view
on the whole system of brain regions involved when processing the
pictures. However, this should be only a first step, without any grand
conclusions drawn from it. The experiment should include further
conditions that allow one to determine which mental processes are
associated with each of the many different peaks of activity found in
the exploratory contrast. A related approach is the use of functional
localizer contrasts, which are used to localize brain regions of
interest. Sometimes this localizer contrast itself involves conditions
that are again more different from each other than the conditions in
the actual experiment of interest.



Finally, the subtraction method is typically introduced as a way
to manipulate mental functions in a categorical or all-or-none
fashion: The function is either involved or not involved, and
conditions are pair-wise subtracted. However, this most simple case
can be extended toward so-called parametric designs, in which the
degree of involvement is manipulated systematically in a parametric
manner. For example, instead of having one condition that involves
selective attention and another that does not, selective attention
could be manipulated in degrees.

Now that we have given an overview of all these important
considerations, it would be a good exercise to go back to the
researcher interested in delineating and localizing the different
mental processes involved when disturbing pictures are processed
and think about how you would approach this general question:
Which conditions would be included in your experiment?



5.3 How to Present the Conditions: The
Block Design



5.3.1 The Block Design and the Hemodynamic Response
Function

Once we have decided about which hypotheses to investigate and
which experimental conditions are needed, we face the question of
how to present those conditions. It is useful to first see how we
would do this in the case of a simple behavioral experiment, then
contrast the procedure with what we would do for an fMRI
experiment, and finally discuss how this would be different with the
other hemodynamic imaging methods.

Consider the abstract case of an experiment with conditions A
and B. One trial of each condition takes a few seconds. In which
order will we show the conditions? In some cases, when the two
conditions are difficult to switch, researchers might opt to present the
conditions in a blocked manner with several trials of condition A
before a switch to condition B. Situations in which this might be
necessary include, for example, experiments that involve switches in
complicated task instructions, or two conditions that are different in
terms of the room in which the participants are seated. However, in
most experiments, the researchers prefer a different approach and
use a (pseudo-)random trial order so that subjects cannot predict
which condition is coming next. This is the preferred approach
followed in most behavioral experiments.

Using a random trial order is not a straightforward choice in the
case of an fMRI experiment. In Chapter 4 we discussed the HRF
(hemodynamic response function). Even if the trial itself and all
neural activity associated with it takes only 2 seconds, then the effect



of this trial on the hemodynamic signal is “smeared” in time: The
peak of the HRF is delayed with 6 seconds, and its total duration is
more than 12 seconds from onset to the point at which it has gone
back to baseline. If a researcher would let a trial of 2 seconds (s) of
condition A be followed immediately by a trial of condition B, then the
blood-oxygenation-level dependent (BOLD) signal changes related
to condition B would start even before the signal changes related to
the previous trial of condition A have reached their peak.

This problem is illustrated in Figure 5.2 for the simplest design
possible: trials of one active condition interleaved with a baseline.
Each continuous blue line shows a simulated (idealized, non-noisy)
BOLD response related to the trials of the condition that are
presented each time there is a vertical red tick mark on top. To avoid
the problem of overlapping HRFs when trials come too close in time,
researchers could opt to space the trials with as much time as is
needed to let the HRF of the previous trial return to baseline. In
Figure 5.2A, the trials are spaced by 16 s (interstimulus interval
[ISI]), which is indeed sufficient to achieve this goal.



Figure 5.2 The expected hemodynamic signal changes related to different
trial sequences.

(A) Slow event-related design.

(B) Fast event-related design with alternation of stimulus trials and null
events.



(C) Block design.

It is obvious that this design is not very efficient. In a behavioral
experiment, participants could complete many more trials in the
same time window. Also, we would expect, given that the HRF is
additive, that one stimulus would elicit fewer changes in the BOLD
signal compared with a design in which five times as many stimuli
are presented.

Nevertheless, it is not an option just to present stimuli with a
short ISI of fixed duration. Figure 5.2B shows what the modeled
BOLD response would look like. This signal starts with a strong
gradual signal increase, even stronger than that in Figure 5.2A
because the HRF of the second trial adds to the HRF of the first trial.
Then the signal reaches an asymptotic level with only very minor
fluctuations related to when the condition is present and when it is
not. The very large ups and downs that were visible with ISI = 16 s
have been reduced strongly at ISI = 2 s.

To solve this issue, researchers often decide to present trials in
a blocked manner and alternate blocks of different conditions,
commonly referred to as a block design. Within blocks, the HRFs



associated with individual trials add together to generate a strong
cumulative signal. When a block of another condition starts, in the
simplest case a block of baseline, the signal related to the first block
goes down, even all the way to baseline if block length is long
enough. Figure 5.2C illustrates the resulting modeled BOLD signal.
The condition-related ups and downs in the signal are even larger
than in the sparse design shown in Figure 5.2A. The block
alternation is perfectly visible in the BOLD response.

The block design is a very efficient design. Participants can be
subjected to a constant train of trials, and there is no need to wait a
long time between individual trials. The block design also has a high
power and sensitivity to detect changes in the BOLD signal because
the differences in signal between conditions are amplified compared
with a slower and sparser design, and even more with respect to a
condition order in which trials of different conditions alternate.

Nevertheless, the block design also has several drawbacks.
First, participants can predict the condition to which the next trial will
belong. If for any reason subjects tend to “prepare” themselves
differently for different conditions (e.g., assign attention elsewhere),
then the block design provides ample opportunity to do so. This
predictability and associated preparatory effects increase the odds
that unwanted cognitive processes confound that one mental
function that the researchers had set out to isolate by contrasting two
conditions. Second, the predictability might also make the task more
boring for the participants. Third, the block-wise presentation might
be incompatible with addressing some experimental questions (e.g.,
trial-to-trial fluctuations in performance). Fourth, with a block design



it is impossible to estimate the single-trial response function, that is,
which effect was elicited by a single trial. This (modeled) single-trial
response is very nicely visible in Figure 5.2A, but in Figure 5.2C we
only recover the response to the block of trials as a whole. Going
from the block response back to a single-trial response is possible if
one makes assumptions about the exact shape and additivity of the
HRF, but researchers interested in single-stimulus response
functions prefer not to make such assumptions. Indeed, even though
the HRF tends to have the same general characteristics overall
(delayed in time, temporally smoothed), its exact form can differ
between regions and participants (Aguirre et al., 1998).

All hemodynamic imaging methods provide data that are
temporally filtered through a hemodynamic imaging method.
Nevertheless, the choice of design is not exactly the same for the
individual methods. For fMRI and functional near-infrared
spectroscopy (fNIRS) we have a freedom of choice between using a
block design or not, and the same arguments will be in play in both
cases (efficiency, power, cognitive factors and predictability,
estimation). The situation is different for positron emission
tomography (PET). In PET, we cumulate the signal across longer
periods of time after the injection of a tracer. During all this time, only
one condition can be presented, resulting in a design with long
blocks. The number of long blocks will also be low, because each
block has to be preceded by a tracer injection. A design with long
blocks, a relatively low number of conditions, and a low number of
blocks per condition is the only possible design for a PET task
activation study.



5.3.2 The Block Design in Practice in fMRI and fNIRS

In practice, there is a large variability in the scientific literature in
terms of the exact temporal succession of trials and blocks in a block
design. Over time, different laboratories have converged toward very
different practices within the very large space of possibilities that
remains after considering the restrictions mentioned above. For
example, block length has to be long enough, but how long? In the
literature, the length ranges from “short-block” designs with blocks of
6–12 s, “intermediate-block” designs with blocks of 12–21 s, and
“long-block” designs with blocks up to 30 s and more.

When comparing block length between studies, it is important to
consider how blocks from different conditions follow each other.
Some labs prefer to have a period of “rest” in between successive
blocks from different conditions. These rest intervals allow the signal
to return to baseline. Figure 5.2C is an example of such a
condition/rest alternation. This rest interval effectively increases the
onset asynchrony of successive blocks with the time of the rest
interval. The fluctuations in signal, therefore, would be larger than
they would be when blocks of different conditions succeed each
other immediately. Which block organization to use is subject to the
same trade-off as when comparing a block design with a very sparse
design: The rest breaks increase the signal changes, but they allow
for less activation of the brain and fewer presentations of the
conditions of interest. If one is interested in estimating the response



to a block of trials, then the rest breaks are essential. Otherwise, it is
often a matter of preference and habit.

In many studies, block length is constant, but in some other
studies block length is varied from block to block. In those cases, the
power of the block design is probably close to the power of a block
design with a constant block length equal to the average of the
varying block length. Nevertheless, the variation in block length can
be useful in several contexts, for example, in cases where the
researchers want to make the alternation from one block to the other
unpredictable.

Even when working with blocks, researchers try not to have the
different conditions come in a fixed order. For example, with four
conditions, the order [1 2 3 4] would not be the only one used. This is
all the more important when blocks from different conditions follow
each other without a rest break in between. Counterbalancing
condition order avoids the situation in which the signal measured in
one particular condition A could be biased by the fact that this
condition is always or predominantly preceded by different conditions
than those preceding condition B. Most studies make sure that this
counterbalancing is as perfect as possible for the immediately
preceding condition, so-called one-back counterbalancing.

The number of blocks is another point to consider. The fMRI
signal is noisy, and thus conditions have to be repeated to increase
the signal-to-noise ratio in the data. Most of the time, an fMRI
experiment will require tens of minutes or even more than an hour of
testing to acquire enough data. It is not optimal to acquire data for
that long, without pause, using a pulse sequence that runs



continuously. Participants cannot maintain concentration on a task
without sometimes taking a break. In behavioral experiments, breaks
are included to allow subjects to relax. The same procedure is
followed in fMRI studies, and data acquisition is stopped every 5–10
minutes. Another benefit of splitting data collection into individual
runs relates to the frequent minor problems that might occur during
data acquisition (e.g., the subject has to sneeze). By dividing the
data into smaller bits and pieces, it is easier to throw away one piece
of data, if necessary, without any effect on the other images acquired
in other runs. A period of continuous data acquisition is often
referred to as a “run” or a “time series.” There is a practical limit to
how short such runs can be. For the data analysis, it is advisable to
have each condition appear in each run, if possible for at least two
blocks so that the average onset time of all conditions is as similar
as possible (e.g., the first condition is also the last one).

Below is an example condition order for one run of an
experiment that has been performed with slight variations by many
labs. The experiment includes four conditions differing by which type
of image was shown: (1) faces, (2) objects, (3) scenes, and (4)
scrambled images (unrecognizable texture-like pictures). Condition 0
is a rest condition (no image shown; just a blank screen). Each block
lasts 15 s, and rest breaks are not systematically included between
successive stimulus blocks.

Condition order: [0 1 2 3 4 0 2 4 1 3 0 3 1 4 2 0 4 3 2 1 0]



This run includes 21 blocks, with a total duration of 315 s (6
minutes and 15 seconds). Four such runs provide 16 blocks per
image condition, which is sufficient to find significant activation for
contrasts with a relatively large effect size (such as faces – objects,
see the following).



5.3.3 A Few Examples of Classical Studies Using a Block
Design

In this section, we illustrate the typical results obtained in a block
design. The example studies are also an example of the iterative
refinement of the contrasts that are included in successive studies.

In 1995, Malach and colleagues reported an experiment that
included a range of conditions divided in two groups differing in
whether or not the presented images included an object (Malach et
al., 1995). The object conditions included common objects (teddy
bear, car, …), abstract sculptures, and faces. The non-object
conditions included texture patterns and gratings. The authors found
a relatively large region in the lateral occipital cortex that responds
more strongly to all of the object conditions than to the non-object
conditions. This region is commonly referred to as the “lateral
occipital complex” (LOC).

Figure 5.3 illustrates the fMRI signal (here expressed in
normalized units on the Y-axis) measured in the LOC (red line) and
primary visual cortex (blue line) for each of these conditions. Non-
shaded areas represent resting periods with a blank screen (no
images presented). Purple areas include all blocks of object
conditions, and dark gray areas all blocks of non-object conditions.
The LOC shows a higher signal each time a block of object images
is presented compared with when non-object images are presented.



Figure 5.3 The localization of object-selective brain regions using a block
fMRI experiment. The brain image shows the object-selective lateral
occipital complex (LOC) in red, close to the motion-selective middle
temporal area in green. The hemodynamic signal changes in the LOC (red
line) and in the primary visual cortex (blue line) are shown for a no-stimulus
baseline (light gray bars), for several object conditions (purple bars), and for
several texture conditions (dark gray bars).

Images reproduced with permission from Malach et al., 1995. Copyright
(1997) National Academy of Sciences

The different object condition blocks are relevant to exclude
potential confounds. The condition with the abstract sculptures is
particularly important. These abstract sculptures do not activate
strong semantic associations, making it unlikely that the LOC activity
would be related to semantic processing.

This object-related activation was also demonstrated with PET
by (Kanwisher, Woods, Jacoboni, et al., 1997). Illustrating the
different design choices for PET, the experiment included in total 12
blocks of 60 seconds each, including 4 blocks of 3 conditions:
familiar objects, unfamiliar objects, and scrambled images.

Later on, researchers wondered whether all regions would, as
the LOC does, respond the same to faces and other objects. One of



the arguments to expect in potential differences is the occurrence of
neuropsychological patients who cannot recognize faces, although
they have no problems with other objects. This syndrome is known
as prosopagnosia. The most famous demonstration of face-selective
regions in the human brain is the 1997 study conducted by Nancy
Kanwisher and colleagues (Kanwisher, McDermott and Chun, 1997).
They found a region in the ventral occipitotemporal cortex, more
specifically in the fusiform gyrus, which shows a higher signal when
faces are presented compared with when other object images are
shown. This region is known as the fusiform face area (FFA). The
basic finding is illustrated in Figure 5.4. The brain slice shows the
significantly activated voxels in the contrast of faces minus objects.
The outline of the FFA is shown with a green line. The time course
plot on the right shows the signal changes in the FFA voxels, with an
increased signal during the face blocks.

Figure 5.4 The localization of face-selective brain regions using a block
fMRI experiment comparing blocks of successively presented face images
with blocks of non-face images. The signal in the localized region (within
green outline) is shown for three conditions: fixation baseline (denoted by a
dot), face blocks (F), and object blocks (O).

Reproduced with permission from Kanwisher, McDermott and Chun, 1997



The contrast between objects and non-objects was a very
important first step, in particular from a neuroscience perspective,
but the distinction could be criticized as being very nonspecific. Few
psychological experiments compare objects and non-object texture
images. The contrast between faces and other objects is much more
relevant, and neuropsychological and other studies often contrast
object processing with face processing. Nevertheless, faces and
objects also differ in many respects. Since 1997, many studies have
tried to identify which mental process is responsible for the
differential response to faces and objects in regions such as the
FFA. Potential candidates are category membership, visual shape
properties, and holistic processing (Bracci and Op de Beeck, 2016;
Haxby et al., 2000; Tarr and Gauthier, 2000). This process of further
refining our understanding of the functional specialization of these
regions continues today (Bracci et al., 2017).



5.4 The Event-Related Design
Despite the power of the block design, its drawbacks have motivated
many scientists to search for alternative designs. In addition to the
block design, we have already referred to one alternative in which a
very long ISI is used. This design is often referred to as the slow
event-related design. When the experiment includes two
conditions, it might look like Figure 5.5B. The red and blue bars refer
to the two conditions in a two-condition experiment. A slow event-
related design might have a fixed long ISI as in the figure, or an ISI
that is long on average and varies from trial to trial. The technical
term for such interval variation is jitter.

Figure 5.5 Different fMRI designs: (A) block, (B) slow event-related, and (C)
rapid event-related.

Based on Figure 5.2B, which was used to introduce the block
design, it can already be observed that simply alternating the two
conditions without an ISI of many seconds might not work. Such an



alternating event-related design has only been used for illustrative
purposes, such as in the study shown in Figure 5.6 (Bandettini and
Cox, 2000). These researchers presented a visual stimulus for 2
seconds and manipulated the ISI. With long ISIs of 10–12 seconds,
the alternation of the stimulus is visible in the raw fMRI signal in
Figure 5.6A (see time courses on the left for those conditions). For
very short ISIs of only two to four seconds, this modulation has
disappeared.



Figure 5.6 Hemodynamic signal variation in visual cortex when stimulus
trials (SD: stimulus duration) alternate with no-stimulus trials at a range of
fixed interstimulus intervals (ISI).

(A) Raw time series.

(B) Cycle-averaged time series, with time zero = stimulus onset.

Figure based (with permission) on Bandettini and Cox, 2000

Instead of plotting the continuous signal, it is also possible to
extract intervals from the signal belonging to different trials, plot all
these intervals on the same scale with 0 = stimulus onset, and then
average all the intervals. This gives an event-related response. We
will encounter this type of analysis again in the context of



electrophysiological imaging (see Chapter 11). With the longer ISIs
in Figure 5.6, the event-related response looks very much like a
typical HRF (Fig. 5.6B). Indeed, a slow event-related design is ideal
for estimating the response function. For ISIs below 8 s, there is no
clear event-related response present. All of this seems to be in favor
of using a slow event-related design. This leaves us with all the
drawbacks of this design, including its low efficiency and the
consideration that it is pretty boring for participants.

For those reasons, researchers regularly resort to another
design, the rapid counterbalanced event-related design. Here the
trials of the different conditions are presented in rapid succession,
possibly without any further ISI than the trial duration. Thus, the next
stimulus or trial might start when the previous one ended.
Importantly, the conditions are not alternating in a fixed order, but the
order is more random. A condition can follow itself, while at other
times there might be a relatively high number of trials in between two
occurrences of a particular condition. The order is counterbalanced
so that each condition follows each condition an equal number of
times. An example sequence is given in Figure 5.5C, where trials of
two conditions are presented in rapid succession, intermixed with
trials or “null events” of a baseline condition.

Such a fast event-related design has been shown to provide
enough sensitivity to pick up significant differences between
conditions, even with trials as short as 2 seconds (Buckner, 1998;
Dale and Buckner, 1997). How can this counterbalanced design
work given that the alternating design fails to show a clear signal?
This is explained in Figure 5.7. This figure shows the modeled BOLD



signal for two conditions in orange and blue. The occurrence of trials
of these two conditions is shown by the time stamps on top. When
we follow the orange signal, we see that it starts rising after the blue
signal, but then the orange signal reaches a very high peak, while
the blue signal goes down to zero. This peak in a difference of signal
occurs after a series of trials of the orange condition. At this point in
time, there is a large contrast between the two conditions, much
more than ever happens in the alternating design. Such a contrast is
seen each time a particular condition occurs frequently in a relatively
short period of time. In a random sequence, such frequency peaks
happen regularly, and they are responsible for why this design
provides a useful signal.

Figure 5.7 The modulation of the hemodynamic signal in a rapid
counterbalanced event-related design. The top row depicts the timing of the
trials of two conditions. The expected hemodynamic responses for the two
conditions are shown below, as computed by convolving the two trial time
series with the HRF.

The order of conditions in this design is typically not a fully
random sequence. It has to be counterbalanced, and among



different counterbalanced sequences some are better than others
(more efficient) in terms of the strength of the resulting contrast.
There are different approaches to determining these sequences.
Two examples are the method used by the freely available function
optseq2 and genetic algorithms.

The rapid counterbalanced event-related design is in many
ways a reasonable compromise. It has an intermediate sensitivity
and power, much more than the rapid alternating design, and also
more than the slow event-related design, but much less than the
block design. It can be used for estimation, in particular when one of
the counterbalanced conditions is a rest condition. Nevertheless, the
slow event-related design is still better for that purpose. Of course,
the rapid counterbalanced event-related design has the benefit of the
trial order being very similar to what would be done in most
behavioral experiments.



More Advanced Designs and Analyses

The distinction between block and event-related designs is useful in
introducing the relevant issues and concepts such as sensitivity and
efficiency. In practice, this distinction is much more fuzzy because
often researchers opt to use intermediate approaches. For example,
sometimes the block length in a block design becomes as short as
4–6 seconds, closer to the timing of the classic event-related design
than to the block length in the stereotypical block design (see also
Section 5.3.2). Furthermore, over the years many different designs
and extensions have been developed and used. Two of these
designs are discussed in Chapter 8, which covers advanced
statistical analyses, because the designs are inherently connected to
particular approaches of data analysis. A first example is the
condition-rich event-related design in which many tens of conditions
are included instead of the traditional design with only a few
conditions. This gives fewer trials per condition and thus a lower
signal-to-noise ratio per voxel, which is compensated for by a
specific analysis approach that combines the signal across voxels:
multi-voxel pattern analysis. A second example is the fMRI
adaptation design in which each event (or block) includes at least
two stimuli and the researchers manipulate whether these two stimuli
are the same or different.



5.5 The Baseline or Rest Condition



5.5.1 The Role of a Baseline in Task-Based fMRI

The willingness to satisfy the assumptions of the subtraction method
could lead to the choice to optimize all conditions in an experiment to
be as similar as possible, differing from at least one other condition
in only one cognitive process. Taken to its extreme, this approach
could cause different studies to have no condition in common. The
drawback is obvious: It would be very difficult to compare the results
from different studies.

Furthermore, in this approach it might be hard for researchers to
interpret the differences in activity between the experimental
conditions. Consider the two plots in Figure 5.8. In both cases, there
is one condition with a higher signal compared with the other
condition. With just those two conditions in the experiment, a
contrast of them would only show the differences among them. It
would not inform us about whether the higher condition is more
activated (left plot) or less deactivated (right plot).



Figure 5.8 The importance of a resting baseline to disambiguate more
activation from less deactivation. The hemodynamic response (fMRI signal)
is shown for two conditions. The red condition is associated with higher
signal values compared with the blue condition in both plots. The signal
level is expressed relative to the signal in a resting baseline.

Figure inspired by Jody Culham

The comparison of results from different experiments and the
interpretation of the results from contrasts are much easier when
each experiment includes a baseline that is as similar as possible
between experiments and, as such, is the agreed null condition or
baseline for all researchers. Such a baseline differentiates between
differences in activation (left plot) and differences in deactivation
(right plot).

When present, the baseline condition is often used to calculate
fMRI responses instead of the raw fMRI signal. In the case of the
study of Kanwisher, McDermott and Chun (1997), the Y-axis in the
time course plot is labeled “% signal change” (Fig. 5.4). This index is
used regularly. It refers to the signal change in comparison to a
baseline condition, which in visual studies is often a blank screen
with a fixation spot. The percent signal change is defined as:

100 x (signal(t) – baseline)/baseline



(Here signal (t) is the signal measured at each time point t and
baseline is the signal averaged across all the baseline blocks.)

While the raw BOLD-related fMRI signal value in MRI images often
takes high values such as 600–900, this overall value is now
subtracted away. The modulations due to differences in blood
oxygenation are relatively small in relation to this overall value. A
modulation in terms of percent signal change of 2–3%, as seen in
the plot, is very common. Now you understand why some
researchers voice the criticism that human brain imaging is all about
small percentages of signal change among huge amounts of noise,
like looking for a needle in a haystack. Luckily, it helps to know
something about hay.

It seems that baselines have emerged in fMRI experiments in an
unsystematic manner. As far as we know, there has never been a
conference or workgroup devoted to what the “standard” baseline
should be. Nevertheless, experimenters have primarily converged on
the use of one particular baseline, with only minor deviations. For
many domains of study, the baseline is a total rest baseline during
which no sensory input is given (blank screen; no sound cues). In
visual experiments, in which subjects are often asked to focus on a
fixation spot while stimuli are presented, the baseline is principally a
fixation condition during which this fixation spot is shown without any
other stimuli.

How the baseline is intermingled with the experimental
conditions can be approached in a variety of ways. It can be treated
as yet another experimental condition (same number of trials; part of



counterbalancing); in event-related designs, it is often part of the
counterbalancing but more frequent than the other conditions;
sometimes it is not part of counterbalancing and even less frequent
than the other conditions (e.g., only at the start and at the end of
each run); and sometimes each block of an experimental condition is
followed by a block of the baseline condition.



5.5.2 Regions Activated during a Resting Baseline

For quite some time, researchers included a rest condition as a
baseline without being particularly interested in what was going on
during this condition. In the previous decade, we saw a surge of
studies being devoted to what the brain does during rest (Raichle
and Snyder, 2007). There are many brain regions active during rest.
More intriguingly, there are many brain regions that are more active
during rest than during the performance of an active task. The
activated and deactivated regions in three example datasets are
shown in Figure 5.9. In each case, the color map represents a t-
contrast between an active task condition and a passive baseline.
Yellow/red colors indicate more activation in the task condition, blue
refers to more activation in the passive baseline. The tasks are very
different: (Fig. 5.9A) Subtracting two numbers and determining
whether the outcome is odd or even (Bulthe, De Smedt and Op de
Beeck, 2014); (Fig. 5.9B) determining when a repetition occurs in a
series of images of everyday objects; (Fig. 5.9C) determining when a
repetition occurs in a series of texture patterns. Despite the obvious
differences between these task contexts from the perspective of a
cognitive scientist, the three tasks essentially activate the same set
of regions, in particular, visual regions in the occipital cortex, regions
around the intraparietal sulcus, and the lateral prefrontal cortex. Of
course, there are minor differences which can be picked up. The
data in Figure 5.9B and C were obtained from the same set of 20
subjects. A direct contrast of these two active tasks reveals a



stronger activation of the lateral occipital cortex in the task with
everyday objects, similar to the aforementioned object-selective
responses first reported by Malach et al. (1995). However, no matter
how important these differences are, we should not forget that they
are added to a general activation pattern which is largely shared.

Figure 5.9 fMRI activation in a contrast of an active task minus a passive
no-stimulus baseline. The baseline involved passive viewing of a blank
screen with a fixation dot. The active tasks are (A) number subtraction task
(16 subjects), (B) one-back repetition detection with object images (20
subjects), (C) one-back repetition detection with texture patterns (20
subjects). The color maps represent t-values from a second-level random-
effects analysis. Visualizations generated by BrainNet Viewer.



We now turn to brain regions that are more activated in the
resting baseline. There is typically a whole set of regions that are
more active during the resting condition. These regions are often
referred to as the default mode network. Again, this network of
brain regions is found irrespective of the exact details of the active
task that is used in the contrast. The network includes the medial
prefrontal cortex (MPF), the lateral parietal cortex (LPC), the
posterior cingulate cortex (PCC), and the adjacent precuneus
(PreC). The interest in activity during rest has resulted in the practice
of doing a resting-state scan in which subjects are not performing
any task, known as resting-state fMRI (RS-fMRI, which is covered in
more detail in Chapter 8).



5.6 Task and Stimuli in the Scanner
Cognitive neuroscientists have several means at their disposal for
activating particular mental processes of interest. Some more
practical matters are covered in Box 5.1. In the text here, we focus
on decisions related to the design of the study. Broadly speaking, we
can separate them into two groups. First, participants can be asked
to perform a particular task: count backward, move an index finger,
imagine a flower bed in the sun, and so on. Second, researchers can
present sensory stimuli: for example, beams of light, images of
flowers, a human voice screaming, a stroke with a toothbrush to the
bottom of the foot. The choice of which tasks and stimuli to include in
the experiment obviously depends on the question of interest.
Nevertheless, there are a few generalized remarks and some advice
to give here.



Box 5.1  From the Design to Scanning

Once all the details about the design have been decided on,
the ideas have to be brought in practice. There are several
important steps to consider. First, the experiment has to be
programmed. For this there is a wide range of software
available, including software that is also commonly used for
behavioral experiments: E-Prime, Presentation, MATLAB and
Psychtoolbox, Python/PsychoPy, and many more. Apart from
the many functions that are also needed for a behavioral
study, the programming for an fMRI study might include a few
extra elements such as the need to synchronize the imaging
data acquisition with the behavioral/stimulus protocol by
reading in the trigger signal from the scanner; presenting the
stimuli through other means than standard plug-and-play
hardware; and reading behavioral responses by hardware
other than a standard keyboard. Given that most new
researchers start scanning in a facility that is already used by
other and more experienced researchers, getting started
typically involves acquiring knowledge about local customs
and about what is already available on site.

Second, at most universities obtaining ethical approval
for an fMRI or PET study will necessitate a longer
administrative procedure compared with a standard
behavioral experiment. Participants in the experiments will
also have to fill in more paperwork: not only an informed



consent but also medical screening forms. For special
populations (e.g., children), the scanning might be preceded
by a practice session in a mock scanner or dummy scanner.
A mock scanner looks like a real scanner, but there is no
magnetic field and no working costs.

Third, the selection of participants is also subject to
several considerations, such as safety issues (no metal in the
body), handedness (often researchers opt to include only
right-handers because left-handers might be more variable in
brain organization), and gender (in the past, some labs used
only male subjects, for several reasons, one being assumed
gender differences in hemispheric asymmetry (Sommer et al.,
2004)). The number of subjects needed depends on the
expected effect size and the signal-to-noise ratio with which
the effect is measured. This is not easy to determine in fMRI,
which is one of the reasons why power analyses prior to
performing a study are rarely performed and the desired
number of participants is under debate (Kolossa and Kopp,
2018). Studies that depend on group-based statistics often
include 12–20 participants per group, with recent studies
more often using even larger sample sizes (also see Box 6.2
in Chapter 6). For within-subject designs, it is often advisable
to have at least 16–20 participants. However, studies have
been published that demonstrate very robust and replicable
findings with as few as 3–5 participants. In these cases, effect
size is so large or data collection per participant is so



intensive that effects are strongly significant in each individual
participant (Formisano et al., 2008; Kay et al., 2008).

Then there is the actual scan session. In most countries,
legislation requires that scanning be performed or at least
supervised by a certified radio-technician. Even attending the
scan session requires training in safety. A good preparation is
critical to let everything proceed smoothly. All equipment,
software, imaging sequences, and design choices have to be
tested and decided on in advance. Safety is the priority, and
of course time is money: The scan might cost hundreds of
euros per hour. Finally, the attending experimenter should
keep a detailed logbook covering everything that has
happened during scanning. Otherwise, the data might be
useless. Indeed, imaging data as they come from the scanner
typically do not contain any information on the stimuli and the
task(s) that were presented. If the logbook does not tell the
researcher which stimulus sequence was used in run 6, then
the MRI data of run 6 are useless. Likewise, PET data will not
tell us that the subject has fallen asleep in block 3 or reported
feeling dizzy in block 5; only the logbook can.

First of all, experimental conditions are typically characterized
by a particular combination of task and stimuli. Participants might be
asked to indicate whether the current image of a flower is different
from the previous one, or to rate the negative valence of a screaming
voice. Obviously, comparing conditions that are different in both



stimuli and task violates the assumptions behind the Donders
subtraction method. It can be appropriate for an exploratory localizer
contrast or for an exploratory contrast against the baseline or rest
condition, but not for the contrasts of interest. For a contrast of
interest, one should either change the stimuli and keep the task the
same or manipulate the task executed with the same sensory
stimulation.

Second, the choice of task is important for all cognitive
neuroscience experiments. A cognitive neuroscientist interested in
task effects will opt for those tasks that are theoretically relevant, and
here there might not be much difference between a typical
behavioral experiment in the field and an imaging study. For
example, a PET study on working memory will, of course, include a
working memory task in the experimental design. However, the
choice of task is less straightforward when a researcher is interested
in stimulus effects and wants to compare different stimulus
conditions while keeping the task the same. Here there are some
particular questions about task effects that emerge in imaging and
that are not typically asked in behavioral experiments. In behavioral
experiments, researchers need to have participants perform a task
that provides the wanted behavioral response. In an imaging study,
researchers do not necessarily need behavioral responses.
Researchers can investigate brain activity triggered by the
experimenter’s design without the need for any overt behavioral
response related to the process of interest. Thus, there is the
possibility of including no task at all (passive perception of the
presented stimuli), or, alternatively, to ask subjects to attend to



stimulus features that are irrelevant to what the researchers are
interested in. The latter type of task is often referred to as an
“orthogonal task”. For example, a researcher might be interested in
the difference in activity between faces and other objects and ask
the participants to press a button every time the fixation spot
changes color.

However, it must be said that no matter how hard the
researchers do their best to use the best task available, it is very
hard to avoid the criticism that stimulus effects might be confounded
by task effects or “attention”—sometimes to the understandable
frustration of researchers. The following anecdote illustrates this
feeling. One autumn in the mid-2000s, a pumpkin decorated in
Halloween style appeared in the Kanwisher lab at the Massachusetts
Institute of Technology where one of us was working at that time.
The pumpkin sat on the sofa used for the weekly lab meeting and
held a text balloon with “could this just be due to attention?” written
on it. The question was never irrelevant.

Third, for stimulus presentation and response registration the
scanner environment brings with it quite a number of pragmatic
challenges. Among the hemodynamic imaging methods, fNIRS
involves the fewest problems and fMRI the most. Concerning the
latter, visual scientists prefer to present stimuli on well-calibrated
monitors. For an fMRI experiment, they have to use goggles or
project the stimuli on a screen in front of a subject’s eyes. Stimulus
control is a challenge with these devices, and for some
psychophysical experiments it might not be sufficient when
embarking on an fMRI experiment. Studies of auditory perception



have to consider not only the quality of the audio presentation but
also the interference of the noise of the scanner during data
acquisition. Auditory experiments often apply a more sparse data
acquisition, so that there are a few seconds of silence in between
two successive volume acquisitions in order to present the auditory
stimuli without interference. Studies of somatosensation and
visuomotor coordination often need special equipment to stimulate
subjects or for the performance of visually guided motor actions, and
of course such equipment has to be nonmagnetic and certified for
use in a strong magnetic field. The same goes for the equipment
needed to record all sorts of behavioral responses, even for the
simplest button presses. Controlling for the effect of eye movements
is useful in constraining the interpretation of brain activation
differences. However, using eye-tracking devices inside a scanner
can be quite difficult, and the data acquired are typically far inferior to
what can be obtained outside the scanner. Verbal responses are
also used, but again researchers have to deal with interference from
scanner noise and with the obvious risk for confounding head
movements during speaking. Thus, whatever the field of study you
are interested in, you can expect a marked difference in the methods
and equipment used between an fMRI study and a behavioral study.
Choosing to use fMRI often results in the need for pragmatic
compromises.



Summary
Designing and implementing a hemodynamic imaging
experiment requires thorough planning to develop a proper
design that allows for interpretable data. It also involves many
administrative and technical hurdles.

The design of many imaging studies involves the subtraction
method, which requires an up-to-date knowledge of cognitive
science and brings with it several assumptions.

The block design is the most efficient design for
hemodynamic imaging because of the temporal
characteristics of the hemodynamic response function, but
this design includes various cognitive confounds and a loss of
the ability to estimate the neural response to stimulus and
task events.

The event-related design suffers from a lower efficiency, but is
more related to typical behavioral designs and it allows for an
estimation of the neural response to individual events.



Review Questions

1. Explain why a good application of the subtraction method 20 years
ago might now be considered a poor design if the same study were
to be implemented today.

2. Explain how the temporal characteristics of the hemodynamic
response function constrain the experimental design in
hemodynamic imaging.

3. Explain the benefits and disadvantages of the event-related
design compared with the block design.

4. What do researchers have to consider when they chose the
baseline condition in an fMRI experiment?



Further Reading

Designing experiments is rarely the topic of long texts. Instead, there are many
excellent online resources that include slide presentations about experimental
design. The following list contains a few examples:

www.fil.ion.ucl.ac.uk/spm/course/

imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency

www.fmri4newbies.com/tutorials/

http://www.fil.ion.ucl.ac.uk/spm/course/
http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
http://www.fmri4newbies.com/tutorials/


Notes

1 This is one of several quotes put together by Jody Culham; see
www.slideserve.com/webb/basics-of-experimental-design-for-fmri-block-
designs.

http://www.slideserve.com/webb/basics-of-experimental-design-for-fmri-block-designs


Chapter 6

Image Processing
◈



Learning Objectives

What can we infer from a brain imaging experiment? Some people
are tempted to infer too much, whereas others maintain an
unreasonable skepticism. The only two ways to answer the question
is either to ask an expert (the easy way) or to become more
knowledgeable yourself about data analysis and interpretation. The
latter is what we try to achieve in this and the following two chapters.

Data analysis for hemodynamic imaging can be divided
conceptually into three steps: preprocessing, statistical model fitting,
and statistical inference (Fig. 6.1).

Understanding the complexity of neuroimaging analyses and
how this complexity can be mastered

Acquiring knowledge of the most important concepts and
steps of image processing

Being aware of the importance of performing quality control
and of allowing external quality control (open science)



Figure 6.1 Overview of the major steps in the data analysis of an fMRI
experiment. These steps include image processing, statistical analyses, and
statistical inference. The two prior steps in the experimental process,
experimental design and data acquisition, are also included, because valid
statistical inference depends heavily on a proper experimental design –
hence the bidirectional arrow on top.

In this chapter, we focus on preprocessing; the other two steps
are covered in Chapter 7. Preprocessing primarily involves image
processing, which does not exist for the analysis of behavioral data.
Here we introduce several important preprocessing steps: quality
control, motion correction, coregistration, normalization, and spatial
smoothing. Several of these steps are also involved in other types of
brain imaging, so part of the acquired knowledge will be transferable
to those methods.

Quality control is important throughout. It is covered in Boxes
6.1 and 6.2, which cover both the quality control at the technical level
provided by the individual researcher, as well as quality control
provided by the scientific community.



Box 6.1  Preprocessing Step 0: Quality Control

Quality control should be a constant point of attention: during
scanning, when copying data, and before starting the actual
preprocessing. During later steps of the processing,
appropriate checks should be done to make sure that
everything has gone as planned. Many parts of the data
analysis can be automated by scripts so that several steps
run successively without the need of human intervention.
Automatization is very efficient, but it results in a greater
distance between the human experimenter and the data. For
that reason, automatization should be used with care and can
never fully replace human quality control.

As a starter, it is better to cut the analysis into smaller
pieces and run it step by step. This is a good advice when
you are a newcomer who is learning how to analyze imaging
data, but also when you are the world’s expert who is setting
up a new innovative procedure. Automatization at a later
stage is perfectly fine but should be followed up by systematic
checks of the most critical points in the analysis stream to
make sure that everything has been implemented as
intended. These checks require some time, but detecting
problems early avoids much larger time losses later on.

General problems with the images might already be
detected during scanning itself. Box Figure 6.1 shows a few
of the problems that might occur in (f)MRI. The physical



mechanisms that lead to such artifacts were introduced in
Chapter 2. However, it is not because the images look perfect
during scanning that they will still remain so when you start
preprocessing. After scanning, the image files have to be
copied and transferred to the server or workstation on which
the analysis will be performed. It is good practice to check
these files at their new location prior to starting the
preprocessing. You can check the file names, file size (all
runs of equal length should have data files of an equal size),
and the number of files. You can open a subset of the files
and inspect some time points to make sure that the data look
as they should. These detailed suggestions are just a few
illustrations of the strict and neurotic mindset that you need
when working with imaging data.



Box Figure 6.1  Obvious artifacts in MRI images. (A) Signal dropout in
the mouth region due to dental wire. (B) Signal dropout in mouth
region and artifact in frontal cortex due to dental implants. (C) Signal
dropout due to hairclip. (D) T1-weighted image corrupted by subject
motion. (E) T2*-weighted image with signal dropout due to hairclip. (F)
T2*-weighted image with signal dropout around the ear canals. In
contrast to all other shown artifacts, this last artifact is always present
in a T2*-weighted image.



Box 6.2  External Quality Control through Transparency and
Reproducibility

Science in general is under increased scrutiny because of
reports of questionable research practices and a relatively
low rate of reproducibility. This is particularly true for fields in
which statistics play a big role, effect sizes are small, and a
tendency exists to have many different research groups
investigating many different hypotheses. The targeted
domains include biomedical and behavioral sciences, and
human brain imaging is right in the middle. Poldrack and
colleagues (2017) have illustrated a number of problems
specific to research with fMRI, and they have proposed
solutions that have relevance for brain imaging and
neuroscience in general. First, on average human
neuroimaging studies lack sufficient statistical power, with a
number of subjects that is too low given the typical effect size
that is observed and to be expected. Insufficient power
increases the possibility of false negatives, decreases the
trustworthiness of effect size estimates in studies with positive
effects, and increases the potential impact of questionable
research practices. Here it is important to determine the
necessary number of participants a priori, taking into account
expected and meaningful effect sizes, ideally through a power
analysis.

Second, there is a large degree of flexibility and
possibility for exploration in the analysis of functional imaging



data. The number of choices in which analyses steps to run
and which parameter options to go for is enormous. Each of
these choices might impact the results, and together they can
have a huge influence on the final results (Carp, 2012). In the
worst case, some of the choices have been influenced by
knowing about the results obtained with these choices, in
which case the analyses become partially circular (see further
in Chapter 8). The tightest safeguard against the latter
problem is a formal preregistration of the complete analysis
stream and the a priori hypotheses.

Another important practice is to make methods sections
as complete and transparent as possible. A fully transparent
methods section, in which the research process is detailed in
all its aspects (e.g., exactly how the choice for each
parameter was decided; how exactly the data were looked at
in each and every step of the process), would in its asymptote
be very similar in informational content as in a preregistered
study. However, there is probably not any non-preregistered
study that reaches this asymptotic level. Such incomplete
study reporting is a third major problem in the current
literature.

Because of such problems, neuroimaging research is
less replicable than it should be. In addition to solving the
individual problems, we need solutions that target replicability
directly, such as more replication efforts, more focus on meta-
analytic approaches and innovative tools to do so (e.g.,
www.neurosynth.org; see Yarkoni et al., 2011), and more data

http://www.neurosynth.org/


sharing as a way to promote replicability. Data sharing also
helps to increase sample size. Large databases and
repositories have been constructed to which many labs have
uploaded their data. Some of these initiatives are aimed at
specific niches, such as databases of resting-state fMRI (see
Chapter 8) in ADHD (ADHD-200) and autism (ABIDE).
Another promising approach is the start of large imaging
consortia that focus on the collection of standardized data of
a wide variety of measures such as multiple imaging
modalities and a range of behavioral tasks. Setting up such a
collaboration typically also involves the development of
standardized imaging and analysis protocols and making the
data openly available. Example consortia include the Human
Connectome Project and, specifically for Alzheimer’s, the
Alzheimer’s Disease Neuroimaging Initiative (ADNI).

To be clear, no one claims that most neuroimaging
results are bogus; in fact, many key findings have been
documented over and over again. There is no need to
become depressed or cynical about progress in this field.
Impressive textbooks can be filled with findings that have
been replicated convincingly. Nevertheless, if you take the
positive findings of a randomly chosen neuroimaging paper
and try to replicate them, your chance of success would likely
be lower than it should be.



We focus more on functional magnetic resonance imaging
(fMRI) than on positron emission tomography (PET) and functional
near-infrared spectroscopy (fNIRS). This choice is in line with the
relative user frequencies of the different methods. In addition, the
analysis of fMRI data typically involves the most processing steps, of
which a subset is also relevant for the other methods.



6.1 Software Packages
Many software tools are available for basic and more advanced data
analyses. The choice might depend on many factors, the first being
the researcher’s knowledge level and flexibility. The required
flexibility typically increases the more the researcher knows. An
inexperienced researcher might prefer a “click-this-or-that-button-for-
option-1-or-2” package that can do everything from image
processing to performing heavy statistical analyses, all in an effort to
keep complexity and flexibility to a minimum. In contrast, an expert
might be perfectly happily with a large collection of separate tools
and functions from which to build a processing pipeline suited for the
needs at hand. A second factor is a potential preference for
operating system, which can be the choice of an individual
researcher or of the university environment. Possible options are
Microsoft Windows, Macintosh/Apple, and Linux. The most important
factor is probably the researcher’s background, such as the labs in
which they have been trained, and the software being used by other
nearby researchers.

Given the introductory nature of this book, we primarily discuss
packages that are very useful for beginners, while at the same time
allowing enough functionality and flexibility for expert users.
Statistical Parametric Mapping (SPM) software is actually a toolbox
running under MATLAB, a numerical package. SPM is free, but
MATLAB is not. The package has several positive points. First, SPM
allows for quite a lot of flexibility, while also having an intuitive user



interface. Second, SPM runs under Microsoft Windows as well as
under Mac and Linux. Third, MATLAB is used for many other
purposes in many labs, including stimulus presentation, standard
inferential statistics, and even creating figures, so students can get a
lot out of using (and paying for) this one common software
environment. Fourth, there are a large number of toolboxes available
to implement a wide range of advanced analysis methods within the
SPM environment.

Other free packages with a large user bases include the FMRIB
Software Library (FSL) and the Analysis of Functional NeuroImages
(AFNI) software. For those who are familiar with the increasingly
popular Python programming language, there are additional options
such as NiPy. These packages run most naturally under Linux,
which is also available on Windows using a virtual machine.

These packages include not only the tools to analyze functional
data from preprocessing to statistical analyses, but also features for
the analysis of anatomical data, including surface-based analyses,
and for data visualization. Some packages are more specifically
focused on these aspects, such as FreeSurfer. Basic functionality for
image visualization, as well as more advanced tools, can also be
found on the nitrc.org webpage (including the packages MRIcro,
MRIcroGL, and MRIcron).

Finally, there is a comprehensive commercial software package,
BrainVoyager. It is user-friendly and comprehensive, but relatively
expensive and less flexible in its use compared with the free
packages.



For a relatively inexperienced user, it is advisable to opt for a
software package that is used by one’s closest colleagues. All
software packages have email lists for discussion and problem
solving, which can be helpful, but they can be a poor substitute for
an experienced colleague who can help you out when needed.
There is a Dutch saying that a good neighbor is more useful than a
faraway friend, and this also applies to brain imagers.



6.2 Properties of the Images
The image files contain information about the image signal values as
well as additional “header” information, such as some of the imaging
parameters. A longtime standard for MRI scanners is the DICOM
format, which makes the data structure relatively unintuitive because
each slice corresponds to a separate file. For that reason, this format
is typically converted to a different format. There was for a long time
a lack of a real standard for the data format used for analyses.
Different scanner companies used different output formats (such as
PAR/REC by Philips), and many of the software packages had
different native formats (e.g., img/hdr for SPM). Often, therefore, the
data analysis had to begin with converting the images from one
format to another. Software packages such as MRIcron included
elaborate conversion tools.

During the past decade, a new standard emerged, NIfTI (file
extension .nii). In NIfTI, there is only one file, because the header
information is integrated with the data, and this is done per run. For
functional imaging, the data in this file have four dimensions: three
spatial – X (left-right), Y (posterior-anterior), and Z (inferior-superior)
– and one temporal dimension.

The NIfTI format is also meant to solve long-term confusion
about the direction of the X-dimension, which is the left-right
orientation. For the other two spatial dimensions, it is easy to check
the direction of the dimension in the images. However, brains are
relatively symmetric on the left-right dimension, and the images



cannot unambiguously inform us about what is left and what is right.
Older image formats did not contain this information directly. Adding
to the confusion, there were different conventions in different
scientific disciplines. Neurologists prefer the arguably most logical
approach to put left on the left and right on the right (neurological
convention). Radiologists do the opposite, putting left on the right
and right on the left (radiological convention), a convention dating
from the period when radiologists worked with printed films.

The NIfTI format, when used properly, conveys the information
about which direction is which. Nevertheless, to be absolutely sure,
most MRI centers and laboratories explicitly test after major changes
have occurred or been implemented (e.g., new type of scanner)
whether what they think is left is indeed left. A proper way to do this
is to tape a vitamin E capsule to one side of a subject’s head and
write down which side it is on. The capsule will be visible on the MRI
images.



6.3 Preprocessing Step 1: Slice Timing
The sequences used in most blood-oxygenation-level dependent
(BOLD) fMRI experiments acquire data slice by slice. The parameter
settings of the sequence determine the exact timing of the slices and
the order in which slices are acquired. Typical orders are
descending, ascending, and interleaved (see Chapter 2).

The differences in timing can go up to almost the full duration of
the repetition time (TR). The temporal resolution of BOLD fMRI is
low, but still a time difference of 2–3 seconds might matter. Suppose
that we take the start of a TR as the reference time zero, and a
stimulus is presented at this time. In a slice that is acquired near time
zero, we expect the peak of the hemodynamic response to occur
about 6 seconds later. However, in a sequence with TR = 3 s there
might be a slice that is acquired almost 3 seconds later. In that last
slice, we expect the peak of the hemodynamic response to already
occur 3 seconds after the acquisition of the slice, which is one
sample time point earlier.

In this preprocessing step, we compensate for such differences
in slice timing. In the example above, we could already get close to a
full compensation by shifting the measured BOLD signal for the last
slice with one time point. Thus, the signal for time point t is given to
time point t - 1. Through this approach, the difference between the
first and the last slice would be minimized. However, there are many
different slices, and their timing evenly spans the full time interval
between the first and the last slice. For this reason, slice timing



correction involves more than just shifting time points, instead we
need to interpolate the values between time points. Take, as an
example, the slice that has been acquired in the middle of the TR.
For a particular voxel the measured fMRI signal was 672 at time t - 1
and 676 at time t. We need to shift the signal by half a TR; in that
case, the simplest interpolation function to determine the new value
at time t - 1 is by taking the average between 672 and 676.
Algorithms for correcting slice timing allow a choice between several
interpolation functions.

In contrast to most other preprocessing steps, it is not unusual
for fMRI analysis pipelines to omit the step of slice timing. Its benefits
might in some experiments be minimal, for example, when the TR is
very short and when using block designs (resulting in predictors that
are more smoothed in time). In such cases, its benefits might not
weigh as heavily as the possible negative effect that the interpolation
would slightly increase the noise in the data.



6.4 Preprocessing Step 2: Motion
Correction

Apart from fNIRS, in which the position of the sensors relative to the
brain is constant, the head might move relative to the reference
frame used during scanning. For example, an MRI operator decides
at the start of the scan session which volume will be imaged and
how the slices will be positioned. However, there are several reasons
why the exact position of the anatomy in this volume will vary from
time point to time point.

First, participants will move in the scanner. In a close to perfect
participant, this movement might be very minimal, only about one-
tenth of a millimeter. In such a case, running through the images as
in a movie might not show any gross movements and you might only
see changes due to physiological processes such as heart beat
(flicker in large blood vessels). In other participants, the degree of
motion could be relatively large. There are fast, abrupt movements,
as well as slower changes, on the order of several millimeters. There
are several ways to minimize the amount of motion. One of them is
physical restraint of the participants. Today, most researchers work
with putting padding and straps to restrain the head while still
preserving comfort. Previously, it was more common to go for more
invasive means of restraint such as a bite bar with a custom-made
(for each participant) dental form. Another way to restrict motion is to
instruct participants by stressing the need to remain still and giving
feedback about their performance (“I noticed a few small movements



in the previous scan; could you please try to avoid this as much as
possible?”).

A second source of changes in anatomical position are
instabilities in the hardware of the scanner. For example, if a pulse
sequence pushes the limits of the hardware, then some of the
gradient coils might increase slightly in temperature. This would
change the magnetic field gradient induced and could shift the
images slightly and very gradually during a run of continuous data
acquisition.

It is impossible to completely avoid motion issues. For that
reason, motion correction is always needed. Figure 6.2 shows
images from a run with relatively small amounts of motion (top row),
and another run with an amount of motion that is problematic. In
most software packages, motion correction is accomplished by
applying a rigid transformation to the images. A rigid
transformation is a combination of three orthogonal translation
directions and three orthogonal rotation directions. In the
mathematical formulae that implement the motion correction, these
six parameters are combined into a transformation matrix. First, the
transformation matrix has to be estimated. One image is selected as
the reference that is not transformed; sometimes the average of all
untransformed images is taken as the reference. Then the
transformation matrix is calculated for each image so that the
distance with the reference image is minimized. Software packages
often have multiple options for minimizing the cost function (mutual
information, least squares, etc.).



Figure 6.2 Example images before and after motion correction of a time
series with little subject motion (“good run”) and a time series with large
amounts of motion (“bad run”). Motion correction was performed with the
SPM toolbox.

