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xv

Preface

Orthogonal frequency-division multiplexing (OFDM) has been widely used 
for Wi-Fi communications. It also has application in digital audio broadcast-
ing (DAB), digital video broadcasting (DVB), and the 4G Long Term Evolu-
tion (LTE) cellular system. Its major characteristic is to use many subcarriers 
for data modulation. In comparison with a single-carrier scheme, the major 
advantage is its ease in handling a dispersive fading channel. Currently, Wi-Fi 
is provided in many places including homes, hotels, airports, and shops. A 
variety of terminal devices including laptops, personal computers, cameras, 
televisions, and media players have a Wi-Fi interface for internet access.

Wi-Fi digital communications are based upon several IEEE 802.11 stan-
dards. The 802.11a specifies a maximum data rate of 54 Mbps. The 802.11g 
has a similar OFDM modulation to 802.11a. The 802.11n uses a combina-
tion of OFDM and multiple-input multiple-output (MIMO) technology to 
transmit up to four spatial streams to achieve a peak data rate of 600 Mbps. 
The 802.11ac is a further upgrade of 802.11n aiming at a data rate in the 
gigabit range.

The goal of this book is to provide a fundamental understanding of the 
receiver design applying OFDM technology. One distinct feature of this book 
is the extensive simulation study of an algorithm. The simulation program 
was written in C running on an Ubuntu Linux operating system. Because of 
the simulation needs, a transmission waveform must be selected. In spite of 
several IEEE standards mentioned above, the OFDM principle remains the 
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xvi Introduction to OFDM Receiver Design and Simulation

same. The transmission waveform specified in 802.11a was chosen. Once the 
reader has an understanding of the design concepts based upon 802.11a, a 
similar principle can be easily extended to other OFDM waveforms.

For example, the next generation cellular wireless digital communica-
tion is 5G (fifth generation), which is emerging. The 5G technology provides 
much higher speed and is capable of connecting a massive number of devices. 
The Third Generation Partnership Project (3GPP), the standards body behind 
cellular 5G, has again adopted OFDM. Therefore, an understanding of basic 
OFDM will help with stepping into the 5G era.

From Chapters 8 to 12, many simulation examples are provided. Besides 
the simulation study, detailed derivations leading to the final formula for any 
algorithm are given. In doing it this way, the reader can clearly understand the 
approximations and conditions behind the formulas and apply them in the 
correct way. If some important intermediate derivations are omitted, it is very 
difficult to understand any algorithm. The emphasis is not on mathematics, 
but includes enough to grasp the concepts behind the formula.

For any design topic used in the receiver, there can be many algorithms 
in the literature. Only algorithms that were required for illustration and 
comparison were provided to not confuse the reader. In most cases, only one 
algorithm that is most promising from the simulation study was given. In 
addition to the simulations, examples were provided in many cases to help to 
understand the design subject. Therefore, this book is ideal for undergraduate 
seniors, graduate students, engineers, and even professors who would like to 
start understanding the OFDM technology.

This book is organized into 12 chapters. Chapter 1 provides the basics 
of digital signal processing. We start with discrete time signals generated by 
sampling an analog waveform. Next, Fourier series representation is given. 
From its spectrum, the requirement for perfect analog signal reconstruction 
is derived and that leads to the sampling theorem. The discrete Fourier trans-
form, inverse discrete Fourier transform, and an interpolation formula that 
can reconstruct an analog signal based upon the discrete samples are then 
subsequently derived.

The discrete Fourier transform has an important time and frequency 
relationship and is presented. In addition, some operations including linear-
ity, time shift, frequency shift, and circular convolution are discussed. The 
real-time signal has interesting symmetry properties that are illustrated. 
Lastly, the z-transform and its usage to specify a time invariant linear system 
are provided.

Chapter 2 reviews the single-carrier modulation techniques. The ana-
log modulated signal is first shown to be a bandpass signal. Its information 
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carrying a baseband signal is further represented in terms of the in-phase and 
quadrature-phase components. Based upon how the phase, frequency, and 
amplitude are modulated, different modulation techniques are discussed. 
They include phase shift keying (PSK), quadrature phase shift keying (QPSK), 
16-QAM (quadrature amplitude modulation), 64-QAM, and frequency shift 
keying (FSK). Pulse-shaping waveforms are also discussed. They include sinc 
and raised cosine waveforms.

Chapter 3 introduces the multicarrier OFDM modulation. Through 
inverse Fourier transform, the serial bit stream is converted into a multicar-
rier modulated waveform. Several OFDM waveform characteristics such 
as orthogonality among subcarriers, cyclic prefix, fast Fourier transform 
(FFT), classical spectrum, and peak-to-average power ratio (PAPR) are 
explained in detail through derived equations. The modified rectangular 
window used in IEEE 802.11a is presented. To show its spectral properties, 
the discrete Fourier spectrum is derived. Lastly, the single-carrier modula-
tion technique in Chapter 2 is applied to modulate each subcarrier in the 
frequency domain.

Chapter 4 presents the OFDM transmitter signal format, which can 
be different depending upon the applications and the standard. To give the 
reader some basic concepts, the format specified by the IEEE 802.11a is 
followed. First, a general transmitter and receiver architecture is discussed. 
Next, a preamble signal that aids in signal detection and synchronization is 
given. For the IEEE 802.11a, it consists of both a short sequence and a long 
sequence that are periodic in nature. After the preamble is a header, which 
informs the receiver of the selected modulation method, and finally, is the 
source data transmission.

Chapter 5 centers on the shift register sequence and the scrambler. The 
source data from the transmitter can be scrambled for security protection. 
Since the IEEE 802.11a specifies a pseudo-noise sequence for data scrambling, 
its generation technique is given in detail. First, both a binary field having 
only two elements and a Galois field having 2m elements are reviewed. The 
binary field performs an operation of modulo 2 while a Galois field performs 
a modulo operation over a primitive polynomial. Next, a sequence generator 
through polynomial division to generate a periodic sequence with a desired 
period is presented. The period obtained through an inverse polynomial is 
illustrated. The maximum length sequence that generates a maximum period 
using a primitive polynomial is also discussed. Having the periodic sequence 
generated, the scrambler is just the exclusive-OR operation between the source 
data bit sequence and the periodic sequence. The descrambler in the receiver 
has just a similar operation.
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Chapter 6 discusses the radio-wave propagation loss through the media 
and the receiver front-end noise. Both a large-scale model and a small-scale 
model for the propagation loss are discussed. The large-scale model includes a 
free-space model and a two-ray mode. An empirical model that can fit many 
indoor and outdoor propagation losses is also presented. The small-scale model, 
including both time dispersion and frequency dispersion, is given. The time 
dispersion further discusses the flat channel and the frequency-selective chan-
nel, while the frequency dispersion discusses both the slow channel and the 
fast channel. A Clark fading model with Rayleigh distribution for the received 
envelope is also given.

After the propagation loss, the receiver noise is discussed to compute the 
signal-to-noise ratio. The amplifier noise model, cable loss model, and thermal 
noise from the receiver front end are all presented. The noise factor that can be 
used to generate an equivalent temperature for these devices is included. An 
equivalent temperature referred to the antenna through a cascade of ampli-
fiers, cables, and receivers is derived. Based upon the transmitter power, the 
received power, and the loss prediction, the range estimate can be obtained.

Chapter 7 concentrates on error correction codes that are necessary to 
correct the transmission errors from the channel. Two classes of codes are 
covered: the block code and the convolutional code. For the block code, the 
first is the linear block code, which covers the generator matrix, parity check 
matrix, syndrome matrix, and error correction. The second is the cyclic code, 
which operates on polynomials. The topics covered are the generator polyno-
mial, syndrome polynomial, and error correction. The Hamming code, which 
is a special case of linear block codes, is also discussed.

For the convolutional code, both an encoder and a decoder using a Vit-
erbi algorithm are discussed. The convolutional code used in the IEEE802.11a 
is also analyzed. Another special case is the punctured convolutional code, 
which is derived from the rate 1/2 convolutional code. Both rate 2/3 and rate 
3/4 punctured codes are illustrated in detail.

The last topic covered is the interleaver, which is also widely used to 
decrease burst errors. The special interleaver and deinterleaver used in the 
IEEE 802.11a are also illustrated.

Chapter 8 covers the OFDM signal detection using the preamble wave-
form. After direct IQ conversion, three detection metrics including cross-corre-
lation, minimum mean square error (MMSE), and normalized cross-correlation 
are analyzed. A simplified algorithm from the maximum likelihood detection 
is derived and justified through simulation. All three metrics are compared 
using this algorithm.
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The detection includes both coarse detection and fine detection. The 
coarse detection is done in two steps. The first step is the segment detection 
for fast detecting the periodic segment in the preamble waveform. The second 
step is the sample detection to narrow down the detection error in samples, 
followed by the fine detection to pinpoint the sample onset.

Chapter 9 deals with synchronization issues in the receiver. The topics 
covered include direct current (DC) offset, carrier frequency offset, frame 
timing offset, sampling clock offset, and in phase and quadratic phase (IQ) 
imbalance. For the sampling clock offset, the formulas in the acquisition mode 
using the preamble waveform and the tracking mode from using the pilot 
carriers in the data symbols are demonstrated. All the issues were analyzed 
and derived in detail without omitting any intermediate steps. The possible 
approximations and conditions are clearly illustrated. Simulation examples 
are also given to help to understand each topic.

Chapter 10 concentrates on channel estimation. Two types of pilot 
patterns are analyzed. They are the block type and the comb type, which are 
mainly used for slow- and fast-varying channels, respectively. The channel 
estimate for the block type is though discrete Fourier transform (DFT). For 
the comb type, it is though interpolation of a few pilot carriers inside each 
data symbol. Using the Lagrange interpolation formula, linear interpolation, 
parabolic interpolation, and cubic interpolation are discussed. The channel 
can also be adaptively tracked through the use of the least mean square (LMS) 
algorithm, which is derived in detail using the method of steep descent. The 
condition for convergence is also derived.

Chapter 11 talks about the decoding process. After the channel effect 
is removed, the data demodulation follows. Both hard decision decoding and 
soft decision decoding are discussed. For the hard decision decoding, either 
a brute-force approach or a simplified approach can be applied. The brute-
force approach has to compute the Euclidean distances for all the constella-
tion points. However, the simplified approach can determine each in-phase 
and quadrature-phase bits individually by using a simple logic that is derived 
for QPSK, 16-QAM, and 64-QAM. After the demodulation is complete, 
deinterleaving, error correction decoding, and descrambling discussed in the 
previous chapters follow. For the soft decision decoding, the received in-phase 
and quadrature samples are combined with Viterbi decoding to generate cor-
rected output sequence. Both the Euclidean distance and the log likelihood 
ratio (LLR) used for the distance metric are discussed.

Chapter 12 performs the simulation study of the OFDM performance in 
a multipath channel. First, the time-varying multipath channel is characterized. 
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xx Introduction to OFDM Receiver Design and Simulation

Then the transmitter and receiver architecture used for simulation are reviewed. 
The simulation consists of two parts. The first part is the OFDM performance 
in an additive white Gaussian noise, (AWGN) channel. The performance of 
binary phase shift keying (BPSK), QPSK, 16-QAM, and 64-QAM are com-
pared using a 1/2 convolutional code. The study using punctured convolutional 
code is also conducted. The second part is the simulation study of OFDM in a 
multipath channel with the use of a 1/2 convolutional code. The channel also 
has fading and a simulation model is provided. The block pilot pattern together 
with LMS algorithm-channel tracking are of particular interest. Various fad-
ing strength and block pilot periods are used for performance comparisons.
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1

1
Discrete Time Signals and Discrete 
Fourier Transform

1.1 Introduction

In digital communication, the input signal is digitized, processed, and modu-
lated before going through a digital-to-analog converter in order for transmis-
sion. For example, the input speech from a microphone is digitized first before 
encoding and modulation. This analog signal can be perfectly reconstructed 
if an appropriate sampling rate is specified.

Orthogonal frequency division multiplexing (OFDM) is a frequency-
domain modulation technique and will be discussed in later chapters in detail. 
The major operation of OFDM is fast Fourier transform (FFT), which is a 
fast computation method of discrete Fourier transform (DFT). In prepara-
tion for understanding OFDM, all the steps from discrete time signals to 
DFT and sampling theorem are reviewed. The major operations of DFT are 
also discussed.

The z-transform, which is useful in specifying the time-invariant system 
response, is also briefly reviewed.
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2 Introduction to OFDM Receiver Design and Simulation

1.2 Discrete Time Signals

An analog signal is a time continuous waveform. If this signal is sampled 
with a time period T, then a sequence of samples is obtained. The sampling 
frequency fs is just the inverse of the T or 1/T. Figure 1.1 shows the analog 
waveform x(t) and the sampled values at nT where n is an integer.

The sampling pulse is assumed to have a negligible width and is repre-
sented by the impulse delta function, p(t). The Dirac delta function δ(t) given 
below is 1 at t = 0 and 0 elsewhere:

 
p(t) = d(t − nT )∑  (1.1)

Figure 1.2 shows such an impulse delta function. Note that p(t)is zero 
except at the sampling instant nT. The discrete time signal x(t) is then repre-
sented by the following formula [1, 2]:

 x(t) = xa(t) p(t)  (1.2)

 
= xa(nT )d(t − nT )∑  (1.3)

where xa(t) is a corresponding analog signal. The discrete signal x(t) only has 
the sequence of values x(T ), x(2T ), x(3T ), and so forth, assuming that the 
sampling time is greater than zero.

1.3 Fourier Series Representation

Since p(t) is a periodic function with period T, it can be represented by a Fou-
rier series given below [2]:

 
p(t) = ane jnΩst∑  (1.4)

Figure 1.1 An analog signal x (t) sampled with period T.
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 Discrete Time Signals and Discrete Fourier Transform 3

where ΩS is the radian sampling frequency defined as

 
Ωs = 2pf s =

2p
T

 (1.5)

The coefficient an is in general complex. From (1.4), it is clear that p(t) = 
p(t + kT ) where k is an integer. Multiplying both sides of (1.4) by e−jmΩst and 
integrating from −T/2 to T/2, we have

 
p(t)e− jmΩst dt

−T /2

T /2

∫ = am dt
−T /2

T /2

∫ + ame− j(m−n)Ωst

n≠m
∑⎛⎝⎜

⎞
⎠⎟

dt
−T /2

T /2

∫  (1.6)

The second term on the right side of (1.6) integrates to 0 for m ≠ n. The 
coefficient an is then given by

 
an = 1

T
p(t)e− jnΩst dt

−T /2

T /2

∫  (1.7)

Substituting (1.1) into (1.7), we have an = 1/T. The impulse function in 
(1.4) then becomes

 
p(t) = 1

T
⎛
⎝⎜

⎞
⎠⎟ e jnΩst∑  (1.8)

Substituting (1.8) to (1.2), the discrete time function x(t) is then given by

 
x(t) = 1

T
⎛
⎝⎜

⎞
⎠⎟ xa(t)e jnΩst∑  (1.9)

Figure 1.2 Impulse delta function.
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4 Introduction to OFDM Receiver Design and Simulation

Equation (1.9) is the Fourier series representation of the discrete time 
signal x(t). Let f represent the frequency and then the analog radian frequency 
Ω = 2π f. The Fourier transform of y(t)ejat is just Y(Ω − a). Assuming the Fou-
rier transform of xa(t) to be Xa(Ω), then the Fourier transform of xa(t)ejnΩst 
becomes Xa(Ω − nΩs). By taking the Fourier transform on both sides of (1.9), 
the frequency-domain relationship given by (1.10) is obtained:

 
X (Ω) = 1

T
⎛
⎝⎜

⎞
⎠⎟ Xa Ω− nΩs( )∑  (1.10)

Equation (1.10) shows that the sampled spectrum is a summation of the 
shifted spectrum of the analog signal by nΩs. In other words, the sampled spec-
trum is periodic in the frequency domain with period equal to the sampling 
frequency Ωs. Figure 1.3 shows an analog spectrum with cutoff frequency Ωc.

Figure 1.4 shows the sampled spectrum under the assumption that 
Ωs > Ωc. The spectrum is periodic with a period of Ωs. The analog spectrum 
can be completely recovered without aliasing in the baseband. However, there 
will be aliasing and spectral distortion if Ωs < Ωc. According to Figure 1.4, 
the minimum sampling rate such that no spectral distortion occurs is to meet 
the following condition:

Figure 1.3 Band-limited spectrum of the analog signal xa(t).

Figure 1.4 Sampled spectrum of the analog signal xa(t).
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 Discrete Time Signals and Discrete Fourier Transform 5

 nΩs − Ωc = (n −1)Ωs +Ωc  (1.11)

After some simple algebra from (1.11), the minimum sampling rate is 
given here:

 Minimum of Ωs = 2Ωc  (1.12)

Equation (1.12) is the well-known result and states that the minimum 
sampling rate must be twice the cutoff frequency of the analog signal to com-
pletely reconstruct the original signal without any spectral distortion. The 
sampling rate given in (1.12) is also the Nyquist rate.

1.4 DFT

The DFT [1, 2] is derived by first taking the Fourier transform on both sides 
of (1.3) to have the following:

 
x(t)e− jΩt dt

−∞

∞

∫ = xa(nT )d(t − nT )e− jΩt dt
−∞

∞

∑
−∞

∞

∫  (1.13)

Expressing the left term by X(Ω), we have

 

X (Ω) = xa(nT ) d(t − nT )e− jΩt dt∫∑
= xa(nT )e− jΩnT∑

 (1.14)

Defining a radian frequency ω which is related to the analog frequency 
Ω through the following relationship:

 w = ΩT  (1.15)

Using (1.15), (1.14) then becomes

 

X (w) = xa(nT )e− jwn∑
= xne− jwn∑

 (1.16)

where we have represented xa(nT ) by xn which is the nth sample of the analog 
signal xa(t). Equation (1.16) is the Fourier transform of the discrete samples xn.
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6 Introduction to OFDM Receiver Design and Simulation

The Fourier transform X(ω ) is periodic with period of 2π . The ω  can 
be divided into N spectral components. Since ω  ranges from 0 to 2π , ω  can 
be written as

 
w = 2pk

N
k = 0,1,…, N −1  (1.17)

where k is the kth radian frequency component and ranges from 0 to N − 1. 
Substituting (1.17) into (1.16), we have

 
Xk = xne− j2pnk/N

n=0

N−1

∑ k = 0,…, N −1  (1.18)

Equation (1.18) defines the DFT of the discrete time sequence xn. The 
sequence Xk is periodic with a period of N as evidenced by the fact that 
Xk = Xk+N. Therefore, there are only N unique values of Xk.

To obtain the coefficients x(n) from Xk, we multiply both sides of (1.18) 
by the complex exponential ej2πmk/N and summing k from 0 to N − 1 and 
obtain the following:

 
Xke j2pmk/N

k=0

N -1

Â = xne- j2pnk/N e j2pmk/N

n=0

N -1

Â
k=0

N -1

Â  (1.19)

Interchanging the order of summation on the right side of (1.19), we have

 
Xke j2pmk/N

k=0

N−1

∑ = xn e− j2p(n−m)k/N

k=0

N−1

∑⎛⎝⎜
⎞
⎠⎟n=0

N−1

∑  (1.20)

Equation (1.20) can be simplified using the following relationship:

 
e− j2prk/N

k=0

N−1

∑ = N for r = jN , j  an integer
0 otherwise{  (1.21)

Equation (1.20) then becomes

 
xm = 1

N
Xke j2pmk/N

k=0

N−1

∑ m = 0,…, N −1  (1.22)

Replacing the index m by n, the following equation results:
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xn = 1

N
Xke j2pnk/N

k=0

N−1

∑ n = 0,…, N −1  (1.23)

The sequence xn is also periodic with a period N and xn = xn+N. Therefore, 
there are only N unique values of xn. Equations (1.18) and (1.23) constitute 
the DFT pairs.

1.5 Sampling Theorem and Signal Interpolation

To derive the sampling theorem [1−3], we start with the following continuous 
Fourier transform:

 
xa(t) = 1

2p
⎛
⎝⎜

⎞
⎠⎟ Xa(Ω)e jΩt dΩ∫  (1.24)

From (1.12), the minimum sampling rate is Ωs = 2Ωc. This gives Ωc = 
Ωs/2 = π /T. In the baseband, the range of Ω is then −π /T < Ω < π /T from 
Figure 1.3. From (1.10), Xa(Ω) = TX(Ω) inside this baseband and the follow-
ing equation results:

 
xa(t) = T

2p
⎛
⎝⎜

⎞
⎠⎟ X (Ω)e jΩt dΩ
−p/T

p/T

∫  (1.25)

Substituting (1.14) into (1.25), we have

 
xa(t) = T

2p
⎛
⎝⎜

⎞
⎠⎟ xne− jΩnT e jΩt dΩ∑
−p/T

p/T

∫  (1.26)

Interchanging the order of integration and summation in (1.26), the 
following results:

 

xa(t) = T
2p

⎛
⎝⎜

⎞
⎠⎟ xne− jΩnT e jΩt dΩ∑
−p/T

p/T

∫

= T
2p

⎛
⎝⎜

⎞
⎠⎟ xn e jΩ(t−nT ) dΩ

−p/T

p/T

∫
⎛

⎝
⎜

⎞

⎠
⎟∑

 (1.27)
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8 Introduction to OFDM Receiver Design and Simulation

The integral inside the parentheses of (1.27) can be evaluated to give

 

xa(t) = x(nT )
sin

p
T

⎛
⎝⎜

⎞
⎠⎟ (t − nT )⎡

⎣⎢
⎤
⎦⎥

p
T

⎛
⎝⎜

⎞
⎠⎟ (t − nT )

∑  (1.28)

Equation (1.28) is a well-known sampling theorem. It is an interpola-
tion formula that shows how an analog signal can be reconstructed from the 
discrete samples x(nT ). The Nyquist rate is used in order to get this interpo-
lation formula. To prevent aliasing, the input signal must be band-limited 
between −π /T and π /T.

The interpolation filter in (1.28) is a sinc function that has an infinite 
duration. In reality, this function is truncated in order for computation. The 
spectrum of the sinc function has a rectangular shape that will be discussed 
in detail in Chapter 2.

1.6 Properties of the DFT

The DFT given by (1.18) and (1.23) are given again here:

 
Xk = xne− j2pnk/N

n=0

N−1

∑ k = 0,1,…, N −1  (1.29)

 
xn = 1

N
Xke j2pnk/N

k=0

N−1

∑ n = 0,1,…, N −1  (1.30)

Assume that the input has a real sequence xn. The real and imaginary 
parts of Xk are then given by

 
Re Xk( ) = xn cos

2pnk
N

⎛
⎝⎜

⎞
⎠⎟

n=0

N−1

∑  (1.31a)

 
Im Xk( ) = − xn sin

2pnk
N

⎛
⎝⎜

⎞
⎠⎟

n=0

N−1

∑  (1.31b)
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 Discrete Time Signals and Discrete Fourier Transform 9

The Re(Xk) and Im(Xk) satisfy the following relationship:

 
Re Xk( ) = Re X−k( )  (1.32)

 
Im Xk( ) = −Im X−k( )  (1.33)

If the input sequence is real, the real part of Xk is then an even func-
tion of the frequency while the imaginary part of Xk is an odd function of 
the frequency.

The power spectrum of the kth frequency component is the sum of the 
square of the real and imaginary parts of Xk and is given here:

 
Pk = Re Xk( )⎡⎣ ⎤⎦

2
+ Im Xk( )⎡⎣ ⎤⎦

2
 (1.34)

Using (1.32) and (1.33), Pk satisfies the following relationship:

 Pk = P−k  (1.35)

Therefore, the power spectrum of a real sequence is an even function 
of the frequency.

In the frequency domain, the DFT Xk is also periodic with period N. 
Using (1.29), the following relationship results:

 

X N−k = xne− j2pn( N−k)/N

n=0

N−1

∑

= xne j2pnk/N

n=0

N−1

∑
= X−k

 (1.36)

Changing k by −k in (1.36) we have the familiar relationship of Xk = 
XN+k to confirm the periodicity of Xk.

Using (1.32) and (1.33), we can write X–kas follows:

 

X−k = Re X−k( )+ jIm X−k( )
= Re Xk( )− jIm Xk( )
= Xk( )∗

 (1.37)
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10 Introduction to OFDM Receiver Design and Simulation

Using both (1.36) and (1.37), we have for a real sequence

 
X N−k = Xk( )∗  (1.38)

The following relationship is true for both N odd and N even:

 
X( N−1)/2 = X( N+1)/2( )∗ k = (N +1)

2
 and N  odd  (1.39a)

 
X N /2 = X N /2( )∗ k = N

2
 and N  even  (1.39b)

Therefore, for N even, the spectrum at the middle frequency is real. 
Using (1.34) and (1.36), it can be seen that PN–k = P–k. Using (1.35) for a real 
sequence, then Pk = PN–k. An example is shown in Figure 1.5 for N = 8 and 
we have P7 = P1, P6 = P2, and P5 = P3.

If the input sequence xnis complex, then the DFT Xk is, in general, 
complex. However, if the Xk sequence is complex, then the xn sequence is 
also complex.

1.7 Time and Frequency Relationship of the DFT

The DFT has an interesting but important time and frequency relationship 
[2]. Figure 1.6 is a typical plot of the input sequence in the time domain. 
Assuming that the sampling period is T and there are N samples, the time 
duration Lt is then given by

 Lt = NT  (1.40)

 dt = T  (1.41)

Figure 1.5 Power spectrum P (k) for k from −4 to 8.

6899_Book.indb   10 10/22/19   4:54 PM



 Discrete Time Signals and Discrete Fourier Transform 11

where dt is the time duration between two consecutive samples in the time 
domain and is also equal to the sampling time T. Similarly, Figure 1.7 is a typi-
cal plot of the DFT in the frequency domain. The bandwidth is then given by

 
L f = 1

T
 (1.42)

 
d f = 1

NT
 (1.43)

where df is the frequency width between two consecutive samples in the fre-
quency domain. The bandwidth is also equal to the sampling frequency 1/T.

Equations (1.41) to (1.44) also illustrates the following relationship:

 
Lt =

1
d f

 (1.44)

 
dt =

1
L f

 (1.45)

From (1.44), the time duration Lt is the inverse of the frequency incre-
ment df. From (1.45), the time increment dt is the inverse of the bandwidth Lf. 

Figure 1.6 Discrete input sequence in the time domain.

Figure 1.7 DFT in the frequency domain.
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12 Introduction to OFDM Receiver Design and Simulation

Therefore, as the frequency increment decreases, the time duration increases. 
However, as the bandwidth decreases, the time increment increases. These 
two relationships are useful to define the characteristics of the time sequence 
when the bandwidth is known.

1.8 Operations of the DFT

The DFT has a few important operations [1, 2] that are useful. Four opera-
tions, linearity, time shift, frequency shift, and convolution, are considered 
here. For ease of presentation, the factor WN is defined here:

 WN = e j2p/N  (1.46)

1.8.1 Linearity

Consider two periodic sequences, xn and yn. The DFT of xn is Xk and the DFT 
of yn is Yk. The two periodic sequences can be linearly combined to generate 
a third periodic sequence qn = axn + byn where a and b are constants. Then 
clearly, the DFT of axn + byn is aXk + bYk.

1.8.2 Time Shift

Assume that a periodic sequence xn is shifted by m to generate yn = xn–m. Then 
its DFT Yk is given here:

 Yk = XkWN
−mk  (1.47)

This can be shown by finding the inverse DFT of Yk:

 

yn = 1
N

⎛
⎝⎜

⎞
⎠⎟ YkWN

nk

k=0

N−1

∑ = 1
N

⎛
⎝⎜

⎞
⎠⎟ XkWN

nkWN
−mk

k=0

N−1

∑

= 1
N

⎛
⎝⎜

⎞
⎠⎟ XkWN

(n−m)k

k=0

N−1

∑
= xn−m

 (1.48)

Equation (1.47) implies that a time shift in the time domain is equivalent 
to multiplication by a phase factor in the frequency domain.
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1.8.3 Frequency Shift

Assume that a periodic sequence xn is multiplied by a phase factor to generate 
yn = xnWN

nr. Then its DFT is given by

 Yk = Xk−r  (1.49)

This can be shown by finding the DFT of yn:

 

Yk = ynWN
−nk

n=0

N−1

∑

= xnWN
−nkWN

nr

n=0

N−1

∑

= xnWN
−n(k−r )

n=0

N−1

∑
= Xk−r

 (1.50)

Equation (1.50) implies that a multiplication in the time domain by a 
phase factor is equivalent to a frequency shift in the frequency domain. This 
frequency shift is equivalent to a Doppler shift. Numerically, it is equal to r/
(NT ).

1.8.4 Circular Convolution

Consider two periodic sequences xn and yn of period N. Then its circular con-
volution qn = xm yn−mm=0

N−1∑  has the DFT of XkYk. This can be derived by 
finding the inverse DFT of XkYk:

 

qn = 1
N

⎛
⎝⎜

⎞
⎠⎟ XkYkWN

kn

k=0

N−1

∑

= 1
N

⎛
⎝⎜

⎞
⎠⎟ xmWN

−km

m=0

N−1

∑⎛⎝⎜
⎞
⎠⎟

yrWN
−kr

r=0

N−1

∑⎛⎝⎜
⎞
⎠⎟

WN
kn

k=0

N−1

∑

= 1
N

⎛
⎝⎜

⎞
⎠⎟ xm

m=0

N−1

∑ yr
r=0

N−1

∑ WN
(n−m−r )k

k=0

N−1

∑⎛⎝⎜
⎞
⎠⎟

 (1.51)

Using (1.21), the term in the parentheses is 0 unless n − m − r = jN. 
Therefore, r = n − m and (1.51) becomes
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14 Introduction to OFDM Receiver Design and Simulation

 
qn = xm yn−m

m=0

N−1

∑  (1.52)

The sequence qn is then the circular convolution of the two periodic 
sequences xn and yn. Its DFT is then the product of Xk and Yk. Instead of 
computing the sum given in (1.52), another way is to compute the product 
XkYk first. Its inverse DFT generates the convolution.

It is frequently necessary to find the linear convolution of the sequences 
xn and yn. For example, an input signal such as speech has to be lowpass-
filtered to prevent aliasing. In this case, the two sequences of finite duration 
N are not periodic. However, its linear convolution can still be implemented 
using circular convolution. Since qn in (1.52) has duration 2N − 1, the cir-
cular convolution can be applied by appending N − 1 zeros to the end of 
both xn and yn.

More details on both linear and circular convolution can be found in [1].

1.9 Z-Transform

The z-transform [1, 2] is defined by the following equation:

 
X (z) = xnz−n

n=−∞

n=∞

∑  (1.53)

where z is a complex variable. If z = ejω, then the z-transform is the same as 
the DFT given in (1.16):

 
X (w) = xne− jwn∑  (1.54)

The absolute value of z is 1. As ω  varies from −π  to π , the z traverses 
along the unit circle from −1 to 1. The region of convergence is the range of 
z such that xnz−n

n=−∞

n=∞∑ < ∞ .

Example 1.1

Consider the positive sequence given here:

 
xn = bn n ≥ 0

0 n < 0{  (1.55)
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The z-transform is then given by

 
X (z) = bnz−n

n=0

n=∞

∑ = b
z

⎛
⎝⎜

⎞
⎠⎟

n

= z
z − bn=0

n=∞

∑  (1.56)

The region of convergence is then (b/z) < 1 or z > b.
The two most important operations of the z-transform are time shift 

and convolution. Assume that a time sequence yn = xn–m or yn is a time shift 
of xn by m samples. Its z-transform is then given by

 

Y (z) = xn−mz−n

n=−∞

n=∞

∑ = xkz−(k+m)

k=−∞

k=∞

∑

= z−m xkz−k

k=−∞

k=∞

∑ = z−m X (z)

 (1.57)

where the variable k = n − m is defined. Therefore, a time shift by m in the 
time domain is equivalent to a multiplication of z–m in the z domain.

Assume that xn and hn are two sequences. Their convolution is the 
sequence yn = xmhn−mm=−∞

m=∞∑ . The z-transform of yn is then given by

 
Y (z) = xmhn−mz−n

m=−∞

m=∞

∑
n=−∞

n=∞

∑  (1.58)

By defining a new variable k = n − m, (1.58) becomes

 

Y (z) = xmhkz−m−k

m=−∞

m=∞

∑
k=−∞

k=∞

∑

= hkz−k

k=−∞

k=∞

∑⎛⎝⎜
⎞
⎠⎟

xmz−m

m=−∞

m=∞

∑⎛
⎝⎜

⎞
⎠⎟

= X (z)H (z)

 (1.59)

Assume a linear system H(z) whose time sequence is hn. Passing through 
the input sequence xn to H(z) generates an output sequence yn, which is the 
convolution of xn and hn. The z-transform of the output is simply the product 
of the input z-transform X(z) and the system z-transform H(z). This is also 
similar to the case for the DFT.
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16 Introduction to OFDM Receiver Design and Simulation

The system function described in (1.59) has the following general form:

 
H (z) = N (z)

D(z)  (1.60)

Both N(z) and D(z) are polynomials of z−1 and they may have different 
degrees. Assuming that N(z) has the degree u and D(z) has the degree v, they 
can be written as

 N (z) = b0 + b1z−1 + b2z−2 +!+ buz−u  (1.61)

 D(z) = 1+ a1z−1 + a2z−2 +!+ avz−v  (1.62)

Substituting (1.60), (1.61), and (1.62) into (1.59), we have

 

Y (z)
X (z)

=
b0 + b1z−1 + b2z−2 +!+ bmz−u

1+ a1z−1 + a2z−2 +!+ anz−v  (1.63)

Equation (1.63) can be rewritten in the following summation form

 
Y (z) = X (z)bkz−k

k=0

k=u

∑ − Y (z)akz−k

k=1

k=v

∑  (1.64)

Using the time shift operations given in (1.57), (1.64) can be converted 
into the following difference equations

 
yn = bk xn−k

k=0

k=u

∑ − ak yn−k
k=1

k=v

∑  (1.65)

Equation (1.65) is realizable using tapped delay lines. More details on 
the implementation can be found in [2].

