


“Levine’s book achieves an impressive synthesis of historical trends and

current research results in both biological and artificial neural network research.

This synthesis clarifies that the currently popular Deep Learning is just one

contribution to this burgeoning field, and one that does not incorporate many

of the most powerful properties of biological learning. Levine’s book provides

an accessible introduction to many of these properties, while also reviewing

important properties of neural models of vision and visual attention, sequence

learning and performance, executive function, and decision-making, among its

other expository accomplishments.”
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INTRODUCTION TO NEURAL
AND COGNITIVE MODELING

Providing a thorough introduction to the field of neural networks, this edition

concentrates on networks for modeling brain processes involved in cognitive

and behavioral functions. Part I explores the philosophy of modeling and the

field’s history, starting from the mid-1940s, and then discusses past models of

associative learning and of short-term memory that provide building blocks for

more complex recent models. Part II of the book reviews recent experimental

findings in cognitive neuroscience and discusses models of conditioning,

categorization, category learning, vision, visual attention, sequence learning,

behavioral control, decision-making, reasoning, and creativity. The book

presents these models both as abstract ideas and through examples and concrete

data for specific brain regions.

The book includes two appendices to help ground the reader: one reviewing

the mathematics used in network modeling, and a second reviewing basic

neuroscience at both the neuron and brain region level. The book also includes

equations, practice exercises, and thought experiments.

Daniel S. Levine is Professor of Psychology at the University of Texas at

Arlington. He is a fellow and former president of the International Neural

Network Society. His research involves computational modeling of brain

processes in decision-making and cognitive-emotional interactions.
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FLOW CHART OF THE BOOK

Here is the structure of the book. Chapters depend in part on previous chapters

that have arrows pointing to them.
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Modeling philosophy
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History
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in these
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PREFACE TO THE 
THIRD EDITION

How do you eat an elephant? One bite at a time.

Beverly Johnson, after climbing the rock face of 

El Capitan, Yosemite National Park

Since the second edition of Introduction to Neural and Cognitive Modeling
appeared in 2000, the growth of neuroscience, and of cognitive neuroscience

in particular, has been explosive. For example, I did a search of the library

database PsycInfo under the keywords “fMRI or functional magnetic resonance

imaging,” which is the most frequently used experimental method for studying

the relationship between brain physiology and human cognitive function. This

search yielded only 929 results between the years 1943, the date of the first

seminal article in neural networks, by McCulloch and Pitts, and 2000. Yet, the

same search yielded 31,107 results between 2001 and 2017.

The growth in computational models of neural and cognitive processes has

not been quite as spectacular as the growth in experimental studies but is still

impressive. One result has been the formation of distinct niches within the field

of neural networks. The changes in the field over 17 years were sufficient to

warrant a new edition of this book. The first and second editions were intended

for the varied audience of the field, those primarily interested in using neural

networks for intelligent computing and engineering applications as well as

those primarily interested in understanding brain processes. By contrast, this

edition primarily targets those interested in understanding brain processes.

However, most of the more general foundational material from the earlier

editions remains with updating in Chapters 2–4, so the neural engineer or

computer scientist can still find the book a valuable source.



This book is intended both as a textbook for a graduate or advanced

undergraduate course in neural networks and as a general introduction to the

field. Its focus is on the relationships between neural structure and cognitive

function. Details of neuronal biophysics are included only in so far as they

illuminate the cognitive and behavioral implications of neural structures: other

books (e.g., Dayan & Abbott, 2005) present more computational and math -

ematical models at the neuronal level.

The cognitive functions discussed herein include learning, perception, atten -

tion, memory, pattern recognition, categorization, executive function, decision-

making, and inference. The neural networks modeling these functions

sometimes incorporate organizing principles such as competition, association,

opponent processing, and error correction, principles that can be suggested

either by the exigencies of modeling psychological data or by the description

of known neuroanatomical structures. These principles are developed in early

chapters and appear throughout the book.

In keeping with the goal of accessibility to a varied audience, technical

prerequisites in any one discipline are kept to a minimum. Recent advances in

computing make the field accessible to many more people than before. For

those needing additional background in mathematics or in neurobiology,

appendices in those fields are included; the appendices also list sources for

more detailed coverage.

A word should be said here about equations. The last section of each of

Chapters 2–4 and 6–9 includes differential or difference equations for some

of the networks discussed in that chapter, so that the reader can gain hands-on

experience in computer simulation of the networks. On first reading, the

student without mathematical background can skip these equations and follow

the development of networks by means of the figures. On second reading, the

same student can turn to Appendix 1 for explanations of how equations reflect

the qualitative relationships in networks, and simple algorithms for simulating

such equations. The first half of Appendix 1 is written so as not to require

previous background; notions needed from calculus are redefined and

motivated in the context of neural network applications.

The book is divided into two sections. The first section, Chapters 1–4, is

more foundational. Chapter 1 gives the underlying philosophy of the book and

Chapter 2 gives the historical background for its main ideas. The next two

chapters describe models of common “building blocks” for network models

of cognitive functions: associative learning in Chapter 3 and lateral inhibition

in Chapter 4.

The second section, Chapters 5–9, discusses models of cognitive functions,

building on the work of the previous chapters. Chapter 5 reviews recent

advances in experimental cognitive neuroscience. The networks discussed 

in Chapter 6–9 simulate some of the data discussed in Chapter 5 and 

often incorporate simpler network structures developed in Chapters 3 and 4.

xii Preface



Chapter 6 on conditioning and reinforcement learning, Chapter 7 on unsuper -

vised categorization, and Chapter 8 on supervised categorization include much

of the material of Chapters 5 and 6 of the second edition but add a considerable

amount on models developed since 2000. Chapter 9 is entirely new, covering

models of a variety of complex cognitive functions: vision and visual attention,

sequence learning and perform ance, executive function, decision-making,

reasoning, and creativity.

Chapters 2–4 and 6–9 contain homework exercises. Some exercises are

thought experiments and others are computer simulations of various neural

network models. The exercises herein are a small sampling of the possible ques -

tions that can be asked about the material discussed in the book, and the

instructor is encouraged to supplement them as he or she sees fit. Many of the

thought questions asked here do not have right and wrong answers, only a

variety of better and worse answers. The reader should approach the field with

at least as much intellectual flexibility and curiosity as possessed by the

systems we model. A solution manual has been provided for instructors, with

links from the book’s website. The manual can provide hints for exercises,

particularly for the harder ones in Chapters 6 through 9.

The flowchart in the front of the book illustrates how the understanding 

of each chapter depends on previous chapters. After the introduction in 

Chapter 1 and the historical account in Chapter 2, Chapters 3 through 9

(excluding Chapter 5, which is a review of experimental data) reflect a 

hier archy in models from simpler to more complex neural and cognitive

processes. Chapters 2–4, which are foundational for the more complex models

in Chapters 6–8, are the chapters least changed from the second edition,

though they are updated based on recent scientific advances.

Preface  xiii
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NOTATION USED IN THE BOOK

In figures

An arrow (→) denotes an excitatory connection

A filled circle (�) denotes an inhibitory connection

A filled semicircle (◗) denotes a modifiable connection

In exercises

A single asterisk (*) denotes a computer simulation exercise

A double asterisk (**) denotes a mathematical problem

An open circle (�) denotes an open-ended conceptual exercise
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PART I

Foundations of Neural
Network Theory
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1
NEURAL NETWORKS FOR
MODELING BEHAVIOR

My mind to me a kingdom is,

Such perfect joy therein I find

As far exceeds all earthly bliss

That God or nature hath assigned.

Edward Dyer

What is mind? No matter. What is matter? Never mind.

Thomas Hewitt Key (epigram in Punch)

1.1. What Are Neural Networks?

The birth of the current field of neural network modeling can be traced to the

cybernetic revolution of the 1940s and 1950s. At that time, scientists across

many disciplines became excited about the notion that neurons are digital

on–off switches (either firing or not firing), and thus that brains and the newly

emerging digital computers had similar structural organizations (Wiener,

1948). Before long, biologists discovered that the digital metaphor was an

inadequate one for capturing what was known about neurobiology and

psychology. It was found necessary to understand the graded (or continuous,

or analog, or grayscale) as well as the all-or-none (or digital) components of

neuron responses (see, e.g., Thompson, 1967, Ch. 1).

Yet, if one seeks to understand cognitive and behavioral functioning, it is

not enough simply to understand neurons and their assemblies. It is just as

important to understand architectural principles guiding network connection,

principles that enable key psychological processes to occur and thereby allow

the assembly of neurons to instantiate significant classes of cognitive and

behavioral data.



How do we develop theories of brain–behavior relationships? Elsewhere

(Levine, 1999) I have described the theory building process as analogous to

the building of the tunnel across the channel between England and France. The

theorist starts at both the behavioral and the neural ends, and then builds

“tunnels” of connection from each end toward the other (Figure 1.1).

Neural network models have gradually evolved in the direction of greater

correspondence with brain structure and function, from the 1980s to the

present. Techniques such as taking magnetic resonance scans of whole brain

regions and recording with electrodes from up to 50 neurons at once have made

neuro physiology more amenable to quantification. At the same time, advances

in computing (personal computers, supercomputers, and interfaces with

recording devices) have made simulation of biological data easier and more

practical. These technical developments are enabling theorists building on

earlier, more abstract cognitive models to create theories with real explanatory

and predictive power. The review article of Ashby and Hélie (2011) calls the

newer models that incorporate sophisticated neuroscience data by the name 

of computational cognitive neuroscience models, to distinguish them from

more loosely brain-related cognitive models that are called by the older name

of connectionist models (e.g., Feldman & Ballard, 1982; Rumelhart &

McClelland, 1986a).

The development of neural network or connectionist theories has been

spurred not only by interest in how the brain works but equally by the interest

in potential engineering applications of intelligent computing. The International

Neural Network Society’s several hundred members, and several annual

meetings including the International Joint Conferences on Neural Networks,

span research in both the neuroscientific and engineering applications of the

field, and some studies that overlap neuroscience and engineering.

4 Foundations of Neural Network Theory

PSYCHOLOGY

NEURAL NETWORKS

NEUROSCIENCE

FIGURE 1.1 “Tunnel” metaphor for integrating neuroscience and psychology; 
see the text.



Designers of machines for performing cognitive functions generally are

interested in learning, without slavishly imitating, how the brain performs those

functions. Consequently, such machines have often been built like simulated

brain regions, with nodes corresponding to neurons or neuron populations, and

connec tions between the nodes; at times, their designers have borrowed ideas

from recent experimental results on the brain’s analog responses. The industrial

applications of connectionist theory are often called artificial neural networks
or ANNs (e.g., Hecht-Nielsen, 1986).

The much older term neural networks is usually considered to encompass 

both theoretical and applied models that provide mechanistic bases for cogni-

tive functions. The functional units in neural networks have alternatively been

called “nodes,” “units,” “neurons,” and “populations.” The first two terms are

most com monly used, in this book and elsewhere, because they do not commit

the user to an assumption that units correspond to either single or multiple

neurons. Both the earlier connectionist networks and the networks in compu -

tational cognitive neuroscience models include nodes, connections, and

equations describing the interactions of node activities and connection

strengths.

1.2. What Are Some Principles of Neural Network Theory?

While the neural network field has experienced upward and downward surges

in popularity, these surges conceal the field’s maturity. The early history of

neural network models, summarized in the review article of Levine (1983) and

discussed further in Chapter 2, shows that most modern ideas in network design

have much earlier antecedents. For example, the popular distinction between

input, hidden, and output units (Rumelhart & McClelland, 1986a), which led

to back propa gation and then to deep learning, owes much to the early work

of Rosenblatt (1962) on networks with sensory, associative, and response units.

Rosenblatt, in turn, combined extensions of the linear threshold law of

McCulloch and Pitts (1943) with various learning laws, some of them inspired

by the work of Hebb (1949). A precise mathematical formulation for many

examples of this type of network was given in the dissertation of Paul Werbos

(1974; see Werbos, 1993, for a more accessible version). Moreover, several

researchers who published seminal neural network articles in the late 1960s or

early 1970s, including Michael Arbib, Jack Cowan, Walter Freeman, Stephen

Grossberg, and Teuvo Kohonen, either remain active in the field today or did

so through the early twenty-first century.

As the neural network literature grows, it is essential to find criteria for

making distinctions among competing models. Meeter, Jehee, and Murre

(2007) observed that fitting both behavioral and neural data is one of the

important criteria but not the only one. Ideally, these authors note, in addition

to fitting existing data and making nontrivial predictions, a model should be

Neural Networks for Modeling Behavior 5



based on assumptions that make sense from a biological and/or behavioral

viewpoint. Also, it is desirable to have several interconnected and mutually

consistent models for the same process at different levels of representation, and

such hierarchies of models are particularly useful when some of the relevant

data are unavailable. A similar point was made by the neural network pioneer

Stephen Grossberg (Grossberg, 2006): “One works with large amounts of data

because otherwise too many seemingly plausible hypotheses cannot be ruled

out.” The purpose of interconnected models, Gross berg goes on to say, is to

capture the fact that “the brain . . . can be successfully understood as an organ

that is designed to achieve successful autonomous adaptation to a changing

world.”

In order to understand the behaviors leading to autonomous adaptation, we

need first to understand subsystems that perform parts of the tasks we want

the system to perform. Subsystem identification is dramatized by the parable

of the watchmakers (Simon, 1969, pp. 90–93). One watchmaker tries to fashion

a whole watch simply by fitting parts together. Another watchmaker instead

starts with the same parts but puts some of them together into subsystems. Not

until the subsystems are working does he then join them into a watch. The

second watch maker prospers, while the first has to start all over again whenever

he is interrupted.

Likewise, any major cognitive process needs to be analyzed into sub -

processes. The understanding of the subprocesses then suggests principles that

can also be used in models of a wide variety of other processes. Agreement

on the principles of how to organize neural networks into subnetworks is far

from universal. In part, this reflects the incredible variety of ways in which

any given cognitive function is organized across many biological species

(indeed, phyla) and individuals within these species. In part, it reflects the

variety of theoretical perspectives brought to bear on these problems. Yet, it

is possible to see through this diversity a few subnetwork organizing themes

that are common to network models arising from many sources.

Levine (1989) developed a thought experiment that illustrates two generic

examples of analyzing a mental process into subprocesses. Both examples

relate to main topics of later chapters in this book.

The first example, discussed more fully in Chapter 7, is the categorization

of sensory patterns. Categorization is necessary for an organism or network to

make sense of its environment and make predictions about novel stimuli. For

definite ness, say that the network is processing hand-printed characters and

attempting to match each one to a known letter of the alphabet. The simplest

(although not the only) way to understand this process is to include in the

network some units (“feature nodes”) that respond to presence or absence 

of writing at particular locations, and other units (“category nodes”) that

respond to patterns of feature node activation representing particular letters (see

Figure 1.2).

6 Foundations of Neural Network Theory
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To carry our thought experiment further, how are feature nodes and category

nodes likely to be connected? If these connections were hard-wired, the

network could not adjust to significant changes in its patterns of activation –

for example, receiving inputs of Japanese or Russian instead of Roman

characters. Hence, it is usually desired that the strength of the connection

between any specific feature node and any specific category node be allowed

to change over time, as a result of repeated activation of the connection. Such

a change is often accomplished by a principle called associative learning;

associative learning laws in neural networks are the main topic of Chapter 3.

Hence, associative learning has been one of the common subnetwork

organizing principles in neural networks from the early 1960s to the present.

There are other important subnetwork principles: many categorization models

particularly rely on a principle called competition. To motivate the idea of

neural competition, consider a sloppily written letter that is ambiguous (, say;

it could either be an E or an F. The network needs a method for deciding which

of the two letters is the more likely one. The feature nodes are activated, to

varying degrees, by the incoming letter, and in turn activate their category

nodes via the internode connections. As shown in Figure 1.2, there is mutual

inhibition between the category nodes. Thus, if both the “E” and “F” nodes

are activated but the activation of the “E” node is greater than that of the “F”

node, the system makes a decision that the letter is an E. Inhibition between

nodes at the same level of the network (in this case, the category level) is often

E F

wij

F2 (CATEGORIES)

xi

F1 (FEATURES)

INPUT

Signal to jth F2 node is 
sum of xiwij

FIGURE 1.2 Generic categorization network combining associative learning and
competition.

Source: Modified from Levine, 1989, with permission of Miller Freeman Publishers.



regarded as com petition between the different cognitive entities coded by those

nodes; competition laws in neural networks are the main topic of Chapter 4.

Associative and competitive principles are likely to combine in many other

cognitive processes besides categorization. Our second example is attentional

modulation of conditioning, which is discussed more fully in Chapter 6.

Suppose that a neutral stimulus such as the sound of a bell has become

associated with food. Then how does the animal learn to pay more attention

to the bell than to other neutral stimuli in its environment?

Again, the psychological results suggest the neural network principle of

competition. If different nodes develop representations of sensory stimuli, then

the bell node should somehow “win” a competition with other sensory nodes

for storage in short-term memory.

But how does the competition among sensory representations become

biased in favor of the bell? One plausible answer suggests the neural network

principle of associative learning. Other things being equal, the bell node tends

to be activated because of prior association between the bell and food, or, more

abstractly, between the bell and satisfaction of the hunger drive (see Figure

1.3). Hence, if there is another node representing the primary reinforcer of food

or the hunger drive itself, repeated pairing of the bell and food tends to activate

the bell representation if the animal is hungry. Strengthening pathways based

on pairing of stimuli is an example of associative learning.

The thought experiment described here illustrates the potential of network

theories to unify disparate areas of psychology. In the early to middle twentieth

century, the behaviorist school was ascendant in academic psychology, with

its focus on outwardly measurable performance and its distrust of any

consideration of internal states, beliefs, or self-reports. But Behaviorism was

challenged in the 1960s and 1970s with the rise of cognitive psychology,

whereby internal states became of paramount importance (Reisberg, 2016,

Chapter 1). The thought experiment tells us that classical conditioning, a major

concern of the behaviorists, and categorization, which falls into the cognitive

realm, can be understood using different combinations of the same theoretical

“building blocks.”

In the course of this exposition, a few other major subnetwork organizing

principles emerge besides association and competition. One of these principles

is opponent processing. This means that neural architectures are organized into

pairs of pathways with opposite significance (e.g., light and dark, or reward

and punishment) in such a manner that a sudden decrease in activity of one

pathway transiently activates the opposing pathway. Like association and

competition, opponent processing plays a role in some of the conditioning

models discussed in Chapter 6 and some of the categorization models discussed

in Chapters 7 and 8.

All these principles have been suggested by a heterogeneous database that

is partly physiological and partly psychological. In some cases, the theory was

8 Foundations of Neural Network Theory
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first suggested by psychological results and later, at least qualitatively,

supported neuro physiologically. An example is associative learning theory.

Hebb (1949), inspired by Pavlovian conditioning data, proposed that if one

neuron connects to another via a synapse, and the firing of the first neuron is

repeatedly followed by firing of the second, then the synapse should become

strengthened. As discussed in the early part of Chapter 3, examples of neuronal

behavior consistent with this general hypothesis (though not in the precise form

that Hebb had proposed) were discovered first in invertebrates (e.g., Kandel

& Tauc, 1965) and later in vertebrates (e.g., Bliss & Lømo, 1973). More recent

experimental studies, moreover, have partially supported mathematical

variations of Hebb’s learning law proposed by modelers in the 1960s and

1970s.

This book talks rather freely of “representation” by network nodes of

features, categories, or other concepts. There is substantial debate among

philosophers of science as to what a true representation is, either in the brain

or a model (see Bechtel, Mandik, Mundale, & Stufflebeam, 2001; Bechtel,

2008). Bechtel and his colleagues note that the different disciplinary

perspectives of cognitive scientists and neuroscientists have led to different

concepts of representation. They also note that a school of modelers has arisen

that study large networks by means of the mathematical theory of dynamical

systems and have concluded that considering representations of part of a

system detracts from considerations of the whole system (see, e.g., Freeman

& Skarda, 1990).

This book presents models originating from a variety of perspectives and

disciplines, so does not take a position in the philosophical debates about

FOOD

TOUCH

BELL

LIGHT

FIGURE 1.3 Generic selective attention network combining associative learning and
competition. Filled semicircles represent learnable connections. The larger semicircle
on the path from food to bell represents a connection strengthened by learning, based
on pairing of the bell with food. This biases competition among light, touch, and bell
nodes in the bell’s favor.

Source: Modified from Levine, 1989, with permission of Miller Freeman Publishers.



representation. I believe, though, that the “tunnel-building” approach described

here helps to unify the varying disciplinary perspectives from neuroscience,

psy chology, and cognitive science. Also, the models described in this book

make extensive use of dynamical systems, but in some cases the modelers still

find it a useful simplification to talk about some part of their network being a

repre sentation of some concept.

1.3. Problems, not Trends

This book’s organization is unlike that of most other introductory books on

neural networks. In keeping with its emphasis on modeling the connections

between neuroscience and psychology, the primary organization of the chapters

is by the behavioral and cognitive problems that the neural models were

designed to address. Organization by different trends, approaches, and schools

of modeling is secondary and shows up mainly in the headings of sections and

subsections.

For this reason, such recent trends as deep learning and Bayesian learning

are not treated in separate chapters but as aspects of models that reproduce

specific behavioral and neural capabilities or datasets. Also, because the book

more than its previous editions emphasizes neuroscience and psychology

applications, engineering and machine learning applications are discussed

only insofar as they illuminate the modeling of behavioral and neural

phenomena.

Modelers of psychological phenomena frequently make a distinction

between tokens (specific instantiations of models) and types (generic

instantiations of models) (see, e.g., Wagenmakers, Ratcliff, Gomez, & Iverson,

2004). There has been considerable work on model mimicry, the ability of 

one model to account for data generated by a competing model, at the level 

of tokens, that is, different parametrizations of a model with a given set of

assump tions. Much of that work is beyond the scope of this book, because the

book concentrates more on types than on tokens. The primary focus is on

discerning the right set of model interactions, before trying to optimize the

numerical strength of those interactions.

1.4. Methodological Considerations

Subnetworks incorporating principles such as associative learning, competition,

and others to emerge in later chapters can be thought of as part of the neural

network modeler’s “tool kit.” So can larger networks that have been developed

by major researchers in the field. Hence, when neural networks are used in 

brain modeling, new discoveries on the brain or on biological cognition may

force modifications of a theory rather than abandonment of the entire structure.
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Also, a general qualitative theory may be widely applicable but the detailed

instantiation of that theory may vary enormously between individuals and

species.

The ability to break down many complex networks into functionally

significant subnetworks does not necessarily mean that these subnetworks

should be treated as independent modules, as in early artificial intelligence

models. The function and even structure of each of the smaller networks can

be strongly affected by its interactions with the other smaller networks. For

example, in many models of vision the systems for processing shape, color,

and motion all depend in part on interactions with the others, as is seen in

Chapters 4 and 9.

The models discussed in this book vary in how faithful they are to known

neuroanatomy and neurophysiology. The models discussed in Chapters 6–9

tend to be more neurobiologically correct or detailed than those discussed in

Chapters 3 and 4, yet many of the models in Chapter 6–9 include parts that

are modifi cations of subprocess models from the earlier chapters. The units,

or nodes, in neural networks are often regarded as populations of neurons that

are unified in some functional sense (e.g., those cells responsive to light in a

particular part of the visual field, or to the hunger drive). Analogies of these

units to averaged cell types in particular brain areas are quite close at times,

more remote at other times. Hence, the book title uses the broad term neural
and cognitive modeling to encompass models with different degrees of fidelity

to real brain structure. The boundary between more and less “brain-faithful”

networks is a fluid one. In fact, as the above example of associative learning

shows, models that are more “cognitive” than “neural” sometimes lead to

“neural” predictions that are later supported by data.

As neural networks have become popular, it is often asked how much neural

network theory has really accomplished in its efforts to explain neurobiological

data. The problems that neural network theory addresses are complex, and no

single model has yet “cracked” the problem of categorization, or memory, or

decision-making, or emotion. What has happened, instead, is that neural

network theory has been part of a slow, steady increase in overall understanding

of brain and cognitive functions. Hence, I believe that researchers in the field

are justified in saying, in the words of the neural network pioneer Warren

McCulloch, “Don’t bite my finger, look where I am pointing” (McCulloch,

1965, Page xx).

The technological applications of neural networks are somewhat ahead of

the biological modeling applications. Artificial neural networks have achieved

considerable success in diverse areas, such as robotics, speech recognition and

synthesis; decisions on whether to grant mortgage insurance; classification of

some types of medical information, and classification of radar patterns. Yet in

the last ten years the neurobiological modeling has begun to catch up to the

technology.

Neural Networks for Modeling Behavior 11



Neural network models have led to experimental predictions, most notably

in vision, motor control, and classical conditioning but to a lesser extent in more

opaque areas such as decision-making and the effects of specific mental

illnesses. Since the early 1990s, an increasing number of neuroscience and

psychology laboratories are including computational modeling as part of their

operations and actively testing some of the predictions of their models.

The scientific approach to knowledge, broadly speaking, argues that mental

phenomena should have some mechanistic basis that will eventually be

understand able by human beings. As Wiener (1954, p. 263) said, the faith of

scientists is that nature (including mind) is governed by ordered laws, not by

the capricious decrees of a tyrant like Lewis Carroll’s Red Queen. Neural

network modeling provides the best methodology now available for building

mechanistic theories of mental and psychological functions.

Since all current neural models are subject to modification, this book is

written to give the student or other reader hands-on experience in thinking

about, simulating, and ultimately designing neural networks. It begins in

Chapter 2 with a historical overview of major trends and the roots of current

key ideas. Chapters 3 and 4 review the most important established models of

associative learning and competition, respectively. Chapter 5 reviews some 

of the most significant recent findings in cognitive neuroscience. Chapters 6–9,

building in part on some of the network structures introduced in Chapters 3–4,

develop recent models (many of which Ashby and Hélie, 2011, would call CCN

models) that reproduce some of those cognitive neuroscience results.
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2
HISTORICAL OUTLINE

Faithfulness to the truth of history involves far more than a research . . . into

special facts. . . . The narrator must seek to imbue himself [sic] with the life

and spirit of the time.

Francis Parkman, Pioneers of France in the New World

The abuse of truth should be as much punished as the introduction of falsehood.

Blaise Pascal, Pensées

2.1. Digital Approaches

Neural network modeling as we know it today is partly rooted in the

computer–brain analogy that captured the imagination of 1940s scientists,

based on the fact that neurons are all-or-none, either firing or not firing, just

as binary switches in a digital computer are either on or off. Since that time,

neuro physiological data have indicated that the all-or-none outlook is

oversimplified. Also, in a large number of the neural network models developed

since then the functional units are neuron populations rather than single

neurons. In spite of these technical advances, current approaches still owe many

of their formulations to pioneers from the 1940s, such as McCulloch, Pitts,

Hebb, and Rashevsky.

2.1.1. The McCulloch–Pitts Network

This inquiry essentially began with the classical study of all-or-none neurons

by McCulloch and Pitts (1943). In this article, hidden under some elaborate

symbolic logic, is a demonstration that any logical function can be duplicated



by some network of all-or-none neurons. That is, a neuron can be embedded

into a network in such a manner as to fire selectively in response to any given

spatio temporal array of firings of other neurons in the network.

The rules governing the excitatory and inhibitory pathways in McCulloch–

Pitts networks are the following:

1. All computations are carried out in discrete time intervals.

2. Each neuron1 obeys a simple form of a linear threshold law: it fires

whenever at least a given (threshold) number of excitatory pathways, and

no inhibitory pathways, impinging on it are active from the previous time

period.

3. If a neuron receives a single inhibitory signal from an active neuron, it does

not fire.

4. The connections do not change as a function of experience. Thus the

network deals with performance but not learning.

More general linear threshold laws are considered later in this section, in

reference to the work of Rosenblatt (1962).

An example of an all-or-none neural network is reproduced in Figure 2.1.

This network was designed by McCulloch and Pitts (1943) as a minimal model

of the sensation of heat obtained from holding a cold object to the skin and

then removing it. The cells labeled “1” and “2” are, respectively, heat and cold

receptors on the skin, whereas heat and cold are felt when cells “3” and “4”

fire, respectively. Each cell has a threshold of 2, hence it fires whenever it

receives two excitatory (arrow) and no inhibitory (filled circle) signals from

other cells active at the previous time.

In the network of Figure 2.1, if a cold object is presented and then removed,

this means that at time 1, the only cell firing is Cell 2. At time 2, Cell A fires

because it receives two excitatory signals from Cell 2. Since the cold has been

removed, Cell 2 does not fire again, nor do any of the other cells in the network.

At time 3, Cell B fires because it receives two excitatory signals from Cell A.

At time 4, the two excitatory signals from B to 3 cause 3 to fire, meaning that

heat is felt. The time sequence of firing patterns is shown in Table 2.1(a). In

contrast, consider the same network’s response to the cold object being on the

skin continuously, as shown in Table 2.1(b). At time 2, Cells 2 and A will both

be firing. At time 3, Cell B will not fire because the inhibitory signal from Cell

2 prevents B’s firing in response to A. Cell 4, however, will fire because it

receives excitation from both Cells 2 and A; hence, cold will be felt.

The McCulloch–Pitts model, although it uses an oversimplified formulation

of neural electrical activity patterns, presages some issues that are still

important in current cognitive models. For example, some of the best known

modern connectionist networks contain three types of units or nodes – input
units, output units, and hidden units. The input units react to particular data
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features from the environment (e.g., “cold object on skin,” “black dot in upper

left corner,” “loud noise to the right”). The output units generate particular

organismic responses (e.g., “I feel cold,” “the pattern is a letter A,” “walk to

the right”). The hidden units (a term popularized by Rumelhart & McClelland,

1986a) are neither input nor output units themselves but, via network

connections, influence output units to respond to prescribed patterns of input

unit firings or activities. The input–output–hidden trilogy can at times be seen

as analogous to the distinction between sensory neurons, motor neurons, and

all other neurons (interneurons) in the brain. At other times, though, a model

neural network is designed to represent a small part of a larger behavioral

process. The output may therefore not be a motor output but a particular internal

state, such as a categorization or an emotion, which could be preparatory to a

present or future motor response.

Note that, in the McCulloch–Pitts network of Figure 2.1, there are already

input units (Cells 1 and 2), hidden units (Cells A and B), and output units (Cells

3 and 4). This distinction becomes explicit in more sophisticated linear

threshold networks that are discussed below. In particular, the perceptrons
developed by Rosen blatt (1962) contained units classified as “sensory,”

“associative,” or “response.”

Another cognitive issue raised by the “feel hot when cold is removed”

network of Figure 2.1 is how to create output unit responses to given inputs

that depend on the context of previous inputs. Specifically, this network

responds to difference of the present input from a previous one; this may be

called temporal contrast enhancement, by analogy with the spatial contrast
enhancement (particularly observed in visual responses), which is a main topic

3

1

B

A

42

FIGURE 2.1 Example of an all-or-none network. Neurons labeled “1” and “2” are heat
and cold receptors on skin. Heat and cold are felt when neurons “3” and “4” are active,
respectively. Each neuron has threshold 2. A cold object held to the skin and then
removed causes a sensation of heat.

Source: Adapted from Mathematical Biosciences, 66, D. S. Levine, Neural population modeling and
psychology: A review, 1–86, copyright 1983, with permission from Elsevier Science.



of Chapter 4. Various forms of temporal contrast enhancement have been

combined with learning in many neural network models (e.g., Barto, Sutton,

& Watkins, 1990; Bear, Cooper, & Ebner, 1987; Brown, Bullock, & Grossberg,

1999; Grossberg, 1972b, 1972c; Grossberg & Schmajuk, 1987; Klopf, 1986;

Seymour et al., 2004; Suri & Schultz, 2001; Sutton & Barto, 1981). Some of

these networks model such psychological effects as a motor act becoming

rewarding when it turns off an unpleasant stimulus (relief), the withholding of

an expected reward being unpleasant (frustration), and the reward value of food

being enhanced if the food is unexpected (partial reinforcement acquisition

effect).

McCulloch and Pitts also confronted the issue of how memory is stored.

Figure 2.2(a) shows a network of the McCulloch–Pitts type in which a neuron

fires if a given input (say, a light) is on for three time units in a row. A similar

network can easily be constructed to respond to any fixed number of

consecutive occurrences of an input. Figure 2.2(b) shows a network in which

a neuron is made to fire if the light has been on at any time in the past. Note

that the mechanism for such memory storage is a reverberatory circuit. The

concept of reverberation remains central to the understanding of memory today,

and some advantages and limitations of the mechanism are discussed below.

McCulloch and Pitts noted the absence of a precise sense of timing in their

model (1943): “the regenerative activity of constituent circles renders reference

16 Foundations of Neural Network Theory

Time Cell 1 Cell 2 Cell a Cell b Cell 3 Cell 4
1 No Yes No No No No

2 No No Yes No No No

3 No No No Yes No No

4 No No No No Yes No

Table 2.1 Firings of neurons in the network of Figure 2.1 at successive time steps.

FEEL 

HOT

(a)

Time Cell 1 Cell 2 Cell a Cell b Cell 3 Cell 4
1 No Yes No No No No

2 No Yes Yes No No No

3 No Yes Yes No No Yes

FEEL 

COLD

(b)



indefinite as to time past” (p. 130). To them, this makes the model useful in

certain ways: “This ignorance, implicit in all our brains, is the counterpart of

the abstrac tion which renders our knowledge useful” (p. 131). Yet obviously

a sense of timing is necessary for some other cognitive processes. For those

processes, it is necessary to include, as later models do, the possibility of

changing connection strengths over time.

2.1.2. Early Approaches to Modeling Learning: Hull and Hebb

At the same time that McCulloch and Pitts were developing a neural network

formalism, psychologists were starting to consider mechanistic frameworks for

studying learning and memory. This led to consideration of the issue of whether

short-term memory (STM) can be distinguished from long-term memory

(LTM). Hull (1943) proposed that the two memory processes involved the

storage of two sets of traces. For example, consider the classic experiment of

Pavlov (1927), where a bell is repeatedly paired with food until a dog salivates

to the bell alone. After the experiment is stopped, conscious memory of the bell

will be gone, since the dog is concentrating on other things. The memory of the

bell–food association, however, will still be present, enabling the dog to

salivate quickly on the next presentation of the bell. Hull thus distinguished

between stimulus traces subject to rapid decay and associative strengths
(or, in his terms, habit strengths) able to persist over a longer time period.

Hull’s stimulus traces can be considered as the amounts of activity of

particular nodes or functional units in a neural network. His associative

strengths, then, are the strengths of connections between nodes. This suggests

first that such connec tion strengths should change with experience, and second

that they should cor res pond to some variable related to the synapse, or junction

between neurons.

Hebb (1949) interpreted these memory issues with a theory that attempted

to bridge psychology and neurophysiology. He declared that reverberatory
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(a) (b)

FIGURE 2.2 Two more all-or-none neural networks. In both networks, neuron “1”
responds to a light being on. (a) Each neuron has threshold 3, and neuron “2” fires after
the light has been on for three time units in a row. (b) Neuron “2,” which has threshold
1, fires if the light has ever been on in the past.



feedback loops, which had been suggested as a memory mechanism by

McCulloch and Pitts (1943), could be a useful mechanism for STM but not for

LTM. Concerning traces arising in such reverberatory loops, Hebb (1949) said:

“Such a trace would be unstable. A reverberatory activity would be subject to

the development of refractory states in the cells of the circuit in which it occurs,

and external events could readily interrupt it” (p. 61). He was one of the first

to recognize that a stable long-term memory depended on some structural

change. But at the same time, he proposed (1949) that “A reverberatory trace

might cooperate with the structural change and carry the memory until the
growth change is made” (p. 62, author’s italics).

Hebb went on (1949) to describe a hypothesis for the structural change

involved in long-term memory:

When the axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one

of the cells firing B, is increased.

(p. 62)

As for the nature of the structural change, Hebb proposed that if one cell

repeatedly assists in firing another, the knobs of the synapse between the cells

could grow so as to increase the area of contact (see Figure 2.3). The idea that

learning is based on changes at neuronal connections goes back to Freud

(1895/1953), who suggested it on intuitive grounds before enough neuroscience

was known to provide a basis for it – in fact, before what we know now about

synapses had been established. The notion of the synapse between two neurons

as the nervous system’s primary communication link was developed soon

afterward by Sherring ton (1906/1947), who coined the term “synapse” and

established that neurons were physically separate from one another.

Neurophysiological data have suggested that actual growth of synaptic

knobs can sometimes occur (e.g., Anderson et al., 1989; Bourne & Harris,

2008; Robinson & Kolb, 1999; Trommald, Hulleberg, & Anderson, 1996;

Tsukahara & Oda, 1981). More frequently, as seen in Chapter 3, there has been

experimental support for cellular and synaptic processes that do not involve

gross structural changes but that alter the effective strength of connections in

other ways. Such processes can embody an associative rule such as Hebb’s for

changes in connection strength between cells. This has led various neural

network modelers, starting in the 1960s, to develop networks with rules

whereby a connection weight (i.e., synaptic efficacy) increases with repeated

pairing of presynaptic and post synaptic activities; such rules are often called

Hebbian rules in homage to Hebb’s hypothesis.

There has also been extensive theoretical work on alternative rules for

learning of connection weights and network modeling based on these rules.
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For example, sometimes the connection weight changes as a function of

change in either pre synaptic or postsynaptic activity. Or sometimes the

connection weight changes in a direction designed to make the network emit

a desired response, typically a response determined at a different location in

the network from the connection. More recently, learning rules have been

developed whereby the weight changes are sensitive to the timing of

presynaptic and/or postsynaptic spikes (see Section 3.5).

Various researchers commented that Hebb’s rule proposed a way for

connection strengths to increase, but the nervous system could become unstable

if there was not a corresponding way for connection strengths to decrease.

Though Hebb himself was aware of this issue, the first author to propose a rule

of decrease complementary to Hebb’s was probably Stent (1973), who also

suggested detailed physiological mechanisms for implementing both Hebb’s

rule and his own. Stent’s complementary rule was:

When the presynaptic axon of cell A repeatedly and persistently fails 

to excite the postsynaptic cell B while cell B is firing under the influ-

ence of other presynaptic axons, metabolic change takes place in one 

or both cells such that A’s efficiency, as one of the cells firing B, is

decreased.

Later work on physiological mechanisms for variations on both Hebb’s and

Stent’s rules is discussed in Section 3.1.

A A

B B

BEFORE
LEARNING

AFTER
LEARNING

FIGURE 2.3 Diagram of Hebb’s structural change hypothesis. The synaptic knob from
presynaptic cell A to postsynaptic cell B gets larger after firing of A is repeatedly
followed by firing of B.

Source: Adapted from Mathematical Biosciences, 66, D. S. Levine, Neural population modeling and
psychology: A review, 1–86, copyright 1983, with permission from Elsevier Science.



In the early days of neural network modeling, considerable attention was

paid to incorporating Hebb’s rule and others for learning into a network of all-

or-none neurons similar to that of McCulloch and Pitts. The modelers building

adaptive networks of this variety included Rosenblatt (1962), Widrow (1962),

and Selfridge (1959). In these networks, the McCulloch–Pitts form of the linear

threshold law was generalized to laws whereby activities of all pathways

impinging on a neuron are computed and the neuron fires whenever some

weighted sum of those activities is above a given amount.

2.1.3. Rosenblatt’s Perceptrons

The work of Rosenblatt was particularly influential and anticipated many of

the themes of modern adaptive networks such as those of the PDP research

group (cf. Rumelhart & McClelland, 1986a) and deep learning (Hinton,

Osindero, & Teh, 2006; Schmidhuber, 2015). In fact, the latter type of network

is often called multilayer perceptrons. The main function he proposed for his

perceptrons was to make and learn choices between different patterns of

sensory stimuli.

Rosenblatt set out to study the pattern classification capabilities of networks

of sensory (S), associative (A), and response units (R) with various structures

of active connections between units. Figure 2.4 shows examples of perceptrons 

with four possible connection structure types. These types are, in order, three-
layer series-coupled (connections one-way from S to A to R); multilayer
series-coupled (connections from S to one level of A to another level of A to

R); cross-coupled (like three-layer series-coupled with the addition of cross

links between A-units), and back-coupled (like series-coupled with the addition

of feedback links from R- to A-units).

Rosenblatt first considered what he called elementary perceptrons (see the

end of this chapter for the mathematical definition). An elementary perceptron

is series-coupled, with connections only from S- to A-units and from A- to 

R-units, with only one R-unit.

Rosenblatt’s book consisted of descriptions of a large number of math -

ematical and computer experiments on how well these different types of

networks could either classify or generalize sensory patterns. The approach to

modeling was described as genotypic rather than monotypic. These terms were

defined as follows (Rosenblatt, 1962):

Instead of beginning (“monotypic”) with a detailed description of

functional requirements and designing a specific physical system to

satisfy them, this approach (“genotypic”) begins with a set of rules for

generating a set of physical conditions, and then attempts to analyze their

common functional properties.

(p. 22)
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The learning rules for perceptrons, which Rosenblatt called the reinforce -
ment system, were influenced by ideas of Hebb (1949). He distinguished 

two major types of reinforcement systems, alpha versus gamma systems. In

the alpha system, all active connections terminating on a given active cell are

changed by equal amounts, whereas inactive connections are not changed at

all. In the gamma system, the total value of connection strengths is conserved,

so that inactive connections are decreased while active ones are increased.

The amount of the connection change associated with reinforcement was a

value δ determined by one of three training procedures. In a response-
controlled system, the magnitude of δ is constant and its sign is determined by

the response (that is, by the vector of R-element activities). In a stimulus-
controlled system, the magnitude of δ is again constant but its sign is determined

by the stimulus (that is, by the vector of S-element activities). In an error-
correcting system, δ is 0 unless the response is determined elsewhere to be

“incorrect.” Also, reinforcement can be either positive or negative, that is, going

in either the same direction as or the opposite direction to the current response.2

2.1.4. Some Experiments With Perceptrons

Rosenblatt (1962) ran simulation experiments in which these different types

of perceptrons were taught to discriminate classes of stimuli. A number of

distinctions were found between the capabilities of perceptrons with different

S A S A
(a) (b)

R R

S A

(c)

R

S A

R

(d)

FIGURE 2.4 Examples of some classes of perceptrons: (a) three-layer series-coupled; 
(b) multilayer series-coupled; (c) cross-coupled; (d) back-coupled.

Source: Adapted from Mathematical Biosciences, 66, D. S. Levine, Neural population modeling and
psychology: A review, 1–86, copyright 1983, with permission from Elsevier Science.



reinforcement rules and different training procedures, distinctions which are

now mainly of historical interest. Not surprisingly, the perceptrons with error-

correcting reinforcement converged faster than those with either stimulus-

controlled or response-controlled reinforcement. Reinforcement rules of the

error-correcting type were concurrently developed by Widrow and Hoff (1960)

and are still used widely (e.g., Abdi, Valentin, Edelman, & O’Toole, 1996;

Anderson & Murphy, 1986; Bullock & Grossberg, 1988, 1989; Cohen &

Servan-Schreiber, 1992; Pineda, 1995; Stone, 1986).

As for the distinction between alpha and gamma reinforcement, the results

of the simulation experiments were equivocal. A slight advantage was found

for the gamma rule if the various stimuli presented were of unequal size or

frequency, whereas the alpha rule seemed to carry some advantage if the system

included an error correction mechanism. Conservation laws similar to the

gamma rule have been used in more recent neural networks. Rosenblatt found

that the conservation rule made the network’s responses more likely to be

stable. This same property was used in later neural network models by

Malsburg (1973) and Wilson (1975), both of whom thought this “principle 

of constant synaptic strengths” could be explained in terms of conservation of

some chemical substance at or near synapses. Synaptic conservation has

continued to appear in more recent network models, such as the model by Choe

and Miikkulainen (2004) of contour perception in the visual cortex.

In one of Rosenblatt’s major experiments (see Figure 2.5), the S-units are

arranged in a rectangular grid. Connections from S- to A-units are random,

whereas all A-units connect to the single R-unit. The perceptron (elementary,

series-coupled) was taught to discriminate vertical from horizontal bars;

variants of this experiment are given in the exercises for this chapter.

Rosenblatt found that if all possible vertical and horizontal bars are presented

to the elementary series-coupled perceptron, and the perceptron is reinforced

positively for responding to the vertical bars and negatively for responding to

the horizontal, then eventually the network gives the desired response reliably

to each one. However, if only some of the vertical and horizontal bars are

presented and positively or negatively reinforced, the series-coupled perceptron

is unable to generalize its behavior to other vertical or horizontal bars that have

not been presented. What generalization the network can do is based on

location rather than on any more fundamental properties of the input patterns.

In models of visual pattern discrimination, issues like translation invariance

(ability to recognize a given pattern regardless of where it is in the visual field)

remain difficult ones today. This property is exhibited by the Neocognitron of

Fukushima (1980) and the What-and-Where filter inspired by architecture of

the visual part of the cerebral cortex (Carpenter, Grossberg, & Lesher, 1998).

Inability to generalize is related to another weakness of series-coupled 

per ceptrons: their inability to separate out parts (features) of a complex pattern.

This means that, for a perceptron to perform categorizations, it needs an
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The procedure to be described here is called the “back-propagating error

correction procedure” since it takes its cue from the error of the R-units,

propagating corrections back toward the sensory end of the network if

it fails to make a satisfactory correction quickly at the response end.

(p. 292)

In other words, if some A-to-R connection strengths need to be corrected

for satisfactory response, inferences can be drawn regarding which S-to-A
connections need to be changed as well.

The mathematics of back propagation, and the possible biological basis for

it, are discussed in Chapters 3 and 8. It is one of a variety of neural network

schemas related to solving the artificial intelligence problem that Minsky

(1961) called credit assignment, that is, deciding which part of a system is 

most responsible for an overall outcome and making the best corrections 

to the system for changing the outcome in the desired direction. Some more

sophisticated credit assignment networks are discussed in Chapter 6, but 

were presaged by many of the inquiries in Werbos’s (1974, 1993) dissertation.

The more recently developed deep learning networks (e.g., Hinton et al.,

2006; LeCun, Bengio, & Hinton, 2015; Schmidhuber, 2015), discussed in

Chapter 8, have expanded the capabilities of back propagation into larger

networks, including refinements of the learning rules that are arguably more

biologically plausible than the original ones (e.g., Lillicrap, Cownden, Tweed,

& Akerman, 2016).

2.1.5. The Divergence of Artificial Intelligence and Neural
Modeling

From the late 1960s to the early 1980s, researchers in artificial intelligence

largely abandoned neural networks of the linear threshold variety in favor of

heuristic computer programs; this history was discussed in Levine (1983,

Section 3.2). During this period, other linear threshold models contemporary

with Rosenblatt’s had some, although relatively minor, impact on artificial

intelligence and neural modeling. Widrow (1962) developed the ADALINE

(for “adaptive linear neuron”). Contrary to its author’s intentions, this work

was more influential among electrical engineers doing signal processing than

among any group directly studying intelligent systems (Widrow, 1987).

Selfridge (1959) developed the PANDEMONIUM model, which got its name

from the different modules called “demons,” each of them feature detectors

with access to partial information from the environment. Decisions of the entire

network were based on a weighted average of the decisions of the different

demons. The demon approach had some influence on some early computational

models of specific brain areas such as the reticular formation (Kilmer,

McCulloch, & Blum, 1969) and the hippocampus (Kilmer & Olinski, 1974).
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However, at that time, the detailed physiology of these brain areas was not

understood well enough for such models to be widely accepted. Selfridge’s

work also inspired some of the abstract computational geometry of Minsky and

Papert (1969).

Minsky and Papert (1969) developed their outlook in a book titled

Perceptrons. The title was inspired by Rosenblatt’s previous work, but the

devices that Minsky and Papert studied are not exactly a subclass of

Rosenblatt’s. These abstract machines do, however, have parts that correspond

loosely to “sensory,” “associative,” and “response” areas. The Minsky–Papert

perceptron starts with a retina, which is a grid consisting of small squares, each

of which is at any time active or inactive (“light” or “dark”). Downstream from

the retina are units that compute partial predicates. Each partial predicate

outputs a value of 1 or 0 based on some rule depending on the activity or

nonactivity of units in a given subset of the retina. The maximum size of that

subset over all predicates is called the order of the perceptron. Finally, there

is a decision-making unit that computes a linear function of those predicate

outputs and responds when that linear function is above some threshold.

Minsky and Papert proved that their abstract form of the perceptron can learn

any classification of patterns on its retina. However, many of the theorems

stated that, for a perceptron to make some geometrically important classifi -

cations, the order of the perceptron has to get arbitrarily large as the size 

of the retina increases. Theorems of this sort were widely interpreted as

discrediting the utility of perceptron-like devices as learning machines. But

Minsky later said that, in retrospect, the discrediting of perceptrons seemed like

an overreaction (Rumelhart & McClelland, 1986a, Vol. 1, pp. 158–159).

Moreover, some of the visual discriminations that are difficult for

perceptrons are also difficult for humans. For example, consider the distinction

between con nected and disconnected figures, as shown in Figure 2.6. It is easy

for the unaided eye–brain combination to tell that a filled-in circle is connected,

FIGURE 2.6 The finite-order perceptrons of Minsky and Papert (1969) cannot tell 
that the curve on the left is connected, whereas the curve on the right consists of two
disjoint arcs. Can you tell that by visual inspection?

Source: Reprinted from Minsky and Papert, 1969, with permission of MIT Press.



whereas a pattern of two filled-in circles side by side is disconnected. But it

is next to impossible for the eye and brain to tell which of the two convoluted

patterns in Figure 2.6 is connected and which is disconnected without some

help from finger tracing.

The models of the group of researchers that called themselves PDP, which

originated about 1981 and most of which are summarized in Rumelhart and

McClelland (1986a), recaptured some of the threads from Rosenblatt’s work.

They showed that some of the distinctions that are impossible for Minsky and

Papert’s kind of simple perceptrons (such as between inputs that activate an

odd versus an even number of retinal units) can be made by perceptrons with

additional “hidden unit” layers (cross-connections) and nonlinear activation

functions. Some of this work is discussed in Chapters 3 and 8.

2.2. Continuous and Random Net Approaches

While the cybernetic revolution was stimulating discrete (digital) models of

intelligent behavior, there was a concurrent proliferation of results from both

experimental neurophysiology and psychology. Some of these experimental

results stimulated the development of continuous (analog) neural models. This

section reviews continuous approaches, random net approaches, and finally

some partial syntheses of continuous and discrete approaches.

2.2.1. Rashevsky’s Work

One of the pioneers in the development of continuous neural models was

Rashevsky. The best exposition of his outlook was in his 1960 book

Mathematical Biophysics. The first edition of this book had been written in

1938 – five years before the seminal article of McCulloch and Pitts (1943).

Subsequently, the evolution of his thinking had been altered by the

McCulloch–Pitts article (which was published in a journal that Rashevsky

himself founded and edited).

In most applications of mathematics to physical phenomena, including the

biophysics of electrical current flow in single neurons, there are variables that

are not all-or-none but may take on any of a range of values. Hence, such

processes are typically modeled using differential equations, which are

equations describing continuous changes over time in an interacting collection

of physical variables. (For those desiring a “primer” in differential equations

and their utility in neural network modeling, please refer to Appendix 1.)

Rashevsky (1960) described how the earlier edition of his book had used

differential equations to model various data in the psychophysics of perception.

These data included the relation of reaction times to stimulus intensities, and

the just noticeable differences among intensities.
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Rashevsky went on to describe how his thinking had been influenced by

the article of McCulloch and Pitts (1943), which used all-or-none neurons. He

stated (Rashevsky, 1960) that “the proper mathematical tool for representing

the observed discontinuous interaction between neurons was not the differential

equation but the Boolean Algebra or Logical Calculus” (p. 3). Yet it was

difficult to model the observed psychophysical data using the McCulloch–Pitts

postulates. This paradox was resolved with the observation that such behavioral

data reflect the combined activity of very large numbers of neurons. Hence,

“the discontinuous laws of interaction of individual neurons lead to a sort of

average continuous effect which is described by the differential equations

postulated originally” (also from p. 3 of Rashevsky, 1960).

The reconciliation effected by Rashevsky and others between continuous

and discrete models is still in common use today. The description in terms of

average activity is in line with the trend toward building models based on

functional units or nodes that may represent large numbers of neurons (see

Chapter 1). This is an idea that actually dates back to Hebb (1949), who

proposed that significant percepts or concepts are coded not by neurons but by

groups of neurons that he called cell assemblies.

The boundaries of “functional units” or “cell assemblies” in actual

mammalian brains have yet to be defined precisely. Edelman (1987) speculated

that units on the order of several thousand neurons in size encode stimulus

categories of significance to the animal. Abeles (1991), Burnod (1988), 

and others have stressed the functional importance of cell assemblies in the

mammalian cerebral cortex, or outermost brain layer, which are arranged

roughly in columns. Other theorists (e.g., Crick & Koch, 1990; Koch & 

Crick, 1994; Milner, 1974) have speculated that significant concepts or percepts

could be coded by the synchronized electrical activity of large distributed

groups of neurons, an idea that has received some neurophysiological support

(Eckhorn et al., 1988; Gray, König, Engel, & Singer, 1989; Gray & Singer,

1989). A more recent and somewhat related idea is the formation of “cognits”

(Fuster & Bressler, 2012), which are interconnected networks that encode the

contents of long-term memory.

Whatever its neurobiological mechanism turns out to be, averaging across

many neurons also allows the use of deterministic equations for unit activity

even if the behavior of single neurons includes a random component. A neuron

fires (i.e., transmits an impulse or, more technically, an action potential) if its
transmembrane voltage exceeds a value called the threshold (see Appendix 2

for details). This threshold is widely believed to vary according to some

probability distribution, such as the Gaussian or normal distribution (see

below). Neural models frequently average such random single-neuron effects

across the functional groups of neurons that constitute network nodes; hence,

the interactions between nodes become deterministic. In addition, many models
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average random effects over short time intervals, so that the node activity

variable is interpreted as representing a firing frequency rather than a voltage.

Rashevsky, however, made some simplifying assumptions about the neural

averaging process. For example, he assumed that the frequency of impulses

transmitted by a neuron is, on the average, a linear function of the cell’s

suprathreshold activity (see Figure 2.7a). That has proved to be a useful

assumption for some neural models of sensory transduction, such as the model

of the horseshoe crab retina developed by Hartline and Ratliff (1957). Yet

averaging considerations can also lead one to consider input–output functions

that are nonlinear, such as sigmoid functions (Figure 2.7b). As shown in Figure

2.8, if the firing threshold of an all-or-none neuron is described by a random

variable with a Gaussian (normal) distribution, then the expected value of its

output signal is a sigmoid function of activity. For this reason sigmoids have

OUTPUT OUTPUT

INPUT INPUT
θ θ

THRESHOLD
(a) (b)

FIGURE 2.7 Schematic of linear (a) and sigmoid (b) functions of suprathreshold
activity.

A(x)

xx
A(x)

(a) (b)

FIGURE 2.8 One possible biological basis for sigmoid functions: (a) Gaussian (normal)
distribution of firing thresholds. If the activity (transmembrane voltage in the case of a
single cell) is x, the node fires if the threshold is less than x. The probability of that
happening is the area under the shaded part of the curve. (b) Schematic graph of the
area A(x) in (a) as a function of x.



become increasingly popular in recent neural models, such as the on-center off-

surround models discussed Chapter 4 and the back propagation models

discussed in Chapters 3 and 7. Also, there has been some physiological verifi -

cation of sigmoid input–output functions at the neuron level (Brozović, Abbott,

& Andersen, 2008; Kernell, 1965; Rall, 1955).

Despite his simplifications, Rashevsky inspired a generation of models that

incorporate known neural phenomena into large networks of neurons connected

more or less at random. One of these phenomena is the graded (not all-or-none)

electrical potentials that occur at the dendrites of a neuron in response to all-

or-none action potentials at other cells connected to it. Another is the refractory
period, the short period of time in which a cell that has just fired (had an action

potential) must remain inactive. (A historical outline of some relevant

experimental findings appears in Katz, 1966.) Some of these models incorp -

orated the averaging considerations described above, but others used units that

were explicitly treated as single neurons.

2.2.2. Early Random Net Models

Many of the early random net models were discussed in the last sections of

the review article by Harmon and Lewis (1968). The first attempts at random

net modeling include only excitatory connections and no inhibitory ones. The

absence of inhibition in model networks, which is unrealistic from the

standpoint of known neuroanatomy, also led to unrealistic patterns of electrical

activity. The excitatory nets developed by Beurle (1956) and Ashby, Foerster,

and Walker (1962) tend, as time becomes large, to approach one of two

extremes of activity: maximal activity leading to saturation of the entire net,

or quiescence. The intermediate level of activity found in actual brains was

not modeled by these nets. Griffith (1963a, 1963b, 1965) showed that, in this

random net framework, stable submaximal activity is possible if inhibition is

included.

In the years following Griffith’s articles, other modelers tried to develop

general theories for random neural networks with both excitatory and inhibitory

connections. Most of these theories were based on differential or difference

equations that include probabilistic terms. In addition, there were some neural

net models inspired by specific formalisms from other scientific fields.

Examples are models derived from statistical mechanics (Cowan, 1970) and

from non equilibrium thermodynamics (Freeman, 1975a; Katchalsky, Rowland,

& Blumenthal, 1974; Prigogine, 1969). Application to neural network modeling

of analogies with other fields remained popular for several decades. Some

neural networks, for example, have been described as arrays of two-state units.

This has led to analogies with the physics of spin glasses, which are structures

with an array of magnetic spins that have one of two possible values (Amit,

Gutfreund, & Sompolinsky, 1985; Chowdhury, 1986; Hopfield, 1982).
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Yet analogies are limited by the fact that many nervous system properties

are uniquely neural, brainlike, or cognitive. Hence, the further development of

continuous and random models since the early 1970s has been influenced less

by specific mathematical structures than by neuroanatomical, neurophysio -

logical, and behavioral data. In particular, some data have indicated that brain

connections may be random within certain neural populations and specific

between these populations.

2.2.3. Reconciling Randomness and Specificity

The classic experiments of Lashley (1929) showed that many psychological

functions, such as ability to remember specific events, are retained after

extensive brain lesions. Lashley’s experiments were among the first to inspire

the idea, by now common, that representations of events are distributed

throughout the brain rather than localized. Other experiments showed, however,

that specific connections are important for other functions. Mountcastle (1957)

found that the somatosensory (touch-sensitive) area of the cerebral cortex

includes a well-organized topographic encoding of the body. Similarly, Hubel

and Wiesel (1962, 1965) found that cells in the visual area of the cortex are

organized into columns that code specific retinal positions or line orientations.

(It is important to note, however, that visual and somatosensory maps are

modifiable; the somatosensory maps, at least, can be altered even in adult life.

If the connection to a given area of the cortex from the retinal or body area it

would normally code is either cut or inactivated, the same area of cortex can

learn to code a different, nearby area. Some of this evidence is summarized in

Edelman, 1987).

The paradox between the Lashley data and the Hubel–Wiesel or Mountcastle

data is resolved by means of a principle described in Anninos, Beek, Csermely,

Harth, and Pertile (1970) as “randomness in the small and structure in the large”

(p. 121). This section considers some models whose equations are explicitly

based on this principle. The same principle is implicit in many models dis -

cussed in the next two chapters. The latter models use purely deterministic

equations at the population level that reflect the averaging over large ensembles

of probabilistic effects at the single-cell level. Some of the more biologically

sophisticated models discussed in Section 3.5 and Chapters 6–8 bring back

single-cell details such as spiking.

The article of Anninos et al. (1970) is one of a series of related articles (e.g.,

Anninos, 1972a, 1972b; Harth, Csermely, Beek, & Lindsay, 1970; Wong &

Harth, 1973). In this series of models, neurons are organized with random

connectivities into “netlets,” and netlets in turn are organized deterministically

into larger nets. Evidence for such netlets was found, for example, in the

organization of the somatosensory and visual areas of the cortex into functional

columns (Hubel & Wiesel, 1962, 1965; Mountcastle, 1957).
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Using many cell properties such as refractory periods, Anninos et al. (1970)

derived an expression for the expected activity (defined as fractional number

of neurons firing) at (discrete) time n + 1 as a function of activity at time n. The

crucial variable for determining long-term behavior is a parameter δ describing

the number of excitatory postsynaptic potentials (here from within a netlet)

needed to cause a cell to fire in the absence of inhibitory inputs. If δ is very

small, netlet activity always tends to a unique positive stable steady state. If δ
is very large, netlet activity always tends to 0. If δ is in a middle range, there

are two stable steady states, one quiescent and one active, and a threshold exists

for reaching the active state.

Anninos (1972a) pursued these principles of network organization further

with simulations of multi-netlet nets. He found, for example, that the

dependence of activity of a single netlet in such a network on some external

input can exhibit hysteresis cycles. That is, the effect of an input can depend

on the past history of stimulation. He hinted, without giving details, that such

hysteresis could be a mechanism for short-term memory.

Amari (1971, 1972, 1974) described random networks by means of

differential or difference equations with two variable parameters – averaged

connection weight and averaged threshold. Depending on the values of these

two parameters, the network can have either a single stable steady state, many,

or none. If the system has excitatory and inhibitory subnetworks, there can be

oscillations of very long period. Amari’s systems also modeled association of

ideas, by means of connection weights.

A confluence of random net modeling with experimental data occurred in

the work of Freeman (1972a, 1972b, 1975a, 1975b), much of which led to

models of the olfactory cortex. He laid out some general principles for forming

waves from pulses in large neural masses, and showed how this neural mass

theory could be used to model EEG (brain wave) patterns and predict their

frequencies. He continued this general line of work to recent years, with some

results indicating that EEG patterns in the olfactory cortex tend to be chaotic

(in the mathematical sense) in the absence of an odorant stimulus but

synchronized in the presence of an odor (Freeman, 1992; Kozma & Freeman,

2009; Skarda & Freeman, 1987).

Both random and chaotic elements are common in contemporary neural

network models, but there are also models in which random elements at the

neuron level are averaged into deterministic models at the neural population

level. A mathematical justification for this averaging process, using stochastic

differential equations, was given by Geman (1979, 1980). In the deterministic

approach, the networks often have particular connection patterns suggested by

the cognitive task involved (such as associative learning, pattern storage,

conditioning, or categorization).

The next two chapters will discuss in turn some of the early models of

associative learning (in Chapter 3) and competition (in Chapter 4), two of the
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principles mentioned in Chapter 1. Most of these models use deterministic

differential or difference equations. Many of them were developed in the 1960s,

1970s, and early 1980s by pioneers who are still active in the neural network

field as of this writing. Because of the state of knowledge in neuroscience at

the time, these models were less closely tied to neural data than typical current

models, some of which include features such as calcium-dependent spiking,

spike timing–dependent plasticity, and enzymes that mediate neurotransmitter

function. Yet many of the more “abstract” models of Chapters 3 and 4 provided

“building blocks” for the more biologically realistic models of complex

processes discussed in Chapters 6–9.

A few of Rosenblatt’s definitions

(Numbers are the ones from Rosenblatt’s book)

Definition 6: A sensory unit (S-unit) is any transducer responding to physical
energy (e.g., light, sound, pressure, heat, radio signals, etc.) by emitting a signal
which is some function of the input energy. The input signal at time t to an 
S-unit si from the environment, W, is symbolized by cwi*(t). The signal that is
generated at time t is symbolized si*(t).

Definition 7: A simple S-unit is an S-unit which generates an output signal 
si* = +1 if its input signal, cwi* exceeds a given threshold, θi, and 0 otherwise.

Definition 8: An association unit (A-unit) is a signal-generating unit (typically a
logical decision element) having input and output connections. An A-unit aj
responds to the sequence of previous signals cij* received by way of input
connections cij , by emitting a signal aj*(t).

Definition 9: A simple A-unit is a logical decision element, which generates an
output signal if the algebraic sum of its input signals, αi, is equal or greater than
a threshold quantity, θ > 0. The output signal ai* is equal to +1 if αi � θ and 0
otherwise. If ai* = +1, the unit is said to be active.

Definition 10: A response unit (R-unit) is a signal-generating unit having input
connections, and emitting a signal that is transmitted outside the network 
(i.e., to the environment, or external system). The emitted signal from unit ri will
be symbolized by ri*.

Definition 11: A simple R-unit is an R-unit that emits the output r* = +1 if the
sum of its input signals is strictly positive, and r* = –1 if the sum of its input signals
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is strictly negative. If the sum of the inputs is zero, the output can be considered
to be equal to zero or indeterminate.

Definition 12: Transmission functions of connections in a perceptron depend on
two parameters: the transmission time of the connection, τij, and the coupling
coefficient or value of the connection, vij. The transmission function of a connection
cij from ui to uj is of the form: cij*(t) = f [vij(t), ui*(t – τij)]. Values may be fixed or
variable (depending on time). In the latter case, the value is a memory function.

Definition 22: A simple perceptron is any perceptron satisfying the following five
conditions:

1. There is only one R-unit, with a connection from every A-unit.
2. The perceptron is series-coupled, with connections only from S-units to 

A-units, and from A-units to the R-unit.
3. The values of all sensory to A-unit connections are fixed (do not change with

time).
4. The transmission time of every connection is either zero or equal to a fixed

constant, τ.
5. All signal-generating functions of S-, A-, and R-units are of the form ui*(t) =

f (αi (t)), where αi (t) is the algebraic sum of all input signals arriving
simultaneously at the unit ui.
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Detailed Description: Perceptron to Discriminate
Vertical versus Horizontal

This is a description of the time course of Rosenblatt’s simulation of
teaching an elementary perceptron to distinguish between 20-by-4 vertical
bars and 20-by-4 horizontal bars. As in Figure 2.5, S-units are arranged in
a 20 × 20 grid (“retina”). There are nine A-units and one R-unit. Only the
A-to-R connections are modifiable.

Each A-unit receives eight excitatory and two inhibitory connections
from S-units, and one needs to program a random number generator to
find out which S-units they come from! The connection strengths vij are +1
for excitatory pathways and – 1 for inhibitory pathways. For each of the
nine A-units, a program similar to the one listed in Figure 2.9 must be used
ten times, one for each connection from an S-unit, to generate a random
number uniformly distributed between 0 and 1. Then the random number
generated is multiplied by 400 and truncated to an integer, and 1 is added
to get an integer between 1 and 400. The last integer determines which 
S-unit connects to the current A-unit, the S-units in the first row being
numbered 1 through 20, the second row 21 through 40, and so forth. More



than one connection to that unit can come from the same S-unit. But the
location of the S-to-A connections, once set, remains fixed throughout the
simulations.

For example, suppose the random number generator applied ten times
yields .3171, .0295, .3246, .4878, .9135, .7076, .3168, .5040, .0511, and
.2607. Then the locations obtained for the S-unit connections will be 127,
12, 130, 196, 366, 284, 127 (again), and 202 (all excitatory), then 125 and
1 (both inhibitory).

The input stimuli are horizontal or vertical bars of width four. The
connectivity within the S grid is toroidal: that is, the top row is considered
to be adjacent to the bottom row and the leftmost column to the rightmost
column. The topmost horizontal bar activates units 1 through 80, the
second horizontal bar activates units 21 through 100, and so on, down to
the twentieth and last horizontal bar, which activates the bottom row and
the top three rows of units, that is units 381 through 400 and 1 through
60. Likewise, the leftmost vertical bar activates the left four columns of units,
that is, units 1, 21, 41, . . . , 381, 2, 22, 42, . . . , 382, 3, 23, 43, . . . , 383,
4, 24, . . . , 384, up through the last vertical bar, which activates units 20,
40, . . . , 400, then 1, 21, 41, . . . , 381. OBJECT: To teach R to respond
positively to vertical, negatively to horizontal.

If the ith S-unit is activated, then si*(t) = 1, otherwise si*(t) = 0. An 
A-unit computes aj = Σi si*vij, and its activity aj*(t) = 1 if αj > 2, 0 if 
αj � 2, with 2 being set as the threshold for A-unit activation.

For example, suppose we are looking at the ith A-unit, and that the input
is the horizontal bar activating rows 5 through 8 of the retina. This means
that S-units 81 through 160 are activated, so si*(t) = 1 for I between 81 and
160, and 0 otherwise. The S-to-A connection weight vij = 1 for I = 127
(twice) and 130 (once) and –1 for I = 105, because those are locations of
excitatory and inhibitory connections. Those being the only S-units for
which both si*(t) and vij are nonzero, aj = Σi si*vij = 1(1) + 1(1) + 1(1) +
1(–1) = 2, so aj*(t) = 0, that is, that A-unit is not activated.

At the start of each run, the A-to-R connection strengths wj are set to
values that are randomly (uniformly) distributed between –1 and 1. Error
correction and alpha reinforcement are used. That is, whenever a hori-
zontal line is input and R (incorrectly) responds positively, any wj that are
positive while aj*(t) = 1 are reduced by an amount δ; whenever a vertical
line is input and R (incorrectly) responds negatively, any wj that are
negative while aj*(t) = 1 are increased by the same value δ. R in turn responds
negatively if Φ = Σi aj*wj � 0, and positively if Φ > 0. Time delays can all
be set to 0.
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Definition 23: An elementary perceptron is a simple perceptron with simple 
R- and A-units, and with transmission functions of the form cij*(t) = ui*(t–τ)vij(t).

The concepts relating to reinforcement are defined precisely in pages 88–92
of Rosenblatt (1962). We list only the definitions for positive, negative, alpha
system, and error-correcting reinforcement:

Definition 33: Positive reinforcement is a reinforcement process in which a
connection from an active unit ui that terminates on a unit uj has a value changed
by a quantity Δvij(t) (or at a rate dvij/dt), which agrees in sign with the signal uj*(t).

Definition 34: Negative reinforcement is a reinforcement process in which a
connection from an active unit ui that terminates on a unit uj has its value changed
by a quantity Δvij (or at a rate dvij /dt) that is opposite in sign from uj*(t).

(Note: The “active units” ui in the above definitions could be either A-units
or R-units.)

Definition 37: Alpha system reinforcement is a reinforcement system in which all
active connections cij which terminate on some unit uj (i.e., connections for 
which ui*(t–τ) is not equal to 0) are changed by an equal quantity Δvij(t) = δ or
at a constant rate while reinforcement is applied, and inactive connections (ui*(t–τ)
= 0) are unchanged at time t.

Definition 41: An error-correcting reinforcement system (error correction system)
is a training procedure in which the magnitude of δ (see Definition 37) is 0 unless
the current response of the perceptron is wrong, in which case the sign of δ is
determined by the sign of the error. In this system, reinforcement is 0 for a correct
response, and negative (see Definition 34) for an incorrect response.

ADALINE Equations

The ADALINE network of Widrow (1962) is a supervised learning network. 
In the ADALINE model, a set of bipolar (1 or –1) inputs is filtered through a
corresponding set of adaptive weights, and the sum of the weighted inputs is then
compared with a desired output. Then error-correcting reinforcement is applied.

The ADALINE equations are as follows. Let wi, I = 0, . . . , n represent the
corresponding weights. Let Ii, I = 1, . . . , n represent specific inputs, and I0 a
constant (“bias”) input equal to 1. Then the actual output, called y, is

(2.1)
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Let y0 be a desired output; for example, if the network is trained to learn the logical
“AND” operation, n = 2, and the inputs are 1 and 1, the desired output is also
1. Then, at each time step, weights are updated according to the rule

(2.2)

The network runs through all the input vectors in sequence, each time adding to
each weight wi the corresponding value Δwi shown in Equation (2.2). Weights
are changed until the network has learned the desired output to every bipolar input
vector; that is, until the error term in (2.2), y0–y, is 0 for each of the inputs.

Exercises for Chapter 2

�1. Hebb’s rule for synaptic modification states that strength of a connection
will increase if activities of the two connected units are both high at the same
time (with suitable delays, perhaps). Other modelers have proposed
alternative rules (sometimes called “differential Hebbian”) whereby con -
nection strengths increase when activity of one unit is coupled with change
in activity of the other unit, or when changes in activities of both units are
coupled. Give some possible advantages and disadvantages of Hebbian
versus differential Hebbian rules for network models of learning. You may
also suggest modifications of either type of rule.

**2. Design a McCulloch–Pitts network with heat and cold receptors and a cell
that fires after the sequence “heat–cold” or the sequence “cold–heat” but
nothing else. Assume that each cell takes exactly one time step to compute
its output, and that cold and heat cannot be simultaneously felt at the same
time step.

Design another McCulloch–Pitts network, possibly a modification 
of the first one, so that the last cell fires after alternating sequences of three
– “heat–cold–heat,” “cold–heat–cold,” “heat–cold–neither,” or “cold–heat–
neither” – but not after sequences that include repeats – “heat–cold–cold”
or “cold–heat–heat.”

* 3. Using the definitions given in this chapter and the algorithm shown in
Figure 2.9, do six runs of the Rosenblatt elementary perceptron that learns
to respond positively to 20-by-4 vertical bars and negatively to 20-by-4
horizontal bars, as described in the box preceding these exercises. Do two
runs with each of three different δ values (2.0, .5, and .1). Present each of
the horizontal and vertical bars, in turn, in any order, repeatedly. It will
probably eventually learn to classify all of them correctly but due to the
randomness it is not guaranteed to happen. But see how the learning rate
depends on δ. (Again, because of the randomness, there is no guarantee

�w a y y I
ni o

i= −( )
+1
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about the outcome. But study the tradeoff between the effects of too small
or too large a learning rate.)

*4. Do the same simulation as in Exercise 4 but teach the network only half of
the bars and then present one it has not learned. No generalization should
occur.

�*5. Design a simulation in which a perceptron is trained to discriminate
between two types of figures. Examples would be a square of a given size
versus a triangle of a given size (that is, translates of a fixed square and a
fixed triangle anywhere along the grid) or a square and a diamond. Another
example would be to discriminate whether a figure does or does not contain
the letter “X.”

*6. Simulate the ADALINE network of Widrow (1962) defined by Equations
(2.1) and (2.2) and the surrounding text, with the number n of nonbias
inputs equal to 2 and the learning rate a to 1. Set the initial values of each
of the weights w0, w1, and w2 to random values uniformly distributed
between 0 and 1.
(a) Teach the network the logical “AND” operation, which maps

(1, 1) → 1
(1, –1) → – 1
(–1, 1) → –1
(–1, –1) → –1.

Show that this can be learned in two passes through the sequence of
four input vectors.

Set XRANDM

y = (π+XRANDM)5

j = largest integer < y

RANDOM = XRANDMXRANDM = y-j

FIGURE 2.9 Generic program segment that, starting from any initial “seed” number
between 0 and 1, generates a different random number in that interval on each pass.
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(b) Teach the network the logical “OR,” which maps
(1, 1) → 1
(1, –1) → 1
(–1, 1) → 1
(–1, –1) → – 1.

Show that this can be learned in two passes through the sequence.
(c) Teach the network the logical “NAND,” which always gives the sign

opposite to the one given by the “AND”:
(1, 1) → –1
(1, –1) → 1
(–1, 1) → 1
(–1, –1) → 1.

Show that this can be learned in three passes through the sequence.
(d) Show that the network cannot learn the “exclusive OR,” which maps

(1, 1) → – 1
(1, –1) → 1
(–1, 1) → 1
(–1, –1) → –1,

by going through the sequence of training inputs and getting an
infinite loop. (The exclusive OR can be learned by multilayer nonlinear
networks, as will be seen in Chapter 7).

� 7. The controversy over local versus distributed representations of concepts in
the brain, mentioned briefly in Section 2.2.3 of this chapter, is still present
in the neuroscience community. Neurons that respond selectively to specific
objects are commonly known as grandmother cells, from the idea of a
neuron that lights up when one recognizes their own grandmother. The
existence and/or utility of grandmother cells is still fiercely debated (see, 
e.g., Bowers, 2017, and Thomas & French, 2017). From a reading of those
articles or related ones, come to your own conclusions about this
controversy.

Some Additional Sources

Early Neural Network Models (Original Articles or Reviews)

Anderson, Pellionisz, and Rosenfeld (1990); Anderson and Rosenfeld (1988);
Palm (1982); Sejnowski (1976); Steinbuch (1961, 1990); Widrow, Pierce and
Angell (1961).



Notes

1. In most of the models discussed in this book, network elements are called “nodes” or “units”
rather than “cells” or “neurons.” The exception is made for the McCulloch–
Pitts network because their network is directly inspired by the all-or-none firing properties
of neurons.

2. This usage differs from the standard usage of experimental psychologists. In psychology,
negative reinforcement refers to a stimulus whose removal is rewarding. What Rosenblatt
called negative reinforcement, psychologists call punishment.
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3
ASSOCIATIVE LEARNING AND
SYNAPTIC PLASTICITY

The present contains nothing more than the past, and what is found in the effect

was already in the cause.

Henri Bergson, L’Évolution Créatrice

The mind is slow in unlearning what it has been long in learning.

Seneca, Troades

3.1. Physiological Bases for Learning

Recall from Section 2.1 the contribution of Hebb (1949) to the bridging of

psychology and neurophysiology. Hebb proposed on psychological grounds the

existence of synaptic modifications during learning, in the absence, then, of

any physiological evidence for such modifications. Since that time, it has been

experimentally demonstrated that correlated activity at the pre- and post -

synaptic cells of many synapses in animal nervous systems alters the efficacy

of the synapse in causing action potentials at the postsynaptic cell.

The first widely recognized demonstration of synaptic modifiability

(plasticity) in a living animal was the work of Eric Kandel and his colleagues

on the sea slug Aplysia californica, which led to Kandel receiving the 2000

Nobel Prize in Physiology and Medicine. In particular, Kandel and Tauc

(1965) discovered in Aplysia a mechanism called heterosynaptic facilitation.

Heterosynaptic facilitation has been defined (Byrne, 1987) as “a change in

synaptic efficacy (or cellular excitability) in one neuron as a result of release

of a modulatory transmitter from another neuron” (p. 354). This work initiated

a long series of cellular studies of learning in Aplysia and other invertebrates,

which is still taking place. These studies started with nonassociative facilitation

(strengthening) and habituation (weakening) of specific pathways then went



on to different kinds of associative modifications. Hawkins and Kandel (1984)

reviewed how invertebrate findings may relate to different forms of

conditioning (see Chapter 6 for further discussion).

After the early invertebrate work, the search for synaptic plasticity in

mammals began with the hippocampus, the area involved in consolidation of

short-term memory into long-term memory. Bliss and Lømo (1973) demon -

strated in the rabbit hippocampus the phenomenon of long-term potentiation
(LTP). LTP is defined (Byrne, 1987) as “a persistent enhancement of synaptic

efficacy generally produced as a result of delivering a brief (several seconds)

high-frequency train (tetanus) of electrical stimuli to an afferent (incoming)

pathway” (p. 389). This potentiation can last up to several hours in an isolated

cellular preparation and several days in an intact animal.

The article of Byrne (1987) ended with a statement of four general principles

about neural plasticity that largely remain valid:

1. Plasticity involves changes in existing neural circuits. This means that

cellular correlates of associative learning typically do not, at least in adult

animals, involve growth of new synaptic connections but rather changes

in the efficacy of existing connections. (There have been more recent

findings of neurogenesis, that is, formation of new neurons, in adult

mammals including humans, most notably in the hippocampus and the

olfactory cortex; see Eriksson et al., 1998, and Zhao, Deng, & Gage, 

2008. Yet the role of such new neuron formation in learning has not 

been established. Nor has it been established whether or not adult neuro -

genesis occurs in other parts of the brain such as the rest of the cortex; see

Gould, 2007.)

2. Plasticity is not localized to one site or type of neuron. Evidence for

modifiable synapses has been found at motor neurons in some experiments

(e.g., eyeblink conditioning in the cat) and at sensory neurons in other

experiments (for example, heart-rate conditioning in the pigeon).

3. Plasticity involves second messenger systems. Second messengers are

particular chemical substances that regulate amounts of available

neurotransmitters (see Appendix 2 for more detail). Briefly (see Figure

3.1), action potentials involve characteristic patterns in the transport across

nerve membranes of potassium, sodium, and chloride ions. Transmission

of impulses across a synapse is mediated by a chemical transmitter that

affects the “channels” carrying those ions across the postsynaptic

membrane. There are over twenty known neurotransmitters; some of the

most common are glutamate, gamma-amino butyric acid (GABA), acetyl -
choline, norepinephrine, serotonin, and dopamine. Transmitter production

and release are in turn affected by second messengers. The commonest

second messengers are cyclic AMP, cyclic GMP, the calcium (Ca++) ion,

and an enzyme, mitogen-activated protein kinase (MAPK).
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4. Plasticity at one site involves multiple synergistic processes. For example,

in the sea slug, Aplysia, there can be coordinated effects on the release of

a chemical transmitter and on a postsynaptic potassium channel affected

by that same transmitter.

Bliss and Collingridge (1993) reviewed the physiological properties of long-

term potentiation (LTP) in the hippocampus. These authors characterized LTP

by three basic properties: cooperativity, associativity, and input-specificity.

Cooperativity means that there is a threshold of intensity of electrical

stimulation, and thus of numbers of activated nerve fibers, below which LTP

cannot occur. Associativity (which Bliss and Collingridge, p. 31, called “a

cellular analogue of classical conditioning”) means that a weak input to one

pathway can be potentiated if it is active at the same time as a strong input to

a separate but convergent pathway. Input-specificity means that the process

potentiating pathways active at the time of the stimulus does not spread to other

pathways.

Bliss and Collingridge stated that induction of associative LTP requires “a

molecular coincidence detector, able to respond to the conjunction of activity

in afferent fibers and adequate depolarization in target dendrites” (p. 31; see

Appendix 2 of this book for definitions of some of these neurophysiological

terms). They reviewed evidence that this function of coincidence detection is

performed by a specific type of receptor at the neuron membrane for glut-

amate, which is the brain’s primary excitatory neurotransmitter substance (see

Appendix 2). This type of receptor is called the NMDA receptor, after a

compound called N-methyl-D-aspartate (NMDA), which enhances glutamate

action and which has a special affinity for that type of receptor. An important

variable here is the flux of the calcium (Ca++) ion in the vicinity of the NMDA

receptor triggered by the combination of presynaptic glutamate release and

postsynaptic depolarization (increase of positive voltage inside the postsynaptic

membrane). More recent work has clarified that this Ca++ influx in turn leads

to the release of kinases (enzymes that mediate reactions involving adding

phosphorus to molecules) that are essential for LTP to occur; for a review see

Byrne, LaBar, LeDoux, Schafe, and Thompson (2014) and Heidelberger,

Shouval, Zucker, and Byrne (2014).

Several more recent articles (e.g., Bear, 2003; Collingridge, 2003; Malenka

& Bear, 2004) review the history of results that followed the establishment of

LTP mechanisms. The discovery of NMDA receptors led to a search for those

same receptors elsewhere in the brain, notably in the visual cortex of kittens

during development. Also, investigators aware of the effects of monocular

deprivation on later vision looked for mechanisms for the opposite of LTP,

namely long-term depression (LTD). LTP in the visual cortex was found by

Kirkwood and Bear (1994), and it was found that a common form of LTD 

is dependent, like the most common form of LTP, on NMDA receptors.
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Furthermore, evidence was found in support of the hypothesis that “presynaptic

activity triggers synaptic depression or potentiation depending on the

concurrent level of postynaptic activity” (Bear, 2003, p. 650).

Yet the NMDA receptors did not tell the whole story. Roles were also dis -

covered for two other types of glutamate receptors (AMPA and meta botropic),

for neurotransmitters that modulate glutamate synapses (acetylcholine,

serotonin, dopamine, and norepinephrine), and for GABA, the most common

inhibitory transmitter in the brain.

Hence, considerable progress has been made at illuminating biochemical

substrates for LTP and LTD in the brain, substrates that vary a great deal across

species and across brain regions. The sequence of events in the commonest

form of hippocampal LTP is particularly well understood:

First, glutamate binds to AMPA receptors and depolarizes the postsynaptic

cell. The depolarization allows glutamate to bind to the N-methyl-D-aspartate

(NMDA) class of receptors. Calcium then flows into the cell through the

NMDA channel and triggers a host of intracellular events that ultimately result

in gene induction and synthesis of new proteins. (LeDoux, 2000, p. 167).

Feldman (2009) reviewed recent results on synaptic plasticity in the

mammalian cerebral cortex. Feldman noted that there have been impressive

results on the roles of LTP and LTD in the plasticity of sensory maps,

particularly in the visual and somatosensory cortices. He noted that the

requirement for LTP in adult learning had been verified in the hippocampus

and amygdala but not yet in the cortex. There is also suggestive evidence, not

yet proven, that long-lasting plastic changes involve genetic modification.

Short-term neuronal response modifications in many areas including orbito -

frontal cortex and amygdala during conditioning have also been verified:

some of that evidence is reviewed in the context of models (discussed in

Chapters 6 and 9 of this book) by Frank and Claus (2006) and Dranias,

Grossberg, and Bullock (2008).

Membrane

Metabolism

Na+

Na+

K+

K+

FIGURE 3.1 Schematic diagram of ionic mechanisms for resting and action potentials 
of the nerve membrane. On the left, ionic “pumps” help to preserve the concentration
difference of sodium (Na+) and potassium (K+) ions inside and outside the cell
membrane during rest. This concentration difference changes during the action
potential, as shown on the right. (Adapted by permission from Thompson, 1967.)



In summary, there now appears to be a sufficient physiological basis for

many if not all of the neural network learning rules that have been suggested

on cognitive grounds. Some of these rules incorporate variants of Hebb’s

postulate or of LTP, whereby synaptic efficacy increases with coordinated

presynaptic and postsynaptic activities. Others incorporate variants of LTD or

synaptic efficacy decreasing with use, or include the possibility of either an

increase or decrease with use. We now proceed to a discussion of different

synaptic modification rules used in some of the earliest model networks and

the cognitive and behavioral consequences of these rules.

3.2. Rules for Associative Learning

Work on translating an associative rule for synaptic modification into explicit

equations essentially began in the late 1960s, as discussed in Section 6 of

Levine (1983). The most important early contributors to this effort were

Stephen Grossberg, James Anderson, Teuvo Kohonen, and their collaborators.

3.2.1. Outstars and Other Early Models of Grossberg

Grossberg derived his formal rules and related equations from psychological

considerations. The networks implementing these rules, in turn, suggested

analogs of neural elements and interconnections. The most general form of

these equations (Grossberg, 1969b) remains in current use in modeling

multilevel adaptive networks with modifiable synapses between levels (see

Chapters 6–9 of this book).

The psychological and neurophysiological implications of the theory thus

derived were described in Grossberg (1969a). This article posed the question

of how an organism learns to produce one sound (say B) in response to another

(say A) after repeatedly hearing them in sequence. The network designed to

answer that question was motivated by the following psychological postulates

among others:

1. Language appears to be spatiotemporally discrete. That is, a sound like A
is psychologically treated as an “atom” instead of being subdivided.

2. Such discrete symbols as occur in language are used to represent sensory

experience, which is spatiotemporally continuous.

3. Learning changes from continuous to discrete; for example, a child

learning to walk must concentrate continuously on his or her movements,

whereas an adult walking has an automatic sequence of discrete steps.

The network that Grossberg used to satisfy these postulates consists of

discrete elements with time-varying activities that satisfy continuous differen -

tial equations. Mathematical results about the equations, showing what is
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learned by particular networks, were proved in other articles (Grossberg,

1968a, 1968b, 1969b, 1972a). For the variables defining these equations,

Grossberg borrowed from Hull (1943) the notions of stimulus trace and

associative strength. For each stimulus “atom” (i.e., node) such as A, a stimulus

trace xA(t) is defined that measures how active the memory for A is at any 

given time t. For each pair of nodes A and B, the associational strength wAB(t)
measures how strongly the sequential association AB is in the network’s

memory at time t. In Figure 3.2, the ith stimulus trace xi is located at the node

vi, and the association wij between the ith and jth traces is located along the

edge eij. Grossberg drew an analogy between the vi and cell bodies, the eij and

nerve axons, and the junctions eij-to-vj and synapses (see Appendix 2).

Table 3.1 summarizes the effects that Grossberg incorporated into his

differential equations. As this table shows, in the case of the sequence AB, it

was desired that B should be produced if, and only if, A has been presented

and the sequence AB is strong in memory. Similarly, the sequence AB should

become stronger if, and only if, A is presented and followed by B. Hence,

replacing A and B by the ith and jth stimuli in general, the variable xj should

increase if both xi and wij are high, which means that the equation for the rate

of change of xj should include a (nonlinear) term like the product xiwij.

Likewise, the variable wij should increase if both xi and xj are high, which means

that the equation for wij should have a term like the product xixj. These product

terms mean that the network is nonlinear: that is, node activities change over

a time in a way that is not directly proportional to the influences from other

nodes or outside inputs. (See Appendix 1 for an introduction to the general

process of incorporating neural or cognitive variables into differential

equations.)

The product terms in these equations incorporate a version of Hebb’s

postulate that synaptic weights will increase with coordinated pre- and post -

synaptic activities. Yet, in addition to LTP they include a potential mechanism

for LTD, in the form of a slow decay in the weights wij, causing the weights

to decrease with combined pre- and postsynaptic activities that are too small

to overcome the decay.

The import of Grossberg’s approach to learning can be gleaned from study

of a specific type of simple network architecture called the outstar (Grossberg,

1968a; see Figure 3.2). In the outstar, one node v1, called a source, projects to

arbitrarily many other nodes v2, v3, . . ., vn, called sinks. Long-term storage can

be interpreted as residing in the relative weights of w12, . . ., w1n, that is, in the

functions
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where “�” denotes summation (in this case, the sum of all weights w1j of

connections from source to sinks).

The outstar is affected by an input I1 to the source node v1, and a pattern of

inputs I2, . . . , In to the sink nodes v2, . . . , vn. (Grossberg sometimes interpreted

the source input as a conditioned stimulus, and the pattern of sink inputs as an

unconditioned stimulus; see the discussion of conditioning models in Chapter

6.) The activity x1 of v1 tends to increase if the input I1 is present and to decay

back toward a baseline (interpreted as 0) in the absence of input. As illustrated

in Table 3.1(a), the activity xi of each vi also tends to increase if both x1 (activity

of v1) and w1i (associative strength between v1 and vi) are significant, and decay

otherwise. Finally, as illustrated in Table 3.1(b), w1i tends to increase if both

x1 and xi are significant, and decay otherwise.

If x1 is interpreted as encoding A and xi as encoding B, the decay of w1i
implies that the association between A and B is weakened while the network
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wijxi xj

vjvi
θij

FIGURE 3.2 Schematic of two nodes and one modifiable connection between them,
based on Grossberg’s 1968 and 1969 articles.

TABLE 3.1 Effects incorporated into Grossberg’s differential equations.