Once the transformation parameters have been estimated, they
have to be applied to the original images to obtain a transformed or
resliced image (Fig. 6.3 on the right). Reslicing requires the choice
of an interpolation function. As an example, if a set of voxels has
values [2 4 5 3 2, …] and they have to be shifted by one-third of a
voxel, then the new values depend on the interpolation function. A
simple linear interpolation would give as new values [2.67 4.33 4.33
2.67, …]. This example immediately illustrates a problem of
interpolation: It introduces a certain degree of spatial smoothing by
flattening the peak values. The peak of 5 has been reduced in the
interpolated values. Often researchers use more complex functions
to avoid this problem, such as spline interpolation. These methods
require more computing time.



Figure 6.3 Motion-correction parameters in the case of small (top row) and
large (bottom row) amounts of subject motion. The data represent the same
two time series shown in Figure 6.2. The graphs on the left show the three
translation parameters, the graphs on the right show the global
displacement (Euclidean distance) in each time point relative to the previous
time point.

This is a good time to note that software packages often allow
the researcher not to reslice the images after each preprocessing
step, but to combine all the transformation matrices computed in the
different preprocessing steps and then do the reslicing in one final
step. This procedure avoids the accumulation of noise and rounding
errors across multiple reslicing steps.

It is important for a researcher to check the motion-correction
parameters. The three translation parameters from the two example
runs in Figure 6.2 are displayed in Figure 6.3. The top row illustrates
a relatively stable run with little motion, the bottom row a very
unstable run. With voxels of only 2–3 mm in size, the second case
requires a translation of the data by more than one voxel in some
time points. Such a large amount of motion is particularly
problematic if it is relatively abrupt, because it will corrupt the history



of excitation of voxels and probably also the images if the motion
occurs during the acquisition of a volume. One way to summarize
the amount of rapid motion is by computing how much the translation
of each time point differs relative to the translation in the previous
time point by calculating the Euclidean distance across the three
translation parameters (Fig. 6.3, right). This “relative translation”
index shows that all relative translations remain within the limit of
one voxel in the top row but not in the second row.

There are several good arguments for not using data that
require extensive motion correction. First, some movements cannot
be corrected for. A subject’s movement will happen at a relatively
random time with respect to the pulse sequence. When a subject
has moved abruptly in the middle of the acquisition of a volume, then
all the slices acquired after the movement are shifted compared with
the slices acquired earlier. For example, with an interleaved slice
order, all odd slices might be shifted compared with the even slices.
Motion-correction methods through rigid transformations cannot
solve such a shift within the volume.

Second, the movement might mess up the image quality
because of instabilities in the fMRI signal. The movement could
transiently alter the magnetic field and its inhomogeneities, as well
as the history of excitation that nuclei have experienced. Such
instabilities might take many seconds to stabilize again, much longer
than the actual movement.

Third, it would be a problem if the amount or type of motion
were confounded with the occurrence of specific conditions in the
experimental paradigm. For example, in an experiment where one



condition requires participants to make a complex motor response
and another condition does not, it is possible that the complex motor
response would be associated with a small change in head position.
In that case, it would be hard to dissociate neural activity from
motion artifacts. The resulting “brain activity” might look suspiciously
like what would be expected if the images in one condition were
translated and/or rotated compared with another condition, for
example, with positive activity at the outer edge of one side of the
brain combined with negative activity at the opposite outer edge.



6.5 Preprocessing Step 3: Coregistration
Even when researchers are interested in functional imaging, they
also perform a structural, anatomical scan. They do so for several
reasons. First, typically the functional images are not sufficient to
support a good localization of the measured effects, because they
have a relatively poor spatial resolution. Second, the constraints on
the timing for data acquisition often force researchers to scan an
incomplete volume, which, combined with the poor spatial resolution,
might not give a good indication of functional localization.

The coregistration step brings different image modalities, such
as a functional scan and an anatomical volume, into one and the
same spatial coordinate frame. We looked at image alignment earlier
when discussing motion correction, but the problem is more
complicated for coregistration because the images represent
different modalities. For the most part, the matrix size is different,
with a larger field of view and a higher resolution in anatomical
scans. The different modalities might each exhibit specific geometric
distortions of the images. For MRI, the dependence on different
contrast parameters (e.g., T1 and T2 weighting for, respectively,
structural and functional imaging), might mean that what is whiter in
one image would in fact be darker in another image. There are also
clear differences between a PET scan and a structural MRI. For all
those reasons, neither calculating a simple cost function, such as a
distance or correlation metric between the two volumes, nor a simple
rigid transformation to align the two modalities would be sufficient.



Coregistration methods use complex cost functions such as mutual
information and possibly also transformations with more degrees of
freedom than a simple rigid transformation.

Figure 6.4 illustrates typical input data for coregistration, with a
structural MRI image on top and a functional MRI volume below. In
this case, a translation of one of the two images along the vertical (Z)
direction along with a slight anterior-posterior shift and a small
rotation are necessary to coregister the two images.

Figure 6.4 Example of the input images for coregistration between a T1-
weighted anatomical scan (top row) and T2*-weighted functional MRI scan
(middle row). The latter is also shown after coregistration (bottom row).
Coregistration was performed with the SPM toolbox.

The researcher has to decide which image is to be the reference
to remain unchanged and which image is to be transformed. Both



choices have their followers. It is most natural to take the anatomical
image as the reference, because it contains the most spatial
information and has the largest field of view. However, this will result
in one extra transformation being applied to the functional images,
and for that reason it is not uncommon to use the functional images
as reference. There are many functional images in one dataset,
primarily the one used for coregistration is the same image that was
taken as reference for motion correction, after which the spatial
transformation is applied to all other images.



6.6 Preprocessing Step 4: Normalization
Normalization refers to the procedure used to bring all the data from
the different subjects into one common spatial reference space. Most
of the time, the normalization parameters are calculated using
structural images, although normalization might also be relatively
successful with functional images of high enough resolution and field
of view. Given this reliance on structural images, we introduced the
different approaches to spatial normalization in Section 3.1.2. There,
the reader learned about important concepts such as volume- and
surface-based normalization, segmentation, and population
templates and atlases.

Here we describe normalization as a step within a standard
analysis stream prior to the actual statistical processing. In many
cases, researchers wish to combine data across participants and
use this combination explicitly in their analyses. Before doing so, it is
necessary to normalize the data of each individual to a template
reference frame. As a result, the statistical analyses of functional
effects are based on normalized data. Note that normalization entails
more than a simple rigid transformation as was done for motion
correction, because neuroanatomy differs among people. However,
researchers can also choose to perform statistical analyses on non-
normalized functional data that remain in the native subject space.
After statistical analysis, researchers can then opt to normalize the
data or not. As long as spatial coordinates do not need to be



combined across participants (single-subject analyses), a study can
be completed without using any normalization.

Once the normalization parameters have been estimated, they
can be applied to the anatomical image (a new image is
resliced/written) as well as to all functional images that have been
coregistered with this anatomical image. This step should be
followed by a visual inspection of the normalized anatomy together
with the template and (a subset of) the normalized functional images
to assure that normalization has been successful. Again, investing a
few minutes in this quality control can save many hours of wasted
time later on.



6.7 Preprocessing Step 5: Spatial
Smoothing

As a last step in the preprocessing of fMRI images, researchers
often resort to spatial smoothing. This is a way of blurring the
images, which in image processing terminology corresponds to a
low-pass filtering of the images. Modulations at high spatial
frequencies (fine details) are attenuated at the benefit of contrast at
lower spatial frequencies. There are multiple filtering kernels in use.
By far the most common is a Gaussian filter. The amount of filtering
by a Gaussian kernel is summarized by the width of this function, in
which its height is at half of its maximum, the so-called full width at
half maximum (FWHM). Figure 6.5 illustrates the effect of spatial
smoothing on fMRI images.

Figure 6.5 Functional MRI images at various levels of smoothing. Spatial
smoothing was performed with the SPM toolbox.

Why would researchers want to reduce the higher spatial
frequencies in their signals? Researchers would be expected to try
to optimize the spatial resolution of their data, and spatial smoothing



seems to go against this goal. To explain the use of spatial
smoothing, we have to understand that spatial resolution is a
function not only of the highest spatial frequency that we can
measure. In addition to voxel size, spatial resolution is also limited by
the signal-to-noise ratio at different spatial frequencies. If the higher
spatial frequencies chiefly represent noise and very little signal, then
the researcher is better off removing these higher spatial
frequencies.

With fMRI images, we know the signal is spatially smoothed
anyway, because we measure hemodynamic correlates of neural
activity. At the same time, fMRI images contain quite a lot of noise at
the individual voxel level, which is a high spatial frequency relative to
the spatial resolution of the image. As a consequence, the overall
signal-to-noise ratio can be improved by spatial smoothing, which
strengthens the lower spatial frequencies that represent the signal at
the expense of the higher spatial frequencies that are primarily
dominated by noise (Friston et al., 1995). This is the advice of the
Matched Filter Theorem: It is best to filter the data with a filter
kernel that has the same amplitude spectrum as the signal that the
researcher wants to measure among noise with a different amplitude
spectrum.

Following these arguments, many fMRI studies include a level of
smoothing by about twice the voxel size. Studies that aim to combine
data across subjects tend to include an even larger smoothing level
to compensate for the inter-individual differences in anatomy (Mikl et
al., 2008).



Aside from these signal-processing considerations, there are
also statistical arguments in favor of spatial smoothing. Some of the
statistical approaches applied to imaging data, such as statistical
parametric mapping, make assumptions about the data. These
assumptions sound familiar to most scientists who have taken a
course on parametric statistics, such as the assumption that errors
are distributed according to a normal/Gaussian distribution. It has
been shown that spatial smoothing with a Gaussian kernel makes it
more likely that similar assumptions hold (Worsley et al., 1996), and
this can be an additional argument for performing (sufficient) spatial
smoothing.



Summary
Data analysis starts with image processing, including slice
timing, motion correction, coregistration, normalization, and
spatial smoothing.

During all steps, it is important to perform quality control and
consider whether the appropriate parameter settings are
being used.

Each step can influence the end result, necessitating
transparency about which parameters have been used and
why.



Review Questions

1. Describe motion correction and explain why this step is important
and how inaccuracies in this step might affect the outcome of an
fMRI analysis.

2. Explain why fMRI researchers spatially smooth their data as well
as the factors that might be taken into account to decide on the most
appropriate level of smoothing.

3. Two researchers, Hillary and Donald, analyze the same dataset.
They use exactly the same script and parameter settings for the
statistical analysis, but they work independently for the image
preprocessing that includes the steps of motion correction,
coregistration, normalization, and smoothing (different script,
different parameters). After the statistical analysis, both find one
cluster of significantly activated voxels. However, Donald’s cluster is
larger than Hillary’s, and it is shifted one centimeter to the right.
Explain for each preprocessing step whether and how it might
contribute to these differences.



Further Reading

Poldrack, R. A., Baker, C. I., Durnez, J., et al. (2017). Scanning the horizon:
towards transparent and reproducible neuroimaging research. Nature Reviews
Neuroscience, 18(2), 115–126. (This article describes the actions that can be
taken to increase the transparency and reproducibility of human neuroimaging
research.)

Poldrack, R. A., Mumford, J. A. & Nichols, T. E. (2011). Handbook of
Functional MRI Data Analysis. Cambridge: Cambridge University Press. (This
book provides a more in-depth and very concrete explanation of the important
concepts and steps involved when analyzing fMRI data.)

Some of the online resources mentioned in this chapter:

www.humanconnectomeproject.org

www.neurosynth.org

http://www.humanconnectomeproject.org/
http://www.neurosynth.org/


Chapter 7

Basic Statistical Analyses
◈



Learning Objectives

Here we describe the core of the statistical analysis of hemodynamic
imaging data. Following on the introduction in preprocessing in the
previous chapter, we introduce the next two components of the
analysis stream: statistical model fitting, and statistical inference.

Model fitting and inference are common to analyses of many
types of data, including behavioral data, but the types of models and
statistics tend to be much more complicated in the case of
neuroimaging data. From this perspective, referring to it as “basic”
neuroimaging statistical analysis does not do justice to the
complexity of what we cover in this chapter.

Learning how to compile an appropriate general linear model

Understanding the application of basic statistical tests in the
context of neuroimaging research

Understanding the need to correct for multiple comparisons
and the main approaches for doing so

Learning about the many ways in which a statistical inference
might go wrong



7.1 Statistical Analyses: The General
Linear Model



7.1.1 Simple Linear Regression

To start with a simple example, suppose you do a behavioral
experiment in which you test how fast a person can react to a burst
of noise. You test this reaction time 100 times over the course of 1
hour. Sometimes there is a distracting event happening outside the
testing room that involves a varying number of people. You have the
hypothesis that the reaction time might be prolonged by this
distracting event, with reaction times becoming slower as more
people are involved.

To test such a hypothesis, the researcher could quantify the
relationship between the occurrence of the distracting event and the
reaction time. The easiest approach would be to test for a linear
relationship by computing the correlation between the occurrence of
the event and number of people involved and the reaction time. A
similar way to express the potential dependence of reaction time on
the distracting event is to compute how much the reaction time
increases for each person added to the distracting event. This gives
us the formula for a simple linear regression, as follows:

Y = β0 + X1 β1 + ε

Y = [y1 y2…yn]‘ X1 = [x1 x2…xn]’

n = number of time points in the (in)dependent variable

In this formula, X1 and Y are vectors (series of numbers). The
superscript T signals that the vector is a column of numbers (without
the superscript, the vector forms a row). The independent variable,



X1, contains the number of people at the n points of time at which
the reaction time was measured (with the number being zero if no
distracting event occurred). The dependent variable, Y, contains the
actual reaction times measured at these time points. The other
characters represent single-number parameters that capture the
relationship between X1 and Y. The constant to be added to X1 to
account for the difference in average value between the two vectors
is represented by β0. The aforementioned dependence of reaction
time on the elapsed time is represented by β1. The variation in
reaction time that is not captured by the beta parameters β is
represented by ε.

The same simple regression formula is used in the context of
functional magnetic resonance imaging (fMRI) analyses. Now Y is
the measured fMRI signal at a series of time points. The
independent variable is again X1, which could represent the
presence or absence of a particular experimental condition. A simple
example would be the number of visual stimuli shown on a projection
screen.



7.1.2 Multiple Linear Regression

After finding that reaction time increases as a function of the number
of people in the event, you think about a second variable that might
influence reaction time. In some sessions, the participant has been
drinking coffee before the experiment, with the amount ranging from
1 to 3 cups. You predict that reaction time will speed up linearly with
the number of cups. To test the relationship between a dependent
variable and multiple independent variables, we perform a multiple
regression analysis.

In multiple regression, we use the same basic formula but now
with multiple independent variables:

Y = β0 + X β + ε

β = [β1 β2…βp]’

n = number of time points in the (in)dependent variable

p = number of independent variables (predictors)

Here X is a matrix in which each column corresponds to the values
of one independent variable. All these vectors/columns together form
the matrix. Each independent variable has one associated β
parameter. The variation in Y that is not captured by all the
independent variables is represented in the error term ε.



7.1.3 The General Linear Model Applied to fMRI Data

The multiple regression model as applied to fMRI data is typically
referred to as the general linear model (GLM). With fMRI data, each
vector has as many data points as the number of scans included.
The matrix Y contains the fMRI signal at each time point (blood-
oxygenation-level dependent [BOLD] time series). The matrix X
contains all independent variables that the researchers want to
include and is referred to as the “design matrix.” This general linear
model is visualized in Figure 7.1.

Figure 7.1 Visualization of the general linear model as applied to real fMRI
data. The dependent variable Y is the signal of one random voxel in one
time series of n = 75 time points with a repetition time (TR) of 3 seconds (s).
The experimental design contains 3 conditions, which were each presented
for 4 blocks of 15 s each. The six motion-correction parameters (translations
and rotations) are included as covariates. As a consequence, p = 9.

Figure inspired by Monti, 2011

The independent variables in the design matrix can be classified
in two groups. First, we have the experimental conditions that the



researcher is interested in, the regressors of interest. Each
regressor of interest is typically associated with one experimental
condition, and there are at least as many regressors of interest as
there are experimental conditions in the experiment. Second, we
have other variables that we might expect to predict part of the
variation in the fMRI signal, but that are not of primary interest to the
researcher. These variables are referred to as covariates or
nuisance regressors.

The GLM is applied to the data of individual voxels. Often a
selection is made prior to implementing the model to avoid
performing all the heavy computations to data of which it is clear that
they are not relevant. For example, voxels that are outside the brain
have no relevance. Still, the analyses might include computing
hundreds of thousands of individual GLMs. This approach of
analyzing each voxel separately is sometimes referred to as a
univariate or voxel-wise analysis.

The actual regressors do not simply correspond to the exact
timing of experimental conditions or other events but already include
what we know about the measured hemodynamic signal and its
dynamics through the hemodynamic response function. This
knowledge is already used during the construction of the design
matrix by convolving the original regressor that indicates the time of
occurrence of particular events with the hemodynamic response
function. As a consequence of this convolution with the
hemodynamic response function (HRF), even when the original
regressor was a series of 0 (condition not present) and 1 (condition
presented), the actual regressor in the design matrix would be a



continuous variable with the peak occurring about 6 seconds after
the occurrence of each 1.

The convolution with the default HRF is a standard approach,
and the majority of research studies would not go further than this.
However, more complex approaches exist. Typically, these
approaches provide more than one regressor per condition, resulting
in a model that is more complex and uses more degrees of freedom.
This extended model allows more flexibility to account for differences
in the timing and the shape of the HRF between different brain
regions. One example is the addition of the time derivative of the
convolved regressor.

For more complex approaches, the need to include additional
variables is a potential disadvantage. The same is true for the
nuisance regressors. They are helpful only if they explain at least
some variation in the dependent variable. All variation that is
predicted by the design matrix is subtracted from the remaining error
term. The size of this error term is important, because it has an
important role later on to determine significance of effects (the betas
in the GLM). The smaller the error term, the easier a beta of a
particular size might become significant. Possible candidates to be
included as nuisance regressors include movement of the subject as
determined through the motion-correction preprocessing step, the
reaction time of behavioral responses, eye movement data, and
physiological parameters such as heart rate and respiration.



7.1.4 Data Cleaning prior to Applying the GLM

Prior to applying a GLM, we can also remove noise from the signal
before the GLM model is applied. Of course, this will be done only
for factors that are of absolutely no interest to the researcher. Most
software packages include a high-pass filtering step in which very
slow drifts in the signal are filtered out. In many experiments, it can
be decided a priori that these very low frequencies can only contain
noise. The most optimal cutoff value for the filter depends on the
experimental design.

Let us consider a specific design as an example. The design
contains a continuous alternation of two experimental conditions A
and B and a resting baseline R, with an order A R B R A R B R, with
each block taking about 15 seconds. In this design, we know that a
signal variation with a frequency slower than 1 cycle per 2 minutes
would not be related to our experimental manipulations, as
conditions A and B follow each other much more rapidly (we already
have a second occurrence of A 1 minute after the first). The extent to
which such a slow temporal frequency could be related to our
experimental manipulations would be very different in a design with 8
stimulus conditions and the same resting baseline. Because of the
high number of conditions, it might take several minutes to have a
repetition of a particular condition. Thus, in this second design we
would prefer to be more conservative when deciding to filter away
low temporal frequencies.



Another data operation that is often applied prior to the formal
GLM involves a procedure to “whiten” the data. This procedure
removes dependencies between data points that should not be there
according to the statistical tests that will be applied to the data in a
later step. The notion that statistical tests make assumptions should
be familiar to most readers. For example, a simple t-test assumes
that data points have a normal distribution and that each data point
is independent from other data points (no dependencies). We know
that fMRI data contain a lot of dependencies, one being a
dependency or temporal autocorrelation among successive data
points. This autocorrelation is reduced by removing such
dependencies before applying the GLM.



7.1.5 The Efficiency of a Design and Correlation between
Predictors

After fitting the GLM model to the fMRI signal in a particular voxel,
we obtain an estimate for each column in the design matrix. These
estimates are often referred to as beta values (cf. the notation of β in
Section 7.1.2). The beta values tell us how much and in which
direction the independent variable predicts changes in the fMRI
signal. For example, a large positive beta for column 5 means that a
small increase in independent variable 5 is related to a relatively
large increase in the fMRI signal.

In a simple linear regression, there is a straightforward
relationship between this beta and the correlation between the
independent and the dependent variable. In a multiple linear
regression, we also have to consider the correlations among the
different regressors. Here we encounter the concept of a partial
correlation, which is the correlation that remains between a
particular regressor and the fMRI signal after taking into account the
correlations with other regressors. Or, stated otherwise, the partial
correlation captures the part of the fMRI signal that can only be
explained by this particular regressor and not by other regressors.
The beta value in a multiple linear regression is related to this partial
correlation.

Problems emerge when regressors are highly correlated. In
such a case, it becomes unclear which of the correlated regressors
explains the fMRI signal. As a consequence, a particular regressor



would explain very little variation in the fMRI signal that cannot be
explained by other predictors. This is referred to as a low efficiency.
In this context, high efficiency means that the variation predicted by
a particular regressor cannot be explained by other regressors. Low
efficiency results in other problems, too. In particular, the beta
estimates and thus the model fitting becomes unstable, in the sense
that small changes in the data can give rise to large changes in the
estimated betas. For these reasons, it is preferred to have a design
matrix with high efficiency, with small or no
dependencies/correlations between the columns. Part of this is out of
the control of the researcher, given that some of the columns in the
design matrix might depend on unpredictable factors such as a
subject’s performance or head motion. However, the situation is
different for the regressors of interests that are related to the timing
of the different experimental conditions. The experimenter decides
on this timing and thus can and should avoid correlations between
the resulting regressors as much as possible. This can be achieved
through a careful counterbalancing of condition order and timing. For
example, if in an event-related design condition B would always
follow condition A with a short and fixed time interval of less than 6
seconds, then the regressors for these two conditions would be
highly correlated after convolution with the HRF (Poldrack et al.,
2011).

Figure 7.2 illustrates a design matrix of a simple experiment in a
commonly used graphical format. It represents a block design with
three conditions presented in blocks of 15 seconds. The matrix at the
left shows the actual design matrix. There are three continuous time



series, or “runs.” In each run, each condition is presented 4
times/blocks, as visible from the design matrix in which the columns
corresponding to the block onsets contain four white squares. Each
run starts with a period of no stimulation (no white square in the first
few time points in any of the runs). For each run, the first three
columns represent the three stimulus conditions, which are the
regressors of interest. The other six columns per run show the
nuisance regressors, in this case the motion-correction parameters
obtained through the alignment of the functional images during
preprocessing. The last three columns in the design matrix model
potential differences in fMRI signal between runs.



Figure 7.2 Visualization of the design of a block-design fMRI experiment.

(A) The design matrix with the predictors as columns and time points as
rows. The color scale from black to white indicates low to high values,
respectively.

(B) Matrix with correlations between the predictors in the design matrix. The
color scale from white to black indicates low to high values, respectively.

Images obtained through SPM12 software.



The right triangular matrix represents the absolute value of
correlations between the columns from the design matrix (white = no
correlation). As high efficiency can only be obtained with
independent regressors, we would hope to see no or at most small
correlations between columns. Of course, there are no correlations
between regressors that refer to different runs. In addition, the
experimenter did a good job avoiding correlations among the three
regressors of interest. In individual runs there are some correlations
with the nuisance regressors, but across runs there seems to be little
systematicity in these correlations. If the same experimental
condition would always be highly correlated with a particular motion-
correction parameter, then this could have a detrimental effect on the
researcher’s ability to find and interpret any changes in the fMRI
signal related to this experimental condition.

We mentioned before that the fitting of the GLM model per voxel
provides us with a beta value per column in the design matrix per
voxel. These beta values can be shown as a brain map, as is
illustrated in Figure 7.3 for the first two columns in the design from
Figure 7.2. Now the question comes up: Is the fMRI signal
significantly different between these two conditions in at least some
of the voxels?



Figure 7.3 The beta values associated with the two first predictors of the
design matrix in Figure 7.2 in one example participant. White indicates a
high beta value. The outline of the gray area shows that in this case only
part of the brain was imaged. A: anterior, P: posterior, R: right, L: left, S:
superior, I: inferior.



7.2 Determining Significance and
Interpreting It



7.2.1 Calculating a Simple Test Statistic: A t-Contrast

The simplest and most frequent approach to determine significance
is to apply a parametric test known as the (student’s) t-test. This test
is applied for each individual voxel. In this test, a test statistic t is
calculated that is proportional to the ratio of the size of estimated
beta values to the size of the error term in that voxel. Often, multiple
columns in the design matrix are combined if they refer to the same
experimental condition, as is the case when a particular condition
appeared in all the different runs. Figure 7.4 shows the results of a t-
contrast when implementing a similar design as in Figure 7.2
comparing condition 3 (images of faces) with condition 1 (object
images). The contrast terms for the different columns in the design
matrix are shown on the right: +1 for each column with a regressor
related to the occurrence of face images and -1 for each column
related to object images. The brain maps on the left are shown in
three formats, including a format that is a default in the SPM
software and known as “glass brains.” The gray level of voxels
represents the calculated t-value in each voxel.



Figure 7.4 Visualization of the voxels with a high t-value in a simple t-
contrast of visually presented faces minus object images. Brain maps
represent the unthresholded t-maps (top row) and thresholded t-maps on
glass brains (middle row) and on anatomical scans (bottom row). The
threshold was put at a t-value of 3.79, corresponding to an uncorrected p-
value of 0.0001, with cluster extent 20. Visualization performed with the
SPM toolbox.

The distribution of t-values is well known and depends on the
degrees of freedom. The degrees of freedom are related to the
number of independent time points across all runs with the number
of regressors subtracted. The higher the degrees of freedom, the
narrower the distribution of t-values and the rarer it becomes to find
t-values larger than a particular value if there is no effect. As such,
each t-value is associated with a probability of occurrence. The
higher the t-value, the lower this probability. When researchers say
that a particular observed value of a test statistic is significant, they
do this because the associated probability is very low, lower than a
criterion value.



The t-maps shown in Figure 7.4 show only the t-values above a
criterion value of 3.79, which is associated with a probability of a
type-I error of p = 0.0001. Such a thresholding is standard practice in
graphics in neuroimaging papers, although the chosen criterion
probability might vary widely between studies.

Here we will introduce all concepts in the context of a simple
parametric t-contrast. An alternative test includes an F-ratio to
search for a significant difference between conditions. This F-ratio
can also be computed in an fMRI experiment, and this is done in
much the same way as computing a t-contrast. While a t-contrast
signals not only the size of a difference between conditions but also
the direction of this difference (only positive t-values are shown in
the t-maps in Fig. 7.4), an F-ratio indicates only that there is an effect
without providing any information about the direction of the effect.
More complicated designs are also possible with more than two
conditions, such as analysis of variance (ANOVA) with multiple
levels of one factor (possibly with a parametric manipulation) and
multifactorial designs (Friston et al., 1994).

Finally, while we restrict our discussion here to the use of
parametric tests, these tests suffer from the same limitations as in
other applications of statistics. Most researchers choose parametric
hypothesis testing because it is the easiest approach to implement
and they are most familiar with it, but parametric statistics make
many assumptions that are often violated. The extent to which these
violations will have a meaningful impact on the conclusions of a
paper will vary case by case. For sure, if results are borderline
significant, then they may very well fall at the other side (no longer



being significant) with a test that is not subject to the same
assumptions. Nonparametric permutation statistics are more
computationally intensive, but would allow for more valid statistical
inference (for a primer, see Nichols and Holmes, 2002).
Furthermore, the dominant statistical approach of so-called null
hypothesis significance testing (NHST) is also subject to criticism.
Instead of trying to show that results are significant (meaning: very
unlikely to appear under the null hypothesis), it is argued it is more
fruitful to estimate and compare the amount of evidence in favor of
both the null hypothesis and its alternative(s). This brings us into the
territory of Bayesian statistics (Woolrich et al., 2009), which is a very
valuable alternative for parametric tests.



7.2.2 Correction for Multiple Comparisons, or How to Avoid
Brain Activity in Dead Salmon

Until this point, we have treated each voxel as a separate
experiment: A GLM model was fitted per voxel, and the probability of
differences between conditions was determined using a t-contrast
calculated per voxel. However, it is problematic to stop at this point
and claim to have found a significant result because some voxels are
associated with a t-value beyond a criterion value, as used in Figure
7.4. Initially, the claim that the analysis is problematic might seem
odd given that the criterion value used was associated with a
probability of p = 0.0001. In many fields, researchers are happy with
a p-value of 0.05 or 0.01, so why is 0.0001 not enough?

A thought experiment makes the issue clear. Let us first start
with what these p-values mean. The p-value that we calculate
reflects the probability with which we would make a statistical error
known as a type-I error: making the claim that an effect is present
while it is actually not there. For that we determine what the
probability is to observe a certain t-value if the data would contain no
effect. If this probability is very low, then we know that it is unlikely
that there would be no effect. With a p-value of 0.0001, we know that
we can expect to make an error of claiming a nonexistent effect in 1
out of 10 000 independent tests on data that have no effect in reality.
Thus, if we run one GLM and use a criterion value associated with p
= 0.0001, then the probability of making a type-I error is only 1 out of
10 000. However, we are not just running one GLM; instead, we are



running a GLM for each voxel. If a dataset contains 200 000 voxels,
then we would be fitting 200 000 GLMs. In each case, we have a
probability of 0.0001 to make a type-I error (if there would be no
effect in any of these voxels), so it would not be surprising to find
0.0001 x 200 000 = 20 voxels in which we would claim to have found
an effect even though there would be none.

This issue is known in statistics as the multiple comparisons
problem. If we run multiple tests, and we want to control the overall
probability of making a type-I error, then we need to correct for the
number of comparisons performed. Applying this reasoning to fMRI,
we infer that the number of comparisons we need to correct for is the
same as the number of voxels in the dataset.

Functional MRI researchers have been aware of this problem
since the initial development of fMRI methodology. What would
happen if we forgot about this, just for the sake of the argument?
The consequences are shown most famously by Bennett and
colleagues (Bennett, Miller and Wolford, 2009; Bennett, Wolford and
Miller, 2009). They used a setup in which we can be quite sure that
the experimental manipulation would not be associated with changes
in the fMRI signal. They put a dead (!) salmon in an MRI scanner
while showing it pictures with positive or negative emotional content.
We do not expect any salmon to react to the emotional content of
pictures, let alone a dead salmon. Thus, the signal measured in the
salmon is sure to contain no systematic variations related to picture
content. Still, the authors fitted a GLM to the data of each voxel in
the salmon’s brain and looked at how many voxels crossed a
threshold associated with a low probability such as 0.001. Several



voxels did (Fig. 7.5). Thus, using this approach, which includes no
correction for multiple comparisons, we can seemingly “find” brain
activity in a dead salmon.

Figure 7.5 Spurious brain activity in a dead salmon related to the emotional
content of pictures shown to it. This finding was awarded the IgNobel Prize
in 2012. The tongue-in-cheek IgNobel Prize is not to be confused with the
actual Nobel Prize.

Figure reproduced with permission from Bennett, Miller and Wolford, 2009

Functional MRI researchers agree that a correction for multiple
comparisons needs to be done and almost all papers in the literature
perform such a correction. Multiple approaches exist, each with its
own benefits and downsides, and each with its own believers and
nonbelievers. Different software packages and subcommunities in
the field have different defaults for performing this correction. We will
describe three very important approaches below.

The first approach is based on a method known in statistics as a
Bonferroni correction. In its simplest form, it involves dividing the
desired probability for making a type-I error, such as 0.05, by the
number of comparisons made—in our fMRI case, the number of



voxels in a dataset. With 200 000 voxels, the new threshold would
be 0.05/200 000, so 0.00000025.

However, this implementation of the Bonferroni is too
conservative, because we do not necessarily need to correct for the
total number of tests. Instead, we need to correct for the number of
independent tests. In fMRI data, nearby voxels do not contain a fully
independent signal. Instead, the signal in nearby voxels is correlated
for several reasons: joined signal and noise during data acquisition
and further correlations introduced during preprocessing (most
explicitly in the step of spatial smoothing). When the data show such
correlations among voxels, the true number of sources of variation is
less than the number of voxels. This principle is central to many
data-reduction techniques, such as factor analysis (FA) and principal
component analysis (PCA). All these techniques capitalize on
redundancies in data to find a small number of factors/components
that can capture the shared variation in the data. The higher the
redundancy and correlations among different variables in the data,
the smaller the number of factors/components will be. The challenge
for an appropriate level of Bonferroni correction in the context of
fMRI is to estimate the number of sources of variation underlying the
fMRI signal and correct for this number. With 200 000 voxels, this
number is going to be much smaller than 200 000. The true number
depends on the smoothness of the data, which is very much related
to the amount of correlation between nearby voxels: the higher the
smoothness, the higher the correlation and the smaller the number
with which we need to correct. The researchers who developed the
SPM software package proposed a theoretical framework known as



random field theory as a principled approach to estimate the amount
of correction needed, given the estimated smoothness of the fMRI
dataset at hand (Friston et al., 1995). With this approach to
Bonferroni correction, we control for the type-I error at the “family”
level of all relevant voxels, and as such the resulting error is known
as family-wise error (FWE) correction. If we have applied the FWE
correction with a corrected p = 0.05, then the probability of finding
one or more voxels with a lower p-value is 0.05 if the null hypothesis
of no effect is true.

A second well-known approach to correct for multiple
comparisons is the control of false discovery rate (FDR) (Genovese
et al., 2002). In this approach, we control the proportion of incorrectly
rejected null hypotheses based on the observed distribution of
uncorrected p-values. If we apply the FDR correction with a
corrected p = 0.05, then 1 out of 20 activated voxels/regions is a
false positive. Mathematical analyses and simulations show that the
FDR approach is less conservative than the FWE approach when
effects are present (in that case, the null hypothesis is false). As
such, it is more sensitive to existing differences. With random data in
which no effects are present, the two approaches provide very
similar levels of correction, although this might depend on the
smoothness of the data.

Family-wise error and FDR are methods for voxel-wise
correction for multiple comparisons. A third approach combines an
uncorrected threshold at the voxel level with a further threshold
incorporating cluster size: the number of adjacent voxels that cross
the uncorrected threshold. The smoothness of fMRI data makes it



more likely that nearby voxels might cross the threshold of
significance together, but it might only be a few voxels if the
apparently detected signal does not represent a real effect. For that
reason, the choice to include a minimal cluster size should also
prevent picking up spurious effects. Supporters of this cluster-wise
correction approach point to the benefit that such methods are less
conservative than voxel-wise FWE and FDR correction (Lieberman
and Cunningham, 2009). However, the typical settings used for
cluster-wise inference have also been criticized as leading to an
inflation of false positives (Eklund et al., 2016). The suggestion was
made to combine the cluster-wise correction approach with a
sufficiently stringent initial voxel-wise threshold such as p = 0.001.
The proper approach to cluster-wise inference is currently a highly
debated topic (Cox et al., 2017; Slotnick, 2017). The problem of
having to decide on the voxel-wise threshold can also be avoided
altogether by resorting to so-called threshold-free cluster analysis
(Oosterhof et al., 2016).

Figure 7.6 shows a table of t- and p-values for several voxels in
the t-contrast from Figure 7.4. Several p-values are presented, after
voxel-wise FWE and FDR correction, as well as cluster-wise
correction. In this dataset, the example illustrates how the p-value
becomes much less extreme after correction, an effect that is even
more pronounced for FWE compared with FDR. The uncorrected p-
value of 0.0001 that was used as the threshold value in Figure 7.4 is
associated with an FWE- and FDR-corrected p-values of 1.0 and
0.7, respectively.



Figure 7.6 Example table from SPM12 with t- and p-values associated with
the contrast shown in Figure 7.4. The maps were thresholded with a voxel-
wise threshold of 0.0001 and an extent threshold of 20 voxels. From left to
right, the table shows the following values for the peak voxels in four
clusters: for cluster-level statistics, the FWE-corrected and FDR-corrected
probabilities, the number of voxels in the cluster, the uncorrected cluster p-
value; for voxel-level statistics: the FWE-corrected and FDR-corrected
probabilities, the t-value, the associated estimated standard-normal Z-value,
the uncorrected p-value; and finally the X, Y, Z coordinates of the peak
voxel. Below the table further information is given, including the threshold
values for the voxel-wise and cluster-wise multiple comparison correction
(bottom left), the estimated smoothness of the data (FWHM [full width at half
maximum]) that determines the family-wise correction, and the number and
average spatial extent of the sources of variance (resells [resolution
elements]) estimated, given the smoothness of the data.

Below the table, several other parameters of this fMRI dataset
are mentioned, including the estimated smoothness of the data
expressed as the full width at half maximum (FWHM) of the data,
which affects the required amount of FWE correction.



7.2.3 Combining Data across Participants: Second-Level
Whole-Brain Analyses

Most neuroimaging studies test a sample of subjects and make
inferences to the population level. To do this, we have to verify how
effects vary across the subjects in the sample. The aforementioned
t-tests do not do this, because they only test for variation across the
time points obtained in a single subject. To make inferences at the
population level, we need to test the effect size against the variability
across subjects.

The standard approach is referred to as a second-level
(random-effects) group analysis. The inputs to this analysis are
the contrast maps that have been computed per participant, which is
the first-level analysis. In a second-level analysis, we test for each
voxel to see whether the contrast value is consistently different from
zero across participants. The degrees of freedom of this new,
second-level t-map are related to the number of subjects (N). In the
simplest case this is N – 1.

The simplest second-level analysis involves testing whether an
effect in a group of subjects is significantly different from zero with a
one-sample t-test. With a second-level analysis it is also possible to
test whether a particular effect is different between groups of
subjects, in which case we could use a two-sample t-test. More
complex ANOVA designs might include factors with multiple
conditions and multiple factors. Through a second-level analysis, we



can also test whether the variation across subjects correlates with a
factor or covariate that differs between subjects.

All these analyses are performed voxel by voxel. This is
meaningful only if the data from a particular voxel relate to the same
underlying brain region in the different subjects. To get a second-
level analysis to work, we have to rely on the quality of the
normalization and the inclusion of an appropriate level of smoothing
during preprocessing. Given that we compute the test statistic for
each voxel, we also have to correct for multiple comparisons after
performing a second-level analysis. For this correction, we can resort
to the same approaches that were described above in the context of
a first-level analysis.



7.2.4 Region-of-Interest Analyses

Researchers typically make predictions about how an experimental
condition might recruit particular brain regions. In some cases, their
manipulations might even target questions about very specific
representations of which the researchers already know the
anatomical location. Making such a priori decisions is inherent to
many neuroscientific approaches because many of them do not
provide whole-brain coverage. For example, researchers wishing to
obtain data with single-neuron resolution through a technique such
as extracellular recordings or two-photon imaging will have to decide
where to place electrodes or where to perform a craniotomy to study
the underlying tissue. For such methods, the decision to target a
specific brain region has to be made prior to performing the
experiment and is irreversible. After making the decision to put
electrodes in the primary visual cortex, the study can only investigate
the primary visual cortex.

The situation is different in human noninvasive imaging
techniques that provide a relatively large coverage of the brain. Still,
even in a study with whole-brain coverage, the researchers might
have predictions about specific brain regions. In such a case, many
studies employ a region-of-interest (ROI) approach (Poldrack,
2007; Saxe et al., 2006). For this approach, one or more ROIs are
first defined using established criteria. These criteria could relate to
anatomy. For example, if the studied hypothesis were to relate
specifically to a primary sensory area, then this area might be



defined using a probabilistic brain atlas. The ROI might come from
another study that published its MNI coordinates, which could then
be used to define the ROI in the current study. Alternatively, the ROI
could be based on functional criteria, often combined with
anatomical criteria. For example, a region such as the fusiform face
area (FFA) is defined by a functional contrast (higher response to
faces compared with objects) combined with an anatomical criterion
(located within the fusiform gyrus).

A valid ROI approach requires that the ROI is defined using
criteria that are independent of the effects of interest. This is
relatively straightforward for an anatomical ROI, in which case the
ROI is defined anatomically and the effects of interest are of a
functional nature. For a functional ROI, many studies include
separate functional localizer runs of which the data are used to
define the ROI and experimental runs that contain the conditions that
are the primary interest of the current study (Saxe et al., 2006). The
design and conditions of the localizer runs might be shared among
many different studies that are interested in the same ROIs. For
example, there are numerous fMRI studies that have focused on the
FFA defined through a contrast of faces with object images, or the
human MT/V5+ area that is defined through a contrast of moving
versus stationary images.

Some studies define a functional ROI using the same data used
for testing effects, but with a different contrast. In such a case, it is
important that the contrast used to define the ROI is statistically
independent from the tested effects. For example, the design could
contain two factors, the ROI could be defined based on the existence



of a main effect of one of those factors, and the critical test could be
whether there is also a main effect of the other factor or an
interaction between the two factors. In this approach, it is important
that the experimental design be well balanced (e.g., equal number of
blocks of each condition), because otherwise the use of orthogonal
contrasts (e.g., main effect versus interaction effect) does not
guarantee statistical independence (Kriegeskorte et al., 2009).

Figure 7.7 illustrates the ROI approach with data from Yovel and
Kanwisher (2005). The authors defined several face-selective
regions, including the FFA. They localized these regions using data
from a set of localizer runs that consisted of blocks of different
stimulus conditions, including the two conditions involved in the
contrast to find face selectivity: faces minus objects. In the resulting
ROIs, the authors tested for the effect of interest: how the signal
would be affected by inverting face images. The data included to test
this effect did not come from the runs used to define the ROIs. The
results showed that the size of the face inversion effect in the FFA is
correlated across subjects with the effect of face inversion on the
behavioral performance of subjects in a face recognition task.



Figure 7.7 Illustration of the region-of-interest approach. The percent signal
change is shown in the FFA for two experimental conditions: upright and
inverted faces. The scatterplot shows the relationship across subjects
between the difference in fMRI signal for these two conditions in FFA
(upright – inverted, FFA-RE) and the behavioral difference in accuracy.

Adapted with permission from Yovel and Kanwisher, 2005

The literature contains arguments in favor of and against ROI
approaches (Friston et al., 2006; Saxe et al., 2006). A first benefit of
the ROI approach is that it allows for a definition of ROIs at the level
of a single subject, and so avoids the problem of inter-individual
variability in anatomy and provides more anatomical specificity. A
second benefit is that it circumvents the problem of multiple
comparisons. If researchers are interested only in the overall effect
in one or a few ROIs, then they perform fewer statistical tests and do
not need to correct for a high number of multiple comparisons. Note
that this reasoning applies only if the ROIs were chosen in advance.

One major disadvantage of the ROI approach is that the
analyses only provide a very local view of the data. Researchers
depend on the validity of the functional and anatomical specificity of
their prior hypothesis. Some functional contrasts might only make
sense if they were tested in a particular functional region. For
example, if there is a theoretically relevant hypothesis about how



visual stimuli might be processed in the region in which visual
information enters the cortex, then it is clear that the primary visual
cortex is the region to study. However, in some cases the specificity
of the hypothesis might be less clear, and one might wonder whether
there might be any effects in other brain regions. Suppose that many
other brain regions were to show similar effects or even larger effects
than the primary visual cortex; that knowledge, then, might qualify
our interpretation of the effect in primary visual cortex.

There have been combined approaches trying to retain the
benefits of an ROI approach but avoiding its disadvantages. One
approach involves performing a standard ROI approach and
complementing it with an exploratory whole-brain analysis to test
whether any effects in other brain regions might be missed.



7.2.5 Another Statistical Caveat: Double Dipping and
Circular Analyses

The statistical analysis of fMRI data is complex. Many steps are
involved, and researchers have to be aware of possible errors that
they could make in each of those steps, because such errors might
compromise the correctness of their statistical conclusions. A major
caveat is that researchers have to avoid any circularity in their
analyses. Many decisions have to be made during the process.
Ideally, most or all of these decisions are based on criteria that were
already set prior to starting the study. This ideal is not always easy to
reach, given that research studies tend to be innovative, and as such
unexpected problems might occur. A standard operating procedure
(SOP) might exist to deal with some problems but not all of them.

As an example, we can refer to decisions about whether data
quality is sufficient. In many published studies, one can read a
statement such as “We scanned 20 participants. We excluded the
data from 2 participants because of excessive head motion.” How
and when did the authors make this decision? The decision should
be based on transparent criteria, which are often developed from
experience in other studies in the same lab and other labs. A
common criterion is that data are problematic if the participant
moved more than the size of a voxel. This decision should be made
prior to looking at the effects of interest. It would be unacceptable if
the decision depended on information about the effects of interest.
Suppose, for example, that of the 20 participants there were three



participants with excessive head motion but only the two that did not
show the effect of interest would be excluded. Decisions about how
to analyze data should not be influenced by information about the
effects of interest in the current dataset.

Kriegeskorte and colleagues (2009) provided an overview of
bad practices that should be avoided and that can be grouped under
umbrella terms such as circular analyses and double dipping.
Note that these caveats are not specific to the field of brain imaging
and are common to all empirical research. Related to the previous
example with excessive motion, a researcher working with
behavioral data might also be confronted with “outlier” participants
with low data quality.

Figure 7.8 illustrates the problem of double dipping or circularity
as it might occur in an ROI analysis when researchers are not
careful. The middle matrix shows a set of voxels containing
simulated fMRI data. The simulated data contain a particular effect
and added noise. The “true” effect embedded in the data is shown at
the left: Some voxels are more active for conditions A and B than for
conditions C and D. This effect was embedded in the voxels
enclosed by the blue contour in the matrix. It is not straightforward to
detect these voxels due to noise in the data. The authors resort to a
functional contrast to define the ROI, and this includes the contrast
of conditions A and D (A > D).



Figure 7.8 The effect of circular analyses in a region-of-interest analysis.
See text for more explanation.

Adapted with permission from Kriegeskorte et al., 2009

The correct, noncircular approach involves taking a separate set
of data to define the ROI. This is how the voxels in the green contour
are selected. Then the researchers test in this independent-data ROI
what the difference in response is between the four conditions. The
data show an (equally) high response in conditions A and B and an
(equally) low response in conditions C and D. This is exactly the
“true” effect that was embedded in the simulated data on the left.

An incorrect, circular approach involves using the same data to
define the ROI and to test for effects. Using these data to define the
ROI, the simulated data indicate that the voxels in the purple contour
show a difference in the contrast of A–D. Then the researchers test
in this ROI what the difference in response is between the four
conditions. The data show a linear decline in simulated brain activity
across the four conditions: A > B > C > D. This is not the same as



the “true” effect that was embedded in the simulated data, as the
true effect does not show a difference between conditions A and B.
The detected effect is a mixture of the true effect (A = B > C = D) and
the contrast hypothesis used to define the ROI (A > D). In general,
the more noisy the data are and the smaller the effect size of the true
effects is, the more such circularity in the analyses can affect the
outcome of the analyses.



7.2.6 Statistical Inference

Once a statistical test has resulted in a truly (corrected) significant
effect in a set of voxels, the question becomes, What does the result
mean? The extent to which this statistical inference is straightforward
depends on the design that was used, a point that was emphasized
already in the context of Figure 6.1. In the simplest case, the
statistical test involved the comparison of two experimental
conditions A and B. What does it mean that condition A is associated
with a significantly higher fMRI signal in a particular brain region R?

If the experimental design obeyed all the requirements in the
context of the Donders subtraction method (see Chapter 5), then the
two conditions are different in just one identifiable cognitive/neural
process. Suppose that condition A involves cognitive process X and
condition B does not, and the two conditions are equivalent in all
other aspects. The statistical inference would then be: If process X is
manipulated, then region R is activated; thus, activation of region R
is related to process X. This type of reasoning is often referred to as
a forward inference.

However, in many paradigms it might turn out to be difficult to
strictly adhere to the requirements of the subtraction method. There
are countless examples in the literature where conditions are
compared that differ in more than one cognitive process. In this
case, we can no longer make a forward inference. If we were to do
so, it would sound like this: If processes X, Y, Z, … are manipulated,
then region R is activated. With this inference, we do not know which



process is related to the activation of region R. In fact, in such a case
we are likely to see more than one activated brain region, resulting in
a forward inference such as: If processes X, Y, Z, … are
manipulated, then regions R, S, T, U, … are activated.

In the latter case, researchers often resort to another type of
inference to draw more specific conclusions, known as a reverse
inference. It goes as follows. Results show an activation of region R,
among other activations. Other studies in the literature have
activated region R when they manipulated process X. Thus, the
activation of region R in the current study is related to process X.

Russell Poldrack was the first researcher who explicitly
dissociated these two types of inferences and highlighted the
potential drawbacks of a reverse inference (Poldrack, 2006). In
particular, Poldrack points out that a reverse inference is problematic
when region R is involved in more than one cognitive process. This
is a realistic problem because it is clear from the literature that the
fMRI signal in most brain regions is modulated by more than one
experimental manipulation and more than one cognitive process.
The more this happens, the less certain we are about the conclusion
from a reverse inference that the activation of a region such as R is
due to the involvement of one of these cognitive processes. For this
reason, conclusions from reverse inferences should be more
cautious compared with conclusions from forward inferences.

The importance of the caveats with reverse inference cannot be
emphasized enough, given that these improper conclusions
constitute a frequent cause of inappropriate media coverage of brain
imaging studies. One example is the proposal that fMRI can be used



for lie detection. The areas of the brain that are more activated when
participants are not truthful in an experimental paradigm, chiefly in
the parietal and frontal cortex, are all general-purpose areas that are
known to be involved in multiple processes. In fact, the increased
activation when telling a lie does not occur because of the lie itself,
but because lying is associated with other, more general monitoring
and conflict processes. For these reasons, an increased activity in
this frontoparietal network is a very unreliable reverse inference
indicator of telling a lie.

Nevertheless, even high-quality neuroimaging studies often
include a reverse inference at some point. Even if the design is
perfected to isolate one or a few cognitive processes in a very
specific way, there are often other, less specific contrasts computed,
of which the findings are interesting to mention but are not specific
enough to isolate a particular cognitive process. In such a case,
even the very best researchers might cautiously hint at the possible
ways in which the related brain activations might be associated with
particular cognitive processes. Such observations might often
motivate subsequent experiments in which the design allows the
testing of the hypotheses inspired by reverse inference through a
forward inference.

Figure 7.9 gives an example of a study for which it can be
claimed that even the comparison that is most central to the study
can be interpreted only by resorting to reverse inferences. This study
by Bartels and Zeki (2000) investigated the neural basis of romantic
love. Participants looked at pictures of two conditions: (i) pictures
showing their partner with whom they were in love and (ii) pictures



showing good friends. They contrasted these two conditions and
found several brain regions that were more active when participants
were presented with pictures of the partner, and a range of other
brain regions that were more active when participants viewed
pictures of good friends.

Figure 7.9 The investigation of the neural basis of romantic love through
reverse inference.

(A) Significantly activated voxels in the contrast partner minus friends.
Activated regions include medial insula (I), anterior cingulate cortex (ac),
caudate nucleus (C), putamen (P), and cerebellum (cer), all bilaterally.

(B) Contrast friends minus partner. Activated areas include posterior
cingulate gyrus and amygdala, and on the right prefrontal, parietal, and
middle temporal regions.

Figure reproduced with permission from Bartels and Zeki, 2000



It is obvious that there are several cognitive and emotional
processes and reactions that might be very differently activated in
these two conditions. The emotional responses can be very different
in various ways (valence, intensity, etc.), as might several other
cognitive and neurobiological reactions. A reverse inference can
provide us with some hints about which process(es) is/are
responsible for the higher activation of, for example, the cerebellum
and the anterior cingulate when presented with a picture of a
beloved partner. This might be fine as a first exploratory approach to
develop finer hypotheses and test them in further studies. From this
perspective, there is nothing wrong with studies such as this
example used as a first step in a research program. However, we
should be cautious when drawing conclusions in such a case. In and
of itself, a reverse inference does not yet provide very strong
experimental evidence about relationships between target cognitive
processes and specific brain regions.



Summary
Statistics are typically based on a regression model referred
to as the general linear model.

Correction for multiple comparisons is needed when
determining the significance of the results.

One should avoid performing circular analyses in which
knowledge about the results of initial analyses influences how
later analyses are performed.

Statistical inference is preferably based on forward inference,
and proper caution should be used in the case of reverse
inference.



Review Questions

1. Explain the regressors that are typically included in the general
linear model used to analyze functional magnetic resonance imaging
(fMRI) data.

