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“Levine’s book achieves an impressive synthesis of historical trends and
current research results in both biological and artificial neural network research.
This synthesis clarifies that the currently popular Deep Learning is just one
contribution to this burgeoning field, and one that does not incorporate many
of the most powerful properties of biological learning. Levine’s book provides
an accessible introduction to many of these properties, while also reviewing
important properties of neural models of vision and visual attention, sequence
learning and performance, executive function, and decision-making, among its
other expository accomplishments.”
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Providing a thorough introduction to the field of neural networks, this edition
concentrates on networks for modeling brain processes involved in cognitive
and behavioral functions. Part I explores the philosophy of modeling and the
field’s history, starting from the mid-1940s, and then discusses past models of
associative learning and of short-term memory that provide building blocks for
more complex recent models. Part I of the book reviews recent experimental
findings in cognitive neuroscience and discusses models of conditioning,
categorization, category learning, vision, visual attention, sequence learning,
behavioral control, decision-making, reasoning, and creativity. The book
presents these models both as abstract ideas and through examples and concrete
data for specific brain regions.

The book includes two appendices to help ground the reader: one reviewing
the mathematics used in network modeling, and a second reviewing basic
neuroscience at both the neuron and brain region level. The book also includes
equations, practice exercises, and thought experiments.

Daniel S. Levine is Professor of Psychology at the University of Texas at
Arlington. He is a fellow and former president of the International Neural
Network Society. His research involves computational modeling of brain
processes in decision-making and cognitive-emotional interactions.
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FLOW CHART OF THE BOOK

Here is the structure of the book. Chapters depend in part on previous chapters
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PREFACE TO THE
THIRD EDITION

How do you eat an elephant? One bite at a time.
Beverly Johnson, after climbing the rock face of
El Capitan, Yosemite National Park

Since the second edition of Introduction to Neural and Cognitive Modeling
appeared in 2000, the growth of neuroscience, and of cognitive neuroscience
in particular, has been explosive. For example, I did a search of the library
database PsycInfo under the keywords “fMRI or functional magnetic resonance
imaging,” which is the most frequently used experimental method for studying
the relationship between brain physiology and human cognitive function. This
search yielded only 929 results between the years 1943, the date of the first
seminal article in neural networks, by McCulloch and Pitts, and 2000. Yet, the
same search yielded 31,107 results between 2001 and 2017.

The growth in computational models of neural and cognitive processes has
not been quite as spectacular as the growth in experimental studies but is still
impressive. One result has been the formation of distinct niches within the field
of neural networks. The changes in the field over 17 years were sufficient to
warrant a new edition of this book. The first and second editions were intended
for the varied audience of the field, those primarily interested in using neural
networks for intelligent computing and engineering applications as well as
those primarily interested in understanding brain processes. By contrast, this
edition primarily targets those interested in understanding brain processes.
However, most of the more general foundational material from the earlier
editions remains with updating in Chapters 2—4, so the neural engineer or
computer scientist can still find the book a valuable source.



xii Preface

This book is intended both as a textbook for a graduate or advanced
undergraduate course in neural networks and as a general introduction to the
field. Its focus is on the relationships between neural structure and cognitive
function. Details of neuronal biophysics are included only in so far as they
illuminate the cognitive and behavioral implications of neural structures: other
books (e.g., Dayan & Abbott, 2005) present more computational and math-
ematical models at the neuronal level.

The cognitive functions discussed herein include learning, perception, atten-
tion, memory, pattern recognition, categorization, executive function, decision-
making, and inference. The neural networks modeling these functions
sometimes incorporate organizing principles such as competition, association,
opponent processing, and error correction, principles that can be suggested
either by the exigencies of modeling psychological data or by the description
of known neuroanatomical structures. These principles are developed in early
chapters and appear throughout the book.

In keeping with the goal of accessibility to a varied audience, technical
prerequisites in any one discipline are kept to a minimum. Recent advances in
computing make the field accessible to many more people than before. For
those needing additional background in mathematics or in neurobiology,
appendices in those fields are included; the appendices also list sources for
more detailed coverage.

A word should be said here about equations. The last section of each of
Chapters 2—4 and 6-9 includes differential or difference equations for some
of the networks discussed in that chapter, so that the reader can gain hands-on
experience in computer simulation of the networks. On first reading, the
student without mathematical background can skip these equations and follow
the development of networks by means of the figures. On second reading, the
same student can turn to Appendix 1 for explanations of how equations reflect
the qualitative relationships in networks, and simple algorithms for simulating
such equations. The first half of Appendix 1 is written so as not to require
previous background; notions needed from calculus are redefined and
motivated in the context of neural network applications.

The book is divided into two sections. The first section, Chapters 1-4, is
more foundational. Chapter 1 gives the underlying philosophy of the book and
Chapter 2 gives the historical background for its main ideas. The next two
chapters describe models of common “building blocks” for network models
of cognitive functions: associative learning in Chapter 3 and lateral inhibition
in Chapter 4.

The second section, Chapters 5-9, discusses models of cognitive functions,
building on the work of the previous chapters. Chapter 5 reviews recent
advances in experimental cognitive neuroscience. The networks discussed
in Chapter 6-9 simulate some of the data discussed in Chapter 5 and
often incorporate simpler network structures developed in Chapters 3 and 4.
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Chapter 6 on conditioning and reinforcement learning, Chapter 7 on unsuper-
vised categorization, and Chapter 8 on supervised categorization include much
of the material of Chapters 5 and 6 of the second edition but add a considerable
amount on models developed since 2000. Chapter 9 is entirely new, covering
models of a variety of complex cognitive functions: vision and visual attention,
sequence learning and performance, executive function, decision-making,
reasoning, and creativity.