1.10 Summary

A discrete time signal is obtained by sampling an analog signal at a periodic 
rate. The DFT of these discrete samples is then derived. It was found that the 
sampled spectrum is a summation of the shifted spectrum of the analog signal. 
To reconstruct the original analog signal, the discrete samples must be taken 
at least at the Nyquist rate. For a band-limited analog signal with a cutoff 
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frequency fc, the Nyquist rate is at least 2fc. Based upon the Nyquist rate, an 
interpolation formula was derived to reconstruct the analog signal.

The DFT has a relationship between time and frequency. The band-
width in the frequency domain is the inverse of the sampling period in the 
time domain. The signal duration in the time domain is the inverse of the 
frequency increment in the frequency domain.

Three important operations of the DFT were illustrated: time shift, 
 frequency shift, and convolution. A time shift in the time domain is equivalent 
to the multiplication by a phase factor in the frequency domain. A multiplica-
tion in the time domain by a phase factor is equivalent to a frequency shift in 
the frequency domain. This frequency shift is equivalent to a Doppler shift. 
The circular convolution of two discrete time sequences was defined. Its DFT 
is the product of the DFT of the two individual sequences.

The z-transform was also defined. It is useful in specifying the time-
invariant system response. The output generated by passing the input through 
such a system can be implemented using a tapped delay line.

In the next chapter, single-carrier modulation is reviewed.
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2
Single-Carrier Modulation

2.1 Introduction

OFDM is a multicarrier modulation technique. First, let us explain single-
carrier modulation. From the name itself, it is clear there is only one carrier. 
Depending upon the type of modulation, the amplitude, phase, or frequency 
of this single carrier is modulated.

In digital communication, a sequence of digital bits is first grouped 
into bauds. Each baud is then mapped into a unique phase, amplitude, or 
frequency to modulate the carrier. The four most commonly applied modula-
tion techniques are discussed. They are pulse amplitude modulation (PAM), 
phase shift keying (PSK), quadrature amplitude modulation (QAM), and 
frequency shift keying (FSK).

The analog signal can be reconstructed through interpolation and was 
discussed in Chapter 1. Two interpolation filters, rectangular and raised cosine, 
are given.

2.2 Data Transmission Rate

The transmission rate depends upon the number of bits k sent in a baud interval. 
A baud is defined to have k bits. The number k is an integer and is different 
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20 Introduction to OFDM Receiver Design and Simulation

for different modulation schemes. As will be shown in later sections, k = 1, 2, 
4, and 6 for binary phase shift keying (BPSK), quadrature phase shift keying 
(QPSK), 16-QAM, and 64-QAM, respectively.

The simplest case is to have k = 1 and there are only two possible levels. 
During each baud interval, there are only two possible amplitudes, phases, 
or frequencies according to PAM, PSK, or FSK. The resulting modulation is 
called binary modulation.

In general, there are M = 2k possible levels where k is an integer. In other 
words, k binary digits are mapped to M possible transmitted waveforms. These 
M possible levels are converted into complex numbers representing constella-
tion points of the digital modulation. If the input bit rate is R bits/sec, then 
the baud rate is R/k. Assuming that the baud interval is T, then the resulting 
bit transmission rate is k/T.

2.3 Bandpass Signals

The modulated digital signal can in general be represented in the follow-
ing form:

 
x(t) = a(t)cos 2pfct + q(t)( )  (2.1)

where a(t) is the amplitude, θ (t) is the phase, and fc is the carrier frequency 
of the modulated signal. Equation (2.1) can be represented in complex form 
as given here:

 
x(t) = Re a(t)e jq(t )e j2pfct( )   (2.2a)

 
= Re s(t)e j2pfct( )  (2.2b)

where s(t) is the lowpass signal bearing the information of the input digital 
bit stream

 s(t) = a(t)e jq(t )  (2.3)

The spectrum of x(t) can be obtained by taking the Fourier transform 
on both sides of (2.2b) to obtain
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X ( f ) = 1
2

s(t)e j2pfct + s∗(t)e− j2pfct( )e− j2pft dt∫
= 1

2
S f − fc( )+ S∗ f + fc( )( )

 (2.4)

where S( f ) is the spectrum of s(t). Figure 2.1 is a plot of the lowpass signal s(t) 
and Figure 2.2 is a plot of the bandpass signal x(t). Clearly, X( f ) is a frequency 
shifted version of the baseband signal x(t).

2.4 Digitally Modulated Signals

In each baud interval, a(t), θ (t), or both can only take a set of discrete levels. 
Therefore, s(t) can also be represented in the following form [1]:

 
s(t) = snq(t − nT )

n=−∞

∞

∑  (2.5)

where T is the baud interval, q is the pulse-shaping waveform, and sn is the 
nth sample of the information bearing signal s(t). The term sn is, in general, 

Figure 2.1 Spectrum of the lowpass signal s(t).

Figure 2.2 Spectrum of the bandpass signal X (f ).
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complex and can be represented as

 sn = ane jqn  (2.6)

where an is the nth sample of a(t) and θn is the nth sample of θ (t). The in-phase 
component In and the quadrature-phase component Qn can then be written as

 
In = an cos qn( )  (2.7a)

 
Qn = ansin qn( )  (2.7b)

Using (2.7a) and (2.7b), sn defined in (2.6) can be written as

 sn = In + jQn  (2.8)

To make sure the average transmitted power is the same independent of 
the types of modulation, the amplitude an can be adjusted properly.

The sncan only take one of possible M levels for each of the k = log2M 
input bits. Depending on how an and θ n are changed in each baud interval 
T, different types of modulated digital signals are generated.

2.4.1 PAM

For PAM, only the amplitude an is changed while the phase θ n remains con-
stant. The simplest case is the on-off keying where k = 1 and M = 2. If the 
input bit is 1, there is a transmission. However, if the input bit is 0, there is no 
transmission. In general, there are M different amplitude levels for every k bits.

2.4.2 PSK

For PSK, the amplitude an remains constant while only the phase θn is changed. 
There are two popular PSK modulations. One is BPSK and the other is QPSK.

For BPSK, k = 1 and M = 2. Figure 2.3 shows the signal constellation. 
The phase angle is either 180° or 0° and sn is either 1 or −1. Table 2.1 lists the 
complex amplitude sn.

For QPSK, k = 2 and M = 4, and there are four possible phases. The 
phase angles can be encoded as 45°, 135°, 225°, and 315°. Figure 2.4 shows 
the signal constellation and Table 2.2 lists the complex amplitude 2sn  [2]. 
The factor 2  is a constant to normalize the average energy.
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Figure 2.3 Signal constellation of BPSK.

Table 2.1 
BPSK Encoding Table

Input Bits sn

0 −1

1 1

Figure 2.4 Signal constellation of QPSK.

Table 2.2 
QPSK Encoding Table

Input bits 2sn

00 −1 − j

01 −1 + j

11 1 + j

10 1 − j
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2.4.3 QAM

For QAM, both the amplitude an and the phase θ n are changed. In the IEEE 
802.11a standard [2 ], there are two types of QAM: 16-QAM and 64-QAM. 
Depending on the phase angle, the amplitude can be different to make sure 
that the average transmitted power remains the same.

In 16-QAM, k = 4 and M = 16. In other words, four input bits are 
encoded into 16 different discrete levels. Figure 2.5 shows the signal constel-
lation while Table 2.3 lists the complex amplitude sn/C1 where C1 is a normal-
ization constant. The encoding of the constellation point is based upon the 

Figure 2.5 Signal constellation of 16-QAM.

Table 2.3 
16-QAM Encoding Table

Input Bits sn/C1 Input Bits sn/C1

0000 −3 − 3j 1000 3 − 3j

0001 −3 − j 1001 3 − j

0010 −3 + 3j 1010 3 + 3j

0011 −3 + j 1011 3 + j

0100 −1 − 3j 1100 1 − 3j

0101 −1 − j 1101 1 − j

0110 −1 + 3j 1110 1 + 3j

0111 −1 + j 1111 1 + j
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concept of Gray coding. In other words, any two adjacent constellation points 
differ by only 1 bit. For example, 3 + j encoded as 1011 and 3 − j encoded as 
1001 are adjacent but differ only in the third bit.

In 64-QAM, k = 6 and M = 64. Therefore, six input bits are encoded 
into 64 discrete levels. Figure 2.6 shows the signal constellation while Table 
2.4 lists the complex amplitude sn/C2 where C2 is a normalization constant. 
The same Gray coding is applied.

The constant C1 in Table 2.3 and the constant C2 in Table 2.4 can be 
determined by normalizing the average energy to be a constant 1. To deter-
mine C1 in Table 2.3 to normalize the average energy, the following is done:

 

1
16

⎛
⎝⎜

⎞
⎠⎟ si

2

i=0

15

∑ = 1  (2.9)

Table 2.4 
64-QAM Encoding Table

Input 
Bits sn/C2

Input 
Bits sn/C2

Input 
Bits sn/C2

Input 
Bits sn/C2

000000 −7 − 7j 010000 −1 − 7j 100000 7 − 7j 110000 1 − 7j

000001 −7 − 5j 010001 −1 − 5j 100001 7 − 5j 110001 1 − 5j

000010 −7 − j 010010 −1 − j 100010 7 − j 110010 1 − j

000011 −7 − 3j 010011 −1 − 3j 100011 7 − 3j 110011 1 − 3j

000100 −7 + 7j 010100 −1 + 7j 100100 7 + 7j 110100 1 + 7j

000101 −7 + 5j 010101 −1 + 5j 100101 7 + 5j 110101 1 + 5j

000110 −7 + j 010110 −1 + j 100110 7 + j 110110 1 + j

000111 −7 + 3j 010111 −1 + 3j 100111 7 + 3j 110111 1 + 3j

001000 −5 − 7j 011000 −3 − 7j 101000 5 − 7j 111000 3 − 7j

001001 −5 − 5j 011001 −3 − 5j 101001 5 − 5j 111001 3 − 5j

001010 −5 − j 011010 −3 − j 101010 5 − j 111010 3 − j

001011 −5 − 3j 011011 −3 − 3j 101011 5 − 3j 111011 3 − 3j

001100 −5 + 7j 011100 −3 + 7j 101100 5 + 7j 111100 3 + 7j

001101 −5 + 5j 011101 −3 + 5j 101101 5 + 5j 111101 3 + 5j

001110 −5 + j 011110 −3 + j 101110 5 + j 111110 3 + j

001111 −5 + 3j 011111 −3 + 3j 101111 5 + 3j 111111 3 + 3j
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The constant C1 is then found to be 1/ 10 . Similarly, the constant C2 
is found to be 1/ 42 .

2.4.4 FSK

For FSK, the information sn is used to change the frequency of the signal 
waveform s(t). Assuming the frequency deviation is given by ∆fsn, the s(t) is 
then given by [1]

 
s(t) = e j2p(Δf )tsn

n=−∞

∞

∑ q(t − nT )  (2.10)

Since sncan take M different levels, there are M possible frequencies from 
which to choose. The end result is the transmitted carrier frequency is shifted 
based upon the input information sn.

Figure 2.6 Signal constellation of 64-QAM.
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2.5 Pulse Shaping

The analog signal xa(t) can be reconstructed from the discrete samples x(nT ) 
according to the sampling theorem given by (1.28). That equation is rewrit-
ten here:

 

xa(t) = x(nT )∑
sin

p
T

⎛
⎝⎜

⎞
⎠⎟ (t − nT )⎡

⎣⎢
⎤
⎦⎥

p
T

⎛
⎝⎜

⎞
⎠⎟ (t − nT )

 (2.11)

Assume that the signal cutoff frequency is f = fc as shown in Figure 1.3. 
The minimum sampling rate is the Nyquist rate or 2fc. By setting the baud 
period T = 1/2fc, (2.11) becomes

 
xa(t) = x n

2 fc

⎛
⎝⎜

⎞
⎠⎟∑

sin 2pfc( ) t − n/2 fc( )⎡⎣ ⎤⎦
2pfc( ) t − n/2 fc( )  (2.12)

Equivalently, each discrete sample is multiplied by a pulse-shaping func-
tion given here:

 

q(t) =
sin

pt
T

⎛
⎝⎜

⎞
⎠⎟

pt
T

 (2.13)

The pulse q(t), which is defined in (2.13), is 1 at t = 0 and 0 at t = nT 
where n is an integer. As can be seen from (2.11), xa(kT ) = x(kT ). Therefore, 
to reconstruct an analog signal xa(t) without intersymbol interference (ISI), 
the following condition must be satisfied:

 
q(kT ) = 1 k = 0

0 k ≠ 0{  (2.14)

Equation (2.11) is just the convolution of the discrete signal x(t) with 
the pulse q(t). Therefore, the analog spectrum is the product of the pulse 
spectrum and the signal spectrum. In order to have no spectral distortion, 
the ideal frequency spectrum of the function q(t) is the rectangular function, 
Q(Ω) given here:
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Q Ω( ) = T − p
T

< Ω < p
T

0, otherwise

⎧
⎨
⎪

⎩⎪
 (2.15)

The function Q(Ω) is also plotted in Figure 2.7. As shown next, the 
inverse Fourier transform of (2.15) generates q(t):

 

q(t) = T
2p

⎛
⎝⎜

⎞
⎠⎟ Q (Ω)e jΩt dΩ
−p/T

p/T

∫

= T
2p

⎛
⎝⎜

⎞
⎠⎟ e jΩt dΩ
−p/T

p/T

∫

=
sin

pt
T

⎛
⎝⎜

⎞
⎠⎟

pt
T

 (2.16)

Figure 2.7 The frequency spectrum of the sinc function versus Ω = 2π f.

Figure 2.8 Pulse having a sinc function.
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Figure 2.8 is a plot of sinc function given in (2.16). As can be seen, q(t) 
is 1 at t = 0 and 0 when t/T has integral values.

Even though the sinc function in the time domain generates no ISI, it 
has infinite duration and cannot be realized. In practice, the sinc function is 
truncated to approximate the ideal function. If enough side lobes are kept, 
negligible ISI can result.

The sinc function drops at the rate of 1/t. One method frequently used 
in digital communication is to use the raised cosine function defined next [1]:

 

q(t) =
sin

pt
T

⎛
⎝⎜

⎞
⎠⎟

pt
T

cos
bpt
T

⎛
⎝⎜

⎞
⎠⎟

1− 4b2t2

T 2

 (2.17)

Its spectrum Q( f )/T has the following closed form [1]:

Q ( f )
T

=

1 0 ≤ f ≤ (1− b)
2T

0.5 1− sin
pT f − 1

2T
⎛
⎝⎜

⎞
⎠⎟

b

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

(1− b)
2T

≤ f ≤ (1+ b)
2T

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 (2.18)

Figure 2.9 is a plot of the raised function against t/T for β  = 0, 0.5, and 
1. For β  = 0, the raised cosine function is the same as the sinc function. As 
β  increases, the side lobe also decreases. For β  = 1, the side lobe is negligibly 

Figure 2.9 Pulse having a raised cosine function.
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small after the main lobe. Figure 2.10 is a plot Q( f )/T against fT. When β 
= 0, the spectrum converges to the ideal rectangle with bandwidth fT = 0.5 
or Ω = 2π f = π /T.

The raised cosine function also satisfies the conditions for reconstruction 
without ISI as defined in (2.14).

2.6 Summary

In digital communication, the traditional way is to have only one carrier to 
carry the data information. A sequence of k input bits is first grouped to gen-
erate a baud that has a total of M = 2k levels. Each level is mapped onto the 
phase, amplitude, or frequency of this single carrier for transmission.

Four modulation techniques, PAM, PSK, QAM, and FSK were pre-
sented. In PAM, only the amplitude is modulated. In PSK, only the phase 
is modulated. If M = 2 or k = 1, it is BPSK. If M = 4 or k = 2, it is QPSK. 
In QAM, both amplitude and phase are modulated. If M = 16 or k = 4, it 
is 16-QAM. If M increases to 64 or k = 6, it is then 64-QAM. In FSK, M 
different frequencies corresponding to k bits can be selected to change the 
carrier frequency.

From the discrete digital samples, the analog signal can be reconstructed 
by applying an interpolation filter. Two pulse-shaping waveforms were given. 
One has a rectangular spectrum implying a sinc function in the time domain. 
This sinc function has an infinite duration requiring truncation for implemen-
tation. To reduce the side lobes for fast convergence, a raised cosine function 
can be applied. A parameter β  was defined in this function to control the rate 

Figure 2.10 Frequency spectrum of the raised cosine function versus fT.
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of convergence. For β  = 0, it is the same as the sinc function. As β  increases, 
the side lobe also decreases.

In the next chapter, multicarrier modulation is introduced.
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3
Multicarrier Modulation

3.1 Introduction

OFDM is a modulation technique that applies multiple carriers to be modu-
lated by an input data stream. In a single-carrier modulation, the input data 
is carried by only one carrier and the modulation is carried out in the time 
domain. In a multicarrier modulation, the input data is split into bauds and 
carried by multiple subcarriers and the modulation is carried out in the fre-
quency domain. Any two subcarriers are orthogonal in a symbol interval. This 
is also why OFDM is so named.

A transmission through a multipath channel can cause ISI and signal 
distortion. One characteristic of OFDM is its insertion of guard interval 
between adjacent symbols to eliminate this degradation. This guard interval 
is also called cyclic prefix to maintain the orthogonality of the subcarriers. 
As will become clear in later chapters, the multipath degradation and fading 
can be removed much more easily in the frequency domain using OFDM.

Even though it is easier to remove the multipath interference using 
OFDM, there are also some disadvantages. One is the peak-to-average power 
ratio (PAPR). This is because the peak power can be much higher than the 
average power. When this happens, the OFDM signal is clipped to cause 
distortion. In other words, the efficiency of the power amplifier is reduced.
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34 Introduction to OFDM Receiver Design and Simulation

Two other major characteristics of the OFDM are the FFT and the 
classical OFDM spectrum. A DFT is an essential tool used in this multicar-
rier modulation. However, the FFT is a fast computation technique of DFT. 
Except for the computation speed, there is no difference between the DFT 
and the FFT. The classical OFDM spectrum is a summation of the sinc func-
tion from each subcarrier. It is a sinc function because of the finite window 
length in the time domain.

To understand the OFDM waveform, we therefore start with the DFT. 
Subsequently, cyclic prefix, FFT, classical OFDM spectrum, PAPR, and 
orthogonality are all analyzed. After discussing the OFDM characteristics, 
time and frequency relationship, window function, and digital modulation 
are given in sequence in the subsequent sections.

3.2 OFDM Waveform

In a multicarrier waveform such as OFDM, each carrier is modulated by k bits 
having one of M = 2k possible levels. This waveform is defined by the inverse 
discrete Fourier transform given in (1.30) and is rewritten here:

 
xn = 1

N
  Xke j2pnk/N

k=0

N−1

∑ n = 0,1,…,  N −1  (3.1)

In (3.1), k is the frequency index, n is the time index, and Xk is the kth 
frequency component. During the modulation process, the amplitude, phase, 
or frequency of Xk is modified. Therefore, the whole process is performed in 
the frequency domain in contrast to the time-domain modulation of the 
single-carrier waveform.

To get more insight into the multicarrier waveform, define the kth radian 
frequency component given here:

 
wk =

2pk
N

 (3.2)

Substituting (3.2) into (3.1), we have

 
xn = 1

N
  Xke jnwk

k=0

N−1

∑ n = 0,1,…, N −1  (3.3)
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In general, Xk is complex and can be written as

 Xk = Ake jΨk  (3.4)

Substituting (3.4) into (3.3), we have

 
xn = 1

N
⎛
⎝⎜

⎞
⎠⎟ Ake j nwk+Ψk( )

k=0

N−1

∑  (3.5)

It is clear from (3.5) that there are N carriers. These carriers are also 
called subcarriers. Each subcarrier has an amplitude Ak, a phase Ψk, and a 
radian frequency wk.

The discrete samples xn can be reconstructed to generate x(t) as long as 
the sampling rate is at least twice the baseband cutoff frequency. Assuming 
that the radio frequency (RF) carrier frequency is fc, then the transmitted 
analog waveform for the jth OFDM symbol is given by

 
y(t) = Re x(t)e j2pfct( ) jNT < t < ( j +1)NT  (3.6)

In the same way as the single-carrier case, the input bit stream is grouped 
into bauds. Each baud has k bits where k = log2M and M is the total number 
of levels. Each baud of k bits is then mapped onto one of M possible phases, 
frequencies, or amplitudes.

3.3 OFDM Characteristics

As mentioned in the introduction, the most important characteristics of 
OFDM are orthogonality, sinc spectrum, PAPR, and FFT. Each of these 
subjects is discussed next.

3.3.1 Orthogonality

In OFDM, any two subcarriers are orthogonal. To show that, assume any two 
subcarriers, yi and yk, given below:

 yk = Xke j2pkn/N  (3.7)

 yi = Xie
j2pin/N  (3.8)
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Then the following relationship must be true:

 

1
N

⎛
⎝⎜

⎞
⎠⎟ yk yi

∗

n=0

N−1

∑ =
0 if   k ≠ i

Xk
2

if    k = i
⎧
⎨
⎪

⎩⎪
 (3.9)

Substituting (3.7) and (3.8) into (3.9), we have

 

1
N

⎛
⎝⎜

⎞
⎠⎟ yk yi

∗

n=0

N−1

∑ = 1
N

⎛
⎝⎜

⎞
⎠⎟ Xk Xi

∗

n=0

N−1

∑ e j2pn(k−i)/N

= 1
N

⎛
⎝⎜

⎞
⎠⎟ Xk Xi

∗ e j2pn(k−i)/N

n=0

N−1

∑⎛⎝⎜
⎞
⎠⎟

 (3.10)

However, the term inside the brackets is 0 unless k = i as given in (1.21); 
we then have

 

1
N

⎛
⎝⎜

⎞
⎠⎟ yk yi

∗

n=0

N−1

∑ =
0 if   k ≠ i

Xk
2

if    k = i
⎧
⎨
⎪

⎩⎪  

(3.11) 
  (3.12)

Therefore, any two subcarriers are orthogonal in OFDM.

3.3.2 OFDM Spectrum

OFDM transmits a large number of subcarriers and each subcarrier has the 
same spacing of 2π /N in radians or fc/N in frequency. Assume each subcarrier 
is not modulated, then Xk is 1. In the digital domain, each subcarrier then has 
the form (ej2πnk/N)/N. Converting it to the analog domain, it has the equivalent 
form (ej2πkfst/N)/N where fs is the sampling frequency. Since the DFT interval 
is NT, the classical spectrum X( f ) is then given here:

 
X ( f ) = 1

N
⎛
⎝⎜

⎞
⎠⎟ e j2pkf st/N e− j2pft

−NT /2

NT /2

∫
k=0

N−1

∑ dt  (3.13)

The integral inside the summation of (3.13) can be easily evaluated to 
give the following:

 

X ( f )
T

=
sin(pfNT − pk)
pfNT − pkk=0

N−1

∑  (3.14)
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Equation (3.14) shows that the OFDM spectrum is a summation of sinc 
function from different subcarriers.

Example 3.1

Assuming that fs = 20 MHz, then T = 0.05 µ s. Assume that also N = 5 and 
k ranges from 1 to 4. The subcarrier at k = 0 is assumed to be unused. The 
spectrum is plotted in Figure 3.1. The spectrum is maximum at frequency 4 
MHz, 8 MHz, 12 MHz, and 16 MHz corresponding to k = 1, 2, 3, and 4. It 
can be seen also that the maximum at a given subcarrier is the zero-crossing 
for all the rest of subcarriers. This also means there is no intercarrier interfer-
ence at the peak frequencies.

3.3.3 PAPR

The PAPR is defined to be the ratio of maximum power to the average power 
in an OFDM symbol interval:

 
PAPR =

Pmax

Pavg
 (3.15)

 
Pmax = max xn xn

∗

n=0

N−1

∑⎛⎝⎜
⎞
⎠⎟

 (3.16)

Figure 3.1 OFDFM spectrum for N = 5 and fs = 20 MHz.
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Pavg = E xn xn

∗

n=0

N−1

∑⎛⎝⎜
⎞
⎠⎟

 (3.17)

where Pmax represents the maximum power, Pavg represents the average power, 
and E is the expected value. As was mentioned in the introduction, PAPR can 
be large to cause detrimental effects to the OFDM signal.

To get some idea about the magnitude of PAPR, both Pmax and Pavg 
can be evaluated by substituting (3.1) into (3.16) and (3.17). To simplify the 
analysis, each subcarrier is assumed to be unmodulated and Xk = 1. Under 
this assumption, (3.16) becomes

 

 Pmax =
1

N 2 max e j2pnk/N( )
k=0

N−1

∑⎛⎝⎜
⎞
⎠⎟n=0

N−1

∑ max e− j2pnk/N( )
k=0

N−1

∑⎛⎝⎜
⎞
⎠⎟

 = 1
N 2 N 2( )

n=0

N−1

∑ = N
 (3.18)

Similarly, (3.17) becomes

 
 Pavg =

1
N 2 e j2pn k− j( )/N

n=0

N−1

∑⎛⎝⎜
⎞
⎠⎟j=0

N−1

∑
k=0

N−1

∑  (3.19)

Using the orthogonality relationship given in (1.21), the integral inside 
the parentheses is 0 unless k = j; (3.19) can then be further simplified to give

 
Pavg =

N 2

N 2 = 1  (3.20)

Substituting (3.18) and (3.20) into (3.15), we then have the following:

 PAPR = N  (3.21)

In (3.21), N is defined to be the number of modulated subcarriers and 
can be quite large. This proves PAPR in OFDM can be quite significant.

To minimize the impact of PAPR, many approaches are available. They 
can be classified either as signal scrambling techniques or as signal distortion 
techniques [1]. On signal distortion techniques, one is to perform clipping, 
filtering, and peak windowing [2]. On signal scrambling techniques, one is 
to perform block coding [3]. There are many others [1].
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Example 3.2

For IEEE 802.11a, there are 52 modulated subcarriers as will be given later, 
and then N = 52. The PAPR in decibels is then 10log52 = 10∗1.71 = 17.1 dB. 
This means that the power amplifier must have an output back-off of 17 dB 
due to the power surge.

3.3.4 Cyclic Prefix

When an OFDM signal travels through the communication media, the 
received signal can be degraded due to the multipath interference. For exam-
ple, the receiver may receive multiple delayed copies of the same transmitted 
waveform. If the channel impulse response has a length of Nc samples, then 
the received signal can also be prolonged by Ncsamples.

An OFDM symbol is defined to have N samples. If two adjacent OFDM 
symbols are transmitted without any gap in between, then the tail end of one 
symbol may interfere with the leading edge of the subsequent symbol. To 
remove this type of ISI, the delay spread of the channel must first be deter-
mined. A gap of Ngsamples must be inserted between two adjacent OFDM 
symbols such that Ng ≥ Nc. This time gap is also called the guard interval.

Figure 3.2 is a plot of the OFDM signal without any guard interval 
between three adjacent symbols j − 1, j, and j + 1. For simplicity of notation, 
each symbol here refers to one FFT interval without including the guard 
interval. Each OFDM symbol has N samples. Figure 3.3 is a plot of the 
OFDM signal with a guard interval of Ng samples inserted between any two 
adjacent symbols.

The guard interval has a size of Ng samples. Note that an insertion of 
guard interval is a waste of transmission resources. However, the price paid 
is a reward of reduced ISI.

Figure 3.2 OFDM signal without time gap between adjacent symbols.

Figure 3.3 OFDM with time gap between adjacent symbols.
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Transmissions don’t have to happen inside the guard interval. If there is 
no transmission, the advantage is to save transmission power. However, with 
channel delay spread, different delayed subcarriers are added together and the 
orthogonality is lost. To solve this problem, a cyclic prefix is transmitted during 
the guard interval. From (3.1), it is seen that each OFDM symbol transmits 
N samples and N is the period. To make sure OFDM signal is periodic to 
maintain the orthogonality, the last Ng samples from the current symbol are 
inserted into the gap preceding the beginning of the current symbol.

Figure 3.4 is a plot of how the cyclic prefix is generated. In the graph, 
there are two adjacent symbols j − 1 and j with a guard interval of Ng samples 
in between. Assume that the symbol j has samples from n = 0 to n = N − 1. 
The dark region in Figure 3.4 has the last Ng samples from n = N − Ng to n 
= N − 1 of symbol j. These Ng samples are copied to the dark region from n 
= −Ng to n = −1 between symbols j − 1 and j. With this insertion of cyclic 
prefix, there is no ISI if the channel delay spread is shorter than Ng samples.

3.3.5 FFT

So far, the DFT has been used to describe OFDM characteristics. However, 
it is time-consuming in using DFT for direct computation. Equation (1.18) 
defined the DFT and is rewritten here for easy reference:

 
Xk = xne− j2pnk/N

n=0

N−1

∑ k = 0,…, N −1  (3.22)

From (3.22), there are N complex multiplications and additions for each 
point of Xk. Since there are N points, the total number of complex multiplica-
tions and additions becomes N2.

To reduce the number of computations, the FFT is designed. The prin-
ciple is easily described when N is even using the decimation-in-time technique. 

Figure 3.4 OFDM transmission of cyclic prefix.
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Initially, the N points are split into two groups. One group has N/2 even points 
and the other group has N/2 odd points. In other words, a N-point DFT is 
split into two N/2-point DFTs. These N/2 even points and odd points can be 
further split into N/4 even points and odd points. This process continues until 
a total of log2N stages are reached. For each stage, the number of complex 
multiplications and additions is N [4]. Therefore, the total number of com-
plex multiplications and additions becomes N log2N. A detailed quantitative 
analysis can be found in [4].

The above qualitative description shows there are significant computation 
savings. The computation reduction ratio from the DFT to the FFT becomes 
N/log2N. This ratio is 4 for N = 16 and 32 for N = 256. As the size of FFT 
increases, the computation time savings are even more obvious.

3.4 Time and Frequency Parameters

There are some important time and frequency parameters defined in OFDM. 
They are T, Tfft, Tgi, ∆f, and Tsym specifying the sampling interval, FFT interval, 
guard interval, subcarrier spacing, and OFDM symbol interval, respectively. 
Equivalently, T, Tfft, and ∆f correspond to dt, Lt, and df defined in (1.41), 
(1.40), and (1.43).

Table 3.1 lists these parameter values for channel spacing of 20 MHz, 
10 MHz, and 5 MHz. The parameter N is the number of samples for per-
forming FFT. The sampling interval is just the inverse of channel spacing. 
The Fourier transform interval is then NT. The subcarrier spacing ∆f is chan-
nel spacing divided by N. The OFDM symbol interval Tsym is the sum of the 
FFT interval and the guard interval or Tsym = Tfft + Tgi. For IEEE 802.11a, 
the guard interval is specified as 1/4 of the FFT interval. It can be seen from 

Table 3.1 
OFDM Time and Frequency Parameters from IEEE 802.11a

Parameter
20-MHz Channel 
Spacing

10-MHz Channel 
Spacing

5-MHz Channel 
Spacing

N 64 64 64
T 0.05 µs 0.1 µs 0.2 µs
Tfft 3.2 µs 6.4 µs 12.8 µs
∆f 0.3125 MHz 0.15625 MHz 0.078125 MHz
Tgi 0.8 µs 1.6 µs 3.2 µs
Tsym 4 µs 8 µs 16 µs
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this table the symbol interval increases and the subcarrier spacing decreases 
as the channel spacing decreases.

Unless specified, a symbol interval refers to the data portion only without 
including the guard interval in the future chapters.

3.5 Window Function

The OFDM symbol is normally multiplied by a window function in the time 
domain. The purpose of the window is to smooth the transition at the sym-
bol boundary so as not to create higher spectral side lobes of the transmitted 
waveform. Another is to meet the spectral mask requirements. For operations 
using a 20-MHz bandwidth, the IEEE 802.11a specifies a spectrum mask to 
be 28 dB down at a 20-MHz frequency offset from the carrier.

The IEEE 802.11a specifies a rectangular window. However, it has sharp 
transitions at the symbol boundary. To smooth the transition, the following 
modified rectangular window is defined [5]:

 

h(t) =

sin2 p
4
+ tp

2b
⎛
⎝⎜

⎞
⎠⎟ − b

2
< t < b

2

1
b
2
≤ t < P − b

2

sin2 p
4
− p(t − p)

2b
⎛
⎝⎜

⎞
⎠⎟ P − b

2
≤ t < P + b

2

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 (3.23)

where β  is defined to extend the original rectangular window of time duration 
P. The sine function is defined to smooth the transition during the transition 
period of length β  on both edges of the rectangular window. Note that as β 
becomes 0, the window function h(t) converges to the rectangular window 
of length P given here:

 h(t) = 1 0 ≤ t < P  (3.24)

The spectrum can be found by taking the Fourier transform. For the 
rectangular window given in (3.24), the spectrum is given here:

 

H ( f ) = e− jΩt

0

P

∫ dt

= P e− jpfP( ) sin(pfP)
pfP

 (3.25)
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where Ω = 2π f and f is the frequency. For the modified window given from 
(3.23), the spectrum is derived here:

 

H ( f ) = sin2 p
4
+ tp

2b
⎛
⎝⎜

⎞
⎠⎟ e− jΩt dt e− jΩt

b/2

P−b/2

∫ dt
−b/2

b/2

∫

+ sin2 p
4
− p t − P( )

2b
⎛
⎝⎜

⎞
⎠⎟

e− jΩt dt
P−b/2

P+b/2

∫
 (3.26)

After some lengthy algebra, (3.26) becomes

 

H ( f ) = e− jpf P sin pf (P − β)( )
pf

+
sin(pf b)cos(pfP)

pf
−

4pf cos(pf b)sin(pfP)

4p2 f 2 − p2

b2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 
 (3.27)

If β  = 0, (3.27) converges to (3.25). However, if f = 0, both spectra have 
a magnitude of P.

The original rectangular window is from 0 to P. Figure 3.5 is a plot of 
the modified window function defined in (3.23). This window overlaps with 
the adjacent window by β . The effective window length is shortened due to 
the β  transition period on both ends. From (3.27), the normalized power 
spectrum is computed as 10log (H( f )/P)(H( f )/P)∗. Figure 3.6 is a plot of this 
power spectrum against frequency in megahertz for β  = 0, 0.6 µs, and 0.9 
µs. The channel spacing is 20 MHz and the extended symbol width P is 4 
µs. As the figure shows, the side lobe decreases as β  increases, even though 
the main lobe does not change much.

Figure 3.5 Modified rectangular window function.