2. Explain the rationale behind and the differences between the
methods to correct for multiple comparisons when analyzing an fMRI
dataset.

3. Explain the distinction between forward and reverse inference.

4. A researcher computes a whole-brain second-level contrast of
condition X minus condition Y. He finds two clusters of voxels with a
threshold p-value that is not corrected for multiple comparisons, but
none of these clusters survives an FWE-corrected threshold. One
cluster is in the medial prefrontal cortex (MPC), the other in the
intraparietal sulcus (IPS). This observation motivates the researcher
to define two anatomical regions of interest (ROIs), MPC and IPS.
He averages the signal across all voxels in these two ROIs and
performs a t-test (X - Y) in each ROI. He corrects the observed p-
value for the fact that he has performed the t-test in two ROIs
(corrected p = uncorrected p/2). Based on this corrected p-value, he
concludes that there is a significant effect of X > Y in IPS (corrected



p-value 0.007). Do you agree with this statistical inference? Why
(not)?



Further Reading

Ashby, F. G. (2011). Statistical Analysis of fMRI Data. Cambridge, MA: MIT
Press. (This is an in-depth book and very useful for students with sufficient
statistical background.)

Poldrack, R. A., Mumford, J. A. & Nichols, T. E. (2011). Handbook of
Functional MRI Data Analysis. Cambridge: Cambridge University Press. (This
is an in-depth and very concrete explanation of the important concepts and
steps involved when analyzing fMRI data.)



Chapter 8

Advanced Statistical Analyses
◈



Learning Objectives

The spectrum of data analyses that can be performed on a large
dataset such as a functional magnetic resonance imaging (fMRI)
experiment is daunting. The data analyses that were introduced in
Chapter 7 were described as “basic,” but that is not doing justice to
their complexity or the importance of their underlying assumptions.
Now we move to analyses that are “advanced,” meaning that the
analyses are even more complicated and often have been
introduced more recently.

The “basic” analyses were very well suited for the experimental
designs that were introduced in Chapter 5. The “advanced” analyses
in this chapter require specific design choices, and therefore we will
also discuss the implications at the level of experimental design. We
focus on three types of analyses: functional connectivity, multivariate
pattern analyses, and adaptation. The current chapter primarily
serves as an introduction to these methods to explain the most basic

Being aware that experimental design and statistical analyses
are closely intertwined

Understanding the concept of functional connectivity and how
to analyze it

Knowing the basics of multi-voxel pattern analyses and how
they differ from voxel-wise analyses

Understanding adaptation paradigms and their assumptions



variations of them and to help the reader to understand a
nontechnical article describing such results. It would bring us into too
much depth, and require much more space, to discuss all advanced
methods at the same level of detail as we did for more basic
concepts (e.g., the general linear model).



8.1 Functional Connectivity: Designs and
Analyses

Previous chapters chiefly focused on functional localization: What is
the function of specific brain regions? Which brain regions are
involved in which cognitive function? However, no brain region works
in isolation from other brain regions. Take, for example, the
previously mentioned fusiform face area (FFA), which is defined
functionally by a stronger response to face images than to images of
other objects. This brain region needs other regions to receive input.
Without the retina, thalamus, and primary visual cortex, the FFA
would receive no input and its neurons would not be able to respond
differently to faces and nonface stimuli. Furthermore, if there were no
other brain regions receiving the output of the FFA, then the
processing happening within the FFA would be of no further
consequence and irrelevant to behavior and cognition. Finally, given
that the FFA is only one of several face-selective regions, those
regions must be communicating with each other to result in an
overall representation of a presented face and its properties.

Thus, to understand how the brain works, not only do we need
to know about what happens in each brain region, we also need to
understand which brain regions communicate and how these brain
regions form systems or networks.

Functional connectivity is not the same as anatomical
connectivity. Two regions are anatomically connected when there are
axons leaving from one of the two regions and ending in the other



region. Large anatomical connections can be investigated through
methods such as diffusion tension imaging (DTI; see Chapter 3).
Functional connectivity refers to a relationship between the
functional activity of different brain regions.



8.1.1 Correlations in Brain Activity

The simplest index for functional connectivity is the correlation
between the activity of two brain regions across time. A
straightforward approach (Fig. 8.1) is to take one particular region of
interest, in this context referred to as a seed region, take the time-
varying signal averaged across all voxels in this seed region, and
correlate it with the signal in all voxels of the brain. Figure 8.1A
shows the seed region, and Figure 8.1B shows the signal in this
region over time. In contrast to earlier chapters, we are less
interested in the relationship between this signal and a prespecified
manipulation or predictor. Instead, we relate this time-varying signal
in the seed region to the signal in other voxels. Figure 8.1C shows
the voxels that are correlated with the seed region in this particular
study of Buckner and colleagues (2013). One could say that all these
colored voxels form a network of functionally connected voxels. The
resulting brain map can be analyzed statistically in the same way as
described in Chapter 6 through a GLM, now with the regressor being
an fMRI signal (from the seed region) rather than an experimental
condition. Further statistical considerations (e.g., procedures for
correcting for multiple comparisons) apply here as well.



Figure 8.1 Seed-based functional connectivity:

(A) the anatomical location of the seed region;

(B) the temporal fluctuation in the fMRI signal in this seed region;



(C) voxels with above-threshold correlation with the seed region in the fMRI
signal across time.

Figure reproduced with permission from Buckner et al., 2013

We have to consider the time scale at which such correlations
unfold. Neuronal communication often happens in the milliseconds
range. When neurons in one cortical area fire action potentials that
are transported by the axons to a second cortical area, these action
potentials will influence the second area after a few milliseconds and
might result in action potentials in the second area roughly 10
milliseconds later. Cortical layers and areas might also be involved in
back-and-forth communication at temporal frequencies far above 1
Hz. To capture neuronal communication at these speeds, we need to
perform electrophysiological imaging (see Chapters 9–12). With
hemodynamic imaging, we are restricted to the study of much slower
changes in the signal. A typical analysis stream for functional
connectivity will include a low-pass filtering with a high cutoff around



0.1 Hz. The signal of interest is primarily at these slower frequencies,
as higher frequencies are dominated by noise (Cordes et al., 2001).



8.1.2 The Interpretation of Correlations in Brain Activity

There could be many causes for a correlation in fMRI signals
between two voxels or regions. As with the aforementioned GLM-
related approach, we can distinguish between causes that are of
interest to us versus those that are annoying confounds.

We follow Poldrack and colleagues (2011) and others in
differentiating between three interesting scenarios for a correlation
between two brain regions A and B. Figure 8.2 illustrates these
scenarios in two different ways. In the top panels we refer to three
hypothetical cortical areas. In the bottom panels we show flowcharts
referring to specific examples of areas of which the connectivity is
well known from a range of methods, including the use of anatomical
tracers in animals.



Figure 8.2 Three possible explanations for why two brain regions A and B
might show a correlation in how their fMRI signal changes over time: direct,
mediated, or shared influence. The top panel illustrates the three scenarios
with three hypothetical cortical areas A, B, and C. The bottom panel shows
a specific example of the three scenarios using part of the visual circuitry,
including the retina, superior colliculus (SC), lateral geniculate nucleus
(LGN), primary visual area (V1), and secondary visual area (V2).

First, there might be a direct influence from region A to region
B. At the neuronal level, this would imply that neurons in region B
receive direct input from neurons in region A. This is the situation for
region A = lateral geniculate nucleus (LGN in the thalamus) and
region B = primary visual cortex (visual area 1). The LGN is the
primary source for input to V1, and V1 neurons inherit most of their
tuning properties from this LGN input.

A second scenario involves no direct influence from A to B, but
a mediated influence through a third area C. This situation implies
a direct influence from A to C and then from C to B. An example of
this is the influence of the aforementioned LGN on the second visual
area V2. Visual area V2 receives most of its input from area V1, and



V1 receives most of its input from LGN. Therefore, if we find a
correlation between LGN and V2, then this is in large part an
influence of LGN on V2, which is mediated by area V1.

A third scenario is referred to as a shared influence, in which
areas A and B receive input from a common area C. Remaining with
our earlier example, visual signals from the retina are sent not only
to the LGN-V1 pathway, but also to other structures such as the
superior colliculus. In a paradigm where light is going on and off,
LGN/V1 and the superior colliculus would show a strong correlation
in activity based on the shared input from the retina.

It is not easy to differentiate among those interesting causal
relations. However, before we can even start to try, we should
consider the possibility that correlations might be induced by less
interesting, confounding factors that have nothing to do with brain
functioning. There are many other factors that might induce changes
in functional activity. We could refer to such factors as another type
of shared influence, but one not from a neural source.

One very important possible confound is subject motion.
Subject motion can induce very strong correlations in fMRI signal.
Take the example of two voxels at the left side of the brain that are
both centered on gray matter. On the left of each of these voxels, we
have no brain tissue and a much lower fMRI signal. On the right, we
have white matter and a much higher fMRI signal than in the center
of the voxel. If the subject would sometimes move to the left, then
these two fMRI voxels would start picking up fMRI signal from white
matter. If the subject would move to the right, then the voxels would
pick up the lower signal from outside the brain. So, for these two



voxels, left/right subject motion would induce very strong
correlations. These correlations would dominate correlations based
on neural activity because the magnitude of the motion-related signal
changes could be much larger than the 1–3% signal changes that
we typically see with the blood-oxygenation-level dependent (BOLD)
contrast.

The example illustrates that one does not have to be a rocket
scientist to understand that subject motion is an important factor to
control for. As for other types of fMRI analyses, the standard
approach for dealing with subject motion used to be to calculate
misalignments during preprocessing, realign the functional images,
and include the motion parameters as regressors in further analyses.
However, this approach turned out to be insufficient for avoiding
motion-related artifacts.

Figure 8.3, from Power and colleagues (2012), illustrates this
problem. Figure 8.3A shows the fMRI signal as a percent difference
from the mean signal in three regions of interest. These data were
obtained from motion-corrected data, and the motion-correction
parameters have already been taken into account in the analyses.
These motion-correction parameters are shown in Figure 8.3B.
There is some motion, but according to common practice at that time
the data might be used. Figure 8.3C and D are derived from the data
from Figure 8.3A and B, respectively, but now the plot shows the
change from one time point to the next (the differential) in terms of
absolute values (negative values are made positive). There is an
obvious correspondence between the changes in the BOLD signal
(Fig. 8.3C) and the changes in head position, or so-called frame-



wise displacement (FD) (Fig. 8.3D). The standard analyses steps
turned out not to be enough to avoid motion-induced changes in
BOLD signal. The three regions show a very high correlation in
activity, but this correlation is induced by subject motion, not by
neural activity. Since 2012, studies on functional connectivity have
been more careful to avoid motion artifacts by including extra steps
in the analyses. One rather successful approach is to include only
those time intervals in the data in which there is no or almost no
motion, a method referred to as “scrubbing.”

Figure 8.3 Correlations in fMRI signal between regions can be caused by
subject motion. See text for more information.

Figure reproduced with permission from Power et al., 2012

The analyses of Power and colleagues (2012) also showed
what the typical overall effect is of subject motion on functional
connectivity. Subject motion will typically increase the correlation
between nearby regions/voxels. Long-range correlations between
faraway regions will decrease due to subject motion. Suppose that a
researcher compared two groups of subjects, with one group moving



slightly more than the other. The results might reveal stronger short-
range and weaker long-range functional connectivity in the group
with more motion, without there being any existing differences in real
brain connectivity.



8.1.3 Modeling Directional Functional Connectivity

To the extent that we have been able to avoid the confounds
mentioned in the previous section, we can start with trying to
differentiate among the more interesting causes, such as a direct
influence, indirect influence, or shared influence. Here we have to
deal with several challenges.

A first challenge is directionality. Even if we have arguments in
favor of a direct influence, a simple correlation between A and B
does not by itself provide information about whether it is A that drives
B or B that drives A (in the case of a direct influence). Here we jump
from functional connectivity, represented by the correlation, to
effective connectivity, implying a causal direction.

In order to infer effective connectivity, we need information over
and above the available correlation between A and B to make
inferences about directionality. It was not a coincidence that we
illustrated the (in)direct influences with a well-known basic sensory
circuit involving LGN and cortical area V1. We know from animal
physiology that LGN drives V1 and not the other way around. Thus,
in this example we have ample evidence to assume a directionality
when we observe a correlation between these regions. Apart from
empirical evidence from animal models, the evidence might be of a
more theoretical and conceptual nature. The researchers might have
a few hypotheses about how multiple brain regions might be
connected, and these models might imply directionality. If a model
were then supported by the data, then this is taken as evidence of



directionality. However, we should keep in mind that the evidence for
directionality depends on the correctness of the theoretical
assumptions.

Several methods have been applied to investigate effective
connectivity, for example, structural equation modeling (SEM),
dynamic causal modeling, and Granger causality. The first type,
SEM, might be familiar to scientists from various fields, including
behavioral sciences, because it is widely applied to correlational data
that can be modeled as a complex graph model no matter where
those data come from (psychometric tests, models of climate
change, imaging data, …).

An example of SEM from the field of human imaging is shown in
Figure 8.4, taken from a study by Santens and colleagues (2010).
The authors studied numerical representations, which are involved
when we process numbers that are presented in various formats,
such as Arabic symbols or patterns of dots (as on a dice). Through a
series of experiments the authors identified three regions of interest:
(1) Visual representations of the visual characteristics of a presented
number symbol or dot pattern; (2) number-sensitive representations
characterized by a response that increased monotonically with larger
numbers; and (3) number-selective representations in which neurons
are tuned for specific numerosities. The authors assumed two
pathways by which the visual representations could provide input to
the number-selective representations: a direct pathway and an
indirect pathway going through the number-sensitive
representations. The authors compared these two models and found
that the relative importance of the two pathways was modulated by



the format in which the numbers were presented. For symbols, there
was a direct influence from vision to the number-selective
representations in addition to an indirect influence. For nonsymbolic
formats, namely dot patterns, the pattern of correlations could be
fully explained by only the indirect influence through number-
sensitive representations. Figure 8.4E shows the actual correlations
to which the models were applied.



Figure 8.4 Structural equation modeling in the domain of numerical
cognition. (A–B) Flatmaps with functional regions of interest. Regions in
blue are activated by digits (symbolic) as well as dot patterns (nonsymbolic).
Regions in red show an increase in activation as a function of the number of
dots in nonsymbolic numbers. This effect was used to delineate number-
sensitive regions (SENS) in the superior parietal lobe. The cyan and yellow
circles in (B) reveal the likely location of number-selective regions (SEL)
based on other studies. The third region of interest was primary visual
cortex (VIS). (C) and (D) show a graphical illustration of the modeling results
in, respectively, the symbolic and the nonsymbolic condition. (E) The
coefficient representing the modeled strength of connectivity between pairs
of regions of interest (ROIs) in the two stimulus conditions.

Figure reproduced from Santens et al., 2010

Note that the available data allow one to test for the relative
importance of the two involved pathways, but do not by themselves
prove the directionality of the connectivity. The same model with all



the arrows reversed would fit the data equally well. However, such a
model would not make sense theoretically from an information
processing perspective, given that visually presented numbers first
have to be processed visually before they can inform about
numerosity.

If the temporal resolution of fMRI had been better, then there
would have been a very important additional piece of information to
infer directionality: the leading signal. If the signal in B goes up or
down after the signal in A, then we know that A is the leading signal
and the cause of the signal changes in B. To get this to work, we
need a very high temporal resolution that is beyond the reach of
hemodynamic imaging. Methods that depend on such time-relative
analyses, such as Granger causality, have only limited applicability
with fMRI and are much more useful in the context of other methods
such as electroencephalography (EEG) and
magnetoencephalography (MEG), as we will show in Chapter 12.

The second challenge that we face when we want to
discriminate between options such as a direct, indirect, and shared
influence is that the number of alternative situations increases
dramatically when we consider a greater number of regions. With
just two brain regions, we only have to consider a direct influence.
With three brain regions, the influences can already run in several
different directions. With tens or hundreds of regions, which is what
we deal with in the real brain, the number of alternative models is
massive. Researchers typically simplify reality by focusing on a small
number of prior predictions and hypotheses which include a small
number of previously decided regions of interest (ROIs). This



approach is again illustrated by the example from Santens and
colleagues (2010).



8.1.4 Task-Related Modulations of Connectivity

The example of Santens and colleagues (2010) already illustrates
that the functional connectivity between brain regions might depend
on the experimental condition, otherwise known as a task-related
modulation of connectivity.

In some cases, researchers have specific predictions that the
functional connectivity between regions would depend on the degree
to which brain regions are modulated by an experimental
manipulation. Often this is referred to as a psychophysiological
interaction (PPI) (Friston et al., 1997). Such interactions between
experimental manipulations and connectivity can be tested directly.

If the experimental manipulation is induced across time series or
runs or even across experiments, then the initial analysis can be
done separately for the two conditions. Afterward, the results are
statistically compared. For example, with per participant separate
runs for each task condition, a paired t-test across participants could
be used to compare the connectivity index (e.g., a correlation)
between tasks.

However, in most experiments tasks are interleaved within runs.
In the most extreme case of an event-related design, trials of the
different task conditions are succeeding rapidly. In such cases, it
becomes difficult to investigate the functional connectivity in one task
independently from the other task. This is due to the delayed and
temporally smoothed hemodynamic signal. A correlation in fMRI
signal between two voxels could be caused not by the current



condition but by the one presented 6 seconds ago. This problem is
solved by first modeling the activity of individual events with a
general linear model (Gitelman et al., 2003; Rissman et al., 2004).
As a consequence, we have a beta estimate of the task effect for
each event. Next, we can correlate the variation of these beta
estimates across events, separately for each task condition. This
procedure is referred to as beta-series correlations.

An early application of beta-series correlations is shown in
Figure 8.5 (Rissman et al., 2004). The researchers compared two
simple motor tasks that differed in the degree of coordination needed
between the right and left hand. In one condition, the “interleaved”
condition, participants had to alternate between tapping with left-
hand fingers and with right-hand fingers. In the second condition, the
“right-then-left” condition, participants first tapped with several left-
hand fingers and then with several right-hand fingers. Univariate
statistics comparing the overall fMRI signal between these two
conditions revealed no significant differences. The researchers
expected a greater need for intercallosal communication in the
interleaved condition and thus more functional connectivity between
left and right hemispheres. To test this, they used beta-series
correlations to investigate functional connectivity between left and
right primary motor cortex (M1). Connectivity was indeed significantly
higher in the interleaved condition compared with the right-then-left
condition.



Figure 8.5 Task-based modulation of functional connectivity. Connectivity is
calculated in two tasks, referred to as “interleaved” and “right-then-left.” The
seed region in the left primary motor cortex (M1) is identified by the blue
circle, and right M1 is indicated by the blue arrow. The color map shows the
t-values from a second-level random-effects analysis thresholded at a
Bonferroni-corrected p = 0.01.

Figure reproduced with permission from Rissman et al., 2004

The possibility that task influences functional connectivity
reminds us of an important difference between functional and
anatomical connectivity (Gillebert and Mantini, 2013). In the case of
a PPI, we see a change in functional connectivity, while the
anatomical connectivity between the two areas must be static at this
time scale. Also, two regions might appear not to be functionally
connected while there is a direct anatomical connection. Of course,
there must also be some relationship between functional and
anatomical connectivity. In particular, the inference of a direct
influence from region A to region B implies a direct anatomical



connection from A to B. Damoiseaux and Greicius (2009) reviewed
the literature and concluded that overall functional connectivity is
positively correlated with structural connectivity strength.
Nevertheless, there are discrepancies, such as the existence of pairs
of regions with strong functional connectivity, that have little or no
structural connectivity. In such cases the most likely explanation is
that the functional connectivity reflects a (perhaps unknown)
mediating influence.



8.1.5 Resting-State fMRI (RS fMRI)

The Implementation and Analysis of RS fMRI

Most studies of functional connectivity are not interested in task-
based effects or want to avoid such effects. These studies primarily
utilize resting-state fMRI (RS fMRI). During an RS fMRI scan, a
subject is asked to rest and try to think of nothing in particular. A
scan session might include only 1 or 2 scans of 8 minutes. This is a
very efficient type of scan, and it is particularly useful in patient
populations in which it would be difficult to explain an explicit task
and ensure full compliance with the task requirements. Similar
analyses are often also performed on a task fMRI experiment, in
which case the task-related activity is subtracted from the BOLD
signal through a regression analysis. The extent to which this
approach gives results similar to an RS fMRI will depend on the
presence of task-related modulations of connectivity.

Resting-state fMRI analyses share the initial preprocessing
stages with task-based fMRI, with a few additional steps such as
data scrubbing (see Section 8.1.2) and temporal low-pass filtering
(see Section 8.1.1). The full dataset for the analyses could be
considered as a two-dimensional matrix of size V x T, with all
relevant voxels (e.g., all gray matter voxels) as rows and the time
points as columns. The number of voxels V in this matrix is daunting.

One solution for the size of this matrix is to restrict the analysis
to a lower number of previously selected regions of interest. In some
studies, only a few ROIs might be chosen, but in principle they could



also number in the hundreds, or even thousands, and include fine-
grained local regions or vertices spanning the whole cortex. With a
reasonably small number of ROIs, study authors might restrict the
further analysis to the calculation of the correlation in RS fMRI signal
between all of them, which would result in a correlation matrix of size
N x N, with N being the number of ROIs. There are various methods
to analyze the structure in such a matrix, including principal
component analysis (PCA), which is based on the same principles
as the method of factor analysis that might be more familiar to
behavioral scientists. These methods are used to identify a small
number of components (or factors) that explain most of the variance
in the data. For example, if a subset of regions shows very high
correlations in activity, then their activity fluctuations can be
summarized to a large extent by one component. Statistical analyses
can also focus on individual values in this correlation matrix, for
example, to infer whether there are pairs of ROIs for which the
connectivity is different between two groups of subjects. Here we
again have a need to correct for multiple comparisons, which is now
related to the number of cells in the N x N matrix.

As an alternative approach for the selection and delineation of
regions of interest, the voxels could be clustered into regions in a
data driven manner, based on the correlations between the signals.
For this we need methods that can handle the large number of
voxels V in such a dataset. One such method is independent
component analysis (ICA) (Beckmann et al., 2005), which identifies
components that are statistically independent. These components



can be used for clustering nearby voxels into regions and to identify
the networks formed by these regions.

It is not easy to summarize the findings from connectivity
analyses based on large datasets involving many voxels or ROIs. An
important insight has been that a small set of parameters from a
theoretical framework known as graph theory is extremely useful for
describing the behavior of many complex systems and datasets,
including function connectivity data as well as those from other
imaging modalities (structural MRI, DTI, MEG, EEG, etc.). Graph
theory provides a framework for the study of graphs that are
composed of nodes with pair-wise connections. A graph theoretical
analysis leads to the computation of network parameters, which
summarize important properties of the network (for an introduction
and review, see Bullmore and Sporns, 2009). Examples include
node degree, the number of nodes a node is connected to; the
distribution of node degree across voxels; and path length (with
efficiency, which is inversely related to it), the number of nodes that
have to be passed to move from one node to another.

Findings Obtained with RS fMRI

The first network that often emerges in resting-state analyses is
referred to as the default mode network (DMN), as shown in Figure
8.6. Interestingly, this network also emerges in almost the same form
in task-based fMRI when looking for regions that are more active
during a rest condition compared with an active task condition (as
described in Chapter 5; compare the regions activated in Fig. 8.6



with the blue regions in Fig. 5.9). The DMN network is also
consistently found through the different approaches for analyzing
functional connectivity, such as independent component analysis
(Fig. 8.6A) and correlation-based analyses (Fig. 8.6B). Given the
consistency with which this network emerges in relatively short and
easy-to-administer RS fMRI datasets, changes in DMN connectivity
have been investigated in a wide range of clinical populations such
as major depression (Greicius et al., 2007), schizophrenia (Garrity et
al., 2007), and autism (Di Martino et al., 2014).



Figure 8.6 The default mode network (DMN) identified through the analysis
of functional connectivity in resting-state fMRI. (A) The DMN as identified
through independent component analysis. Reproduced with permission from
Meindl et al., 2010. (B) The DMN as identified by taking one of the DMN
regions, the posterior cingulate cortex (PCC), as seed region and
performing a whole-brain correlational analysis in a single subject. The time
series represent the fMRI signal fluctuations in one run for the PCC (yellow),
for another DMN region (medial prefrontal cortex or MPC; orange), and a
region that does not belong to the DMN, the intraparietal sulcus or IPS
(blue).

Reproduced with permission from Fox et al., 2005, Copyright (2005)
National Academy of Sciences, U.S.A.

In addition to the DMN, several other networks have been
identified in resting-state data, such as parietal-frontal attention
networks, a motor network, and visual networks. The distinctions



between these networks are less prominent, which is reflected in the
fact that they typically all show higher activity in task conditions, in
contrast to the DMN. With correlation-based approaches, it is even
common to observe negative correlations or so-called
anticorrelations between the DMN and the other networks (see Fig.
8.6B)(Fox et al., 2005). However, whether this implies negative
connectivity at the neural level is less clear given that some analysis
steps (e.g., normalization for whole-brain correlations) could turn
lower-than-average positive correlations into negative correlations
(Hampson et al., 2010).

There has been discussion about whether these resting-state
networks and the underlying correlations in temporal signal variation
do in fact reflect a neural signal such as synaptic processing or
action potentials, or instead a number of potential confounds
(motion, and respiratory and cardiac modulations) (for review, see
van den Heuvel and Hulshoff Pol, 2010). The observation that the
networks make sense given our knowledge gained from other
neuroscientific methods is one argument in favor of an interpretation
in terms of neural signals. Importantly, monkey studies have directly
compared resting-state BOLD fluctuations with simultaneous
measurements of action potentials and local field potentials, and
observed a robust relationship (Shmuel and Leopold, 2008, Shmuel
et al., 2002).



8.2 Multi-voxel Pattern Analyses
Multi-voxel pattern analyses (MVPA) are most easily defined by
contrasting them with the standard analyses that we refer to as
voxel-wise analyses. As explained, fMRI analyses are typically done
voxel by voxel, often by applying a GLM model on the data of each
voxel. As far as these analyses combine information across voxels,
they assume that nearby voxels show a similar signal. This was
apparent in several analysis steps explained earlier. During
preprocessing, researchers often apply spatial smoothing based on
the assumption that this will increase the signal-to-noise ratio in the
data. When inferring significance, researchers might use the
smoothness of the data to properly control for multiple comparisons.
In ROI-based analysis, a researcher would average the signal
across all voxels in an ROI and use this average in further analyses.
All these smoothing and averaging operations show that even voxel-
wise analyses are often based on signals originating from multiple
voxels, but always under the assumption that nearby voxels are
similar in their response. In contrast, with MVPA researchers instead
search for differences between voxels and whether such differences
replicate across independent data points.

Apart from the nomenclature of multi-voxel pattern analyses, the
same analyses are often referred to as multivariate pattern analyses
to denote the fact that they involve the analysis of multiple
dependent variables. The alternative approach, such as in all the
examples in Chapter 7, involves univariate analyses.



8.2.1 A Schematic Tutorial of MVPA

The general approach taken with MVPA is illustrated in Figure 8.7.
Consider a small schematic region of interest with nine voxels. We
want to investigate whether this ROI responds differently to the
presentation of two different exemplars of Tamagotchis: Kuchipatchi
and Kuchitamatchi. With univariate analyses, we average the signal
across all nine voxels and test whether there would be any
significant difference in mean activation between these two
conditions. In this schematic example, there is no difference and the
ROI shows the same overall activation for the two Tamagotchis, both
in the full dataset and when we divide the dataset in two subsets 1
and 2.

Figure 8.7 Schematic illustration of multi-voxel pattern analyses. See text
for further information.

Figure inspired by Mur et al., 2009



With MVPA, we investigate whether the pattern of activation
across voxels is systematically different between the two conditions.
The simplest approach is to take the nine values and correlate them
between conditions and between datasets. We refer to this approach
as correlational MVPA. In the schematic example, most voxels
show a similar activation when Kuchipatchis are presented in dataset
1 and in dataset 2, resulting in an across-voxel correlation of 0.6.
When we correlate the activation for Kuchipatchi in dataset 1 with
the activation for Kuchitamatchi in dataset 2, this correlation between
different conditions is much lower, -0.3. If statistical testing showed
that the within-condition correlation was systematically higher than
the between-condition correlation, then we could infer that the
pattern of response across voxels is systematically different between
the two Tamagotchis. Thus, despite the same overall activation,
there is clear evidence that this region of nine voxels differentiates
between Kuchipatchi and Kuchitamatchi.

Many studies use more complicated MVPA methods, which can
be grouped under the label of decoding MVPA. In this approach, the
measured across-voxel activity patterns in dataset 1 are used to train
a pattern classifier on the difference between two conditions (Cox
and Savoy, 2003). A pattern classifier takes multiple input
dimensions, such as data coming from different voxels, and tries to
find a function or decision boundary in this multidimensional input
space that separates these conditions as well as possible. We have
already seen a graphical example in Figure 3.5B. Many types of
classifiers are used that differ in the mathematical approach used to
find this decision boundary, including linear discriminants, support



vector machines (SVMs), and neural networks. If there were to be a
consistent and replicable difference between conditions, we would
expect that this classifier would then be able to perform the same
classification between conditions in a different, independent dataset
2. This is a cross-validation procedure. Cross-validation is an
important step that is necessary before one can conclude that the
classifier has picked up on differences in the signal that replicate in
independent subsets of the data. The alternative would be that the
classifier would have over-fitted noise in the training dataset. Without
cross-validation, we would be confronted with problems similar to
those encountered with the circular analyses described in Chapter 7.

In a simple two-class problem, chance performance would be
50%. If the classifier performance was consistently above 50% after
cross-validation, then this would imply that the activity pattern in this
region of nine voxels differentiates between the two Tamagotchis.
Note that the use of decoding and multivariate pattern classification
is not limited to MVPA. This approach is widespread in the analysis
of neuroimaging data, and it could be referred to in the context of
every method that involves a multivariate dataset (structural MRI,
functional connectivity analyses, MEG, EEG, …).

Thus far, we have focused on ROI-based MVPA. This is a very
powerful approach if there are valid hypotheses about the location
and the size of the region where particular representations might
reside. If this location is unknown a priori, then it is possible to
perform MVPA at each location in the brain, each time defining a
small spherical ROI at that location. This approach is known as a
whole-brain searchlight analysis (Kriegeskorte, Goebel & Bandettini,



2006). The values that are obtained through this approach can be
analyzed statistically in a way similar to a second-level univariate
analysis (including correction for multiple comparisons). If the size of
the region that would contain the representations is unknown, then
the size of the searchlight spheres can be adapted. This approach
still assumes that the representations are relatively local. This is not
necessarily the case, as it may be that a representation would be
distributed across a wide cortical region, potentially covering a whole
lobe or even multiple lobes. It has been shown that in such cases
both the ROI-based and the searchlight analyses are suboptimal
(Bulthe, Van den Hurk, Daniels, et al., 2014). Here the best method
is a multi-scale approach that combines MVPA in a large, whole-
brain ROI, MVPA in smaller ROIs, and a whole-brain searchlight
approach.



8.2.2 A Specific Example of MVPA

Figures 8.8–8.10 illustrate MVPA with a specific example from a
relatively simple study by Op de Beeck and colleagues (2008). The
study aimed to test the hypothesis that higher regions in the visual
processing hierarchy would represent the shape features that human
subjects rely on when they judge the shape similarity between
objects. Thus, the researchers predicted a correspondence between
the difference in neural response between two objects and the
difference in shape as judged by human observers. This hypothesis
could not be tested with univariate analyses, given that all objects
tend to activate the same high-level visual region known as the
lateral occipital complex (see Chapter 5). This region is defined by
taking voxels that are more activated in a functional localizer by
intact object images than by scrambled object images or textures
(Figure 8.8B).



Figure 8.8 Illustration of the design and analysis approach in an MVPA fMRI
study. (A) The experimental design included 9 shape conditions, which
varied by 2 factors with 3 levels each: features x envelope. (B) The region of
interest as defined in a single subject from the contrast of intact minus
scrambled images, using a threshold of p < 0.0001, uncorrected for multiple
comparisons. (C) Patterns of selectivity in the same subject, with selectivity
expressed as the response to a particular condition minus the mean
response to all conditions (all responses expressed as percent signal
change). Note that these selectivity maps are not thresholded for
significance and only show very weak selectivity in individual voxels. Maps
are shown for one condition in odd runs and for four conditions in even runs.
Below is the correlation of the odd-run selectivity map for each of the four
even-run selectivity maps. (D) The correlations in (C) are used to construct
a 9x9 correlation matrix that serves as the input for further analyses.

Adapted with permission from Op de Beeck et al., 2008



Figure 8.9 MVPA results obtained through correlational MVPA (left) and
decoding MVPA (right). The MVPA measure of (dis)similarity is shown as a
function of the difference between stimulus conditions: all shape factors the
same (All same), same shape envelope (Env same), same shape features
(Ftr same), and all shape factors different (All diff.).

Adapted with permission from Op de Beeck et al., 2008

Figure 8.10 Shape representations derived from human similarity
judgments (perceived shape), MVPA (neural shape), and artificial “deep”
neural networks (deep shape). The plots are constructed by applying
multidimensional scaling to a (dis)similarity matrix.

The left and right panels are adapted from Kubilius et al., 2016, and the
middle panel is based on the data of Op de Beeck et al., 2008

The study included nine conditions, each referring to a specific
class of objects (Figure 8.8A). The nine conditions differed in the
overall shape envelope, which is less relevant for human shape
judgments, and in shape features that are very relevant for human



shape judgments. The study included a block design, and data were
collected from 12 subjects. In terms of univariate analyses, these
nine conditions do not show differences in overall activation in the
lateral occipital cortex.

Figure 8.8C illustrates the MVPA methodology. The data were
divided in two datasets, one containing the odd scan runs and the
other the even scan runs. The activity patterns per dataset were first
converted into selectivity patterns by subtracting the mean response
in a voxel across all nine conditions. The color maps represent the
response relative to this mean response, with green/blue meaning
less and red/yellow meaning more activation compared with the
mean. The selectivity pattern is shown for one condition in the odd
runs and for four conditions in the even runs. It is important to
emphasize that the selectivity maps and the color scale are not
thresholded for significance. In fact, none of the individual voxels
shows a significant difference in response between the conditions.
The power and sensitivity in MVPA reside in its ability to combine
information across voxels, and the pattern of response across many
voxels can be meaningful and significant even if no single voxel
yields significant differences. Below the color maps we find the
correlation between a particular selectivity pattern in the even runs
and the shown selectivity pattern in the odd runs. The correlations
range from positive when we compare the same condition between
datasets, to less positive and negative. These maps and correlations
show only a subset of conditions in just one subject. For each
subject, correlations between odd and even runs are calculated for



each pair of conditions, and these correlations are used to fill a
correlation matrix (Fig 8.8D).

A fuller picture of the data is shown in Figure 8.9 (left plot). For
this plot, the pairs of correlated conditions are separated into four
groups: (1) The same condition is compared between the two
datasets (“All same”); (2) the two conditions have the same shape
envelope (“Env same”); (3) the two conditions have the same shape
features (“Ftr same”); and (4) the two conditions have nothing in
common (“All diff.”). The correlations (referred to as “LOC similarity”
on the Y-axis) are averaged across all pairs in a group and also
across all subjects (error bars represent the standard error of the
mean across subjects). We find the highest correlation when we
compare the same condition in the two datasets, which is the
primary evidence that there is a reproducible selectivity pattern
associated with each condition. The other conditions also show
consistent differences among them, and these differences provide
evidence that some conditions are more similar to each other than
others. The highest correlation is found when two conditions share
shape features, implying that such conditions are most similar in
their selectivity pattern. Note that this result confirms the prediction
of the researchers, given that those shape features are also very
important for human observers who judge objects that share the
same feature to be very similar.

The right plot in Figure 8.9 shows that a very similar result is
obtained with decoding MVPA using a classifier known as a support
vector machine. We expect that a classifier will show a lower cross-
validation performance when two conditions are very similar in terms



of fMRI selectivity pattern. Therefore, we expect the reverse pattern
as with correlational MVPA: Higher similarity means a higher
correlation in correlational MVPA, which corresponds to a lower
performance of a classifier. This is indeed what we see when we
compare the left and the right plot in Figure 8.9. For many questions,
correlational MVPA and decoding MVPA provide complementary
results.



8.2.3 The Potential of MVPA to Move beyond
Neophrenology

The example in the previous section illustrates two marked benefits
of MVPA. First, MVPA often provides sensitivity to detect differences
between conditions that cannot be differentiated with univariate
analyses. Second, MVPA provides a graded measure of the size of
the differences in across-voxel activity patterns.

Because of these two advantages, MVPA studies illustrate the
power of fMRI to be more than a new sort of phrenology. Take, for
example, a cognitive scientist who is interested in how humans
represent objects. She would not be very interested by the finding of
Malach and colleagues (1995) that there is a region in the brain that
shows a preference for object images over texture patterns. The
scientist would want to know how this region represents objects and
whether this object representation at the neural level would show
characteristics that are predicted by cognitive models of object
representations. The univariate analyses give an indication about
where these representations might be located in the brain, but MVPA
is very helpful in investigating what the properties are of these
representations.

The example of Op de Beeck and colleagues (2008) is just one
of the many studies in the literature that have gone beyond
localization by using the ability of MVPA to discriminate between
stimuli of the same kind – in our example, among different objects.
Cognitive models of object recognition make specific predictions



about which objects should be represented similarly, and which not.
These predictions can be tested once we can differentiate among
different objects.

Figure 8.10 illustrates this mapping between the sort of data a
behavioral scientist would be interested in and the results from
MVPA. The behavioral scientist might ask human observers to rate
the similarity among objects and apply a similarity analysis technique
such as multidimensional scaling (MDS) to the resulting similarity
matrix to get an insight about the dimensions that underlie these
human judgments. The results from MDS are shown on the left of
Figure 8.10 in a two-dimensional space. Stimuli that are judged to be
similar are presented near each other. When we inspect this diagram
visually, we notice that objects that have the same shape features
(the rows from Fig. 8.8) are close to each other in this behavior-
based MDS space. From this result, the behavioral scientist would
conclude that these shape features play an important role in the
shape representations of human observers.

The (cognitive/behavioral) neuroscientist can test this prediction
by starting from the results of MVPA. Correlational MVPA gives us a
matrix of correlations in multi-voxel patterns among all pairs of
stimuli. These correlations are an index of similarity at the neural
level, just as the human judgments were a measure of similarity at
the behavioral level. Thus, this correlation matrix can also be
analyzed through the technique of MDS, resulting in the plot shown
in the middle of Figure 8.10. Interestingly, objects with the same
shape feature also tend to be near each other in this neural MDS
space. The comparison of the behavior-based and the neural MDS



space provides an important test for the models and predictions of
the behavioral scientist, going far beyond simple localization.

Apart from allowing a direct comparison of neural data with
behavioral data, the same principles can be applied to data from
many different sources. For example, a similarity matrix and an MDS
space can also be constructed from the responses of mathematical
units in an artificial neural network, such as the deep neural network
of Google (Figure 8.10, right panel; see Kubilius et al., 2016). As
emphasized by Kriegeskorte, Mur and Bandettini (2008), this is
made possible because the comparisons are made at the level of
similarity matrices, which have the same format no matter the format
of the input data (behavioral judgments, voxel responses, computer
models, …). These authors called this approach representational
similarity analysis (RSA).

The advent of MVPA and RSA have affected the design of
experiments. Given the high sensitivity of these methods and the
benefits of similarity-based methods when a sufficient number of
conditions are compared, MVPA/RSA studies typically include many
more conditions than one would expect based on our introduction of
experimental designs in Chapter 5. Figure 8.11 illustrates the first
and most famous application of such a condition-rich design, in
which 92 conditions were included (Kriegeskorte, Mur, Ruff, et al.,
2008). Given that more conditions lead to less repetitions per
condition (when holding scan time constant), one would expect that
the signal in each condition would be measured with much less
reliability. Still, MVPA and RSA are often able to provide meaningful
results with such designs, in particular in cases in which some of the



conditions would already be differentiable through univariate
analyses. This is the case in this particular example, given that the
stimulus set includes exemplars from conditions such as faces, body
parts, and other objects.



Figure 8.11 Results from a condition-rich fMRI experiment with 92 stimulus
conditions. The spatial configuration at the bottom is obtained by applying
MDS to the (dis)similarity matrix in the top panel.

Figures reproduced with permission from Kriegeskorte, Mur, Ruff, et al.,
2008



The correlation matrix (left) and the MDS space (right) illustrate
that for this stimulus set there is a dominant dimension related to
whether a stimulus is an animate object (faces, bodies, animals) or
not. This finding confirms predictions from long-standing cognitive,
neuropsychological, and connectionist models of object recognition.



8.2.4 What Do We Measure with MVPA?

Multi-voxel pattern analysis has repeatedly been shown to pick up
differences between conditions that cannot be differentiated by
univariate analyses. With univariate analyses, it is conventional
wisdom that the sensitivity of fMRI is limited by the spatial resolution
of the underlying signal. Given that the hemodynamic response at 3T
field strength is typically spread out over millimeters of cortex, we do
not have access to signals that have a higher spatial resolution. With
multi-voxel analyses, there is more controversy about the spatial
specificity of the signals. The most conservative hypothesis would be
that MVPA is limited by the same spatial resolution (Op de Beeck,
2010). After all, it is based on the same BOLD signal as univariate
analyses. Whether or not we make this assumption might have
effects on how we analyze the data. In particular, under this
hypothesis, and referring back to the Matched Filter theorem, it
would make sense to include a spatial smoothing step during
preprocessing.

However, there is another hypothesis, sometimes referred to as
hyperacuity (Op de Beeck, 2010), which suggests that MVPA might
give the researcher access to a finer scale of spatial organization
(Haynes and Rees, 2005; Kamitani and Tong, 2005). If true, then
spatial smoothing would hurt the ability to pick up these signals. The
rationale behind this hypothesis is illustrated in Figure 8.12. A well-
known organization in the primary visual cortex is shown in Figure
8.12A, where neurons with a preference for lines with a similar



orientation are clustered in so-called orientation columns. This
organization happens at such a fine scale that a typical fMRI voxel of
3x3x3 mm would contain many such orientation columns, and as
such the clear selectivity of individual columns would be averaged
away at the level of a voxel. This is shown in Figure 8.12B, where
very little selectivity can be seen for differences in orientation.
Individual voxels would not show enough selectivity to indicate which
orientation would be shown in which trial. However, in combination,
many such voxels provide much more information. Figure 8.12C
shows what happens when the fMRI signal in all these voxels is
given as input to a pattern classifier (i.e., a neural network), and this
classifier is trained and cross-validated in the task of differentiating
between different orientations. When the classifier is trained to
discriminate a vertical from other orientations, it only classifies a
vertical orientation as “vertical” and makes almost no mistakes for
other orientations. The classifier output is very selective. Based on
this rationale, it seems theoretically possible to detect signals from a
functional organization that is at such a small scale that very little
selectivity is left at the voxel level.



Figure 8.12 The principle of hyperacuity.

(A) Orientation columns visualized through invasive optical imaging. The
color scale represents the preferred orientation at each location in the map.
The 3x3 grid shows a typical sampling resolution of fMRI, with a voxel size
of 3x3x3 mm.

(B) Response to the different orientations per voxel or grid cell, with
responses derived from the map in (A).



(C) Classification performance of a classifier trained on the pattern of
response across multiple voxels with weak orientation selectivity. The polar
plots illustrate the decisions made by the classifier for trials with a horizontal
orientation (left) or vertical orientation (right). The radial dimension in the
plots reflects the combination of orientation and direction of motion, so that
the same orientation moving in an opposite direction is represented 180°
apart. The distance from the center of the plot reflects how often a particular
classification decision was made. Almost all trials are classified correctly,
namely, as horizontal and as vertical trials in the left and right polar plots,
respectively.

Figure adapted from Haynes and Rees, 2006

Given these theoretical considerations, we need to ask, What
does the fMRI signal and the outcome of MVPA reflect in practice:
large-scale or small-scale patterns of selectivity? One approach to
investigate this question is to spatially smooth the fMRI data and see
whether such smoothing deteriorates the outcome of MVPA. If so,
then MVPA is most likely based on relatively fine-scale signals that
are weakened by smoothing. In the first test of this prediction, the
opposite pattern of results was observed (Op de Beeck, 2010).
Smoothing tends to increase the correlation among multi-voxel



patterns belonging to the same orientation condition (and decrease
the correlation among patterns belonging to different conditions).
This suggests that MVPA is primarily based on a relatively large
scale of organization that survives some degree of smoothing. After
this first test, several other studies have investigated this issue.
Although it is theoretically understandable and empirically verified
that large-scale maps can strongly determine MVPA results
(Freeman et al., 2011), there is some evidence that hyperacuity can
be partially responsible for orientation decoding in V1 (e.g., Pratte et
al., 2016). Representations in other brain regions might be coarser,
which illustrates how the best parameter settings (in this case, voxel
size and spatial smoothing) might depend on the question and
region of interest (Coutanche et al., 2016).

Independently from the issue of hyperacuity, MVPA as an fMRI-
based method will always depend on the presence of a clear
mapping/organization/clustering. If a region contains neurons that
are very selective for a certain stimulus property, but neurons with a
similar preference are not clustered together, then this lack of a
spatial organization would result in no sensitivity in MVPA. Thus, lack
of MVPA sensitivity does not imply lack of neural selectivity. A recent
example of a dissociation between single-neuron selectivity and
MVPA sensitivity can be found in a paper by Dubois and colleagues
(2015), who showed a lack of MVPA sensitivity in a face-selective
region in which the single neurons were very selective.

When MVPA shows a positive finding, there are other
interpretational problems. A positive finding indicates that there is
information in the multi-voxel patterns about the stimulus/task



conditions in the experiment. However, by itself this finding does not
tell us what this information is about, and further tests or even
experiments might be needed to shed light on this issue. The
problem is related to the distinction between forward and reverse
inference (Chapter 7) and the need to have conditions that differ in
only one cognitive process (Chapter 5). Suppose we have results
from a condition-rich experiment such as is shown in Figure 8.11.
The stimuli in this experiment vary on many dimensions, including
shape, color, and semantic associations. Several dimensions are
correlated with each other, for example, stimuli from different
semantic categories are also different in their shape. How can we
find out which dimensions explain the findings? To this end,
researchers perform specific comparisons to find out to what extent
the results can be explained by each of these dimensions. For
example, they can compute a similarity matrix based on some sort of
shape metric and see to what extent this metric can explain the
findings. In addition, authors can design further experiments in which
multiple dimensions are more clearly controlled and/or dissociated
(for further discussion, see Bracci et al., 2017).

In addition, the fact that a classifier “finds” information does not
by itself prove that the brain uses this information (de-Wit et al.,
2016). We will illustrate this with a specific example. Williams and
colleagues (2007) showed their participants object images for only a
few tens of milliseconds, followed by a masking pattern. They found
that multi-voxel patterns in both V1 and object-selective area LOC
differentiated objects. However, only in the LOC was the pattern
stronger for correct than for incorrectly recognized objects. Thus, not



all multi-voxel patterns seem to be related to and read out during
task performance.

In sum, despite the widespread use of MVPA in the recent fMRI
literature, questions remain about the spatial scale of the underlying
signals, their relationship to neuronal selectivity (e.g., in the case of
null findings), the interpretation of the results in the sense of
implicated cognitive processes and relevance for neural information
processing and the potential for diagnostics (see Box 8.1).



Box 8.1  From Group Studies to Individual Diagnostics Using
Advanced Methods

Functional imaging studies often compare different groups of
subjects. In Chapter 3, we mentioned some caveats about
the typical effect size in anatomical imaging and the
consequence for making inferences at the level of individual
subjects. We used the measure for effect size known as
Cohen’s d, and related the typical effect size in research
studies to how much information the anatomy would provide
about to which group a particular individual would belong. It
turned out that typical effect sizes do not provide much
confidence about what is going on at the individual level.
Sometimes we can say with 70% accuracy to which group a
participant belongs; often, however, the accuracy is even
lower.

This reasoning also applies to functional imaging,
whether hemodynamic or electrophysiological, and
independently of the degree of sophistication of the analysis.
To take one example, Kassraian-Fard and colleagues (2016)
applied various classifiers of the type frequently used in
MVPA, but in this case the classifiers were trained on a large
resting-state dataset. The task was to distinguish between
individuals with and without the diagnosis of autism. The
achieved accuracy of the classifiers was about 60–70%.
From the perspective of fundamental neuroscience, this
accuracy is more than sufficient to learn something about the



neural basis of autism by studying which features the
classifier uses to achieve this performance.

However, an accuracy of 60–70% is not sufficient to use
the classifiers for individual diagnostics. There are numerous
functional imaging studies on a wide range of mental
disorders, such as depression, schizophrenia, autism, ADHD,
and many of these studies have been very successful in
identifying various neural changes associated with these
disorders at the group level. Despite these successes,
functional imaging is not used to diagnose these disorders at
the individual level. Type “autism fMRI” in the freely
accessible search engine of the scientific literature at
http://scholar.google.be/, and you get hundreds of studies,
most of which document significant differences, and many of
which are cited hundreds of time. Nevertheless, we cannot
put a child in an MRI scanner and use the functional or
anatomical images to help diagnose the child with autism.
Psychiatrists know not to jump to conclusions based on
imaging results. However, the careless extrapolation toward
the individual level is one of the primary mistakes made when
human imaging results are broadcasted widely in the popular
media, as was the case in several of the examples in Chapter
1. It remains to be seen whether this limitation can be
remediated by further progress.

Progress can result from even better and more sensitive
measurements, as well as from advanced analysis methods
that can capture the full information contained in the

http://scholar.google.be/


multivariate signals such as MVPA. An example of the latter is
provided in Chapter 3 in the context of structural imaging of
the neural correlates of sex. However, for now, we have to
live with the fact that noninvasive, and thus coarse, imaging
of a complex system such as the brain does not provide the
level of detail needed for sufficiently sensitive and specific
prediction at the level of individual participants.



8.3 Functional MRI Adaptation
In addition to MVPA, there is another approach used to measure
neural selectivity and overcome the limitations imposed by the
spatial resolution of fMRI. This alternative approach does not depend
on clustering of response properties and thus provides a way to pick
up neural selectivity even in cases where neuronal populations with
different preferences are spatially intermingled. This alternative
approach is known as fMRI adaptation (Grill-Spector and Malach,
2001).

Functional MRI adaptation infers neural selectivity from the
extent to which neural responses depend on whether successive
stimuli are the same or not. Typically, the neural responses for each
individual stimulus event decreases when one and the same
stimulus is repeated over and over again. This response
“suppression” is not seen or is not as clear when a different stimulus
is presented. The difference between a repeat stimulus and a
different stimulus is the basic measure of fMRI adaptation. It is taken
as a measure of selectivity of neurons in a voxel based on the
assumption that the difference in response only appears in neurons
that are selective to the difference between the two stimuli. The
amount of fMRI adaptation in a particular voxel will depend on (1) the
proportion of neurons in that voxel that are selective to the stimulus
difference, and (2) how selective the individual neurons are to the
difference.



Figure 8.13 illustrates the rationale of fMRI adaptation with an
experiment including our two Tamagotchis, Kuchipatchi (green) and
Kuchitamatchi (orange). In each panel, the first stimulus is green, as
such activating neurons prefer the green stimulus. Neurons that
prefer the orange are not activated. In Figure 8.13A, the second
stimulus is the orange Kuchitamatchi, thus a different stimulus
compared with the first. Now the orange neurons are responding
heavily to this preferred stimulus, which results in a strong BOLD
response that matches the response to the first stimulus. At the
voxel level, the two stimuli would evoke the same overall response.
In Figure 8.13B, the second stimulus is the same as the first, the
green Kuchipatchi. This stimulus again activates the green neurons,
but less so compared with the first stimulus because of adaptation.
As a result, the overall fMRI activation is reduced. By comparing the
responses in the two situations, fMRI adaptation allows us to
measure stimulus selectivity even though the voxel as a whole
shows the same overall response to the two stimuli when presented
in isolation.