Chapters 2—4 and 6-9 contain homework exercises. Some exercises are
thought experiments and others are computer simulations of various neural
network models. The exercises herein are a small sampling of the possible ques-
tions that can be asked about the material discussed in the book, and the
instructor is encouraged to supplement them as he or she sees fit. Many of the
thought questions asked here do not have right and wrong answers, only a
variety of better and worse answers. The reader should approach the field with
at least as much intellectual flexibility and curiosity as possessed by the
systems we model. A solution manual has been provided for instructors, with
links from the book’s website. The manual can provide hints for exercises,
particularly for the harder ones in Chapters 6 through 9.

The flowchart in the front of the book illustrates how the understanding
of each chapter depends on previous chapters. After the introduction in
Chapter 1 and the historical account in Chapter 2, Chapters 3 through 9
(excluding Chapter 5, which is a review of experimental data) reflect a
hierarchy in models from simpler to more complex neural and cognitive
processes. Chapters 2—4, which are foundational for the more complex models
in Chapters 6-8, are the chapters least changed from the second edition,
though they are updated based on recent scientific advances.
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NOTATION USED IN THE BOOK

In figures

An arrow (—) denotes an excitatory connection
A filled circle (@) denotes an inhibitory connection
A filled semicircle (D) denotes a modifiable connection

In exercises

A single asterisk (*) denotes a computer simulation exercise
A double asterisk (**) denotes a mathematical problem
An open circle (O) denotes an open-ended conceptual exercise
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Foundations of Neural
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1

NEURAL NETWORKS FOR
MODELING BEHAVIOR

My mind to me a kingdom is,
Such perfect joy therein I find
As far exceeds all earthly bliss
That God or nature hath assigned.
Edward Dyer

What is mind? No matter. What is matter? Never mind.
Thomas Hewitt Key (epigram in Punch)

1.1. What Are Neural Networks?

The birth of the current field of neural network modeling can be traced to the
cybernetic revolution of the 1940s and 1950s. At that time, scientists across
many disciplines became excited about the notion that neurons are digital
on—off switches (either firing or not firing), and thus that brains and the newly
emerging digital computers had similar structural organizations (Wiener,
1948). Before long, biologists discovered that the digital metaphor was an
inadequate one for capturing what was known about neurobiology and
psychology. It was found necessary to understand the graded (or continuous,
or analog, or grayscale) as well as the all-or-none (or digital) components of
neuron responses (see, e.g., Thompson, 1967, Ch. 1).

Yet, if one seeks to understand cognitive and behavioral functioning, it is
not enough simply to understand neurons and their assemblies. It is just as
important to understand architectural principles guiding network connection,
principles that enable key psychological processes to occur and thereby allow
the assembly of neurons to instantiate significant classes of cognitive and
behavioral data.
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How do we develop theories of brain—behavior relationships? Elsewhere
(Levine, 1999) I have described the theory building process as analogous to
the building of the tunnel across the channel between England and France. The
theorist starts at both the behavioral and the neural ends, and then builds
“tunnels” of connection from each end toward the other (Figure 1.1).

Neural network models have gradually evolved in the direction of greater
correspondence with brain structure and function, from the 1980s to the
present. Techniques such as taking magnetic resonance scans of whole brain
regions and recording with electrodes from up to 50 neurons at once have made
neurophysiology more amenable to quantification. At the same time, advances
in computing (personal computers, supercomputers, and interfaces with
recording devices) have made simulation of biological data easier and more
practical. These technical developments are enabling theorists building on
earlier, more abstract cognitive models to create theories with real explanatory
and predictive power. The review article of Ashby and Hélie (2011) calls the
newer models that incorporate sophisticated neuroscience data by the name
of computational cognitive neuroscience models, to distinguish them from
more loosely brain-related cognitive models that are called by the older name
of connectionist models (e.g., Feldman & Ballard, 1982; Rumelhart &
McClelland, 1986a).

The development of neural network or connectionist theories has been
spurred not only by interest in how the brain works but equally by the interest
in potential engineering applications of intelligent computing. The International
Neural Network Society’s several hundred members, and several annual
meetings including the International Joint Conferences on Neural Networks,
span research in both the neuroscientific and engineering applications of the
field, and some studies that overlap neuroscience and engineering.

NEUROSCIENCE

NEURAL NETWORKS

PSYCHOLOGY

FIGURE 1.1 “Tunnel” metaphor for integrating neuroscience and psychology;
see the text.
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Designers of machines for performing cognitive functions generally are
interested in learning, without slavishly imitating, how the brain performs those
functions. Consequently, such machines have often been built like simulated
brain regions, with nodes corresponding to neurons or neuron populations, and
connections between the nodes; at times, their designers have borrowed ideas
from recent experimental results on the brain’s analog responses. The industrial
applications of connectionist theory are often called artificial neural networks
or ANNs (e.g., Hecht-Nielsen, 1986).

The much older term neural networks is usually considered to encompass
both theoretical and applied models that provide mechanistic bases for cogni-
tive functions. The functional units in neural networks have alternatively been
called “nodes,” “units,” “neurons,” and “populations.” The first two terms are
most commonly used, in this book and elsewhere, because they do not commit
the user to an assumption that units correspond to either single or multiple
neurons. Both the earlier connectionist networks and the networks in compu-
tational cognitive neuroscience models include nodes, connections, and
equations describing the interactions of node activities and connection
strengths.