A is presented AB has been learned B is expected
Yes Yes Yes

Yes No No

No Yes No

No No No

(a)

A is presented at a
given time

B is presented a short
time later AB is learned

Yes Yes Yes

Yes No No

No Yes No

No No No

(b)



is not actively hearing A. This property is contrary to intuition: it is to be

expected, rather, that the association will decay when A is presented without

being followed by B, but remain constant when A is not presented at all. In a

modified form of the outstar equations, used in much of Grossberg’s later work,

w1i decreases only if x1 is large and xi is small. This implies that an association

such as AB remains intact if neither A nor B is presented, but is weakened if

A is presented and not followed by B.

The outstar equations are given at the end of this chapter. Before discussing

the major results about those equations, let us briefly consider the implications

of this theory for memory. The stimulus traces x1 and xi can be considered as

analogs of short-term memory (often abbreviated STM), while the associative

strengths w1i are analogous to long-term memory (often abbreviated LTM). It

is desired that STM traces should decay quickly after inputs cease, while LTM

traces should be relatively stable. Hence, the decay rate for w1i is set much

smaller than the decay rates for x1 and xi.

Grossberg (1968a) studied the asymptotic behavior, that is, behavior as time

increases, of the outstar equations given at the end of this chapter. He showed

that, for many classes of inputs, the functions W1i(t) defined by (3.1) and the

analogous functions

(3.2)

both approach limits as these equations evolve in time. Moreover, for each j,
the limiting values of Xj and W1j are equal. Thus, the same distribution of

weights is coded both in the relative stimulus traces and the relative

associational strengths at the outstar sinks.

Simulation exercises at the end of this chapter illustrate how the outstar’s

limiting behavior may relate to different classes of inputs. A particularly

important case is where the inputs to the sink nodes form what Grossberg called

a spatial pattern, that is, where the relative proportions of inputs to the

different sink nodes are unchanged over time (see Figure 3.4). The math -

ematical definition of a spatial pattern input is:

(3.3)

In Expression (3.3), the values θj represent relative pattern weights, since θj(t)
= (Ij /I), while I, which equals the sum of all the Ij , represents the total input to

all sink nodes of the outstar. In this case, under suitable conditions 

on the inputs I1(t) and I (t), the input pattern weights were shown to be stored

in long-term memory, that is, if lim
t→∞

denotes the limiting value as time goes on,
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(3.4)

The conditions under which (3.4) holds, which are listed at the end of this

chapter, can be interpreted as meaning that inputs to both the source and the

sink are presented “often enough” for large times. After learning, the learned

spatial pattern can be reproduced by activating the source node with an 

input I1.

Other articles (e.g., Grossberg, 1968b, 1969b, 1972a) extended the above

results to equations describing networks with learning laws similar to the

outstar’s but different in architecture. In some cases, learning theorems for

spatial patterns, analogous to (3.2), can be proved. In other cases, spatial

patterns can be shown to be learned for some parameter values and forgotten

(leading to asymptotically uniform synaptic weights) for other parameter

values. Such variability of dynamics occurs, for example, in the complete 
graph with loops, where every node projects to every node including itself, 

and the complete graph without loops, where every node projects to every 

other node.

lim ( ) lim ( ) ,  2,…, 
t j t j jW t X t j n
→∞ →∞

= = =
1

�

x1

x2xn-1

x3xn

FIGURE 3.3 Outstar architecture.

Source: Adapted from Mathematical Biosciences, 66, D. S. Levine, Neural population modeling and
psychology: A review, 1–86, copyright 1983, with permission from Elsevier Science.

i i

Ii(t1) Ii(t2)

1      2      3     4 1      2      3     4 1      2      3     4
i

Ii(t3)

FIGURE 3.4 Example of a spatial pattern input, in which absolute inputs may change
over time but always remain in the relative proportions θi.



Some new psychological properties, separate from the original postulates,

emerged from these mathematical results. These properties are:

1. The more often the network hears B following A, the more likely it is to

say B after hearing A.

2. An isolated network can remember without practicing overtly.

3. Memory can sometimes improve spontaneously on recall trials.

4. If the network has learned the association AB, it can be changed to AC by

sufficient presentation of the new sequence, but the change takes a long

time if the association AB has become very strong.

Grossberg and his associates made use of these associative pattern learning

results in models of more complex cognitive processes, which are discussed

in Chapters 6–9. In Section 3.3, we see that Grossberg also developed a class

of modifiable synapses where the associative tendency is counteracted by

habituative tendencies. The explanation for habituation is that repeated pairing

of pre- and postsynaptic activities increases production of chemical transmitter

at the synapse, but also increases release of transmitter.

In mathematical terms, a pattern of inputs or of node activities can be

described as a vector, or linear array of numbers. The connection strengths

between nodes form a square array of numbers, or matrix (plural: matrices).

(Appendix 1 provides more details about the mathematics of vectors and

matrices.) These mathematical objects play a large role in the models of

Anderson and of Kohonen, which are discussed in the next two subsections.

Their models bear some similarity to Grossberg’s but their node interactions

are more linear.

3.2.2. Anderson’s Connection Matrices

Anderson and Kohonen both tackled problems of encoding multiple patterns

(vectors) simultaneously in memory. The linear model of learning in Anderson

(1972) is based on models of memory storage, retrieval, and recognition by

Anderson (1968, 1970). In all these articles, a memory trace is described as a

vector,

each of whose components is the activity of a single element of the network.

Hence, these memory traces are similar to the stimulus traces of Hull (1943)

and Grossberg (1969a). If the elements are neurons, this activity is interpreted

as instantaneous firing frequency; if the elements are populations of neurons,

activity is interpreted as average firing frequency. All of the memory traces

present in those elements are summed into a total storage vector

x = ( , , …, )x x xn1 2
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The model is discrete in time, although synaptic efficacy can take on any of a

continuum of values.

The emphasis in Anderson’s articles was on developing a simple model that

would capture some of the basic properties of memory without resorting to

much physiological detail. In Anderson (1968), the problems considered were:

1. Recognition: If an input pattern (vector of activities) is given, how can one

tell whether a trace similar to that pattern is already stored as part of the

storage vector?

2. Retrieval: Once recognition has occurred, how can the stored trace be

reconstructed?

3. Association: Once retrieval has occurred, how can other stored traces be

found that are also similar to the input pattern?

Retrieval poses a particular challenge in this model because it involves

recovering one term of a vector sum, which is subject to error. The techniques

described for solving the recognition and retrieval problems uses various

kinds of filters designed so as to minimize the probability of error (, that is, to

maximize a certain signal-to-noise ratio.

The mathematical theory of these linear filters was discussed further in

Anderson (1970). The input trace is used to construct a matched filter whose

output is the dot product of the stored array with the input trace, that is,

where N is the number of nodes in the network. If s is considered to equal the

input x added to a noise vector n, with components nk, the signal-to-noise ratio

is defined as

the average being taken over all possible storage vectors. Using probability

theory, the signal-to-noise ratio was shown to be close to N/K, with N the

number of nodes and K the number of traces. The derivation of the signal-to-

noise ratio is sketched at the end of this chapter. Thus, increasing the number

of nodes makes the network more reliable, as von Neumann (1951) had
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discovered in a much earlier model. Also, increasing the number of traces

makes recognition more difficult, which is to be expected because of mutual

interference. The signal-to-noise ratio achieved is the maximum possible for

a linear filter, but can be improved by using a suitable nonlinear filter.

The problem of association was discussed in Anderson (1968), and its

relationship with a theory of synaptic connection weights was described in

Anderson (1972). In these articles, a model for association was proposed that

involves two sets of nodes, α and �. The following assumptions were made

for simplicity: (1) both α and � have the same number N of nodes; (2) there

is another number M such that M nodes of α project to every neuron of α, and

every neuron of α projects to M nodes of �. There was assumed to be an input

trace x = (x1, . . . , xn) at α, a trace y = (y1, y2, . . . , yn) at �, and values aij for

the efficacy of the synapse from the ith element of α to the jth element of �.

It was assumed that y should be as close as possible to Ax, where A is the

matrix of connection weights aij. (Multiplication of matrices is explained in

Appendix 1.) Under this assumption, the optimal matrix A (from the standpoint

of signal-to-noise ratio) is obtained by:

(3.5)

for some constant c. In other words, the optimal values of the connection

weights reflect the Hebb-like operation of multiplying pre- and postsynaptic

firing frequencies.

Equation (3.5) illustrates that optimality considerations lead to a rule similar

to the Hebb rule for connection weights. Nass and Cooper (1975) extended

Anderson’s analysis to develop a network where the matrix of connection

weights start with arbitrary values and converge to the optimal weights;

algorithms of this sort are still in frequent use. This optimality analysis could

be extended to some cases of multiple input traces and multiple output traces.

If there are K input traces xk = (xk1, xk2, . . . , xkn), 1 < k < K, and K output traces

yk = (yk1, yk2, . . . , ykn), all with equal “power”

then the Equation (3.5) for the optimal weight matrix generalizes to

(3.6)

Equation (3.6) indicates that synaptic weights in this model are calculated

instantaneously from the inputs. The dynamics of the system over time were
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not developed, and decay terms (as in the outstar equations) were not included.

Thus, in this model, a trace can only be forgotten if it is interfered with by 

the memory of another stimulus whose trace involves the same neural 

elements.

The extension of this work to include temporal dynamics with decay terms

was suggested in Anderson (1973) and done explicitly in Nass and Cooper

(1975). The 1973 article dealt with the modeling of some psychological data

on the learning of lists. In these data, a subject’s reaction time to an item is

related to the probability of occurrence of the item. This result was modeled

by letting the kth trace coefficient (analogous to the factor c in (3.5) and (3.6))

be ck = 1 + �pk , where � is a weighting constant and pk is the probability of

presentation of the kth item. Anderson (1973) explained his model as follows:

The probabilistic term due to the immediate past history could easily arise

in the following way. Each time the item is tested or rehearsed, the stored

trace is slightly strengthened. This can easily occur since the trace has

just been present in the correct form. If an exponential decay of trace

strength in short-term memory is assumed, the probability dependent term

will appear to be of this form.

(p. 429)

He thus suggested, without proposing a formula, that the memory trace of an

item decays exponentially while the item is not being presented, and increases

while the item is being presented.

Nass and Cooper (1975) showed that an optimal matrix of the form (3.6)

arises as the limit of a matrix that is modified at time t according to the rule

aij(t+1) = �aij(t) + 	xiyj, with � and 	 positive constants, � < 1 but close to 1.

That rule effectively means that while stimuli are not being presented,

associative strengths decay spontaneously at a rate 1 – �.

The Nass–Cooper model was specifically applied to the development of

orientation detecting neurons in the visual cortex, based on results showing that

exposure during a critical period to lines of the right orientation is necessary

for cats to develop those detecting cells (Blakemore & Cooper, 1970; Hirsch

& Spinelli, 1970). Nass and Cooper also considered the issue of selectivity:

how different, neighboring neurons might learn to respond maximally to

different orientations. Selectivity was accomplished by adding lateral inhibition

to the network; the next chapter (Chapter 4) discusses in detail the role of lateral

inhibition in visual processing. Nass and Cooper (1975) provided some of the

foundation for the later orientation detection model of Bienenstock, Cooper,

and Munro (1982), which is discussed in Section 7.1. The Bienenstock et al.

model includes a weight modification rule that combines LTP and LTD 

(cf. Bear, 2003).
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3.2.3. Kohonen’s Early Work

Anderson’s theories of associative memory and category learning are similar

to theories of the same phenomena by Kohonen (1977) and Kohonen et al.

(1977). Kohonen et al. (1977) used the terms “associative memory” and

“associative learning” for two distinct yet interrelated sets of cognitive

phenomena. One set of phenomena involves memory or learning of

associations that develop, for example, by classical conditioning or serial

learning of lists. The other set involves recollection of a total pattern if part of

the pattern is perceived (Kohonen et al., 1977):

The term associative memory is here restricted to denote a process in

which a signal pattern is recalled upon the basis of a fraction of it (the

key). The signal pattern is composed of the activities in a set of axons,

acting as the input to a neural network during a short period of time.

These axons may originate within one modality, with the signal pattern

thus representing one sensory stimulus, or they may originate within

different parts of the central nervous system, and thus represent the

simultaneous activity in these structures. Consequently, for instance, both

the recall of a visual image from its fraction, and a paired association in

the classical conditioning, can be regarded as different aspects in the

functioning of the associative memory.

(p. 1065)

He continued to develop this distinction in later work (Kohonen, 1984), where

he referred to the above two aspects of associative memory as autoassociative
and heteroassociative; this later work is discussed in Section 3.4.

Kohonen et al. (1977) and Kohonen (1977, Chapter 1) illustrated the

recognition process using simulations of human face recognition. The algorithm

for these simulations is a good example of Kohonen’s general method. The

nodes in his model were assumed to be analogs of pyramidal cells in the

cerebral cortex (the largest type of cortical neuron), or else of the columns into

which cortical neurons are organized (cf. Mountcastle, 1957; Hubel & Wiesel,

1962, 1965).

Kohonen et al. (1977, p. 1069) assumed that each unit modulates the

activities of other units in proportion to its activity, and that a nonspecific

background activity is present. The variables defining the network are output

firing frequencies yi, which depend on input firing frequencies (spiking

frequencies) xi. If the direct connectivity between input and output is denoted

by wi, the long-range connectivity from unit j onto unit I by wij, and the

background activity by y*
b, the input–output transformations can be represented

as a system of linear equations:



(3.7)

The values wij of the connection weights in Equation (3.7) can be positive for

excitatory connections, negative for inhibitory ones, and 0 for units that do not

project to the given unit.

In some earlier examples of Kohonen’s work, the connectivities wij were

assumed to be constant, and, by methods similar to Anderson’s, the optimal

weights were found for recall of specific patterns. But Kohonen also

incorporated memory effects, modeled by a Hebb-like associative law. The

equations on which Kohonen’s simulations were based, which are presented

at the end of this chapter, combine the interactions of (3.7) with that type of

learning law.

The actual simulations of Kohonen et al. (1977) used an approximation to

these equations combined with a preprocessing (sharpening) of the pattern

using lateral inhibition. As discussed in Chapter 4, lateral inhibition is widely

used in neural networks to enhance contrast between different locations within

a pattern. Kohonen and his coworkers achieved some success in recovering a

recognizable face from a blurred or partially missing image. Like Anderson,

they found that the larger the number of stored images, the more difficult it is

to get a sharp recollection of each image. It was found that inclusion of lateral

inhibition markedly sharpens the recollected image.

Kohonen et al. (1977) also commented that the model could be improved

by incorporation of temporal as well as spatial contrast enhancement:

The temporal differentiation of signals exerts an effect of improvement,

similar to that of lateral inhibition, since the most relevant information

is usually associated with changes in state.

(p. 1075)

A previous article (Kohonen & Oja, 1976) had used temporal difference

effects to construct a “novelty filter,” which selectively enhances those parts

of a pattern that had not previously been present. Learning laws based on

various forms of temporal difference are discussed extensively in the next

section.

3.3. Learning Rules Related to Changes in Node Activities

In the associative rules discussed in the last section, connection weights are

modified by correlated presynaptic and postsynaptic activities. By contrast to

rules based on correlated node activities, many other modelers have suggested

learning rules in which the crucial variable is change in postsynaptic (and also,
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in some cases, presynaptic) activity. The error-correcting rules of Widrow and

Hoff (1960) and Rosenblatt (1962) (see Section 2.1) fit into this general

category. Later modelers employing similar rules, for a variety of reasons,

include Klopf (1979, 1982, 1988), Sutton and Barto (1981, 1991), Kosko

(1986b), and Rumelhart et al. (1986), among others.

3.3.1. Klopf’s Hedonistic Neurons and the Sutton–Barto
Learning Rule

Klopf (1982) proposed that a synapse is increased in efficacy if its activity is

followed by a net increase in the depolarization (positive stimulation) received

by the postsynaptic cell. In other words, he proposed that depolarization acts

as positive reinforcement for neurons. Klopf’s theory was based on an analogy

between single neurons and whole brains, both of them being treated as goal-

seeking devices. This is the reason for the words “hedonistic neuron” in the

title of his book.

The importance of activity change, as opposed to activity itself, was also

highlighted in the psychological theory of Rescorla and Wagner (1972), which

is not neurally based but has influenced many neural models of classical

conditioning. Their theory is based on the results of many classical conditioning

experiments indicating that associative learning of a conditioned stimulus can

be greatly influenced by the background stimuli present during both training

and recall trials. The main tenet of Rescorla and Wagner’s theory was that:

organisms only learn when events violate expectations. Certain expec -

tations are built up about the events following a stimulus complex:

expectations initiated by the complex and its component stimuli are then

only modified when consequent events disagree with the composite

expectation.

(Rescorla & Wagner, 1972, p. 75)

Sutton and Barto (1981) set out to explain classical conditioning with a

theory that included elements of both the Rescorla–Wagner and Klopf theories.

Their conditioning model includes n stimulus traces xi(t), an output signal y(t),
and n synaptic weights wi (t), as shown in Figure 3.5. These weights are

considered to denote associations between conditioned stimuli (CSs) and a

primary reinforcer or unconditioned stimulus (US or UCS).

Sutton and Barto proposed that in addition to traces xi (t) that denote the

duration and intensity of given CSs, there are other traces called x–i (t) that are

separate from the stimuli and longer lasting. These are the actual memory

traces, analogous to those in the outstar equations (see Section 3.2). Sutton and

Barto termed them eligibility traces because they indicate when a particular

synapse is eligible for modification. The existence of these two separate sets
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of traces had been previously proposed by Klopf (1972). Sutton and Barto

suggested possible cellular mechanisms for eligibility traces, involving calcium

ions and cyclic nucleotides. Finally, the current amount of reinforcement, y (t),
was compared with the weighted average y–(t) of values of y over some time

interval preceding t. These variables are governed by Equations (3.22) listed

at the end of the chapter.

The two innovations in Sutton and Barto’s model – including eligibility

traces and making learning depend on the comparison term y (t) – y–(t), rather

than simply the postsynaptic activity y (t) – were motivated by experimental

results on timing in classical conditioning. In particular, the model can explain

the fact that, in many conditioning paradigms, the optimal interstimulus interval

(time interval between the two stimuli to be associated) is greater than 0; this

explanation is further developed in Chapter 6. Sutton and Barto’s network can

also simulate other contextual effects in classical conditioning, such as the

blocking of formation of associations to a new stimulus if another stimulus that

has already been conditioned is simultaneously present.

The synaptic learning law involving change in postsynaptic activity is not

the only possible way to simulate timing effects or blocking in classical

conditioning. The same data were simulated by Grossberg and Levine (1987)

using a form of the earlier Grossberg learning law (see Section 3.2) combined

with competitive attentional effects in a larger network.

Yet while the behavioral data studied by Sutton and Barto did not lead to

a unique physiological model, they inspired a class of models that later

developed into the widely used temporal difference (TD) models, which are

discussed extensively in Chapter 6. The TD models have made extensive
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FIGURE 3.5 Adaptive element analog of classical conditioning. This network has n
modified conditioned stimulus (CS) pathways, and a pathway with fixed weight w0 for
the unconditioned stimulus (US). The node y represents the unconditioned and
conditioned responses (UR and CR).

Source: From Sutton & Barto, Psychological Review, 88, 135–170, 1981. Copyright 1981 by the
American Psychological Association. Adapted by permission.



contact with physiological data on midbrain dopamine neurons and the basal

ganglia.

3.3.2. Error Correction and Back Propagation

Sutton and Barto (1981) noted some formal analogies between their learning

rule, where present is compared with previous reinforcement, and other rules

whereby actual is compared with desired reinforcement. Rules of the latter sort

arose from considerations both in psychology (Rescorla & Wagner, 1972) 

and in engineering (Widrow & Hoff, 1960). Such error-correcting rules fall 

into the category of supervised learning; that is, they rely on a “teacher” to 

tell whether particular neural responses are “right” or “wrong.” The best

known of these supervised learning rules is the generalized delta rule used in

the back propagation algorithm.

The essentials of the back propagation algorithm were developed by Werbos

(1974, 1993), as a procedure for optimizing the predictive ability of math -

ematical models. LeCun (1985) and Parker (1985) discovered this procedure

independently, and Rumelhart et al. (1986) placed it in a widely studied

connectionist framework. It is often applied to discrimination or classification

of sensory input patterns (see Chapter 8). The principle is as follows. The

network is feedforward with three layers, composed of input units, hidden units,

and output units (see Section 2.1). A particular pattern of output responses to

particular input patterns is desired. To the extent that the actual response to

the current input deviates from the desired response, the weights of connections

from hidden to output units change. Then those weight changes propagate

backward to cause changes in weights from input to hidden units that will

reduce the error in the future. The hidden units thereby come to respond to,

hence encode, specific patterns of input activities (the internal representations
in the title of the article by Rumelhart et al., 1986).

The original delta rule (similar to that of Widrow & Hoff, 1960, and many

others) was formulated by Rumelhart et al. as a rule for changing weights

following presentation of a given pattern, labeled by the index p. If wij is the

weight from the ith input unit to the jth output unit, then:

(3.8a)

where 
 is a learning rate constant, δpj is a measure of desired change in the

jth component of the output response, and ipi is the value of the ith component

of the input pattern. In the simplest network with only input and output units

and no hidden units, the desired change in the jth output component is

(3.8b)

�w iij pj pj= 
�

�pj pj pjt y= −
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where ypj is the jth component of the actual output response and tpj is the jth
component of the desired or “target” response. The work of Rumelhart et al.

and their predecessors consisted of generalizing (3.8b) to networks with hidden

units. We now give a condensed description of the learning law arising from

this generalization.

Rumelhart and McClelland (1986a, Volume I, Chapter 2) had previously

demonstrated that there is no advantage to including hidden units if their

activation functions (outputs as a function of total signal received) are 

linear. They therefore posited activation functions that are nondecreasing 

and differentiable but nonlinear. Typically, they used sigmoid functions (see

Figure 2.7).

Let f be a sigmoid function, and let f ′ be its rate of change or derivative

(see Appendix 1). Let the net signal received by the jth unit in any given layer

of the network be:

(3.9)

a linear sum of the outputs ypi from the previous layer weighted by the

connections wij. If j is a hidden unit so that I is an input unit, ypi equals the

input component ipi . If j is an output unit so that I is a hidden unit, then ypi
equals f (netpi), the activation function f applied to the ith net signal netpi.

Let L = 0, . . . , N indicate the Lth layer of the network, where L = 0 represents

the input layer and L = N (N = 2 in most applications) represents the output

layer. The rule of Rumelhart et al. (1986) for back propagation of errors, which

generalizes (3.8b), is:

(3.10a)

if L = N and

(3.10b)

if L ≠ N, where the jth node in layer L can either be an output or a hidden unit,

and netpj is defined by Equation (3.9). The sum in (3.10b) is over all units k in

the next layer downstream, that is, in layer L + 1. The changes in weights of

connections to the jth node are in turn calculated from the errors using a

generalization of Equation (3.8a), namely

(3.11)

The derivation of (3.10b) is given at the end of this chapter.

net pj ij pi
j
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The back propagation algorithm is an example of a long-established class

of mathematical methods known as steepest descent (see Duda & Hart, 1973,

for details). That is, an expression is found for the total error in the network’s

response (based on the desired or target response), and the weight changes that

cause the sharpest possible decrease in this error measure are computed.

Heuristically, (3.10b) says that weight changes are greatest at connections from

node activities sending signals netpj , whose values are on the sharpest rising

slope of the sigmoid function f. This means that those values are in the

intermediate range; that is, the units sending those signals are furthest from an

established “yes-or-no” response to the input.

Back propagation of synaptic weights occurs because the changes in input-

to-hidden weights are computed via (3.8) from the δpj values, which in turn

are computed via (3.10b) from the changes in hidden-to-output weights. Hence,

this scheme allows for credit assignment: deciding which connections at an

earlier level in the network to alter if the responses of later stages are

inappropriate (see also Barto & Anandan, 1985). Chapter 8 discusses

convergence properties of the back propagation algorithm.

3.3.3. The Differential Hebbian Idea

Learning rules including changes in postsynaptic activity, as in the

Sutton–Barto model (and also, sometimes, changes in presynaptic activity), are

called differential Hebbian rules (Kosko, 1986b). This term is used to contrast

with the term Hebbian for rules including a simple cross-correlation of pre-

and postsynaptic activities (see the earlier discussion in Section 3.1).

Klopf (1988), building on Sutton and Barto’s work, developed a differential

Hebbian learning model that he called the drive-reinforcement model. In

Klopf’s model, the synaptic efficacy changes as a function of changes in both

presynaptic and postsynaptic activities. But in order to account for the positive

optimal interstimulus interval in classical conditioning, the change in post -

synaptic activity is delayed in time. Also, the change in efficacy of a given

synapse is made proportional to the current efficacy. The purpose of this latter

rule is to account for the initial positive acceleration in the S-shaped acquisition

curves observed in animal learning (see Figure 3.6).

Klopf noted that Kosko (1986b) had independently been led to a rather

similar learning law by philosophical and mathematical considerations. Using

this law, Klopf was able to simulate a wide variety of classical conditioning

data including effects of stimulus duration, partial reinforcement, and

compound stimuli. Chapter 6 considers these conditioning data in more detail,

comparing Klopf’s models of such phenomena, and those of Barto and his

coworkers, with the models of Grossberg and Levine (1987) and Grossberg

and Schmajuk (1987). One essential difference between these two sets of

models is worth noting now. The Klopf and Barto approaches rely on complex
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learning laws that are suggested to represent processes at the neuronal level.

The Grossberg approach, by contrast, relies on simpler learning laws (associ -

ative cross-correlation combined with exponential decay) combined with

certain characteristic network-level interactions that are discussed next.

3.3.4. Gated Dipole Theory

One of the network interactions used in Grossberg’s models of classical

conditioning is competition, or lateral inhibition; this is a common feature in

the networks of other neural modelers, and is the main topic of Chapter 4.

Competition is particularly important to models of attentional effects such as

blocking. This type of competition usually involves feedback, or recurrent,

network interactions. But feedforward competition is part of another type 

of network interaction known as opponent processing, which is the basis for

an architecture called the gated dipole. The gated dipole theory, like the

differential Hebbian theory, was motivated by an effort to compare current

values of stimulus or reinforcement variables with recent past values of the

same variables.

Grossberg (1972b, 1972c) introduced gated dipoles to answer the following

question about reinforcement. Suppose an animal receiving steady electric

shock presses a lever that turns off the shock. Later, in the same context, the

animal’s tendency to press the lever is increased. How can a motor response

associated with the absence of a punishing stimulus (shock) become itself

positively reinforcing? Clearly, absence of shock is not rewarding per se: if

you walk to the back right corner of a room and do not get shocked, that corner

CS
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FIGURE 3.6 Synaptic weight between CS and US representations in a simulated
classical conditioning experiment using the drive-reinforcement learning rule. The
model yields an S-shaped (sigmoid) acquisition curve, consistent with some animal
learning data. The CS is shut off at the time of US onset (delay conditioning).

Source: Adapted from Klopf, Psychobiology, 16, 85–125, 1988. Permission to reproduce granted 
by Psychonomic Society, Inc.



does not become more attractive for you unless you have just been shocked

elsewhere in the room. Hence, zero shock must become (transiently) rewarding

by contrast with the ongoing shock level.

Figure 3.7 shows a schematic gated dipole, which obeys Equations (3.26)

below. The synapses w1 and w2, marked with squares, have a chemical

transmitter that tends to be depleted with activity, as indicated by the –yiwi terms

in the differential equations for those wi values. Other terms in those equations

denote new transmitter production. The amount produced is greatest when the

transmitter is much less than its maximum.

In Figure 3.7, the input J represents shock, for example. The input I is a

nonspecific arousal to both channels y1-to-x1-to-x3 and y2-to-x2-to-x4. While

shock is on, the left channel receives more input than the right channel; hence

transmitter is more depleted at w1 than at w2. But the greater input overcomes

the more depleted transmitter, so left channel activity x1 exceeds right channel

activity x2. This leads, by feedforward competition between channels, to net

positive activity from the left channel output node x3. For a short time after

shock is removed, both channels receive equal inputs I but the right channel

is less depleted of transmitter than the left channel. Hence, right channel activity

x2 now exceeds x1, until the depleted transmitter recovers. Again, competition

leads to net positive activity from the right channel output node x4. Whichever

channel has greater activity either excites or inhibits x5, thereby enhancing or

suppressing a particular motor response.

The network is called a gated dipole because it has two channels that 

are opposite (“negative” and “positive”) and that “gate” signals based on 

the amount of available transmitter. Characteristic output of one gated dipole

is graphed in Figure 3.8. This graph illustrates the “rebound” in x4 activity after

the cessation of x3 activity. Grossberg (1972c) discusses in detail the math -

ematical relationships between J, I, and the other system parameters that are

required for such a rebound to occur. Concurrently with Grossberg’s work,

Solomon and Corbit (1974) developed an opponent processing theory of

motivation, arguing that significant events elicit both an initial reaction and a

subsequent counter-reaction.

Grossberg and Levine (1987, p. 5027) compared the gated dipole model for

measuring temporal differences with the differential Hebbian model. They

argued that the dipole model is better at reproducing two important

psychological effects. In the context of shock avoidance data, one effect is that

the amount of reinforcement from escaping shock is sensitive not only to the

shock’s intensity but also to its duration. The other effect is that the amount

of reinforcement depends on the overall arousal level of the network (or

organism).

The gated dipole can also model the absence of a positive stimulus acquiring

negative significance. If the two channels in Figure 3.7 are reversed in sign so

that the channel receiving input is the “positive” one, the network provides an
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explanation for frustration when a positively reinforcing event either is

terminated, or does not arrive when expected. The rebounds between posi-

tive and negative also explain the partial reinforcement extinction effect
(PREE), whereby a motor response learned by an animal under intermittent

reinforce ment is more stable than the same response learned under contin-

uous reinforcement (e.g., Gray & Smith, 1969). According to the gated dipole

theory (or the differential Hebbian theory), a reward’s attractiveness is

enhanced by comparison with an expected lack of reward.

The idea of opponent processing is applicable to many other neural

processes. It is an old idea in vision; for example, the retina contains pairs of

receptors for opponent colors, such as green and red, and one of the two opponent

colors is transiently perceived after removal of the other one. The dipole idea

in the sensory domain involves “on cells” and “off cells” responding to

presence or absence of specific sensory stimuli. Grossberg (1980) joined on cells

and off cells for different stimuli into a network called a dipole field. Transient

rebounds in such a dipole field were used in that article to model various visual

phenomena such as color-dependent tilt aftereffects. Also, gated dipoles have

been applied to the modeling of motor systems: Grossberg and Kuperstein

(1986/1989) and Bullock and Grossberg (1988) used dipoles to simulate the

actions of neuron populations innervating agonist-antagonist muscle pairs.

Indeed, Grossberg (1987d) hinted that a gated dipole can exhibit switching

back and forth between opposite responses:

Spontaneous switching behavior has previously been shown to be a

property of a gated dipole field in response to image pairs that create

approx imately balanced, but competitive, input patterns. . . . Periodic

switching occurs because the habituating transmitters within a winning

channel weaken the competitive advantage of that channel by causing a

decrease in the size of its positive feedback signals. The inhibited channel

can then win the competition because its transmitters are able to

accumulate while it itself is being inhibited. Then the cycle of rivalry

repeats itself, leading to cyclic recovery and habituation of transmitter

gates as a given channel periodically loses and wins the competition.

(p. 123)

The on cells and off cells in the gated dipole are reminiscent of the novelty

filter developed in Kohonen and Oja (1976) for selectively enhancing those

parts of a pattern that have not been seen before. An example of such a novelty

filter, used in visual pattern recognition, is shown in Figure 3.9.

To simplify the discussion in this section and the previous sections of this

chapter, we have treated the stimuli that are being associated as if they activate

single nodes. Other modeling considerations arise when we look instead at the

learning of associations between activity patterns that span large numbers of
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FIGURE 3.7 Schematic gated dipole network. J is a significant input (in the example of
Grossberg, 1972b, electric shock), whereas I is nonspecific arousal. Synapses w1 and 
w2 can undergo depletion (as w1 has in this diagram), as indicated by partial lightening
of square boxes. After J is shut off, w1 < w2 (transiently), so x1 < x2. By competition, 
x4 is activated, enhancing a motor output suppressed by J. Note that if J is a positive
reinforcer such as food instead of shock, the signs downstream are reversed; that is, 
x3 excites x5 and x4 inhibits x5.
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FIGURE 3.8 Typical time course of the channel outputs of a gated dipole.

Source: Adapted from Neural Networks, 2, D. S. Levine & P. S. Prueitt, Modeling some effects of
frontal lobe damage: Novelty and perseveration, 103–116, with permission from Elsevier Science.



nodes. Building on some ideas previously introduced in Section 3.2, the next

section presents aspects of associative learning of patterns in some influential

neural network models.

3.4. Associative Learning of Patterns

Recall from the discussion in Section 3.2 that a sensory pattern can be encoded

as a distribution or vector of activities across different nodes; this theme is taken

up again in Chapter 4. Early neural network models yielded some insights into

how a single node can learn a particular pattern (e.g., Grossberg, 1968a,

1968b) and how a network can learn to respond with one given pattern to

another given pattern (e.g., Anderson, 1970, 1972). In recent years, more

sophisticated versions of this type of associative learning have played a large

role in applications of neural networks to pattern recognition.

There are likely to be differences between a single node learning an

association with a pattern of other node activities, as occurs, for example, in

the outstar (see Figure 3.4), and the same node learning an association with 

a single other node. Figure 3.10 illustrates one possible difference. If the

association to be learned is simply between single node activities, a law

whereby contiguous presentations increase connection strength (such as that

of Hebb, 1949) seems to make sense. But, if a pattern is to be learned, what is

important is that the distribution of learned synaptic weights comes to

approximate the distribution of original pattern intensities. Under these

conditions, contiguous presentation can sometimes lead to increases in some

connection strengths and decreases in others.1

Section 3.2 discussed the early work of Anderson (1972) on association

between vector patterns. Work along these lines was developed further, with

both mathematical theory and implementation, by several investigators, most

notably Kohonen (1984) and Kosko (1987a, 1987b, 1988). (Another discussion

of associations between patterns is found in Rumelhart & McClelland, 1986a,

Volume 1, pp. 33–40).

3.4.1. Kohonen Models of Autoassociation and Heteroassociation

Kohonen (1984) defined:

two types of transformation operations, the autoassociative recall,
whereby an incomplete key pattern is replenished into a complete (stored)

version, and the heteroassociative recall which selectively produces an

output pattern yk in response to an input pattern xk; in the latter case the

paired associates xk and yk can be selected freely, independently of each

other. This operation is a generalization of the simple stimulus-response

(S-R) process.

(p. 162)
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Autoassociative theory was implemented, for example, in the restoration of

human faces from blurred or partially missing images; this process is illustrated

in Kohonen, Reuhkala, Makisara, and Vainio (1976), Kohonen et al. (1977),

and Chapter 1 of Kohonen (1977). Figure 3.11 shows one face recall

simulation. Detailed neural network connections for this process are best

presented in Kohonen et al. (1977); the simulations in that article are based on

his differential equation for associative learning, which are given at the end of

this chapter.

Kohonen’s simulations employed an approximation to this associative

learning equation combined with a preprocessing (sharpening) of the pattern

STORED
PATTERNS

INPUT
(x)

OUTPUT
x

FIGURE 3.9 A demonstration of the novelty filter. The output selectively enhances those
parts of the stored patterns that are absent from the current input pattern.

Source: Reprinted from Kohonen & Oja, 1976, with permission of Springer-Verlag.
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x
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xi
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FIGURE 3.10 (a) Hebbian associative learning at single nodes. Correlation between
node activities xi and xj always increases the LTM trace, or synaptic strength, wij. 
(b) Non-Hebbian associative learning of a pattern. Correlation of a spatial pattern of
node activities xi with a single node activity xj enables the LTM traces wij either to
increase or decrease to match the spatial pattern.

Source: Adapted from Grossberg & Levine, 1987, with permission of the Optical Society of
America.



using lateral inhibition. In the primary patterns xi , each “pattern element” xi
was replaced by a numerical value xNI , which is a weighted sum of itself and

its neighboring elements, where the weighting factors �ia, for a given I, add up

to 0. It was further assumed that �ii is positive for each I.
The heteroassociative theory was developed in Kohonen (1984), Chapter

6. His general theory of optimal linear mapping for paired associations

encompasses the autoassociative as well as the heteroassociative case. For if

the set of pattern pairs to be encoded is (xk , yk), k = 1, . . . , n, then xk can be

thought of as a key for recovering a desired pattern, and yk as the pattern 

to be recovered. In that framework, the autoassociative case occurs if xk is a

subpattern of yk with some of the components missing (as is true, for example,

in Figure 3.11 where xk is part of the face and yk the whole face. This work

forms some of the basis for Kohonen’s self-organizing maps (Kohonen, 1997),

discussed in Chapter 7.

3.4.2. Kosko’s Bidirectional Associative Memory

The theory of associations between pattern pairs was further advanced by the

development in Kosko (1987a, 1987c, 1988) of the bidirectional associative
memory, or BAM.2 Kosko developed a dynamical system of differential

equations for a general heteroassociative link between collections of nodes as

shown in Figure 3.12. In the case where the activity pattern vectors are binary

(consisting of 1s and 0s) or bipolar (consisting of 1s and –1s), Kosko (1988)

proved that the states of the system converge to a stable equilibrium value

denoting the pairing of patterns. (For those unfamiliar with the mathematical

notion of equilibrium, or steady state, it is discussed in Section 4.2 and again

in Appendix 1.) In the autoassociative case, where the ai and bi represent the

same patterns, Kosko showed that his system is a generalization of the models

of Hopfield (1982, 1984) and a special case of the system for which Cohen

and Grossberg (1983) proved a convergence theorem (see Chapter 4). All these

proofs have in common that the convergence to a steady state is based on a

symmetry assumption in the connection weights: if wij denotes the strength 

of the connection from xi to yj in Figure 3.12, it is also the strength of the

connection from yj to xi . This is true both for the nonadaptive case where wij
are constant, and for the adaptive case, studied in Kosko (1987a), where 

wij vary over time according to an associative learning rule with decay.

However, strict symmetry of connections is not realistic for most forms of

associative learning. Asymmetric associative learning occurs, for example, in

Pavlovian conditioning: the animal learns that the bell predicts food, but not

that food predicts the bell. As the conditioning models discussed in Section

6.2 make clear, what is typically learned is that the CS precedes the US, in

fact, predicts it. Section 3.5 discusses asymmetric associative learning models

that include explicit spiking at the neuronal level.
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Grossberg (1969c, 1970a) had previously generalized the learning of spatial

patterns in the outstar (see Section 3.2) to the learning of spatiotemporal
patterns, that is, time sequences of spatial patterns, in a network called the

outstar avalanche. The avalanche consists of a collection of outstars that share

the same sink nodes but whose sources are connected in series. Each source

FIGURE 3.11 Face recall by an autoassociative memory network. (a) A stored face, as
represented in a network with 5120 and 1280 nodes respectively. (b) Key images tested
in recall. (c), (d), (e) Recollections from a 5120-unit network with 16, 160, and 500
stored images respectively. Note that quality gets worse as there are more images. 
(f) Recollection from a 5120-node network with 16 stored images and no lateral
inhibition. (g) Recollection from a 1280-node network with lateral inhibition.

Source: Reprinted by permission of the publisher from Kohonen et al., Neuroscience, 2, 1065–1076.
Copyright 1977 by Elsevier Science Publishing Co., Inc.
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has learned, via synaptic weights, a different pattern of sink node activities.

Hence, the spatial patterns determined by these weights are activated in

sequence. In this manner, for example, a ritualistic sequence of movements or

musical notes can be learned.

Just as Kosko (1988) interpreted his BAMs as reciprocal outstars, he

generalized the BAMs to nonsymmetric dynamical systems known as TAMs

(for temporal associative memories) that can be interpreted as outstar

avalanches. One example of a TAM is a network that can learn a repeating

temporal pattern, say (A1, A2, A3, A1). In that case, where the symmetry

assumption is no longer valid, the system can be shown to converge not to an

equilibrium but to an oscillatory solution or limit cycle (see Section 4.2 for 

a discussion of these mathematical terms).

Kosko (1987b) added competitive, or lateral inhibitory, interactions (see

Chapter 4) within a level (ai or bi ) to the adaptive BAMs. He showed that the

system still converges to an equilibrium, and the equilibrium behavior

approximates that of the adaptive resonance theory (ART) network of

Carpenter and Grossberg (1987a). ART is a network designed particularly for

pattern classification, and is discussed extensively in Chapter 7.

The multiplicity of learning laws in the neural network literature reflects an

immense variation in both biological capabilities and cognitive tasks. Yet, in

spite of this variability, a few basic types of laws are widely repeated. A similar

repeatability is seen in the laws for neural competition discussed in the next

chapter. These two sets of laws provide most of the “building blocks” needed

for the models of larger-scale processes discussed in Chapters 6–9.
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FIGURE 3.12 Bidirectional associative memory. xi and yj are nodes whose activity levels
are either binary (1 or 0) or bipolar (1 or –1). wij are their connection weights, which
are usually symmetric (wij = wji). Patterns are vectors of the xi and yj activity levels; the
wij determine what pairs of patterns at A and B the network will learn to associate.

Source: Adapted from Kosko, 1988, copyright 1988 IEEE; reprinted by permission.



3.4.3. The Distributed Outstar

Carpenter (1994) generalized the outstar network (see Section 3.1) to a network

with arbitrarily many source nodes as well as sink nodes, which she called the

distributed outstar. The activity pattern at the source field of the distributed

outstar can be arbitrarily distributed or restricted to one or a few nodes.

Learning occurs via decrease of weights in pathways that are inactive for any

length of time. Carpenter also challenged the prevailing practice (used in the

original outstar of Grossberg, 1968a, and numerous networks designed by other

authors) of multiplying presynaptic signal by synaptic weight to compute the

influence on postsynaptic activity. This product rule, it was found, can lead to

catastrophic forgetting in the distributed outstar if the pattern at the source field

is highly distributed. This forgetting could be eliminated by replacing this rule

by one where there is a signal threshold that decreases linearly as the weight

increases, and the threshold is subtracted from the presynaptic signal.

3.5. Spike Timing–Dependent Plasticity

Most of the associative learning models presented in Sections 3.2–3.4 treat node

activities as average firing frequencies across a large number of neurons. These

models do not use information about the exact timing of spikes in presynaptic

and postsynaptic neurons. Starting in the mid-1990s a number of researchers

have developed models that explicitly or implicitly include spikes and that

include learning laws based on the timing of those spikes.

Inclusion of spikes makes the model more biologically realistic, if the

architecture of the network follows realistic design principles. Another reason

for including spikes and spike timing was to come closer to the spirit of Hebb’s

(1949) intentions when he formulated his synaptic modification rule (see

Chapter 2). According to many of the nonspiking network learning rules,

synaptic weights can increase based simply on correlation of high levels of

presynaptic and postsynaptic activities. Yet Hebb’s rule contains the phrase

“When the axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it.” Gorchetchnikov, Versace, and Hasselmo

(2005) noted that this phrase suggests causation and not just correlation.

Causation implies that the firing of neuron A should predict the firing soon after

of neuron B, by analogy with the behavioral sequence in classical conditioning.

These results suggest learning rules that are temporally asymmetric between

presynaptic and postsynaptic elements.

Indeed, several investigators starting with Levy and Steward (1983) found

that the timing between the firings of pre- and postsynaptic neurons influenced

whether there was long-term potentiation (LTP) or long-term depression

(LTD). Levy and Steward studied connections between two parts of the

hippocampal system in the rat, the entorhinal cortex and dentate gyrus. The
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connections from entorhinal to dentate that go from one hemisphere of the brain

to the other (crossed connections) are normally much weaker than connections

from entorhinal to dentate that stay in the same hemisphere (ipsilateral
connections). Yet, if activation of the crossed pathway precedes activation of

the ipsilateral pathway, LTP occurs and the crossed pathway is strengthened.

If crossed pathway activation occurs after ipsilateral pathway activation, LTD

occurs and the crossed pathway is weakened. Markram, Lübke, Frotscher, 

and Sakmann (1997) confirmed this result in cortical pyramidal neurons and

showed that there is a sharp transition between potentiation and depression as

the time interval changes. Several studies in the 1990s, on both isolated

hippocampal and cortical slices and intact animals, pinpointed the precise

timing of spikes for optimal strengthening of pathways (see Bi & Poo, 2001,

for a review).

These results led to the development of computational neural network

models of spike timing–dependent plasticity (STDP) (see the book edited by

Maass & Bishop, 1999). One of the first of these models, by Gerstner, Kempter,

van Hemmen, & Wagner (1996, 1999), was inspired by data on the auditory

system of the barn owl. The owl catches prey that it detects via precise time

difference in the auditory signals to the two ears. Associative learning in the

model network leads to a phenomenon called phase locking, whereby the time

delay between spikes at two different auditory nuclei becomes regular, and 

this delay can be shorter than the time constants of individual neurons.

Several modelers have proposed different mechanisms for spike

timing–dependent plasticity based on biophysics of neurons. Gorchetchnikov

and Hasselmo (2005) and Gorchetchnikov et al. (2005) noted that the model

of Gerstner et al. (1999) had the desirable property that learning is dependent

only on local events at the pre- and postsynaptic neurons and the synapse

between them. However, the Gerstner et al. model relies on events over a long

enough time interval that the information about these events is not accessible

at the present. Gorchetchnikov and his colleagues developed a learning rule

that is “temporally local” as well as “spatially local.” In the spirit of Hebb’s

rule, weight changes are proportional to a product of presynaptic and

postsynaptic terms. The presynaptic term is based on synaptic conductance.

The postsynaptic term has a positive part dependent on transmembrane voltage

and a negative part dependent on the after-hyperpolarization that follows a

spike. Figure 3.13 illustrates the STDP that emerges from summing the positive

and negative parts.

Since the hippocampus is a major learning site, spike timing–dependent

modeling has been applied since the 1990s and early 2000s to a variety of

hippocampal functions. This includes involvement of the hippocampus in

navigational learning (Gerstner & Abbott, 1997), sequence learning (Minai &

Levy, 1993), and autoassociative memory encoding (Lengyel, Kwag, Paulsen,

& Dayan, 2005). The autoassociative model of Lengyel et al. (2005) is based
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on probabilistic encoding and optimal recovery of a pattern from a memory

trace on which other patterns are superimposed, which is reminiscent of the

work of Anderson and Kohonen, discussed in Section 3.2.

Another common application of STDP is to the development of maps in the

cortex (especially visual cortex), typically involving columns of neurons that

learn during development to respond to similar inputs. Song and Abbott (2001)

noted that STDP biases competition between synapses by strengthening

synapses that receive correlated inputs. This allows some neurons that become

selective for particular stimuli (e.g., visual orientations) to make other nearby

neurons selective for the same stimuli. Section 7.1 discusses other models of

map formation in the visual cortex.

More recently, a range of models of learning processes in different parts of

the brain have included explicit spiking and STDP. An example is the

categorization and attentive learning model of Grossberg and Versace (2008),

discussed in Section 7.3, which added thalamocortical interactions to a

previously developed adaptive resonance network.

FIGURE 3.13 Example plot of an STDP curve. The postsynaptic excitatory component
is shown by the dot-dashed line, the postsynaptic inhibitory component by a long-
dashed line, and their sum by a bold black line.

Source: Reprinted from Gorchetchnikov et al., 2005, with the permission of Elsevier Science, Ltd.



Equations for Networks in Chapter 3

Detailed Description: The Gated Dipole

In Figure 3.7, suppose that the shock input J to the “negative” channel 
y1 6 x1 6 x3 is on for a period of, say, 100 time units. At time 0, both of
the depletion synapses w1 and w2 are “filled” to maximum efficacy. During
those 100 time steps, y1 receives an input equal to I + J, where I is
nonspecific arousal, whereas y2 receives an input equal to J. Since I + J is
larger than J, this means y1 becomes more activated than y2. The synapse
w1 is depleted at a rate proportional to the product y1 w1, whereas w2 gets
depleted at a rate proportional to y2 w2, so w1 (as Figure 3.7 shows)
becomes depleted faster than w2.

The crucial element in the behavior of the gated dipole network is which
channel output, x3 of the “negative” channel or x4 of the “positive” channel,
becomes active if either. This is turn determined by which of x1 and x2 is
larger at a given time. x1 grows in proportion to the product of its input y1
and synaptic weight w1, and x2 in proportion to the product of y2 and w2.
During the 100 time units that J is on, the advantage of y1 over y2 overcomes
the advantage of w2 over w1. This means that x1 is larger than x2. As a result,
x2 which receives an input proportional (in different variants of the
equations) to either x2 – x1 or its positive part, becomes activated, and x4
does not (see the graph in Figure 3.8).

After J is shut off, y1 and y2 are both receiving equal inputs I, so in a
short period of time y1 and y2 become nearly equal. Since w1 is still much
more depleted than w2, y1w1 is smaller than y2w2, and so x1 becomes smaller
than x2. This activates x4, which in this version of the network is the output
of the “positive” or “shock off” channel, representing relief from electric
shock.

Finally, many more than 100 time units later, w1 has recovered from
depletion. After that time, x1 and x2 are equal, so that neither channel output
is activated. Then the network “feels” no fear (from shock) or relief.

But Figure 3.7 is only one possible schema for a gated dipole. There
could be, for example, an input J to the “positive” side y2 of the dipole
instead of to the “negative” side y1. In that case, the sequence of events
outlined earlier in the box goes through except with all the channels and
subscripts reversed. The transient aftereffect of turning off J is then not relief
but frustration, from the loss of a positive input.

Or there could be simultaneous inputs to both channels. That case was
studied in the gated dipole network for decision-making by Grossberg and
Gutowski (1987). In the Grossberg–Gutowski network, a prospect consists
of different probabilities of gains and losses of specific magnitudes. This is
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represented as a mixture of positive and negative inputs, usually of different
intensities. The network compares a prospect B with another prospect A
for desirability by first inputting A to the dipole network (on both the
positive and negative sides), then letting the transmitter weights w1 and w2
adjust to reflect A’s influence, and finally inputting B to the network and
observing which channel output becomes active.
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Equations for Grossberg’s Outstar

A form of the outstar equations is as follows. As discussed earlier in Section 3.2,
the activity x1 of the source node is affected positively by the source node input
Ii , and negatively by exponential decay back to a baseline rate (interpreted as 0).
Recalling that the rate of change of x1 as a function of time can be described by
its derivative, dx1/dt, this leads to a differential equation of the form

(3.12)

where a is a positive constant (the decay rate). The activities xi of the sink nodes,
i = 2, . . . , n, are affected by inputs and decay in the same manner as is x1. Each
sink node is also affected by source node activity, weighted by the strength w1i of
the synapse from the source node. Hence

(3.13)

where b is another positive constant and τ is a transmission time delay.
In one version of the theory, the synaptic weights (long-term memory traces)

w1i at the source-to-sink synapses undergo a passive decay which is counteracted
by correlated activities of x1 (with a time delay) and xi . Hence:

Synaptic weights, since they encode long-term memory, are assumed to decay
much more slowly than potentials; hence c << a. In some examples of this theory,
a threshold term is subtracted from x1 in Equations (3.13) and (3.14).

A modification of the outstar equations is suggested by learning considerations
and used in much of Grossberg’s later work on different network architectures.
The modification is to make the synaptic weights decay only if the source node
is activated and not followed by sink node activation. This is achieved by replacing
(3.14) (if τ is set to 0) with:

dx
dt
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(3.15)

so that w1i remains unchanged while x1 = 0 but decreases while x1 > 0 and xi = 0.
Grossberg (1968a) studied the large-time (asymptotic) behavior of a general

system of equations which includes both (3.12)–(3.14) and {(3.12), (3.13),
(3.15)} as subcases. This general system is:

(3.16)

with the restrictions that a(t), b(t), c(t), and d(t) are continuous functions, and
that b(t) and d(t) are nonnegative. (The function x1(t) is incorporated into b(t)
and d(t).)

Recall, from Section 3.2, Grossberg’s definition of a spatial pattern input as a
vector of inputs Ii(t) such that:

(3.3)

Recall also his definition of the relative node activities:

(3.2)

and the relative synaptic weights

(3.1)

(In (3.1), the weights were doubly subscripted as w1i, but the “1” is dropped for
the more general system. Also, the sums were previously taken from 2 to n instead
of 1 to n, when the source node x1 was included in the equations.)

The outstar learning theorem says that, for a network obeying Equations
(3.16a, b), the relative synaptic weights defined by (3.1) converge to the relative
weights θi of the input pattern, under certain technical conditions on the inputs.
These conditions are such as to guarantee that inputs are presented to both the
source and the sinks for arbitrary large times. Mathematically, in the case of an

dw
dt

x cw exi
i

1
1 1 1= − +( )

dx
dt

a t x t b t w t I t

dw
dt

c t w

i
i i

i
i

= + +

=

( ) ( ) ( ) ( ) ( )

( ) ( tt d t x ti) ( ) ( )+

For , ( ) ( ),j I t I tj j j
j

n

> = =
=

∑1 1
2

� �

X x

x
i

i

j
j

n=

=

∑
2

W w

w
i

i

j
j

n=

=

∑
2



outstar obeying (3.12)–(3.14), this means that there exist two positive constants
r and t0 such that for all times t � t0,

The basic method of proof of the outstar learning theorem involves trans -
forming (3.16) into a system of equations in the relative activities and relative
weights. The system derived from (3.16), (3.1), (3.2), and (3.3) is:

(3.17)

where A(t), B(t), and C(t) are nonnegative functions (specifically, 

The second equation in (3.17) shows that, as t increases, each Wi(t) moves closer
to Xi (t), whereas (3.17a) shows that Xi (t) moves closer to θi(t). Hence, the relative
node activities converge to the relative input pattern weights and then bring the
relative synaptic weights toward themselves. This ultimately causes the relative
synaptic weights also to converge to the θi.

Derivation of the Signal-to-Noise Ratio for Anderson’s 
Linear Filter

As discussed in Section 3.2 above, Anderson (1970) considered the retrieval of a
single vector pattern x from a stored trace s = x + n, where n is regarded as noise.
Putting the trace with a matched linear filter, that is, taking its dot product with
x, yields an output of

(3.18)

If N is the number of nodes in the network, therefore of components in each
trace, the mean of a trace x is defined as the average of its components x1, . . . , xn.
For simplicity, and also to prevent biases in favor of one stored trace over others,
Anderson assumed that all stored traces had the same mean m. Hence, if K is the
number of traces other than the one to be retrieved, and if I is defined to be the

e ( ) and e ( )( ) ( )− − − −∫ ∫≥a tt a tt
I d r I d�




�



� � �1 �� ≥ r

dX
dt

A t W X B t X

dW
dt

C t X

i
i i i i

i
i

= − + −

= −

( )( ) ( )( )

( ) (

�

WWi)

if ( ) ( ) and ( ) ( ),x t x t w t w tj
j

n

j
j

n

= =
= =

∑ ∑
1 1

then ( ) ( ) ( )
( )

, ( ) ( )
( )

, ( )A t b t w t
x t

B t I t
x t

C t= = ==
d t x t

w t
( ) ( )

( )
.

V = ⋅

= ⋅ + ⋅

ss xx
xx xx nn xx

Associative Learning and Synaptic Plasticity 75



76 Foundations of Neural Network Theory

vector (1, 1, . . . , 1), then x and n can be expressed as x = x0 + mI, n = n0 + mI
for vectors x0 and n0 with mean 0. If P0 is defined as x0 · x0 (the power of the trace
x0), then from (3.18), the signal component of the output V is:

(3.19a)

and the noise component is

(3.19b)

The actual signal-to-noise ratio is calculated as the ratio of the squared signal (to
make all terms positive) to the average squared noise over all possible stored traces.
This is (S/N)0 = (x · x)2/[n · x]2

avg, which by (3.19a,b) is equal to:

Since n0 · x0 has mean 0, the average value of its square is equal to the variance
of n0 · x0. Letting n0i and x0i denote components of n0 and x0, respectively, that
variance is:

(3.20)

Each n0i is the sum of K random variables with mean 0 and equal variance; if it
is assumed that those traces have, on the average, the same power as x0, each of
those variances becomes P0/N, yielding a total variance of KP0/N for each n0i. This,
combined with (3.20) and the definition of P0, yields KP 0

2/N for the average value
of n0 · x0. Hence, the signal-to-noise ratio (S/N )0 equals:

(3.21)

By (3.21), if m = 0, this ratio equals N/K, the number of nodes divided by the
number of traces (see the discussion in Section 3.2). It can also be shown, using
elementary calculus, that the maximum value of (S/N)0 occurs for m2 = P0/(N 2K)
and equals N/K (1 + (1/NK)), which is not appreciably larger than N/K.
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Equations for Sutton and Barto’s Learning Network

Recall the network of Sutton and Barto (1981) shown in Figure 3.5, including n
stimulus traces xi(t), an output signal y(t), and n synaptic weights wi(t) representing
connections between xi and y. The conditioning model is based on the existence
of two additional sets of variables. One of these sets of variables consists of the
nonstimulating or eligibility traces x–i (t) for each sensory stimulus. The value of
x–i (t) is assumed to be large when the xi-to-y synapse is “eligible” for modification.
The other is the ongoing activity level y(t) of the output node, which represents
a weighted average of its past activities.

All these effects (eligibilities, weighted averages, and delta rule for synaptic
modification) are incorporated in the following equations for the changes in these
variables from time t to time t+1:

(3.22)

where y(t) is bounded to remain in the interval [0, 1] (that is, replaced by 1 if it
gets above 1); α and � are constants between 0 and 1; f is a sigmoid function (see
Figure 2.7); c is a positive constant determining the rate of learning; and x0(t) and
w0(t) are the activity and associative strength of the US trace.

Klopf’s Differential Hebbian Rule

The basic learning rule of Klopf’s (1986, 1988) differential Hebbian model is
inspired by the heuristic that synaptic efficacy changes as a function of changes
in both presynaptic and postsynaptic activities. In addition, as discussed in
Section 3.3, he made change in postsynaptic activity delayed in time, in order to
simulate interstimulus interval data, and made change in efficacy of a given synapse
proportional to the current efficacy, in order to simulate S-shaped animal learning
curves. All these heuristics led to the equations

(3.23)

where, for any given time T, �xi(T) = xi(T+1) – xi(T) and �y(T) = y(T+1) – y(T);
the expressions of cj denote weighting constants for the influences of different 
past times of presynaptic input activity; and two vertical bars denote the absolute
value.
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Derivation of Rumelhart, Hinton, and Williams’ Back Propagation
Algorithm

As discussed in Section 3.3, Rumelhart et al. (1986) assumed that unit j (whether
hidden or output) receives a signal equal to the linear sum of the outputs ypi
from the previous layer weighted by the connections wij . (If j is a hidden unit so
that i is an input unit, ypi equals the input component ipi. If j is an output unit
so that i is a hidden unit, then ypi equals the activation function f applied to the
ith net signal netpi.) Hence, the signal it receives is

(3.9)

If f is the activation function,3 then the output of unit j is:

(3.24)

Now let the measure of the total error in the pth output pattern be:

(3.25)

Then if (3.8b) holds, the response change δpj is simply the negative derivative of
the total error Ep with respect to ypj ; in other words, it is a measure of how much
the jth unit contributes to the incorrectness of the response.

In the case where there are hidden units and nonlinear activation functions, it
is desired therefore to compute δpj by taking the derivative of Ep, from (3.24),
with respect to the jth signal netpj . Using the expressions (3.24) and (3.25) and
the chain rule for derivatives (see Appendix 1), this gives us the transformed
learning rule:

(3.10a)

if the jth unit is an output unit. If the jth unit is instead a hidden unit, then again
using the chain rule, we obtain from (3.24) through (3.26) (“M” denoting partial
derivative) that

If k is the generic index of output units that receive projections from hidden unit
j, we obtain, again by the chain rule and (3.10a), a value for the above expression
in brackets, namely:
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Combining the above two expressions, we obtain finally that, if unit j is a hidden
unit,

(3.10b)

Grossberg’s Gated Dipole

The general equations for the gated dipole of Figure 3.7 are given in Grossberg
(1972c). The simplified form of those equations, with thresholds and time delays
set to 0, is

(3.26)

where a, b, c, e, f, g, h, k, and m are all positive constants. Equations (3.26) reflect
a symmetry between the “positive” and “negative” channels. Both have the same
set of activity decay rates (a, f, and h), the same transmitter depletion rate (e), the
same transmitter recovery rate (b), the same maximum amount of depletable
transmitter (c), and the same coefficients for signal transmission between levels 
(g and k). I is tonic (active all the time), whereas J is phasic (on for the duration
of a stimulus, such as electric shock).

Equations (3.26) were written under the assumption that the “negative”
channel is the one receiving the phasic input J, as in the case of relief from electric
shock. If instead the “positive” channel receives the phasic input, then the term
I + J in (3.26a) is replaced by I, and the term I in (3.26b) is replaced by I + J.
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In a variant of (3.26) (see Exercise 4 below), the signals received by x3, x4, and
x5 from lower levels are constrained to be positive or zero. Hence, each of the terms
x1 – x2 in (3.26g), x2 – x1 in (3.26h), and x3 – x4 in (3.26i) is replaced by 0 if it
becomes negative.

Kosko’s Bidirectional Associative Memory (BAM)

In the simplest form of the bidirectional associative memory, described in Kosko
(1988), there are two fields or collections of nodes, A and B. The aggregate
activation of the ith node in A is denoted by xi and the activation of the jth node
in B by yj . These variables can either be binary (taking on the values 0 or 1), bipolar
(taking on the values 1 or –1), or analog (taking on any of a continuous range of
values). In the continuous case, the xi and yj are governed by the system of
equations

(3.27)

where f is a sigmoid function, the wij denote the (symmetric) interfield connection
weights, and Ii and Jj denote the (constant) inputs to the ith and jth cells. In the
adaptive version of the BAM, as described in Kosko (1987a), the wij obey
associative learning equations of the form

(3.28)

Kosko (1987c) extended the ideas of (3.27)–(3.28) to include competition. For
the competitive BAM, in addition to connections between A and B described by
coefficients wij , there are interactions within A, described by coefficients rij , and
within B, described by coefficients sij . The competitive nature of these connections
is ensured by the rules rii > 0, sii > 0, and for i and j unequal, rij = rji < 0 and sij =
sji < 0. Equations (3.27) are then replaced by equations of the form

The coefficients rik and sik can either be constant or obey learning equations similar
to (3.28). In either case, Kosko showed, the system converges to a solution
corresponding to a set of associations between patterns in A and patterns in B.
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Kosko (1987d) demonstrated a simplified form of the BAM that replaces
Equations (3.27) and (3.28) by an algorithm which combines difference equations
and linear threshold mappings. The network may be simultaneously taught to
associate several pairs of binary vector patterns.

The BAM algorithm used is as follows:

Step 1: For all i, j, reset wij, ai, and bj to 0.

Step 2: Get the binary inputs into the A and B arrays for an association to be
learned.

Step 3: (a) For each i, let xi = 2ai – 1. (Hence, the xi vector is bipolar, taking
on values of 1 or –1.)

(b) For each j, let yj = 2bj – 1. (Hence, the yj vector is also bipolar.)
(c) For each pair I, j, let wij = wij + xiyj.

Step 4: If there is another association between different A and B vectors to learn,
return to Step 2. The final result is that the weight matrix is the sum of
the cross-correlation matrices with entries xiyj for all pairs of patterns 
[A B] to be associated.

Step 5: Input binary A and B vectors to be run on the network. These may or
may not be the same vectors as any of the ones input in Step 2 that
determined the weights.

Step 6: Run the A-to-B iteration of the network. For each j,

(a) The new bj = 1 if �i aiwij > 0;
(b) The new bj = 0 if �i aiwij < 0;
(c) The new bj equals the current value of bj if �i aiwij = 0.

Step 7: Using the new B vector found in Step 6, run the B-to-A iteration of the
network. For each i,

(a) The new ai = 1 if �j bjwij > 0;
(b) The new ai = 0 if �j bjwij < 0;
(c) The new ai equals the current value of ai if �j bjwij = 0.

Step 8: Repeat steps 6 and 7 until there are no changes in the A and B vectors.

Kohonen’s Autoassociative Maps

Of the articles by Kohonen and his colleagues on autoassociative maps, the 
one in which the neural network connections were best developed was Kohonen
et al. (1977). The simulations in that article were based on the difference equations
that combine a linear input–output transformation with a Hebb-like associative
learning law. Recall from Section 3.2 above that the output firing frequencies yi
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depend on input spike frequencies xi, direct input–output connectivities yi , and
inter-unit connectivities wij in a manner shown by the linear equations

(3.7)

The wij in turn are assumed to obey the associative learning law dwij /dt = ayi (yj –
yb), where yb, like yb

*, is a measure of baseline activity. In actual simulations, this
differential equation is approximated by a stepwise solution of the form

where �t is the step size, m the number of steps from time 0 to time t, and tk the
time at the end of the kth step. This difference equation is in turn substituted
into (3.7) to yield

(3.29)

where xi
*(t) denotes the ith effective input excitation wixi(t), and the values tk denote

all times previous to t.
The simulations of face recognition in Kohonen et al. (1977) combined an

approximation to Equation (3.29) with a preprocessing of the pattern using lateral
inhibition. In the primary patterns xi at time tk, each “pattern element” xi is
replaced by a numerical value xi

* which is a weighted sum of itself and its
neighboring elements. Hence, the equation xi

* = wixi used above is replaced by:

(3.30)

where the weighting factors �ia, for a given i, add up to 0. It was further assumed
that �ii is positive. Then the recollections of the patterns, weighted by past
experience, are given by

(3.31a)

with the �i defined for each given unit I and time tk by

(3.31b)
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The sum in (3.31b) (which is a correlation between the pattern at time t and the
pattern at a previous time tk) is taken over those units j that are assumed to have
connections with unit i.

Exercises for Chapter 3

�1. Can you think of a way, using the framework of the 1970 and 1972
Anderson articles, to model selective attention to one trace rather than
another (say, because of motivational significance)? If you believe that is
difficult to do in Anderson’s framework, why?

*2. Consider a Grossberg outstar whose source node has activity x1 and whose
four sink nodes have activities x2, x3, x4, and x5. Let w2, w3, w4, and w5 be
the corresponding synaptic strengths as shown in Figure 3.14.

The equations defining the network are

(Time delays have been set to 0 for ease of implementation. Other
parameters have been set to obey a boundedness criterion – see Grossberg,
1970b). The inputs Ii, I = 1 to 5, are defined below, differently for two
subcases.
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FIGURE 3.14 Outstar network used in the simulation of Exercise 2.

Solve these equations numerically using the simple Euler method (see
Appendix 1) with step size .1 or less, or some other differential equation
solving algorithm. The two cases are:

(a) Set I1 = 2 for two steps on every tenth time step, starting with the first,
and 0 on all other time steps. I2, I3, I4, I5 form a spatial pattern Ii = θiI,
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where θ2 = .4, θ3 = .3, θ4 = .2, θ5 = .1; I = 2 for the two time steps
directly after those times when I1 = 2, and 0 on other time steps, as
shown in Figure 3.15. (Hence I2 = .8, I3 = .6, I4 = .4, and I5 = .2 when
they are not zero.)
The starting value of x1 is 0; xi , I = 2 to 5 start at positive numbers of
your own choosing but not proportional to .4, .3, .2, .1, and so 
do wi.
Run up to 10,000 or more time steps.
Define x = x2 + x3 + x4 + x5, w = w2 + w3 + w4 + w5, and for each I, 
I = 2, 3, 4, 5, define

Graph (for each i, i = 2, 3, 4, 5) Xi , Wi , and θi on the same axes,
showing values at every 100th time step. (Graphing may be done either
by hand or by computer. By the outstar learning theorem, these three
variables should get closer together as time increases.)

(b) Do the same as in (a) except that I2, I3, I4, and I5 are a mixture of two
spatial patterns. After times where I1 is nonzero, the other Ii become
nonzero for two time steps, but alternate on different presentations
between

I2 = .8, I3 = .6, I4 = .4, I5 = .2
I2 = .5, I3 = .5, I4 = .3, I5 = .7.

In Part (b), the Xi should be graphed at times directly after the pattern
presentation times in order to observe their oscillations.

*3. (a) Do the simulation in Exercise 2(a) for a variety of different initial
conditions. Show that convergence is fastest when the initial values of
Xi and Wi are closest to θi.

(b) From the result of Part (a), an outstar that has come close to learning
one spatial pattern will be slow to learn another, vastly different spatial
pattern (see the quote from Seneca at the start of this chapter). Confirm
this by running an outstar simulation with the two patterns from
Exercise 2(b) presented in succession, each for 5000 time steps.

* 4. Do a series of simulations of a slight modification of Grossberg’s gated dipole
equations, (3.26). The modification is that, in the equations for x3 and x4,
the quantities in parentheses (x1 – x2 or x2 – x1) are replaced by 0 whenever
they are negative. Use the following parameter values: the decay rates a, f,
h, and m are all 5; c, e, and k are 1; b = .5; g = 10. Set the “shock” J to 
2 units, and keep it on for a length of time that varies between runs. Study
the maximum over time of the rebound x4 as a function of

X x
x

W w
wi

i
i

i= =,
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(a) intensity of arousal I;
(b) time duration of shock J.

Make tables of the results. In the right range of values that maximum
rebound should increase steadily as shock increases, but should increase as
arousal increases up to a point and then decrease. Hint: use 100 time units
for the entire run. For the duration of J, vary between 20 and 80 time 
units. For the intensity of I, vary between 2 and 5.

�5. Consider some phenomenon from experimental psychology that involves
response to a change in stimulation. One example is extinction: a response
learned by classical conditioning is weakened if the conditioned stimulus is
presented and not followed by reinforcement. Another would be conditioned
inhibition: first a stimulus CS1 is associated with a US and thereby
conditioned to a response followed by a second stage where a combination
of two stimuli CS1 and CS2 is associated with absence of the US. As a
consequence, CS2 subsequently leads to suppression of the same response
when it is associated with other stimuli.

Whichever psychological phenomenon you choose, give a network
interpretation of it using
(a) the differential Hebbian model
(b) the gated dipole model.

Does this suggest advantages or disadvantages of either model?

I1(t)

I2(t)

I3(t)

I4(t)

I5(t)

2

t

t

t

t

t

FIGURE 3.15 A spatial pattern input to the outstar shown in Figure 3.14.
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* 6. Run the following simulations of Kosko’s bidirectional associative memory
or BAM, using the simplified algorithm described in Steps 1 through 8 of
the equations section. There are six nodes at the A level of Figure 3.13 and
four nodes at the B level. The network may be simultaneously taught to
associate several pairs of binary vector patterns, but Kosko (1987d) states
that if the number of pattern pairs is larger than the minimum of the
numbers of nodes at the two levels (in this case, four), the network may not
be able to learn all these associations.

The BAM algorithm used goes through the following steps in sequence:

Step 1: For all I, j, reset wij, ai, and bj to 0.

Step 2: Get the binary inputs into the A and B arrays for an association
to be learned.

Step 3: (a) For each I, let xi = 2ai – 1. (Hence, the xi vector is bipolar,
taking on values of 1 or –1).

(b) For each j, let yj = 2bj – 1.
(c) For each pair I, j, let wij = wij + xiyj.

Step 4: If there is another association to learn, return to Step 2.

Step 5: Input binary A and B vectors to be run on the network.

Step 6: Run the A-to-B iteration of the network. For each j,

(a) The new bj = 1 if �i aiwij > 0.
(b) The new bj = 0 if �i aiwij < 0.
(c) The new bj equals the current value of bj if �i aiwij = 0.

Step 7: Run the B-to-A iteration of the network. For each I,

(a) The new ai = 1 if �j bjwij > 0;
(b) The new ai = 0 if �j bjwij < 0;
(c) The new ai equals the current value of ai if �j bjwij = 0.

Step 8: Repeat Steps 6 and 7 until there are no changes in the A and B
vectors.
(a) Input the patterns

A1 = (1, 0, 1, 0, 1, 0), B1 = (1, 1, 0, 0)
and then the patterns

A2 = (1, 1, 1, 0, 0, 0), B2 = (1, 0, 1, 0),
using Step 2 twice, to set the weights.

(b) After the weights from (a) are established, input
A1 = (1, 0, 1, 0, 1, 0), B3 = (0, 0, 0, 0)



via Step 5. Then run through Steps 6–8 as often as needed
and show that the network converges to the pair (A1, B1).

(c) With the same weights used in parts (a) and (b), input
A3 = (1, 0, 1, 0, 0, 0), B3 = (0, 0, 0, 0)

and see what vectors the network converges to. What does this
say about possible steady states of the network?

(d) Add to the associations (a) one pattern pair at a time, and
study how the number of time steps to convergence increases.
If the number of associations increases beyond 4, the
minimum of the numbers of nodes in the two levels, the
network may in fact be unable to learn all the associations
simultaneously.

*7. Kosko’s simplified algorithm is very similar to the algorithm for Kohonen’s
correlation matrix memory (see p. 183 of the 1988 edition of Kohonen,
1984). For this algorithm, if the vector pairs (xk, yk), k = 1, . . . , n, are to
be associated, an optimal matrix W is chosen for that purpose, and

where T denotes the transpose.

For example, if xk = (1, 0, 0), and yk = (1, 1, 0), then

using standard matrix multiplication. If the xk that are encoded are
orthogonal, that is, the dot product of any two of them is 0, then Wxk = yk
for each k. The response of the system to any pattern is obtained by
multiplying the vector encoding that pattern by the matrix W.

If xk = yk for each k, the correlation matrix memory is called auto -
associative; otherwise it is called heteroassociative. Now consider the
following set of binary vectors:

A = (1, 0, 0, 0, 0) E = (1, 0, 1, 0, 0)
B = (0, 1, 0, 0, 0) F = (1, 0, 0, 0, 1)
C = (0, 0, 1, 0, 0) G = (1, 1, 1, 0, 0)
D = (0, 0, 0, 1, 0)

(Note that the vectors E, F, and G can each be considered as noisy versions
of one of the vectors A, B, C, and D, or of some sum of these vectors. Note
also that A, B, C, and D are orthogonal.)
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(a) Simulate an autoassociative, correlation matrix memory for the vectors
A, B, C, and D. Then list and discuss the response of the system to
each of the above seven patterns.

(b) Do the same as (a) with the vector E added to the correlation matrix
memory.

(c) Simulate a heteroassociative correlation matrix memory that associates
each of the vectors A, B, C, and D, to their bitwise complements, P,
Q, R, and S, respectively:

P = (0, 1, 1, 1, 1)
Q = (1, 0, 1, 1, 1)
R = (1, 1, 0, 1, 1)
S = (1, 1, 1, 0, 1)

Then list and discuss the response of the system to P, Q, R, and S.

Some Additional Sources

General Models of Associative Learning

Abbott and Dayan (1999); Sejnowski and Tesauro (1989).

Models of Differential Hebbian Learning

Rao and Sejnowski (2000); Roberts (1999).

Models of Spike Timing–Dependent Plasticity

Kepecs, van Rossum, Song, and Tegner (2002); Porr, Saudargiene, and Wörgötter
(2004); Rao & Sejnowski (2001); Song, Miller, and Abbott (2000).

Notes

1. The outstar discussed in Section 3.2, which incorporates non-Hebbian associative
learning, in fact includes both Hebbian and error-correcting or delta rule elements. For
Equation (3.16) at the end of this chapter includes a “Hebbian” term that combines 
pre- and postsynaptic activities to determine the weight change between them. However,
the Equations (3.18) for relative weights and activities incorporate “correction” of these
weights in the direction of a desired spatial pattern θi.

2. The order of the dates in Kosko’s three articles seems to be an accident of journal scheduling,
since the most basic of these articles is the one that is dated 1988!

3. Rumelhart et al. (1986) demonstrated this rule with a separate activation function f j for
each node index j. Since this does not affect the demonstration herein, and since most of
their actual simulations used the same activation function for all nodes, we are using a
single f for simplicity.



4
COMPETITION, LATERAL 
INHIBITION, AND SHORT-TERM 
MEMORY

Victory at all costs, victory in spite of all terror, victory however long and hard

the road may be; for without victory there is no survival.

Winston Churchill (Speech, May 13, 1940)

O for a life of Sensations rather than Thoughts!

John Keats (Letter to Benjamin Bailey)

Inhibitory connections in neural networks serve a variety of purposes. The

discussion of random nets in Section 2.2 noted that inhibition can facilitate the

stabilization of network activity levels. Also, the discussion of network

principles in Chapter 1 noted that inhibition can provide a mechanism for

making choices. These choices might be, for example, between input patterns

for short-term memory storage, between categories for classification of a

single input pattern, or between drives for activation. It must be added,

however, that the choices are not always all-or-none.

Both the stabilization and choice properties have been achieved in neural

networks using mechanisms suggested by sensory (particularly visual) anatomy

and physiology. The next section provides some history of the ideas behind

those mechanisms.

4.1. Contrast Enhancement, Competition, and Normalization

The systematic study of visual perception was advanced in the middle to late

nineteenth century by the noted physicists Helmholtz and Mach. In particular,

both of these scientists observed that edges or contours between light and dark

portions of a scene tend to be enhanced relative to the light or dark interiors



of the scene. They explained this phenomenon by means of networks of retinal

cells, each excited by light within a central area and inhibited by light within

a surrounding area. Receptive fields with that structure were later found

experimentally, in the compound eye of the horseshoe crab Limulus (Hartline

& Ratliff, 1957) and in the vertebrate retina (Kuffler, 1953). This kind of

structure is sometimes called on-center off-surround. In neural networks, on-

center off-surround interactions are typically modeled by lateral inhibition, that

is, mutual inhibition between neurons or nodes at the same level of processing

(the competition of the thought experiment in Chapter 1).

Figure 4.1 shows schematic pictures of two types of lateral inhibitory

architectures used in pattern processing models: nonrecurrent or feedforward,

and recurrent or feedback inhibition. The principle of lateral inhibition

generalizes to networks where nodes both excite and inhibit each other, 

but inhibition operates over a greater distance than excitation, as shown in

Figure 4.2.

This chapter explores the functions of lateral inhibition in the transformation

and short-term storage of patterns in model neural networks. There is some

experimental evidence that in actual mammalian nervous systems, the lateral

inhibitory principle is operative at central as well as peripheral areas. Several

neuroscientists have found that the largest neurons in the cerebral cortex, which

are called pyramidal cells, typically excite smaller neurons which in turn project

to and inhibit other, nearby pyramidal cells (e.g., Feldmeyer, Egger, Lubke, &

Sakmann, 1999; Hirsch & Gilbert, 1991; Krimer & Goldman-Rakic, 1991;

McGuire, Gilbert, Rivlin, & Wiesel, 1991). Similar kinds of interactions

between large and small cells occur in subcortical areas such as the hippo -

campus (Sloviter & Brisman, 1995) and cerebellum (Dizon & Khodakhah,

2011; Eccles, Ito, & Szentagothai, 1967). There is also some evidence for

longer-range lateral inhibition in the cortex mediated by pathways connecting

the cortex to subcortical brain areas such as the thalamus and basal ganglia (see

Figure A2.5 of Appendix 2 for locations of these areas, and Taylor & Alavi,

1993, 1995, for a summary).

In the models discussed in this chapter, the functional units or nodes are

frequently collections of neurons sharing some common response properties.

This idea, previously suggested in Section 2.2, has a partial physiological basis

in the organization of the visual cortex (Hubel & Wiesel, 1962, 1965) and

somatosensory cortex (Mountcastle, 1957) into columns of cells with the 

same preferred stimuli. Moreover, columns that are close together also tend 

to have preferred stimuli that are close together. Evidence for such columnar

organization has also appeared in the medial temporal area of visual cortex

(Fujita, Tanaka, Ito, & Cheng, 1992) and in prefrontal multimodality associ -

ation cortex (Fuster, Bauer, & Jervey, 1982; Goldman-Rakic, 1984; Rosenkilde,

Bauer, & Fuster, 1981; Sawaguchi, 1996). Because the evidence from vision
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(a) (b)

FIGURE 4.1 Examples of two kinds of lateral inhibitory networks: (a) nonrecurrent
(feedforward); (b) recurrent (feedback).

Source: Adapted from Mathematical Biosciences, 66, D. S. Levine, Neural population modeling and
psychology: A review, 1–86, copyright 1983, with permission from Elsevier Science.
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FIGURE 4.2 Generalization of the recurrent lateral inhibition in Figure 4.1(b). 
Each node xk sends both excitation and inhibition to itself and to all other nodes xi.
Excitatory interaction strengths cki and inhibitory interaction strengths eki both decrease
with distance, reflecting fewer synaptic connections as distance increases, but cki
decreases more rapidly, as seen in the graph.

is the most compelling so far, many of the models in this chapter are inspired

by visual data, though the modeling principles they incorporate may be more

broadly applicable.

Some general themes about the functions of lateral inhibition emerged in

early modeling studies from the late 1960s and early 1970s. Many of the lateral

inhibitory networks studied at that time did not include learning, but were later

embedded in multilevel architectures that include learnable connection weights

between levels (see Chapters 6–9).

4.1.1. Hartline and Ratliff’s Work and Other Early Visual 
Models

Hartline and Ratliff (1957) modeled inhibition in the horseshoe crab eye by

means of a pair of simultaneous algebraic equations for two mutually inhibiting

receptors, as follows:
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Here xi denotes the impulse frequency in the axon of cell i, and Ii denotes the

excitation of cell i by an external stimulus. �2 and �1 are threshold frequencies

that each cell has to exceed before it can exert inhibition, and k12 and k21 are

coefficients of inhibitory action. Finally, for any real number x, the quantity

x+ denotes x if x is positive, and 0 if x is negative or 0; for example, if x2 � �2,

then (x2 – �2)
+ = 0, whereas if x2 > �2, then (x2 – �2)

+ = x2 – �2.

The linear Hartline–Ratliff equations proved effective in the modeling of a

variety of experimental data, and several other early lateral inhibitory models

used extensions of these equations. But other effects, many of them nonlinear,

had to be introduced to model some additional complexities of vertebrate

vision. For example, Sperling and Sondhi (1968) developed a lateral inhibitory

model of effects in the mammalian retina in order to explain certain data on

luminance and flicker detection. Their model includes both feedback and

feedforward stages. In the feedback stage, as shown in Figure 4.3, the jth node

is excited by the (j–1)st node, for j > 1, and inhibited by feedback from the nth

node.

The type of inhibition exerted by the feedback stage in Sperling and

Sondhi’s model is shunting rather than subtractive. In subtractive inhibition,

the incoming signal is linearly weighted, and an amount proportional to that

signal is subtracted from the activity (or firing frequency) of the receiving node.

In shunting inhibition, the amount subtracted is also proportional to the activity

of the receiving node. Thus the inhibiting node acts as if it divides the receiving

node’s activity by a given amount, that is, as if it “shunts” a given fraction of

the node’s activity onto another, parallel pathway.

In addition to shunting (multiplicative) inhibition, recent lateral inhibitory

models often include shunting excitation, whose strength is proportional to the

x I k x

x I k x

1 1 12 2 2

2 2 21 1 1

= − −( )
= − −( )

+
+

+
+

( )
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�

�

x1 x2 x3 xn

FIGURE 4.3 Schematic feedback connections in the flicker detection model of Sperling
and Sondhi (1968). (Their actual diagrams used an electrical analogy with resistors and
capacitors.)



difference of a node’s activity from its maximum possible level. This is in

contrast to additive excitation, the opposite of subtractive inhibition, which

simply adds an amount proportional to excitatory signal to the activity of a

receiving node. Shunting interactions in neural networks have been suggested

by experimental results on the effects of a presynaptic neuron on the

conductances of various ions across the postsynaptic membrane (see Grossberg,

1973; Hodgkin, 1964; Appendix 2 of this book). Additional evidence for

shunting interactions in actual neurons has been summarized in Blomfield

(1974) and Freeman (1983).

Sperling and Sondhi (1968) described the effect of shunting inhibition as

“reducing dynamic range.” In other words, while sensory inputs can be

arbitrarily intense, the response of network nodes to these inputs has an upper

limit. But, while lateral inhibition can reduce distinctions between input

intensities at extreme ranges, it can enhance such distinctions at intermediate

ranges. Variants of the latter effect have been called “contour enhance-

ment” (Grossberg, 1973; Ratliff, 1965), “input-pattern sharpening” (Morishita

& Yajima, 1972), and “contrast enhancement” (Ellias & Grossberg, 1975;

Grossberg & Levine, 1975). The latter term is the main one we use in this

chapter.

Contrast enhancement is an outgrowth of decision or competition between

inputs. Competition can be biased in favor of either more intense or less intense

inputs by nonlinear interactions. In multilevel networks (Chapters 6–9),

competition can also be biased in favor of motivationally significant inputs.

Also, similar competitive mechanisms can exist at many levels in the brain.

Whereas different sensory inputs compete for storage in short-term memory,

for example, different drives or gross modes of behavior can also compete for

activation, as in a model by Kilmer et al. (1969) of the midbrain reticular

formation. Sections 4.2 and 4.3 of this chapter concentrate mainly on the

dynamics of competition between inputs, particularly at the level of sensory

areas of the cerebral cortex. This includes a sketch of the growing body of

mathematical results on competitive neural systems. Section 4.4 returns briefly

to competition at other cognitive levels: between drives, between categories,

and between behavior sequences.

Besides contrast enhancement, another common property of lateral

inhibitory networks is pattern normalization (see Figure 4.4). Normalization

(e.g., Grossberg, 1970a) means that a pattern of node activities x
1
, x

2
, . . . , xn

at one (“input”) level is replaced by activities y
1
, y

2
, . . . , yn at the next

(“output”) level that are proportional to the xi’s but independent of the total

intensity (sum of xi values). Normalization has often been used in lateral

inhibitory networks to keep the total network activity within bounds, so it will

not get large enough to damage neurons. This concept is reminiscent of

Sperling and Sondhi’s reduction of dynamic range.
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4.1.2. Nonrecurrent versus Recurrent Lateral Inhibition

In early models involving lateral inhibition, nonrecurrent (feedforward) 

and recurrent (feedback) inhibition were preferred for different purposes and

used to model different processes. Recall from Section 2.1.2 that recurrent

(reverberating) loops have been used in neural models since the 1940s to extend

the duration of a stimulus trace. Grossberg (1970, 1972d), modeling pattern

discrimination in the retina, chose nonrecurrent rather than recurrent lateral

inhibition in order to shorten the duration of pattern representations. This was

done because the retina is designed to encode a fairly accurate representation

of ongoing visual events. The visual cortex, by contrast, is designed to encode

both present events and memories of recent past ones. Hence, for modeling of

pattern processing at the cortical level, it is important to keep patterns active

in sensory memory for longer periods. Therefore recurrent lateral inhibition

tends to be preferred in cortical models (e.g., Grossberg, 1973; Wilson &

Cowan, 1972). Differences between actual cellular architecture in the retina

and the cortex generally reflect this functional difference.

An example of the “retinal” level of modeling is shown in Figure 4.5, adapted

from Grossberg (1970, 1972d). Two stages of nonrecurrent inhibition are

constructed so that a particular node fires in response to one and only one space-
time pattern, that is, to one time-varying input distribution. Aspects of this

network’s anatomy are reminiscent of particular layers of the vertebrate retina.

In the next section, we concentrate on the “cortical” level of modeling. In

particular, we consider the use of networks with recurrent lateral inhibition

(and, sometimes, lateral excitation) to model short-term storage of sensory

patterns.

xi at
time 0

xi at
time ∞

xi at
time 0

xi at
time ∞

INPUT PATTERN OUTPUT PATTERN

INPUT PATTERN OUTPUT PATTERN

i i

i i

FIGURE 4.4 Example of pattern normalization. Output pattern has same relative
activities as input pattern, but is independent of absolute input activities.

Source: Adapted from Mathematical Biosciences, 66, D. S. Levine, Neural population modeling and

psychology: A review, 1–86, copyright 1983, with permission from Elsevier Science.



4.2. Lateral Inhibition and Excitation between Sensory
Representations

Short-term memory in recurrent lateral inhibitory networks has been modeled

since the early 1970s, particularly by Wilson and Cowan, Grossberg, Amari,

and their colleagues. Typically, an input pattern is regarded as the initial state

of a mathematical dynamical system, which can roughly be defined as the

movement through time of the solutions of a system of differential equations

for interacting variables (see Appendix 1 for further discussion). This solution

is described by a vector composed of the values of all the variables in the

system at any given time (see the discussions in Section 3.2). The equations

describe the transformation of this pattern and its storage in short-term memory;

the stored pattern is then regarded as a limiting vector to which the system

converges as time gets large.

Lateral inhibitory architectures, as stated in Section 4.1, tend to enhance

contrasts between pattern intensities. The inhibitory connections mean that

larger activities tend to suppress smaller ones; thus, after a certain time, some

subcollection of nodes becomes, and remains, dominant. As a consequence,

dynamical systems defined by such networks often, but not always, converge

to an equilibrium state (also called a steady state). An equilibrium is a state
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I1(t) I2(t)
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x9x7x6x8
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FIGURE 4.5 Network to recognize a single space-time pattern (consisting of inputs Ii(t),
two of which are shown). Subnetwork x

1
through x

5
does low-band filtering (filtering

out patterns with activity levels lower than those in the desired pattern) and pattern

normalization (see Figure 4.4). Subnetwork x
4

through x
10

does high-band filtering
(filtering out patterns with activities higher than those in the desired pattern). xi
corresponds roughly to retinal cell layers: x

1
and x

2
to receptors, x

3
to horizontal cells,

x
4

and x
5

to bipolar cells, x
6

through x
9

to amacrine cells, x
10

to ganglion cells.

Source: Adapted from Grossberg, 1970b, with permission of Academic Press; see that article for

details.
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where the system interactions are in “balance,” so that, once the system

reaches that state, it will not be perturbed from it. (See Appendix 1 for a more

precise mathematical definition of an equilibrium.) The study of pattern

transformations by analysis of the equilibrium behavior of a dynamical system

was common in early neural network models (e.g., Cohen & Grossberg, 1983;

Geman & Geman, 1984; Golden, 1986; Hopfield, 1982; Hopfield & Tank,

1985, 1986; White, 1987). System vectors do not always converge to an equi -

lib rium, however. The next section includes examples of networks where the

state vector converges instead to a limit cycle, that is, to a periodic (oscillatory)

solution, as shown in Figure 4.6.

4.2.1. Wilson and Cowan’s Work

One of the first published mathematical studies of a neural network emulating

cortical lateral inhibition was done by Wilson and Cowan (1972). This work

was further elaborated in Wilson and Cowan (1973) (where the lateral inhibi -

tory principle is most explicit) and Ermentrout and Cowan (1980).