Figure 8.13 Functional MRI adaptation as a method used to detect neuronal
selectivity. The illustrated case is a design with two stimuli per trial: (A)
shows a trial with two different stimuli, while (B) represents a trial with a
repetition of a stimulus. The top graphs illustrate the overall activation at the
voxel level. The bottom images show two subpopulations of neurons within
the voxel, one set of neurons that responds most strongly to the green
Kuchipatchi (neurons colored in green), and another set of neurons that
prefers the orange Kuchitamatchi (neurons in orange). Neurons that are not
responding to a stimulus are shown with a white cell body; responsive
neurons are colored to a degree that reflects the strength of their response.

The figure is adapted with permission from Krekelberg et al., 2006

Functional MRI adaptation is a direct measure of a voxel’s
sensitivity to temporal changes in the stimuli. Typically, researchers
who use fMRI adaptation want to make a further inference, based on
the reasoning above, and use this sensitivity for temporal statistics to
infer the overall single-unit selectivity in a region. It is important to
keep in mind that fMRI adaptation is at best an indirect measure of
such single-unit selectivity. There are several factors that might
influence the sensitivity to temporal changes in a different way
compared with single-unit selectivity. Each possible dissociation
between temporal sensitivity and single-unit selectivity limits the



possible use of fMRI adaptation as a measure of single-unit
selectivity.

Studies using monkey electrophysiology have illustrated such
dissociations. For example, Sawamura and colleagues (2006) have
shown that some neurons can have the same response to two
different stimuli, A and B, thus not revealing any single-neuron
selectivity, but still showing release from adaptation when a
repetition of A (or B) is interrupted by the other stimulus.

Summerfield and colleagues (2008) provide another example.
The authors presented trials with two face stimuli that typically elicit
adaptation when the same face is repeated in the trial (repeat trials)
and release from adaptation when a different face is shown (non-
repeat trials). They found this expected adaptation and release from
adaptation when repeat trials were relatively frequent (the so-called
repeat blocks that contained a high proportion of repeat trials).
However, their study also included non-repeat blocks in which repeat
trials were rare and thus unexpected or “surprising.” In the non-
repeat blocks, there was a much smaller difference in fMRI signal
between repeat trials and non-repeat trials. Thus, the size of the
adaptation effect depended on the proportion of repeat trials. Given
that the underlying single-neuron selectivity for the differences
between faces would probably not be different between the two
block types, this study shows another dissociation between the
sensitivity for temporal statistics and single-neuron selectivity.



Summary
This chapter introduced several more advanced analysis
methods that allow the use of fMRI to investigate not only
where different psychological processes are localized, but
also how the identified regions interact, as well as, to a certain
extent, the properties of the representations within these
regions.

The study of functional connectivity provides the opportunity
to study how brain regions interact and form networks.

We have introduced two approaches to measure neural
selectivity, MVPA and fMRI adaptation. Each approach
depends on particular assumptions and each has its own
weaknesses, but together they give fMRI the potential to be
highly relevant for testing models of cognition and mental
functioning.



Review Questions

1. Give an overview of analysis approaches that can be applied to
data from an RS fMRI scan.

2. A researcher has found a positive correlation across time between
the fMRI signal in the lateral occipital cortex and in the intraparietal
sulcus. To what extent does this finding prove that there is a direct
connection between these two brain regions? Why?

3. How is it possible to obtain reliable results with condition-rich
designs even though the number of time points measured for each
condition is too low for detecting any significant differences in a
voxel-wise analysis?
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Part III
◈

Electrophysiological Neuroimaging

[For an electric stimulation experiment] I dissected and prepared a frog. I
placed it on a table where the electric machine [a hand-cranked
generator] was placed. … The conducting wires of the machine were not
in contact with, but distanced from the frog. By accident, one of my
assistants touched the internal crural nerves of the frog lightly with the tip
of a surgical knife. Suddenly, all the muscles of the limbs contracted
convulsively as if they were touched by the worst toxin. … Another
assistant of mine reported that the phenomenon seemed to happen when
the conducting wires sparked. … I was completely engrossed by this new
phenomenon. Incredible desire was burning me; I just wanted to repeat
the experience, and to bring what is hidden into light.

Luigi Galvani, 1791

A translated excerpt from De viribus electricitatis in motu musculari
commentarius. (The original Latin text is available at

https://archive.org/stream/AloysiiGalvaniD00Galv#page/4/mode/2up.)

Volt, ampere, ohm … Units of electricity feature the names of
pioneers of the late eighteenth and nineteenth centuries when an
understanding of the physics of electricity was developing. On the
cusp of this, Italian physician/physicist/anatomist Luigi Aloisio

https://archive.org/stream/AloysiiGalvaniD00Galv#page/4/mode/2up


Galvani was studying the relationship between electricity and a
physiological phenomenon, the contraction of the leg muscles of
frogs. Through a series of experiments, he concluded that “animal
electricity,” which was considered a specific type of electricity
generated and stored in the muscle, caused the contraction. His
study inspired many others, including Alessandro Giuseppe Antonio
Anastasio Volta, an Italian physicist. Volta challenged Galvani’s claim
of animal electricity. He invented a battery that generates electricity
via a chemical reaction and showed that non-animal electricity also
contracted the muscles. His work showed that electricity, regardless
of how it is generated, caused the contraction. With this and other
work, Volta established research methods for electrostatic capacity.
For this, the unit of electric potential was named for him.

Parallel to the emergence of electrophysiology, in the Romantic
era, a somewhat mystical view of electricity – energetic presence
without a concrete shape – was often related to psyche, a
philosophical notion of what makes us animated and willful. Over the
centuries, however, no scientific relationship was confirmed between
electricity and psyche. Instead, we’ve learned that what makes us
the way we are is related to brain activity, which is, in large part,
electric. This is the basis of electrophysiological brain imaging, the
topic of Part III of this book.



Chapter 9

Electromagnetic Field of the Brain
◈



Learning Objectives

As a result of physiological activity, electrical activity can be
observed in cells, tissues, and organs. This activity, known as
electrophysiological activity, particularly characterizes the brain. It
reflects the brain’s condition, for instance, its health, but it does more
than that; it also correlates with various psychological processes,
such as perception, memory, and emotion, and with states of
consciousness. This is why the electrophysiological activity of the
brain is of interest not only to medical, biological, and behavioral
scientists and professionals, but is also a source of fascination to
philosophers, artists, educators, students, and the general public.

The first electrophysiological brain signal was reported in 1875
by Richard Caton, a British physiologist, from electrodes placed on
the cortical surface in a rabbit and monkey (Caton, 1875). Vladimir
Pravdich-Neminsky, a Ukrainian and then Soviet physiologist,
reported in 1913 how he recorded brain activity from electrodes
placed on the skull of a dog (Pravdich-Neminsky, 1913). The first
electrophysiological brain signals recorded from electrodes on the

Explaining the relationship between neural activity in the brain
and electromagnetic field signals from the brain

Explaining the advantages and disadvantages of the different
noninvasive methods for measuring electrophysiological
signals

Explaining the dynamic approach to the mind-brain problem



scalp of human participants were reported by Hans Berger in 1929
(Berger, 1929). Berger, a German psychiatrist and psychophysicist,
was driven by a passion to understand the relationship between
mind and brain throughout his career. His biography reports a bizarre
but critical incident in 1892, when he was 19 years old (Millett, 2001).
At that point, Berger was in the military in Würzberg, on horseback
pulling heavy artillery for a military exercise. Suddenly, his horse
reared, and he fell in front of the artillery. The artillery was stopped
literally inches away from him. At about the same time, Berger’s
older sister in Coburg, more than 100 km away from Würzberg, was
struck by an inexplicable sense of terror. She was convinced that the
experience was linked to her younger brother’s safety and urged her
family to inquire about his well-being. The family sent a telegram.
Berger received it but considered it a peculiar coincidence. Later, he
learned the whole story, which fascinated him enough to study the
physical basis of psychological phenomena, including those that are
somewhat mysterious.

Berger used noninvasive electrophysiological methods that had
been successful in measuring cardiac activities to measure brain
activity. The electrophysiological brain signals are much weaker than
cardiac signals; thus, he struggled for a long time to obtain a reliable
signal from the brain. In his first report in 1929, he documented two
patterns – alpha waves, which are characterized by slow, high-in-
amplitude oscillation, and beta waves, which are characterized by
fast, low-in-amplitude activity. Moreover, he suggested that alpha
waves are associated with “conscious phenomena,” while beta
waves reflect metabolic activity. Today, we know that beta activity



also relates to conscious phenomena, e.g., planning and execution
of body motion. Somewhat ironically, Berger’s investigation clearly
showed that electrophysiological brain activity cannot be a basis of
“telepathic” communication. The signal is so weak that it is
measurable only via sensors closely attached to the scalp (Fig. 9.1)
– there is no way it could have traveled between Würzberg and
Coburg! Nevertheless, the first scalp recording of brain activity – the
electroencephalogram (EEG) – is a monumental event, since it
broke the era of noninvasive brain function research.

Figure 9.1 Hans Berger’s EEG system.
A test participant wears scalp electrodes. Electrodes were carbon cylinders
filled with saline to increase conductivity between the scalp and the
electrodes. The induced current was measured by a string galvanometer,
which was invented by Clément Ader in 1897 and improved by Willem
Einthoven, who used it to record electrocardiograms in 1901.

Images are reproduced from Gloor, 1969, with permission



9.1 Electrophysiological Activity of the
Brain



9.1.1 From Neurons to Electric Field

The brain consists of neurons, glias, blood vessels, and fluids. Of
these, the neurons are the main generator of electrophysiological
activity. As explained in Chapter 1, action potentials, also known as
“spikes,” are generated near the soma, conducted on the axon, and
transferred to the next neuron via the synapse. Depending on the
type of presynaptic neuron, an excitatory or inhibitory postsynaptic
potential (PSPs, EPSP and IPSP) is generated in the dendrite of the
postsynaptic neuron. To record these membrane potentials of
individual neurons, electrodes need to be placed in, on, or at least
near the neurons. This means that an invasive procedure, such as
penetrating needle electrodes into the cortex, is necessary. The
application of an invasive method in humans, however, is allowed
only in special cases, such as in patients who undergo brain surgery.
While inserting the electrode, healthy brain tissue is inevitably
damaged. Therefore, a method that measures brain activity from
outside of the brain is beneficial. For nonmedical purposes, the
electrode should not invade the test participants’ body – the closest
place for the electrode/sensors to be attached is the scalp.

The scalp electrodes, therefore, do not measure membrane
potentials. Instead, the electrodes measure a physical consequence
of the membrane potentials. As membrane potentials change, a
weak current flows in the neuron and extracellular space. The
current is further conducted in the brain tissue, and an electric field is
generated. The dynamics of the field can be understood intuitively,
assuming a vector that lies in the direction of the current. For



example, currents that run in opposite directions cancel each other
out. Each action potentially generates two opposing fields (Fig.
9.2A). Thus, the field is cancelled out no matter how many spikes
are generated. Each postsynaptic potential, to the contrary,
generates one field. The EPSPs and IPSPs counter each other, but
they do not occur at the same synapse simultaneously. Moreover,
the duration of the PSPs is long (~10 ms) relative to that of action
potentials (~1 ms), which is also advantageous for the integration of
the field over multiple PSPs (Nunez, 1977).



Figure 9.2 Electromagnetic field due to membrane potentials of neurons.

(A) Cortical pyramidal cells have long apical dendrites. Chemical synapse
activity generates a postsynaptic potential in the dendrites. Excitatory
synapse activity increases the potential (EPSP), while inhibitory synapse
activity decreases it (IPSP). The PSPs integrate over time and space and
generate an electromagnetic field. The synaptic activities are triggered by
action potentials from other neurons. Each action potential generates two
fields which cancel each other out. Thus, they contribute little to the
electromagnetic field.

(B) The apical dendrites extend perpendicular to cortical layers.
Postsynaptic potentials over the mass of the neurons (small arrows) are
summed up (large arrows). The integrated field activity is strong enough to
be recorded from the sensors outside of the brain. The integrated field is
modeled as a dipole.



(C) An Illustration of the electromagnetic field: The electric field is formed as
the PSPs conduct the dendrite and brain tissue. The magnetic field forms
perpendicular to the currents. The field is modelled as a dipole (black
arrow).

The electric field due to PSPs at one synapse is very weak.
Here the structure of the cortex helps to integrate them. The
pyramidal neurons have long apical dendrites that run more or less
perpendicular to the cortical surface. The field of the PSPs, thus, can
be considered as a vector that lies along the dendrite, changing its
strength and directions constantly based on the balance between
EPSPs and IPSPs. The apical dendrites of neighboring pyramidal
neurons run parallel to each other; thus, the vectors are integrated in
a larger field (Fig. 9.2B). The integrated field over tens of thousands
of apical dendrites is strong enough to be detected by sensors
placed outside of the brain. The field is represented as a dipole,
which models the field as a vector (Fig. 9.2C).

Other types of neurons (e.g., basket and chandelier cells) also
generate postsynaptic currents and hence could contribute to the



electric field. However, their dendrites do not run in parallel as do the
apical dendrite of the pyramidal cells. Thus, their currents do not
integrate to form a strong field. For the same reason, synaptic
currents that run through the synaptic cleft do not form a strong field.
Therefore, electrophysiological signals obtained noninvasively
largely reflect the postsynaptic activity of the cortical pyramidal
neurons.

Electrophysiological methods give various “scales” of brain
signals. As discussed in Chapter 1, invasive methods, such as the
patch clamp, are able to give membrane potentials from a single
neuron, whereas noninvasive methods reflect the field activity of a
large number of neurons. It is important to keep in mind the scale of
the neural substrate for each electrophysiological signal.



9.1.2 Magnetic Field of the Neural Activity

The electrophysiological activity of a neural population generates not
only an electric field but also a magnetic field. Magnetism is typically
illustrated as the force that attracts or repels an object without
contact. For example, two magnets facing opposite poles, N vs. S,
attract, while those facing the same poles, either N vs. N, or S vs. S,
repel each other. If we push the repelling magnets toward each
other, resistance increases as they get closer. We see nothing
between the magnets; nonetheless, we can sense the gradient of
force – the magnetic field – between them. Magnetic phenomena
have been known worldwide since ancient times – e.g., China, India,
and Greece – and scientists in these ancient civilizations had their
own descriptions of and accounts for the phenomena. For example,
Plutarch wrote in 1005 BC that a magnet affects others via a tiny
amount of air puffed from small holes on the surface, although this
might sound absurd to us today. In his defense, we should note that
Plutarch arrived at this mechanical account to refute supernatural
forces, which were at the time proposed as alternatives (Yamamoto,
2003). For a long time, magnetism was studied without an explicit
link to electricity – although sailors knew that a compass point is
affected by thunder. The relationship between them was not
understood until two British physicists, Michael Faraday and James
Clerk Maxwell, established classic electromagnetism in the
nineteenth century. According to electromagnetic theory, a magnetic
field appears where charged particles, such as electrons, move.



Electrons move as currents flow. Likewise, electrons move as neural
currents flow. Therefore, a magnetic field is formed during brain
activity, together with an electric field. The two fields per neural
current can be imagined without confusion; they are perpendicular to
each other (Fig. 9.2C). Together, they are referred to as the
electromagnetic field.

The magnetic field is not only an interesting theoretical
construct, but also quite a useful property for brain research. The
magnetic field changes its strength and direction because of the
integrated postsynaptic current, similar to the electric field. Unlike the
electric field, however, the magnetic field is affected very little by
brain tissue, cerebrospinal fluid, skull, scalp, or air. This high
permeability allows us to measure the magnetic field activity without
contacting the scalp. As we will see in Chapter 10, sensors for
magnetoencephalography (MEG) are not attached to the scalp,
unlike EEG – a test participant simply puts the head under a sensor
helmet.

The magnetic field, which MEG measures, is generated by the
electrophysiological brain activity. This field should not be confused
with the field in MRI methods, which is generated by strong
superconducting magnets. In other words, MEG does not, in contrast
to magnetic resonance imaging (MRI), expose test participants to an
artificial high-intensity magnetic field. Taken together with remote
sensing capability, MEG is considered the least invasive brain
imaging method.



9.1.3 From the Field to Sensors

Electrophysiological activity in the cortex generates an
electromagnetic field that is measurable noninvasively. Signals travel
between the source and the sensor. Gross anatomy of the cortex
therefore affects the signal at the sensor. The cortical sheet is folded
to fit into the cranium. The folding creates gyri and sulci. As a
consequence, sources are arranged in various depths and
orientations with respect to the sensors on the scalp. The deeper a
source is, the weaker the signal becomes. Thus, activities from deep
cortices (e.g., ventral and medial parts of neocortex) are under-
represented in the signal relative to those from shallow areas (e.g.,
dorsal and lateral parts of the neocortex).

Signals from equally shallow sources could also be recorded
differently. Sensitivity of the sensors varies relative to the orientation
of the source current; the sensors are arranged along the scalp
facing the brain. The postsynaptic current runs perpendicular to the
sensors in the gyrus, whereas it runs in parallel to the sensors in the
sulcus. For example, MEG sensors have higher sensitivity to the
sulcus than to gyrus activity. Thus, the recorded activity contains
more sulcus than gyrus activity. That is, the recorded signal is the
weighted sum of source activities. The orientation sensitivity of the
EEG electrode is opposite to that of MEG sensors. However, the
effect of orientation is less severe in EEG than in MEG because
electric signals from the gyrus and sulcus mix as they conduct. As a



result, EEG sensor signals contain a good amount of both signals
(cf. Section 10.3 in Chapter 10).

The electromagnetic field is the physical basis of M/EEG
methods. It makes not only measurement but also modulation of
neural activity possible (Box 9.1 and Chapter 14).



Box 9.1  From the Field to Neurons

We have learned how electrophysiological activity of the brain
leads to the electromagnetic field, which we can measure
noninvasively. Now, let us consider the opposite: If we
generate an electromagnetic field just outside of the brain,
would it affect the electrophysiological activity? Yes, indeed.
An artificially generated electromagnetic field has been used
to bias electrophysiological activity of the brain. For example,
transcranial direct current stimulation (tDCS) and transcranial
alternating current stimulation (tACS) conduct electric current
from scalp electrodes, and transcranial magnetic stimulation
(TMS) applies a magnetic pulse from a stimulation coil placed
on the scalp to the brain: A current running through the TMS
coil generates a strong electromagnetic field that biases
activity of cortical neurons. These methods are explained in
more detail in Chapter 14.

As for the effects of spontaneous field activity on
individual neuronal activity, we enter a topic that is still under
debate. The neurons are immersed in ionic fluid
(cerebrospinal fluid) with incomplete electric isolation. Glial
cells play an important role in the insulation. Some increase
insulation (e.g., Schwann cells that form myelin sheath on
axons), while others decrease insulation (e.g., astrocytes that
form gap junctions that are electric connections among
neurons). Thus, it is theoretically possible that the



spontaneous field activity would have some effect on
electrophysiological activity of the individual neurons. It has
been reported that field activity synchronizes spiking timing
(Fries et al., 2001). Further investigation is currently under
way.



9.2 Electromagnetic Field Signals
The M/EEG methods sample the electromagnetic field activity in time
and space. Figure 9.3 is an example of the signal, in this case, from
EEG. The signal is smooth but irregular compared with action
potentials of a single neuron, which is a train of neat spikes. The
smooth and irregular oscillatory behavior characterizes the field
signal. The signal carries rich information about the underlying
neural system, which consists of various types of neurons. Suppose
a simple system is formed by mutually connected excitatory and
inhibitory neuron populations. Stimulation of the excitatory neurons
starts the system. The excitatory neurons then excite the inhibitory
neurons, and the inhibitory neurons inhibit excitatory neurons. The
activity of the system increases and decreases as long as we keep
the stimulation. The field signals largely reflect dendritic activity of
the pyramidal neurons, which are excitatory. However, as indicated
in the model, the signal also reflects activity of the inhibitory
population in a more indirect way through the effect of inhibition on
the activity of excitatory neurons. From the field signals, we could
estimate the dynamics of the neural system. This is only a very
simple system, and many other complexities have to be added for a
biologically plausible system, for example, more populations could
be involved, and responses could have a delay. The resulting field
signal is complex because it reflects the activity of a system that
contains many neural oscillations (Lopes da Silva and Storm van
Leeuwen, 1977).



Figure 9.3 Human EEG.
EEG was recorded for 65 channels covering the whole head. Each line
represents the EEG signal from an electrode. The participant, a healthy
adult, was comfortably seated and relaxed. When the eyes were closed,
periods with large and slow activity appeared. The slow activity is called
alpha band activity. It oscillates approximately 8 to 12 times in 1 second. It is
synchronized over electrodes on parietal and occipital regions.



9.2.1 Properties of the Field Signal

A time plot of the field signal is represented as a wave. A full cycle of
this wave consists of a peak and a trough. The length of one full
cycle is called the wavelength. The unit of the wavelength for
M/EEG signal is usually a millisecond (ms), because one cycle of the
signal is typically between 10 and 2000 ms. Thus, the wave goes up
and down, again and again, for many successive cycles. The
frequency describes the number of cycles per second, and the unit
is hertz (Hz). When the signal speeds up, the wavelength decreases,
thus the frequency increases (i.e., frequency is the inverse of the
wavelength). The neural field signals include multiple frequencies.
The frequencies are grouped into bands. Delta (<4 Hz), theta (4–8
Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (>30 Hz) are the
most commonly used bands. The strength of the fluctuations in each
of these bands changes in different situations. For example, when
we close our eyes, the alpha band activity usually increases. A
simple illustration of this modulation is given in Chapter 1 (Fig. 1.5).

An alternative to the time plot is a polar plot. As illustrated in
Figure 9.4, the time wave can be represented as a rotating point in
polar coordinates. In this representation, we show how far activity
has proceeded within a cycle. This is referred to as the phase. The
phase is expressed as the angle of rotation between 0˚ and 360˚, or
-π and π (radian). The phase tells us a lot about the state of the
neural system underlying the signal: Sometimes the phase proceeds
in a more or less constant angular speed, other times it changes



abruptly. A sudden phase shift suggests events such as a sensory
input and spontaneous phase reset. The phase also tells us about
the relationship between two activities. For example, activity of one
sensor might rotate in the same phase as another: phase synchrony.
How long, how often, and/or in what condition the synchrony
appears tells us about possible relationships between the two. The
phase relationship can be more than synchrony, e.g., the phase of
one signal can be 1/2π faster than that of another. In such case, one
activity could be leading the other. Pair-wise phase analysis can be
extended to N x N sensors to draw a graph of functional connectivity.
The graph changes with time, reflecting dynamics of the brain
(Varela et al., 2001).



Figure 9.4 Oscillation as a wave or rotation.

(A) The signal can be represented as either a time wave or rotation.
Parameters such as wavelength, frequency, phase, and amplitude
characterize the signals.

(B) The two representations can be considered as different views of a helix.



(C) Oscillations without (top) and with (middle) amplitude change. Angular
velocity of phase changes without changing amplitude (bottom).

Phase at time t is . The angle can be expressed as a complex
number , where  is the projection of the point on the
real axis,  is the projection on the imaginary axes, and i is
the imaginary unit (Fig. 9.4A). We could imagine phase moving in
time as ‘a helix’ (Fig. 9.4B). The polar plot and time wave are two
views of the helix.

The amplitude is another signal property that conveys rich
information. Intuitively, it makes sense that the amplitude represents
the energy of the signal; the stronger the activity, the larger the
amplitude becomes. What is not so intuitive is that amplitude always



has zero or positive values. This becomes clear if we see the signal
in the polar plot, on the real and imaginary axes. In the plot,
amplitude is the length of the vector from the origin of the plot to the

data point. The length, , cannot be negative. Therefore,
amplitude is always zero or positive (see Box 9.2). In the 2D time
plot on the time and real axes, signals are sometimes plotted
between negative and positive values, such as -50 to +50µV. The
sign of the value simply indicates that the activity was higher or lower
than the baseline value, such as mean voltage of the data. As the
wave goes down from a peak to a trough, it looks as if amplitude
decreases. However, in ongoing activity, this simply means that the
activity is changing phase (e.g., from 90˚ to 270˚). In a time wave,
amplitude can be seen without confusion when we connect a peak to
the next peak and a trough to the next trough (Fig. 9.4C). The
smooth function obtained by connecting the extremes in the signal
values is referred to as the envelope of the signal. We have two
envelopes: the upper envelope that connects the maxima and the
lower envelope that connects the minima. Half the height of the
difference between the upper and lower envelopes corresponds to
the amplitude. The envelope goes up and down much less than the
time wave itself does; when the activity keeps peaking/dipping at the
same level, the envelope does not change over time. In other words,
the activity is oscillating steadily without changing its amplitude.
When consecutive peaks/troughs become larger or smaller, the
envelope changes accordingly, representing an amplitude change.
Sleep spindles are a good example. A sleep spindle is often



observed in EEG signals during sleep. For several to a few dozens
of cycles, the oscillation increases and then decreases amplitude,
literally drawing a spindle.

These properties are used to describe M/EEG signals. Different
representations of the signal, time wave, and polar plot give us more
insight about the signal (see Box 12.1 in Chapter 12). In later
chapters on data analysis (Chapters 11 and 12), the different
representations will be revisited.



Box 9.2  FAQ: Negative Amplitude

At this point, some readers might have a question, something
like, “Isn’t the amplitude of some evoked potentials (e.g.,
N200) negative?” Here is an answer.

First, you are not the only one who had this question.
Indeed, this is one of the most frequently asked questions.
Apparently, you have already read some studies using EEG
measures – namely, evoked potentials. Details of evoked
potentials are covered in Chapter 11 (Section 11.2.2).
However, for the sake of answering the FAQ, here we sketch
the outline: Evoked potentials are neural responses to a
stimulus event, such as a flash of light. The evoked activity is
usually buried in the ongoing oscillations. Thus, a good
amount of signal processing is needed to make it observable.
Once it is processed properly, we can see a beautiful complex
of waves – some small and others large, some fast, others
slow, rising from the baseline level of the activity with some
latency from the stimulus event. The baseline level is,
typically, the activity level prior to the event onset. Prominent
peaks in the wave complex are often named with polarity and
latency, for example, N200, a “negative” peak with latency of
200 ms. Here in the context of EEG evoked potentials, the
positive or negative sign of an evoked activity simply means
the peak value was higher or lower than the baseline.



For the evoked component, we cannot draw an envelope
in the same way as we did for ongoing activity; the N200
appears only once after the stimulus (i.e., there is no second
N200 to draw an envelope). We treat N200 as a single trough
that starts from the baseline, hits the bottom at around 200
ms, and returns to baseline. Thus, the lower envelope
connects the baseline, the minimum, and the baseline again,
while the upper envelope is drawn between the baselines – a
flat line. The half-height of the envelope is zero or larger for
any time point in the component. In the radial representation
(polar plot), the activity rotates in a cycle increasing the radius
from zero (the baseline) to the max (the trough), and back to
zero. The radius never becomes negative.

The impression of a “negative” amplitude seems to come
from the appearance of the evoked component in the time
domain; the activity develops in the negative direction relative
to the baseline. As we learned in Section 9.2.1, in time
domain, not the wave itself but the envelope should be
consulted for amplitude. Thus, the short answer is, “No, the
amplitude is not negative!”



9.2.2 Dimensions and Resolution of the Field Signal

Modern recording systems often have multiple sensors – tens,
sometimes hundreds of them – covering the whole head.
Simultaneously recorded signals from the multiple sensors can be
plotted on the scalp or surface of an MEG helmet. The sensor-level
signal map is two-dimensional because it is a projection of the brain
activity on the sensor surface. A large part of data analysis is done
using this 2D map. For example, the amplitude of alpha band activity
can be plotted on the map. In this way, we can easily observe that
the amplitude is larger in posterior than anterior sensors.

The sensor-level signal is a weighted mixture of source signals
in different depths and orientations. If we wish to know where the
signal comes from in three-dimensional brain space, the sensor-level
signals need to be processed further. However, similar to the
estimation of a 3D structure from a 2D image, the sensor-level data
alone do not have enough information to specify the source location.
To compensate, we need to make assumptions (e.g., where and how
many sources could be in the brain). For example, when the
response of the primary visual cortex to a visual stimulus is the
activity of interest, we might assume a small number of dipoles in the
cortex. Structural MRI images and the electrode location mapped on
the image give us mathematical constraints to estimate activity of the
sources using the sensor data. Alternatively, we could also assume a
large number of dipoles covering some extent of cortex. We could
also estimate source activity as activation patterns over the area.



With a careful choice of assumptions and estimation methods (and
meeting other conditions, such as a large enough number of
electrodes), we could obtain an estimation of source activity in 3D
(Fig. 9.5). More details of source localization are discussed in
Section 13.3, Chapter 13.

Figure 9.5 EEG in sensor space and its estimated source.
Sensor EEG-level data (top left) are mapped to the cortical surface (top
right) using a head model (bottom). Dots on the scalp represent electrode
location.

Source estimation is one of the fastest developing branches of
neural signal processing. A variety of source estimation methods
have been applied and produced promising results. General limiting
factors, such as sensor-source distance, affect the localization
results. For instance, activity in medial and ventral cortices is difficult
to estimate (Korhonen et al., 2014). In other words, with the state-of-
the-art signal-processing techniques, a considerable amount of
uncertainty still remains to specify where the signal comes from.



Intracranial and thus invasive methods, namely, stereo EEG (sEEG)
and electrocorticography (ECoG), have much less spatial
uncertainty. The volume between the source and the sensors, depth
electrodes for sEEG and subdural electrode for ECoG, are small.
Thus, source signals are less attenuated and mixed in the ECoG and
sEEG signals than in M/EEG signals (Kajikawa and Schroeder,
2011). With these invasive techniques, however, the signal is
recordable from only limited regions. Electrophysiological brain
imaging methods have a disadvantage in obtaining signals in 3D
from a large volume of the brain, compared with other methods,
namely, magnetic resonance imaging methods. By using pulse
sequences, the MRI signal directly reflects the 3D location of the
signal sources.

In contrast to the limited spatial resolution, the temporal
resolution of the field signals is high. A typical EEG recording system
can easily sample 1000 data points per second. This is much faster
than that of, for example, blood-oxygenation-level dependent
(BOLD) functional MRI (fMRI), which typically samples 1 data point
per couple of seconds. Most important, the temporal resolution of the
field signals is high enough to study a wide range of interesting
dynamics of the brain.

Indeed, spatial localization of activity alone is not enough to
answer all of our questions. For example, the question, When a
visual stimulus is expected, does the prefrontal region activate
earlier than the occipital region? could be addressed only when,
besides the location, the timing of the activities is known. The brain
is regarded as a system that executes a number of information



processing steps. Timing, speed, and the temporal pattern of activity
over many brain regions certainly need to be considered to
understand the brain dynamics.

The high temporal resolution of the M/EEG signal is a clear
advantage over fMRI signals. For example, the evoked response to
tactile stimulation, of which the latency is around 50 ms, can easily
be distinguished from activity such as that related to short-term
somatosensory memory. Such temporal distinction of information
processing stages is very difficult, if not impossible, using the slow
hemodynamic signals of the fMRI method. Furthermore, for
applications that require real-time control (e.g., brain-machine
interface for driving vehicles), high temporal resolution of the field
signal is crucial. Moreover, the signals can be recorded over long
time periods. For example, overnight EEG monitoring is routinely
done in clinical settings to assess sleep quality. The temporal range,
from milliseconds to hours, covers a broad range of issues
concerning the relationship between neural activity and behavioral
and/or psychological phenomena.



9.3 Brain Dynamics vs. Mind Dynamics
The M/EEG signal is not only of interest to specialists but is also a
source of fascination to the general public, because it correlates with
our subjective experiences and mental states more than any other
biological signals. For example, every night we experience immense
transition between mental states: consciousness to
unconsciousness. This is correlated with clear changes in the EEG
signal (Fig. 9.6). As we fall asleep, the signal oscillates in slower
frequency and in larger amplitude and synchronizes more over
sensors. As sleep deepens, the amplitude and the synchrony
increase and the peak frequency decreases further. The slow-wave
sleep continues for a while, then the field signal abruptly increases
frequency, combined with a decrease in amplitude and synchrony.
This brain state is similar to what we experience when we are
awake, yet we are still sleeping. This paradoxical sleep state is also
characterized by rapid eye movements (while eyes are closed), thus,
it is called rapid eye movement (REM) sleep (Aserinsky and
Kleitman, 1953). Interestingly, the REM sleep state often correlates
with dreaming. The field signal tells us that the cycle of sleep repeats
several times during a full night’s (6–8 hours) sleep for the healthy
population. These remarkably regular brain dynamics that correlate
with our subjective experience are easily derived from irregular and
spatially coarse M/EEG signals.



Figure 9.6 Sleep stages.
EEGs in different sleep stages (left). As sleep deepens from Stages 1 to 4,
EEG increases in amplitude and decreases in frequency. Arrow and
underbars indicate K-complex and sleep spindles, respectively. They are
characteristic of Stage 2 sleep. (right) Sleep stages in the overnight sleep of
a healthy adult.

Figures are reproduced from Carskadon and Dement, 2000, with
permission

Somewhat ironically, the membrane potential of a single neuron
– the electrophysiological neural signal of the finest spatio-temporal
resolution – is hardly informative enough to draw a parallel between
brain and mind dynamics. When and how many times a neuron fires
does not map directly to our experience at the moment. There is no
doubt that the M/EEG signal is a physical consequence of
membrane potentials. At the same time, the field signal has
properties that the single neuron signal does not have, for example,
oscillation and epileptic seizures, which emerge from a system of
neurons, glias, and other supporting elements (e.g., blood vessels)
and which show some correlation with mental states. A comparison
between membrane potentials and M/EEG signals tells us that the
appropriate level at which to search for neural correlates of our



mental activity is not a single neuron but the neural system as a
whole.

Correlation between the dynamics of field signals and that of our
mental states, however, is moderate, for example, the brain could
oscillate either slowly (slow-wave sleep) or fast (REM sleep) while
we are unconscious. This may be because the field signals include
variance because of non-mental activities, such as the metabolic
cycle of the brain. It is still possible, however, that the result indicates
that brain and mind operate differently. Such consideration revokes a
millennia-old philosophical conundrum: the mind-body (brain)
problem (Chalmers, 1996). At the same time, contemporary
questions, such as the consciousness in vegetative-state patients,
can be investigated using the signal (Rosanova et al., 2012). Taken
together, science and applications of the field signals continue to be
relevant and exciting for all of us.



Summary
Electrophysiological activity of neurons generates an
electromagnetic field. The field activity due to the apical
dendritic activity of cortical pyramidal neurons is measurable
noninvasively.

The measurable signals are restricted by cytoarchitecture and
large-scale anatomy of the cortex and sensor locations
on/nearby the scalp.

The field activity oscillates in time. Thus, the signal is
represented as a time wave. The wave can also be
represented as a rotation. Properties of oscillation, such as
frequency, phase, and amplitude, are used to describe and
analyze the signals.

The field signals have high temporal resolution; thus, they
carry rich information about network dynamics of the brain.
Conversely, the spatial resolution is low relative to other brain
imaging techniques such as fMRI.

The field signals reflect the dynamics of the neural system.
The dynamics show moderate correlation with mental states.



Review Questions

1. Explain why M/EEG signals predominantly reflect the
electrophysiological signal from the cortical pyramidal neurons.

2. With which of the two statements do you agree? (A) A dipole is a
super cluster of neurons that is the source of the M/EEG signal. (B)
A dipole is a model to describe the electrophysiological activity of a
neural population. Explain your choice.

3. Why does the M/EEG signal have a low spatial resolution
compared with other neuroimaging techniques? Also, explain in
words how to increase the resolution.

4. Describe three research fields or practical applications in which
electrophysiological methods are used. Explain the advantages that
these methods offer to these fields/domains.
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Chapter 10

Electroencephalography and
Magnetoencephalography

◈



Learning Objectives

I do not remember having ever received … a more dreadful shock than
that which I experienced by imprudently placing both my feet on a
gymnotus just taken out of the water. I was affected during the rest of the
day with a violent pain in the knees, and in almost every joint. To be
aware of the difference that exists between the sensation produced by
the Voltaic battery and an electric fish, the latter should be touched when
they are in a state of extreme weakness.

Alexander von Humboldt, 1800

From Jaguars and Electric Eels, selected translation of Voyage aux
régions équinoxiales du nouveau continent by J. Wilson (2007). (The

original text is available at http://dx.doi.org/10.3931/e-rara-24320.)

Friedrich Wilhelm Heinrich Alexander von Humboldt was a German
(Prussian, to be precise) naturalist. His explorations to Central and
South America were published as a series of books that were widely
read in Europe and beyond, making him a celebrity. When Humboldt
made the voyage, he was 31 years old and full of energy and
curiosity. In the regions along the Orinoco River, local guides told
him about the gymnotus, an electric eel that could grow to 2 m long.
According to the guides, the eels could paralyze a horse that had

Explaining what each electrophysiological method measures

Following methods of signal acquisition in a research paper

Explaining the pros and cons of the electrophysiological
methods

http://dx.doi.org/10.3931/e-rara-24320


come to a pond to drink water. Humbolt wanted to experience the
discharge despite repeated warnings from the guides. He most likely
did not exaggerate his experience, because the giant eel’s discharge
can reach 600 volts (V) (Catania, 2016).

Compared with the impressive power generation capacity of the
eels, what our brain generates – on the order of microvolts (μV, a
millionth of a volt) – is nothing. On the one hand, it is a blessing that
our ongoing brain activity does not threaten others (electrically). On
the other hand, however, it is a challenge to measure such weak
signals. For example, a fluorescent ceiling lamp can easily emit
electric activity that is 100 times higher than the brain activity. Such
non-brain activity, noise, needs to be prevented or reduced while
recording. In addition, high-fidelity sensors and amplifiers are
necessary. In this chapter, two major techniques that measure the
weak activity, electroencephalography (EEG) and
magnetoencephalography (MEG), are introduced.



10.1 Electroencephalography (EEG)
Electroencephalography (EEG) measures the electric signal
produced by cerebral activity. As we learned in Chapter 9, the most
significant contributor to the signal is the postsynaptic potential in
apical dendrites of cortical pyramidal neurons. Throughout the long
dendrite that runs through multiple cortical layers, hundreds of
thousands of synapses – some are excitatory, and others are
inhibitory – are formed. Excitatory and inhibitory postsynaptic
potentials generate a complex mixture of postsynaptic currents. The
current primarily runs in the apical dendrite (primary current), and
also in brain tissue, cerebrospinal fluid (CSF), skull, and the scalp
(return current). The conductivity of the biological tissue is not
homogenous (e.g., brain tissue and CFS conduct the current better
than the skull does). Thus, the current spreads along the skull, mixed
with currents from other sources. As a result, a complex electric field
is formed spanning the distance from the brain to the scalp. The
electric signal that we obtain from a scalp electrode, therefore,
reflects the activity of many different sources.

To record the signal, we need to establish an electric circuit from
the scalp to a recording device. Since most of us do not have a cable
jack on the head, we use a special cable, one end of which is an
electrode: The electrode is placed on the scalp using a paste, and
the other end is connected to the recording device. How to induce a
current from the scalp could be compared with pouring water from a
water tank (Fig. 10.1). The amount of water from the tap depends on



how high the water level is and how fully the tap is opened. The
voltage at the scalp is very low, but we could find a yet lower point,
such as the ground. The recorder is grounded. Thus, the current
flows from scalp to the ground. More current runs when resistance of
the circuit is lower. The highest resistance occurs at the gap between
the electrode and the scalp. To keep the resistance low, the gap is
filled with a conductive substance, gel or paste – the tap is opened.
The recorder is placed between the scalp electrode and the ground
to convert the induced current to voltage, just like putting a hand in
the flow of water to sense how much water is running and how high
the water level is.

Figure 10.1 Illustration of EEG measurement.

Note that the electrode does not apply but receives the current.
The EEG technique does not inject current to the brain. A current is
applied to the brain with brain stimulation techniques: transcranial
direct current stimulation (tDCS) and transcranial alternating current
stimulation (tACS). These brain stimulation techniques also use
electrodes that apply current to the brain. Some also receive the
signal (cf. Chapter 14). Both EEG and transcranial current



stimulation are based on volume conduction, but electrodes with
each method have different functions.



10.1.1 EEG Electrodes

Electroencephalography electrodes are placed on the scalp to
register current due to brain activity. The electrodes come in a
variety of shapes and sizes. Disk or button electrodes (~5 mm of
diameter) are typical, but other shapes, such as pin, comb, and grid,
are also used (Fig. 10.2). Bandages and/or glue are used to attach
individual electrodes. To attach a large number of electrodes
efficiently, an electrode cap, to which multiple electrodes are set, is
often used. Materials such as silver (chemical symbol Ag), tin (Sn),
and sintered silver and silver chloride (Ag/AgCl) are used for the
electrode. These materials are conductive and safe to attach to the
scalp. The signal quality differs slightly depending on the material
used (Tallgren et al., 2005). Thus, materials are chosen based on the
purpose of the recording. For example, evoked brain responses to
external stimulation often contain slow activity. The Ag/AgCl
electrodes provide a stable slow signal; thus, they are often
preferred in recordings of evoked responses.



Figure 10.2 EEG electrodes.

(A) Disk electrodes.

(B) An electrode cap.



(C) 3D-printed, high-density dry electrodes; each pin is an electrode (Salvo
et al., 2012).

(D) “Tattoo sticker” electrode placed on the forehead (Kim et al., 2011).

Figures are reproduced with permission

The small gap between the scalp and the EEG electrodes is
filled with a conductive substance: paste, gel, or saline that contains
ions, such as chlorite ions (Cl-). The filler is used to decrease electric
resistance, known as contact impedance, between the scalp and the
electrode. As the contact impedance decreases, the current from the
scalp to the electrode increases. The impedance affects high- more
so than low-frequency activity (Kappenman and Luck, 2010). To



have a good signal-to-noise ratio (SNR or S/N) for a wide
frequency band, the impedance needs to be kept as low as possible
– less than 5 kΩ has been recommended (Picton et al. 2000).
Commercial EEG recording systems offer an impedance check
function: The contact impedance is measured by running a weak
alternating current of 10 Hz to the electrodes. The test current is too
weak to be noticeable to test participants and is kept within the
standard for the electrical safety of medical devices (ICNIRP, 2010).

Ideally, the locations and the number of electrodes should be
determined based on the aim of each study. For example, when we
are interested in the brain response to a visual stimulus, we would
certainly place electrodes at the back of the head, near visual
cortices that are located in the posterior part of the brain. However,
when we are interested in EEG during, say, mind wandering, it is not
so straightforward to decide the electrode placement. We could
place multiple electrodes covering the head to sample EEG from the
whole head. How many electrodes do we need in this situation? Is it
okay to use the same number for everyone regardless of head size?
During the early years of research, these parameters were decided
in each study, researcher, and/or research group. As a
consequence, a comparison of results of several studies was, at the
very least, cumbersome. In 1947, at the International Congress of
Electroencephalography and Clinical Neurophysiology in London, an
initiative to establish the international standard for EEG electrode
placement was begun. Eleven years later, combining several major
electrode placement systems, the international 10–20 system was
established (Jasper, 1958).



The international 10–20 system specifies electrode locations
based on a grid drawn on the scalp. The grid lines segment of the
scalp is based on 10% and 20% points on the perimeter of the head
(see Box 10.1). The name “10–20 system” stands for this ratio of
divisions. Electrodes are placed on the grid points. The locations are
referred to with abbreviations: frontal-polar (Fp), frontal (F), central
(C), parietal (P), occipital (O), and temporal (T). Locations on the left
hemisphere are given an odd number, while those on the right
hemisphere are given an even number, e.g., F3 and F4. Locations
on the midsagittal line are marked with “z” for Zentrum, e.g., Fz. The
system specifies 19 electrode locations that cover the whole head
(Fig. 10.3). The locations are roughly equally spaced, suitable for
monitoring activity from the whole brain. The locations are
determined by the ratio; thus, the same number of electrodes is used
regardless of head size, which made inter-individual comparison
easy. The system also specifies six possible reference electrode
locations (cf. reference and ground electrodes).



Box 10.1  The International 10–20 System in Five Steps

Step 1
The electrode locations are decided based on four skeletal
landmarks: nasion, inion, and left and right preauricular
points (Box Figure 10.1). The frontal nasal bone suture
crosses the midsagittal line at the nasion. On the scalp, it
corresponds to the lowest point of the nose ridge. The point
at which the external occipital protuberance crosses the
midsagittal line is the inion. It corresponds to the point just
below the highest point on the back of the head on the
midsagittal line. The preauricular point is above the intertragal
notch, roughly in front of the earhole. Most of the brain, the
neocortex in particular, is located above these landmarks.
Now, draw an arc from nasion to inion via the vertex of the
head, and another from left and right preauricular points via
the vertex. The front-back and left-right arcs cross at their
midpoints. The first electrode is placed at the crossing point.
The location is called the central-midline and noted as Cz
(i.e., Central-Zentrum).



Box Figure 10.1  Anatomical landmarks for the international 10–20
system (A). The five steps for specifying the electrode locations on the
scalp (B).

Step 2



Divide the nasion-Cz-inion arc in 10%, 20%, 20%, 20%, 20%,
and 10% segments of the arc length. This gives us five
dividing points between nasion and inion. The first point, the
10% point, from the nasion is called the frontal-polar-midline
(Fpz). The second point, the 30% point from the nasion is the
frontal-midline (Fz). The third point is the 50% point from
nasion or inion, i.e., Cz. The fourth point, the 70% point, is the
parietal-midline (Pz). The fifth point, the 90% point, is the
occipital-midline (Oz), which is 10% above the inion. All
electrodes on the midsagittal line are indexed with “z.”

Step 3
Likewise, divide the left preauricular–Cz–right preauricular arc
in 10%, 20%, 20%, 20%, 20%, and 10% segments. This
gives us five electrode locations: From left to right, the five
locations are referred to as left temporal (T3), left central
(C3), Cz, right central (C4), and right temporal (T4),
respectively. Note that electrodes on the left hemisphere are
indexed with odd numbers, while those on the right
hemisphere are indexed with even numbers.

Step 4
Draw a perimeter connecting four 10% points, Fpz, T3, Oz,
and T4. Divide the left arc (Fpz-T3-Oz) in 10%, 20%, 20%,
20%, 20%, and 10% segments. The electrodes are placed on
the sedimentation points: The electrode locations are called,
from front to back, Fp1, F7, T3, T5, and O1, respectively.



Likewise, the right arc (Fpz-T4-Oz) is divided in 10% and
20% segments. This gives electrode locations Fp2, F8, T4,
T6, and O2.

Step 5
The last four locations are decided by adjacent electrode
locations. Draw a short arc between F7 and Fz and another
between Fp1 and C3. The arcs cross at their midpoints.
Location F3 is placed at the crossing point. Location F4 is
defined in the same manner using F8, Fz, Fp2, and C4.
Likewise, P3 is defined by T5, Pz, O1, and C3. Location P4 is
defined by T6, Pz, O2, and C4.

In the 10–20 system, two out of the 21 scalp locations,
Fpz and Oz, are not used in order to avoid uneven electrode
density, e.g., O1, Oz, and O2 electrodes would become
closer than C3, Cz, and C4. Thus, the total number of
electrodes is 19. Location Fpz is sometimes used as a
ground location. In higher density systems, e.g., the 10–10
system, Fpz and Oz are included as valid scalp electrode
locations.



Figure 10.3 The international 10–20 system, the international 10–10
system, and the 10–20 system for infants.

Based on the 10–20 system, a few more systems were
developed. The international 10–10 system (AES, 1994) divides
the arcs in 10% segments. Thus, more electrode locations, more
specifically, 73 scalp locations, are specified. Four rows of electrodes
are added to the electrodes in the 10–20 system: anterior-frontal
(AF), fronto-central (FC), fronto-temporal (FT), centro-parietal (CP),
temporo-parietal (TP), and parieto-occipital (PO). Nasion, inion, and
lateral positions on the perimeter are also included as electrode
locations. The electrode notation differs slightly between the 10–10
and 10–20 systems; electrodes on the 10% perimeter are noted as
T7, T8, P7, and P8 in the 10–10 system, which correspond to T3,
T4, T5, and T6 in the 10–20 system, respectively.

For neonatal infants, a modified 10–20 system with nine
electrodes was proposed (Kellaway and Crawley, 1964). The
neonatal system replaces Fp1 and F3 with F1, which is on the 20%
perimeter and 10% left of the midsagittal line. Likewise, Fp2 and F4
are replaced by F2. In addition to F1 and F2, T3, C3, Cz, C4, T4, O1
and O2 are included.



The 10–20 system also serves as a frame of reference on the
scalp. An electrode location that is unique to a study is often
reported, referring to the 10–20 system, e.g., “… the electrode is
placed between C3 and Cz locations.” Likewise, an electric or
magnetic brain stimulation location is often specified using this
system (Herwig et al., 2003).

Alternatives to the 10–20 system have been developed to cope
with ever-increasing numbers of electrodes. In the 10–20 system,
the electrodes are placed on the vertices of a rectangular lattice,
e.g., Cz, C4, P4, and Pz. The distance between Cz and P4
(diagonal) is longer than that between Cz and C4 (side). The
unevenness increases as the number of electrodes increases to 10–
10, 10–5, and so forth. This is a problem for some signal-processing
methods, because the EEG from some brain regions is less densely
sampled than from others. The triangle lattice reduces unevenness
of the inter-electrode distance. Therefore, some high-density EEG
electrode arrays employ a triangular lattice. So far, no
standardization has been achieved across different triangular-lattice
systems.

Reference and Ground Electrodes

Reference electrodes provide a biological baseline voltage level for
the EEG signal. Why do we want to have such a baseline? In
addition to the brain, organs such as the heart and muscles also
show electrophysiological activity. The non-brain electrophysiological
activity is often stronger than the brain activity. The non-brain activity



is conducted through the body up to the scalp and is added to the
brain activity. In other words, the voltage between the scalp and
ground is inflated by the non-brain activity. Reference electrodes
measure the biological noise. A reference electrode is attached, for
example, to the earlobes and nose tip, which are close to the scalp,
but there is no brain beneath. Therefore, the signal from the
reference electrode could be regarded as noise. When
preprocessing the EEG signal, the reference signal is subtracted
from that of a scalp electrode (see Fig. 10.1).

The 10–20 system specifies six reference locations; the left and
right earlobes are noted as A1 and A2, respectively. Materials for
earlobe electrodes are the same as those for scalp electrodes, but
the shape might vary, e.g., a clip for an earlobe. The designations
M1 and M2 stand for the left and right mastoids and reference
electrode locations behind the ears, where the temporal bone is thick
and thus is distanced from the brain. Electrodes of the same type as
those for the scalp are usually used for the mastoids.
Nasopharyngeal electrodes are denoted by Pg1 and Pg2 and are
placed in the left and right nasal cavity, respectively. The
nasopharyngeal references are used in clinical settings, such as in a
diagnosis for brain death. The electrodes are rod shaped so they can
be placed in the nose cavity. Reference locations are chosen
according to the aim of each study. In addition to the six locations of
the 10–20 system, other locations, e.g., nose tip and a combination
of electrodes, could also be used. How do we decide what reference
to use? This issue closely relates to artifact removal, which is
discussed in Chapter 11 (Section 11.1.2).



The ground electrode is attached to protect participants from
accidental electrical leakage. The material and type of ground
electrode are usually the same as those used for scalp electrodes.
The electrode is placed on the head, e.g., Fpz, an unused location in
the 10–20 system. Different locations may be used in different
recording systems. The signal from the ground electrode is
sometimes used to compute the ground voltage level. The ground
level is near zero, but it fluctuates. Environmental noise, e.g., power
supply to electric appliances, affects the baseline level. The signal
from the electrode is used to compute an adequate ground level.
Therefore, the ground electrode is sometimes called the “recording
reference.”

EOG Electrodes

Electrooculography (EOG) measures the electric activity caused by
eye movements. The eyeballs are statically charged. As the eyes
move, the electric field changes around the eyes, forehead, and
scalp. Thus, the charge is added to the EEG signals. In fact, the
electrooculogram (also abbreviated EOG) is one of the major
artifacts in the EEG recording. To remove the artifact, EOG needs to
be monitored simultaneously with EEG.