2 ¢

1.2. What Are Some Principles of Neural Network Theory?

While the neural network field has experienced upward and downward surges
in popularity, these surges conceal the field’s maturity. The early history of
neural network models, summarized in the review article of Levine (1983) and
discussed further in Chapter 2, shows that most modern ideas in network design
have much earlier antecedents. For example, the popular distinction between
input, hidden, and output units (Rumelhart & McClelland, 1986a), which led
to back propagation and then to deep learning, owes much to the early work
of Rosenblatt (1962) on networks with sensory, associative, and response units.
Rosenblatt, in turn, combined extensions of the linear threshold law of
McCulloch and Pitts (1943) with various learning laws, some of them inspired
by the work of Hebb (1949). A precise mathematical formulation for many
examples of this type of network was given in the dissertation of Paul Werbos
(1974; see Werbos, 1993, for a more accessible version). Moreover, several
researchers who published seminal neural network articles in the late 1960s or
early 1970s, including Michael Arbib, Jack Cowan, Walter Freeman, Stephen
Grossberg, and Teuvo Kohonen, either remain active in the field today or did
so through the early twenty-first century.

As the neural network literature grows, it is essential to find criteria for
making distinctions among competing models. Meeter, Jehee, and Murre
(2007) observed that fitting both behavioral and neural data is one of the
important criteria but not the only one. Ideally, these authors note, in addition
to fitting existing data and making nontrivial predictions, a model should be



6 Foundations of Neural Network Theory

based on assumptions that make sense from a biological and/or behavioral
viewpoint. Also, it is desirable to have several interconnected and mutually
consistent models for the same process at different levels of representation, and
such hierarchies of models are particularly useful when some of the relevant
data are unavailable. A similar point was made by the neural network pioneer
Stephen Grossberg (Grossberg, 2006): “One works with large amounts of data
because otherwise too many seemingly plausible hypotheses cannot be ruled
out.” The purpose of interconnected models, Grossberg goes on to say, is to
capture the fact that “the brain . . . can be successfully understood as an organ
that is designed to achieve successful autonomous adaptation to a changing
world.”

In order to understand the behaviors leading to autonomous adaptation, we
need first to understand subsystems that perform parts of the tasks we want
the system to perform. Subsystem identification is dramatized by the parable
of the watchmakers (Simon, 1969, pp. 90-93). One watchmaker tries to fashion
a whole watch simply by fitting parts together. Another watchmaker instead
starts with the same parts but puts some of them together into subsystems. Not
until the subsystems are working does he then join them into a watch. The
second watchmaker prospers, while the first has to start all over again whenever
he is interrupted.

Likewise, any major cognitive process needs to be analyzed into sub-
processes. The understanding of the subprocesses then suggests principles that
can also be used in models of a wide variety of other processes. Agreement
on the principles of how to organize neural networks into subnetworks is far
from universal. In part, this reflects the incredible variety of ways in which
any given cognitive function is organized across many biological species
(indeed, phyla) and individuals within these species. In part, it reflects the
variety of theoretical perspectives brought to bear on these problems. Yet, it
is possible to see through this diversity a few subnetwork organizing themes
that are common to network models arising from many sources.

Levine (1989) developed a thought experiment that illustrates two generic
examples of analyzing a mental process into subprocesses. Both examples
relate to main topics of later chapters in this book.

The first example, discussed more fully in Chapter 7, is the categorization
of sensory patterns. Categorization is necessary for an organism or network to
make sense of its environment and make predictions about novel stimuli. For
definiteness, say that the network is processing hand-printed characters and
attempting to match each one to a known letter of the alphabet. The simplest
(although not the only) way to understand this process is to include in the
network some units (“feature nodes”) that respond to presence or absence
of writing at particular locations, and other units (“category nodes”) that
respond to patterns of feature node activation representing particular letters (see
Figure 1.2).
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To carry our thought experiment further, how are feature nodes and category
nodes likely to be connected? If these connections were hard-wired, the
network could not adjust to significant changes in its patterns of activation —
for example, receiving inputs of Japanese or Russian instead of Roman
characters. Hence, it is usually desired that the strength of the connection
between any specific feature node and any specific category node be allowed
to change over time, as a result of repeated activation of the connection. Such
a change is often accomplished by a principle called associative learning;
associative learning laws in neural networks are the main topic of Chapter 3.

Hence, associative learning has been one of the common subnetwork
organizing principles in neural networks from the early 1960s to the present.
There are other important subnetwork principles: many categorization models
particularly rely on a principle called competition. To motivate the idea of
neural competition, consider a sloppily written letter that is ambiguous (, say;
it could either be an E or an F. The network needs a method for deciding which
of the two letters is the more likely one. The feature nodes are activated, to
varying degrees, by the incoming letter, and in turn activate their category
nodes via the internode connections. As shown in Figure 1.2, there is mutual
inhibition between the category nodes. Thus, if both the “E” and “F” nodes
are activated but the activation of the “E” node is greater than that of the “F”
node, the system makes a decision that the letter is an E. Inhibition between
nodes at the same level of the network (in this case, the category level) is often

o O O O
O E O._‘__OF O F, (CATEGORIES)

O. OO O

Signal to /" F, node is
sum of x;w;;

g F, (FEATURES)
00O O

INPUT

FIGURE 1.2 Generic categorization network combining associative learning and
competition.

Source: Modified from Levine, 1989, with permission of Miller Freeman Publishers.
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regarded as competition between the different cognitive entities coded by those
nodes; competition laws in neural networks are the main topic of Chapter 4.

Associative and competitive principles are likely to combine in many other
cognitive processes besides categorization. Our second example is attentional
modulation of conditioning, which is discussed more fully in Chapter 6.
Suppose that a neutral stimulus such as the sound of a bell has become
associated with food. Then how does the animal learn to pay more attention
to the bell than to other neutral stimuli in its environment?