The network of Wilson and Cowan (1972) is composed of neuron

populations whereby intrapopulation connections are random and inter -

population connections deterministic. This is reminiscent of the notion of

“randomness in the small and structure in the large” (Anninos et al., 1970)

discussed in Section 2.2. The distributions of different cell thresholds are

averaged into sigmoid functions (see Figure 2.7b) describing input–output

relations at the node (i.e., population) level.

The model of Wilson and Cowan (1972) includes excitation as well as

inhibition between nodes. The network is described in terms of the two

functions xE(t) and xI(t), which denote the proportions of excitatory and

inhibitory cells, respectively, firing per unit time at time t. The change over

time of the excitatory activity xE(t) reflects a combination of three influences

(incorporated later in Equations (4.10)):

x
(a) (b)

x

y y

FIGURE 4.6 If a dynamical system has two variables (say x and y in these graphs), the
changes in these variables over time can be shown by a curve. Arrows denote direction
of flow as time increases. The system can either approach an equilibrium point (Part
(a)) or else oscillate toward a limiting curve or limit cycle (the inner dashed circle in
Part (b)).



(a) decay back to a baseline activity level (assumed to be zero, for simplicity);

(b) a signal that linearly combines excitation from excitatory cells, inhibition

from inhibitory cells, and excitatory inputs from outside the network, and

then is transformed by a sigmoid signal function;

(c) refractory periods of the excitatory cells themselves (see Section 2.2), so

that only cells that have not fired within a recent time interval can be

excited by the signal described in (b).

The inhibitory node is subject to the same set of influences, though the

interaction coefficients and sigmoid functions are different from those for the

excitatory node.

Mathematically, the effect of refractory periods on the excitatory node xE

is described by a term that decreases linearly with excitatory signal strength,

that is, a term of the form aE – bExE for some positive numbers aE and bE. As

a consequence, any given input signal has the strongest effect on an inactive

node, and no effect on a node already at a saturation point of activity (namely

aE/bE). This term is multiplied by the strength of the incoming signal. Similarly,

the signal to the inhibitory node is multiplied by a decreasing linear factor 

aI – bIxI. Grossberg (1973) noted that the factors aE – bExE and aI – bIxI

are equivalent to terms for shunting (multiplicative) excitation in passive

membrane equations for a single neuron (see the discussion of Sperling and

Sondhi in Section 4.1); this point is addressed in the next subsection.

A second article by Wilson and Cowan (1973) described a two-dimensional

network for representing an area of the cerebral cortex or thalamus. (The

thalamus is an area of the brain just below the cortex, much of it connected to

the cortex in a one-to-one fashion and providing a “relay” to the cortex from

lower brain areas; see Appendix 2.) This network has properties similar to the

network of Wilson and Cowan (1972) with the addition of distance-dependent

interactions. The two variables xE (t) and xI (t) are replaced by variables 

xE(s, t) and xI (s, t) that depend on distance as well as time, and excitation falls

off more sharply with distance than does inhibition (see Figure 4.2).

Hence, different positions in the visual field, or different line orientations,

can be represented at different cortical or thalamic locations. The network

variables represent averaged activities of excitatory and inhibitory neurons at

these locations.

The distance-dependent networks of Wilson and Cowan (1973) have the

same range of limiting behavior as those of their earlier article, despite greater

mathematical complexity. The large-time dynamics of Wilson and Cowan’s

equations include the possibility of hysteresis, whereby if the amount of

external stimulation is changed, the dynamics are dependent on the past history

of stimulation. These equations can also, for some parameters, exhibit limit

cycles (see Figure 4.6). Wilson and Cowan saw limit cycles as possible 

analogs of the reverberatory loops between the cerebral cortex and the
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thalamus. These loops have often been suggested as a physiological substrate

for short-term memory (see Section 2.1).

The network of Wilson and Cowan (1973) reproduced various phenomena

of visual psychophysics. This included characteristic responses to different

spatial frequencies; metacontrast, or perceptual masking of a brief stimulus by

a second, subsequent, stimulus presented elsewhere in the visual field; and a

hysteresis phenomenon found in stereopsis. (Stereopsis, or three-dimensional

binocular vision, is discussed further in Section 4.3.) Ermentrout and Cowan

(1980), studying a more abstract version of Wilson and Cowan’s network,

proved the existence of periodic solutions, and discovered that these solutions

had properties in common with some simple visual hallucinations.

4.2.2. Work of Grossberg and Colleagues

Another series of articles on lateral inhibition between cortical populations was

initiated by Grossberg (1973), who used shunting interactions but combined

excitatory and inhibitory influences in a different manner than did Wilson and

Cowan. Later articles in this series include Grossberg and Levine (1975), Ellias

and Grossberg (1975), Levine and Grossberg (1976), Levine (1975), Grossberg

(1978a), Cohen and Grossberg (1983), and Cohen (1988).

The implementation of shunting recurrent lateral inhibition in Grossberg

(1973) was motivated by some heuristics relating to shunting nonrecurrent

inhibition. The need for inhibition in his model arose in turn from consideration

of a shunting network without inhibition, as defined by differential equations.

The left-hand side of a differential equation for a variable denotes the variable’s

rate of change, using the symbol dx/dt, while the right-hand side describes 

the interactions causing it to change; see Appendix 1 for more details. The

equations for Grossberg’s network are:

(4.1)

for the activity xi of the ith node as a function of time, where Ii are outside

inputs, B is the maximum possible activity of each node, and A is a decay rate.

Equation (4.1) says that shunting (multiplicative) excitation, proportional to

the difference of xi from its maximum activity B, is supplied by outside inputs,

whereas shunting inhibition, proportional to xi itself, is supplied only by

spontaneous decay.

But if the inputs Ii to the nodes defined by (4.1) form a spatial pattern (see

Figure 3.4), the shunting term B – xi in (4.1) causes a distortion of relative

pattern weights. (This assertion is justified in Exercise 1 of this chapter.) The

distortion is removed (also see Exercise 1) by making the ith input not only

excite the ith node but inhibit all other nodes (see Figure 4.7). Equations (4.1)

dx
dt

Ax B x Ii
i i i= − + −( )
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are then modified so that shunting inhibition is from a combination of

spontaneous decay and inputs to other nodes:

(4.2)

where the “�” is standard notation for a sum (in this case, taken over all inputs

exciting nodes other than the ith).

In many versions of Grossberg’s recurrent network, the same nodes are both

excitatory and inhibitory. (The exception is Ellias & Grossberg, 1975).

Shunting inhibition (proportional, in general to xi minus its minimum activity

Ci) and excitation (proportional to the maximum ith node activity Bi minus xi)
are now supplied partly by outside inputs and partly by the node itself and other

network nodes. Hence, (4.2) is replaced by:

(4.3)

where each node might possibly receive an “excitatory input” Ii and an

“inhibitory input” Ji . Expression (4.3), while appearing as a single equation,

actually represents a system of equations for the activities of arbitrarily many

nodes with identical connection properties. In these equations, f is a signal
function reflecting input–output transformations at the single-cell level. The

function f might or might not be sigmoid (a point to which we return later) 

but must be increasing with xk. The positive constants cik and eik are non -

modifiable excitatory and inhibitory interaction coefficients, and Ii(t) is the

input to the ith node.

Equations (4.3) are similar to Wilson and Cowan’s, except that in (4.3) the

signal function is computed separately for the excitatory and inhibitory inputs.

Therefore, excitatory and inhibitory inputs combine not linearly as in Wilson

dx
dt

Ax B x I x Ii
i i i i k

k i

= − + − −
=

∑( )

dx
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Ax B x f x c Ii
i i k ik i

k

n

= − + − +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−

=

∑( ) ( ) (
1

xx C f x e Ji i k ik i
k

n

− +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=

∑) ( )
1

Competition, Lateral Inhibition, Short-Term Memory 99

Ii(t)

xi xj xk

FIGURE 4.7 Nonrecurrent on-center off-surround interactions.

Source: Adapted from Grossberg, 1976a, with permission of Springer-Verlag.



and Cowan’s network, but nonlinearly via shunting terms. Grossberg (1973)

interpreted these shunting interactions as separate excitatory and inhibitory gain
control, allowing for automatic tuning of network sensitivity in response to

fluctuating inputs. Also, if these equations reflect averaging on the node level

of the single-neuron equations, Bi and Ci can be interpreted as equilibrium

voltages for sodium and potassium ions respectively (see Appendix 2 for

discussion of the physiological significance of sodium and potassium). In this

interpretation, the factors under the summation signs are conductances of those

ions across the neuron membrane.

Grossberg (1973) and succeeding articles include mathematical proofs that,

as time gets large, the variables xi in (4.3) always converge to steady-state

values (limits) for broad classes of functions f. These steady-state values can

either be zero for all nodes, or nonzero for one or more nodes. The nonzero

limiting node activities, and their relative sizes, were interpreted as reflecting

the network’s choice as to what parts, if any, of a pattern are to be stored in

short-term memory. Periodic or chaotic patterns of the system variables are

thereby prevented (see Appendix 1 for discussion of these alternatives in

mathematical dynamical systems).

Computer simulations of Grossberg’s network show that the system reaches

activities close to its steady-state values quickly (in a few minutes if decay rates

are chosen to reflect neuronal time constants). Hence, this long-time behavior

actually approximates short-time sensory pattern transformations such as occur

in short-term memory.

In Grossberg (1973), the dynamics of Equations (4.3) were studied, with

all maximum activities Bi equal. The values xi at time 0 reflect the input pattern,

and pattern transformations after time 0 reflect the recurrent interactions. The

connectivity of the network is pure on-center off-surround; that is, the

excitatory coefficients cik are set to 1 if i = k and 0 otherwise, with the reverse

true for the inhibitory coefficients eik.
In the network of Grossberg (1973), the steady state approached by the

system depends on the function f ; in particular, it depends on whether f grows

linearly with xi , faster than linearly, slower than linearly, or in a sigmoid fashion

(i.e., faster than linearly for small xi and slower for large xi ; see Figure 4.8).

If f is linear in xi, the output values, xi(∞) (xi at the limiting or “infinite” time)

are proportional to the input values xi(0); in the case of a visual pattern, 

for example, relative reflectances are conserved. Such proportionality might

initially appear to be a good property for a sensory memory system. But

Grossberg argued that perfect proportional storage is undesirable because it

means that insignificant network noise is stored along with significant signal

traces. A better outcome, he stated, is contrast enhancement with noise

suppression; that occurs if f is a suitable sigmoid function. For such functions,

xi(∞) is proportional to xi (0) if xi(0) is above a threshold value and equal to 0

if xi(0) is below that threshold.
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Grossberg and Levine (1975) generalized many of these results to (4.3) with

unequal maximum activities Bi, representing biases in the competition between

nodes for storage of their preferred sensory features. Possible sources of such

biases are: (1) some stimuli occur more often than others during development,

causing unequal growth of relevant feature detectors (see Blakemore & Cooper,

1970, or Hirsch & Spinelli, 1970); (2) some stimuli are attended to more than

others during adult life; or (3) neuron populations exhibit random inequalities

of cell distribution. The results of Grossberg (1973) on contrast enhancement

with noise suppression remain true within each subfield (defined as the

subnetwork of all nodes with a given value of Bi). A choice is made between
subfields, and typically the activities of all but a small number of subfields are

suppressed as t becomes large. The subfields chosen are the winners of a “tug-

of-war” between those with largest inputs and those favored by network biases

(see Figure 4.9).

Later articles (Cohen & Grossberg, 1983; Grossberg, 1978a) further

extended these theorems on global existence of limits. To date, the most general

theorem of this sort is Cohen and Grossberg’s. They proved the existence of

limits for Equations (4.3) in the case of self-excitation with distance-dependent

inhibition. Self-excitation is defined as the situation where cik = 1 when i = k
and 0 otherwise; distance-dependent inhibition is defined as the situation

where eik values are arbitrary as long as eik = eki.

f(x) f(x)

f(x) f(x)

x x
(a) (b)

FASTERLINEARSLOWER
x x

(c) (d)

FIGURE 4.8 Schematic graphs of four types of signal functions: (a) linear; (b) faster
than linear; (c) slower than linear; (d) sigmoid.
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4.2.3. Work of Amari and Colleagues

One of the pioneers in mathematical study of random neural networks, as noted

in Section 2.2, was Amari. Like Wilson and Cowan’s work, Amari’s work

evolved from consideration of randomly connected networks to study of

networks with connections exhibiting lateral inhibition and lateral excitation.

Amari (1977a) and Amari and Arbib (1977) studied networks of the latter type,

based on nonlinear distance-dependent interactions that are additive rather than

shunting. This work became the basis for a theory of categorization developed

by Amari and Takeuchi (1978); see Section 7.1. (Hirsch, 1990, showed that

the Amari–Takeuchi system is equivalent to that of Hopfield, 1984.)

(a) INPUT PATTERN (B1 ≥ B2 ≥ … ≥ Bn) OUTPUT PATTERN: LINEAR 
SIGNAL FUNCTION

OUTPUT PATTERN: SLOWER-
THAN-LINEAR SIGNAL FUNCTION

OUTPUT PATTERN: FASTER-THAN-
LINEAR SIGNAL FUNCTION

OUTPUT PATTERN: SIGMOID 
SIGNAL FUNCTION

xi(0) xi(∞)

B1 B2 Bn B1

i

B2 Bn

i

xi(∞) xi(∞
)

B1 B2 Bn B1 B2 Bn

i i

B1 B2 Bn

i

xi(∞)

FIGURE 4.9 Pattern storage with unequal Bi. (a) Input pattern at time 0. (b) Output
pattern at time 4 if the function f of (4.3) is linear. Inputs to nodes with the largest Bi
(called B1) are stored in proportion to input activities xi(0), and suppress others. 
(c) Output pattern for f slower than linear. The pattern becomes uniform within each
subfield. Activities are largest for nodes with largest Bi , regardless of xi(0). (d) Output
pattern for f faster than linear. Only inputs to nodes with one Bi value (not always the
largest) survive, and only those with largest xi(0) in that subfield. (e) Output pattern for
f a suitable sigmoid. Inputs with xi(0) below a threshold are suppressed. Inputs with
xi (0) above the threshold, at least in some subfields, are enhanced.

Source: Adapted from Grossberg & Levine, 1975, with permission of Academic Press.



Amari (1977a) studied neural populations arranged in a “field” in the sense

used in physics. That is, unlike the network described in Equations (4.3) that

consists of a finite number of distinct nodes, his network is mathematically

described by an activity variable that depends continuously on both time and

location. The equations describing the dynamics of this variable use separate

excitatory and inhibitory weighting functions, with inhibition decreasing less

sharply with distance than excitation as in Figure 4.2(b). He found that the

system typically (but not always) approaches an equilibrium state in which

some part of the field remains active in short-term memory. Depending on

various system parameters, the part that remains active could either be the entire

field, a wide range, or a narrow range.

Amari and Arbib (1977) extended the earlier model to a neural field with

two dimensions. The design of that model was motivated by previous work of

Dev (1975) on modeling binocular vision, which is discussed in Section 4.3.

Briefly, some results on binocular vision were based on detection of disparity

between the positions of an image on the right and left retinas. The Amari–

Arbib model includes inhibition between detectors of different disparities at

the same position, and excitation between detectors of the same disparity 

at different positions.

Hence, the neural field developed by Amari and Arbib consisted of nodes

indexed by the two dimensions of disparity and distance. The resulting network

was termed competitive-cooperative, a term that has come into common usage

in the field (see, e.g., Amari & Arbib, 1982). In general, if lateral inhibition is

interpreted as competition between different percepts for encoding in short-

term memory, then by the same token, lateral excitation can be interpreted as

cooperation between related or compatible percepts.

4.2.4. Energy Functions in the Cohen–Grossberg and 
Hopfield–Tank Models

The theorem of Cohen and Grossberg (1983) relies on a common construction

from mathematical dynamical systems theory, namely, a Lyapunov function
or “energy” function. A Lyapunov function is some function of the system’s

state variables whose value decreases as the system’s state changes over time.

An equilibrium point of the dynamical system corresponds to a local minimum

of the energy function (see Figure 4.10). In dynamical systems derived from

physics, this function frequently represents an actual energy; in dynamical

systems for neural networks, the energy function is more abstract.

The Lyapunov function for the Cohen–Grossberg system is discussed in the

equations at the end of this chapter. We now discuss the Lyapunov or energy

function for the related but simpler system of equations introduced in Hopfield

(1982). The Hopfield networks do not always include lateral inhibition but are
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discussed in this section because they deal with issues of short-term pattern

storage and obey equations formally similar to Cohen and Grossberg’s.

Hopfield’s 1982 article and more recent articles by Hopfield and Tank were

later applied to optimization problems such as the traveling salesman problem,

whereby a person traveling through several cities has to find the path of shortest

total distance between the cities.

In the simplest form of the network of Hopfield (1982), the ith node has

two possible states: xi = 0 (“not firing”) or xi = 1 (“firing at the maximum rate”).

Hence, the instantaneous state of the system is a binary vector whose number

of components is equal to the number of nodes. There are also connection

strengths wij from node j to node i, for all pairs where i ≠ j. (Not all pairs of

nodes have to be connected; for those that are not connected, wij = 0. Also, the

wij can be positive or negative; in fact, in examples they tend to be negative

more often than not.) Later versions of Hopfield’s network include the

possibility that connection strengths might change over time as a result of

associative learning. But the energy function formulation first arose in the

context of unchanging connection strengths.

The state changes over time are governed by a linear threshold algorithm

reminiscent of some of those used in Rosenblatt (1962). If xi (t) denotes the

state of the ith node at time t (t an integer), this state readjusts at random times,

according to the rule

(4.4)

where “�” denotes summation. (In later articles of Hopfield and Tank, the

thresholds of 0 in Equations (4.4) were replaced by more general threshold
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Figure 4.10 The path of the variables in a typical competitive dynamical system is
analogous to the path of a ball bearing along a curve (representing the system “energy
function”). Like the ball bearing, the system eventually reaches a local minimum state
of the energy (either A or B in this figure).

Source: Reprinted from Rumelhart & McClelland, 1986a, Vol. 1, with permission of MIT Press.



parameters. The energy function formulation easily generalizes to that version;

see the equations at the end of this chapter.)

The algorithm described by (4.4) means that each time xi changes, the

increment �xi (using the character � for change in any variable) is either 0 or

1 if �j≠iwijxj(t) > 0 and is either 0 or –1 if �j≠iwijxj(t) < 0. Hence �xi, if not 0,

always has the same sign (positive or negative) as �j≠iwijxj (t). Now impose the

condition that the weights are symmetric,1 that is, wij = wji. If we then consider

the Lyapunov or energy function,

(4.5)

each change �xi in a given node activity leads (by (4.4) and (4.5)) to an energy

change of

(4.6)

Since �xi is 0 or of the same sign as �j≠iwijxj , Expression (4.6) means that the

energy change �E < 0 at all times; that is, energy always decreases over time.

Some extensions of the above energy function, in both discrete and

continuous models, were made in Hopfield (1984) and Hopfield and Tank

(1985, 1986). In Hopfield (1984), the discrete-time system of the 1982 article

was extended to include external inputs to each node and arbitrary thresholds

for node activation. Also, a generalization of the algorithm defined by (4.6) to

the continuous-time case was introduced in Hopfield (1984) and developed

further in Hopfield and Tank (1985, 1986). In this work, the output Vi of the

ith node is treated as a function (usually sigmoid) of the input, as in the articles

of Wilson and Cowan (1972) and Grossberg (1973). All these systems have

Lyapunov functions similar to (4.5).

The systems studied by Hopfield and Tank become laterally inhibitory

(competitive) when all the wij, i ≠ j, are set to be negative. (One of the

examples studied by Hopfield and Tank, 1986, a network that can convert

computational data from analog to binary, exhibits this lateral inhibitory

structure.) Also, the theorem of Cohen and Grossberg (1983), showing the

convergence of the system defined by (4.3) to some equilibrium state, does 

not depend on the values eij (which correspond to the –wij in Hopfield and

Tank’s systems) being positive. Hence, that theorem covers the Hopfield–Tank

systems as subcases. (This mathematical point is discussed more fully in the

article of Grossberg, 1987a, which also shows that this theorem applies to the

Boolean model of McCulloch and Pitts, 1943, and to the “brain-state-in-a-box”

model of Anderson, Silverstein, Ritz, & Jones, 1977.)
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4.2.5. The Implications of Approach to Equilibrium

A theorem stating that a system must approach a system equilibrium point does

not specify which equilibrium is approached. In particular, if an energy function

is always decreasing, the system will approach one of several states that are

local minima of the energy function (see Figure 4.10). In some applications,

the global minimum corresponds to the optimal state, and schemes have 

been studied for escaping from local minima that are not globally optimal. The

most widely used of these schemes is simulated annealing, introduced by

Kirkpatrick, Gelatt, and Vecchi (1983) and incorporated into neural networks

by Hinton and Sejnowski (1986), Smolensky (1986), and others. Simulated

annealing is an introduction of random noise that perturbs the network if it is

at or close to a nonoptimal equilibrium, thereby increasing the probability that

it will ultimately move toward the global minimum. Hence, the results of

Grossberg, Amari, Hopfield, and others indicate that competitive neural

systems often arrive at a choice as to what to store in short-term memory, but

the nature of the choice is heavily influenced both by network parameters and

by outside inputs.

The choice-making property of competitive or competitive-cooperative

networks has been a valuable guide for models of natural or artificial pattern

recognition. Since network theories of this type have made extensive contact

with psychological and neurophysiological data in vision, we devote the next

large section to visual modeling. Some network mechanisms used to model

specific visual data are introduced to give the reader a “hands-on” sense of how

data can suggest theory. In particular, we consider models of early visual

processes that do not include learning or reference to previously stored

templates (although the parameters defining these processes could have been

influenced by development). The combination of early processing effects with

learning in models of multilevel visual processes, such as coding, is discussed

in Chapter 7. More recent visual models that have made more contact with

neuroanatomy and neurophysiology are discussed in Chapter 9.

The type of short-term memory found in these networks has been described

(e.g., Cohen, 1988; Hopfield, 1984) by the term content-addressable memory,

familiar from computer science. This term signifies that each node (“address”)

is distinguished by what input events it encodes.

4.2.6. Networks With Synchronized Oscillations

Yet there are some significant exceptions to the equilibrium (choice-making)

property of competitive networks. Cohen (1988) found an example of a system

obeying Equations (4.3), with n = 2, whose solution approaches a limit cycle

(oscillates) instead of approaching an equilibrium (see Figure 4.8). In his

example, the assumption that the excitatory coefficients cik = 0 for i ≠ k is
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removed, but the symmetry assumption eik = eki still holds. Ellias and Grossberg

(1975) found oscillations in certain examples of the unlumped on-center 

off-surround network, where excitatory and inhibitory cell populations occupy

separate nodes. (The unlumped case is probably closer to real neuroanatomy

than the lumped case, including the other articles of Grossberg’s group, where

the same nodes are excitatory and inhibitory. As was discussed early in this

chapter, the largest cell type in the cerebral cortex, pyramidal cells, typically

excite smaller interneurons which in turn appear to inhibit other pyramidal

cells.) Approach to limit cycles was also found in some subcases of the

network of Amari (1977a).

Oscillatory neural responses are widely thought to play their own particular

role in visual pattern perception. Specifically, it has been suggested by many

investigators (starting with Milner, 1974) that one mechanism for seeing an

object as a unified percept is synchronization of oscillatory firing in many

neurons responding to the object. For as discussed in later sections of this

chapter, early processing stages in the visual cortex fire to features of an object,

such as color, orientation, or position. The different features of the same object

may be processed at different rates by the visual system. Eventually, there must

be a mechanism for “binding” these features so that the correct ones are mapped

together into representations of objects. This suggestion has been confirmed

by the neurophysiological findings of Eckhorn et al. (1988), Gray et al. (1989),

and Gray and Singer (1989). These investigators found stimulus-evoked

synchronized oscillations in the cat visual cortex at a frequency of 40 to 60

Hertz (cycles per second).

This type of synchronization, in response to visual stimuli such as long

moving bars, was simulated by Grossberg and Somers (1991) in a network that

extended the “unlumped” excitatory–inhibitory interactions of Ellias and

Grossberg (1975). In the Grossberg–Somers model, synchronization of the

phases of several oscillators (that is, excitatory–inhibitory node pairs) was

achieved by means of long-range cooperation among the excitatory nodes.

(Such long-range cooperation had previously been proposed by Grossberg and

Mingolla, 1985a, 1985b, to explain visual illusion data; see the next section.)

A variety of architectures was used for such cooperation, of which the most

successful was the one that employed a node analogous to a cortical cell called

the bipole cell, which had been predicted by other visual models by the same

authors and later found experimentally. The bipole cell is characterized by

responsiveness to stimuli along two independent flanks.

Yet synchrony across an entire network carries the danger of what

psychologists call illusory conjunctions (e.g., Intraub, 1985). That is, if more

than one object is present in a visual scene, it is possible to perceptually bind

features from different objects to one another: for example, if a blue circle 

and a green square are presented, under some conditions one can see a green

circle and a blue square. Several neural network models (e.g., Grossberg &
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Grunewald, 1997; Horn, Sagi, & Usher, 1992; Wang, Buhmann, & Malsburg,

1990) have dealt with the problem of illusory conjunctions by connecting

oscillators in such a fashion that different parts of the network oscillate with

their peak responses occurring at different times. This is accomplished through

spatial or temporal segregation, or both, of the inputs to the network.

Binding via synchronized oscillations has also been applied to inference

processes. Shastri and Ajjanagadde (1993) developed a neural network called

SHRUTI that performs what they called reflexive reasoning. This is defined

as the type of reasoning that most speakers of a language do automatically when

they hear particular words or phrases. For example, when English speakers 

hear “John gave Mary the book,” they infer without thinking that Mary now

owns the book and can sell it. Reflexive reasoning requires a combination of

rule encoding and binding of entities to general concepts that denote roles. An

example of binding occurs when one hears “John gave Mary the book”: the

entities “John,” “Mary,” and “the book” are bound respectively to the concepts

of “giver,” “recipient,” and in Shastri and Ajjanagadde’s term, “give-object.”

Such binding is hard to achieve in neural networks based on Hebbian learning

(see Chapter 3). This is because in a continuous dynamical system the nodes

for all the various entities and concepts described would remain active at about

the same time. Hence, Hebbian connections between these nodes are likely to

lead to spurious associations (e.g., in the above example between “John” and

“recipient.”)

Shastri and Ajjanagadde solved the binding problem using nodes that

respond to concept inputs by means of oscillatory pulses. Such regular

oscillations are probably a quite crude approximation to biological mechanisms.

As the authors noted, oscillations that are less regular (perhaps including

chaotic patterns) are likely to be closer to actual concept encodings. Also,

Shastri and Ajjanagadde did not say how particular nodes learn to encode

particular concepts. Still, their network is a step toward a more neurally

realistic theory of a common type of inference. Shastri (2001, 2002) later

elaborated this binding network to model formation of episodic memories in

the hippocampus and cerebral cortex.

4.3. Visual Pattern Recognition Models

4.3.1. Visual Illusions

The dynamics of the visual system can be illuminated by studying some of its

characteristic illusory percepts. Several early network models (Grossberg &

Mingolla, 1985a, 1985b; Levine & Grossberg, 1976; Wilson & Cowan, 1973)

incorporate the notion that such illusions are by-products of a lateral inhibitory

network designed to correct for irregularities in the luminance data that reaches

the retina. Models of visual illusions typically involve both competition and
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cooperation, sometimes along different dimensions (as in the work of Dev,

1975) and sometimes within the same dimension.

Levine and Grossberg (1976) simulated some illusions in angle perception.

Their model incorporated the findings of Hubel and Wiesel (1962, 1965) that

most cells in the primate or cat visual cortex respond preferentially to lines or

bars of some particular orientation; a characteristic tuning curve for orientation

in a visual cortical cell is shown in Figure 4.11. The Levine–Grossberg model

is based on a recurrent competitive-cooperative network in which each node

represents a specific line orientation. The interaction coefficients of Equations

(4.3) decrease with distance between the orientations coded by given nodes,

but the cik decrease faster with distance than the eik; that is, cooperative

interactions are short-range and competitive interactions long-range. Percepts

of one or two lines are denoted by inputs that are nonzero to the nodes

corresponding to those lines. The perceived orientation of a line is interpreted

as being the orientation corresponding to that node whose activity is largest

after the inputs have been transformed by recurrent interactions. 

If all maximal node activities (Bi in Equations (4.3)) are equal, the

Levine–Grossberg network can reproduce the experimental result (Blakemore,

Carpenter, & Georgeson, 1970) that an acute angle is seen as up to one degree

larger than it really is. In the network, an acute angle stimulus excites two

orientation-sensitive network nodes. Recurrent inhibition from either of those

two nodes shifts the local peak of activity away from the other to a different

node corresponding to an angle a degree or two out from it. This causes a shift

in each line’s perceived location. If instead the nodes responsive to vertical 

or horizontal orientations have larger Bi than others, the same network can

reproduce the result (Gibson & Radner, 1937) that a fixed near-vertical 

tilted line appears closer to vertical after prolonged viewing. Recall from 

the discussion in Section 4.2 that differences in Bi could be influenced 

by experience during development. In fact, there is evidence that cultural

experience affects the bias toward vertical and horizontal in humans (Annis &

Frost, 1973) as well as other human visual illusions (Deregowski, 1973).

(Section 9.2 mentions another network that has modeled the tilt aftereffect data,

that of Bednar & Miikkulainen, 2000.)

In some other competitive-cooperative neural networks, each node is

interpreted as a receptor for a given visual field position rather than a line

orientation. For example, Wilson and Cowan (1973) and Levine (1975) both

simulated results of Fender and Julesz (1967) on the perceived location of

vertical lines viewed stereoptically. In the Fender–Julesz experiments, two

parallel vertical lines are shown simultaneously, each seen only by one eye;

the lines are pulled apart and then slowly pushed back together. During the

stage when they are being pulled apart, the two lines are seen as one for a

considerable distance (2 degrees of arc) until they suddenly appear to jump

apart. But, while they are being pushed back together, these lines are seen as
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two until the distance between them is much shorter (.1 degrees of arc), at

which point they appear to fuse together. Hence, hysteresis, or memory,

occurs: the perceived location of the two lines depends partly on their past

locations as well as their present ones.

Full understanding of the binocular hysteresis effect depends on

understanding of binocular depth perception, which is discussed later in this

section. But the Wilson–Cowan and Levine networks simulate the Fender–

Julesz result without using depth perception, by treating the two lines as inputs

to nodes representing different positions in the visual field, and interpreting

perceived location as corresponding to the (one or two) nodes with largest

activity.

Orientation and position are not the only two variables that are coded by

cell populations in the visual cortex. Table 4.1 sums up information about these

and other key visual variables, such as spatial frequency; disparity of the images

on the right and left retinas, which is a measure of depth; color; and ocularity

(cells may have a preference for one or another eye or else respond equally to

inputs from either eye).

Some neural networks used to simulate visual data combine two or more

of these variables. For example, both orientation and position information are

used in the networks of Grossberg and Mingolla (1985a), which simulate some

illusory percepts of visual contours. An example is the white square perceived

in Figure 4.12, by Kanizsa (1976), whose corners are formed from the

boundaries of four black (or two black and two gray) “Pac-Man” figures.

In Figure 4.12, two white line segments that are actually present and of the

same orientation are perceptually joined together by an illusory longer line

segment. That insight among others suggested Grossberg and Mingolla’s

modeling scheme. In their competitive-cooperative network, boundaries are
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FIGURE 4.11 Example of the tuning curve of a complex cell (the second of three layers
of visual cortical cells described by Hubel and Wiesel). Each point is the mean
response, above the cell’s spontaneous firing rate, for ten sweeps of a moving bar of
light across an oscilloscope during a three-second interval.

Source: Adapted from Rose & Blakemore, 1974, with permission of Springer-Verlag.



perceived as signals “sensitive to the orientation and amount of contrast at a

scenic edge, but not to its direction of contrast” (Grossberg & Mingolla,

1985a, p. 176).

Figure 4.13a illustrates insensitivity to contrast direction. Each node of the

network responds to lines of a particular orientation at a particular position in

the plane. There are two forms of competition, between receptors for like

orientations at nearby positions (Figure 4.13b), and between receptors for

widely different (especially mutually perpendicular) orientations at the same

location (Figure 4.13c). The scheme of Levine and Grossberg (1976) is

reversed: short-range competition is supplemented by long-range cooperation

(Figure 4.13d). Such long-range cooperation enables continuous contours to

form by linking together separated lines of the same orientation. One of the

benefits to the organism of this linkage of contours is compensation for

discontinuities (caused by blind spots) in the image on the retina.

All visual phenomena – color, brightness, and form detection, motion

detection, and binocular integration – include characteristic illusory percepts.
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TABLE 4.1 Stimulus variables to which single cells in the visual cortex can be
differentially responsive.

Variable Source of experimental
findings

Position Hubel and Wiesel (1962, 1965)

Orientation Hubel and Wiesel (1962, 1965)

Ocularity (left or right eye) Hubel and Wiesel (1962, 1965)

Disparity (between left and right retinal

images)

Barlow, Blakemore, and Pettigrew 

(1967)

Spatial frequency Robson (1975)

Color Hubel and Wiesel (1962, 1965)

FIGURE 4.12 Illusory white square induced by four black “Pac-Man” figures.

Source: From Kanizsa, Gaetano, Subjective contours. Copyright by Jerome Kuhl. All rights reserved.
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Most of these illusions are part of preattentive vision, that is, direct processing

of visual inputs by the retina and cortex before the evaluation of their

significance or their relationship to other modalities such as hearing and touch.

This processing includes grouping or segmentation of the visual environment.

The computational models discussed in the next few subsections of form, color,

brightness, depth, and motion detection are partly inspired by illusion data,

some of which is discussed further in Section 5.2.

4.3.2. Boundary Detection versus Feature Detection

The importance of edge detection for understanding the form of visual percepts

has been emphasized by many vision theorists. For example, Marr and Poggio

(1979) and Marr and Hildreth (1980) described boundaries between light and

dark areas of a scene as points of zero curvature (or inflection points) of the

curve for luminance as a function of distance, as shown in Figure 4.14. This

is a simple mathematical representation of the point of sharpest transition in

the luminance value.

But the mechanism for perceiving boundaries must be supplemented by

another mechanism for perceiving the form of what is inside those boundaries,

a so-called feature contour mechanism. The feature contour mechanism, unlike

the boundary contour mechanism, should be sensitive to the direction of contrast.

One possible combination of boundary and feature contour mechanisms,

using both lateral inhibition and excitation, is discussed in Grossberg (1983).

In the feature contour mechanism, the excitatory and inhibitory spread

coefficients cik and eik (as in (4.3)) determine structural scales of the on-center

off-surround network. The network’s recurrent interactions transform structural

scales into functional scales.

FIGURE 4.13 (a) Boundary contour signals sensitive to orientation and amount of
contrast at the edge of a scene, but not to direction of contrast. (b) Like orientations
compete at nearby perceptual locations. (c) Different orientations compete at each
perceptual location. (d) Once activated, aligned orientations cooperate across a larger
visual domain to form “real” and “illusory” contours.

Source: Grossberg & Mingolla, Psychological Review, 92, 173–211, 1985. Copyright 1985 by the
American Psychological Association. Reprinted by permission.



Figure 4.15 describes one scheme for functional scaling. A linear non -

recurrent mechanism that can only generate boundaries (Figure 4.15b) is

contrasted with a nonlinear recurrent mechanism that can generate perceptions

of both boundaries and interiors (Figure 4.15c). Initially, all nodes excited by

the rectangular input of Figure 4.15a receive equal inputs. Since the inhibitory

interaction coefficients eik are distance-dependent, once recurrent inhibition has

time to be established, nodes excited by the part of the rectangle near its

boundary receive less inhibition than those nodes nearer the rectangle’s center.

As time goes on, those selectively enhanced boundary nodes inhibit other nodes

whose preferred positions are immediately contiguous to those boundaries but

closer to the center. This in turn disinhibits some nodes still nearer to the center,

leading to the wavelike pattern shown in Figure 4.15c. The distance between

peaks of the wave (“functional scale”) is dependent in a complex nonlinear 

way on the excitatory and inhibitory interaction coefficients cik and eik; see

Grossberg (1983, p. 646) for details.

Figure 4.15 and the accompanying mathematics also provide one possible

explanation for the experimental result (e.g., Robson, 1975) that many visual

cortical neurons fire preferentially to some specific spatial frequency. From this

result, many theorists have concluded that spatial frequency is one of the

primitives of the visual system, or, more speculatively, that the visual system

performs Fourier analysis of patterns into frequency components (e.g., Graham,

1981; Pribram, 1991; Wilson & Bergen, 1979). In Grossberg’s scheme, by

contrast, Fourier analysis (which is a linear transformation) does not occur, and

spatial frequency detection is a by-product of more fundamental nonlinear

interactions.

The interaction of the feature and boundary contour systems provided the

basis for a theory of visual object recognition. In contrast to Marr’s view that

boundaries are what we mainly see, Grossberg (1987c) advances the “radical
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Z

FIGURE 4.14 The notion of a zero-crossing. (a) A transition (edge) between dark and
light regions is shown by a sharp rise in the graph of luminance as a function of
distance. (b) The first derivative of this function has a peak. (c) The second derivative
of this function has a zero-crossing (transition from positive to negative) at the point Z.

Source: Adapted from Marr, 1982, with permission of MIT Press.
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claim that all boundaries are invisible until they can support different filled-

in featural contrasts within the FC [feature contour] System” (p. 108). Within

the feature contour system in this theory, the apparently separate modules that

neurophysiologists have discovered in the cerebral cortex for processing form,

color, and depth (Livingstone & Hubel, 1984) are seen as part of a unified

whole that is called FACADE, for “form and color and depth” (Grossberg,

1994).

Grossberg’s theory involves a hierarchy of networks, some competitive,

some cooperative, some involving opponent processing (see Section 3.3.4).

One of the purposes of all these feedback and feedforward interactions is to

compensate for some imperfections in the uptake of visual stimuli by the retina.

Some of these imperfections result from blind spots or blood vessels in the eye.

Others result from possible distortions of relative brightness or color

relationships in the scene by the ambient light; hence one of the functions of

the cortical networks is to discount the illuminant, that is, calculate color or

brightness of the actual scene rather than what impinges directly on the retina.

Some possible brain mechanisms for all this, involving several different parts

of the visual cortex and the lateral geniculate body, which is a processing station

between the retina and cortex, are discussed in Section 9.2.

These networks used to model biological vision have also been utilized 

in devices for machine vision, leading to some novel solutions to computer

vision problems that have long been studied by artificial intelligence

researchers. Carpenter, Grossberg, and Mehanian (1989), for example,

developed a network architecture for invariant recognition of cluttered scenes.

(c)

(b)

(a)

FIGURE 4.15 (a) Input pattern whereby a region is activated uniformly and the rest of
the visual field not at all. (b) Response of a feedforward competitive network to pattern
(a); edges of the activated region are enhanced and its interior suppressed. (c) Response
of a feedback competitive network to pattern (a); the interior is activated in a spatially
periodic fashion.

Source: Reprinted from Grossberg, 1983, with permission of Cambridge University Press.



It combines a preprocessing stage based on the boundary contour system of

Grossberg and Mingolla (1985a, 1985b) with the adaptive resonance network

(see Chapter 6) for high-level processing. Cruthirds et al. (1992) and Grossberg,

Mingolla, and Williamson (1995) applied both the boundary and feature

contour systems to processing of synthetic radar images. Bradski and Grossberg

(1995) applied a similar architecture to the processing of three-dimensional

objects from multiple two-dimensional views.

Further elaborations of the cortically inspired networks for boundary–feature

interactions have included mechanisms for binocular vision and for detecting

visual motion. These are discussed in the next two subsections.

4.3.3. Binocular and Stereoscopic Vision

The relationship between disparity of the two images and depth of the actual

object viewed is illustrated in Figure 4.16. The existence of cells in the visual

cortex responding preferentially to given disparities was demonstrated

experimentally by Barlow, Blakemore, and Pettigrew (1967). Typically, these

models are based on cooperation between detectors of the same disparity at

different positions, and competition between detectors of different disparities

at the same position. (Amari & Arbib, 1977, discussed the mathematical

dynamics of systems that combine competition and cooperation in this fashion.)

Modeling of binocular vision has been advanced by the study of random-
dot stereograms, introduced by Julesz (1960, 1971). These are pairs of patterns

presented separately to the two eyes, each of which alone consists of incoherent

random dots but which together can lead to sensations of depth. As described

by Dev (1975):

The two patterns are identical to each other in some regions and differ

in others. In the regions where they differ, the difference simply consists

of a lateral shift of one pattern with respect to the other. . . . [T]he region
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FIGURE 4.16 Depth of a binocularly viewed object is encoded by disparity of positions
along the circles denoting the two retinas (a1 to a2 for the nearest object, b1 to b2 for the
next nearest, c1 to c2 for the farthest).
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of the pattern that requires lateral shift is perceived as at a depth other

than the depth at which the observer is fixated.

(p. 524)

For example, if the laterally shifted region is square-shaped, the observer sees

a square with some of the random dots lying above the rest of the figure. Dev

(1975) developed a computational procedure, involving cooperation and

competition between disparity detectors as described earlier, to analyze the

perception of depth surfaces from these stereograms (see Figure 4.17). This

computational procedure has since been refined by Marr and Poggio (1977a),

among others.

Marr and Poggio (1979) also summoned evidence to show that retinal image

disparity measures as in the earlier models are insufficient to compute perceived

depth. Hence, achieving a coherent three-dimensional percept (whether of a

random-dot stereogram or a natural, binocularly viewed scene) involves

integrating disparity information with orientation and spatial frequency

information. In Marr and Poggio’s model, a three-dimensional scene is filtered

through channels (“masks”) that select particular orientations. Boundaries can

be located by taking the image through given orientation masks and locating

the edges at zeros of the second derivative of perceived luminance (see Figure

4.15). Similar filtering is done through spatial frequency channels.

Given all the disparity, orientation, and spatial frequency information, 

Marr and Poggio showed how to construct a coherent three-dimensional

LEFT
RETINA

RIGHT
RETINA

DSPARITY
ARRAYS

aEE aIE

aEI

aII

FIGURE 4.17 Network for simulation of depth perception in random-dot stereograms.
Each “disparity array” is a group of nodes sensitive to illumination of a point on the left
retina combined with illumination of the point on the right retina that is laterally
displaced by the given amount (see Figure 4.16). aEE, aEI, aIE, aII are functions
describing interactions among node groups.

Source: Adapted from Dev, 1975, copyright 1975 IEEE, with permission of the publishers.



approx imation of a given 3-D scene preceding the stage of binocular inte -

gration. They called this approximation the 21⁄2-D sketch of the scene. An

example of a 21⁄2-D sketch is shown in Figure 4.18; the concept was developed

further in Marr’s (1982) book on vision.

Another visual model involving random-dot stereograms is that of Hinton

and Becker (1990). These researchers combined perception with learning to

discover planar or curved surfaces in stereograms. Their learning procedure

was designed to maximize the coherence of information from spatially adjacent

patches of the images.

A different approach to binocular vision has been developed by Cohen and

Grossberg (1984) and Grossberg (1987d). In the networks of Cohen and

Grossberg, there is extensive feedback between monocular and binocular

representation areas, each with its own separate on-center off-surround network

(see, e.g., Figure 4.19) and, in later versions of the network, including extensive

opponent processing. In contrast to Marr and Poggio’s idea of the prebinocular

21/2-D sketch, Grossberg and Cohen developed a theory in which binocular

integration is nearly inseparable from the processing of other visual informa-

tion such as color and form. For example, in the boundary contour system,

mechanisms of stereopsis are related to mechanisms of boundary completion.

And the interactions between boundary contour and feature contour systems

in the theory explain why boundary completion and segmentation become

binocular at an earlier processing stage than do color and brightness perception.

4.3.4. Visual Motion

Marr and Ullman (1981) set out to explain how we perceive visually that

objects move. As with other visual phenomena, this has an illusory as well as

a veridical component. Since the days of the early Gestalt psychologists of the

late nineteenth century, it has been known that apparent motion can be

generated by, for example, two separate flashes of light in different locations

at particular time intervals. Their explanation was based on a network that

combined different nodes with sustained and transient responses to stimuli.

The sustained units respond to particular contrast and orientation patterns which

persist even if their location in the visual field shifts slightly. The transient units

respond to changes in light intensity, color, and the like at particular locations.

Marr and Ullman based the visual responses in their network on the zero

crossings previously described by Marr and Poggio (1979), which represent

transition points or boundaries. Grossberg and Rudd (1989, 1992) combined

the Marr–Ullman idea of sustained and transient detectors with the feature and

boundary contour systems (Grossberg & Mingolla, 1985a, 1985b) achieved by

shunting on-center off-surround interactions. Grossberg and Rudd (1992) saw

visual motion as related to rather than separate from other visual percepts:

Competition, Lateral Inhibition, Short-Term Memory 117



. . . psychological literature that exists on the topic of apparent motion –

and the more general category of motion perception – indicates a complex

interdependency between such stimulus variables as contrast, size,

duration, color, and figural organization in determining the perceived

motion.

(p. 82)

They described how this approach to theory leads to simulating a wide range

of data on both the direction and speed of real or apparent visual motion not

covered by the Marr–Ullman theory. The motion-oriented contour system they

developed includes a set of nodes combining signals from both sustained and

transient units, and with properties analogous to the visual motion area of the

cortex variously known as V4 (with V1 and V2 representing earlier visual

processing) or MT (for medial temporal).

The motion-oriented contour system was developed further in the articles

of Grossberg and Mingolla (1993) and Chey, Grossberg, and Mingolla (1997).

The motion-oriented boundary contour system is further subdivided into a

motion-oriented contrast filter for preprocessing moving images and a motion

cooperative-competitive feedback loop for generating boundary segmentations

of the filtered signals.

This combination of architectures enables the model of Grossberg and

Mingolla (1993) to simulate such widely studied motion phenomena as the

aperture problem (Wallach, 1976), the barber pole illusion, and motion
capture. The aperture problem denotes the fact that the perceived motion of a

straight edge or grating is influenced by the shape of the aperture through which

it is viewed. If a line or grating is viewed through a circular aperture it will be

seen as moving in a direction perpendicular to its orientation. If it is viewed

through a rectangular aperture it will be seen as moving in a direction corres -

ponding to the longer side of the rectangle. An offshoot of the aperture problem

is the barber pole illusion, whereby a set of parallel rotating colored stripes

seen though a glass cylinder appear to be moving upward when they are moving

horizontally.

Another effect of the aperture problem is that sometimes with complex

moving patterns and different arrangements for viewing those patterns, some

parts of the pattern are clearly moving in a particular direction, the signals

denoting direction of motion are ambiguous in other parts. (This is particularly

true of so-called plaid patterns, which include lines of different orientations

that cross one another.) Motion capture means that the signals from those parts

where motion is unambiguous dominate the ambiguous signals from other

parts, leading to a percept that the entire pattern is moving in the direction of

the unambiguous signals. Francis and Grossberg (1996) discussed how motion

perception is integrated with form perception to capture the percept of moving

forms, including forms that involve illusory contours.
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The dynamics of MT neurons influenced another visual motion model by

Nowlan and Sejnowski (1994, 1995) and Sejnowski and Nowlan (1995). This

model is designed to combine spatial integration of signals from neighboring

regions of the visual field and sensitivity to small velocity differences. The

model includes two types of units with properties similar to some MT neurons.

One type of unit in the model integrates information about the direction of

motion to estimate the local velocity, with competition between velocity

detectors. The other type of unit selects regions of the visual field where the

velocity estimates are most reliable. The result is a distributed segmentation

of the image into patches that support distinct objects moving with a common

velocity. Unlike Grossberg and his colleagues, Nowlan and Sejnowski

optimized some of the parameters in their network in order to fit the motion

data.

4.3.5. Nonlinear Feedback or Modularity?

Grossberg (1983) compared his approach to visual (including stereopsis)

modeling with the approach of Marr and other members of his school. His

article includes commentaries by two members of that school, Grimson (1983)

and Stevens (1983). Some of this dialogue is summarized here because of its

general implications for neural modeling.

In both sets of models, disparity information is influenced by orientation

and spatial scale information. But Grossberg’s model involves nonlinear

feedback mechanisms, whereas Marr and Poggio’s model is linear and

feedforward. Grossberg argued that nonlinear and feedback mechanisms are

necessary for accurate representation of many kinds of visual information, such

as reflectances. In response, Grimson (1983) posed the following question:

Can early visual processing be considered as a system of roughly

independent modules which interact loosely to create a global perception,

or is the processing so tightly interconnected that the simplest possible

description of the process is in terms of its interactions?

(p. 666)

Grimson answered his own question on the side of the first, “modular”

approach. Citing the large number of psychophysical predictions made by Marr

and Poggio (1979), he said that tightness of interaction as posited by Grossberg

is not needed to account for psychophysical data.

Grimson’s comment appears to be influenced by the approach of traditional

artificial intelligence, which tends toward separate heuristic programs for

separate tasks. This heuristic programming flavor also permeates some com -

ments by Stevens (1983):

Competition, Lateral Inhibition, Short-Term Memory 119



As Marr and Poggio (1977a) eloquently argue, complex information

processing requires satisfactory descriptions at several levels, of which

a mechanism description is but one. They distinguish the computational
theory (What is the goal of the computation, why is it appropriate, and

what is the logic of the strategy by which it can be carried out?), the level

of representation and algorithm (What is the representation for the input

and output, and what is the algorithm for the transformation?) and the

level of implementation (How can the representation and algorithm be

realized physically?).

(p. 675)

Stevens went on to say:

Grossberg’s descriptions of visual computations . . . are primarily at the

level of mechanism, of patterns of neural activity within networks. There

is no notion, for instance, of symbolic information processing. For those

of us interested in understanding vision, the real problems seem to lie

here.

(p. 675)

In Grossberg’s approach, the computational theory and algorithm levels are

not apparent in the network at hand but are assumed to be represented by other

nodes and connections, outside and interacting with the network for early visual

processing.

Related issues arise in the modeling of knowledge. While the connectionist

or neural network approach has had a major impact on cognitive science, there

is a school of cognitive scientists arguing against connectionism and in favor

of the symbolic representations from “classical” artificial intelligence. This

school (e.g., Fodor & Pylyshyn, 1988) contends that connectionist models

cannot be used in the understanding of some levels of a cognitive task –

typically, those levels involving purposes and goals. But their argument appears

to be based on an overly narrow sense of what constitutes a connectionist

model. Modeling purposes and goals is still at the forefront of neural network

modeling, but some progress has been made in that direction as shown by some

of the models discussed in Section 9.6.

The visual system models described in the last two sections are primarily

described in cognitive terms with rather imprecise locations for network

segments in the brain. Yet, starting in the late 1990s there has been a growth

of visual models that have built on and refined the models described therein

and located their subnetworks more precisely in areas including the retina,

lateral geniculate, up to four layers of visual cortex, and prefrontal cortex. These

more “brain-based” visual models are discussed in Section 9.2.
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4.4. Uses of Lateral Inhibition in Higher Level Processing

Kilmer et al. (1969) developed an early computational model of the reticular

formation, consisting of connected modules, each receiving independent

sensory information. Based on this information, each module “votes” for

inclining the organism toward one of several gross behavioral modes (eating,

sex, exploration, etc.). The model of Kilmer et al. includes competition,

between nodes that represent different drives, and cooperation, between

modules that incline the organism toward satisfying the same drive. Montalvo

(1975) noted that the structural features of such a two-dimensional competitive-

cooperative network of drive representations are similar to those of Dev’s

(1975) competitive-cooperative network of binocular disparity detectors.

FIGURE 4.18 (a) Representation of surface orientation. Orientation of arrows is
determined by the projection of the surface perpendicular to the image plane, and
length of arrows represents the dip out of that plane. (b) 21⁄2-D sketch including surface
orientations and their discontinuities.

Source: Reprinted from Marr and Poggio, 1977b, with author’s permission.

BINOCULAR

MONOCULAR

Left eye Right eye

FIGURE 4.19 Monocular processing of patterns through feedforward competitive
networks is followed by binocular matching of the two transformed monocular
patterns. Pooled binocular edges are then fed back to both monocular representations.

Source: Reprinted from Cohen & Grossberg, 1984, with permission of Lawrence Erlbaum Associates.



122 Foundations of Neural Network Theory

The idea that competition between drive representations is biased by the

current sensory environment also appears in Grossberg (1975). Grossberg

proposed a sensory–drive heterarchy (see Figure 4.20) in which each drive

representation is activated by a combination of internal drive level and external

sensory inputs compatible with the given drive. (In one variant, drive and

sensory influences combine multiplicatively rather than additively, so that

neither can activate the representation without the other.) In this way, even if

one drive is strongest, another drive can be satisfied if cues compatible with

the first drive are unavailable; for example, one can eat meals in spite of

prolonged absence of a sexual partner.

Competitive neural processes, as noted in Chapter 1, are also likely to be

important in category formation, which is discussed in Chapters 7 and 8. In

order to make choices when classifying a sensory pattern, many modelers (e.g.,

Bienenstock, Cooper, & Munro, 1982; Carpenter & Grossberg, 1987a, 1987b;

Rumelhart & Zipser, 1985) use an on-center off-surround field among cell

populations within a level of nodes that detects categories (presumably at

intramodal or intermodal association areas of the cerebral cortex).

Finally, there can be competition between representations of time sequences

of sensory stimuli or motor actions. That idea was propounded by Grossberg

(1978b) in a model of goal-directed behavior. In this model, competition

SENSORY
STIMULI

SENSORY
STIMULI

M

S2S1

A

D1 D2 D3

(a)

D1 D2 D3

(b)

A

M

S2S1

FIGURE 4.20 Competition between drives, denoted Di. In a conditioning network 
(see Chapter 5 for details), sensory stimulus representations, collectively denoted S1,
are conditioned to drive arousal sources A. The strongest drive sends feedback to S2,
allowing S1 nodes to be conditioned to motor responses at M. (a) Sensory–drive
heterarchy: the “winning” drive is determined by a combination of internal drive level
and compatible cues. (b) Drive heterarchy: the “winning” drive is determined only by
internal drive level.

Source: Adapted from Grossberg, 1975, with permission of Academic Press.



between sequence representations is biased in favor of longer over shorter time

sequences. This bias causes the network to respond not just to the most recent

events but to a longer sequence of events and to the consequences of its own

recent past actions. The representation of stimulus or motor sequences is

developed further in the masking field model of Cohen and Grossberg (1987).

Hence, the on-center off-surround or competitive-cooperative network is one

of the most versatile and most widely used neural architectures. Along with

associative synaptic modification, it is a prime component of networks that

replicate complex cognitive processes, as discussed in the second section of

this book (Chapters 6–9).

Equations for Networks in Chapter 4

Competition, Lateral Inhibition, Short-Term Memory 123

Detailed Description: Shunting Lateral Inhibition with
Faster-than-Linear Signal Function

The Grossberg version of the shunting on-center off-surround field,
captured mostly by Equations (4.3), includes a wide variety of subcases
based on (1) presence or absence of biases that select some of the nodes over
others; (2) values of the excitatory and inhibitory coupling coefficients; 
(3) presence or absence of outside inputs; and (4) nature of the signal
function or activation function f. For definiteness let us consider the case
where (1) all biases, or maximum activities, Bi are equal to the same
number B; (2) each node excites itself and uniformly inhibits all the others,
so that the excitatory coefficients cik are 1 if i = k and 0 otherwise, and the
inhibitory coefficients are the reverse, namely 0 if i = k and 1 otherwise; 
(3) excitatory inputs Ii and inhibitory inputs Ji are shut off, with the values
of the node activities xi at time 0 roughly reflecting the pattern of previous
inputs; (4) the activation function f is a function that grows faster than
linearly, specifically, f (x) = x2. This leads to the following special case of
Equations (4.3):

The term xi
2 can be added into the sum of xk

2 over all k not equal to i to
make the sum of xk

2 over all k including i, yielding the equations

(4.7)

dx
dt

ax b x x x xi
i i i i k

k i

= − + − −
≠

∑( ) .2 2

dx
dt

ax bx x xi
i i i k

k

= − + − ∑2 2



Now suppose the nodes whose activities are described by (4.7) are indexed
so that they are in descending order of initial (time = 0) activities, that is:

with n being the total number of nodes. What do the interactions described
by Equations (4.7) (and specifically the faster-than-linear nature of the
activation function) tell us about the dynamics of the system over time?

From (4.7), the ratio of dxi/dt, the rate of change of the activity of node
i to the node activity xi itself, is:

(4.8)

Equation (4.8) yields the relative “growth rate” of the ith node activity. Since
the term –a and the sum have the same value for all nodes i, only the term
bxi differs between nodes, and it is larger for those for which xi is larger
(namely, those with smaller indices i). This means that if the relationship
xi > xj obtains at time 0 (or any later time), it also obtains for all later time.
This is the consequence of using x2 as the activation function, and would
be true for any faster-than-linear function. In more poetic terms, “the rich
get richer and the poor get poorer”: a very (excessively, from the point of
view of perceptual psychology) strong form of contrast enhancement. This
is because Grossberg (1973) provides that in fact the activities of nodes with
nonmaximal activities not only decrease but decay to 0 as time gets large.

x x x xn1 2 3(0) (0) (0) … (0),≥ ≥ ≥ ≥

− + −∑a bx xi k
k

2 2

Equations of Sperling and Sondhi

Sperling and Sondhi (1968) developed a lateral inhibitory model of effects in the
mammalian retina, in order to explain certain data on luminance and flicker
detection. Their model includes both feedback and feedforward stages. In the
feedback stage, as shown in Figure 4.5, the jth node is excited by the ( j–1)st node,
for j < n, and inhibited by feedback from the nth node. Hence, the activity xj of
the jth node is described by the differential equation

(4.9)

The nonlinear term –xjxn in Equation (4.9) corresponds to multiplicative
(shunting) inhibition exerted by the nth stage of cells on the jth stage. This type
of inhibition has strength proportional to the present activity of the area being
inhibited. Shunting inhibition, and the related process of shunting excitation,

dx
dt

x x xj
j n j= − + + −( )1 1
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whose strength is proportional to the difference of a cell’s activity from its
maximum possible level, can be related to the effects of a presynaptic neuron on
various postsynaptic ionic conductances.

Equations of Wilson and Cowan

The variables used in Wilson and Cowan (1972) are E(t) and I(t), the propor-
tion of excitatory and inhibitory cells active at time t. The equations incorporate
refractory periods of individual cells, in which a cell is prevented from becoming
active a short time after firing (see Section 2.2). This leads to time-integral terms
that are then removed by averaging the node activities over a suitable time
interval. The refractory period is figured in as a linear factor that decreases as the
number of active cells increases. If IE(t) and II(t) are the inputs to excitatory and
inhibitory nodes, respectively, the resulting differential equations are of the form

(4.10)

where fE and fI are sigmoid functions that transform the linearly combined
excitatory and inhibitory signals, and �E and �I are positive constants (reciprocals
of decay rates).

The shunting interactions in Equations (4.10) place bounds on the network’s
activity. For, if xE and xI are positive, and xE reaches the value kE/rE, then (4.10)
shows that dxE/dt will be negative; hence, xE can never exceed the value kE/rE.
Similarly, xI can never exceed the value kI/rI.

The model defined by (4.10) was extended in Wilson and Cowan (1973) to
include distance-dependent interactions. In the later article, the variables xE(t) and
xI(t) of Equations (4.10) are replaced by xE(s,t) and xI(s,t), the average strength of
excitation and inhibition at location s at time t. Otherwise, the equations are
essentially the same as (4.10) with the terms for xE and xI inside the sigmoid
functions being replaced by the spatial convolutions of xE and xI with distance-
dependent connectivity functions. (Convolution of two functions is the operation
“*”, defined by

which provides a moving average of one function weighted by another.) This 
leads to integrodifferential equations that are not shown here. These equations
include four different connectivity functions – excitatory-to-excitatory, excitatory-
to-inhibitory, inhibitory-to-excitatory, and inhibitory-to-inhibitory.

�

�

E
E

E E E E E E I E

I
I

dx
dt

x k r x f c x c x I

dx

= − + − − +( ) ( )1 2

ddt
x k r x f c x c x II I I I I E I I= − + − − +( ) ( )3 4

( )( ) ( ) ( )f g x f x g x x dx* = ′ − ′ ′∫
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Equations of Grossberg and Coworkers: Analytical Results

Grossberg (1973) considered a pure on-center off-surround network, with
shunting interactions, in which all nodes have the same maximum activity B and
minimum activity 0. The equations for the node activities xi in this network are

(4.11)

As in (4.10), shunting interactions cause a bound in each node’s activity, since
(4.11) shows that if all xk > 0 and some xi = B, then that dxi/dt is negative; hence,
no xi can exceed B.

An important subcase of Equations (4.11) is the case where the inputs Ii are
all equal to 0. This was interpreted to mean that the inputs are encoded by the
starting values xi(0) for the node activities. The pattern that is ultimately stored
in short-term memory, after transformation by the recurrent interactions, was
interpreted as xi(∞). This limiting, or equilibrium, pattern was shown to exist in
a wide variety of cases; later (in Grossberg, 1978a) limits were shown to exist for
a more general system that included as subcases the systems of both Grossberg
(1973) and Grossberg and Levine (1975).

What the limiting pattern is, that is, which parts of the input pattern are stored
in short-term memory, depends on the choice of the function f. That function,
which has to be monotone increasing, is a signal function representing input–
output transformations at the neuronal level, reminiscent of similar constructions
in Wilson and Cowan (1972, 1973).

The classes of functions f that were studied closely are the ones shown in 
Figure 4.10. The dynamics of the network for these functions are as shown 
in Figure 4.11:

(a) f linear. In this case, the limiting pattern has a fair distribution: the values
xi (∞) are proportional to the values xi(0), thus representing faithful storage
of the original pattern.

(b) f grows slower than linearly. The limiting pattern has a uniform distribu-
tion: all xi(∞) are equal, regardless of the distribution of the xi(0).

(c) f grows faster than linearly. The limiting pattern has a 0–1 distribution: for
those xi where xi(0) = max {xi(0): i = 1, . . . , n}, xi (∞) = 1. For all other nodes,
xi (∞) = 0.

(d) f sigmoid. Since a sigmoid function is linear, faster than linear, and slower
than linear over different ranges of its argument, the limiting distribution
combines fair, uniformizing, and 0–1 tendencies. Inequalities were found
which prevent uniformization from occurring. Hence, fair and 0–1 effects
combine into an effect described as contrast enhancement with noise suppression.
The limiting xi (∞) are proportional to xi (0) if xi (0) is above a threshold value
(quenching threshold) and equal to 0 if xi (0) is below that value.

dx
dt

Ax B x f x x f x Ii
i i i i k i

k i

n

= − + − − +
≠

∑( ) ( ) ( )



The equations in Grossberg and Levine (1975) are the same as (4.11) except
that B is replaced by Bi , which might be different for each i. The set of nodes
with the same Bi , called a subfield, can be interpreted as the set of neuron
populations responsive to a particular sensory feature (such as the color red or the
vertical orientation). The results of Grossberg (1973) generalized to distributions
that were fair, uniform, 0–1, or contrast enhancing within each subfield, as shown
in Figure 4.9.

The equations of Grossberg and Levine (1975), without outside inputs, can
be rewritten

the sum now being over all k including i (see Exercise 2 of this chapter). Those
equations are a subcase of the more general system

(4.12)

where x denotes the vector (x1, x2, . . . , xn). Grossberg (1978a) proved that every
solution of the system of Equations (4.12) approaches an equilibrium, the only
restrictions on the functions in the equation being that Ai are nonnegative, Bi
are bounded, and C is nondecreasing with respect to each xi . Since C(x) has a
negative influence on the growth of xi , the latter condition ensures that each node
will tend to inhibit other nodes. The proof of approach to equilibrium did not
use Lyapunov functions; rather, competitive interactions were shown to restrict
the possible number of changes in which variable is growing fastest at a given time.
This technique had been used before in Grossberg and Levine (1975) and was
carried further in a general mathematical study of competitive dynamical systems
by Hirsch (1982, 1984).

But Equation (4.12) generalizes only the form of Grossberg’s equations in
which inhibition is distance-independent. It does not encompass the distance-
dependent equations

(4.3)

which were mentioned in Section 4.2. As Cohen (1988) proved, solutions of
Equations (4.3) do not always converge to an equilibrium, even when n = 2. But
Cohen and Grossberg (1983) showed that these equations do converge to an
equilibrium in the case where there is no internode cooperation, that is, excitatory
interaction coefficients cik are 1 when i = k and 0 otherwise, and inhibitory inter -
action coefficients obey the symmetry condition eik = eki .

dx
dt

Ax B f x x f xi
i i i i k

k

n
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The Cohen–Grossberg theorem does, however, apply to a system that is more
general than (4.12). That system is

(4.13)

where the interaction coefficients cik are symmetric (cik = cki), the functions ai are
nonnegative, bi are arbitrary, and dk are differentiable with nonnegative derivative
(which indicates the competitive nature of the system). Equation (4.13) includes
as subcases not only (4.3) but also the continuous form of the equations by
Hopfield (1984) and Hopfield and Tank (1985, 1986), as will be seen in the next
subsection. Cohen and Grossberg showed that the Lyapunov function

(4.14)

is nonincreasing along trajectories of the system (4.13). We do not give their
demonstration here, but in the next subsection we offer an analogous demon -
stration for the Hopfield–Tank network. 

Equations of Hopfield and Tank

Recall from Section 4.2 above that Hopfield (1982) developed a linear threshold
algorithm in which nodes had states that can take on the value 1 or 0. The ith
node readjusts its state, at random moments in time, according to the rule

(4.4)

Then Hopfield considered the energy (Lyapunov) function

(4.5)

He then showed that, if energy changes by an amount �E, whenever xi changes
by �xi, then

(4.6)

Since �xi is 0 or of the same sign as �j≠iwij xj , (4.6) implies that �E � 0 at all times.
Some extensions of the above energy function, in both discrete and continuous

models, were made in Hopfield (1984) and Hopfield and Tank (1985, 1986). 
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In Hopfield (1984), the discrete system of the 1982 article was extended to include
external inputs Ii to each node and thresholds �i that were not necessarily equal
to 0. Hence, (4.4) was replaced by the criterion

(4.15)

Under the condition (4.15), there will always be a decrease in the Lyapunov
function

(4.16)

A generalization of the algorithm defined by (4.15) to the continuous-time case
was introduced in Hopfield (1984) and developed further in Hopfield and Tank
(1985, 1986). In this work, the output xi of the ith node was treated as a function
(usually sigmoid) of the input ui, as in the articles reviewed earlier in this section
by Wilson and Cowan (1972) and Grossberg (1973). The equation for ui is then

(4.17)

where xi = gi (ui ) for some increasing, differentiable functions gi . Since gi is
increasing, it has an inverse function gi

–1; hence, one can write ui = gi
–1(xi). Ci and

Ri are analogs of capacitance and resistance across the membrane of a single neuron
(for more details on membrane electrical flows, see Katz, 1966).

The system (4.17) also has a Lyapunov function similar to (4.16). This
function is

(4.18)

If the matrix of weights is symmetric (wij = wji), then differentiating (4.18) with
respect to t yields

(4.19)

But the expression in brackets on the right-hand side of (4.19) is just the right-
hand side of (4.17). Hence
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which means that dE/dt ≠ 0, because Ci is a positive constant and gi , being an
increasing function, has a positive derivative.

The system (4.17) arises from the Cohen–Grossberg system (4.13) with the
following substitutions: ai (ui) in (4.13) is the constant function equal to 1/Ci ; 
the coefficients cij in (4.13) are the negatives of the coefficients wij in (4.17); the
functions dj and gj of the two respective systems are identified; and the bi (ui) 
are set equal to –(ui /Ri) + Ii . With these substitutions, and the Hopfield–Tank
identity xi = gi (ui), it can be seen that the Lyapunov function (4.14) reduces to
(4.18).

Equations of Amari and Arbib
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c(x)

INHIBITORY
SPREAD

e(x)
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DISTANCE

INTERACTION
WEIGHT

w(x)
= c(x) – e(x)

DISTANCE

FIGURE 4.21 If excitatory and inhibitory spreads as in Figure 4.4 combine subtractively, a
distance-weighting function arises like the one in the bottom graph. This function is called
a difference of Gaussians (DOG) because the functions c (x) and e (x) can arise from a
Gaussian (normal) probability distribution. The DOG is used in model equations by
Amari (1977a) and many others.



Amari (1977a) developed an equation for a single-layer neural field of lateral
inhibition type. His variable is an activity u(s, t) that depends both on (uni -
dimensional) visual field location s and time t. This equation is

(4.20)

In Equation (4.20), w (x) is a distance-dependent weighting function, one that
typically combines short-range excitation and long-range inhibition in an additive
fashion, as shown in Figure 4.21. The function f is a step function (1 for u above
a threshold, 0 for u below) which is, of course, an approximation of a sigmoid.
The constant h denotes baseline activity level, and I (s, t) denotes outside inputs.

In Amari and Arbib (1977), Equation (4.20) was elaborated into equations for
a two-dimensional competitive-cooperative field. The two dimensions are position
and binocular disparity. There are separate excitatory and inhibitory weighting
functions that combine multiplicatively and separate excitatory and inhibitory
nodes. (Only excitatory and not inhibitory activity is disparity-dependent.)

Exercises for Chapter 4

**1. Consider Grossberg’s differential equation for shunting without lateral
inhibition:

(4.1)

Let the inputs Ii form a constant spatial pattern, Ii = �i I with �i�i = 1 so
that �i Ii = I. The steady-state solution of a system of differential equations
is obtained by setting the derivatives equal to 0. Hence, in (4.1), at the
steady-state values xi (∞),

so that, by algebra, xi (∞) = B�i I/(A + �i I ). This leads to a distortion of the
relative pattern weights �i . Such distortion has been called the noise-
saturation problem (Dalenoort, 1983; Grossberg, 1973), because insignificant
inputs (“noise”) are amplified, while distinctions between intense inputs are
blurred (“saturated”).
(a) Show that in the shunting equations with lateral inhibition,

(4.2)

with Ii = �i I, the noise-saturation problem disappears. That is, the
steady-state values xi (∞) are proportional to �i , the relative pattern
weights.
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(b) Find the steady-state values of xi if (4.2) is replaced by the same
equation with minimum activities equal to C < 0 instead of 0, namely

(4.21)

Show that for a network defined by (4.21), the xi (∞) are proportional
to the �i – K for K a constant.

(c) Find the steady-state values of xi if (distance-dependent) excitatory and
inhibitory interaction coefficients are included, i.e.,

(4.22)

Note that for the network defined by (4.22), steady-state values are 
no longer proportional to �i , or any linear function of �i. For n = 5, 
B = 2, C = .5, choose values of cki and eki that are symmetric and decrease
with distance between k and i, with cki decreasing faster, and see how
the steady-state values vary with the total intensity I.

*2. The following problem deals with simulation of the shunting recurrent on-
center off-surround equations with attentional biases

(4.23)

as studied by Grossberg and Levine (1975). Note: Equation (4.23) can also
be written

which is the subcase of (4.3) with
cik = 1 for i = k and 0 for i ≠k
eik = 0 for i = k and 1 for i ≠ k
Ii = Ji = 0

Let n = 3.
(a) Let A = 1, choose values for the Bi such that B1 > B2 > B3, and let the

signal function f (x) be x2. Note this means f is “faster than linear”; see
Section 4.2 and Figure 4.13. Choose different sets of initial conditions
such that the xi are in an order opposite to that of the Bi , that is, x1(0)
< x2(0) < x3(0), and such that for each i = 1, 2, or 3, xi (0) < Bi . Verify
that the values of xi reach nearly steady-state values after several hundred
or fewer iterations. Vary the ratios between the initial values of xi and
study how that affects which node “wins” the competition. (Hint:
Equations (4.23) can be used to give information on the relative sizes
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of (dxi /dt)/xi ), which is the “growth rate” of xi , for different values of
xi and Bi.) It is also possible that no node will win, that is, all three xi
values converge to 0.

(b) Do the same as part (a) with a sigmoid signal function, and with a
slower-than-linear signal function such as f (w) = aw/(b + w) for a suit -
able a and b. The sigmoid should be chosen so that f (0) = 0 and so
that its inflection point occurs at a positive x value; initial node activities
should then be chosen within the range where f is faster than linear or
nearly linear.

**3. To simplify Equations (4.4)–(4.6): the Hopfield net consists of nodes with
activities xi equal to 0 or 1 and fixed connection weights that satisfy wij =
wji when i ≠ j (there is no wii ). At random times, activities change one at a
time according to the following rule:

Let Si = �j≠iwijxj . Then if Si > 0, xi becomes 1, whatever its current value
is. If S < 0, xi becomes 1, whatever its current value is. If Si = 0, xi stays
at its current value.
For the Hopfield net with 3 nodes and weights w12 = 4, w13 = 3, and
w23 = –5, find
• all possible transitions between the 8 possible states;
• all equilibrium states;
• the state at which the Lyapunov function E = 1–2�j≠iwij xixj is at a

global minimum

�4. One of the most studied visual illusions is the Muller–Lyer illusion. In this
illusion the perceived length of a line segment can be influenced by the
directions of arrowheads to its side; for example, the line segment in (a) looks
longer than the line segment in (b), even though objectively they are of the
same length (see Figure 4.22). Construct a neural network that explains the
Muller–Lyer illusion. Use a recurrent competitive-cooperative network of
position and orientation detectors, as discussed in Section 4.3 above.

(a)

(b)

FIGURE 4.22 Muller–Lyer illusion (see text for details).

�5. Using the idea of synchronized oscillations (Section 4.2.6), and any other
network ideas from this chapter, design a network model of the perceptual
binding process. Present the network with a green circle and a blue square.
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The network with the set of connection parameters representing normal
cognition should bind the green to the circle and the blue to the square so
that it sees the correct objects. Change some of the parameters to represent
either attentional overload or parietal lobe damage, and the network should
now sometimes incorrectly see a green square and/or a blue circle.

�6. Read the article of Dev (1975), from which Figure 4.21 is taken. Build 
a network according to the lines she suggested with competition and 
co operation in the position dimension, and competition in the disparity
dimension. Attempt to reproduce the results of Figure 7 of that article,
where a random-dot stereogram is partitioned into segments in which differ -
ent disparities are detected. (Note: inhibition between detectors of different
disparities is mediated by “inhibitory arrays” at another level of Figure 4.21.)

*7. This exercise is designed to simulate the process of boundary completion,
as in the illusory square of Figure 4.12. Specifically, the object is to
qualitatively reproduce the graphs in Figure 4.23, which is based on
Grossberg and Mingolla (1985a).

The “Y Field” and “Z Field” in Figure 4.23 correspond to two different
layers of nodes that respond to a given orientation (say, horizontal) at
different visual field positions. They are part of a competitive-cooperative
feedback loop, most of which does not need to be reproduced to get the
desired effects.

Index the nodes of the lower level (Y field) from 1 to 40. Let nodes 15
and 25 receive sustained inputs Ii and not the others. The equations for
feedback between higher and lower levels are:

where the signals from left and right neighbors are

Remember that the superscript “+” in the dyi /dt equation means replacing
the quantity in brackets by 0 if it is negative and keeping that quantity is
it is positive. For i = 1 the summation in the Si

left equation is 0, and i = 40
the summation in the Si

right equation is 0.
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Let A = B = 1, D = 10, and � = δ = 0.5. Find settings of the parameters C
and E that will yield the “filling-in” process described by the two graphs
while simulating the differential equations in with time step 0.1. The separate
curves on each graph denote the activities of the nodes in the appropriate
field at successive times, with the higher curves occurring at later times.
Hints: (1) The simulations that have worked best have used a very high value
for the feedback parameter E, a value 20 to 70 times as high as those of the
other parameters. (2) When yi = C, The right-hand side of the dyi /dt
equation is negative because C–yi = 0. This means that on the computer
generated graphs, yi should never be larger than the value you have chosen
for C! If it goes higher this is due to numerical instability of the program.
The time step was chosen in part to prevent that.

FIGURE 4.23 Activities of two layers of nodes in response to lines of a given
orientation; see text for details.
Source: From Grossberg & Mingolla, Psychological Review, 92, 173–211, 1985. Copyright 1985
by the American Psychological Association. Adapted by permission.

Some Additional Sources

Lateral Inhibition in Cortex and Other Brain Areas

Experimental data

Chevalier & Deniau (1990); LaBerge (1990).



136 Foundations of Neural Network Theory

Network Models

Coultrop, Granger, and Lynch (1992); Koch and Ullman (1985); LaBerge,
Carter, and Brown (1992); Reeves and Sperling (1986); Reggia, D’Autrechy,
Sutton, and Weinrich (1992); Tsotsos et al. (1995); Walley and Weiden (1973).

Review of Roles in Cognitive Psychology

Levine and Brown (2007).

Synchronized Oscillations

Ghose and Freeman (1997); Horn & Opher (1996); Levine, Brown, & Shirey
(2000); Malsburg & Schneider (1986).

Modeling Visual Form, Color, and Depth Detection:

Grossberg and Mingolla (1987); Grossberg and Todorovi_ (1988); Takebe,
Nakauchi, and Usui (1996); Usui, Nakauchi, and Miyake (1994).

Modeling Visual Motion Detection

Carandini and Heeger (1994); Chey, Grossberg, and Mingolla (1998); Francis
and Grossberg (1996); Heeger, Simoncelli, and Movshon (1996); Lange and
Lappe (2006); Marshall (1990); McKinstry, Seth, Edelman, and Krichmar (2008);
Ö_men and Gagné (1990); Tlapale, Dosher, and Lu (2015); Wurbs, Mingolla,
and Yazdanbakhsh (2013); Xue and Liu (2014).

Note

1 This symmetry assumption is made for mathematical convenience and is not likely to be
biologically realistic. On this point, the reader should refer back to the discussion of Kosko’s
BAM in Section 3.4.
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5
PROGRESS IN COGNITIVE 
NEUROSCIENCE

Too much sanity may be madness and the maddest of all, to see life as it is
and not as it should be.

Miguel de Cervantes

The true method of knowledge is experiment.

William Blake

5.1. The Emergence of Cognitive Neuroscience

Since the publication in 2000 of the second edition in this book, the growth 

of cognitive neuroscience has been explosive. While functional magnetic

resonance imaging (fMRI) has been employed as a research tool since 1991,

transcranial magnetic stimulation (TMS) since 1985, and positron emission

tomography (PET) since the early 1980s, gradual improvement in the func -

tioning and availability of all those devices has greatly increased the number

of noninvasive human studies in this century. In addition, over the same

period there has been ever increasing knowledge of the single-cell properties

of both monkeys and rodents involved in behavioral and cognitive tasks. Also,

there has been a wide range of studies involving a host of other techniques

including the traditional electroencephalography (EEG) and event-related

potentials (ERP); different imaging techniques such as near-infra-red spec -

troscopy (NIRS, which is primarily cortical) and single photon emission

computed tomography (SPECT); and gene manipulation.

The term “cognitive neuroscience” was coined by the psychologist George

Miller and the neuroscientist Michael Gazzaniga in the late 1970s. At that time

there was still little contact between neuroscientists and either experimental



psychologists or cognitive scientists. In the 1980s things began to change:

leading psychologists such as Amos Tversky started to deliver keynote

addresses at the annual meeting of the Society for Neuroscience, and large

psychology conferences included many brain imaging and single-neuron

studies. The growth of the connections between neuroscience and cognitive

science can be attributed mainly to the noninvasive brain mapping techniques

and to the presence in every researcher’s office and laboratory of computers

capable of handling what are now called “big data.” The development of more

brain-faithful neural network modeling was also both a cause and an effect of

this development and occurred concurrently with it.

The growth of studies has enabled us to parcel cognitive neuroscience into

related subspecialties depending on the processes being studied. For example,

the widely read collection edited by Gazzaniga (2009) includes sections, each

with its own section editor, on the following topics: development and evolu-

tion; plasticity; attention; sensation and perception; motor systems; memory;

language; the emotional and social brain; higher cognitive functions; and

consciousness. In addition, the widely read collection of neuroimaging studies

of cognition edited by Cabeza and Kingstone (2006) contains the follow-

ing sections: attention; skill learning; semantic memory; language; episodic

memory; working memory; executive functions; early cognitive development;

cognitive aging; emotion and social cognition; neuropsychologically impaired

patients.

While cognitive neuroscience is a young field, a number of studies have

become classic enough to be part of the canon of neuroscientists, psychologists,

and neural modelers alike. This chapter, organized by subsections, will attempt

to review some of these classic studies. It is inevitable that we will omit some

results that some readers consider equally important in the field’s development.

For those readers needing additional background in neuroscience, particularly

in the location and function of specific brain regions, Appendix 2 of this book

provides some of this background and cites other books that give greater detail

about those regions.

5.2. Cognitive Neuroscience of Conditioning and
Reinforcement Learning

5.2.1. Dopamine and Reward

A series of studies, starting in the 1980s, by Wolfram Schultz and his colleagues

on the responses of neurons in two midbrain nuclei, the substantia nigra pars
compacta (SNc) and ventral tegmentum (VT), made significant contributions

to understanding the neuroscience of conditioning (e.g., Ljungberg, Apicella,

& Schultz, 1992; Mirenowicz & Schultz, 1994; Schultz, 1986; Schultz,
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Apicella, & Ljungberg, 1993). Those two nuclei are the brain’s main sources

of the neurotransmitter dopamine, the transmitter most implicated in reward

perception and prediction. The experiments of Schultz et al. were inspired by

many other investigators’ work implicating dopamine in the actions of addictive

drugs and in brain self-stimulation.

The experiments of Schultz’s group involved monkeys performing

behavioral tasks and receiving rewards, usually fruit juice or a piece of apple.

In the early stages the majority of dopamine neurons increased their firing rates

for short periods of time when the reward was presented, regardless of the type

of reward. After that, visual or auditory cues were repeatedly paired with the

reward. When the animals had been trained, the dopamine neurons shifted their

phasic burst of activation to the time of delivery of the visual or auditory

conditioned stimulus, and no longer responded directly to the reward itself.

Hence at all times these neurons responded to the earliest predictor of reward.

Schultz and his colleagues also found that the midbrain dopamine neurons

were sensitive to extinction of the conditioned response. Once training had

occurred, the animals expected a reward at a particular time interval after the

presentation of the CS. If the reward was not delivered, the dopamine neurons

showed a corresponding decrease in firing rate. Hence, dopamine neurons are

sensitive to reward prediction error, that is, either more or less reward delivered

than expected.

Fiorillo, Tobler, and Schultz (2003, 2005) found that these same dopamine

neurons are also sensitive to the uncertainty of reward. In a conditioning

paradigm wherein reward is obtained on some trials, in addition to the phasic

activity in response to an unexpected reward the dopamine neurons show

sustained activity in response to the CS. This sustained activity does not occur

if the probability of a trial being rewarded is 1, but gradually increases as the

reward probability is lowered to .5. If the reward probability is brought lower

than .5 the sustained activity decreases again until it is absent at reward

probability 0.

The results of Schultz et al. led other researchers to investigate the exact

function dopamine performs in the process of learning about rewarding stimuli.

Berridge and Robinson (1998) and Berridge (2007) reviewed evidence that

dopamine antagonists did not interfere with the affective pleasure from rewards.

These researchers concluded that dopaminergic reward signals strengthen the

“wanting” of a reward, that is, the motivation to work for the reward in a current

context, not the “liking” or affective enjoyment which is more related to other

brain systems (including opioid receptors and the amygdala).

The results on dopamine function from Schultz’s laboratory and several

others consistently show that dopamine is involved in learning and prediction

errors for affectively positive and rewarding stimuli. As for affectively negative

or punishing stimuli, some studies show dopamine neuron involvement but

many others do not. Another neurotransmitter, serotonin (5HT), seems to be
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involved in avoidance responses and often seems to counteract the effects of

dopamine. For that reason, Daw, Kakade, and Dayan (2002) and Boureau and

Dayan (2011) conjectured that 5HT neurons code prediction errors for

punishment in the same way that DA neurons do for reward. Yet that

conclusion is hard to verify because of the multitude of receptor types for 5HT

(even greater than it is DA), and the data so far do not clearly support or refute

the notion of a punishment prediction error.

5.2.2. Some Roles of Striatum, Orbitofrontal Cortex, and
Amygdala

The dopamine neurons send signals to wide areas of the brain but have a

particularly close association with the striatum, both its dorsal parts (caudate

and putamen) and ventral parts (nucleus accumbens). Learnable synapses

from prefrontal cortex to striatum are particularly important in reward learning.

There is now considerable evidence that plasticity in corticostriatal synapses

depends on intact dopamine systems, which is not true of plasticity elsewhere

in the brain.

Aosaki, Graybiel, and Kimura (1994) recorded electrically from tonically

active neurons (TANs) in the dorsal striatum of monkeys who were being

classically conditioned to associate a sound with a reward. They found that in

normal monkeys these TANs increased their responsiveness to the click CS 

in the course of the conditioning task. However, monkeys given a dopamin-

ergic neurotoxin, and thereby depleted of dopamine inputs to the striatum, did

not show that increase in responsiveness. More recent results on dopamine 

and corticostriatal plasticity are reviewed in Calabresi, Picconi, Tozzi, and

DiFilippo (2007) and Wickens (2009). These articles summarize evidence 

that dopamine mediates both long-term potentiation (LTP) and long-term

depression (LTD) at corticostriatal synapses, through molecular mechanisms

that have not been completely specified. Of these two processes, LTD is more

prevalent, which may be consistent with the suggestion of Wickens and Kotter

(1995) that “dopamine increases output from the most active cells (which are

in the minority) and decreases output from the less active cells” (p. 192). There

have also been suggestions that the balance between LTP and LTD in the

striatum is mediated by the dopaminergic system’s interactions with other

neurons in the striatum that use acetylcholine as a transmitter (Bullock, Tan,

& John, 2009).

The orbital prefrontal cortex (OFC) has strong projections to the ventral

striatum, as well as reciprocal connections with the amygdala, and orbitofrontal

damage in humans impairs making decisions based on expected positive or

negative consequences of actions. Hence it was natural to look for OFC

activity related to reward and behavioral control. Tremblay and Schultz (2000a,

2000b) studied monkeys on a go–no go task, that is, one where they either
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performed or withheld a reaching movement and received either a liquid

reward or a sound that could indicate future rewards. Tremblay and Schultz

discovered that neurons in the OFC mainly respond to the liquid reinforcer

itself, regardless of whether the monkeys have been trained to execute or

withhold the movement at that time.

Other results have shown that OFC neurons respond to the relative values

of either rewards or punishments. Tremblay and Schultz (1999) first found that

monkeys have a distinct order of preference among food rewards; for example,

they prefer raisins to apples and apples to cereal. With the preference order of

foods labeled A for most preferred, B for next most, and C for least preferred,

Tremblay and Schultz divided a conditioning experiment into trial blocks 

where the reward could either be A or B, and other trial blocks where the

reward could either be B or C. They found that the same OFC neurons that

were more active before A than before B when those were the alternatives were

just as active before B when B and C were the alternatives. Several years later,

in a human imaging experiment, Elliott, Agnew, and Deakin (2008) found 

that OFC codes relative and not absolute value of financial rewards. Finally,

Blair et al. (2006) found that both OFC and anterior cingulate cortex (ACC)

respond differently to the comparison of two desirable outcomes versus the

comparison of two undesirable outcomes.

Both the OFC and amygdala play roles in the encoding of the positive 

or negative consequences of actions or values of stimuli, and several neuro -

scientists have investigated the subtle differences between the functions of

those two regions. Among the first were Bechara, Damasio, and their

colleagues, who developed and studied a human decision task called the Iowa
gambling task (IGT) (e.g., Bechara, Damasio, Damasio, & Anderson, 1994;

Bechara, Damasio, Damasio, & Lee, 1999; Bechara, Damasio, & Damasio,

2003). In the IGT the participant goes through trials (usually 100) where he or

she must draw a card from one of four decks of cards shown on a computer

screen. Each deck provides different gains and losses of play money. In the

most common version, two of these decks (decks A and B) have higher short-

term payoffs (say, $100 per card as opposed to $50 for decks C and D).

However, the decks with higher short-term gains also lead to long-term

expected losses.

Bechara and his colleagues tested subjects with and without damage to either

the OFC or amygdala. They found that the subjects without brain damage 

begin with selections from one of the risky decks but gradually begin to shift

toward advantageous decks as the task progresses. On the other hand, patients

with damage to either the OMPFC or amygdala never learn the advantageous

strategy.

Bechara et al. also studied their subjects’ skin conductance responses

(SCRs). Subjects without brain damage not only generate SCRs to positive or

negative feedback but gradually develop anticipatory SCRs during the interval
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preceding a risky choice. Patients with amygdalar damage do not generate

SCRs to negative feedback. Patients with OFC damage, on the other hand, do

show SCRs to negative feedback but not anticipatory SCRs.

The main connections of OFC to amygdala are to an area called the

basolateral nucleus: these connections are bidirectional but there are more

fibers going from amygdala to OFC than the reverse (Ghashghaei & Barbas,

2002). The basolateral amygdala in turn is connected to the central nucleus,

which is connected to the hypothalamus and autonomic nervous system.

Thus both the OFC, with its connections to higher-order goal repre -

sentations, and the amygdala, with its connections to primary emotional areas,

are essential for the flexible representation of the positive and negative

emotional consequences of events. Rolls (e.g., 2000, 2004) has found both OFC

and amygdalar neurons that respond to reinforcing stimuli for all the different

sensory modalities (vision, hearing, touch, taste, and smell). Rolls showed that

when reinforcement contingencies change, for example when a food is no

longer valued owing to satiety for that particular taste or when a conditioned

stimulus is no longer rewarded, amygdalar neuron responses to the stimuli 

are much slower to change than OFC neuron responses. Yet Schoenbaum,

Setlow, Saddoris, and Gallagher (2003) found that in animals with basolateral

amygdala lesions, the OFC neurons do not respond to reinforcing stimuli in a

normal manner.

As humans have developed complex societies, some social reinforcers 

have come to activate the same brain regions as biological reinforcers. This 

is particularly true of financial reinforcers. An fMRI study by O’Doherty,

Kringelbach, Rolls, Hornak, and Andrews (2001) of a probabilistic visual

association task found that different parts of OFC (medial and lateral) showed

activations that correlated with the amount of money gained or lost.

There have also been many studies of the neuroscience of two specific

animal conditioning paradigms. One of these is fear conditioning, whereby 

the animal learns to associate a particular stimulus such as a tone with an

aversive stimulus such as electric shock. The other is eyelid conditioning, also

called the nictitating membrane response or eyeblink conditioning, whereby

the animal learns to associate a tone with an air puff to the eye or a tap to the

forehead that induces eyelid closure.