6899_Book.indb   43 10/22/19   4:54 PM



44 Introduction to OFDM Receiver Design and Simulation

3.6 Digital Modulation

The complex amplitude of the kth carrier given in (3.4) is rewritten here:

 

Xk = Ake jΨk

= Ak cos Ψk( )+ jAk sin Ψk( )
= Ik + jQk

 (3.28)

where Ak is the spectral amplitude, Ψk is the spectral phase, Ik is the in-phase 
spectral component, and Qk is the quadrature-phase spectral component. 
Depending on how Ak and Ψk are utilized, different modulated waveforms 
are generated.

The IEEE 802.11a utilizes three different modulation techniques: PAM, 
PSK, and QAM. For PAM, only the amplitude Ak is changed. For PSK, only 
the phase Ψk is changed. The two most commonly used are BPSK and QPSK. 
For BPSK, there are only two-phase levels and, for QPSK, there are four phase 
levels. For QAM, both amplitude Akand phase Ψk are changed. For 16-QAM, 
there are 16 different Xk levels. As Table 2.3 and Figure 2.5 show, there are 
four different Ik levels and four different Qk levels. Therefore, the total num-
ber of Xk levels is 4∗4 = 16. For 64-QAM, there are 64 different Xk levels. As 

μs
μs
μs

Figure 3.6 Power spectrum of the modified rectangular window at a 20-MHz channel 
spacing.
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Table 2.4 and Figure 2.6 show, there are 8 different Ik levels and 8 different 
Qk levels. Therefore, the total number of Xk levels is 8∗8 = 64.

Not all of the N subcarriers in an OFDM symbol are used for modula-
tion. The number of subcarriers actually used is M and M < N. The subcar-
rier at DC is normally set null to minimize the impact of a DC component 
generated from the receiver front end. Other subcarriers not used are normally 
around the band edges. This can reduce the interference from side lobes of the 
OFDM transmission. For IEEE 802.11a, N = 64 and M = 52, there are 12 
unused subcarriers including the DC. Figure 3.7 shows the region of unused 
subcarriers in a dark color. The subcarriers numbered from −26 to −1 and 
from 1 to 26 are used.

To modulate the subcarriers, the input bit stream is first grouped into 
bauds. Each baud has k bits. The total number of levels is M = 2k or k = log2M. 
Based upon the baud, each available subcarrier is modulated using one of the 
M levels according to the desirable modulation technique.

Example 3.3

Assume that the input bit stream is 001011011000 using QPSK modulation. 
For QPSK, k = 2 and M = 4. Grouping every two bits together, the baud 
stream becomes 023120. Using Table 2.2 of the QPSK encoding table, the 
Xk sequence becomes 1 2 (−1 − j), 1 2 (1 − j), 1 2 (1 + j), 1 2 (−1 + j), 
1 2 (1 − j), and 1 2 (−1 − j).

3.7 OFDM Waveform Properties

All the important operations in OFDM such as linearity, time shift, frequency 
shift, and convolution are the same as described in Section 1.8 and are not 
repeated here.

The sequence Xnis normally complex. As given in (1.32) and (1.33), Xn 
can be real if its spectrum has some symmetry properties. In other words, 

Figure 3.7 Unused subcarriers indices in IEEE 802.11a.
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the real part of the spectrum has to be even and the imaginary part of the 
spectrum has to be odd.

The transmission of the OFDM signal through the media normally suf-
fers from multipath delay and the Doppler shift. The multipath delay is the 
operation of a time shift. The impact is the multiplication by a phase factor 
in the frequency domain as given in (1.47). The Doppler shift is equivalent 
to the multiplication by a phase factor in the time domain. The impact is the 
frequency shift in the frequency domain as given in (1.49).

Example 3.4

The null subcarrier region can be plotted in the positive frequency domain 
using the periodic property X–k = XN–k. Since N = 64, null subcarriers from a 
frequency index −31 to −27 are the same as those from a frequency index 33 
to 37. Figure 3.7 is plotted again in Figure 3.8.

3.8 Summary

OFDM utilizes the multicarrier modulation technique through an inverse 
DFT, which has a summation of N terms. Each term represents one subcarrier 
and there are a total of N subcarriers. Several important characteristics were 
discussed: orthogonality, OFDM spectrum, PAPR, cyclic prefix, and FFT.

The orthogonality characteristics showed that any two subcarriers are 
orthogonal in an OFDM symbol duration. The OFDM spectrum is a sum-
mation of sinc function from each subcarrier. At the peak for any subcarrier, 
the rest of subcarriers exhibit zero crossing. One disadvantage of OFDM is 
PAPR because the peak power in a single OFDM symbol can be N times 
larger than the average power. This effect can saturate the power amplifier and 
cause signal distortion. To reduce the number of computations, the DFT is 
performed using the FFT. The number of complex multiplications and addi-
tions for DFT against FFT is N/log2N.

Figure 3.8 Unused subcarriers indices in IEEE 802.11a.
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A cyclic prefix was inserted between two adjacent symbols to remove 
the ISI. Assume that this guard interval has a duration of Ng samples and the 
channel has a multipath spread of Nc samples. To remove this ISI, a necessary 
requirement is for Ng > Nc.

Each OFDM symbol was multiplied by a window function in the time 
domain for the purpose of reducing the higher spectral side lobes of the trans-
mitted waveform. This window function used in IEEE 802.11a is a modified 
rectangular function. Its frequency spectrum was derived. A parameter was 
defined in the window function to control the drop rate of these side lobes.

On digital modulation, the input bit stream was applied to change the 
amplitude, phase, or frequency of the complex spectral amplitude. Following 
IEEE 802.11a, PSK, QPSK, 16-QAM, and 64-QAM were described. The 
signal constellation is very similar to that of the single-carrier modulation. If 
the DFT has a dimension N, then there is a maximum of N subcarriers. In 
reality, the number of subcarriers used is normally smaller than N to remove 
interference of side lobes from the band edges.

In the next chapter, the transmission waveform specified by the IEEE 
802.11a is presented.
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4
OFDM Transmission

4.1 Introduction

Before data is transmitted through OFDM, the preamble and header fields 
are normally sent first. A preamble is usually in a periodic sequence with a 
known data structure. Its purpose is to help the receiver in signal detection, 
channel estimation, timing synchronization, and frequency offset estima-
tion. A header field normally contains a rate field to inform the receiver of 
the transmission data rate.

To help understand the preamble, header, and data structure, the frame 
format specified in IEEE 802.11a is used for illustration. However, any other 
useful format can be used to meet the specific requirements.

Before getting into the signal transmission format, a general transmit-
ter block diagram is presented first to have an idea of the overall transmitter 
architecture. Subsequently, the frame format for preamble, header, and data 
is discussed in detail for IEEE 802.11a. Lastly, a typical receiver architecture 
is also given in preparation for future discussion of all the major components.

4.2 OFDM Transmitter Architecture

Figure 4.1 is the block diagram of a typical OFDM transmitter. The input 
bit sequence can be scrambled first for transmission security. The military 
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communication normally has a complicated encryption algorithm in place to 
scramble the input data. The propagated OFDM signal through the media can 
suffer channel degradation such as multipath and fading that cause bit errors 
after reception. The scrambled bit sequence is therefore encoded with error 
correcting codes in order for the receiver to correct the bit errors. However, 
the bit errors can appear in bursts and it is difficult for the receiver to correct. 
The encoded bits then go through an interleaving procedure to spread the bits 
so as to make the error correction much easier.

The next four blocks, modulation, inverse FFT, cyclic prefix, and win-
dowing, were discussed in Chapter 3. These are key blocks to generate OFDM 
discrete samples. These discrete samples are then converted to an analog signal 
by passing through a digital-to-analog converter (DAC). At last, this baseband 
signal modulates an RF carrier to be transmitted.

Before the data transmission, a preamble signal is normally transmitted 
first to help the receiver for signal detection, channel estimation, and tim-
ing synchronization.

4.3 Signal Transmission Format

OFDM signal transmission consists of three parts: preamble, signal header, 
and data. They are shown in Figure 4.2. The preamble is a periodic signal. For 
IEEE 802.11a, it consists of a short sequence followed by a long sequence. Its 
purpose is to help the receiver to perform signal detection, frequency offset 
estimation, time synchronization, and channel estimation.

The header field usually takes one OFDM symbol length. The processes 
of error correction encoding, interleaving, modulation, inverse FFT, and cyclic 
prefix insertion as shown in Figure 4.1 are applied. Their purpose is to send 
some key transmission parameters to the receiver. The data modulation format 

Figure 4.1 Typical OFDM transmitter block diagram.
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and the total length are required for the receiver to demodulate. The tail bits 
can be inserted to make a full OFDM symbol. The header field is normally 
modulated with BPSK. However, the header bits are not necessarily scrambled.

After both the preamble and header transmission, the user data starts. 
The detailed frame format of preamble, header, and data is discussed in the 
following sections.

4.4 Preamble Signal for IEEE 802.11a

The preamble is a transmission of fixed signal patterns and is also known to 
the receiver. For OFDM, it is normally a periodic signal with a fixed signal 
pattern. For each subcarrier k, the complex amplitude Xk = AkejΨk given in (3.4) 
is completely specified. The periodic signal plus the unique OFDM character-
istics make the just mentioned receiver tasks easier to perform.

For IEEE 802.11a, the preamble consists of a short sequence and a long 
sequence [1]. The short sequence is designed for coarse timing estimation 
while the long sequence is used to make further refinements. These two-step 
processes can extract the necessary OFDM parameters for the demodulation 
of future data signals. Figure 4.3 is the preamble design of IEEE 802.11a. 
The short sequence consists of 10 periodic segments and each segment has 
the same number of 16 samples [1]. The long sequence consists of two OFDM 
symbols. Two guard intervals are followed by two consecutive FFT intervals.

Figure 4.2 OFDM signal transmission format.

Figure 4.3 Preamble signal format of IEEE 802.11a.
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4.4.1 Short Sequence

Figure 4.4 is a plot of the phase of one fundamental short sequence segment 
from frequency index equal to −26 to 26. There are only 12 nonzero subcar-
riers. The complex amplitude Xk is either A(1 + j) or A(−1 − j). The constant 
A is selected so that the average power per subcarrier is 1. The total power of 
the 12 carriers is 24A2. The average power per subcarrier is 24A2/52 since the 
total number of subcarriers from frequency index −26 to 26 is 52. To normal-
ize this average power, A is solved to be 13/6 . The phase angle Ψk is either 
π /4 or −3π /4 and the amplitude Ak is a constant equal to 13/6 . Note the 
phase is nonzero for every fourth frequency index. Therefore, the samples in 
the frequency domain can be downsampled by a factor of 4.

The short sequence specifies 52 subcarriers with the index ranging from 
−26 to −1 and from 1 to 26. The data from −26 to −1 can be copied to an 
index from 38 to 63. The data from an index from 27 to 37 including index 
0 has zero value. After the downsampling by a factor of 4 starting from index 
0, only 12 samples are left. Figure 4.5 is a plot of 16 frequency samples against 
the frequency index. From this figure, it can be seen that there are only 12 
nonzero samples.

Figure 4.4 The phase of one short sequence segment in the frequency domain.

Figure 4.5 The phase of downsampled short sequence segment in the frequency 
domain.
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Taking the inverse FFT of the 16 frequency-domain samples, the time-
domain samples for each fundamental segment are obtained. The short 
sequence is a repetition of 10 such fundamental segments. The time duration 
tshort is given here:

 
tshort = 10

T fft

4
⎛
⎝⎜

⎞
⎠⎟
= 10NT

4
 (4.1)

Equation (4.1) shows that the duration increases with increasing sam-
pling period or decreasing channel spacing. The number of samples, Nshort, 
is then given here:

 
N short =

10N
4

 (4.2)

Therefore, the number of samples is independent of the channel spac-
ing. Assuming a 20-MHz channel spacing, we have T = 0.05 µs and N = 64. 
Equation (4.1) gives tshort = 8 µs and Nshort = 160. Each fundamental segment 
has 16 samples of duration 0.8 µs.

Before transmission, the 160 time samples must be multiplied by a time 
window shown in Figure 3.5. Repeating each fundamental time segment 10 
times and multiplying by such a time window, the short sequence is obtained. 
Figure 4.6 is an amplitude plot, and Figure 4.7 is a phase angle plot of four 

Figure 4.6 The amplitude of the first four segments of a short sequence in the time 
domain.
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such fundamental segments in a short sequence. Note the amplitude of the 
first sample of the first segment is down by a half due to the multiplication 
by the window function. Both figures clearly show the pattern repeats every 
16 samples.

4.4.2 Long Sequence

The long sequence has two OFDM symbols [1]. Each OFDM symbol consists 
of one inverse FFT interval and one guard interval. The duration of the long 
sequence is then the following:

 
tlong = 2 T fft +Tgi( ) = 2 NT + NT

4
⎛
⎝⎜

⎞
⎠⎟ = (2.5)NT  (4.3)

The number of samples Nlong is again independent of the bandwidth 
and is given here:

 
N long =

tlong

T
= (2.5)N  (4.4)

Assume again 20-MHz channel spacing, Equation (4.3) gives tlong = 8 µs 
and Nlong = 160. Therefore, the short sequence and the long sequence have the 
same number of samples. Also, for a long sequence, the guard interval has a 
total of 2 ∗ N/4 = 32 samples while the two FFT intervals have a total of 2 
∗ N = 128 samples.

The complex amplitude Xk is either 1 or −1. Therefore, the amplitude 
Ak is 1 and the phase angle Ψk is 0° or 180°. Figure 4.8 is a plot of the long 

Figure 4.7 Phase angle of the first four segments of a short sequence in the time 
domain.
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sequence amplitude against a frequency index from −26 to 26. Except at DC 
or frequency index zero, the complex amplitude is nonzero at all other fre-
quency indexes.

Taking an inverse FFT, 64 time-domain samples can be obtained. Fol-
lowing the design of Figure 4.3, the long sequence of 160 samples is obtained. 
After multiplying by a time window, Figure 4.9 is a plot of the long sequence 
amplitude and Figure 4.10 is a plot of the long sequence phase in the time 
domain. Note that the amplitude and phase are the same between frequency 
index from 32 to 95 and a frequency index from 96 to 159. Note also that 
the amplitude and phase of the guard interval from a frequency index 0 to 
31 are copied from those of a frequency index from 128 to 159. The ampli-
tude at the time index zero is multiplied by a factor of 0.5 because of the 
window function.

Figure 4.8 The complex amplitude of the long sequence in the frequency domain.

Figure 4.9 The amplitude of the long sequence in the time domain.
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4.5 IEEE 802.11a Header Format

For IEEE 802.11a, the header format is shown in Figure 4.11 [1]. There are a 
total of 5 fields. The RATE field has 4 bits and can specify a maximum of 16 
different combinations of modulation and coding rate. The LENGTH field 
has 12 bits and specifies the total data length in bytes. There are six TAIL bits 
attached at the end to make for a total of 24 bits. The modulation is BPSK 
using convolutional code at a rate of 1/2. Therefore, the total coded bits per 
symbol are 48.

Table 4.1 lists eight different data rates specified by IEEE 802.11a. The 
convolutional code is selected for the error correction. Based upon a convolu-
tional coding rate R, the other parameters can be either specified or derived. 
There are only four different modulation techniques and they are BPSK, 
QPSK, 16-QAM, and 64-QAM. The coded bits per subcarrier Nbpsc are 1, 2, 
4, and 6, respectively. The coded bits per OFDM symbol Ncbps and data bits 
per OFDM symbol Ndbps are then computed as here:

 
Ncbps = N sd Nbpsc  (4.5)

 
Ndbps = Rcoding Ncbps( )  (4.6)

Figure 4.10 The phase angle of the long sequence in the time domain.

Figure 4.11 Header format of IEEE 802.11a.
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where Nsd is the number of data subcarriers and Rcoding is the coding rate. 
For a convolutional encoder, the coding rate Rcoding specifies the ratio of 
data bits against the coded bits. For IEEE 802.11a. there are 52 subcarriers 
with a frequency index ranging from −26 to −1 and from 1 to 26. However, 
subcarriers −21, −7, 7, and 21 are reserved for pilots. That means the total 
number of data subcarriers is Nsd = 48. The data rate, Rdata is then computed 
as follows:

 
Rdata =

Ndbps

T fft +Tgi

 (4.7)

The parameters Tfft and Tgi are given in Table 3.1.

Example 4.1

Assuming that QPSK and coding rate R = 3/4, then Nbpsc = 2 from Table 4.1 
and there are Nsd = 48 data subcarriers using IEEE 802.11a. From (4.5), Ncbps 
= 48 ∗ 2 = 96. From (4.6), Ndbps = 96 ∗ 3/4 = 72. At 20 MHz, the symbol 
duration is Tfft + Tgti

 = 4 µs from Table 3.1. From (4.7), the data rate is then 
Rdata = 72/4 = 18 Mbps.

Example 4.2

For the header field, the modulation is BPSK and the coding rate is 1/2. From 
Table 4.1, we have Ncbps = 48 and Ndbps = 48 ∗ 1/2 = 24. The data rate at 20 
MHz is then 24/4 = 6 Mbps.

Table 4.1 
IEEE 802.11a Modulation Parameters at 20-MHz Channel Spacing

Modulation R Nbpsc Ncbps Ndbps Data Rate (Mbps)

BPSK 1/2 1 48 24 6

BPSK 3/4 1 48 36 9

QPSK 1/2 2 96 48 12

QPSK 3/4 2 96 72 18

16-QAM 1/2 4 192 96 24

16-QAM 3/4 4 192 144 36

64-QAM 2/3 6 288 192 48

64-QAM 3/4 6 288 216 54
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4.6 IEEE 802.11a Data Format

Figure 4.12 shows the data format of IEEE 802.11a [1]. There are four fields, 
SERVICE, MESSAGE, TAIL, and PAD. The PAD field is used so the total 
data length is an integral multiple of Ndbps.

The total number of data bits is given here:

 

Ndata = Ndbps Ceiling
16 + 8Nmessage + 6( )

Ndbps

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  (4.8)

where Nmessage is the number of message bytes specified in the LENGTH 
field of the header. In (4.8), 16 is the number of SERVICE bits while 6 is the 
number of TAIL bits. The number of PAD bits Npad is then computed here:

 
Npad = Ndata − 16 + 8Nmessage + 6( )  (4.9)

The number of PAD bits is a variable and depends upon the data length 
in bytes specified in the header field.

Example 4.3

Assume that the incoming message has 125 bytes using the QPSK and 1/2 
coding rate. The data field has 16 + 6 + 8 ∗ 125 = 1,022 bits. From Table 
4.1, Ndbps = 48. From (4.8), Ndata = 48 Ceiling (1,022/48) = 48 ∗ 22 = 1,056. 
From (4.9), Npad = 1,056 − 1,022 = 34. Therefore, 34 bits must be padded.

After data demodulation, a total of Ncbps bits are collected for each 
OFDM symbol. When the processes of deinterleaver, error correction decod-
ing and descrambling are completed, the desired number of Ndbps data bits 
are then recovered.

4.7 OFDM Receiver Architecture

Before getting into the various topics related to the receiver design, a typical 
receiver architecture is presented first in Figure 4.13. In this diagram, the 
major components inside a receiver are given.

Figure 4.12 Data field of IEEE 802.11a.
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After propagating through the media, the received analog signal goes 
through an RF front end, which performs filtering, automatic gain control 
(AGC), and the recovery of in-phase and quadrature-phase (IQ) signals. The 
IQ signal is subsequently digitized for further processing.

There are two different types of signal to be received: preamble and data. 
If the received signal is a preamble, the channel estimate and synchronization 
are performed. However, if the input is data, the cyclic prefix is first removed 
before performing the FFT. During the data transmission, not all the subcarri-
ers are dedicated to data. Some are pilot subcarriers to help channel estimation 
and synchronization. This is true not just for 802.11a but also for 4G-LTE.

Subsequently, the channel degradation is removed based upon an earlier 
channel estimate. The channel estimation can also be updated concurrently 
using the LMS algorithm. After that, the received IQ signal is demodulated 
to get the bit stream. This bit stream subsequently goes through the deinter-
leaver, error correction decoder, and, finally, the descrambler to get the original 
transmitted data.

The detailed processing of every box will be discussed in subse-
quent chapters.

4.8 Summary

A general transmitter block diagram was first given to have a picture of the over-
all OFDM architecture. The transmission frame format including preamble, 

Figure 4.13 A typical OFDM receiver architecture.
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header, and data was subsequently discussed. The frame format specified in 
IEEE 802.11a was used for illustration.

A preamble consists of a short sequence and a long sequence in IEEE 
802.11a. The short sequence has 10 periodic segments and a total of 160 sam-
ples. The long sequence also has 160 samples including two guard intervals of 
32 samples and two FFT intervals of 128 samples.

The header field specifies the data rate to inform the receiver for demodu-
lation; it also has a LENGTH field specifying the total data length in bytes 
for transmission. The data field has tail bits to allow the convolutional encoder 
to return to the zero state. It also inserts some pad bits so the total duration 
has an integral number of data bits per OFDM symbol.

Finally, a typical receiver architecture was presented to show the major 
components inside a receiver. Each component in both the transmitter and 
receiver architecture will be discussed in subsequent chapters.

In the next chapter, the shift-register sequence, data scrambler, and 
descrambler are discussed.

Reference

[1] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications, IEEE Standard 802.11a, 2007.
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5
Shift Register Sequence and 
Data Scrambler

5.1 Introduction

In digital communication, the input data is often scrambled before the modula-
tion and transmission. The receiver knows exactly how to generate the scram-
bler sequence used in the transmitter to recover the original data. For military 
communication, the sequence period is extremely long and is difficult for the 
enemy to descramble. For commercial communication, it is long enough to 
protect the security of the user data.

IEEE 802.11a also defines a scrambler generated from a shift register 
sequence. Depending upon the number of shift registers, this sequence has 
a unique period of maximum length. To understand the process of sequence 
generation from the shift registers, we start with a binary field, and a Galois 
field is also discussed. The details of sequence generation from the shift reg-
isters and its period determination are subsequently presented.

Finally, a data scrambler is discussed. The process of data scrambling in 
the transmitter and descrambling in the receiver is also discussed.
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5.2 Binary Field

A Galois field [1] with p elements is normally represented as GF(p) where p is 
a prime. If p = 2, it is a binary field GF(2) having only two elements. These 
two elements are 0 and 1. The operation of multiplication and addition are 
defined in Tables 5.1 and 5.2.

The multiplication has the symbol “.” while the addition has the symbol 
“+.” Both addition and multiplication are performed under a modulo-2 opera-
tion. For example, 1 + 1 (modulo-2) = 0. The field is closed since both addi-
tion and multiplication generate an element of either 0 or 1 in the same field.

The operation of subtraction “−” and division “/” can also be defined. 
Assuming that a and b are two elements in a field, then a − b = a + (−b). The 
−b is defined such that b + (−b) = 0. The element −b is also called the additive 
inverse element. Since the operation is modulo-2, −b is then equal to 2 − b. 
For b = 1, −b = 1, and for b = 0, −b = 0.

The division of a by b is defined as a/b = a.b−1. The element b−1 is also 
called a multiplicative inverse element. It is defined such that b.b−1 = 1. For b 
= 1, b−1 = 1. The element 0 is excluded from having a multiplicative inverse.

Table 5.1 also shows that the addition is commutative and associative. 
Assuming that a, b, and c are three numbers from GF(2), then clearly a + b 
= b + a and a + (b + c) = (a + b) + c. Tables 5.1 and 5.2 also show that the 
multiplication is distributive since a(b + c) = (a.b) + (a.c).

Table 5.1 
Binary Addition

+ 0 1

0 0 1

1 1 0

Table 5.2 
Binary Multiplication

. 0 1

0 0 0

1 0 1
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A polynomial whose coefficients are from GF(2) can also be defined. 
Assuming that f(x) of degree n is such a polynomial, it is given by

 f (x) = a0 + a1x + a2 x2 + a3 x3 +…+ an xn  (5.1a)

where an = 0 or 1. Similarly, a polynomial g(x) of degree m is defined here:

 g(x) = b0 + b1x + bx2 + bx3 +…+ bm xm  (5.1b)

where bm = 0 or 1. The addition of f(x) and g(x) is then given here:

 
f (x)+ g(x) = a0 + b0( )+ a1 + b1( )x + a2 + b2( )x2 +… (5.2)

The subtraction of g(x) from f(x) can be similarly defined:

f (x)− g(x) = a0 − b0( )+ a1 − b1( )x + a2 − b2( )x2 +…

= a0 + −b0( )( )+ a1 + −b1( )( )x + a2 + −b2( )( )x2 +…
 (5.3)

Example 5.1

Assuming that f(x) = 1 + x2 + x3 and g(x) = x + x2 + x3 + x4, then

  

The multiplication of f(x) by g(x) is given here:

f (x)g(x) =   a0 + a1x + a2 x2 + a3 x3 +…+ an xn( )  b0 + b1x + b2 x2 + b3 x3 +…+ bm xm( )
= a0b0 + a0b1 + a1b0( )x + a0b2 + a1b1 + a2b0( )x2 +…anbm xn+m

= c0 + c1x + c2 x2 + c3 x3   +…+  cn+m xn+m
 

 (5.4a)

where cn is in general given by

 cn = a0bn + a1bn−1 + a2bn−2 +…+ anb0  (5.4b)

Example 5.2

Assume f(x) = 1 + x + x2 and g(x) = 1 + x2, then the product of f(x) and g(x) 
is given by
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f (x)g(x) = 1+ x + x2 + x2 + x3 + x4 = 1+ x + (1+1)x2 + x3 + x4

= 1+ x + x3 + x4
 

Equations (5.4a) and (5.4b) can also be used to compute the product. In 
this case, a0 = 1, a1 = 1, a2 = 1, a3 = 0, a4 = 0 and b0 = 1, b1 = 0, b2 = 1, b3 = 0, 
b4 = 0. From (5.4b), we have c0 = a0b0 = 1, c1 = a0b1 + a1b0 = 1.0 + 1.1 = 1, c2 
= a0b2 + a1b1 + a2b0=1.1 + 1.0 + 1.1 = 0, c3 = a0b3 + a1b2 + a2b1 + a3b0 = 1.0 
+ 1.1 + 1.0 + 0.1 = 1 and c4 = a2b2 = 1. Therefore, f(x)g(x) = 1 + x + x3 + x4 
and is the same as given earlier.

The division in GF(2) can be performed through long division. If the 
quotient is q(x) and the remainder is r(x), then f(x) = q(x)g(x) + r(x). The 
degree of r(x) is less than q(x). The process of long division is shown through 
the following example.

Example 5.3

Assuming that f(x) = x4, g(x) = 1 + x + x2, then f(x)/g(x) is given here:

 

x2 + x

x2 + x +1 x4

x4 + x3 + x2

x3 + x2

x3 + x2 + x
x  

Therefore, the quotient q(x) is x2 + x and the remainder r(x) is x. To prove 
its correctness, we have f(x) = q(x)g(x) + r(x) = (x2 + x) (x2 + x + 1) + x = x4 + 
x3 + x2 + x3 + x2 + x + x = x4.

If r(x) = 0, then f(x) = q(x)g(x) and f(x) is divisible by g(x) If x is a root 
of f(x), then f(x) = 0. As an example, x = 1 is a root of f(x) = x4 + x3 + x2 + x 
since f(1) = 0. Through long division, it can be shown that f(x) = x4 + x3 + x2 
+ x = (x + 1)(x3 + x). This shows that f(x)may have roots not in GF(2). It is 
similar to the case that a real polynomial may have complex roots.

5.3 Galois Field

In general, a Galois field has more than two elements. Of particular inter-
est is the field GF(2m) and m > 1 [1]. To construct such a field, a primitive 
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polynomial needs to be defined. Assume that p(x) is a polynomial with degree 
m over GF(2). It is primitive if the smallest positive n such that p(x) divides 
xn + 1 is n = 2m − 1and p(x) is not divisible by any polynomial of degree less 
than m. For example, p(x) = 1 + x + x3 is primitive since m = 3 is the smallest 
degree such that p(x) divides x7 + 1. Through long division, it can be shown 
that x7 + 1 = (x4 + x2 + x + 1)(x3 + x + 1). The polynomial p(x) is also not 
divisible by any polynomial of degree less than 3. Therefore, p(x) is primitive.

In a binary field of GF(2), it is a modulo-2 operation. In the extension 
field of GF(2m), it is an operation by performing modulo p(x) and p(x) is a 
primitive polynomial. Equivalently, p(x) = 0 and is similar to the binary field 
by setting 2 to zero. Therefore, no polynomial in GF(2m) can have a degree 
greater than m. Because x2m−1 +1 is divisible by p(x), x2m−1 + 1 = 0 or x2m−1 = 
1. Assume that y is an element of GF(2m). To construct this field, we start 
with the number 1 and continue multiplying by y. A new element is generated 
with every multiplication by y. This process continues until y2m−2 is reached. 
Including 0, a total of 2m elements is then generated. Using the property p(y) 
= 0 and y2m−1 = 1, each field element can be reduced to a polynomial with a 
degree less than m.

Example 5.4

Assume that the primitive polynomial is p(x) = 1 + x + x3. Then we have x3 = 
x + 1 and x7 = 1. The 8 field elements are then generated here:

 

0
1
y

y2

y3 = y +1

y4 = y( y +1) = y2 + y

y5 = y y2 + y( ) = y3 + y2 = y2 + y +1

y6 = y y2 + y +1( ) = y3 + y2 + y = y +1+ y2 + y = y2 +1
 

Since y7 = 1, the process repeats and there are at most 8 elements in GF(8). 
To prove y7 = 1, we have y7 = y(y2 + 1) = y3 + y = y + 1 + y = 1. Also, from the 
listing above, every element polynomial has degree of 2 or less.

If the primitive polynomial has degree of m, then all the field element 
polynomials can be represented as a0 + a1y + a2y2 + ⋯ + am–1ym−1. The coefficient 
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an is over GF(2) and is either 0 or 1. The total number of terms is m. Therefore, 
the total number of field elements is 2m.

The multiplicative inverse element and additive inverse element also exist 
in GF(2m). The additive inverse element is the element itself. Therefore, the 
additive inverse element of yi is yi. The multiplicative inverse element of yi is y−i 
= y2m−1y−i = y2m−i−1. From Example 5.4, the multiplicative inverse element of yi 
is y7−i. For example, the multiplicative inverse element of y3 is y4 and so forth.

The Galois field GF(2m) is also closed under the addition and multipli-
cation [1]. This means that the addition or multiplication of any two field ele-
ments is also an element in GF(2m). For example, consider two field elements 
y and y5. From Example 5.4, the addition of y and y5 is y2 + 1 = y6, which is 
also a field element. From Example 5.4 again, the multiplication of y and y5 
is y6, which is clearly a field element. However, this is true for any two field 
elements. This illustrates that the Galois field GF(2m) is closed under the addi-
tion and multiplication.

The Galois field GF(2m) also satisfies the commutative, associative, and 
distributive laws. Every polynomial in GF(2m) has coefficients over GF(2). As 
has been shown before, these polynomials satisfy these laws. Therefore, these 
laws are also satisfied over GF(2m).

Another interesting property of GF(2m) is that every field element of 
the form yi where i < 2m − 1 is a root of f(x) = x2m−1 + 1 [1]. This can be easily 
proven as follows:

 
  f (x) = f yi( ) = yi(2m−1) +1 = y(2m−1)i +1 = y2m−1( )i

+1 = 1i +1 = 1+1 = 0
 

Therefore, the polynomial sequence 1, y, y2 + ⋯ + y2m−2 are all the roots 
of x2m−1 + 1 = 0.

5.4 Sequence Generator

The shift registers can be used to generate a pseudonoise (PN) sequence with 
the desired period. Figure 5.1 is a logical diagram to generate such a sequence 
through polynomial division [1, 2]. The circle with a + sign inside represents 
summation and the circle with z−1 inside means a delay by one sample. Finally, 
the circle with a coefficient gn inside represents a multiplication by gn. On the 
rightmost shift register, yn is an output and input to the shift register. On the 
leftmost register, there is a feedback path back to the input. All the polynomial 
summations and multiplications are performed under modulo-2 arithmetic.
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Based upon Figure 5.1, we have the following difference equation:

 yn = g1 yn−1 + g2 yn−2 +…+ gr−1 yn−r+1 + gr yn−r + A0  (5.5)

where A0 is the initial condition on the shift register. Performing a z-transform 
using the time shift operation given by (1.57) on both sides of (5.5), we have

 

Y (z) = Y (z) g1z−1 + g2z−2 +…+ gr−1z−r+1 + gr z−r( )
+A(z)

 (5.6)

where A(z) is given by the following equation:

 A(z) = a0 + a1z−1 + a2z−2 +…+ ar−1z−r+1  (5.7)

The coefficients from a0 to ar–1 are initial loads to the r shift registers. 
The coefficient a0 is the initial load to the leftmost shift register while ar–1 is 
the initial load to the rightmost shift register. The coefficient an of the nth 
shift register is either 0 or 1. Combining terms with Y(z) together, we have

 
Y (z) 1− g1z−1 − g2z−2 +…+ gr−1z−r+1 − gr z−r( ) = A(z)  (5.8)

Since gn is binary, (5.8) after a modulo-2 operation becomes

 
Y (z) = A(z)

1+ g1z−1 + g2z−2 +…+ gr−1z−r+1 + gr z−r  (5.9)

Figure 5.1 Linear feedback shift register performing polynomial division.
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Substituting x = z−1 into (5.9), we have

 
y(x) =

a0 + a1x + a2 x2 +…+ ar−1xr−1

1+ g1x + g2 x2 +…+ gr−1xr−1 + gr xr  (5.10)

Assuming that the nominator polynomial is A(x) and the denominator 
polynomial is G(x), we have

 

A(x) = a0 + a1x + a2 x2 +…+ ar−1xr−1

G(x) = 1+ g1x + g2 x2 +…+ gr−1xr−1 + gr xr

y(x) = A(x)
G(x)

 (5.11)

Note that a0 is the content of the leftmost shift register while ar–1 is the 
content of the rightmost shift register [2]. Before performing the division, A(x) 
is modified to B(x) such that B(x) is the polynomial of A(x)G(x) after remov-
ing all terms with a degree greater than r − 1 [2].