Again, the psychological results suggest the neural network principle of
competition. If different nodes develop representations of sensory stimuli, then
the bell node should somehow “win” a competition with other sensory nodes
for storage in short-term memory.

But how does the competition among sensory representations become
biased in favor of the bell? One plausible answer suggests the neural network
principle of associative learning. Other things being equal, the bell node tends
to be activated because of prior association between the bell and food, or, more
abstractly, between the bell and satisfaction of the hunger drive (see Figure
1.3). Hence, if there is another node representing the primary reinforcer of food
or the hunger drive itself, repeated pairing of the bell and food tends to activate
the bell representation if the animal is hungry. Strengthening pathways based
on pairing of stimuli is an example of associative learning.

The thought experiment described here illustrates the potential of network
theories to unify disparate areas of psychology. In the early to middle twentieth
century, the behaviorist school was ascendant in academic psychology, with
its focus on outwardly measurable performance and its distrust of any
consideration of internal states, beliefs, or self-reports. But Behaviorism was
challenged in the 1960s and 1970s with the rise of cognitive psychology,
whereby internal states became of paramount importance (Reisberg, 2016,
Chapter 1). The thought experiment tells us that classical conditioning, a major
concern of the behaviorists, and categorization, which falls into the cognitive
realm, can be understood using different combinations of the same theoretical
“building blocks.”

In the course of this exposition, a few other major subnetwork organizing
principles emerge besides association and competition. One of these principles
is opponent processing. This means that neural architectures are organized into
pairs of pathways with opposite significance (e.g., light and dark, or reward
and punishment) in such a manner that a sudden decrease in activity of one
pathway transiently activates the opposing pathway. Like association and
competition, opponent processing plays a role in some of the conditioning
models discussed in Chapter 6 and some of the categorization models discussed
in Chapters 7 and 8.

All these principles have been suggested by a heterogeneous database that
is partly physiological and partly psychological. In some cases, the theory was
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TOUCH

FIGURE 1.3 Generic selective attention network combining associative learning and
competition. Filled semicircles represent learnable connections. The larger semicircle
on the path from food to bell represents a connection strengthened by learning, based
on pairing of the bell with food. This biases competition among light, touch, and bell
nodes in the bell’s favor.

Source: Modified from Levine, 1989, with permission of Miller Freeman Publishers.

first suggested by psychological results and later, at least qualitatively,
supported neurophysiologically. An example is associative learning theory.
Hebb (1949), inspired by Pavlovian conditioning data, proposed that if one
neuron connects to another via a synapse, and the firing of the first neuron is
repeatedly followed by firing of the second, then the synapse should become
strengthened. As discussed in the early part of Chapter 3, examples of neuronal
behavior consistent with this general hypothesis (though not in the precise form
that Hebb had proposed) were discovered first in invertebrates (e.g., Kandel
& Tauc, 1965) and later in vertebrates (e.g., Bliss & Lamo, 1973). More recent
experimental studies, moreover, have partially supported mathematical
variations of Hebb’s learning law proposed by modelers in the 1960s and
1970s.

This book talks rather freely of “representation” by network nodes of
features, categories, or other concepts. There is substantial debate among
philosophers of science as to what a true representation is, either in the brain
or a model (see Bechtel, Mandik, Mundale, & Stufflebeam, 2001; Bechtel,
2008). Bechtel and his colleagues note that the different disciplinary
perspectives of cognitive scientists and neuroscientists have led to different
concepts of representation. They also note that a school of modelers has arisen
that study large networks by means of the mathematical theory of dynamical
systems and have concluded that considering representations of part of a
system detracts from considerations of the whole system (see, e.g., Freeman
& Skarda, 1990).

This book presents models originating from a variety of perspectives and
disciplines, so does not take a position in the philosophical debates about
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representation. I believe, though, that the “tunnel-building” approach described
here helps to unify the varying disciplinary perspectives from neuroscience,
psychology, and cognitive science. Also, the models described in this book
make extensive use of dynamical systems, but in some cases the modelers still
find it a useful simplification to talk about some part of their network being a
representation of some concept.

1.3. Problems, not Trends

This book’s organization is unlike that of most other introductory books on
neural networks. In keeping with its emphasis on modeling the connections
between neuroscience and psychology, the primary organization of the chapters
is by the behavioral and cognitive problems that the neural models were
designed to address. Organization by different trends, approaches, and schools
of modeling is secondary and shows up mainly in the headings of sections and
subsections.

For this reason, such recent trends as deep learning and Bayesian learning
are not treated in separate chapters but as aspects of models that reproduce
specific behavioral and neural capabilities or datasets. Also, because the book
more than its previous editions emphasizes neuroscience and psychology
applications, engineering and machine learning applications are discussed
only insofar as they illuminate the modeling of behavioral and neural
phenomena.

Modelers of psychological phenomena frequently make a distinction
between tokens (specific instantiations of models) and #ypes (generic
instantiations of models) (see, e.g., Wagenmakers, Ratcliff, Gomez, & Iverson,
2004). There has been considerable work on model mimicry, the ability of
one model to account for data generated by a competing model, at the level
of tokens, that is, different parametrizations of a model with a given set of
assumptions. Much of that work is beyond the scope of this book, because the
book concentrates more on types than on tokens. The primary focus is on
discerning the right set of model interactions, before trying to optimize the
numerical strength of those interactions.