5.2.3. Fear Conditioning

There have been a large number of studies of auditory fear conditioning

involving areas of cortex, thalamus, and amygdala (see, e.g., LeDoux, 2000).

Typically, the subject is presented with a tone followed by a brief electric

shock. After several pairings the tone by itself begins to elicit any or all 

of several fear-related responses. These responses could include freezing,

autonomic responses such as changes in heart rate or skin conductance,
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endocrine responses such as release of cortisol, and enhancement of some

reflexes such as startle and eyeblink reflexes.

Figure 5.1 shows some of the pathways involved in fear conditioning to a

tone. There are plastic connections, involving NMDA receptors (see Chapter

3), both from auditory cortex and from the medial geniculate, the main auditory

areas of thalamus, to the amygdala, which terminate on the amygdala’s lateral

nucleus. The cortical connection allows for fine distinctions among auditory

stimuli, whereas the thalamic connection is thought to allow for faster but less

differentiated responses (but see Pessoa & Adolphs, 2010, for a different view).

The lateral nucleus in turn sends projections, both directly and indirectly via

other nuclei (basal and accessory basal), to the amygdala’s central nucleus. The

central nucleus projects both to the autonomic nervous system and to the

hypothalamus, generating internal responses such as heart rate, blood pressure,

and skin conductance increases and pituitary stress hormones.

In addition to the tone, animals in the fear conditioning paradigm develop

fear responses to the apparatus itself (the stimulus context). The contextual

associations are mediated by connections from the hippocampus to the basal

and accessory basal nuclei of the amygdala (Byrne et al., 2014; LeDoux, 2000).

5.2.4. Eyelid Conditioning

The behavioral properties of eyelid conditioning in the rabbit (which has a

nictitating membrane, unlike humans) were studied by Smith, Coleman, and

Gormezano (1969). These investigators found that the CS has to precede the

US by at least 50 msec for successful conditioning to occur, with the optimal

CS–US interval being several hundred milliseconds. Conditioning can occur

at CS–US intervals up to four seconds in delay conditioning, whereby the CS

CS
(tone)

MGm

Auditory 
cortex

Amygdala

LA CE

Hypothalamic-
pituitary axis

Autonomic
responses

Behavior

FIGURE 5.1 Neural pathways involved in fear conditioning of an auditory CS. MGm =
medial division of the medial geniculate body, the auditory area of the thalamus. LA is
the lateral nucleus and CE the central nucleus, both of the amygdala.

Source: Adapted from LeDoux, 2000, with the permission of Annual Reviews.



is still present at the time of US onset. In trace conditioning, whereby the 

CS is removed before US onset, conditioning cannot occur at intervals above

two seconds.

Studies of cerebellar lesions showed that both the cortex and deep nuclei

of the cerebellum are required for the nictitating membrane response. In

particular, lesions of the lateral anterior interpositus nucleus of the cerebellum

have been found to prevent occurrence of the eyelid conditioned response (CR)

but have no effect on the unconditioned response (UR) (e.g., McCormick &

Thompson, 1984; Yeo, Hardiman, & Glickstein, 1985a). Lesions of the

cerebellar cortex also have various disruptive effects on eyelid conditioning,

particularly on the timing of the CR (McCormick & Thompson, 1984; Perrett,

Ruiz, & Mauk, 1993; Yeo, Hardiman, & Glickstein, 1985b).

The lesion studies have also been supported by single-cell studies of

Purkinje neurons in the cerebellar cortex during eyelid conditioning. In

particular, Berthier and Moore (1986) found inhibition of Purkinje cell spiking

that preceded the CR. Since the connections from Purkinje cells to deep

cerebellar nuclei are also inhibitory, this meant that interpositus firing increased

during the conditioning paradigm. Purkinje cells have two major inputs: the

climbing fibers from the inferior olive and the parallel fibers from other cells

in the cerebellar cortex. Ito, Sukurai, and Tongroach (1982) found that conjoint

activation of those two sets of fibers leads to long-term depression (LTD, see

Chapter 3) in parallel fiber synapses, suggesting that climbing fibers could be

a pathway for the CR and parallel fibers for the UR.

Another brain region that is particularly important for eyeblink conditioning

paradigm (as it is for conditioning in general) is the hippocampus. The

hippocampus does not seem to be necessary for eyeblink delay conditioning

but it is necessary for eyeblink trace conditioning (e.g., Berger & Thompson,

1978; Green & Woodruff-Pak, 2000).

The role of the cerebellum in mediating timing of the conditioned response

is complemented by a role for the hippocampus in encoding the timing of

stimulus arrivals. In particular, Berger, Berry, and Thompson (1986) found that

during the NMR and one other conditioning paradigm (conditioned jaw

movement) the pattern of neuron responses in the largest type of hippocampal

neurons (pyramidal neurons) mimics the time course of the conditioned

response. This time course is called adaptive because it fits the learned timing

of US arrival.

These adaptively timed cell responses are from a subregion of hippocampus

called CA3. The CA region receives inputs from different types of cells in

another region of hippocampus called the dentate gyrus. These dentate cells

are “time-locked” to the CS; that is, each cell exhibits an increase in firing rate

starting at a fixed time interval after the CS. Hence the hippocampal network

has to convert an array of fixed time delays into adaptive timing.
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5.3. Cognitive Neuroscience of Categorization

Knowlton and Squire (1993) did a behavioral study on amnesic patients and

non-amnesic participants using dot patterns. They presented patterns that were

either small or large distortions of the prototype of a category of dot patterns

or random patterns that were not similar to the prototype of that category. The

amnesics were not significantly worse than the non-amnesics at the classifi -

cation task, which involved placing the prototype-like patterns in the category

and the random patterns outside the category. Yet the amnesics were signifi -

cantly worse than the non-amnesics at remembering specific category members

that they had seen.

From these behavioral results Knowlton and Squire concluded that the brain

regions involved in categorization decisions were different from those involved

in declarative memory of category members; specifically, the hippocampus and

other medial temporal lobe structures involved in declarative memory were less

important for categorization. This supposition was supported by the fMRI

studies of Reber, Stark, and Squire (1998a, 1998b) and Reber, Wong, and

Buxton (2002). In particular, with a categorization task such as that of the

earlier Knowlton–Squire article, the posterior occipital cortex exhibited less
activity for dot patterns that were placed in the category than for noncategorical

dot patterns. In some but not all of the studies the categorical patterns elicited

greater activity in some prefrontal regions. On a recognition task involving the

same dot patterns, the recognized members of the category elicited greater

activity in posterior occipital than other patterns.

Reber and his colleagues explained the categorization data by positing that

members of a category were processed visually in a less effortful manner than

category nonmembers. This involves a sense of familiarity, which is widely

recognized by cognitive psychologists to be separate from explicit memory of

previous events (also known as recollection; see also Eichenbaum, Yonelinas,

& Ranganath, 2007). Hence, the neuroscience of categorization is closely

related to the neuroscience of distinguishing familiar from novel events.

A partial review of brain mechanisms involved in detecting novel events is

given by Ranganath and Rainer (2003). These authors review literature

implicating a variety of areas in novelty detection, including parts of the lateral

prefrontal cortex, orbital prefrontal, anterior insular and anterior temporal

cortex, temporo-parietal cortex (brown), perirhinal and posterior parahippo -

campal areas, much of the hippocampus, and amygdala and cingulate cortex.

Two neurotransmitters are particularly involved in novelty detection:

acetylcholine, which is implicated in attention, and norepinephrine, which is

implicated in arousal.

In addition to fMRI, novelty has been studied by means of event-related

potentials, particularly on auditory tasks. That line of inquiry began with the

discovery by Sutton, Braren, Zubin, and John (1965) of a positive potential
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around 300 milliseconds after presentation of a novel or improbable stimulus,

known as the P300. In a typical study of this kind, one tone is presented

repeatedly but a different tone is interspersed with the dominant tone less often,

and the P300 is elicited by the different (sometimes called “oddball”) tone. 

In some studies by Banquet and his colleagues, reviewed in Banquet and

Grossberg (1987), the oddball also elicits some other, earlier ERP components,

such as a negativity at processing, positivity at 120 ms, and negativity at 

200 ms.

Differences between familiarity and recollection in neural processes in the

hippocampal formation are reviewed by Yonelinas (2002) and Eichenbaum et

al. (2007). These articles discuss different roles in memory for the hippocampus

itself and three areas of older cortex contiguous to the hippocampus in the

medial temporal lobe area, namely the perirhinal, parahippocampal, and

entorhinal cortices. Familiarity is associated with memories of items and

recollection with a memory that includes the context (spatial and temporal) of

those items. As Eichenbaum et al. (2007) review, memory for items is

concentrated in the perirhinal cortex and lateral entorhinal areas, whereas

memory for context is concentrated in the parahippocampal and medial ento -

rhinal areas. Inputs from the cortex to both of those general regions converge

in the hippocampus, which represents items in context. Hence the hippocampus

is crucial for recollection but not for familiarity, which is consistent with the

Knowlton and Squire (1993) amnesia data.

Yet, some fMRI results of Nosofsky, Little, and James (2012) challenge the

notion that categorization and recognition memory involve separate brain

systems. Nosofsky and his colleagues used categorization and recognition tasks

with the same types of random-dot patterns as Reber and his colleagues, but

included a version of the recognition task with a lax criterion. That is, their

instructions emphasized the importance of not missing any previously seen

patterns, but downplayed the importance of avoiding false alarms to patterns

that had not been seen. With the lax instructions, the activation patterns

accompanying recognition became much more similar to those involved in

categorization. This suggested to the authors that, rather than separate memory

systems, the two tasks might involve different parameter settings within the

same neural system.

5.4. Cognitive Neuroscience of Vision and Visual Attention

5.4.1. Visual Cortical Cell Properties and Lamination

The modern era of visual neuroscience began with the work of Hubel and

Wiesel (e.g., 1962, 1963, 1965, 1968). These Nobel laureates set out initially

to find what stimuli were most effective at eliciting neuronal responses in the

primary visual, or striate, cortex in cats and monkeys. Previous investigators
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had found that circular spots of light were the most effective at eliciting

neuronal responses in the retina. Yet Hubel and Wiesel discovered that the

preferred stimuli in the visual cortex tended to be oriented bars or slits of light.

Moreover, cells responsive to particular orientations tended to cluster together

in columns, analogous to what Mountcastle (1957) had previously found in the

somatosensory cortex. They also found cells selective for other attributes

besides orientation, including retinal position, color, and ocularity (left or right

eye); later investigators found cells that were selective for spatial frequency

(Robson, 1975) and for disparity between left and right visual images, a

measure of depth (Barlow, Blakemore, & Pettigrew, 1967).

Hubel and Wiesel also discovered within the visual cortical areas a hierarchy

of different types of cells with varying levels of complexity of the descriptions

of their preferred stimuli. These hierarchical levels were termed simple,

complex, and hypercomplex cells. For example, the area of space in which a

simple cell responds to objects, termed its receptive field, often has an oval 

or rectangular shape, with the cell being excited by light within that oval or

rectangle and inhibited by light just outside it. Complex cells often require the

bar of light to move in a particular direction in order to evoke a cell response.

Hypercomplex cells in addition tend to respond to bars of a particular length

and be inhibited by longer bars, which led to the later designation of a large

class of those neurons as end-stopped cells (Hubel & Livingstone, 1987).

A series of subsequent articles by Hubel and Livingstone (e.g., Hubel &

Livingstone, 1987; Livingstone & Hubel, 1984) further illuminated the

functional significance and receptive properties of different neurons within a

hierarchy of connected visual regions from lateral geniculate to primary visual

cortex (Brodmann area 17, also known as visual area 1 or V1) to secondary

visual cortex (Brodmann area 18, also known as V2). These investigators

reviewed data from cells in two species of monkeys (macaques and squirrel

monkeys) and came up with the following picture of those regions, with some

interspecies variation. In the lateral geniculate, the main thalamic gateway from

retina to cortex, inputs from the retina are divided into two distinct sets of layers

that differ in their cell sizes so are called magnocellular and parvocellular. In

V1, labeling of cells with a stain called cytochrome oxidase reveals a split of

the parvocellular pathway into blobs that are sensitive to color and regions

between blobs (“interblobs”) sensitive to shape. Then cytochrome oxidase

staining reveals three different domains within V2. These regions consist of

thick stripes that are orientation-selective and receive inputs from a particular

layer of V1; pale stripes that are also orientation-selective, and more than half

hypercomplex, and reciprocally connected with interblobs; and thin stripes that

are color-sensitive and reciprocally connected with blobs.

DeYoe and Van Essen (1988) reviewed these processes and added two

further visual cortical processing areas called V3 and V4. These authors 

also incorporated previous work showing that visual processing in the cortex
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could be divided into a “What” pathway mapping properties of objects and a

“Where” pathway mapping their locations (Ungerleider & Mishkin, 1982).

After both pathways go through different yet overlapping visual cortical 

areas, the What pathway ends up at the inferotemporal cortex, and the Where

pathway at the parietal cortex. They come together ultimately in the prefrontal

cortex. A rough schematic of these connections, developed by DeYoe and Van

Essen (1988), is shown in Figure 5.2. A more complete description of all the

brain’s visual areas and their connections is found in Felleman and Van Essen

(1991; see Figure 5.3).

5.4.2. Visual Attention

We have noted that most of the connections in the visual system are reciprocal

(see Figure 5.3). These connections provide a pathway for selective attentional

influences on the perceptions of color, form, orientation, and other features

described in the last section. As with the What and Where pathways, the

FIGURE 5.2 Schematic of connections between lateral geniculate (LGN), areas V1, V2,
and V4, going up to inferotemporal and parietal cortex.

Source: Reproduced from DeYoe & Van Essen, 1988, with the permission of Elsevier Science.



selective attention can either be to particular locations or to particular features

such as colors or shapes. Also, selective attention can be influenced from below

by stimulus properties or from above by goals or tasks.

Selective attention in both humans and monkeys has been found to operate

by biasing signals, mainly from association areas of cortex, that influence
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FIGURE 5.3 Complete diagram of interconnections among over 30 visual areas of the
brain. RGC = retinal ganglion cells, LGN = laternal geniculate nucleus. Most of the
pathways have been verified to have reciprocal pathways. A few nonvisual areas (e.g.,
somatosensory cortex and perirhinal cortex) are included.

Source: Felleman & Van Essen, 1991, with the permission of Oxford University Press.



processing by visual cortex. As Kastner and Ungerleider (2000) note, these

biasing signals can influence responses of visual cortical neurons in a variety

of ways:

(a) the enhancement of neural responses to attended stimuli; (b) the

filtering of unwanted information by counteracting the suppression

induced by nearby distracters; (c) the biasing of signals in favor of an

attended location by increases of baseline activity in the absence of visual

stimulation; and (d) the increase of stimulus salience by enhancing the

neuron’s sensitivity to stimulus contrast.

(p. 332)

A series of articles by Desimone’s laboratory (e.g., Moran & Desimone,

1985; Desimone & Duncan, 1995; Reynolds, Chelazzi, & Desimone, 1999)

describes studies of attentional influences on monkey cell responses in V1, V2,

and V4. In the first of these studies (Moran & Desimone, 1985), the animal

was trained to attend to stimuli at two different locations at different times.

The receptive fields and effective stimuli were determined for cells in V4 and

inferotemporal cortex. It was found that if there were an effective and an

ineffective stimulus (for that cell) both located in its receptive field, and the

animal were attending to the location of the ineffective stimulus, its firing rate

was less than half of what it had been when the animal attended to the location

of the effective stimulus. If the ineffective stimulus was outside the cell’s

receptive field it did not have the same suppressive effect on the cell’s response.

Variations on the behavioral paradigm led to similar attentional effects on

responses in V2 and V1 cells in later work (Motter, 1993; Reynolds et al.,

1999), but the effects on the earlier visual processing stages tended to be smaller

than those on V4 and inferotemporal cortex.

These results led Desimone and Duncan (1995) to develop the theory that

“objects in the visual field compete for limited processing capacity and control

of behavior” and that “competition is biased in part by bottom-up neural

mechanisms that separate figures from their background (in both space and

time) and in part by top-down mechanisms that select objects of relevance to

current behavior” (p. 216). Yet, at the time these authors wrote, there were few

results that verified the location of these biasing signals. Subsequent fMRI

studies on humans verified that different parts of parietal and prefrontal cortex

played dissociable roles in selective attention (e.g., Giesbrecht, Kingstone,

Handy, Hopfinger, & Mangun, 2006; Greenberg, Esterman, Wilson, Serences,

& Yantis, 2010; Kastner & Ungerleider, 2000; Taylor, Rushworth, & Nobre,

2008), although a complete network of regions involved in attention and their

specific roles has not yet been established.

Attentional influences of V2 on V1 were further investigated in several

monkey studies by Bullier and his colleagues, notably Bullier, Hupé, James,
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and Girard (1996). They found that inactivation of V2 feedback to on-center

neurons in V1 increased those neurons’ responses to stimuli in the surrounds

of their receptive fields while decreasing or leaving unchanged their responses

to stimuli in their receptive field centers. This suggests a sort of on-center off-

surround organization of feedback pathways from V2 to V1. Analogously, the

work of Sillito, Jones, Gerstein, and West (1994) suggests an on-center off-

surround organization of feedback from V1 to LGN. Sillito et al. presented

stimuli with orientations preferred by specific V1 neurons in cats, and found

that these led to synchronized firing of those LGN cells whose receptive fields

were encompassed by those stimuli.

The role of parietal and prefrontal areas in visual attention was suspected

when it was found that lesions in these areas can cause neglect of part of the

visual field (e.g., Posner & Petersen, 1990). Different parietal and prefrontal

regions are involved in the three stages described by Giesbrecht et al.:

. . . when a subject is cued to move his or her spatial attention to a new

location, attention must first be disengaged from its current location

within the visual field. Following disengagement, attention must then be

moved from its initial location to the new location. Finally, once the

attentional spotlight has been moved to the new location, attention must

then be engaged with whatever stimuli are in the new location.

(pp. 88–89, authors’ italics)

As Kastner and Ungerleider (2000) noted, the higher-order component of

attention often works in the absence of current visual stimulation, to direct 

the organism’s mental processes toward a particular spatial location or a

particular attribute before it is seen. This is anticipation of future stimulation.

Similarly, attention is closely connected to the memory of past stimula-

tion. Kastner and Ungerleider also note the strong connections between

attention and working memory, with some of the same brain areas (particularly

prefrontal areas) involved in both processes. Working memory is discussed

further in Section 5.6.

Attentional influences on the early stages of visual processing can cause

responses of V1 neurons to reflect any of a wide diversity of vision-related

instructions given the (human or monkey) subject. An example occurs in the

monkey curve tracing experiment of Roelfsema, Lamme, and Spekreijse

(1998). If monkeys are trained to attend to a target curve and ignore a distractor

curve, the V1 neuronal responses to locations along the target curve are

enhanced even if the distractor curve crosses the target curve.

5.4.3. Visual Filling-In

Paradoxically, while attention leads us to ignore parts of the visual world that

are physically present, we also often preattentively fill in parts of the visual
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scene that are physically absent. As discussed in Chapter 4, visual filling-in

allows us to perceive continuity in objects in spite of either occlusion by other

objects or blind spots on the retina. A neural basis for visual filling-in was found

in the 1980s by von der Heydt, Peterhans, and their colleagues, who showed

that there are neurons in the visual cortical area V2 (but not in the primary

visual cortex, V1) of monkeys that respond to illusory contours.

For example, von der Heydt and Peterhans (1989) found that close to half

the neurons in V2 that responded to lines of a given orientation also responded

to illusory lines of the same orientation that were made by the ends of line

segments in a grating of the orthogonal orientation, such as the one shown in

Figure 5.4. Peterhans and von der Heydt (1989) found that neurons respon-

sive to dark bars in their receptive fields also responded to an illusory bar

created by moving notches in two rectangles just above and below the cells’

receptive fields. These illusory contour results show that the higher levels of

visual processing are necessary for the filling-in effects that create continuity

in visual perception.

5.5. Cognitive Neuroscience of Sequence Learning and 
Performance

Many important tasks in the real world require learning and later performing

repeatable sequences of behaviors or actions. These tasks include, for example,

speaking, typing, playing a musical instrument, and reproducing items from a

presented list. Sequence learning and reproduction involves a huge number of

brain regions, in particular the cerebellum; several areas of basal ganglia; motor

cortex, including regions of Brodmann area 6 known as the supplementary

FIGURE 5.4 Example of a stimulus with an illusory contour. Line segments in the
grating point up and 45 degrees to the right, causing an illusory line segment to be
perceived that points down and to the right. V2 neurons sensitive to the down-and-right
orientation also respond to that illusory line segment.

Source: Reproduced from von der Heydt & Peterhans, 1989, with the permission of the Society for
Neuroscience.



motor area (SMA) and pre-SMA; prefrontal cortex; and hippocampus. The

cognitive neuroscience of sequences has a relatively recent history, starting with

single-cell studies on monkeys learning sequences in the mid-1990s and later

supplemented by human imaging studies.

A series of monkey single-cell studies by Tanji, Shima, and their colleagues

found a diversity of cell responses in the SMA and pre-SMA. For example,

Mushiake, Inase, and Tanji (1990) and Mushiake, Masahiko, and Tanji (1991)

trained monkeys to push four buttons on a touch pad in a particular order. The

task was either executed under a visually guided condition (three of the buttons

were illuminated in sequence followed by a GO signal) or a memory condition

(GO signal only). There were neurons in the SMA that were active only in the

memory condition and only before one specific sequence. Shima and Tanji

(2000) and Tanji and Shima (1994) trained monkeys to carry out a sequence,

the elements of which were one of three possible movements: a push, a pull,

or a turn of a manipulandum. There were visually guided and memory

conditions for the task and neurons in both the SMA and pre-SMA selective

for memory and for a particular sequence. But there was also a second type of

neuron, more common in the pre-SMA than in the SMA, which was selective

for the movement’s position in a sequence, regardless of which specific

movement was being performed. A third type of neuron, more common in the

SMA than in the pre-SMA, was active selectively at transitions between two

particular movements – for example, after a push and before a pull, but not

after a push and before a turn, or after a turn and before a pull.

Nakamura, Sakai, and Hikosaka (1998) recorded in SMA and pre-SMA

during monkeys’ learning and performance of what they call the 2-by-N task,

which involves learning a sequence (“hyperset”) of several sequences of two

actions (see also Hikosaka et al., 1999). The responses of individual neurons

were preferentially related to either the acquisition of new hypersets or the

performance of previously learned hypersets. Neurons related to learning of

new sets were predominantly located in pre-SMA, whereas the SMA appeared

to contain a roughly equal distribution of neurons related to new and learned

sets.

What is the role of subcortical regions such as cerebellum and basal ganglia

in sequence/learning? Hikosaka et al. (1999) reviewed a variety of evidence

that the interactions of cerebellum with the cortical regions discussed above

are important for precise timing of sequential behaviors. The interactions of

basal ganglia with cortex, on the other hand, are important for learning the

connections between sequential movements and rewards.

These single-cell studies of different cortical and subcortical regions did not

address whether neural representationof a sequence being learned is a serial

or a parallel process. Many early psychologists regarded sequence learning as

a serial process consisting of chains of associations; that is, to learn, say, the

sequence ABCD one needs to strengthen the connections A-to-B, B-to-C, and
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C-to-D. Yet, Lashley (1951) argued that sequence learning cannot be based on

associative chaining but instead is based on parallel representations of all the

sequence elements, excited to different degrees at a given time. Lashley’s

argument was based on the characteristic errors in sequence learning, which

involve reproducing the correct sequence elements but in the wrong order. Later

cognitive psychologists have verified this argument by showing that typical

errors on many tasks involve the “filling-in” of elements that were previously

skipped; that is, if the sequence to be learned is ABCD and the participant has

produced A and then C, he or she is most likely to go next to B, which has

been skipped, rather than D, which follows C, as an associative chaining model

would predict. Lashley concluded that neural representations of all sequence

elements are present at the start of the sequence reproduction task.

Neurophysiological support for Lashley’s parallel representation hypothesis

came with the work of Averbeck, Chafee, Crowe, and Georgopoulos (2002,

2003) and Averbeck, Crowe, Chafee, and Georgopoulos (2003) on neurons in

an area of the prefrontal cortex (a part of Brodmann area 46). These researchers

trained monkeys to draw a set of geometric shapes including a triangle, square,

trapezoid, and upside-down triangle. After the monkey held a joystick for one

second, a template (geometric form) appeared on the right half of the screen,

and the monkey was free to draw on the left half. If the monkey executed a

complete drawing trajectory, while keeping the cursor within invisible limits

that defined acceptable form, it received a juice reward. Shapes were drawn

in blocks of consecutive trials of the same shape, enabling the monkey to

anticipate the appropriate shape in the subsequent trial, on all trials except the

first trial of a block. Analysis of the monkey’s hand movements showed that

the continuous trajectory was composed of a sequence of individual segments.

While the monkeys carried out this task, ensembles of individually isolated

single area 46 prefrontal neurons were recorded. Neural activity patterns were

defined based upon the average ensemble neural responses that occurred

during the drawing of individual segments of the geometric shapes, and these

activity patterns were considered neural correlates of each segment of the shape.

During the period before drawing the segments, it was found that the neural

correlates of all the segments were active (see Figure 5.5). As that figure shows,

the relative strength of the representation of each segment corresponded to the

serial position of the segment, such that, prior to the execution of the sequence,

the first segment had the strongest representation, the second had the second

strongest representation, etc.

Given that we do form sequential associations, current models predict that

there should be serial as well as parallel processes in sequence learning. The

location of serial processes is not as well established but one likely candidate

is the cerebellum. A variety of evidence from patient studies led Rhodes and

Bullock (2002) to include in their sequence learning model a cerebellar

controller that can learn interitem transitions as well as sequence chunks.
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5.6. Cognitive Neuroscience of Executive Function and
Cognitive Control

The term executive function was developed in the 1960s and 1970s to describe

behavior that is not automatic or following fixed patterns but adaptable to

current tasks and short- or long-term goals. Schneider and Shiffrin (1977) and

Shiffrin and Schneider (1977) distinguished between automatic and controlled
processes. Controlled processes require active mental manipulation and are

employed when the consequences of specific actions are not known for sure.

Automatic processes do not require active manipulation and are employed

when the consequences of actions are invariant. Processes that start out being

controlled often become automatic after they have been well learned: common

examples are driving a car and speaking a language.

Much of our early knowledge of the cognitive neuroscience of executive

function was based on lesion data, specifically data about humans or monkeys

with damage to one or another part of the prefrontal cortex (PFC). One of the

first examples was the famous nineteenth-century patient Phineas Gage, who

lost the ability to plan and order behavior after damage to a part of the PFC;

a modern reconstruction (Damasio, 1994) showed that the main locus of his

damage was the OFC. Milner (1964), Nauta (1971), and Pribram (1973) found

FIGURE 5.5 Strength of neural representations (defined in the text) of different shapes
that a monkey had to draw, as a function of time. Time 0 indicates the onset of the
template, while time bins during the hold period and RT are 25 ms. Length of segments
were normalized to permit averaging across trials. Segment 1 is indicated in solid lines;
Segment 2 in green; Segment 3 in dashed lines; Segment 4 in dotted-dashed lines; and
Segment 5 in dashed–double dotted lines.

Source: Reproduced from Averbeck et al., 2002, with the permission of the National Academy of
Sciences.



158 Computational Cognitive Neuroscience

evidence that prefrontal lesions could lead to many types of executive deficits,

including distractibility, disorganization, impulsiveness (or over-deliberate -

ness), perseveration in formerly rewarding behavior, and excessive attraction

to novelty.

Norman and Shallice (1986) posited two interacting neural systems for

generating automatic and controlled cognitive processes. They called the

generator of automatic processes the contention scheduling system and called

the generator of controlled processes the supervisory attentional system (SAS).

These authors enumerated the following conditions for the SAS to become

involved:

1. Those that involve planning or decision-making.

2. Those that involve error correction or troubleshooting.

3. Situations where responses are not well learned or contain novel

sequences of actions.

4. Dangerous or technically difficult situations.

5. Situations that require the overcoming of a strong habitual response

or resisting temptation.

(Norman & Shallice, 1986, paraphrased by Wikipedia)

Starting in the 1960s and 1970s, several investigators observed the errors

of frontally damaged humans and monkeys on tasks such as the Wisconsin card

sorting test and Stroop test. On the Wisconsin card sorting test, participants

are asked to classify a special deck of cards which differ by three criteria: 

color, shape, or number of the designs on the face of the cards (Figure 5.6).

RED

INPUT

CARD

GREEN

YELLOW

BLUE

FIGURE 5.6 Cards used in the Wisconsin card sorting test; the input card is matched to
one of the four template cards above it.

Source: Reprinted from Neural Networks, 2, D. S. Levine & P. S. Prueitt, Modeling some effects of
frontal lobe damage: Novelty and perseveration, 103–116, copyright 1989, with permission from
Elsevier Science.



The experimenter says “right” or “wrong” without giving a reason, but changes

the criterion used after the participant makes ten consecutive correct

classifications. Patients with damage to the dorsolateral prefrontal cortex
(DLPFC) tend to learn the first criterion used but not be able to switch. On the

Stroop test (Figure 5.7) the participant sees a word representing a color in a

display of either the same color or another color, and is asked to say what color

the word is, suppressing his or her natural tendency to simply read the word.

Frontal patients have more trouble than those with intact frontal lobes at saying

the right color.

Studies of such neuropsychological tests led to the conception that the

prefrontal cortex exerts top-down control on other brain regions via repre -

sentations of goals. This theory was further reinforced in the 1980s by results

from monkey single-neuron studies, particularly those of Fuster and his

colleagues (for summaries see Fuster, 1985a, 1985b, 1997). For example,

Fuster and his colleagues found that, while monkeys performed cognitive tasks

such as delayed-matching-to-sample (whereby the monkey was reinforced for

approaching an object identical to one it had previously seen), neurons in the

prefrontal cortex became selectively responsive to various aspects of the task

(e.g., the stimulus, the delay, and the responses). Quintana and Fuster (1992)

found that lateral prefrontal neurons can code the degree of association between

a cue and a response (see also Asaad, Rainer, & Miller, 1998). Other lateral

PFC neurons have been found to code associations between cues and rewards

(e.g., Watanabe, 1992).

In order to direct the organism toward goals, the PFC neuronal activity needs

to be sustained throughout the task performance period. Numerous investi -

gators, starting with Fuster (1973) and Kubota and Niki (1971), have found

that PFC neurons remain active during the delay period between a cue and a

response. Often the delay period activity is specific to a particular type of

information, including either the “what” or “where” of a stimulus, its sequential
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FIGURE 5.7 Example of stimuli used in the Stroop test.



association within a series, an expected reward, or an associated response: all

these different types of specificity have been found in various studies reviewed

by Miller and Cohen (2001, p. 180).

Recent human neuroimaging results are consistent with the idea that

prefrontal activity is required for tasks that require control and not for repeated

or routine tasks. Jansma, Ramsey, Slagter, and Kahn (2001) found that prac-

tice on a working memory task involving letters led to decreased task-induced

activation of various areas previously shown to be involved in working memory

tasks, namely DLPFC, right frontopolar cortex (Brodmann area 10), and a

broad area that includes both ACC and SMA. These investigators did not find

that different cortical areas increased activity with more practice, but other

investigators studying other cognitive tasks found increased activation of

different areas with practice (e.g., Petersen, van Mier, Fiez, & Raichle, 1998,

using a word production task).

Co-activation of prefrontal areas, particularly DLPFC, and ACC has been

found in various executive and working memory tasks by several investi-

gators (e.g., Duncan & Owen, 2000; Smith & Jonides, 1999). Yet, MacDonald,

Cohen, Stenger, and Carter (2000) found a double dissociation between

activations of DLPFC and ACC, which suggested a division of labor between

those two regions. Specifically, on the Stroop task the ACC was more active

than the DLPFC for incongruent stimuli, where a word for one color was shown

in another color, than for congruent stimuli, where a word for a color was

shown in the same color. The DLPFC and not the ACC, by contrast, was more

active when the participant was accurately naming the color than when she or

he was reading the word. This led MacDonald et al. to posit that the ACC is

involved in detecting conflict and the DLPFC in control of the responses to

that conflict. That theory is further elaborated by Miller and Cohen (2001):

The demands for control are associated with an increase in PFC activity;

tasks demanding greater control elicit stronger activity within the PFC;

and the ACC responds selectively to conflict in processing. However,

further work is needed to establish the causal relationship between

detection of conflict within the ACC and the augmentation of control 

by the PFC.

(pp. 190–191)

The general picture Miller and Cohen (2001) drew of the interrelated roles

of ACC and DLPFC in cognitive control is still widely accepted. Yet the exact

functions of these regions are still undetermined and remain an active focus

of research. Botvinick, Braver, Barch, Carter, and Cohen (2001) review several

findings that implicate the ACC in response to the occurrence of conflict. Some

of their data involve a requirement to override a prepotent response, as in the

Stroop test. Other data involve what is called underdetermined responding: 
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the participant is required to choose from a set of responses without strong

indications in favor of one of those responses. Yet, Brown and Braver (2005)

obtained data suggesting to them that rather than detecting conflict, ACC

responds to a prediction of the likelihood of making an error. These two closely

related interpretations of ACC function (conflict versus error) are still in

dispute (e.g., Aarts, Roelofs, & van Turennout, 2008; Yeung & Nieuwenhuis,

2009).

More recent studies of control circuits involved in high-level function have

looked at different regions of PFC besides the dorsolateral and orbital/

ventromedial parts. One of these is the frontopolar cortex (Brodmann area 10),

the furthest forward part of the PFC. Christoff and Gabrieli (2000) reviewed

several neuroimaging studies of reasoning and episodic memory. They found

that DLPFC is involved in evaluation of externally generated information,

whereas internally generated information requires serial activation of DLPFC

and then frontopolar cortex. Later studies (Badre & D’Esposito, 2007;

Christoff, Keramatian, Gordon, Smith, & Mädler, 2009; Koechlin & Hyafil,

2007) point to a hierarchy of abstraction, both of stimuli and intended

behaviors, encoded by the PFC as one moves forward (from ventrolateral to

dorsolateral to frontopolar).

Another area of prefrontal cortex that has emerged in recent imaging studies

is the ventrolateral (VLPFC; Brodmann areas 44, 45, and 47). Bunge (2004)

reviewed evidence that the use of rules to guide human behavior involves 

a division of labor between VLPFC and DLPFC, whereby VLPFC and its

interactions with the temporal cortex are required for rule retrieval, whereas

DLPFC is required for rule-based response selection.

Braver and Ruge (2006) reviewed some more recent work on neuroimaging

of executive functions and cognitive control. These authors identify seven

different categories of executive functions which different tasks require to

different degrees. The categories are (1) strategic control of memory, (2)

stimulus–response interference, (3) response inhibition, (4) underdetermined

responding; (5) performance monitoring, (6) task management, and (7) higher

cognition. In their review of fMRI findings they found that each category of

functions tends with some variation to activate specific classes of brain regions,

as follows:

• Task conditions involving the preparatory cuing of attention or the

use of attentional control to resolve interference tend to activate

posterior and inferior regions of lateral PFC.

• Task conditions requiring the temporary suppression of ongoing

responses tend to activate right inferior PFC regions.

• Task conditions requiring rapid shifting of attention to different

dimensions or reconfiguration of task sets reliably engage the

superior parietal cortex.
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• Task conditions involving the free selection of potential response

alternatives engage superior medial frontal areas near the SMA.

• Task conditions involving the processing of internal or external

feedback related to the outcome of generated actions reliably engage

the ACC and nearby medial frontal areas.

• Task conditions that require the tracking of changing stimulus–

response contingencies elicit activation in the OFC.

• Complex cognitive activities (such as planning, analogy verification,

and controlled episodic retrieval) that involve the evaluation or

integration of abstract dimensions maintained in working memory

tend to engage the anteriormost regions of the PFC (BA 10).

(p. 330)

5.7. Cognitive Neuroscience of Decision-Making

Since the groundbreaking behavioral studies of Tversky and Kahneman 

(e.g., Tversky & Kahneman, 1974, 1981) it has been widely recognized that

human decision-making is not typically constrained by executive control 

but is heavily influenced by heuristics which are partly automatic. In other

words, decision-makers sometimes override prepotent responses with task-

relevant responses but at least as often employ task-inappropriate prepotent

responses instead. Recently, some fMRI studies of classical decision paradigms

have shed light on some differences in brain activation patterns between

controlled (deliberative) and automatic (heuristic) decision processes on the

same task.

One of the classic decision problems by Tversky and Kahneman has been

termed the Asian disease problem. It asks participants to decide between two

public health measures to combat a disease expected to come to the United

States and kill 600 people: one measure will save 200 for sure; the other has

a 1/3 probability of saving 600 and 2/3 of saving none. The framing of the

choices makes a strong difference in the decisions: if they are framed in terms

of people saved, participants prefer the safer option of saving fewer for sure,

but if they are framed in terms of people dying, participants prefer the risky

option that might lead to no deaths. DeMartino, Kumaran, Seymour, and Dolan

(2006) conducted an fMRI study of a monetary decision task analogous to the

Asian disease problem and compared activation patterns for choices that

conformed to the traditional framing effect (risk seeking for losses or risk

averse for gains) with choices that violated the framing effect (risk seeking for

gains or risk averse for losses). These investigators found larger OFC and ACC

activity on choices violating the framing effect and larger amygdala activity

on choices conforming to the framing effect.

DeNeys, Vartanian, and Goel (2008) instructed their participants that,

within a specific group of people, there were a certain number of lawyers and
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a certain number of engineers, with the numbers varying across participants.

The researchers then identified a person as a member of that lawyer–engineer

group, gave the participants a description closely related to stereotypes of either

the law or engineering profession, and asked the participants to estimate the

probability of that person being a lawyer or engineer. The prepotent response

is to judge the probability of being in each profession solely from the

description: this is called base rate neglect because the appropriate response

is to consider the base rates (relative frequencies in the population as a whole)

as well as the description. In the incongruent case, the group was dominated

by members of one of the professions but the description fit the stereotype 

of the other profession (e.g., the group consisted of 9990 lawyers and 10

engineers, but the description fit the engineer stereotype). In the congruent case,

the majority of the group consisted of people in the same profession whose

stereotype was fit by the description. DeNeys et al. (2008) found that virtually

all participants showed greater ACC activation for the incongruent case

compared with the congruent case, consistent with participants detecting

conflicting information. Yet those participants who used the base rate showed

greater DLPFC activation than participants who neglected the base rate.

Many recent brain imaging studies have investigated the neural bases for

emotional reactions to monetary gains and losses. One of the key areas for

representing gains is the ventral striatum (or nucleus accumbens), an area much

studied in relationship to other kinds of rewards including food, sex, and drugs.

Knutson and Peterson (2005) found that the ventral striatum is activated by

the anticipation of increasing monetary gains, in a manner roughly proportional

to the magnitude of those gains and accompanied by positive emotional

arousal. Yet, many years of behavioral studies note that humans to varying

degrees show loss aversion, in that the negative value of the loss of a certain

amount of money is greater than the positive value of an equivalent gain. Tom,

Fox, Trepel, and Poldrack (2007) investigated the neural basis of loss aversion

with fMRI studies of people who were deciding whether to accept or reject

gambles with a 50% chance of gaining some amount of money and losing 

a different (smaller, usually about half) amount of money. They found that

anticipated gains activated the nucleus accumbens and other reward areas

including dopaminergic midbrain nuclei and ventromedial PFC, whereas

anticipated losses were coded by decreased activity in those same regions.

Moreover, the amount by which activity in reward areas decreased in

individuals correlated with behavioral loss aversion. There were no brain

areas that were more active with anticipated losses than gains.

Also, there are several imaging studies suggesting that many of the emotion-

related brain areas are sensitive to the comparison of obtained positive or

negative outcomes with alternative, unobtained possible outcomes. One of the

first of these studies was by Breiter, Aharon, Kahneman, Dale, and Shizgal

(2001), who devised a gambling game where the participants were each
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presented with one of three spinners composed of three sectors each labeled

with a monetary value. There was a good spinner, where the lowest value was

$0 and the others positive; an intermediate spinner, where the medium value

was $0 and the others of opposite signs; and a bad spinner, where the highest

value was $0 and the others negative. In addition to differential responses to

the spinners themselves, two reward areas – the nucleus accumbens and

sublenticular extended amygdala – were most activated by the same $0

outcome when it was part of the bad spinner, so that the $0 was considered

good relative to the unobtained losses. Henderson and Norris (2013) informed

their participants of two possible outcomes of a card they might select: for one

card either a larger or smaller gain, for another either a larger or smaller loss.

Hence there were four possible outcomes, which they called “outright win,”

“disappointing win,” “relieving loss,” and “outright loss.” Several of the

emotional regions of the basal ganglia, limbic system, and OFC were sensitive

both to the gain versus loss distinction and the type of gain or loss. Also, a

fronto-parietal network was sensitive to the outcomes that caused mixed

emotion (a disappointing win that was not as good as it might have been, and

a relieving loss that was not as bad as it might have been).

5.7.1. Social Decision-Making

Since the start of this century there have been an increasing number of imaging

and lesion studies of social interactions, as reviewed by Rilling and Sanfey

(2011). These studies have implicated many of the same brain regions involved

in decision-making and reward processing in general.

Some of these studies have involved three games that measure the amount

of trust and altruism between two players. The first of these games is the

prisoner’s dilemma (PD). The scenario of the PD is that the prosecutor talks

separately to each of two people involved in a crime and tells them how many

years they will get behind bars if they defect (confess to the crime) or cooperate

(not confess in order not to implicate their partner), numbers that also depend

on what their partner does. Neither of the two prisoners knows what the other

will do, and the numbers are set up so that each individually will get fewer

years if they defect regardless of what the other does, but both get fewer years

if they both cooperate than if they both defect. In the ultimatum game (UG),

one player proposes a division of a specified sum of money between the two.

The other player has to decide whether to accept the division, and if so the sum

is divided as proposed. If the other player rejects the division, neither player

receives any money. The dictator game (DG) is like the UG except that the

second player must accept the offer.

The PD is used as a measure of trust between the two partners, with

reciprocated cooperation being considered the most desirable outcome. In fMRI
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studies of the PD and related games, reciprocated cooperation is associated with

activation of two brain regions involved in reward processing, the caudate

nucleus and OFC (Rilling et al. 2002; Rilling, Sanfey, Aronson, Nystrom, &

Cohen, 2004), indicating the social rewards of mutual trust. Rilling et al. (2002)

also showed that the strength of response in the caudate predicts the degree of

future cooperation. The effects of the decisions to cooperate or defect also

interact with personality differences, particularly on a test of prosocial behavior

(valuing the welfare of others). In the nucleus accumbens (nACC), an area

commonly associated with reward, prosocial participants show more activity

when choosing to cooperate than when choosing to defect, whereas less pro -

social participants show the opposite pattern of nACC activity (van den Bos,

van Dijk, Westenberg, Rombouts, & Crone, 2009).

The UG is also a measure of the altruism of the player is who is dividing

the money (how much he or she decides to be fair) and of what offers the other

player perceives to be fair. Most players offer the other player more than their

own minimum acceptable offer, but that is not true of players who have lesions

in the ventromedial PFC that includes OFC (Krajbich et al., 2009). It was also

found that the level of generosity could be influenced by hormone levels:

oxytocin, a peptide hormone that has many prosocial effects in both animals

and humans, increases generosity whereas testosterone decreases generosity

but only in men (Zak, Stanton, & Ahmadi, 2007; Zak et al., 2009). Interestingly,

oxytocin and testosterone do not have any effect on generosity in the DG, which

is a purer measure of altruism. That result suggests that these two hormones

may be related to the ability to both empathize with the partner and predict the

partner’s behavior, prediction that is irrelevant in the DG where the other

player’s response is forced (Zak et al., 2009). As for the recipient, receiving

what the player perceives to be an insufficiently generous offer activates an

area of the limbic cortex called the insula, which is implicated both in negative

affect and in empathy (Sanfey, Rilling, Aronson, Nystrom, & Cohen, 2003).

Other results have shown perceived unfairness to lead to activity in the

amygdala, which seems to mediate the fear of betrayal.

Finally, the ACC (at least its dorsal part), which has been implicated in

monitoring other types of conflict (Botvinick et al., 2001), reacts to violations

of social norms (see Rilling & Sanfey, 2011, for review). Examples of events

that trigger dorsal ACC activity are breaches of a promise, deviations from a

group opinion, and envy of others.
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Some Additional Sources

Cognitive Neuroscience of Conditioning and Reinforcement Learning

Dayan and Berridge (2014); Maia (2009); O’Doherty et al. (2004); Solway and
Botvinick (2012).

Cognitive Neuroscience of Categorization

Braunlich, Gomez-Lavin, and Seger (2015).

Cognitive Neuroscience of Visual Illusions

Donohue, Green, and Woldorff (2015); Kogo and Wagemans (2013); Maertens
and Pollmann (2007); Weidner, Boers, Mathiak, Dammers, and Fink (2010);
Wokke, Vandenbroucke, Scholte, and Lamme (2013).

Cognitive Neuroscience of Visual Attention

Baldauf and Desimone (2014); Fries, Womelsdorf, Oostenveld, and Desimone
(2008); Johnson and Johnson (2009); Van der Stigchel et al. (2009); Wu et al.
(2013).

Cognitive Neuroscience of Sequence Learning and Performance

Ashe, Lungu, Basford, and Lu (2006); Herd et al. (2013); Hitch, Flude, and
Burgess (2009); Orban et al. (2010); Reithler, van Mier, and Goebel (2010);
Segawa, Tourville, Beal, and Guenther (2015).

Cognitive Neuroscience of Executive Function

Botvinick and Braver (2015); Chevalier, Martis, Curran & Munakata (2015);
Menon and Uddin (2010); Nyhus and Barceló (2009); Provost and Monchi
(2015); Schubotz (2011); Seeley et al. (2007).

Cognitive Neuroscience of Decision-Making

Chang & Sanfey (2013); Feng, Luo, and Krueger (2015); Naqvi, Shiv, and
Bechara (2006); Newell and Shanks (2014); Suter, Pachur, Hertwig, Endestad,
and Biele (2015).



6
MODELS OF CONDITIONING
AND REINFORCEMENT
LEARNING

What reinforcement we may gain from hope;

If not, what resolution from despair.

John Milton (Paradise Lost)

Learning is not attained by chance, it must be sought for with ardor and

diligence.

Abigail Adams

Section 5.2 of the last chapter reviewed recent progress in the neuroscience of

conditioning and reinforcement learning. In the last 20 years there has been a

concurrent development of models that have captured some of the roles for

brain regions such as dopaminergic midbrain nuclei, basal ganglia, amygdala,

hippocampus, and orbital prefrontal cortex in learning processes. Yet these

models are strongly rooted in earlier neural and psychological models starting

in the late 1960s that predated the recent neuroscientific results.

6.1. Early Network Models of Classical Conditioning

6.1.1. Brindley and Uttley

The first neural networks for Pavlovian conditioning were developed in the

1960s within the framework of all-or-none neuronal models. Brindley (1967,

1969) modeled some conditioning data using the all-or-none, symbolic logic

framework of McCulloch and Pitts (1943), with the addition of modifiable

synapses as proposed by Hebb (1949).



Brindley (1967) discussed ten types of modifiable synapses and the logic

of their operation. Of the ten, the most important is the “Hebb synapse,” whose

facilitation depends on correlated pre- and postsynaptic activities. Also, it is

possible for two neurons in the network to be connected by two different

synapses, one modifiable and one unmodifiable. This was an early approx -

imation to a connection between continuous neural elements where synaptic

strength can take on a range of values.

In spite of oversimplifications resulting from the all-or-none framework,

Brindley’s networks for classical and operant conditioning have structural

details in common with later models. For example, strengthening a particular

synapse in his classical conditioning network enables the conditioned stimulus

(CS) to activate a cell that at first needed the unconditioned stimulus (US) to

be activated. This takes place through the action of a network of interneurons,

one of which is polyvalent, that is, responding to a combination of conditioned

and unconditioned stimuli. The ideas of polyvalence and of the CS “gaining

control” of a US-activated arousal area were prominent in the continuous model

of Grossberg (1971), which formed the basis for several later articles. Brindley

(1969) also extended some of these ideas to the learning of sequences of three

words.

Another early set of theories relevant to classical conditioning was

developed by Uttley (1970, 1975), using mathematical information theory.

These articles were based on a pattern discrimination model of Uttley (1966),

which was in turn based on a linear threshold network (see Chapter 2) with

binary inputs xi, and an output �m
i=1

wixi + � where the wi are synaptic connection

strengths and � is the negative of a response threshold. The output cell

responds if and only if the output is positive; its binary signal is called y. The

connection strengths wi are in turn calculated from relative probabilities of the

cooccurrence of events. Hence, synaptic weights increase with cooccurrence

of pre- and postsynaptic events, in accordance with Hebb’s postulate (see

Chapters 2 and 3).

Uttley (1975), however, found this Hebbian learning could cause connection

weights to increase without bound. He solved this problem by reversing the

sign of the synaptic change, making conductivities proportional to the negative
of a function based on probability of cooccurrence of x and y. Uttley used a

class of networks with such negative feedback to model classical conditioning.

In the case of a single CS–US connection, the CS, called A, excites a pathway

of variable weight wA, and a US, called U, excites a pathway of fixed weight

wU . The output of the network which includes these pathways is the conditioned

response (CR). Owing to the negative information synapses, it was shown that,

if A is always reinforced by U, the steady-state equation for the weights reduces

to wA + wU = 0. Since wA > 0, because A develops a positive associational

strength, this means that wU < 0, that is, the pathway from U to the CR is

inhibitory.
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Hence, in Uttley’s model, there is a given response, and different stimuli

compete for ability to be associated with that response. Enhanced associational

strength of one stimulus tends to weaken the associational strength of another.

This is true not only in the case of a CS and US, as discussed earlier, but also

in the case of two CSs. Thus his theory can account for such classical

conditioning data as the blocking and overshadowing paradigms (Kamin,

1969), which are illustrated in Figure 6.1. In blocking (recall the discussion in

Section 3.3), the animal is first given many presentations of one CS (called A),

each followed by a US at a given time interval. The CS A is then presented

many times in combination with another stimulus X, each pair followed by the

US at the same time interval as before. On recall trials, the animal has devel -

oped a conditioned response (CR) to A alone or to the AX combination, but

not to X alone. In overshadowing, the US is associated with the AX combination

but cue A is more salient than cue X – that is, either more intense or more

important to the organism’s survival. Again, no CR has been learned to X alone.

The competition for associability between different, previously neutral stimuli

provides a compact explanation for both of these effects.

The inhibitory US-to-CR connection, however, seems paradoxical because

the US reliably evokes the unconditioned response (UR). A series of later

articles (Uttley, 1976a, 1976b, 1976c) illuminated this inhibitory connection

further. In the networks of these articles, the signals from the various CSs were

balanced by an additional input called Z with a binary signal F(Z) of fixed

weight wZ . The weight wZ was constant and negative. Uttley (1976a) called

the pathway from Z a classifying pathway. He explained: “The function of F(Z)

must be to signal whether the total stimulus to all the variable pathways is a

member or non-member of some class” (p. 28). In other words, correlated

stimuli tend to become negatively associated unless the particular stimulus

possesses a preassigned significance that overrides the negative feedback at

the synapses.

Uttley noted that his model is mathematically similar to the learning model

of Rescorla and Wagner (1972), which is described in psychological rather than

neural terms. It was noted in Chapter 3 that Rescorla and Wagner based their

(a) (b)

1. CSA US
CSA CR

2.      CSA + CSB US
CSA + CSB CR

3.      CSB CR

1. Ax US

Ax CR

2.       CRx

FIGURE 6.1 Schematic of experimental stages in blocking (a) and overshadowing (b);
see text for explanations.



theory on the general principle that learning only occurs when events violate

expectations. Hence, both the pioneers discussed in this subsection developed

models that anticipate significant aspects of conditioning models that are in

contemporary use.

6.1.2. Rescorla and Wagner’s Psychological Model

Rescorla and Wagner expressed their psychological principle as a system of

difference equations. Their variables are CS–US associative strengths as

defined in Hull (1943; see Section 2.1). Let the CS be labeled A, and the

associative strength between A and the US be labeled wA. Then the equation

for the change in wA over time is

(6.1)

where αA is the intensity of the CS; � is a learning rate associated with the given

US; S refers to one or more stimuli present along with A; and wmax is the

asymptotic value of associative strength, which is a function of the current

reinforcement strength of the US (wmax is 0 if reinforcement by the US 

does not occur). The compound associative strength wAS is assumed to equal

wA + wS.

Rescorla and Wagner used their equations to explain blocking (see Figure

6.1). Their model predicts that if A is strongly connected with the US, such as

shock, the associative strength between A and the US reaches its asymptote.

In terms of Equation (6.1), while A alone is being conditioned to the US, wAS
= wA becomes very close to wmax. If S consists only of a second CS, labeled B,

the analog of (6.1) for B is

(6.2)

Since at the time of presentation of the compound stimulus AS = AB, wAB =

wA is already nearly equal to the value of wmax for the given US, (6.2) says that

�wB will be nearly 0; hence, B will not become significantly conditioned to

the US.

The Rescorla–Wagner model is still widely used by psychologists because

it explains many of the basic conditioning paradigms with a few simple equa -

tions. Yet, as noted before, it is not a genuine neural network model. Also, 

it is not a real-time model; changes in variables are all-or-none for each trial
(presentation of one or more CSs followed by a US) and ignore temporal

relationships within a trial. As will be seen later in this chapter, several other

modelers incorporated insights of Rescorla and Wagner into real-time neural

network models (some also inspired by invertebrate neurophysiological data).

These modelers include Sutton and Barto (1981, 1990, 1998), Klopf (1982,

�w w wA A AB= −( )� � max

�w w wB B AB= −( )� � max
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1988), Hawkins and Kandel (1984), Montague, Dayan, and Sejnowski (1996),

Suri and Schultz (1998, 1999, 2001), and Dayan (2001).

6.1.3. Grossberg: Drive Representations and Synchronization

Rescorla and Wagner noted that blocking, and overshadowing as well, could

also be explained by an alternative model. The alternative model is based on

attentional competition: A more salient cue, or one that has already streng -

thened an association to the US, can receive more attention than a less salient

cue and thereby inhibit learning of associations to the less salient cue. This

section and the next include developments of this attentional interpretation of

blocking in several network models. These models include qualitative network

analyses by Grossberg (1975) and quantitative computer simulations by

Grossberg and Levine (1987). These articles built on a theory of conditioning

first developed in Grossberg (1971), which in some ways sharply contrasts with

the Rescorla–Wagner theory.

Grossberg (1971) set out to provide a unified mechanism for both classical

(Pavlovian) and operant (instrumental, Skinnerian) conditioning in the

framework of his earlier articles on spatial pattern learning (Grossberg, 1968a,

1968b, 1969a, 1969b; see Chapter 3). His fundamental postulate was: after a

time period wherein a CS repeatedly precedes a US, the CS must be able 

to generate a motor response previously associated with the US. But if the 

US is treated as a spatial pattern, a difficulty arises if the CS–US time lag is

variable, as illustrated in Figure 6.2. Unless the network is carefully designed,

the CS could become associated not with the US but with a noisy mixture of

the US and other patterns experienced during the same time period (see

Exercise 2(b) of Chapter 3).

Before discussing Grossberg’s approach to the problem of variable time

lags, also known as the synchronization problem (Grossberg & Levine, 1987),

it is important to remark that his analysis assumed to a first approximation that

the conditioned response (CR) is the same as, or similar to, the unconditioned

response (UR). This outlook is known in psychology as stimulus substitution
theory. Mackintosh (1983, pp. 67–74) discussed whether stimulus substitu-

tion theory is correct. The experimental literature on this point is quite varied:

Sometimes the CR and UR are similar, and sometimes the CR involves only

a small part of the usual responses to the unconditioned stimulus. As an

example of the latter, “Pavlov’s dogs salivated to the CS signalling food, they

did not routinely lick, chew, bite, or swallow it” (Mackintosh, 1983, p. 70).

Moreover, the same CS elicits a variety of orientation and approach responses

not elicited by food itself. Yet, for modeling purposes, the idea that learning

causes the CS to elicit a response previously made to the US has been a useful

starting point.
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Figure 6.3 shows a class of networks designed to address the synchron -

ization problem. This network includes three sets of nodes. The first set, collec -

tively called S for sensory, consists of short-term representations for particular

sensory stimuli, both CSs and USs. These S nodes are connected into a

competitive-cooperative subnetwork like those discussed in Chapter 4, leading

both to short-term memory and to selective attention. The second set, collec -

tively called M for motor, becomes activated after the US or the conditioned

CS is presented, leading to particular responses that could either be skeletal

(as in the rat’s lever pressing) or autonomic (as in the dog’s salivation). The

third set of nodes, collectively called A for arousal, is of particular interest for

later theory.

The synchronization problem was solved by having a strong preexisting

connection from the US representation to a particular arousal locus, and then

allowing repeated CS–US pairing to strengthen the ability of the CS to activate

that same arousal locus. In this model, other patterns do not weaken the

development of CS–US pairing unless they are associated with the same

arousal locus; for example, intervening presentation of a sexual stimulus does

not interfere with a bell–food pairing.

The A loci include representations of specific drives such as hunger, thirst,

and sex. Activation of a given drive representation in this network requires a

combination of internal drive level and compatible sensory stimuli; for

example, the hunger representation is activated by a combination of hunger

x1CS

w2 w3 w4 w5

US

x3 x4 x5

θ3
m

θ4 θ5
(a) (b) (c)

φ2 φ3 φ4 φ5 ψ2 ψ3 ψ4 ψ5

x2

θ2

FIGURE 6.2 Schematic of difficulty arising, for example, in an outstar network, 
when CS–US time lag is variable. (a) Spatial pattern {θi} representing the US to 
be learned. (b) Spatial pattern {Φi} presented randomly at times between US
presentations. (c) Noisy mixture {�i} of {θi} and {Φi}, which is learned by the 
CS node x1 (at the synapses wi ; see Exercise 2(b) of Chapter 3).



and the presence of food. Later articles (Grossberg, 1972a, 1972b), in order to

model negative as well as positive reinforcement, expanded the concept to

include “negative” arousal loci for aversive stimuli such as electric shock.

Drive representations that are separate from the sensory representations

capture some of the functions of subcortical regions such as the hypothalamus

and amygdala, which are explicitly considered in more recent models discussed

in Section 6.3. Also, long before the development of quantitative models, 

Hebb (1955) argued that every sensory event has two different effects: its 

cue function, which selectively guides behavior, and its arousal function, 

which energizes behavior. This distinction corresponds in the network of

Figure 6.3 to the distinction between the representation of the US or CS at S
nodes and the effect of that representation, via fixed or modifiable synapses,

on appropriate A nodes.

The existence of drive representations in neural networks is compatible with

data on the reinforcement associated with brain stimulation. A long series of

studies, starting with Olds (1955) and Olds and Milner (1954), showed that

rats can learn to perform motor responses leading to stimulation of certain

specific loci within the limbic system, hypothalamus, and midbrain. These

results led to the notion that those brain sites are reward loci. Rats can also
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FIGURE 6.3 Schematic conditioning network. Conditioned stimuli (CSi) activate
sensory nodes (SCS,i) that compete for short-term memory (STM) storage. Activated
SCS,i send conditionable signals both to drive nodes (A) and to motor nodes (M).
Conditioned reinforcer learning refers to S-to-A connections, whereby a CS repeatedly
paired with a US becomes a secondary reinforcer. Incentive motivational learning
refers to A-to-S connections (activated by internal drive combined with sensory inputs),
which enhance approach to or avoidance of given stimuli.

Source: Reproduced from Grossberg & Levine, 1987, with permission of the Optical Society of
America.



learn to avoid stimulation of certain other loci within those brain areas, loci

that are presumably associated with punishment.

The theory of Grossberg (1971) can also account for secondary reinforce -
ment or secondary conditioning. This means that if a stimulus CS1 is repeatedly

followed by a US, until CS1 evokes a conditioned response, then CS1 can itself

become a US for a new conditioned stimulus, say CS2. In Grossberg’s theory,

this occurs because CS1 acquires the ability to excite the same arousal source

(see Figure 6.3) excited by the US. If CS2 is repeatedly followed by CS1, then

CS2 will come to evoke the same response.

6.1.4. Aversive Conditioning and Extinction

Thus far we have discussed conditioning that increases the likelihood of a

specific behavior. Two conditioning paradigms that decrease the likelihood of

a behavior are aversive conditioning and extinction. Aversive conditioning is

the suppression of a particular motor behavior by punishment. For example,

the frequency of a particular motor response can be reduced by pairing that

response with electric shock. Extinction is the suppression of a motor behavior

by nonoccurrence of an expected reward. For example, a response that had

previously been paired with a reward such as food can be suppressed by frus -

tration if the expected food is absent. The psychological fact that punishment

and frustration have similar suppressive effects on behavior suggests that

aversive conditioning and extinction might be described using similar neural

mechanisms (Grossberg, 1982b, pp. 335–339).

Some controversy has existed among psychologists as to whether extinction

is a passive or an active process, but the latter belief is currently more favored.

If a dog learns to salivate in response to a bell after the bell has been repeatedly

paired with food, the dog seems not to simply “forget” the salivation response

if food is no longer given but rather to countercondition the bell to the aversive

experience of frustration. That extinction is not simply passive forgetting, a

return to a naive state, is suggested by the fact that reacquisition of a response

by an extinguished animal is faster than initial acquisition by an untrained

animal (Pavlov, 1927; Ricker & Bouton, 1996).

Hence, extinction is usually considered to occur as a consequence of the

disconfirmation of an expectation of reward. This recalls the statement of

Rescorla and Wagner (1972) that “organisms only learn when events violate

expectations” (p. 75). That principle leads us to seek a general mechanism 

for processing disconfirmed expectations in the motivational domain, whether

in a positive or negative direction. For an example of the latter, a motor

response associated with disconfirmation of expected punishment, such as a

lever press that unexpectedly turns off an ongoing electric shock, can become

rewarding.
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6.1.5. Differential Hebbian Theory versus Gated Dipole Theory

Processing disconfirmation of expectations involves comparing present with

prior values of neural variables. Recall from Chapter 3 the discussion of two

alternative methods for such a comparison. One of these methods is based 

on the gated dipole theory of Grossberg (1972a, 1972b), using habituation 

of repeat edly presented stimuli (see Figure 3.7). The other is based on the

differential Hebbian learning theory (Kosko, 1986b; Klopf, 1986, 1988), using

a rule whereby synapses change in strength as a function of cross-correlated

changes in presynaptic and postsynaptic activities (see Figure 6.4).

Neither the differential Hebbian rule nor the gated dipole rule has yet been

verified in actual nervous systems. Contreras-Vidal and Stelmach (1995),

based on partial neurophysiological evidence, posited a gated dipole (oppo-

nent processing) network in parts of the basal ganglia. Dranias, Grossberg, 

and Bullock (2008) and John, Bullock, Zikopoulos, and Barbas (2013) cite

possible evidence for opponent interactions in the hypothalamus and amygdala.

Experi mental tests of these two sets of rules are likely to be as much psycho -

logical as physiological, and to be based in part on their ability to be embedded

in larger networks that perform interesting cognitive tasks. Gated dipoles 

have been used as components of larger networks that also include associative

learn ing rules and on-center off-surround fields (e.g., Dranias et al., 2008;

Grossberg, Bullock, & Dranias, 2008; Grossberg & Schmajuk, 1987; Levine,
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FIGURE 6.4 Schematic diagram of the distinction between (a) a Hebbian learning rule
and (b) a differential Hebbian learning rule. In (a), the associative strength wAB between
A and B increases with simultaneous occurrence of inputs A and B. In (b), wAB

increases with simultaneous increases (e.g., onsets) of A and B. (Note, however, that
the differential Hebbian model of Klopf, 1988, obtained learning with nonsimultaneous
onsets by manipulating network time lags.)
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2012; Levine & Prueitt, 1989; Ricart, 1992). Differential Hebbian learning rules

evolved into the temporal difference rules that are widely used in models that

partially explain responses of dopamine neurons to unexpected rewards or

unexpected absences of rewards (e.g., Montague et al., 1996; Suri & Schultz,

1998, 1999, 2001). Both types of models are discussed later in this chapter.

An explicit version of the differential Hebbian rule (also known as the

drive–reinforcement rule) was developed by Klopf (1988); equations for

Klopf’s model are shown at the end of this chapter. Klopf was led to such a

rule by his earlier “hedonistic neuron” theory (Klopf, 1982) in which neurons

themselves were goal-seeking devices.

Klopf’s network simulates a wide variety of classical conditioning data.

These data include blocking, secondary conditioning, extinction and reacquisi -

tion of an extinguished response, effects of interval between CS and US

occurrences, effects of stimulus durations and amplitudes. (However, as seen

from the equations given at the end of this chapter, the simulations of CS–US

interval effects depend on some weighting factors for time delays, factors that

were chosen specifically to match those data. Klopf did not suggest an

underlying mechanism for generating those weighting factors.) Figure 6.5

shows the basic neuronal network of Klopf’s model; note the similarity to

Figure 3.5 from Sutton and Barto (1981).

Klopf’s network also simulated conditioned inhibition. The conditioned

inhibition paradigm consists of a first stage where a CS1 is associated with a

US and thereby conditioned to a CR, followed by a second stage where a

combination of two stimuli CS1 and CS2 is associated with absence of the US.

As a consequence, when CS2 subsequently is associated with other stimuli that

would otherwise evoke the CR, that CR is suppressed.

Further discussion of these alternative conditioning models will be placed

in the context of data on the attentional modulation of conditioning. Such
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FIGURE 6.5 Schematic of the drive-reinforcement neuronal model. Each CS or US is
represented by an excitatory and an inhibitory synapse. Synaptic weights are variable
for synapses that mediate CSs and fixed for synapses that mediate USs.

Source: Adapted from Klopf, Psychobiology, 16, 85–125, 1988. Permission to reproduce granted by
Psychonomic Society, Inc.



attentional modulation, including the blocking paradigm discussed earlier and

other, more complex multistimulus experiments, is the subject of the next

section.

6.2. Attention and Short-Term Memory in Conditioning 
Models

Although neural network models of Pavlovian conditioning differ in their archi -

tectures, they share some common heuristic themes. Recall once more Rescorla

and Wagner’s principle that “organisms only learn when events violate

expectations.” Similarly, Grossberg (1975), discussing blocking and sim ilar

experiments, said that “learning subjects act as minimal adaptive predictors;

they enlarge the set of cues that control their behavior only when the cues 

that presently control their behavior do not perfectly predict subsequent events”

(p. 266).

These heuristics, however, have led different modelers to different con -

clusions, which in turn have different implications for the predictions of 

other experimental data. For example, Pearce and Hall (1980), developing a

nonneural psychological model that is a refinement of Rescorla and Wagner’s,

stated that “stimuli that fully predict their consequences will be denied access

to the processor. . . . A stimulus is likely to be processed to the extent that it

is not an accurate predictor of its consequences” (p. 538). Grossberg (1982a,

p. 530) argued, however, that Pearce and Hall’s statement is violated by the

fact that a US is an excellent predictor of its consequences and yet is almost

always processed. By way of reconciliation, he proposed that there are separate,

interacting systems for processing expected events and for processing

unexpected events, and that the architectures of these two systems are different.

In that article and elsewhere (e.g., Carpenter & Grossberg, 1987a; Grossberg,

1975; see Chapter 7), these two systems are called the attentional and orienting
systems.

6.2.1. Grossberg’s Approach to Attention

A theory for the structure of the attentional system was proposed in Grossberg

(1975), incorporating the type of competitive mechanism discussed in Chapter

4 for the short-term storage of patterns. This attentional mechanism is based

on the network of Figure 6.3, with the additions of competition between drive

representations of different drives, and modifiability of feedback connections

from drive to sensory representations. (Kilmer et al., 1969, had previously used

competition between drive representations to model decisions between gross

behavioral modes.) One version of the resulting, more complex network is

shown in Figure 6.6.
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The network of Figure 6.6 is built on the sensory–drive heterarchy of Figure

4.20 (see the discussion in Section 4.4) in which each drive representation is

activated by a combination of internal drive level and external sensory inputs

compatible with the given drive. This enables the organism to focus attention

on the particular cues that are compatible with whatever drives are relatively

active at a given moment. The heterarchy is combined with an orienting

system that causes motor responses to new cues in the environment, unless
those cues are known to be associated with satisfaction of an active drive.

The attentional system in Figures 4.20 and 6.6 not only allows for the

modeling of attentional effects in conditioning but also prevents cross-

conditioning of stimuli compatible with one drive to irrelevant drives. A

graphic example of the consequences of such cross-conditioning is given 

by Grossberg (1975). In his example, suppose you are eating roast turkey for

dinner with your lover. Because you are repeatedly scanning both turkey and

lover, it might be expected that each sensory cue would become associated in

your mind with the drive compatible with the other cue; in fact, you might learn

to want to have sex with turkeys and eat your lover. Grossberg showed

heuristically how such an absurd outcome is prevented by competition both

between sensory loci and between drive loci.

The network explanation of attention enabled Grossberg and Levine (1987)

to simulate the blocking paradigm of Kamin (1969). Grossberg and Levine

(1987) phrased the relevant modeling issues as follows:

NONSPECIFIC
AROUSAL

ORIENTING
AROUSAL

SENSORY-DRIVE
HETERARCHY

S

NODES CODING
EXPECTED 
PATTERNACTUAL

SENSORY
PATTERN

MOTOR
OUTPUT A

M

FIGURE 6.6 The sensory–drive heterarchy of Figure 4.22 (not shown in full) is
embedded in a larger network with attentional and orienting subnetworks. An orienting
(“what is it?”) response is instinctive to all sensory cues, and is shut off only by
expected cues; details of orienting system architecture are omitted. Expected cues are
compatible with some drive, so activate the heterarchy. “M” stands collectively for
motor responses that can be conditioned to drive-related stimuli; “S” and “A” are as 
in Figure 6.3.

Source: Adapted from Grossberg, 1975, with permission of Academic Press.



How does the pairing of CS1 with US in the first phase of a blocking

experiment endow the CS1 cue with the properties of a conditioned, or

secondary, reinforcer? How do the reinforcing properties of a cue . . . shift

the focus of attention toward its own processing? How does the limited

capacity of attentional resources arise, so that a shift of attention toward

one set of cues . . . can prevent other cues . . . from being attended? How

does withdrawal of attention from a cue prevent that cue from entering

into new conditioned relationships?

(p. 5016)

These questions can be summarized by asking how an organism predicts the

environment so as to maximize (optimize) positive reinforcement and minimize

negative reinforcement. This kind of prediction, in natural or artificial neural

networks, is called reinforcement learning (Hinton, 1987; Werbos, 1988; see

Section 5.2).

The first of Grossberg and Levine’s “four questions” is answered by

associative learning of a connection from the CS1 representation, not to the US

representation itself but to the drive representation. The second and third

questions are answered by competition within the on-center off-surround

subnetwork of sensory representations. Within that subnetwork, competition

favors nodes corresponding to stimuli that have become conditioned

reinforcers. Hence (with properly chosen parameters), the activities of other

sensory nodes, such as the CS2 node in the blocking paradigm, are suppressed,

reducing the ability of those nodes to form conditioned associations. That effect

causes CS2 to be blocked, in answer to the fourth question.

6.2.2. Sutton and Barto’s Approach: Blocking and Interstimulus
Interval Effects

The attentional (i.e., lateral inhibitory) effects in the network of Figure 6.3

provide explanations for the blocking and overshadowing results of Kamin

(1969). The model of Sutton and Barto (1981), and related models, have

typically not addressed the question of which of two stimuli is more likely to

attentionally overshadow the other. Barto and Sutton (1982), discussing their

own model, stated: “The model clearly does not address higher order

modulatory influences such as those produced by attentional or stimulus

salience factors” (p. 232). Mackintosh (1975), while proposing a model related

to that of Rescorla and Wagner, likewise noted that such models cannot

account for the fact that a more salient stimulus can block a less salient one

but not vice versa.

The simulation of blocking by Sutton and Barto (1981) is based on a

different mechanism, relying on a special synaptic modification rule. In addition

to blocking, Sutton and Barto simulated results on time intervals between stimuli
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in classical conditioning. They noted that conditioning is typically strongest

when the CS precedes the US, usually by 200 to 500 milli seconds, rather than

when the CS and US are presented simultaneously. An example occurs in 

the rabbit nictitating membrane response (eyeblink conditioning) data of

Schneider man and Gormezano (1964) and Smith, Coleman, and Gormezano

(1969), shown in Figure 6.7. Sutton and Barto used such data to argue against

a “Hebbian” learning law in which actual presynaptic and postsynaptic activities

are correlated. For with Hebbian learning, all other things being equal, the

optimal interstimulus interval (ISI)1 should be 0 rather than 200 to 500

milliseconds.

Sutton and Barto solved the problem of simulating the ISI effect by

introducing the eligibility traces defined by Equations (3.22) of Chapter 3. They

proposed that each conditioned stimulus, in addition to having a short-term

memory trace xi, has an additional trace which grows more slowly. As shown

in Figure 6.8, the time course of this additional trace accounts qualitatively for

the time of the optimal ISI. Sutton and Barto gave a single-cell interpretation

of this trace, calling it an eligibility trace because it can be regarded as a

chemical marker indicating how “eligible” the synapse is for modification. Yet,

if Sutton and Barto’s Equations (3.22) are compared with Grossberg’s outstar

equations (3.12–3.15), the eligibility traces x̄i correspond quite closely to what

Grossberg calls short-term memory traces. Sutton and Barto’s short-term

memory traces correspond to Grossberg’s external inputs. This suggests that,

in a larger network, the two sets of traces could plausibly be interpreted as being

located in different brain areas, with stimulus traces being more peripheral and

eligibility traces more central.

Data from Smith et al. (1969) 
Data from Schneiderman & Gormezano (1964)
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FIGURE 6.7 Asymptotic associative strength (measured as percentage of recall trials on
which a conditioned response occurs) as a function of interstimulus interval in
conditioning of the rabbit nictitating membrane response.

Source: Sutton & Barto, Psychological Review, 88, 135–170, 1981. Copyright 1981 by the American
Psychological Association. Reprinted by permission.



Sutton and Barto explained blocking by means of a synaptic modification

rule whereby presynaptic activity is correlated with change in postsynaptic

activity; this rule is formally analogous to the rule of Rescorla and Wagner

(1972). Because the introduction of the CS2, in this model, leads to no increase

in US node activity, the CS2 does not become conditioned to the US. This

change in postsynaptic activity is multiplied by presynaptic eligibility, as

shown in Equations (3.22). Some results of simulating this network are shown

in Figures 6.9 and 6.10.

Hawkins and Kandel (1984) proposed an explanation for blocking quite sim -

ilar to those of Rescorla and Wagner and of Sutton and Barto. The Hawkins–

Kandel model, unlike the others mentioned, is based on neurophysiological data

from the sea slug Aplysia (see the discussion of Kandel & Tauc, 1965, in

Chapter 3). These data (Hawkins, Abrams, Carew, & Kandel, 1983; Walters

& Byrne, 1983) suggest that each US activates a given neuron, called a

facilitator neuron, which influences pathways activated by CSs, and that the

growth of associative strengths depends on simultaneous activation of a CS

pathway and a facilitator neuron. Within this context, Hawkins and Kandel

(1984) proposed that blocking is due to a kind of fatigue effect: “the output of

the facilitator neurons decreases when they are stimulated continuously” (p.

385). Thus, after many trials in which a CS1 is paired with a US, the fatigue

of the US’s facilitator neuron prevents that US from forming associations with

another stimulus CS2.

The model of Sutton and Barto (1981) was further elaborated in several later

articles, particularly Blazis, Desmond, Moore, and Berthier (1986), Moore 

et al. (1986), and Sutton and Barto (1990). A main thrust of this later work

was to fit the model to various quantitative details of the nictitating membrane
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FIGURE 6.8 Time courses of variables in Equations (3.22) for a single trial in which a
neutral CS (w = 0 at the start) is followed by a US.

Source: From Sutton & Barto, Psychological Review, 88, 135–170, 1981. Copyright 1981 by the
American Psychological Association. Adapted by permission.
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FIGURE 6.9 Asymptotic connection weight as a function of interstimulus interval in a
simulation of Equations (3.22). CS is on for three time steps, US for 30. Trials last for
50 time steps.

Source: Sutton & Barto, Psychological Review, 88, 135–170, 1981. Copyright 1981 by the American
Psychological Association. Reprinted by permission.
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FIGURE 6.10 Blocking simulation. Connection weights w1 of CS1 and w2 of CS2 are
shown at the end of each trial. Trials 0–10: input of CS1 alone followed by US leads to
increase in w1. Trials 11–20: CS1 and CS2 presented together followed by US produces
no change; that is, blocking occurs. Trials 21–35: CS2 begins before CS1. The output
node responds to the earlier predictor and ignores the later.

Source: From Sutton & Barto, Psychological Review, 88, 135–170, 1981. Copyright 1981 by the
American Psychological Association. Adapted by permission.



response. The Sutton and Barto (1990) article was particularly influential

because it developed the widely used temporal difference (TD) model. The

temporal difference model, and the contact it has made over many years with

data on the neurophysiology of dopamine neurons (see Section 5.2), are

discussed in Section 6.3.

6.2.3. Some Contrasts between the Grossberg and Sutton–Barto 
Approaches

Grossberg and Levine (1987) suggested that the Hawkins–Kandel fatigue

model for blocking failed to explain the complementary phenomenon of

unblocking (Kamin, 1969). Unblocking means that if CS1 is first trained to a

US, and then the compound stimulus CS1 + CS2 is associated with a US of 

a different level than before – for example, in the case of an electric shock US,

the compound stimulus is associated with either a more intense or a less intense

shock than is CS1 alone – then blocking of CS2 does not take place, and the

animal conditions normally to CS2. CS2 is conditioned either to fear or relief,

depending on whether the shock is more or less intense with CS1 + CS2 than

with CS1 alone.

Grossberg and Levine (1987) also discussed the invertebrate data in terms

of two interrelated psychological concepts: conditioned reinforcement and

incentive motivation. Conditioned reinforcement means that a previously

neutral stimulus becomes a reinforcer through learning. This is represented,

for example, by the S-to-A pathways in Figure 6.3. Incentive motivation means

there are incentives to approach or avoid particular stimuli based on their

reinforcement value, represented by the A-to-S pathways in the same figure.

Incentive is a concept that was developed in the 1950s and 1960s by

psychologists studying drive (see Bolles, 1975, or Cofer, 1972) and has been

defined as “an external event, object, condition, or stimulus in the environment

that induces a state of arousal that energizes behavior” (Reeve, 1997, p. 32).

The Grossberg–Levine article compared the facilitator neurons found in Aplysia
by Walters and Byrne (1983) to incentive motivational pathways.

According to Grossberg’s version of incentive motivation theory, secondary

conditioning occurs because CS presentation, after conditioning has taken

place, leads to an increase in A-to-S pathway activity; hence, the CS becomes

a reinforcer in its own right. However, Walters and Byrne (1983) had not

demonstrated an analogous increase in activity of facilitatory pathways in

Aplysia. Hence, the exact mechanism for secondary conditioning in that

species, if it does occur, is still in question.

Grossberg and Levine (1987) simulated blocking in the context of attentional

competition between stimuli as suggested by Figure 6.3. In response to the

objections to “Hebbian” learning by Sutton and Barto (1981), they also

simulated the ISI data of Figure 6.7 in an attentional context. With CS and US
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presented simultaneously, Grossberg and Levine stated, attentional competition

occurs between those two stimuli, with a bias in favor of the US because it 

has a strong, unconditional association with the drive representation. Hence,

the ISI phenomenon can be seen as a form of blocking, with the US taking 

the place of the CS1 in the experiment of Kamin (1969), and the CS taking the

place of Kamin’s CS2.

Figure 6.11 shows the actual network used by Grossberg and Levine (1987)

to simulate the blocking and ISI effects; this network is an elaboration of the

one shown in Figure 6.3. Note that the sensory representations in Figure 6.3

are now split into two parts. In later articles such as Grossberg and Seidman’s

(2006), the first stage is interpreted as sensory cortex and the second as

prefrontal cortex, with drive representations interpreted as part of the amygdala.

Some results from simulation of this network are shown in Figure 6.12.

These results verified the efficacy of a conditioning model based on associative

learning combined with attentional competition, but left open some issues in

timing (see Section 6.3.4). In order to achieve attentional blocking of the CS

by the US when the two are presented simultaneously, the threshold for an S
node to increase the efficacy of an S-to-A synapse has to be set higher than the

threshold for the same S node to excite activity of the corresponding A node

(and thereby of the A-to-S feedback pathway). The separation of conditions

for change of synaptic efficacy from conditions for excitation of node activities

is reminiscent of Sutton and Barto’s separation of eligibility traces from

stimulus traces.

DRIVE
INPUT

MOTOR
RESPONSE

yw11

w21

w31

x12x11CS1

CS2 x21

US x31

x22

x32

FIGURE 6.11 Network used to simulate blocking and ISI effects. Each CS or US
sensory representation has two stages with STM activities xi1 and xi2. Activation of xi1
generates unconditioned signals to xi2 and conditioned reinforcer signals to a drive node
y. Conditioned incentive motivational signals from y activate the second sensory stage
xi2, which sends feedback to xi1.

Source: Adapted from Grossberg & Levine, 1987, with permission of the Optical Society of
America.
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FIGURE 6.12 (a) Plot of R acquisition speed as a function of ISI, in the network of
Figure 6.11. A CR is said to occur when x12 exceeds some threshold. Speed is
computed by the formula 100 × (time units per trial)/(time units to first CR). 
(b)–(e) are plots of variables through time in a blocking simulation, with five trials
(each 50 time units long) of CS1–US pairing, five of (CS1+CS2)–US pairing, one of CS2

presented alone, ISI = 6. (b) CS1 STM trace x11; (c) x11-to-y LTM trace w11; (d) CS2

trace x21; (e) x21-to-y LTM trace w21.

Source: Adapted from Grossberg & Levine, 1987, with permission of the Optical Society of
America.



6.3. Computational Cognitive Neuroscience of 
Conditioning

Both of the streams of conditioning models discussed in the last section – the

models by Sutton, Barto, and their colleagues and those by Grossberg and his

colleagues – have undergone gradual development since the early 1990s under

the influence of results from both invertebrate and vertebrate neurophysiology.

In the 1990s there were several models that incorporated specific cellular data

from invertebrate studies. More recent models have been more influenced by

vertebrate studies, specifically by the studies of both dopamine neurons and

nictitating membrane response discussed in Section 5.2.

6.3.1. Some Models Based on Invertebrate Neurophysiology

For the sake of brevity, this book has generally concentrated on modeling at

the level of large aggregates of neurons, more than at the level of single

neurons. Yet, classical conditioning is an area where the two levels of modeling

have increasingly blended. Results on the interactions of electrical potentials,

transmitters, and second messengers have been incorporated into many network

models of associative learning. When competing models are equally plausible

from the psychological viewpoint, neurophysiological data can provide

additional constraints that facilitate choosing between models.

Sutton and Barto (1981) developed rough analogies between their eligibility

variables and postsynaptic second messengers (calcium ion and cyclic AMP).

Such analogies were developed further in the neuronal model for associative

learning in Gingrich and Byrne (1987), based on study of conditioned with -

drawal reflexes in Aplysia. Their model was built on a previous model of non -
associative learning (Gingrich & Byrne, 1985). Nonassociative learning is

defined as the strengthening or weakening of certain neuronal pathways

without dependency on contingent stimulation of other pathways.

Gingrich and Byrne (1987) modeled cell-level phenomena analogous to

classical conditioning; these phenomena had been experimentally discovered

by Walters and Byrne (1983). (Recall from Chapter 3 the cautionary notes

about whether such single-cell mechanisms in fact approximate mechanisms

responsible for conditioned behavior of whole organisms.) In the studies of

Walters and Byrne (1983), shock to the tail was used as an aversive US, while

the CS was direct electrical stimulation of any one of several sensory neurons

responsive to stimulation of nontail skin areas. Stimulation of the nontail area

became aversive as a result of learning. These authors proposed a mechanism

for such cell-level conditioning whereby the US nonspecifically releases a

chemical modulator that strengthens synaptic pathways from sensory neurons

to output areas. They called this type of mechanism activity-dependent neuro -
modulation.
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Gingrich and Byrne (1985) quantitatively simulated the roles of calcium ions

and cyclic nucleotides (the commonest second messengers; see Chapter 3),

along with enzymes regulating those substances, in nonassociative forms of

learning. Gingrich and Byrne (1987) integrated these studies with the concept

of activity-dependent neuromodulation, using equations that are discussed at

the end of this chapter, to model associative learning.

The work of Gingrich and Byrne was extended by Buonomano, Baxter, and

Byrne (1990) to a multineuronal network that included two sensory neurons

and a facilitatory neuron, the latter corresponding to a source of reinforcement.

These authors found that this neuronally based network exhibited a tradeoff 

in a crucial parameter. The network could simulate either second-order

conditioning or blocking, depending on the value of this parameter, but not both

phenomena with the same parameter value. A more recent network of Goel

and Gelperin (2006) can simulate both second-order conditioning and blocking.

Goel and Gelperin describe their model as based on the learning of the land

mollusk Limax. Their model uses integrate-and-fire neurons (see Appendix 1

for a definition of that term), with modifiable connections between CS repre -

sentations and both facilitator and motor neurons, but does not include the

biochemical details of the earlier Gingrich and Buonomano models.

6.3.2. Temporal Difference Models

After Sutton and Barto (1981), several other conditioning models employed

variations of the idea that reinforcement is based on the time derivative of

combined US and CS associations. These time-derivative models included

Gelperin, Hopfield, and Tank (1985); Hawkins and Kandel (1984); Klopf

(1988); Kosko (1986a); Moore et al. (1986); and Tesauro (1986). Sutton and

Barto (1987, 1990) noted several difficulties that time-derivative models had

encountered in reproducing specific temporal data on conditioning of the

nictitating membrane response. Some of the data involved the most typical

conditioning paradigm, delay conditioning whereby CS onset precedes US

onset (that is, ISI > 0) but CS offset is simultaneous with, or after, US onset.

Other data involved fixed-CS conditioning, whereby CS duration is fixed and

independent of ISI; this includes trace conditioning whereby CS offset precedes

US onset, so that only a memory (“trace”) of the CS is paired with the US.

The remedies they developed led to the temporal difference (TD) framework,

which is still making extensive contact with the neuroscience literature on

dopamine cell responses, as well as being used in many engineering control

applications.

The temporal difference model of Sutton and Barto (1990) is based on the

idea, tracing back to Rescorla and Wagner (1972), that conditioning embodies

an attempt to predict reward, that is, predict US arrival. Hence the amount of

reinforcement is proportional to the difference between predicted and actual
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US levels. Or, to put it another way, the reinforcement is proportional to the

differences between predictions of reward at successive time intervals – which,

when time is made continuous, puts it in the family of time-derivative models.

Predictions of future rewards are reduced by a factor that measures how much

the future is discounted relative to the present. As in the earlier Sutton–Barto

model, reinforcement is then multiplied by the eligibility trace of a particular

CS to obtain an increment of the associative strength of that CS with the US.

One version of the TD model network is shown in Figure 6.13.

When the temporal difference model was first developed, the reward

prediction error of the TD model was not identified with a particular area of

the brain. A brain locus for prediction error emerged in the 1990s with the

results of Wolfram Schultz and his colleagues, discussed in Section 5.2, on the

FIGURE 6.13 A version of the TD network. Actor and Critic receive input stimuli 1 
and 2 which are coded as functions of time. The Critic computes the effective
reinforcement signal r(t) which modifies the weights vnl of the Critic and the weights
wlm of the Actor. The Critic associates input stimuli 1 and 2 with Signal r(t). Every
stimulus l is represented as a series of components xlm of different durations, each of
which influence the reward prediction signal according to its own adaptive weight wlm.
The prediction P1(t) is computed as the weighted sum of these components. Winner-
take-all competition between predictions P1(t) of different stimuli sets all but one
representational component to zero. The change in the prediction of a stimulus l is
computed by taking the temporal difference between successive time steps. The
temporal difference is summed over all stimuli and added to the primary reinforcement
signal input �(t) coding the reward, leading to the effective reinforcement signal which
codes reward prediction error. The Actor learns to associate stimuli with behavioral
actions.

Source: Adapted from Suri and Schultz (1999) with the permission of Elsevier Science, Inc.



responses of dopamine neurons in the midbrain during conditioning episodes.

In particular, recall that in the early stages of conditioning the dopamine cells

have a burst of activity to the US, but after the CS has become a reliable

predictor of the US the dopamine burst occurs to the CS but not to the US.

Also recall that there is a dip in dopamine cell activity if an expected US does

not arrive. Montague, Dayan, and Sejnowski (1996) used a variant of the TD

model to simulate data of Ljungberg et al. (1992) on dopamine cell responses

on a reaction time task and of Schultz et al. (1993) on several spatial tasks, the

most complex of which involved a delayed response.

The Sutton and Barto (1990) and Montague et al. (1996) versions of TD

did not include specific roles for relevant brain regions such as the dopamine

nuclei of the midbrain, basal ganglia, and prefrontal cortex. More explicit

simulations of brain regions were gradually included in later extensions of the

TD model, starting with Suri and Schultz (1998, 1999, 2001). The simulations

using TD in the Suri–Schultz articles encompassed sequence learning, delayed

response, and anticipatory dopamine neuron activity. The 1999 article noted

that previous versions of the TD model had predicted that dopamine cell

activity would be depressed not only if reward is delivered later than expected,

which is supported by data, but also if reward is delivered earlier than 

expected, which is not supported by data. Suri and Schultz (1999) prevented

this anomalous occurrence by adding to the TD network lateral inhibition

between traces of different events, including the CS and US, as had been

present in the differently structured network of Grossberg and Levine (1987).

The dopamine (DA) neurons have strong reciprocal connections with the

striatum, the input layer of the basal ganglia. The striatum is divided into

regions called striosomes that are surrounded by other areas called the matrix
(Graybiel, 1991). Striosomes and matrix are different in their biochemistry and

in their connection patterns, so different roles for the two should be expected.

Several research groups, starting with Houk, Adams, and Barto (1995), have

proposed functional roles for DA–striosome connections that exhibit striking

analogies with the TD model.