Example 5.5

Assume that G(x) = 1 + x + x3 and the initial load to the shift registers is 001 
as illustrated in Figure 5.2. There are two methods to get the output. The first 
is to step through the shift register operations cycle by cycle and the second 
is through the polynomial divisions. Using the first method, the shift register 
content and output are given in Table 5.3.

During each cycle, the content of the shift register shifts one place to 
the left. The initial condition is that the shift register content is 001 at the first 
cycle. In the second cycle, the content of the third register becomes 0 while 
the content of the second register becomes 1. The summation result is shifted 
to the first register and becomes 0 + 1 = 1 and the output is 1.

Figure 5.2 Sequence generator for Example 5.5.
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Therefore, the content of the shift registers becomes 011 after the first 
cycle. For the other cycles, the register content can be obtained in the same 
way. After the seventh cycle, the content of the shift register repeats so the 
period is 7.

Using the second method, the polynomial B(x) needs to be determined 
first. From the initial load, A(x) = x2 and A(x)G(x) = x2(1 + x + x3) = x2 + x3 
+ x5. After removing all the terms with a degree greater than 2, we have B(x) 
= x2. The long division is then performed here:

 

x2 + x3 + x4 + x6 + x9

1+ x + x3 x2

x2 + x3 +  x5

x3 + +  x5

x3 +  x4 +  x6

x4 + x5 + x6

x4 +  x5 + x7

x6 + x7

x6 + x7 + x9

x9
 

Observe that the coefficients of the quotient polynomial starting at x9 
repeats. Therefore, the long division generates a periodic output of 1110100, 
which is the same as that from method 1. Since there are only three registers, 
the maximum number of unique register contents is 23 − 1 = 7. Therefore, 7 
is also the maximum period.

Table 5.3 
Register Content and Output for Example 5.5

Cycle Register 3 Register 2 Register 1 Output

1 0 0 1 1

2 0 1 1 1

3 1 1 1 1

4 1 1 0 0

5 1 0 1 1

6 0 1 0 0

7 1 0 0 0

6899_Book.indb   69 10/22/19   4:54 PM



70 Introduction to OFDM Receiver Design and Simulation

Example 5.6

Consider another example with G(x) = 1 + x3 illustrated in Figure 5.3. The 
first method is used to find the output with different initial register contents. 
The results are given in Table 5.4.

As can be seen from Table 5.4, different initial register content gener-
ates different output and period. For the initial register content 001, 111, 000, 
110, the output sequence is 100, 111, 000, 011, respectively, and the period 
is either 1 or 3.

5.5 Period of Sequence Generator

Assume a sequence generator has any polynomial G(x) of degree r defined by 
(5.11). An inverse polynomial G−1(x) can be defined as follows:

 
G−1(x) = xrG 1

x
⎛
⎝⎜

⎞
⎠⎟  (5.12)

where r is the number of shift registers. It can be shown [2] the maximum 
period N of a shift register sequence with polynomial G(x) is the smallest N 
such that xN + 1 is divisible by G−1(x). This is demonstrated by the follow-
ing example.

Figure 5.3 Sequence generator for Example 5.6.

Table 5.4 
Register Content for Example 5.6

Initial Register  
Contents/Cycles 001 111 000 110

1 010 111 000 101

2 100 111 000 011

3 001 111 000 110
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Example 5.7

Let G(x) = 1 + x + x3 + x4 for the sequence generator illustrated in Figure 5.4. 
The inverse polynomial is then given by

 
G−1(x) = x4G 1

x
⎛
⎝⎜

⎞
⎠⎟ = x4 x−4 + x−3 + x−1 +1( ) = 1+ x + x3 + x4

 

Through long division, it can be shown that

 

x6 +1 = x4 + x3 + x +1( ) x2 + x +1( )
x12 +1 = x4 + x3 + x +1( ) x8 + x7 + x6 + x2 + x +1( )  

Both x6 + 1and x12 + 1 are divisible by (x4 + x3 + x + 1), but the smallest 
degree is 6 and the period is then 6. This can be verified by going through the 
state sequence as given by Table 5.5.

The maximum number of states for 4 registers is 15 and all the 15 states 
appear in Table 5.3 and there are no other periods. This proves that the maxi-
mum period is 6.

Figure 5.4 Sequence generator for Example 5.7.

Table 5.5 
Register Content of Example 5.7

Initial Register 
Contents/Cycles 0000 0101 1111 1011 0011 0010

1 0000 1010 1111 0110 0111 0100

2 0101 1101 1110 1001

3 1011 1100 0010

4 1000

5 0001

6 0011
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5.6 Maximum-Length Sequences

The period of a shift register sequence for any polynomial G(x) has been defined 
in the previous section. It is the smallest N such that xN + 1 is divisible by the 
inverse polynomial G−1(x). If G(x) is a primitive polynomial as discussed in 
Section 5.3, it has been shown [2] that G−1(x) is also primitive. If the primi-
tive polynomial has a degree r, the smallest degree N such that G(x) divides 
xN + 1 is N = 2r − 1. Since the number of shift registers is also r, the maxi-
mum number of possible state sequences is N = 2r − 1. Under this condition, 
the maximum period is 2r − 1. The shift register sequence that generates the 
maximum period is then called the maximum-length sequence.

Table 5.6 lists some representative primitive polynomials of degrees less 
than 10 [1]. A more comprehensive listing of primitive polynomials can be 
found in [2].

5.6.1 Properties of the Maximum-Length Sequence

In Example 5.5, G(x) = 1 + x + x3 is a primitive polynomial. The output 
sequence is 1110100 if the initial state is 001. As indicated, the period is 7. 
An examination of the output sequence shows that there are 4 ones and 3 
zeros. The number of ones is one more than the number of zeros. This is, in 
general, true for any maximum length sequence. Since the state sequence goes 
through all the possible states, the number of odd numbers is one more than 

Table 5.6 
Listing of Some Primitive Polynomials

Degree Primitive Polynomial Maximum Period

2 1 + x + x2 3

3 1 + x + x3 7

4 1 + x + x4 15

5 1 + x2 + x5 31

6 1 + x + x6 63

7 1 + x3 + x7 127

8 1 + x2 + x3 + x4 + x8 255

9 1 + x4 + x9 511

10 1 + x3 + x10 1023
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the number of even numbers. Examining the register content of Figure 5.2, 
it can be seen that there are 4 odd numbers and 3 even numbers. Since the 
output is shifted to the rightmost register, the number of ones is one more 
than the number of zeros.

Including two periods, the output sequence of Example 5.5 is 
11101001110100. If the initial content of the register is changed to 110, the 
output sequence becomes 01001110100111. Comparing the two sequences, 
the second sequence starts from the fourth digit of the first sequence. There-
fore, the same sequence is generated except for the phase difference. That 
this is true is because the maximum-length sequence goes through all the 
possible states. Therefore, for a fixed primitive polynomial, the maximum 
length sequence is independent of the register content except for the phase. 
The period is also always the same independent of the content of the initial 
register state.

5.6.2 Sequence Generator from the IEEE 802.11a

In the IEEE 802.11a, a sequence generator is specified to scramble the input 
data. The primitive polynomial used in this sequence generator has the seventh 
degree. From Table 5.6, it is given here:

 G(x) = 1+ x3 + x7  (5.13)

The inverse polynomial is also primitive and is from (5.12) with r = 7:

 
G−1(x) = x7 1+ x−3 + x−7( ) = 1+ x4 + x7  (5.14)

The IEEE 802.11a uses the inverse polynomial defined in (5.14) as the 
generator and is shown in Figure 5.5. The period is then 27 − 1 = 127. The 
initial state is all ones and the output repeats every 127 digits.

Figure 5.5 Sequence generator for the IEEE 802.11a.
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5.7 Data Scrambler

For military communications, it is required that the incoming data be 
encrypted before being transmitted. The encryption algorithm is sophisticated 
so the enemy receiver cannot decrypt it. For commercial communications, 
it is also necessary to protect sensitive data, which is often scrambled before 
transmission. Independent of the complexity of the sequence generator, the 
data scrambler is shown in Figure 5.6.

The data scrambler consists of two parts. The first part is to generate the 
random bit stream. The second part is the modulo-2 sum of the input data 
and the random bit stream. For military communications, the random bit 
generator has an extremely long period. For commercial communications, a 
maximum-length sequence generator is frequently used to generate the pseudo-
random sequence. The IEEE 802.11a uses the polynomial defined in (5.14) to 
generate a maximum length sequence with a period of 127 bits.

To recover the original data, the receiver has to know the exact random 
bit generator used in the transmitter. The operation is the reverse process used 
in the transmitter. The modulo-2 sum of the received data and the output 
stream from the random-bit generator generates the original data. Figure 5.7 
shows the process of data descrambling.

Figure 5.6 Data scrambler.

Figure 5.7 Data descrambler.
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Example 5.8

Assume that the sequence generator uses G(x) = 1 + x + x3 defined in Example 
5.5. The pseudo-random sequence with period 7 is 1110100. Assuming that the 
input data is 01101100101000, then the scrambler output is 10000101011100 
by performing the modulo-2 sum of 11101001110100 and 01101100101000. 
In the receiver, the modulo-2 sum of the received data 10000101011100 and 
11101001110100 generates the original data of 01101100101000.

5.8 Summary

A binary field of GF(2) has only two elements, 0 and 1. The operation of 
addition, subtraction, multiplication, and division can be defined. The addi-
tion is commutative and associative while the multiplication is distributive. A 
polynomial whose coefficients over GF(2) was then defined. The polynomial 
addition, multiplication, and division were illustrated.

A Galois field of GF(2m) has a total of 2m elements. The operation in this 
field is over a primitive polynomial whose coefficients are over GF(2). Based 
upon this primitive polynomial, every element can be generated. This primi-
tive polynomial has a degree m and no element polynomial can have a degree 
greater than m. In this field, the commutative, associative, and distributive 
laws are all satisfied and the operation of addition and multiplication is closed. 
Another interesting property is that every element in this field is also a root of 
the polynomial f(x) = x2m−1 + 1 where m is the order of the primitive polynomial.

A sequence generator through shift registers was then discussed. There 
are two methods to get the output. The first is to step through the shift reg-
ister operations cycle by cycle. The second is through polynomial divisions 
over a generator polynomial. The output through polynomial division was 
derived in detail.

The generator polynomial has an inverse polynomial. The maximum 
period of a shift register sequence with a given generator polynomial depends 
upon this inverse polynomial. Based upon this inverse polynomial, the period 
depends upon the initial condition of the shift register.

A maximum-length sequence was then defined. To generate this sequence, 
the generator polynomial is primitive. If the primitive polynomial degree is 
r, the maximum period is 2r − 1. There are two interesting properties. The 
first is that the number of ones is one more than the number of zeros in the 
output. The second is that the output is independent of the initial condition 
of the shift register except for the phase.
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76 Introduction to OFDM Receiver Design and Simulation

Using the maximum-length sequence, a scrambler and descrambler were 
then discussed. Both operations are through a simple modulo-2 operation.

The next chapter centers on wave propagation loss. Both a large-scale 
model and a small-scale model are discussed, and the noise model for the 
amplifier, cable, and receiver is presented.
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6
Radio-Wave Propagation Model

6.1 Introduction

In a wireless communication system, an RF carrier is modulated by the base-
band signal and propagates through the air. Along the propagation path, it 
may suffer three major types of obstacles: reflection, diffraction, and scattering. 
The reflection and scattering are caused by objects with a dimension greater 
than and smaller than the wavelength, respectively. The reflection can occur 
from the ground, buildings, or mountains. If scattering occurs, the output 
wave may travel in different directions in a random manner. The diffraction 
is caused by an object with sharp edge and the output wave may even travel 
behind the object.

As a result of these three mechanisms, the receiver may receive signals 
traveling from different directions to cause multipath distortion. This phe-
nomenon can be characterized from the point of view of large-scale path loss 
or small-scale fading.

The large-scale propagation loss centers on how the received power varies 
as a function of the distance between the transmitter and the receiver. As the 
propagation distance increases, the received power decreases. However, the 
signal may be received from different paths with varying phase and amplitude 
fluctuations. The small-scale fading model concentrates on how the received 
power fluctuates with distance around a few wavelengths.
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6.2 Large-Scale Propagation Model

Two well-known models, free space and two-ray, are presented next. The 
empirical model can also be used through curve fitting of the experimental 
data. A frequently used empirical formula is also discussed.

6.2.1 Free-Space Propagation Loss

If the electromagnetic wave propagates through a free space, then the power 
received by a receiver at a distance d from the transmitter is related by the 
following formula [1],

 
Pr =

PtGtGrc2

Ω2d2  (6.1)

where Pr is the received power, Pt is the transmitted power, Gt is the transmitter 
antenna gain, Gr is the receiver antenna gain, c is the velocity of light, Ω is the 
radian frequency, and d is the propagation distance. If the carrier frequency is 
f, then Ω = 2π f. Therefore, the received power is inversely proportional to the 
square of both distance and frequency. Lower frequency and shorter distance 
can increase the power received.

Equation (6.1) can also be written using the effective isotropic radiated 
power (EIRP). The EIRP is the power radiated from an isotropic antenna with 
unit gain uniformly in all directions and is defined here:

 EIRP = PtGt  (6.2)

Using (6.2), the received power then becomes

 
Pr =

(EIRP)Grc2

Ω2d2  (6.3)

The free-space propagation loss in decibels is defined here:

 

PL(dB) = 10log
Pt
Pr

⎛
⎝⎜

⎞
⎠⎟

= 20log(d)+ 20log(Ω)−10log GtGrc2( )
 (6.4)

Example 6.1

Assuming Gt = Gr = 1, Figure 6.1 is a plot of propagation loss with respect 
to the distance from 1 km to 4 km as the frequency increases from 400 
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Figure 6.1 Free-space propagation loss in decibels.

MHz to 1.2 GHz. Clearly, the loss increases with the increasing distance 
and frequency.

Example 6.2

The received power in decibels from (6.4) is 10log(Pr) = 10log(Pt) − PL (dB). If 
the transmitted power is 1W or 30 dBm, the received power is then 30 dBm 
− PL (dB). Using the same parameters as in Figure 6.1, Figure 6.2 shows the 
received power in dBm.

Figure 6.2 Power received using 1W of transmission power.
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6.2.2 Two-Ray Model

The free space propagation model does not take into account any obstacles 
along the propagation path. This model is good if the line-of-sight path is 
high above the ground. The well-known two-ray model considers two propa-
gation paths. The first is the direct path from the transmitter to the receiver 
and the second is a path reflected from the ground. The situation is illustrated 
in Figure 6.3.

At the receiver, the total electric field is the sum received from both 
paths. The power received at receiver R is given by the following formula [1]

 
Pr =

PtGtGrht
2hr

2

d 4  (6.5)

where ht is the transmitter antenna height, hr is the receiver antenna height, 
and d is the distance. Equation (6.5) shows that the received power decreases 
against the distance much faster than the free-space loss. In the free space, 
the path loss is proportional to d2. However, in the two-ray model, it is pro-
portional to d4.

The path loss in decibels is 10log(Pt/Pr) and can be written as

 
PL (dB) = 40log(d)−10log GtGr( )− 20log hthr( )  (6.6)

As is evident from (6.6), the path loss increases with increasing distance d 
but decreases with increasing antenna gain and antenna height. One drawback 
of (6.6) is that there is no frequency dependence. However, the two-ray model 
is found to predict the path loss reasonably well at large distances.

Figure 6.3 Two-ray model.
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Example 6.3

Assume that both the transmitter and receiver have unit gain and the antenna 
height for both transmitter and receiver is 1m. The path loss is plotted against 
d in Figure 6.4 by setting Gt = Gr = 1 and ht = hr = 1m. Comparing Figures 
6.1 and 6.4 at the same distance, it is evident that the two-ray model has a 
much larger path loss than that predicted by free space.

6.2.3 Empirical Model

The free-space and two-ray models predict the propagation loss either in free 
space or close to the ground. The actual propagation loss is quite complicated 
and depends upon many factors. Even for propagation close to the ground, 
the loss may depend upon ground conductivity, farmland, and desert. It may 
also depend upon the environment such as forests, open space, and weather. 
The indoor propagation or obstacles such as buildings or mountains will also 
impact the propagation loss. In reality, the propagation loss is measured in 
the field and predicted through curve fitting.

The long-distance propagation loss that fits many theoretical models can 
generally be given by the following formula:

 
PL(d , f ) = PL dr , fr( )+10n log

d
dr

⎛
⎝⎜

⎞
⎠⎟
+10m log

f
fr

⎛
⎝⎜

⎞
⎠⎟
+O  (dB)  (6.7)

Figure 6.4 Path loss of two-ray model against the distance.
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where n and m are variables. The parameter n depends upon the environment 
and is normally greater than 2 for urban areas and with building obstacles. 
Since the propagation loss increases with increasing frequency, the third term 
is added to emphasize frequency dependence. The last term, O, is added so as 
to include any additional variations against frequency, distance, and others. 
The parameter dr is the reference distance and the parameter fr is the reference 
frequency. If d = dr and f = fr, then PL(d, f ) reduces to PL(dr, fr). The refer-
ence distance dr is normally set at 1 km and PL(dr, fr) is measured in the field 
using the desired reference frequency fr. If only one frequency is of interest, 
then f = fr and the third term is 0. However, if the frequency is changed to a 
different frequency, then (6.7) can be used to predict the path loss using the 
new frequency f. If there is no other complicated dependence, then the last 
term is also 0.

To see how (6.7) can be applied to the theoretical model, consider first 
the free-space formula given in (6.4). By performing PL(d) − PL(dr), we have 
the following

 
PL(d) = PL dr( )+ 20log

d
dr

⎛
⎝⎜

⎞
⎠⎟
+ 20log

f
fr

⎛
⎝⎜

⎞
⎠⎟

 (6.8)

Comparing (6.7) against (6.8), we have n = 2, m = 2. Note that the O 
term is zero since there is no other dependence on frequency and distance.

Consider next the two-ray formula given in (6.6). By again performing 
PL(d) − PL(dr), the following is obtained

 
PL(d) = PL dr( )+ 40log

d
dr

⎛
⎝⎜

⎞
⎠⎟

 (6.9)

Comparing (6.7) against (6.9), we have n = 4 and m = 0, and the O 
term is 0.

A more complicated path loss in the urban area using frequency from 
150 MHz to 1,500 MHz is given below by Hata [1]

 

PL(d , f ) = 69.55+ 26.16 log f −13.82log hte − a hre , f( )
+ 44.9 − 6.55log hte( )log d

 (6.10)

where f is the frequency in megahertz, hte is the effective transmitter antenna 
height, and hre is the effective receiver antenna height. Both hte and hre are in 
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units of meters. The variable a(hre, f ) is a correction factor depending upon 
the city size and frequency. By setting f = fr and d = dr, (6.10) then becomes

 

PL(dr , fr ) = 69.55+ 26.16 log fr −13.82log hte − a hre , fr( )
+ 44.9 − 6.55log hte( )log dr

 (6.11)

Subtracting (6.11) from (6.10), we have the following:

 

PL(d , f ) = PL(dr , fr )+ 26.16 log
f
fr

⎛
⎝⎜

⎞
⎠⎟
− a hre , f( )− a hre , fr( )( )

+ 44.9 − 6.55log hte( )log
d
dr

⎛
⎝⎜

⎞
⎠⎟

 (6.12)

Comparing (6.12) against (6.7), we have n = 4.49 − 0.655 loghte, m = 2.616 
and, O = a(hre, fr ) − a(hre, f ).

In reality, the measured path loss could be different at different locations 
even if the distance and frequency are the same. To represent this phenom-
enon, the path loss is rewritten in the following form:

PL(d , f ) = PL dr , fr( )+10n log
d
dr

⎛
⎝⎜

⎞
⎠⎟
+10m log

f
fr

⎛
⎝⎜

⎞
⎠⎟
+O  (dB)+ Xs  (6.13)

where Xσ is a random variable having a normal distribution with zero mean and 
standard deviation σ . Since Xσ has a normal distribution in the log domain, 
this phenomenon is also called log-normal shadowing.

Through field measurement, the parameters n and m can be determined 
through least square curve fitting to minimize the difference between the 
theoretical prediction and the measured data. The parameters n and m are not 
necessarily 2 as shown in (6.12). The standard deviation σ  is also determined 
through curve fitting. Equation (6.13) emphasizes the fact that the measured 
path loss at a specified distance and frequency f is random following a log-
normal distribution.

6.3 Small-Scale Propagation Model

The small-scale propagation model deals with the amplitude, phase, and 
frequency variations in a short period of time. Because of these variations, 
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the received power fluctuates with respect to time. When a signal propagates 
through the media, it may be reflected from the surrounding structures such as 
the ground, building, and mountain. These reflected waves may suffer different 
propagation delays and arrive at the receiver at different times. The resulting 
signal is the vector sum of all these component signals. Due to the amplitude 
and phase difference of each arriving signal, signal distortions can occur.

However, the relative motion between the transmitter and the receiver 
and the time variation of the channel can cause a Doppler shift in the received 
carrier frequency. Therefore, this Doppler shift can vary with time. With 
respect to the motion, the Doppler shift is at its highest when the receiver 
moves away or toward the transmitter.

These two phenomena can be grouped into time dispersion and frequency 
dispersion. The time dispersion accounts for a multipath channel, while the 
frequency dispersion accounts for the Doppler shift from the relative motion 
between the transmitter and the receiver. Both will be discussed in detail in 
the following sections. The Clark model, which has Rayleigh distribution for 
the received signal envelope, is also presented.

6.3.1 Time Dispersion

The time dispersion is due to the reception of the same signal from several 
paths having different propagation delays. Assume that there are N paths and 
the delay of the ith path is τ i and let ri(t, τ i) represent the signal received from 
the ith path, the overall received signal r(t) is then given by

 
r(t) = ri t ,ti( )

i=0

i=N−1

∑  (6.14)

Assume that the transmitted baseband signal is s(t). Since the propaga-
tion delay causes a time shift of s(t), (6.14) can also be written as [1, 2]

 
r(T ) = ai (t)e jqi (t )s t − ti( )

i=0

i=N−1

∑  (6.15)

where α i(t) and θ i(t) are amplitude and phase perturbations associated with 
the ith path. More details will be given in Chapter 12. Because the phase 
θ i(t) is random, the multipath signal may sometimes add constructively and 
sometimes add destructively. This amplitude variation is called signal fading.

The instantaneous power of the received multipath signal is given by
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P(T ) = r(t)r∗(t)

= ai (t)
2

s t − ti( ) 2

i=0

N−1

∑

+ 2 Re ai (t)a j
∗(t)e j qi (t )−q j (t )( )s t − ti( )s t − t j( )∗{ }

j>i

N−1

∑
i=0

N−1

∑

 (6.16)

Both the channel induced amplitude perturbation α i(t) and phase per-
turbation θ i(t) are random variables. If each path is independent, then the 
amplitude and phase in one path are uncorrelated with those of the other 
path. Performing the time average, the second term of (6.16) then becomes 
0. Under this assumption, (6.16) becomes

 
Pavg = E ai (t)

2
si t − ti( ) 2

i=0

N−1

∑⎛⎝⎜
⎞
⎠⎟

 (6.17)

where E represents the ensemble time average. If the transmitted signal is 
unmodulated, there is no loss of generality to assume s(t) to be 1. Equation 
(6.17) then simplifies to

 
Pavg = E ai (t)

2

i=0

N−1

∑⎛⎝⎜
⎞
⎠⎟

 (6.18)

Equation (6.18) shows the time average power is just the summation of 
the square of average amplitude from each path.

The received power P(t) is also called the intensity profile of the chan-
nel. The width of this intensity profile with an essentially nonzero value is the 
delay spread, ∆τ . The Fourier transform of P(t) generates the spaced frequency 
correlation function ϕ (∆f ) defined below [2]:

 
f Δf( ) = P(t)e− j2pΔft dt∫  (6.19)

The width of ϕ (∆f ) is called the coherence bandwidth, Bc. The delay 
spread is proportional to the standard deviation of the multipath delay, στ. If 
the delay is widely distributed to generate a large standard deviation, then the 
delay spread ∆τ  is also large. However, the coherence bandwidth Bc is inversely 
proportional to the delay spread ∆τ  or the standard deviation of delay στ. If the 
delay spread increases, then the coherence bandwidth decreases and vice versa.
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The coherence bandwidth can be thought of as the frequency separation 
such that the channel can pass the signal with little distortion. If the coher-
ence bandwidth is wide, it is a good channel and the delay spread is small. 
However, it is a bad channel for a narrow coherence bandwidth and the delay 
spread is large.

Associated with time dispersion, there are flat fading and frequency 
selective fading. This is related to the signal bandwidth and coherence band-
width. It is called flat fading if the signal bandwidth is much smaller than 
the coherence bandwidth. Under this condition, the signal can pass through 
the channel with little amplitude or phase distortion. However, the signal 
bandwidth can be wider than the coherence bandwidth. When this happens, 
different frequency components will have different channel degradations. If 
the signal passes through this channel, it can suffer severe distortion. Figure 
6.5 illustrates the situation. In this figure, Bs1 is the signal 1 bandwidth, which 
is larger than the coherence bandwidth and the signal will pass through the 
channel with distortion. In the second case, Bs2 is the signal 2 bandwidth, 
which is smaller than the coherence bandwidth and the signal will pass through 
the channel with little distortion.

6.3.2 Frequency Dispersion

The source and receiver may not be stationary when the signal is transmit-
ted. Therefore, the relative motion between the transmitter and the receiver 

Figure 6.5 Coherence bandwidth in relation to signal bandwidth.
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can generate Doppler shift given as fd. Because of this Doppler frequency, 
the received carrier frequency moves from fc to fd ± fd. The magnitude of fd 
depends upon the motion velocity v and the angle between the direction of 
motion and the signal propagation direction θ .

Figure 6.6 illustrates the effect of Doppler shift. In this figure, the mobile 
moves from point X to point Y within a time period of ∆t. The source T trans-
mits from T to the mobile. The angle between direction of motion from X to 
Y and the wave propagation direction from T to Y or from T to X is θ . This 
is because source is assumed to be far away and the lines from T to X and 
from T to Y are, in essence, parallel. The distance from X to Y is R. The path 
difference is then Rcosθ  which generates a phase shift φ  given by

 
j = 2pRcosq

l  (6.20)

The phase shift φ  corresponds to a frequency shift fd given by

 

fd = j
(2pΔt)

= Rcosq
(lΔt)

= vcosq
l

=
vfc cosq

c

 (6.21)

where v is the velocity, c is the speed of light, and λ  is the wavelength.
Equation (6.21) indicates that the Doppler shift depends both upon the 

velocity v and the angle θ . The Doppler shift fd is maximum when the angle θ 
is either 0° or 180°. If the angle is 0°, the mobile moves toward the source and 
the received frequency increases by a maximum amount. If the angle is 180°, 
the mobile moves away from the source and the received frequency decreases 
by a maximum amount. If the angle is 90°, there is no Doppler shift even if 
motion exists.

Figure 6.6 Illustration of Doppler shift.
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Example 6.4

For a walkie-talkie handheld radio, the carrier frequency is around 462 MHz. 
Assuming that angle θ  = 0, Figure 6.7 is a plot of Doppler shift in hertz against 
the car speed from 2 miles/hour to 65 miles/hour. Also shown in the figure are 
two additional curves for carrier frequency 800 MHz and 1.2 GHz. Clearly, 
the Doppler shift increases linearly with motion speed. It also increases with 
carrier frequency. At 2 miles/hour or human walking speed, the Doppler shift 
is around 1.5 Hz at 462 MHz and is negligibly small. For a car moving at 65 
miles/hour and the same carrier frequency of 462 MHz, the Doppler shift 
is around 49 Hz, which may need to be taken into account depending upon 
the signal bandwidth.

The Doppler spread, fm, is the maximum frequency shift of the chan-
nel. In Example 6.4, the Doppler spread is 49 Hz at 462 MHz, 85 Hz at 800 
MHz and 127 Hz at 1.2 GHz assuming the maximum car speed is 65 miles/
hour. If the Doppler spread is much smaller than the signal bandwidth, it can 
then be neglected. The receiver should take Doppler spread into account if it 
is not small in comparison to the signal bandwidth. The coherence time, Tc, 
is a measure of the time variations of the channel and is proportional to the 
inverse of the Doppler spread. An empirical formula exists which relates the 
coherence time to the Doppler spread as given below [1]:

 
Tc =

0.423
fm

 (6.22)

Figure 6.7 Doppler shift against car speed.
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The Doppler spread changes little for a large coherence time and changes 
a great deal for a small coherence time. If the Doppler spread is small, the 
channel can be considered as time invariant and the signal can pass through 
with little distortion. However, the coherence time is small if the Doppler 
spread is large. If the coherence time is smaller than the signal duration, the 
signal will suffer significant distortion after passing through this channel.

For a time-varying channel, it can be classified as a slow channel or a 
fast channel. For a fast channel, the coherence time is smaller than the signal 
duration. Because the channel changes faster with time, it causes Doppler 
spread that is significant in comparison to the signal bandwidth. This is also 
called time-selective fading or frequency dispersion.

For a slow channel, the coherence time is longer than the signal dura-
tion. Because this channel is essentially flat, the Doppler spread approaches a 
delta function in the frequency domain. In other words, the Doppler spread 
is much smaller than the signal bandwidth. This time-invariant nature of the 
channel is considered to be a good channel. The signal can then pass through 
it with negligible distortion.

6.3.3 Clark’s Fading Model

When a signal passes through a fading channel, it may be scattered in many 
directions. Clark developed a model based upon flat fading [3]. It is assumed 
N scattered signals are received by a mobile. Each signal has random amplitude 
An, phase ϕ n and Doppler shift fn. From (6.21), the Doppler shift is given here:

 
fn =

vfc cosan
c

 (6.23)

where α n is the angle between the nth scattered wave and the direction of the 
moving mobile. Because of flat fading, all the scattered signals are assumed 
to arrive at the same time with the same delay. The received signal strength is 
then the sum of these N scattered signals as given here [1]:

 
r(t) = R0 An Re e j2p fc + fn( )t+φn (t )⎡

⎣
⎤
⎦

n=0

N−1

∑  (6.24)

where R0 is the average signal amplitude and is assumed to be a constant for 
every scattered signal. Taking the real part of (6.24), the following is obtained
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r(t) = R0 An cos j2p fc + fn( )t +φn(t)( )
n=0

N−1

∑
=Uc (t)cos 2pfct( )−U s (t)sin 2ppfct( )

 (6.25)

where the Uc(t) and Us(t) are defined here:

 
Uc (t) = R0 An cos 2pfnt + fn(t)( )

n=0

N−1

∑    (6.26)

 
U s (t) = R0 An sin 2pfnt + fn(t)( )

n=0

N−1

∑    (6.27)

From (6.26) and (6.27), the envelope of the received signal is then 
given by

 
E(t) = Uc (t)2 +U s (t)2( )0.5  (6.28)

The Doppler angle fn is assumed to be small in comparison with fc. There-
fore, Uc(t) and Us(t) are assumed to be narrowband random process having 
Gaussian distribution with zero mean and equal variance of σ 2 = R2

0/2 [1]. 
The envelope r = E(t) then has the following Rayleigh distribution [1]

 
p(r) = r

s2 e−r2 /s2
 (6.29)

The power spectral density S( f ) of the received signal was developed by 
Gans and is given by the following formula [1, 4]:

 
S( f ) = 1.5

pfm 1− b2
 (6.30)

where β  = ( f − fc)/fm and fm is the maximum Doppler shift. The maximum 
frequency is f = fc + fm corresponding to β  = 1 while the minimum frequency is 
f = fc − fm corresponding to β  = −1. Figure 6.8 is a plot of π fmS( f )/1.5 against 
the normalized frequency β . The spectrum becomes infinite corresponding to 
f = fc ± fm. This happens when the angle of arrival is either 180° or 0°. Between 
these two extremes, the spectrum is almost flat.

In Clark’s model, the received signal envelope has a Rayleigh distribution. 
This means the spectrum given by (6.30) dictates the time-domain channel 
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waveform due to Rayleigh fading. In other words, the channel with Rayleigh 
fading must have a spectrum specified by (6.30).

6.4 Receiver Signal-to-Noise Ratio (SNR)

In the receiver, there are two types of major losses. The first is the propagation 
loss from the source through the media. This propagation loss can be predicted 
using either the theoretical or empirical model discussed earlier. The second is 
the thermal noise at the antenna input. However, there are also amplifier noise 
and cable loss, which can be referred to at the input. Based upon the received 
power and the accumulated receiver noise, the SNR can then be predicted.

6.4.1 Thermal Noise

The thermal noise is generated due to random electron motion inside a resistor 
or active devices. The thermal noise energy is given by [5]

 N0 = kT  (6.31)

where T is the temperature in Kelvin and k is the Boltzmann’s constant equal 
to 1.38 × 10−23 joule/K. Therefore, the thermal noise is proportional to the 
temperature, and the higher the temperature, the larger the thermal noise.

Figure 6.8 Spectrum of Clark’s model.
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Equation (6.31) defines the noise energy N0 or the power density in 
watts/hertz. If the receiver has a bandwidth of B, then the noise power in 
watts is given by

 N = kTB  (6.32)

6.4.2 Noise Factor

The receiver noise due to amplifier or cable can be referred to its input to 
generate an equivalent thermal temperature Te. The noise power density is 
then given by [5]

 N0 = kTe
 (6.33)

An alternative way to express amplifier noise is to define a noise factor 
F, which is related to N0 by the following relationship:

 N0 = k(F −1)T0  (6.34)

where T0 is the room temperature. Equating (6.33) and (6.34) together, we have

 Te = (F −1)T0  (6.35)

where F is dimensionless. If the amplifier noise factor F is known, then its 
equivalent noise temperature Te can be used to compute the noise power 
density given by (6.33). From (6.35), the noise factor F can also be given as

 
F = 1+

Te
T0

 (6.36)

The noise factor is normally defined in decibels and is given by [5]

 FdB = 10Log F  (6.37)

6.4.3 Amplifier Model

Figure 6.9 shows an amplifier noise model in the receiver front end. Assume 
this amplifier has a power gain G and equivalent temperature Te. The power 
gain G is defined to be the ratio of output power to the input power. Assum-
ing also that the noise power density referred to its input is N1 and the output 
noise power density is N2, then we have
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 N1 = kTe  (6.38)

 N2 = GN1  (6.39)

If we know the amplifier output noise power density N2, the input noise 
power density N1 is then given by N1 = N2/G.