Four electrodes are placed around the eyes (Fig. 10.4). The
electrodes at the left of the left orbita and right of the right orbita
measure the horizontal EOG (HEOG). The electrodes above the
eyebrow of the non-dominant eye and below the infraorbital border
measure the vertical EOG signal (VEOG). The materials used for the



electrodes are the same as those used for EEG electrodes. The
recording ground is usually shared with EEG. Most commercial EEG
recording systems provide an EOG interface. EOG artifact removal
is described in Chapter 11 together with other preprocessing
techniques.

Figure 10.4 EOG electrode placement.
Four electrodes are placed. Electrodes for vertical EOG are often placed
around the non-dominant eye.



Box 10.2  Dry Electrodes

Dry electrodes refer to EEG electrodes that do not require
conductive filler, such as gel and paste. Dry electrodes are
used, for example, for ultra-high-density recording. As the
density of the electrode increases, inter-electrode distance
decreases, e.g., 2 mm (see Fig. 10.2C). The electrodes
record similar signals, but each signal varies slightly among
them. In the high-density recording, even a small leakage of
gel could cause a short circuit among the electrodes. This so-
called gel-bridge makes signals of the bridged electrodes
identical, thus ruining the recording. Gel-bridges do not occur
with dry electrodes. Another advantage of dry electrodes is
convenience. The time and effort it would take to apply gel to
multiple electrodes are saved. Moreover, electrodes without
wet and sticky gel are comfortable for test participants.

Impedance of dry electrodes is often higher than it is with
wet ones. To compensate for the high impedance, a special
amplifier is often required. At this time, the signal quality is
worse and special amplifiers tend to be more expensive than
those of conventional systems with wet electrodes. However,
the potential of the dry electrode method is clear: Imagine a
high-density electrode array worn like a headphone or hair
ornament.



10.1.2 EEG Amplifier

The electric activity measured from the scalp is weak; the voltage –
on the order of µV, i.e., one-millionth volt – is too weak to drive any
recording devices that typically require an input signal of 5 V or
more. Thus, amplification is essential for EEG recordings. In fact, it is
so essential that “EEG amplifier” is often used as a synonym for
“EEG recording system.” An EEG amplifier amplifies the weak
signals with little distortion. The frequency range of amplification is
set typically between 0.1 and 500 Hz. The lowest frequency is
determined by a parameter called the time constant. The longer the
time constant becomes, the slower the lowest frequency becomes.
To obtain “ultra-slow” activity, e.g., 0.1–0.03 Hz, which corresponds
to the dominant frequency range in the hemodynamic response fMRI
signal, a special amplifier, called a DC amplifier, is often used. The
letters DC stands for “direct current” and the frequency of this DC
component is 0 Hz; thus, it is the slowest activity. A DC amplifier is
able to amplify DC and very slow components without distortion. In
this regard, a typical EEG amplifier is an alternating current (AC)
amplifier. Because the majority of EEG amplifiers are AC amplifiers,
we tend to skip the “AC.” In a modern EEG system, amplification is
applied more than once, first using an analog signal, then later using
a digital signal. A preamplifier refers to a device that amplifies and
rectifies the analog signal.

After preamplification, the analog signal is fed to an analog-to-
digital (AD) converter. The AD converter samples the analog



voltage signal in a short time interval, e.g., every 2 ms. The number
of samplings per second is called the sampling frequency or
sampling rate. For example, if we sample data every 2 ms, the data
are sampled 500 times per second. Thus, the sampling frequency is
500 Hz. If the sampling frequency is too low relative to the signal
frequency, the samples do not represent the original signal properly:
A slow component that does not exist in the original signal is
generated. This problem is called aliasing (Fig. 10.5A). According to
the sampling theorem (also known as the Nyquist theorem as
introduced in Chapter 1), the sampling frequency should be more
than twice the frequency of the signal. The theorem could be
understood intuitively by imagining how to code one cycle of a sine
wave. At least a point at the peak and another at the trough, i.e., two
points, are needed to code one cycle. In the case of EEG, often the
frequency range of interest is 0.1–50 Hz. Thus, the sampling
frequency needs to be 100 Hz or higher.



Figure 10.5 Sampling frequency and AD level.

(A) A 10 Hz sine wave (blue line) is sampled in two different sampling
frequencies, 100 Hz (orange dots) and 3 Hz (black dots). The 100 Hz
sampling represents the original signal adequately, while the 3 Hz sampling
does not. The 3 Hz sampling is not sufficient and created a low-frequency
artifact. This phenomenon is called aliasing.



(B) The signal (blue line) is encoded at different AD levels, 1, 2, or 3 bits. As
the level increases (2, 22, and 23 levels), more information from the original
signal is encoded.

For signal processing on a computer, the sampled values are
binarized. In 1-bit coding, each value is coded 0 or 1 relative to a
single threshold, e.g., the mean voltage value. In 2-bit coding, the
value is coded in 22 = 4 levels: 00, 01, 10, and 11 (Fig. 10.5B).
Similarly, 3-bit encoding has 23 = 8 levels: 000, 001, 010, 011, 100,
101, 110, and 111; 4-bit encoding would be 24 = 16 levels: 0000,
0001, 0010, and so on. The level of binarization is called the AD
level. The higher the level, the more details of the signal are
encoded. For EEG recording, AD level is typically 8 bit: 28 = 256
levels, or higher.

The digitized EEG is a large matrix of data points; M data points
in time by N electrodes. Together with the EEG data matrix,



recording information, e.g., sampling frequency, channel labels, and
participant information, is saved. When a task is applied, event
markers, e.g., stimulus onset and response button press, are also
saved. Some EEG file formats save EEG and recording information
in one file, while other formats save them in separate files. Most
EEG recording systems and analysis packages support multiple
output file formats.



10.1.3 Procedure for Data Acquisition

The last element of the EEG recording involves the test participants.
Without their cooperation, no good signal is acquired. Therefore, it is
important to keep them happy and relaxed as much as possible.
When electrodes are attached, it takes some minutes for the
conductive gel to stabilize the contact impedance between the
electrodes and the scalp. Other sensors, such as EOG electrodes,
are also attached to monitor artifacts. Cables from the electrodes
and the sensors are secured to prevent drift artifacts caused by
motion of the cables. The participant is seated in a chair or lies on a
bench in an electrically shielded room. The shielded room is
covered by conductive materials. The materials capture and drain
environmental electric noise activity (cf. a Faraday cage). Thus, the
space inside of the room is not affected by the noise. It is also
possible to measure EEG without a shielded room; recent EEG
recording systems often offer effective noise reduction functions with
which a reasonable signal can be obtained. Also, a test room is
usually sound attenuated, and the lighting is adjusted to control
background sensory inputs.

During the recording, the participant is instructed to minimize
body motion. Chin-, head-, and/or armrests could be used to help the
participants to keep the same posture comfortably, which in turn
helps to reduce noise. At the beginning of the recording session, a
rest or baseline period is recorded. Blocks of specific task
manipulations follow. Often, the rest/baseline period is repeated after



the task. After a recording session, electrodes are removed, and gel
is wiped or washed off.

The methods section in an EEG paper is rather uninviting; it is
filled with technical terms and abbreviations. That “jargon,” however,
tells us what was done concisely and precisely. By now, we have
learned enough details to understand a typical section of recording
information. Here is an excerpt from an EEG paper (Bruggemann et
al., 2013) in which recording information is described. Let’s try to
read it!

Electrocortical data were recorded from 30 Ag/AgCl sintered electrodes,
arranged according to the international 10–10 system, and referenced to
the nose tip. Only data from fronto-central electrodes (i.e., F3, Fz, F4,
FC3, FCz, FC4, C3, Cz, C4) are reported here. … Horizontal and vertical
electro-oculograms were recorded from tin electrodes positioned adjacent
to the outer canthus of each eye, and above and below the left eye,
respectively. The electrical impedance of each electrode was maintained
at less than 10 kilo-ohms. These data were acquired continuously via
NeuroScan SynAmps hardware with Scan 4.3 software. … The sampling
rate was 500 Hz.



10.2 Magnetoencephalography (MEG)
Magnetoencephalography (MEG)measures the magnetic field
resulting from brain activity. In Section 9.1.2 in Chapter 9, we learned
how a magnetic field emerges as a result of electrophysiological
activity of neurons: As postsynaptic currents run in the apical
dendrites of cortical pyramidal cells, a magnetic field is formed
perpendicular to the direction of the current.
Magnetoencephalography measures the strength of the magnetic
field. The source of the MEG signal is the same as that of the EEG
signal. In this sense, MEG could be considered as the twin of EEG.
However, the MEG signal is not identical to the EEG signal. For
example, the magnetic field permeates brain tissue, cerebrospinal
fluid (CSF), skull, scalp, and air with little distortion. This is a big
difference from the electric field, which is bent and mixed as it
conducts the mass between the source and electrodes. We could
imagine the magnetic field as a bundle of magnetic flux that exits
the brain, goes through CSF, skull, scalp, into the air, and returns to
the brain. The magnetic flux is caught by MEG sensors outside of
the scalp.

Where the flux is dense, the field is strong. However, field
strength due to brain activity is on the order of 10–15 to 10–12 T (i.e.,
1 fT – 1 pT, femto- to pico-tesla). To put this into perspective, the
Earth’s magnetic field has a strength around 10–6 T (µT), and the
field strength of a typical refrigerator magnet is on the order of 10–3 T



(mT). To measure such a weak signal, MEG requires a super-high-
fidelity measurement device and a magnetically shielded room.



10.2.1 MEG Sensors

As the magnetic flux passes through a metal coil, such as a copper
coil, a current is induced in the wire. The strength of the current is
proportional to the magnetic field strength (cf. Faraday’s law of
induction). A MEG sensor has an induction coil. As the magnetic flux
due to the postsynaptic current passes through the coil, a current is
induced. Because the field is very weak, the current is also very
weak. At room temperature, the current disappears quickly because
of the resistance of the coil itself. However, when the coil is cooled
close to absolute zero, superconductivity, in which resistance is
effectively zero, occurs. Under super conductivity, the current
survives and runs through a coil. The pick-up coil is connected to an
input coil to a Superconducting QUantum Interference Device
(SQUID) (Fig. 10.6). As the current runs through multiple turns of the
input coil, the flux is intensified and rectified (thus, the input coil is
also called a flex fixing loop) and passed to the SQUID. The SQUID
amplifies the flux virtually without noise and with high gain based on
the Josephson effect in superconductivity.



Figure 10.6 Schematic illustration of an MEG system.

(A) The dewar keeps MEG sensors in liquid helium.



(B) The MEG sensors consist of pick-up coil, input coil, and SQUID.

The figure (A) is reproduced from Hansen et al., 2010, with permission

To achieve superconductivity, liquid helium (-269°C) is used to
cool the SQUID sensors. The sensors are placed in a dewar, with
coils facing down. The dewar is a huge vacuum flask made of
fiberglass, the bottom of which is concave to fit a participant’s head
(Fig. 10.6). Liquid helium is poured into the dewar to cool the
sensors so that they are superconductive. The dewar is attached to
a supporting frame to place the bottom of the dewar on a
participant’s head. The dewar is highly insulated to maintain the
high-level cooling. Because of the insulation, the outside surface of
the dewar, especially the bottom, which touches the head, is kept at
a comfortable temperature for the participant. Note that pick-up coils



are not in contact with the scalp. They are inside the dewar, but
receive the signal because magnetic flux permeates tissues, air, and
materials.

Pick-up coils come in different configurations. To understand the
functional difference between the coils, we need to pay attention to
the direction of flux and current. Magnetic flux always comes out
from N pole and returns to the S pole. According to Fleming’s right-
hand rule, the right thumb represents the direction. As the flux goes
through a coil, current is induced in the direction of the right fingers.
(Fig. 10.7). As the field strengthens (thus, the density of the
magnetic flux increases), the current increases.



Figure 10.7 Fleming’s right-hand rule.

Now let’s suppose there is a single-loop coil on the scalp.
Magnetic flux from the brain activity goes through the coil and
induces current in the coil. The strength of the current measures the
strength of the magnetic field, and the direction of the induced
current indicates the direction of the magnetic flux – coming out of or
sinking into the brain. The single-loop coil is called a magnetometer
(Fig. 10.8). The term “magnetometer” literary means a device to
measure a magnetic field. In the context of MEG, it refers to a single-
loop pick-up coil. The diameter of the coil is typically 10–20 mm. The
magnetometer picks up fluctuations of the field strength, which



reflect dynamic changes in cortical activity. The coil, however, also
picks up magnetic flux noise.

Figure 10.8 MEG coil configuration.
Illustration of magnetometer, planer gradiometer, and axial gradiometer.
Black arrows indicate the direction of current induced by the brain activity.

To increase the signal-to-noise ratio, multiple loops are
configured in a specific pattern. The multi-loop coil is called a
gradiometer. In a planar gradiometer, loops are shaped into a
figure 8. The coils turn opposite to each other. Now, let’s suppose a
source current in a sulcus beneath the center of the figure 8 coil. A
magnetic field forms and magnetic flux runs around the current. As
the flux comes out of the brain to the air, it goes through one loop. As
the flux returns from the air to the brain, it goes through the other
loop. The coils turn opposite to each other; thus, the two currents
add up. Signals from off-center sources are spatially subtracted from
each other. However, the activities are not likely to be identical; thus,
the differentiated signals remain. The planer gradiometer therefore
has the highest sensitivity to the sources beneath the center of the
figure 8 coil and also picks up signals from off-center sources.



Another type of gradiometer is the axial gradiometer, in which
two opposing loops are arranged on an axis. The lower loop is closer
to the brain than is the upper loop. Therefore, the lower loop picks up
a stronger field, thus generating a stronger current than the upper
loop does. The two currents subtract from each other; however, the
result would be non-zero. Relative to the signal sources, noise
sources are farther away from both coils. For example, the distance
between the lower coil and an environmental noise source is
approximately the same as that between the upper coil and the noise
source. In other words, the strength of the noise current in the lower
and upper coils is approximately the same. The currents run in
opposite directions; thus, they cancel out or at least are reduced
more than those of the brain signal. Typically, the upper and lower
loops are 50 mm apart, which is reported to provide sensitivity for the
whole brain (Dössel et al., 1991). The axial gradiometer has the best
sensitivity to the tangential sources beneath the coils, and it picks up
more focal activity than the planer gradiometer does.

Some systems incorporate reference coils to measure
environmental field strength. Unlike EEG, reference sensors in MEG
measure the environmental baseline instead of the biological
baseline. Thus, they are not placed close to the head.

Recent systems have had up to 300 sensors. Such a large
number of sensors are fixed in the shape of a helmet, covering the
whole head. Sensor layouts differ across systems. So far, no
standardization has occurred across major systems, unlike in EEG.
Moreover, some systems allow a choice in coil configuration, e.g.,
combination of planar gradiometers and magnetometers.



10.2.2 Magnetically Shielded Room

Power supply, radio waves, the geomagnetic field, and even
vibration caused by remote traffic all generate magnetic fields
stronger than the MEG signal. A magnetically shielded room blocks
these noises; thus, having one is essential for a good MEG signal.
Layers of materials with high magnetic permeability (Ni-alloy, called
Mumetal or Permalloy) and electrical conductivity (e.g., aluminum)
cover the room. The environmental magnetic flux and electric fields
run through the permeable and conductive walls and frames, but not
inside the room. Active noise cancellation could be added to this
passive shielding. An active noise cancellation system consists of
magnetometers to monitor environmental noise and magnetic field
generators to generate counter fields to cancel out the noise. The
magnetically shielded room is not merely a room but is also a device
critical for MEG recording and thus an inherent part of the MEG
system.

The American physicist David Cohen, who reported the first
human MEG in 1968, knew the importance of the shielded room in
obtaining a good signal. Without the room, for example, the magnetic
signal due to cardiac activity, a magnetocardiogram (MCG), was
recognizable; however, the MEG signal was buried in noise.
Extensive signal processing was necessary to make the signal
recognizable (Cohen, 1968). The first MEG was recorded without
SQUID, because superconductive instrumentation had just begun to
be developed. Soon, Cohen started to collaborate with Jim



Zimmerman, the inventor of SQUID, and combined it with a high-
quality, magnetically shielded room at the Massachusetts Institute of
Technology (MIT). The result was a remarkably clear signal (Fig.
10.9).



Figure 10.9 The first MEG recorded with SQUID in the MIT shielded room
in 1971.

(A) Magnetically shielded room at MIT. The dewar (cylinder inside of the
shielded room) is placed next to the participant for display. Front from left:
Ed Edelsack, another pioneer of medical magnetic sensing, David Cohen,
and Jim Zimmerman.

(B) MEG recorded in the facility. The activity during the “eyes closed” period
is alpha band activity.

Figures courtesy of Prof. David Cohen



The MEG signal from the sensor goes through a few more
subsystems to be rectified, amplified, and digitized. The
instantaneous field strength is computed from the digitized signal.
Then, finally, the sensor-level MEG signal, the time series of the field
strength, is saved in a data file. The MEG signal is also described in
frequency (Hz), phase (˚ or π), and amplitude. The unit of amplitude
can differ between studies, ampere-per-meter (A/m), tesla (T), gauss
(G), and oersted (Oe). Magnetic field strength is measured in A/m
and G. density of magnetic flux is measured in T and Oe (used in the
same way that some people use meters while others use feet). In all
units, higher values correspond to higher magnetic activity. Because
the activity is very small, the units are often prefixed with “n” for nano
(10–9), “p” for pico (10–12), or “f” for femto (10–15).



10.2.3 Procedure for MEG Data Acquisition

Prior to measurement, sensors are calibrated, and the environmental
noise level is measured. All equipment (e.g., stimulus display) is
turned on without a test participant, and the baseline noise level is
measured for a few minutes (Gross et al., 2013).

Participants need to be as metal free as is possible. Metal
objects, e.g., earrings, piercings in the head, eye glasses, a wrist
watch, are removed. Individuals with medical implants – a heart
pacemaker, for example – are often excluded from voluntary
participation, because the device could cause magnetic noise.
Demagnetization is performed to neutralize remaining metals such
as dental fillings.

Similar to EEG, electrodes to monitor EOG, EMG, and/or ECG
artifacts are attached to the participant. The electrodes are made of
materials without ferromagnetic components (e.g., high-purity silver).
Thus, MRI-compatible electrodes work well. In addition, head
position indicator (HPI) coils are attached to the participant’s
head. Head motion is a major source of noise in MEG. During the
measurement, participants are instructed to minimize body motion;
however, small head motion is inevitable. Because MEG sensors are
not affixed to the head, relative position of the head and sensors
changes. As a result, the magnetic field signals appear to be
changing; however, the fluctuation is not due to a change in the field
strength, but instead to motion. To identify the motion noise
components, at least three HPI coils (e.g., detecting yaw, pitch, and



roll of the head) are attached to the participant’s head. The HPI coils
are not superconductive. Before and after a MEG data recording, a
weak current is induced in the coils. This generates a magnetic field
at the scalp coil locations. The location relative to the helmet is
recorded by MEG sensors.

Moreover, fiducial points, such as nasion, left and right
preauricular points, are sampled by a magnetic pen digitizer to
record their 3D locations. The points are used to coregister the
sensor helmet and anatomical MRI data of the participants or of a
standardized head/brain model. For a higher quality of coregistration,
more points (~100) might be sampled from the whole head.

Finally, the participant is placed under the dewar, the bottom
surface of which contacts to the head. The participants are asked to
relax but to remain still during the recording.

Here is an excerpt from the method section of an MGE paper
(Meeren et al., 2008). Let’s try to see if we can understand what the
researchers did!

MEG data were acquired with a 306-channel Neuromag VectorView
system (Elekta-Neuromag Oy, Helsinki, Finland), which combines the
focal sensitivity of 204 first-order planar gradiometers with the
widespread sensitivity of 102 magnetometers. Eye movements and blinks
were monitored with vertical and horizontal electro-oculogram. The
location of the head with respect to the sensors was determined using
four head-position indicator coils attached to the scalp. A head-based
MEG coordinate frame was established by locating fiduciary landmarks
(nasion and preauricular points) with a Fastrak 3D digitizer (Polhemus,
Colchester, VT). The data were digitized at 600 samples/second with an
anti-aliasing low-pass filter set at 200 Hz.



10.3 Comparison between EEG and MEG
The EEG and MEG measure different aspects of the electromagnetic
field due to the postsynaptic current of cortical pyramidal neurons.
Therefore, it is not surprising that the signals are similar to each
other. In particular, temporal characteristics of the signals, such as
frequency and response latency to a sensory stimulus, are very
similar between the two.

However, the signals are not identical. The signals reflect gyri
and sulci activity differently. Electroencephalography electrodes are
most sensitive to the electric field perpendicular to them, i.e., radial
dipoles such as gyrus activity. However, due to volume conduction,
currents from sulci are also mixed, and picked up by the electrodes.
Magnetoencephalography coils are most sensitive to the magnetic
field perpendicular to them. Given that the magnetic field forms
perpendicular to the current, the coils are sensitive to tangential
dipoles, such as sulcus activity. The magnetic signal permeates
volume between the source and the sensor with little mixture. This is
a big advantage in estimating source locations (cf. Section 13.3 in
Chapter 13). However, the high permeability also has a
disadvantage; coils pick up primarily sulcus activity. In other words,
the effect of dipole direction and location is more severe in MEG
than in EEG (Hillebrand and Barnes, 2002; Malmivuo, 2012).

The power of the frequency components also differs between
the two: In the EEG signal, high-frequency activity, namely, the
gamma band (>30 Hz), is attenuated as it conducts. In particular, the



skull attenuates the current severely. For example, one of Hans
Berger’s test participants had a hole in his skull (Berger is one of the
pioneers of the EEG method; cf. Chapter 9). The participant had
undergone two craniotomies for the removal of a brain tumor, leaving
him with a large cranial defect (Millet, 2001). Surely, Berger
observed a much stronger EEG signal from the electrode on the
scalp above the hole than from the electrodes on other scalp
locations. To the contrary, the magnetic flux permeates the skull as
well as other tissues and masses. Therefore, MEG signals contain
more high-frequency signals, such as high gamma band activity (80–
200 Hz).

These differences exist; however, EEG and MEG signals are
still similar to each other. The signals are similar enough for the
same analysis methods to be applied, as we will see in Chapters 11
and 12.

The most significant difference exists at the practical level: MEG
is significantly more expensive than EEG. The SQUID and the
magnetic shielding room cost more than the EEG amplifier. Liquid
helium is costly and needs to be refilled more or less weekly. The
whole facility occupies a large space. A lab technician may be
needed for management and maintenance of the system. Overall,
the running cost of an MEG lab is (much) higher than an EEG lab, as
costly as MRI. As a result, the number of MEG facilities is (much)
less than that of EEG labs.

Unarguably, MEG is more advanced than EEG. Technologies
advanced in the late twentieth century are combined to detect tiny
electromagnetic field activity from the brain. On the one hand,



together with source localization, MEG offers brain signals with high
temporal and spatial resolution. On the other hand, the size and
complexity of a current MEG recording system prevent the technique
from being used with some applications, such as mobile, real-life,
and/or long-duration recording. For these applications, EEG has an
advantage over MEG. Small/wearable EEG devices are available
commercially. With further development of the dry electrode
technique, EEG applications might be incorporated into our daily
lives. In the twenty-first century, EEG and MEG techniques might
develop into different niches.



Summary
Electroencephalography measures the electric field activity
due to the postsynaptic current, of which the major contributor
is the cortical pyramidal neuron.

An EEG system consists of electrodes, amplifiers, and AD
converters. The system converts the neural current to voltage
signal, and the signal is amplified, digitized, and saved as a
data file.

Magnetoencephalography measures magnetic field activity
due to the postsynaptic current.

An MEG system consists of SQUID sensors, amplifiers, AD
converters, and a magnetically shielded room. The magnetic
field strength is measured, amplified, digitized, and saved as
a data file.

EEG and MEG measure different aspects of the
electromagnetic field in the brain. Thus, signals are not
identical but very similar. Both signals have rich information,
especially in time. Frequency, phase, and amplitude of the
signals allow us to investigate brain dynamics in detail.
Conversely, spatial resolution of the signals is low. Moreover,
the sensor-level signals are not three dimensional but two
dimensional.



Both are low risk/low intervention methods (cf. MRI in which
test participants are exposed to a high magnetic field).



Review Questions

1. Name three key components for EEG recording and explain how
the components are used to record the signal.

2. What is the contact impedance? Why does it need to be low?

3. Name three key components for MEG recording and explain how
the components are used to record the signal.

4. List three similarities between EEG and MEG. List three
dissimilarities.



Further Reading

Hansen, P. C., Kringelbach, M. L. & Salmelin, R. (2010). MEG: An Introduction
to Methods. New York: Oxford University Press.

Schomer, D. L. & Da Silva, F. L. (2012). Niedermeyer’s
Electroencephalography: Basic Principles, Clinical Applications, and Related
Fields. Philadelphia: Lippincott Williams & Wilkins. (The reference book for
EEG technique.)



Chapter 11

Basic Analysis of Electrophysiological
Signals

◈



Learning Objectives

I am no longer surprised that in hieroglyphic texts it is so difficult to
differentiate the jackal from a dog. … A dog is defined only by a tail
curled up like a trumpet. This distinction is taken from nature: all Egyptian
dogs carry their tail pointing upward in this way.

Jean-François Champollion, 1828

Adopted from a translation by Rynja, 2009

What we really want to know is not always written in our native
language. Data analysis is somewhat similar to deciphering. Data sit
quietly, much like an ancient script on a stone, inviting us to figure
out their meaning. One decipherer was Jean-François Champollion,
a nineteenth-century French Egyptologist who successfully decoded
Egyptian hieroglyphs. One of his basic texts was the inscription on
the Rosetta Stone. There, an ancient Egyptian text was etched in a
hieroglyphic script and repeated in demotic script. Moreover,

Naming major artifacts in
magnetoencephalography/electroencephalography (M/EEG)
signals

Understanding signal processing procedures as reported in
the M/EEG literature

Becoming familiar with the idea of the transformation of
M/EEG signals, in particular time and frequency domain
representations



translation in ancient Greek was added. After its excavation, the
Rosetta Stone was considered the key to decoding the hieroglyphs.
Because of complex European politics, the stone was moved around
Egypt, England, and France. Because the stone was seldom
displayed in public, numerous copies of the inscription were made.
However, in an unconfirmed anecdote, Champollion had an
opportunity to see the real stone when he was 11 years old at the
salon of Jean-Baptiste Joseph Fourier, a governor of Isère province
in France and at the time the custodian of the Rosetta Stone. Fourier
is known today not as a politician but as a mathematician who
established the foundation for signal processing. He proved that a
complex oscillatory signal can be described as a sum of simple
oscillatory functions, sines and cosines. Fourier analysis is the
analysis for oscillatory signals, including those in
magnetoencephalography/electroencephalography (M/EEG).

The complexity and dimensionality of M/EEG signals are often
daunting. Hundreds of thousands of data points show a complex
pattern of activity, changing in frequency and amplitude. The
oscillations synchronize and desynchronize, thus making an intricate
spatio-temporal pattern. Like any real data, M/EEG data contains
noise. Signal processing is first applied to remove, or, at least, to
reduce, noise in the data. We then face the fact that the brain is a
multi-tasking/ multi-functional organ. The signal reflects not only the
brain activity of interest but also those that are “irrelevant.” To make
things worse, the relevant signal is often (much) weaker than
irrelevant signals. Here, signal processing is applied to enhance the
brain signal of interest relative to those that are irrelevant. For



example, when we are interested in brain response to a visual
stimulus, we apply a method to enhance the visually evoked
response and depress spontaneous ongoing brain activity. The
method, however, will not be applied when we are interested in
spontaneous activity during sleep. Thus, different methods are used
for different purposes. Various signal-processing techniques have
been applied in M/EEG data analysis. Tacitly or not, we often make
assumptions when applying a method, e.g., that the brain response
to a visual stimulus is the same over repetition. Heuristics are also
frequently incorporated. In other words, we have been using
everything we know to decode the complex brain signal, somewhat
in the same manner that Champollion used everything, from his
polyglot genius to the shape of the dog’s tail, to decode the
hieroglyphs. In this chapter, we introduce basic M/EEG signal
analysis methods, which might seem to be a bit of a hodge-podge.



11.1 Preprocessing
The M/EEG signal analysis consists of two parts, preprocessing and
main signal processing. Where one ends and the other begins is not
always clear. Both processes aim to increase the signal-to-noise
ratio. Roughly speaking, in preprocessing, the brain signal is
increased relative to non-brain signals, such as eye movement
artifacts and environmental noise, while in main signal processing,
the brain signal of interest is selected or enhanced relative to
irrelevant brain signals.



11.1.1 Noise

Noise comes from biological, artifactual, and/or environmental
sources. For example, muscular activity generates large potentials.
Muscle cells generate action potentials. When the action potential
spreads over muscle fibers, the muscle starts to contract.
Contraction cascades through bundles of muscle fibers, generating a
complex spatio-temporal pattern of electrophysiological activity, the
electromyogram (EMG), which shows a wide frequency band, the
peak power of which is around 60–80 Hz. The number of muscles in
the head, face, and neck is not large, but these muscles are close to
the M/EEG sensors. Thus, their EMG is sufficient to contaminate
M/EEG signal. The frontalis muscle covers the frontal upper part of
the skull. This muscle moves when the forehead is wrinkled or the
eyebrows are raised. These movements affect frontal sensors
especially. The temporalis muscles cover right and left sides of the
skull. They move when the jaw is clenched and unclenched. The
temporal electrodes are often affected by these movements. The
occipitalis muscle, which covers the lower back of the skull, moves
with the frontalis muscle. The movements affect the occipital
electrodes. The activity of neck muscles, which move and hold the
head, affect the occipital electrodes. The muscular artifacts can be
reduced by instructing test participants to relax the forehead, jaw,
and neck. It is also helpful to adjust their seating position for them to
maintain a comfortable posture during recording.



Eye movements generate complex artifact components; the
cornea is charged positively relative to the retina. As the eyeballs
move, the electric potential gradient around the eyes changes. The
electrooculogram (EOG) is recorded by electrodes around the
eyes, but the activity spreads to a wider area, contaminating the
M/EEG signal. The ocular artifacts often exhibit a specific shape; a
step-like waveform appears during saccadic eye movements, which
occur, e.g., during reading and looking for something. A slow wave
appears when the eyes are drifting. A wedge-shaped component
appears during an eye blink. The eye blink artifact is generated when
eyelids slide over the eyeballs, which are charged. It is sometimes
misunderstood that eyeballs rotate upward during an eye blink.
However, this is not the case for the normal population (Picton et al.,
2000). Electrooculogram artifacts are prominent in frontal polar and
frontal electrodes but could spread widely. Because the eyeballs are
moved by six extraocular muscles, their muscular artifacts also exist,
e.g., as a saccadic spike potential. To reduce eye-movement
artifacts, a test participant is often instructed to maintain fixation at a
specific point and to suppress blinks.

The activity of cardiac and vascular muscles generates pulsatile
electrophysiological activity, represented in the electrocardiogram
(ECG). Blood vessels cover the entire scalp; thus, the noise could
appear in the M/EEG from any of the electrode/sensors. The noise
could be significant if an electrode is placed on a large blood vessel.
It could be more disruptive if a reference electrode were affected. In
this case, all EEG channels would show a prominent cardiovascular



artifact. Adjustment of the electrode location is effective to avoid
contamination of the whole recording.

At rest, the respiratory rate is slower than 0.1 Hz. Respiration
could generate a slow artifact. To measure it, an elastic band
respiration sensor is attached around a participant’s chest.
Alternatively, a small flow meter can be attached below the nose.
Monitoring of such slow activity is important when ultra-slow M/EEG
activity is the frequency band of interest.

Sweat gland activity also affects the EEG. The state of the
sweat glands changes skin conductance. Galvanic skin response
(GSR), which was named for Luigi Galvani who conducted the frog
experiment (p.191) is slow activity (<0.1 Hz). This adds a slow
drifting noise to the EEG signal. The temperature of the test room
should be adjusted to prevent participants’ sweating.

Head motion affects MEG more severely than it does EEG. The
MEG coils are not attached to the scalp; thus, small head
movements could create pseudo-signals. At least three head
position indicators are attached to monitor head movements. The
motion signals are used to identify head motion–related artifacts.

In addition to biological noise, recording and environmental
noises also exist. Typical recording noise is due to high electrode
impedance. A bad/old sensor exhibits a similar noisy pattern.
Environmental noise could be reduced by recording M/EEG inside
of an electrically/magnetically shielded room. The shielded room is
critical for MEG in particular. The room, however, cannot prevent
noise generated within the room, e.g., the power supply (alternating
current of 50 Hz or 60 Hz, also known as AC noise) of a computer



display or a florescent lamp generates activity with the frequency
that will be included in the M/EEG. The noise could be reduced by
increasing the distance between electric devices and the test
participant, properly grounding the equipment, and electrical isolation
of the test participant.

Figure 11.1 Major noises in M/EEG.
EEG segments contaminated by typical artifacts are shown. The horizontal
axis represents time (s). Note that the scale of the vertical axis is 200 μV,
which is several times larger than the typical scale of raw EEG (~50 μV). As
a result, EEG waveform of the good channel appears flattened. These
artifacts appear similarly in MEG records.



No matter what we do, however, it is obvious that we cannot
completely prevent all these noises. The noises are removed offline
using signal-processing techniques. For identification and removal of
the artifacts, EMG, EOG, ECG, respiration, and/or head motion are
recorded simultaneously with M/EEG. Most recording systems
support such polygraphic functions.



11.1.2 Montage

Montage rereferences the voltage level of the EEG signal to a
biological baseline. As we saw in Chapter 10, EEG is measured
relative to a low voltage level, typically ground level. The recording
signal is a mixture of brain and non-brain electric activities, such as
muscle activity and environmental charges. As a result, the baseline
level of the recording signal is inflated. In the inflated signal, we see
a miniature fluctuation of big voltage values, such as 1 000 212, 1
000 227, 1 000 219, 1 000 200, … , and 1 000 103 µV. The
recording signal alone cannot tell us how much of it is the brain
signal. For this purpose, we use a reference signal. Suppose the
reference signal from the left earlobe, which is recorded
simultaneously with the scalp signal, gives values such as 1 000
150, 1 000 152, 1 000 148, 1 000 150, … , and 1 000 100 µV. The
signal shows that the earlobe is charged due to (primarily) non-brain
activities. Given the location, we could assume that a similar level of
non-brain activity is added to the scalp recording. Based on this
assumption, the reference signal is subtracted from the scalp signal.
This yields a new time series of 62, 75, 71, 50, … , and 3 µV. A large
portion of voltage that is (presumably) of non-brain origin is removed.
As a result, the fluctuation becomes easy to observe. This montage
puts the signal at the right level but does not remove all artifact
components. As we will see, further artifact removal is necessary.
Montage is not applied to the MEG signal. This is because the MEG



method measures not the relative but the absolute level of magnetic
field strength.

The international 10–20 system specifies six reference
locations: left and right earlobes, left and right mastoids, and left and
right nasopharynges. In addition to these, locations close to the
scalp and without brain tissue and muscles beneath, e.g., tip of the
nose, are often used as a reference location. When a single
reference is applied to all the scalp electrode signals, the montage is
called a monopolar derivation. In the monopolar derivation, the
distance between the reference and each scalp electrode affects the
derived signal. For example, if the left earlobe is chosen as the
reference, amplitude of the signal will be smaller in the left than in
the right hemisphere.

To reduce such imbalance, an average over electrodes, e.g., all
scalp electrodes, is often used as a reference. The average over
scalp electrodes could be a good baseline if the electrodes are
distributed evenly over the scalp and the number of electrodes is not
too small. In the EEG literature, “average reference” often refers to
the average over all scalp electrodes. Because the average
reference does not depend on one electrode, derived EEG signals
do not show the location bias found in monopolar derivation. The
average reference method, however, is not suitable for measuring
large-scale activity that is distributed over many electrodes. Such
activity would be removed by applying the average reference.

In bipolar derivation, baseline activity does not come from a
reference, but another scalp electrode. When one scalp signal is
subtracted from another, brain signals that are common to both loci



are also removed. Bipolar derivation therefore can be seen as a
more aggressive method than monopolar derivation. It gives a signal
that is specific to the particular scalp electrode.

How to reference the signal, therefore, is decided according to
the purpose of a research study. Most of the recent EEG recording
systems offer real-time montage functions that allow flexible
rereferencing. Montage can also be performed offline.



11.1.3 Segmentation and Visual Inspection

The M/EEG signal is often recorded continuously over multiple trials
or runs. The continuous record is broken down into segments and
inspected visually. Some segments are apparently “bad,” e.g., the
signal reached 500 µV. If such an artifact appeared in most of the
channels, we could simply exclude the segment from the data
analysis. Similarly, if one channel was noisy throughout the
recording, we could omit that channel. Visual inspection is a simple
but effective way to remove artifacts.



11.1.4 Independent Component Analysis for Preprocessing

Some noises, such as ECG, spread over sensors and segments
cannot be removed by segment rejection. To remove, or, at least, to
reduce, the noises, we apply signal processing to the data.
Independent component analysis (ICA) is often used for that
purpose (and beyond). In the analysis, N channels of EEG are
transformed to N independent components. The transformation is
intuitively understood as rotation. Figure 11.2 illustrates how ICA
works. For the sake of illustration, N is set at 2. The two channels of
the signal are plotted as a two-dimensional scatterplot. Now, we
rotate the axes slightly and project each data point onto the new
horizontal and vertical axes. This gives us two sets of values,
components, which are a weighted sum of the original signals. As
illustrated, if we keep adjusting the angle of rotation, by chance and
with luck, we might find a “correct” angle by which to separate the
mixed signals into source signals. Independent component analysis
algorithms, such as InfoMax (Makeig et al., 1996) and FastICA
(Hyvarinen, 1999), search for the angle to obtain the independent
components. These algorithms are slightly different from each other.
However, they provide similar results for the sake of preprocessing.



Figure 11.2 ICA steps.
Two simulated time signals (left) are represented in a scattergram collapsing
time (right). The FastICA algorithm searches for a set of weights that
transforms the data into the independent components. The transform can be
understood as a rotation of the data.



Figures are courtesy of Patrik Hoyer

The algorithms assume that (1) source signals are independent
of each other, (2) the number of sources is the same as or less than
the number of EEG channels, (3) the distribution of source signal
values is non-Gaussian, and (4) the time delay of the signal mixing is
negligible. These assumptions are met for the artifact removal: By
definition, artifact sources are not the brain. The number of artifact
sources is typically smaller than the number of electrodes, e.g., one
heart, two eyes, and several muscles vs. 19 channels in the
international 10–20 system. The distributions of the artifact signals
are often non-Gaussian. For example, the distribution of data points
during an eye blink has more extreme points than the Gaussian (i.e.,
it is leptokurtic). And the delay is negligible.

Once independent components are obtained, each component
is compared with artifact signals, such as EOG and ECG, which are
recorded simultaneously with the M/EEG signal. The components
that correlate highly with the noise signals are considered noise
components. The weight of the noise components is set to zero,
after which all components are rotated back to the original axes. The
back-transformed signal represents the EEG in the original N
channels without the artifact components.

Independent component analysis was developed at the end of
the twentieth century (Jutten and Herault, 1991) and was rapidly
applied to various signals, including M/EEG. In the bigger picture,
ICA is one of the blind source separation techniques that are suited
to separate unknown but linearly mixed signals. Blind source



separation includes other methods, such as principal component
analysis (PCA) and singular value decomposition (SVD). These
techniques are also used for signal preprocessing (Jung et al.,
2000).



11.1.5 Filtering for Preprocessing

Another widely used method is filtering. To understand how filtering
works, we need to spend a few minutes on another representation of
the M/EEG signal, the frequency-domain representation. Figure
11.3 illustrates the relationship between the frequency-domain
representation and the time-domain representation. The M/EEG-like
periodic signal is a summation of sinusoids with various frequencies,
amplitudes, and phase lags. On the frequency axis, we see the
amplitude of each sinusoid. As Figure 11.3 illustrates, the time- and
frequency-domain representations are two views of the same signal.
We can switch from one representation to the other without losing
anything. Joseph Fourier came up with this idea in the nineteenth
century. Since that time, mathematicians have developed a family of
Fourier transforms. The discrete Fourier transform (DFT)
transforms a discrete signal, such as a digital M/EEG signal, into a
discrete frequency domain signal, which is the sum of the frequency
components. The inverse of the DFT transforms the frequency-
domain signal back to the original time-domain signal. The DFT and
inverse DFT are the theoretical bases for various M/EEG signal
analysis methods.



Figure 11.3 Time and frequency representations of waves.

A related (and somewhat confusing) term is the fast Fourier
transform (FFT), which is a computer algorithm that performs the
DFT efficiently. It was introduced by American mathematicians
James Cooley and John Wilder Tukey in 1965 (Cooley and Tukey,
1965). They showed that the computation for the DFT is efficiently
performed when the number of data points is an exponent of 2 (2n).
The fast Fourier transform implements the efficient, thus fast, DFT
algorithm. It turns out that the algorithm had already been discovered
in the early nineteenth century by Carl Friedrich Gauss, one of the
great German mathematicians. Cooley and Tukey re-discovered the
algorithm at the right time. Helped by the dramatic increase of digital
computational resources, the FFT has become the de facto standard
algorithm for the DFT. A sentence such as “FFT was applied to the
data” in an M/EEG paper means that digital M/EEG data was DFTed
using the FFT algorithm. More details of the algorithm are discussed
in Section 11.2.1.

As we know by now, some artifacts are localized in particular
frequencies, e.g., AC noise at 50 or 60 Hz. To remove such noise,



we could apply the DFT to the contaminated M/EEG data. In the
frequency domain, the signal at the noise frequency, e.g., 50 Hz, is
set to zero. Then, the signal is transformed back to the time domain
via the inverse DFT. Cutting a narrow frequency band, e.g., 45–55
Hz for 50 Hz AC noise, is called notch (band-cut) filtering. High-
cut filtering removes components higher than a threshold
frequency. Thus, it is also called low-pass filtering. A high-cut filter
is applied, for example, to remove muscular artifacts that typically
have a power higher than 50 Hz. Conversely, a low-cut (high-pass)
filter removes components lower than a threshold frequency. A low-
cut filter is applied, for example, to remove slow drift due to
respiration, the frequency of which is lower than 0.3 Hz at rest. The
threshold needs to be adjusted carefully. For example, some event-
related potentials are slow. In such cases, the low-cut threshold is
set to 0.1 Hz or even lower (Tanner et al., 2015). It is interesting to
compare these values with the filter settings employed in other
methods such as functional magnetic resonance imaging (fMRI). For
example, in resting-state fMRI the signal retained after filtering is the
part below 0.1 Hz (cf. Chapter 8), which is not considered interesting
for most EEG work.



11.1.6 Resampling

Magnetoencephalography/electroencephalography data have a large
number of time samples, e.g., a 10-s data epoch with a sampling
rate of 1000 Hz contains 10 000 data points per channel. As we
know from the sampling (Nyquist) theorem (cf. Chapters 1 and 10),
we could analyze the signal up to 500 Hz. The theorem also tells us
that a lower sampling rate is sufficient if we are interested in lower
frequency bands only. For example, when the bandwidth of interest
is 1–50 Hz, a sampling rate of 100 Hz (twice as fast as this highest
frequency of interest) is theoretically sufficient. In other words, we
could use 1 out of every 10 data points to obtain results equivalent to
those of full data point analysis. To reduce the computational cost,
down-sampling is often applied. In practice, a somewhat higher
sampling rate than the theoretical rate, such as 200 Hz for up to 50
Hz, is used as a safety margin. With this conservative criterion, we
could use 1 out of every 5 data points, which means data analysis
can be completed five times faster than with the original data (at
least on paper). Subsampling the original data points, e.g., selecting
1 every 5 data points, is one way to down-sample the data.
Alternatively, we can interpolate the original data and then resample
with a slower sampling rate. The resampling is handy when the ratio
of the original and the new sampling rates is not an integer (e.g.,
down-sampling from 1000 Hz to 256 Hz). Let us also point out the
relationship between the down-sampling and low-pass filtering. The



down-sampling reduces the highest frequency of the signal. Thus, it
is low-pass filtering (without using the DFT).

Conversely, up-sampling increases the number of data points.
The original data points are interpolated and resampled with a
shorter sampling interval than the original. Up-sampling is applied,
for example, to make the number of data points an exponent of 2 for
the FFT. For example, if the number of data points is 250, it can be
changed to 28 = 256 using up-sampling without changing the data
length in time. This is a better solution than “zero padding,” which
appends six zeros to the original data and introduces artifacts.

After proper preprocessing, artifacts are removed or reduced,
and the M/EEG data are properly formatted for the main signal
processing. Improper preprocessing does not increase signal-to-
noise ratio and could even generate noise. Although preprocessing
is often reported inconspicuously in an M/EEG paper, it is a very
important stage in data analysis.



11.2 Main Signal Processing
The brain does a lot of things at the same time, and not all of these
events are relevant to a specific research question that we are
asking. Regardless of the question, the irrelevant brain activities
exist in M/EEG data. The aim of the main signal analysis is,
therefore, to separate relevant signals from irrelevant ones. This is
significantly more difficult than preprocessing; unlike noise, we know
little about target brain activity a priori, what it looks like, when it
appears in what frequency, and so forth. Previous findings and
heuristics are incorporated to reduce the uncertainty. Moreover,
various assumptions are made to bridge the gap between the actual
properties of the M/EEG signal and the requirements of mathematics
behind each signal analysis technique. In this section, we introduce
basic analysis methods. More advanced methods are covered in
Chapter 12.



11.2.1 Spectral Analysis

In M/EEG data, we often spot changes in amplitude. For example, in
Figure 9.3 in Chapter 9, when the eyes were closed, the amplitude of
the signal increased. However, the exact frequency of the modulated
component is hard to see in the time wave. A plot of amplitude
against spectrum of frequency would be a better representation.
Earlier in this chapter, we learned that the DFT converts the data
from the time to the frequency domain. We would therefore use the
DFT to obtain a frequency-amplitude representation of the data.

The DFT converts N time samples to N frequency data points.
To compute the contribution of each frequency component from each
time sample, the computation is repeated N2 times. The total number
of computations is a lot, because M/EEG data have many time
samples, e.g., for 8 s of data with 512 Hz of sampling frequency (fs),
N = 4096, N2 = 16 777 216. The FFT reduces the number of
computations to Nlog2N: 49 152 times per channel in this example.
You could imagine that the FFT makes a huge difference in terms of
computational cost. FFT is also widely accessible; even a
spreadsheet package, such as Excel and Open Office, has it as a
function. For the FFT to work, N needs to be exponent of two, e.g., N
= 212 = 4096. The number could be made to 2n by padding zeros in
each end. The zero padding is often used as a default in various FFT
functions. Alternatively, data can be resampled during
preprocessing.



Prior to an application of the FFT, the edges of the segment are
smoothed. The DFT assumes that a signal is periodic, and the
period repeats infinitely. Clearly, this does not hold for a segment. At
both ends of the segment, the signal strength drops to zero: edges.
The edges generate false frequency components over a wide range
of frequencies. To reduce the spill-over, the edges are tamed. The
segment is multiplied by a smooth function called a window function,
e.g., Hanning, Hamming, and Gaussian functions.

The typical output of an FFT function has N complex numbers.
As we learned in Chapter 9, a time wave can be represented in the
polar coordinate with real and imaginary axes (cf. Fig. 9.4). Each
complex number of the output represents a frequency component.
Of the output, for the sake of spectrum analysis, we are concerned
only with the first half of the N complex numbers. (The second half
contains negative frequency components, which are mathematical
and do not exist physically.) The first complex number corresponds
to the (1 * fs/N) Hz component. The second complex number
corresponds to (2 * fs/N) Hz, and so forth. For example, for 8 s of
data with fs = 512 Hz, N = 4096. Thus, the frequency components
are 0.125, 0.250, 0.375, … , 256 Hz. The lowest frequency makes
sense, because we cannot estimate an activity slower than 8 s, i.e.,
the lowest frequency is 1/8 = 0.125 Hz. The highest frequency also
makes sense according to the Nyquist theorem, 512/2 = 256 Hz.

The amplitude of each frequency component is computed from
the complex number. In the polar plot, amplitude is the length of the

vector. The length is , where a and b corresponds to the



real and imaginary parts of the components. The relationship is
obvious if we imagine the vector in the polar plot and its projection to
real and imaginary axes.

The amplitude is the coefficient that determines the contribution
of the frequency component to the original signal, also referred to as
the Fourier coefficient. The larger the coefficient, the higher the
contribution becomes. The amplitude of the 0 Hz component is zero,
because the signal is baselined to its mean value in an FFT. (The
contribution of the direct current component can be computed by
simply taking the average of the time data points.)

We are ready to plot the results. Data are often band-passed
during preprocessing, e.g., 1–50 Hz. Components outside of the
range are not meaningful, thus they are usually omitted from the plot.
The amplitude spectrum plots the coefficients against the
frequency. In an amplitude spectrum, we can see which frequency is
dominant relative to others. A power spectrum shows the power of
the amplitude, a2 + b2. Thus, the power spectrum is another way to
show the the contribution of each frequency component to the
original signal. The amplitude spectral density (ASD) and the
power spectral density (PSD) are standardized spectra, in which
each coefficient is divided by the sum of the coefficients over all
frequency components. Thus, the unit of the standardized spectra is
arbitrary. The standardized spectra are used, for example, for group
data analysis.

Figure 11.4 shows a PSD of an EEG while a participant closed
the eyes and relaxed. A peak is observed around 10 Hz. The activity
is called alpha (α) band activity, the range of which is about 8–13



Hz. The name, Alpha-Wellen in German, was given by Hans Berger
in the first human EEG in 1929. The power of the α band activity
reduces when the participant is alert and performing a task. On a
scalp map, the activity appears strongly over parietal and occipital
electrodes/sensors. It is known, however, that not only parietal and
occipital but also other cortical and subcortical regions, e.g., the
thalamus, can generate alpha band activity. The alpha band activity
is the most prominent oscillatory component in M/EEG signals, and
various functions, e.g., the default/idling state and suppression of
other bands, are suggested (Başar, 2012). In the motor cortex, for
example, the α band activity will occur while the motor system is
idling. The motor-related rhythm is sometimes called mu (μ) rhythm
to distinguish it from other α band activity. The μ rhythm is observed
in EEG from the central electrodes that are close to motor-related
cortical regions.



Figure 11.4 PSD in eyes open and closed conditions (electrode ~O2), and
corresponding time domain signal (bottom).

Activity faster than α band is divided into beta (β, 13–30 Hz)
and gamma (γ, >30 Hz) bands. As a test participant emerges from
rest and is prepared for an experimental task, the α band reduces
and the β band activity appears. For example, in the motor cortex,



the β band activity appears when a movement is planned,
performed, or imagined (Pfurtscheller et al., 1996).

The γ band activity extends to 200 Hz, and is often divided
further into sub-bands, such as low (30–60 Hz) and high γ (60–200
Hz) bands. Magnetoencephalography/electroencephalography data
analysis for the γ activity is challenging for several reasons. As we
can see on a PSD, the γ band is the weakest signal. Moreover,
micro-saccade-related artifacts (~40 Hz), AC noise (50 or 60 Hz),
and EMG (~60–80 Hz) noise overlap with the γ band. Nevertheless,
various functions are implicated in the activity, e.g., feature
integration and working memory retention (Tallon-Baudry and
Bertrand, 1999). In intracranial recordings, these artifacts are of less
concern. There, the γ band activity is related to the excitability of
local neural populations. In particular, the high γ has been related to
synchronization of action potentials (Fries, 2009; Ray et al., 2008).

Activity slower than α band activity is also divided into two
bands, theta (θ, 4–8 Hz) and delta (δ, <4 Hz) bands. The θ band
activity is commonly seen among children who are awake but is not
obvious in adults who are awake. Some adults show the θ activity
while they are performing a task requiring mental concentration. The
task-related theta shows high power in Fpz and Fz electrodes. Thus,
it is called the frontal midline theta (Fmθ)(Inanaga, 1998). The
medial frontal cortex is considered the generator of the Fmθ rhythm.
The rhythm is related to cognitive functions such as error monitoring.
Another θ band activity in the hippocampus has been related to
memory functions (Raghavachari et al., 2001).