In the model of Houk et al. (1995), the striosomes integrate inputs from three

sources: convergent pattern related input from the cerebral cortex; excitatory

input from the DA neurons; and signals from the lateral hypothalamus related

to primary reinforcement.2 Each striosomal module in turn inhibits the

corresponding DA neuron via a direct pathway and also excites the DA neuron

via an indirect pathway (“sideloop”) through the subthalamic nucleus. The

sideloop is responsible in the model for the DA neuron’s response to a CS,

and the inhibitory direct pathway to the neuron’s subsequent nonresponse to

the US.

Further insights into TD and the basal ganglia were developed in a number

of later articles. In particular, Joel, Niv, and Ruppin (2002), Niv, Duff, 

and Dayan (2005), and Niv (2009) integrated neuroscientific data with the
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actor/critic framework (Barto, Sutton, & Anderson, 1983; Sutton & Barto,

1998). In the actor/critic framework, one module, called the adaptive critic,

sends positive or negative reinforcement prediction errors to another module,

called the actor. The actor is unaware of which of its actions contributed to

the error, so it must modify its action plans (policies) in response to the error

signal alone.

As to which areas of the brain correspond to the actor and critic, Joel et al.

(2002) point to a resemblance between DA neuron activities and the temporal

difference prediction error signal in the critic. The standard actor–critic model

also includes a prediction error signal in the actor, which Joel et al. (2002)

identified with DA-dependent long-term plasticity in the striatum. Niv et al.

(2009, p. 145) pointed to evidence that the two main dopaminergic midbrain

nuclei are each involved in different parts of actor–critic operations. Ventral

tegmentum affects ventral striatum and prefrontal in the critic, whereas

substantia nigra affects dorsal striatum in the actor.

More recent articles by TD-oriented modelers have tended to concentrate

on details of reinforcement learning in the basal ganglia without integrating

these details into simulations of conditioning data (e.g., Diuk, Tsai, Wallis,

Botvinick, & Niv, 2013), or else developed models of conditioning data based

on statistical optimality considerations not closely tied to neuroscience (e.g.,

Gershman & Niv, 2012). The TD approach has become popular because it is

built around a single and easily understandable teleological principle, namely

maximization of predicted future reward. Yet its very simplicity, with the

implication that there is a unique locus in the brain that controls Pavlovian

learning, limits the predictive applicability of this approach unless it is extended

to incorporate principles that suggest roles for regions such as amygdala and

prefrontal cortex. One of the first attempts to model conditioning using

extended TD is the work of Dayan (2001), which combines TD with some ideas

inspired by optimal control.

Another limitation of the TD modeling approach, which could possibly be

overcome by proper setting of a network parameter, was found by many

researchers including Brown et al. (1999) and Pan, Schmidt, Wickens, and

Hyland (2005). The TD models, the authors said, predicted that, as conditioning

takes place, dopamine bursts should gradually propagate backwards in time at

intermediate steps from the arrival of the US to that of the CS. Instead, the

data show that dopamine bursts occur only at the two times at the beginning

and end of the CS–US interval, and never at intermediate times. Pan et al.

(2005) showed how this gradual back propagation of the dopamine signal could

be eliminated by setting the eligibility decay parameter (δ in Equation (6.5)

below) close to 0, indicating that CS value, indicating that CS value learning

could be influenced by previous CS presentations over a substantial time

period.
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6.3.3. Another Approach to Reinforcement Learning Via the
Cog/EM Model

A different approach to reinforcement learning and complex conditioning 

data has been developed in a series of articles by Bullock, Grossberg, and their

colleagues (Brown, Bullock, & Grossberg, 1999; Dranias, Grossberg, &

Bullock, 2008; Grossberg, Bullock, & Dranias, 2008; Tan & Bullock, 2008b).

This approach could be considered an alternative to the TD formulation but

incorporates many of the same principles that motivated the TD approach,

namely the general notion of reward prediction error and the implications 

of the data of Schultz and his colleagues on dopamine neurons and their

connections with basal ganglia and prefrontal cortex.

The foundations of the Bullock–Grossberg alternative to temporal difference

are based on the gated dipole model of opponent processing (see Section 3.3)

and on some earlier models that capture data on adaptive timing of conditioned

responses such as the nictitating membrane response. The reinforcement

learning models are described in Section 6.3.5; first, the next section reviews

some of those earlier foundational models (Grossberg & Schmajuk, 1987,

1989). Grossberg and Schmajuk (1987) modeled the emotionally positive 

and negative sides of conditioning, and in Grossberg and Schmajuk (1989) 

a collection of neurons with a range of time delays was involved in timing a

conditioned response. A series of subsequent models related their insights 

to cerebellar and hippocampal data (Bullock, Fiala, & Grossberg, 1994; 

Fiala, Grossberg, & Bullock, 1996; Grossberg & Merrill, 1992, 1996; see also 

Gluck & Myers, 1993, and Myers & Gluck, 1994, for other models relating

hippo campus to eyeblink conditioning). This interrelated set of conditioning

models has more recently been given the name CogEM for “cognitive,

emotional, and motor” (e.g., Grossberg & Seidman, 2006).

6.3.4. Gated Dipoles, Aversive Conditioning, and Timing

Grossberg and Schmajuk (1987) continued the work of Grossberg and Levine

(1987) on quantitative study of attentional effects in conditioning. These

authors included simulations of aversive conditioning via negative reinforce -

ment as well as appetitive conditioning (the opposite of aversive) via positive

reinforcement. To attentional networks such as appear in Figures 6.6 and 6.11

they added the gated dipole mechanism schematized in Figure 3.7. A loop was

added to the gated dipole to allow for secondary inhibitory conditioning (see

Grossberg, 1975, for an explanation of why this was needed.) As described 

in Grossberg and Schmajuk (1987):

Secondary inhibitory conditioning consists of two phases. In Phase 1 CS1

becomes an excitatory conditioned reinforcer (e.g., source of conditioned
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fear) by being paired with a US (e.g., a shock). In Phase 2, the offset of

CS1 can generate an off-response which can condition a subsequent CS2

to become an inhibitory conditioned reinforcer (e.g., source of relief).

(p. 197)

All of these considerations led Grossberg and Schmajuk (1987) to design

a network called READ (recurrent associative dipole), as shown in Figure 6.14.

The equations for the READ circuit, combining the associative learning and

gated dipole equations from Chapter 3, are listed at the end of this chapter. For

an appropriate range of parameter values, the network can simulate both

primary and secondary excitatory and inhibitory conditioning.

Grossberg and Schmajuk (1987) went on to discuss qualitatively how their

network can model extinction and conditioned inhibition. Extinction is treated

as an active, not a passive, process, resulting from conditioning a CS to the

“off” channel of Figure 6.14 if an expected CS does not occur. This effect is

not simulated explicitly in the Grossberg–Schmajuk article because it involves

interaction of the READ network with another network that can measure the

degree of match or mismatch of an actual with an expected stimulus. Such 

a match-sensitive network, based on adaptive resonance theory (ART), is
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FIGURE 6.14 A READ (recurrent associative dipole) network, joining a recurrent gated
dipole with associative learning. Learning occurs at the synapses wk7 and wk8, from the
sensory nodes Sk to the on-channel and off-channel, respectively, of the motivational
gated dipole.

Source: Adapted from Grossberg and Schmajuk, Psychobiology, 15, 195–240, 1987. Permission to
reproduce granted by Psychonomic Society, Inc.



discussed in Chapters 7 and 8, within the context of categorization and coding

models. The ART network combines mechanisms of association, competition,

and opponent processing with an additional design principle for adaptive

interactions between network levels.

The READ model of conditioning was extended in Grossberg and Schmajuk

(1989) to include a mechanism for timing. Accurate timing is very important

for conditioning because suppose an animal has repeatedly received food

reinforcement at some given time interval after a particular CS. Then the animal

needs to know when to expect the food so that it will not get frustrated by the

expected) nonoccurrence of food before that time interval has elapsed.

Grossberg and Schmajuk’s technique for accomplishing this timing function

consists of a network with a large number (80 in their first simulation) of gated

dipoles, each becoming activated and habituated at a different rate. The authors

called this device spectral timing because it includes a “spectrum” of possible

activation rates, thereby enabling the network to learn to expect stimuli or

perform responses at specific time delays after the CS.

The article of Grossberg and Schmajuk (1989) was one of the first to relate

conditioning to high-order cognitive processes such as categorization. The theory

described therein includes an orienting response to a mismatch between

expected and observed stimuli, which is part of the ART categorization network

(Carpenter & Grossberg, 1987a, 1987b; see Section 7.2). Also, the spectral

timing network includes hypotheses about the roles in reinforcement of the

hippocampus and two common neurotransmitters, acetylcholine and dopamine.

A series of later articles (Bullock, Fiala, & Grossberg, 1994; Fiala,

Grossberg, & Bullock, 1996; Grossberg & Merrill, 1992, 1996) discuss details

of the neuroscience of both the hippocampus and cerebellum that are com -

patible with the spectral timing hypothesis. These articles focus specifically

on modeling neural interactions in the nictitating membrane response. The

hippocampus is involved in the timing of when the US is expected to arrive,

which makes it important for reinforcement learning and attention to motiva -

tionally relevant cues, whereas the cerebellum is involved in the timing of the

response itself (Thompson et al., 1984, 1987; Section 5.2.4 of this book). Motor

timing is required because without it the animal could respond prematurely

when it is expecting a US.

Grossberg and Merrill (1996) highlighted the similarity between the

cerebellar and hippocampal timing mechanisms despite their different roles in

the conditioning process:

Both [cerebellar and hippocampal mechanisms] control an inhibitory gate

that modulates another learning process, and both occur on dendrites

whose summer output across a spectrum of rate-sensitive cell sites

determines the collective timed response.

(p. 272)
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They suggest that the two systems could undergo similar cellular events 

(at the hippocampal dentate cells and the cerebellar Purkinje cells) during

conditioning. The article by Fiala et al. (1996) discusses much of the detailed

biochemistry of the cerebellar system including the Purkinje cell LTD induced

by conditioning.

The recent article of Franklin and Grossberg (2017) goes much further in

developing the role of the hippocampus in conditioning and in memory

consolidation, and the interactions of hippocampus with amygdala, thalamus,

and neocortex in those processes. The model of that article, known as nSTART,

simulates a variety of data on the differential effects of lesions to all these areas

at different phases of learning. Among these data are results showing that

hippocampus is needed for trace conditioning but not for delay conditioning,

and that hippocampal lesions during trace conditioning impair recent but not

temporally remote learning. As for amygdala, the model simulates results

showing that amygdalar lesions made before or just after training, but not those

made later, show down conditioning. It also simulates data on thalamic,

sensory cortical, and orbitofrontal lesions.

The Franklin–Grossberg model is built on the earlier Grossberg–Schmajuk

and Grossberg–Merrill models involving spectral timing in the hippocampus.

Section 9.2 of Chapter 9 discusses how the nSTART model posits that the

hippocampus and cortex learn different things, in contrast with other models

positing a unitary memory trace that is first learned by the hippocampus and

then transferred to the cortex (McClelland, McNaughton, & O’Reilly, 1995;

O’Reilly & Rudy, 2000). Franklin and Grossberg (2017) discuss how spectral

timing is part of an overall theory of entorhinal–hippocampal interactions

encoding context that could be both spatial and temporal (see, e.g., Pilly &

Grossberg, 2012, for the spatial part of the theory).

6.3.5. Modeling Dopaminergic Involvement in Conditioning

Brown, Bullock, and Grossberg (1999) modeled the Schultz laboratory’s data

on dopamine cell responses using an adaptive timing mechanism in yet another

brain region, the striatum (see Figure 6.1). The TD models of Montague et al.

(1996) and Suri and Schultz (1999) also include effects similar to adaptive

timing.

The model of Brown et al. (1999) includes a reward prediction error, but

differs from TD models in that the excitatory and inhibitory components of

the prediction error are spatially separated. Their model is based on two

parallel learning pathways from the limbic cortex to the dopaminergic nucleus

known as substantia nigra pars compacta (SNc), both traversing through the

striatum. One pathway, through the ventral striatum (matrix cells), ventral

pallidum, and PPTN, is devoted to excitatory conditioning. The other pathway,

through the striosomes, is devoted to adaptively timed inhibitory conditioning.
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The excitatory pathway is what generates dopamine bursts in response to

predictable reward-related signals and causes dopamine dips when expected

rewards are not received. The inhibitory learning uses an intercellular spectrum

of timed responses that is similar to timing mechanisms in the hippocampus

and cerebellum.

The adaptive timing function of the inhibitory striosomes is implemented

by metabotropic glutamate receptor-mediated Ca++ spikes that occur with

different delays in striosomal cells (a mechanism also used by Fiala et al., 1996,

to model the timing function of the cerebellum in the nictitating membrane

response). Brown et al. (1999) claimed that implementing reward prediction

error by the combination of different excitatory and inhibitory loci avoided a

prediction of TD models that did not fit the data. This was the prediction

mentioned in Section 6.3.2 that dopamine bursts should gradually propagate

backwards in time at intermediate steps from the arrival of the US to that of

the CS.

Another point of difference between the two sets of models concerns the

responses of dopamine neurons to the uncertainty of reward. Recall from

Section 5.2 the results of Fiorillo et al. (2003, 2005) showing that the same

dopamine neurons that respond phasically to unexpected rewards also exhibit
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FIGURE 6.15 Network of Brown et al. (1999). Cortical inputs (Ii) excited by CSs learn
to excite the SNc (D) via the path through ventral striatum, ventral pallidum, and
pedunculopontine tegmental nucleus (PPTN). When PPTN activity exceeds a threshold
�P, it excites the dopamine cell. Striosomes learn to generate adaptively timed signals
that inhibit the dopamine cell. Primary reward signals from the lateral hypothalamus
both excite the PPTN and act as training signals to the ventral striatum.

Source: Adapted from Brown, Bullock, & Grossberg, 1999, with the permission of the Society for
Neuroscience.



what those authors called an uncertainty response. That is, on conditioning

paradigms wherein the CS is only sometimes rewarded, these neurons show a

sustained response that is maximal when the probability of reward is about one

half. Niv et al. (2005) explained the uncertainty response as an artifact of

averaging across trials based on back propagation of dopamine responses

through time. Yet, Tan and Bullock (2008a) noted that such back propagation

does not actually occur, and moreover that the uncertainty response occurs

robustly on single trials. Tan and Bullock found an alternative explanation for

the uncertainty response, based on co-release by SNc-to-striosome synapses

of the common inhibitory transmitter GABA and a neuropeptide called

substance P.

6.3.6. Models of Fear Conditioning

The models discussed in the last three sections have either simulated data on

appetitive, reward-based conditioning or on conditioning in general. Yet, fear

is the emotion whose neural basis has so far been studied the most thoroughly

(e.g., LeDoux, 2000; see Section 5.2). Hence it is natural that there has been

significant modeling of the involvement of brain regions such as amygdala,

hippocampus, thalamus, and prefrontal cortex in fear conditioning (e.g.,

Armony, 2005; Armony, Servan-Schreiber, Cohen, & LeDoux, 1995, 1997;

John et al., 2013; Moustafa et al., 2013; Vlachos, Herry, Lüthi, Aertsen, &

Kumar, 2011). Most of these models have focused on auditory fear condi -

tioning, for which the most data is available.

The model of Armony and his colleagues includes both cortical and

subcortical influences on the amygdala, both of whose weights are modified

by fear conditioning (that is, by pairing of an auditory CS with a noxious US).

As reviewed in LeDoux (1996), there are parallel cortical and subcortical

(thalamic) pathways that reach the primary emotional processing areas of the

amygdala. The thalamic pathway is faster than the cortical, but the cortex

performs finer stimulus discrimination than does the thalamus. This suggests

that the two pathways perform complementary functions: the thalamic pathway

is the primary herald of the presence of potentially dangerous stimuli, and the

cortical pathway performs more detailed evaluations of those stimuli.

Armony et al. (1995, 1997) reproduced many detailed experimental results

on the responses of single neurons in different brain regions during fear

conditioning experiments. In a follow-up article by Armony, Servan-Schreiber,

Romanski, Cohen, and LeDoux (1997) they noted one surprising prediction 

of the model that later was experimentally verified. Because of the poor

discriminative ability of neurons in the auditory thalamus compared with

neurons in the auditory cortex, it had been expected that auditory cortex

lesions would cause the learned fear responses to generalize more broadly to

auditory stimuli other than the original CS. Yet, when the auditory cortex of

196 Computational Cognitive Neuroscience



the model network was “lesioned,” the network’s generalization properties

were unaffected. This surprising lack of effect on generalization was later con -

firmed by behavioral studies in lesioned rats. Armony et al.’s explanation of

this finding was that, even if individual thalamic neurons are poor discrim -

inators, the total population of thalamic neurons can discriminate among

stimuli with sufficient accuracy to compensate for the loss of the cortex.

The idea of fast subcortical and slow cortical signals is popular in the

neuroscience community but not universally embraced. Pessoa and Adolphs

(2010) argued that, in the visual system, there is no distinction of fast and slow

pathways and emotional stimuli do not have a privileged access relative to other

types of stimuli. These authors suggested that the fast/slow dichotomy could

be specific to audition, particularly in rodents.

The Armony et al. models mainly involve amygdala (treated as a unit),

auditory thalamus, and auditory cortex, with conditioning affecting the

frequency tuning curves of some cortical neurons. Those articles discuss the

differentiation of amygdala as stimuli progress from the lateral to the basal to

the central nuclei of the amygdala but the model does not differentiate

functionally between amygdalar subregions. Nor do these articles explicitly

include the roles of hippocampus, which sets the context, or medial prefrontal

cortex. The roles of all these regions in fear conditioning are considered in later

models by other researchers.

Moustafa et al. (2013) explicitly considered roles for amygdalar subregions,

hippocampus, and medial prefrontal cortex in fear conditioning. Their model

is based on the TD concept of prediction error. The central nucleus of the

amygdala, the part with direct connections to the hypothalamus and autonomic

nervous system, learns two types of fear responses (heart rate changes 

and freezing) in response to stimuli that have been paired with shock. The CR

learning at the central nucleus is modulated by two separate signals. One of

the signals is from basal and lateral amygdala and denotes a positive prediction

error. The other signal is from ventromedial prefrontal cortex (vmPFC) via

intercalated cells, which are GABAergic inhibitory neurons that synapse on

the central nucleus. The second signal denotes a negative prediction error and

thereby is necessary for extinction of the fear response. The hippocampal input

to both vmPFC and basal and lateral amygdala is necessary for context-

specificity of both acquisition and extinction of the fear responses. Unlike the

Armony models, the model of Moustafa et al. does not include sensory cortex

or thalamus, and therefore does not deal with the altering of receptive fields

by conditioning.

Vlachos et al. (2011) took a different approach to fear conditioning, focusing

on one brain region – the basal nucleus of the amygdala (BA) – and presenting

a neurophysiologically detailed model of its functions in conditioning, using

both excitatory and inhibitory leaky-integrate-and-fire neurons. The excitatory

BA neurons integrate CS input from the lateral amygdala and contextual input
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from the hippocampus or medial prefrontal cortex. Learning occurs with

temporal coincidence of CS and context inputs. From the simulations emerge

two distinct neuron populations relating to fear conditioning and extinction,

and those populations in turn influence the output in the central amygdala.

The model of John et al. (2013) relies heavily on prefrontal connections to

the amygdala intercalated cells, like that of Moustafa et al. (2013). In addition,

John et al. distinguished two types of intercalated cells that they called ITCd

(for dorsal) and ITCv (for ventral); the lateral amygdala excites ITCd, which

in turn inhibits ITCv, and ITCv suppresses fear responses at the central

nucleus. The BA excites both ITCv and the central nucleus, which is always

the location of CS learning and has properties similar to the striatum (including

a predominance of GABAergic inhibitory cells).

A noteworthy feature of the John et al. model is that cortical inputs can

influence the relative strength of activation of the two sets of intercalated cells

and thereby influence the balance between tendencies toward fear learning and

fear extinction. In an extreme (“cautious”) case, if the activation of the ITCd

side is above some threshold, the network actually becomes incapable of

extinction of a fear response to a CS once that response has been learned. In

the opposite case there is a tendency toward relatively fast extinction when

contingencies change.

6.4. Multiple Levels: Model-Free and Model-Based 
Learning

In the first half of the twentieth century, ideas about animal learning were split

between behaviorist and cognitive notions. The behaviorist outlook (Thorndike,

1933) treated animals, including humans, as relatively passive learners who

rely on strengthening responses via associations with rewards. By contrast, the

cognitive outlook (Tolman, 1948) treated animals as active goal seekers who

form mental cognitive maps of where rewards could be found.

The consensus among current psychologists is that the brain is involved in

both passive and active forms of learning. Active learning is often called model-
based because it relies on constructing a mental model of the environment

(Daw, Niv, & Dayan, 2005; Doya, 1999; Doya, Samejima, Katagiri, & Kawato,

2002; Sutton & Barto, 1998). In the same vein, passive learning is called model-
free.

Daw et al. (2005) noted that the TD model mainly reproduces model-free

phenomena. The same is true of some of the other well-established condition-

ing models discussed in this chapter, such as READ. The MOTIVATOR and

PVLV models discussed in the next two subsections address a mixture of

model-based and model-free processes. Notably, the neural substrates of those

two models include parts of the prefrontal cortex in addition to subcortical

areas.
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Daw et al. (2005) proposed that the prefrontal cortex and dorsolateral

striatum are control loci for model-based and model-free systems respec-

tively. In later versions (e.g., Dayan, 2007, 2009; Dayan & Berridge, 2014),

the model-based controller also includes dorsomedial parts of the striatum.

These researchers developed a formal model of these two processes, without

assigning parts of the network explicitly to brain regions. Mannella, Gurney,

and Baldassarre (2013) developed a more explicit neural formulation of the

interaction between two processes, with the nucleus accumbens (ventral

striatum) playing a key role as the arbiter of value.

Model-based learning uses a tree search that goes through and compares

the consequences of different, often multistep, courses of action. Model-free

learning, on the other hand, uses what the authors call caching, which involves

a learned value of an action regardless of the source of that learning. Often the

early learning of a new task is model-based but when the task is well learned

it becomes model-free: a response is made out of habit. Figure 6.16 shows 

a schematic interaction between the tree search and caching subsystems as

Press lever Enter magazine

S1
Food delivered

S2

No reward

R = 0

(a) Tree search

S1
Food delivered

S2

No reward

Q = 0

S3

Food obtained

Q = 1

S0
Initial state

Press lever Enter magazine

(b) Cache system

S3

Food obtained
R = 1

S2

No reward
R = 0
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Q = 0
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Q = 1
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Initial state

Press lever
Q = 1

Enter magazine
Q = 0

FIGURE 6.16 Representation of a two-stage instrumental conditioning task by (a) a tree
search system (model-based) and (b) a cache system (model-free). S0, S1, S2, and S3

are the four possible states within the task. In (a), R represents whether the reward 
was obtained. In (b), Q represents the future value of each action, and therefore the
likelihood of performing it, regardless of its future consequences. Reward devaluation
would suppress the action for (a) but not for (b).

Source: Reproduced from Daw et al., 2005, with the permission of Nature Journals, Inc.



illustrated by a simple discrete-trial, discrete-choice instrumental learning

task, whereby a hungry rat is trained to perform a lever press followed by entry

to a food magazine to receive a food pellet.

The conditioning paradigm that Daw et al. use to distinguish between the

two types of learning is reinforcer devaluation (see, e.g., Dickinson & Balleine,

2002). In a typical devaluation study, an animal first learns to perform a

particular behavior in order to receive food pellets. After the animal has

learned the response, the food pellets are devalued either by satiation or by

pairing with illness, and the response becomes less prevalent. Daw et al. note

that devaluation requires a model-based process because it depends on updating

the value of the response and overriding a habit. Damage to orbitofrontal cortex

or amygdala tends to interfere with devaluation.

Subsequent fMRI tests of the roles of prefrontal cortex and striatum partially

verified the existence of dissociable model-free and model-based systems.

Gläscher, Daw, Dayan, and O’Doherty (2010) designed a sequential prob -

abilistic decision task with choices in two internal states (signified by fractal

images) followed by a reward, and the participants learned the transition

probabilities between states at successive levels before experiencing rewards.

They found that activity in the ventral striatum correlated with reward pre -

diction error, as in many previous studies by other investigators. Yet there was

another error signal that they called the state prediction error (SPE), which

occurred when a state at the first level was followed by the less probable state

at the second level. The neural correlates of the SPE were activity in the lateral

prefrontal cortex and intraparietal sulcus.

Yet, striatal involvement was seen when Simon and Daw (2011) studied a

more complex cognitive map that changed over time. Simon and Daw gave

participants a maze where they had a choice of rooms to go to, with doors

closed in some directions and open in others that changed randomly, with the

ultimate goal being a monetary reward. They found that activations in several

areas of the caudate and putamen were selective for the projected positive value

of the current state. Significantly, those activations correlated more strongly

with the value predicted by a model-based than by a model-free process.

Daw, Dayan, and their associates noted the similarity of their model-

free/model-based system dichotomy to various other two-process psychological

theories that posit an automatic, reactive system and a controlled, deliberative

system (e.g., Kahneman, 2011). Two-process theories are considered in Section

9.5 in the context of decision-making models. In a similar vein, many of the

models of executive function tasks like the Wisconsin card sorting and Stroop

tasks discussed in Section 9.4 are based on competition between habits and

current rewards or task demands. Typically, prefrontal damage interferes with

performance on those tasks by weakening the ability of current task con -

tingencies to override habitual responses.
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While Daw et al.’s (2005) model does not explicitly include nodes corres -

ponding to brain regions, there are other models with explicit brain regions that

capture effects such as reinforcer devaluation (Deco & Rolls, 2005a; Dranias

et al., 2008; Frank & Claus, 2006).

6.4.1. Reinforcer Revaluation Models

Dranias et al. (2008) and Grossberg et al. (2008) embedded the dopaminergic

reward prediction error in a larger conditioning model called MOTIVATOR
(an acronym for matching objects to internal values triggers option revalu -
ations). These authors discussed which parts of the conditioning process

require dopamine and which other parts (mainly involving amygdala,

hypothalamus, and OFC) do not require dopamine. The conclusions from their

model are roughly consistent with the division between dopamine “wanting”

FIGURE 6.17 Overview of MOTIVATOR model. Object categories represent visual or
gustatory inputs, in anterior inferotemporal (ITA) and rhinal (RHIN) cortices. Value
categories represent the value of anticipated outcomes on the basis of hunger and
satiety inputs, in amygdala (AMYG) and lateral hypothalamus (LH). Object-value
categories resolve the value of competing perceptual stimuli in medial (MORB) and
lateral (ORB) orbitofrontal cortex. The reward expectation filter detects reward or its
absence using a circuit of ventral striatum (VS), ventral pallidum (VP), striosomal
delay (SD) cells of the striatum, the pedunculopontine nucleus (PPTN), and midbrain
dopaminergic neurons of the SNc/VTA (substantia nigra pars compacta/ventral
tegmental area).

Source: Reprinted from Dranias et al., 2008, with the permission of Elsevier Science, Inc.



and amygdala/OFC “liking” (Berridge & Robinson, 1998; Berridge, 2007) dis -

cussed in Section 5.2. The dopamine–basal ganglia system is involved with

calculating reward prediction errors and the amygdala and OFC with setting

affective values for stimuli and events.

A schematic of the MOTIVATOR model is shown in Figure 6.17. The

model network is divided into four large regions that represent categories 

of objects (in the applications in these two articles, mainly visual and gustatory

objects); values of anticipated outcomes; object-value categories that compare

the values of different stimuli; and a reward expectation filter. The first three

of these regions together represent an updated version of the CogEM theory

discussed in Sections 6.3.3 and 6.3.4, and the fourth is an elaboration of the

reinforcement learning subnetwork discussed in Section 6.3.5.

The MOTIVATOR model accomplishes revaluation, including devaluation

when a reinforcer has been satiated or paired with aversive consequences, via

its object-value categories. The presence of two layers of orbitofrontal cortex

allows for contextual updating of positive and negative emotional value

calculations that are slower to change in the amygdala (Rolls, 2004).

The models of Frank and Claus (2006) and Deco and Rolls (2005a) similarly

explain revaluation and devaluation using the unique connectivity properties

of orbitofrontal cortex. The Frank–Claus model also distinguishes lateral OFC,

which favors negative emotion, from medial OFC, which favors positive

emotion. The Deco–Rolls model employs five functional classes of OFC cells

(sensory, reward-related, sensory-intermediate, error-related, and rule-related).

Dranias et al. (p. 273) discusses differences between the three models in terms

of numbers of training trials required for the revaluations.

6.4.2. The Primary Value/Learned Value Model

Another conditioning model framework that involves basal ganglia, amygdala,

and ventromedial prefrontal cortex along with midbrain dopamine nuclei is

called primary value/learned value (Hazy, Frank, & O’Reilly, 2010; O’Reilly,

Frank, Hazy, & Watz, 2007). The model derives its name from the two systems

that compose it: the primary value system that is engaged by the US, which

learns to inhibit the US-generated dopamine burst, and the learned value

system that drives the CS-generated dopamine burst once the US has become

reliably associated with reward.

The authors argue that their model is more biologically based and better able

to simulate variable time delays between CS and US than the TD model. This

is due in part to PVLV being based on associations and not on temporal

chaining. O’Reilly et al. (2007) also compare PVLV with the model of Brown

et al. (1999), which they call BBG (an initialism both of the authors’ names

and of “bursting in the basal ganglia”). O’Reilly et al. note that PVLV has a

similar decomposition to the BBG model but differs from Brown et al. in
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several key anatomical and functional details. Notably, PVLV locates the

excitatory part of the learned value system in the central nucleus of the amyg -

dala, whereas BBG locates it in the nonstriosomal part of the ventral striatum.

Also, in PVLV and not in BBG the subsystem for canceling reward bursts can

be activated by signals other than time since CS onset. Figure 6.18 shows the

updated biological interpretation of the PVLV model by Hazy et al. (2010),

which also incorporates data showing that dopamine nuclei respond to novel

stimuli.

PVLV and BBG (along with its later version in Tan and Bullock, 2008a,

2008b) are like each other, and, unlike TD, in that they both naturally interface

with separate models of psychological processes other than conditioning, such

as working memory. TD, by contrast, tries without complete success to

incorporate working memory within its reward prediction error model. The

larger connections of BBG are seen in the MOTIVATOR model shown in

Figure 6.17. Likewise, PVLV draws on connections with a working memory

model that includes functions of prefrontal cortex (Frank, Loughry, & O’Reilly,

2001; O’Reilly & Frank, 2006), which is discussed further in Chapter 9. The

working memory connection allows the model to capture better than TD the

distinctions between delay and trace conditioning, such as data showing that

trace conditioning, but not delay conditioning, is impaired by prefrontal and

hippocampal damage.

FIGURE 6.18 Biological interpretation of PVLV including novelty value (NV)
component. Novelty value (for visual stimuli) is assumed to be driven by known direct
projections from the superior colliculus (SC) to midbrain dopaminergic cells
(VTA/SNc). CAN = central nucleus of amygdala; VTA = ventral tegmental area; SNc
= substantia nigra pars compacta; LHA = lateral hypothalamus; VS = patch-like
neurons of ventral striatum; SC = superior colliculus; CB = cerebellum; CTX = sensory
neocortex.

Source: Reprinted from Hazy et al., 2010, with the permission of Elsevier Science, Inc.



204 Computational Cognitive Neuroscience

Equations for Networks in Chapter 6

Detailed Description: Sutton–Barto Equations

The key variable in the Sutton–Barto conditioning model, defined by
Equations (3.22), is the variable y denoting the current amount of positive
reinforcement in the environment – whether from a US or from one or
more conditioned CSs. Consider first the typical Pavlovian paradigm called
delay conditioning, in which the CS onset precedes the US onset but CS
and US presentations overlap. First consider the trials before substantial
conditioning has occurred. Then the variable y is 0. On the first trial where
a US occurs, y–, the variable representing a weighted average of recent past
values of y, is still 0, but y = w0x0 is positive because w0, the weight from
the US, is set to a high value (in the Sutton and Barto, 1981, simulations,
.6) and x0 represents US intensity. So the difference y – y– > 0. Now let the
given CS have the index 1, so that w1 is the weight from the CS. Since the
change in w1 is proportional to y – y– times the eligibility trace x–1 of that
CS, this weight will increase if the eligibility trace is high enough. That
happens over a range of time delays from the onset of the CS, the same
range illustrated in Figure 6.9. Over this range of delays, conditioning occurs
to the CS, with varying effectiveness.

When the CS has become conditioned, its outgoing weight w1 can
become as large as the weight w0 from the US. If that is the case and CS
amplitude is the same (in whatever units it’s measured) as that of the US,
then the arrival of the US causes no change in the value of y. This is because
y is constrained to be no larger than its asymptotic value, and that value
has already been reached by the CS.

Klopf’s Drive–reinforcement Model

The drive–reinforcement model of Klopf (1988), applied particularly to Pavlovian
conditioning, was interpreted by its author as a single-neuron model. Hence, the
xi(t) shown in Figure 6.5 can be interpreted either as presynaptic firing frequencies
or as CS activity levels. The wi(t) in that figure can either be synaptic efficacies
or associative weights. The single value y(t) can be interpreted either as a
postsynaptic firing frequency or as a level of reinforcement.

Klopf’s neuronal input–output relationship is similar to the one devised by
Sutton and Barto (1981) and shown in Chapter 3, with the addition of a
threshold. His equation is



(6.3)

where θ is the postsynaptic firing threshold, and the symbol “+” denotes replacing
the expression by 0 if it is negative. After the value y(t) is calculated using the linear
weighting function in (6.3), if it is larger than some prespecified maximum firing
rate, called ymax(t), it is replaced by ymax(t).

The learning mechanism is based on the changes in synaptic efficacies wi as a
result of changes in both presynaptic signals xi and postsynaptic signal y. To
account for causality in conditioning, the presynaptic signal changes are averaged
over a time interval, called τ, which is the longest interstimulus interval at which
conditioning is effective. The contributions of presynaptic signals at preceding
times are weighted by the strength of pre-to-post connections at those times and
by interval-dependent learning rate constants, called cj for time interval j. Hence

(6.4)

where, as always, �y(t) denotes y(t+1) – y(t) (hence, �y(t–1) denotes y(t) – y(t–1)),
and analogous notation is used for changes in other variables. In addition, the 
�xj are not allowed to be negative, but are set to be 0 whenever they become
negative.

The Temporal Difference Model

The temporal difference model of conditioning by Sutton and Barto (1990)
includes two sets of equations, for the eligibility traces x–i(t) of the various CSs,
and for wi (t), the strengths of association between those CSs and a single US. 
If xi (t) denotes the actual ith CS input signal (1 when the stimulus is present and
0 when it is absent), then the ith eligibility trace obeys the equation

(6.5)

with δ a constant between 0 and 1. If y(t) denotes the US input signal (again 0
or 1), then the associative strength wi (t) obeys the learning equation

(6.6)

where α is another constant between 0 and 1, and zi (t+1) is the temporal
difference factor (prediction error, i.e., change in total positive primary and
secondary reinforcement). The temporal difference factor in (6.6) is in turn 
given by

y t w t x ti i
i

n

( ) ( ) ( )= −
⎡

⎣
⎢

⎤

⎦
⎥

=

+

∑ �
1

� � �w t y t c w t j x t ji j i i
j

( ) ( ) | ( )| ( )= − − − −
=

∑1 1
1




x t x t x ti i( ) ( ) ( ) ( )+ = − +1 1 �

w t w t az t x ti i i i( ) ( ) ( ) ( )+ = + + +1 1 1

Models of Conditioning and Reinforcement Learning 205



206 Computational Cognitive Neuroscience

(6.7)

In (6.7), the expression in brackets denotes actual reward experienced (from
both the US and the CSs) and the expression to the right of the brackets denotes
predicted reward (from the CSs). �, which is typically slightly less than 1 in Sutton
and Barto’s simulations, is a factor by which future reinforcement is discounted
as compared to present reinforcement.

In Sutton and Barto (1998) and Ludvig, Sutton, and Kehoe (2012), the
coefficient 1-δ in Equation (6.5) was interpreted as the product of the time dis -
counting factor � times a value � between 0 and 1 that represents the time window
over which presentation of the CS can influence learning. The resulting model
was labeled TD(�).

The READ Circuit of Grossberg, Schmajuk, and Levine

Recall from earlier discussion that the recurrent associative dipole (READ) circuit
was designed by Grossberg and Schmajuk (1987). As its name implies, this circuit,
shown in Figure 6.15, adds to a gated dipole some internal feedback pathways.
This feedback creates the possibility of second-order conditioning, both appetitive
and aversive. The network also joins the gated dipole to a mechanism for
associative learning.

If an unconditioned stimulus (US) is applied to the “on” channel of Figure
6.15 (the side with odd-numbered subscripts), and nonspecific arousal to both
the “on” and “off” channels, the following equations arise (see Grossberg, Levine,
and Schmajuk, 1992, for discussion):

Arousal + US + Feedback On-Activation

(6.8)

where I denotes the tonic arousal input to both channels and J is the specific input
to the “on” channel.

Arousal + Feedback Off-Activation

(6.9)
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On- and Off-Transmitters (Depletable)

(6.10)

(6.11)

Gated On- and Off-Activations:

(6.12)

(6.13)

Normalized Opponent On- and Off-Activations

(6.14)

(6.15)

Total On- and Off-Activations

(6.16)

(6.17)

where Sk denotes the amplitude of the kth conditioned stimulus (CS) and x+, for
any real number x, denotes max (x, 0).

On-Conditioned Reinforcer and Off-Conditioned Reinforcer
Associations

(6.18)

dw
dt

b w cg x w1
1 1 11= − −( ) ( )

dw
dt

b w cg x w2
2 2 21= − −( ) ( )

dx
dt

ax eg x w3
3 1 1= − + ( )

dx
dt

ax eg x w4
4 2 2= − + ( )

dx
dt

ax h x x x k x5
5 5 3 5 4= − + − − +( ) ( )

dx
dt

ax h x x x k x6
6 6 4 6 3= − + − − +( ) ( )

dx
dt

ax m x p S wk k
k

n
7

7 5 7
1

= − + ++

=

∑[ ]

dx
dt

ax m x p S wk k
k

n
8

7 6 8
1

= − + ++

=

∑[ ]

dx
dt

S qw r xk
k k

7
7 5= − +( )+[ ]

Models of Conditioning and Reinforcement Learning 207



208 Computational Cognitive Neuroscience

(6.19)

The functions f and g in Equations (6.8)–(6.19) can either be sigmoids or ramp
functions, that is, linear above some threshold and 0 below the threshold. All
symbols not discussed so far denote positive constants.

The equations used by Grossberg and Levine (1987) to model attentional
effects, such as blocking, are not shown here. They are similar to Equations
(6.8)–(6.19) except that they include multiple, variable CS representations and
do not include opponent pairs of on- and off-channels. Grossberg and Levine also
added some terms to the CS and US short-term memory equations to allow for
competition between stimuli and decay in the presence of random background
noise.

Equations of Brown, Bullock, and Grossberg (1999)

Ventral striatal activity S is excited by primary reward inputs IR and by CS inputs
Ii that are gated by adaptive weights wiS:

(6.20)

CS-to-striatal weights wiS change only when S is positive. They are potentiated
by a positively reinforcing dopamine burst N + and depressed by a “negatively
reinforcing” dopamine depression N –, described below:

(6.21)

PPTN activity P is excited by striatal inputs S and primary reward inputs IR:

(6.22)

where UP is a habituation term that satisfies

(6.23)

Dopamine cell activity D is excited by the rectified PPTN activity [P – �P]+,
where �P is a signal threshold, and a tonic arousal signal ID . The dopamine cell
is inhibited in an adaptively timed fashion by the summed spectrum of signals
from the striosomes, �i,j [GijYij – �S ]+wij , thus
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(6.24)

D over a period of time is averaged into a tonic signal D
–

that satisfies the equation

which in turn leads to the calculation of the positive and negative reinforcement
signals of Equation (6.21):

(6.25)

(6.26)

If the index i is used for different CSs and j for striosomal cell populations, the
activity xij of the jth striosomal population in response to the ith CS is

(6.27)

where rj is a variable parameter (a hyperbolic function of j ) that determines the
adaptive timing of Ca++ spikes. In a simplification of the detailed biochemistry of
Fiala et al. (1996), each Ca++ spike is represented as a product GijYij , with Gij a
signal activated by striosomal firing and Yij the amount of available Ca++. Those
two variables satisfy equations of the form

(6.28)

(6.29)

In Equation (6.28), fG (x) is the unit step function (1 for x > 0 and 0 for x < 0).
The equations for the CS-to-striosome weights are listed in Brown et al. (1999)

as

(6.30)
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But Tan and Bullock (2008b) noted that (6.30) was a misprint in the 1999
article, which had led O’Reilly et al. (2007) to conclude that the model could
lead to endless weight modification. The correct form of the equation for CS-to-
striosome weights was

(6.30a)

The Leabra Equations and Their Use in PVLV

Leabra (O’Reilly & Munakata, 2000; O’Reilly & Frank, 2006) simplifies the
geometry of neurons to single points. The equations are difference equations for
updating neuron activations at the ends of trials. If Vm is the membrane potential
across a neuron, it is updated by three different conductances (excitatory, leak,
and inhibitory) gc and reversal (driving) potentials Ec using the equation

(6.31)

The conductances g c and potentials Ec have three different subscripts (e, l, and i ).
The constants ḡc denote the relative influence of the three different conductances.

The excitatory conductance ge(t) for the jth neuron is based on activations of
those other neurons i = 1, 2, . . . , n that send excitation to the jth neuron times
the weights of connections from those neurons:

(6.32)

The leak conductance g l is a constant. The inhibitory conductance g i is computed
by a k-winners-take-all function to be described below.

If the voltage Vm at time t is greater than a threshold value θ, then yj , the
activation communicated to other neurons is

(6.33)

and if Vm(t) < θ, yj (t) = 0. Before communication to other cells the function of
(6.33) is smoothed out via convolution with a Gaussian function:

dw
dt

G Y A w N w Nij
z ij ij S z ij ij= −⎡⎣ ⎤⎦ − −( )+ + −� � ( )

�V t g t g E V tm c
c

c c m( ) ( ) ( )= −( )∑



 j e i
i

ijg t
n

x w= = ∑( ) 1

y t

V t

j

m

( )

( )

=
+

−( )

1

1 1
� �

y x
e

y
z x dxj

z

j

* ( )
1

2
2

2

2
��

�

−

−∞

∞⌠

⌡

⎮
⎮ −( )



The k-winners-take-all inhibition algorithm is implemented by means of a
uniform inhibitory current g i whose value is set such that the (k+1)st most
excited unit within a layer is below its firing threshold but the kth most excited
is above threshold. For each index i, it follows from (6.31) that the level of
inhibition necessary to keep the ith unit right at the threshold voltage θ is

(6.34)

From the values defined in Equation (6.34), g i is calculated to be a value between
gk

θ and gθ
k+1; namely, g i = gk

θ + q(gθ
k+1 – gk

θ), with q a parameter between 0 and 1
whose default value is .25.

Learning in Leabra is a combination of Hebbian associative learning and error-
driven learning, with the error-driven part actually similar to differential Hebbian
learning (see Section 6.1.5). For weights wij between layers, let the superscript +

above any number x denote max (x,0), and the superscript – above x denote min
(x, 0). Then the Hebbian component of weight change is

The error-driven component of learning is first calculated as

to which a weight-dependent algorithm is then applied to bound it between 
0 and 1:

The actual weight change is a normalized linear combination of the Hebbian
and error-dependent terms:

Exercises for Chapter 6

�1. How might the Rescorla–Wagner model of blocking be extended to account
for the phenomenon of unblocking, whereby if CS1 + CS2 predicts a
different level of US stimulation than does CS1 alone, then CS2 conditions
normally to the US? Does the Sutton–Barto model explain that phenom -
enon better?

*2. (a) Run a simulation of the Sutton–Barto equations (3.22) where the
interstimulus interval is varied. Let the number of trials be 40 and let
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each trial be 50 time units long. Let the CS duration be three time 
steps, the US duration 30 time steps. Use the parameters α = .9, 
c = .2, � = 0, and the initial US associative strength w0 = .6. Plot the
asymptotic value of the CS associative strength as a function of
interstimulus interval. Let CS and US both have amplitude 1.

(b) Run a simulation of a blocking paradigm using the Sutton–Barto
equations and two conditioned stimuli, CS1 and CS2. Let CS durations
be five time steps and US duration ten time steps. For the first ten trials,
CS1 alone is presented and followed by US, starting immediately after
CS1 termination. For the next ten trials, CS1 and CS2 are presented
simultaneously, followed immediately by the US. Use the parameters
� = 0, c = .5, α = .6, w0 = .6.

*3. Simulate excitatory conditioning and extinction in the READ circuit, with
the same parameters used by Grossberg and Schmajuk (1987), shown in
Equations (6.8)–(6.19), with just a single CS. On each trial, present the CS
for a duration of 40 time units, of which the US is also present for the last
15. Let the total trial length be 200 time units. The CS is paired with the
US for ten trials, and then presented in the absence of the US for the next
ten trials. The parameters in the differential equations (using the termin -
ology of this book, not of Grossberg and Schmajuk) are a = 1, b = .005, 
c =.00125, e = 20, h = 20, k = 20, m = .5, p = 20, q = .005, r = .025. 
The strength of tonic arousal is ten, while the CS and US have amplitudes
1 and 200 respectively. For the functions f (x) and g (x), use .05x and x
respectively if x is positive, and 0 if x is negative. Hint: this has tended to
work better in simulations if on each time step the equations for node
activities are solved in the steady state, that is, with time derivatives equal
to 0. Then the equations for connection strengths are integrated, using a
differential equation solving routine, with the new values for node activities
substituted in.

*4. Simulate the temporal difference model of anticipatory neural activity with
the same parameters used by Suri and Schultz (2001). The equations used
are a slight modification of the TD Equations (6.5)–(6.7), namely:

Each trial is seven seconds with the time unit in the simulation being 0.1
second, i.e. the total trial time is 420 time units. The first event in a trial
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(usually a stimulus) serves as the information to learn prediction signals for
the second event (usually the reward). On each trial, present the events 
j = 1 and j = 2 for a duration of 60 time units, as shown in Figure 6.19.
The events are each present for 20 trials. Each event is represented with 70
phasic representation components x–i (t). The prediction error factor zj(t)
increases phasically when the event is presented, and the prediction signal
pj (t) is tonically increased during the intratrial interval. The elements of the
weight matrix wji (t) are incrementally adapted according to the product of
the prediction error factor zj (t) with eligibility traces x–i (t) of the temporal
event representation xi (t). The temporal representation xi (t) is shown in the
figure, each representation is activated for one time unit after the previous
one, and the first one is activated after one time unit of the event for both
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FIGURE 6.19 Time course on a single trial of the association of stimulus and reward in the
model of Suri and Schultz (2001).
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events. Hint: we have shown two temporal representations for the
simulation so we need an N×L matrix. The parameters in the equations
(using the terminology of this book) are N = 70, L = 2. For simplicity, let
the temporal discount factor � = 0.9, the learning rate α = 50, and the
eligibility traces discount factor δ = 0.9.

Some Additional Sources

Modeling of Classical Conditioning

Commons, Grossberg, and Staddon (1991); Dawson (2008); de Pinho, Mazza,
and Roque (2006); Gluck, Myers, and Meeter (2005); Mannella, Koene, &
Baldassarre, 2009; Meeter, Myers, and Gluck (2005); Myers et al. (1996); Myers,
Ermita, Hasselmo, and Gluck (1998); Schmajuk (1997); Schmajuk and DiCarlo
(1992).

Modeling of Operant Conditioning

Dragoi (1997); Miller and Shettleworth (2008); Raymond, Baxter, Buonomano,
and Byrne (1992); Simen and Cohen (2009); Staddon and Zhang (1991); Suppes,
de Barros, and Oas (2012).

Connections with Invertebrate Neurophysiology

Canavier, Baxter, Clark, and Byrne (1993, 1994); Santos, Porto, Romero, Albó,
and Pazos (2007).

Temporal Difference Models

Bertin, Schweighofer, and Doya (2007); Dayan, Niv, Seymour, and Daw (2006);
Kim, Hwang, Seo, and Lee (2009); Rivest, Kalaska, and Bengio (2014); Singh
and Sutton (1996); Zhang (2009).

Other Reinforcement Learning Models

Ashby and Crossley (2011); Izhikevich (2007).

Model-Based and Model-Free Systems

Penner and Mizumori (2011).

Modeling of Fear Conditioning

Schmajuk, Larrauri, and LaBar (2007).



Notes

1. While the term “interstimulus interval” is commonly used in the animal learning
literature, the interval is not properly “between stimuli” but rather between their onsets.
For this reason, some psychologists prefer the term “stimulus onset asynchrony,” or SOA.
In fact, Grossberg and Rudd (1989), in discussing light flashes, define SOA as the time
between the onsets of two flashes, and ISI as the time between the offset of the first flash
and the onset of the second.

2. Houk et al. (1995) included the lateral hypothalamic input on theoretical grounds but
did not include anatomical evidence for its existence. But findings from various laboratories
have shown that a main source of excitation to dopamine cells in the substantia nigra pars
compacta is the pedunculopontine tegmental nucleus (PPTN) of the midbrain and that
the main source of excitation to the PPTN is the lateral hypothalamus.
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7
MODELS OF CODING,
CATEGORIZATION, AND
UNSUPERVISED LEARNING

The Nameless is the origin of heaven and earth; the Named is the mother of 

all things.

Lao Tzu

I hate definitions.

Benjamin Disraeli (Vivian Gray)

No two sensory events are exactly the same. We never see the same moon

twice; even our wife’s or husband’s face exhibits subtle changes in expression

from one viewing to another. Yet, most of us manage to ascribe to the sensory

world a fair degree of regularity. How do we decide when two sensory objects

are similar enough to be listed in the same category and when they are not?

Of course, the rules for “similarity” vary tremendously with context. An

apple and a radish are listed together if foods are classified by color, but not

if foods are classified by taste (sweet, bitter, sour, or salt). How to model the

capacity for multiple categorizations, in which the context determines which

categorization is used, is a problem at the forefront of contemporary neural

network theory. But much progress has been made on the simpler problem 

of constructing neural networks that learn to encode a single categorization of

sensory patterns, regardless of context.

Some neural network categorization models involve supervised learning;

that is, certain output nodes are trained to respond to certain patterns, and the

changes in connection weights due to learning cause those same nodes to

respond to more general classes of patterns. Other models involve unsupervised
learning; that is, input patterns are presented in some sequence and the network

discovers through self-organization a “natural” categorization of the sensory



world. The distinction between supervised and unsupervised has been made

in the engineering literature for over 40 years; see Duda and Hart (1973).

Sometimes, in engineering applications, supervised categorization is called

classification, whereas unsupervised categorization is called clustering. This

distinction is not rigid because some “unsupervised” networks are actually

supervised by an internal error signal (for discussion, see Dawes, 1992), but

it is a useful means of classifying models.

Neural network categorization algorithms have been quite diverse, but

many of them (e.g., Carpenter & Grossberg, 1987a, 1987b; Edelman, 1987;

Rumelhart et al., 1986; Rumelhart & Zipser, 1985) have some general points

in common. All these networks include modifiable connections between one

layer of nodes encoding features of the sensory environment, and another layer

of nodes encoding categories of sensory patterns composed of those features

(see the generic Figure 1.2 from Chapter 1). Typically, category nodes are

initially random or neutral in their responses, but learn specific pattern

categories by experience.

To prepare the way for understanding neural categorization, we first consider

the slightly simpler issue of how a node in a neural network can learn to respond

to particular patterns of activity at other groups of nodes. These patterns of

activity, in turn, could represent combinations of sensory features. The next

section deals with coding in that sense, not in the sense of how the primary

representation of a sensory stimulus is actually formed in the nervous system.

Network mechanisms for such higher level coding, which are also discussed

in Section 8.2 of Levine (1983), have possible implications for biological

organisms during development.

7.1. Interactions between Short-and Long-Term Memory
in Code Development

7.1.1. Malsburg’s Model With Synaptic Conservation

The study of neural networks for code development essentially began with a

seminal article by Malsburg (1973) on the development and tuning of

orientation-sensitive cells in the visual cortex. This model is discussed in some

detail because its basic structure anticipates many of the more current models

of coding and categorization.

Malsburg’s (1973) model is based on unmodifiable recurrent excitation and

inhibition between “cortical” nodes, combined with modifiable synapses to the

“cortex” from an input (“retinal”) layer of nodes. He was motivated to develop

this model by a body of experimental results on the mammalian visual system.

These results suggested that:
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The task of the cortex for the processing of visual information is different

from that of the peripheral optical system. Whereas eye, retina and

lateral geniculate body (LGB) transform the images in a “photographic”

way, i.e., preserving essentially the spatial arrangement of the retinal

image, the cortex transforms this geometry into a space of concepts.

(p. 85)

In particular, Malsburg’s model, and several subsequent models discussed

in this chapter, drew their inspiration from physiological results on single-cell

responses to line orientations. These models can explain findings that neurons

in the cat or monkey visual cortex respond preferentially to lines of a particular

orientation, and that cells responding to similar orientations are grouped close

together anatomically, in columns (Hubel & Wiesel, 1962, 1963, 1965, 1968).

These models also explain findings that preferred orientations of neurons are

influenced by early visual experience (e.g., Blakemore & Cooper, 1970; Hirsch

& Spinelli, 1970). (Later results on the various influences on orientation speci -

ficity, including the interplay between genetic and developmental factors, are

summarized in Ferster & Koch, 1987, and Malsburg & Cowan, 1982.)

Some early models (e.g., Bienenstock, Cooper, & Munro, 1982, p. 32;

Grossberg, 1976a, p. 152; Grossberg, 1976b, p. 131; Perez, Glass, & Shlaer,

1974) also address evidence that there is a critical period in development of

orientation detectors. That is, for a short period of time (in cats, age 23 days

to four months; in humans, six months to two years), cortical orientation tuning

is much more modifiable than it is either earlier or later.

Malsburg’s simulated cortex is organized into two separate populations,

excitatory and inhibitory nodes (he called them cells). That is, Malsburg’s

model is unlumped in the terminology of Section 4.2. The variation of

connection strengths with distance endows the simulated cortex with a crude

form of the lateral inhibitory architecture shown in Figure 4.2: narrow-range

excitation and broad-range inhibition. Malsburg’s laws for lateral interaction

between nodes are additive rather than shunting in the terminology of Sections

4.1 and 4.2.

The arrangement of excitatory-to-excitatory connections pik, excitatory-to-

inhibitory connections rik , and inhibitory-to-excitatory connections qik in

Malsburg’s simulated cortex is shown in Figure 7.1. As that figure shows,

excitatory and inhibitory nodes are organized into two parallel planes, each 

with a hexagonal arrangement of nodes. Excitatory nodes excite neighboring

nodes, both excitatory and inhibitory ones, whereas inhibitory nodes inhibit

excitatory nodes that are a distance of two away. The signal transmitted by 

each node is equal to the amount of the signaling node’s activity that is above

some threshold value. Equations relating all these variables, and the connec-

tion weights sik from simulated retinal afferents, are given at the end of this

chapter.
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Of the connections in Malsburg’s model, only the connections from retinal

afferents to cortical nodes have modifiable weights. The rule for changing these

weights combines an associative learning law with a synaptic conservation rule

similar to the gamma-system learning law of Rosenblatt (1962; see Section

2.1.3). Synaptic conservation was imposed to prevent the unbounded growth

of synaptic strengths that would otherwise result from associative learning. This

combination of laws is described as follows (Malsburg, 1973, p. 88):

. . . if there is a coincidence of activity in an afferent fibre I and a cortical

E-cell k, then sik, the strength of connection between the two is increased

to sik + �s, �s being proportional to the signal on the afferent fibre I and

to the output signal of the E-cell k. Then all the sjk leading to the same

cortical cell k are renormalized to keep the sum �j sjk constant.

Figure 7.2 shows the standard set of stimuli used on Malsburg’s model

retina. These stimuli correspond to bars of light at different orientations. As

shown in Figure 7.3, orientation detectors, such as were found by Hubel and

Wiesel (1962, 1963, 1968), develop spontaneously among Malsburg’s simu -

lated cortical cells. After 100 learning steps, the lateral excitatory and inhibitory

interactions lead to self-organization of cortical nodes, whereby most nodes

have preferred orientations and nodes of similar preferred orientations tend 

to be grouped together. Figure 7.4 shows a similar grouping of biological

orientation detectors found by Hubel and Wiesel (1968) in the monkey striate,

or primary visual, cortex.

INHIBITORY

CORTEX
(EXCITATORY NODES)

RETINA

(a) (b)

EXCITATORY

FIGURE 7.1 (a) A small part of the simulated cortex of Malsburg (1973), showing the
arrangement of connections between excitatory and inhibitory nodes. (b) Each node of
Malsburg’s retina has modifiable connections to all excitatory nodes of the cortex.
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The idea of synaptic conservation is intuitively based on the notion that some

chemical substance, whether a transmitter or second messenger (see Section

3.1), is present in a fixed amount at postsynaptic sites and distributed in variable

fashion across impinging synapses. This mechanism is necessary for the effects

in Malsburg (1973), and in two related models of the visual cortex by Perez

et al. (1974) and Wilson (1975). Some more recent categorization models (e.g.,

Carpenter & Grossberg, 1987a; Rumelhart & Zipser, 1985; Sirosh & Miikku -

lainen, 1997) also use learning laws whereby strengthening of some synapses

weakens other synapses. Such laws are reminiscent of the learning scheme of

Rescorla and Wagner (1972; see Chapters 3 and 6), which includes an upper

bound on the total associative strength of all stimuli with a given reinforcer.

FIGURE 7.2 Standard set of stimuli used on the simulated retina. Larger dots denote
locations of activated nodes.

Source: Reprinted from Malsburg, 1973, with permission of Springer-Verlag.

FIGURE 7.3 Simulated cortex after 100 time steps of learning. Each bar indicates the
orientation to which the excitatory node at that location is most responsive. Blank
spaces represent locations of nodes that never learn to react to any of the standard
stimuli.

Source: Adapted from Malsburg, 1973, with permission of Springer-Verlag.



Malsburg’s model was extended by Willshaw and Malsburg (1976, 1979)

to a model of the development of topographic maps, that is, mappings between

network layers whereby areas of the upper layer that code for nearby receptive

fields are close together. Willshaw and Malsburg applied these maps to models

of interactions between the retina and optic tectum in nonmammalian verte -

brates. Some later modelers (Kohonen, 1982; Linsker, 1986a, 1986b, 1986c;

Sirosh & Miikkulainen, 1994, 1997) developed models of topographic maps

that, unlike those of Willshaw and Malsburg, did not include any topographic

order in the original inputs. These later models are discussed in Section 7.1.4.

7.1.2. Grossberg’s Model with Pattern Normalization

Grossberg (1976a, 1976b) developed a model that has many principles in

common with Malsburg’s but does not use a synaptic conservation law for

learning. He argued that such a conservation law is incompatible with classical

conditioning. Moreover, while Malsburg used this law in order to keep synaptic

strengths, and therefore total network activity, bounded, it is also possible to

achieve boundedness by replacing additive lateral interactions with shunting

inhibition and excitation. These arguments are now reviewed.

The argument that synaptic conservation is incompatible with conditioning

was given in Grossberg (1976a, p. 149). Suppose a sensory cue S1 elicits a

response pattern R, and then another cue S2 is paired with S1 (see Figure 7.5).

The pairing leads to a strengthening of the connection from the S2 node to those

nodes whose activation is strongest in the R response. But if, as in Malsburg’s

model, total strength of synapses impinging on a given node from the previous

level is kept constant, strengthening of the connection S2-to-R would force

weakening of the connection S1-to-R. In reality, secondary conditioning occurs
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FIGURE 7.4 Reconstruction of an electrode penetration through an area of a monkey’s
primary visual cortex. Lines to the left indicate preferred orientations of the cells
traversed. Areas numbered 17 and 18 are standard terms for subdivisions of the cortex.

Source: Adapted from Hubel and Wiesel, 1968, with permission of Cambridge University Press.



(see Section 6.2), so that S1 and S2 can simultaneously be strongly connected

to R. The argument that synaptic conservation is unnecessary for boundedness

was based on the mathematical theory of shunting on-center off-surround

networks (Ellias & Grossberg, 1975; Grossberg, 1973; Grossberg & Levine,

1975; see Section 4.2). This argument uses the nonrecurrent shunting Equations

(4.2) (recall the discussion of recurrent versus nonrecurrent inhibition in

Section 4.1). If xi is the activity of the ith node which receives input Ii, it can

be shown from those equations (see Exercise 1 of Chapter 4) that the steady-

state value of xi (what it converges to after long times) is

(7.1)

Since the relative pattern weights θi add up to 1, (7.1) says that the sum of all

the steady-state activities equals BI / (A + I), which is no larger than B regardless

of the total input intensity I and the number of nodes in the network. Hence,

total network activity never exceeds B.

Grossberg’s argument is based on the factorization of spatial patterns into

a product of relative pattern weights θi and total intensity I. This concept,

sometimes called factorization of pattern and energy, was previously discussed

in relation to outstar networks in Section 3.2.1. Factorization of pattern and

energy also plays a role in models of motor control (Bullock & Grossberg,

1988) and of word recognition (Grossberg & Stone, 1986).
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FIGURE 7.5 Argument against conservation of synaptic strength. If w11 is much larger
than w12, the network shown here learns to respond to stimulus S1 with a response
pattern R, whereby x1 is much more activated than x2. Since the two sums are equal,
w21 is then less than w22, so the network cannot also learn to perform R in response to
S2. If S2 is paired with S1, as in secondary conditioning, this is contradictory.

Source: Adapted from Grossberg, 1976a, with permission of Springer-Verlag.



A model for development and tuning of feature detectors, combining lateral

inhibition for short-term memory with associative synaptic modification for

long-term memory, is discussed in Grossberg (1976b). Figure 7.6 shows the

minimal network of that article. This network, like that of Malsburg (1973),

includes unidirectional modifiable synapses from an input layer F1 to a cortical

layer F2, leading to coding of input patterns by cortical nodes. Grossberg

(1976c) extended this model to include modifiable feedback from F2 to F1. To

describe the mutually excitatory dynamics that emerge in a modifiable network

with top-down feedback, he coined the term adaptive resonance. This work

ultimately led to the well-known adaptive resonance theory (ART) of Carpenter

and Grossberg (1987a, 1987b; see Section 7.2).

In the network of Figure 7.6, the input-receiving nodes x1i are endowed with

a nonrecurrent (feedforward) on-center off-surround anatomy, and the pattern-

coding nodes x2i with a recurrent on-center off-surround anatomy (see Figure

4.1). F1 and F2 represent successive layers in a hierarchical network. Grossberg

suggested that variations on the same hierarchy could be repeated in different

brain regions. In Malsburg (1973) and Perez et al. (1974), F1 was interpreted

as either retina or thalamus, and F2 as visual cortex (see Appendix 2). But F1

might also be identified with a composite of early processing areas in the retina

(receptors, horizontal cells, and bipolar cells) and F2 with retinal areas closer

to the optic nerve (amacrine and ganglion cells; Grossberg, 1976b). Also, since

the visual cortex itself contains several processing stages, identified with cell

groups known as simple, complex, and hypercomplex cells (Hubel & Wiesel,

1962, 1963, 1965, 1968; see Section 5.4.1), F1 and F2 might be interpreted as

different parts of cortex. Based on these cortical cell groups, Grossberg (1976b,
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FIGURE 7.6 Minimal model of development and tuning of feature detectors using short-
term memory (STM) and long-term memory (LTM) mechanisms.

Source: Adapted from Grossberg, 1976b, with permission of Springer-Verlag.



1976c) proposed architectures that are more complex, adding to Figure 7.6

another layer F3 whose nodes code activity patterns across F2. Nor are these

architectures restricted to vision: Grossberg (1976b) described yet another

interpretation, whereby F1 is the olfactory bulb and F2 is olfactory cortex.

In Grossberg (1976b), the input signals I2j to the cortical nodes x2j are linear

combinations of the activities at the retinal nodes x1i, weighted by the strengths

of retinocortical synapses. The patterns viewed at the retina are assumed to 

be normalized so that their values θi add up to 1. (Recall the discussion in

Section 4.1 of pattern normalization in networks with lateral inhibition.) For

simpli fication, it is assumed that the x1i activities represent the input pattern to

the retina. Hence, the total signal at time t to a given cortical node x2j due 

to the retinal pattern θ = (θ1, . . . ,θn) is

(7.2)

where wkj(t) denotes the strength of the synapse from retinal node k to cortical

node j. The linear combination in (7.2) also is incorporated in Equation (7.5)

at the end of this chapter, from Malsburg (1973).

Grossberg (1976b) discussed several possible long-term memory laws for

the synaptic strengths wkj . In one of these laws (shown in Equation (7.10) at

the end of this chapter), weights of connections to a node change only when

short-term memory at that node is active.

7.1.3. Mathematical Results of Grossberg and Amari

Recall from Section 4.2 that a recurrent competitive network, such as F2 in

Figure 7.6, can either have exactly one or more than one node with positive

asymptotic activity as time increases. Hence, sometimes, but not always,

competition is winner-take-all, that is, exactly one node at the competitive 

level gets its incoming signals stored in short-term memory (STM). From 

the view point of categorization, the winner-take-all case is especially interest -

ing. In particular, the “winning” node in the competition for short-term 

storage could be the one whose incoming signal Sj , as defined by (7.2), is the

largest.

In Grossberg (1976b), the criterion of choosing the F2 node with the largest

incoming signal leads to a primitive scheme for categorizing patterns, each

pattern defined as a vector of retinal node activities. This largest-linear-signal

criterion is also the basis for categorization in Amari and Takeuchi (1978).

Grossberg (1976b) discovered, however, that such a categorization algo -

rithm can lead to miscodings if the network is subjected to many different

spatial patterns over time. For suppose that cortical node x21 is the most active

in response to a particular retinal pattern, say θ1. Then the vector w1 of synaptic

S t w ti k kj
k

n
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weights from all the retinal nodes to that cortical node becomes closer to θ1 as

time increases (as is shown by Equation (7.9) at the end of the chapter). But,

as Figure 7.7 shows, bringing these weights closer to θ1 could also bring them

closer to a different spatial pattern θ2. Thus if θ2 is presented, it will now be

coded by the node x21 and the weight vector w1 will be attracted to θ2. Alternate

presentation of θ1 and θ2 to the network can lead to an oscillation, or the node

x21 can become unable to recognize the original pattern θ1. This forces θ1 to

be recoded by a different cortical node.

To prevent presentation of one pattern from recoding other patterns,

Grossberg (1976b) proposed adding to the network of Figure 7.6 some feedback

connections from F2 to F1. Such feedback allows the network to detect when

θ2 is sufficiently different from θ1 to be categorized separately from θ1. In that

case, whatever F1-to-F2 signals would otherwise be generated by θ2, a mismatch

signal is generated that transiently removes node x21 from the set eligible to

code θ2. This mismatch-detecting mechanism is at the heart of adaptive

resonance theory, which is discussed more fully in Section 7.2.2.

Grossberg (1976b, 1976c) showed that every solution of the equations for

the network of Figure 7.6 approaches some equilibrium point corresponding

to a learned category. Amari (1977a, 1977b, 1980) proved an analogous result

for a coding network similar to Grossberg’s but with additive rather than

shunting interactions. Amari and Takeuchi (1978) extended this result to a

coding system which includes both excitatory and inhibitory modifiable

interlevel synapses.

7.1.4. Feature Detection Models With Random Elements

Bienenstock et al. (1982) constructed a model of the development of orienta-

tion detectors in the visual cortex. Their model has much in common with

Grossberg’s but also includes random elements. Bienenstock et al. added

(b)(a)

w2(0) w2(t)

11(t)1

2
2

FIGURE 7.7 (a) Vectors of weights from F1 to two different F2 nodes at time 0, as
compared with spatial patterns θθ1 and θ2. (b) As node x21 of F2 learns θ1, its bottom-up
weight vector gets closer to both θ1 and θ2 than the vector w2 of bottom-up weights to
node x22.

Source: Adapted from Grossberg, 1976b, with permission of Springer-Verlag.



non linear interactions to the previous linear probabilistic model of Nass and

Cooper (1975). (Recall from Section 3.2 that Nass and Cooper’s model was

in turn based on addition of decay terms to the associative model of Anderson,

1973.) In addition to orientation preferences, units in the network of

Bienenstock et al. can exhibit preferences for one or another eye; such ocularity

preferences are influenced by the opening or closing of either eye during

development (see Table 4.1).

In the model of Bienenstock et al. (1982), retinocortical connections are

subject to a learning rule that includes the possibility of both synaptic increase

(in the manner of Hebb, 1949) and decrease. If Ij is the jth retinal input, and

wj the strength of the synapse to a given cortical node with activity x, then the

expression for the rate of change of wj is of the form

(7.3)

where ε is a decay rate and the function Φ can either be positive or negative.

In fact, Φ is positive for x above a certain threshold value, and negative for x
below that threshold. That is, in current terminology, the learning law alternates

between Hebbian with decay and anti-Hebbian with decay. (Another version

of this type of learning law appears in Bear et al., 1987.) This law embodies,

in the learning equation itself, a form of contrast enhancement of significant

inputs, or suppression of random noise, such as is often obtained with lateral

inhibition (see Chapter 4). The network also, however, includes some actual

lateral inhibition.

The inputs Ij of (7.3) are assumed to be random, with a probability distri -

bution reflecting the distribution of patterns in a given sensory environment.

Through computer simulation and mathematical analysis, the connection

weights wj were shown to converge to a steady state that is selective with

respect to the distribution of the random inputs. That is, the response of the

given cortical neuron, which equals the sum �jwj (t) Ij(t), reaches its maximum

possible value over a relatively small subset of the set of possible inputs.

Bienenstock et al. suggested that this kind of selectivity is analogous to the

orientation selectivity of actual cortical neurons.

A series of articles by Linsker (1986a, 1986b, 1986c) carried the idea 

of multilayer structure further with a network of three (or more) layers with

adaptable connection strengths. These layers were intended to be analogs of

both the retina and the visual cortex, without mimicking the detailed anat-

omy of either area. From random inputs at the lowest layer, combined with

Hebb-like learning at interlayer connections, emerge at higher layers some

spatial-opponent cells (that is, nodes with on-center off-surround or off-center

on-surround responses, like those of the retinal ganglion cells shown in Figure

4.2). At still higher layers, nodes emerge that are responsive to given

− +εw ii
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orientations. Finally, the orientation nodes organize themselves into columns

in much the same manner as occurs in the models of Malsburg, Grossberg, and

Bienenstock et al.

Linsker’s model differs from the other models discussed in this section in

that prescribed orientations are not part of the pattern of its inputs. Rather, the

orientation specificity and topographic organization emerge from mathematical

properties of the Hebb-like learning laws at interlevel synapses. Orientation

specificity also emerges from learning in the models of Sirosh and

Miikkulainen (1994, 1997). Sirosh and Miikkulainen found that activity-

dependent topographic organization depends on receptive fields of individual

nodes being large enough compared with their initial topographic scatter.

Kohonen (1982) suggested that the theory of development of this kind of

organization is not restricted to topographic maps but could be applied to a

feature or attribute space at any level of abstraction.

7.1.5. From Feature Coding to Categorization

The visual orientation detection networks discussed above perform a primitive

form of pattern categorization. Hence, this type of network provides one of the

bases for the more sophisticated categorizations (e.g., the shape of a dog, the

sound of a recorder) that we perform in daily life. As categorizations become

more subtle, they depend heavily on the ability to notice common features in

disparate, and sometimes noisy, inputs. For example, we classify both a cocker

spaniel and a dachshund, with or without tail damage, as dogs.

Recall from the start of this chapter the two general types of networks for

pattern categorization: supervised and unsupervised learning. Both of these

types of networks combine the coding of input patterns by internal layers of

nodes with other functions. In supervised learning, the responses of an output

layer to certain given patterns are compared with desired responses. Hence, in

addition to a coding system, these networks typically require at some stage 

an error-correcting or delta learning rule (see Sections 2.1.4, 3.3, and 6.3). In

unsupervised learning, the input pattern is usually compared with an internally

generated prototype pattern or with some of the previous stimuli. Hence, these

networks typically require some architecture for measuring how similar a

pattern is to previously encountered ones – in other words, for detecting

famili arity or novelty. Computer scientists and engineers sometimes refer to

unsupervised learning as clustering; that is, finding categorical order in patterns

that are presented. Supervised learning they refer to as classification, that is,

fitting presented patterns into existing categories.

Both unsupervised and supervised learning models are important in the

theory of how biological organisms categorize. We make many quick decisions

to place items, both sensory stimuli and abstract entities, into either existing
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or novel categories, too quickly to depend on supervision. The networks to be

discussed in the remainder of this chapter, many of which build on simpler

structures like those described in Chapters 3 and 4, model self-organization;

that is, making sense out of a large amount of incoming data. Yet, over the

course of a person’s or other animal’s lifetime, there is a need to learn from

other organisms or the environment some categorizations that self-organization

alone will not discover. Hence, Chapter 8 is devoted to supervised cat -

egorization models, many of which rely on error correction.

The supervised/unsupervised split between chapters is made for ease of

exposition but many widely used classes of algorithms, such as adaptive

resonance, back propagation, deep learning, and brain-state-in-a-box, are

applied to both supervised and unsupervised learning. Hence, some of the

narrative in both chapters transitions between the supervised and unsupervised

modes.

7.2. Self-Organization and Unsupervised Categorization 
Models

7.2.1. Competitive Learning and Self-organizing Maps

The term competitive learning is in general usage for multilevel networks that

combine associative and competitive principles, including most of the networks

discussed in this section and the previous one (see Grossberg, 1987a, for a

discussion). The same term is sometimes used more specifically for a subclass

of this type of network developed by Rumelhart and Zipser (1985). These

researchers studied a simple system capable of detecting pattern regularity and

illustrating some basic competitive learning principles.

The Rumelhart–Zipser model is based on a multilayer architecture. The

lower level consists of input units (feature detectors), and inputs are treated as

binary patterns activating some of these nodes. Nodes in succeeding layers

group into “clusters”1 and there is winner-take-all competition within a cluster.

Winning nodes then send signals up to the next layer. There is no feedback

from higher to lower layers.

The weights of connections from lower to higher layers change according

to a rule similar to the synaptic conservation rule of Malsburg (1973). Only

connections to winning units in clusters are modified. The connection weights

wij to a given unit j, from units at the next layer below, add up to a fixed amount,

and a proportion of the weight shifts from inactive to active pathways; the

equations for this process are given at the end of this chapter. Each cluster of

nodes classifies the stimulus set into as many groups as there are units in the

cluster. If the arriving inputs fall into “natural clusters,” the clusters of network

nodes tend to find them. If there are no natural clusters, responses of those
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nodes can at times become oscillatory or chaotic rather than converging to an

equilibrium.

Rumelhart and Zipser (1985) applied the competitive learning algorithm to

a variety of binary patterns – letters, horizontal and vertical lines, and “dipoles,”

which activated exactly two neighboring input units.2 In one experiment, the

stimuli are letter pairs drawn from the set {AA, AB, BA, BB}. Owing to

randomness in the initial weights, the units in higher layers develop activation

patterns that correspond either to A or B in the first serial position, or else to

A or B in the second position. Moreover, on any given run, only one of the

two positions is preferentially detected.

Another of Rumelhart and Zipser’s experiments draws letter pairs from the

set {AA, BA, SB, EB}. In this case, all higher level units become detectors of

the letter in the second position; that is, they learn to respond to either the class

{AA, BA} or the class {SB, EB}. This is striking because “A” and “E” are

similar in their dot patterns as represented, as are “B” and “S.” But the network

completely ignores these similarities in favor of identity in the second position.

In other experiments where there is no repetition of letters at either position,

the responses of higher level units do not reach an equilibrium.

The family of competitive learning models also includes Kohonen’s self-
organizing map (SOM), also known as the self-organizing feature map (SOFM)

(Kaski & Kohonen, 1994; Kohonen, 1982, 1984/1995, 1993, 1997). The

SOFM in general is a device for teaching a network to represent the properties

of the inputs it repeatedly receives, in the manner of Malsburg (1973). Nodes

in this type of network start out representing random weight vectors, and an

updating algorithm moves those weight vectors progressively closer to the

inputs it receives. A good description of how it works is given in Mercado,

Myers, and Gluck (2001):

(1) Choose an input vector at random from the set of all input vectors;

(2) measure the similarity between this input vector and all the weight

vectors; (3) find the node with the most similar weight vector; (4) update

the weights of this node and nearby nodes so that they are more similar

to the input vector; and (5) continue this process until all the inputs have

been presented to the map.

(p. 40)

The SOFM has been widely used in a variety of computer science applications

including optimization problems. It has also, more sporadically, provided the

basis for some models of topographic organization in the visual system (Sirosh

& Miikkulainen, 1994, 1997) and the auditory system (Mercado, Myers, &

Gluck, 2000, 2001).
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7.2.2. Adaptive Resonance Theory

Most of the topographic map models discussed in Section 7.1, and the models

of Kohonen (1982) and Rumelhart and Zipser (1985), are pure feedforward,

with primary receptor layers projecting to higher processing layers but not the

reverse. Yet, recall from Section 7.1.3 the argument of Grossberg (1976b) that

pure feedforward coding or categorization could be unstable. This led to the

idea in Grossberg (1976c) of adaptive resonant feedback between two layers

of nodes, corresponding to the extensive feedback connections in the visual

system (cortex to lateral geniculate and V4 to V1 and V2; see, e.g., Felleman

& Van Essen, 1991).

The adaptive resonance theory (ART) first developed by Grossberg (1976c)

is best introduced in the article of Carpenter and Grossberg (1987a), which

describes the ART 1 model for classifying binary (0 or 1 to each node) inputs.

The most important modifications of this algorithm for classifying analog

inputs (running over a range, typically between 0 and 1) are ART 2 (Carpenter

& Grossberg, 1987b) and fuzzy ART (Carpenter, Grossberg, & Rosen, 1991a,

1991b).

Figure 7.8 illustrates the basic structures of ART 1. The F1 layer is assumed

to consist of nodes that respond to input features, analogous to cell groups in
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FIGURE 7.8 ART 1 architecture. Short-term memory at the feature level F1 and category
level F2, and bottom-up and top-down interlevel long-term memory traces, are
modulated by other nodes. The orienting system generates a reset wave to F2 when
bottom-up and top-down patterns mismatch at F1, that is, when the ratio of F1 activity
to input activity is less than a vigilance levelr. This wave tends to inhibit recently active
F2 nodes. Functions of gain control nodes are described in the text.

Source: Adapted from Carpenter & Grossberg, 1987a, with permission of Academic Press.



a sensory area of the cerebral cortex. (The detailed structure of how inputs 

are processed at F1 is disregarded in this network but is considered in ART 2.)

The F2 layer is assumed to consist of nodes that respond to categories of F1

node activity patterns. Synaptic connections between the two fields are

modifiable in both directions, according to two different learning laws.

The F1 nodes do not directly interact with each other, but the F2 nodes are

connected in a recurrent competitive on-center off-surround network (see

Figure 4.3). As discussed in Chapter 4, such competition is a common device

in neural networks, inspired by visual neurophysiology, for making choices in

short-term memory. In this version, the simplest form of choice (winner-take-

all) is made: only the F2 node receiving the largest signal from F1 becomes

active. To compute the signal received by a given F2 node, the activity of each

F1 node in response to the input pattern is weighted by the strength of the

bottom-up synapses from that F1 node to the given F2 node, and all these

weighted activities are added.

Inhibition from the F2 field to the F1 field (via the gain control node) serves

two related purposes. First, it counteracts excitatory F2-to-F1 connections that

might otherwise lead to a spurious percept (hallucination) when one thinks

about a category. Second, it shuts off most neural activity at F1 if there is

mismatch between the input pattern and the active category’s prototype. Only

with a sufficiently large match are enough of the same F1 nodes excited by

both the input and the active F2 category node, which is needed to overcome

nonspecific inhibition from F2.

If match occurs, then F1 activity is large because many nodes are simul -

taneously excited by input and prototype. Then F1 inhibits the activity of the

node A representing the orienting subsystem. This stabilizes the categorization

of the given input pattern in the given F2 node. If mismatch occurs, by contrast,

F1 activity is not sufficient to inhibit A, which thereby becomes active. The 

A node activity leads to F2 reset which shuts off the active category node as

long as the current input is present. The F2 node receiving the next largest 

F1 signal is then tested, and the process repeated. The exact criterion for

mismatch is that the ratio of F1 activity to total input intensity be less than some

prescribed parameter. That is, if [I] is the number of active pixels in the (binary)

input pattern, and [X] the number of F1 nodes active after combined input and

prototype presentation, then mismatch is said to occur if [X] / [I] < r for some

positive constant r, which is called the vigilance of the network. X can also 

be thought of as the number of 1s that are common at the same locations

between the input pattern I and the pattern w of top-down weights from the

active category.

The short-term memory (STM) and long-term memory (LTM) equations for

this network, shown at the end of this chapter, incorporate all these effects along

with two additional rules. The 2/3 rule says that an F1 node must be activated

by at least two out of three signal sources if it is to generate suprathreshold
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output signals. These sources are outside inputs, gain control (activated by

inputs but inhibited by F2), and the top-down signal from the active category

node. The Weber Law rule says that LTM size should vary inversely with input

pattern scale. This rule is designed to prevent a category node that has learned

to code a particular binary pattern (1s in particular locations) from also coding

every superset pattern (a pattern that has 1s in those same locations and some

others). Figure 7.9 shows an example of coding by ART 1; note the importance

of the 2/3 rule for code stability.

One of the controversies among cognitive psychologists studying categor -

ization is whether categorization decisions are primarily based on prototypes

or on exemplars (e.g., Kruschke, 1992; Nosofsky & Zaki, 2002; Smith &

Minda, 1998). An exemplar of a known category is defined as an instance 

of a category member that has been previously experienced; hence, exemplar

theories posit that a new input is compared with previously experienced

exemplars of a category to decide how closely it fits that category. A prototype

of a known category is defined as some kind of weighted average of previously

experienced exemplars; hence, prototype theories posit that a new input is

compared with this category average to see how closely it fits. Grossberg,

Carpenter, and Ersoy (2005) note that exemplar models have the advantage

when it comes to capturing familiar patterns, whereas prototypes have the

advantage of capturing novel variations of familiar patterns. Using some of the

same data previously simulated by exemplar and prototype models, these

researchers argued that a version of ART combines the advantages of both

types of models, though their model builds prototypes in a different manner

(using top-down synaptic weights) than typical prototype models such as that

of Smith and Minda (1998). We return to consideration of exemplars and

prototypes in Section 7.3.

The categorization shown in Figure 7.9 is an example of the ability of the

ART network to learn novel patterns without forgetting old ones. The issue of

learning the new while retaining the old is a common concern of cognitive

psychologists studying memory. This issue has been given various names:

stability-plasticity dilemma (Carpenter & Grossberg, 1987a); catastrophic
interference (McCloskey & Cohen, 1989); and catastrophic forgetting (French,

1999).

Neurophysiological support for the basic theoretical constructs of ART has

been obtained from a series of experiments over the years by Robert Desimone

and his colleagues on visual attention and responses of cells in different parts

of the visual cortex (see Section 5.3.2), which led Desimone and Duncan (1995)

to develop the notion of biased competition. In particular, Reynolds, Nicholas,

Chelazzi, and Desimone (1995) and Reynolds, Chelazzi, and Desimone (1999)

showed how spatial attention can protect macaque V2 and V4 cells from the

influence of unattended stimuli.
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The roles of mismatch and reset in ART receive some support from event-

related potential (ERP) studies reviewed by Banquet and Grossberg (1987).

These ERP data deal with an auditory paradigm with alternate presentations

of two tones that differ in frequency, one tone more probable than the other.

Hence, a top-down expectation develops for the more commonly presented tone

and the rarer tone is treated as an oddball (see Section 5.3). Various ERP com -

ponents (the processing negativity, positivity at 120 ms, part of the negativity

at 200 ms, and part of the positivity at 300 ms) are higher in amplitude 

when the oddball tone is presented. Banquet and Grossberg conjectured that

those components could reflect the function of the orienting system in an ART

network such as in Figure 7.8. The orienting system has been tentatively

identified with the hippocampus or some related area (Grossberg, 1984), based

on data showing that hippocampectomized animals do not orient to novel

stimuli (O’Keefe & Nadel, 1978, p. 250).

7.2.3. Continuous Versions of Adaptive Resonance: 
ART 2 and Fuzzy ART

The binary, all-or-none nature of the patterns classified by ART 1 is a crude

description of the types of patterns that are input to actual brains, both at

sensory and higher cognitive levels. Yet the fundamental ideas of adaptive

resonance theory – match, mismatch, vigilances, reset, resonance – generalize

to more realistic analog (i.e., continuous-valued or grayscale) patterns. Two

of the adaptive resonance architectures for processing and classifying analog

patterns are known as ART 2 and fuzzy ART.

The ART 2 network of Carpenter and Grossberg (1987b) builds on the ideas

of ART 1 with two layers and modifiable synapses in both directions, but adds

several sets of processing nodes at the F1 layer. These extra nodes are designed

to contrast-enhance significant parts of the pattern and suppress noise,

according to general principles developed in Grossberg (1973).

Although the preprocessing is more complex in ART 2 than in ART 1, the

learning laws are simpler. Since supersets are not an issue with analog patterns,

the Weber Law rule is dispensed with and the top-down and bottom-up LTM

equations are the same (although top-down weights are initially 0, while

bottom-up weights are initially random and positive). The matching criterion

for ART 2 is also different, since [X] and [I] no longer make sense. In ART 2,

the quantity to be compared with the vigilance value is the cosine of the angle

between vectors that represent input and prototype patterns.

A simpler way to handle analog patterns in an ART network is fuzzy ART,

introduced by Carpenter, Grossberg, and Rosen (1991a) and used in many

current engineering and computing applications. Fuzzy ART is designed to

generalize the mathematical operations of ART 1 from the binary to the analog

case, including the criteria for category selection, reset, and resonance. Hence,
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the binary selection algorithm used in ART 1 comes out as a special case of

fuzzy ART in which the patterns consist solely of 0s and 1s.

Since the inputs to the F1 layer of fuzzy ART can range between 0 and 1,

comparison of input and prototype patterns is done at both the low and high

ends of the range. This is done by a technique called complement coding, that

is, feeding to the layer an actual input pattern followed by its “complementary”

pattern whose values are 1 minus the original values (e.g., following the pattern

[.8 .4 1] by [.2 .6 0]). In terms of sensory processing, Carpenter et al. noted,

this is analogous to including the operations of receptors that are turned off by

specific stimuli as well as those turned on by these stimuli; biological visual

systems contain both ON and OFF cells (Kuffler, 1953).

The combined operation of complement coding and fuzzy sets works as

follows. A complement-coded pattern I at F1 is compared with a top-down

weight pattern w. Intersecting of I with w as in ART 1 is generalized to a fuzzy
intersection which takes the minimum of corresponding components of the two

vectors. The value of [X] used in the matching criteria is then the sum of these

fuzzy intersections over all components, and this is divided by [I] (now inter -

preted as the sum of all the input components) and compared with the vigilance

value r.

The family of ART networks has several advantages over competing 

neural networks for classification. First, ART networks exhibit considerable

stability. Theorems proved in Carpenter and Grossberg (1987a) show that 

(in ART 1 at least) after a given collection of input patterns has been learned,

the categorization of those patterns is not perturbed by an arbitrary barrage 

of new inputs. Second, the category prototypes against which an input is tested

change over time to reflect the type of patterns that are most frequently

observed in the environment. Third, the model allows for influences on the

feature and category layers from other subsystems external to these layers, such

as the attentional and orienting systems. Hence, it is part of an interconnected

set of theories of many other cognitive processes (see, e.g., Grossberg, 1982,

1987b, 1988; Levine, 1983). The self-organizing map (Kohonen, 1984/1995,

1997), used in unsupervised categorization, and the back propagation algorithm

(Rumelhart, Hinton, & Williams, 1986), used in supervised categorization 

(see Section 8.1), are fairly successful in reproducing cognitive data but are

not founded in principles that embed categorization in a network for attention,

learning, and memory.

Recent network extensions of ARTMAP, the supervised version of ART

(see Section 8.4), have also made the distinction between ambiguous and

unambiguous classifications, with “I don’t know” being an allowable response

at certain stages of the algorithm. In particular, Carpenter and Ross (1995)

developed a network called ART-EMAP, where ARTMAP was synthesized

with a process of spatial and temporal evidence accumulation. At one of the

network’s stages, a decision criterion is added which delays identification of
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ambiguous objects when predictions are made with sufficiently low confidence.

This network was particularly applied to three-dimensional object recognition,

and multiple views eventually resolved the ambiguity. Another ART-based

network that constructs classifications of 3-D objects from multiple 2-D views

is the VIEWNET of Bradski and Grossberg (1995).
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FIGURE 7.9 Categorization of binary patterns by ART 1. The same input sequence, four
patterns A, B, C, and D in the order ABCAD, is presented repeatedly in both (a) and (b).
In (a), top-down inhibitory gain control (see Figure 7.8) is weak, and the 2/3 rule is
violated. This leads to ceaseless recoding of A. In (b), after some initial recoding, all
patterns resonate (as shown by the symbol “RES”) in distinct stable categories.

Source: Reprinted from Carpenter and Grossberg, 1987a, with permission of Academic Press.



ARTMAP deals successfully with nonuniformity in the knowledge base.

Other modelers have added to the ART framework an explicit mechanism for

selective attention (see Chapters 4 and 6 of this book) to some of the features

in the input space. Weingard (1990) developed a “self-organizing analog

field” model that adds attentional modulation to an ART network, modulation

that allows for dynamic setting of the vigilance parameter. Attentional modu -

lation of ART also appears in models of frontal lobe executive function

(Levine & Prueitt, 1989) and multiattribute decision-making (Leven & Levine,

1996; Levine, 2012), both discussed in Chapter 9.

Carpenter and Grossberg (1989) extended the ART architecture to include

multiple levels of nodes, denoting increasing levels of abstraction in the

network’s categorizations. Also, that article includes an explicit mechanism for

category search and reset, which is absent in their 1987 simulations. The reset

mechanism is based on some known qualitative properties of chemical

transmitter storage, utilization, and release by neurons. This work is further

extended in the ART 3 model of Carpenter and Grossberg (1990). Future

extensions could relate these levels to the increasing levels of abstraction as

one moves further forward in the prefrontal cortex (Christoff & Gabrieli, 2000;

Christoff et al., 2009).

Carpenter and Tan (1995) and Kant (1995, 1996) both added to ART

networks mechanisms for interpreting the categorizations that the system

made. That is, placing a set of patterns into the same category is described in

terms of a set of rules for what constitutes membership in that category.