If the amplifier noise factor is F, then (6.38) becomes after using (6.35)

 N1 = k(F −1)T0  (6.40)

In other words, the amplifier noise power density referred to its input is 
known as long as its noise factor is available.

6.4.4 Cable Loss Model

When a signal passes through the cable, it suffers some power loss. The loss 
factor L is defined to be the ratio of input power to output power. Therefore, 
N2 is less than N1. Figure 6.10 shows the cable loss model and Te is the equiva-
lent noise temperature. It can be shown [5] that the loss factor L is equal to 
the noise factor F at room temperature as given here:

 L = F  (6.41)

Based upon (6.41), the following are true for the cable loss model

 N1 = kTe = k(L −1)T0  (6.42)

 N1 = LN2  (6.43)

Figure 6.9 Amplifier noise model.

Figure 6.10 Cable loss model.
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6.4.5 Equivalent Noise Temperature at Receiver Front End

Figure 6.11 is a general block diagram of the receiver front end. It consists 
of antenna, cable, amplifier, and receiver in cascade. Between the cable and 
the receiver, there are n amplifiers. For amplifier k, the gain is Gak, the noise 
equivalent temperature is Tak, and the noise factor is Fak. For the cable, the loss 
factor is L and the noise equivalent temperature is Tc. Finally, for the receiver, 
the gain is Gr, the noise equivalent temperature is Tr, and the noise factor is 
Fr. Even though each device has its own noise equivalent temperature, what is 
of interest is the overall noise equivalent temperature Te at the antenna input.

For the cable, the noise power density referred to its input is simply

 Pc = kTc = k(L −1)T0  (6.44)

For the first amplifier, the noise power density referred to its input is 
given by

 
Pa1 = kTa1 = k Fa1 −1( )T0

 (6.45)

At the antenna input, the noise power density referred from the first 
amplifier is then

 
Pa1,ant = Lk Fa1 −1( )T0  (6.46)

where we have used the relationship (6.43). For the second amplifier, the noise 
power density referred to its input is

Figure 6.11 Block diagram of the receiver front end.
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Pa2 = kTa2 = k Fa2 −1( )T0  (6.47)

From the second amplifier to the antenna, there is an amplifier with a 
gain of Ga1 and a cable with a loss factor of L, and the noise power density 
referred to the antenna input is then

 
Pa2,ant =

kL Fa2 −1( )T0

G1
 (6.48)

For any amplifier i, the noise power density referred to the antenna input 
can be derived in the same way and is given here:

 

Pai ,ant =
kL Fai −1( )T0

G jj=1

i−1∏
i ≥ 2  (6.49)

For the receiver, the noise power density referred to the antenna input 
is derived similarly and is given by

 

Pr ,ant =
kL Fr −1( )T0

G jj=1

n∏
 (6.50)

Using all the equivalent noise temperatures referred to the antenna input 
by combining (6.44) to (6.50), we have

 

kTe = kTant + k(L −1)T0 + Lk Fa1 −1( )T0

+ LkT0

Fai −1

G jj=1

i−1∏
+

Lk Fr −1( )T0

G jj=1

n∏i=2

n

∑
 (6.51)

Removing the common term k from (6.51), we have

Te = Tant + (L −1)T0 + L Fa1 −1( )T0 + LT0

Fai −1

G jj=1

i−1∏
+

L Fr −1( )T0

G jj=1

n∏i=2

n

∑  (6.52)

Equation (6.52) is the equivalent noise temperature referred to the 
antenna input.

6899_Book.indb   95 10/22/19   4:55 PM



96 Introduction to OFDM Receiver Design and Simulation

Example 6.5

Assume that the receiver has one amplifier with a gain of 30 dB and an 
equivalent noise temperature of 125K. After the amplifier is a receiver with a 
noise figure of 15 dB. The room temperature is 293K and the antenna noise 
temperature is 40K. There is no cable loss. Based upon these assumptions, n 
= 1 and L = 1 and (6.52) becomes

Te = Tant +T0 Fa1 −1( )+ Fr −1( )T0

G1

= Tant +Ta1 +
Fr −1( )T0

G1

The amplifier gain G1 = 1030/10 = 1,000. The receiver noise figure Fr = 
1015/10 = 31.62. Substituting these numbers into the above equation, we have

Te = 40 +125+ (31.62 −1)293
1000

= 40 +125+ 8.97 = 173.97

Example 6.6

Assume the same configuration as in Example 6.5 except there is a cable loss 
of 4 dB. Since L is not 0 anymore, (6.52) becomes

Te = Tant + (L −1)T0 + LTa1 +
L Fr −1( )T0

G1

The cable loss factor L = 100.4 = 2.51. Substituting all the numbers into 
the above equation, we have

Te = 40 + (2.51−1)293 + 2.51×125+ 2.51(31.62 −1)293
1000

= 40 + 442.43 + 313.75+ 22.51 = 818.69

6.5 Range Determination

For a given transmitter power, the radio range can be determined once 
the received power is measured. The empirical path loss formula in (6.7) is 
given here:
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PL(d , f ) = PL dr , fr( )+10n log

d
dr

⎛
⎝⎜

⎞
⎠⎟
+10m log

f
fr

⎛
⎝⎜

⎞
⎠⎟
+O   (6.53)

Expressing PL in terms of Pt and Pr, we have

Pt (dB)− Pr (dB) = PL dr , fr( )+10n log
d
dr

⎛
⎝⎜

⎞
⎠⎟
+10m log

f
fr

⎛
⎝⎜

⎞
⎠⎟
+O  (6.54)

Based upon (6.54), the range d can be determined once Pr is measured.
Another receiver parameter frequently used is the receiver signal strength 

indicator (RSSI). It is the measurement of the minimum received power in 
order for signal detection. If the received power is less than RSSI, then there is 
no signal detection. It is normally expressed in dBm or power in milliwatt (mw).

If the receiver sensitivity is high, then RSSI is low. In other words, a 
good receiver normally has a low RSSI so even a weak signal can be detected.

Example 6.7

Using the two-ray model and the parameter values given in Example 6.3, we 
have n = 4, m = 0, PL(dr, fr) = 40log(dr), and O( f, d) = 0. Equation (6.54) 
then becomes

40log(d) = Pt (dB)− Pr (dB)

Assuming that the transmitted power is 1W = 30 dBm, the range is 
given in Table 6.1 for various received power. It is clear from Table 6.1 that 
the range increases as the received power drops.

Table 6.1 
The Range at Various Received Power

PT (dBm) Pr (dBm) Range (m)

30 −80 562.3

30 −85 749.9

30 −90 1,000

30 −95 1,333.5
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6.6 SNR

Based upon (6.54), the received power is given by

Pr (dB) = Pt (dB)− PL dr , fr( )−10n log
d
dr

⎛
⎝⎜

⎞
⎠⎟
−10m log

f
fr

⎛
⎝⎜

⎞
⎠⎟
−O  (dB)  (6.55)

Assume that the noise equivalent temperature referred to the receiver 
antenna is Te. Then the noise power is given by

 
N (dB) = 10log kTe B( )  (6.56)

The SNR is obtained by subtracting (6.56) from (6.55) to have

 

SNR = Pt (dB)− PL dr , fr( )−10n log
d
dr

⎛
⎝⎜

⎞
⎠⎟
−10m log

f
fr

⎛
⎝⎜

⎞
⎠⎟

−O  (dB)−10log kTe B( )
 (6.57)

Example 6.8

Using the two-ray model as in Example 6.7, we have the SNR given by

SNR = Pt (dB)− 40log(d)−10log kTe B( )
Using the same data from Example 6.7 and Example 6.6, we have Te = 

818.69K and Pt = 30 dBm. Figure 6.12 is a plot of SNR against the bandwidth 
in decibels for a propagation distance of 1,000m and 2,000m. The bandwidth 
is from 30 dB to 60 dB or from 1,000 Hz to 1 MHz. Clearly, as the bandwidth 
increases, there is more receiver noise in the passband and the SNR decreases. 
However, as the distance increases, there is greater propagation loss and the 
SNR decreases as well.

6.7 Summary

For wave propagation through a communication channel, the received sig-
nal may be distorted. There are two models to account for this effect. One is 
the large-scale propagation model and the other is the small-scale propaga-
tion model.
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The large-scale model accounts for the power loss after the radio wave 
travels a distance through the media. Three different theoretical models were 
presented. The first is the free-space propagation model. The second is the two-
ray model, which takes into account the radio wave reflected from the ground. 
The third is an empirical model developed from field measurements. A general 
formula that fits many theoretical propagation models was given. The frequency 
and distance dependence can be determined from field measurements.

The small-scale model accounts for the amplitude, phase, and frequency 
fluctuations as the radio wave propagates the media. There are two major 
phenomena. One is the time dispersion and the other is the frequency disper-
sion. The time dispersion is due to the receiver receiving several signals with 
different delays. The delay spread is related to the coherence bandwidth and 
there are flat fading and frequency selective fading. For the flat fading, the 
signal bandwidth is much smaller than the coherence bandwidth and the sig-
nal can pass through with little distortion. For the frequency-selective fading, 
the signal bandwidth is much wider than the coherence bandwidth and the 
received signal can suffer severe degradations.

The frequency dispersion is due to the time variation of the channel and 
the relative motion between the transmitter and the receiver. This Doppler 
effect is related to the coherence time and there are both fast fading and slow 
fading. For slow fading, the coherence time is larger compared to the signal 

Figure 6.12 The SNR against bandwidth in decibels and propagation distance.
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duration and the signal can pass through with little distortion. It this case, 
the channel can be considered as time invariant. For fast fading, the reverse 
is true and the signal will suffer significant distortion after passing through 
this channel.

Next, a noise model referred to the antenna input was discussed. A 
general receiver front end has an antenna, cable, amplifiers, and receiver. A 
general noise energy formula was derived based upon this front-end system. 
An equivalent thermal temperature referred to at the antenna input was sub-
sequently derived. Based upon this equivalent temperature, the SNR was then 
derived. From the received power measurement, the propagation range can 
also be predicted.

In the next chapter, two classes of error correction codes are covered. 
They are block code and convolutional code. The Viterbi algorithm used for 
convolutional decoding is analyzed in detail. The punctured convolutional 
code, which is derived from the 1/2 convolutional code, is also discussed. At 
last, an interleaver used to reduce the block errors is also presented.

References

[1] Rappaport, T. S., Wireless Communications, New York: IEEE Press, 1996.

[2] Proakis, J. G., Digital Communications, New York: McGraw-Hill, 1983.

[3] Clarke, R. H., “A Statistical Theory of Mobile-Radio Reception,” Bell Systems Technical 
Journal, Vol. 47, No. 6, 1968, pp. 957−1000.

[4] Gans, M. J., “A Power Spectral Theory of Propagation in the Mobile Radio Environment,” 
IEEE Transactions on Vehicular Technology, Vol. 21, No. 1, 1972, pp. 27−38.

[5] Roddy, D., Satellite Communications, New York: McGraw-Hill, 1995.

6899_Book.indb   100 10/22/19   4:55 PM



101

7
Error-Correcting Codes and Interleaver

7.1 Introduction

In digital communications, a sequence of input bits can be scrambled and 
encoded before going through the modulation process. The scrambling is to 
protect the data security and was discussed in Chapter 5. The encoding is to 
allow the receiver to detect or correct the bit errors due to the transmission 
through a noisy channel.

There are many different types of error correction schemes. Two types 
are discussed in this chapter. The first type is the block codes. A block of k 
information bits is transformed to n bits and n > k. The coding rate is k/n. The 
additional n − k parity bits increase the transmission overheads. However, the 
added advantage is to enhance the reception accuracies. Both linear block codes 
and cyclic codes are given. The linear block code is operated through matrix 
manipulations while the cyclic code is operated using algebraic polynomials. 
From the generator polynomial of the cyclic codes, the generator matrix of 
the linear block codes can be derived.

The second type is the convolutional codes. Again, k input bits are con-
verted into n coded bits. However, the input bit sequence is infinite in nature 
and the output bits are obtained through shift register operations. The coding 
rate is still defined to be k/n. The Viterbi algorithm is used for decoding. For the 
convolutional code with a coding rate R = 1/2, the transmission redundancy 
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is 50%. To reduce the overhead bits, the punctured codes are discussed to 
reduce the overhead transmission. Based upon the 1/2 code, both R = 2/3 
and R = 3/4 punctured codes can be derived. Even though the transmission 
data rate is increased, the price paid is a slight drop of reception accuracy. If 
the drop is not significant, it is still a good approach.

7.2 Linear Block Codes

There are only two elements, 0 and 1, in a binary field. In the vector space of 
n binary bits, there are a total of 2n such vectors. In its subspace, there exist 
k independent vectors, g i , i = 0, k − 1. Each g i has n bits. Any vector in this 
k-dimensional subspace can be created by linearly combining these k inde-
pendent vectors. Supposing that c  is any vector in this subspace, then we have

 
c = ai gi

i=0

k−1

∑  (7.1)

where ai = 0 or 1. Both c  and g i are vectors of n bits. Since the number of 
binary coefficients ai is k, there are 2k such vectors. Equation (7.1) can be 
thought of as transforming k information bits ai into a code word of n bits. 
These 2k code words are referred to as the (n, k) linear block code. The extra 
n − k bits are called the parity check bits.

7.2.1 Generator Matrix

In the matrix form, (7.1) can be rewritten as

 

c = a G = a0 ,a1,…,ak−1⎡⎣ ⎤⎦
g0
!

g k-1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (7.2)

where G  is called the generator matrix. Using (7.2), the k information bits are 
multiplied by the generator matrix G  to create the code word c . Any k linear 
independent row vectors g i , i = 0, k − 1 can be used to create the generator 
matrix G . However, it is more convenient to put the matrix G  in the follow-
ing standard form [1]:

 
G = P I⎡⎣ ⎤⎦  (7.3)
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where P  is a k × n − k matrix while I  is a k × k identity matrix. Specifically, 
P  and I  are in the following form:

 

P =
p0,0 ! p0,n−k−1
" # "

pk−1,0 ! pk−1,n−k−1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥  (7.4)

 
I =

1 ! 0
" # "
0 ! 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (7.5)

The generator matrix G  has a dimension of k × n and the code word 
c  has a dimension of 1 × n. The advantage of the form (7.3) is that the code 
word c  has the following form:

 c = [n − k  parity check bits, k  information bits]  (7.6)

The above equations can be understood more easily by considering the 
following example.

Example 7.1

A (15,11) linear code has the following generator matrix

 

G =

1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (7.7)

In the matrix G , the first n − k = 4 columns are the 11 × 4 matrix P 
while the next k = 11 columns are the 11 × 11 identity matrix I . The ith row 
is the vector g i . For example, row 3 and row 10 are g 3 = [1 1 0 1 0 0 0 1 0 0 
0 0 0 0 0] and g 10 = [1 0 0 1 0 0 0 0 0 0 0 0 0 0 1]. Let a  = [0 1 0 1 0 1 0 1 
0 0 1] be the message to be encoded. Using (7.2) to perform the matrix mul-
tiplication, the code word c  becomes
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c = 0 1 0 1 0 1 0 1 0 0 1⎡⎣ ⎤⎦G

= 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1⎡⎣ ⎤⎦

In the code word c , the last 11 bits are exactly the message [0 1 0 1 0 
1 01 0 01].

7.2.2 Parity Check Matrix

Corresponding to the k × n generator matrix G , there exists another n − k × n 
matrix H  such that G  and H  are orthogonal. This matrix H  is called the par-
ity check matrix. The matrix H  can be created from the G  matrix and put in 
the following standard form [1]:

 
H = In−k P t⎡⎣ ⎤⎦  (7.8)

where I  is the n − k × n − k identity matrix while PT is a n − k × k matrix 
created by the transpose of the matrix P. To show G  and H  are orthogonal 
to each other, we have

 

GH t = P Ik
⎡⎣ ⎤⎦

In−k
P

⎡
⎣⎢

⎤
⎦⎥

= P + P = 0
 (7.9)

Combining (7.2) and (7.9), we have

 c H t = a G H t = a 0 = 0  (7.10)

Therefore, any code word c  is orthogonal to the parity check matrix H . 
Since H  is an n − k × n matrix, it is the generator matrix for the (n, n − k) 
linear block code. Any code word d  generated by H  can be written as

 d = b H  (7.11)

where d  is a 1 × n matrix, b  is a 1 × n − k matrix and H  is an n − k × n matrix. 
The row matrix b  has n − k message bits. Any code word c  generated by G 
and code word d  generated by H  are orthogonal to each other. This is easily 
shown by combining (7.2), (7.9), and (7.11) as follows:

 cd t = a G H t  bt = 0  (7.12)
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Example 7.2

The parity check matrix H  corresponding to (7.7) is the following:

 

H =
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (7.13)

The first n − k = 4 columns are the identity matrix. The next 11 columns 
are the transpose of matrix P  in G . By performing the matrix multiplication, 
it can be shown that GHt = 0. Let b  = [1 0 0 1] be the message to be coded 
by H , and then d  = bH  = [1 0 0 1 1 0 1 0 1 1 1 1 0 0 0]. From Example 
7.1, c  = [0 0 0 0 0 1 0 1 0 1 0 1 0 0 1]. Performing the matrix multiplication 
again, we have cd t = 0.

7.2.3 Syndrome

Suppose c  is the transmitted code word and r  is the received code word. If 
there are no transmission errors, r  = c . Since c  is a code word, it must satisfy 
cHt = 0. If there are no transmission errors, then s  = rHt = cHt = 0. The 
product s  = rHt is called the syndrome of r  and is a 1 × n − k row matrix.

If the code word c  is transmitted through a noisy channel, there can 
be transmission errors and the received code word r  is different from the 
transmitted code word c . The difference between r  and c  is the error vector 
e  and we can write

 r  = c + e  (7.14)

Multiplying both sides of (7.14) by Ht , the syndrome s  then becomes [1]

 s =  r H t = c H t + e H t = e H t
 (7.15)

Equation (7.15) shows that the syndrome s  of the received vector r  is 
equal to the syndrome of the error vector e .

If the syndrome s  ≠ 0, then it is clear there are transmission errors. 
However, if s  = 0, there is no guarantee that there are no transmission errors. 
This is because e  could be equal to another code word and the linear combi-
nation of two code words is also a code word. When this happens, the error 
is undetectable.
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7.2.4 Error Correction

Equation (7.15) shows there is a one-to-one correspondence between s  and 
e . Once the received syndrome s  of r  is computed, the error vector e  can be 
identified. This is because s  is equal to the syndrome of the error vector e . A 
table can be created by associating each correctable error vector with its syn-
drome. Through table look-up, an error vector e  corresponding to the received 
syndrome is located. Once the error vector e  is known, the transmitted code 
word c  is then given by

 c = r + e  (7.16)

Let C  represent a linear block code. The weight of any code word c  in 
C  is the number of nonzero bits in c . For example, the weight of code word 
c  = [0 0 0 0 0 1 0 1 0 1 0 1 0 0 1] is 5. The distance d(c , v) between any two 
code words c  and v  of C  is the number of places that they differ or the weight 
of c  + v. Since c  + v  is also a code word, the minimum weight of a block code 
C  is then given here:

 dmin = min(weight of c , where c  is any codeword of C )  (7.17)

Assume that t errors can be corrected in a linear block code C . Then it 
can be shown that it is given by [1]

 
t =

dmin −1( )
2

 (7.18)

where t is the largest integer no greater than (dmin − 1)/2.

Example 7.3

The generator matric G  in Example 7.1 has k independent rows and each row 
of n elements is a possible code word of C . From these k code words, it is seen 
that the minimum weight is 3. Therefore, the (15,11) code can correct 1 error.

Example 7.4

From Example 7.3, the (15,11) code can correct 1 error. Since each code word 
has 15 bits and each bit location is a possible error, there are 15 correctable 
error patterns. These 15 correctable error patterns and their corresponding 
syndromes are given in Table 7.1. From (7.15), the syndrome s  of each error 
pattern e  is computed from s  = eHt . Since there is only one nonzero element 
in each error pattern e , the syndrome s  is actually equal to the column vectors 
of the parity check matrix H  given in (7.13).
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Example 7.5

From Example 7.1, assume that c  = [0 0 0 0 0 1 0 1 0 1 0 1 0 0 1] is the trans-
mitted code word. Assume that there is a single bit error in the third bit of c 
and the received code word r  = [0 0 1 0 0 1 0 1 0 1 0 1 0 0 1]. The syndrome 
s  of r  is computed here:

s = r H t = 0 0 1 0⎡⎣ ⎤⎦

From Table 7.1, the error pattern is found to be e 2 = [0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0]. Adding e 2 to r , the transmitted code word becomes [0 0 0 0 0 1 0 
1 0 1 0 1 0 0 1], which is exactly equal to c  and the single error is corrected.

7.2.5 Hamming Codes

Hamming codes [1] are special classes of an (n, k) linear block code. For any 
integer m ≥ 3, n = 2m − 1 and k = 2m − 1 − m. The number of parity check 

Table 7.1 
Syndrome and Correctable Error Patterns of a (15,11) Code

Syndrome Correctable Error Patterns

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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bits is n − k = m. The linear (15,11) code given in Example 7.1 is a Hamming 
code with m = 4, n = 24 − 1 = 15 and k = 15 − 4 = 11.

The parity check matrix H  of the (15,11) Hamming code is shown in 
(7.13). The columns of H  have all the 4-bit patterns. The sum of any two 
columns does not add to zero and the error correcting capability is one [1]. 
Actually, all the Hamming codes can correct 1 error.

7.3 Cyclic Codes

A cyclic code is also a special class of an (n, k) linear block code. If c  = (c0c1 … 
cn–1) is a code word, then a cyclic shift to the right generates another code 
word c 1 = (cn–1c0 … cn–2).

A cyclic code word is represented as a code polynomial c(x) given here:

 c(x) = c0 + c1x + c2 x2 +…+ cn−2 xn−2 + cn−1xn−1  (7.19)

Every element of the code word c  is a coefficient of a polynomial c(x). 
The highest degree of a code polynomial is n − 1. Depending upon the poly-
nomial coefficients, the degree could be less than n − 1. A cyclic shift to the 
right generates the following code polynomial:

 c(1)(x) = cn−1 + c0 x + c1x2 +…+ cn−3 xn−2 + cn−2 xn−1  (7. 20)

7.3.1 Generator Polynomial

Assume g(x) is a code polynomial of minimum degree in a cyclic code. Then 
g(x) is a generator polynomial and is unique [1]. An ith shift to the right is 
equivalent to multiplying g(x) by xi and xig(x) is also a code polynomial.

Example 7.6

Let c  = (1 1 0 1 0 0 0) be a code word of a (7, 4) linear code. It is also of 
minimum degree and g(x) = 1 + x + x3. A cyclic shift two places to the right 
of c  generates c  = (0 0 1 1 0 1 0) and g(2)(x) = x2 + x3 + x5. Multiplying g(x) 
by x2 gives g(2)(x) = x2g(x) and g(2)(x) is also a code polynomial.

The message code vector a  = (a0a1 −− ak–2ak–1) of an (n, k) linear code 
has k elements. The highest degree of a message polynomial is then k − 1. The 
message polynomial a(x) is then given here:

 a(x) = a0 + a1x +…+ ak−2 xk−2 + ak−1xk−1  (7.21)
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Assume that g(x), xg(x), …., and xk−1g(x) are all code polynomials such 
that the degree of xk−1g(x) is less than or equal to n − 1. Since g(x) is a code 
polynomial of a minimum degree [1], all the code polynomials xig(x), 0 < i ≤ 
k − 1 have a degree larger than that of g(x). A linear combination of all these 
code polynomials must also be a code polynomial c(x), we then have

 

c(x) = a0 + a1x +…+ ak−2 xk−2 + ak−1xk−1( ) g(x)

= a(x)g(x)
 (7.22)

Assuming that the highest degree of g(x) is r, then r + k − 1 = n − 1 and 
we obtain r = n − k. The g(x) is called the generator polynomial and is given by

 g(x) = 1+ g1x + g2 x2 +…+ gn−k−1xn−k−1 + xn−k  (7.23)

The coefficient of xn−k must be 1; otherwise, another code polynomial of 
minimum degree exists. From (7.22), every code polynomial is the product of 
message polynomial a(x) by the generator polynomial g(x).

Multiplying g(x) by x, x2 − xk−1 generates code polynomials of maximum 
degree n − 1. They are given here:

xg(x) = x + g1x2 + g2 x3 +…+ gn−k−1xn−k + xn−k+1 = g (1)(x)

x2 g(x) = x2 + g1x3 + g2 x4 +…+ gn−k−1xn−k+1 + xn−k+2 = g (2)(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk−1 g(x) = xk−1 + g1xk + g2 xk+1 +…+ gn−k−1xn−2 + xn−1 = g (k−1)(x)

However, multiplying g(x) by xk gives the following

 

xk g(x) = xk + g1xk+1 + g2 xk+2 +…+ gn−k−1xn−1 + xn

= 1+ xk + g1xk+1 + g2 xk+2 +…+ gn−k−1xn−1 + xn +1( )
= xn +1( )+ g (k)(x)  

(7.24)

Since g(k)(x) is a code word, g(k)(x) can be written as g(k)(x) = b(x)g(x) and 
(7.24) becomes [1]

 
xn +1 = xk + b(x)( ) g(x)  (7.25)

Equation (7.25) shows that the generator polynomial g(x) must be a fac-
tor of xn + 1 and the degree is n − k.

6899_Book.indb   109 10/22/19   4:55 PM



110 Introduction to OFDM Receiver Design and Simulation

Example 7.7

The generator polynomial of a (15,11) cyclic code can be found from the fac-
tors of x15 + 1.

x15 +1 = x4 + x +1( ) x11 + x8 + x7 + x5 + x3 + x2 + x +1( )
The first term has a degree n − k = 4 and must be a generator polynomial 

of the (15,11) cyclic code. Therefore, g(x) = x4 + x + 1.
Let a(x) be the message polynomial. Dividing xn−ka(x) by g(x) gives 

the following:

 xn−ka(x) = d(x)g(x)+ b(x)  (7.26)

The remainder b(x) has a degree less than n − k. The term d(x)g(x) is a 
code polynomial and we have [1]

 c(x) = b(x)+ xn−ka(x)  (7.27)

However, the term xn−ka(x) has a degree greater than or equal to n − k. 
Therefore, the information bits are shifted to the highest k location after encod-
ing a(x). Equation (7.27) provides a way to encode the message polynomial 
such that the information bits come after the parity bits.

Example 7.8

In Example 7.1, the message vector is a = [0 1 0 1 0 1 0 1 0 0 1]. The 
equivalent message polynomial is a(x) = x + x3 + x5 + x7 + x10. The generator 
polynomial from Example 7.7 is g(x) = 1 + x + x4. Dividing x4a(x) by g(x), 
we have

x4a(x) = x5 + x7 + x9 + x11 + x14

= x5 + x6 + x10( ) g(x)+ 0

The remainder happens to be zero. Therefore, the code polynomial is 
c(x) = x5 + x7 + x9 + x11 + x14. The equivalent code word is c  = [0 0 0 0 
0 1 0 1 0 1 0 1 0 0 1], which is the same as that given in Example 7.1.

Example 7.9

From Example 7.7, the generator polynomial is g(x) = x4 + x + 1. From (7.26), 
the division of x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, and x14 by g(x) gives 
the following:
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x4 = g(x)+1+ x

x5 = xg(x)+ x + x2

x6 = x2 g(x)+   x2 + x3

x7 = x3 +1( ) g(x)+1+ x + x3

x8 = x4 + x +1( ) g(x)+1+ x2

x9 = x5 + x2 + x( ) g(x)+ x + x3

x10 = x6 + x3 + x2 +1( ) g(x)+1+ x + x2

x11 = x7 + x4 + x3 + x( ) g(x)+ x + x2 + x3

x12 = x8 + x5 + x4 + x2 +1( ) g(x)+1+ x + x2 + x3

x13 = x9 + x6 + x5 + x3 + x +1( ) g(x)+1+ x2 + x3

x14 = x10 + x7 + x6 + x4 + x2 + x +1( ) g(x)+1+ x3

Moving d(x)g(x) to the left, we have

g(x) = 1+ x + x4

xg(x) = x + x2 + x5

x2 g(x) = x2 + x3 + x6

x3 +1( ) g(x) = 1+ x + x3 + x7

x4 + x +1( ) g(x) = 1+ x2 + x8

x5 + x2 + x( ) g(x) = x + x3 + x9

x6 + x3 + x2 +1( ) g(x) = 1+ x + x2 + x10

x7 + x4 + x3 + x( ) g(x) = x + x2 + x3 + x11

x8 + x5 + x4 + x2 +1( ) g(x) = 1+ x + x2 + x3 + x12

x9 + x6 + x5 + x3 + x +1( ) g(x) = 1+ x2 + x3 + x13

x10 + x7 + x6 + x4 + x2 + x +1( ) g(x) = 1+ x3 + x14

The left sides are all code polynomials. The right sides can be written in 
matrix forms as follows:
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G =

1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The matrix G  is the same as that given in (7.7). This also points out a 
way to generate the generator matrix.

7.3.2 Syndrome Polynomial

If the received polynomial r(x) is the same as the transmitted polynomial, then

 r(x) = c(x) = a(x)g(x)  (7.28)

In other words, r(x) must be divisible by g(x) and the remainder is zero. 
In a noisy channel, the received polynomial r(x) may not be the same as the 
transmitted polynomial and the remainder s(x) may not be zero. Under this 
condition, r(x) can be written as

 r(x) = b(x)g(x)+ s(x)  (7.29)

The polynomial s(x) is called the syndrome of r(x). The syndrome s(x) 
is the remainder after dividing r(x) by g(x). If the syndrome s(x) is not zero, 
r(x) is not a code polynomial and there are transmission errors. Therefore, the 
syndrome s(x) can be used to detect whether there are any received bit errors.

Assuming that the difference between the received polynomial r(x) and 
the transmitted polynomial c(x) is e(x), we can write

 r(x) = c(x)+ e(x)  (7.30)

Substituting (7.22) and (7.29) into (7.30), we have

 e(x) = a(x)+ b(x)( ) g(x)+ s(x)  (7.31)

Therefore, the syndrome s(x) is also the remainder of dividing e(x) by g(x).
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Based upon (7.31), a table can be created to correlate the error patterns e(x) 
with the corresponding syndromes s(x). After receiving r(x), it is first divided 
by g(x) to get the syndrome s(x). From the syndrome s(x), the corresponding 
error pattern e(x) is found from the table. The error pattern e(x) is then added 
to the received r(x) to recover the transmitted code polynomial c(x) or

 c(x) = r(x)+ e(x)  (7.32)

The e(x) could be equal to the code polynomial and r(x) is also divis-
ible by g(x). When this happens, the syndrome s(x) is 0 and the error bits are 
not correctable. The error correction capability is the same as the linear code. 
Assuming that t errors can be corrected, then t is given by

 
t =

dmin −1( )
2

 (7.33)

where dmin is the weight of the cyclic code.

Example 7.10

A (15,11) cyclic code with a generator polynomial of g(x) = 1 + x + x4 has a 
minimum weight of 3. Therefore, it can correct one error. There are a total 
of 15 error patterns with one bit error. These error patterns together with the 
corresponding syndromes are listed in Table 7.2.

The syndrome on the second column is the remainder of dividing e(x) 
in the first column by g(x). Comparing Tables 7.1 and 7.2, it can be seen that 
they are really identical.

Example 7.11

From Example 7.8, the transmitted polynomial is c(x) = x5 + x7 + x9 + x11 + 
x14. Assume that the received polynomial is r(x) = x2 + x5 + x7 + x9 + x11 + x14 
and an error has occurred in the second bit. The syndrome s(x) of r(x) is the 
remainder of dividing r(x) by g(x) = 1 + x + x4. After the division, we have 
s(x) = x2. From Table 7.2, the error pattern is e(x) = x2. Adding e(x) to r(x), we 
have r(x) + e(x) = x2 + x5 + x7 + x9 + x11 + x14 + x2 = x5 + x7 + x9 + x11 + x14. 
Therefore, the original c(x) is recovered.

7.4 Convolutional Code

Similar to the (n, k) linear block code, the convolutional code is defined to 
be a rate R = k/n. For every k-bit input message, there is an n-bit output. 
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The information bits pass through a shift register to generate the output. In 
general, the shift register has a total of Lk bits. The number L is called the 
constraint length [2].

Each output bit is generated from a binary adder with input connections 
to the shift register. If there are n output bits, there are n such binary adders. 
Similar to the sequence generator described in Chapter 5, the connections to 
generate each output bit can be specified by a generator polynomial.

7.4.1 Convolutional Encoder

Consider the convolutional encoder given in Figure 7.1. Each input bit (k 
= 1) generates 2 (n = 2) output bits. This is then called a 1/2 convolutional 
encoder. The shift register has a total of 2 bits. Since k = 1, the constraint 
length is equal to 2. As can be seen in Figure 7.1, each output bit is associated 
with a binary adder. Each adder can be described by a generator polynomial. 
Let g1(x) and g2(x) represent the two polynomials associated with output bits 
1 and 2; we then have

Table 7.2 
Error Pattern and Syndrome of a (15,11) Cyclic Code

Error Pattern Syndrome

1 1

x x

x2 x2

x3 x3

x4 1 + x

x5 x + x2

x6 x2 + x3

x7 1 + x + x3

x8 1 + x2

x9 x + x3

x10 1 + x + x2

x11 x + x2 + x3

x12 1 + x + x2 + x3

x13 1 + x2 + x3

x14 1 + x3
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 g1(x) = 1+ x2  (7.34)

 g2(x) = 1+ x + x2  (7.35)

The convolutional encoder can be described by a state-transition dia-
gram. Figure 7.2 shows the state-transition diagram of a 1/2 convolutional 
encoder. The content of the shift register represents the state. Since the shift 
register has 2 bits, there are four possible states ranging from 0 to 3. All the 
numbers in Figure 7.2 are in decimal format. Therefore, the equivalent binary 
representations of 0, 1, 2, and 3 are 00, 01, 10, and 11. The number inside each 
circle represents the state. The number beside each branch is the output. The 

Figure 7.1 A 1/2 convolutional encoder.