Typically, δ band activity appears when participants are in deep
sleep; the sleep stage associated with this activity is therefore called
slow-wave sleep. The slow activity is a result of the synchronization
of large cortical regions. Animal studies showed that the thalamus
serves as the pacemaker of the activity that is synchronized over
large numbers of electrodes. The activity modulates other activities,
e.g., the γ activity and spontaneous spiking are time-locked to the δ
activity (Steriade, 1997). A possible function of the activity is memory
consolidation during sleep.

Now, let’s try to read part of a research paper that uses the
spectrum analysis technique. This example study investigates
whether slow-wave sleep consolidates what we learned during the
day (Yordanova et al., 2012). Volunteers learned a complex problem-
solving task. Then, they slept overnight in an EEG lab, while EEGs
were recorded. Sleep was classified as Stage 2 (S2) sleep, which is
considered shallow sleep; slow-wave sleep (SWS); and rapid eye
movement (REM) sleep. The EEGs in each sleep stage were
analyzed using a spectrum analysis. Figure 11.5 and its caption are
reproduced from the study. What do they tell us about the role of
slow-wave sleep and consolidation of learning?



Figure 11.5 Example of a spectrum analysis.
“… Depicted is the grand average power spectrum (across electrodes C3
and C4) for three sleep stages: S2, SWS, and REM. The shaded area in
SWS indicates the frequency range of significant differences between non-
solvers and solvers. Standard error bars are presented for each frequency
bin.”

Excerpt from Yordanova et al., 2012. Figures are reproduced from with
permission



Box 11.1  Phase Spectrum

Using the output of an FFT, we could compute not only the
amplitude spectrum, but also the phase spectrum. The
relationship among phase θ, the real part a, and the
imaginary part  b is tanθ = b/a (cf. Fig. 9.4 in Chapter 9). The
inverse of tangent (i.e., arctangent) of the ratio gives us the
phase. The phase represents a shift of the sinusoidal
component. For example, a 90˚ phase shift of the 10 Hz
component shifts the signal 25 ms in time. To recover the
original waveform from the amplitude spectrum, each
frequency component is shifted according to the phase shift
before summing the components. The phase shift is different
from the instantaneous phase. The moment-by-moment
phase change cannot be observed in the FFT(DFT)ed signal,
because it does not have the time dimension. We will learn
how to compute and use the instantaneous phase in Section
12.2 in Chapter 12.

The phase spectrum is a representation used less
frequently than the amplitude spectrum in M/EEG data
analysis. The phase spectrum is always computed in MRI
signal processing: To obtain the k-space, the MR signal is
DFTed, and the amplitude and the phase spectra are
computed (cf. Box 2.1 in Chapter 2).



11.2.2 Event-Related Potential Analysis

In everyday life, we often recognize objects and external events
quickly. For example, it takes less than a second to judge whether
we are looking at a face or a house. If we want to know when the
information processing for a face differs from that for a house, we
need to analyze a brain signal with sub-second time resolution, such
as M/EEG signals, from the onset of the stimulus.

Event-related potential (ERP) analysis is able to tell millisecond-
by-millisecond changes of the brain activity. The method is probably
the most popular method of M/EEG data analysis. The main
computation is averaging of M/EEG data segments over trials. The
trial averaging is simple but efficiently increases the signal-to-noise
ratio in the event-related paradigm. In the paradigm, an event of
interest is defined not only in physical and/or psychological
dimensions, but also in time, e.g., a flash of visual stimulus at time t.
The brain response to the event is the signal, while ongoing and
stimulus-irrelevant neural activities are considered as noise in this
paradigm. The signal is mixed with the noise; therefore, it is hard to
observe in a single-trial M/EEG. Now consider repeating the event
many times, say 200 trials every 2–3 s, while recording M/EEG.
From the data, we obtain 200 trial segments, which are segmented
around the stimulus, e.g., -200 to +1500 ms from the stimulus onset.
Because the event is the same, we could assume that the neural
response is the same, or at least similar, in waveform and latency
over the trials. Conversely, ongoing activity is not time-locked to the



event, and there is no a priori reason to assume similarity among
them across the trials. When all trials are aligned with the event and
averaged over trials, non-evoked components cancel out and only
evoked responses remain. The average waveforms are called
evoked potentials (EPs) (Fig. 11.6).



Figure 11.6 ERP components.

(A) In response to a stimulus, a sequence of ERP components appears.
Note that the Y-axis is reversed. This “upward-negative” style is common in
the ERP literature. The ERPs to a rare stimulus (red) show larger late
components (P3) than do those to non-rare stimuli (black). Latency of P3
depends on task conditions (Kotchoubey et al., 2002).



(B) Difference waves (orange): Native Japanese speakers do not
distinguish /r/ and /l/ sounds. Difference between ERPs to /r/ and /l/ sounds
are computed for the Japanese and native English speakers. The native
English speakers show larger mismatch negativity around 200 ms than the
Japanese speakers (Zevin et al., 2010).

The figures are reproduced with permission

Evoked potentials to sensory stimulation are prefixed by
modality: VEP (visual), AEP (auditory), SEP (somatosensory), OEP
(olfactory), and GEP (gastric). Not only an external stimulus but also
an internal state modulate potentials. For example, when a beep is
presented repeatedly in 1 Hz, a participant starts expecting the beep.
If the expected beep was skipped, the lack of event evokes a



component. In this case, the activity occurred not due to a
stimulus/exogenous event, but due to an endogenous event. Event–
related potential (ERP) is the collective term for brain activities
elicited by exogenous and endogenous events. Psychological
factors, e.g., attention and memory load, modulate ERPs.

Event-related potentials are evaluated relative to baseline
activity, which is the activity during a no- or neutral stimulus period.
Often a prestimulus period, e.g., −200 to 0 ms, is taken as the
baseline. Amplitude and polarity (negative or positive) of major
components are determined relative to the baseline (cf. Box 9.1 in
Chapter 9). Also, from the onset/offset of the stimulus, the order or
latency is specified. For example, P3 is the third positive
component. The same component is sometimes referred to as
“P300,” a positive component that appears around 300 ms from the
event. Scalp distribution is also important in specifying a
component, e.g., the maximum peak of P3 is often found in parietal
electrodes (Fig. 11.6). The P3 is one of the first components
discovered to show sensitivity to endogenous factors, such as
stimulus uncertainties, attention, and semantic processing. For
example, the amplitude of the P3 after a rarely presented tone will be
higher than that after frequently presented tones. The effect does not
depend on sensory modalities (Sutton et al., 1965).

Difference waveforms between conditions are also useful in
identifying a component. For example, in a difference wave between
ERPs of rare and frequent tones, we can spot a negative component
around 200 ms in centro-frontal electrodes. This component is called
mismatch negativity (MMN) (Näätänen et al., 1978). The component



tells us that stimulus probability information is processed within 200
ms from the stimulus onset.

Even-related potentials also show that selective attention
starts affecting information processing in its early stages. For
example, the amplitude of ERP components P1 and N1 (latency 80–
150 ms) is larger for the components of attended than an unattended
stimuli (Hillyard et al., 1973) (see also Fig. 11.7). An MEG ERP study
showed an even earlier effect (Poghosyan and Ioannides, 2008).

The ERPs earlier than P1 reflect activity due to early sensory
processes. For example, in response to a click tone, there is a
complex of components that appear within 15 ms. The auditory
brainstem response (ABR) reflects the activity of auditory nuclei in
the brainstem. The response is modality specific and insensitive to
endogenous factors, such as attention. The auditory brainstem
response readily shows the power of the ERP method. Such early
activity that originates from a deep brain structure, and therefore is
faintly present in the recording, can be observed in this method.

The ERP analysis assumes that (1) the event evokes the signal
consistently over trials, (2) the timing of the signal is also consistent
over the trials, (3) signal and noise are uncorrelated, and (4) the
noise is random with zero mean. Violation of these assumptions
results in poor signal quality. For example, if the latency jitters from
trial to trial, the averaging cancels out the activity, and thus the
amplitude of the EP will be small. Note that the small average
amplitude does not mean small single trial amplitude in this case (cf.
Section 12.2.5. in Chapter 12). Instead of the mean, the median can
be used to ease the effect of outliers.



A variant of the ERP method is the steady-state evoked
potentials (ssEPs) method, which is the brain response to
repeated stimulation. For example, when a visual stimulus is
presented at 12 Hz, the tail of one evoked response overlaps with
the head of the next. Averaging of the segments gives the sequence
of the peaks. When the data are DFTed, the PSD shows a peak at
12 Hz, which reflects the 12 Hz stimulation. The peak changes not
only with exogenous but also with endogenous factors, similar to
ERP amplitude. For example, the PSD peak was higher when
observers attended to the flashing stimulus than when they did not
(Morgan et al., 1996). The DFT collapses the time dimension. Thus,
on the one hand, we lose time information. On the other hand,
however, it is more robust against latency jitters than trial averaging.
Therefore, the signal-to-noise ratio of ssEP is typically better than
ERP.

Now, let’s take a look at part of an ERP paper (Clark and
Hillyard, 1996). This paper reports when the effect of visuo-spatial
attention appears in EEG signals. Participants focused on the left or
right side of the visual field. Brain responses to visual targets that
appeared in the attended and nonattended side are shown in the
ERP measure. In all waveforms, ERPs recorded before 100 ms did
not show any difference between the attended and nonattended
conditions.



Figure 11.7 Example of an ERP analysis (grand average of VEPs).
“Grand average visual ERPs over 17 subjects recorded from four scalp sites
in response to small circular checkerboard stimuli in a spatial attention task.
Stimuli were flashed in a rapid, randomized sequence to the left and right
visual fields while subjects attended to one visual field at a time. ERPs
shown are in response to left field flashes, with waveforms superimposed
for attend-left (solid lines) and attend-right (dotted lines) conditions. Note
that attending to the stimulus location produces an increased amplitude of
the P1 components (80–130 ms) over the contra- and ipsilateral occipital
scalp, as well as of multiple N1 components (120–200 ms) over frontal
(front), parietal (par), and occipital (occ) scalp areas. In contrast, the earlier
C1 component (50–90 ms), which was localized to primary visual cortex, did
not change as a function of attention. Abscissa, time base in milliseconds.”

Excerpt from Hillyard and Anllo-Vento, 1998. The figures were originally
published in Clark and Hillyard, 1996. The figures are reproduced with

permission



11.3 Statistical Tests
As a result of M/EEG analysis, we have multivariate results; for
example, 2 s of ERP in a 500 Hz sampling rate has 1000 data
points, which may be computed for each of the 128 channels, in 2
task conditions for each of 20 participants. This yields a matrix of
1000 x 128 x 2 x 20 data points. To find where in time and in what
channels a difference exists between conditions, a multivariate
analysis, e.g., multivariate analysis of covariance (MANCOVA), can
be applied (Friston, Stephan, Heather, et al., 1996). The analysis fits
a linear model to the multidimensional data. This is similar to an
analysis of covariance (ANCOVA) for univariate data, which have
one data point per condition per participant, e.g. a mean error rate.
Univariate methods, e.g., ANCOVA, analysis of variance (ANOVA),
and Mann–Whitney U test, can also be applied with type-I error
correction, e.g., family-wise error correction (FWE). The error
correction is necessary, because the results correlate in time and in
sensor space (cf. Chapter 7). Prior to a univariate test, the data
dimensions could also be reduced. For example, principal
component analysis (PCA) could reduce the 128 channels to several
principle components. The type-I error correction is less harsh for the
several components than for the 128 channels of data.

Previous findings and heuristics are important for the data
analysis. They tell us a priori which aspect of the results becomes
relevant, e.g., by predicting whether the amplitude of the P300 ERP
in parietal regions would differ between two conditions. Such



heuristics, on the one hand, could reduce the dimensionality of the
results dramatically. For example, if we select the peak amplitude of
P3 of the Pz electrode, the multivariate ERP result is reduced to a
univariate result, a 2×20 matrix. On the other hand, subsetting
results requires careful consideration, e.g., why peak value is used
instead of the area under the curve, why other parietal electrodes
were not included, and other arguments for the subsetting need to
be sound and clear. This is important to avoid a circular analysis
(Kriegeskorte et al., 2009), as was explained in Chapter 7.



Box 11.2  ANOVA and Power Spectrum

It may be useful to know that spectral analysis is closely
related to ANOVA. To obtain a power spectrum, a time
domain signal is DFTed to frequency components, then the
amplitude is squared. In a way, each power value represents
the variance of the analyzed signal that is explained by
oscillatory activity at that frequency. Thus, power is a kind of
variance. Now we remind ourselves how variance is
computed given N data points: Difference between the mean
and each data point is squared. Then the squares are
summed and divided by N. Thus, variance is a kind of power.
Mathematically, variance of the original signal equals half of
the total spectrum power. Therefore, variance due to a certain
frequency band, such as alpha band activity, can be obtained
by summing power values within the band (e.g., 8–13 Hz)
and halving the sum. If we wish to know whether the alpha
band power differs between two conditions, we could
compute the power spectrum, derive the variance, and take
the ratio of variances between the two conditions. The ratio is
an F-statistic that we consult in ANOVA.



Summary
Magnetoencephalography/electroencephalography (M/EEG)
signals are processed using digital signal-processing
techniques. Roughly, we could consider two stages:
Preprocessing reduces/removes artifacts in M/EEG signals.
Main signal processing selects the brain signal of interest
from the non-interesting part of signal.

Via Fourier transform, M/EEG signals can be represented in
time or frequency domains.

Artifacts can be identified by their characteristics in time
and/or frequency domain signals.

A large number of signal-processing methods are applicable
to M/EEG signals. Usually more than one signal-processing
method is applied.

Statistics are often multivariate. Dependence between the
variables is dealt with in ways similar to other brain imaging
data.



Review Questions

1. Name five major artifacts in EEG recordings. How can they be
identified?

2. Suppose you have an EEG record that is contaminated by eye
blinks. Describe two methods for the removal of the artifacts.

3. Explain what spectrum analysis is. Describe in words how to
obtain power spectral density (PSD) from M/EEG data. Name two
research fields or application domains in which PSD analysis is
frequently used.

4. Explain what the evoked potential (EP) is. Describe how to identify
a component in an EP. List two examples of an EP used in
psychological studies.
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Chapter 12

Advanced Data Analysis
◈



Learning Objectives

The verb “advance” means moving forward in a purposeful manner.
Advanced analysis on M/EEG signals, therefore, should move us
closer to what we want to know from the data. So far, we’ve learned
that the M/EEG time series can be transformed to the frequency
domain applying the discrete Fourier transform (DFT). In the
frequency domain, contributions of each frequency component are
clearly observed. However, in the frequency domain, we cannot tell
whether the contributions changed with time. What should we do if
we want to know, for example, whether the alpha band activity
increased before or after a stimulus presentation? We’ve also
learned that M/EEG signals have a fine time resolution. Taking
advantage of the resolution, we can observe moment-by-moment
interactions between brain regions, such as synchrony and

Understanding M/EEG data in different representations,
namely, time plot, frequency plot, time-frequency plot, and
correlogram

Understanding the relationship between discreet Fourier
transform and short time Fourier transform

Understanding the key ideas behind wavelet transform

Understanding the basics of phase analysis

Understanding the relationship between autoregressive
analysis and Grainger causality



desynchrony between frontal and parietal signals. In this chapter, we
introduce some advanced data analysis methods to observe such
fascinating aspects in the signal.



12.1 Short Time Fourier Transform and
Wavelet Transform



12.1.1 Short Time Fourier Transform

The M/EEG data can be represented in either a time or frequency
domain via the DFT. However, neither of the representations is
sufficient if we wish to know when and which frequency component
changed its activity. In such a case, we need to represent the signal
in time and frequency. A possible strategy is to apply the DFT not to
the whole data, but to short segments one after another. As a result,
we obtain a time series of the DFT. Figure 12.1 shows a time series
of a power spectral density (PSD) computed from the results of a
DFT applied to such short segments (420 4 s segments). The time
series of the PSD gives us a time-frequency representation of the
signal, in which we can observe when and which frequency
component changed in amplitude.



Figure 12.1 PSD stuck in time.
The figure is taken from Makeig and Inlow (1993). EEG spectral power was
computed from 4 s EEG segments of a 28 min session of a subject
performing a task. Performance error at each segment was plotted on the
vertical axis. Activity around 10 Hz activity is high when the error rate is low
(the error rate is projected on the long wall), while the opposite relation is
seen in activity around 4 Hz. (A) and (B) show a representative time-domain
signal of the low and high error trials, respectively.

The figure was reproduced with permission

The temporal and frequency resolution of the spectrogram is
determined by the length of the data segment. For example, if the
length is 100 ms, a spectrum is obtained every 100 ms. To increase
time resolution, the segment length may be decreased, e.g., to 25
ms. This, however, creates another problem; a 100 ms segment
could include about one cycle of alpha activity, while a 25 ms
segment cannot, i.e., we cannot obtain a reliable estimation of alpha
band activity using a 25 ms segment. If we increase the length, for



example, to 200 ms, the reliability of the estimation for alpha band
activity (8–13 Hz) would increase, but the time resolution of faster
activity will decrease; for example, beta band activity (13–30 Hz) has
about 10 cycles in the 200 ms segment. The DFT collapses time;
therefore, we cannot tell which of the cycles changed its activity. The
dilemma is clear: When we increase resolution in time, we decrease
that in frequency, and vice versa. This trade-off is fundamental to
time-frequency analysis, Thus, it is called the uncertainty principle of
the Fourier transform.

The short time Fourier transform (STFT) eases the problem
by incorporating a “moving window” technique. The window slides
over the data in time. The DFT is applied to a data segment within
the window. The window has a fixed length and smooth shape, e.g.,
200 ms and a bell shape (Gaussian). The window function is applied
to tame the edges of a segment; the segment is multiplied by the
window and is DFTed. Then, the window of a small time step is
shifted, e.g., 2 ms, which is one data point in a 500 Hz sampling rate,
and the DFT is applied again. The moving window technique gives
us a time series of the DFT results in small time steps. Adjacent DFT
results are similar but not identical. The result is represented by a
spectrogram, which plots amplitude/power in time and frequency.

The STFT using the Gaussian moving window was introduced
by the Hungarian-British mathematician Dennis Gabor (1946). The
window function is used to tame segment edges. The DFT assumes
that the signal is stationary and periodic and that the period repeats
infinitely (cf. Section 11.2.1 in Chapter 11). No real M/EEG data
continue infinitely. However, the DFT sees the signal not as a



segment but as an infinite concatenation of the segment. The
concatenation of the data segments often adds sharp edges in the
signal. These pseudoedges add noise to the DFT results. To tame
the pseudoedges, the signal is attenuated toward the ends of the
segment. A tapered window function is applied to each data epoch
prior to DFT. Intuitively, we could understand that the problem of the
edges worsen as the segment shortens. Thus, the window function
is particularly important in STFT. In addition to the Gaussian, other
window functions, e.g., Kaiser-Bessel, Hamming, and Hunning
functions, are also used depending on the specific purpose of the
STFT analysis (Gao and Yan, 2010).

Back-transform from the spectrogram to the time-domain signal
is seldom performed in M/EEG analysis because it is rather complex
due to the moving window; segments are weighted and overlapped
in the STFT (strictly speaking, the spectrogram is not equal to the
original time-domain data), which makes the inverse of the STFT
more complex than the inverse DFT of an entire segment.

In a spectrogram, we wish to see time-resolved frequency
activity. For the best result, prior knowledge of the activity of interest
needs to be incorporated into the analysis. For example, when we
expect to see a transient amplitude change in alpha band (8–13 Hz),
the segment length would be set to 125 ms, i.e., a period of an 8 Hz
sinusoid or longer. In an exploratory analysis, however, such
parameters are not available. Using a fixed length window, there is
the possibility of missing interesting activity because the segment is
too short or the activity is smeared, thus being hard to localize in
time because the segment was too long. In other words, the problem



in using the STFT is the fixed segment that forces a single time-
frequency resolution to the signal, the resolution of which trades off
between time and frequency.

How the STFT was developed from the DFT is a good example
of how our predecessors advanced the analysis. Not all problems
were solved, but at least they managed to see what they wanted to
see.



12.1.2 Wavelet Transform

The wavelet transform is another way to obtain a time-frequency
representation of the signal. The method is derived from a different
line of thinking from that involved in Fourier transforms. Fourier took
ever-repeating sinusoids as the basis of signal decomposition. We
could, however, think of other basis functions. Consider a pattern: a
short positive pulse followed by a negative pulse. The repetition of
this pattern in time makes a continuous oscillation. Scaling and
shifting of the pattern make more complex patterns possible. Let’s
stretch and shrink the pattern, shift the scaled patterns in time, and
sum over the patterns. As a result, a complex temporal wave
appears, which might look like M/EEG signals. The example here
shows that such a pattern, a wavelet, can be a basis function of
signal decomposition that is an alternative to sinusoids. Sinusoidal
basis functions are stationary and repeat infinitely. Conversely,
wavelet functions are local. The M/EEG signal is often not stationary.
Moreover, transient activity, e.g., an evoked response to a face
stimulus, is often the activity of interest. In other words, wavelet
transform is an attractive alternative to the DFT in M/EEG signal
analysis.

In principle, any short time pattern could be a basis function of
the wavelet transform if the pattern is scaled and shifted freely. In
fact, some popular wavelets are pretty bizarre looking. In M/EEG
signal processing, wavelets such as Morlet, Gaussian, and Mexican
hat are often used. Of these, probably the most widely used is the



Morlet wavelet, named after Jean Morlet, a French geophysicist and
one of the founders of wavelet analysis. The Morlet wavelet function
is the product of two time functions, sinusoid and Gaussian (Fig.
12.2). It resembles a piece of cosine wave. The number of cycles in
the Morlet wavelet is called the wavenumber. Typically, the
wavenumber, c, is set to 5 or more, which works well for most of the
M/EEG frequency range. The “mother” wavelet is scaled:
compressed for faster or expanded for slower frequencies. All
“children” have the same number of cycles, but the length is
different. For example, given c = 5, the wavelet for 10 Hz has the five
cycles in 500 ms, while that for 5 Hz extends to 1000 ms.



Figure 12.2 Illustration of wavelet analysis.

(A) From a wavelet to wave, vise versa.

(B) The Morlet wavelet is the product of a sinusoid and the Gaussian
function. The example contains 5 cycles.

(C) Scaling of the wavelet.



(D) Result of the convolution between the 10 Hz Morlet wavelet and the
EEG signal.

To compute a 10 Hz amplitude at time t, the center of the 10 Hz
Morlet wavelet is placed at t. The wavelet and M/EEG data are
multiplied, and the products are summed over the length of the
wavelet, in this case, 500 ms. The sum is called the wavelet
coefficient. The meaning of the wavelet coefficient is clear if we
remind ourselves what the Fourier coefficient meant in the DFT: The
Fourier coefficient shows the contribution of each sinusoidal
component to an M/EEG signal, collapsed over all time points. The
coefficient is the amplitude of the sinusoid. Likewise, the wavelet
coefficient shows the contribution of the wavelet to the M/EEG signal
at time t. Thus, the coefficient is the amplitude of 10 Hz oscillations
at time t. The wavelet is shifted one data point in time, and the
computation is repeated. The sweep of computation is equivalent to
computing the convolution between the wavelet and the data, which
gives a time series of wavelet coefficients. In this example, it gives a
series of instantaneous amplitudes of 10 Hz oscillations. The
convolution is repeated for other scales of wavelets, e.g., 2 Hz, 4 Hz,



6 Hz, 8 Hz, 12 Hz, 14 Hz, and so forth. The instantaneous amplitude
is plotted on the time and frequency axes. The time-frequency
representation of the signal is called a scalogram (Fig. 12.3). The
scalogram looks similar to the spectrogram of the STFT, but it is
different. Unlike a spectrogram, the time-frequency resolution of the
scalogram is not fixed because the length of the wavelet is scaled to
each frequency.

Figure 12.3 Example of wavelet analysis (scalogram during finger tapping).
“Scalogram displaying the squared and over all trials averaged wavelet
coefficients for the time interval 2 to 8 s (x axis). Scale (left axis) running
from 24 to 64 corresponds to a frequency range (right axis) from 12 to 32
Hz. Color-scale from ‘black’ (minimum) to ‘red’ (maximum): The maximum is
marked by a cross.”

Excerpt from caption of figure 5 in Pfurtscheller and Da Silva, 1999. The
figure was reproduced with permission

The following is an example of a scalogram taken from an EEG
study (Pfurtscheller and Da Silva, 1999). The study investigated
timing and frequency of the motor-control-related EEG signal. The
cortical regions on the front bank of the central sulcus and pre-
central gyrus play a critical role in motor control. The motor cortex



controls the limbs contralaterally, the reason a trauma to the left
motor cortex often results in a paralysis of the right limbs. Figure
12.3 is a scalogram of EEG data from the C3 electrode during right
index finger tapping (Pfurtscheller and Da Silva, 1999). We can see
when and in what frequency the motor-related brain activity occurred
in the time-frequency plot.



12.1.3 STFT or Wavelet?

In the 1960s, Jean Morlet was working as an oil exploration engineer
in a French oil company, Elf-Aquitaine. To search an underground oil
reserve, an artificial seismic activity is induced. Hundreds of
underground formations reflect the activity, and the mixture of the
reflections is recorded by probes on the ground. Morlet applied the
STFT to the data; however, the results were not promising. The data
had many transient activities – in other words, the data were not
stationary enough for the DFT to work. He finally shortened the
sinusoidal basis functions to “wavelets.” The results allowed him to
track transient changes in the data that could indicate qualitative
differences in the formations, signaling borders with a potential oil
reserve. Most of his colleagues initially believed neither the method
nor the results (Hubbard, 1996). Interestingly, more or less the same
idea was simultaneously developed in different fields of science in
different parts of the world. We can still see traces of this parallel
evolution, e.g., Morlet wavelet and Gabor wavelet are practically the
same function. The different names come from the different schools
of the analysis, French or British.

Unlike wavelet, the STFT assumes the signal to be stationary
and infinite. These assumptions may not fit the reality of the M/EEG
signal, which often includes nonstationary segments and always has
finite length. The wavelet transform adjusts the window length
according to the frequency. Thus, it provides a multi-resolution time-
frequency representation. Such an adjustment of the time-frequency



resolution works well as long as slow components always change
slowly and fast components always change quickly. However, in real
data, a slow component could increase in amplitude suddenly. In
such a case, the STFT may still perform better, e.g., an STFT with
100 ms segment would locate a sudden change of a 10 Hz
amplitude in time better than a 10 Hz Morlet with c = 5 would. Prior
knowledge about the target phenomenon, such as its frequency and
timing, matters for the choice of one over the other method.

There are more differences between the two methods. Let us list
one more, which is about the inverse function. The wavelet method
has an inverse wavelet transform. The wavelet transform and its
inverse are frequently used to band-pass the M/EEG signal. Taking
the inverse of the STFT is possible but significantly more complex
than that for the wavelet. Thus, the inverse is seldom used in M/EEG
analysis.

Finally, there are a couple of naming conventions that often
cause slight confusion. The STFT uses DFT, because M/EEG data
are discrete (digitized). In this respect, the wavelet transform of the
M/EEG signal could also be called a “discrete” wavelet transform.
However, the term discrete wavelet transform (DWT) often refers
to something very different. It means that scaling and translation of a
wavelet is not continuous, e.g., a wavelet is shifted on data with a
step size of 2n samples (cf. multi-resolution analysis). The wavelet
transform with continuous scaling and translation, including the
Morlet wavelet, is therefore called continuous wavelet transform
(CWT). If you are looking for the Morlet wavelet function in a signal-
processing package, instead of the DWT menu, try the CWT menu.



12.2 Phase Analysis



12.2.1 Computation of the Phase

As we learned in Chapter 9, the phase is an angle between 0˚ and
360˚. However, the unit of time domain signal is μV. Apparently, we
need to do something to obtain the phase from the data. The DFT
lets us compute a phase spectrum; however, the transform collapses
time (cf. Box 11.1 in Chapter 11). To obtain phase angles, which are
changing moment by moment, i.e., instantaneous phase, we need
to process the signal differently. One way to compute the
instantaneous phase is to apply the Hilbert transform. The function
transforms the time “wave” to a “helix” (cf. Fig. 9.4B in Chapter 9).
The transformation is necessary to obtain a unique phase for each
time point. For example, consider a cosine time wave that oscillates
between -1 and 1. When the cosine is 0.50 at time t, trigonometry
tells us that two angles, 60˚ and 300˚, correspond to the single
cosine value. Which one should we take? To disambiguate, we need
to check the cosine and the sine of the wave at t; if the cosine and
sine are 0.50 and 0.87, then the phase is 60˚. If the values are 0.50,
and -0.87, then the phase is 300˚. The Hilbert transform of the
cosine wave gives a wave 90? apart, i.e., the sine wave. When the
cosine and the sine waves are plotted in 3D, we see a helix. There is
no ambiguity of phase in a helix. The M/EEG signals are not
sinusoid; however, the Hilbert transform computes a signal with a
phase shift of 90˚ from the original signal. The pair of signals is
called an analytic signal. The phase is not ambiguous in the
analytic signal.



Each time point in the analytic signal is therefore expressed as a
complex number, at + bti, where i is the imaginary unit (cf. Fig. 9.4A
in Chapter 9 and Box 12.1). The real part is at =  cos θt and the
imaginary part is bt =  sin θt, where t is time. Trigonometry tells us

that the relationship among θt, at, and  bt is . Therefore,
the instantaneous phase is given by the inverse of the tangent, i.e.,
the arctangent of the ratio.

Accuracy of the phase estimation increases as the band width of
the signal decreases, because the narrower the band, the closer the
band-passed signal to a sinusoid. Thus, often the signal is band-
passed prior to the application of the Hilbert transform.

Another way to compute the phase is to use the complex Morlet
wavelet transform. The wavelet is a pair of Morlet wavelets that are
shifted relative to each other in 90˚, i.e., a piece of cosine and sine
waves in a Gaussian envelope. Application of the wavelet gives a
pair of time series, one real and the other imaginary. From the
complex time series, the phase is computed in the same way as we
did for the analytical signal of the Hilbert transform. The results of the
two methods of phase computation do not have much difference in
the practice of M/EEG phase analysis (Le Van Quyen et al., 2001).
Both the Hilbert transform and complex Morlet are available in
various signal analysis libraries, e.g., the scipy.signal library of
Python.



12.2.2 Phase Synchrony

A concrete example may help us to understand how phase analysis
works: Let’s suppose that we want to know whether left and right
motor cortices synchronize their activity during a bimanual motor
task. To find out, we measure EEG during the task and at rest. The
electrodes C3 and C4 are approximately on the left and right motor
cortices. To check to see whether the EEG from these electrodes
synchronize, we could simply correlate the signals. The results of the
correlation primarily reflect alpha band and slower activity, because
the slow components have a large contribution to the signal (cf.
lopsided PSD in Fig. 11.4 in Chapter 11). However, it is known that
the motor-related activity appears around 20 Hz in the beta band
(Conway et al., 1995). The correlation in the beta band is
overshadowed by that of the slow activities: The coherence analysis
of the full signal could miss the synchrony of interest.

We could band-pass the signal for the beta band prior to
computing the correlation. This yields better results than the full-
signal coherence, but they are not perfect. Even if the signals go up
and down in exactly the same timing, the correlation coefficient does
not become 1 because of differences in amplitude. For example, if
the reference is on the left ear, the amplitude of C3 is smaller than
that of C4. To eliminate the effect of amplitude, it is better to use the
phase than the band-passed signal.

To estimate the beta band synchrony between the motor
cortices, we compare the phase of 20 Hz activity between C3 and



C4. For a reliable synchrony estimation, the signals are compared
for at least several cycles (Lachaux et al., 1999). For example, for a
20 Hz oscillation, a 200 ms segment contains 10 cycles. For each
time point, we take the difference between the two phases. The
difference, or relative phase, is yet another angle. So, we consider
the relative phase as a vector on a circle with radius 1 (Fig. 12.4).
We can plot all the relative phases from the segment as vectors on
the unit circle. When the two signals are not synchronized, the
vectors point in different directions on the unit circle. When the
vectors are averaged, the length of the mean vector is close to 0
(Fig. 12.4A). Conversely, while the two signals are synchronized,
their relative phase stays around the same angle over time. Thus,
the length of the mean vector becomes close to 1 (Fig. 12.4B). That
is, the length of mean vector takes a value between 0 and 1. Zero
indicates that the phase relation of the pair is random, while 1 means
perfect phase synchrony. The length of the mean vector has several
labels: phase coherence, synchrony index (SI), phase-locking
index (PLI), and single-trial phase-locking value (S-PLV).



Figure 12.4 Averaging phases.
The phases are represented as unit vectors (length = 1). When the vectors
are pointing to various directions (A), they cancel each other out; thus, the
length of the mean vector (red) becomes close to 0. In such a case, the
mean phase (angle) is not reliable. Conversely, when the vectors are
pointing in a similar direction (B), the length of the mean vector is closer to
1, and the mean phase is reliable.

Phase coherence can be computed with a moving window. The
results show dynamic changes of synchrony between the two
signals. The time resolution of synchrony estimation is determined
by the length of the window.

When the difference between the two stays close to 0˚, we could
consider that the signals are synchronized. Sometimes, the
difference constantly shows a non-zero angle, e.g., 72˚. For the 20
Hz activity, the phase difference corresponds to 10 ms. That is, the
signals have a constant time lag of 10 ms. Such phase locking with
time lag, lagged synchrony, is also an interesting relationship
between the two activities.

Figure 12.5 shows an example of phase synchrony analysis
(Nikouline et al., 2001). In this MEG study, the synchrony between
bilateral motor cortices in beta band activity was investigated. The



MEG signal was obtained while the test participants were relaxed
and awake. As expected, the PSD of the signal from the sensors
above the bilateral motor cortices shows a peak around 20 Hz in
addition to a peak in the alpha band. The beta signal is extracted via
a complex Morlet transform from which the phase was computed.
The phase difference between the two is computed for each time
point. The histogram of the phase lag shows a peak at around 0˚.
The result suggests that left and right motor cortices were
synchronized in the beta band activity in the rest condition.



Figure 12.5 Example of phase synchrony analysis (synchrony between left
and right motor cortices).
“An example of beta oscillations (right hemisphere, subject N5). (a)
Spectrum of the MEG signal. Note the prominent peak at ~21 Hz. (b) Band-
pass filtered (17–23 Hz) beta oscillations (5 s). (c) Spatial distribution of
beta activity in the two hemispheres (top view).



“Phase synchrony between beta oscillations in the two hemispheres. (d)
Phase-lag distribution for: no amplitude-threshold (pink line) calculations,
50th percentile amplitude threshold (blue line) and 75th percentile amplitude
threshold (black line) calculations. The solid horizontal line and the dashed
lines represent mean and 3 s.d. of 1000 simulations, respectively. Data from
subject N7. (e) S index for the conditions mentioned in (d) (grand-average
across the subjects).”

Excerpt from Nikoulin et al., 2001. Figures are reproduced with
permission

The example also illustrates the issue of signal power in phase
analysis. Figure 12.5D has three histograms of a phase lag that are
computed from sensor pairs that showed strong, medium, and weak
beta activity. Phase concentration is less apparent for the weaker
beta activity. The result, however, does not necessarily mean that
the weaker beta activity is less synchronized. It is likely that the
result is confounded with signal strength; A weak signal is a noisy
signal. Any estimation using a weak signal is less clear than that with
strong signals. This example tells us that signal should have
sufficient power for a reliable phase estimation.



12.2.3 Network Analysis

Once we compute phase synchrony, network analysis is just one
step away. A network is defined by nodes and edges, which are the
link between a pair of nodes. For example, we could consider the
sensors as the nodes. An edge between two nodes can be drawn
based on phase coherence. As the number of nodes and edges
increases, a graph drawn on a head diagram becomes difficult to
read. Thus, the network is often represented with the adjacency
matrix. The matrix is N x N, where N is the number of nodes. Each
entry of the matrix indicates a link between two nodes, e.g., 1 for an
edge, or 0 for no edge.

Based on the adjacency matrix, the network properties of the
functional network are computed, e.g., degree of distribution,
average path length, cluster coefficient, centrality, and network motif.
Numerous network indices have been proposed. Some have
implications for information flow in the network (Fornito et al., 2016).
The relationship between these network properties and brain
function in the context of cognitive neuroscience is currently under
investigation. Therefore, we do not investigate functional implications
of the properties but simply present an example (Fig. 12.6). In the
study, the structure of a synchrony-based functional network was
compared between dyslexic and control group children who were
eight and nine years old (Fraga González et al., 2016). The EEG
was recorded while they closed their eyes and were relaxed. The
resting-state EEG data could reflect fundamental network activity for



all mental activity. The data were band-passed to delta, theta, and
alpha bands. In each band, phase coherence was computed for all
the electrode pairs. Based on phase coherence, the functional
network was constructed, simplified, and represented as a finite
graph. The graph was compared between the two groups of
participants in various network properties. Two of the network
properties showed group difference: leaf fraction, which has been
related to information integration in a tree graph, and the inverse of
diameter, which has been related to the efficiency of communication
between nodes. The properties in the theta band network were lower
in the dyslexic than in the age-matched control children.



Figure 12.6. Example of a network analysis (functional network of theta
band activity in control group and dyslexic children).
The network was defined by a phase-locking index. A specific type of graph,
the minimum spanning tree (MST), was extracted from the network.
“[Adjacency] matrices (left panels) and MST graph in scalp view (center
panel) and tree view (right panel) for the theta band for controls (above) and
dyslexics (below). For illustrative purposes the MST algorithm was
performed on the averaged PLI matrices.”

Excerpt from Fraga González et al., 2016. Figures are reproduced with
permission



12.2.4. Inter-trial Phase Coherence

One of the assumptions of event-related potential (ERP) analysis is
consistency in signal timing; the evoked response should occur over
trials more or less in the same timing as in the event of interest (cf.
Section 11.2.2 in Chapter 11). The violation of the assumption results
in weak or no signal in the trial average. With phase analysis we can
directly compute the consistency of the timing over trials. Let’s
suppose we want to know whether the alpha band activity changed
in phase consistency after a visual stimulus onset. Thus, we
compute the alpha band phase, cut it into trial segments, align the
segments from the stimulus, and average. The procedure is the
same as in ERP analysis, except that the average is performed over
unit phase vectors. A unit phase vector has a length of 1. Also, the
amplitude of the alpha band activity may change in the segment.
This means that the vector of the alpha band activity changes its
length. Changes in amplitude add noise to the estimation of the
timing. Therefore, we set the length of the vector to 1 to eliminate the
effect of amplitude. We take the vector mean over trials at each time
point. Because the vectors were unitized, the length of the mean
vector takes a value between 0 and 1. The length indicates the
variance of the phases. If the phase at a given time point is random
across trials, the vectors are pointing in random directions.
Therefore, the length is close to 0. Conversely, if the phase is
consistent, the length becomes closer to 1. The mean vector length
has different names, such as inter-trial phase coherence (ITPC or



ITC), and phase-locking factor (PLF) (Makeig et al., 2002, Tallon-
Baudry et al., 1996).

An example of an ITPC result is shown in Figure 12.7. In the
study, a visually evoked MEG response was recorded from healthy
and schizophrenic young adults (Grützner et al., 2013). The ITPC
was computed in multiple bands and shown in a time-frequency plot.
Phase-coherent activities are localized in two poststimulus periods at
a frequency lower than 40 Hz. For a comparison, the scalogram of
the same data is shown.



Figure 12.7 Example of an inter-trial phase coherence (ITPC) plot (MEG
response time-locked to a visual image in control and schizophrenic
groups).
ITPC across all sensor groups in both controls (left top) and patients with
schizophrenia (left bottom). The colored scale (0–2) indicates change in
ITPC relative to baseline. Corresponding scalograms are also listed (right
top for the control, and right bottom for the patients).
“The analysis of ITPC-values revealed prominent increases in the low
gamma-band range during an early (5–120 ms) and a later time window
(220–320 ms), which likely reflected transient activity related to the onset
and offset response of the stimulus. Accordingly, we defined three time
windows: (1) an early evoked time window (onset-response: 5–105 ms); (2)
an induced period (105–220 ms); and (3) a second evoked window (offset-
response: 220–320 ms).”

Excerpt from Grützner et al., 2013. Figures are reproduced with
permission

The two figures show the visually evoked activity from different
perspectives, in timing and in energy level. It is important to keep in



mind that red in a figure does not always mean high amplitude.
The phase is a circular value. A vector operation is applied to

compute mean, variance, and higher order statistics over circular
values. Directional statistics (also known as circular or spherical
statistics) is an established branch of statistics that offers various
ways to represent and test circular valued data, e.g., the Rayleigh
test of non-uniformity of phase for ITPC. These tests are
implemented in statistical software such as an R package ‘Circular’.



Box 12.1  Mathematical Expressions for Oscillation

In Chapters 9–12, we have been using complex notation to
represent various aspects of oscillatory signals. For example,
in Chapter 9, we used a formula to refer a time point on an
oscillation:

at + bti

where i is the imaginary unit, and t is time.
In a sinusoid of unitary amplitude (1), the real part is

at =  cos θt and the imaginary part is bt =  sin θt. Substituting
the items of the first formula, we get the second formula:

cosθt +  sin θti

This refers to a time point on the helix (cf. Fig. 9.4 in Chapter
9). To represent all time points on the helix, no specification of
time is needed. Thus, the oscillatory component is
represented as:

cosθ +  sin θi

The third formula is a half of Euler’s equation:

cosθ +  sin θi = eiθ

Either side of the equation represents the helix. Here, θ is no
longer an angle at a specific time point. It represents
frequency and phase shift of the oscillation:  θ = ωt +  α,



where ω is frequency, t is time, and α is phase shift. We also
know that amplitude is not always 1. The amplitude can be
expressed as a coefficient, A. If we put frequency, phase shift,
and amplitude in the Euler’s equation, we get:

A  cos  (ωt +  α) + A  sin (ωt + α )i = Aei(ωt + α)

Either side can be used to express an oscillatory activity.
Which side to use is our choice. For some reason, the
exponential form seems less popular in the classroom.
Outside of the classroom, however, it is preferred, because
some computations become much simpler using the
exponential form. Therefore, the exponential expression often
appears in research papers. It is handy to remember what
part of the formula corresponds to which property of the
signal: The coefficient A represents amplitude, and the
exponent represents frequency and phase shift.



12.2.5 Trial Averaging Revisited

Trial averaging in phase gives us ITPC, while the averaging of the
original time signal gives us ERPs. Figure 12.8 illustrates the
relationship between the phase in single trials and the ERP
waveform. Where phase consistency is high across trials, the ERP
amplitude is large. Conversely, where the consistency is low, ERP
amplitude is small. Note that the difference in ERP amplitude is not
because the single trial signal changed in amplitude, but because
the phase – timing – of activity varied across trials. Pure amplitude
difference can be observed in averaging only the amplitude signal,
e.g., a scalogram. In the average of the amplitude, time-shifted
activity is smeared in time but does not cancel out (because
amplitude is always positively valued).



Figure 12.8 Phase and ERPs.

(A) Single trials and average waveforms with consistent or inconsistent
activity timings.

(B) Single trials with the partial phase locking and their average. Inter-trial
phase coherence (ITPC) is indicated in light blue (note that the unit of ITPC
is arbitrary).



A slightly confusing naming convention is event-related
synchrony. In spite of the name, it has little to do with phase
synchrony (Pfurtscheller and Da Silva, 1999). It refers to event time-
locked changes in amplitude. For the amplitude to increase in
response to an event, it is assumed that many neurons start firing
together at some time. Thus, the increase in average amplitude
relative to the baseline level is sometimes referred as event-related
synchrony. Likewise, an event-related desynchrony means that the
average amplitude decreased relative to the baseline.

An event could change not the amplitude, but the phase. The
phase reset causes transient phase synchrony across trials, partial
phase locking (PPL) (Fig. 12.8B). Averaging over the PPL trials
generates pseudo-ERP components. The pseudo-ERPs can be
distinguished from veridical ones checking the ITPC and the average
amplitude; the ITPC would be high, while the average amplitude
would show little change.

Trial averaging in the original, amplitude, and phase signals
show different aspects of an event-related brain responses. Thus,
they increase our understanding of brain responses around the
event (Makeig et al., 2004).



12.3 Autoregression and Granger
Causality

So far, we have extended our data analysis by incorporating
properties of waves, such as amplitude and phase. In this section,
we pay more attention to the fact that M/EEG data are a series of
data points sampled in time.



12.3.1 Autoregression

Time has a direction. The past can explain, at least in part, the
present and the future, but not the other way around. To know how
much the past predicts the present state in time series data, we
usually compute the autocorrelation: The data are shifted in time,
e.g., t - 1, then the correlation is computed between the original and
the shifted time series. For example, if the sampling interval of the
data is 5 ms (i.e., a 200 Hz sampling frequency), the autocorrelation
coefficient indicates how similar the current state is to itself 5 ms
ago. As we repeat the autocorrelation but changing the time lag, we
can obtain series of correlation coefficients. The autocorrelation
function (ACF) is a plot of the coefficients as a function of the time
lag (Fig. 12.9). Trivially, autocorrelation at lag 0 is 1. The
autocorrelation decreases initially as the lag increases. As the lag
increases further, the correlation could increase again, showing
peaks in the ACF. Each peak means that the past states at the time
lag are similar to the present state. Suppose there is a peak at lag 20
in ACF computed from M/EEG data with sampling intervals of 5 ms.
The peak means that the time series is similar to itself 100 ms ago.
In other words, the signal comes to a similar state every 100 ms:
oscillation in 10 Hz. We could obtain frequency information of the
signal form of the ACF without using the DFT.



Figure 12.9 Autocorrelation function and partial autocorrelation function.



EEG: In the eyes open/relaxed condition, the electrode placement is at Pz.
Sampling frequency is 512 Hz. ACF: Shaded area indicates the confidence
interval (95%). A peak around lag 50 corresponds to the alpha band activity.

An autocorrelation coefficient combines the effect of all past
states, e.g., in the case of lag 3, the effect of states at t - 1, t - 2, and
t - 3 are combined. Sometimes we want to know the effect of a
specific past state, e.g., t - 3, on the current states. In such a case, a
multiple regression technique is applied to remove variance due to t -
1 and t - 2. The adjusted function is the partial autocorrelation
function (PACF), which indicates the effect of each past state.

The ACF and PACF are yet another representation of M/EEG
data. The representation could be considered as a model in which
past states predict the present and the future states. For the model
to work, the past states should not be very different from the current
states, i.e., the signal needs to be more or less stationary. When the
lag is large, distant past states are included in the model. The model
takes into account a slower activity as the lag increases. The
assumption of stationarity, and the relationship between the lag and
frequency remind us of the STFT. Indeed, the two analyses are
mathematically related (Brillinger, 2001). In practice, the computation
of the autocorrelation is simpler thus faster than that of the spectrum.
Thus, the autoregressive method is a powerful tool in real-time signal
processing such as in the brain-machine interface. The stationarity
assumption tells us, however, that the autoregressive (AR) model
does not fit well with a non-stationary signal. Moreover, effects of



events from the distant past, e.g., long-term memory, cannot be
studied using the model derived from a short epoch of signal.

Models related to the AR model are the moving average (MA),
the autoregressive moving average (ARMA), and the
autoregressive integrated moving average (ARIMA) models. Just
like the AR model, they model the current and future states based on
a combination of statistics of past states, e.g., sum and average. The
models provide an insight into different stochastic processes that
could explain the data (Box et al., 2015).



12.3.2 Granger Causality

Based on the idea of autoregression, we could consider causality
between two activities. As we know, the past states of Signal 1 are a
good predictor of the present state of Signal 1. The same applies to
Signal 2. Then, could the past states of Signal 1 predict the present
state of Signal 2? If the two are independent, the answer is no. If the
signals are correlated, the answer is yes. Then, what if the combined
past states of Signals 1 and 2 explain the present of Signal 2 better
than its own past does? This means that Signal 2 is in the present
state as a result of the past states of itself and Signal 1. Thus, Signal
1 has a causal influence on Signal 2. Such causal relationship is
known as the Granger causality (Granger, 1969). Granger causality
can be computed to test whether the activity of Region 1 modulates
that of Region 2, which is referred to as effective connectivity.

Granger causality and related measures, such as Granger–
Geweke (GG) causality, have been applied not only to M/EEG but
also to functional MRI (fMRI) and other time series data in
neuroscience. These methods share the same assumption: that the
system is approximately linear and time invariant, a so-called LTI
system. The validity of a functional structure estimated by the
method and its interpretation are also discussed in detail by Stokes
and Purdon (2017).

We have come a long way. In raw M/EEG data, it was difficult to
know which aspects of the signal represent actual brain signals.
Preprocessing is applied to remove or reduce artifacts. For that



purpose, we needed to know the characteristics of noise signals as
well. The brain signal is then represented in time, frequency, or time-
frequency. The representation allows us to test our hypothesis on the
relationships between brain activity and the behavioral and
psychological phenomena.

There seems to be no end to the list of data analysis methods
available. We are able to cover only a handful in this book. However,
it might be worthwhile to keep in mind that advanced methods begin
with basic methods, and new methods often combine known
methods. Thus, to some extent, we can always understand an
advanced method based on what we learned here.



Summary
Each signal-processing method gives results in a specific
format, e.g., power spectral density (PSD), event-related
potentials (ERPs), scalogram, phase synchrony matrix, inter-
trial phase coherence plot (ITPC), and autocorrelation
function (ACF).

Short time Fourier transform and wavelet transform give time-
frequency representation of data. Results are constrained by
the uncertainty principle of the Fourier transform.

Temporal order decides causality, assigned in Granger
causality.



Review Questions

1. Explain what the time-frequency representation of a
magnetoencephalography/electroencephalography (M/EEG) signal
is. Describe in words how to obtain the representation. Explain two
examples in which the time-frequency representation is more
suitable than time or frequency representation.

2. Describe the difference between phase synchrony and inter-trial
phase coherence.

3. Suppose that you averaged single-trial segments of EEG data to
compute ERPs. How can you assure that the ERP waveforms are
veridical?
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Part IV
◈

Complementary Methods

By this point, the reader of this book has learned about an
overwhelming diversity of human brain imaging techniques. None of
them is perfect. Each method has drawbacks and depends on
important assumptions that might be invalid. For example, going
back to the diagram in Figure 1.8, it is obvious that there is no
noninvasive method that provides us with a high spatial and a high
temporal resolution.

How should human neuroscientists deal with this problem? A
particularly unproductive response would be that the experts on the
individual methods would spend their time trying to prove that their
method of preference is better than the other methods. In addition,
the researchers could proclaim that the questions that can be
answered with this method are the most important questions,
ignoring other questions. Electroencephalogram (EEG) researchers
really do not understand why anybody could be interested in a
method like functional magnetic resonance imaging (fMRI) with such
a poor temporal resolution. Functional MRI researchers dismiss EEG
as an old-school, outdated method with a spatial resolution that is



oh-so 1980s. We are exaggerating, of course, and luckily most
colleagues look at these matters with more nuance. Nevertheless,
scientists are human, and thus are subject to all the cognitive biases
that exist. It is unavoidable that they will have preferences for
particular methods simply because of how they were trained and
what they know best. Many EEG researchers might believe that
temporal resolution is more important than spatial resolution, and
vice versa for fMRI researchers. Because, after all, how can you
study cortical dynamics with fMRI and how can you understand the
organization of the brain with EEG?

A more fruitful approach is to combine multiple methods, use
one technique to compensate for the flaws of another technique, and
search for converging evidence across multiple techniques. Despite
their individual biases, human neuroscientists can achieve a
consensus that no single method can answer all questions. United
we stand! In Chapter 13, we describe a few case studies of
questions that have been targeted by a combination of multiple
methods.

There are also some limitations that all imaging methods share.
One major limitation is the reliance on correlations between brain
activity and behavior. We manipulate a particular cognitive process
X, and we observe increased brain activity in cortical area A and
event-related potential (ERP) component P. We can conclude that
brain activity in A and at the time of P is correlated with the execution
of process X. However, we have not yet proved that changes in brain
activity in A at the time of P have a causal effect on the execution of
process X. Here we need methods that allow us to change and



perturb brain activity. In most cases these methods are applied in
combination with imaging techniques. These causal methods are the
topic of interest in Chapter 14.