1.4. Methodological Considerations

Subnetworks incorporating principles such as associative learning, competition,
and others to emerge in later chapters can be thought of as part of the neural
network modeler’s “tool kit.” So can larger networks that have been developed
by major researchers in the field. Hence, when neural networks are used in
brain modeling, new discoveries on the brain or on biological cognition may
force modifications of a theory rather than abandonment of the entire structure.
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Also, a general qualitative theory may be widely applicable but the detailed
instantiation of that theory may vary enormously between individuals and
species.

The ability to break down many complex networks into functionally
significant subnetworks does not necessarily mean that these subnetworks
should be treated as independent modules, as in early artificial intelligence
models. The function and even structure of each of the smaller networks can
be strongly affected by its interactions with the other smaller networks. For
example, in many models of vision the systems for processing shape, color,
and motion all depend in part on interactions with the others, as is seen in
Chapters 4 and 9.

The models discussed in this book vary in how faithful they are to known
neuroanatomy and neurophysiology. The models discussed in Chapters 69
tend to be more neurobiologically correct or detailed than those discussed in
Chapters 3 and 4, yet many of the models in Chapter 6-9 include parts that
are modifications of subprocess models from the earlier chapters. The units,
or nodes, in neural networks are often regarded as populations of neurons that
are unified in some functional sense (e.g., those cells responsive to light in a
particular part of the visual field, or to the hunger drive). Analogies of these
units to averaged cell types in particular brain areas are quite close at times,
more remote at other times. Hence, the book title uses the broad term neural
and cognitive modeling to encompass models with different degrees of fidelity
to real brain structure. The boundary between more and less “brain-faithful”
networks is a fluid one. In fact, as the above example of associative learning
shows, models that are more “cognitive” than “neural” sometimes lead to
“neural” predictions that are later supported by data.

As neural networks have become popular, it is often asked how much neural
network theory has really accomplished in its efforts to explain neurobiological
data. The problems that neural network theory addresses are complex, and no
single model has yet “cracked” the problem of categorization, or memory, or
decision-making, or emotion. What has happened, instead, is that neural
network theory has been part of a slow, steady increase in overall understanding
of brain and cognitive functions. Hence, I believe that researchers in the field
are justified in saying, in the words of the neural network pioneer Warren
McCulloch, “Don’t bite my finger, look where I am pointing” (McCulloch,
1965, Page xx).

The technological applications of neural networks are somewhat ahead of
the biological modeling applications. Artificial neural networks have achieved
considerable success in diverse areas, such as robotics, speech recognition and
synthesis; decisions on whether to grant mortgage insurance; classification of
some types of medical information, and classification of radar patterns. Yet in
the last ten years the neurobiological modeling has begun to catch up to the
technology.
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Neural network models have led to experimental predictions, most notably
in vision, motor control, and classical conditioning but to a lesser extent in more
opaque areas such as decision-making and the effects of specific mental
illnesses. Since the early 1990s, an increasing number of neuroscience and
psychology laboratories are including computational modeling as part of their
operations and actively testing some of the predictions of their models.

The scientific approach to knowledge, broadly speaking, argues that mental
phenomena should have some mechanistic basis that will eventually be
understandable by human beings. As Wiener (1954, p. 263) said, the faith of
scientists is that nature (including mind) is governed by ordered laws, not by
the capricious decrees of a tyrant like Lewis Carroll’s Red Queen. Neural
network modeling provides the best methodology now available for building
mechanistic theories of mental and psychological functions.

Since all current neural models are subject to modification, this book is
written to give the student or other reader hands-on experience in thinking
about, simulating, and ultimately designing neural networks. It begins in
Chapter 2 with a historical overview of major trends and the roots of current
key ideas. Chapters 3 and 4 review the most important established models of
associative learning and competition, respectively. Chapter 5 reviews some
of the most significant recent findings in cognitive neuroscience. Chapters 6-9,
building in part on some of the network structures introduced in Chapters 3—4,
develop recent models (many of which Ashby and Hélie, 2011, would call CCN
models) that reproduce some of those cognitive neuroscience results.
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HISTORICAL OUTLINE

Faithfulness to the truth of history involves far more than a research . . . into
special facts. . .. The narrator must seek to imbue himself [sic] with the life
and spirit of the time.

Francis Parkman, Pioneers of France in the New World

The abuse of truth should be as much punished as the introduction of falsehood.
Blaise Pascal, Pensées

2.1. Digital Approaches

Neural network modeling as we know it today is partly rooted in the
computer—brain analogy that captured the imagination of 1940s scientists,
based on the fact that neurons are all-or-none, either firing or not firing, just
as binary switches in a digital computer are either on or off. Since that time,
neurophysiological data have indicated that the all-or-none outlook is
oversimplified. Also, in a large number of the neural network models developed
since then the functional units are neuron populations rather than single
neurons. In spite of these technical advances, current approaches still owe many
of their formulations to pioneers from the 1940s, such as McCulloch, Pitts,
Hebb, and Rashevsky.

2.1.1. The McCulloch-Pitts Network

This inquiry essentially began with the classical study of all-or-none neurons
by McCulloch and Pitts (1943). In this article, hidden under some elaborate
symbolic logic, is a demonstration that any logical function can be duplicated
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by some network of all-or-none neurons. That is, a neuron can be embedded
into a network in such a manner as to fire selectively in response to any given
spatiotemporal array of firings of other neurons in the network.

The rules governing the excitatory and inhibitory pathways in McCulloch—
Pitts networks are the following:

1. All computations are carried out in discrete time intervals.

2. Each neuron' obeys a simple form of a linear threshold law: it fires
whenever at least a given (threshold) number of excitatory pathways, and
no inhibitory pathways, impinging on it are active from the previous time
period.