Figure 7.2 State transition diagram of a 1/2 convolutional encoder.
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four possible 2-bit outputs are 00, 01, 11, and 10, which can be represented 
as bauds of 0, 1, 3, and 2. Assume the initial state is 0. If the input bit is 0, 
the next state remains at zero and the output baud is zero. If the input bit is 
1, the state transitions from 0 to 2 and the output baud is 3. The dashed line 
represents the transition due to a bit 0 input while the solid line represents the 
transition due to a bit 1 input. Figure 7.2 also shows that there are two pos-
sible ways to reach any state. For example, state 1 can be reached from state 
2 due to a bit 0 input and from state 3 due to a bit 0 input.

The convolutional encoder can also be represented by a trellis diagram. 
Figure 7.3 shows the trellis diagram of a 1/2 convolutional encoder. The left-
most column shows the four possible states of 0, 1, 2, and 3. The top two rows 
show the input bit sequence of either bit 0 or 1 and the corresponding output 
sequence of 0, 1, 2, or 3. On each branch, there is a symbol of the form a/b. 
The letter “a” represents the output while the letter “b” represents the single 
bit input. For example, the symbol 3/1 means a bit 1 input generating an 
output baud 3. The trellis diagram starts at state 0 with a depth of d = 0 and 
proceeds to the right. The depth d increments by 1 for each new bit input. 
At d = 0, there are two possible transitions. A bit 0 input transits from state 
0 to state 0 and outputs 0. A bit one input transits from state 0 to state 2 and 
outputs 3. At depth 1, there are then two possible states. Since each state has 
two possible transitions, there are four possible states at depth d = 2. After 

Figure 7.3 Trellis diagram of a 1/2 convolutional encoder.

6899_Book.indb   116 10/22/19   4:55 PM



 Error-Correcting Codes and Interleaver 117

depth 2, two major events are observed. The first is that the number of states 
remains at 4. The second is that there are two possible ways to reach any state. 
For example, at d = 3, state 1 can be reached from state 2 due to a bit 0 input 
and from state 3 also due to a bit 0 input. Following the transition path, an 
input sequence of 01100 generates an output baud sequence of 03223. The 
path traced through due to the input sequence is marked by dark lines. After 
d = 3, there are only two paths reaching each state, as will be discussed next.

7.4.2 Convolutional Decoder and Viterbi Algorithm

Figure 7.3 shows the possible number of paths through the trellis increases 
with the depth. There are two paths at d = 1, four paths at d = 2, and eight 
paths at d = 3, and, in general, there are 2k paths at d = k. Assume the received 
semi-infinite symbol sequence is Y = y0y1 … yj …. Every possible path through 
the trellis diagram generates a possible output code sequence. Assume that 
the output code sequence of the nth path is Xn = xn0xn1 … xnj …. Based upon 
the received symbol sequence, the convolutional decoder finds a path with 
the highest probability of being followed through the trellis. The metric used 
is then to maximize ln(p(Y/Xk)). The probability p(Y/Xk) can be written as

 
p Y

Xk

⎛
⎝⎜

⎞
⎠⎟
= p

y j

xkj

⎛

⎝
⎜

⎞

⎠
⎟

j=0

j=∞

∏  (7.36)

The metric then becomes

 
ln p Y

Xk

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
= ln p

y j

xkj

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

j=0

j=∞

∑  (7.37)

Out of all the possible paths through the trellis, the code sequence Xk 
such that ln (p(Y/Xk)) is the maximum is selected to be the code sequence 
input to the channel [3].

Example 7.12

From Figure 7.3, assume there are no channel errors and the received baud 
sequence is Y = 03223. The code sequence through the trellis that most likely 
matches with Y is the path k such that Xk = 03223. This path is marked with 
the dark line in Figure 7.3. Based upon Xk, the input message sequence is then 
found to be 01100. No other path can have a code sequence that matches so 
perfectly. For example, the code sequence corresponding to the binary input 
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message sequence 01110 is 03212, which does not match with Y as closely as 
Xk. In other words, ln (p(Y/Xk)) is the maximum.

In practice, it is not so easy to accurately determine p(Y/Xk). For hard 
decision decoding, the metric used is to minimize the Hamming distance 
between Y and code sequence Xk. Assuming that X and Z are two binary 
sequences, the Hamming distance is then obtained by performing the exclu-
sive operation of finding the number of places that they differ. For example, 
the Hamming distance between X = 11011 and Z = 01111 is 2. It can also be 
computed as the weight of X + Z. For example, the weight of X + Z = 10100 
is also 2. Table 7.3 lists the Hamming distance between 2-bit bauds and the 
number inside the parentheses is the baud representation.

The received convolutional codes can be decoded using the Viterbi algo-
rithm [3], which is illustrated in Figure 7.4 using the encoder given in Figure 
7.1. Associated with each branch, there is a symbol in the form a/b/c. The 
additional letter c gives the accumulated Hamming distance at the ending 
state. The receiver has a replica of the encoder and knows all the possible 
transmitted codes. Before all four states are generated, all the possible paths 
are kept. Therefore, four paths are kept before d = 2. On each branch, the 
Hamming distance between branch symbol a and the received symbol is com-
puted first. For example, the output state 1 at d = 3 is reached from the input 
state 2 at d = 2. The branch symbol is the encoder output baud a = 1 after a 
bit 0 input and the accumulated Hamming distance c needs an update. The 
Hamming distance between a = 1 and the received baud 2 is 2. The input 
state 2 is reached from state 0 with an accumulated Hamming distance 0. 
The cost at d = 2 and state 2 is then zero. The new accumulated Hamming 
distance from state 2 to state 1 is then 0 + 2 = 2. The letter c is then set to 
2. The branch symbol becomes 1/0/2. All the other branch symbols can be 
computed in a similar manner.

From depth d = 2 to d = 3, a total of eight possible paths exist. The 
path is expressed in terms of state sequence. To reach state 0, for example, 

Table 7.3 
Distance Between 2-Bit Bauds

00(0) 01(1) 10(2) 11(3)

00(0) 0 1 1 2

01(1) 1 0 2 1

10(2) 1 2 0 1

11(3) 2 1 1 0
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there are two paths 0000 and 0210. The other 6 paths are 0021, 0231, 0002, 
0212, 0233, and 0023. If all the paths are kept, the number of paths increases 
exponentially. There are two paths to reach each state at d = 3 and only one 
path with a smaller Hamming distance is kept. All the kept paths are in dark 
colors. For example, to reach state 0, the path 0000 has accumulated Ham-
ming distance of 3 while the path 0210 has an accumulated distance of 4. The 
path 0000 is then kept and the path 0210 is discarded. The discarded path 
will never be used again. After d = 3, the same algorithm is used to keep or 
discard paths. At d = 3 and state 1 for example, the path 0021 is kept and the 
branch symbol 1/0/2 is used to update the accumulated distance to transition 
from state 1 to state 0 and state 2. Doing it this way, a maximum of 4 paths is 
maintained at each depth. What has been discussed is one way of discarding 
paths although other possible ways exist.

At each depth and each state, there are only two paths leading to it. At 
the end of d = 6 and state 0, for example, the two possible paths are from state 
0 and state 1 at d = 5. When all the symbols are received, the decoder finds the 
minimum accumulated distance. The minimum distance is zero and the path 
0023100 is the final selected path. The encoder output baud sequence and the 
input bit sequence associated with this path can be found from the symbol 
on each branch. For example, the path 0023100 has an encoder output baud 

Figure 7.4 Illustration of the Viterbi decoding algorithm.
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sequence 032230 and an input bit sequence of 011000. From Figure 7.4, the 
bit sequence of 011000 is indeed the transmitted message. Figure 7.5 shows 
the trellis diagram after removing the discarded paths.

Out of the many possible paths through the trellis diagram, the Viterbi 
algorithm selects the final path with minimum Hamming distance. In this 
sense, it performs the maximum likelihood decoding. To show how the Vit-
erbi algorithm corrects errors, Figure 7.6 shows the trellis diagram with one 
transmission error. The input bit sequence is still 011000 and the transmitted 
encoder baud sequence is 032230. However, the received baud sequence is 
033230 and there is a 1-bit error in the third baud. At each depth and state, 
only one path is chosen. If two paths have the same distance, any path can be 
selected. One such case is state 1 at depth 5. The branch from state 2 at depth 
4 to state 1 has a distance of 3. The same is true for the branch from state 3 at 
depth 4 to state 1. In Figure 7.6, the branch from state 3 is arbitrarily selected. 
At d = 6, the selected path at states 0, 1, 2, and 3 has an accumulated distance 
of 1, 3, 3, and 3, respectively.

The minimum accumulated distance is 1 and the path 0023100 is 
selected. This is indeed the correct path and the input bit sequence is cor-
rectly decoded to be 011000. Figure 7.7 shows the trellis diagram after all the 
discarded paths are removed.

Figure 7.5 Illustration of Viterbi algorithm after removing the discarded paths.
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Figure 7.6 Illustration of Viterbi decoding with a single bit error.

Figure 7.7 Illustration of Viterbi decoding with a single bit error after removing the 
discarded path.
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Figure 7.8 Convolutional encoder in the IEEE 802.11a.

In comparing Figure 7.5 with Figure 7.7, it is seen that not all the dark 
lines or paths are the same. This does not matter as long as the correct path 
has the minimum distance. If there is no transmission error, the correct path 
has a distance of 0. If there are indeed bit errors, the minimum distance is not 
0. However, the minimum distance still selects the optimum path, which can 
decode the received code word to get the input message stream.

7.4.3 Convolutional Code in the IEEE 802.11a

In the IEEE 802.11a, the convolutional encoder is shown in Figure 7.8. For 
every single bit (k = 1) input, two output bits (n = 2) are generated. There-
fore, this is still a 1/2 (k/n = 1/2) convolutional encoder. The total number of 
bits in the shift register is 6. Since k = 1, the constraint length is 6. The total 
number of states is then 64. The two generator polynomials are defined by 
the following equations:

 g1(x) = 1+ x + x3 + x4 + x6  (7.38)

 g2(x) = 1+ x3 + x5 + x6  (7.39)

One property of this encoder is that every output state can only be gen-
erated from two unique input states. Each input state generates two unique 
output states. One comes from a bit 0 input and the other comes from a bit 
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Figure 7.9 Relationship of input and output states.

Table 7.4 
Generation of Input and Output State Pairs

Input/Output Input/Output Input/Output Input/Output

0,1 /0, 32 16,17/8,40 32,33/16,48 48,49/24,56

2,3/1,33 18,19/9,41 34,35/17,49 50,51/25,57

4,5/2,34 20,21/10,42 36,37/18,50 52,53/26,58

6,7/3,35 22,23/11,43 38,39/19,51 54,55/27,59

8,9/4,36 24,25/12,44 40,41/20,52 56,57/28,60

10,11/5,37 26,27/13,45 42,43/21,53 58,59/29,61

12,13/6,38 28,29/14,46 44,45/22,54 60,61/30,62

14,15/7,39 30,31/15,47 46,47 /23,55 62,63/31,63

1 input. Therefore, there exist two input states and two output states that 
depend upon each other. Figure 7.9 shows the relationship. In this figure, 
both state j and state j + 1 transition to state k after a bit 0 input. However, 
if the input bit is 1, both input state j and j + 1 transition to the same output 
state i. In other words, there exist two unique input states j and j + 1 that can 
only transition to state k and state i. For example, state 8 ( j = 8) and state 9 
( j + 1 = 9) are two input states that can only transition to state 4 (k = 4) and 
state 36 (i = 36). For this generator, the two input states differ by 1 while the 
two output states are generally not consecutive. Table 7.4 lists all the input 
and output state pairs. For example, input state pair 18 and 19 transitions to 
output state pair 9 and 41.
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In the Viterbi decoding algorithm, several different ways of discarding 
paths are possible. One way discussed before and also justified through simu-
lation in Chapter 12 is summarized here:

• Generate the initial 64 states and keep all the paths through the trel-
lis. During the generation process, compute the Hamming distance 
between the received baud and the encoder output baud for each 
branch, and update the accumulated Hamming distance according 
to the following formula

 
Csk+1

= Csk
+ d sk+1, sk( )  (7.40)

where sk represents the state at depth k, d is the Hamming distance 
during a state transition, and C is the accumulated Hamming distance.

• After all the initial paths are generated, the total number of states 
remains at 64. There are two possible paths to reach a new state. 
Only one path with the minimum accumulated Hamming distance 
is selected. Mathematically, it is given as

 
C sk+1( ) = min C sk+1( ), the two paths from sk  to sk+1( )  (7.41)

If the two paths have the same Hamming distance, a path can be 
selected randomly.

• The process continues until the input message is exhausted. At each 
new depth, the number of states is 64 and only 64 paths are kept.

7.4.4 Punctured Convolutional Codes

Higher data rates can be generated by employing the puncturing technique. 
This means certain output bits are stolen without being transmitted. In the 
receiver, a dummy bit is inserted into the stolen bit location and its distance 
metric is ignored. The advantage is that the data rate increases by reducing the 
transmission overhead. The disadvantage is a slight increase in the bit error 
rate. If the channel is not too bad, the degradation is minimal.

There are two punctured encoders specified in the IEEE 802.11a. The 
first has a rate of R = 2/3 and the second has a rate of R = 3/4. Both punctured 
encoders use 1/2 convolutional coding as a base to generate the desired rate.

Table 7.5 shows the punctured coding at a rate of R = 2/3. Each column 
represents the two output bits for every single bit input. The symbol bij indicates 
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the first ( j = 0) and second ( j = 1) output bit corresponding to the ith input 
bit. In other words, the first index is the input bit index while the second 
index is either the first output bit or the second output bit. For example, b30 
is the first output bit due to the third input bit while b31 is the second output 
bit due to the same third bit input. The bold text is the output bit that will 
not be transmitted. Therefore, every fourth output bit is omitted. Table 7.5 
shows a 4-bit input stream [4]. After the first 2-bit input, the output bit b11 
is omitted and after the next 2-bit input, the output bit b31 is omitted. The 
transmitted bit stream is then b00b01b10b20b21b30. Instead of generating 2 bits 
for every single bit input for a rate R = 1/2, 3 bits are generated for every 2-bit 
input to generate a rate of R = 2/3.

Table 7.6 [4] shows the punctured coding at rate = 3/4. After every 
3-bit input, the fourth and fifth output bits are omitted. Table 7.6 shows 
that bits b11 and b20 are omitted after the first 3-bit input and bits b41and 
b50 are omitted after the next 3-bit input. The transmitted bit stream is then 
b00b01b10b21b30b31b40b51Therefore, for every 3-bit input, only 4 bits are trans-
mitted and the rate becomes 3/4.

In the receiver, the convolutional decoding follows exactly the same 
procedure. However, the computation of the Hamming distance is slightly 
different. Assume after the dummy bits are inserted, bk0 and bk1 are the received 
bits and ak0 and ak1 are the encoder generated output bits before any bits are 
stolen. If bk1 is the inserted dummy bit, then both ak1 and bk1 are ignored 
and the Hamming distance is the exclusive or operation between bk0 and ak0. 
However, if ak0 is omitted and bk0 is the inserted dummy bit, the Hamming 
distance is the exclusive or operation between ak1 and bk1. For example, assume 

Table 7.5 
Rate 2/3 Punctured Coding

b00 b10 b20 b30

b01 b11 b21 b31

Table 7.6 
Rate 3/4 Punctured Coding

b00 b10 b20 b30 b40 b50

b01 b11 b21 b31 b41 b51
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that 11 is the encoder generated output baud. Assume also that the received 
baud is 10 where 0 is the inserted dummy bit. The distance is then the exclu-
sive operation between the first bit 1 of the encoder output baud (11) and the 
first bit 1 of the received baud (10) and the result is 0.

Except for the slight modification in computing the cost, the Viterbi 
algorithm can be followed in exactly the same way. The way the cost com-
putation as modified will be justified in the simulation given in Chapter 12.

7.5 Interleaver

Even though the error correction discussed in the previous section can correct 
bit errors in digital communications, the error performance can be further 
enhanced through an interleaver. This is because the errors often occur in 
bursts and a group of continuous bits are in error. When this happens, it is 
rather difficult for the error correction codes to handle. An interleaver is used 
to rearrange the bits following certain rules to prevent a block of bit errors.

7.5.1 Illustration of an Interleaver

A block interleaver is commonly used in digital communications. Assume 
that bk,k = 0, N − 1 are the N input bits to the interleaver after error correc-
tion coding. Without an interleaver, these N bits are sent in sequence for data 
modulation. With an interleaver, these N bits are rearranged and sent in a 
sequence following a given rule.

For illustration purpose, consider a block of N = 14 bits. The bit index of 
the interleaver output is bit reversed from that of the input. Table 7.7 shows the 
sequence of the input and output bit index. It can be seen that the output bit 
index of the interleaver is no longer continuous. Following the third column, 
the bit transmission sequence is then b0, b8, b4, b12, and so forth.

Assume that the beginning two bits b0 and b8 are in error after reception. 
Before error correction, the bit stream is deinterleaved. The deinterleaving is 
just another bit reversal to restore the original bit stream index as given in the 
first column of Table 7.7. Note that b0 and b8 are no longer adjacent and are 
now separated by 8-bit positions. Assume that a Hamming (7,4) block code 
is used for error correction. In the first 7 bits, only one bit is in error and this 
error can be corrected. Without the interleaver, there are two bits in error 
and it is beyond the error correction capability of the Hamming code. The 
advantage of an interleaver can now be clearly seen.
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7.5.2 Interleaver Used in the IEEE 802.11a

In the IEEE 802.11a, the interleaver is defined by a two-step permutation. 
The first permutation converts the input bit index k to index i according to 
the following formula:

 
i =

Ncbps

16
(kmod16)+ int

k
16

⎛
⎝⎜

⎞
⎠⎟ k = 0,1,…, Ncbps…1  (7.42)

where Ncbps is the number of coded bits per symbol, int denotes the integral 
part, and mod is the remainder after the division.

The second permutation converts the index i to index j according to the 
following formula:

 
j = n int

i
n

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
+ i + Ncbps − int

16i
Ncbps

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟mod n  (7.43)

Table 7.7 
Bit Index of the Interleaver Input and Output

Decimal Input  
Bit Index

Binary Input  
Bit Index

Decimal Output  
Bit Index

Binary Output  
Bit Index

0 0000 0 0000

1 0001 8 1000

2 0010 4 0100

3 0011 12 1100

4 0100 2 0010

5 0101 10 1010

6 0110 6 0110

7 0111 14 1110

8 1000 1 0001

9 1001 9 1001

10 1010 5 0101

11 1011 13 1101

12 1100 3 0011

13 1101 11 1011
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where n depends upon the number of bits per subcarrier, Nbpsc, and is given  
here:

 
n = max 

Nbpsc

2
,1

⎛
⎝⎜

⎞
⎠⎟

 (7.44)

After the two-step permutation, the input bit index k is converted to 
bit index j.

For BPSK used in the IEEE 802.11a, each OFDM symbol has 24 data 
bits and 48 coded bits after 1/2 convolutional coding. Table 7.8 shows these 

Table 7.8 
Input Bit Indexes of an Interleaver in the IEEE 802.11a

0 6 12 18 24 30 36 42

1 7 13 19 25 31 37 43

2 8 14 20 26 32 38 44

3 9 15 21 27 33 39 45

4 10 16 22 28 34 40 46

5 11 17 23 29 35 41 47

Table 7.9 
Output Bit Indexes of an Interleaver in the IEEE 802.11a

0 18 36 7 25 43 14 32

3 21 39 10 28 46 17 35

6 24 42 13 31 2 20 38

9 27 45 16 34 5 23 41

12 30 1 19 37 8 26 44

15 33 4 22 40 11 29 47
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48 input bit indexes before an interleaver. Inside each square is the bit index 
k. The bit stream is sent column-wise from the first column to the eighth 
column. Without an interleaver, the bit indexes are adjacent and continuous. 
With an interleaver, the bit indexes are no longer adjacent. Table 7.9 shows the 
output bit index j and each bit is reassigned. Bit bk may be assigned to square 
m and m ≠ k. For example, bit 1 is assigned to square 16. No two bits can be 
assigned to the same square. If bk is assigned to square m and bj is assigned to 
square i, then m ≠ i. Table 7.9 clearly shows the bits are reassigned such that 
a block of adjacent bit errors can be prevented.

7.5.3 Deinterleaver Used in the IEEE 802.11a

For the IEEE 802.11a, the deinterleaver is the reverse process of the inter-
leaver given in Section 7.5.2. It is completed after two permutations. The 
first permutation converts the index j to index i and is given by the follow-
ing equation:

i = n int
j

n
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
+ j + int

16 j
Ncbps

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟mod n j = 0,1,…, Ncbps −1  (7.45)

The second permutation converts the intermediate index i back to the 
original index k and is given by the following equation:

 
k = 16i − Ncbps −1( )int

16i
Ncbps

⎛

⎝
⎜

⎞

⎠
⎟ i = 0,1,…, Ncbps −1  (7.46)

Example 7.13

For BPSK defined in the IEEE 802.11a, the interleaver shown in Section 7.5.2 
converts index k = 1 to index i = 16. In the deinterleaver, the reverse process 
converts the index i = 16 back to index k = 1. In other words, Table 7.9 is 
converted back to Table 7.8.

7.6 Summary

For the block codes, both linear block codes and cyclic codes were discussed. 
Associated with the linear block codes are a generator matrix and a parity 
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matrix. The generator matrix is orthogonal to the parity matrix. Every code 
word can be generated from the generator matrix. If there are transmission 
errors, a nonzero syndrome is created. Associated with every syndrome is a 
corresponding error pattern. Based upon the syndrome, the error can be cor-
rected. A special (n, k) Hamming code was also defined such that n = 2m − 1 
and k = n − m.

For the cyclic code, a cyclic shift of every code word generates another 
code word. Associated with the cyclic code is a generator polynomial and 
every code word can be generated through this generator polynomial. For 
an (n, k) cyclic code, the generator polynomial is a factor of the polynomial 
xn + 1. As with the linear block code, a syndrome polynomial was defined. 
If there are no transmission errors, the syndrome polynomial is zero. If 
there are transmission errors, every syndrome polynomial has a correspond-
ing error pattern. Based upon the syndrome polynomial, the bit errors can 
be corrected.

For the convolutional code of rate k/n, every k information bits generate 
n coded bits. The input bit sequence can be infinite in length and the output 
bit sequence is generated through the contents of a shift register and input 
bits. The input and output bits can be traced through a trellis diagram. Each 
possible path is associated with a cost defined to be the Hamming distance 
between the received baud and the output coded baud. The Viterbi algorithm 
used for decoding is to find the best path through the trellis such that the 
cost between the received bits and the encoded output bits is at a minimum. 
A special convolutional code defined in the IEEE 802.11a was also discussed 
in more detail.

To reduce the transmission overhead, a punctured convolutional code 
was defined. It can be generated by taking away a certain number of output 
bits. For the 1/2 convolutional code, a punctured code of R = 2/3 and R = 
3/4 can be generated. For R = 2/3, one output bit is dropped for every two 
input bits. For R = 3/4, two output bits are dropped for every 3 input bits. By 
ignoring the cost associated with the dropped bits, the Viterbi algorithm can 
be followed in exactly the same way.

An interleaver is also frequently applied to reduce burst errors. The idea 
is to distribute the input bits following a certain rule. In such a case, a block 
of consecutive bits is transmitted far apart.

Upon reception, these errors can then be easily corrected. A special 
interleaver used in the IEEE 802.11a was discussed.

In the next chapter, the OFDM signal detection using the preamble 
waveform is discussed. Both coarse detection and fine detection are covered.
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8
Signal Acquisition

8.1 Introduction

For OFDM, a preamble is generally sent before the data transmission. The 
preamble normally consists of a repetition of signals. As shown in Chapter 
4, the preamble in the IEEE 802.11a has a short sequence followed by a long 
sequence. The short sequence is a repetition of 16 segments of 16 samples 
each. The receiver must be able to first detect the presence of such a repeti-
tion of signals.

Since the preamble signal repeats, adjacent segments must have strong 
correlations. This property can be used to define several metrics for signal 
detection. Three metrics are given in this chapter. They are cross-correlation, 
normalized cross-correlation, and minimum mean square error (MMSE). Their 
performances are compared through examples from the simulation study. The 
simulation is based upon transmitted signals specified in the IEEE 802.11a. 
The results are compared running on a standard compliant C-program.

From the central limit theorem, each of the three metrics can be con-
sidered to have a Gaussian distribution. Using this assumption, a maximum 
likelihood detection approach is used for signal detection. This assumption is 
justified from the simulation data.

The front-end electronics must first convert the received signal into 
the in-phase I component and the quadrature-phase Q component. These 
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IQ signals are then digitized for further processing for signal detection and 
others. The traditional heterodyne receiver needs an intermediate frequency 
(IF) stage to recover the baseband signal. In this chapter, the received signal 
is directly converted without going through an IF stage.

The detection can be done in two steps. The first step is a coarse tim-
ing detection and the second step is a fine timing detection. In order for fast 
detection, the coarse detection is also further divided into two steps. The first 
is the segment detection and the second is the sample detection.

Each repetition of the preamble signal is called a segment. Initially, there 
is no way of knowing in which segment the signal starts. Instead of computing 
the correlation for each sample, a fast detection strategy is to first compute the 
correlation for each segment. After detecting the signal segment, the sample 
detection can be further performed using samples within the detected segment. 
Each segment in the IEEE 802.11a has 16 samples. The maximum number 
of correlations for the detected segment is then 15.

After the coarse detection, the sample at which the preamble starts is 
roughly known. To fine-tune the sample location, a fine detection algorithm is 
further applied. In the IEEE 802.11a, a long sequence follows immediately after 
the short sequence. The fine timing detection can be applied using either the 
long sequence or short sequence. The long sequence is applied for illustration.

The received signals may also suffer impairments from the front-end 
receiver. Only random noise is discussed in this chapter through simulation 
study. Others are deferred to Chapter 12.

The normalized cross-correlation is found to have the best performance 
and is selected for further studies across various SNR levels.

8.2 Direct Conversion to IQ Components

From (2.2), the transmitted signal can, in general, be written as

 
x(t) = Re s(t)e j2pfct( )  (8.1)

where fc is the carrier frequency. Assuming that the baseband signal s(t) has 
amplitude a(t) and phase θ (t), we have

 
s(t) = a(t)e jq(t ) = xI (t)+ jxQ (t)  (8.2)

The in-phase component xI(t) and quadrature-phase component xQ(t) 
are then given by
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 xI (t) = a(t)cos q(t)( )  (8.3a)

 
xQ (t) = a(t)sin q(t)( )  (8.3b)

Substituting (8.2) into (8.1), x(t) can be rewritten as:

 
x(t) = a(t)cos 2pfct + q(t)( )  (8.4)

Using (8.3a) and (8.3b), x(t) can be written in terms of xI(t) and xQ(t)

 

x(t) = a(t)cos q(t)( )cos 2pfct( )− a(t)sin q(t)( )sin 2pfct( )
= xI (t)cos 2pfct( )− xQ (t)sin 2pfct( )

 (8.5)

Assume that the impulse response of the channel is given by h(t). The 
received baseband signal y(t) is then just the convolution between the trans-
mitted signal, s(t), and the channel impulse response, h(t).

 
y(t) = yI (t)+ jyQ (t) = xI (τ )+ jxQ (τ )( )h(t − t) dt∫  (8.6)

where yI(t) and yQ(t) are just the convolution of h(t) and s(t)

 
yI (t) = xI (τ )h(t − t) dt∫  (8.7)

 
yQ (t) = xQ (τ )h(t − t) dt∫  (8.8)

The received signal r(t) is then given by

 

r(t) = Re y(t)e j2pfct( )
= yI (t)cos 2pfct( )− yQ (t)sin 2pfct( )

 (8.9)

In (8.9), we have ignored the additive random noise for analysis simpli-
fication, However, the noise impact will be simulated in later sections. In the 
RF front end of the receiver, yI(t) and yQ(t) can be recovered by passing the 
received signal through a mixing stage. Without any intermediate frequency, 
the bandpass signal can be recovered as shown in Figure 8.1. In this mixer, 
there are two locally generated signals. Assuming, for now, that there is no IQ 
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imbalance, the first is l1(t) = 2cos(2π fct) and the other is l2(t) = −2sin(2π fct). 
The signal l2(t) has exactly a 90° phase shift from l1(t). Multiplying (8.9) by 
l1(t), we have

r(t)l1(t) = 2 yI (t)cos 2pfct( )cos 2pfct( )− 2 yQ (t)sin 2pfct( )cos 2pfct( )
= yI (t) 1+ cos 4pfct( )( )− yQ (t)sin 4pfct( )

 (8.10)

After passing through the lowpass filter (LPF), the double frequency 
terms are filtered. The output becomes yI(t). Similarly, multiplying (8.9) by 
l2(t), we have

r(t)l2(t) = −2 yI (t)cos 2pfct( )sin 2pfct( )+ 2 yQ (t)sin 2pfct( )sin 2pfct( )
= − yI (t)sin 4pfct( )+ yQ (t) 1− cos 4pfct( )( )  

(8.11)

Similarly, the double frequency term is filtered and the output becomes 
yQ(t). Therefore, the upper branch recovers the in-phase component yI(t) while 
the bottom branch recovers the quadrature-phase component yQ(t).

8.3 Detection Metric

The received samples after going through direct conversion becomes

 
y(t) = yI (t)+ jyQ (t)  (8.12)

This analog signal then goes through an analog-to-digital converter to 
generate digitized samples for further processing. The kth such sample is writ-
ten as yk = yIk + jyQk and yk is, in general, complex.

Figure 8.1 Direct conversion receiver without IQ imbalance.
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Assume that each repetition segment of the preamble has M samples. 
In the IEEE 802.11a, the short sequence has M = 16 and there are 10 such 
segments. Since the signal repeats, the following must be true assuming no 
channel degradation

 yi+k = yi+k+M  (8.13)

where i is the start sample index, k is the sample index, and M is the period 
in sample count. Based upon (8.13), several detection metrics can be utilized.

8.3.1 Cross-Correlation

In this scheme, two signals separated by M samples apart are correlated. The 
metric m is given here [1]:

 
mi = yi+k yi+k+M

∗

k=0

k=M−1

∑  (8.14)

In (8.14), the first signal is R1 = yi+k while the second signal is R2 = yi+k+M. 
The separation between these two signals is M samples.

The correlation must be low if both signals are noise. The correlation 
increases if the signal appears in either R1 or R2. The correlation reaches a 
maximum when both R1 and R2 are signals. Assuming that there is no noise, 
then (8.13) applies and (8.14) becomes

mi = yi+k
2

k=0

k=M−1

∑

In this case, mi is just the energy in one segment.

8.3.2 MMSE Metric

An MMSE metric utilizes the characteristics of (8.13). In other words, the dif-
ference between yi+k and yi+k+M must be a minimum when the signal appears. 
The metric can then be given as [2]

 
mi = yi+k − yi+k+M

2

k=0

k=M−1

∑  (8.15)
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Expanding (8.15), the following is obtained:

 

mi = yi+k − yi+k+M( ) yi+k − yi+k+M( )∗
k=0

k=M−1

∑

= yi+k
2

k=0

k=M−1

∑ + yi+k+M
2

k=0

k=M−1

∑ − yi+k yi+k+M
∗

k=0

k=M−1

∑ − yi+k
∗ yi+k+M

k=0

k=M−1

∑

= yi+k
2

k=0

k=M−1

∑ + yi+k+M
2

k=0

k=M−1

∑ − 2 Re yi+k yi+k+M
∗( )

k=0

k=M−1

∑
 

 (8.16)

From (8.15), it can be seen that the metric is always positive. When the 
signal is present and without noise, (8.13) applies. Then from (8.15), mi = 0 
and this is also the minimum value of mi.

8.3.3 Normalized Cross-Correlation

The metric in (8.16) can be normalized with respect to the signal energy 
given here:

 
Ei = yi+k

2

k=0

k=M−1

∑ + yi+k+M
2

k=0

k=M−1

∑  (8.17)

Dividing mi in (8.16) by (8.17), we have [2]

 

mi
Ei

= 1−  
2 Re yi+k yi+k+M

∗( )
k=0

k=M−1

∑
Ei

 (8.18)

Minimizing mi/Ei is equivalent to maximizing the second term of (8.18). 
The normalized metric is then defined below:

 
mi (normalized) =

2 Re yi+k yi+k+M
∗( )

k=0

k=M−1

∑
Ei

 (8.19)

Using (8.13) under the condition without noise, mi in (8.19) is then 
equal to one. With a signal present, the metric is close to 1. With only noise 
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present, the correlation is even smaller due to the further division by the energy. 
Therefore, (8.19) is a good metric to detect the signal in noise.

For all three metrics given in (8.14), (8.16), and (8.19), the search is to 
find either the maximum or minimum when the signal appears. Since there 
is no way of knowing when the signal is transmitted, the metric is initially 
computed each time by advancing the index i by the period M. In other 
words, we compute mi, mi+m, mi+2M until mi+lM such that the signal segment 
is detected. In doing so, more precise signal timing is not known in exchange 
for fast detection.

8.4 Maximum Likelihood Detection

Even though the transmitter does not send mi directly, it can be computed 
from the received samples. To detect the signals in noise, it becomes equiva-
lent to detect the metric in noise. There are now two hypotheses. In the first 
hypothesis, H1, the signal is present while in the second hypothesis, H0, only 
noise is present.

Let y represent the received metric sample. Based on y, either H1 is true 
or H0 is true. If H1 is true, the probability density function of y is p(y/H1). 
However, the probability density function of y is p(y/H0) if H0 is true. The 
decision rule is then to choose H1 if

 

p y/H1( )
p y/H0( ) > l   (8.20)

where λ  is a detection threshold [3]. The ratio on the left side of (8.20) is called 
the likelihood ratio. A test based upon this ratio is called a likelihood ratio test.