Chapter 13

Multi-modal Imaging
◈



Learning Objectives

In this book, we have introduced many imaging techniques. We
covered three groups of techniques, structural, hemodynamic, and
electrophysiological imaging, each with two or three example
methods that were highlighted, with even a further subdivision within
each of these examples (e.g., T2- versus T2*-weighted fMRI;
resting-state versus task-based fMRI). In Chapter 1 we touched
briefly on the strengths and weaknesses of different types of
methods. For example, hemodynamic methods typically have a
better spatial resolution and a poorer temporal resolution compared
with electrophysiological methods. The description of the methods in

Being able to articulate the benefits and challenges when
combining different imaging and analysis methods

Understanding how functional magnetic resonance imaging
(fMRI) and magnetoencephalography/electroencephalography
(M/EEG) can be combined to overcome their limitations in,
respectively, temporal and spatial resolution

Knowing how structural MRI can aid source localization for
M/EEG

Understanding the potential offered by combining multiple
methods such as multi-voxel pattern analysis and connectivity
analysis



the later chapters gives the reader an insight into the causes of the
strengths and weaknesses of each of these methods.

Here we will discuss how these methods can be combined in
so-called multi-modal imaging. Multi-modal imaging allows us to
combine the strengths of different approaches and overcome the
weaknesses that each method has when used in isolation. There are
many combinations possible, with a combinatorial explosion of the
possible number of hybrid approaches. It is impossible to provide a
comprehensive overview of all the multi-modal options that are
available. Instead, we will present a small number of case studies
centered on research questions that have been addressed by
different combinations of methodological approaches. We hope that
these examples will set the stage for a multi-modal and
interdisciplinary way of thinking.

There are five case studies in this chapter. First, we provide a
recent example of the combination of fMRI and MEG with multi-voxel
pattern analysis (MVPA), illustrated in the context of visual category
representations. This example showcases the usefulness of
combining the high spatial resolution of fMRI with the high temporal
resolution of MEG in the context of a condition-rich experimental
design. Second, we discuss the development of simultaneous
measurements of fMRI and EEG, here specifically applied to the
study of visual face representations. This example highlights the
benefits but also the challenges that come with the simultaneous
combination of these methods. Third, we discuss the combination of
structural and functional MRI with M/EEG for the purpose of source
localization, which showcases how the input of one method can



impact the information gained from another method. Fourth, we give
an example of the combination of fMRI diffusion tensor imaging
(DTI), functional connectivity, and MVPA in the context of
neurodevelopmental disorders. This last example illustrates how a
comprehensive understanding of disorders necessitates a
combination of methods. Finally, we briefly touch on how a
combination of multiple methods together with advanced statistical
tools that integrate the information coming from the different
methods might be a promising approach to aid the use of imaging for
individual diagnostics.



13.1 The Spatial and Temporal Unfolding
of Visual Category Representations

An obvious application of multi-modal imaging is to combine fMRI,
with its relatively high spatial resolution, with EEG or MEG, with their
high temporal resolution. Through this combination we obtain
information about both where and when a particular cognitive
process is implemented. Here we illustrate the power of this
approach with an example that in addition capitalizes on the ability of
representational similarity analysis (Chapter 8) to combine data
across different methods. These advanced statistical tools touch
upon the domain of artificial intelligence, which is also a promising
add-on to the toolkit of a human imager (see Box 13.1).



Box 13.1  From Biological to Artificial Brains

In recent years there has been an increased interaction
between researchers investigating the brains of humans and
other animals on the one hand and scientists working on
artificial intelligence on the other hand. Computational models
and artificial neural networks have a long history—almost as
long as human brain imaging—and so research at the
intersection of these two fields has been around for some
time. However, in the past, the neural network models tended
to be toy models that were unable to mimic the full complexity
of human information processing. And they could not reach
human performance on complex tasks. Recently, the
increased computing power and memory capacities of
computers and some clever modifications in the architecture
and learning rules of neural networks have resulted in a
revolution in this field (LeCun et al., 2015). For example,
networks referred to as deep neural networks have been
shown to be able to categorize objects in complex pictures
with human-like performance (Krizhevsky et al., 2012).

The relevance of these developments for behavioral
sciences in general and human brain imaging in particular
was illustrated in a series of papers showing similarities
between networks and humans in the representations that
emerge in the network layers and in brain areas and behavior
(Khaligh-Razavi and Kriegeskorte, 2014; Kubilius et al.,



2016). Based on this research, it seems that cutting-edge
artificial neural networks have the potential to help refine and
quantify the hypotheses that drive human imaging research.

The comparison between biological and artificial brains is
facilitated by the ability to apply a similar analysis approach to
the two. In biological brains we have neurons at the smallest
scale and voxels or sensors at the imaging scale, while a
neural network consists of units with mathematically defined
inputs and outputs. Just as a neurophysiologist can measure
the action potential activity of a single neuron and a
neuroimager can measure the blood-oxygenation-level
dependent (BOLD) signal in a single voxel, a computational
neuroscientist can compute the output of single units in an
artificial network. Often researchers apply more complicated
methods that consider the pattern of output across multiple
neurons, voxels, or units. By now, this approach must ring a
bell, as this is exactly what is done in an MVPA
representational similarity analysis. By replacing voxels with
network units, one can apply the same methods to an artificial
neural network (also see Fig. 8.10).

A series of human imaging studies have used the same
experimental design with 92 stimulus conditions, which is a subset of
the images of an earlier study using single-unit recordings in
monkeys by Kiani and colleagues (2007). The 92 images span many
different object categories, equally divided over animate and



inanimate objects, with animate objects including human and
nonhuman body and face stimuli, and inanimate objects including
natural and artificial objects.

The condition-rich fMRI experiment of Kriegeskorte
(Kriegeskorte, Mur and Bandettini, 2008; Kriegeskorte, Mur, Ruff, et
al., 2008) was introduced briefly in Chapter 8. The data were
analyzed through MVPA. The authors extracted the multi-voxel
activity patterns in several regions of interest. The multi-voxel
patterns were correlated between all 92 conditions, resulting in a
92x92 correlation matrix. The values were inverted to create
dissimilarity matrices. These matrices are displayed in Figure 13.1A
for four regions of interest (ROIs): the early visual cortex (EVC),
including primary visual cortex and nearby regions; right
parahippocampal place area (rPPA), defined by higher activation for
images of scenes than other images; right fusiform face area (FFA)
(see Chapter 5); and the human inferotemporal cortex (IT), a large
ROI including the ventral part of the temporal lobe.



Figure 13.1 The application of multi-voxel/sensor pattern analyses to fMRI
and MEG data from a condition-rich design with 92 object conditions. (A)
Dissimilarity matrices from fMRI in four regions of interest: early visual
cortex (EVC), right parahippocampal place area (rPPA), right fusiform face
area (rFFA), and a large inferior temporal (IT) region. To calculate
dissimilarity, correlations between multi-voxel patterns were first
transformed into dissimilarities by subtracting the correlations from one and
expressed as percentiles (lowest correlation = highest dissimilarity =
percentile 100). Matrices reproduced with permission from Kriegeskorte,
Mur and Bandettini, 2008, Kriegeskorte, Mur, Ruff, et al., 2008. (B)
Dissimilarity matrices from MEG at four different time points after stimulus
onset. Colors express percentiles based on decoding performances. (C)
Correlations, as a function of time after stimulus onset, between fMRI
dissimilarity in two regions of interest, the central part of EVC and IT, and
MEG dissimilarity.

Images in B and C reproduced with permission from Cichy et al., 2014

The four matrices in Figure 13.1A illustrate the power given by
the spatial resolution of fMRI, namely, to identify regions with
meaningfully different representations of object images. The
dissimilarities in EVC do not reveal a clear clustering of conditions. In



rPPA and rFFA, we see some pattern emerging. In rPPA there is a
clustering of inanimate objects (blue values in the lower right of the
matrix = low dissimilarity), whereas in rFFA there is primarily a
clustering of animate objects. The clearest structure emerges in IT,
with a clear separation between animate and inanimate objects.

Based on knowledge of the structure of the visual system in
primates, we can assume that information processing flows from
EVC to IT. First, neurons in EVC respond, and then they provide
input to further regions, until this input eventually reaches the
occipitotemporal cortex (rPPA and rFFA) and temporal cortex. In
primates, responses in EVC are known to appear 40–50 ms after
stimulus onset. In the temporal cortex, the response latency is 80–
100 ms, thus about 40 ms later than in EVC. However, fMRI does
not have the temporal resolution to show this flow of information. The
fMRI results do not pinpoint when the animate/inanimate distinction
emerges in the IT cortex, nor how long it lasts. It could start at
around 70 ms after stimulus onset, or later. It could stay for a long
time, hundreds of milliseconds or even seconds, or disappear
relatively rapidly.

To resolve these uncertainties, Cichy and colleagues (2014)
designed an MEG experiment with the same 92 conditions. In
contrast to the tens of thousands of voxels measured through fMRI,
this MEG dataset is composed of 306 MEG channels. Nevertheless,
the dataset lends itself to analyses similar to MVPA. Instead of
investigating multi-voxel patterns in a specific region of interest, the
MEG data can be analyzed by performing pattern analyses on multi-
channel MEG data. These data contain signals coming from all of



the brain. However, in contrast to fMRI, where we have a signal
pooled across the full stimulus event, MEG offers us a high sampling
rate of one measurement per millisecond.

Given this very high temporal resolution combined with a low
spatial resolution, the focus is no longer on different brain regions,
but on different time points. For each time point, a 92x92 dissimilarity
matrix is constructed. In this study, dissimilarity was measured for
each pair-wise comparison through a decoding approach. Figure
13.1B shows matrices for four different time points after stimulus
onset: 0 ms, 200 ms, 400 ms, and 600 ms. The color scale is defined
in terms of percentiles, which results in a similar distribution of colors
(including the same average color) in all four matrices. However, the
overall decoding performance became significant only after about 50
ms; thus, the matrix at 0 ms only represents noise and no signal. At
later time points, there is a clear blue square in the matrices, which
shows a very low dissimilarity (high similarity) for faces.

An important potential of these MEG findings comes from the
fact that we also have fMRI data available. One possible analysis is
to take an fMRI matrix from Figure 13.1A and correlate it with the
MEG matrices of all the different time points. The results are shown
in Figure 13.1C for EVC/V1 and IT. The V1-MEG correlation peaks
around 100 ms after stimulus onset, while the IT-MEG correlation
finds its maximum 30 ms later. In addition, the IT-MEG correlation is
more sustained and remains at higher levels in the later parts of the
response. In this way, fMRI and MEG provide information about the
neural basis of object recognition with high spatial and high temporal
resolution.



13.2 Simultaneous Application of EEG
and fMRI

Here we go even further with the integration of methods. Whereas in
the previous section the data from different modalities were obtained
in separate sessions, we now turn to the combination of different
imaging modalities that are acquired simultaneously. This is a difficult
goal to achieve, and researchers should always carefully consider
whether the drawbacks are overruled by the benefits of new potential
insights and analyses that require simultaneous imaging.

Typically, simultaneous multi-modal imaging is cumbersome,
because it is very difficult to acquire good data for two imaging
modalities at once. Some combinations are even impossible. In
particular, fMRI and MEG cannot be combined.
Magnetoencephalography is already challenging with typical ambient
magnetic field strengths, and it would not work in the presence of a
strong and time-varying MRI field.

Other combinations are difficult but not impossible. Around the
year 2000, monkey researchers had already combined fMRI with
invasive electrical measurements (e.g., Logothetis et al., 2001).
Around 2005–2010, researchers started experimenting with the
combination of fMRI and EEG in human research. One study by
Yovel and colleagues (Sadeh et al., 2008) is illustrated in Figure
13.2. The combined measurement requires specific hardware and
software for the EEG. It is reasonably straightforward to acquire EEG
data in the presence of the static magnetic field. However, as soon



as fMRI data acquisition starts with its typical fast variations in
magnetic gradients, the EEG signal is flooded with artifacts (top left
panel). EEG researchers are used to artifact removal (see Chapter
11), but the fMRI-related artifacts are of a different order of
magnitude and require special routines to be resolved. Nevertheless,
it is possible to clean up the signal substantially, resulting in EEG
tracks with typical spatio-temporal characteristics (Fig. 13.2A).
Quantitative event-related analyses of these EEG tracks show very
similar event-related potentials in the absence and presence of MRI
acquisition, with specific differences between conditions such as a
larger N170 for face images compared with object images (Fig.
13.2B).

Figure 13.2 Simultaneous fMRI-EEG shows face-selective ERP responses.
(A) The effect of fMRI data acquisition on the simultaneously measured
EEG signal, before (left) and after (right) artifact removal. (B) The face-
selective N170 as measured in event-related potentials without (left) and
during (right) fMRI acquisition.

Images reproduced with permission from Sadeh et al., 2008



Nevertheless, we should be realistic about the practical aspects
of simultaneous imaging. The signal in the separate image
modalities is often compromised to a certain extent. Even in very
experienced facilities, the data quality will on average be lower in
multi-modal imaging than if each technique had been acquired
separately. The MRI acquisition will frequently increase the noise in
the EEG tracks, despite apparently successful artifact removal. The
EEG apparatus will have an impact on the quality of the MRI data,
despite the use of scanner-compatible EEG hardware. In addition,
the odds that something goes wrong with at least one of the methods
is higher. For all these reasons, acquiring the two datasets
separately might in the end result in better data with less trouble.

Because of the foregoing challenges, simultaneous fMRI-EEG
acquisition is most often reserved for experimental questions that
require simultaneous imaging and would be hard to answer using
separate datasets. One such question was made in a follow-up study
by Sadeh and colleagues (2010). The researchers investigated the
fMRI signal in three independently defined regions of interest:
occipital face area (OFA), fusiform face area (FFA), and the face-
selective region in the superior temporal sulcus (STS). The fMRI and
EEG signals were acquired while subjects were presented with face
and object images. For each subject, the researchers calculated the
fMRI face selectivity (faces–objects) in the three regions of interest,
and the EEG face selectivity at several time points, including the
peak of the N170 (Fig. 13.3B). There was a correlation across
subjects between the fMRI face selectivity in FFA and STS and the



N170 face selectivity (Fig. 13.3C). This was interpreted as evidence
that the N170 is probably related to activity in FFA and STS.



Figure 13.3 Correlations between fMRI-derived and EEG-derived face
selectivity in simultaneous fMRI-EEG.

(A) fMRI signal changes after the presentation of faces and objects in rFFA.

(B) The event-related potential after the presentation of faces and objects in
electrode P8, with clearly face selective N170.



(C) Correlation across participants between N170 face selectivity and face
selectivity in the fMRI signal in rFFA, rfSTS (right face-selective superior
temporal sulcus), and right occipital face area (rOFA).

Reproduced with permission from Sadeh et al. (2010).

The authors suggest that the sensitivity to pick up such across-
subject correlations is much higher in simultaneous fMRI-EEG
measurements. Apart from this example, one can expect
simultaneous imaging to be highly relevant to investigating trial-by-
trial correlations in the activity in the different methods and to
understand the neural basis of and similarities between the different
imaging methods.



13.3 M/EEG Source Localization
The M/EEG sensors pick up a rich mixture of field signals. Even
though researchers are aware that the choice of M/EEG brings with
it a serious limitation in terms of spatial resolution, they still try to
pinpoint as much as possible the sources of measured signal
components. For this purpose, the sensor signals need not only to
be decomposed, but also to be related to brain regions. Unlike MRI
data, M/EEG sensor data do not have the depth dimension. How
then can we “recover” this third dimension from the data? Figure
13.4 illustrates the problem. Any of these combinations of sources
gives the same sensor signal. In fact, there are infinite combinations
of sources that can give rise to the signal. We need restrictions to
further constrain the subspace of possible combinations. Some of
these restrictions are relatively simple. A first restriction is that
locations outside of the brain are not considered as possible source
locations. In addition, general limiting factors of the M/EEG sensor
signal (cf. Chapter 9) are good to start with, such as the knowledge
that M/EEG signal primarily comes from cortex. Deeper activity
contributes less to the signal. Relative orientation between sensors
and the cortical sheet also affects the signal, and this information is
available when we coregister sensor location in a brain space, e.g.,
using a T1-weighted MRI. We could try source estimation without an
individual structural MRI, e.g., taking a sphere as a volume
conductor model. Needless to say, estimation of source locations
restricted by anatomical information is better than that without it.



Thus, here, we discuss the multi-modal method of M/EEG source
estimation with MRI data.

Figure 13.4 Source localization as an ill-posed problem. A sensor-level
activity (green vector in A) could be given by combinations of source
activities (B and C). A source outside of the brain (D) is irrelevant. However,
such a restriction needs to be given to an estimation algorithm.

Source estimation has two stages. The first stage is building a
head model, which tells us the theoretical sensor signal level given a
source activity. The M/EEG sensors and the brain need to be placed
in the real 3D coordinates for a realistic head model, so M/EEG
sensor locations are coregistered with anatomical MRI using marker
positions and anatomical fiducial points. The marker positions could
be recorded during MRI acquisition or sampled using a separate 3D
position recording system. Dipole is used as the model of local
source activity. Source current decays as it conducts through
tissues. Moreover, conductivity differs among tissues, e.g., it is
higher in brain tissue and cerebrospinal fluid (CSF) than in the skull



and scalp. The anatomical distribution of different tissue types is also
computed from MRI. A head model of volume conduction is
computed by, for example, the boundary element method (BEM) and
the finite element method (FEM). These methods give us a lead-field
matrix that maps the activity of M sources to N sensors: a forward
model.

The second stage is “backward”; data from N sensors are
mapped to M sources. Suppose that we have visual evoked potential
(VEP) data. We want to know which region contributed to the activity
at a particular point in time. Antecedently, we expect that activity
from visual cortices and ventral temporal regions would contribute to
the evoked response. This heuristic is incorporated in the source
localization: A small number of dipoles are provisionally placed at the
possible source locations, e.g., bilateral V1/V2, V4, and lateral
occipital sulcus. Using the forward model, we compute theoretical
activity at each sensor, assuming all dipoles have the same strength.
Of course, the theoretical values are different from those of the real
data. Then, we adjust the direction, magnitude, and location of the
dipole to reduce the error. We repeat the comparison and adjustment
until the error does not decrease further. This method is referred to
as the equivalent current dipole (ECD) method, which generates
dipole location, direction, and time series for the dipole activity
(Salmelin, 2010). The estimated activity is the source current; thus,
the unit of current density, such as [A/m], applies to the results from
EEG data as well.

Sometimes, however, we have reason to believe that target
activity is not focal but spread in the volume. In such a case, dipoles



distributed over the cortex may be a better model than sparse
dipoles, as in the ECD model. In a distributed dipole model, the
number of dipoles often becomes larger than that of the sensors.
Thus, we need additional constraints to decide how the sensor signal
is distributed over the sources. We first choose the source space,
such as gray matter computed from the MRI image. Estimation
methods, such as minimum-norm estimates (MNE), minimum-
current estimates (MCE) and low-resolution brain electromagnetic
tomography (LORETA) distribute sensor activity over the large
number of dipoles. For example, MNE selects the current distribution
that has the minimum overall power (Hamalainen and Ilmoniemi,
1994). The results of a distributed source modeling give a
representation of M/EEG activity projected on the 3D brain space,
which is a dipole image. This dipole image could be considered the
best of two worlds: a representation of the M/EEG signal with high
time and spatial resolutions. However, it is important to keep in mind
that any focal activity will be smeared in space.

In sum, ECD is useful for representing brain activity in terms of a
small number of focal activity points, e.g., from 128 electrode data to
several dipoles, M << N. In contrast, distributed dipole models give a
large number of sources (e.g. 10 000 dipoles), which cover the entire
neocortex in approximately 5 mm intervals; thus, M >> N. In other
words, the method can be applied without knowing where relevant
source activity could be. The result of a distributed dipole modeling
can be represented as a movie in which we can observe the
evolution of a spatial pattern of the activity on the brain.



The two approaches share a number of problems. First, activity
in the medial and ventral cortices is difficult to estimate (Korhonen et
al., 2014). Second, field activities close to each other are difficult to
estimate separately. (Some techniques, e.g., beamformer, are
reported to be better in the estimation of such sources.) And third,
field activities that face each other are difficult to detect, because
they cancel each other. Thus, field activities in banks of a sulcus –
close and opposing activities – are significantly more difficult to
localize than those in a gyrus.

Source estimate libraries have become accessible to the wider
scientific community, and packages such as Brainstorm and MNE-
Python offer source localization options. However, overall, source
level analysis is still costly and cumbersome. Often more than 100
sensors are recommended for quality localization. This means that
we need to have high-density M/EEG data. Moreover, MRI images
need to be acquired from each individual and transformed from
voxels to a surface mesh to specify dipole locations and boundary
elements. The image processing alone takes a considerable amount
of time and care. Forward and backward modeling is computationally
costly, and results could contain considerable errors, such as dipoles
located outside of the brain and ghost activity.

Nevertheless, the potential of the MRI informed source
estimation technique is large. For example, it could change M/EEG
signal processing significantly in other steps that discussed in
previous chapters: In the near future, we might place dipoles in eyes,
muscles, and other tissues of the head to separate artifact
components from brain signals.



13.4 Differentiating between
Representational and Access Theories

of Disorders
Brain disorders might have many different causes at many different
levels. In the early days of human brain imaging, the most commonly
tested predictions of neurocognitive theories of brain disorders came
from assumptions about dysfunctional involvement of particular
information processing steps. These problems would lead to
exceptionally high or low overall activity in the brain regions to which
these processing steps would be localized. Take the example of
dyslexia. A neurocognitive theory claiming that children with reading
problems have difficulties with the processing of sound and the
vision-to-sound mapping of syllables could be tested by investigating
whether children with dyslexia have a different level of activity in
auditory cortex when listening to speech.

Such predictions can be tested with a traditional univariate
analysis of fMRI data. One common problem with such predictions is
that it is not always easy to predict the direction of the abnormal
activity: Would the dysfunction result in higher or lower overall
activity? Furthermore, there might be many ways in which neural
processing might be dysfunctional that do not result in a net increase
or decrease of overall activity.

Other hypotheses specify in more detail how and why a
particular processing step is dysfunctional. A first possibility is that
the representations at that stage have different characteristics. In the



case of dyslexia, the sound representations in the auditory cortex
might contain less information about which speech units or
“phonemes” have been heard. We need a method such as MVPA to
investigate such a representational hypothesis.

A second possible hypothesis is that the representations at a
particular stage are normal, but that other stages of processing have
difficulties accessing these representations. In the case of dyslexia,
the sound representations in auditory cortex might be fine, but other
brain regions might not have access to these sound representations.
Data of anatomical and functional connectivity might be useful to
study such an access hypothesis.

This wide spectrum of relevant neurocognitive theories
applicable to a particular brain disorder calls for a multi-method
approach. Boets and colleagues (2013) performed such an MRI
study in the context of dyslexia. They differentiated between
representational and access theories by applying MVPA and
functional/anatomical connectivity analyses. The experimental
design included four phoneme conditions: /ba/, /da/, /bu/, and /du/.
Within each condition, there was a variety of speakers pronouncing
the phonemes. Two groups of subjects were included that were
matched on many characteristics except that the individuals in one
group were diagnosed with dyslexia and the individuals in the other
group were not.

Decoding MVPA was used to investigate the neural
representation of these phonemes, more specifically, the degree to
which the multi-voxel patterns in a range of ROIs differentiated
between the different phonemes. The results of a subset of these



ROIs are displayed in Figure 13.5A. The decoding performance was
calculated for each phoneme pair. Some phonemes differ only in
consonant (black bars), only in vowel (dark gray bars), or in both
consonant and vowel (light gray bars). If multi-voxel patterns contain
no information about the presented sound, then we would expect a
decoding proportion of 0.50. This result was observed for all pair-
wise comparisons in several ROIs, including the inferior frontal gyrus
(IFG, left and right) and primary visual cortex (V1). While we expect
V1 to play no role in auditory processing, the left IFG is a well-known
language area, frequently referred to as Brocca’s area.
Nevertheless, no evidence for a neural representation of the sounds
was found in this area.



Figure 13.5 Combination of MVPA with functional connectivity analyses to
investigate the differences between normal readers (NR) and dyslexic
readers (DR).

(A) Pair-wise decoding performance of phoneme conditions that differ only
in the consonant, only in the vowel, or in both consonant and vowel. Four
regions of interest are shown: primary auditory cortex (PAC, left and right),
superior temporal gyrus (STG, left and right), inferior frontal gyrus (IFG, left
and right), and primary visual cortex (V1).



(B) The approximate anatomical location of the four regions of interest.

(C) Matrix with the results from null hypothesis testing of the difference in
pair-wise functional connectivity between normal and dyslexic readers.
Significant differences are highlighted with a black dot.

Panels A and C reproduced with permission from Boets et al., 2013

In contrast, areas in the primary auditory cortex (PAC) and
nearby temporal regions such as the superior temporal gyrus (STG)
showed significant decoding for comparisons of sounds with a
different vowel. However, the strength of this decoding was the same
in the two subject groups. Thus, as far as can be detected with
MVPA fMRI, the phoneme representations were as distinctive in the



individuals with dyslexia as they were in the control group. These
findings do not seem to support a representational account of
dyslexia.

Next, the researchers investigated the functional connectivity
between the same ROIs, using the same task-based data. In total
there were 13 ROIs, resulting in a 13x13 functional connectivity
matrix. Figure 13.5C represents the difference in connectivity
between the control group and the group with dyslexia, so that warm
colors represent more connectivity in the control group. The IFGL
showed a reduced connectivity in the group with dyslexia with
several regions, in particular the left STG and the right PAC. Given
the aforementioned MVPA result that the IFGL does not contain a
neural representation of the sounds while the STG and PAC do, this
finding fits with the idea that the regions that contain the sound
representations communicate suboptimally with other language
regions such as the IFGL. The reduced connectivity in dyslexia was
further confirmed by DTI data. Overall, these findings provide a
strong support for access theories of dyslexia.

The same combination of MVPA and functional connectivity can
be applied to many other disorders. The extent to which the findings
support representational or access accounts might vary between
disorders. Bulthé and colleagues (2017) performed a very similar
study for another neurodevelopmental disorder, dyscalculia, which is
characterized by difficulties in arithmetic. The study included MVPA
fMRI, functional connectivity, and DTI. One subset of conditions
included nonsymbolic magnitudes, more specifically dot patterns.
There were four magnitudes: 2, 4, 6, and 8 dots. Decoding MVPA



was applied to investigate how strongly these four conditions could
be distinguished based on multi-voxel patterns. A relatively large
network of regions showed significant decoding for these
magnitudes. The decoding was significantly lower in participants with
dyscalculia in a subset of these regions in the parietal and prefrontal
cortices. Thus, in the case of dyscalculia there was a support for
representational theories that assume that dyscalculia is caused by
problems with the neural representation of magnitude. The findings
from functional and anatomical connectivity were much less clear,
and no regions showed reduced connectivity in dyscalculia. Overall,
these investigations of neurodevelopmental disorders through a
combination of methods reveals the opposite pattern in dyscalculia
and dyslexia: representational deficits in dyscalculia, access deficits
in dyslexia.



13.5 Clinical Diagnostics with Multi-
modal Imaging

For a clinical radiologist or neurologist, diagnosing patients is a daily
routine. However, the relevant data used for such a diagnosis
change when science makes progress, and become ever more
complicated and, very relevant for this chapter, multi-modal. A few
examples will suffice. To diagnose a stroke in general and its specific
type, the protocol might include computed tomography (CT) imaging
with and without a contrast agent and perfusion- and diffusion-
weighted MRI (Osborn et al., 2016). The diagnosis of
neuropathology in preterm infants might include a combination of
T1-, T2-, and diffusion-weighted imaging (Hinojosa-Rodriguez et al.,
2017). As a final example, before attributing a patient’s headaches to
migraine, the neurologist excludes other causes with several imaging
methods, including EEG and MRI.

The clinicians will not commit hours of heavy data analysis to
each of these imaging modalities to reach their diagnostic
conclusion. In the good old days, it often came down to looking at a
printout of the data. Today, there are software packages available
that typically provide indices that can be computed in a relatively
straightforward way based on the raw images, with no intervention
necessary from the clinician. Instead, the data processing is
automatized and the software provides the relevant measurements
in an accelerated fashion. For example, a software package such as
Icobrain offers portfolios to compute neural biomarkers relevant in



helping in the diagnosis of multiple sclerosis, dementia, and head
trauma. While at the moment this approach primarily offers a second
opinion and aids the clinician who is in charge, it is not inconceivable
that at some point artificial intelligence might surpass the ability of
the clinician.

The process of diagnostics can be seen as a complex pattern
recognition problem in which the clinician is a highly qualified expert.
Box 13.1 brought up artificial algorithms that have recently shown a
marked increase in pattern recognition abilities, in some domains
already surpassing human capabilities. The more clinicians are
faced with input from complex and multi-modal imaging, the bigger
share artificial algorithms might have in the diagnostic process. More
and more, specialists base their diagnoses on the outcome of
specialized processing of clinical images and information from
various sources, including artificial intelligence tools (Liu, Cai, Lui, et
al., 2015).

We provide a specific example in the context of the diagnosis of
Alzheimer’s disease. At the moment, routine imaging protocols
chiefly serve to exclude other causes of the symptoms and do not
yet image the pathological processes underlying Alzheimer’s in a
sufficiently sensitive manner, in particular not in the early stages of
the disease. Nevertheless, images from multiple modalities can
already be informative for the diagnosis, including positron emission
tomography (PET) and MRI images. Liu and colleagues (Liu, Liu,
Cai, et al., 2015) showed that artificial neural networks can be
trained to distinguish between different disease types (e.g.,
Alzheimer’s disease [AD], Mild Cognitive Impairment [MCI]) and



normal healthy controls (NC) based on a combination of data from
PET as well as MRI. To develop and test these algorithms, the
authors used the openly available data from hundreds of patients
provided by the ADNI consortium (see Box 6.2 in Chapter 6). The
sensitivity and specificity of the diagnosis was improved when data
from multiple modalities were combined in an intelligent way,
resulting in a sensitivity and specificity up to 90% in a relatively easy
binary classification (e.g., normal controls versus Alzheimer’s). In a
multi-class classification that involved four groups, NC, AD, MCI that
converted into Alzheimer’s, and MCI that did not convert, the overall
accuracy based on multiple imaging modalities was 54% (clearly
above the chance performance of 25%), with a sensitivity of 52%
and a specificity of 87%.

To conclude, advanced methods of data analyses and artificial
intelligence applications are important in reaching the full potential of
multi-modal neuroimaging in clinical applications as well as
fundamental neuroscience.



Summary
The combination of fMRI and
magnetoencephalography/electroencephalography (M/EEG)
with multivariate analyses allows researchers to investigate
neural representations in high detail in both space and time.

Both fMRI and EEG can be applied simultaneously, which
allows a better integration of the two datasets, but with
potential problems with data acquisition and data quality.

Structural MRI greatly improves the precision of source
localization for M/EEG.

Combining fMRI multi-voxel pattern analysis (MVPA) with
connectivity analyses allows researchers to differentiate
between representational and access theories of brain
disorders.



Review Questions

1. Explain how the rationale behind MVPA can be extended to
datasets without voxels such as M/EEG and artificial neural
networks.

2. Which type of predictions from neurocognitive theories can be
tested with each of the following methods: univariate fMRI analysis,
MVPA fMRI, and diffusion tensor imaging (DTI)?

3. Explain how source localization for MEG might be improved by
obtaining a structural MRI for each participant.



Further Reading

Cabeza, R., Nyberg, L. & Parck, D. C. (2016). Cognitive Neuroscience of
Aging: Linking Cognitive and Cerebral Aging (Section I: Methods and Issues).
Oxford: Oxford Scholarship Online.

Liu, S., Cai, W., Liu, S., et al. (2015). Multimodal neuroimaging computing: a
review of the application in neuropsychiatric disorders. Brain Informatics, 2,
167–180.

(These two reading suggestions give a broad overview of a wide
range of imaging methods for two specific domains, aging research
and neuropsychiatry.)



Chapter 14

Causal Methods to Modulate Brain
Activity

◈



Learning Objectives

Imaging methods do not provide causal evidence that a particular
brain region or rhythm is necessary for a certain process or behavior.
Instead, they provide correlational evidence. In this chapter, we
introduce several causal methods that allow researchers to induce
changes in brain activity. The effects of stimulation can be measured
via changes in behavior, cognitive processing, and neural activity.

None of these causal methods is an “imaging” method, but we
cover them nevertheless because they are highly relevant to test
predictions resulting from the correlational evidence obtained
through imaging. In addition, the application of these causal methods
often involves imaging, such as magnetic resonance imaging (MRI),
to determine the anatomical location where the causal method will
be applied.

Understanding the differences and similarities between
different methods to modulate brain activity

Knowing the basics of the physical principles behind methods
such as focused ultrasound (FUS), transcranial magnetic
stimulation (TMS), and transcranial current stimulation (TCS),
and understanding how these principles relate to the
strengths and weaknesses of a method

Learning about the intimate relationship between imaging and
stimulation, both in terms of developing hypotheses and
predictions and when applying the methods



Here we only cover direct methods for modulating neural activity
by influencing the physical properties of the neural tissue. There is a
much wider range of approaches to change neural activity indirectly.
Medication is an obvious example. It results in very nonspecific
neuromodulation given that potential effects on neural activity will be
distributed across the whole nervous system or at least complete
neurotransmitter systems. More specific indirect neuromodulation is
not difficult; in fact, we all do it every day. By having you read this
sentence, we alter your brain activity. BY PUTTING IT IN CAPITAL
LETTERS, WE MIGHT EVEN STRENGTHEN THAT EFFECT.
Telling your friends how much they mean to you will change their
brain activity, and their reaction will change yours. A more specific
set of methods falls somewhat in between indirect and direct
methods of neuromodulation and involves neurofeedback. Here
neural activity is measured and is fed back in real time to the
participant through a sensory channel (e.g., a visual display or
earplugs). The participant uses this feedback to learn how to alter
their brain activity and to use that knowledge when they are no
longer connected to the measurement device. The feedback loop is
effective, in the sense that participants can learn how to control
particular aspects of brain activity (Sitaram et al., 2017).
Nevertheless, there is not sufficient evidence (and hence no US
Food and Drug Administration [FDA] approval) to consider it as an
effective treatment for disorders such as depression and ADHD,
even though it is sometimes applied in that context. Overall, among
the indirect methods for neuromodulation and treatment, the most



specific and most effective approach is probably still old-school
communication and psychology.

Turning back to the direct causal methods, it is relevant to start
with two general points. First, the causal methods include methods
that directly alter brain activity by the local application of magnetic
fields or electrical currents. As a result, we change neural activity
and look for changes at the behavioral level, hence the denotation
“causal.” Even though we hereby use the traditional distinction
between “correlation” and “causality,” we should not take it too far.
Correlational data can be very relevant to infer causality, albeit not
with absolute certainty (see, e.g., Weber and Thompson-Schill,
2010). At the same time, it is dangerous to naively infer causality
from results obtained with a causal method. Inference is tricky, as we
learned in the context of forward and reverse inference. There are
many ways in which altered brain activity can influence behavior
directly or indirectly. For example, stimulating region A might change
behavior, not because activity in region A is directly causing the
behavioral change but because the stimulation in region A indirectly
affects neural activity in a distant region B, which is then causing the
behavioral change. Thus, a causal method also does not provide
absolute certainty about the presence or absence of causality.

Second, although all causal methods have “stimulation” in their
name, it is important to note that this term refers to what is being
applied at the physical level and not to its effect on neural
processing. Indeed, while the “stimulation” at the physical level can
sometimes result in stimulation, or excitation, at the neural level it
can also interfere, hamper, or inhibit neural processing.



The causal methods are ordered in terms of their assumed
spatial specificity. We therefore look first at the methods that offer the
highest spatial resolution: microstimulation and deep brain
stimulation, followed by focused ultrasound (FUS), transcranial
magnetic stimulation (TMS), and transcranial current stimulation
(TCS). We also briefly touch upon the ethical concerns related to
neural stimulation methods (see Box 14.1).



Box 14.1  Ethical Concerns Related to Noninvasive Neuromodulation

Methods for neuromodulation raise ethical concerns. For
example, is it even appropriate to influence someone’s brain
activity in such a way? Given that neuroscientists believe that
our mind is a consequence of brain activity, it naturally follows
that we manipulate the mind when we electrically,
magnetically, or sonically alter neural activity.

These ethical considerations are important to keep in
mind when engaging in this research. However, now and in
the future, we should also consider the limitations of the
available techniques when talking about ethical
consequences. Given the spatial resolution of these methods,
noninvasive neuromodulation can improve or decrease
performance in particular tasks, it might bias us to rely on one
strategy more than another, but it does not fundamentally
alter the content of our mental life.

Let us envision the future and assume that at some point
we would have a noninvasive technology that affords us the
precision that microstimulation offers us today (very unlikely,
because physically this would be almost impossible), or that
the invasive technology would become so harmless that we
would be able apply it on a much wider scale (also very
unlikely, because of biomedical hazards). Even in this very
unlikely vision of the future, we would only be able to do what
we can do now with microstimulation – namely, stimulating or



inhibiting large populations of neurons at one or a small
number of foci. Again, we would be able to induce more or
less of what is already there: more or less emotional
engagement (perhaps through stimulating amygdala),
inducing emotional indifference (amygdala silencing), helping
with overall memory encoding and recall, and so on. This is
all very impressive, and there are important clinical
applications, as we mentioned in drug-resistant forms of
obsessive-compulsive disorder or depression.

Ethical discussions do not typically target these clinical
applications with their obvious benefits. When people become
afraid of neuromodulation, it seems to be that their fears are
induced by other potential applications that require a
technology of a very different level. For example,
neuromodulation might allow us to manipulate the finer
content of our mental life, such as the exact memories that
we have. The premise of the movie Eternal Sunshine of the
Spotless Mind is an interesting illustration. The character
played by Kate Winslet has all her memories of her ex
erased. Hollywood loves such scenarios, but in reality this
would require modulating the activity of thousands of neurons
at the single neuron level in human beings, as well as a
perfect understanding of how the activity of each of these
neurons is related to the memory of a particular person. This
is not in our power – not now, and not in the foreseeable
future.



Consider face perception. Transcranial magnetic
stimulation studies have shown influences of the stimulation
of face areas on the proficiency of face perception. There are
small effects of such stimulation on how well we recognize
faces and their expressed emotions (e.g., Pitcher et al.,
2008). Microstimulation of a face patch has revealed more
specific and larger effects, so that the geometry of a face can
change in appearance (Parvizi et al., 2012). However,
individual faces are coded by the pattern of activity across
thousands of face-selective neurons. If we want to evoke the
pattern of activity associated with a particular face, we would
need to individually modulate the activity of thousands of
neurons with single-neuron resolution, and it would have to
be the correct neurons. That is science fiction and will remain
fictional in the foreseeable future. Of course, the history of
science is replete with amazing and unexpected paradigm
shifts, so who knows what the far future will bring?



14.1 Microstimulation and Deep Brain
Stimulation

Microstimulation and deep brain stimulation (DBS) require the
insertion of an electrode into the neural tissue. A small electrical
current is applied through the electrode that influences the electrical
activity of neurons near the tip of the electrode. The larger the
current, the wider the area in which neurons will be influenced by the
current and the stronger the influence on the neurons that are
closest. Nearby neurons could be damaged by the current if it is too
strong (in addition to the neurons that are inevitably destroyed by
inserting the electrode). A relatively strong current that does not
exceed the threshold for neuronal damage will induce action
potentials. A weaker current might not induce any action potentials
but might still result in a change in the membrane potential of the
nearby neurons and as such influence neural processing.

The choice of the best current strength can sometimes seem
more a matter of intuition than of exact science, except when the
electrode is inserted in a region where stimulation results in obvious
behavioral effects. We will focus on one example, the frontal eye
fields (FEF). This premotor area in the frontal cortex has been
investigated in numerous studies with monkeys and has also been
found in humans. The responses of neurons in the FEF are related
to eye movements, and neurons that respond to eye movements in
the same direction tend to be clustered in the same part of the FEF
(topographic organization). Microstimulation in this area with currents



of less than 50 µA elicits a saccade (eye movement), the direction of
which depends on the exact location of the electrode within the FEF
topographic map. The saccadic threshold, defined as the current that
is sufficient to elicit an eye movement, provides a straightforward
reference to define current in terms of its physiological effect. Many
studies are more interested in microstimulation effects at
subthreshold levels, which are then expressed in percentages of the
saccadic threshold (e.g., Armstrong and Moore, 2007).

Microstimulation and deep brain stimulation refer to two different
applications of this invasive electrical stimulation. Microstimulation in
humans is primarily restricted to patients who suffer from severe,
untreatable epileptic seizures. In some of those patients,
neurologists implant recording and stimulation electrodes to better
determine the source of the seizures. The implanted electrodes are
removed prior to surgery. In some cases, it is possible to take some
time to use the implanted electrodes to also characterize the neural
responses for research purposes.

We will restrict ourselves to one intriguing example of
microstimulation in this context, the results of which were published
in a paper by Parvizi and colleagues (2012). They implanted
electrodes in the visual cortex of one patient. The recorded electrical
activity indicated that a few of the electrodes were located in a
fusiform face-selective area as defined by functional MRI (fMRI) in
the same patient (Fig. 14.1). A short stimulation through these
electrodes influenced the perception of faces by the patient. One of
his verbal descriptions of this effect is as follows: “You almost look
like somebody I’ve seen before, but somebody different. That was a



trip. … It’s almost like the shape of your face, your features drooped”
(Parvizi et al., 2012, p. 14198). The data quality and the number of
subjects in such a study are necessarily very limited, given the
clinical context to which such data collection is restricted, but it is
obviously a very intriguing finding.



Figure 14.1 Invasive microstimulation of face-selective patches in the
human brain. The location of the two channels used for brain stimulation is
indicated with 1 and 2 in each panel.

(A) Location of the intracranial electrodes used for electrophysiological
recordings, so-called electrocorticography (ECoG). For each electrode, the
neural responses in four conditions (faces, limbs, cars, houses) are shown
with a pie chart. The diameter of each pie chart reflects the signal-to-noise
ratio of the channel. The anatomical image shows a ventral view (view from
below) of the occipital and posterior temporal cortex.



(B) Face selectivity as measured with functional MRI (fMRI). Blue, green,
and red lines represent the meridian representations in part of the
retinotopic cortex. The left image shows a ventral view of the inflated
surface, the right images a few sagittal slices.

Reproduced with permission from Parvizi et al., 2012

The term “deep brain stimulation” or DBS refers to the same
method of microstimulation but as applied in the deep structures of
the brain such as the thalamus and basal ganglia. The original
application of DBS was used as a treatment for Parkinson’s disease,
for which it is an FDA-approved treatment (Deuschl et al., 2006). It is
also being tested in the context of other syndromes, including severe
forms of obsessive-compulsive disorder (Greenberg et al., 2006) and
depression (Mayberg et al., 2005) that do not respond to other
treatments. The symptoms are alleviated during the stimulation, but
they return afterward. Thus, the implanted electrodes are meant to
stay in place for as long as possible.



Deep brain stimulation typically involves a repetitive and chronic
stimulation across a long period of time – a kind of neural
pacemaker. This chronic stimulation can function as a treatment
through various mechanisms: enhancing activity, inhibiting activity, or
synchronizing activity. For example, in the case of depression, the
stimulation is applied to the subgenual cingulate region, a structure
in which the activity is elevated in some depressive patients.
Stimulation in white matter near this region is thought to reduce this
elevated activity, resulting in less depression.



14.2 Focused Ultrasound Stimulation
(FUS)

Physically, sound is characterized as a wave of air displacement.
This mechanical movement is also why we can hear sounds,
because airwaves make the eardrum move back and forth, and the
resulting movements in the inner ear activate the auditory receptor
cells. However, the frequency range that we can hear is only a very
small fraction of the possible spectrum of frequencies. A frequency
of 20 kHz is too high to be detectable by human ears. Waves with a
frequency beyond the hearing range are referred to as “ultrasound”.
Focused ultrasound stimulation typically includes frequencies of a
few hundred kHz. While we are used to thinking of sound as a wave
that propagates through a large volume of space, these high-
frequency waves are much more restricted in space. The
transducers used for FUS are designed to limit these waves even
further in space, resulting in a relatively focused volume of space in
which the waves propagate.

Given that FUS is applied transcranially, the bone reduces the
amplitude dramatically, with a factor of 4. In contrast, however, to the
light waves used with functional near-infrared spectroscopy (fNIRS),
the sound waves are not scattered when going through the bone
(Legon et al., 2014). The region stimulated by FUS looks a bit like a
rugby ball, with the long axis being orthogonal to the scalp surface.
In lateral directions, the spatial resolution is better than other
noninvasive stimulation methods (see the following sections),



reaching a resolution of only a few millimeters. The main focus of
stimulation can be deeper than with these other methods, although
this potential has not yet been tested in human studies. Given the
relatively high spatial precision of FUS, it is typically guided by a
structural MRI.

It is important to consider the intensity of the ultrasound waves.
With high intensities, the waves contain so much energy that the
tissue heats up and damage occurs. Such high-intensity FUS can be
used and is being used to lesion brain structures. When used for
neural stimulation, the waves have a relatively low intensity, referred
to as low-intensity FUS (Rezayat and Toostani, 2016). In this low-
intensity regime, the induced thermal energy is very low and does
not lead to any harm.

Focused ultrasound stimulation is a relatively new method. It
has not been fully determined yet how FUS influences neural
processing. Given the low intensity of the waves, most of the effect
on neural processing is not due to the tissue heating up. A non-
thermal form of energy, which is very likely behind most of the
effects, is mechanical energy. The high-frequency airwaves cause
very small displacements of cells, and these displacements influence
the properties of receptors such as voltage-gated sodium and
calcium channels (Rezayat and Toostani, 2016).

Focused ultrasound stimulation was first validated in animal
studies, but recently there have been several convincing
demonstrations in humans. For example, Legon and colleagues
(2014) showed that FUS applied to the somatosensory cortex
modulates somatosensory evoked potentials measured through



electroencephalography (EEG) and enhances performance in
discrimination tasks. They calculated the area of stimulated tissue as
shown in Figure 14.2. There are no neural measurements to confirm
that this calculation corresponds to the area of tissue with affected
neural responses, except the observation that FUS displaced 1 cm
anterior or posterior did no longer have an effect on somatosensory
potentials. In another study, Lee and colleagues (2016) stimulated
the primary visual cortex with FUS and observed changes in blood-
oxygenation-level dependent (BOLD) fMRI signals,
electrophysiological responses, and accompanying phosphene
perception. Despite these exciting results, many questions remain,
such as why there is a large minority of participants who are
unresponsive to the stimulation (Lee et al., 2016), and whether
systematic comparisons will allow us to more closely compare the
effective spatial precision of FUS and TMS.

Figure 14.2 Simulation of the area of stimulated tissue during the
application of FUS to somatosensory cortex S1. The coronal slices show a
projection of FUS fields as measured in a realistic brain model. The coronal
slice is taken at the anterior-posterior center of the beam.

Figure adapted with permission from Legon et al., 2014



14.3 Transcranial Magnetic Stimulation
(TMS)

The physical principle behind TMS will sound familiar to someone
who has been studying the physics of MRI because of the central
role of electromagnetic induction. In TMS, a coil is placed over the
skull and an electrical current is applied. This electrical current
induces a magnetic field, which, in turn, causes another electrical
current in the brain (Fig. 14.3A). The shape of the magnetic field and
of the induced current depend on the shape of the coil, which is a
circle in the simplest design but can also take other forms, such as a
figure eight–shaped coil. The latter provides a more focused
magnetic field at the center where the two coils meet (Fig. 14.3B)
and so offers greater precision in terms of the location of altered
neural activity.



Figure 14.3 Illustration of transcranial magnetic stimulation (TMS) and coil
design.

(A) An electrical current in the coil (thin black arrows drawn in the coil)
induces a magnetic field orthogonal to the coil (red lines). This magnetic
field passes through the skull and induces electrical currents in an electrical
field that runs parallel to the coil (thick black line).



(B) Illustration of the spatial distribution of stimulation induced by a figure
eight–shaped coil.

Figure reproduced with permission from Ridding and Rothwell, 2007

The exact properties of this second electrical current and the
effect that this current has on neural activity depends on several
parameters, which make it difficult to predict the exact effect of TMS
on neural activity. Some parameters can still be modeled, such as
the distance from the coil: The strongest effect will be induced
underneath the coil, and the effect will gradually dissipate with longer
distance. Other parameters involve biological factors, such as the
conductivity of tissue and the orientation of axons. These biological
factors are more difficult to fully characterize.

The effect of distance tends to restrict the application of TMS to
superficial structures. Nevertheless, some coil designs allow for the
stimulation of less superficial structures, at the expense of spatial
precision (Zangen et al., 2005).

As with all forms of brain stimulation, the induced electrical
current can have a variety of effects on neural information



processing. On the one hand, the stimulation can result in
interference or noise induction and as such hamper normal
processing and performance. On the other hand, the electrical
stimulation can result in actual neural stimulation and mimic the
effect of excitatory input to a region. Examples of the latter are the
induction of movements when TMS is applied to primary motor
cortex and the occurrence of phosphenes after application of TMS to
the visual cortex (e.g., Meyer et al., 1990).

Transcranial magnetic stimulation probably has a spatial
resolution of close to 1 centimeter, and cannot compete with the
resolution of invasive techniques such as microstimulation and DBS.
Regions that are more than a centimeter apart can be dissociated
through TMS. For example, Pitcher and colleagues (2012) showed
that (late) TMS of the occipital face area only affects face
processing, while TMS at the same timing (105 ms after stimulus
onset) only affects body processing when applied to the extrastriate
body area. This double dissociation is found even though the two
regions are less than 2 cm apart.

Transcranial magnetic stimulation also has a very good temporal
resolution, at least when only a single pulse or a double pulse is
applied. The temporal resolution is limited by the duration of the
pulse(s) and by the number of time points tested by the researchers.
In the aforementioned study of Pitcher and colleagues (2012), a
difference was found between stimulation at 45 and 105 ms post-
stimulus, while no effects were found at intermediate times tested at
intervals of 20 ms. The design of this study would therefore provide a
temporal resolution of 20 ms. The possibility of investigating when



regions are involved causally in a particular behavior has been
referred to as causal chronometry (Pascual-Leone et al., 2000).

There is also a more sustained version of TMS, referred to as
repetitive TMS (rTMS). Here multiple pulses are applied for a
particular period of time and frequency. Repetitive TMS does not
have a good temporal resolution but might induce a stronger effect.
For this reason, repetitive TMS also involves a higher risk, although
it is widely considered to be a safe technique when applied
appropriately (Rossi et al., 2009). It has been shown that rTMS can
induce seizures in a very small minority of participants, and primarily
in patients who were already susceptible (e.g., due to medication).

One possible approach to combine the two variants of TMS is to
first apply rTMS to establish the existence of a causal link and then
apply single/double-pulse TMS to investigate this link with a higher
temporal resolution. As an example, consider the study by Pitcher
and colleagues (2008). The authors were interested in the potential
role of the occipital face area (OFA) in emotion recognition. The OFA
is located near the surface of the skull and can therefore be
stimulated with TMS, in contrast to the fusiform face area (FFA).
Pitcher and colleagues used a combination of structural and
functional MRI to determine the location of the OFA in each
individual participant (Fig. 14.4). In a first set of experiments, they
applied repetitive TMS with a frequency of 10 Hz for 500 ms (Fig.
14.5A). Transcranial magnetic stimulation of the right OFA resulted in
lower performance in recognizing emotions from face images, while
identity recognition was not affected. In a later experiment, the
authors applied double-pulse TMS with an interval of 40 ms between



the pulses (Fig. 14.5B). The experiment included multiple timing
conditions with a 40 ms difference between conditions, with the
earliest condition including two pulses applied 20–60 ms after
stimulus onset, and the latest condition at 250–290 ms. Transcranial
magnetic stimulation of the right OFA only affected emotion
recognition in the condition with timing 60–100 ms after stimulus
onset, suggesting that the causal influence of OFA on emotion
recognition occurs relatively early after stimulus onset.