3. Ifaneuron receives a single inhibitory signal from an active neuron, it does
not fire.

4. The connections do not change as a function of experience. Thus the
network deals with performance but not learning.

More general linear threshold laws are considered later in this section, in
reference to the work of Rosenblatt (1962).

An example of an all-or-none neural network is reproduced in Figure 2.1.
This network was designed by McCulloch and Pitts (1943) as a minimal model
of the sensation of heat obtained from holding a cold object to the skin and
then removing it. The cells labeled “/”” and “2” are, respectively, heat and cold
receptors on the skin, whereas heat and cold are felt when cells “3” and “4”
fire, respectively. Each cell has a threshold of 2, hence it fires whenever it
receives two excitatory (arrow) and no inhibitory (filled circle) signals from
other cells active at the previous time.

In the network of Figure 2.1, if a cold object is presented and then removed,
this means that at time 1, the only cell firing is Cell 2. At time 2, Cell 4 fires
because it receives two excitatory signals from Cell 2. Since the cold has been
removed, Cell 2 does not fire again, nor do any of the other cells in the network.
At time 3, Cell B fires because it receives two excitatory signals from Cell 4.
At time 4, the two excitatory signals from B to 3 cause 3 to fire, meaning that
heat is felt. The time sequence of firing patterns is shown in Table 2.1(a). In
contrast, consider the same network’s response to the cold object being on the
skin continuously, as shown in Table 2.1(b). At time 2, Cells 2 and 4 will both
be firing. At time 3, Cell B will not fire because the inhibitory signal from Cell
2 prevents B’s firing in response to 4. Cell 4, however, will fire because it
receives excitation from both Cells 2 and A4; hence, cold will be felt.

The McCulloch—Pitts model, although it uses an oversimplified formulation
of neural electrical activity patterns, presages some issues that are still
important in current cognitive models. For example, some of the best known
modern connectionist networks contain three types of units or nodes — input
units, output units, and hidden units. The input units react to particular data
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features from the environment (e.g., “cold object on skin,” “black dot in upper
left corner,” “loud noise to the right”). The output units generate particular
organismic responses (e.g., “I feel cold,” “the pattern is a letter A,” “walk to
the right”). The hidden units (a term popularized by Rumelhart & McClelland,
1986a) are neither input nor output units themselves but, via network
connections, influence output units to respond to prescribed patterns of input
unit firings or activities. The input—output—hidden trilogy can at times be seen
as analogous to the distinction between sensory neurons, motor neurons, and
all other neurons (interneurons) in the brain. At other times, though, a model
neural network is designed to represent a small part of a larger behavioral
process. The output may therefore not be a motor output but a particular internal
state, such as a categorization or an emotion, which could be preparatory to a
present or future motor response.

Note that, in the McCulloch—Pitts network of Figure 2.1, there are already
input units (Cells / and 2), hidden units (Cells 4 and B), and output units (Cells
3 and 4). This distinction becomes explicit in more sophisticated linear
threshold networks that are discussed below. In particular, the perceptrons
developed by Rosenblatt (1962) contained units classified as “sensory,”
“associative,” or “response.”

Another cognitive issue raised by the “feel hot when cold is removed”
network of Figure 2.1 is how to create output unit responses to given inputs
that depend on the context of previous inputs. Specifically, this network
responds to difference of the present input from a previous one; this may be
called temporal contrast enhancement, by analogy with the spatial contrast
enhancement (particularly observed in visual responses), which is a main topic

2 .\ 4
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FIGURE 2.1 Example of an all-or-none network. Neurons labeled “/” and “2” are heat
and cold receptors on skin. Heat and cold are felt when neurons “3” and “4” are active,
respectively. Each neuron has threshold 2. A cold object held to the skin and then
removed causes a sensation of heat.

Source: Adapted from Mathematical Biosciences, 66, D. S. Levine, Neural population modeling and
psychology: A review, 1-86, copyright 1983, with permission from Elsevier Science.
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of Chapter 4. Various forms of temporal contrast enhancement have been
combined with learning in many neural network models (e.g., Barto, Sutton,
& Watkins, 1990; Bear, Cooper, & Ebner, 1987; Brown, Bullock, & Grossberg,
1999; Grossberg, 1972b, 1972c; Grossberg & Schmajuk, 1987; Klopf, 1986;
Seymour et al., 2004; Suri & Schultz, 2001; Sutton & Barto, 1981). Some of
these networks model such psychological effects as a motor act becoming
rewarding when it turns off an unpleasant stimulus (relief), the withholding of
an expected reward being unpleasant (frustration), and the reward value of food
being enhanced if the food is unexpected (partial reinforcement acquisition
effect).

McCulloch and Pitts also confronted the issue of how memory is stored.
Figure 2.2(a) shows a network of the McCulloch—Pitts type in which a neuron
fires if a given input (say, a light) is on for three time units in a row. A similar
network can easily be constructed to respond to any fixed number of
consecutive occurrences of an input. Figure 2.2(b) shows a network in which
a neuron is made to fire if the light has been on at any time in the past. Note
that the mechanism for such memory storage is a reverberatory circuit. The
concept of reverberation remains central to the understanding of memory today,
and some advantages and limitations of the mechanism are discussed below.