Under hypothesis H1 and H0, the variable y is given below:

 H1:  y = u + n  (8.21)

 H0:  y = n  (8.22)

where n is the random noise and u is the average value of the metric. Assum-
ing that the random noise n to be Gaussian distributed with mean zero and 
standard deviation σ , the probabilities p(y/H1) and p(y/H0) are then given here:

 
p y

H1

⎛
⎝⎜

⎞
⎠⎟
=  

1
2ps e − y−u( )2 /2s2⎡

⎣
⎤
⎦  (8.23)
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p y

H0

⎛
⎝⎜

⎞
⎠⎟
=  

1
2ps e − y2 /2s2⎡⎣ ⎤⎦  (8.24)

Substituting (8.23) and (8.24) into (8.20), we have

 e(2 yu−u2 )/2s2

> l  (8.25)

Taking logarithm on both sides of (8.25), we have

 
y > u2 + 2s2 lnl

2u
 (8.26)

The decision rule can be to choose H1 if p(y/H1) > p(y/H0). In this case, 
λ  = 1 and (8.26) becomes

 
y > u

2  (8.27)

Equation (8.27) is a simple decision rule. If the computed metric is greater 
than one-half of its average signal value, the signal is detected.

8.5 Coarse Timing Detection

The short sequence defined in Section 4.4.1 is used for the simulation of the 
coarse detection. The transmitted signal is assumed to go through no channel 
degradations and synchronization errors. That also means the channel impulse 
response h(t) = 1 in (8.7) and (8.8). However, the random noise impact on the 
accuracy of signal detection is provided through simulation study.

The coarse detection is done in two steps. The first is the segment detec-
tion to quickly locate the segment the signal appears. The second is the sample 
detection to find the onset of signal samples.

8.5.1 Segment Detection

In the segment detection, the goal is to find the segment where the signal is 
located. The segment size is M and the metric is computed by advancing the 
samples by M each time. In other words, only metrics m0, m16, m32, m48, and 
so forth are computed. In the following examples, two different noise levels 
are considered. One has SNR = 37.8 dB and the second has SNR = 2.8 dB.
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Example 8.1

In this example, the SNR is set to be 37.8 dB. Figures 8.2 to 8.4 are plots of 
cross-correlation, normalized cross-correlation, and MMSE against the seg-
ment number. Each segment of the short sequence has 16 samples. The index 
i of the metric mi is advanced by 16 each time and has numbers 16, 32, 48, 
and so forth. The segment number is just i/16 and has numbers 1, 2, 3, and 
so forth. The short sequence starts at segment 26.

Figure 8.2 shows that the noise correlation is negligibly small. The cross-
correlation is 0.1 at segment number 26 and reaches a maximum of 0.2 for 
segment number ≥ 27. Since the short sequence samples start within segment 
26, the cross-correlation is not at maximum. The average signal level u in 
(8.27) is then 0.2 and the threshold is u/2 = 0.1. Clearly, the signal is correctly 
detected at segment 26. Figure 8.3 shows that the normalized cross-correlations 

Figure 8.2 Cross-correlation against segment number at SNR = 37 dB.

Figure 8.3 Normalized cross-correlation against segment number at SNR = 37.8 dB.
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Figure 8.4 MMSE against the segment number at SNR = 37.8 dB.

maximum is 1. The threshold is then 0.5. The signal is also correctly detected 
at segment 26 with a normalized cross-correlation of 0.66. Since the signal is 
normalized, the noise correlation is not small anymore and the value can be 
either positive or negative as expected.

Figure 8.4 shows the MMSE and the detection is to find the minimum 
and (8.27) does not apply. Because of signal and noise mismatch at segments 
25 and 26, the MMSE has a larger value. When the signal matches again 
starting in segment 27, the MMSE does reach a minimum. Since there is 
a peak at segment 26, it cannot be detected as the starting signal segment. 
Another issue is that the minimum is almost indistinguishable for noise, and 
thererfore, confusion can arise.

Example 8.2

In this example, the SNR is set to be 2.8 dB. Figures 8.5 to 8.7 are plots of 
the three metrics against the segment number. For cross-correlation, Figure 
8.5 shows at segment 26, the metric is 0.16 and is greater than the threshold 
0.1. Even with significant noise, the signal is still correctly detected. At seg-
ment 25, the metric is 0.069 and there is no false alarm. Figure 8.6 shows the 
normalized cross-correlation. At segment number 25, the metric is −0.029, 
and at segment number 26, the metric is 0.586. Therefore, the signal is still 
correctly detected at segment 26. Figure 8.7 shows the MMSE. At segment 
number 25, the signal has a peak and drops immediately starting at segment 
26. Again, the miniumum is almost indistinguishable from the noise.

The simulation justifies the maximum likelihood detection strategy. 
Both cross-correlation and normalized cross-correlation work well. However, 
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Figure 8.5 Cross-correlation against the segment number at SNR = 2.8 dB.

Figure 8.6 Normalized cross-correlation against segment number at SNR = 2.8 dB.

Figure 8.7 MMSE against the segment number at SNR = 2.8 dB.
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these are by no means the only methods to detect the signal in noise. Another 
standard method is to estimate the noise level and its standard deviation. For 
signal detection, the signal level must be greater than the noise level by at least 
the noise standard deviation.

For cross-correlation, the threshold parameter u in (8.27) can be set at 
its maximum value. As will become clear later, this value is difficult to set in 
advance. For normalized cross-correlation, it is theoretically set at 1 and is a 
constant. In practice, it can be set at slightly less than 1 in order not to miss 
the sample onset due to interference and others.

8.5.2 Sample Detection

After locating the signal segment, the next step is to locate the starting sample. 
In the segment detection, the index i of the metric mi increases by 16 each 
time. In the sample detection, i has to advance by 1. In other words, only m1, 
m2, m3, and so forth are computed. The question is what should be the value 
of M or the number of samples used for computing the correlation. If M is set 
to the maximum of 16, the correlation can be too large to distinguish between 
noise and signal. This is because too many signal samples are included in the 
computation. This means that M should be set small.

The impact of SNR and M are investigated through the following two 
examples. Again, the SNR is either 37.8 dB or 2.8 dB. Two different M val-
ues are used. One is 16 and the other is 2. Since the MMSE has the worst 
performance, only cross-correlation and normalized cross-correlation are used 
for the simulation study.

Example 8.3

From previous examples, the signal segment is 26. The starting sample is 16 ∗ 
25 = 400 since the first segment is 1. Figure 8.8 is a plot of cross-correlation 
against sample number within segment 26 at SNR = 37.8 dB. The top figure 
uses M = 16 for correlation while the bottom figure uses M = 2 for correlation. 
Since the signal appears somewhere after a certain sample number, the signal 
u can be set at a sample number of 15. The threshold of the top figure is then 
0.5m15 = 0.1. However, the correlation is greater than 0.1 for all the sample 
numbers and it is not clear where the signal starts. In the bottom figure, the 
correlation is much smaller since only 2 samples are used in the correlation. 
The threshold is then 0.5m15 = 0.5 ∗ 0.022 = 0.011. The curve shows the cor-
relation is much less than 0.011 until sample number 8. Since sample number 
8 has a correlation greater than the threshold 0.011, it is correctly identified as 
the signal starting sample. Figure 8.9 is a plot of normalized cross-correlation 
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against a sample number. Since the maximum correlation is 1 and the thresh-
old is 0.5. Again, for M = 16, it is not clear where the signal starts. For M = 2, 
the correlation is greater than 0.5 for sample numbers greater than 8. Again, 
sample number 8 is correctly identified as the signal starting point. It is also 
obvious that the percentage jump at signal onset for the normalized cross-
correlation is much higher than that for the cross-correlation.

Example 8.4

To see the impact of noise, the SNR is set to be 2.8 dB. Figure 8.10 is a plot 
of cross-correlation. The top figure uses M = 16. To estimate the detection 

Figure 8.8 Plot of cross-correlation against the sample number at SNR = 37.8 dB.

Figure 8.9 Normalized cross-correlation against the sample number at SNR = 37.8 dB.
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threshold, the sample value at m15 is used. The threshold is then approximately 
given by m15/2 = 0.24/2 = 0.12. Figure 8.10 shows that the cross-correlation is 
always greater than 0.12 and it is not clear again where the signal starts. The 
bottom figure uses M = 2 and the threshold is approximately set at 0.024. The 
correlation is greater than the threshold at sample 0 and at sample number 
greater than 10. Sample 0 cannot be the signal starting point since future cor-
relations can be smaller than the threshold. Therefore, sample 10 is selected as 
the signal onset and there is an error of 2 samples. Since the threshold has to 
be set before the detection can start, this shows the disadvantage of the cross 
correlation using the maximum likelihood detection strategy.

Figure 8.11 is a plot of normalized cross-correlation. The threshold is 
always 0.5. The top figure is for M = 16 and it is not clear where the signal 

Figure 8.10 Cross-correlation against the sample number at SNR = 2.8 dB.

Figure 8.11 Normalized cross-correlation against the sample number at SNR = 2.8 dB.
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starts. The bottom figure is for M = 2. The correlation is greater than 0.5 at 
sample 1, 5 and all samples greater than 9. Sample 1 and sample 5 cannot be 
the choice since future correlations can drop below 0.5. Therefore, sample 9 
is the choice and there is an error of 1 sample.

8.6 Fine Timing Detection

After the starting signal sample location is roughly detected, the next step is 
to make some potential refinements. Since the preamble is a known signal 
sent from the transmitter, the receiver has a duplicate copy of this signal. For 
the IEEE 802.11a, the preamble consists of two parts. The first part is the 
short sequence, while the second part is the long sequence. Since the short 
sequence is used for coarse signal detection, the long sequence can be used 
for fine signal detection.

Assume that the clean preamble waveform is given by ck where k = 0, 
…, M − 1 and M is the sample size. This clean waveform then starts at k = 0. 
After a coarse timing estimate, assume that yL is aligned with c0. Using the 
normalized cross-correlation as the metric, the following are defined:

 
Ed = ck

2

k=0

k=M−1

∑ + yk+d+L
2

k=0

k=M−1

∑  (8.28a)

 
md(normalized) =

2 Re ck yk+d+L
∗( )

k=0

k=M−1

∑
Ed

 (8.28b)

where the parameter δ  is the sample deviation index from k = 0 of the clean 
preamble waveform. If there is a perfect match, δ  = 0 and the following is true:

 ck = yk+L k = 0,…, M −1  (8.29)

Applying (8.29) to (8.28b), we have

 
E0 = 2 ck

2

k=0

k=M−1

∑  (8.30)

 
m0(normalized) =

2 Re ck yk+L
∗( )

k=0

k=M−1

∑
E0

= 1  (8.31)
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This means the metric has the maximum value of 1 with a perfect match.
After the coarse timing estimate is performed, the value δ  should not be 

too far away from zero. The value δ  can be assumed to have the range from 
−α  to α . In other words, the metric given in (8.26) is computed a total of 2α 
+ 1 times to find the best match. The index δ  that generates the maximum 
metric matches with clean preamble waveform.

Example 8.5

Using the IEEE 802.11a waveform, the long sequence has a total of 160 samples 
at a 20-MHz channel spacing. It starts with 32 guard samples followed by 
the first symbol of 64 samples and the second symbol of 64 samples. At SNR 
= 37.8 dB, the detection of short sequence finds that it starts at sample 408. 
The second long symbol then starts at 408 + 32 + 64 = 504. The parameter L 
is then set to 504. In other words, the received sample index 504 is assumed 
to match with sample index 0 of the clean waveform. At SNR = 2.8 dB, the 
short sequence is detected to start at sample index 409. In this case, sample 
index 505 is assumed to match with sample 0 of the clean waveform.

Figure 8.12 is a plot of the normalized cross-correlation against the sam-
ple deviation index δ . The dark curve is for SNR = 37.8 dB and the gray curve 

Figure 8.12 Normalized cross-correlation with clean waveform against sample 
deviation.
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is for SNR = 2.8 dB. The parameter α  is set to 5 and a total of 11 searches are 
performed. As expected, the maximum for SNR = 37.8 dB is 1 appearing at δ 
= 0. The first OFDM symbol of the long sequence then starts at sample index 
504. At SNR = 2.8 dB, the maximum appears at sample deviation index −1. 
The maximum is not 1 due to the background random noise. Since the value 
δ  = 0 corresponds to the received sample index 505, the first OFDM symbol 
of the long sequence then starts at received sample index 504.

Even though the coarse timing estimate may misalign the starting sample 
by 1 at SNR = 2.8 dB, the fine timing estimate can indeed correct the error 
and again make the correct adjustment.

Example 8.6

Based upon the simulation studies, the normalized cross-correlation has the 
best performance. This metric is then selected for further studies in various 
SNR levels. Figure 8.13 is a plot of the performance of coarse sample detec-
tion in random noise. The vertical axis shows the number of samples deviated 
from the correct signal sample onset. The horizontal axis shows the SNR in 
decibels. For SNR above 3.1 dB, there is no sample detection error and the 
sample error count is 0. For SNR between −2.08 dB and 3.01 dB, there is 
one sample detection error. For SNR between −4.18 dB and −2.18 dB, there 

Figure 8.13 The noise performance of coarse sample detection.
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are two sample detection errors. For SNR below −4.18 dB, the signal segment 
cannot be detected and the signal acquisition fails.

For segment detection, the segment detection error is always zero, as long 
as the SNR is above −4.18 dB. As is mentioned before, no signal segment can 
be detected for SNR below −4.18 dB. Even though there is either a one-sam-
ple or two-sample detection error from the coarse sample detection, the fine 
sample detection can always correct the error. That means there is no sample 
detection error for the fine detection as long as the SNR is above −4.18 dB.

8.7 Summary

The received radio waveform is first processed to remove the carrier. After 
going through a direct conversion, in-phase and quadrature-phase signals 
are obtained. These two signals can then be digitized for further processing.

For OFDM waveform, a periodic preamble signal is normally sent to help 
the receiver for signal detection. This preamble waveform used in the IEEE 
802.11a is a short sequence followed by a long sequence. The short sequence 
has 16 periodic segments and is used for coarse timing detection. The long 
sequence has two periodic segments and can be used for fine timing detection.

For any detection algorithm, the detection metric must be defined. 
Three such metrics were discussed. They are cross-correlation, normalized 
cross-correlation, and MMSE. The cross-correlation and normalized cross-
correlation find the correlation maximum while MMSE finds the correlation 
minimum. A detection algorithm based upon maximum likelihood criterion 
was derived. The simple algorithm shows a signal detected if the metric is 
greater than a threshold. For normalized cross-correlation, this threshold is 
simply set at 0.5 theoretically.

The detection algorithm follows a two-step procedure. The first step 
is coarse timing detection followed by fine timing detection. Since the pre-
amble is periodic, we develop further a two-step approach for fast detection 
of a coarse timing. The first step is the segment detection in which the cor-
relation is advanced by a segment. For the IEEE 802.11a, the short sequence 
has 16 samples in each segment. In other words, the correlation between two 
consecutive segments is 16 samples apart. The idea is to find which segment 
the signal starts. After segment detection, the sample detection in which the 
correlation is performed on a sample basis follows immediately. The idea is to 
locate which sample the signal starts. From the simulation study, it was found 
that the signal sample is difficult to locate if the correlation size is large. It was 
found that the best correlation size is M = 2.
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The three metrics were compared from the simulation study. The MMSE 
metric was found to have the worst performance since the minimum can be 
indistinguishable from noise. The cross-correlation somehow works; however, 
the detection threshold is difficult to set and depends upon the correlation size 
and SNR. The normalized cross-correlation not only has the best performance, 
but is also the easiest metric from the computational point of view. The deci-
sion threshold from the theoretical analysis is simply 0.5 and is independent 
of SNR and correlation size.

After the coarse detection is completed, the fine detection follows. The 
fine detection computes the correlation between a clean preamble and that 
from the received waveform. Since the transmitted preamble is known to 
the receiver, this known waveform can be stored in the receiver for the fine 
detection. After the fine detection, the signal sample onset can be accurately 
determined. Since normalized correlation has the best performance, it is only 
used for the simulation study. Based upon the simulation in the examples, the 
coarse detection could accurately locate the signal sample at SNR = 37.8 dB, 
but with one sample error at SNR = 2.8 dB. However, the fine detection can 
accurately correct the error.

Lastly, the signal detection performance in random noise was investi-
gated. As long as the SNR is above −4.18 dB, there is no sample detection error 
after the fine sample detection. For SNR below −4.18 dB, no signal segment 
can be located and the detection fails.

The next chapter centers on synchronization issues in the receiver. The 
topics covered include DC offset, carrier frequency offset, frame timing offset, 
sampling clock offset, and IQ imbalance.
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9
Synchronization

9.1 Introduction

The received OFDM signal normally suffers two types of degradations. The 
first is due to the propagation effects from the channel and is unavoidable. The 
second is due to the imperfect front-end electronics that can cause frequency 
and phase mismatches between the transmitter and the receiver. Since the 
circuit parts can never completely match, some compensation schemes must 
be taken to minimize its impact. The synchronization deals with both issues.

Regarding the channel effect, the received OFDM signal may suffer 
Doppler spread. It can be caused by relative motion between the transmit-
ter and the receiver. The received carrier frequency is then different from the 
transmitted frequency by the Doppler shift. The second is due to the channel 
variations that cause frequency dispersion or time-selective fading. The fad-
ing can be fast if the coherence time is less than the signal duration. Another 
distortion that the OFDM transmission suffers is frequency-selective fading. 
This is because signals with different delays are often received due to reflec-
tions from the ground or obstacles. This delay spread can be longer than the 
OFDM guard interval or the channel coherence bandwidth can be shorter 
than the signal bandwidth to cause serious signal distortions.

Regarding the imperfect circuit parts, the local receiver clock can run 
slightly differently in comparison with the transmitter clock. This can cause 

6899_Book.indb   153 10/22/19   4:55 PM



154 Introduction to OFDM Receiver Design and Simulation

some problems. Because of the different clocks, the local oscillator (LO) can-
not generate the same carrier frequency and phase as the received signal. First, 
it causes the carrier frequency offset (CFO). Second, it causes IQ imbalance 
because the two LOs used to recover the in-phase and quadrature-phase 
components of the received signal run at a different frequency and phase. The 
received signals can also be sampled at different time instants in comparison 
with the transmitter to cause misalignments of the frame boundary. Another 
issue is the DC bias caused by the leakage current from the LO to the front-
end linear amplifier.

All these synchronization issues including DC offset, CFO, sampling 
clock offset (SCO), sampling time offset, and IQ imbalance are analyzed in 
detail in this chapter. The parameters associated with each synchronization 
issue are estimated. A number of examples from computer simulations are 
also given to show the accuracy of the estimate.

9.2 DC Offset

After passing through the RF front end, the digitized baseband signals fre-
quently have a DC component. The DC signal is not random and can be 
wrongly detected as the transmitted signal, thereby causing a false alarm. 
Therefore, it is important to remove the DC bias before further processing.

In an OFDM receiver, direct conversion of the RF band signals to base-
band is frequently used. However, one of the drawbacks is DC bias. In this 
section, the DC bias is analyzed and the compensation scheme is also presented.

9.2.1 Algorithm Analysis

In a direct-conversion receiver, the converted IQ signal may have a DC offset. 
This phenomenon is depicted in Figure 9.1 [1, 2]. The received signal passes 
through a linear amplifier (LNA) and mixes with an LO. The output from 

Figure 9.1 LO leakage.
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the mixer is lowpass filtered and subsequently digitized using an analog-to-
digital converter.

If the isolation between the LO and the mixer input or LNA input is not 
perfect, a leakage path may exist from LO to A (LNA input) or from LO to 
B (mixer input). The leakage then mixes with LO again to generate the DC 
offset. Assume that the LO signal is cos(2π fct) and the leakage is α  cos(2π fct). 
The mixing then produces the following:

 

cos 2pfct( ) acos 2pfct( )( ) = α cos2 2pfct( )
= a

2
+ a

2
cos 4pfct( )

 (9.1)

The first term of (9.1) is the DC offset.
Besides the leakage to the LNA or mixer input, the leakage can also go 

to the antenna. The leakage radiated from the antenna can be reflected from 
the surrounding obstacles and received again by the antenna. The received 
reflection then mixes with the LO to generate the DC offset.

For OFDM, the data demodulation is done in the frequency domain. The 
DC offset only generates an extra zero frequency term in the frequency domain. 
Therefore, as long as the signal detection can still find the correct signal onset 
location, the DC offset cannot affect the accuracy of data demodulation.

On signal detection, the DC offset should have minimal impact on the 
MMSE metric. Assume that the DC offset is the constant c. Then the MMSE 
metric becomes

 

mi = zi+k + c( )− zi+k+M    + c( ) 2

k=0

k=M−1

∑

= zi+k − zi+k+M
2

k=0

k=M−1

∑
 (9.2)

The DC offset term is cancelled out and the metric is unchanged.
Using the metric of normalized cross correlation for signal detection, the 

impact can be significant. With the addition of a DC offset, the noise correla-
tion between adjacent segments becomes highly correlated. The background 
noise can be mistakenly detected to be the signal to cause false alarm. From 
(8.17) to (8.19), we have the following by considering the case without any 
input signal

 
y j = n j + d  (9.3)
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where d is the DC offset. The correlation between two segments of M samples 
apart becomes

Ri = 2 Re yi+k yi+k+M
∗( )

k=0

k=M−1

∑

= 2 Re ni+k + d( ) ni+k+M
∗ + d( )

k=0

k=M−1

∑

= 2 Re ni+kni+k+M
*( )

k=0

k=M−1

∑ + 2d Re ni+k + ni+k+M
*( )

k=0

k=M−1

∑ + 2 d2

k=0

k=M−1

∑

 (9.4)

Since the noise average is zero and there is no correlation between two 
different noise segments, the first and second terms of (9.4) are both zero. We 
then have the following:

 Ri = 2Md2  (9.5)

Similarly, the energy from (8.17) can be shown as given here:

 

Ei = yi+k
2

k=0

k=M−1

∑ + yi+k+M
2

k=0

k=M−1

∑
= 2Md2 + 2 EN

 (9.6)

where EN is the noise energy and is defined here:

 
EN = nk

2

k=0

k=M−1

∑  (9.7)

The normalized correlation metric then becomes

 
mi =

Ri
Ei

= Md2

Md2 + EN
 (9.8)

If the background noise energy is very small, then mi is close to 1. Under 
this condition, the noise will be wrongly detected to be the received signal.

To avoid this problem, the DC bias needs to be removed. In the analog 
domain, the AC coupling can be used [2]. In the digital domain, one way is 
to estimate the DC bias and to remove it. However, the estimation can be 
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difficult if there are other channel related degradations such as multipath 
and fading. The easiest way is to pass the received signal through a highpass 
filter to remove the DC bias. The FIR filter has the advantage of linear phase. 
Assume that this filter has length N and coefficients, hk, k = 0, …, N − 1. The 
filter output zk due to an input yk is then given here:

 
zn = hk yn−k

k=0

N−1

∑  (9.9)

9.2.2 Simulation Examples

The preamble waveform from the IEEE 802.11a was used for the study. At 20 
MHz, the short sequence has 10 segments of 160 samples and each segment 
has 16 samples. The long sequence has also 160 samples, which start with 2 
guard intervals of 32 samples and are followed by two OFDM symbols of 
128 samples. There are no channel degradations and other synchronization 
issues. However, background noise is mixed with the preamble waveform to 
the generated SNR at 37.8 dB and 2.8 dB. The coarse detection is done using 
the short sequence while the fine detection is done using the long sequence. 
As expected, the noise was detected as the received signal without using a 
highpass filter. In Example 9.1, the advantage of using a highpass filter to filter 
out the DC bias is illustrated.

Example 9.1

To design a highpass filter, the frequency sampling design was used [3]. This 
filter has 65 coefficients with h0 = 0.984615 while h1 to h64 all have the same 
value of −0.015385. The frequency response is shown in Figure 9.2 against 
the frequency index. A frequency index of 65 corresponds to 2π . Clearly, the 
frequency response is 0 at DC and 1 at all the other frequency indexes.

The computation of the output response can be simplified by utilizing 
the fact that all filter coefficients are the same except h0. Assuming that hk = 
hc, k = 1, …, N − 1, yk is the input, and zk is the output, we have

 

zn = hk yn−k
k=0

k=N−1

∑
= h0 yn + yn−1 +!+ yn−N+2 + yn−N+1( )hc

 (9.10)

Similarly, we have the following for zn+1:
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zn+1 = h0 yn+1 + yn + yn−1 +…+ yn−N+2( )hc

= h0 yn+1 + ynhc − yn−N+1hc + yn−1 +…+ yn−N+2 + yn−N+1( )hc

= zn − h0 yn + h0 yn+1 + ynhc − yn−N+1hc

= zn + h0 yn+1 − yn( )+ hc yn − yn−N+1( )

 (9.11)

Instead of having N additions and multiplications, (9.11) only has 4 
additions and 2 multiplications.

Assuming that the ith preamble signal is yi, the ith random noise sample 
is ni, and the DC offset is di, then the output signal zi becomes

 zi = yi + ni + di  (9.12)

where the random noise has zero mean. The DC offset is assumed to be a 
constant and has the following form:

 di = c + jc  (9.13)

where c is a constant. At SNR = 37.8 dB and 2.8 dB, the DC offset d ranging 
from 0 to 0.059 is used. The short sequence has an average amplitude of 0.112, 

Figure 9.2 Highpass filter frequency response.
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which is the square root of the average short sequence energy. It is assumed 
that the addition of a DC offset does not saturate the power amplifier. The 
average DC offset amplitude is then 2c. Tables 9.1 and 9.2 list the results at 
SNR = 37.8 dB and 2.8 dB, respectively. The SNR is computed without add-
ing DC bias. In both tables, the DC offset percentage is the ratio of DC offset 
amplitude against the average short sequence amplitude. The coarse detection 
deviation is the number of the sample difference between the coarse detected 
sample and the actual sample onset. A plus sign means the detected position 
is larger than the true position, while a minus sign means the contrary. The 
fine detection deviation is the deviation due to the fine detection.

Both Tables 9.1 and 9.2 show that the DC bias has minimum impact 
on the signal detection after highpass filtering.

Table 9.1 
Deviation of Coarse and Fine Detection at SNR = 37.8 dB

Average 
Clean Short 
Sequence 
Amplitude

DC Offset 
Amplitude

DC Offset 
Percentage

Coarse 
Detection 
Sample 
Deviation

Fine Detection 
Sample 
Deviation

0.112 0.000 0% 0 0

0.112 0.020 17.9% 0 0

0.112 0.04 35.7% 0 0

0.112 0.059 52.7% 0 0

Table 9.2 
Deviation of Coarse and Fine Detection at SNR = 2.8 dB

Average 
Clean Short 
Sequence 
Amplitude

DC Offset 
Amplitude

DC Offset 
Percentage

Coarse 
Detection 
Sample 
Deviation

Fine  
Detection 
Sample 
Deviation

0.112 0.000 0% 0 0

0.112 0.020 17.9% 0 0

0.112 0.040 35.7% 0 0

0.112 0.059 52.7% 0 0
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9.3 CFO

In the front end of the OFDM receiver, the received carrier frequency may 
be different from the transmitted carrier frequency. This happens because of 
the relative motion between the transmitter and the receiver. The net result is 
a Doppler shift and was discussed in Chapter 6.

Besides the Doppler shift, there are also interferences from the neighbor 
subcarriers. Equation (3.14) and Figure 3.1 show such an effect. It is clear 
from Figure 3.1 that interferences exist in the region between peak subcar-
riers. However, at the peak subcarrier frequency, there are no interferences 
from the rest of subcarriers.

This frequency offset due to Doppler shift can degrade system perfor-
mance and must be removed. The acquisition signal in OFDM normally has 
a repetitive structure that can be used to find the frequency offset. In this 
section, the estimate of frequency offset due to Doppler shift is discussed.

9.3.1 Algorithm Analysis

There are two possibilities to generate the CFO. One is the Doppler shift 
caused by the relative motion between the transmitter and the receiver. This 
happens even if there is a perfect match between the transmitter and receiver 
frequency. The other is that the LO frequency of the receiver may deviate from 
the transmitted carrier frequency.

Assuming that the frequency deviation is given by fδ, the received carrier 
frequency is then fc + fδ. The received signal r(t) given in (8.9) then becomes

 

r(t) = Re y(t)e j2p( fc + fd )t( )
= Re z(t)e j2pfct( )

 (9.14)

where z(t) is given by

 z(t) = y(t)e j2pfdt  (9.15)

The baseband signal that is actually received is then z(t).
Assuming that the sampling frequency is fs and the FFT size is N, the 

subcarrier frequency spacing is then

 
Δ f =

f s
N

 (9.16)
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Assuming also that the ratio of fδ against ∆f is ò, the following then results:

 
ε =

Nfd
f s

 (9.17)

After analog-to-digital conversion, the nth sample of z(t) then becomes

 zn = yne j2pεn/N  (9.18)

As shown in Section 1.8.3 of Chapter 1, a multiplication by a phase 
term in the time domain is equivalent to a frequency shift in the frequency 
domain. We have the following:

 Zk = Yk−ε  (9.19)

where Zk is the discrete Fourier transform of zn and Yk is the discrete Fourier 
transform of yn.

To estimate ò, the repetitive structure of the preamble can be utilized. 
The frame size M of the preamble can be set to the FFT size N. Since the 
period is then N, the following is true:

 yn+N = yn n = 0,…, N −1  (9.20)

Setting n to n + N in (9.18), we have

 

zn+N = yn+N e j2pε(n+N )/N

= yne j2pεn/N e j2pε

= zne j2pε

 (9.21)

where we have used (9.18) and (9.20). Both zn+N and zn are the known received 
samples. Therefore, the CFO ò can be estimated based upon (9.21).

The estimate can be inaccurate in noise if just one sample is used. A 
better way is to form a cross-correlation between two consecutive segments. 
We then have the following:

 

zn
∗zn+N

n=0

n=N−1

∑ = zn
∗zne j2pε

n=0

n=N−1

∑

= zn
2

n=0

n=N−1

∑⎛
⎝⎜

⎞
⎠⎟

e j2pε

 (9.22)
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From (9.22), the CFO ò is estimated as follows [1, 4]:

 
ε = 1

2p! zn
∗zn+Nn=0

n=N−1∑( ) where !(z) = tan−1 Im(z)
Re(z)

⎛
⎝⎜

⎞
⎠⎟

 (9.23)

In (9.23), we have assumed that the beginning sample index is 0. Also, 
(9.23) can be used only if the frequency offset is less than the subcarrier spacing.

In (9.23), ò is estimated using just one segment of the preamble. Using a 
concept similar to BLUE [5], a better estimate can be obtained using several 
such segments. For the mth and lth segment, we have from (9.18) the following:

 zn+mN = yn+mN e j2pε(n+mN )/N n = 0,…, N −1  (9.24)

 zn+lN = yn+lN e j2pε(n+lN )/N n = 0,…, N −1  (9.25)

Because of the repetitive structure, the following is true:

 yn+lN = yn+mN n = 0,…, N −1  (9.26)

Using (9.26), (9.25) can then be further simplified as follows:

 

zn+lN = yn+mN e j2pε(n+mN )/N⎡⎣ ⎤⎦e j2pε(l−m)N /N

= zn+mN e j2pε(l−m) n = 0,…, N −1
 (9.27)

Performing the cross-correlation between the lth and mth segment, 
we have

 
zn+mN

* zn+lN
n=0

n=N−1

∑ = zn+mN
2

n=0

n=N−1

∑⎡

⎣
⎢

⎤

⎦
⎥e j2pε(l−m)  (9.28)

where we have used (9.27). From (9.28), the frequency offset φ  is estimated 
as follows:

 
j(m,l) = 1

2p(l − m)
! zn+mN

∗ zn+lNn=0

n=N−1∑( )  
(9.29)
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To reduce the number of computations, any two consecutive segments 
are used for averaging. In this casem l = m + 1 and we have

 
j(m,m +1) = 1

2p! zn+mN
∗ zn+(m+1)Nn=0

n=N−1∑( )  
(9.30)

Assuming that there are L segments, the estimate of ò then becomes 
the following:

 
ε = 1

L −1
j(m,m +1)

m=0

L−2

∑  (9.31)

9.3.2 Simulation Examples

The simulation has been performed to understand the effect of SNR on the 
accuracy of the frequency offset estimate. Except for random noise, CFO, 
and DC offset, it is assumed that there are no other channel degradations and 
synchronization issues in the following examples. Both the short sequence and 
the long sequence from the IEEE 802.11a are used for simulation at 20-MHz 
channel spacing.

Example 9.2

In this example, the effect of SNR on the accuracy of the estimate of frequency 
offset is investigated. No DC offset is added; however, three different SNR 
levels at 37.8 dB, 7.8 dB, and 2.8 dB are used for simulation. From (9.17), 
the frequency offset is normalized to the subcarrier spacing and is set to 0.1. 
The short sequence is used for simulation and each segment has 16 samples. 
Equation (9.31) is used for averaging and L = 9. Only coarse detection is 
applied and there is no fine detection. Figure 9.3 is a plot of ò against m in 
(9.30). At SNR = 37.8 dB, the estimate is almost flat at ò = 0.1. As the noise 
level increases, the estimate also fluctuates. The fluctuation is much higher as 
SNR decreases from 7.8 dB to 2.8 dB. At SNR = 37.8 dB and 7.8 dB, there 
is no sample misalignment. At SNR = 2.8 dB, there is one sample misalign-
ment. Therefore, at SNR = 2.8 dB, there are two factors contributing to the 
estimate inaccuracy. One is the noise and the other is the sample misalign-
ment. Even though the individual estimate for a segment may be inaccurate 
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Figure 9.3 Effect of SNR on the coarse frequency offset estimate.

Table 9.3 
Effect of Averaging on the Frequency Offset Estimate

SNR = 37.8 dB SNR = 7.8 dB SNR = 2.8 dB

Average ò 0.10005 0.10089 0.1022

as SNR drops, the average can have significant improvement. After averaging 
by using (9.31), Table 9.3 shows the results.

It is clear from Table 9.3 that averaging does improve the estimate. Even 
at SNR = 2.8 dB, the estimate is close.

Example 9.3

This example is a continuation of the previous example using the short 
sequence. In this example, the impact of detection accuracy on the estimate 
of ò is investigated. Figure 9.4 shows the plot of ò against m at SNR = 2.8 
dB. The gray curve uses coarse detection only, while the dark curve follows 
the coarse detection with another fine detection. After fine detection, it is 
found that there is no sample misalignment. In other words, the only factor 
contributing to the estimate inaccuracy is random noise after fine detection. 
Even though the individual estimate may still show a large swing, the aver-
age estimate improves from ò = 0.1022 using coarse detection to ò = 0.1008 
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after fine detection. The estimate after fine detection is also the fine estimate 
of frequency offset.