Figure 14.4 Determination of the anatomical coordinates of the region of
interest and overview of the experimental methods of Pitcher et al. (2008).

(A) The Talairach coordinates of the occipital face area in a group study
were used to determine the anatomical location of the occipital face area
(OFA). These coordinates were then transformed to the subject’s native
space in order to obtain subject-specific coordinates for the stimulation.



(B) Illustration of the trial procedure and the TMS protocol. Experiment 1
included a repetitive stimulation of 10 Hz for 500 ms starting at stimulus
onset (illustrated in blue). Experiment 3 included a double-pulse TMS in 7
conditions with different timings (each illustrated in a different color).

Figure adapted with permission from Pitcher et al., 2008



Figure 14.5 The influence of repetitive TMS and double-pulse TMS on face
identity and face emotion recognition. The asterisks (*) denote a comparison
that yields a statistically significant difference.

Panels adapted with permission from Pitcher et al., 2008

For TMS, it is important to have proper control conditions. Even
when researchers are only interested in one particular brain region
and timing condition, the experimental paradigm should include at
least one condition that controls for potential placebo effects. One
possibility is the use of a sham condition, which often involves
turning the coil by 90 degrees so that the magnetic field does not
influence neural activity. Such a sham condition is easily detected by
participants, because the common side effects of real stimulation,
such as scalp sensations or muscle twitching, are not present in the
sham condition. An alternative control condition that is frequently
used is stimulation of the vertex, which is the highest point of the



skull and close to the postcentral gyri and electrode position Cz in
the EEG.

In a clinical context, TMS has a major diagnostic value in testing
the connectivity between the motor cortex and peripheral muscles in
motor-related disorders and after stroke (for review, see Groppa et
al., 2012). The efficacy of TMS as part of a clinical treatment of
disorders related to the central nervous system has been tested in
many domains, but its efficacy is not always as strong as hoped for.
In major depression, some positive evidence has been reported. In
this case, repetitive TMS is used as an alternative to the classical
and very impactful electroconvulsive therapy (“electroshocks”) for
treating patients. According to the review by Brunelin and colleagues
(2007), repetitive TMS is primarily applied to the dorsolateral
prefrontal cortex, with an interaction between the side of stimulation
(left or right) and the frequency of stimulation (high and low
frequency stimulation). Low-frequency stimulation is intended to
inhibit cortical excitability, while high-frequency stimulation is used to
stimulate neural activity. The strength of the effect is illustrated by
numbers such as 37% responders (= meaningful reduction in
symptom severity) in the TMS group versus 20% responders in a
placebo group. Ten years later, it is still recommended as a possible
therapy for patients who are treatment resistant or intolerant (Perera
et al., 2016).

Transcranial magnetic stimulation is also applied and is FDA
approved in the context of migraine. Here treatment might involve a
TMS device that can be taken home and self-applied by the patient.
Lipton and colleagues (2010) showed that single-pulse TMS over the



visual cortex (occipital bone) reduces the probability of a headache
pain in migraine attacks with a visual aura two hours after pain onset
from 78% in the sham TMS group to 61% in the TMS group. This is
a positive effect that can make a meaningful difference for some
patients.



14.4 Transcranial Current Stimulation
(TCS)

With transcranial current stimulation (TCS), a small current is applied
to the skull. The basic equipment for the simplest version of TCS is
straightforward: a battery and two electrodes (see Fig. 14.6). One
electrode is positively charged, referred to as an anode, the other
electrode is the negative, referred to as a cathode. The current flows
from the anode to the cathode. Warning: Please do not try this at
home, in case this simple description would persuade a do-it-
yourself reader! A battery and electrodes are cheap and easy to
work with, but not necessarily safe. Those TCS devices that are
certified for human use come with many additional features to
ascertain safety and proper control of various parameters. As a
consequence, these devices are disappointingly expensive, easily
running into several thousand dollars.

Figure 14.6 The equipment used for transcranial current stimulation. The
anode is shown in red, the cathode in blue.



The electrical current will influence cortical excitability. At the
site of the anode, the current will depolarize neurons and as such
increase cortical excitability. The opposite effect is seen at the
cathode.

Several parameters are important to consider (Nitsche et al.,
2008). First, current strength will determine not only the effect size at
the neural level but also side effects. Studies typically use current
strengths of 1–2 mA, which is enough to generate at least some
effect but still keep the side effects under control. At this strength,
skin sensations at the start and end of stimulation are frequently
noticed, skin irritation (e.g., redness) is regularly present but does
not indicate skin damage, and major side effects such as headaches
are rare.

Second, the contact area of the electrodes is relatively large,
often 25 cm2 or more. Given that current density should be
controlled, smaller electrodes might require the use of smaller
current strengths to avoid aversive side effects. Because of the use
of large electrodes, the relatively uniform delivery of the current
across the electrode area, and the way in which the current flows in
the skull, TCS has a very poor spatial resolution, even relative to
TMS. It would be unrealistic to expect that TCS would be able to
dissociate regions that are only 2 cm apart, as was shown for TMS.

Third, the duration of stimulation is important to consider. The
cumulated effect of a longer stimulation will be larger than of a
shorter stimulation, and a longer stimulation might also induce a
longer aftereffect. In motor cortex, these aftereffects can even be
longer than the stimulation, with aftereffects up to 1 hour after



stimulation for less than 15 minutes (for review, see Nitsche et al.,
2008). As a consequence, TCS has a very poor temporal resolution.
This property of TCS also affects experimental design: Different
stimulation conditions are often not combined in a single subject by a
repeated-measures approach but rather through a between-subject
design unless the experiment includes multiple sessions.

Transcranial current stimulation studies typically include multiple
conditions involving different subjects. The minimum number is one
stimulation condition and one no-stimulation or sham condition.
Often the sham condition includes the same electrode positioning
and two very short current deliveries at the start and at the end of the
period in which stimulation is continuously applied in the
experimental condition. As such, the sham condition mimics the
minor skin sensations in the experimental condition, because these
sensations are limited to the start and the end of current delivery.
Through this approach, subjects cannot distinguish real TCS from
sham TCS, making it a perfect control condition (Gandiga et al.,
2006). It is not uncommon to have several subjects in the sham
condition reporting side effects during the interval in which no
stimulation is delivered, as much as reported by subjects during
actual stimulation. This is likely due to placebo effects.

Thus far we have assumed that current always goes in one
direction. This is the case when a direct current is applied, and this
technique is known as transcranial direct current stimulation
(TDCS). Transcranial direct current stimulation studies often use one
electrode for stimulation (anode) or inhibition (cathode), and the
other electrode is considered a reference electrode. Although the



location of the reference electrode would in such a case not be the
focus of attention, it is important to consider, because it will
determine the flow of the current. Many options are possible: a
location at the same side of the head but on top of a cortical region
which is not considered relevant for the experimental questions, a
location on the other side of the head, or even on the shoulder on
the other side. If a hypothesis is investigated that refers to a balance
or competition between two brain regions, then it might also be
relevant to place the anode on top of one of these regions and the
cathode on top of the other one.

Other variants of TCS involve an alternating current. In such
cases, both electrodes have the same function and labels such as
“anodal,” “cathodal,” and “reference electrode” are no longer used to
differentiate the two electrodes. When this current is alternating at a
fixed frequency, the method is referred to as transcranial
alternating current stimulation (TACS). This method is particularly
useful for testing hypotheses that particular frequency ranges might
be involved (see the chapters on EEG for a few examples). When
the current is not simply alternating but is modulated according to a
random frequency spectrum, the method is known as transcranial
random noise stimulation (TRNS). Enhancement of cortical
excitability through TRNS might be related to relatively high
frequencies, 100 Hz and more (Terney et al., 2008).

All these methods have relatively small effects on neural activity
because of the weak currents that can be used. It is thus unrealistic
to expect large and immediate effects on behavior. Nevertheless,
TCS seems to show robust effects in some specific contexts. First, a



small change in cortical excitability might have a particularly large
effect on neural activity and related behavior when a task is
performed at threshold. Second, whereas no immediate effects
might exist on behavior, effects might become larger in paradigms in
which small effects can accumulate over time. This would be the
case in long-term training paradigms in which training effects are
built up across time.

Many studies have been performed that have both
characteristics. One example is a recent study by Van Meel and
colleagues (2016). They studied the effect of anodal TDCS in a
perceptual learning paradigm in which participants had to recognize
images of objects that were shown only very briefly (Fig. 14.7).
There were two subject groups, with 12 participants in each: anodal
stimulation of the right lateral occipital complex (LOC), a region
thought to be involved in object recognition, and sham stimulation.
The reference electrode was positioned on the left shoulder. All
subjects were tested for four successive days. The first training day
showed no difference in behavioral performance, illustrating the fact
that the short-term effect of TDCS on behavior is negligible in the
short term, even when stimuli are presented near the threshold level.
Nevertheless, the improvement in performance from the first to the
last day was larger in the anodal TDCS group compared with the
sham condition. Thus, anodal TDCS stimulation can increase the
training effect accumulated across multiple days.



Figure 14.7 The application of TDCS in the context of perceptual learning.
The top shows the trial sequence, with an image of a car followed by
several masking images. Results are expressed in terms of the threshold,
which is the stimulus duration needed for the identification of images. The
threshold improves due to training, and this improvement is larger for the
condition with anodal TMS.

Adapted from Van Meel et al., 2016

Another illustration of the accumulating effects of multiple TDCS
sessions is given in a study by Cohen Kadosh and colleagues
(2010). Subjects learned to associate a new set of artificial symbols
with numerical magnitudes during six sessions. Transcranial direct
current stimulation was applied for 20 minutes at the beginning of
each session. The two electrodes were positioned on top of the left
and right parietal lobes. Fifteen subjects were divided across three
groups: anodal stimulation in the left lobe (and cathodal in the right),
anodal stimulation in the right lobe, and sham. The results suggested
that the numerical magnitudes were learned more readily by the
group receiving anodal stimulation in the right parietal lobe, in



agreement with a specific role of this cortical region for numerical
processing (Fig. 14.8). As shown in Figure 14.8, for familiar everyday
digits the participants of both groups show a linear relationship
between the objective magnitude of digits and their subjective
magnitude according to the participants. For the new artificial digits,
participants showed a similar linear relationship in the anodal
stimulation group, while the other groups did not. Although the small
number of subjects (N = 5) per group is a disadvantage of this
particular study for drawing strong conclusions, it illustrates the
potential that TDCS might provide for enhancing training effects that
accumulate across days. Recent studies from the same group used
TRNS to confirm beneficial effects of behavioral training combined
with cortical stimulation (Cappelletti et al., 2013; Snowball et al.,
2013).



Figure 14.8 The application of TDCS in the context of numerical cognition
for two subject groups, anodal stimulation and sham. Results show the
relationship between subjective and objective magnitude for artificial digits
(left) and for everyday digits (right).

Figure reproduced with permission from Cohen Kadosh et al., 2010

Overall, the field of TCS is still in transition, and further studies
with larger sample sizes are needed for a more accurate estimate of
the actual effect size of current TCS protocols. Some have voiced
doubts about this effect size. A recent study even went through the
trouble of measuring currents elicited by TCS applied to human
cadaver heads (Voroslakos et al., 2018). Their findings suggested
that common TCS protocols do not induce effective currents in the
brain. This is a wake-up call to the need for further experiments to
improve the existing protocols and experimental designs. It is also a
perfect illustration of the multidisciplinary nature of human brain
imaging that we end this book with a study on dead human brains,
just in case the reader may already have forgotten the dead salmon!



Summary
There is a wide variety of methods for neuromodulation that
allow researchers to test the causal link between neural
activity and behavior.

In order of decreasing spatial resolution, the noninvasive
methods include focused ultrasound stimulation (FUS),
transcranial magnetic stimulation (TMS), and transcranial
current stimulation (TCS).

In order of decreasing temporal specificity, the list includes
single-/double-pulse TMS, FUS, repetitive TMS, and TCS.



Review Questions

1. Explain the extent to which the availability of anatomical images of
individual participants is relevant for the different methods of
noninvasive neuromodulation.

2. Describe and explain the differences in spatial and temporal
resolution between transcranial magnetic stimulation (TMS) and
transcranial current stimulation (TCS).

3. Explain the difference in the elicited neural modulation when an
electrical current is applied through an invasive electrode, as in
microstimulation, or through a noninvasive scalp electrode, as in
TCS.



Further Reading

Knotkova, H. & Rasche, D. (2016). Textbook of Neuromodulation. New York:
Springer-Verlag. (This book provides a much more in-depth overview of
techniques for neuromodulation and stimulation.)

Woods, A. J., Antal, A., Bikson, M., et al. (2016). A technical guide to tDCS,
and related non-invasive brain stimulation tools. Clinical Neurophysiology,
127(2), 1031–1048. (This paper provides a useful overview of TCS, covering
topics such as how it works, which parameters to consider, and how to set up
the experimental design.)





Glossary

Action potential.
A rapid rise and fall of the membrane potential of a neuron. It has a
characteristic temporal envelope that is caused by the involved molecular
mechanisms. It propagates through the axon of the neuron and is the major
format for communication in the brain.

Additivity.
Property of a linear system, so that the response to a complex stimulus, AB,
that is composed of two simple stimuli, A and B, is equal to the sum of the
response to A and the response to B. Additivity is often an assumption in the
modeling of hemodynamic responses. The same assumption also underlies
the (Donders) subtraction method.

Adjacency matrix.
A square matrix that represents a finite graph. Each entry of the matrix
indicates a link between two nodes of the graph.

Alpha (α) band.
A frequency band of M/EEG activity, approximately including the frequency
range 8–13 Hz. It is sometimes also referred to as the alpha wave.

Alternating current (AC) amplifier.
An electric device that amplifies the alternating current signal. See also
direct current (DC) amplifier.

Alternating current (AC) noise.
Electromagnetic noise due to alternating current noise sources, mainly the
power supply. Also referred to as powerline noise or mains noise.

Amplitude spectral density (ASD).



Standardized amplitude spectrum.

Amplitude spectrum.
Spectrum of the amplitude of frequency components at the different
frequencies in a signal.

Analog-to-digital (AD) converter.
An electric device that converts an analog signal to a digital signal.

Analog-to-digital (AD) level.
Amount of information per digital sample. The unit is the bit.

Arterial spin labeling (ASL).
An fMRI method that measures blood flow by labeling water molecules that
move because of perfusion.

Artifacts.
Distortions seen in images or electrophysiological time series. The
distortions are unwanted but sometimes impossible to avoid. Image and
signal-processing steps are needed to minimize the impact of the distortions
in statistical data processing.

Auditory brainstem response (ABR).
A series of seven evoked potentials that appear within 10 ms from an
auditory click stimulus. Each peak corresponds to activity of auditory nerves
and nuclei in the brain stem.

Auditory evoked potential (AEP).
An evoked potential in response to an auditory stimulus.

Autocorrelation.
A correlation of a signal with itself when translated. If time is the dimension
over which the translation happens, we refer to a temporal autocorrelation.



An autocorrelation reflects a dependence between successive data points.

Average reference.
A montage method in which the reference signal is an average signal, such
as the average of all EEG electrodes.

Axial diffusivity (AD) .
The amount of diffusion along the direction of maximal diffusion.

Axial gradiometer.
MEG sensor with two pick-up coils. The coils turn around the common axis
in different planes/heights.

Band-cut filter.
A filter to remove a band of frequency components. Also known as a notch
filter.

Beta band.
A frequency band of M/EEG activity. The range is approximately 13–30 Hz.

Beta-series correlations.
Method for functional connectivity analysis that includes fitting the effect of
individual events through a general linear model and analyzing the variation
across time in the resulting beta estimates.

Beta value.
Value obtained through model fitting that provides an estimate of how much
and in which direction an independent variable (e.g., regressor of interest)
predicts changes in a dependent variable (e.g., fMRI signal in a voxel).

Bipolar derivation.
A montage method in which an EEG signal is derived relative to another
scalp electrode signal.



Block design.
Experimental design in which trials of a particular condition are grouped in
time to form a block of trials. Within blocks, the hemodynamic responses
associated with individual trials add together to generate a strong cumulative
signal.

Blood oxygenation.
The ratio of oxygenated to deoxygenated hemoglobin.

Blood-oxygenation-level dependent (BOLD) functional magnetic
resonance imaging (fMRI).
fMRI in which the measured signal is intended to be sensitive to the level of
blood oxygenation.

Brain extraction.
The delineation of the parts of images that contain brain tissue, in order to
restrict further analyses to only these parts.

Cerebrospinal fluid (CSF).
Body fluid that is found in and around the brain, in particular in the ventricles
and surrounding the cerebral cortex.

Circular analyses.
Statistical analyses in which analysis steps are mutually dependent while
they should be independent. This might happen because one or more earlier
steps in the analysis stream are informed by the outcome of later steps, or
because data are selected in ways that are not statistically independent from
tests that are performed in later steps.

Circular mean.
Mean in circular statistics. Also known as vector mean or directional mean.



Circular statistics.
Statistics for circular-valued data, such as phase. Also known as directional
statistics or spherical statistics.

Coil.
A loop of wire that is used to transmit or receive an electrical current. This
current can induce or be induced by a magnetic field.

Condition-rich design.
Experimental design in which many individual conditions are identified. This
contrasts with the typical design in a human neuroimaging experiment that
typically only includes a low number of conditions. Condition-rich designs
have been developed for the purpose of multi-voxel pattern analysis.

Contact impedance.
Electrical impedance between an EEG electrode and the scalp. Less than 5
kΩ is recommended for a good signal-to-noise ratio.

Convolution.
Mathematical operation in which the integral is taken of the point-wise
multiplication of a time series with a function that is translated in time.

Coregistration.
Step in the preprocessing of fMRI images. Coregistration brings different
image modalities, such as a functional scan and an anatomical volume, in
one and the same spatial coordinate frame.

Correlational multi-voxel pattern analysis (MVPA).
MVPA approach that involves the computation of correlations between multi-
voxel patterns.

Cluster-wise correction.



Correction for multiple comparisons that combines an uncorrected threshold
at the voxel level with a further threshold incorporating cluster size: the
number of adjacent voxels that cross the uncorrected threshold.

Computerized tomography (CT) scanning.
Three-dimensional imaging with X-ray images. CT scanning is rarely used in
studies looking for brain/behavior relationships, but it is very useful for the
diagnosis of a wide range of diseases that affect the nervous system.

Cyclotron.
Machine to create radionuclides, such as used in the radioactive tracers for
PET imaging.

Decoding multi-voxel pattern analysis (MVPA).
MVPA approach that involves the training and cross-validation of pattern
classifiers.

Deep brain stimulation (DBS).
Method to influence neural activity locally by applying a small electrical
current through an electrode that is inserted deep in the brain.

Default mode network.
Network of regions with strong functional connectivity that are most strongly
activated when participants are not engaged in a particular task.

Delta band.
A frequency band of M/EEG activity. The band includes approximately 1 to 4
Hz. For healthy adults, the slow activity appears during deep sleep.

Dephasing.
The gradual decrease in correspondence between elements (protons,
neuronal responses, electrophysiological signals) in the phase of oscillatory
changes.



Depolarization.
Change in the membrane potentials to less negative values. This is what
happens when a neuron receives excitatory synaptic input.

Design matrix.
The matrix that contains all independent variables included in the general
linear model, typically involving regressors of interest (e.g., the time onsets
of experimental conditions) as well as covariates or potential confounds
(e.g., motion-correction parameters).

DICOM.
DICOM is a standard format for medical images. DICOM stands for Digital
Imaging and Communications in Medicine. The format was traditionally used
by many MRI scanners, but it is converted into other formats for data
analysis.

Diffusion.
Phenomenon that molecules tend to move around in a medium in such a
way that they spread out as evenly as possible.

Diffusion tensor imaging (DTI).
Imaging approach based on diffusion-weighted imaging that is used to
investigate structural connectivity in the brain.

Diffusion-weighted imaging (DWI).
Imaging with MRI pulse sequences that are sensitive to molecular diffusion.

Direct current (DC) amplifier.
An electric device which amplifies the direct and alternating current signals.
See also alternating current (AC) amplifier.

Direct influence.



An influence from one brain region to another without intermediate regions;
this influence explains the correlation in activity between the two regions.

Discrete Fourier transform (DFT).
A mathematical operation that transforms a discrete time domain signal into
a discrete frequency domain signal.

Donders subtraction method.
See subtraction method.

Double dipping.
Colloquial term for a statistical approach in which the same data are used
for selecting relevant data and for performing analyses that are restricted to
these relevant data.

Down-sampling.
A signal resampling method to decrease the number of samples. Original
samples are interpolated and resampled with a lower sampling frequency.
Alternatively, the original sample points are subsampled, e.g., one in every
five samples.

Echo time (TE).
The time interval between excitation (or refocusing by a gradient switch) and
data acquisition.

Edited spectrum.
Method applied in the context of magnetic resonance spectroscopy. It
computes the contribution of a metabolite in peaks that reflect multiple
metabolites from the effect that the suppression of one peak has on other
peaks.

Effective connectivity.



Functional connectivity between brain regions that implies a direction in the
connectivity (which region drives the other).

Efficiency.
Index to measure the amount of resources (e.g., time) that are needed to
implement a method or design. Efficiency is an important consideration
when comparing experimental designs for hemodynamic imaging. It is
affected negatively by correlations between independent variables.

Electrically shielded room.
A room that is covered by conductive materials. The materials prevent the
electric activity outside of the room to enter. Also referred to as a Faraday
cage.

Electrocardiography (ECG).
Method to measure electrophysiological activity of the cardiovascular
system.

Electrocorticography (ECoG).
Method to measure EEG from the cortical surface. The electrodes are
placed on the pia mater of the brain.

Electrode.
A piece of conductive material which makes electric contact with an object of
measurement, such as a neuron, brain tissue, skull, or scalp.

Electroencephalography (EEG).
Method to record electric signal due to brain activity. The signal is recorded
from the electrodes on scalp, skull, cortical surface, or in brain tissue.

Electromyography (EMG).
Method to measure electric signal due to muscular activity.



Electrooculography (EOG).
Method to measure electric activity due to eye movements.

Event-related design.
Experimental design in which trials of different conditions are ordered in a
pseudo-random sequence so that successive trials are often from a different
condition. Depending on the length of the inter-trial interval, the event-
related design can be rapid (short interval; typically only a few seconds) or
slow (long interval; often more than 10 seconds).

Event-related potential (ERP).
An M/EEG component that appears in response to an external stimulus or
an internal event.

Event-related synchrony.
An increase in signal amplitude relative to the pre-event baseline level. The
amplitude is computed from a time-frequency signal.

Evoked potential (EP).
An M/EEG response to an external stimulus. Also see event-related
potential.

Excitatory postsynaptic potential (EPSP).
See postsynaptic potential (PSP).

Extracellular recordings.
The measurement of the electrical signals from single neurons or
populations of neurons by means of an electrode that is brought near (but
not in) these neurons or populations.

False discovery rate (FDR).



An approach to correct for multiple comparisons that controls the proportion
of incorrectly rejected null hypotheses based on the observed distribution of
uncorrected p-values. If we apply the FDR correction with a corrected p =
0.05, then 1 out of 20 of activated voxels/regions is a false positive.

Family-wise error (FWE) correction.
Method to control for the probability of a type-I error (claiming that there is
an effect while there is none) at the “family” level of all relevant voxels, so
that the probability to find one or more voxels with a lower p-value is 0.05 if
the null hypothesis of no effect is true. This approach is related to Bonferroni
correction, but takes into account the covariance between voxels which
reduces the number of independent tests.

Fast Fourier transform (FFT).
A computer algorithm to perform a discrete Fourier transform (DFT).

Field inhomogeneity.
Small spatial variations in the local magnetic field. It contributes to T2*
decay.

Field of view (FOV).
The size of the imaged volume or slice.

Filtering.
The attenuation of parts of the measured frequency spectrum. We
distinguish between low-pass filtering (higher frequencies are attenuated),
band-pass filtering (lowest and highest frequencies are attenuated, middle
frequencies remain), and high-pass filtering (lower frequencies are
attenuated).

Flatmap.



Visualization of the cortical surface as a two-dimensional sheet. The creation
of a flatmap requires that cuts are made in the surface so that the original
three-dimensional layout of the surface can be represented in two
dimensions.

Flip angle.
The angle in which spins are flipped by the radio frequency (RF) pulse.

Focused ultrasound stimulation (FUS).
Noninvasive method for modulating brain activity by applying focused sound
waves in the ultrasound frequency range. The waves probably affect neural
activity by causing very small displacements of cells, as such influencing the
properties of receptors such as voltage-gated sodium and calcium channels.

Forward inference.
Statistical inference that activation in a brain region is related to a particular
cognitive process because it was observed that if the cognitive process is
manipulated, then this specific brain region is activated.

Fourier analysis.
Method to decompose a signal into a sum of frequency components, each
with a particular amplitude and phase.

Fractional anisotropy (FA).
The difference in diffusion depending on the direction in which it is
computed. It is computed by taking the difference between the length of
each diffusion axis and the mean diffusion, followed by a further
normalization for the total diffusion.

Frequency.
The speed with which a signal is changing. It is expressed in hertz (Hz), for
which the unit of time is a second. A signal with frequency 1 Hz is a signal



that goes up and down one time per second.

Frequency components.
Elementary functions that together make up a signal. Each component has a
different frequency, ranging from slow to fast. Each component is
determined by three parameters: frequency, amplitude (how much it is going
up and down), and phase (when it is going up and down). Apart from the
changes that can be induced by altering these parameters, the components
are the same. In most methods of signal processing, sinusoidal functions
are used.

Frequency-encoding (FE) gradient.
A gradient that is applied during data acquisition, so that nuclei at different
positions along the gradient have a different resonance frequency.

Frequency spectrum.
The range of frequencies in a signal. Its limits depend on sampling duration
and sampling frequency.

Full width at half maximum (FWHM).
Index that captures the width of a function, typically the function that is
applied during spatial smoothing. The index captures how wide the function
is when the function is at half of its maximal height.

Functional connectivity.
Relationship between brain regions in how their neural activity varies across
time.

Functional localization.
The enterprise of trying to pinpoint where mental functions are localized in
the brain.

Functional localizer.



Experiment that is intended to localize regions of interest (ROIs) through
functional activity. It is typically only a small part of a larger study that
includes other manipulations, the effect of which is tested in the localized
ROIs.

Functional magnetic resonance imaging (fMRI).
The use of nuclear magnetic resonance in order to measure the
hemodynamic changes related to neural activity.

Functional magnetic resonance imaging (fMRI) adaptation.
Experimental design and method that is developed to measure how neural
responses depend on whether successive stimuli are the same or different.
This stimulus-specific adaptation is often used as a measure of how
sensitive the neuronal population in a voxel or region is to the stimulus
change.

Functional near-infrared spectroscopy (fNIRS).
An imaging technique that measures the hemodynamic response through its
effect on the light reflectance of neural tissue in the near-infrared part of the
spectrum.

Fusiform face area (FFA).
Region in the human cortex principally in the lateral fusiform gyrus. It is
defined by a higher hemodynamic response to pictures containing faces
than to pictures containing other objects.

Galvanic skin response (GSR).
A measure of skin conductance which changes due to activity of sweat
glands.

Gamma band.



A frequency band of M/EEG activity, going from 30 Hz and higher. The lower
gamma band is approximately 30–60 Hz, and the higher gamma band is
approximately 60–200 Hz.

Gastric evoked potential (GEP).
An evoked potential due to a gastric stimulus, such as oral gustatory
application of 10% sucrose.

General linear model (GLM).
Statistical approach to capture the linear relationship between multiple
dependent variables and a set of independent variables. With only one
dependent variable, the GLM is a multiple linear regression. In the case of
neuroimaging, the dependent variables can refer to the signal of voxels
(fMRI) or electrodes (EEG/MEG).

Gradient.
A gradual, primarily linear, change in field strength over space. Gradients
constitute an important part of pulse sequences for MRI.

Gradient-echo echo-planar imaging (GE-EPI) sequence.
An MRI pulse sequence that involves the successive acquisition of different
planes/slices and by which echoes are created through gradient reversals.
This sequence is used very often for BOLD fMRI.

Gradiometer.
A multi-coil magnetometer used for bio-magnetic sensing, such as MEG.

Granger causality.
Method to model the statistical dependence between time series by
analyzing whether one time series can be predicted (in time) by the other.

Graph theory.



Framework for the study of graphs that are composed of nodes with pair-
wise connections. The analysis results in the characterization of complex
systems through a small set of network parameters.

Ground electrode.
An electrode that is connected to the earth. The path carries the short-
circuited or faulty current away from the test participant. It could also provide
recording reference level for EEG recording.

Half-life.
The time it takes before a quantity reduces to half its value. In the current
context, it primarily refers to the half-life of injected contrast agents or
radioactive tracers.

Head position indicator (HPI) coil.
Metal coil that is attached to the head of test participants to monitor head
position in a MEG helmet. At least three HPIs are attached to detect head
position change during MEG measurement.

Hemodynamic response function (HRF).
The change in blood circulation over time in response to a change in
neuronal activity.

Hemodynamics.
Changes over time in blood circulation.

Hemoglobin.
Protein that is present in blood and is responsible for the transport of oxygen
and carbon dioxide. It is referred to as deoxygenated hemoglobin or
deoxyhemoglobin when the oxygen is removed.

High-cut filter.



A filter to remove frequency components higher than a threshold. Also
known as a low-pass filter.

Hilbert transform.
A mathematical operation that gives the orthogonal component of a real-
valued signal. The original and orthogonal signals are combined as a
complex-valued signal, the analytic signal.

Histology.
An invasive methodology for studying brain anatomy at high spatial
resolution. It typically involves cutting the brain in pieces, such as slices.

Hyperacuity.
Property of a measurement system that is able to pick up a signal that has a
higher frequency than the intuitive or theoretical limit of the system given its
sample rate. In the context of human fMRI, it refers to the ability to measure
a functional property that is organized at a finer scale than the voxel size.

Independent component analysis (ICA).
Statistical method that tries to identify the sources that compose a signal by
searching for components that are statistically independent.

Inflated brain.
Visualization of the cortex in which the massive indentation of the cortical
surface is neutralized through a process akin to inflating a balloon.

Inhibitory postsynaptic potential (IPSP).
See postsynaptic potential (PSP).

Inion.
An anatomical landmark where the external occipital protuberance crosses
with the midsagittal line.



Initial dip.
Transient decrease in local MRI signal due to a decrease in blood
oxygenation. This is the first part of the hemodynamic response, but it is not
typically observed in human imaging because it is local, transient, and small.

In-plane voxel size.
The size of voxels within brain slices, which is equal to the field of view
divided by the number of voxels.

International 10–20 system.
A standardized EEG electrode placement that specifies 19 electrode
locations on the scalp. The locations are determined based on anatomical
landmarks of the head, namely, nasion, inion, left and right preauricular
points.

Inter-trial phase coherence (ITPC).
An index of phase consistency across trials of an event-related paradigm
study. It corresponds to the length of the mean phase vector. Zero
corresponds to random (no phase coherence), and one corresponds to
perfectly consistent phase. Also known as phase-locking factor (PLF).

Intracranial recordings.
Another name for electrocorticography.

Jennifer Aniston neuron.
One of the most famous neurons in the human brain. Very similar to, but not
to be confused with, the Halle Berry neuron and the grandmother neuron.

Jitter.
Variation in inter-stimulus or inter-trial intervals.

k-space.



The characterization of the MR signal as an amplitude and phase spectrum
in a polar coordinate system with the frequency and the orientation of the
components as dimensions.

k-Complex.
An EEG waveform which appears during Stage 2 non-REM sleep. The
waveform is sharply bi-phasic.

Larmor frequency.
The frequency of the spin of a nucleus. It differs between different elements
and depends linearly on magnetic field strength.

Lateral occipital complex (LOC).
Region in the human cortex, primarily in the lateral occipital cortex but
extending into the temporal and parietal lobes. It is defined by a higher
hemodynamic response to pictures containing objects than to pictures
without objects (e.g., random patterns). It can be further divided into sub-
regions, such as lateral occipital (LO) and posterior fusiform (PF or pFs).

Linear regression.
Statistical approach to capture the linear relationship between a dependent
variable and one or more independent variables. We refer to simple linear
regression if there is only one independent variable; otherwise, it is a
multiple linear regression.

Linear system.
An input-output system of which the response (output) to a complex stimulus
(input) can be estimated from the responses to the simple stimuli that make
up the complex stimulus. This property is referred to as additivity.

Local field potentials (LFPs).



Slow-frequency (below 200 Hz) potential changes measured by an invasive
electrode.

Low-cut filter.
A filter to remove frequency components lower than a threshold. Also known
as a high-pass filter.

Magnetically shielded room.
A room that shields an environmental electromagnetic field for MEG and
MCG. The room is covered by highly permeable materials and conductive
materials that channel electromagnetic fields away from the inside of the
room. An active noise cancellation system may also be added.

Magnetic resonance imaging (MRI).
The use of nuclear magnetic resonance to obtain two- or three-dimensional
images.

Magnetic resonance spectroscopy (MRS).
The use of nuclear magnetic resonance in order to quantify the
concentration of metabolites by measuring the spectrum of spin frequencies.

Magnetic resonance spectroscopy imaging (MRSI).
MRS application that results in a three-dimensional image.

Magnetocardiogram (MCG).
The magnetic signal due to cardiac activity.

Magnetocardiography (MCG).
Method to record magnetic signal due to cardiovascular activity.

Magnetoencephalography (MEG).
Method to record magnetic signal due to brain activity. A high sensitivity
magnetometer, referred to as a Superconducting QUantum Interference



Device (SQUID), is used to measure the weak signal.

Magnetometer.
Sensor for magnetic field signals. In MEG literature, it often refers to a single
coil magnetometer.

Matched Filter Theorem.
Theorem in signal processing that states that it is best to filter the data with
a filter kernel that has the same amplitude spectrum as the signal that one
wants to measure among noise with a different amplitude spectrum.

Mean diffusion (MD).
A measure of the amount of diffusion in a voxel, independent of the
direction.

Mediated influence.
An influence from one region to another that is caused by an indirect route
through a third region.

Membrane potential.
Electrical potential difference between the inside of a neuron and its outside
medium.

Microstimulation.
Method to influence neural activity locally by applying a small electrical
current through an invasive electrode.

MNI templates.
Anatomical templates created by the Montreal Neurological Institute.

Monopolar derivation.
Method to derive voltage signal relative to a single reference level, e.g.,
EEG signal referenced to linked earlobes.



Montage.
Method to rereference EEG signal to a biological baseline. Also see
reference.

Morlet wavelet.
A basis function of wavelet analysis. It is the product of a sinusoid and the
Gaussian function.

Morphometry.
A quantitative analysis of the form/shape of an entity, in the present context
of the brain anatomy (brain morphometry).

Motion correction.
Step in the preprocessing of fMRI images. It compensates for changes in
the position of the head in images that were acquired at different points in
time.

Motion-correction parameters.
The transformation parameters that describe how each image in an fMRI
dataset has to be transformed in order to correct for motion.

Multiband imaging.
See multi-echo imaging.

Multi-channel phased-array coils.
Multiple surface coils that form an array, ideally surrounding a volume in
such a way that they provide high sensitivity that is relatively homogeneous
in the volume.

Multi-echo imaging.
Imaging methods that allow the acquisition of multiple slices after one radio
frequency (RF) pulse, resulting in a marked acceleration of imaging. This



allows for shorter repetition times and higher temporal sampling rates.

Multi-modal imaging.
The combination of information from different imaging modalities in one
study or analysis.

Multiple comparisons problem.
The analysis of neuroimaging data typically includes a high number of
statistical comparisons. In such a case it is required to correct for the
number of independent comparisons that are done.

Multi-voxel pattern analysis (MVPA).
Statistical analysis of fMRI data that takes as input the variation of
signal/response across voxels, so-called multi-voxel patterns. Given that
each voxel is a variable, it is a special case of more general multivariate
pattern analysis.

Nasion.
An anatomical landmark where the frontal nasal bone suture crosses the
midsagittal line. It corresponds to the lowest point of the ridge of the nose.

Neurovascular coupling.
Effect of neural activity on blood circulation.

NIfTI.
Standard format for MRI images developed by the Neuroimaging Informatics
Technology Initiative. Its conception was motivated by the desire to increase
the ease of exchanging files between different software packages. The
major software packages for MRI data analysis can handle NIfTI images for
input and output.

Node degree.



A graph theoretical parameter that reflects the number of nodes to which a
node is connected.

Normalization.
This concept can refer to two procedures. First, the alignment of data of
individual participants with a common spatial reference space. Second, the
normalization of signal values by a reference value, such as the signal value
measured in a baseline condition.

Notch filter.
See band-cut filter.

Nuclear magnetic resonance.
The phenomenon that nuclei with a magnetic moment absorb energy if the
oscillation frequency of a magnetic field matches the Larmor frequency of
the nuclei.

Nuisance regressors.
Independent variables that we might expect to predict part of the variation in
the fMRI signal, but that are not of primary interest to the researcher.

Object-selective cortex.
Region in the human cortex, primarily in the occipital but extending into the
temporal and parietal lobes. It is defined by a higher hemodynamic response
to pictures containing objects than to pictures with objects (e.g., random
patterns).

Olfactory evoked potential (OEP).
An evoked potential in response to an olfactory stimulus, such as a puff of
vanillin solvent in the nasal cavity.

One-back counterbalancing.



Ordering of trials so that each condition is equally likely to follow each other
condition. A purely random ordering of trials is not guaranteed to satisfy one-
back counterbalancing, which is why this constraint is often introduced. One-
back counterbalancing is a special case of more general N-back
counterbalancing.

One-back task.
Behavioral task in which participants have to compare a current trial with the
preceding trial. This task is often used in cognitive neuroimaging. The one-
back task is a specific case of N-back tasks, in which participants have to
compare a current trial T with trial T - N.

Optical imaging.
Imaging approach in which measurements are made by light sensors,
ranging from arrays of individual detectors to microscopes. Functional near-
infrared spectroscopy is an example of an optical imaging method that is
noninvasive and often used in human research. There are also invasive
optical imaging methods that are used only in animals and that provide
columnar resolution or even single-neuron resolution.

Parametric design.
Experimental design in which a particular parameter or dimension is
manipulated quantitatively in more than two steps.

Partial correlation.
The correlation that remains between two variables after taking into account
the correlations with other variables.

Partial phase locking (PPL).
A transient phase locking among oscillatory components.

Path length.



A graph theoretical parameter that reflects the number of nodes that have to
be passed to move from one node to another.

Percent signal change (PSC).
Signal change in comparison with a baseline condition, expressed as a
percentage.

Phase.
A point in a cycle of oscillation, expressed as an angle.

Phase coherence.
Coherence of phase between two signals.

Phase-encoding (PE) gradient.
A gradient that is applied after an RF pulse and before the signal is
acquired, and that allows the decoding of spatial position through the
differences in phase induced in nuclei at different positions along the
gradient.

Phase locking.
Oscillations with a constant phase lag. The phase locking with lag = 0 is
synchrony.

Phase-locking factor (PLF).
See Inter-trial phase coherence (ITPC).

Phase-locking index (PLI).
An index of phase coherence. Zero corresponds to random and one
corresponds to perfect phase locking. Also known as the synchrony index
(SI) and the single trial phase-locking value (S-PLV).

Phrenology.



An outdated pseudo-science that claimed that outer features of the skull
would be related to mental functions.

Planar gradiometer.
MEG sensor with two pick-up coils. The coils turn in a figure-eight shape in
the same plane.

Point-spread function (PSF).
A function that characterizes the broader spread of signal when a very small
point in the brain is activated. The width of this function is a useful index for
spatial resolution. The lower this width, the higher the resolution.

Positron emission tomography (PET).
Method to measure local blood volume that is based on sensitivity for the
emission of positrons from an injected radioactive tracer.

Postsynaptic potential (PSP).
A membrane potential that is generated at the postsynaptic terminal of a
chemical synapse. The potential increases when positive ions (e.g., Na+)
flow into the cell via an excitatory synapse, i.e., excitatory postsynaptic
potential (EPSP). Conversely, the potential decreases as negative ions (e.g.,
Cl-) flow into the cell via an inhibitory synapse, i.e., inhibitory postsynaptic
potential (IPSP).

Power spectral density (PSD).
A standardized power spectrum.

Power spectrum.
Frequency spectrum in power of amplitude.

Preauricular point.
An anatomical landmark where the posterior root of the zygomatic arch
(cheek bone) lies immediately in front of the upper end of the tragus.



Principal component analysis (PCA).
Statistical method that tries to identify a small number of components that
explain most of the variance in the data. The resulting data reduction is most
successful if the variables in the data show a high degree of covariance.

Psychophysiological interaction (PPI).
Dependence of functional connectivity on an experimental manipulation
such as task or presented stimuli.

Pulse sequence.
The temporal sequence of radio frequency (RF) pulses and timing and
duration of gradients.

Radial diffusivity (RD).
The amount of diffusion along the two directions orthogonal to the direction
of maximal diffusion.

Radio frequency (RF) pulse.
A magnetic field that is applied for a very short time (pulse) and that
oscillates in a frequency that is in the same part of the frequency spectrum
as radio waves.

Random-effects analysis.
A statistical analysis that takes into account that data are structured
according to a hierarchy of factors. In the present context, it mainly refers to
analyses that isolate the hierarchical level of subjects, which is needed to
test the variance of effects across subjects and hence for any conclusions
that generalize from the measured subject sample to the population.
Random-effects analyses stand in contrast with fixed-effect analyses that
typically do not allow generalizations toward the population.

Rapid counterbalanced event-related design.



An event-related experimental design with a relatively short interval between
successive trials and a counterbalancing of condition order.

Rapid eye movement sleep (REM sleep).
A sleep stage characterized by rapid eye movements and the EEG pattern
similar to the awake stage. Also known as paradoxical sleep.

Reference.
See montage.

Reference electrode.
An electrode that provides a reference voltage signal.

Reference image.
The image that is used as the reference image that would remain
unchanged. Other images are transformed to align them with the reference
image.

Region of interest (ROI).
A brain region that is of particular interest. It is delineated through
anatomical and/or functional criteria.

Region-of-interest (ROI) analysis.
Analysis that is performed only on a subset of the data, such as a local
cluster of voxels or electrodes.

Regressors of interest.
The independent variables that specify the occurrence of experimental
conditions in which a researcher is interested.

Repetition time (TR).
The time interval between successive excitations of the same spatial
position.



Repetitive transcranial magnetic stimulation (rTMS).
A form of transcranial magnetic stimulation in which the induced magnetic
field is applied repeatedly at a particular frequency, as such forming a train
of pulses.

Representational similarity analysis (RSA).
Comparison of datasets from different sources by studying the similarity
structure in the datasets.

Reslicing.
The creation of a new, discrete image after a continuous transformation was
applied to an original (also discrete) image. A discrete image is sampled at
discrete points (pixels or voxels).

Resting potential.
The membrane potential when an neuron is at rest and receives no synaptic
input.

Resting-state fMRI (RS fMRI).
Functional MRI scan during which participants are asked to rest and no
stimuli or task manipulations are presented. RS fMRI scans are used for
studying functional connectivity.

Retinotopy.
The systematic mapping of the input of the receptors in the retina onto an
array of neurons, so that nearby neurons receive input from nearby
receptors in the retina.

Reverse inference.
Statistical inference that activation in a brain region in a new study is related
to a particular cognitive process because the region is activated in the new



study and other studies in the literature found that the region is activated
when this cognitive process is involved.

Rigid transformation.
A transformation of an image that is a combination of rotations and
translations.

Sampling frequency.
The number of samples per second by which a signal is measured.

Scalogram.
A time-frequency representation of a wavelet-transformed signal.

Scrubbing.
Data-processing method that involves the demarcation and exclusion from
further analysis of data points with unwanted characteristics, such as subject
motion.

Second-level (random-effects) (group) analysis.
A statistical approach that tests the size of an effect against the variability
across participants. The input to this analysis is the contrast maps that have
been computed per participant; this is the first-level analysis.

Seed region.
A region of interest, the data of which are taken as the reference to compare
with the other voxels/regions in a dataset.

Sensitivity.
In general, “sensitivity” refers to the ability to detect a signal when it is
present. For example, it could be specified as the proportion of datasets in
which a significant effect is found when the effect was indeed present.
Sensitivity also has a specific meaning in signal detection theory where it



refers to the overall ability to differentiate between situations in which a
signal is present versus situations in which it is not present.

Shared influence.
This concept refers to a scenario in which two brain regions receive (share)
input from a third region.

Short time Fourier transform (STFT).
A method to obtain a time-frequency representation from a time-domain
signal. The discrete Fourier transform is applied to a short segment of the
time signal.

Signal contrast.
The difference in signal between different tissues.

Signal-to-noise ratio (SNR).
Index to express the proportion of a measurement that is related to factors
of interest (“signal”) relative to factors of no interest (“noise”).

Single trial phase-locking value (S-PLV).
See phase-locking index (PLI).

Single-voxel spectroscopy (SVS).
A magnetic resonance spectroscopy method that measures one volume or
voxel of interest.

Sleep spindle.
An EEG waveform which is characteristic in EEG signal during Stage 2 non-
REM sleep. The waveform is a burst of activity (“spindle”) in 11–15 Hz.

Slice-selection gradient.
The gradient that determines which brain slice is being excited by the radio
frequency (RF) pulse that is being applied at the same time as the gradient.



Slice timing.
Step in the preprocessing of functional MRI images. It compensates for the
difference in acquisition time between slices.

Slow-wave sleep (SWS).
A sleep stage characterized by slow EEG activity, e.g., delta band activity.
Also referred to as deep sleep.

Smoothing.
Procedure that increases the similarity between nearby data points, either in
time (temporal smoothing) or in space (spatial smoothing).

Somatosensory evoked potential (SEP).
An evoked potential in response to a somatosensory stimulus, such as a
vibration to a fingertip.

Source localization.
The estimation of the spatial location from which individual components of a
signal originate.

Spatial resolution.
The smallest unit of space that can be resolved. It will determine which scale
of organization can be picked up.

Specific absorption rate (SAR).
A safety index that indicates how much energy a tissue can absorb without
undergoing a threshold increase in temperature.

Spectrogram.
A matrix that shows a variable, often the amplitude or phase of a signal, as a
function of frequency and of time.

Spin-echo echo-planar imaging (SE-EPI) sequence.



An MRI pulse sequence that involves the successive acquisition of different
planes/slices and that includes the creation of a spin echo by using a
refocusing radio frequency (RF) pulse.

Stage 2 sleep.
A sleep stage that is characterized by transient EEG activities, such as
sleep spindles and K-complex. It is a shallow sleep stage (in contrast to
deep sleep).

Statistical parametric mapping (SPM).
Statistical approach to the analysis of imaging data. The acronym is also
used to refer to the software package developed by the groups that
proposed this statistical approach.

Steady-state evoked potential (ssEP).
M/EEG response not to a single but to oscillatory stimulation. Modality of the
stimulation is added to the abbreviation, e.g., ssVEP for visual oscillatory
stimulation.

Stereo EEG (sEEG).
EEG recorded from electrodes inserted into the brain tissue in vivo.

Structural equation modeling (SEM) .
General statistical method to model correlational data that can be modeled
as a complex graph model, potentially also including latent variables.

Structural magnetic resonance imaging.
The use of magnetic resonance imaging to image the anatomy or structure
of the brain.

Subtraction method.
Comparison of two experimental conditions by subtracting the results of one
condition from the other. These results can take various forms, such as



reaction time measurements or fMRI signal.

Superconducting QUantum Interference Device (SQUID).
A high-sensitivity magnetometer for very weak magnetic field signals, such
as MEG. It consists of super conductive coils and Josephson junctions.

Surface-based morphometry.
Morphometric analysis in which quantitative indices are computed in surface
space.

Surface-based normalization.
Normalization of an individual cortical surface to a surface template.

Surface extraction.
Extraction of the cortical surface. Each brain has two surfaces, one per
hemisphere. A surface is made out of vertices.

Surface flattening.
Creating a two-dimensional sheet from the original three-dimensional
warping of the cortical surface.

Surface rendering.
Visualization of the extracted cortical surface.

Synchrony index (SI).
See phase-locking index (PLI).

T1 recovery.
The recovery of the magnetization along the longitudinal orientation, which
reflects the realignment of the spins with the direction of the static magnetic
field.

T2 decay.



The loss of transverse magnetization in the direction of the oscillating field
applied by the radio frequency (RF) pulse due to the loss in phase
coherence related to spin-spin interactions.

T2* decay.
The total dephasing as a consequence of spin-spin interactions, field
inhomogeneity, and tissue susceptibility. T2* decay is always faster (more
dephasing) than T2 decay.

Talairach atlas.
A historical and famous anatomical atlas of the human brain based on one
individual.

Temporal resolution.
The smallest unit of time that can be differentiated by a method.

tesla (T) .
The standard unit of magnetic field strength.

Theta band.
A frequency band of M/EEG activity; 4–8 Hz.

Tissue segmentation.
Segmentation of the brain into its different tissue types, often including white
matter, gray matter, and cerebrospinal fluid.

Tissue susceptibility.
The effect of tissue on the Larmor frequency of a nucleus. It contributes to
T2* decay.

Tractography.
The delineation of white matter tracts, typically based on diffusion tensor
imaging (DTI) scans.



Transcranial current stimulation (TCS).
An uninvasive technique for modulating neural activity that involves two
electrodes and a battery. Current flows from one electrode (anode) to the
other (cathode). This current influences cortical excitability. It can involve a
direct current (transcranial direct current stimulation, or TDCS), an
alternating current (transcranial alternating current stimulation, or TACS), or
a current that changes over time in a more random manner (transcranial
random noise stimulation, or TRNS).

Transcranial direct current stimulation (TDCS).
A form of transcranial current stimulation that involves an uninvasive
technique for modulating neural activity that involves two electrodes and a
battery. Current flows from one electrode (anode) to the other (cathode).
This current influences cortical excitability.

Transcranial magnetic stimulation (TMS).
Modulation of neural activity by inducing current in neural tissue through
electromagnetic induction. Depending on where TMS is applied, it can
degrade the normal function (interference) or enhance it (stimulation).

Transformation matrix.
Matrix with numbers that describe how an image has to be transformed
(translated, rotated, resized).

Univariate analysis.
An analysis that is focused on single variables. The standard approach to
fMRI data analysis is sometimes referred to as a univariate or voxel-wise
analysis because its computations (e.g., estimation of a multiple regression
model) are initially performed for each individual voxel separately.

Up-sampling.



A signal resampling method to increase the number of samples. Original
samples are interpolated and resampled in a higher sampling frequency.

Vertex.
A vertex (plural: vertices) is the element from which a cortical surface is
built, similar to how a brain slice is composed of voxels. A technical
difference is that a vertex is a point (vertices are connected with lines), while
a voxel is a volumetric unit.

Visual area 1 (V1).
The area where the visual signals coming from the retina first enter cortex,
also referred to as primary visual cortex. V1 is regularly featured in
examples in the book because the properties of this area are well known,
and as such this area is a useful target in studies that validate new methods.

Visual evoked potential (VEP).
An evoked potential in response to a visual stimulus.

Volume-based normalization.
Normalization using the three-dimensional space in which brains exist, with
the dimensions left/right, anterior/posterior, and superior/inferior.

Volume conduction.
Electric conduction between an electrode and a generator.

Voxel.
The volume element from which three-dimensional MRI images are
composed, in the same way as pixel means “picture elements.”

Voxel-based lesion-symptom mapping.
A statistical analysis that investigates the relationship between the presence
of a lesion in voxels and the severity of behavioral symptoms.



Voxel-based morphometry (VBM).
Morphometric analysis in which quantitative indices are computed in voxel
space.

Water suppression.
Suppression of the signal of water in magnetic resonance spectroscopy to
avoid that it would dominate the obtained frequency spectrum.

Wavelet transform.
A mathematical operation to transform a signal to a linear combination of
wavelet functions.
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