McCulloch and Pitts noted the absence of a precise sense of timing in their
model (1943): “the regenerative activity of constituent circles renders reference

Time Cell 1 Cell 2 Cell a Cell b Cell 3 Cell 4
1 No Yes No No No No
2 No No Yes No No No
3 No No No Yes No No
4 No No No No Yes No
FEEL
HOT
(a)
Time Cell 1 Cell 2 Cell a Cell b Cell 3 Cell 4
1 No Yes No No No No
2 No Yes Yes No No No
3 No Yes Yes No No Yes
FEEL
COLD
(b)

Table 2.1 Firings of neurons in the network of Figure 2.1 at successive time steps.
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FIGURE 2.2 Two more all-or-none neural networks. In both networks, neuron “/”
responds to a light being on. (a) Each neuron has threshold 3, and neuron “2” fires after
the light has been on for three time units in a row. (b) Neuron “2,” which has threshold
1, fires if the light has ever been on in the past.

indefinite as to time past” (p. 130). To them, this makes the model useful in
certain ways: “This ignorance, implicit in all our brains, is the counterpart of
the abstraction which renders our knowledge useful” (p. 131). Yet obviously
a sense of timing is necessary for some other cognitive processes. For those
processes, it is necessary to include, as later models do, the possibility of
changing connection strengths over time.

2.1.2. Early Approaches to Modeling Learning: Hull and Hebb

At the same time that McCulloch and Pitts were developing a neural network
formalism, psychologists were starting to consider mechanistic frameworks for
studying learning and memory. This led to consideration of the issue of whether
short-term memory (STM) can be distinguished from long-term memory
(LTM). Hull (1943) proposed that the two memory processes involved the
storage of two sets of traces. For example, consider the classic experiment of
Pavlov (1927), where a bell is repeatedly paired with food until a dog salivates
to the bell alone. After the experiment is stopped, conscious memory of the bell
will be gone, since the dog is concentrating on other things. The memory of the
bell-food association, however, will still be present, enabling the dog to
salivate quickly on the next presentation of the bell. Hull thus distinguished
between stimulus traces subject to rapid decay and associative strengths
(or, in his terms, habit strengths) able to persist over a longer time period.

Hull’s stimulus traces can be considered as the amounts of activity of
particular nodes or functional units in a neural network. His associative
strengths, then, are the strengths of connections between nodes. This suggests
first that such connection strengths should change with experience, and second
that they should correspond to some variable related to the synapse, or junction
between neurons.

Hebb (1949) interpreted these memory issues with a theory that attempted
to bridge psychology and neurophysiology. He declared that reverberatory
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feedback loops, which had been suggested as a memory mechanism by
McCulloch and Pitts (1943), could be a useful mechanism for STM but not for
LTM. Concerning traces arising in such reverberatory loops, Hebb (1949) said:
“Such a trace would be unstable. A reverberatory activity would be subject to
the development of refractory states in the cells of the circuit in which it occurs,
and external events could readily interrupt it” (p. 61). He was one of the first
to recognize that a stable long-term memory depended on some structural
change. But at the same time, he proposed (1949) that “A reverberatory trace
might cooperate with the structural change and carry the memory until the
growth change is made” (p. 62, author’s italics).

Hebb went on (1949) to describe a hypothesis for the structural change
involved in long-term memory:

When the axon of cell 4 is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A4’s efficiency, as one
of the cells firing B, is increased.

(p. 62)

As for the nature of the structural change, Hebb proposed that if one cell
repeatedly assists in firing another, the knobs of the synapse between the cells
could grow so as to increase the area of contact (see Figure 2.3). The idea that
learning is based on changes at neuronal connections goes back to Freud
(1895/1953), who suggested it on intuitive grounds before enough neuroscience
was known to provide a basis for it — in fact, before what we know now about
synapses had been established. The notion of the synapse between two neurons
as the nervous system’s primary communication link was developed soon
afterward by Sherrington (1906/1947), who coined the term “synapse” and
established that neurons were physically separate from one another.

Neurophysiological data have suggested that actual growth of synaptic
knobs can sometimes occur (e.g., Anderson et al., 1989; Bourne & Harris,
2008; Robinson & Kolb, 1999; Trommald, Hulleberg, & Anderson, 1996;
Tsukahara & Oda, 1981). More frequently, as seen in Chapter 3, there has been
experimental support for cellular and synaptic processes that do not involve
gross structural changes but that alter the effective strength of connections in
other ways. Such processes can embody an associative rule such as Hebb’s for
changes in connection strength between cells. This has led various neural
network modelers, starting in the 1960s, to develop networks with rules
whereby a connection weight (i.e., synaptic efficacy) increases with repeated
pairing of presynaptic and postsynaptic activities; such rules are often called
Hebbian rules in homage to Hebb’s hypothesis.

There has also been extensive theoretical work on alternative rules for
learning of connection weights and network modeling based on these rules.
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FIGURE 2.3 Diagram of Hebb’s structural change hypothesis. The synaptic knob from
presynaptic cell A to postsynaptic cell B gets larger after firing of A is repeatedly
followed by firing of B.

Source: Adapted from Mathematical Biosciences, 66, D. S. Levine, Neural population modeling and
psychology: A review, 1-86, copyright 1983, with permission from Elsevier Science.

For example, sometimes the connection weight changes as a function of
change in either presynaptic or postsynaptic activity. Or sometimes the
connection weight changes in a direction designed to make the network emit
a desired response, typically a response determined at a different location in
the network from the connection. More recently, learning rules have been
developed whereby the weight changes are sensitive to the timing of
presynaptic and/or postsynaptic spikes (see Section 3.5).

Various researchers commented that Hebb’s rule proposed a way for
connection strengths to increase, but the nervous system could become unstable
if there was not a corresponding way for connection strengths to decrease.
Though Hebb himself was aware of this issue, the first author to propose a rule
of decrease complementary to Hebb’s was probably Stent (1973), who also
suggested detailed physiological mechanisms for implementing both Hebb’s
rule and his own. Stent’s complementary rule was:

When the presynaptic axon of cell A repeatedly and persistently fails
to excite the postsynaptic cell B while cell B is firing under the influ-
ence of other presynaptic axons, metabolic change takes place in one
or both cells such that A’s efficiency, as one of the cells firing B, is
decreased.