Carpenter and Tan applied this rule making to medical diagnosis, and Kant

applied it to understanding decisions made by both customers and experts

regarding bank savings schemes (see Section 9.5 for other decision-making

models). These recent articles illustrate that the influences on feedback between

ART’s F1 and F2 layers can be widely varied to reflect the action of other

important neural subsystems.

More detailed connections of ART with brain processes appear in later

models that integrate the top-down attentional processes of ART with other

sensory processes, in particular the models called LAMINART (Grossberg,

1999; Raizada & Grossberg, 2001) and SMART (Grossberg & Versace, 2008).

LAMINART integrates the ART layering with the known laminar structure of

the visual cortex, partly in order to solve a paradox between the requirements

of visual attention and of preattentive grouping; that paradox and its solution

are discussed under visual models in Section 9.2.

SMART (an acronym for “synchronous matching adaptive resonance

theory”) builds on that same laminar structure and adds several model features

linking adaptive resonance processes to interactions between the thalamus and

cortex. These features include the following:
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• Match can occur at several points in the visual system. For example, at

the lateral geniculate there can be a match between bottom-up retinal inputs

and top-down modulatory expectations from the primary visual cortex

(V1). At the pulvinar there can be a match between bottom-up inputs from

V1 modulatory inputs from a higher visual level, V2.

• The resonant state caused by matching at either level is related to spike

synchronization in the gamma frequency range (20–70 Hz). This frequency

allows for spike timing–dependent plasticity (STDP).

• In case of mismatch, by contrast, there are slower beta frequency (4–20

Hz) oscillations, and STDP is disabled at this lower frequency.

7.2.4. Edelman and Neural Darwinism

Edelman (1987), using a theoretical development based partly on analogies

with immunology, proposed that the nervous system performs a selection

between pattern encodings in which the “fittest” encodings survive. (This is

the meaning of his book’s title, Neural Darwinism.) Reeke and Edelman

(1987) describe simulations of a categorization network incorporating this

selection idea.

Although Edelman’s pattern selection idea was sometimes regarded as a new

view of the brain (Rosenfield, 1988), his philosophical approach is not

essentially different from the approaches of many other neural modelers

(Levine, 1988). Darwinian selection among encodings is a striking metaphor

for the much older idea of competition between neurons and neuron groups.

Moreover, modifiability of visual or somatosensory maps, which forms the

biological basis of Edelman’s arguments, is also the basis for modifiable

interlayer synapses proposed by Malsburg, Grossberg, Bienenstock et al.,

Linsker, and others (see Section 7.1).

Edelman and his colleagues may have made a greater contribution in

proposing a theory about which functional groups of neurons in living animals

correspond to “nodes” in a neural network. The basic idea of this theory (see

Edelman, 1987, and Levine, 1988, for details) is that chemical markers, called

cell adhesion molecules (CAMs), determine boundaries between groups of

neurons. Sensory inputs during development alter the distribution of CAMs,

in a way that has not been fully described. In adult life, there is less shifting

of cell group boundaries, and the main mechanism for change, in this theory,

is synaptic modification via a non-Hebbian associative learning law (see

Edelman & Reeke, 1982; Finkel & Edelman, 1985). In this law, modification

of a synapse depends not only on activities of the two neurons connected by

that synapse but on activities of all neurons in a group.

An example of the categorization network based on Edelman’s scheme

includes two subnetworks, called “Darwin” and “Wallace,” which perform



different processing stages. The Darwin part of the network includes

“recognizers” or feature detectors. On the Wallace side is an abstracting

network that responds to patterns of activity but is insensitive to translation or

rotation. This network is discussed further in Section 7.3, as it bears on the

problem of translation invariance.

7.3. Translation and Scale Invariance

Most of the categorizations of visual patterns we have discussed so far involve

patterns of input activities at defined locations. But, in reality, we see the letter

A, for example, as an A regardless of its location in the visual field. Minsky

and Papert (1969) and many others have noted that this problem of translation
invariance adds considerable difficulty to modeling pattern categorization.

Some categorization algorithms can be modified in ways that partly solve

the problem of translation invariance (and, in some cases, rotation and scale

invariance as well). One example is the averaging of weight changes that

enables the back propagation network to distinguish a T from a C regardless

of position or rotation. Another example is the mechanism of Reilly, Cooper,

and Elbaum (1982) whereby multiple prototypes can map into one classifi -

cation node. Carpenter, Grossberg, and Mehanian (1989) developed an invari -

ant recognition mechanism that adds to an ART 2 network a log-polar Fourier

filter (Casasent & Psaltis, 1976; Szu, 1986) for achieving translation and rota -

tion invariance. This mechanism assumed that the pattern to be classified had

previously been segmented, using a variant of the boundary contour system of

Grossberg and Mingolla (1985b).

The Neocognitron of Fukushima (1980) and Fukushima and Miyake (1982)

also achieves translation invariance by taking a previously developed multilevel

hierarchical classifier that is position-dependent (the Cognitron of Fukushima,

1975) and adding further levels. Fukushima drew his inspiration from the

physiological findings of Hubel and Wiesel (1962, 1965), discussed in Section

7.1, that the cat or monkey visual cortex contains a hierarchy of cell types rang -

ing from simple to complex to hypercomplex. In real animals, as one ascends

this hierarchy, the highest layers tend to respond most selectively to compli -

cated pattern features but least selectively to location.

Fukushima’s model mimics the hierarchy developed by Hubel and Wiesel,

and extends it beyond hypercomplex cells to cells in association areas of the

cortex. As shown in Figure 7.10, this model includes modifiable connections

between successive hierarchical layers, as do most of the models of this

chapter. The cells in each layer are organized so as to have the same receptive

field structure but at different positions.

The Neocognitron has been most extensively used in computer vision,

although it remains a useful model of visual cortical interactions. Some of the

recent advances in Neocognitron architecture are reviewed in Fukushima
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(2013). Many of the advances involve adding top-down connections to achieve

such visual functions as selective attention, recognition and completion of

partly occluded patterns, and restoring occluded contours.

Other details of visual cortical anatomy (see Section 5.4.2) inspired the

design of the What-and-Where filter by Carpenter, Grossberg, and Lesher

(1998). This network is based on the findings that the visual cortex contains

two parallel pathways for computing what an object is and where it is located

(Ungerleider & Mishkin, 1982). In the Carpenter et al. network, there is a

Where filter that includes an array of orientation detectors followed by com -

petitive interactions between position, orientation, and size scales. These are

used to determine a maximum likelihood position, orientation, and size for a

given object in a scene. Then these spatial parameters are filtered out to yield

a What image that is independent of the three Where variables. This invariant

image can thereby be used to place the object in the same category as other

objects related to it by translation, rotation, and dilation.
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FIGURE 7.10 Neocognitron architecture. (a) Schematic of layers in the network’s
hierarchy and their rough correspondence to the actual biological hierarchy of Hubel
and Wiesel. LGB stands for the lateral geniculate body of the thalamus. Grandmother
cell is a colloquial term for a neuron that fires only in response to a very specific
pattern. (b) More detailed diagram of the network’s interconnections and their locations
within layers.

Source: Adapted from Fukushima, 1980, with permission of Springer-Verlag.
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A different approach to translation and rotation invariance (and scale

invariance, as well) is seen in the “Wallace” part of the network of Reeke 

and Edelman (1987). Reeke and Edelman (1984) describe this approach as

probabilistic matching (p. 188). More specifically:

Wallace begins with a tracing mechanism designed to scan the input

array, detecting object contours and tracing along them to give cor -
relations of features that . . . respond to some of their characteristics, such

as junctions of various types between lines.

(p. 189, my italics)

Nigrin (1993, Chapters 6 and 7), like Fukushima, achieved translation

invari ance through a hierarchy of levels, but his architecture requires a

somewhat smaller number of nodes than does the Neocognitron. In Nigrin’s

network, successive levels of the hierarchy contain fewer and fewer nodes, and

therefore the location of the input object becomes progressively centered. This

is achieved through cooperation and competition not between nodes, as in most

of the networks for vision in Chapter 4 of this book, but between interlevel

connections.3 This type of centering can lead to identical classifications of two

objects that are in different parts of the visual field but consist of the same

patterns relative to their centers. Nigrin (1993, Chapter 7) also shows how a

variant of his architecture can accomplish scale invariance.

Equations for Networks in Chapter 7

Detailed Description: Adaptive Resonance Theory

Adaptive resonance theory (ART) networks are a family including a wide
range of precise architectures. The most important classifications within
ART are unsupervised (self-organizing) versus supervised and analog (fuzzy)
versus binary. ART 1 of Carpenter and Grossberg (1987a), the unsupervised
version which classifies binary patterns, captures much of the essence of this
family of networks.

The computations performed by ART 1 on each input pattern can be
subdivided into distinct stages: (1) input and bottom-up filtering; (2)
resonant category choice; (3) updating of top-down weights; (4) reset for
arrival of the next input. First, the pattern arrives at F1 (the feature level in
Figure 7.8) and is filtered through the bottom-up synaptic weights wij . As
in the coding schemes of Amari and Takeuchi (1978), Grossberg (1976a),



Malsburg (1973), and others, the node at the category layer F2 receiving the
largest bottom-up signal is tentatively chosen. Second, the input is compared
with the top-down prototype, which is encoded by the set of synaptic weights
from the chosen node. If there is a sufficient match (using the vigilance
criterion), the choice is made more permanent; this is the resonance, and it
is called adaptive because the prototype resonating with the input reflects
the learning of previous inputs by the node at F2.

If the match is insufficient, either another node with a prototype pattern
is found to produce resonance, or an “uncommitted” F2 node – that is, one
from which the synaptic weights are all 0s so far – is dedicated to the new
pattern. Either way, the F2 node finally chosen now influences both F1 node
activities and F2-to-F1 synaptic weights, via the function f (xj) for that node
(see Equations (7.22) and (7.24) below). Finally, the input is shut off and
the F1 activities all decay to close to 0 to receive the next input pattern.

Carpenter and Grossberg (1987a, pp. 60–63) describe this sequence of
computational steps as an example of a more general type of ART activation
sequence

(7.4)

The letters in (7.5) are explained as follows. I is the input pattern, which
is 1 or 0 at each F1 node. In general, this pattern is transformed into a
pattern X of activation of the nodes; in the case of typical ART 1
computations, X quickly becomes the same vector as I. S is the set of output
signals from F1. They are filtered through the bottom-up weights, and T is
the ensuing pattern of inputs to the F2 layer.

Contrast enhancement within the on-center off-surround field (see
Chapter 4) of F2 nodes transforms T into a different (“sharper”) activation
patterns among the nodes at F2. In the case of a typical ART 1 network,
the contrast enhancement is of the winner-take-all variety. That is, only the
one F2 node representing the (old or new) category in which the choice is
made to classify the input remains activated. U is the output of Y, and the
U→V transformation is the reverse of the S→T transformation; that is, U
is filtered through the top-down weights from the chosen F2 node (which
reflects an average of previously perceived members of the appropriate
category) to produce a pattern V at F1.

The pattern V is called a top-down template or learned expectation: it is
heavily influenced by learning of previous input patterns. The combination
of input pattern I and template pattern V leads to a combined activation
pattern X * at F1. It is the number of 1s in this combined pattern X * that
needs to be at least a certain fraction (the vigilance) of the number of 1s in
the input-based pattern X for resonance to be said to occur.

I X S T T Y U V X→ → → → → → → → *
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Malsburg’s and Grossberg’s Development of Feature Detectors

The equations of Malsburg (1973) for excitatory and inhibitory node activities

xE,k and xI,k are of the form

(7.5)

where the *s denote signals from other nodes (excitatory nodes in the case of Ei*,
inhibitory nodes in the case of Ii*, and retinal afferents in the case of Ai*). These
equations had previously been used, for a different purpose, by Grossberg (1972d).

Malsburg’s associative law is

(7.6)

that is, retinal-to-cortical connection weights grow with the cross-correlation of
presynaptic retinal afferent activity and postsynaptic excitatory cortical node
activity. The other connection weights, pik , qik , and rik , do not change over time.

In the model of Grossberg (1976b), the activities x1i of the Vi obey the
nonrecurrent STM equations

(7.7)

where Ii are the inputs to the “retinal” nodes F1i . Note that Equations (7.7) are
identical to (4.10) with xi replaced by x1i . To store patterns of retinal node activity
in cortical STM, the activities x2j of the F2j are governed by the recurrent equations

(7.8)

where f is a signal function (typically sigmoid) and I2j represents the excitatory
input to F2j from the F1 level. Equations (7.8) are a subcase of Equations (4.1),
which was developed in Grossberg (1973).

Grossberg (1976b) listed many possible laws for long-term memory (LTM)
and for how the LTM traces affect the interlevel signals I2j of (7.9). In general,
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Of the four computational stages listed earlier, the LTM weight updating
(Stage 3) takes far more time steps than the other three steps (bottom-up
filtering, category choice, and preparation for the next input).
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I2j is a weighted sum of the form �i�iwij , where the θi are the normalized activities
at the F1 level and the wij are the weights of the corresponding connections from
F1 to F2. The wij in turn obey equations such as

(7.9)

Equation (7.9) says that the weights of connections to cortical node j change
only when short-term memory at that node is active, so that x2j is nonzero. This
equation bears a close resemblance to the outstar learning law (3.14), except that
in the outstar weights of connections from a given node change only when short-
term memory at the node is active. Indeed, the subnetwork of Figure 7.6
consisting only of a single cortical node and its connections behaves like a reverse
outstar, and is frequently called an instar.

If a constant spatial pattern is presented through time to the network defined
by Equations (7.8) and (7.9), a theorem in Grossberg (1976b) shows that this
pattern is learned by the vector of connection weights to some F2 node from the
F1 field. More precisely, recall from Section 7.1 that the total signal at time t to
a given cortical node x2j due to the retinal pattern θ = (θ1, θ2, . . . , θn) is

(7.2)

Grossberg showed that if j is such that the value of S as defined by (7.2) is the
largest, then the angle between the vector wj = (w1j , w2j , . . . , wnj ) of weights to
the jth node and the input vector θ is decreasing for all time and approaches 0.
The result of Amari and Takeuchi (1978) also states that asymptotic weights to
an F2 node have a “winning dot product” with the original pattern. (Recall from
Section 3.2 that the dot product of two vectors, of the same number of
components, is found by multiplying the two vectors component by component
and then summing the products.)

Rumelhart and Zipser’s Competitive Learning Equations

The competitive learning algorithm of Rumelhart and Zipser (1985) is defined
by changes in the interlevel weights wij . At each of Layers 2 and 3, node j receives
at each time step a signal equal to �i xiwij , the sum taken over nodes i in the next
lower layer, where xi is 1 if node I is active and 0 otherwise. (The algorithm can
be extended to arbitrarily many layers.) If the lower layer is Layer 1 (input units),
activity or inactivity is determined by which nodes are excited by the input pattern.
If the lower layer is Layer 2, activity or inactivity is determined by whether the
ith node won or lost its intracluster competition at the last time step. Within each
cluster of the top two layers in turn, the node receiving the largest (linearly
weighted) signal wins and the others lose.
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Models of Coding, Categorization, Unsupervised Learning 243



244 Computational Cognitive Neuroscience

The wij in turn change at each time step according to a rule similar to the
gamma system rule of Rosenblatt (1962). No change occurs in connections to
losing nodes; hence �wij = 0 if unit j loses. For connections to winning nodes,
weight is shifted from inactive to active pathways. Each of the input pathways to
a winning node gives up some proportion k (between 0 and 1) of its weight, and
that weight is then distributed equally among the active input pathways (cf.
Malsburg, 1973). Hence

(7.10)

where n is the total number of active units at the next lower layer in the current
pattern, and ci is 1 if unit i at the lower layer is active and 0 otherwise. Note that

(7.11)

Equations (7.10) and (7.11) together imply that �iwi remains constant for a 
given j. In the simulations done by the authors, that sum is kept equal to 1.

Adaptive Resonance Equations

In the ART 1 network, the STM activity of the ith F1 node is denoted by xi and
the STM activity of the jth F2 node by xj . The convention that the subscript i
relates to F1 and j to F2 is observed throughout. Hence, wij values represent
bottom-up LTM strengths (synaptic weights) and wji values represent top-down
LTM strengths.

The STM traces at F1 are assumed to change quickly under the influence of
shunting (multiplicative) excitation from outside inputs and from top-down
signals, and shunting inhibition from F2 (mediated by the gain control node).
Hence

(7.12)

where ε is small (.05 or .1). The function f of Equation (7.12) is defined by f =
1 if node j of F2 is active and 0 if node j is inactive. Only one node of F2 is active
at a time. After an input comes in, the jth F2 node receives a bottom-up signal
equal to Tj = D2 �i h (xi)wij , where D2 is a positive constant and h is the Heaviside
(unit step) function. The category chosen to be active (that is, to be tested for
match or mismatch between bottom-up and top-down patterns) is the one 
for which Tj is the largest.
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The activities xj of the F2 nodes are in turn governed by the equations

(7.13)

where g is a sigmoid function and Tj is as defined earlier. The summation in
Equation (7.13) indicates lateral inhibition in an on-center off-surround field.

The LTM trace of the top-down pathway from wj to wi obeys the learning
equation

(7.14)

where h is again the unit step function. The bottom-up pathway obeys an
equation similar to (7.14) except that the synaptic decay term embodies the Weber
Law rule. As discussed in Section 7.2, this rule is designed to prevent access to a
category by supersets of the category prototype; this is achieved by selectively
decreasing bottom-up signals from input patterns that activate large numbers of
F1 nodes. The design is achieved through competition between LTM traces,
resulting in equations of the form

(7.15)

where 

with K a constant, L > 1, and the sum taken over all F1 indices k not equal to i.
It can be shown that the other rule described above, the 2/3 rule, is satisfied by
choosing the parameters of (7.13) such that max (1, D1) > B1 > D1. Equations
(7.14) and (7.15) guarantee that learning only occurs at synapses to or from active
category nodes.

The ART 2 equations, which are not given here, also involve shunting
excitation and inhibition in the manner of Equations (7.12) and (7.13). The
shunting terms in the F1 STM equations reflect influences from six extra sets of
input processing nodes shown in Figure 7.10, designed to suppress noise that is
characteristic of analog patterns. The LTM laws are simpler than in ART 1,
because superset encoding is irrelevant when patterns consist of continuous values
rather than just 1s and 0s. Hence the Weber Law rule is not used and top-down
and bottom-up LTM equations are nearly the same.

The fuzzy ART algorithm is based on inputs I, which are m-dimensional vectors
(I1, . . . , IM ), with each component Ii being in the interval [0, 1]. The weight 
vector associated with category j (and with its corresponding node at F2) is 
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wj = (wj1, . . . ,wjM). It is assumed that both top-down weights from and bottom-
up weights to the jth category node equal that vector. At the start of the run, all
those weights are set to 1, implying that the category node is uncommitted.

The three parameters that determine fuzzy ART dynamics are a choice
parameter α > 0; a learning parameter � between 0 and 1; and a vigilance para -
meter � between 0 and 1. After an input arrives, it is initially placed in the category
that has the maximum value of the choice function

(7.16)

where the fuzzy intersection operator ∧ is defined by (x∧y)i = min(xi ,yi ), and the
norm | · | by

In the case of binary patterns, fuzzy intersection reduces to set intersection and
norm to number of 1s in the pattern, and (7.28) reduces to the choice function
for ART 1. The category with largest Tj is called J ; in the case where more than
one are tied for largest, the node with the smallest index is chosen.

The vigilance criterion for resonance is

(7.17)

As in ART 1, mismatch reset occurs and a new category node is chosen if the
vigilance criterion (7.18) is not met.

Finally, the weight vector wj is updated according to the equation

Fast learning corresponds to � = 1 in the above equation.

Exercises for Chapter 7

**1. Consider the competitive learning model of Grossberg (1976b) defined by
Figure 7.7. Let the activities x1i of the F1 layer encode the relative input
intensities, i.e.,
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Let x2j = 1 if Sj > max (ε, Sk : k≠j ),
0 if Sj < max (ε, Sk : k≠j ),

where for j = 1, 2, 3, Sj = �i�iwij , i = 1, 2, and ε = .05. For each j, let the
vector of synaptic weights to node j of F2 be wj = (w1j , w2j ), let θ = (θ1, θ2),
and let wj obey the equation

with initial conditions w1(0) = (1, 0), w2(0) = (.4, .4), and w3(0) = (1, 0).
The current pattern is considered as being encoded in category j where j
satisfies Sj > max (ε, Sk: k≠j ).

Choose a spatial pattern � = (y, 1–y) for some positive y not equal to 
.2 or .8.

Extra credit: Alternate presentations of 2 or more spatial patterns over
time and see if stable coding remains true. That may need to be done by
computer.

*2. Based on Kohonen self-organizing maps, use the algorithm given in
Angéniol et al. (1988) for the classical Euclidean traveling salesman problem.
Given a set of cities M defined by their positions in the plane, each city has
coordinate (x1, x2). An approximate tour in our approach is given by a set
of nodes N joined together in a one-dimensional ring. The algorithm has
two steps, iteration step, and processing step. Each node j on the ring is
characterized by the two coordinates (c1, c2) of the associated point in the
plane. Each node is also related to its two neighbors in the ring; nodes 
(j – 1) mod N and (j + 1) mod N. At the beginning of the process, only
one node exists which is located at point (0, 0) in the plane, The number
of nodes, N, grows subsequently according to a node creation process at each
iteration. Surveying the city i comprises the following steps:
Step 1: Find the node jc which is closest to city i: for each node j, compute
its potential: Vj = (x1

i – c1
j )2 + (x2

i – c2
j )2 and determine the winning node jc

by competition: Vj = min(Vj ). Now, node jc is associated with city i.
Step 2: Move node jc and its neighbors on the ring toward city i. The distance
each node will move is determined by a function f (G, n), where G is a gain
parameter, and n is the distance measured along the ring between nodes j
and jc :

n = min ((j – jc ) mod N, (jc – j) mod N)
The new position cnew of node j is defined by

dw
dt

xj
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where the gain G is discounted by a factor α at each iteration, that is, 
Gnew = (1 – α)Gold.
Each node j can be chosen by one city i in each iteration. If a node j was
not a winner for any city during three complete surveys, that node is deleted.
The evolving population of nodes, which sometimes has duplication,
iteratively organizes toward a solution that may not be optimal (in the sense
of shortest total distance) but is close to optimal.
Perform a simulation: create N = 12 cities whose coordinates are obtained
from random variables uniformly distributed between –10 and 10. Let 
M = 10, α = 2, and the initial value of G = 5. How many iterations are
needed to complete the tour, that is, have a path that traverses all 12 of the
cities? (Owing to randomness the answer will not always be the same.)

�3. How could the ART 1 network of Carpenter and Grossberg be modified
to include a statement of the degree of certainty in the choice made? In
particular, if a pattern just barely passes the vigilance criterion for more than
one category at a time, how would “ambiguity detection” be built in? Note:
Recording ambiguity is not the same as resolving ambiguity.

*4. Run a simulation of the ART 1 network, using Equations (7.24) to (7.27).
For these equations, choose any parameter settings that obey the following
inequalities from Table 1 of Carpenter and Grossberg (1987a):
A1 � 0, C1 � 0, max (1, D1) < B1 < 1 + D1, 0 < ε << 1 (where “<<” is an
imprecise term meaning “much smaller than”), K is close to 1, L > 1, 
0 < zij (0) < L/(L – 1 + M), 1 � zji(0) > (B1 – 1)/D1.
Let F1 consist of a 5-by-5 “pixel” array, and let the patterns A, B, C, and D
be the ones shown in Figure 7.11, in succession.

FIGURE 7.11 Input patterns used in the ART 1 simulation of Exercise 4.



(a) Following the simulations shown in Figure 6 of Carpenter and
Grossberg (1987a), present these patterns repeatedly in the order
ABCAD, with vigilance level r = .8. Show that after several repetitions,
the patterns A, B, C, and D are eventually coded in separate, stable
categories at F2.

(b) Lower the value B1 to a value below max (1, D1), which means that
the 2/3 rule is violated. Show that periodic recoding of pattern A can
occur.

(c) Progressively lower the vigilance level r by increments of .1 until two
or more of the patterns are coded in the same category, then until all
four are coded in the same category.

Some Additional Sources

Coding in the Visual Cortex

Adorján, Barna, Érdi, and Obermayer (1999); Adorján, Levitt, Lund, and
Obermayer, 1999; Song and Abbott (2001); Swindale (1980).

Adaptive Resonance Theory Networks

Exact Implementation via Differential Equations

Raijmakers and Molenaar (1997); Raijmakers, van der Maas, and Molenaar
(1996).

Mathematical Theory

Georgiopoulos, Heileman, and Huang (1991, 1992); Heileman, Georgiopoulos,
and Abdallah (1995).

Other Neural Networks for Unsupervised Categorization and
Classification

Lo (2010).

Notes

1. Rumelhart and Zipser use the term “cluster” for groups of nodes, as opposed to the usage
of that word described elsewhere in this chapter for groups of similar patterns.

2. Rumelhart and Zipser’s “dipole” is unrelated to the gated dipole of Section 3.3.
3. Competition between connections appears to be Nigrin’s invention. It may, however,

provide a basis for synaptic conservation laws such as that of Malsburg (1973), and also
possibly the maximum associability in the nonneural theory of Rescorla and Wagner (1972)
discussed in Chapters 3 and 6. A somewhat similar mechanism is found in ART 3
(Carpenter & Grossberg, 1990).
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8
MODELS OF SUPERVISED
PATTERN AND CATEGORY
LEARNING

Thinking in its lower grades is comparable to paper money, and in its higher

forms it is a kind of poetry.

Havelock Ellis (The Dance of Life)

To rule is easy, to govern difficult.

Johann Wolfgang von Goethe

The use of neural networks for supervised learning of predetermined classifi -

cations dates back to the early work of Rosenblatt (see Chapter 2 of this book).

His perceptron learning theorem (Rosenblatt, 1962) states that:

Given an α-perceptron, a stimulus world W, and any classification C(W)

for which a solution exists; let all stimuli in W occur in any sequence,

provided that each stimulus must reoccur in finite time; then beginning

from an arbitrary initial state, an error correction procedure will always

yield a solution to C(W) in finite time.

(p. 596)

Since Rosenblatt wrote, many other researchers have employed variants 

of the error correction or delta learning rule (e.g., Anderson & Murphy, 1986;

Barto & Anandan, 1985; LeCun, 1985; McClelland & Rumelhart, 1985;

Parker, 1985; Sutton & Barto, 1981, 1998; Werbos, 1974; Widrow, 1962;

Widrow & Hoff, 1960). Rumelhart et al. (1986) showed how a multilayer

network incorporating this rule can be applied to pattern classification.



8.1. The Back Propagation Network and PDP Networks

Recall the derivation at the end of Chapter 3 of the back propagation learning

algorithm, whereby the delta rule for changing connection weights to output

units generalizes to a rule for changing weights to hidden units. Within such

a feedforward scheme, this method provides, in a sense, the most efficient

weight changes for encoding the particular input–output mappings desired.

(Indeed, before it was used for categorization the back propagation algorithm

was employed in optimization problems; see Werbos, 1974, 1988.) At each

iteration of this learning algorithm, the weights are set for a network of input,

hidden, and output units, with the generic architecture shown in Figure 8.1.

The types of nonlinear input–output relationships that can be learned by back

propagation (BP) networks are essentially arbitrary. This is one of the main

reasons for the broad appeal of such networks. Some relationships that can be

taught to BP cannot be taught to networks without hidden units, because these

relationships map dissimilar inputs into similar outputs or vice versa. Neither

can they be taught to networks whose activation functions are all linear, in

which case hidden units provide no advantage. The best known example of

such a relationship is the exclusive OR (XOR) mapping of binary variables (see

Table 8.1). (It is to be noted that XOR is also difficult for some nonlinear

unsupervised categorization networks such as adaptive resonance networks; see

Stork, 1989a.)

Mathematically, this type of input–output relationship can be considered 

as an arbitrary mapping from an n-dimensional space of vectors to an m-

dimensional space, where n is the number of input nodes and m the number of

output nodes. (See Appendix 1 for discussion of n-dimensional vectors. The

ARTMAP network to be discussed in Section 8.4 also can be treated as a device

to map one multidimensional space to another.) Several analytical results (e.g.,

Hornik, Stinchcombe, & White, 1989) have shown that a back propagation

network can essentially learn any such mapping if the numerical values of the

output activations do not get arbitrarily large. If these mappings are interpreted

as discriminations between perceptual classes, Sontag and Sussmann (1989)

proved that back propagation networks can at least learn all the types of

discriminations that can be learned by the perceptrons of Rosenblatt (1962).

The universality of the back propagation method has led to its use in a wide

variety of computing and engineering applications. Perhaps the first of its

applications to become widely known was reading aloud. The NETtalk

algorithm of Sejnowski and Rosenberg (1986) and Rosenberg and Sejnowski

(1986) employs a BP network to associate written language to spoken sounds.

Many researchers have also applied BP to character recognition. Early BP

simulations often involved learning of a single letter discrimination, such as

the discrimination between the letters “T” and “C” (regardless of rotation) that

was taught to this network by Rumelhart et al. (1986; see Exercise 3 of this
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chapter). This kind of simulation has been extended, using multiple output

units, to the supervised learning of entire categorizations, such as teaching the

network to discriminate between the ten possible digits in hand-printed zip

codes (e.g., Weideman, Manry, Yau, & Gong, 1995).

But back propagation network algorithms typically require a large number

of iterations, with no universal guarantee that the weights will converge to the

desired state. This state is mathematically defined as the global minimum of

an error function, and the system can be trapped in a local minimum that is

different from the global minimum (see Figure 4.12). Conditions for con -

vergence of the BP algorithm have been the object of much mathematical

investigation. White (1987) placed the back propagation method in the context

of other nonlinear regression methods. He gave some conditions that guarantee

convergence to the desired global minimum, noting that his conditions (such

as nonexistence of an alternative local minimum) are frequently not met in

applied problems.

Also, the network varies enormously in how many steps it requires to

converge to the mapping it is supposed to learn. Typically, the convergence

rate is strongly dependent on the number of hidden units, and that number must

be decided separately for each application. Criteria for selecting this number

are also suggested by Theorem 3 of White (1987), but in most cases the optimal

number of hidden units needs to be determined empirically.

A variety of authors have developed algorithms for finding the best number

of hidden units. One of the best of these algorithms is that of Hirose, Yamashita,

and Hijiya (1991), which involves adding a hidden unit when the network

becomes trapped in a local minimum. If the network converges to the global

minimum to start with, hidden units are removed until it no longer converges,

and then one is put back.

The setting of the learning rate is considered in Rumelhart et al. (1986) and

McClelland and Rumelhart (1988, Ch. 6); the 1988 book chapter also discusses

other BP implementation issues. There is a tradeoff in this setting: Too small

a learning rate can make convergence excessively slow, but too large a learning

rate can cause oscillations that make convergence impossible. A method has

been found for preventing such oscillations, thereby allowing a larger learning

rate. This method involves adding to the weight change equations a momentum
term which biases change in the same direction that the last previous change

was made (see the end of this chapter for mathematical details). This reduces

the likelihood of rapid oscillation between weight increases and decreases.

Many back propagation networks in applications include a momentum term.

Back propagation is not generally believed to be a mechanism actually used

in the brain. This is because the feedback in the network is not of electrical

signals but of synaptic weights, and no mechanism is known for such weight

transport in real nervous systems (see Figure 8.2). Yet some researchers 

have suggested different possible biological bases for back propagation. 
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Stork (1989b) constructed a minimal collection of neurons and synapses

implementing back propagation but not requiring actual weight transport. His

architecture is intricate and based on some unnatural assumptions, such as

symmetry of connection weights (see Section 4.2) and lack of dependence of

synaptic modifications on postsynaptic activity (see Sections 3.1 and 3.2).

Dayhoff, Hameroff, Swenberg, and Lahoz-Beltra (1993) and Werbos (1992a)

related back propagation to backward flows in microtubules, which are part of

the structural support system of all biological cells including neurons. Levine

(1996) proposed that weight transport (not necessarily “backward”) might arise

from suitable networks that include nodes responsive to the combination of

OUTPUT PATTERNS

INTERNAL 
REPRESENTATION 
(HIDDEN) UNITS

INPUT PATTERNS

FIGURE 8.1 Generic architecture for a three-layer back propagation network. Error
signals from output nodes, if their response to the input pattern is not the desired one,
propagate backwards from hidden-to-output weights to input-to-hidden weights. In the
process, the hidden units learn internal representations, that is, learn to encode certain
classes of input patterns.

Source: Adapted from Rumelhart et al., 1986, with permission of MIT Press.

TABLE 8.1 The logical exclusive OR (XOR) relationship

Variables are assumed to be binary: “1” corresponds to “Yes” or “True,” “0” to “No” or “False.”

Exclusive OR of two propositions is true whenever one of the propositions is true but not both at
once.

Input Output

00 0

01 1

10 1

11 0
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activities of pairs of other nodes, an idea borrowed from a model of cortical

processing by Guigon, Dorizzi, Burnod, and Schultz (1995). Surprising

examples of backward flowing signals at synapses or neuronal dendritic trees

were reported by Stuart, Spruston, Sakmann, and Hauser (1997) and reviewed

in Waters, Schaefer, and Sakmann (2005).

Whether a back propagation process can or does occur in biological nervous

systems remains an open question. Yet there are other architectures with

qualitatively similar properties that are arguably more biologically realistic

because they do not involve transport of weights. One of these was discussed

by O’Reilly (1996a), based on earlier work of Hinton and McClelland (1988).

O’Reilly showed that the quantity calculated in the back propagation algorithm

for the impact of a given hidden unit on the error can be obtained in a different

manner without weight transport. Specifically, this quantity can be expressed

as a difference of two activation quantities, one related to the target pattern,

the other to the current output pattern. He suggested how these two activations

could be generated in the cerebral cortex by suitable combinations of long-term

potentiation, long-term depression, and the actions of calcium ions. This form

of error correction is one of the bases for the Leabra model (O’Reilly, 1996b),

which combines Hebbian associative learning and error-correcting learning at

DIFFERENTIATOR
F6

EXPECTED
OUTPUTS

ERROR
SIGNALS

F4

ERROR
SIGNALS

F5

ACTUAL
OUTPUTS

F3

LEARNING SIGNAL

DIFFERENTIATOR
F7

HIDDEN
UNITS

F2

INPUTS
F1

WEIGHT TRANSPORT

FIGURE 8.2 Possible circuit diagram of the back propagation model. Postulated
interactions among node levels F1, F2, and F3 suggest additional levels F4, F5, F6, 
and F7. Transport of weights from F2-to-F3 to F4-to-F5 pathways makes this circuit
biologically implausible.

Source: Reprinted from Cognitive Science, 11, S. Grossberg, From interactive activation to adaptive
resonance, 23–63, copyright Cognitive Science Society, Incorporated, used by permission.



the same nodes. Leabra in turn is the basis for the PVLV conditioning algorithm

discussed in Section 6.4.2.

Another possible method for making the back propagation algorithm more

biologically realistic was introduced by Lillicrap et al. (2016) and involves

using a random matrix rather than the precise matrix of downstream weights

to modify upstream synapses. This method is applicable to deep learning

networks with more than three layers so will be discussed in Section 8.3.

To illustrate use of BP in a specific problem domain, let us return to the

case of teaching a network to discriminate between a “T” and a “C” regardless

of position or orientation (Rumelhart et al., 1986). Figure 8.3 illustrates the

different rotations of the T and C. The network for solving the T-versus-C

problem is shown schematically in Figure 8.4. Each rotation has to be taught
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FIGURE 8.3 Stimulus set for the T-versus-C problem. The set consists of a block T and
a block C in each of four orientations. One of the eight patterns is presented on each
trial.

Source: Reprinted from Rumelhart et al., 1986, with permission of MIT Press.

OUTPUT
UNIT

HIDDEN
UNITS

INPUT
UNITS

FIGURE 8.4 Schematic diagram of a network for solving the T-versus-C problem.
Hidden units are organized into a two-dimensional grid with each unit receiving input
from a square 3 × 3 region. The output unit is trained to take on the value 1 if the input
is a T (at any position or orientation) and 0 if the input is a C.

Source: Reprinted from Rumelhart et al., 1986, with permission of MIT Press.
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to the network separately. But translation invariance is achieved by adding an

additional transformation to the rule for learning input-to-hidden-unit con -

nections. To make the learning of a pattern independent of its location in the

visual field, all hidden units are constrained to learn exactly the same pattern

of weights. This is accomplished by adding together the weight changes

dictated by the delta rule for each unit and then changing all weights by

averages of those amounts.

Averaging weight changes over the entire visual field is a nonlocal
transformation, that is, a transformation in which a region is directly affected

by an arbitrarily large region around it. Since locality is usually assumed in

biological models, it might be desirable to achieve the same effect by averaging,

at each connection, over some smaller diameter of the visual field. As is

discussed in Section 7.3, the problem of translation- and rotation-invariance

still poses a challenge for theories of neural categorization.

The back propagation models used to categorize patterns typically have

connections that are exclusively feedforward, except for the transport of

weights in the reverse direction. Various modelers, among them Jordan

(1986b), Pineda (1987, 1989), and Elman (1990), have added recurrent or

feedback connections (see Chapter 4) to a basic back propagation network. 

A common use of recurrent back propagation networks has been to learn and

reproduce time sequences, such as occur in speech or in motor behavior. 

A more recent model in this school (Botvinick & Plaut, 2006) is discussed in

Section 9.3 along with other models of sequence learning and production.

Classification algorithms that are tightly supervised have some distinct

advantages in speed and reliability for applications in which particular, known

outputs are desired. By contrast, living organisms are internally supervised by

reinforcement and drive systems that function as critics (see Grossberg, 1971;

Barto et al., 1983; Werbos, 1993, 2003; Section 6.3.2 of this book) but do not

dominate classification decisions. Hence, living neural systems seem to include

learning modules that find without direct supervision the naturally recurring

input classes in the environment, but then are subject to attentional control. This

attentional control causes finer distinctions to be made among those inputs that

are most important to the system’s goals.

Yet the proponents of back propagation networks argue that, even if a

network structure bears little resemblance to brain structure, the insights that

emerge from designing the network guide our understanding of brain mech -

anisms relevant for certain cognitive processes, including effects of lesions to

particular regions. These insights typically emerge from the response patterns

that develop in groups of hidden units after a large number (hundreds or

thousands, usually) of iterated applications of the back propagation algorithm.

These unit response patterns are referred to as internal representa tions
(Rumelhart, Hinton, & Williams, 1986).



Back propagation based models of neural and psychological processes

typically fit into a larger class called parallel distributed processing (PDP)

models. This term is defined as follows (Rumelhart & McClelland, 1986a):

These models assume that information processing takes place through

the interactions of a large number of simple processing elements called

units, each sending excitatory and inhibitory signals to other units. In

some cases, the units stand for possible hypotheses. . . . In these cases,

the activations stand roughly for the strengths associated with the

different possible hypotheses, and the interconnections among the units

stand for the constraints the system knows to exist between the

hypotheses. In other cases, the units stand for possible goals and actions

. . . and the connections relate goals to subgoals, subgoals to actions, and

actions to muscle movements. In still other cases, units stand not for

particular hypotheses or goals, but for aspects of these things.

(Vol. I, p. 10)

For understanding the PDP modeling approach, the word “distributed” is

key. PDP models tend to start with units that represent broad classes of

entities. Their interconnections start out at time 0 with little defined structure,

and the internal representations emerge through extensive training of the

weights. The internal representations are typically interpreted as not residing

at single units but distributed across multiple units.

In contrast to the PDP models, some other prominent neural network

models are called localist because single nodes or units play a prominent role

in representing concepts. Localist models notably include many models of

Grossberg and his colleagues. The controversy between distributed and localist

neural network models, discussed in Exercise 7 of Chapter 2, is very much alive

today (see, in particular, Bowers, 2017, and Thomas & French, 2017). On the

localist side, Bowers (2017) argued that there is considerable data showing that

some neurons respond selectively to specific faces or other high-level

information (the so-called “grandmother cells”). He also noted that, even in

some PDP models, sometimes units emerge that are highly stimulus-selective

in their responses. On the distributed side, Thomas and French (2017) argued

that grandmother cell responses exist but may not be causally related to the

animal’s ability to recognize a category. They cited modeling results showing

that in a self-organizing map designed to model monkey data on categorization

performance, removal of category-specific neurons from the simulation had no

effect on performance, and the absence of neuroscience data showing loss of

recognition of single objects due to localized brain damage.

In reality, human and animal nervous systems probably use a mixture of

localist and distributed codes. In evolution, the design of functional archi -

tectures is opportunistic, and “one size fits all” is rarely the rule.
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8.2. “Semantics without Categorization” in PDP Networks

The PDP approach tends to favor learned over innate mechanisms for cognitive

processes. Yet, modelers who apply it to specific processes, most notably in

the domain of language, often add to the generic structure of Figure 8.1 some

groups or units representing concepts that could be either innate or learned.

For example, the PDP model of Rumelhart and McClelland (1986b) for

learning the past tense of English verbs includes phonological representations

of root forms (as input units); phonological representations of past tenses 

(as output units); and feature representations, based on combinations of

phonemes, of both the root form and past tense (as hidden units) that have

modifiable associative connections from root to past tense representations. The

PDP model of word recognition and naming by Seidenberg and McClelland

(1989) includes representations of orthography, phonology, meaning, and

context.

An influential PDP approach to semantic cognition leads to learning of

category-related properties of objects and concepts without building explicit

categories (Rogers & McClelland, 2004, 2011; Rumelhart & Todd, 1993).

Rogers and McClelland (2011) noted that many categorization models assume

for simplicity the existence of a discrete set of categories such that each object

under consideration is placed in one and only one category. By contrast, they

noted that the same object can be classified in many ways depending both on

context and on the required degree of specificity: “Lassie, for example, belongs

to the categories collie, dog, pet, animal, and movie star” (Rogers &

McClelland, 2011, p. 89). Other theorists have also noted the one-to-many

aspect of categorization and dealt with it, for example, by varying vigilance

levels (e.g., Carpenter, Grossberg, & Reynolds, 1991) or including attribute-

selective attention (Kruschke, 2011). Yet, Rogers and McClelland started

from that point to eschew categorization altogether and simply model the

process of inferring properties of concepts from what is known about related

concepts. They adapted a model by Rumelhart (1990) and Rumelhart and Todd

(1993) that was in turn a network representation of a classic theoretical model

in cognitive science, the spreading activation model of Collins and Quillian

(1969).

The back propagation network of Rogers and McClelland (2011) includes

the typical input, hidden, and output layers, with inputs being concepts and

outputs being their potential attributes. In addition, the hidden layer is

influenced by an extra layer of relations, of which there are four: “is a,” “is,”

“has,” and “can.”1 The resulting network simulates a range of data on general -

ization of properties, such as how quickly one can conclude that a canary can

sing or has skin from knowing that most birds can sing and all animals have

skin. These researchers mapped the concepts into clusters in concept space 

that have similar weights in multidimensional space (e.g., “sunfish” is closer
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to “salmon” than it is to “robin” or “oak”), with the distances between concepts

being different for different contexts determined by relations.

The long period of training in back propagation networks and the fact that

many of their internal representations are distributed over the same nodes make

them particularly vulnerable to catastrophic forgetting (French, 1999). A way

to overcome catastrophic forgetting in such networks, and in the later, more

biologically plausible Leabra networks, was suggested by McClelland,

McNaughton, and O’Reilly (1995) based on the different learning properties

of the neocortex and hippocampus. McClelland et al. proposed that new items

are learned quickly in the hippocampus and this protects them from interference

by other memories stored in the cortex. In their schema, later reinstatement of

memories of those new items in the cortex proceeds slowly and gradually by

interleaving those memories with others. Hence, the theory relates to those of

other investigators who have posited that memories are temporarily stored in

the hippocampus before being transferred to the cortex for long-term storage.

The theory of McClelland et al. (1995) provides one account of the

difference between episodic and semantic memories. In their theory, updated

in O’Reilly and Rudy (2000), episodic memories are based in the hippocampus

or, more broadly, the hippocampal system which also includes perirhinal,

parahippocampal, and entorhinal cortices (see Section 5.3), and accurately

represents events as they have occurred. Semantic memories, by contrast, are

based in the cortex and represent a kind of statistical average of many episodic

memories that may be different in detail but closely related to one another

(which can be considered a form of categorization of past events).

Grossberg and Merrill (1996) and Franklin and Grossberg (2017) objected

to the mechanism of McClelland et al. (1995) on the grounds that the

hippocampus does not contain perceptual representations, such as those in the

cortex and thalamus, that are specialized enough to encode all the relevant or

salient aspects of a novel event. They added that it is not clear from the

available physiological evidence that synapses in the cortex in fact learn

slower than those in the hippocampus. Grossberg and Merrill attribute to the

hippocampus a role that does not include actual memory storage but a

modulatory influence on cortical processing, via spectral timing (see Section

6.3.4) and the orienting system of ART (see Section 7.2.2).

Yet, O’Reilly and Rudy’s (2000) theory may be more plausible if it is

restricted to parahippocampal cortex and not the actual hippocampus. Otto 

and Eichenbaum (1992) review evidence for some memory storage in para -

hippocampal cortex but not in the hippocampus proper. Recall from Section

5.3 that cortical inputs about features of objects (“what”) converge in the

perirhinal and lateral entorhinal areas, whereas details about their location

(“where”) converge in the parahippocampal and medial entorhinal areas

(Eichenbaum et al., 2007). Hence, one stream seems to process events whereas

the other stream processes the context of those events. The two streams meet
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in the hippocampus proper, which also has neurons that register the time of

events (MacDonald, Lepage, Eden, & Eichenbaum, 2011).

Reasoning about category properties rather than explicit categorization was

also emphasized in the cognitive architecture of Sun and Zhang (2006). Sun

and Zhang’s work is based not on back propagation but on a two-layer

connectionist-symbolic architecture called CLARION, which is described in

the next chapter (Section 9.6.2).

Through the 1990s and early 2000s, a number of developments in machine

learning applications led researchers to add more hidden layers to back propa -

gation networks. This development enabled the network to simul taneously

encode internal representations at multiple levels of abstraction. Such expanded

back propagation networks are the major, though not the only, focus of the

recent modeling trend known as deep learning.

8.3. Deep Learning

Hinton (2007) described the neuro-behavioral aspect of the fundamental

problem motivating the transition from three-layer back propagation to deep

learning that includes more hidden layers:

To enable the perceptual system to make the fine distinctions that are

required to control behavior, sensory cortex needs an efficient way of

adapting the synaptic weights of multiple layers of feature-detecting

neurons.

(p. 428)

Hinton (2007) went on to note that standard back propagation requires

training the network with data that are labeled as members of an existing

category or class of objects. He discussed some examples of recurrent networks

whereby the training data are generated using top-down connections rather 

than labeled as category members, and learning consists of adjusting top-down

weights to maximize the likelihood that those data would be generated. Bottom-

up connections are still used to determine activations of the features of those

data.

The primary payoff of models such as Hinton’s is in computing applications;

specifically, in Hinton (2007), recognition of poorly written digits. Yet he

discusses possible applications to cortical modeling:

In particular, is the initial perception of sensory input closely followed

by a reconstruction that uses top-down connections? . . . All that is

required is that there are two phases that differ in the relative balance of

bottom-up and top-down influences, with synaptic potentiation in one

phase and synaptic depression in the other.

(p. 433)
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This proposed interplay of top-down and bottom-up processes is reminiscent

of other models with closer ties to neuroscience, such as ARTMAP (see

Section 8.4) and COVIS and SUSTAIN (see Section 8.7).

These considerations led a variety of modelers to develop networks that

build on the back propagation structure described in Section 8.1 but include

training at multiple levels (see Bengio & Lee, 2015, and LeCun et al., 2015,

for reviews). Many of these models have been inspired both by the hierarchical

structure of the visual cortex and by the Neocognitron model (Fukushima,

1980; Fukushima & Miyake, 1982; see Section 7.3) that captures this visual

hierarchy.

One of the earliest networks to incorporate an approximation of the visual

hierarchy was designed by LeCun et al. (1989, 1990) for recognizing badly

handwritten digits. LeCun and his colleagues set out to build enough internal

structure into the back propagation network to minimize the need for

preprocessing inputs. The network at various points performs convolution, a

mathematical operation using integral calculus that bears some similarity to a

correlation, of incoming signals with feature maps representing features that

become more abstract at deeper layers of the network. Such a convolutional
neural network or ConvNet is one of the commonest types of deep learning

neural networks (see LeCun et al., 2015, p. 439). Several ConvNet-based

systems for handwriting recognition or optical character recognition have

been employed by Microsoft. ConvNets have also been applied successfully

to speech recognition, document reading, face recognition, and object detection

in natural images. Thus far there have been few applications of ConvNets and

other deep learning neural networks to modeling actual brain systems or

behavior. Deep learning has also been combined with reinforcement learning

(see Chapter 6) to build machines that have been successful in playing Atari

games (Mnih et al., 2015).

There is still potential for using deep learning algorithms in models of brain

systems with hierarchies of abstraction; this includes not only the visual and

auditory sensory systems but also the prefrontal cortex executive function

system (Badre & D’Esposito, 2007; Christoff & Gabrieli, 2000; Christoff 

et al., 2009; Koechlin & Hyafil, 2007). Some biologically based models of 

the visual system with different architectures are described in Section 9.2 

and models of the executive system in Section 9.4. Many of the models in

Chapter 9 build on models of simpler cognitive processes described in Chapters

3 and 4.

The majority of deep learning applications described in this section, like the

majority of back propagation applications, have involved supervised learning.

An application of a convolutional deep network to unsupervised learning

appears in Lee, Grosse, Ranganath, and Ng (2011). Lee and colleagues looked

for high-level structures in unlabeled visual scenes using a convolutional
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example of a deep belief network. A deep belief network (Hinton, Osindero,

& Teh, 2006) is a network where each layer encodes statistical dependencies

among the nodes in the layer immediately below and can be trained to

approximately maximize the likelihood of the training data. In the network of

Lee et al. (2011), the first layer learns edge detectors, the second layer object

parts, and the third layer complete objects. These representations enable the

network to infer hidden object parts from high-level object information.

Typical deep learning networks rely on error-driven weight adjustments by

the same method used in three-layer back propagation networks, namely

updating of weights at lower levels based on feedback to synapses at higher

levels. Hence, deep learning networks inherit from back propagation the

doubts about biological plausibility. Lillicrap et al. (2016) noted that the

Leabra model introduced by O’Reilly (1996a, 1996b) had not completely

overcome these doubts because O’Reilly’s method made some symmetry

assumptions that may not be realistic in the brain. Lillicrap and his colleagues

showed mathematically that approximations comparable to those from back

propagation networks could be obtained by subjecting all the weights in

network to influence by a randomly chosen matrix, rather than a matrix of

downstream synaptic weights as in typical back propagation. This innovation,

like Leabra, provides the benefits of back propagation without the nonlocality

that makes back propagation biologically dubious.

Yet, none of the networks described in this section has been closely con -

nected with known neural pathways involved in specific cognitive func tions.

The next section, and Section 8.7, provide examples of networks for supervised

categorization that have made more contact with cognitive neuro science 

data.

8.4. ARTMAP: A Family of Supervised Adaptive Resonance
Networks

The early successes of ART in unsupervised categorization led Carpenter,

Grossberg, and Reynolds (1991) to apply the same architectural principles used

in ART 1 to supervised categorization. These researchers observed that pure

self-organization is insufficient to predict the consequences of categorization

decisions under many conditions. For example, self-organization tends to

place two stimuli in the same category if they have similar sensory or cognitive

features, even when the effects produced by those two stimuli are radically

different. One example occurs in a benchmark machine learning problem that

these authors simulated, that of distinguishing between poisonous and edible

mushrooms, which often look quite similar. A less spectacular example occurs

in the letter classification dilemma shown in Figure 8.5.

The basic operation of a supervised ART network is to learn an arbitrary

nonlinear mapping from patterns in an n-dimensional space to other patterns
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in an m-dimensional space; this is why the authors coined the term ARTMAP
for their network. (Note: such a mapping need not be a function in the

mathematical sense of having a unique value, as the network can learn one-

to-many as well as one-to-one and many-to-one mappings.) In particular, if

inputs to such a network are represented as arrays of numerical values of

features, the network can learn categories with irregular boundaries. These

mappings are learned by connecting a pair of ART 1 modules known as ARTa
and ARTb via associative memory links, as shown in Figure 8.6.

Learning in ARTMAP is unidirectional, from ARTa to ARTb. During the

training phase, both ART modules receive streams of input patterns: The

patterns at ARTb are interpreted as consequences of those at ARTa (e.g.,

poisoning as a consequence of ingesting a specific mushroom). Then

associative learning takes place between the F2, or category, layers of the two

ARTs. As a result of this learning, in the testing phase, as each new input comes

in to ARTa not only is it classified in a category there but a category is also

predicted at ARTb. However, initial predictions (in either the training or testing

phase) may not be correct; consequently, an orienting system and a vigilance

parameter (see the earlier description of ART 1) are required to reset the system

if predictions are incorrect. This orienting system is called a map field, as shown

in Figure 8.7.

The essentials of the ARTMAP predictive architecture are carried over in

fuzzy ARTMAP (Carpenter et al., 1992). In fuzzy ARTMAP, two fuzzy ART

modules are combined with inter-ART associative learning and a map field to

FIGURE 8.5 The same two extra pixels which change an “O” into a “Q” in (a) change
an “I” into a noisy “I” in (b).

Source: Reprinted from Stork, Journal of Neural Network Computing, 1, 26–42 (New York:
Auerbach Publishers). Copyright 1989 Warren, Gorham, & Lamont, Inc. Used with permission.
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FIGURE 8.6 An ARTMAP system for supervised learning includes two ART modules
linked by an inter-ART associative memory. Internal control structures actively
regulate learning and information flow.

Source: Adapted from Neural Networks, 4, G. A. Carpenter, S. Grossberg, & J. H. Reynolds,
ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing
neural network, 565–588, Copyright 1991, with permission from Elsevier Science.
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FIGURE 8.7 Block diagram of ARTMAP. The map field along with its orienting
subsystem and gain control connect the two ART modules, ARTa and ARTb, and
control resonance and reset of predictions.

Source: Adapted from Neural Networks, 4, G. A. Carpenter, S. Grossberg, & J. H. Reynolds,
ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing
neural network, 565–588, Copyright 1991, with permission from Elsevier Science.



learn arbitrary mappings between multidimensional analog patterns. As in the

case of fuzzy ART (Carpenter, Grossberg, & Rosen, 1991a, 1991b), comple -

ment coding (see Section 7.2.3 for a definition of this term) is typically used

for fuzzy ARTMAP inputs both to indicate those nodes, or features, that are

activated strongly and those that are not activated.

8.5. Exemplars, Prototypes and Rules in Models of
Category Learning

Section 7.2.2 noted that categorization relies both on exemplars, which are

specific instances of input patterns that belong to a category, and prototypes,

which are averages across many exemplars of that category. Sometimes

categorization also involves explicit rules for what features or criteria make a

pattern a member or nonmember of a category.

There are many nonneural cognitive models that classify a new input based

on comparison of the input with stored exemplars, and others that classify 

based on comparison of the input with a prototype. Grossberg, Carpenter, and

Ersoy (2005) pointed out the different advantages of both types of models.

Prototype models are better at capturing abstraction of key properties that

psychologically define a category. The importance of prototypes is supported

by some human behavioral data. Reaction times to exemplars of a category

are shortest for exemplars that are close to the prototype (e.g., Mervis & Rosch,

1981); for example, a sparrow is recognized as a “bird” sooner than an ostrich

is. More over, if a subject is taught exemplars that are random variations on a

general pattern of dots, the prototype formed is close to the average of these

variations. The subject then learns the prototype faster than any of the actual

exemplars even without having seen the prototype (e.g., Posner & Keele, 1970).

On the other hand, exemplar models are better at capturing episodic memories

and specific important stimuli that are frequently encountered, such as the face

of a family member. Some cognitive modelers of categorization have attempted

to combine the strengths of both types of models in rule-plus-exceptions
models (e.g., Palmeri, Nosofsky, & McKinley, 1994), whereby categories are

defined mostly by nearness to prototypes except for a few exemplars that 

are distant from category centers.

A series of models by Kruschke and his colleagues, starting with ALCOVE
(attention learning covering map; Kruschke, 1992), embed the exemplar

theory in a connectionist framework, without reference to specific brain

regions. ALCOVE is derived from a widely used nonconnectionist exemplar

model called the generalized context model (Nosofsky, 1986). The model is

based on a feedforward network whose structure bears some similarity to back

propagation networks, with input nodes coding novel inputs, hidden nodes

coding stored exemplars, and output nodes coding categories to which inputs
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might be assigned. Yet the representations are distributed only over a few

nodes, a design that avoids the catastrophic interference common in PDP

models, most of which have extensive overlap of nodes representing different

concepts.

As in other category models discussed in this chapter, inputs to be placed

in categories of ALCOVE are treated as patterns (i.e., vectors) of numerical

activations of different attributes or features. An error-driven learning rule

adjusts the relative attention paid to different attributes, and attributes whose

appearance is correlated across the input set become selectively enhanced. The

reallocation of attention is a main feature of a later variation on the model

known as RASHNL (rapid attention shifts and learning: Kruschke & Johansen,

1999). Other variations on the ALCOVE design have added context-specificity

of categorization (e.g., Denton & Kruschke, 2006) and pooling of “expert”

classifiers (Denton, Kruschke, & Erickson, 2008).

The Kruschke family of exemplar-based models has been able to simulate

a wide range of behavioral data on categorization. This includes a form of base

rate neglect (Gluck & Bower, 1988b), whereby participants given the symptom

profiles of patients with two fictitious diseases tend to overestimate the

probability of the rarer disease given symptoms that are highly compatible with

that condition. Also, they simulated some data showing that linearly separable
categories are not necessarily easier to learn than categories that are not

linearly separable, contrary to a prediction of some prototype models. Linear

separability means that if each input is described numerically by an array of

node activation quantities, the criterion for membership in a category is that

some linear function of those quantities be larger than some set value. Kruschke

(2011) noted that one limitation of these models is a difficulty in generating

categorization rules, though they have been able to simulate “rules plus

exceptions” such as the learning of past tenses of English verbs, which was

also simulated by Rumelhart and McClelland (1986b).

Also, ALCOVE and related models are not embedded in real-time networks

for other cognitive processes such as memory, perception, and conditioning.

Neither are categorization models based on prototypes, such as that of Knapp

and Anderson (1984), which is derived from the earlier linear models of

Anderson and his colleagues (see Section 3.2.2). The next subsection discusses

a different type of categorization model, by Anderson et al., one that comes

from repeatedly applying the same linear transformation to a pattern and then

classifying the original pattern in a cluster determined by what it converges to

for large time.

The use of explicit rules in computational models of categorization has been

mainly in models that include explicit connections with brain regions. Two

classes of models of that type – COVIS and SUSTAIN – are discussed in

Section 8.7.
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8.6. Brain-State-in-a-Box Models

A class of categorization models based on linear associative learning, widely

known by its nickname of brain-state-in-a-box, has been studied since 1977

by Anderson and his colleagues. In early versions of these models (Anderson

et al., 1977; Anderson & Mozer, 1981), pattern classifications are unsupervised.

In later versions (Anderson & Murphy, 1986), an error-correcting learning rule

allows learning of particular desired classifications.

The brain-state-in-a-box (BSB) model was first derived by Anderson et al.

(1977) as an offshoot of the linear model with saturation by Nass and Cooper

(1975; see Section 3.2). Recall that saturation was imposed on a linear network

with associative memory and positive feedback, in order to prevent activities

of the nodes in the network from becoming unbounded. The “box” from which

the model derives its name is shown in Figure 8.8. It is an abstract square, cube,

or, more generally, hypercube of possible n-dimensional activity vectors which

constitute the numerical bounds for possible node activities.

The BSB model associates vector patterns of activities at a set of nodes with

other patterns at the same nodes. The matrix consisting of the connection

weights between nodes provides feedback that transforms the pattern, as is

developed shortly. The network then converges to one of the characteristic

system states corresponding to corners of the “box” in Figure 8.8. Categor -

ization of the original input pattern is based on which one of these corners is

reached. (A good, accessible introduction to matrices and vectors as they relate

to neural networks is found in Jordan, 1986a. Some of that material is

summarized in Appendix 1 of this book.).

Recall from Section 3.4.1 the distinction between autoassociative and

heteroassociative encoding (Kohonen, 1977, 1984). The connectivity matrix

is designed to associate a pattern (input) x to another pattern (response) y; this

is called autoassociative if the two patterns are equal, and heteroassociative

otherwise. The BSB model is applicable to both of these two types of encoding.

A brief description of this algorithm follows; more mathematical detail

appears at the end of this chapter. As in Anderson’s earlier models discussed

in Chapter 3, the input pattern is interpreted as the initial state of a vector of

node activities x(t) = (x1(t), x2(t), . . . , xn(t)). These activities xi vary between

preassigned maximum and minimum values, which for mathematical simplicity

are taken to be 1 and –1. The vector x(0) at t = 0 represents the input pattern

to be classified; values of x(t) at subsequent times are given by the rule

(8.1)

where A is the connectivity matrix of the system, or rectangular array of its

connection weights.

Equation (8.1) represents positive feedback as it might occur in the brain,

due to the past operation of a Hebbian associative learning law. This feedback

x x Ax( ) ( ) ( )t t t+ = +1
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has the desirable property of enhancing significant activities or stimuli, but

often has an additional property that is undesirable. Repeated application of

(8.1) to a pattern vector will drive the state of the system outside the box of

Figure 8.8, that is, cause values of some or all of the xi to become larger than

1 or smaller than –1. This is particularly true if the input pattern is one of the

significant states of the system, which correspond to the vectors known as

eigenvectors of the matrix A (see the equations at the end of this chapter for

a definition of this term).

To prevent activities from leaving the box, Anderson et al. (1977) imposed

an additional rule whereby, if any of the activities becomes greater than 1 as

a result of (8.1), it is replaced by 1, and if that activity becomes less than –1

it is replaced by –1. The effect is to make the system converge to one of the

corners of the box, which represent states in which all activities are 1 or –1.

Hence, the BSB model, like all neural network models, includes a method for

keeping activities within bounds, corresponding to the limits on possible firing

frequencies of actual neurons. Grossberg (1978c) argued that this particular

method (linearity plus “hard” saturation) is not biologically realistic and

creates some inevitable distortions of pattern weights because distinctions

among values close to 1 or –1 are lost. He argued that an inherently non-

linear mechanism is needed to avoid such distortion. (For the gist of his

reasoning, see Exercise 1 of Chapter 4). Anderson and Silverstein (1978)

responded that linear transformations do occur in some regions of real nervous

systems (as in the response of the horseshoe crab eye to visual stimuli). They

added that a simple linear model illustrates some properties that are likely to

be retained in more complex nonlinear models.

(-1, 1) (1, 1)

(0, 0)

(-1, -1) (1, -1)

FIGURE 8.8 A two-dimensional example of the “box” from which the brain-state-in-a-
box model (Anderson et al., 1977) derives its name. The system state at any time is
given by a vector of (in this case, two) numbers between the bounds for node activity
(in this case, –1 and 1). Points along the curve drawn inside the box denote the system
state at successive times. In this case, the points that are drawn arise if the 
initial state is (0, 0.05) and the connectivity matrix (see Equation (8.1)) is  .

.

2 1

1 1
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Anderson and Murphy (1986) combined BSB with the delta or error-

correction learning rule (in a form used previously by McClelland &

Rumelhart, 1985) to deal with the problem of noisy encoding. Previous BSB

networks succeeded in distinguishing mutually orthogonal (perpendicular)

input vectors, but did not always succeed in distinguishing inputs whose

vector directions were relatively close together. For this reason and others, the

connectivity matrix learned from previous pattern associations sometimes

failed to yield the desired encoding if the data were somewhat noisy.

In the Anderson–Murphy simulations, the connectivity matrix A is initially

chosen at random. Then the system is fed a desired association of a vector x

to another vector y. On each time step, the matrix A is changed by a correction

term based on the difference between y and the product Ax (see the end of the

chapter for details). Once the desired matrix has been found, the system goes

through the saturating-linear BSB algorithm as in Anderson et al. (1977).

Anderson and Murphy’s supervised version of the BSB model has been

applied to processing linguistic inputs that are converted to vectors of 1s and

–1s by means of ASCII codes. This model has reproduced the disambiguation

by context of words with more than one meaning; for example, the word “bat”

by itself could mean a flying animal, “ball” could mean a dance, and “diamond”

could mean a jewel, but all three words together must refer to baseball.

Recently, BSB has been used more in computing and industrial applications

than in modeling of psychological or cognitive neuroscience data. Perhaps the

most interesting application of this type of modeling to psychologists is the

work of Abdi, Valentin, and O’Toole (1997), who applied an autoassociative

network based not on BSB but on a variant of Anderson (1972) to classifying

human faces by gender. The face classification is of particular interest since it

employs a modified linear autoassociator designed to allow for the possibility

of selective attention to different parts of the feature space (Abdi, Valentin,

Edelman, & O’Toole, 1996).

8.7. Some Brain-Based Models: COVIS and SUSTAIN

Ashby and his colleagues (e.g., Ashby, Alfonso-Reese, Turken, & Waldron,

1998; Ashby, Ennis, & Spiering, 2007) have developed a neural theory of

perceptual categorization based on a combination of declarative and procedural

learning. They call their model COVIS, an acronym for competition between
verbal and implicit systems. In Ashby et al. (2007), the procedural part of

COVIS was elaborated and updated into a model of categorization by experts

called SPEED (subcortical pathways enable expertise development).
The starting point for the inquiry that led to COVIS was a set of behavioral

results on categorization of multiattribute geometric patterns, some of which

could be categorized explicitly by easily stated rules and others for which the

rules could not be easily expressed (Maddox & Ashby, 1993). An example of

Models of Supervised Pattern and Category Learning 269



an explicit rule given in Ashby et al. (1998) deals with classifying rectangles,

whereby the rule is “Respond A if the stimulus rectangle is taller than it is wide;

respond B if the rectangle is wider than it is tall” (p. 444). An example of a

categorization that does not yield to an explicit rule is classifying stimuli

consisting of circles with oriented lines inside them, because orientation of the

line and radius of the circle cannot be directly compared. Categorization in the

latter case requires what the authors called information integration, which in

turn requires learning of actual connections between representations of specific

stimuli and categories. The “competition” in the model’s name arises because

the participants need to discover which type of rule is more appropriate for a

particular categorization problem, so both the verbal and procedural systems

are active in the early stages of the task.

The original version of COVIS is shown in Figure 8.9. While both the verbal

(rule-based) and implicit (procedural) systems involve loops between the

cortex, basal ganglia, and thalamus, rule-based category learning is centered

in the prefrontal and cingulate cortices and head of the caudate nucleus, and

procedural learning in the tail of the caudate nucleus. The procedural learning

system works somewhat analogously to the learning by exemplars in the

Kruschke and Nosofsky models.

Both model systems require dopamine to learn. The architecture led to

predictions, which the data generally supported, that different lesions should

affect different types of categorization. The model predicts that prefrontal

damage or decreased dopamine input to the anterior cingulate should impair

only the rule-based type of categorization, whereas Parkinson’s disease (which

can affect both the head and tail of the caudate) and caudate damage should

impair both types.

The SPEED model of Ashby et al. (2007) maps the development of expertise

or automaticity (two words that they openly conflate) in categorization. In

simulations using that model, striatal pathways and dopamine are active in the

early stages of task but later activity is confined to the sensory, associative,

and motor cortex. They note an analogy between the temporary activity of 

the striatum in their model and the temporary activity of the hippocampus 

in the memory model of McClelland et al. (1995) (see Section 8.2). Some of

the equations for the SPEED model are listed at the end of this chapter.

Whenever a model relies on two separate systems, the question arises as to

how the two systems are integrated – or, in this case, how a decision is made

as to which one to activate. Ashby et al. (1998) discuss this issue without

coming to a conclusion, hinting that lateral inhibition somewhere in the

striatum might be a mechanism for such a decision.

The dual-process idea also occurs in the discussion by Ashby et al. (1998)

of data such as Knowlton and Squire’s (1993) showing that amnesics who have

difficulty remembering recently presented category exemplars are normal at

categorization, at least in the early stages. Yet, Nosofsky and Zaki (1998) were
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able to simulate Knowlton and Squire’s data using a one-process exemplar model

by manipulating the value of a sensitivity parameter. Grossberg et al. (2005)

suggested that the sensitivity in that model was analogous to the vigilance in

their own ART model. The data of Nosofsky et al. (2012) discussed in Section

5.3 also point to the plausibility of such a parameter manipulation. This

discussion suggests that even when experimental results point to dissociations

between two or more processes, models can play a unifying role in suggesting

how the system can simultaneously incorporate all these processes.

Knowlton and Squire’s data were also simulated in the SUSTAIN (“super -

vised and unsupervised stratified adaptive incremental network”) model

developed in Love, Medin, and Gureckis (2004) and given a neural basis in

Love and Gureckis (2007). The authors of these articles acknowledge the

kinship of their work both to exemplar models and to ART (see McDonnell 

& Gureckis, 2011, for the related idea of “adaptive clustering”). SUSTAIN

covers a different database than COVIS, and so the two models may not be in

contradiction. Unlike COVIS, SUSTAIN includes unsupervised as well as

supervised categorization, is applied primarily to conceptual rather than

perceptual inputs, and does not include an implicit learning module.

SUSTAIN attempts to synthesize exemplar-based, prototype-based, and

rule-based models by positing that category representation is based on what

the authors call clusters, which is subtly different from the definition of

clustering given earlier in the chapter. Clusters as they use the term are not

necessarily entire categories, but may instead be subcategories of items that

are commonly thought of together, or commonalities across many categories.

Notably, they define a cluster as “a bundle of features that captures conjunctive

relationships across features (e.g., wings, flies, and has feathers tend to co-

occur”) (Love & Gureckis, 2007, p. 91).

In training episodes, SUSTAIN starts with one cluster based on the first

training item. More clusters are added when there are surprising events, that

is, novel stimuli in the case of unsupervised learning or prediction errors in

the case of supervised learning. If there is no surprise the new stimulus is placed

in the dominant cluster and that cluster’s prototype moves in the direction of

that stimulus (a mechanism very close to what occurs in adaptive resonance

networks). Love and Gureckis (2007) propose that the familiarity and novelty

processing in this network involves prefrontal cortex (subregion not specified),

perirhinal cortex, and hippocampus. PFC compares the current stimulus 

with perirhinal representations of familiar stimuli, and this circuit influences

encoding of surprising events by the hippocampus (see Ranganath & Rainer,

2003; Ranganath et al., 2004). Love and Gureckis summarize that

. . . the hippocampus constructs codes, the perirhinal cortex generates a

familiarity or fit signal, and the PFC monitors and directs encoding and

retrieval processes. In terms of SUSTAIN, cluster activations relate to
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the fit signal generated by the perirhinal cortex, with cluster evaluation

processes carried out by the PFC. When an event is deemed surprising

by the PFC, the hippocampus attempts to construct a new cluster.

(pp. 92–93)

FIGURE 8.9 The fundamental structure of the COVIS model based on competition
between verbal and implicit systems. Both systems include loops through basal ganglia,
thalamus, and cortex. The verbal system is centered on prefrontal and cingulate
executive regions, and the implicit system on the tail of the caudate which receives
inputs from high-order visual cortex. Dotted lines denote dopamine pathways. 
VTA = ventral tegmental area, SN = substantia nigra, NAC = nucleus accumbens, 
IT = inferotemporal cortex.

Source: Ashby, Alfonso-Reese, Turken, & Waldron, Psychological Review, 105, 442–481, 1998.
Copyright 1998 by the American Psychological Association. Reprinted by permission.



Equations for Networks in Chapter 8

Some Implementation Issues for Back Propagation Equations

Recall from Sections 3.3 and 3.5 that the back propagation network of Rumelhart
et al. (1986) uses nonlinear (typically sigmoid) activation or input-output
functions f. The output of unit j (output or hidden) is

(3.24)

with the sum taken over units i from the previous layer.
In most of the simulations done by Rumelhart et al., a “bias term” θj is added

to netpj, the total signal received by unit j. This bias, which can be positive or
negative, is interpreted as the spontaneous activation level of the jth unit, regardless
of what inputs it is or is not receiving. Also, these simulations use a specific form
of the activation function, namely, the logistic function, f (x) = 1/(1 + exp(–x)).
Hence, the special case of (3.24) used therein is

(8.2)

The logistic function has the convenient property that its derivative equals

(8.3)

By (8.3), the change in f is largest when f is 1/2, and 0 when f is 0 or 1. In other
words, output units that have not “made up their mind” whether to respond 
(with a 1) or not respond (with a 0) are subject to the greatest weight changes.
In applied problems, as Rumelhart et al. (1986, p. 329) point out, values above
.9 or below .1 are usually taken to be “decisions.”

The logistic function also simplifies the equations given in Section 3.5 for
changes of weights to both output and hidden units. Recall that the expression
for the error signal at an output unit, derived from the chain rule for deriva-
tives, is

(3.10a)

where ypj is the actual value of the jth output unit’s activity and tpj its desired value.
Combining (3.26) with (8.2) and ypj = f (netpj ), we obtain

(8.4)
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From Section 3.5, error signals at hidden units are related to error signals at
output units by

(3.10b)

where the summation is over all output units k that receive inputs from the jth
hidden unit. Equation (3.10b), combined with (3.26), (8.3), and ypj = f (netpj),
yields

(8.5)

Rumelhart et al. originally made the change in the weight wij proportional to
the product of activation level ypi and error term δpj , the latter defined by (8.3)
or (8.4). But it was found that, with such a rule, too low a constant of
proportionality (learning rate) makes learning much too slow, whereas too large
a learning rate can lead to wild oscillations. They prevented oscillations at high
learning rates by including a momentum term that makes the direction of present
weight changes partly dependent on the direction of recent past changes. Hence,
the rule they actually used is

(8.6)

where � (the learning rate) and α (the momentum) are two separate positive
constants.

ARTMAP Equations

ARTMAP consists of two ART 1 modules, labeled “a” and “b,” and a map field
that connects them. The effects of the algorithm described by (7.12) through
(7.15) and the constraints on gain control, 2/3 rule matching, and so forth, can
be simplified in a “fast learning” case as follows (see Carpenter, Grossberg, &
Reynolds, 1991):

Let the feature layer F1 have M nodes, and let the category layer F2 have N
nodes. Let I denote the current input vector. In this case of binary inputs, the
norm or absolute value symbol |I | denotes the number of components of the
vector I that are equal to 1.

All F2 nodes are initially uncommitted; hence, at time 0 the weights to a given
F2 node, labeled Zij , are equal from all the F1 nodes, that is,

(8.7)
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where the small positive numbers αj are such that α1 > α2 > . . . > αn and each 
αj is less that the value 1/(� + |I |), with � also being a small positive number. 
If zji denote the top-down weights from F2 to F1, then

(8.8)

As particular F2 nodes become active (by processes to be shown below), their
vectors of zji values, denoted as zj , become mixtures of 1s and 0s representing
prototype patterns. The binary F1 output vector x = (x1, . . . , xM) then becomes

(8.9)

where the intersection (() denotes a binary vector that has 1s in the components
where both vectors on either side of the symbol have 1s. This leads to an input
from the F1 field to each F2 node; the input Tj to the jth F2 node is

(8.10)

The initial choice of F2 node is the one with the largest value of Tj . Then the F2
output vector is denoted by y = (y1, . . . , yN).

Resonance occurs if for the chosen node J (the one with the largest Tj value),

(8.11)

where � is the vigilance parameter (remembering that in ARTMAP, unlike ART
1 standing alone, the value of the vigilance can change with learning). If (8.11)
is satisfied and the input is placed in the category coded by node J, then both the
top-down weight vector zJ from that node and the bottom-up weight vector ZJ
to that node are updated. The new values of these vectors are

(8.12)

The ARTMAP algorithm links together two fast-learn ART 1 modules, called
ARTa and ARTb, each obeying Equations (8.7) through (8.12), with the
superscripts a and b denoting which one a given variable refers to. The algorithm
also incorporates an inter-ART module with a map field, via the rules to be
described.
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In addition to the variable vigilance (see below), another change from previous
versions of ART is that the map field F ab (which has the same number of nodes
as F2

b, the category field of ARTb) can prime ARTb . That is, if F ab sends
nonuniform input to F2

b in the absence of an input to ARTb , F2
b remains inactive

but its subsequent activity is influenced by the input from F ab. Specifically, as soon
as the input to F2

b from F ab arrives, F2
b chooses the node K receiving the largest

input from the map field. This node in turn sends to F1
b the top-down input zK

b

In the full ARTMAP network, the output vector of x1
a is denoted by xa = 

(x1
a, . . . , xa

Ma) and the output vector of x2
a by y a = (y1

a, . . . , ya
Na ), with analogous

superscripts for the outputs of the ARTb module. Denote by x the output of the
map field F2

b. Between input presentations, the five vectors xa, ya, xb, yb, and x
are all set to 0.

Let wj = (wj1, . . . , wjNb) be the vector of weights from the jth F2
a node to Fab.

The vector wj starts with every component equal to 1, but converges during
resonance with the jth category active to the current value of the map field output
vector x. The vector x in turn obeys

(8.13)

Let �a be the ARTa vigilance and � the map field vigilance. If there is mismatch
between the current prediction of an ARTb category by ARTa and current ARTb
activity, that is (by the first line of (8.13))

(8.14)

then if a denotes the vector of inputs to ARTa , �a is increased until it is slightly
larger than |a|zJ

a |/|a|. By (8.13), this means that

(8.15)

where J is the index of the active F2
a node. That leads to F2

a reset: either activation
of a new F2

a node for which neither mismatch condition (8.13) or (8.14) holds,
or if no such node exists, shutting down of F2

a as long as the current input is on.
The learning of weights in ARTMAP can be broken down into nine cases:

inputs a and b to the two ART 1 modules could appear alone, or one before the
other; a could make a prediction of ARTb activity based on prior learning, or not;
if a makes a prediction, b could confirm or disconfirm the prediction. If it is
assumed that all |a| are the same constant, the changes in the top-down and map
field weight vectors zJ

a, zK
b, and wK are listed, and these lead to corresponding

changes in the bottom-up weights Zj
a and Zk

b by (8.11):
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a only, no prediction: zJ
a → zJ

a(old)∩a

a only, with prediction: zJ
a → zJ

a(old)∩a

b only: zK
b → zK

b(old)∩b

a then b, no prediction: zJ
a → zJ

a(old)∩a, zK
b → zK

b(old)∩b, and wJ → yb, the effect
of which is that category J of ARTa learns to predict category K of ARTb

a then b, prediction confirmed: zJ
a → zJ

a(old)∩a, zK
b → zK

b(old)∩b

a then b, prediction not confirmed: this leads to selection of a new ARTb
category K, then increase of the ARTa vigilance �a as described earlier.
If an ARTa category is found for which resonance occurs both within
ARTa and between the two ARTs (i.e., (8.13) and (8.14) are both false),
then zJ

a → zJ
a(old)∩a and zK

b → zK
b(old)∩b, and if node J is uncommitted,

wJ → yb. If no such node is found, then only zK
b → zK

b(old)∩b.
b then a, no prediction: zJ

a → zJ
a(old)∩a, zK

b → zK
b(old)∩b, and wJ → yb, the effect

of which is that category J of ARTa learns to predict category K of ARTb

b then a, prediction confirmed: zJ
a → zJ

a(old)∩a, zK
b → zK

b(old)∩b

b then a, prediction not confirmed: like the case of a then b, prediction not
confirmed.

The supervised classification of analog vectors using fuzzy ARTMAP (Carpenter
et al., 1992) largely follows the lines of ARTMAP and Equations (8.6) through
(8.14) with the same changes as were applied in going from ART to fuzzy ART.
That is, the intersection operator “∩” is replaced by the fuzzy AND operator “∧,”
which takes the minimum of corresponding components of the two vectors (see
the earlier section on fuzzy ART equations), and the norm operator “|” is
interpreted as the sum of all components.

Inputs to both ART modules in fuzzy ARTMAP, like those to fuzzy ART, are
complement-coded. That is, an input is followed by its “complementary” pattern
whose values are 1 minus the original values (e.g., following .8, .4, 1 by .2, .6, 0),
creating a vector with constant norm equal to twice the number of nodes in the
appropriate layer.

Brain-State-in-a-Box Equations

Section 8.7 listed the equation of Anderson et al. (1977) for linear transformation
of the node activity vector (initially an input vector) over time. This equation is
reproduced here:

(8.1)

where x = (x1, x2, . . . , xn) is the vector of node activities at any given time, and
A is the connectivity matrix of the system. But it was noted that Equation (8.1)
can create instability through positive feedback; that is, it can drive the state vector

xx xx AAxx( ) ( ) ( )t t t+ = +1
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of the system outside the hypercube (box) of Figure 8.8. To prevent such
instability, Anderson et al. added a rule whereby any node activity driven above
1 by (8.0) is replaced by 1, and symmetrically, any activity driven below –1 is
replaced by –1. Hence, if the subscript i below any vector denotes its ith
component, i between 1 and n, (8.1) is replaced by the equation

(8.16)

where I denotes the identity matrix (1 along the main diagonal, 0 elsewhere).
Equation (8.16) is the one that Anderson et al. (1977) actually used in their

simulations. The matrix A is constrained to be symmetric; that is, for each i and
j, the entry aij in the ith row and jth column is identical to aji . Symmetry simplifies
a matrix’s mathematical properties. For example, a symmetric n-by-n matrix always
has n mutually orthogonal eigenvectors, that is, n-dimensional vectors xi such that
Axi is a constant multiple of xi . The constant that is multiplied is called an
eigenvalue of the matrix A (see Jordan, 1986a, for discussion). In order to simulate
the positive feedback process involved in classification, Anderson et al. used a
matrix for which all eigenvalues are positive, and all eigenvectors are corners of
the box in Figure 8.8 (e.g., see Exercise 2 of this chapter).

Anderson and Murphy (1986) used a variant of (8.16) that incorporates the
initial state (i.e., input) vector x(0), in order to keep input information present.
Their equation for the change in the state vector x over time is

where α, �, and δ are different positive constants.
In addition, Anderson and Murphy (1986) include a scheme for learning 

the correct matrix A. The optimal A for forming a heteroassociative connection
x-to-y, with x and y both vectors, is one for which

(8.17)

Anderson and Murphy’s error-correcting scheme for incrementing the matrix,
based on the rule of Widrow and Hoff (1960), was designed to move A closer to
satisfying (8.17). Their equation for the change in A is

(8.18)

The learning rate � in (8.18) can be either fixed or adjustable. The matrix learning
scheme defined by (8.18) can also, the authors pointed out, be used in auto -
associative encoding by letting y = x. In that case, the learning scheme becomes
an algorithm for making x an eigenvector of A with an eigenvalue equal to 1.
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Equations for the SPEED Model of Ashby et al. (2007)

In the SPEED model of the automatic part of categorization (Ashby et al., 2007),
sensory inputs are treated as gestalts and not broken down by attributes or
features. When a stimulus is presented, the activation of sensory cortical unit K
at time t is

(8.19)

where α is a constant, and d (K, stimulus) is the distance (in stimulus space)
between the stimulus preferred by unit K and the presented stimulus. Equation
(8.19) is an example of a radial basis function (e.g., Buhmann, 2003).

Striatal (medium spiny) unit activations Sj (t) are determined by weighted sums
of activations in all visual cortical units projecting to a given striatal unit and by
lateral inhibition from other striatal units, thus:

(8.20)

where �S , �S , Sbase, and �S are constants, M ≠ J, IK (t) is as in Equation (8.19),
wK ,J (n) is the connection weight from cortical unit K and striatal unit J on trial
n, and ε(t) is white noise.

Activation in the jth unit of the globus pallidus at time t, denoted by GJ(t), is
described by

(8.21)

where αG, �G, and Gbase are constants. This indicates inhibition from the
corresponding striatal unit and decay to baseline.

Activation in the j th unit of the thalamus obeys an equation similar to (8.21):

(8.22)

with one major difference. Tbase is set to a value higher than the expected
spontaneous firing rate of thalamic neurons to also include excitatory inputs to
the thalamus, most notably inputs from the PFC.

To each of the units in the striatum, globus pallidus, and thalamus there
corresponds a unit in the premotor cortex. The activations of those premotor
nodes are controlled by the equations
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where vK,j (n) is the connection weight from visual cortical unit K and premotor
unit j on the nth trial, and other symbols are defined analogously to those in
previous equations.

There are as many premotor units as there are possible responses. In tasks with
only one possible response, it is assumed that a response is initiated when the
integral over time of the activation in the premotor unit first exceeds a threshold
τ. In tasks with two possible responses, A and B, it is assumed that response A is
given when the integral over time of EA(t) – EB(t) first exceeds τ, and response B
when that same integral is first less than –τ.

As for the weights, the two critical synapses are between sensory association
and motor cortex units and between sensory association cortex and spines of striatal
units. The sensory-motor weights are modified by two-factor, that is, Hebbian
associative learning, and the cortico-striatal weights are modified by three-factor
learning that also incorporates the effects of dopamine. It is assumed that 
weights, unlike node activities, change only at the end of trials, so while node
activities are defined by differential equations, weights are defined by difference
equations.

If vK,J(n) denotes the strength of the synapse on trial n between sensory cortical
unit k and premotor unit J, then the two-factor learning equation for that
synaptic weight is the difference equation

(8.23)

where the sum over t denotes total activation of the appropriate unit over the
course of the trial; αv and �v are constants; and θNMDA is the activation threshold
of the NMDA receptor. The term in (8.22) starting with αv describes the
conditions under with LTP occurs, and the term starting with �v describes 
the conditions under with LTD occurs.

As for three-factor learning, if wK, J (n) denotes the strength of the synapse on
trial n between sensory cortical unit k and striatal unit J, then
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(8.24)

where Dbase is the baseline firing rate of dopamine cells and D (n) is the amount
of dopamine released following feedback on trial n. The second line of Equation
(8.24) describes the conditions that produce LTP (striatal activation above the
threshold for NMDA receptor activation and dopamine above baseline), and lines
three and four describe conditions that produce LTD (striatal activation above
the NMDA threshold but dopamine below baseline, or striatal activation below
NMDA threshold). The last line models a slow decay in synaptic strength that
occurs when dopamine stays at baseline levels over a long period of time. In all
simulations, the initial cortical-striatal weights wi,J (0) are set to be strong enough
to cause one or more striatal units to fire when a novel stimulus is first presented.

The dynamics of the dopamine release variable D (n) are simpler than in some
other models (e.g., Brown et al., 1999), and different depending on whether the
response on trial n is correct or not. If P(C) is the probability of a correct response,
then a correct response yields a value D (n) = Dbase + [1 – P(C)](1 – Dbase), whereas
an incorrect response yields D (n) = Dbase –P (C)Dbase.

Exercises for Chapter 8

*1. Simulate a back propagation network with 0 biases. Let the input units form
a 5(5 grid, and each hidden unit respond to a 3(3 subgrid, as described in
Rumelhart et al. (1986) and shown in Figure 8.10.
Use initial weights of .5 for all connections. Teach the network the “T–C”
discrimination, so that it should respond with a 1 to T, 0 to C, in any
rotation but centered at (3,3) in the visual field, as shown in Figure 8.11.
Use the sigmoid function 1/(1 + exp(–x)). Do not correct for edge effects.
Use a positive momentum term (you can experiment with that). Look at
the final response patterns of the hidden units after several thousand
iterations.
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�2. Refer to the discussion of “semantics without categorization” in Section 8.2
of this chapter. Rogers and McClelland (2011) argued that it was possible
to learn category-related properties of objects and concepts without explicitly
putting them into categories. Comment on whether you believe that explicit
categorization is necessary for appropriate concept learning. You might
decide that categorization is important in some cognitive contexts and not
in some others.

*3. Simulate the brain-state-in-a-box equations of Anderson et al. (1977):

(8.16)

(a) Choose n = 4, and choose the matrix A to be

This matrix has the two four-dimensional hypercube corners P = 
(1, 1, –1, –1) and Q = (1, –1, 1, –1) as eigenvectors, both with eigen -
value 1. Define the 16 starting points Q i , i = 0 to 15, by Q0 = P, Q15
= Q, and Q i = (1, ri, si, –1), where ri = cos θi + sin θi, si = –cos θi + 
sin θi, θi = 12i degrees. Thus the Qi have their first and last components
fixed at 1 and – 1, their middle two at equal spaces along the arc of the
circle between (1, –1) and (–1, 1).
Test the “categorizations” made by the network based on the Q i as
starting positions, that is, whether the final state of the network is P
or Q. With no noise added to the Q i, the final state should always be
P for i = 0 to 7, Q for i = 8 to 15. Then test the categorizations with
Gaussian noise of various standard deviations2 added to each com -
ponent of each Qi .

( )( )[ ]+ = − +

= …

x t , , I A x t

i n

( 1) max 1 min 1 ( ) ( ) ,

1, ,
i

3 2
0 3 2 1 2 0
0 1 2 3 2 0

1 2 0 0 3 2

.

0 0 1 2⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

INPUT
HIDDEN

OUTPUT

FIGURE 8.10 Example of the three-layer back propagation network used in the
simulation of Exercise 1.
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(b) Do the same as in part (a) except with the matrix A equal to

This matrix has P and Q as eigenvectors with eigenvalues 1 and 2,
respectively, giving the network a bias in favor of going to the 
corner Q.

*4. “Circle-in-the-square” problem (Carpenter et al., 1992): Use fuzzy
ARTMAP to identify which points of a square lie inside or outside a circle
whose area equals half that of the square. Using complement coding, if the
input a is a point on the square with coordinates (a1, a2), 0 < a1, a2 < 1, the
input is coded in the F1 level of ARTa as (a1, a2, 1–a1, 1–a2). ARTb has two
categories, inside and outside, and in complement coding form the input
to F1

b is (1, 0) for inside, (0, 1) for outside. Use one training epoch presenting
a set of points, then on each simulation test responses to those same points.

3 2
0 3 2 0
0 1 2 0

1 2 0 3 2 0

.

0 1 2 0
1 2
3 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

These two squares remain at (3,3)
when the patterns are rotated.

FIGURE 8.11 Basic “T” and “C”input patterns used by Rumelhart et al. (1986).
The network of Figure 8.10 can be trained to classify all of the four rotations of the
“T” in one category and all of the four rotations of the “C” in another category.

Some hints on the circle-in-the-square:
(1) In the simulations by Carpenter et al. (1992), as the training set

increased from 100 to 100,000 exemplars (points on the square), the
rate of correct predictions increased from 88.6% to 98.0%. At the same
time, the number of ARTa categories created by the algorithm increased
from 12 to 121.