Later work on physiological mechanisms for variations on both Hebb’s and
Stent’s rules is discussed in Section 3.1.
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In the early days of neural network modeling, considerable attention was
paid to incorporating Hebb’s rule and others for learning into a network of all-
or-none neurons similar to that of McCulloch and Pitts. The modelers building
adaptive networks of this variety included Rosenblatt (1962), Widrow (1962),
and Selfridge (1959). In these networks, the McCulloch—Pitts form of the linear
threshold law was generalized to laws whereby activities of all pathways
impinging on a neuron are computed and the neuron fires whenever some
weighted sum of those activities is above a given amount.

2.1.3. Rosenblatt’s Perceptrons

The work of Rosenblatt was particularly influential and anticipated many of
the themes of modern adaptive networks such as those of the PDP research
group (cf. Rumelhart & McClelland, 1986a) and deep learning (Hinton,
Osindero, & Teh, 2006; Schmidhuber, 2015). In fact, the latter type of network
is often called multilayer perceptrons. The main function he proposed for his
perceptrons was to make and learn choices between different patterns of
sensory stimuli.

Rosenblatt set out to study the pattern classification capabilities of networks
of sensory (S), associative (4), and response units (R) with various structures
of active connections between units. Figure 2.4 shows examples of perceptrons
with four possible connection structure types. These types are, in order, three-
layer series-coupled (connections one-way from S to A4 to R); multilayer
series-coupled (connections from S to one level of 4 to another level of 4 to
R); cross-coupled (like three-layer series-coupled with the addition of cross
links between A-units), and back-coupled (like series-coupled with the addition
of feedback links from R- to 4-units).

Rosenblatt first considered what he called elementary perceptrons (see the
end of this chapter for the mathematical definition). An elementary perceptron
is series-coupled, with connections only from S- to A-units and from 4- to
R-units, with only one R-unit.

Rosenblatt’s book consisted of descriptions of a large number of math-
ematical and computer experiments on how well these different types of
networks could either classify or generalize sensory patterns. The approach to
modeling was described as genotypic rather than monotypic. These terms were
defined as follows (Rosenblatt, 1962):

Instead of beginning (“monotypic”) with a detailed description of
functional requirements and designing a specific physical system to
satisfy them, this approach (“genotypic”) begins with a set of rules for
generating a set of physical conditions, and then attempts to analyze their
common functional properties.

(p.- 22)
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FIGURE 2.4 Examples of some classes of perceptrons: (a) three-layer series-coupled;
(b) multilayer series-coupled; (c) cross-coupled; (d) back-coupled.

Source: Adapted from Mathematical Biosciences, 66, D. S. Levine, Neural population modeling and
psychology: A review, 1-86, copyright 1983, with permission from Elsevier Science.

The learning rules for perceptrons, which Rosenblatt called the reinforce-
ment system, were influenced by ideas of Hebb (1949). He distinguished
two major types of reinforcement systems, alpha versus gamma systems. In
the alpha system, all active connections terminating on a given active cell are
changed by equal amounts, whereas inactive connections are not changed at
all. In the gamma system, the total value of connection strengths is conserved,
so that inactive connections are decreased while active ones are increased.

The amount of the connection change associated with reinforcement was a
value 0 determined by one of three training procedures. In a response-
controlled system, the magnitude of d is constant and its sign is determined by
the response (that is, by the vector of R-element activities). In a stimulus-
controlled system, the magnitude of 8 is again constant but its sign is determined
by the stimulus (that is, by the vector of S-element activities). In an error-
correcting system, 9 is 0 unless the response is determined elsewhere to be
“incorrect.” Also, reinforcement can be either positive or negative, that is, going
in either the same direction as or the opposite direction to the current response.?

2.1.4. Some Experiments With Perceptrons

Rosenblatt (1962) ran simulation experiments in which these different types
of perceptrons were taught to discriminate classes of stimuli. A number of
distinctions were found between the capabilities of perceptrons with different
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reinforcement rules and different training procedures, distinctions which are
now mainly of historical interest. Not surprisingly, the perceptrons with error-
correcting reinforcement converged faster than those with either stimulus-
controlled or response-controlled reinforcement. Reinforcement rules of the
error-correcting type were concurrently developed by Widrow and Hoff (1960)
and are still used widely (e.g., Abdi, Valentin, Edelman, & O’Toole, 1996;
Anderson & Murphy, 1986; Bullock & Grossberg, 1988, 1989; Cohen &
Servan-Schreiber, 1992; Pineda, 1995; Stone, 1986).

As for the distinction between alpha and gamma reinforcement, the results
of the simulation experiments were equivocal. A slight advantage was found
for the gamma rule if the various stimuli presented were of unequal size or
frequency, whereas the alpha rule seemed to carry some advantage if the system
included an error correction mechanism. Conservation laws similar to the
gamma rule have been used in more recent neural networks. Rosenblatt found
that the conservation rule made the network’s responses more likely to be
stable. This same property was used in later neural network models by
Malsburg (1973) and Wilson (1975), both of whom thought this “principle
of constant synaptic strengths” could be explained in terms of conservation of
some chemical substance at or near synapses. Synaptic conservation has
continued to appear in more recent network models, such as the model by Choe
and Miikkulainen (2004) of contour perception in the visual cortex.

In one of Rosenblatt’s major experiments (see Figure 2.5), the S