(2) In each simulation, as a consequence of the fuzzy ART algorithm, the
cat egories established in ARTa will be represented geometrically as
rectangles, with the corners having in each coordinate the minimum
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and maximum of the abscissa or ordinate for current members of the
category. Keep track of where the rectangles are located. The ones near
the circle should become smaller as there are more exemplars and more
categories. An example of such rectangles is shown in Figure 8.12.

(3) Performance can be improved by “voting,” that is, having more than
one simulation (say, about five simulations) of the same set of exemplars
but presented in different orders, and taking a “majority vote” of the
decisions as to whether a given point is inside or outside the circle.

Some Additional Sources

Back Propagation Networks for Categorization

Apfelbaum and McMurray (2015); Tijsseling and Gluck (2002).

Deep Learning Networks

Kim, Choi, and Lee (2015); Tissera and McDonnell (2016); Zorzi, Testolin, and
Stoianov (2013).

ARTMAP Networks

Carpenter (1997); Carpenter and Gaddam (2010); Carpenter and Markuzon
(1998); Carpenter, Milenova, & Noeske (1998); Carpenter & Olivera (2012);
Marriott and Harrison (1995); Vigdor and Lerner (2007); Williamson (1996).

FIGURE 8.12 Fuzzy ARTMAP category rectangles for circle-in-the-square
simulations with 100 exemplars and 12 ARTa categories.
Source: Adapted from Carpenter et al., copyright 1992 IEEE, with the permission of the
publisher.



BSB Networks

Mathematical Theory

Hui and Zak (1992); Lillo, Miller, Hui, and Zak (1994); Perfetti (1995).

Further Extensions of the General Algorithm

Anderson (1993); Anderson and Sutton (1995, 1997); Sutton and Breiter (1994).

Application to Learning Arithmetic

Anderson (1998); Anderson, Spoehr, and Bennett (1994).

Other Networks for Supervised Classification

Ashby and Crossley (2011); Gluck and Bower (1988a, 1988b); Hélie, Paul, and
Ashby (2012).

Notes

1. Relations such as “is a” and “has” also appear in the model of analogy making by Jani and
Levine (2000) discussed in Section 9.6.1.

2. Some computer systems have access to a package that generates Gaussian noise, that is,
generates a random variable with a normal (“bell-shaped”) distribution. If you do not have
access to such a program, the following procedure (Box & Muller, 1958) can be used for
this purpose. First, let u1 and u2 be two random variables uniformly distributed between
0 and 1, each obtained, for example, by the algorithm in Chapter 2, Exercise 3. Then 
x1 = [–2 ln u1]1/2 sin (2πu2), x2 = [–2 ln u1]1/2 cos (2πu2) are two independent Gaussian
variables of mean 0 and standard deviation 1; to get a variable of standard deviation 
s, multiply x1 or x2 by s.
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9
MODELS OF COMPLEX 
MENTAL FUNCTIONS

I suppose an entire cabinet of shells would be an expression of the whole human

mind; a Flora of the whole globe would be so likewise, or a history of beasts;

or a painting of all the aspects of the clouds. Everything is significant.

Ralph Waldo Emerson

We may affirm absolutely that nothing great in the world has been accomplished

without passion.

Georg Hegel (Philosophy of History)

9.1. How Do We Model Complex Brain Functions?

As recent brain imaging results supplement animal, lesion, and behavioral

studies to provide more pieces of the cognitive neuroscience puzzle, the goal

of a self-consistent computational model of the entire brain seems inviting and

possibly attainable. How can we approach the search for a brain model that is

fairly comprehensive as well as illuminating, and making predictions about,

important cognitive functions?

Some theories proceed bottom-up from the neuroanatomy and neuro -

physiology, looking at the entire brain and mapping out its connectivity

patterns (e.g., Sporns, 2010, 2012). Others proceed mainly top-down from

overarching functions such as optimizing some utility or quality-of-life func-

tion over time, which Werbos (e.g., 1992b, 2009) sees as a major organizing

principle (though not as an explanation for everything the brain does). Still

others, combining bottom-up and top-down approaches, focus on specific

processes (vision, conditioning, decision-making, etc.) and design models to

bridge the paradoxes those processes entail (e.g., Grossberg, 2000).



This chapter is organized in terms of models for different processes. It partly

parallels Chapter 5, which is organized in terms of cognitive neuroscience

results for some of these same processes. The reader seeking to compare

different models of a particular process should ideally keep in mind some 

of the criteria of Meeter et al. (2007) discussed in Chapter 1. Those authors

proposed that, in addition to fitting known data and making predictions about

novel data, the model should build on assumptions that make biological and

behavioral sense. They also proposed that models of different levels of the same

process should be interconnected and mutually consistent. In thinking of the

brain as interconnected, we can extend the latter prescription to models of

different processes that influence each other. Hence, the reader should try to

discover unstated connections between models discussed in different sections

of this chapter, and notice how some models discussed in this chapter build

on architectures developed for simpler functions in earlier chapters.

Researchers who develop models of complex brain function vary widely in

their relative emphasis on neuroscientific versus behavioral or cognitive details.

Yet this book has an overall bias toward models that are initially motivated by

efforts to incorporate the requirements of behavioral and/or cognitive tasks,

with the details of the models further constrained by specific neural as well as

behavioral data.

9.2. Models of Vision and Visual Attention

Chapter 4 of this book presents early models of illusory contours and other

illusory percepts that are by-products of the cortical system that compensates

for imperfections in the retinal uptake of visual stimuli. These illusions typically

arise preattentively as part of the process of grouping objects in the visual

environment. Chapter 7 presents models of top-down attentional influences on

the same cortical visual system.

Yet, as noted in Chapter 5, there is a paradox between the separate cognitive

requirements of the grouping and attentional operations. Top-down attentional

feedback requires inhibiting the perception of some objects seen by lower brain

levels. Also it is important that top-down attentional connections not be able

to activate primary visual levels above threshold (supraliminally), in order that

we not have hallucinations of seeing illusory objects just by thinking about

them. Yet the grouping process requires perceptual filling-in parts of contours

that are not physically present in the environment, and in fact neurons at the

visual area V2 respond to lines and curves in those illusory contours as they

respond to actual lines and curves of the same orientation (Peterhans & von

der Heydt, 1989; von der Heydt & Peterhans, 1989).
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9.2.1. Modeling Grouping and Attention

Grossberg (1999) ruled out the possibility that attention and preattentive

grouping engage different cortical areas, noting that visual areas V1 and V2

are involved in both sets of processes. He then developed a theory that

synthesizes the attentional matching of ART (Carpenter & Grossberg, 1987a;

Chapter 7 of this book) with the preattentive grouping performed by the

boundary contour system (BCS) (Grossberg & Mingolla, 1985b; Chapter 4 of

this book). The synthesis developed in that article turns out to engage the

laminar architecture of the visual cortex.

The starting point for Grossberg (1999) was the observation that different

layers of the cortex have characteristically different structures of competitive

and cooperative interactions. Perceptual grouping starts in Layers 2 and 3,

where complex pyramidal cells excite each other using monosynaptic long-

range horizontal connections, and inhibit each other using short-range

disynaptic inhibitory connections (see Hirsch & Gilbert, 1991; McGuire,

Gilbert, Rivlin, & Wiesel, 1991). These are the bipole interactions discussed

in Chapter 4 that support illusory contours. If there are two collinear line

segments that are separated, the neurons responding to those lines excite one

another, leading to an inward perceptual grouping (Peterhans & von der Heydt,

1989). Yet, because of the short-range inhibition there is no outward grouping

from a single line (Hirsch & Gilbert, 1991).

Direct inputs from the retina via the lateral geniculate nucleus (LGN) go to

other cortical layers, mainly Layers 4 and 6. Layer 4 activates Layers 2 and 3.

Layers 2 and 3 send excitatory signals to Layer 6, which in turn connects back

to Layer 4 via a nonrecurrent on-center off-surround network (Grieve &

Sillito, 1995). This folded feedback (the term used in Grossberg, 1999) enables

different possible grouping to compete with one another to select those

groupings that make the most “sense” perceptually.

Based on the on-center off-surround structure of attentional influences of

V2 on V1 (Bullier et al., 1996) and of V1 on LGN (Sillito et al., 1995), the

model of Grossberg (1999) extends the structure of these interlayer connections

to connections between layers in these different regions, as shown in Figure

9.1. For both V2-to-V1 and V1-to-LGN connections, the attentional feedback

in the model is modulatory, that is, enough to enhance excitation caused by

external stimulation but too weak to cause neurons to fire in the absence of

such stimulation. The modulatory nature of attention is in keeping with the

ART matching rule (see Chapter 7) designed to avoid hallucinations, and has

been supported by a variety of data, notably that Layer 4 EPSPs elicited by

Layer 6 stimulation are much smaller than EPSPs caused by stimulation of

LGN axons or of neighboring Layer 4 sites (Stratford, Tarczy-Hornoch, Martin,

Bannister, & Jack, 1996).
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Variants of a network model based on Figure 9.1 were simulated by

Grossberg and Raizada (2000) and Raizada and Grossberg (2001, 2003); the

equations from Raizada and Grossberg (2001) are given at the end of this

chapter. This model reproduces a range of visual data involving interactions

between attention and grouping, including the greater effect of attention on 

low-contrast than on high-contrast stimuli (DeWeerd, Peralta, Desimone, &

Ungerleider, 1999); attention flows along real and illusory contours (Roelfsema

et al., 1998); and a difference in effects of flanker stimuli on responses of V1

neurons to a high-contrast versus a low-contrast Gabor stimulus1 (Polat,

Mizobe, Pettet, Kasamatsu, & Norcia, 1998). Raizada and Grossberg (2001)

called their model LAMINART because it combines the laminar organization

of the visual cortex with the multilayer architecture of adaptive resonance

theory or ART (see Sections 7.2 and 8.4).

How the connections of Figure 9.1 are built up in the course of develop-

ment was the topic of the article by Grossberg and Williamson (2001), which

extended some of the coding ideas discussed in Section 7.1. The Grossberg–

Williamson model constrains the development of connections both within and

between cortical layers by regulating balance between excitatory and inhibitory

connections within Layer 2/3 and between Layers 4 and 6. The course of

growth of connections is governed by two developmental rules. One of the rules

is that axons are attracted to cell targets when the source and target cells are

2/3

V2

V1

LGN

4

6

2/3

4

6

FIGURE 9.1 Connections between different layers of lateral geniculate and visual areas
V1 and V2 in the model of Grossberg and Raizada. V2 has the same laminar pattern as
V1 but ata larger spatial scale. V1 Layer 2/3 projects to V2 Layers 6 and 4, while LGN
projects to layers 6 and 4 of V1. Higher cortical areas send feedback to Layer 6 of V2,
and V2 sends feedback to Layer 6 of V1.

Source: Adapted with permission from Grossberg & Raizada, 2000.



both active. The second rule is that target cells compete for axons from the

same source cell, so that connections to target cells that only receive weakly

correlated signals are removed. The first rule embodies a form of Hebb-type

associative learning and the second helps to limit the growth of associative

strengths.

Associative learning and competition among synapses are also main features

of the visual cortex model called LISSOM (laterally interconnected synergetic -
ally self-organizing map), best described in the book by Miikkulainen, Bednar,

Choe, and Sirosh (2005). LISSOM has been used to model such data as tilt

aftereffects (Bednar & Miikkulainen, 2000) and illusory contour formation

(Choe & Miikkulainen, 2004).

The LISSOM network is designed to model the same general dataset on self-

organizing or orientation detectors, perceptual grouping, and illusory contours

as the LAMINART models of Grossberg, Raizada, and Williamson. Yet there

are several significant differences between the two sets of models. First,

LISSOM relies on plasticity of lateral connections within the visual cortex as

well as the afferent connections with the retina, whereas LAMINART has

plasticity only in the afferent connections. Second, LAMINART relies on

shunting excitation and inhibition (see Section 4.2), whereas all the excitation

and inhibition in the different versions of LISSOM is additive or subtractive.

Equations for both the basic LISSOM and the spiking version developed by 

Choe and Miikkulainen (2004), called PGLISSOM, are given at the end of 

this chapter; spiking was added in order to incorporate a role for neural signal

synchronization in perceptual grouping. Third, the LAMINART models include

retina, LGN, and the layers of both V1 and V2, whereas LISSOM includes 

only retina and two layers of V1, corresponding to Layers 2/3 and 4. The greater

number of layers in LAMINART allows it to capture top-down attentional

influences on vision, as described earlier in this section. Yet, one aspect of 

vision that is included in the most recent versions of LISSOM, and not yet in

LAMINART, is differences between parts of the retinal visual field; specific -

ally, between periphery and fovea and between upper and lower hemifields.

The use of spikes for synchronization of responses to inputs to model

perceptual grouping has been a feature of many other visual cortex models (e.g.,

Borisyuk, Kazanovich, Chik, Tikhanoff, & Cangelosi, 2009; Terman & Wang,

1995; Wang, 2000). Yet synchronization has been achieved in other visual

models without explicit spiking (e.g., Grossberg & Somers, 1991; Grossberg

& Grunewald, 1997).

Another model of visual attention and search (but not grouping) that

includes top-down influences is by Usher and Niebur (1996). Their model,

based on integrate-and-fire dynamics (see Appendix 1), includes three layers

that are labeled input, sensory memory, and working memory and correspond

respectively to V1, inferotemporal (IT), and prefrontal cortex. Usher and

Niebur’s model reproduces monkey data on IT cell responses to targets and
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distractors (Chelazzi, Miller, Duncan, & Desimone, 1993; Motter, 1994).

These monkey data indicated that attentional search is parallel rather than serial,

with cells responding to both targets and distractors at first and then responding

only to targets at the end of trials.

9.2.2. Bayesian Approaches to Visual Perception

In this century there has been considerable interest in applications of Bayesian
modeling to neural and cognitive systems. That type of modeling lacks a 

precise definition, but it is based on the claim that the brain is nearly optimal

in per forming specific tasks. Hence, such models emphasize the statistical

properties of the task environment more than the internal constraints of the

organism per forming the task. The models are called Bayesian because they

update probabilities based on feedback using Bayes’s rule for calculating

posterior (after-the-fact) probabilities from prior (before-the-fact) probabilities.

Bayesian models have been applied to a wide range of cognitive processes

including reasoning (Koechlin, 2014; see Section 9.6), reinforcement learning

(Dayan & Daw, 2008), and many others. Yet, perhaps their commonest use

has been in modeling visual perception. The work of Geisler and his colleagues,

based on the notion of an ideal observer, is particularly noteworthy (e.g.,

Geisler, 2011; Geisler & Diehl, 2003; Geisler, Perry, Super, & Gallogly,

2001).

Geisler is what Bowers and Davis (2012) call a methodological Bayesian
rather than a theoretical Bayesian. A theoretical Bayesian is one for whom

optimality is central to his or her theory of the mind (e.g., Oaksford & Chater,

2007, 2009). A methodological Bayesian is not committed to such a theory but

finds optimality a useful tool for constructing models that can account for

behavior that is not quite optimal but close to it. Indeed, Geisler and Diehl

(2003) state that evolutionary constraints limit optimality in visual processes:

While ideal observer theory provides an appropriate benchmark for

evaluating perceptual and cognitive systems, it will not, in general,

accurately predict the design and performance of real systems, which are

limited by a number of factors . . . Here, we mention only one of these

factors: Evolution through natural selection is an incremental process

where each change must produce an increase in fitness; thus the real

observer may correspond to a local maximum in the space of possible

solutions, whereas the ideal observer corresponds to the global maximum

in the space of possible solutions.

(p. 381)

Geisler (2011) reviews models inspired by the ideal observer in several

visual domains: pattern detection and discrimination; perceptual grouping;
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shape, depth, and motion perception; and visual attention. Unlike the models

described in the last section, these models tend to start with an entire visual

scene, then extract and draw inferences from the scene’s statistical properties.

An example is the model by Geisler et al. (2001) of perceptual grouping. The

grouping model starts with extracting edges in a scene by means of detecting

local contrasts, then classifying pairs of edge elements using three parameters:

distance between element centers, orientation difference between elements, and

angle between the first element and the line between their centers. Based on

correspondence in these parameters, the model then generated the likelihood

of two given edge elements belonging to the same contour.

The Bayesian models of Geisler and his colleagues rely on formal

probability calculations and are not embedded in a connectionist network.

These models do not describe interactions between retina, thalamus, and

cortex; in fact, there is some suggestion that the ideal observer is an “ideal

retina” and the cortex is a source of extra noise for retinal perception.

Bowers and Davis (2012) critique the whole Bayesian approach to modeling

cognitive processes. They cite examples showing that prior probabilities,

likelihoods, and utility functions can be chosen to explain just about any

behavior as optimal. Bowers and Davis also argue that the evidence for rational

probability calculation is weak in both experimental psychology and neuro -

science. They also cite the very evolutionary constraints that Geisler and

Diehl (2003) discussed to illustrate that the influences on behavior are not

limited to the current task, in contrast to the Bayesian method of focusing on

the current environment. In the case of perception, similarly, Ramachandran

(1990) has characterized the process as a “bag of tricks.”

Yet, Bowers and Davis acknowledge that Bayesian theorists have

contributed to understanding of how the brain updates perceptions, concepts,

and behaviors based on feedback from the environment. These types of

updating can be accommodated by non-Bayesian theories that do not assume

optimality, or assume it only on small constrained tasks.

9.3. Models of Sequence Learning and Performance

A variety of models have been propounded for learning and performance 

of sequences. Sequence performance models have been applied to movement

sequences such as typing, speech, and music performance. Sequence learning

models have been applied to short-term recall in the correct order of serially

presented items such as words or numbers; some of those models have also

been extended to encompass data on free recall of items. Many of the same

principles have been utilized in both sequence learning and sequence

performing models.

Some of the models are descendants of earlier models of spatiotemporal
pattern learning, that is, learning of a time sequence of spatial patterns. Many
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of the earlier models build on architectures such as back propagation and

adaptive resonance that were previously used, among other things, to categorize

spatial patterns that do not include a time element (see Chapters 7 and 8).

9.3.1. Early Models of Spatiotemporal Pattern Learning

Several investigators added recurrent interactions to the basic form of the

supervised back propagation network in order to train a network to produce a

specified time sequence of outputs. The first of these was Jordan (1986b), who

developed what he called the sequential network. The sequential network is a

standard back propagation network with the addition of some feedback and

some plan units activated by external stimuli. The net effect is to have a

decaying memory of past events blended with current plans. More specific

sequence learning problems along these lines were simulated by many

investigators, most notably Elman (1990). Elman’s network, which was largely

based on learning associations between successive items, can learn several

linguistic tasks, among them discovering the notion of word and discovering

lexical classes from word order.

Nigrin (1993) pioneered the modeling of spatiotemporal pattern processing

using adaptive resonance theory (ART). In networks of this type, if a sequence

consists of several items in order, they are converted into a spatial pattern by

converting order information into relative strength of activation. In order to

achieve presentation of the sequence in the correct order, it was shown that

first items need to be activated to a greater degree, and later items to a lesser

degree. Also, these networks incorporate an invariance principle of memory,

formulated by Grossberg (1978b): as new items are presented, the activation

of old items may change but the relative proportion of their activations should

not. These insights incorporate the argument of Lashley (1951) that the

characteristic errors in sequence learning (reproducing the correct elements but

in the wrong order) argue against such learning being based on chains of

associations between successive elements of the sequence. Conversion of

order into relative activation is also the basis of several models discussed in

the next subsection that incorporate specific neurophysiological data

(Grossberg & Pearson, 2008; Rhodes, 2000; Rhodes & Bullock, 2002; Rhodes,

Bullock, Verwey, Averbeck, & Page, 2004).

Nigrin introduced into his SONNET (self-organizing neural net) network

some mechanisms for learning the asymmetric inhibitory connections 

among lists of varying lengths, a spin-off of the masking field introduced by

Cohen and Grossberg (1986, 1987). By such a mechanism, his network can

independently learn both a list and various sublists, and control contextually

which chunk of the list is activated. Also, SONNET can learn lists which

include repetitions.
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A few of the early models included analogs of brain regions involved in

sequence learning, notably prefrontal cortex and basal ganglia. Another early

ART-based sequence model was developed by Bapi and Levine (1994, 1997)

to simulate data on frontal lobe involvement in sequence learning and classifi -

cation. Bapi and Levine’s networks include the ability to learn many sequences

composed of rearrangements of the same elements by encoding them at

sequence detector nodes. These networks include analogs of some regions of

prefrontal cortex and basal ganglia, yet are based in part on the associative

chaining between successive elements that Lashley’s (1951) arguments refuted.

Such sequence detection nodes and prefrontal and basal ganglia representations

also appear in the model of Dominey, Arbib, and Joseph (1995) for learning

a sequence of eye movements based on associations between visual cues and

target positions. The network of Dominey et al. also shares with that of Jordan

(1986b) a use of reward and punishment signals to change the weights between

context elements and generators of sequence elements. Beiser and Houk (1998)

developed a network whereby prefrontal and basal ganglia cells learn sequence

representations, but their network does not model the actual reproduction of

the sequences. Brown, Bullock, and Grossberg (2004) developed an elaborate

biologically realistic network involving both prefrontal and striatal areas in

control of saccadic eye movements. The Brown et al. network, called TELOS,

is notable for its ability to simulate the difference between reactive and planned

movements.

9.3.2. Models of Learning and Performance of Sequences 
of Movements

One of the more ambitious biologically based models of sequence learning and

performance is found in Rhodes and Bullock (2002) and Rhodes (2000).2

Rhodes and Bullock, like Nigrin (1993), based their neural architecture on an

understanding of sequence learning as a parallel more than a serial process.

As discussed in Section 5.5 of this book, the parallel representation of sequence

elements also received support from studies of neurons in the monkey

prefrontal cortex by Averbeck, Chafee et al. (2002, 2003) and Averbeck, Crowe

et al. (2003), showing that neural correlates of all the sequence elements were

active to different degrees during performance of an entire motor sequence.

Rhodes and Bullock (2002) and Rhodes (2000) were further motivated by

behavioral data about learning to produce sequences of length 6 or less,

particularly sequences of key presses or sounds (Klapp, 1995; Sternberg et al.,

1978/1980; Verwey, 1996). These data include in particular: (1) Sequence
length effect on latency. If the GO stimulus is defined as the stimulus that

triggers the need to start sequence production, latency is defined as the time

interval between the GO stimulus and the onset of the first response. That
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latency increases with the number of items in the sequence. (2) Sequence length
effect on production rate. Mean inter-response interval (IRI) also increases with

sequence length. (3) Serial position effect on IRIs. In the early stages of

learning, mean IRI varies nonmonotonically with position in the sequence.

Even after practice the IRI between the responses to the last two items remains

shorter than the preceding ones. (4) Ratio effect. The latency described in (1),

otherwise known as the sequence start time, is longer than the mean response

time between performance of successive sequence items.

These combined neural and behavioral data motivated a model called N-

STREAMS based on the idea of competitive queuing. The term competitive

queuing was introduced by Houghton (1990) in a model of learning

monosyllabic words, and its foundational ideas were outlined in Grossberg

(1978b). A definition of competitive queuing (CQ) models is as follows

(Bohland, Bullock, & Guenther, 2010):

. . . items and their serial order are stored via a primacy gradient utilizing

the simultaneous parallel activation of a set of nodes, where relative
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FIGURE 9.2 Global architecture of the N-STREAMS model, with tentative brain region
assignments. Chunking refers to the grouping together of subsequences that are
presented repeatedly.

Source: Adapted from Rhodes & Bullock, 2002, with the permission of Daniel Bullock.



activation levels of the content-addressable nodes code their relative order

in the sequence. This parallel working memory plan, which can be

characterized as a spatial pattern in a neuronal map, can be converted

to serial performance through an iterative competitive choice process in

which i) the item with the highest activation is chosen for performance,

ii) the chosen item’s activation is then suppressed, and iii) the process is

repeated until the sequence reaches completion.

(p. 1505)

Figure 9.2 shows the large-scale architecture of the N-STREAMS model,

with tentative assignments of modules to brain areas. Rhodes (2000) and

Rhodes and Bullock (2002) get into considerable detail about excitatory and

inhibitory connections within the execution module. The lower level execution

part of the execution module is borrowed from a model of voluntary movement

generation and control called VITE (an acronym for Vector Integration to
Endpoint) developed in a series of articles starting with Bullock and Grossberg

(1988).

9.3.3. Models of Serial Recall

The same competitive queuing principles have informed many models of

immediate recall of item sequences presented in working memory. Among

these are Page and Norris (1998), Botvinick and Plaut (2006), and Grossberg

and Pearson (2008).

The model of Page and Norris (1998) was a cognitive model without

contact with neuroscience, but set the tone for later models by positing a coding

of presented items in a list by relative activation; thus the authors called it a

“primacy model.” Their primacy model excluded not only chained associ-

ations between successively presented items but explicit representations of the

order of presentation of items. Order representations do appear, though, in the

later models of Botvinick and Plaut (2006) and Grossberg and Pearson (2008).

The Botvinick–Plaut model is a three-layer PDP-type model with internal

repre sentations at recurrently connected hidden units. The Grossberg–Pearson

model integrates working memory with the laminar structure of the cerebral

cortex.

Botvinick and Plaut (2006) noted a paradox about interitem associations.

The paradox is that while the data previously described refute chaining models,

other data involving letter pairs (bigrams) points to the importance of learned

sequential associations. Specifically, words containing bigrams commonly

presented in sequence (such as CK) are easier to remember than words con -

taining less common bigrams (such as KC). Botvinick and Plaut reproduced

both datasets using the PDP model of Figure 9.3. The emergent hidden unit
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internal representations code both list items and orders within lists. Notably,

conjunctions of item and order (such as “A in list position 2”) are coded not

by individual hidden units but by vectors of hidden unit activations.

Botvinick and Plaut’s model, like many PDP models, relies on an extensive

(up to a million cycles) training episode. It is trained on some sequences and

then tested on other sequences which may or may not be the same, but usually

have some of the same elements, as the training sequences. Thus, the network

has considerable capability to generalize from what it has been taught to similar

but different sequences. Yet, Bowers, Damian, and Davis (2009) argued 

that the conjunctive coding (simultaneous coding for item and order) aspect

of the Botvinick–Plaut model limits its generalization capability. Bowers et al.

presented simulations suggesting that if the network sees a particular letter in

different positions but never sees that letter in one specific position, it will have

trouble learning future sequences with the letter in the untaught position.

Bowers et al. (2009) segued from their criticism of the serial recall model

to a criticism of the context-dependent aspect of PDP models in general.

Botvinick and Plaut (2009) answered this criticism by saying that the context

dependence is not intrinsic to PDP models but emerges from the internal repre -

sentations, which in turn emerge from training. The difference in viewpoints

arises in part from earlier debates regarding the importance of symbols in

cognition. Several authors with a cognitive science background, starting with

Fodor and Pylyshyn (1988), criticized PDP models on the grounds they do not

include the type of context-independent representations that constitute the

elements of human thought. Yet, as Bowers (2002) noted, there is already a

rich history of neural network models that include context-independent repre -

sentations. This includes the serial recall models as discussed above whereby

Hidden layer

Input layer

Output layer

… …

… …

… …

FIGURE 9.3 Architecture of the network used by Botvinick and Plaut (2006) to simulate
immediate serial recall data.

Source: Reproduced from Bowers et al., 2009, with the permission of the American Psychological
Association.



order information is not coded separately from item information but simply

arises from relative activation levels.

Botvinick and Plaut (2006) noted that their model is compatible with a

variety of neurophysiological data whereby responses of prefrontal neurons

change over several steps of sequence encoding. Yet, the back propagation

learning and the requirement of massive amounts of training argue against their

model’s plausibility as a neural representation of the immediacy of the process

of serial recall.

9.3.4. Model of Both Serial and Free Recall

The LIST PARSE network of Grossberg and Pearson (2008) models immediate

serial recall by extending the laminar cortical architecture discussed in Section

9.2 to the prefrontal cortex. In so doing, LIST PARSE also can simulate human

data on free recall, that is, recalling as many items as possible from a list

without regard to the order of their presentation. The same network can

simulate the aforementioned monkey data on prefrontal neuron responses

during learning of a motor sequence (Averbeck et al., 2002; Averbeck, Chafee

et al., 2003; Averbeck, Crowe et al., 2003).

The LIST PARSE network consists of a cognitive working memory, a motor

working memory, and a trajectory generator. The cognitive working memory

is assumed to be located in the ventrolateral prefrontal cortex and the principal

sulcus, and the motor working memory in the dorsolateral prefrontal cortex.

The laminar structure of the cognitive working memory plays a major role in

the model. Layers 4 through 6 of that part of the network are assumed to be

involved in filtering and temporary storage of incoming items on which they

perform normalization and contrast enhancement (see Chapter 4). The more

superficial layers, 2 and 3, are assumed to group these items, as they do in the

laminar visual models discussed in Section 9.2. In this case the groupings are

based on sequential order, and the groups form chunks of items that are

remembered as units.

Grossberg and Pearson (2008) noted that their model includes a com -

putational implementation of the influential psychological model of working

memory by Baddeley (1986). Baddeley described working memory as a set of

interactions between a central executive controller and two subsidiary systems

called the phonological loop and visuospatial sketchpad. The LIST PARSE

model contains a computational analog of the phonological loop that includes

pathways involving the inferior parietal lobule, the ventrolateral PFC (cognitive

working memory), dorsolateral PFC (motor working memory), and covert

rehearsal (inferior parietal and anterior insula). The pathways involving some

of those same areas and the dorsal and ventral visual streams (see Sections 5.2

and 9.2) are a computational analog of the visuospatial sketchpad. The control
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of these subsystems by volitional functions such as gating and gain control are

analogous to Baddeley’s executive controller.

Like the competitive queuing models of Rhodes and Bullock, LIST PARSE

does not rely either on associative chaining or explicit representations of

numerical order. Sequential order of items is represented by relative activation

of those items within the deeper layers of the cognitive working memory. Yet,

toward the end of their article Grossberg and Pearson (2008) note some

behavioral data indicating that we do develop explicit representations of

positions of items within sequences. For example, when participants are recall -

ing one list, intrusions from other recently presented lists tend to go into the

same or a close serial position as they occupied on their correct lists. Also, as

Botvinick and Plaut (2006) noted as well, repeated presentation of an item in

the same serial position in lists across many trials tends to make that item easier

to learn. Based on these data, Grossberg and Pearson suggested future

extensions of their network to include conjunctive coding of item, order, and

position.

Prefrontal cortex layering also plays a role in the models of prefrontal–basal

ganglia interactions in working memory by Frank, Loughry, and O’Reilly

(2001) and O’Reilly and Frank (2006). The article of Frank et al. (2001)

considered two paradoxical requirements of working memory: the need for

robust maintenance of items and the need for rapid task-relevant updating of

memory representations. Based on the capacity of the prefrontal cortex to

sustain representations of sensory events over delays (e.g., Fuster, 1997),

these authors assigned the robust maintenance to the frontal lobes. The updating

function they assigned to the basal ganglia based on this region’s importance

for disinhibiting motor movements whose details are organized elsewhere 

(e.g., Chevalier & Deniau, 1990). Stimuli input to this network are represented

twice in prefrontal cortex, once in a “maintenance” layer (assumed to be in

cortical layers 2–3 or 5–6) and once in a “gating” layer (assumed to be in corti -

cal layer 4) influenced by striatum through its disinhibition of thalamus. Those

inputs recognized as relevant to task performance also have corres pond-

ing representations in the striatum. Frank et al. applied this network to working

memory tasks involving sequences such as the 1–2–AX task, whereby 

the participant is asked to respond to a sequence A–X if they saw a 1 more 

recently than a 2 and to a different sequence B–Y if they saw a 2 more recently

than a 1.

The subsequent article by O’Reilly and Frank (2006) built on Frank et al.

(2001) but noted that the earlier article had not answered the question of how

the striatum learns which stimuli are relevant. They answered that question in

the 2006 article using the reward structure of the Primary Value Learned Value

algorithm, with actor–critic structure, discussed in Section 6.4.2. The expanded

model combining sequence working memory with PVLV was extended to

Models of Complex Mental Functions 299



simulate two other tasks. One of these tasks is called store–ignore–recall (SIR).

The task is to store a particular stimulus called S, maintain and ignore S over

a sequence of other stimuli, and then recall S when another stimulus called R

appears. The other is an analog of Baddeley’s (1986) phonological loop, a task

that requires encoding and reproducing a sequence of phoneme inputs.

Another sequence model, by Taylor and Taylor (2000), includes basal

ganglia–thalamocortical loops (Alexander, DeLong, & Strick, 1986) but partic -

ularly emphasizes roles for premotor, supplementary motor, and pre supple -

mentary motor areas of cortex. In particular Taylor and Taylor reproduced

many of the monkey data of Tanji and Shima (1994) discussed in Section 5.5,

and related data by Halsband, Matsuzaka, and Tanji (1994), on sequences

whose elements were a push, pull, and turn.

The Taylor–Taylor sequence storage and generation model is a variant of

a more general model of the functions of basal ganglia–thalamocortical loops

known as ACTION (e.g., Taylor & Alavi, 1996). The sequence data simulations

are in two parts, one dealing with motor sequences guided by visual cues and

the other dealing with sequences guided by internal cues, corresponding to the

visual guided and memory conditions in the Tanji and Shima (1994) task (see

Section 5.5). The activity patterns of various network nodes reproduce some

of the experimentally found cell types. These cell types include initiators 

that respond to the auditory tone used to signal that the movement would be

visually guided; memory cells that indicate which movement is to be made 

in response to an internal GO signal; premovement cells that are active in

response to a GO signal if a specific movement is called for; movement cells

that are active while the movement is being made; cells responsive to a

specific order of movements; and cells active in the delay between two

movements.

9.3.5. Models of Word Recognition and Reading

The oldest significant neural network model of letter and word recognition is

the interactive activation model of McClelland and Rumelhart (1981) and

Rumelhart and McClelland (1982). These researchers sought to explain the fact

that recognition of letters is heavily dependent on context. For example, letters

can be identified more accurately when they appear in words than when they

appear in random sequences. This advantage of words partially extends to

nonwords that are pronounceable by an English speaker (such as MAVE or

REET). McClelland and Rumelhart concluded that modeling of these context

effects has to involve both top-down and bottom-up processes, that is, feedback

between “letter level” and “word level” nodes.

Grossberg and Stone (1986) also included top-down and bottom-up

processes in their model of word recognition. But they stated that McClelland
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and Rumelhart’s letter–word distinction poses a problem in the case of words

of one letter: It has been shown (Wheeler, 1970) that those letters that are also

words in English (A and I) are no easier to recall than other letters. If A and I

were represented on both the letter and word levels, they would have a selective

advantage over other letters, which is false. Hence, the letter A and the word

A need to have separate representations.

These considerations led Grossberg and Stone to replace the concepts of

letter and word nodes with the more abstract concepts of item and list nodes.

Their architecture is also used in speech recognition (Cohen & Grossberg,

1987; Cohen et al., 1987). There the lists or “chunks” (auditory, in this case)

need not be words, and there can also be competition between words when one

is a “sublist” of the other (e.g., “SELF” and “MYSELF”).

The Grossberg–Stone theory of word recognition also relies on the

distinction between pattern (what is processed) and energy (how strongly is it

processed). In the word recognition domain, the pattern–energy distinction

takes the form of a distinction between attentional priming and attentional gain
control. The priming stimulus (“pattern”) is encoded at the F2-to-F1 synaptic

weights, and gain control (“energy”) from other nodes determines the relative

amount of attention paid to that prime. In the network equations, these two

factors are multiplied, an example of the factorization of pattern and energy

discussed in Chapter 7.

Grossberg and Stone explained a number of experimental results on word

recognition. These results include reaction times to words versus nonwords

after different primes (related words, unrelated words, or neutral stimuli 

like strings of Xs); “word superiority” effects that can cause a tendency to

misclassify nonwords that differ from words only by one letter; and word

frequency effects.

Seidenberg and McClelland (1989) developed a model of word recognition

and naming based on back propagation. This model is pointedly different 

from McClelland’s own interactive activation model, because it assumes dis -

tributed representations of words whereas interactive activation assumes

localist representations (explicit word nodes). In particular, Seidenberg and

McClelland’s network makes lexical decisions (decisions about whether or not

a presented string of letters is an English word) without explicitly including

representations of words. Their network consists of 400 orthographic (spelling)

units, 450 phonological (sound) units, and 100 to 200 hidden units in between.

After learning spelling–sound associations, the network produces a sound in

response to a string of letters that may or may not be a word. There is feedback

between orthographic and hidden units but the connections from hidden to

phonological units are unidirectional.

On the database that Seidenberg and McClelland (1989) used, the network

mispronounced only 77 out of 2897 words. The learning is faster for words
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that are more frequent, and when words are of lower frequency it is also faster

for words whose pronunciation is more regular based on the spelling (e.g.,

“mint” versus “pint”). High-frequency words, such as “have,” do not show such

a regularity effect. The learning of pronouncing a particular letter string is

influenced by the pronunciation of strings with which it shares some of the

letter sequence, so there is also some slowing down in the learning of what the

authors called regular inconsistent words. These are words whose own

pronunciation is regular but have irregular “neighbors”: for example, “gave”

is close to “have.” The slowest learning is in what the authors called strange
words that have irregular pronunciations combined with spelling parts not

shared with any other words, such as “fugue” and “yacht.”

Lexical decisions are modeled in the Seidenberg–McClelland network by

means of similarity of the incoming string with stored patterns of orthographic

activation. Their one simulation that explicitly considers latency of lexical

decision involves pseudohomophones, that is, nonwords that if pronounced in

a regular manner would sound like words (e.g., “brane” which sounds like

“brain”). The model simulates data showing that when pseudohomophones are

compared with control nonwords that do not have the same sound as words

(e.g., “brone”), the latency of reading aloud is shorter but the latency of lexical

decision is longer, because of confusion with the actual word.

Since the Grossberg–Stone and Seidenberg–McClelland models there have

been several other models of reading and/or lexical decision, all involving

orthographic, phonologic, and in some cases semantic nodes. These models

have been both localist (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler,

2001; Davis, 2010; Perry, Ziegler, & Zorzi, 2007) and distributed (e.g., Harm

& Seidenberg, 1999, 2004). Some of the localist models are similar to or

inspired by the sequence models of Page, Grossberg, and others described

earlier in Section 9.3. While there are substantial variations within both model

types, in general the localist models posit that reading words engages a

“lexical” pathway and reading pseudowords engages a “nonlexical” pathway.

By contrast, the distributed models lack word representations and so rely on a

“division of labor” between orthographic and phonologic processing for

reading.

Taylor, Rastle, and Davis (2013) performed a meta-analysis of 36 brain

imaging studies of word and pseudoword reading. They found some areas 

of cortex that responded more to words than to pseudowords and some did 

the reverse. Also, some areas responded more to regular words (in terms of

correspondence between spelling and pronunciation) and some the reverse. As

with other imaging studies, there was a kind of inverted-U relationship between

activation of a brain region on a task and involvement of that region in the

processes in the task. That is, a region does not become active in tasks that do

not engage the function of the region, but also becomes less active when the

processing involved takes little effort. Yet the results of their meta-analysis did

302 Computational Cognitive Neuroscience



not succeed in helping to decide between the different types of cognitive

models. So far there has not to my knowledge been a model of the processes

of reading and lexical decision that explicitly includes brain regions.

The meta-analysis of Taylor et al. (2013) also illuminated likely effects of

two kinds of dyslexia. There is phonological dyslexia, whereby pseudoword

reading is impaired but real and irregular words can be read normally. This

would be expected to disrupt the normal functioning of brain regions involved

in the nonlexical part of reading. There is also surface dyslexia, whereby

pseudoword reading is intact but there are difficulties in reading irregular

words. This would be expected to disrupt brain regions involved in retrieving

lexical representations. The most severe form of dyslexia is deep dyslexia,

whereby both irregular word and pseudoword reading are impaired. Deep

dyslexia has been modeled by the back propagation network of Plaut and

Shallice (1993).

9.4. Models of Executive Function and Cognitive Control

Many aspects of executive function are captured by the working memory

models discussed in the last section. Other models capture aspects of cognitive

control. Specifically, there have been many models of cognitive control tasks

affected by prefrontal lesions, such as the Wisconsin card sorting task, delayed

response, and Stroop task.

9.4.1. Models of the Wisconsin Card Sorting Test

Recall from Section 5.6 that the Wisconsin card sorting test (WCST) is a

standard test used by clinical neuropsychologists to test the executive capacity

of cognitive flexibility. The WCST task is to classify cards which differ by

three criteria: color, shape, or number of the designs on the face of the cards

(Figure 5.6), with the experimenter changing the criterion used after the parti -

cipant makes ten consecutive correct classifications. Damage to the DLPFC

particularly impairs WCST performance, leading typically to perseveration on

the first classification (e.g., Milner, 1964).

Since the late 1980s there have been several computational models that have

simulated typical performance of DLPFC-damaged and undamaged partici -

pants on the WCST. In all of these models there is a node or set of nodes such

that “lesions” of those nodes lead to perseverative responses. The earliest

WCST models (Dehaene & Changeux, 1991; Kimberg & Farah, 1993; Leven

& Levine, 1987; Levine & Prueitt, 1989) were built mainly on abstract neuro-

cognitive capacities with loose assignment of modules to brain regions. More

recent WCST models (e.g., Monchi & Taylor, 1999; Amos, 2000) include

explicit analogs of the loops connecting prefrontal cortex, basal ganglia, and

thalamus.
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Leven and Levine (1987) simulated the card sorting data using a network

(also presented in Levine & Prueitt, 1989) based on adaptive resonance theory

(see Figure 7.8). In their WCST network (Figure 9.4), the nodes in the feature

field F1 code numbers, colors, and shapes, whereas the nodes in the category

field F2 code template cards. F1 divides naturally into three subfields (number,

color, and shape); corresponding to each subfield is a “habit node” and a “ bias

node.” The habit nodes code how often classifications have been made, rightly

or wrongly, on the basis of each feature. The bias nodes additively combine

habit node activities with reinforcement signals (the experimenter’s “Right”

or “Wrong”), then gate the excitatory signals from F1 to F2. A network param -

eter measuring the gain of reinforcement signals to bias nodes was varied. The

network with high reinforcement gain acted like Milner’s normal subjects. 

The network with low reinforcement gain acts like Milner`s frontal patients,

learning the first classification as quickly as the normal network but remaining

stuck in that classification for the remaining trials. Hence the network treats

habit and reinforcement as separate, and sometimes competing, influences on

response selection.

Leven and Levine noted that perseveration due to frontal damage can be

overridden by attraction to novelty, as in the monkey data of Pribram (1961).

Pribram placed a peanut under a junk object several times, unobserved by a

monkey. Each time this was done, he added a new object to the scene and

waited for the monkey to choose which object to lift for food. On the first trial

with a novel object present, normal monkeys tended to choose another object
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that had previously been rewarded, whereas monkeys with lesions of the

ventral frontal cortex chose the novel object immediately. Levine and Prueitt

(1989) simulated the novelty data using an example of a dipole field
(Grossberg, 1980). In a dipole field, each of several sensory stimuli has an “on”

and an “off” channel structured like the two competing channels of a gated

dipole (see Figure 3.7), and each channel becomes transiently active when an

input to the opposing channel is turned off. Hence, the grated dipole provides

a network instantiation of opponent processing which can be used to model

counterfactual comparisons. Recall from Section 3.3.4 that the gated dipole

operates by means of transmitter habituation; hence, if the outputs of dipoles

corresponding to different stimuli compete, novel stimuli that have not been

habituated have an advantage over familiar stimuli.

Another WCST simulation was developed by Dehaene and Changeux

(1991). Dehaene and Changeux’s model was intended to represent more

general cognitive and inferential capabilities than are manifested by the WCST,

which is a simple test for mental flexibility in the face of changing context.

Their model includes representations of the input features, color, shape, and

number; rule-coding clusters that represent the three different possible card

classification rules; nodes entitled “current intention” that represent dynamic

tendencies to follow each of those rules; a reward node; and an error cluster

that became active when the network receives feedback that its classification

is incorrect.

Dehaene and Changeux’s model proceeds from a different fundamental

mode of organization than does Levine and Prueitt’s, being based on primary

neurophysiological considerations and not on previously established neural

network structures such as ART. Their memory nodes in particular were

found to have activity patterns somewhat like those of DLPFC neurons that

remain active during delay tasks (Fuster, 1973), and their model had previously

been used to model delayed response deficits with prefrontal lesions (Dehaene

& Changeux, 1989). For explaining responses to unexpected lack of a reward

they include a mechanism analogous to the transmitter depletion in a gated

dipole but possibly more biologically realistic, stating that “fast synaptic

depression may result from the desensitization of receptor molecules, mediated

by their allosteric3 transitions in the postsynaptic membrane” (p. 75).

Yet most parts of Dehaene and Changeux’s network can be mapped fairly

closely either into Levine and Prueitt’s WCST model or their novelty

preference model (see Levine, Parks, & Prueitt, 1993, for discussion). For

example, Dehaene and Changeux’s memory and intention nodes are closely

analogous to Levine and Prueitt’s feature and category fields. Also, their rule-

coding clusters are similar structurally and functionally to the bias nodes of

Levine and Prueitt (1989). Dehaene and Changeux added to their model a

feature they called “episodic memory,” though it differs somewhat from the
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common usage of that term by psychologists (see Tulving, 1972). Their version

of episodic memory keeps track of rules that had been previously tried and not

led to reinforcement, and selectively reduced the activation of nodes repre -

senting such rules. This is analogous to the opponent processing mechanism

(via the gated dipole network) used by Levine and Prueitt (1989) to selectively

enhance representations of novel inputs.

Kimberg and Farah (1993) simulated the WCST using a computational

model that is based not on a neural network but on the heuristic programming

concept of production system. A production system combines procedural

knowledge in the form of productions, which are instructions of the form “If

condition X holds, THEN perform action Y” (Kimberg & Farah, 1993, p. 415)

with declarative knowledge in the form of working memory representations.

These researchers showed that, if prefrontal damage is interpreted as weakening

of working memory associations, their production system model can account

for results on the WCST, Stroop Test, a motor sequencing task, and a context

memory task.

Monchi and Taylor (1999) and Monchi, Taylor, and Dagher (2000) also

emphasized the working memory aspects of prefrontal function on tasks like

the WCST. These researchers also emphasized that tasks activate the basal

ganglia and thalamus in addition to prefrontal cortex. They found further

evidence of basal ganglia involvement in the deficits of Parkinson’s disease

patients on the WCST and other working memory tasks (e.g., Owen et al.,

1992). They modeled these tasks using analogs of basal ganglia–thalamo -

cortical loops (Alexander, DeLong, & Strick, 1986), in a variant of the

ACTION network (Taylor & Alavi, 1996) also used in models of sequence

learning (e.g., Taylor & Taylor, 2000; see Section 9.3.3).

The Monchi–Taylor models rely extensively on inhibition and task-selective

disinhibition of sensory and attribute representations. This is based on the

division of the basal ganglia into two pathways, called the direct and indirect
pathways (Alexander & Crutcher, 1990; Alexander, DeLong, & Strick, 1986).

The internal segment of the globus pallidus (GPi) sends inhibitory projections

to the thalamus (mediodorsal or ventrolateral), which in turn projects to frontal

(including both prefrontal and motor) cortex. The direct pathway involves

inhib itory projections from the striatum (i.e., caudate and putamen) to the inhib -

itory GPi, so its net effect on cortical processing is excitatory. The indirect

pathway, by contrast, involves inhibition from striatum to external globus

pallidus, which then inhibits the subthalamic nucleus, which then excites 

GPi, which in turn inhibits the thalamus. So the net effect of the indirect

pathway on cortical processing is inhibitory. Variations on the model were also

used to simulate the classical delayed response task and a delayed visual

matching task.

Hence, in performing tasks such as the WCST and delayed response, the

direct and indirect pathways allow for selective disinhibition of those
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representations that are relevant for the current task. Monchi and his colleagues

also modeled how such selection is disrupted in conditions such as Parkinson’s

disease and schizophrenia. Both of those conditions tend to involve poor

performance on these working memory tasks: Parkinson’s disease involves

basal ganglia abnormalities (in particular, weakening of the direct pathway)

and schizophrenia involves reduced prefrontal activity.

Another WCST model that has been applied to Parkinson’s disease and

schizophrenia (and also to Huntington’s disease, which is somewhat opposite

to Parkinson’s in its effects on the basal ganglia) is that of Amos (2000).

Amos’s model is clinically focused and anatomically simplified in comparison

with Monchi et al.’s: it includes prefrontal cortex, basal ganglia, and thalamus

but not the connections from thalamus back to prefrontal cortex. However,

Amos’s model makes more accurate predictions about types of error that

different patient groups will show on the WCST. Specifically, it predicts 

that schizophrenics, like those who are damaged in the DLPFC, will show

perseverative errors, that is, tend to classify cards on the basis of rules that are

previously correct. Parkinson’s and Huntington’s patients, on the other hand,

will show more random errors because the basal ganglia damage will prevent

them from selecting responses on the basis of reward.

The clinical concerns were also paramount in the WCST model of Bishara

et al. (2010), which is a cognitive process model whose nodes do not

correspond to brain regions. Free parameters are kept to a minimum because

the goal is not a detailed neural explanation but predictability at the level of

individuals as well as groups; the four parameters used in the model represent

decision consistency, attentional focus, sensitivity to reward, and sensitivity

to punishment. These researchers also looked at the differences on the WCST

between participants who are and are not substance dependent, most often on

either alcohol or stimulants. They found that the substance dependent

individuals could be modeled either by lowered decision consistency or

lowered sensitivity to punishment.

Kaplan, Şengör, Gürvit, Genç, and Güzeliş (2006) developed another 

model of the WCST that was designed to capture the two possible effects 

of prefrontal damage that could impede task performance. One effect was

perseveration and mainly associated with loss of executive function due to

DLPFC damage. The other effect was distractibility and mainly associated with

loss of response inhibition due to OFC damage. These prefrontal regions are

not explicitly included in the model network but partially represented by a

“Hopfield network” (e.g., Hopfield, 1982; see Section 4.2.4) and a “Hamming

network.”

All of these models of the WCST have different emphases: some are

designed mainly to capture different functional properties, others focus on

realistic anatomy, and still others are primarily intended to reproduce clinical

lesion data. Such diversity indicates that none of these models is yet definitive
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or generally accepted. While some of the models also, with variations, repro -

duce data other than the WCST on cognitive effects of prefrontal damage, 

none is yet embedded in a comprehensive model of prefrontal executive

function.

9.4.2. Models of the Stroop Test

Cohen and Servan-Schreiber (1992) did some network simulations of three

cognitive tasks that require attention to the current context. One of these was

the Stroop test – previously modeled in Cohen, Dunbar, and McClelland

(1990) without reference to frontal involvement – whereby the subject sees the

word for a color printed in ink of either the same or a different color and must

state the color of the ink. The primary response is to actually read the word,

so reaction time is slower if the ink color and word do not match; for example,

if the word “red” is written in green ink. People with dorsolateral frontal

damage, and many schizophrenics, have an even slower reaction time than

other people under these incongruent conditions. Cohen and Servan-Schreiber

also simulated a continuous performance task, whereby subjects were instruc -

ted to respond to a target pattern while receiving a steady stream of other

stimuli, and a lexical disambiguation task. All these tasks required the subject

to perform a nondominant but contextually appropriate response.

Cohen and Servan-Schreiber, using the back propagation network shown

in Figure 9.5, simulated the deficits of schizophrenics on all three tasks, which

they attributed to a deficit of dopamine inputs to the dorsolateral prefrontal

cortex. Their network includes a node that selectively influences gains in two

competing neural pathways (e.g., in the Stroop test, pathways coding words

and colors), and that is assumed to be decreased in activity in the case of

dorsolateral frontal damage or schizophrenia. Although Cohen and Servan-

Schreiber used a back propagation learning algorithm, which so far appears to

be anatomically unrealistic, they captured some qualitative functional

relationships that are important for a wide class of tasks that involve prefrontal

executive function.

The model of Kaplan, Şengör, Gürvit, and Güzeliş (2007) builds on the

models of Cohen and his colleagues but integrates further knowledge about

functions of specific brain regions, such as the roles of DLPFC in inhibitory

control of attentional selection, OFC in impulse control, ACC in conflict

monitoring, and basal ganglia in performing automatic or habitual actions. 

In a similar manner to the WCST model by the same group, Kaplan et al. did 

not include realistic anatomy of these brain regions but built their model around

functional modules corresponding to these various roles: sensory and motor

networks along with modules for word reading; color naming; habitual

responses; directing of attention; inhibition; and error detection. The sensory,

motor, and inhibitory modules were structured as Hopfield networks.
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A more biologically realistic extension of Cohen et al. (1990) is the model

of Herd, Banich, and O’Reilly (2006). This model includes abstract repre -

sentations of colors and words in addition to the task and rule representations

of the previous model. The refined model was able to explain some previously

puzzling fMRI data, such as increased activity in regions processing inform -

ation that the task requires the participant to ignore.

9.4.3. Models of General Cognitive Control

A few researchers have started to build models that link working memory,

attention, and other cognitive control functions. These models show how brain

networks are involved in monitoring of the environment and of task require -

ments.

Rougier, Noelle, Braver, Cohen, and O’Reilly (2005) noted that some

previous models (including those of Cohen et al., 1990, and Dehaene &

Changeux, 1991) had posited prefrontal (PFC) rule representations that 

influ ence processing in the posterior cortex but had not explained how these

rule representations might develop over time. Rougier et al. explained rule

formation using a network that includes PFC modulation of posterior cortex.

The PFC area incorporates the two complementary functions of maintaining

neural activity patterns over time and rapidly updating new representations (see

Frank et al., 2001). Updating is implemented by an adaptive gating mechanism

INK COLOR
red green red green
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TASK DEMAND

Color
naming

Word
reading

“red” “green”
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FIGURE 9.5 Network architecture for performing the Stroop task.

Source: Reproduced from Cohen, Dunbar, & McClelland, 1990, by permission of the American
Psychological Association.



that mimics functions of the basal ganglia and midbrain dopaminergic nuclei

involved in reinforcement learning (Montague, Dayan, & Sejnowski, 1996).

The network including PFC, but not the posterior part alone, can extract from

task-based training any rule based on selection of one of the features of a

stimulus as the most important. Examples of the network were applied to both

the Stroop task and WCST.

Related models (Brown, Reynolds, & Braver, 2007; Herd et al., 2014) have

simulated the process of switching between tasks. The model of Brown et al.

focused on cognitive data involving multiple tasks with several dimensions of

stimuli. The data dealt with costs in reaction time due to several sources:

switching tasks, changing response instructions on the same task, and pre -

senting incongruent stimuli. One example of incongruency occurs in task-

switching paradigms when “a feature of the target stimulus is associated with

an incompatible response according to the currently irrelevant task” (Brown

et al., 2007, p. 40). The network designed to simulate these data includes a task-

switching subnetwork and a supervisory control system. The network regions

were not explicitly assigned to brain regions but the network’s design was

inspired by known regional functions such as the role of the ACC in conflict

monitoring.

The model of task-switching by Herd et al. (2014) is based on earlier models

of PFC–basal ganglia interactions in working memory (Frank et al., 2001;

O’Reilly & Frank, 2006) and includes individual differences in task-switching

ability. Herd et al. reviewed evidence that task-switching ability is separate

from, and sometimes even negatively correlated with, other executive functions

such as updating and response inhibition. Their model includes a PFC module

influencing parietal cortex, and strength of executive function relates to

strengths of both PFC influence on parietal areas and internal recurrent

connections in PFC. Yet these same recurrent connections were sometimes

found to lead to “stickiness” that interferes with ability to switch tasks.

Stickiness can also come from overly long persistence of basal ganglia “go”

signals from previous tasks.

More sophisticated extensions of these task control models are found in

Collins and Frank (2013) and Ranti, Chatham, and Badre (2015), which extend

prefrontal–basal ganglia interactions to multiple hierarchical levels. These

authors base their theory on results showing that the PFC is arranged

hierarchically, with cognitive processing tending to become more abstract as

one moves further forward in the frontal lobe (Badre & D’Esposito, 2007;

Christoff & Gabrieli, 2000; Koechlin, Ody, & Kouneiher, 2003; Koechlin &

Hyafil, 2007). The PFC region at each level of abstraction is part of a loop that

includes a corresponding region of striatum. The Collins–Frank model is

designed to select abstract task sets in response to arbitrary cues and then select

actions in response to stimuli once the rule is in effect.
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In the Collins–Frank model, task sets (abstract states) are encoded in the

PFC. Candidate actions are encoded in “stripes” within premotor cortex, which

compete via lateral inhibition. Sensory stimuli are encoded in parietal cortex.

As in previous working memory models (e.g., O’Reilly & Frank, 2006), the

basal ganglia perform the gating function of selectively inhibiting or disinhib -

iting action stripes and task sets. Sensory projections to basal ganglia are plastic,

with dopamine involved in reinforcement learning. Characteristic patterns of

errors on complex discrimination tasks are obtained by weakening PFC-to-

basal-ganglia connections relative to the strength of parietal-to-basal-ganglia

connections.

Ranti et al. (2015) made minor changes in the Collins–Frank model and

applied it to learning a hierarchy of rules. They also did experiments involving

visual stimuli that varied along seven dimensions at different levels of

abstraction. Their data were reproduced by their network, which exerts parallel

cognitive control at all levels by means of multiple interconnected prefrontal–

basal ganglia loops. In the model, the highest (most abstract) level is more

likely than the others to be engaged first, but only slightly more: the parallel

control is paramount.

Alexander and Brown (2015) also included levels of abstraction in their

model that captured the interplay between anterior cingulate (ACC) and

dorsolateral prefrontal cortex (DLPFC) in cognitive control (see Miller &

Cohen, 2001). Their model, called HER (hierarchical error representation), 

is built on a previous model called PRO (predicted response–outcome) of the

ACC (Alexander & Brown, 2011). PRO posits that the ACC learns and

predicts the likely outcomes of actions (whether good, bad, or indifferent) and

compares actual with predicted outcomes, using both TD and back propagation

at different loci.

In the HER model of Alexander and Brown (2015), ACC error signals are

conveyed to DLPFC, which then calculates the contributions of task-relevant

stimuli to the error. The DLPFC error representations in turn update the

ACC’s predictions of the likely consequences of actions. The addition DLPFC

allows the error signal at the ACC to be sensitive to past stimuli: in PRO it

was sensitive only to current stimuli. The ACC and DLPFC representations

are repeated at different levels of abstraction of the relevant stimuli and error

signals at neighboring levels influence one another, which is the “hierarchical”

part of the network’s name.

The primary simulations in Alexander and Brown (2015) deal with the

1–AX task previously modeled by Frank et al. (2001) and O’Reilly and Frank

(2006). Recall from earlier in this chapter that this is a hierarchical continuous

performance task that involves one search nested inside another. Specifically,

the participant must respond to the sequence AX if s/he has seen a 1 more

recently than a 2, but to the sequence BY is s/he has seen a 2 more recently
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than a 1. Alexander and Brown note that the nodes in their 1–AX simulations

are task-specific and do not generalize readily to other cognitive control tasks.

Still, their model is perhaps the first significant plausible computational model

of the interaction between two key cognitive control regions (ACC and

DLPFC).

9.5. Models of Decision-Making

The dominant paradigms in the study of human preference decisions deal with

choices between gambles, that is, between options that involve different

probabilities of gains or losses. The gains or losses most often have involved

money because that is the easiest thing to quantify, but sometimes instead have

involved human or animal lives. Researchers in the 1960s and 1970s largely

treated probabilistic choices among different commodities as equivalent, but

in this century some points of emotion-related nonequivalence between

commodities have been studied and modeled.

For brevity this section does not include models of action selection based

on perceptual inputs. There have been several models of that type of decision-

making, most of them based on interplay between the cortex and the basal

ganglia, with its gating and reinforcement learning functions discussed in

Sections 6.3 and 9.3. A few influential perceptual decision models are listed

at the end of this chapter.

The types of decisions considered here involve value judgments between

options that are usually presented in words (except in the case of animal

foraging). These options typically involve quantifiable entities like money or

lives and mention abstractions such as probabilities. Before the late 1960s the

dominant quantitative theory of preference decisions was based on calculating

the “utility” or value of each possible amount of money or lives and multiplying

those utilities by the probability of occurrence of a gain or loss of that amount,

then summing over all possible outcomes (with losses counted as the negative

of equal gains). Then it was assumed that decision-makers are rational and

choose the gamble with the highest “expected utility” so obtained.

The results of Tversky and Kahneman (1974, 1981) discussed in Section

5.7 directly contradicted the predictions of that rational theory. So did a

theoretical example by Allais (1953), verified by later experimenters, whereby

a preference between two probabilistic monetary alternatives changes when an

element common to both alternatives is removed. In particular, the effects of

how alternatives were framed and the tendency to be risk seeking with losses

but risk averse with gains demanded a new quantitative model. The dominant

descriptive quantitative model of decision-making became prospect theory
(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). The main differ -

ence between prospect theory and the earlier expected utility theory is that
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probabilities in prospect theory are nonlinearly weighted. The nonlinear

weighting magnifies psychological differences between low nonzero

probabilities and impossibility or between high nonunity probabilities and

certainty.

Prospect theory has an impressive record of reproducing data, but does not

have a natural mechanistic basis that allows it to be mapped easily into a neural

network. Moreover, recent results (e.g., Barron & Erev, 2003; Hertwig, Barron,

Weber, & Erev, 2004) suggest that the overweighting of low and under -

weighting of high probabilities applies only to decisions from description, that

is, quick real-time choices between two gambles whose probabilities are

presented explicitly. In fact, the weighting sometimes reverses when the same

choices are made between gambles whose probabilities are learned by feedback

over repeated trials. Hence, many researchers since the 1980s have developed

other cognitive and neural theories that explain the same results as prospect

theory using plausible network architectures.

9.5.1. Early Connectionist Models of Decision Processes

Grossberg and Gutowski (1987) set out to model framing effects such as are

found in the Asian disease problem (see Section 5.7). They noted that the

choices between gambles depend on the reference point with which the

gambles are being psychologically compared. For example, in the loss frame

of the Asian disease problem the two plans are compared with the reference

point of no lives lost, whereas in the gain frame the same two plans are

compared with the reference point of no lives saved. Since such counterfactual

comparison is a form of opponent processing, Grossberg and Gutowski applied

to the decision data a version of the gated dipole (Grossberg, 1972a, 1972b;

see Section 3.3.4), which is designed for just such comparisons.

The Grossberg–Gutowski theory, known as affective balance theory, does

not include analogs of specific brain regions, but incorporates qualitative

properties that have shaped more recent brain-based models. The Grossberg–

Gutowski version of the gated dipole has also been applied to connectionist

modeling of multiattribute consumer preference (Leven & Levine, 1996) and

of animal foraging under predation risk (Coleman, Brown, Levine, & Mellgren,

2005). More recent decision models (e.g., Levine, 2012) have used variants of

this gated dipole structure that involve explicit analogs of both the direct and

indirect striatal pathways and amygdalar positive and negative valence loci.

A different approach to decision modeling that has also shaped later neural

models is the decision field theory of Busemeyer and Townsend (1993). Those

authors used expected utility (EU) theory as their starting point but set out to

model key effects that EU cannot explain, notably the variability of individual

preferences and the effects of deliberation time on preferences. Busemeyer and
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Townsend accounted for these effects by making their model dynamic and

stochastic, and also including approach and avoidance gradients previously

developed in theories of classical conditioning. They posited that decisions

typically occur when an activation of one of the options reaches a particular

threshold.

Roe, Busemeyer, and Townsend (2001) mapped decision field theory 

into a connectionist network. They extended the theory of Busemeyer and

Townsend (1993) to include decisions between two or more options with

multiple attributes. Their multiattribute model relies on time-varying attribute-

selective attention weights, and on lateral inhibition between option repre -

sentations whose strength depends on the psychological distance between

options. This network provides explanations for three effects in multiattribute

decision-making that violate EU theory predictions and that had not previously

been explained by the same model. All three effects involve starting with two

options A and B that are dissimilar (e.g., A is a car that is high in power and

low in economy and B is a car that is high in economy and low in power) and

adding a third alternative C. The similarity effect means that if C is similar in

attribute values to A, it competes with A more than with B, thereby increasing

the probability of choosing B. The attraction effect means that if C is worse

than A on all attributes it increases the probability of choosing A. The com -

promise effect means that if C is intermediate between A and B (e.g., has

medium values of both economy and power) it tends to be preferred to either

A or B. The decision field theory network of Roe et al. (2001) did not include

explicit brain regions, but Busemeyer, Jessup, Johnson, and Townsend (2006)

discussed potential neural realizations of that network. Busemeyer et al. drew

parallels between the lateral inhibition of Roe et al. (2001) and processes in

the basal ganglia–thalamocortical loops. Also, those authors reviewed data on

monkey motor decisions that are compatible with the threshold effects in

decision field theory.

Usher and McClelland (2004) developed a different multiattribute decision

model to account for the compromise, similarity, and attraction effects, one

based in part on their previous model of perceptual choice (Usher & Niebur,

1996). Usher and McClelland included in their model a value function that 

was steeper for losses than for gains. This was included to account for one of

the key generic findings of Tversky and Kahneman: loss aversion, the tendency

for losses of a given amount to have more influence on decisions than gains

of the same amount. Usher and McClelland also included distance-independent

lateral inhibition and typical nonlinear activation functions. They noted that

Roe et al. (2001), because they did not include such an asymmetric value

function and nonlinear activation functions, needed to include distance-

dependent lateral inhibition and propagation of negative node activations. In

particular, neural models by others (including previous models from their own
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group and Grossberg’s) have tended to avoid propagation of negative activa -

tions on grounds of biological realism. They discussed various differences in

the two models in terms of what predictions they made with numerical

perturbations of the available alternatives.

Starting about 2004, there arose other models of decision data that

incorporated knowledge about the roles of brain regions. Some of these models,

to be discussed in the next subsection, were specifically designed to simulate

the Iowa gambling task, the most popular clinical test of decision-making

competence (e.g., Bechara, Damasio, Damasio, & Anderson, 1994; see Section

5.4.2). The Iowa gambling task involves deciding on the good or bad qualities

of decks of cards based on feedback from sampling the deck, and researchers

starting with Barron and Erev (2003) have made the distinction between

decisions from feedback and decisions from description. Other neural network

models, to be discussed in the subsection after the next, have been primarily

targeted to simulate data on decisions from description, such as the early

findings of Tversky, Kahneman, and their colleagues. These models have sug -

gested mechanistic explanations for many of the data explained mathematically

by prospect theory.

9.5.2. Models of the Iowa Gambling Task

Recall from Section 5.4.2 that in the Iowa gambling task (IGT) the participant

on each trial must draw a card from one of four decks of cards shown on a

computer screen, and each deck provides a different probabilistic distribution

of gains and losses of play money. Two of these decks have higher short-term

payoffs than the other two, but over time the decks with high immediate payoffs

are disadvantageous in the long run (i.e., the expected value of earnings from

those decks is negative), whereas the decks with low immediate payoffs are

advantageous. Hence the IGT is a test of ability to learn from feedback and to

inhibit the impulse to pursue short-term gain.

Participants with damage to either OFC or amygdala cannot learn the

advantageous strategy effectively. Also, several investigators have studied 

IGT difficulties in participants who suffer from many conditions including

Parkin son’s disease, Huntington’s disease, and drug abuse. A series of cog ni -

tive models based on decision field theory (e.g., Busemeyer & Stout, 2002;

Yechiam, Stout, Busemeyer, Rock, and Finn, 2005) have had some success at

reproducing these clinical patterns through IGT model parameter variations.

There are at least three IGT models in the literature that include brain

regions. These models vary in emphasis but all incorporate a role for OFC or,

more broadly, ventromedial prefrontal cortex (VMPFC) in long-term evalu -

ation of the goodness or badness of options.

Wagar and Thagard (2004) were particularly interested in reproducing the

physiological effects of prefrontal and amygdalar lesions. They modeled the
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influence on IGT choices of covert emotional reactions, as indicated by what

Bechara et al. (1994) termed somatic markers. Somatic markers are the bodily

representations that are gradually built up to stimuli that take on positive or

negative emotional significance. Bechara et al. posited that somatic markers

precede conscious evaluation of which decks are good or bad. Wagar and

Thagard’s GAGE model includes amygdalar (bodily state), VMPFC (emotional

evaluation), and hippocampal (context) influence on throughput of stimulus

representations that is governed by the nucleus accumbens. The nucleus

accumbens in turn feeds back to VMPFC (presumably via the thalamus, which

the model does not explicitly include). Their model includes spiking and spike

timing–dependent plasticity. It also includes training episodes of several

thousand time steps before the actual running of the deck choices.

While the original IGT experiment included two good and two bad decks,

the Wagar-Thagard model simplifies it to one good and one bad deck. The

model of Levine, Mills, and Estrada (2005) includes all four decks, with one

of the bad decks leading to infrequent large losses and the other to more

frequent small losses. Between the two bad decks, the network of Levine et

al. (2005) exhibits more avoidance of the bad deck that is punished more

frequently, a result confirmed in human participants by another laboratory

(Yechiam & Busemeyer, 2005). This network, like GAGE, includes amygdala,

(two layers of) OFC, and (direct and indirect pathways of) striatum, but also

includes anterior cingulate for plan generation and conflict resolution. This

model updates deck evaluations but unlike GAGE it does not emphasize

somatic markers. Somatic markers were left out because results of Maia and

McClelland (2004) cast doubt on Bechara et al.’s idea that unconscious

emotional reactions precede explicit knowledge of which decks were good and

bad. The model of Levine et al. is based on shunting nonlinear equations with

plasticity at two loci and does not require training.4

The IGT model of Frank and Claus (2006) is part of a general model of

connections between OFC and striatum. To a previous model of striatum that

was sensitive to frequency but not magnitude of reward and punishment, Frank

and Claus added top-down influences from an OFC that was also sensitive to

magnitude. Their combined OFC-striatal model also reproduces various

conditioning data dealing with reversal and devaluation.

9.5.3. Models of Other Decision Data and Phenomena

Perhaps the most comprehensive brain-based model of decision data to date is

the ANDREA (affective neuroscience of decision through reward-based

evaluation of alternatives) model of Litt, Eliasmith, and Thagard (2008; see

also Litt, Eliasmith, and Thagard, 2006, and Eliasmith, 2005). The model of

Litt et al. reproduces general phenomena accounted for by prospect theory,
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including loss aversion and the effects of frames and reference points. The

network includes spiking neurons in the amygdala and OFC, representing

valuation, and also DLPFC, ACC, striatum, and dopamine and serotonin

nuclei.

ANDREA was designed more to reproduce general qualitative properties

in a neurocomputational setting than it was to simulate specific data. It does,

however, simulate data of Mellers, Schwartz, Ho, and Ritov (1997) showing

that desirability of a specific dollar outcome is strongly influenced by

comparison with what is expected and by how surprising it is (a low-probability

gain being more valued that a high-probability one). Mellers et al. (1997)

previously explained these data through a computational theory called 

decision affect theory, which is in many ways similar to the affective balance

theory of Grossberg and Gutowski (1987). Litt et al. explained the data of

Mellers et al. by means of temporal difference (TD) calculations (see Section

6.3.2), with dopamine mediating positive prediction errors and serotonin

mediating negative prediction errors (see Daw et al., 2002). The model does

not dis tinguish between decisions from experience and decisions from

description.

Another neural-based approach to “prospect theory” phenomena is the

DECIDER model of Levine (2012) and AlQaudi, Levine, and Lewis (2015).

This model involves shunting nonlinear equations based on a combination of

adaptive resonance theory (see Chapter 7), gated dipole theory (see Section

3.3.4), and a psychological account of decision-making and memory known

as fuzzy trace theory (e.g., Reyna & Brainerd, 2008). Fuzzy trace theory posits

that we store events simultaneously in two separate memory traces: verbatim
and gist traces. The verbatim trace stores a stimulus exactly as it is presented,

such as numerical values (e.g., of dollars won or lost or lives saved or lost)

and probabilities of those values occurring, whereas the gist trace stores 

what the person regards as the essential meaning of the stimulus. Levine and

colleagues treated gist as a category of possible options with some of the

attributes selectively enhanced, as in the Wisconsin card sorting model of

Levine and Prueitt (1989). This led to a network model based on an adaptive

resonance module with attributes interpreted as being in the amygdala or a

superficial layer of OFC, categories in another layer of OFC, reset in the

anterior cingulate, and behavioral decisions filtered through the striatal direct

and indirect pathways.

The networks of Levine and his colleagues incorporate the fuzzy trace theory

explanation for framing effects and prospect theory probability weights, which

is based on gists that ignore detailed numerical probabilities in favor of the

simpler choice of “some versus none” (some chance versus no chance of

gaining or losing money, saving or losing lives, etc.). That explanation was

supported by the results of Reyna and Brainerd (1991) showing that framing
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effects in the Asian disease problem are enhanced by making the possibility

of no lives lost or saved more salient and reduced or eliminated by not

explicitly presenting that possibility. AlQaudi et al. (2015) simulated that result,

and Levine (2012) simulated results of Rottenstreich and Hsee (2001)

suggesting that the probability weight distortion was larger for more emotional

commodities (a kiss versus a moderate amount of money). The results described

above involve decisions from description; the DECIDER network has recently

been extended to decisions from experience by addition of a rough analog of

dopamine-dependent plasticity in corticostriatal synapses (Levine, Chen, &

AlQaudi, 2017).

Fuzzy trace theory (FTT) falls under the rubric of dual-process theories.

According to its proponents, there is a gradual shift from predominantly

verbatim to predominantly gist processing as we develop from childhood to

adolescence to adulthood. Gist processing allows us to ignore irrelevant details

and see the commonalities that unite many of our experiences, and so Reyna

and Brainerd regard it as a more advanced form of processing than verbatim.

Yet, gist processing also makes us prone to some types of errors, including false

memories and misleading decision heuristics. A different dual-process theory

of decision-making is the cognitive-experiential theory (e.g., Epstein, 1994; 

see Kahneman, 2011, for a recent variation). The two processes are described

by Mukherjee (2010) as:

an associative affect-based mode of decision making (System A) and a

deliberative rule-based mode of decision making (System D). Processing

in System A is intimately influenced by mood and emotional states of

mind and involves how one feels about a particular prospect. On the other

hand, processing in System D is analytical in nature and can involve

computational operations. Hence, the affective system is driven by pre -

conscious, less effortful, experiential considerations, and the delib erative

system is driven by conscious, more effortful, numerical and logical

considerations.

(p. 243)

Epstein and other proponents of this theory regard System D as more

advanced than System A, in contrast to the claims of FTT. Mukherjee (2010)

developed a nonneural cognitive model of decisions that integrate the

processing done by the two systems into decisions that synthesize the two

modes. This led to a theory of decisions that combine the two modes to varying

degrees in different individuals and different contexts. Mukherjee’s model

accounts for the effects of emotion in Rottenstreich and Hsee (2001) and the

effects of removing common alternatives in the paradox of Allais (1953).
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9.5.4. Models of Neuroeconomics

The knowledge gained from both imaging and behavioral experiments on

people’s decisions involving money and goods has led to the growth of a new

field called neuroeconomics (see for example Camerer, Loewenstein, & Prelec,

2005; Glimcher, Dorris, & Bayer, 2005; Glimcher & Rustichini, 2004). For

humans, economic entities are learned so well that they become equivalent in

many ways to biological reinforcers. For example, Montague and Berns (2002)

have found common sites in the basal ganglia and dopamine system for

encoding monetary and food rewards. On the negative side, Sanfey, Rilling,

Aronson, Nystrom, and Cohen (2003) found that the insular cortex, which

encodes pain and disgust, is activated by the receipt of an unfair reward in an

ultimatum game.

Thus far, few neural network models have directly addressed the growing

findings in neuroeconomics. Yet, a few researchers have applied network

theories developed to model other phenomena, notably classical conditioning

and reinforcement learning (see Chapter 6), to economic decision-making.

Some of the models deal explicitly with economic choices, whereas others deal

with more abstract rewards. Yet, results of various fMRI and animal studies

reviewed by Montague and Berns (2002) show that monetary rewards activate

some of the same brain systems that respond to primary biological rewards; in

other words, the brain computes a “common currency” between different

kinds of rewards.

Mengov, Egbert, Pulov, and Georgiev (2008) and Mengov (2014) applied

the READ model of psychological opponent processing (Grossberg &

Schmajuk, 1987) to economic decisions made by their experimental partici -

pants. Their work was also influenced by the opponent processing based

decision models of Grossberg and Gutowski (1987) and Leven and Levine

(1996). The 2008 article modeled a binary choice and the 2014 article

generalized the earlier model to a choice among four suppliers of the same

product. The model of the later article reproduced data from participants who

learn over several trials the likely amount of the product they will receive from

each supplier and then react emotionally to actually receiving more or less 

of it than expected. The READ model only reproduces emotionally based

decisions and not decisions based on deliberative strategies. The final decision

rule in the model is based on maximizing across options a linear function of

three factors. The authors’ labels for those factors are “STM and dynamic

neural balances in response to economic options”; “emotional long-term

memories and economic reputations”; and “remembered particular consumer

satisfaction.”

Application of the class of TD models (Sutton & Barto, 1998) to economic

decision-making can be seen in the three interrelated articles of Egelman,

Person, and Montague (1998), Montague and Berns (2002), and Bogacz,
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McClure, Li, Cohen, and Montague (2007), all of which combine modeling

with economic experiments. Egelman et al. (1998) devised a game in which

participants have to decide on each of many trials between two stimuli, A and

B, on the basis of the reward they expect to receive from each. The reward on

a particular trial depends both on the current choice and on the percentage of

choices allocated to each stimulus. There is a medium range of allocations at

which the rewards to A and B are equal, and participants tend to be attracted

to that range. Attraction to this medium value is an example of event matching,

or allocating one/s choices in proportion to expected payoffs, a common

phenomenon in animal as well as human learning.

In one version of Egelman et al.’s (1998) game, the reward values were set

to make the matching strategy optimal. In another version, the matching

strategy was suboptimal and the best long-term strategy was to choose stimulus

A every time, which was hard to discover because it was not advantageous in

the short term. In the second case, 14 out of the 26 participants still chose the

matching strategy, but a minority who were more risk seeking chose the optimal

strategy instead. Montague and Berns (2002) showed that a TD learning model

can account for the matching behavior in either case, but not for the optimal

behavior of some participants in the second case. Bogacz et al. (2007) explained

the optimal behavior by an extension of the TD model to include eligibility

traces. The influence of eligibility makes reinforcement learning depend 

not solely on the last choice but on several preceding choices (time-weighted)

as well.

Rustichini and Padoa-Schioppa (2015) modeled monkey data on OFC cell

activities in response to choices between two different juices. Their model is

based on several thousand spiking neurons, including shunting and other types

of interactions, and is an adaptation of a previous model of perceptual choice

(e.g., Wang, 2002). The model approximated the behavior of three types 

of OFC neurons. One type of neuron encodes the values of individual juices.

A second type encodes the outcome of the binary decision between the two

juices. A third type encodes the value of the chosen juice.

9.6. Models of Thinking and Problem Solving

A few modelers have ventured into the largely unknown territory of thinking,

reasoning, and problem solving, territory that has been traditionally part of

symbolic artificial intelligence. The models so far arrived at for such functions

as analogy learning and concept formation cannot properly be called “compu -

tational cognitive neuroscience” because they include only sketchy analogies

with actual brain processes. Still, these models combined with extensions of

models like those discussed in the last two sections are likely to be a step on

the way to genuine brain-based models for the same cognitive functions.
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9.6.1. Models of Analogy Making

There have been relatively few neural network or connectionist models of the

processes of learning, making, and reasoning from analogies. Some of these

models use connections among very abstract nodes to explain analogies

between complex sentences and to reproduce results of creativity tests from

cognitive psychology laboratories. These models notably include different

versions of LISA (Hummel & Holyoak, 1997, 2003). Other models have used

more brainlike processes to model inference in more limited domains, such as

simple proportional analogy queries of the form “A is to B as C is to what?”

These models notably include the work of Jani and Levine (2000) and Choe

(2004).

Hummel and Holyoak (1997) used LISA to model the processes of access

to analogies and mapping from one domain to another. Hummel and Holyoak

(2003) extended their earlier work to model the process of reasoning from 

the mapping thus formed to properties of the second domain. Theirs is a con -

nectionist model that includes nodes representing propositions (e.g., “John

loves Mary”), subpropositions (e.g., John as the lover, Mary as the beloved),

roles (e.g., lover and beloved), fillers (e.g., John and Mary), and properties (e.g.,

adult, human, male, female, has-emotion). The later versions of the model rely

extensively on what the authors call dynamic binding: temporary and quickly

learned synchronization between roles and the fillers for the roles (e.g., in the

example described above, between “Mary” and “beloved”).

Hummel and Holyoak (2003) describe LISA as a “symbolic-connectionist

theory,” meaning that it is strongly influenced by symbolic artificial intelligence

despite having node activities and connection weights. Yet, Knowlton,

Morrison, Hummel, and Holyoak (2012) found some general correspondences

between processes in LISA and some processes in prefrontal cortex and related

brain regions. The dynamic binding between roles and fillers could be

implemented by synchronized neural oscillations in the gamma (>30 Hertz)

range, perhaps involving both prefrontal and posterior cortex. The various

levels of representation in LISA could be mirrored by the increasing abstraction

of representations as one goes forward within prefrontal cortex (e.g., Badre &

D’Esposito, 2007).

The analogies described by LISA involve parallels between a situation

within a “driver” domain and within a “recipient” domain. These parallels

involve different people or different objects playing, and therefore tem-

porarily binding to, the same roles, so that further properties of the recipient

domain can be inferred from corresponding properties in the driver domain.

The model of Jani and Levine (2000) is designed to simulate a different sort

of analogies in which there is a change from a construct in the driver domain

to another construct the recipient domain. These are proportional analogies,

common on college entrance examinations, in which one needs to fill in
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the last element, such as “red square : red circle :: yellow square : ?” or “apple

: red :: banana : ?.”

Jani and Levine’s (2000) model starts with the adaptive resonance (ART)

model of categorization (Carpenter & Grossberg, 1987a), which is based on a

feature layer F1 and a category layer F2 (see Chapter 7). Three more layers are

added to ART. First there is the abstract category layer F3, consisting of

generalizations such as color, shape, taste, fruit, and word. The authors noted

that the relationship between layers F2and F3 are of the form “IS-A” (e.g.,

“apple is a fruit”) in contrast to the “HAS-A” relationship between F2and F1

(e.g., “apple has color red”). Second is the relation layer F4, which includes

“IS-A” and “HAS-A” and other key relationships for analogical mapping 

such as “activate,” “suppress,” “maintain,” and “change.” As the authors

describe, “in the transition from apple to banana, ‘yellow’ is activated, ‘red’

is sup pressed, ‘fruit’ and ‘color’ are maintained, and ‘red’ is changed to

‘yellow’) (Jani & Levine, 2000, p. 154). Each of the activation, suppression,

maintenance, and change operations carries with it a different learning law.

Finally there is the modulator layer F5, which includes nodes representing the

transitions between analogy items (1-to-2, 2-to-3, 1-to-3, and 3-to-4) and a node

repre senting a form of weight transport. Weight transport sometimes occurs

with maintenance and suppression weights; for example, in the analogy “apple

is to red as banana is to yellow,” the “maintain red” weight going from item

1 to item 2 can be “transported” to “maintain yellow” going from item 3 to

item 4.

The weight transport and the unconventional learning laws could be

criticized on grounds of biological plausibility, but the authors relate them to

the work of other theorists who have proposed various laws whereby a neuron

multiplicatively gates signals from two other neurons (Dehaene, Changeux, &

Nadal, 1987; Guigon, Dorizzi, Burnod, & Schultz, 1995). The Jani–Levine

model is complementary to, not opposed to, the Hummel and Holyoak (1997,

2003) model, so is likely to be also compatible with the prefrontal data

discussed by Knowlton et al. (2012).

A different approach to modeling proportional analogies, tied to known

interactions between the cerebral cortex and thalamus, is described in Choe

(2004). In Choe’s model each item in a proportional analogy is represented at

three network levels corresponding to cortex, thalamus, and thalamic reticular

nucleus (TRN). The TRN is inhibitory, surrounds the thalamus, and serves as

a filter that selectively inhibits some of the competing nodes (see the extended

ART model of Grossberg & Versace, 2008). Sequential presentation of the first

three items in a proportional analogy leads to activation of cortical nodes both

for those items and for another item which solves the proportional analogy. If

the network’s leaky integrator equations (see Appendix 1) are chosen to fit data

on relative transmission speeds between these brain regions, TRN activity
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filters out those thalamic representations driven by sensory inputs in favor of

those thalamic representations driven only by cortical feedback. The result is

that the last (solution) item of the analogy, which is not one of the inputs,

becomes the only one represented by cortical activity.

9.6.2. Models of Creativity and Concept Formation

Like the analogy models, the few neural network models that have dealt with

creative problem solving have had loose connections with neuroscience and

been partly influenced by symbolic artificial intelligence. Some of these

models are designed to reproduce some behavioral data on creative brain -

storming (Doboli, Minai, & Brown, 2007; Doboli, Brown, & Minai, 2009;

Farajidavar, Levine, Kohn, & Paulus, 2010; Iyer et al., 2009). Other models

are designed to recreate the properties of insight in solving problems with

unconventional solutions (Hélie & Sun, 2010).

Experimental brainstorming studies typically ask participants to generate

ideas about open-ended problems (e.g., “What might be the consequences 

if everyone from now on is born with an extra thumb?” “What can be done 

to improve life at your university?” “What would you do for a pleasant

vacation?”) While many organizations believe that group interactions generate

more ideas for solving a given problem than individuals acting alone, many

experimental results have found the opposite to be true (see Paulus, Levine,

Brown, Minai, & Doboli, 2010, for review). The disadvantage of groups is due

to several factors including cognitive interference and evaluation apprehension.

Hence, a variety of other experiments have involved manipulations that might

overcome the disadvantage of participants in groups. Some of these manipu -

lations have been studied in network models, including priming with hints from

an unconventional category (Iyer at al., 2009) and rest or incubation periods

(Farajidavar et al., 2010). The major part of the modeling effort, though, has

been directed to simulating the underlying processes of generating ideas and

evaluating these ideas for usefulness and novelty.

Figure 9.6 shows a generic architecture for idea generation, with qualitative

assignments of different parts to brain regions. The feature and concept

modules, under the influence of the context, cues, and cognitive control,

comprise an idea generation subsystem (IGS) that uses stored semantic know -

ledge to generate ideas as combinations of concepts already stored in the

network. The critic receives the generated ideas and produces feedback about

the ideas’ usefulness and novelty based on its domain knowledge about the

current context. The network uses attractor dynamics within each semantic

level of the IGS, along with interactions between those levels. The version of

the IGS actually implemented in Iyer et al. (2009) includes a subnetwork 

of concept units along with two different subnetworks of feature units, type
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units representing functional types (e.g., “accommodation” or “food”) and

descrip tive units representing attributes (e.g., “expensive” or “sweet-tasting”).

There is also a dynamic selector network that groups together concepts that

are similar on specific subsets of features, thereby helping to bias the search

in favor of concepts relevant to the requirements of the current context.

Hélie and Sun (2010) developed a model of creative problem solving that

combines explicit (rule-based) and implicit (associative) processes. Their

analysis was based on the popular idea by Wallas (1926) of the four stages in

the successful creative process. These four stages are preparation (under -

standing the problem and acquiring domain knowledge), incubation (removing

attention from the problem after an impasse is reached), illumination (or

insight, becoming conscious of the solution), and verification. Hélie and Sun

modeled the incubation and insight phases. Their model reproduces a wide

range of cognitive psychological data about effects of priming and of incubation

length.

FIGURE 9.6 Basic architecture for an idea generation model, with approximate
assignments of modules to brain regions.

Source: Adapted from Iyer et al., 2009, with the permission of Elsevier Science, Inc.



The Hélie–Sun model, called EII (for explicit–implicit interaction), is based

on the two-layer architecture called CLARION (Sun, 2002), which had

previously been used to model other cognitive processes including categorical

reasoning (Sun & Zhang, 2006; see Chapter 7). The bottom layer deals with

implicit knowledge, which is formed by associations and guided by intuition,

whereas the top layer deals with explicit, rule-based knowledge. CLARION is

further divided into a non-action-oriented part that encodes declarative

knowledge (as is used in Hélie & Sun, 2010) and an action-oriented part that

encodes procedural knowledge. These articles make no specific assignments

of parts of the network to brain regions.

The model’s simulations of creative problem solving data rely on the

encoding at the top level of EII of a range of potential hypotheses for their

solution. For example, one of the problems they model involves explaining 

the following story:

A man walks into a bar and asks for a glass of water. The bartender points

a shotgun at the man. The man says, “Thank you,” and walks out.

(Hélie & Sun, 2010, p. 1011, quoted from 

Durso, Rea, & Dayton, 1994, p. 95)

The correct solution is that the man had the hiccups, which either water or

being startled could remedy. Both the model and experiment participants try

to obtain the solution by asking yes/no questions. Those participants and 

those instances of the model that solved the problem correctly arrived at

different knowledge structures for associations between words than did those

who failed to solve it. Hypotheses are activated probabilistically according to

a Boltzmann distribution with a parameter that measures how broadly the

conceptual space is searched for the answer. The model captures how long

incubation tends to increase the value of this search parameter and therefore

the likelihood of obtaining the correct solution. The model also captures

results showing that obtaining the solution is hindered by too much reliance

of explicit processing, which tends to restrict the search to conventional

associations. This is analogous to results reviewed by Iyer et al. (2009) show-

ing that primes from rarely accessed categories are more helpful in brain -

storming than primes from frequently accessed categories.

9.6.3. Reasoning, Bayesian Inference, and the Prefrontal Cortex

A model of human reasoning with closer connections to neuroscience is the

PROBE model of Koechlin and his colleagues (Collins & Koechlin, 2012;

Donoso, Collins, & Koechlin, 2014; Koechlin, 2014). Their model involves

choices between behavioral strategies. It was applied to experimental results

by the same authors on different versions of a cognitive task with feedback, a
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complex analog of the Wisconsin card sorting test. Probabilities of the decision

maker adopting specific behavioral strategies are updated each time the model

receives positive or negative feedback, using calculations based on Bayes’s rule

for deriving postoutcome probabilities from preoutcome probabilities.

PROBE’s formal calculations of probabilities are not based on interactions

between nodes in a connectionist network. Yet, the model can simulate the

authors’ behavioral results, including context effects and individual differences

between decision-makers. The individual differences deal in part with tenden -

cies toward exploitation (repeated use of strategies that proved to be successful)

versus exploration (trying out novel strategies).

Based on years of work on the functions of different prefrontal areas, these

authors developed hypotheses about the roles of different prefrontal regions 

in the performance of this task, and in the model. Donoso et al. (2014) verified

those hypotheses qualitatively through fMRI studies. They found that activity

in the anterior (including dorsolateral) PFC correlated with reliability of 

the current strategy. The OFC and ventral striatum were sensitive to the out -

come of the current strategy. The frontopolar cortex was sensitive to the relia -

bility of alternative strategies not currently in use, so was assumed to play 

a role in exploration.

Koechlin and his colleagues describe the model as “Bayesian” because it

updates probabilities based on reinforcement learning. Various Bayesian

theorists (see in particular Oaksford & Chater, 2007, 2009) claim that much

human behavior which appears to be irrational (such as the types of decisions

discussed in Section 9.5) is actually rooted in probabilistic inference.

Recall from Section 9.2.2 that Bowers and Davis (2012) critique the

Bayesian approach on the grounds that there is little proof, either behavioral

or neuroscientific, that the brain performs tasks in an optimal or nearly optimal

manner. Their critique applies to multiple domains: reasoning, perception, and

motor control. Bowers and Davis argue further that brain processes are

constrained by biological and evolutionary considerations that often have little

relevance to the current task. Rather than being optimal, the brain and mind

make use of the neural structures that are available to solve cognitive and

behavioral problems as best they can. Despite the use of the term “Bayesian,”

the model of Collins and Koechlin (2012) is not inconsistent with the Bowers–

Davis critique. Indeed, those authors state that “actor selection is “based on a

‘satisficing’ criterion based on task set reliability” (p. 8, authors’ italics).

Satisficing is a term coined by Simon (1956) to denote arriving at solutions

that are “good enough” but not necessarily optimal. The degree to which human

or animal behavior is optimal remains one of the most lively and important

controversies not only in neural network theory but in cognitive and behavioral

neuroscience.

Space and time considerations prevented the author from adding detailed

expositions of the recent state of neural network modeling in several other
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important domains. Among these domains are motor control, episodic memory,

language learning, perceptual decision-making, and consciousness. A few key

sources in each of these areas (some of them cited in other chapters) are listed

at the end of this chapter.

Equations for Networks in Chapter 9

Wisconsin Card Sorting Test Model

In the Wisconsin card sorting test (WCST), the experimenter goes twice
through a special deck of cards each with a number (one, two, three, or
four) of a design (triangle, star, cross, or circle) of a given color (red, green,
yellow, or blue), yielding a total of 2 × 4 × 4 × 4 = 128 cards. The subject
must classify each card as being “like” one of four templates as shown in
Figure 5.6: one red triangle, two green stars, three yellow crosses, or four
blue circles.

Now let us go through what happens on a trial with a single card input
in the neural network of Figure 9.4 by Leven and Levine (1987) and Levine
and Prueitt (1989). For definiteness, let us say that the input card only has
one feature at most in common with each template card, say, one green
circle. Aside: in the network (and probably in real life as well), presentation
of cards that have two or more features in common with a template can
make set switching on the WCST more difficult. For example, if it is at the
point on the test where the subject has learned the color criterion but the
experiment is teaching him or her to switch to a shape criterion, the subject
presented with the “two blue circles” card will typically classify it as like 
the “four blue circles” template. The experimenter will say “Right,” since
the subject has made the correct match on the shape criterion. But, 
since the choice also matches the template on the color criterion, unlearning
of the color rule will be slowed down. For this reason, Nelson (1976) did
a modification of the WCST in which ambiguous cards like the two blue
circles card were eliminated, reducing the number of card presentations
from 128 to 48.

Return to the trial of the network on the “one green circle” input. The
“one” feature detector at the F1 layer of the network is activated, and in
turn activates the “one red triangle” node at the F2 layer. Also “green” at
F1 activates “two green stars” at F2, and “circle” at F1 activates “four blue
circles” at F2. So depending on whether she or he is classifying by number,
color, or shape, the subject could choose any of three possible templates;



the template nodes are in competition and the one most activated is chosen.
(A human subject could decide to classify the input with the “three yellow
crosses” template out of perversity, just because NONE of the features
match. But such a sense of humor has not yet been built into the neural
network!)

What regulates the competition between the card category nodes at F2?
The activations of the three nodes (one, green, and circle) at F1 are equal,
so whichever F2 node has the strongest bottom-up connection weight from
F1 wins the competition. But these bottom-up connections are gated by the
strength of the bias nodes for the corresponding features (respectively,
number, color, and shape). So essentially the choice the subject makes will
be determined by which bias node activity Ωk is the largest.

The relative activities of the number, color, and shape bias nodes depend
on the history of choices made on other input cards. Specifically, every time
the network has classified an input as being like a template it matches on
a feature, the bias node activity has increased if the experimenter has
rewarded that choice, and decreased if the experimenter has punished the
choice. In the “frontally damaged” version of the network, the amount of
that increase or decrease in bias node activity is much smaller than it is for
the “normal” version of the network. Hence, if the “frontally damaged”
network is rewarded on early trials for color choices, its color bias will move
way ahead of its number and shape biases, and subsequent negative
reinforcement will be too weak in its effects to change that ordering. But,
in the “normal” network, negative reinforcement for color-matching choices
that do not match on shape eventually reduce the color bias to the point
that the shape bias can overtake it if choices that match on shape are
rewarded.

Equations of Raizada and Grossberg (2001)

Retina

The model retina has at each position (i, j) both an ON-cell, u+
ij , whose receptive

field has a narrow on-center and a Gaussian off-surround, and an OFF-cell, u–
ij,

with a narrow off-center and a Gaussian on-surround. The retinal cell activities
in response constant visual inputs Iij have the equilibrium values

(9.1)

and

u I G i j Iij ij pq
p q

pq
+ = − ( )∑

,

, ,�1
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(9.2)

where Gpq(i, j,�) is a two-dimensional Gaussian kernel, given by

(9.3)

Lateral Geniculate

The ON and OFF cells of the LGN, �+
ij and �–

ij, are excited by the half-wave
rectified ON and OFF cells of the retina, respectively. These retinal inputs are
also multiplicatively gain-controlled by on-center off-surround feedback from V1
Layer 6. Layer 6 cells, xijk , at position (i, j) and sensitive to orientation k, send
on-center excitation, Aij , to LGN neurons at the same position, and send a two-
dimensional Gaussian spread of off-surround inhibition, Bij , to LGN neurons at
the same and nearby positions:

(9.4)

(9.5)

where Aij and Bij represent feedback from layer 6 given by

with Gpj being the Gaussian defined in Equation (9.3).

LGN Inputs to Cortical Simple Cells

At each position, (i, j), and for each orientation, k, the model has a simple cell
with two parts: an ON subregion Rijk , which is excited by LGN ON cells beneath
it and is inhibited by LGN OFF cells at the same position; and an OFF sub-
region Lijk, which has the reverse relation to the LGN channels. This physiology
is embodied in the equation for the ON subregion by subtracting the half-wave
rectified LGN OFF channel,[v–

pq], from the rectified ON channel,[vpq], and
convolving the result with a rectified difference of Gaussians. The OFF subregion,
Lijk , is similarly constructed:
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where 

with δ = �2/2 and θ = π (k – 1)/K, k ranging from 1 to 2K with K being the total
number of orientations.

Simple cell activity is given by the rectified sum of the activities of each subfield,
minus their difference, that is

Layer 6 Cells

V1 Layer 6 cells, xijk, receive input from the LGN, which is represented by the
contrast-polarity pooled oriented input, Cijk. They also receive two types of
folded feedback excitation. The first type is intracortical feedback from above-
threshold pyramidal cells in V1 Layer 2/3, zijk. These are passed through a
thresholding signal function, F, given by

where G is the threshold value. The second type of folded feedback is intercortical
attentional feedback from V2, xijk

V2. In attentional simulations, an additional term,
att, is added to the excitatory channel, implementing a two-dimensional Gaussian
spread of attentional signals, centered on the attended location and exciting 
all orientations equally. This attentional term is applied both to V1 and to V2.
In the nonattentional simulations, att = 0. Thus

(9.6)

Equation (9.6) is solved at equilibrium, that is, by setting the left-hand side 
to be 0. The equations for Layer 6 of V2 are identical to (9.6) except that the 
V2-to-V1 feedback term V21xijk

V2 is absent.

Layer 4 Cells

Spiny stellate cells in Layer 4 receive a pooled oriented input Cijk which is equal
to the sum of the two inputs from simple cell inputs sensitive to opposite
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orientations, namely Sijk + Sij(k+K), where K is half the number of orientations
represented in the network. This is based on studies showing that Layer 4 simple
cells that are sensitive to opposite contrast polarities pool their outputs at Layer
2/3 complex cells. These same spiny stellate cells also receive an on-center off-
surround input from Layer 6. The off-surround interactions are determined by a
two-dimensional kernel, Wpqrijk . The combination of these influences leads to the
following equation for the spiny stellate cells:

(9.7)

where f is the sigmoid function f (x) = 	xn/(�n+xn ) and the mpqr values represent
activities of inhibitory interneurons. Equation (9.7), like (9.6), is solved at
equilibrium. The equations for the inhibitory interneuron activities are

Layer 2/3 Cells

The pyramidal cells in Layer 2/3, zijk, receive excitatory input from Layer 4 cells,
yijk, at the same position and orientation and also long-range bipole excitation from
the thresholded outputs of other Layer 2/3 pyramidals with collinear, coaxial
receptive fields, F(zijk). Inhibitory interneurons in Layer 2/3, sijk , also synapse onto
these pyramidals. As with the inhibitory kernels in Layer 4, W+ and W –, the Layer
2/3 cells synapse onto each other through linearly scaled versions of the self-
organized kernels grown in the model of Grossberg and Williamson (2001). Layer
2/3 pyramidals also receive short-range inhibi tion from inhibitory interneurons
at the same position and of the same orientation, sijk. This inhibition operates
through a self-organized short-range kernel, T +. Layer 2/3 cells also receive
attentional feedback, whose strength is measured by two coefficients called a23

excit
and a23

inhib. All these effects lead to the following equations for Layer 2/3 pyramidal
cell activities:

where sijrw are Layer 2/3 inhibitory interneuron activities that satisfy the equa-
tions
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Feedforward Projections from V1 to V2

The thresholded output of V1 Layer 2/3 projects forward to Layers 6 and 4 
of V2, with activities xijk

V2 and yijk
V2, respectively, following the same pattern as the

LGN forward projections to Layers 6 and 4 ofV1. The equations for these
projections are

where zijk
V2 is the activation in Layer 2/3 of V2

and 

Equations for the LISSOM Model

The versions of LISSOM utilized by Bednar and Miikkulainen (2000) to model
tilt aftereffect and by Choe and Miikkulainen (2004) to model perceptual
grouping are closely related but slightly different, because the latter version
includes spikes to model synchronization of inputs. We present both versions in
turn.

In Bednar and Miikkulainen (2000), both retinal ganglion cells and cortical
neurons are organized in two-dimensional arrays. The response at time 0 of cortical
neuron (i, j ) is a weighted sum of retinal activations, namely

where �ab is the activation of retinal ganglion cell (a, b); 	ij , ab is the afferent weight
from (a, b) to (i, j); and � is a piecewise linear approximation of a sigmoid
activation function. Over a short time the response defined by Equation (9.8) 
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is influenced by lateral connection weights between cortical neurons. If Eij,kl is the
excitatory connection weight from cortical neuron (k, l ) to (i, j), and Iij,kl is 
the inhibitory connection weight from (k, l) to (i, j), then at each time step

(9.9)

where �e and �i are scaling factors that determine the relative strengths of
excitation and inhibition.

All weights, both afferent and lateral, are modified at smaller time steps
according to an associative learning rule followed by presynaptic normalization.
If we give the symbol w (subscripted) to all weights (whether 	 for afferent, E
for excitatory lateral, or I for inhibitory lateral) and the symbol x to all activities
(� for retinal or 
 for cortical), associative learning with presynaptic normalization
leads to the rule

(9.10)

where α is the learning rate.
The network of Choe and Miikkulainen (2004) differs from that of the 2000

article both in including spikes and in having two cortical layers, one of which
has broader excitatory interactions which it uses to perform preattentive grouping.
Each connection in the network does exponentially decayed summation of
incoming spikes. If x is the input spike (x = 1 if a spike occurs at a given time and
0 if it doesn’t) then the decayed sum of spikes is

(9.11)

where � is a decay rate (different for excitatory lateral, inhibitory lateral, and
between-layer connections). Spikes are based on comparing an input with a
threshold, which is partly dependent on the neuron’s previous activity. That
threshold adds a base term to terms representing absolute and relatively refractory
periods:

(9.12)

In (9.12), the absolute term is ∞ if there has been spike over a certain time
period. The relative term is a leaky integrator similar to (9.11), namely
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where y is the incoming spike (1 or 0). The input to the spike generator of the
cortical neuron (i, j ) at each layer is given by

(9.13)

where the �’s denote relative strengths of afferent, interlayer, and excitatory and
inhibitory lateral contributions; �rs is the input level of retinal neuron (r, s), with
	ij,rs the corresponding afferent connection weight; �pq is the decayed sum of 
spikes of the cortical neuron (p, q) of the other layer than where (i, j) is, with �ij,pq
the corresponding interlayer connection weight; 
kl (t – 1) is the decayed sum 
of spikes of the neuron (k, l ) of the same layer as (i, j ), with Eij,kl and Iij,kl the
corresponding excitatory and inhibitory connection weights; and g is a piecewise
linear function of the form

As in the 2000 article, all weights (the label w given to 	 for afferent, � for
interlayer, E for excitatory and I for inhibitory within each layer) are modified
with associative learning followed by normalization, this time postsynaptic, so
(9.10) is modified to

Equations for the Wisconsin Card Sorting Test Model of
Levine and Prueitt

The equations were originally presented in Leven and Levine (1987), but that is
a conference proceedings that is not easily available: the same equations can be
found in Levine and Prueitt (1989), which is a journal article much more
accessible. The network of Figure 9.4 for simulating the card sorting data of Milner
(1964) used the naming convention of xi for feature node activities and yj for
category node activities. As shown in that figure, i = 1, 2, 3, 4 represent those
numbers in order; i = 5, 6, 7, 8 represent colors, in the order red, green, yellow,
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blue; i = 9, 10, 11, 12 represent shapes, in the order triangle, star, cross, circle.
The equation for each xi reflects shunting excitation from the category nodes
weighted by the top-down synaptic weights wji and from the input card if it
includes the appropriate feature. It also reflects shunting inhibition from all
category nodes, in order that category node activity should not be perceived as
input (following Carpenter & Grossberg, 1987a). Hence,

(9.14)

where A, B, C, and D are positive constants, and f is a sigmoid function. Ii is a
short-duration input signal that has a constant large value on cards that include
the feature corresponding to the ith node and a 0 value on other cards.

The category node activities yj (j = 1, 2, 3, 4 for the categories defined by the
template cards in order as shown in Figure 5.6 of Chapter 5) are excited by 
the xi , weighted by the appropriate bias nodes, and by the “bottom-up” synaptic
weights wij . The bias nodes Ωk have the subscript k = 1 for number, k = 2 for
color, and k = 3 for shape. For each feature node i, the corresponding bias number
is k = [(i+ 3)/4], where for any number u the symbol [u] represents the greatest
integer not exceeding w. The node yj is inhibited by other category nodes. Hence

(9.15)

where f is the sigmoid function used in the equations for xi , g is a saturating
threshold-linear function, and I is an inhibitory signal, lasting longer than Ii , that
occurs with any input. The effect of I is to prevent perseveration of the category
choice made to the previous input card (which does not tend to occur, even in
frontal patients). For any given input card, it is assumed that the template card
chosen is the one whose corresponding, yj is the largest after a certain number of
time steps.

The w1ij and w2ji are not modifiable; effective short-term changes in associative
strength are delivered through changes in the bias node activities which gate the
w1ij signals. The values of these synaptic strengths are large if node i represents a
feature present on template card j, which occurs if i = j, j + 4, or j + 8 (e.g., if j =
1 for the “one red triangle” template, and i is either 1 for “one,” 5 for “red,” or
9 for “triangle”). Hence w1ij = 5 if i = j, j + 4, or j + 8, and w1ij = .2 otherwise.
w2ji = w1ij /5 for all i and j.
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The bias node activities Ωk, k = 1, 2, 3 decay more slowly than feature or
category node activities, thus exhibiting a form of intermediate-term memory for
the duration of the card sorting test. A bias node is only subject to shunting
excitation and inhibition if a “match signal” occurs between the input and the
chosen template on the given feature. That signal is computed at the kth match
signal generator node by

(9.16)

where j is the index of the chosen template. For example, suppose the input card
shows one blue cross and the template card shows four blue circles. Then for the
color bias node, k = 2, so the range of the summation in Equation (9.14) is from
5 to 8. Ii is positive for i = 8 (the color blue), and Ii = 0 for i = 5, 6, 7. Since 
j = 4, Φk = w48I8 = 5I8, which is large. The “matching” bias node is excited by
itself, by the corresponding habit node hk (if its activity exceeds a threshold θ1),
and by positive reinforcement from the experimenter. That node is inhibited by
other bias nodes and by negative reinforcement. Hence,

(9.17)

for positive constants E, F, G, where u+ denotes max (u, 0) and u- denotes max
(–u, 0); the reinforcement signal R is 1 for a correct choice and –1 for an incorrect
choice. The strength of the reinforcement signal, α, is 4 for the undamaged version
of the network and 1.5 for the frontal patient version. The functions f and g are
the same ones used in Equations (9.14) and (9.15).

Habit nodes hk are influenced only by the match signals Φk , as defined in
Equation (9.14). For example, the color habit is strengthened by choices made
(whether correctly or incorrectly) on which template and input have the same
color, and weakened by choices on which template and input have different colors.
Hence,

(9.18)

where θ2 is a threshold and H and J positive constants.
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Exercises for Chapter 9

�1. The Bayesian approach to neural network modeling is mentioned twice in
this chapter – in relation to vision in Section 9.2.2 and to reasoning in
Section 9.6.3. It has also been applied to reinforcement learning. Recall that
this type of modeling is based on the assumption that the brain performs
particular tasks in a nearly optimal fashion, and therefore the tasks can be
essentially modeled by considering the structure of the environment in
which they are performed.
Do you believe that optimality is a useful organizing criterion for modeling
how the brain performs tasks? Pick a specific domain of neural or cognitive
functioning and argue either for or against (or both!) the utility of a
Bayesian approach to modeling that domain.

�2. Choose two to four related experimental findings on working memory.
Using any of the neural architecture principles found in this chapter or
Chapters 3, 4, 6, 7, or 8, develop and attempt to simulate a model of these
findings, incorporating known roles of regions in the prefrontal cortex and
basal ganglia.

*3. Run a simulation of the Levine and Prueitt (1989) model of the Wisconsin
card sorting test as described by Equations (9.14)–(9.18) and the intervening
text. Over time let the input Ii run through a random arrangement of 
all possible cards, each presented twice, for a total of 4 (number) × 4 (color)
× 4 (shape) × 2 = 128 trials. Set initial values of the xi in (9.14) and the yj
in (9.15) to 0. Set initial values of the Ωk in (9.17) and the hk in (9.18) 
to 1.
For the parameters in the equations use the values A = 10, B = 5, C = 1, 
D = 1, E = .01, F = 3, G = 10, H = .5, J = 3, θ1 = 1, θ2 = .1, I = 100. Set
the input intensities I1 to 5 if feature i is present and 0 otherwise. w1ij = 5
if i = j, j + 4, or j + 8, and w1ij = .2 otherwise. w2ji = w1ij /5 for all i and j.
For the sigmoid function use f (x) = arc tan(x – 1) + π/2, and for the
threshold-linear function use g (x) = 0, x < .5.

x –.5, .5 � x � 3
2.5, x > 3.

4. Simulate the parallel distributing model of the Stroop effect in Cohen 
et al. (1990). Study the training length (number of epochs, training phase)
and the reaction time (measure of time, testing phase). The network is
shown in Figure 9.7, where the inputs are either 0 or 1. The training signal,
target output, is a 2-element depending on which response is correct as shown
in last two columns of Table 9.1.
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Use Table 9.1 to train a standard feedforward backpropagation neural
network with one hidden layer and sigmoid function as

Let the output layer train the nodes with the sigmoid
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FIGURE 9.7 PDP network for the Stroop test simulation.



Let the hidden and output bias parameters bj (t) = bk(t) = 1, ∀ ( j, k) for
simplicity.
For the testing phase using Table 9.2 as the eight different stimuli for testing,
and use the weight generated in the training phase along with the response
and attentional selection mechanism for the hidden layer sigmoid as:
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TABLE 9.1 Training data for the Stroop simulation

Task demand Color input Word input Word output

Color 
(xi = 1)

Word 
(xi = 2)

Green 
(xi = 3)

Red 
(xi = 4)

Green 
(xI = 5)

Red 
(xi = 6)

Green 
(yk = 1)

Red 
(yk = 2)

1 0 0 1 0 0 0 1

1 0 1 0 0 0 1 0

0 1 0 0 0 1 0 1

0 1 0 0 1 0 1 0

TABLE 9.2 Test data for the Stroop simulation.

Task demand Color input Word input

Case Color 
(xi = 1)

Word 
(xi = 2)

Green 
(xi = 3)

Red 
(xi = 4)

Green 
(xi = 5)

Red 
(xi = 6)

Task specification 1 0 0 0 0 0

Control 1 0 0 1 0 0

Conflict 1 0 0 1 1 0

Congruent 1 0 0 1 0 1

Task specification 0 1 0 0 0 0

Control 0 1 0 0 0 1

Conflict 0 1 1 0 0 1

Congruent 0 1 0 1 0 1
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Now for the output layer, test the nodes with the following sigmoid
function. Iteratively, increment t and solve the three following equations.
Compare the output yk(t) to the threshold of one and record the time for
as the reaction time and the correct response.

The evidence accumulator equation is as follows:

Try � = 0.01 to 0.1, � = 0.01 to 0.1 were �j (t) Gaussian random variable
sampled with N(0,1), zero mean, and one standard deviation. (Hint: the
reaction time is ordered faster for the congruent, control, and conflict,
respectively.)

Some Additional Sources

Models of Vision and Visual Attention

Corchs and Deco (2002); Deco and Rolls (2005b); Gori, Giora, Yazdanbakhsh,
and Mingolla (2011); Grossberg (2001, 2003, 2007); Hoyer and Hyvärinen
(2002); Huang and Grossberg (2010); Humphreys and Muller (1993); Portilla,
Strela, Wainwright, and Simoncelli (2003); Riesenhuber and Poggio (1999);
Schwartz, Sejnowski, and Dayan (2006); Yazdanbakhsh and Grossberg (2004).

Models of Spatiotemporal Pattern Processing

Giles, Kuhn, and Williams (1994); Mannes (1992); Marshall (1990, 1995).

Models of Sequence Learning and Performance

Berns and Sejnowski (1998); Contreras-Vidal and Schultz (1999); Davelaar
(2007); Dehaene, Changeux, and Nadal (1987); Durstewitz, Seamans, and
Sejnowski (2000a, 2000b); Minai and Levy (1993); Nakahara, Doya, and
Hikosaka (2001).
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Models of Executive Function and Working Memory

Ashby et al. (2005); Humphries, Stewart, and Gurney (2006).

Models of the Stroop Test

Cohen, Usher, and McClelland (1998); Phaf, Heijden, and Hudson (1990).

Models of Cognitive Control

Botvinick, Niv, and Barto (2009); Botvinick and Cohen (2014).

Models of Decision-Making

Levine and Perlovsky (2008); Sieck and Yates (2001); Teodorescu and Usher
(2013); Usher and Zakay (1993).

Models of Neuroeconomics

Kim, Hwang, Seo, and Lee (2009).

Models of Analogy Making

Eliasmith and Thagard (2001).

Models of Motor Control

Brown, Bullock, and Grossberg (2004); Bullock and Grossberg (1988, 1989);
Grossberg and Kuperstein (1986/1989); Guenther (1994, 1995); Kawato (1995);
Kawato, Furukawa, and Suzuki (1987); Kawato, Isobe, Maeda, and Suzuki
(1988); Kawato and Samejima (2007).

Models of Episodic Memory

Franklin and Grossberg (2017); Greve, Donaldson, and van Rossum (2010);
Meeter, Myers, & Gluck (2005); Metcalfe (1994); Newman, Gupta, Climer,
Monaghan, & Hasselmo (2012); Shastri (2001, 2002); Rolls and Deco (2015);
Subagdja and Tan (2015); Werbos (2012).

Models of Language Learning

Garagnani and Pulvermüller (2013); Harley (1996); Harm and Seidenberg (1999,
2004); Kajić, Gosmann, Stewart, Wennekers, and Eliasmith (2017); Penke and
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Westermann (2006); Plaut, McClelland, Seidenberg, and Patterson (1996);
Seidenberg and McClelland (1989); Thomas, Forrester, and Ronald (2013);
Thomas, Purser, Tomlinson, and Mareschal (2012); Westermann and Ruh
(2012).

Models of Perceptual Decision-Making

Bogacz and Gurney (2007); Bogacz (2009); Brown, Bullock, and Grossberg
(2004); Gurney, Prescott, and Redgrave (2001a, 2001b); Usher and McClelland
(2001); Usher and Niebur (1996).

Models of Consciousness

Grossberg (2017); Maia and Cleeremans (2005); Reggia (2013); Taylor (1997,
1999); Taylor and Mueller-Gaertner (1997).

Notes

1. A Gabor stimulus is a sine wave grating seen through a Gaussian window, a popular
stimulus in experimental vision laboratories.

2. These two articles are a technical report and a dissertation, so not easily accessible. Yet,
copies of both articles and the computer code for the model therein are available from
Daniel Bullock at danb@bu.edu. Summaries of their principles can also be found in the
published journal articles of Bullock (2004) and Rhodes et al. (2004).

3. The Google definition of “allosteric” is “relating to or denoting the alteration of the activity
of a protein through the binding of an effector molecule at a specific site.”

4. Neural networks that do not require training typically represent decision processes of mature
organisms, which presumably have been “trained” over an organism’s lifetime by
experience. Levine (2016) sets out some tentative pathways, involving the hippocampus
and cortex interacting in episodic memories, for training decision processes.



APPENDIX 1

MATHEMATICAL TECHNIQUES
FOR NEURAL NETWORKS

Difference and Differential Equations

The equations for neural networks involve changes over time in two types of

variables – node activities and connection strengths. The simplest way to

describe such changes is to assume they take place at discrete time intervals –

every second, say, or every 250 milliseconds. In that case, time is measured

in whole number intervals. Hence the equations derive the value of a particular

variable at time t + 1, with t being an integer (whole number), if the value of

the same variable at time t is known. If the variable (activity or connection

weight) is called x, we have the generic equation

(A1.1)

where � is a symbol that means “amount of change.” Thus, �x(t) represents

the total of all changes in x within the given time period. Equation (A1.1) is

called a difference equation because the term �x(t) represents the difference

between a variable at time t + 1 and the same variable at time t.
In actual network models, the �x(t) term of (A1.1) is replaced by some

algebraic expression involving x(t) itself and other network variables (node

activities or connection strengths). This expression reflects influences on the

node or connection whose activity is x by excitation, inhibition, and modulation

from the same node or connection, or from elsewhere in the network.

Example: The Sutton–Barto Difference Equations

One of the simpler examples of a neural network described by difference

equations is the network of Sutton and Barto (1981). Figure 3.5 of Chapter 3

�x t x t x t( 1) ( ) ( )+ = +



shows the major variables in that network: the conditioned stimulus traces xi,

the connection weights wi, and the output y. The equations for that network,

however, list some additional variables not shown in that figure: the eligibility

traces x–i(t) and the representation y– of ongoing reinforcement node activity.

Figure A1.1 expands the earlier figure to include these additional variables.

There is no difference equation for the stimulus traces xi(t) themselves,

which simply reflect what is taking place in the sensory environment. But the

ith eligibility trace obeys a difference equation reflecting the influence from

the corresponding (ith) stimulus trace. This is

(3.22a)

where α is some number between 0 and 1. (Note: the labels “a,” “b,” etc., in

parentheses on the right denote parts of a system of equations that are given

the same number, in this case, (3.22).)

Let us analyze what (3.22a) says about the change in x–i over time. For

definiteness, let us choose a specific value for α – say α = .8. To find the differ -

ence �x–i(t), we subtract x–i(t) from the expression for x–i (t + 1). This yields

(A1.2)

Equation (A1.2) says that x–i (t) is negatively influenced by its own decay back

to a baseline, at a rate .2, and positively influenced by the actual stimulus xi (t).
Some examples of runs with specific values are shown in Figure A1.2.

Now consider the equation for the ongoing reinforcement level y–. That

equation is

(3.22b)

where � is another constant between 0 and 1.

Again, let us put a specific value for � (say .6) into (3.22b) and analyze what

that equation says about the change in y– over time. Subtracting y–i(t) from the

expression for y–i(t + 1), we obtain

(A1.3)

Equation (A1.3) says that the crucial influence on the dynamics of y– is the

difference between actual and ongoing (or expected) amount of reinforcement.

The factor .4 represents a learning rate, namely the speed at which the expected

value is updated.

x t x t x ti i i( ) ( ) ( )+ = +1 �

�

�

�x t x t x t x t x t x t
x t x t . x t x t

( ) ( 1) ( ) ( ) ( ) ( )

(1 ) ( ) ( ) 2 ( ) ( )

i i i i i i

i i i i
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How is the reinforcement level or output y(t) calculated? Like the con -

ditioned stimulus (CS) traces, this level is calculated instantaneously, based

on the levels of all the CSs and of the unconditioned stimulus (US), and the

connection weights from the CS representations to the output node.

For the ith CS, denote the stimulus level by xi(t) and the connection weight

by wi(t). The corresponding stimulus level and weight for the US will be called

y

x0 = 0.3

w0
w1

w2

wn

UR and CR

CS1 x1

CS2 x2

CSn xn

x1

x2

ȳ

y-ȳ

FIGURE A1.1 Extension of Figure 3.5 to include mutual influences among all the
variables in Sutton and Barto’s Equations (3.22). Additional variables are the eligibility
traces x–i and the ongoing reinforcement level y–; see text for details.



x0(t) and w0(t). Hence, the combined signal from all the CS nodes is x0(t)w0(t)
plus the sum of all the products xi (t)wi(t), written in the summation or sigma
notation:

where the sum is taken over all i between 1 and n. If, for example, n = 4, then

This combined CS signal is transformed by a sigmoid activation function f (see

Figure 2.7b from Chapter 2). All these terms combine in the equation

(3.22d)

Finally, we discuss the changes in the n synaptic connection strengths wi(t).
The changes in these variables, denoted �wi (t), are influenced by a learning

rule. Recall from Section 3.3 that this is an associative rule whereby presynaptic

(CS) activity is correlated not with absolute postsynaptic (US) activity, but

rather with change in postsynaptic activity. Hence

(3.22c)

where c is a positive constant that denotes the rate of learning.

Differential versus Difference Equations

The assumption made in the last section is that changes in the network take

place at discrete time intervals (such as once every second). In biological neural

systems, it is probably more realistic to assume that the interacting changes in

the network take place continuously. Differential equations involve derivatives,

or rates of change, of these variables, which are in turn approximations of the

average �f ’s for very small times, as will be explained below.

As an intuitive example of a derivative, one can look at what is actually

measured by the speedometer of a car. As shown in Figure A1.3, speed 

is measured as distance covered divided by time elapsed. If f indicates the

position on the road and t indicates the current time, then the speed of driving

in any given time period is measured as change in f divided by change in t, or

in the notation introduced above, as �f /�t. But over what length of time should

speed be taken? At 12:00, you get different results if you measure the speed

of travel since 11:50, or since 11:59, or since 11:59 and 50 seconds. It is for

w t x t w t x t( ) ( ) ( ) ( )i i
i

0 0∑ +

w t x t w t x t w t x t w t x t w t x t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i
i

1 1 2 2 3 3 4 4∑ = + + +
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precise description of measurements such as these that Newton and Leibniz

(independently) developed the idea of derivative, one of the two basic ideas

of calculus, in the late eighteenth century.

Suppose the measured speed of the car (see Figure A1.3) traveling for 10

minutes up to noon is, say, 22 mph, for 1 minute it is 21 mph, for ten seconds

it is 20.5 mph, and for five seconds it is 20.2 mph. One can say that as the time

gets smaller and smaller, that is closer to an instant (zero length) of time, the

speed during that time gets “closer and closer” to 20 mph, which is called 

the limiting speed. (“Closer and closer” is an intuitive term, related to the more

precise mathematical concept of limit, which is discussed in Edwards &

Penney, 2007/2014; Swokowski, 1988; Thomas & Finney, 1988, or any other

calculus textbook.)

For any function that varies with time – such as a moving vehicle’s position,

or a node activity or a connection weight in a neural network – the derivative
or rate of change of f is defined as the value that the quantity �f /�t gets “closer

and closer” to. For complex reasons based on the sociology of mathematics,

there are three equivalent notations for the derivative of f with respect to time:

df /dt, f ′, and f·. As shown in Figure A1.4, if the function is graphed with respect

to time, and the curve is approximated near a given time by a straight line, then

the derivative is indicated by the slope of that straight line, that is, how fast

that line rises or falls as you move to the right.

Assuming sufficiently short time intervals, the same set of network inter -

actions can be described by either a difference or a differential equation

formulation. Take, for example, a single one of Sutton and Barto’s equations,

such as the equation for the eligibility trace x–i(t):

(A1.2)

Since the time changes from t to t + 1, �t = 1, so �x–i /�t is the same as �x–i .

As �t gets small, �x–i /�t gets closer and closer to dx–i /dt, the derivative of x–i .

Hence, the differential equation form of (A1.3) is

Similarly, given a system of differential equations for the interacting variables

in a neural network, each differential equation can be approximated by a

difference equation, assuming the time steps are “small enough” for a good

approximation. This is the basis for the Euler method of numerically solving

differential equations on a computer.

There are other widely used methods of greater accuracy than the Euler, such

as the fourth-order Runge–Kutta method. Also, many widely used commercial

mathematical software programs such as MATLAB and Mathematica include

�

�

�x t x t x t x t x t x t
x t x t . x t x t

( ) ( 1) ( ) ( ) ( ) ( )

(1 ) ( ) ( ) 2 ( ) ( )

i i i i i i
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more accurate ordinary differential equation (ODE) solvers. The Euler method,

however, is serviceable for most network applications. Detailed descriptions

of both the Euler and Runge–Kutta methods can be found in any introductory

junior- or senior-level textbook on differential equations (e.g., Boyce &

DiPrima, 2017; Braun, 2012; Rainville, Bedient, & Bedient, 2014) or on

numerical analysis (e.g., Burden & Faires, 2005; Greenspan & Casulli, 1993).

We give a capsule description of the Euler method in the next section, intro -

ducing it by example. The example we use is based on Grossberg’s outstar

equations, previously introduced in Section 3.2.

FIGURE A1.3 Schematic of positions at different times, just before 12:00 noon, of an
automobile traveling eastward on a straight road, with a speedometer reading at noon of
20 mph.

Miles 
west 
from 
zero 
point

Minutes to noon

3.33

10 5 1 0

1

2

3

4

5

FIGURE A1.4 The curve in this graph represents the position of the car depicted in
Figure A1.3, as a function of time. The line represents the linear approximation to that
curve at the point (0,0). Its slope is (3.33 miles)/(10 minutes) = 1/3 miles/min = 20
miles/hour.



Outstar Equations: Network Interpretation and Numerical
Implementation

The outstar (Grossberg, 1968a) is depicted in Figure 3.2. In an outstar, one

node (or vertex, or cell population) v1, called a source, projects to other nodes

v2, v3, . . . , vn, called sinks. (The three dots after v3 are a generally accepted

notation for an indeterminate number of numbers or variables that fit into a

general form.)

As discussed in Section 3.2, the source node activity x1 is affected positively

by the source node input Ii, and negatively by exponential decay back to 

a baseline rate (interpreted as 0). Recalling that the rate of change of x1 as a

function of time is described by its derivative, dx1/dt, this leads to a differential

equation of the form

(3.12)

where a is a positive constant (the decay rate). The activities xi of the vi, 

i = 2, . . . , n obey an equation similar to (3.12), with the addition of an effect

of the source node activity. Hence,

(3.13)

where b is another positive constant (coupling coefficient) and τ is a trans -

mission time delay.

The synaptic weights, or long-term memory traces, w1i at the source-to-sink

synapses, in one version of the theory, have a passive decay which is counter -

acted by correlated activities of x1 (with a time delay) and xi, thus

(3.14)

But if x1 is interpreted as encoding the sound A and xi as encoding the sound

B, Equation (3.14) implies that the association between A and B is weakened

while the network is not actively hearing A. Hence, Grossberg modified this

equation to make the association decay when A is presented without being

followed by B, but remain constant when A is not presented at all. This change

can be achieved by replacing (3.15) (with the time delay τ set to 0) by

(3.15)

dx
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ax I1

1 1
= − +



dx
dt

ax t bx t w t I t

i n

( ) ( ) ( ) ( )

2, , 

i i
1

1 1 1
= − + − +

= …



dx
dt

cw ex t x( )i
i

1

1 1 1
= − + −

dx
dt

x cw ex( )i
i

1

1 1 1
= − +

Mathematical Techniques for Neural Networks 349



so that w1i remains unchanged while x1 = 0 but decreases while x1 > 0 and 

xi = 0.

We next go through a simple example of the outstar equations using the

simple Euler method. In our example, there are only two sink nodes – x2 and

x3, with corresponding synaptic weights (from the source node) w2 and w3. We

also assume there is no decay of memory in the absence of source node

stimulation, that is, we use Equations (3.12), (3.13) (for i = 2 and 3), and (3.15)

(for i = 2 and 3) – five equations in all. As for the constants in those equations,

set a = 5, b = 1, c = .1, d = 1, τ = 0. So the specific forms of the equations become

(A1.4)

Now to solve Equations (A1.4) numerically, it only remains to set the inputs

I1, I2, and I3, and the starting values of x1, x2, x3, w12, and w13. We set up an

example in which the source node input arrives at regular intervals, followed

by inputs to the sink nodes which remain in a regular proportion. Hence, in

the terminology of Section 3.2, these sink node inputs form a spatial pattern.

In particular, let I1 = 2 on every tenth time step, starting with the first, and 0

on all other time steps. Let pattern Ii = θi I, where θ2 = .7 and θ3 = .3 on time

steps directly after those times when I1 = 2, and 0 on other time steps (see

Figure A1.5). (Hence I2 = 1.4 and I3 = .6 when they are not zero.) Suppose

every time step is of length .1 (which is the largest value typically used in

numerical examples; an actual step size of 1 leads to too much inaccuracy).

Consider, for example, Equation (A1.4a) for the source node activity.

Suppose this node is inactive, that is has activity 0, at time 0. Then the simple

Euler method says that change in x1 over the time .1 divided by change in time

(which is .1) will be represented by the right-hand side of (A1.7a), namely, it

will equal –5x1 + I1, at the previous time. To calculate the new value of x1,

then, we obtain

(A1.5)

(Equation (A1.5) is an approximation to the original differential equation

(A1.4a), but the computer program treats it as an exact statement). Substituting

dx
dt

x t I t
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dt
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dt
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0 for every occurrence of x1(0) in (A1.5), and 2 for I1 (since the input is on for

that time step), we derive

The simple Euler method applies this same process repeatedly at later time

steps. That is, (A1.5) generalizes to

(A1.6)

for any time t. At the next nine time steps, the input I1 is 0. So we obtain

etc.

More generally, the rule for the Euler method is for any variable, call it y,

and a time step of size �t,

(A1.7)

x . . .( 1) 0 1( 5(0) 2) 2
1

= + − + =

x t x t . x t I t( 1) ( ) 1( 5 ( ) ( ))
1 1 1 1

+ = + − +

x . x . . x . . . .
x . x . . x . . . .

( 2) ( 1) 1( 5 ( 1)) 2 1( 5) 2

( 3) ( 2) 1( 5 ( 2)) 1 1( 5) 1

1 1 1

1 1 1

= + − = + − =

= + − = + − =

(  at time ( ) (  at time ) (expressioy t t y t+ = ×� � nn on 

the right hand side of the differentiaal 

equation for )y

I1

I2

I3

FIGURE A1.5 Examples of inputs to an outstar network with one source node x1 and 
two sink nodes x2 and x3. The sink node inputs form a spatial pattern (i.e., remain
proportional) and uniformly lag behind the source node inputs, both occurring at
regular time intervals. This leads to learning of the association between x1 activation
and the given spatial pattern.
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The last parenthetical expression in (A1.7) is some function of all the network

variables, with the values of those variables at time t substituted in. Figure A1.6

shows the values of the five variables in our outstar system over 30 time steps.

To illustrate how differential equations are transformed into difference

equations, let us apply (A1.7) to the equations (A1.4). We list C and MATLAB

versions of a program segment written to solve these equations numerically.

The program must start with initial values for the variables, which can either

be obtained from a random number generator over some range or read in

arbitrarily. Since the interesting phenomenon in outstars is the convergence of

relative x’s and relative w’s to θ’s, the initial values of x2 and x3 should not be

set proportional to θ2 and θ3, and the same for the initial values of w12 and w13.

For simplicity, we set them arbitrarily here. The program calculates these

variables over 5000 time steps with step size .1.

FIGURE A1.6 Graph of the outstar variables over time for the parameters shown in
Equations (A1.4) and representative initial values.

C Version

#include <stdio.h>

main ()

{

FILE *fp;

char *arg;



/* declaration above needed to open a file */

float x1=0.0, x2=0.2, x3=0.5, w12=0.2, w13=0.5;

float i1, i2, i3;

float x1old, x2old, x3old, w12old, w13old;

int k, i;

/* open file*/

arg = "top";

fp = fopen(arg, "w");

/*         */

fprint (fp, "                 outstar dataset\n");

k = 1;

i = 1;

while (i < 5000)

{

fprintf(fp, " %8.6f %8.6f ", w12, w13);//

prints values of w12 & w13 with 8 digits to 6 decimal places

fprintf(fp, "    %8.6f %8.6f %8.6f \n", x1, x2, x3);

x1old = x1;

x2old = x2;

x3old = x3;

w12old = w12;

w13old = w13;

if (k == 1)

i1=2.0;

else

i1=0.0;

if (k == 2)

{

i2=1.4;

i3=0.6;

}

else

i2=i3=0.0;

x1=x1+0.1*(-5.0*x1old+i1);

x2=x2+0.1*(-5.0*x2old+x1old*w12old+i2);

x3=x3+0.1*(-5.0*x3old+x1old*w13old+i3);

w12=w12+0.1*x1old*(-.1*w12old+x2old);

w13=w13+0.1*x1old*(-.1*w13old+x3old);

if (k == 10)

k=1;

else

k++;

i++;
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}

}

return 0;

}

MATLAB Version

function sim_p_407

clear all; close all; clc;

x1 = 0;

x2   = 0.2;

x3   = 0.5;

w12 =0.2;

w13 =0.5;

k = 1;

i = 1;

while (i < 5000)

x1old = x1;

x2old = x2;

x3old = x3;

w12old = w12;

w13old = w13;

if (k == 1)

i1 = 2.0;

else

i1=0.0;

end

if (k == 2)

i2 = 1.4;

i3 = 0.6;

else

i2=0.0;

i3=0.0;

end

x1=x1+0.1*(-5.0*x1old+i1);

x2=x2+0.1*(-5.0*x2old+x1old*w12old+i2);

x3=x3+0.1*(-5.0*x3old+x1old*w13old+i3);

w12=w12+0.1*x1old*(-.1*w12old+x2old);

w13=w13+0.1*x1old*(-.1*w13old+x3old);
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if (k == 10)

k = 1;

else

k=k+1;

i=i+1;

end

input(i,:)= [i1,i2,i3];

states(i,:) = [x1, x2, x3, w12,w13];

end% while

l = 20;

subplot(211); stairs(1:l, input(1:l,:));

ylabel('Inputs'); legend ('i_1','i_2','i_3');

subplot(212); plot(1:l, states(1:l,:)); ylabel('States');

legend ('x_1','x_2','x_3','w_{12}','w_{13}' );

end

In the foregoing programs, the “old” values (values at the previous time step)

of all the variables are preserved so that the variables can all be updated in

succession. Within each programming language, various differential equation

solving packages are available that do all the updating simultaneously.

Vectors and Matrices

The word “vector,” derived from the Latin for “carrier,” was originally used in

physics to describe an entity with a direction, such as a velocity or a force.

Directions in a plane can be described by an ordered pair of two numbers

denoting the magnitude of velocity, force, or whatever in the two cardinal

directions. Likewise, directions in space can be described by an ordered triple

of three numbers. The notation for a vector can either be horizontal (a row vector)

or vertical (a column vector). Section 3.2 uses the row notation, so that, for

example, the vector made from the ordered triple 2, 4, 6 is written (2, 4, 6).

Hence, in mathematics, “vector” came to be abstracted to mean an ordered

array of any number of real numbers. In neural networks, this array can mean,

for example, the pattern of inputs to a specified collection of nodes, or the

pattern of activations of those nodes, or the pattern of weights of connections

to or from one of the nodes. This means that a vector is a convenient shorthand

for a pattern of inputs, activities, or weights.

The numbers that constitute a vector are called the components of the 

vector. If the vector has two or three components, it can represented by an

arrow: for example, if node 1 has activation 2 and node 2 has activation 1.5,

the vector (2, 1.5) of node activities can be represented by the arrow shown in
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Figure A1.7. If it has more than three components, it is still sometimes useful

to visualize the vector either as an arrow or as a point in space whose

coordinates are the vector’s components.

Vectors can be treated as mathematical objects in themselves, and are

represented in this book by boldface variable names. Mathematical operations

on vectors are at the heart of programming in MATLAB, in which it is

typically more efficient to do these operations on a vector of quantities than

sequentially (via a DO loop) on the individual quantities themselves.

Two vectors can be added if they have the same number of components. In

that case the components of the sum of the vectors are the sums of the

corresponding components of the original two vectors. For example, the sum

of the two vectors (2, 4, 6) and (3, –1, –2) is (2 + 3, 4 + ( –1), 6 + ( –2)) = 

(5, 3, 4). Also, any vector can be multiplied componentwise by any real

number, which is called a scalar because it “scales” the magnitude of the vector

(without changing its direction if it is a positive scalar, or reversing its direction

if it is a negative scalar). For example, 2 × (2, 4, 6) = (4, 8, 12).

Dot Products

Vectors are usually not multiplied by each other in the same manner as

numbers. Yet there is a scalar-valued product (again, of two vectors with the

same number of components), called the dot product or inner product) that

plays key roles in several neural network models. The dot product is mentioned

in Section 3.2.2 of Chapter 3 and is used to describe transformations of inputs

in linear systems (e.g., Anderson, 1970; Jordan, 1986a; Kohonen, 1977).1

If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two vectors with the same

number n of components, the dot product x y is defined as the sum �n
i=1xiyi.

For example, the dot product (2, 4, 6) (3, –1, –2) = 2(3) + 4(–1) + 6(–2) = 

6 – 4 – 12 = –10.

The dot product is a measure of similarity between two vectors. This is

because, if the vectors are described geometrically as in Figure A1.7, the dot

product can be used to calculate the angle between them. First, the inner product

of x = (x1, x2, . . . , xn) with itself is �n
i=1xi

2. For example, (2, 3.5) · (2, 3.5) = 

22 + (3.5)2 = 16.25. By the Pythagorean theorem from plane geometry, this is

also the square of the length of the hypotenuse of the right triangle shown 

in Figure A1.7, and the hypotenuse is none other than the vector (2, 3.5). In

general, the length of the vector x can be defined as the square root of x · x.

This square root is known as the norm of x and written || x ||. From plane

geometry and trigonometry it can be shown (the demonstration is omitted 

here) that for any two vectors x and y the angle between x and y is the angle

θ such that
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(A1.8)

By analogy, (A1.8) is true for any two vectors with n components for any

positive integer n.

Recall that the cosine of θ is 1 when θ is zero, zero when θ is 90°, and –1

when θ is 180°. Equation (A1.8) shows that if x and y point in approximately

the same direction (a good “match”), the dot product will be relatively large

and positive. If x and y point in opposite directions, the dot product is large

and negative. If x and y are perpendicular their dot product is 0. The angle

cosine criterion for pattern matching is used in many neural models include

some adaptive resonance models (Carpenter & Grossberg, 1987b) and some

PDP models.

Matrices

Just as a vector is a one-dimensional array of numbers, a matrix is a two-

dimensional array of numbers. An example is the matrix of connection weights

between all the nodes of a fully connected network, or from all the nodes in

one layer of a network to all the nodes in another layer to which it connects.

If the array has m rows and n columns, it is called an m × n (or m-by-n)

matrix. Matrices are usually denoted by bold capital letters, and the numbers

in the matrix are listed inside square brackets. For example, 

�
x y
x y

cos
|| || || ||

=
⋅

Activity of first node
1 2 3 4

1

2

3

4

5

Activity of 
second node

(2, 3.5)

FIGURE A1.7 Vector representation of activities of two nodes



is a 2 × 3 matrix, and 

is a 2 × 2 matrix. 

Matrices with the same number of rows as columns are called square matrices
and turn out to have special significance. The numbers inside the brackets are

called the entries of the matrix.

Addition and scalar multiplication are defined for matrices in the same way

as they are for vectors. An m × n matrix can be multiplied by a vector with 

n components, by treating the vector as a column and then taking the dot

product of each row of the matrix with the vector. The result is another vector

with m components. For example, 

if A = and   v = , 

then the first row of Av is (2, 4, 6) · (1, 2, 3) = 2(1) + 4(2) + 6(3) = 2 + 8 + 18

= 28. The second row of Av is (3, –1, –2) · (1, 2, 3) = 3(1) + (–1)(2) +  –2)(3)

= 3 – 2 – 6 = –5. Hence, the product Av is the two-component vector 

Multiplying a system vector on the left by a matrix of connection weights

therefore generates another system vector with either the same or different

numbers of components: this is the basis of either autoassociation or hetero -

association in linear systems. Autoassociation can occur if A is a square

matrix, so the number of components will be unchanged after multiplication

by A; a good example of this process is the brain-state-in-a-box (BSB) model

of Anderson et al. (1977; see Exercise 2 of Chapter 8). In networks such as

BSB, it is of particular interest to find vectors whose direction remains

unchanged after multiplication by A, that is, find vectors x such that Ax = �x

for some real (preferably positive) constant �. If that equation is satisfied, � is

called an eigenvalue of A and x an eigenvector corresponding to �. In BSB

and many other systems, in neural networks and other applications, the

eigenvectors represent steady state of large-time tendencies of the system, with

the eigenvectors corresponding to the largest positive eigenvalues being the

most significant.

2

3

4 6

1 2− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

5 2

1 4−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

3

4 6

1 2− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2

3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

28

5−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

358 Appendix 1



Recall that an m × n matrix can be multiplied by an n-component column

vector, which can be regarded as an n × 1 matrix. By stacking the col-

umns together and repeating the dot product–based multiplication for each 

column, the same m × n matrix can be multiplied by an n × p matrix for any

positive integer p, with the result being an m × p matrix. For example, 

if A = (which is 2 × 3) and 

B = (which is 3 × 2), 

the first column of the product AB is the same as Av in the previous example,

namely 

The second column of AB has in its first row the dot product (2, 4, 6) ·
(5, 1, 0) = 2(5) + 4(1) + 6(0) = 14, and in its second row the dot product (3,

–1, –2) · (5, 1, 0) = 3(5) + (–1)(1) + (–2)(0) = 14. Hence the complete matrix

product AB is the 2 × 2 matrix  

If A and B are both n × n square matrices, both products AB and BA are defined

and are also n × n, but in general AB and BA are not equal. For example, 

if A = and B = , 

then AB = but BA = . 

That is, multiplication of matrices is not commutative in the way that multi -

plication of real numbers is.

Yet there are two special cases in which matrix multiplication is commu -

tative. For square matrices the identity matrix of order n is defined to be the

matrix I whose entries 1 along the main diagonal and 0 elsewhere; for example,

the identity matrix of order 3 is 
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For the identity matrix I of order n, it is easy to show that AI = IA = A for

any n × n matrix A. Also, for the majority of square matrices A (the conditions

under which this holds are beyond the scope of this review), there is another

matrix A–1, called the inverse of A, such that AA–1 = A–1A = I.

The mathematics of vectors and matrices is called linear algebra. The

chapter by Jordan (1986a) goes into more details of linear algebra than are

covered here, including concepts such as linear independence and bases.

Jordan (1986a) also includes applications of linear algebra to PDP networks

and approximation of nonlinear systems by linear systems.

The remaining subsections of this appendix are not necessary for the student

to perform the simulation exercises in the book, but aid the student in follow-

ing some of the mathematical discussions elsewhere in the text. The section

on the chain rule for derivatives is provided as background for the derivation

ofthe back propagation algorithm in Section 3.5. The section on dynamical

systems is provided as background for the discussions of equilibrium states 

and energy functions at various points in Sections 4.2, and 4.5. The section on

integrate-and-fire methods is provided as background for many recent bio -

logically realistic neural models, including some found in Chapters 6 and 9 of

this book.

The Chain Rule and Back Propagation

The chain rule determines the derivative of a composite function, that is, a

function whose argument is itself a function of another variable. Some

examples of composite functions in biological applications are given in Gentry

(1978, pp. 250–253). In one of his examples, a nerve impulse is translated into

a muscular movement. The muscle reaction is a function of the number of

acetylcholine ions liberated at neuromuscular junctions by the nerve impulse,

and the number of ions liberated is itself a function of the number of millivolts

in the impulse.

If f is a function of some variable y, and y is in turn a function of another

variable x, then the derivative of f as a function of x, written df /dx, is the product

of the derivative of f as a function of y with the derivative of y as a function

of x. That is

(A1.9)
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If f, instead of being a function of a single variable y, is a function of several

variables called y1, y2, . . . , yn, each a function of x, the rule (A1.8) general-

izes to one involving the partial derivatives of f. The partial derivative 

∂f /∂yi, for each i, is defined as the rate of change of f as yi is varied, with 

all the other variables kept constant. Then the derivative of the composite

function f becomes the sum of contributions from the variables y1, y2, . . . , yn,

thus:

(A1.10)

Both (A1.9) and (A1.10) are frequently used to obtain derivatives of

complex expressions in neural network equations. For example, they are used

in the derivation, seen at the end of Chapter 3, of the changes of weights to

hidden units in the three-layer backpropagation network, given the changes of

weights to output units. A detailed justification follows now for some of the

steps in the earlier derivation.

First, recall that the jth output unit (on the pth pattern) receives a signal equal

to the linear sum of the outputs ypi from the hidden layer weighted by the

connections wij. This signal is called

(3.9)

If f is the activation function of unit j, then the output of unit j is

(3.24)

Recall, also, that the total error in the pth output pattern is measured in terms

of deviation of the output pattern vector from a target pattern vector (tp1, tp2, 

. . . , tpn). Since deviation from the target could be either positive or negative,

the differences are squared, leading to a total error signal

(3.25)

Then the response change δpj should be based on how much the jth unit con -

tributes to the incorrectness of the response. This is done by taking the negative

derivative of the total error Ep as a function of ypj.

The tpj in (3.25) are constants, and for a given output unit j the only part of

Expression (3.24) that changes with the output signal ypj is the part corres -

ponding to that j, namely, 1/2(tpj – ypj)
2. From standard formulas for derivatives
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of polynomial functions (e.g., Swokowski, 1988), we obtain that the derivative

of Ep with respect to the output signal ypj is

But, for calculating the changes in weights to hidden units, it is necessary

to get the derivative of the error not as a function of ypj, but of the signal netpj
from the hidden layer. Using the chain rule (A1.16), that derivative is the

product

By the last equation, this translates to

But by (3.24), the output signal is the function f (usually sigmoid) applied

to netpj, so that dypj /d(netpj) = f ′(netpj), where ′ denotes derivative. If this change

in the error with respect to the net signal (which determines a weight change)

is called δpj, then

(3.10a)

If the jth unit is instead a hidden unit, then again using the chain rule, we

obtain from (3.24), (3.25), and (3.10a) (“δ” denoting partial derivative) that

If k is the generic index of output units that receive projections from hidden

unit j, we obtain, again by the chain rule and previous equations, a value for

the previous expression in brackets, namely

Combining the above two expressions, we obtain finally that, if unit j is a

hidden unit,

(3.10b)
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Dynamical Systems: Steady States, Limit Cycles, and Chaos

A dynamical system is defined as the movement through time of solution

trajectories for a system of differential or difference equations for interacting

variables (see, e.g., Hirsch & Smale, 1974, for more details). Each trajectory

is described by a vector composed of the values of all the variables in the

system at any given time. If n is the number of variables, these vectors can be

treated as points in an n-dimensional space. Most of the discussion in this

section is about dynamical systems based on differential equations; for differ -

ence equations, the mathematics is more difficult, and the system is more likely

to exhibit chaotic behavior (see Frauenthal, 1980, Chapter 6, or Smital, 1988,

Chapter 3, for one of the classic examples).

Of course, if n is larger than 3, an n-dimensional space is an abstract mathe -

matical object that cannot be drawn. But in many cases (e.g., Anderson et al.,

1977; Cohen & Grossberg, 1983; Hopfield, 1982), the network being studied

is homogeneous in its structure, so that the number of nodes has little effect

on qualitative behavior. For such systems, taking the number n of nodes to be

two or three allows one to draw pictures of the dynamics of the network over

time (see Figures 4.9 and 4.10). Such qualitative studies of time dynamics can

also be useful for networks that are not homogeneous but have homogeneous

subnetworks whose activities are described by a time-varying vector. One

example is the vector of weights from any given category node to the n feature

nodes in an adaptive resonance network (Carpenter & Grossberg, 1987a).

Another example is the vector of input-to-hidden-unit weights in a back pro -

pagation network (Rumelhart et al., 1986).

A system of differential equations defining a dynamical system usually

cannot be solved in closed form, that is, with the solutions expressed as com -

binations of elementary functions like exponentials, logarithms, poly nomials,

and trigonometric functions. But, frequently, numerical simulations can be

supplemented by theorems about the system’s asymptotic behavior, that is,

what the vector of system variables approaches as time gets large. For most

neural networks (as for systems derived from other physical and biological

applications), the activities and connection strengths have upper and lower

bounds. Hence, the time-varying vector of system variables remains within

some “box” or hyper-rectangle in n-dimensional space. The asymptotic

behavior of such bounded systems usually falls into one of three categories:

1. Equilibrium. The system vector approaches a single point in n-dimensional

space (see Figure 4.9). Such a point is called an equilibrium state (or steady
state, or rest point, or critical point) of the system. Many dynamical

systems have only a finite number of possible equilibrium states. In neural

networks, each steady state corresponds to a possible stable activity pattern

of the network (see Sections 4.2 and 7.1).
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2. Limit cycle. The system vector approaches a periodic orbit in n-

dimensional space (see Figure 4.6). In neural networks, periodic orbits are

sometimes used to model cyclical processes in the nervous system.

Examples include models of reverberating memory in the cortex and

thalamus (Wilson & Cowan, 1973); of hallucinations in visual perception

(Ermentrout & Cowan, 1980); of circadian rhythm generation in the

hypothalamus (Carpenter & Grossberg, 1985); and of rhythmical

movements in crustaceans (Selverston, 1976).

3. Chaos. In bounded two-dimensional dynamical systems, the Poincaré–

Bendixson Theorem (Hirsch & Smale, 1974) shows that convergence to

an equilibrium point or to a limit cycle are the only possibilities. The proof

of that theorem relies on some facts of two-dimensional geometry (e.g., 

a curve in the plane has a distinct “inside” and “outside,” a result known

as the Jordan curve theorem) and is no longer valid in three or more

dimensions. In three or more dimensions, the system vector can asymp -

totically wander through n-dimensional space in a fashion that appears to

be random but is actually deterministic (e.g., Lorenz, 1963). This pheno -

menon is widely known as chaos and has been suggested as a basis for

behavioral variability in nervous systems (e.g., Mpitsos, Burton, Creech,

& Soinila, 1988; Skarda & Freeman, 1987).

Some information about qualitative behavior of a dynamical system can be

obtained from studying the functions defining the equations. In general, if a

system involves n interacting variables x1(t), x2(t), . . . , xn(t), the rate of change

of each of the variables xi(t) is some function of xi (t) itself and all the other

variables. Most systems defining neural networks are autonomous, that is, the

functions do not depend on time. Hence, if we call the function fi , we have a

system of differential equations of the form

(A1.11)

For a neural network, the function fi in (A1.11) denotes the combination of

all the excitatory and inhibitory influences on xi if xi is a node activity, and 

of positive and negative influences on xi if xi is a connection weight. An

equilibrium state is a state, or value of the vector (x1, x2, . . . , xn), at which all

these relative influences are “balanced,” that is, fi = 0 for all i, i = 1, 2, . . . , n.

Techniques for studying the qualitative behavior of a system of equations

of the form (A1.11) all involve consideration of the functions fi and their

derivatives. Whether fi is positive or negative at a given point in n-dimensional

space determines the direction of change of xi if the system state reaches that

point.

In particular, if x = (x1, x2, . . . , xn) is an equilibrium point, it is of interest

whether solutions of the equations (trajectories) starting at points near x
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approach x or move away from x as time gets large. In the former case, x is

called an asymptotically stable equilibrium; in the latter case, x is unstable.

(There is also an intermediate case, an equilibrium that is stable but not asymp -

totically stable. In that case, nearby trajectories stay in the vicinity of x without

actually approaching x.) The stable equilibria are the ones that can actually be

reached by the system, and are therefore the ones of interest for applications.

The criteria for stability are discussed in any advanced differential equations

textbooks (e.g., Hirsch & Smale, 1974; Miller & Michel, 1982). One of these

criteria involves the matrix of partial derivatives of the functions fi , which is

called the Jacobian matrix of the system of equations, at x. Recall from the

last section that the eigenvectors of a matrix A are n-dimensional vectors yi
such that Ayi is a constant multiple of yi . The constant which is multiplied is

called an eigenvalue of the matrix A (Jordan, 1986a). The equilibrium point x

is asymptotically stable if all the eigenvalues of the Jacobian matrix at that point

(which may be real or complex) have negative real parts, and unstable if any

of the eigenvalues have positive real parts. Hence, the eigenvalues indicate the

direction of flow of solution trajectories close to an equilibrium.

If no eigenvalues have positive real parts, but some of them are 0 or purely

imaginary, the direction of this flow is ambiguous. Hence, under those

conditions, one must resort to other methods for determining stability. One of

the most important of these is the method of Lyapunov functions (see Section

4.2). Recall that a Lyapunov function (sometimes spelled Liapunov or

Liapounov) is defined as a function of the system variables that is decreasing

along system trajectories. More precisely, let V(x1, x2, . . . , xn) be any real-

valued function of the state vector x. Then if x1, x2, . . . , xn satisfy the system

of differential equations (A1.11), the chain rule (see the last subsection) shows

that the derivative of V along solutions of the system is

(A1.12)

The expression on the right-hand side of (A1.12) is a function of the vector

x. If this expression is always nonpositive over the range of state vectors reach -

able by the system, this means that the function V is a Lyapunov function,

always nonincreasing along trajectories. Under those conditions, a variety of

theorems constrains the motion of trajectories to approach equilibria.

Integrate-and-Fire (AKA Leaky Integrator) Models

Integrate-and-fire models (the simplest version also known as leaky integrator
or leaky integrate-and-fire) are designed to model an individual neuron that

follows electrical circuit laws including effects of capacitance and resistance

until it reaches a threshold potential, and then it is reset to produce spikes. This
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is a model of a neuron’s dynamics and can be combined with a wide variety

of models for interactions between neurons.

There are many variations on this integrate-and-fire theme (see Gerstner &

Kistler, 2002, or Dayan & Abbott, 2005). So this book just outlines one of the

simpler linear forms of the model. The current that drives the membrane voltage

is divided into two components related to membrane resistance and capacitance.

Let the current I (t) be split into

(A1.13)

The resistive current IR can be calculated by Ohm’s law as voltage across

the resistor divided by resistance, that is, IR = uR /R. In turn uR equals the voltage

u across the membrane minus the resting voltage urest. The membrane capaci-

t ance C equals q/u, where q is the charge. Since current is the derivative of

charge over time, IC = dq/dt = Cdu/dt. Combining all these terms into Equation

(A1.13) yields

(A1.14)

Let τm = RC. Then multiplying (A1.14) by R yields the standard equation

(A1.15)

u(t) is called the membrane potential and τm the membrane time constant of

the neuron.

Equation (A1.15) is the equation for a passive membrane, that is, a mem -

brane that never has action potentials (spikes). Its solution is an exponentially

decaying response to an external input pulse. Yet to make it an integrate-and-

fire model, spiking needs to be added. This is done in the simplest manner

possible: spikes are assumed to occur at times when the value of the membrane

potential u(t) reaches a threshold θ. If that firing time is called t (f), then the

neuron is assumed to spike between t (f) and t (f)+δ for some small value δ, with

the form of the spike not described explicitly. After that interval δ, the

membrane potential is reset to its resting value urest; hence,

(A1.16)

The last two equations, (A1.15) and (A1.16), define the generic integrate-and-

fire model.

Note

1 Recall from Section 3.2 that a linear system means one where the changes in node activities
are directly proportional to the influences from other nodes or outside inputs.
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APPENDIX 2

BASIC FACTS OF
NEUROBIOLOGY

The neural network modeler should at least have a working knowledge of

neurobiology on two levels. One is the level of neurons (brain or nerve cells),

including their component parts – axons, dendrites, cell bodies or somata, and

synapses – and the chemical transmitters at synapses. This includes knowledge

of how conduction of nerve impulses is affected by the actions of the various

ions in and around the cells. The other is the level of brain regions, their

cognitive functions and the pathways between them. This should, at best,

include some knowledge of how the nervous system has evolved from

invertebrates to fish to other mammals to humans, both structurally and

functionally.

This appendix gives an extremely cursory summary of those biological facts

that are, in my opinion, essential for the modeler to know. I refer the reader to

other books whose coverage of these areas is far more detailed. Good general

textbooks on all aspects of neuroscience include Shepherd (1983/1994) and

Kandel, Schwartz, and Jessell (2000). Shepherd’s book is particularly strong

on the cognitive aspects of neural structures. Carlson (2007) and Kandel,

Schwartz, and Jessell (2000) are good sources for the physiology relevant to

behavioral and cognitive functions. Katz (1966) gives detailed, and still timely,

descriptions of fundamental electrical and chemical processes at the neuronal

level. A more recent and succinct treatment of these neuronal processes is found

in Byrne and Schultz (1994). There are also many good textbooks on

neuroanatomy of different brain regions, including Nauta and Feirtag (1986)

and Waxman (2000).
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The Neuron

Whereas the functional organization of the nervous system differs profoundly

between squid, fish, rats, and humans, the organization of individual neurons

differs much less. Hence, some classic studies on invertebrates have contributed

greatly to our knowledge of general, including mammalian, neurophysiology.

Particularly important is the work of Young (1936), Cole and Hodgkin (1939)

and others on the giant axon of the squid, which activates an escape reflex.

Figure A2.1 shows a schematic neuron. The main parts of it are the dendrites

(“small branches”), which often receive electrical signals from other cells; the

soma, or cell body, which sums electrical potentials from many dendrites and

also contains the cell’s nucleus; and the axon, which conducts electrical signals

and transmits them to other cells. The picture of Figure A2.1 is not universally

accurate. Sometimes the axons are much shorter, relative to the other cell

components, than the one shown there; short axons are particularly common

in association areas of the human cerebral cortex. Also, the dendrites can

sometimes be “senders” as well as “receivers.” Still, this figure illustrates a

“generic neuron” fairly well, and most of the exposition in this section assumes

a neuron of this type.

The significant variable for information transmission in a neuron is the

electrical potential across the membrane of the cell’s axon. This potential is

determined by the intracellular and extracellular concentrations of three single-

element ions, potassium (K+), sodium (Na+), and chloride (Cl–), along with

some compound ions. There are two distinct phases of transmembrane electrical

activity, the resting membrane potential while the cell is not conducting an

electrical impulse, and the action potential or actual “nerve impulse.” The

Other neurons

Synaptic gap

Dendrites

Cell body

Nucleus

Na+

Cl-

Axon
K+

Synaptic gap

Other neurons

FIGURE A2.1 Schematic neuron. Main parts (axon, cell body or soma, dendrites,
synapses) are labeled. Characteristic ions are shown where they are most prevalent,
inside or outside the membrane. See text for details.
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action potential, which is propagated down the axon, amounts to a reversal of

electrical polarity from the resting phase; the inside is about 60 to 70 millivolts

(mV) negative to the outside during the resting potential, but about 40 mV

positive during the action potential. Figure A2.2 shows a typical action

potential, also called a spike because of its shape.

Figure A2.3 lists the intracellular and extracellular concentrations of various

ions in the squid axon at the time of the resting potential. Since the inside is

electrically negative relative to the outside, it is somewhat surprising that the

positive Na+ (sodium) ion should be more concentrated on the outside, rather

than rushing in to neutralize the polarity. This occurs because an active

metabolic “pump” keeps most of the sodium outside in the resting state. The

enzyme responsible for this pump was identified by Jens Christian Skou, which

won him the 1997 Nobel Prize in Chemistry (see, e.g., Skou, 1998). The

processes that initiate the action potential temporarily shut off this pump,

causing a reversal of the membrane potential.

The cautionary note must be added, however, that impulses (action

potentials) are not the only means of communication between neurons. There

VOLTAGE 
(mv) inside 
vs. outside 
of membrane

Action potential

TIME (msec)

FIGURE A2.2 The action potential recorded across the membrane of a squid giant axon.

Source: Thompson, 1967, modified from Hodgkin & Huxley, 1939; reprinted by permission.

External Internal

Na+ 460
K+ 10

Cl- 540

Na+ 50

K+        400

Cl- 40 to 100
Isethionate- 270

Aspartate- 75

-60 mv inside

FIGURE A2.3 Ion concentrations (millimoles per liter) and potential difference across
the membrane of the squid giant axon during the resting potential phase.

Source: Reprinted from Bernard Katz, Nerve, Muscle, and Synapse, copyright 1966, with permission
of McGraw-Hill Publishing Company.



is also communication by the simple spread of electrical potentials across

neurons via synapses, which is called passive electrotonic spread. This passive

conduction has been found recently to play an important role, particularly in

short-distance communication (see Shepherd, 1983, p. 102 for discussion). The

potentials recorded by the electroencephalogram (EEG) result from this passive

spread.

The conduction of the nerve impulse, as Helmholtz and others in the last

century discovered, is too slow to be merely electrical transmission as through

a wire. Hence, this conduction must involve an active biochemical process.

How the neuron changes from the resting to the excited state was essentially

discovered in a series of experiments described, and quantitatively analyzed,

by Hodgkin and Huxley (1952).

Early research on the squid giant axon showed that the action potential still

occurs even if all the axoplasm (protoplasm on the inside of the axon) is

squeezed out. It was concluded that the action potential is a membrane
phenomenon. This research also showed that the action potential depends

strongly on the presence of sodium ions in the extracellular medium. It was

concluded that the potential change results from inward movement of sodium

ions. The resting membrane is much less permeable to sodium ions than to

potassium or chloride ions, but the action potential generation (excitation)

process increases its permeability to sodium, allowing that inward movement

of ions to take place.

The process of action potential generation is partially described by Shepherd

(1983):

a crucial property of the Na+ conductance . . . is that it is involved in a

positive feedback relation with the membrane depolarization. When the

membrane begins to be depolarized, it causes the Na+ conductance to

begin to increase, which depolarizes the membrane further, which

increases Na+ conductance, and so on.

(p. 107)

The depolarization Shepherd refers to denotes change in the inward

membrane potential in the positive direction. If the cell membrane is

depolarized from its resting state, either by an impulse from another neuron or

by direct stimulating current, the cell will revert to its resting potential unless

it reaches a threshold transmembrane voltage – typically in the neighborhood

of – 40 mv inside in the case of the squid axon. If the cell potential does reach

that threshold, the aforementioned positive feedback will take place, ultimately

leading to an action potential. This is the biological basis for all-or-none

impulses (see Section 2.1).

An important consequence of the sodium-permeability mechanism is that

the frequency of impulse generation is limited. For one or a few milliseconds
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after an impulse, no additional impulses can be generated; this is called the

absolute refractory period (see the discussion of continuous models in Chapter

2). For several more milliseconds afterwards, there is a relative refractory
period in which an action potential can be initiated, but the strength of current

required to initiate an impulse is larger than normal.

The refractory periods result from the same ionic mechanism that terminates

the impulse, namely, following of sodium conductance increase by an increase

in the membrane’s conductance of potassium (K+). This leads to a movement

of potassium ions outward, which reduces transmembrane potential back

toward the resting level and thereby reduces sodium conductance. In addition,

during the absolute refractory period, this outward flow of K+ makes the

membrane potential even more negative than normal, which further decreases

the sodium conductance. The cell does not fully recover its ability to generate

impulses until both ionic conductances are back to their resting levels.

Many, but not all, axons, particularly the longer ones, are covered by an

electrically insulating layer known as the myelin sheath. This sheath is made

of cells of a different type than neurons, known as glial cells. The action

potential spreads like a wave down the axon, in a single direction (from

dendrites toward outgoing synapses). In the case of myelinated axons, the

conduction is along the outer membrane, “jumping” between holes in the

myelin sheath known as the nodes of Ranvier, a process called saltatory
conduction.

Thus far we have talked about movement of ions and conduction of electrical

activity within a single neuron. As the impulse moves toward a synapse

between two neurons, different processes take over.

Synapses, Transmitters, Messengers, and Modulators

The current view of nervous system organization did not become widely

accepted until early in the twentieth century, with the work of Cajal and

Sherrington (see Cajal, 1990, and Sherrington, 1906/1947, for summaries).

Before the work of those two pioneers, there were disputes between adherents

of two doctrines, the “neuron doctrine,” which held that the nervous system is

composed of distinct cells, and the “reticular doctrine,” which held that all the

fibrous processes are continuous with each other. The “neuron doctrine” won

with the discovery that many pairs of cells that are functionally interconnected

are actually physically separated. This separation is known as the synaptic gap;

its width is of the order of one to a few 	 (1 	 = 10–6 meters).

The number of different types of junctions between cells is quite large (see,

e.g., Shepherd, 1983, pp. 73–75). There are varying distances between cells,

and there are both electrical synapses (where the action potential travels

between cells by direct electrical conduction) and chemical synapses (where



the conduction is mediated by a chemical transmitter that affects ionic

conductances). The most characteristic junction type, particularly in mam -

malian brains, is the chemical synapse.

The chemical synapse, unlike some of the other kinds of junctions, is

unidirectional. The transmitting neuron is called the presynaptic cell, and the

receiving neuron is called the postsynaptic cell. The difference between

presynaptic and postsynaptic neurons is indicated by the greater thickness of

the presynaptic membrane, and the presence at the presynaptic side of swellings

called vesicles which contain packets of chemical transmitter. A similar

organization occurs at neuromuscular junctions, with an area of muscle playing

the role of “postsynaptic neuron.”

Even among chemical synapses, there is a dizzying variety. For example,

there are two types, 1 and 2, with different vesicle shapes. It was once thought

that most Type 1 synapses are excitatory and Type 2 synapses are inhibitory;

this is still a useful heuristic, though it now admits a considerable number of

exceptions. Also, synapses can be from the presynaptic axon to the postsynaptic

dendrite (axodendritic); from axon to axon (axoaxonic); from axon to cell body

(axosomatic); or, when the dendrite actually carries an action potential, from

dendrite to dendrite (dendrodendritic). Of those cases, the axodendritic is the

most common.

Typical chemical synapses, through whatever transmitter substance they

release, cause a passive (i.e., without an action potential) increase or decrease

in the postsynaptic membrane potential, starting at the junction point (most

commonly on a dendrite). In the case of excitatory synapses, the passive

depolar ization is termed the excitatory postsynaptic potential (EPSP).

Similarly, inhibitory synapses cause a hyperpolarization (negative change in

inward membrane potential, the opposite of depolarization) called the inhibitory
postsynaptic potential (IPSP).

An EPSP occurs because transmitter causes a net inward movement of

positive charge, by increasing membrane conductance to Na+, K+, and possibly

other positive ions such as the calcium ion (Ca++). The EPSP might or might

not be large enough to depolarize the postsynaptic neuron to its firing threshold.

In fact, the postsynaptic neuron typically has thousands of dendrites receiving

synapses from different presynaptic cells. Hence, its firing depends on the sum

of EPSPs from these different dendrites minus the sum of IPSPs from other

dendrites. IPSPs can occur as a result of increased conductance either for

outward movement of positive charge (K+) or for inward movement of negative

charge (Cl–). Some typical postsynaptic potentials are shown in Figure A2.4.

The first chemical neurotransmitter substance to be discovered was

acetylcholine, which was identified by Loewi (1921) as the substance used by

the vagus nerve to decrease the heart rate. Subsequently, acetylcholine was

found to be the transmitter substance used in other nerves connecting the brain

372 Appendix 2



Basic Facts of Neurobiology 373

to internal organs (autonomic nerves) and at the junctions between nerves and

skeletal muscles. Later, it was also found to be one of the commonest trans -

mitter substances at both excitatory and inhibitory synapses in the brain.

In addition to acetylcholine (ACh), the most important neural transmitters

are dopamine (DA); norepinephrine (NE, also known as noradrenaline or NA);

serotonin (5HT); gamma-amino butyric acid (GABA); glutamate (GLU); and

glycine (GLY). These transmitters can be excitatory or inhibitory, with the

exception of GLY and GABA, which are almost always inhibitory, and GLU,

which is always excitatory. In the cortex, GLU is the main excitatory

transmitter and GABA the main inhibitory transmitter.

The monoamine transmitters – DA, NE, and 5HT – are broadcast by certain

midbrain regions out to vast areas of the cortex and the limbic system and 

have sometimes been found to modulate GLU or GABA connections. There

has been considerable literature on the cognitive effects of those three

modulators, which with many variations has pointed to overarching roles for

each in cognitive functioning. Dopamine is important for learning, and acting

on, associations of particular sensory stimuli and motor actions with reward

(see the later sections of Chapter 6). Norepinephrine is important for arousal

and initiation of behavior. Serotonin is important for stabilization of emotional

reactions and for reality discrimination. Acetylcholine is also a widely broad -

cast modulator originating from a different midbrain region called the nucleus
basalis of Meynert, and plays a key role in attention.

Threshold

IPSP

EPSP

msec

K+ current out

Na+ current in Cl- current in

K+ current out

(a) (b)

FIGURE A2.4 Typical postsynaptic potentials. Above: pre- and postsynaptic terminals,
with net positive current flows shown by arrows for depolarizing (a) and
hyperpolarizing (b) actions. Middle: time course of ionic current flows. Below:
recordings of a typical EPSP (in a) and IPSP (in b).

Source: Reprinted from Shepherd, 1983, with permission of Oxford University Press.



Space does not permit review of the complex chemical reactions involved

in synaptic transmission. In general, the sequence of events is that presynaptic

depolarization increases the movement of the calcium ion (Ca++) near the

synaptic gap, which in turn stimulates the release of transmitter from vesicles.

This description is particularly good for cholinergic synapses, the ones using

acetylcholine as their transmitter. Calcium plays a variety of other roles in

neurochemistry. For example, Ca++ and the cyclic nucleotides (cAMP and

cGMP) play “second messenger” roles in plastic changes at synapses (see the

review by Byrne, 1987, discussed in Section 3.1, and the model of Gingrich

& Byrne, 1985, discussed in Section 6.3.1).

Not all chemical substances present in the brain are actual neurotransmitters.

Table A2.1 summarizes the criteria that are generally agreed upon for a

substance to be considered a transmitter. Many substances that are not, or not

known to be, neurotransmitters play other important modulating roles in

cellular reactions. Among these are the cyclic nucleotides discussed above, and

the neuroactive peptides (see Pert, 1986; Pert & Dienstfrey, 1988). The peptides

include endorphins (morphine-like substances) that are associated with positive

reinforcement.

Invertebrate and Vertebrate Nervous Systems

Among invertebrates, nerve cells controlling movements in response to

particular stimuli appear in most of the multicellular phyla, starting with the

coelenterates (jellyfish and medusas). While learning has been studied in flat -

worms, the best developed invertebrate central nervous systems are in mollusks

and arthropods. These nervous systems do not have brains in the sense that
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TABLE A2.1 Criteria for deciding whether a given substance is a neurotransmitter.

Source: Reprinted from Shepherd, 1983/1994, with permission of Oxford University Press.

1. Anatomical: presence of the substance in appropriate amounts in presynaptic

processes.

2. Biochemical: presence and operation of enzymes that synthesize the substance

in the presynaptic neuron and processes, and remove or inactivate the substance

at the synapse.

3. Physiological: demonstration that physiological stimulation causes the

presynaptic terminal to release the substance, and that iontophoretic application

of the substance to the synapse in appropriate amounts mimics the natural

response.

4. 

Pharmacological: drugs that affect the different enzymatic or biochemical steps

have their expected effects on synthesis, storage, release, action, inactivation,

and reuptake of the substance.
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vertebrates do, but possess several ganglia, which are defined as con centrated

areas involving several sensory and motor processing units.

Invertebrates are probably not capable of quite the same complexity of

neural processing as are vertebrates. Yet invertebrate preparations have yielded

basic multicellular studies of learning and conditioning (see Byrne, 1987, for

a review) and of rhythmical firing patterns (e.g., Selverston, 1976).

The vertebrate nervous system has a basic plan that has persisted in spite

of major evolutionary changes. It is divided into the peripheral nervous system,

consisting of nerves with connections to the rest of the body, and the central

nervous system, consisting of the spinal cord and the brain. The peripheral ner -

vous system has two main parts: skeletal and autonomic, the latter comprising

nerve fibers that affect, and receive sensations from, internal organs.

In the evolution of the vertebrate brain, going from lampreys (not proper

vertebrates but chordates) up to humans, the characteristic divisions of

forebrain, midbrain, and hindbrain are consistently maintained. In primates and

in cetaceans (whales, dolphins, and porpoises), however, the forebrain balloons

outward and then develops various folds (known as convolutions or gyri) to
become the six-layered cerebral cortex. This cortex performs ever more

sophisticated integrative functions, in feedback with the subcortical structures

that change much less across species.

Functions of Vertebrate Subcortical Regions

Some of the more important large brain regions below the cerebral cortex are

shown schematically in Figure A2.5. The following gross subdivisions are of

functional importance:

Pons and medulla – just above the spinal cord;

Midbrain – just above the pons and medulla (the pons, medulla, and

midbrain are usually considered to constitute the brainstem);

Thalamus – deep inside the forebrain;

Hypothalamus – below the thalamus;

Limbic system – forming a border around much of the forebrain and

midbrain;

Cerebellum – in back of the pons and underneath the rear (occipital) area

of the cortex;

Basal ganglia – at the base of the forebrain.

We now briefly review some current knowledge of the cognitive functions

of each of these large regions. This review should provide the reader with an

intuitive “landscape,” rather than revealed truths. The cautionary note must be

added, of course, that complex behaviors involve circuits rather than isolated
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“centers.” Also, just because stimulating a region promotes a behavior, or

lesioning that region suppresses the behavior, it need not follow that the

region’s primary function is to perform that behavior (see Churchland, 1986,

for a discussion).

The pons and medulla include some fibers and cell nuclei from the

autonomic nervous system. These areas, along with the midbrain, are also the

locus of the reticular activating system (or reticular formation), which is

involved in the regulation of sleep, waking, and arousal. (Recall the inclusion

of “nonspecific arousal” in some neural networks discussed in earlier chapters,

such as the one shown in Figure 3.7.) As Truex and Carpenter (1969) state:

The term “reticular formation” is a somewhat vague designation given

a variety of special connotations; it originated in anatomy to describe

portions of the brain stem core characterized structurally by a wealth 

of cells of various sizes and type . . . enmeshed in a complicated fiber

network.

(p. 316)

The reticular formation is usually considered to include some of the sources

of modulating monoamine transmitters.

Caudate nucleus
(tail)

Putamen and globus pallidus
Fornix

Basal ganglia

CerebellumMedullaMidbrain
Pons

Cerebrum

Corpus
Callosum

Caudate nucleus
(head)

Frontal pole
Hypothalamus

Amygdala
Thalamus

FIGURE A2.5 Medial view of the brain, showing locations of some of its major
subdivisions. The amygdala is part of the limbic system emotional circuitry 
(see Figure A2.6), and the fornix is a pathway linking the hypothalamus with parts of
the limbic system. The corpus callosum is a pathway linking the two cerebral
hemispheres.

Source: Adapted from Thompson, 1967, by permission.
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The thalamus is composed of different cell nuclei, most of which have one-

to-one feedback connections with some part of the cortex. This includes areas

of the cortex devoted to specific senses. For example, the lateral geniculate

body of the thalamus is a way station for visual inputs from the optic nerve

going to the visual cortex, while the medial geniculate body of the thalamus

plays a similar function for the auditory cortex. It also includes multisensory

association areas of the cortex; the mediodorsal nucleus of the thalamus, for

example, has a one-to-one relationship with the prefrontal cortex (furthest

forward section of the frontal lobes). Many areas of the thalamus also have

strong connections with the limbic system and hypothalamus, which are

involved in emotional expression and processing of visceral information. The

hypothalamus has extensive connections with the endocrine system. Hence,

particular areas of the hypothalamus are involved in either feeding or mating

behavior. The lateral hypothalamic area, for example, is part of a consum -

matory circuit for eating that also involves areas of the brainstem, some of

which use the catecholamines (DA and NE) as neurotransmitters. The lateral

hypothalamus is also a region whose direct electrical stimulation is rewarding

(Olds, 1955). The ventromedial hypothalamus is opposite in effect to the lateral;

stimulation of this area produces satiety and its lesion produces overeating.

These two hypothalamic areas provided some of the inspiration for moti -

vational dipoles in neural networks (Grossberg, 1972b; see Section 3.3).

The limbic system has been implicated in the emotional expression that

accompanies such behavior as feeding, copulation, and aggression. This system

includes several subregions going from the hippocampus and amygdala, just

under the temporal lobes, through the cingulate gyrus, which is sometimes

considered part of the cortex itself, to the septum, closer to the frontal. The

full details of emotional expression involve a circuit linking the limbic system

with parts of the hypothalamus, midbrain, and thalamus. Precise conclusions

about the role of each part of the circuit are lacking, in spite of a tremendous

amount of data. Neural network models are likely to make contributions to

sorting out all these findings.

The cerebellum and basal ganglia are both involved in different aspects of

motor control. Reflex movements in vertebrates need involve only the spinal

cord and parts of the brainstem. But for voluntary, adaptive movements, other

centers are necessary, including the cerebellum, basal ganglia, and motor

cortex. A partial schematic of motor control pathways in the brain and their

connections with the spinal cord is shown in Figure A2.6.

The cerebellum has been implicated in contributing to the control of three

large functions: muscle tone, balance, and sensorimotor coordination. It has

been the subject of many neural network models because its cell types and

connections are easily identifiable and repeatable across species, and because

its location makes it fairly accessible to neurophysiological study (see Eccles

et al., 1967).
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The basal ganglia consist of the striatum, which includes the caudate and

putamen, and the globus pallidus. The globus pallidus is the output end of this

region, and projects to an area of the midbrain called the substantia nigra. The

role of these areas in movement was discovered when it was noted that lesions

in several parts of this region lead to characteristic motor disorders. Parkinson’s

disease is associated with degeneration of the dopamine (DA) input from the

substantia nigra to the striatum; for this reason, the disease is often treated with

the drug L-DOPA, which enhances dopamine activity. Cell degeneration in the

striatum is found in Huntington’s chorea, characterized by involuntary jerking

movements. And lesions in the putamen and globus pallidus have been found

with athetosis, characterized by slow writhing movements. The basal ganglia

are extensively connected with the motor cortex and also, both directly and

through the thalamus, with the prefrontal cortex.

Functions of the Mammalian Cerebral Cortex

The cerebral cortex, as noted in Figures A2.6 and A2.7, is the youngest brain

region in the evolutionary sense. The well-developed six-layered cortex is

Corpus callosum

Other bulbar 
nuclei

Red nucleus

Cerebellum

Motor cortex

Sensory 
cortex

Superior colliculus

Thalamus

Pons

FIGURE A2.6 Summary of brain motor control pathways descending from the cortex
toward the spinal cord. Roman numerals denote layers of the cortex.

Source: Reprinted from Shepherd, 1983/1994, with permission of Oxford University Press.
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present only in mammals, and one area, the prefrontal cortex, is six-layered

only in primates. Also, as one moves up the scale of mammals, the cortex

becomes ever more folded, with sulci (the plural of sulcus) or depressions, and

gyri or areas of the surface between the sulci.

Figure A2.7 shows the major subdivisions of the primate cerebral cortex.

The primary motor cortex (see Figure A2.6) is directly in front of the central

sulcus. The somatosensory cortex, composed of subareas responding to touch

or pressure at various parts of the body, is directly behind that same sulcus.

The body is represented unequally in the somatosensory cortex, with face and

hands having proportionately larger representation than other areas. The

primary visual cortex is in the occipital lobe and the primary auditory cortex

in the temporal lobe.

The visual and auditory cortices are several synapses away from their

corresponding sense organs (retina and cochlea). The olfactory sense has a

more primitive circuit: the receptors project directly into the olfactory bulb,

which is in a part of the cerebral cortex having only two layers.

FIGURE A2.7 Schematic drawing of lateral and medial surfaces of the human brain,
highlighting subdivisions of the cerebral cortex. “Primary” and “higher order,” for
sensory cortices, refer to processing stages, the primary being closest (synaptically) to
the sensory input. “Primary motor” and “premotor” are motor control stages, the
primary motor being closest to the motor output.

Source: Adapted by permission of the publisher from Carlson, 2007, with the permission of Pearson
Education, Inc.



Finally, all of the sensory areas of the cortex send axons to association areas

of the cortex – most of the temporal lobe and all of the parietal and frontal

lobes. Many of these association areas have specific functions; for example,

the regions known as Wernicke’s area (in the temporal lobe) and Broca’s area

(in the frontal lobe near the boundary of the temporal) are important

components of circuits for speech and language. Some specialized functions

of the orbital part of the prefrontal cortex (furthest forward area of the frontal

lobe), which is the only part of association cortex with extensive connections

to the limbic system and hypothalamus, are discussed in Section 9.4.
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