Example 9.4

In the previous examples, the estimate is done using the short sequence. How-
ever, the long sequence can also be used for the fine estimate of frequency 
offset. Fine detection using the long sequence can still be performed after the 
coarse detection using the short sequence. Immediately after fine detection, 
the fine estimate of ò is continued. Table 9.4 shows the results.

In Table 9.4, the ò deviation percentage is the computation of the estimate 
deviation from the true value and is computed as (ò − 0.1)/0.1. Quite clearly, 
the short sequence is a better choice. This is because the short sequence has 
10 segments, while the long sequence has only two segments, even though 

Figure 9.4 Effect of detection accuracy on the frequency offset estimate.

Table 9.4 
Comparison of ò Estimate Using Short and Long Sequence

ò (SNR =  
37.8 dB)

ò (SNR =  
7.8 dB)

ò Deviation  
Percentage  
(SNR = 37.8 dB) 

ò Deviation 
Percentage  
(SNR = 7.8 dB)

Long 0.0998 0.0941 −0.20% −5.90%

Short 0.100052 0.10089 0.05% 0.89%
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the segment size of the long sequence (64 samples) is larger than that of the 
short sequence (16 samples).

Example 9.5

In this example, a range of the SNR values are scanned to find the effect of 
frequency offset on the detection accuracy. The SNR ranges from −3.1 dB 
to 37.8 dB and the frequency offset ò is set at 0.1. Only the short sequence is 
used for both the coarse detection and fine detection. Figure 9.5 is a plot of ò 
against the SNR under these two conditions. For the coarse detection, there is 
no sample error for the SNR above 5.8 dB, 1 sample error for the SNR from 
1.81 dB to 4.8 dB, 5 sample errors for the SNR from −1.18 dB to 0.8 dB, and 
6 sample errors for the SNR at −2.18 dB. In other words, for the SNR above 
5.8 dB, only noise affects the estimation accuracy of ò. However, for the SNR 
below 4.8 dB, both the SNR and detection have the impacts. The sudden 
transition on the curve is due to the change on the number of sample errors.

The fine detection follows immediately after the coarse detection. After 
the fine detection, there is no sample detection error for the SNR above −1.18 
dB. However, there is only one sample error for the SNR at −2.18 dB and that 
is why the curve has a sudden transition. For the SNR above −1.18 dB, only 
noise affects the estimation accuracy of ò.

Figure 9.5 Effect of both SNR and detection accuracy on the frequency offset 
estimate.
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Example 9.6

In the previous examples, no DC bias is applied in the simulation. Since DC 
bias can also be considered as a periodic function, its presence can definitely 
affect the accuracy in estimating the frequency offset. To numerically show 
the impact of the DC bias, Figure 9.6 is the plot of two curves using the short 
sequence. The top curve is the true frequency offset and is the same for all of 
the DC bias. The bottom curve shows the estimate of the frequency offset. 
The SNR and frequency offset ò are set at 37.8 dB and 0.1, respectively. As the 

Figure 9.6 Effect of DC bias on the frequency offset estimate.

Table 9.5 
The Frequency Offset Estimate After Highpass Filtering

DC Offset Percentage SNR = 37.8 dB SNR = 2.8 dB

0 0.1001 0.1007

17.7% 0.1001 0.1007

35.3% 0.1001 0.1007

53% 0.1001 0.1007
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DC offset percentage increases, the estimate accuracy also drops. This example 
indicates DC bias has to be removed in order to estimate the frequency offset.

Example 9.7

This example is a continuation of Example 9.6. The goal is to find the impact 
of applying highpass filtering. The result is shown in Table 9.5.

Quite clearly, the frequency offset can be correctly determined after 
highpass filtering to remove the DC offset. Since the DC offset is completely 
removed, it has no impact on the estimate accuracy.

9.4 Frame Timing Offset

The frame boundary of the received OFDM symbol can be different from its 
true location. Figure 9.7 is a timing diagram showing this situation. Between 
two consecutive OFDM symbols, a cyclic prefix is inserted. The OFDM sym-
bol has N samples while the cyclic prefix has Ng samples. Assuming that the 
duration of the channel response lasts L samples, then D = Ng − L.

Figure 9.7 also shows two windows of an OFDM symbol. One window 
is correctly aligned, while the other window is misaligned by δ  samples. As 
long as δ  is less than D, there is no ISI [6]. The effect is just a time delay of 
the received waveform. Since the delay is given by δ samples, the received 
preamble signal, zn, can be written as

 zn = yn−d  (9.32)

Taking the discrete Fourier transform on both sides of (9.32) or from 
(1.47), we have

Figure 9.7 Timing diagram of frame synchronization.
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 Zk = Yke− j2pkd/N  (9.33)

where Zk and Yk are discrete Fourier transforms of zn and yn, respectively. 
Therefore, the impact of symbol timing error is equivalent to a phase shift in 
the frequency domain. However, if δ  is within L, the ISI occurs. In this case, 
the received preamble suffers amplitude attenuation in addition to a phase 
shift [6].

Looking at this from a different angle, the timing delay can also be con-
sidered as the channel response from the multipath effect. It can be removed 
by first estimating the channel response. This channel equalization technique 
will be discussed in the next chapter.

9.5 SCO

Besides CFO and frame timing offset, the receiver may also suffer from SCO. 
This is because the receiver clock and the transmitter clock may not be aligned. 
This translates to a slightly different sampling period between the transmitter 
and the receiver. Assume that the transmitter sampling period is T, the receiver 
sampling period is T′, and the deviation ratio is δ . Then T and T′ are related 
by the following equation

 T ′ = T + dT = T (1+ d)  (9.34)

Suppose δ  is 100 PPM or 10−4; then there is one sample misalignment 
after 10,000 sampling periods. If the sampling clock is 20 MHz, one sample 
is misaligned after 0.5 ms. This shows that the SCO can be significant in the 
receiver performance.

9.5.1 Algorithm Development

Let ynand Yk represent the time domain and the corresponding frequency 
domain samples, respectively. Assuming no CFO, they are related by the fol-
lowing FFT for the lth symbol [7, 8]:

 
yn = 1

N
Yke j2pk[tn−( N g +lN s )T ]/NT

k=0

k=N−1

∑  (9.35)
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where Ng is the number of guard samples and Ns is given here:

 
N s = N g + N  (9.36)

Figure 9.8 shows the relationship between the frames and samples. The 
time tn is the time of the nth sample in the lth frame. If there is no SCO, tn 
can be written as

 
tn = N g + lN s + n( )T  (9.37)

Substituting (9.37) into (9.35), the following familiar inverse FFT equa-
tion results:

 
yn = 1

N
⎛
⎝⎜

⎞
⎠⎟ Yke j2pkn/N

k=0

k=N−1

∑  (9.38)

If there is a CFO of ò, it results in a shift of the frequency index k and 
(9.35) becomes

 
zn ,l = e

j2pεtn
NT 1

N
⎛
⎝⎜

⎞
⎠⎟ Yk ,l e

j2pk[tn−( N g +lN s )T ]/NT

k=0

k=N−1

∑  (9.39)

In (9.39), we replaced yn with zn,l and Yk with Yk,l to show the spectral 
response due to the lth symbol. In the receiver, the sampling clock has a period 
of T ′ and (9.37) becomes

 
tn = N g + lN s + n( )(1+ d)T  (9.40)

Figure 9.8 Frame and sample relationship.
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Substituting (9.40) into (9.39), we have

 
zn ,l = e

j2pε N g +lN s+n( )(1+d)

N 1
N

⎛
⎝⎜

⎞
⎠⎟ Yk ,l e

j2pk[d( N g +lN s )+n(1+d)]/N

k=0

k=N−1

∑  (9.41)

Taking the FFT of zn,l generates the frequency response of Zk,l

 
Zk ,l = zn ,l e

− j2pkn/N

n=0

n=N−1

∑  (9.42)

Substituting (9.41) into (9.42),

 

Zk ,l =
1
N

Yq ,l e
[ j2pε( N g +lN s )(1+d)]/N e j2pq( N g +lN s )d/N

q=0

q=N−1

∑

e[ j2pn q−k+qd+(1+d)ε( )]/N

n=0

n=N−1

∑
 (9.43)

Equation (9.43) can be rewritten in the following form:

Zk ,l=
1
N

Yk ,l e
[ j2pε( N g +lN s )(1+d)]/N e[ j2pk( N g +lN s )d]/N e[ j2pn kd+(1+d)ε( )]/N

n=0

n=N−1

∑ + ICI
 

 (9.44)

where intercarrier interference (ICI) is given by

 

ICI = 1
N

Yq ,l e
[ j2pε( N g +lN s )(1+d)]/N e[ j2pq( N g +lN s )d]/N

q=0,q≠k

q=N−1

∑

e[ j2pn q−k+qd+(1+d)ε( )]/N

n=0

n=N−1

∑
 (9.45)

The phase term inside the summation of (9.44) is very small and the 
following approximation is made:

 e j2pn kd+(1+d)ε( )/N ≈ 1  (9.46)

Substituting (9.46) into (9.44) and neglecting ICI, we have
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Zk ,l = Yk ,l e

[ j2pε( N g +lN s )(1+d)]/N e[ j2pk( N g +lN s )d]/N  (9.47)

Assume the phase of Zk,l is θ  and the phase of Yk,l is φ , the following 
is then obtained:

qk ,l = jk ,l +
1
N

⎛
⎝⎜

⎞
⎠⎟ 2pε N g + lN s( )(1+ d)+ 1

N
⎛
⎝⎜

⎞
⎠⎟ 2pk N g + lN s( )d  (9.48)

For the symbol l + 1, (9.48) then becomes

 

qk ,l+1 = jk ,l+1 +
1
N

⎛
⎝⎜

⎞
⎠⎟ 2pε N g + lN s + N s( )(1+ d)

+ 1
N

⎛
⎝⎜

⎞
⎠⎟ 2pk N g + lN s + N s( )d

 (9.49)

Subtracting (9.48) from (9.49), we have

 
qk ,l+1 − qk ,l = jk ,l+1 − jk ,l +

2pεN s (1+ d)
N

+
2pkdN s

N
 (9.50)

Since the product of ò and δ  is small, (9.50) can be further simplified to be

 
qk ,l+1 − qk ,l = jk ,l+1 − jk ,l +

2pεN s
N

+
2pkdN s

N
 (9.51)

The phase difference between two consecutive symbols can be given 
as below:

 
Δqk = qk,l+1 − qk,l  (9.52)

 
Δjk = jk ,l+1 − jk ,l

 (9.53)

Using (9.52) and (9.53), (9.51) then becomes

 
Δqk = Δjk +

2pεN s
N

+
2pkdN s

N
 (9.54)
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For the CFO, the phase shift is the same for all of the subcarriers. 
However, for SCO, the phase increases linearly with respect to the subcarrier 
frequency index.

9.5.2 Lease Square Estimation in the Tracking Mode

The OFDM symbols are transmitted during the tracking mode. Usually in 
the frequency domain, there are a set of pilot subcarriers. The phases of these 
pilot subcarriers are known. At a given frequency index, two consecutive 
symbols may not have the same phase. For the IEEE 802.11a, each OFDM 
symbol has four pilot subcarriers at frequency indexes of −21, −7, 7, and 21. 
Table 9.6 shows the phases of these four pilot subcarriers in the first five data 
symbols. From symbol 3 to symbol 4, there is a sign change. This means ∆φ k 
is not necessarily 0, but it is a known quantity. Moving ∆φ k to the left in 
(9.54), we have

 
Δ∅k =

2pεN s
N

+
2pkdN s

N
 (9.55)

where ∆∅k is defined here:

 Δ∅k = Δqk − Δjk  (9.56)

Before trying to solve (9.55), it is rewritten as here:

 
vk=

N
2pN s

Δ∅k = dk + ε  (9.57)

Since pilot locations are not continuous, let kj ( j = 1, M) represent the 
pilot locations. For the IEEE 802.11a, kj takes the four possible values −21, 

Table 9.6 
Pilot Phases of the First 5 OFDM Symbols from IEEE 802.11a

Symbol Number k = −21 k = −7 k = 7 k = 21

1 1 1 1 −1

2 1 1 1 −1

3 1 1 1 −1

4 −1 −1 −1 1

5 −1 −1 −1 1
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−7, 7, and 21. Equation (9.57) has only two unknowns, but M data points 
and it can be solved using the method of least squares.

For each data point, the error is given here:

 
e j = vk j

− dk j − ε j = 1, M  (9.58)

Summing up the square of all errors, we have

 
E = e j

2

j=1

M

∑ = vk j
− dk j − ε( )2

j=1

M

∑  (9.59)

To find the minimum E, the two derivatives of E against ò and δ  are 
set to 0. We then have

 
Mε + k j

j=1

M

∑
⎛

⎝
⎜

⎞

⎠
⎟ d = vk j

j=1

M

∑  (9.60)

 
k j

j=1

M

∑
⎛

⎝
⎜

⎞

⎠
⎟ ε + k j

2

j=1

M

∑
⎛

⎝
⎜

⎞

⎠
⎟ d = vk j

k j
j=1

M

∑  (9.61)

Equations (9.60) and (9.61) have two unknowns and can be solved to give

 
ε =

vk jj=1

M∑( ) k j
2

j=1

M∑( )− k jj=1

M∑( ) vk j
k jj=1

M∑( )
J

 (9.62)

 
d =

M vk j
k jj=1

M∑( )− vk jj=1

M∑( ) k jj=1

M∑( )
J

 (9.63)

where J is given by

 
J = M k j

2

j=1

M

∑
⎛

⎝
⎜

⎞

⎠
⎟ − k j

j=1

M

∑
⎛

⎝
⎜

⎞

⎠
⎟

2

 (9.64)

Substituting vkj
 = (N/2πNs)Δ∅kj

 into (9.62) and (9.63), we have
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ε = N

2pN s

⎛
⎝⎜

⎞
⎠⎟

Δ∅k jj=1

M∑( ) k j
2

j=1

M∑( )− k jj=1

M∑( ) Δ∅k j
k jj=1

M∑( )
J

 (9.65)

 
d = N

2pN s

⎛
⎝⎜

⎞
⎠⎟

M Δ∅k j
k jj=1

M∑( )− Δ∅k jj=1

M∑( ) k jj=1

M∑( )
J

 (9.66)

The definition of Ns and Δ∅kj
 are rewritten here for quick reference

 
Δ∅k j

= Δqk j
− Δjk j

j = 1, M  (9.67)

 
N s = N g + N  (9.68)

Equations from (9.65) to (9.66) are then joint estimations of both CFO 
and SCO in the tracking mode using the received data symbols.

9.5.3 Estimation in the Acquisition Mode

Previously, pilot subcarriers in the received data symbols were used to derive 
a joint estimate of the CFO and SCO. Similar formulas can also be used for 
their estimates in the acquisition mode. In the acquisition mode, the repeti-
tive acquisition sequence can be used.

Assume that there are L such repetitive segments. For the short sequence 
in the IEEE 802.11a, there are L = 10 segments and each segment has 16 
samples. Each segment repeats itself and can be considered similar to one 
OFDM symbol. There are two major differences. The first is that there is no 
guard interval and the second is a different signal transmission format.

Equations (9.65) and (9.66) can still be used with two modifications. 
The first is Ng = 0 and Ns = N. For the IEEE 802.11a, each segment has M 
= 12 subcarriers and each subcarrier can be considered as pilot subcarriers. 
Since the segment repeats, two consecutive segments have the same phases at 
each subcarrier. Therefore, the second modification is ∆φ k = 0. Incorporating 
these two modifications, the following equations result:

  
ε = 1

2p
⎛
⎝⎜

⎞
⎠⎟

Δ∅k jj=1

M∑( ) k j
2

j=1

M∑( )− k jj=1

M∑( ) Δ∅k j
k jj=1

M∑( )
J

 (9.69)

6899_Book.indb   175 10/22/19   4:55 PM



176 Introduction to OFDM Receiver Design and Simulation

 
d = 1

2p
⎛
⎝⎜

⎞
⎠⎟

M ∆∅k j
k jj=1

M∑( )− Δ∅k jj=1

M∑( ) k jj=1

M∑( )
J

 (9.70)

 
Δ∅k j

= Δqk j
j = 1, M  (9.71)

 N s = N  (9.72)

 
J = M k j

2

j=1

M

∑
⎛

⎝
⎜

⎞

⎠
⎟ − k j

j=1

M

∑
⎛

⎝
⎜

⎞

⎠
⎟

2

 (9.73)

As we have shown previously, the CFO can be estimated independently. 
Assuming that the CFO is known already, then we have from (9.57):

 
1

2p Δqk j
− ε = dk j  (9.74)

Summing across all subcarriers, (9.74) becomes

 
d k j

j=1

M

∑
⎛

⎝
⎜

⎞

⎠
⎟ =

1
2p Δqk j

j=1

M

∑
⎛

⎝
⎜

⎞

⎠
⎟ − Mε  (9.75)

Solving for δ  in (9.75), we obtain

 

d =

1
2p Δqk jj=1

M∑( )− Mε

k jj=1

M∑( )  (9.76)

For the long sequence used in the IEEE 802.11a, there are two consecu-
tive symbols with no guard intervals in between. These two symbols are identi-
cal to each other. Therefore, the same equations applied to the short sequence 
are also valid. The only differences are the parameter values, which are L and 
M. The parameter L is 2 because there are only two symbols. The number of 
subcarriers in each symbol including DC is 53. Excluding DC, then M = 52.
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9.5.4 Estimation Under Special Conditions

More insight to the estimation can be obtained under two special conditions. 
The first is when there is no SCO and the second is when there is no CFO. 
Under both cases, the estimation is significantly simplified.

Assume that first there is no SCO and δ  = 0. Setting δ  = 0 in (9.66), 
we have

 
Δ∅k j

k j
j=1

M

∑
⎛

⎝
⎜

⎞

⎠
⎟ =

Δ∅k jj=1

M∑( ) k jj=1

M∑( )
M  (9.77)

Substituting (9.77) into (9.65), the CFO becomes

 
ε =

N
2pN s

⎛
⎝⎜

⎞
⎠⎟

  Δ∅k jj=1

M∑( )
M

 (9.78)

 
Δ∅k j

= Δqk j
− Δjk j

j = 1,…, M  (9.79)

 
N s = N g + N  (9.80)

Equation (9.78) is the frequency-domain estimate of CFO in the track-
ing mode. At any given subcarrier pilot index kj, it depends upon the phase 
difference between two consecutive OFDM symbols. It does not depend upon 
a particular subcarrier pilot index. The average across all possible pilot subcar-
rier indexes minimizes the error.

In the acquisition mode, Ns = N and ∆φ j = 0 and the following equa-
tion results:

 
ε =  

Δθk jj=1

M∑( )
(2pM )

 (9.81)

In this case, ∆θ kj
 is just the phase difference between two consecutive 

segments in the repetitive acquisition sequence for a given subcarrier index kj. 
It is very similar to the frequency-domain estimate given in [4]. The average 
across all possible subcarrier indexes improves the estimate.
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Assume next that there is no CFO. By setting ò = 0 in (9.65), we then have

 

Δ∅k j
k j

j=1

M

∑ =
Δ∅k jj=1

M∑( ) k j
2

j=1

M∑( )
k jj=1

M∑( )
 (9.82)

Substituting (9.82) into (9.66), the following equation is obtained:

 

d = N
2pN s

⎛
⎝⎜

⎞
⎠⎟

Δ∅k jj=1

M∑( )
k jj=1

M∑( )  (9.83)

Equation (9.82) can also be written in the following form:

 

Δ∅k j
j=1

M

∑ =
Δ∅k j

k jj=1

M∑( ) k jj=1

M∑( )
k j

2
j=1

M∑( )  (9.84)

Substituting (9.84) into (9.66), δ  then becomes

 

d = N
2pN s

⎛
⎝⎜

⎞
⎠⎟

Δ∅k j
k jj=1

M∑( )
k j

2
j=1

M∑( )  (9.85)

Both (9.78) and (9.85) are similar to those given in [1].
Equation (9.83) is the frequency-domain estimate of δ  in the tracking 

mode. Another direct way of getting this formula is by setting ò = 0 in (9.57). 
It is seen from there that the phase difference between two consecutive OFDM 
symbols is linearly proportional to the pilot subcarrier index. Equation (9.83) 
just finds the average slope to improve the estimate.

Again, in the acquisition mode, Ns = N and ∆φ kj
 = 0. Equations (9.83) 

and (9.85) are further simplified to give the following

 

d = 1
2p

⎛
⎝⎜

⎞
⎠⎟  

Δqk jj=1

M∑( )
k jj=1

M∑( )  (9.86)
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or

 

d = 1
2p

⎛
⎝⎜

⎞
⎠⎟  

Δqk j
k jj=1

M∑( )
k j

2
j=1

M∑( )  (9.87)

If it is known in advance that either CFO = 0 or SCO = 0, the estimate 
can be greatly simplified. If there is no such knowledge, then both assumptions 
are not true and the original equations given earlier should be used.

9.5.5 Simulation Examples

The short sequence defined in the IEEE 802.11a is used for the simulation. It 
is assumed that there are no channel degradations and IQ imbalances. How-
ever, there is possible CFO, SCO, and background noise.

Example 9.8

Assume that the CFO and SCO are ò = 0.05 and δ  = 0.001, respectively. The 
joint estimate is applied at SNR = 37.8 dB. Assume also that there is no DC 
bias. Because of the SCO, the received samples are actually sampled at nT + 
nδT where n is an integer. These time-shifted samples are obtained through 
interpolation. The DFT is then applied to find the phase at each subcarrier 

Figure 9.9 A plot of phase difference against subcarrier index.
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index kj. The phase difference given by (9.52) is subsequently evaluated between 
two consecutive segments l and l + 1 where l ranges from 2 to 8. For a short 
sequence, there are 12 subcarriers from 1 to 6 and from 10 to 15. Figure 9.9  is 
a scatter plot of phase difference against subcarrier index. Also superimposed 
on the figure is an ideal curve. From (9.74), it is given as

y = 0.001x + 0.05

where y = (1/2π )∆θ kj
 and x = kj. It can be seen that the data points are scat-

tered along the straight line of this ideal curve. This also means an average 
from all two consecutive segments shall improve the estimate.

Example 9.9

Under the same conditions given in Example 9.8, (9.69) and (9.70) are then 
applied to compute the CFO and SCO for the SNR from 7.8 dB to 37.8 dB. 
First, they are computed for each two consecutive segments l and l + 1 where 
l ranges from 2 to 8. A total of seven such values are generated. The average 
CFO and SCO are subsequently computed and plotted in Figures 9.10 and 
9.11. Both Figures 9.10 and 9.11 show that the estimate converges to the desired 
value as the SNR increases. In Example 9.2, we showed the estimate of the 
CFO without the SCO through time-domain analysis. It is clear that the 

Figure 9.10 A plot of the CFO against the SNR.
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Figure 9.11 A plot of the SCO against the SNR.

Figure 9.12 Comparisons of the SCO against the SNR.

estimate accuracy of the CFO goes down if there is an SCO. This is because 
there are approximations involved during the development of the joint estimate.

Example 9.10

Assume that there is no CFO. Then both (9.86) and (9.87) can be used to 
compute the SCO. Figure 9.12 is a plot of both against the SNR. The dark 
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curve is a plot using (9.86) while the gray curve is a plot using (9.87). All the 
other conditions are the same as in previous examples. As can be seen from 
the plot, the difference from both computations is small. However, the com-
putation from (9.87) is slightly better.

9.6 IQ Imbalance

As was shown in Section 8.2, the in-phase and quadrature-phase components 
need to be extracted by mixing the received signal with two locally generated 
sinusoidal signals. Under ideal conditions, these two signals differ in phase 
by 90°. In reality, the circuit parts may not be perfect and there are phase and 
amplitude disturbances. The IQ imbalance [9−11] refers to the mismatch of 
these two LOs.

Because of the mismatch, the channel estimate is no longer accurate 
and the system performances can be affected significantly. Using the train-
ing samples in the acquisition mode, the compensation scheme is discussed 
in the following sections.

9.6.1 IQ Model

Assume the received complex amplitude to be y(t), the transmitted complex 
amplitude to be x(t) and the channel response to be h(t), then the following 
equations result from (8.7) to (8.9):

 
y(t) = yI (t)+ jyQ (t)  (9.88)

 
x(t) = xI (t)+ jxQ (t)  (9.89)

 

r(t) = Re y(t)e j2pfct( )
= yI (t)cos 2pfct( )− yQ (t)sin 2pfct( )

 (9.90)

 
yI (t) = xI (t)h(t − t) dt∫  (9.91)

 
yQ (t) = xQ (t)h(t − t) dt∫  (9.92)
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where r(t) is the received signal and fc is the carrier frequency
Figure 9.13 shows a direct conversion receiver in which the two LOs 

are not a perfect match in both amplitude and phase. Assume that the phase 
deviation is given by δ  and the amplitude deviation is given by ε . The two 
LOs can be written as

 
l1(t) = 2cos 2pfct( )  (9.93)

 
l2(t) = −2(1− e)sin 2pfct + d( )  (9.94)

 
= −2asin 2pfct + d( )  (9.95)

where we have defined α  = 1 − ε . If δ  = 0 and ε  = 0, then the two LOs are 
perfectly matched and Figure 9.13 reduces to Figure 8.1.

Multiplying (9.90) by (9.93) and following the same analysis as given in 
Chapter 8, we recover yI(t) and

 rI (t) = yI (t)  (9.96)

Similarly, multiplying (9.90) by (9.95), we have rQ(t) in the lower branch 
as given here:

 

rQ (t) = −2a yI (t)sin 2pfct + d( )cos 2pfct( )− yQ (t)sin 2pfct( )sin 2pfc (t)+ d( )( )
= a − yI (t)sin 4pfct + d( )− yI (t)sin(d)− yQ (t)cos 4pfc (t)+ d( )+ yQ (t)cos(d)( )  

 (9.97)

Again, rQ(t) in (9.97) after passing through an LPF becomes

Figure 9.13 Direct conversion receiver with IQ imbalance.
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rQ (t) = ayQ (t)cos(δ )− ayI (t)sin(d)  (9.98)

If both ε  and δ  are 0 and α  = 1, then rQ(t) becomes yQ(t).

9.6.2 Estimation in the Acquisition Mode

Equation (9.96) and (9.98) can also be written in the following matrix form [11]:

 

rI (t)
rQ (t)

⎡

⎣
⎢

⎤

⎦
⎥ =

1 0
−a sin(d) acos(d)

⎡
⎣⎢

⎤
⎦⎥

yI (t)
yQ (t)

⎡

⎣
⎢

⎤

⎦
⎥  (9.99)

After the analog-to-digital conversion, the ith digitized samples are 
written as

 
rI ,i = yI ,i  (9.100)

 
rQ ,i = −a sin(d) yI ,i + acos(d) yQ ,i

 (9.101)

The amplitude imbalance α  is estimated by first taking the square on 
both sides of (9.101) and summing across all the acquisition samples. Assum-
ing that there are L such samples, we have

 

rQ ,i
2

i=0

L−1

∑ = a2 sin2(d) yI ,i
2

i=0

i=L−1

∑ − 2a2 sin(d)cos(d) yI ,i yQ ,i
i=0

i=L−1

∑

+ a2 cos2(d) yQ ,i
2

i=0

L−1

∑
 (9.102)

During the acquisition mode, the training samples can be designed in 
such a way that the following relationship is satisfied:

 
yI ,i

2

i=0

i=L−1

∑ = yQ ,i
2

i=0

L−1

∑  (9.103)

Similarly, yI,i can be uncorrelated with yQ,i and the following relation-
ship can be made:
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yI ,i yQ ,i

i=0

i=L−1

∑ = 0  (9.104)

Both (9.103) and (9.104) will be justified in Example 9.11 using the short 
sequence of the IEEE 802.11a.

Substituting (9.103) and (9.104) into (9.102), we have

 

rQ ,i
2

i=0

L−1

∑ = a2 sin2(d)+ cos2(d)( ) yI ,i
2

i=0

i=L−1

∑

= a2 yI ,i
2

i=0

i=L−1

∑
 (9.105)

Summing across all the L samples in (9.100), we have

 
rI ,i

2

i=0

L−1

∑ = yI ,i
2

i=0

i=L−1

∑  (9.106)

Dividing (9.105) by (9.106), we have an estimate for the amplitude 
imbalance α :

 

a =
rQ ,i

2
i=0

L−1∑
rI ,i

2
i=0

L−1∑
 (9.107)

From the definition of α , the amplitude deviation ε  is then given by

 e = 1−  a  (9.108)

 

= 1−
rQ ,i

2
i=0

L−1∑
rI ,i

2
i=0

L−1∑
 (9.109)

To estimate the phase imbalance δ , the cross-correlation of rI,i and rQ,i 
are formed. From (9.100) and (9.101), the following is obtained:
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rI ,irQ ,i
i=0

L−1

∑ = −a sin(d) yI ,i
2

i=0

i=L−1

∑ + acos(d) yI ,i yQ ,i
i=0

i=L−1

∑

= −a sin(d) yI ,i
2

i=0

i=L−1

∑
 (9.110)

where we have used the same approximation given by (9.104). From (9.110) 
and (9.100), δ  is solved to give

 

sin(d) = −
rI ,irQ ,ii=0

L−1∑
a rI ,i

2
i=0

i=L−1∑
= −

Pest

a  (9.111)

where we have defined the factor Pest as follows:

 

Pest =
rI ,irQ ,ii=0

L−1∑
rI ,i

2
i=0

L−1∑
 (9.112)

From (9.111), the solution of δ  depends upon α . However, α  is inde-
pendently determined from (9.107). Once α  is computed, it is used in (9.111) 
to solve for δ .

9.6.3 Compensation of IQ Imbalance

Once both the amplitude imbalance α  and the phase imbalance δ  are esti-
mated, they can be used for restoring the received IQ signals. Multiplying 
(9.100) by α sin(δ ) and adding to (9.101), we have the following:

 
rQ ,i + a sin(d)rI ,i = acos(d) yQi  (9.113)

From (9.113), yQ,i is solved to give

 
yQ ,i =

rQ ,i + a sin(d)rI , i

acos(d)
 (9.114)

Substituting (9.111) into (9.114), the following equation results:

6899_Book.indb   186 10/22/19   4:55 PM



 Synchronization 187

 
yQ ,i =

rQ ,i − PestrIi

a2 − Pest
2  (9.115)

From (9.100), yI,i is obtained as

 
yI ,i = rI ,i  (9.116)

Both (9.115) and (9.116) can be used to recover the original in-phase 
and quadrature-phase samples.

9.6.4 Simulation Examples

The short sequence from acquisition defined in the IEEE 802.11a will be 
used for simulation study. The background noise will be mixed to find the 
performance of the imbalance estimate in noise. It is assumed that there are 
no other degradations.

Example 9.11

There are two major assumptions given in (9.103) and (9.104). Both assump-
tions will be justified using the short sequence of the IEEE 802.11a. There are 
12 subcarriers, which are given in Table 9.7.

After performing 16-point IFFT, the time-domain samples are further 
divided by 4 for further normalization. The powers of the real part and the 
imaginary part are computed to obtain

Real part power = Imaginary part power = 0.101568 
Correlation = 0

Table 9.7 
The 12 Subcarriers of the Short Sequence in the IEEE 802.11a

Subcarrier Index k Subcarrier Index k Subcarrier

1 −1.472(1 + j ) 5 1.472(1 + j ) 12 1.472(1 + j )

2 −1.472(1 + j ) 6 1.472(1 + j ) 13 −1.472(1 + j )

3 1.472(1 + j ) 10 1.472(1 + j ) 14 −1.472(1 + j )

4 1.472(1 + j ) 11 −1.472(1 + j ) 15 1.472(1 + j )
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Table 9.8 
The Original and Impaired Short Sequence Subcarriers

YI YQ ZI ZQ

−1.00 −1.00 −1.04 −1.05

−1.00 −1.00 −1.06 −0.87

1.00 1.00 0.91 0.95

1.00 1.00 0.94 0.77

1.00 1.00 0.91 0.95

1.00 1.00 0.94 0.77

1.00 1.00 0.94 0.77

−1.00 −1.00 −1.04 −1.05

1.00 1.00 0.94 0.77

−1.00 −1.00 −1.04 −1.05

−1.00 −1.00 −1.06 −0.87

1.00 1.00 0.91 0.95

Figure 9.14 The constellation of the original and impaired short sequence.
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Clearly, both (9.103) and (9.104) are satisfied

Example 9.12

Assume that the amplitude imbalance α  = 0.9 (ε  = 0.1) and the phase imbal-
ance δ  = 5° = 0.08727 radian. First, perform the FFT of the short sequence 
generated in Example 9.11 and then divide by the normalization factor 1.472 
to obtain the original spectrum Yi + jYQ. Next, (9.100) and (9.101) are applied 
to generate the time-domain samples with IQ imbalance. The FFT is again 
applied to obtain the impaired spectrum Zi + jZQ. Table 9.8 lists all the sub-
carriers after dividing the spectrum by the normalization factor 1.472. As 
Table 9.8 shows, the original spectrum has only two different subcarriers. It 
is either 1 + j or −1 − j. After the application of IQ imbalance, the impaired 
spectrum has now four different subcarriers. They are 0.91 + 0.95j, 0.94 + 
0.77j, −1.04 − 1.05j, and −1.06 − 0.87j.

Figure 9.14 is a plot of the constellation of the short sequence with IQ 
imbalance. Without IQ imbalance, there are only two spectral points. With 
IQ imbalance, there are four modified spectral points. The total number of 
unique spectral components then increases from 2 to 4. From Figure 9.14, all 
these 6 spectral components are clearly seen. Therefore, the occurrence of IQ 
imbalance can cause spectral distortion.

Figure 9.15 Estimate of phase angle imbalance in random noise.
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Example 9.13

Example 9.11 shows that both (9.103) and (9.104) are satisfied. This means 
that the estimate accuracy does not depend upon the magnitude of the imbal-
ance. Assume first that the amplitude imbalance is fixed at α  = 0.9. The phase 
angle imbalance δ  is allowed to change from 5° to 45° in 5° increments. 

Figure 9.16 Estimate of amplitude imbalance in random noise.

Figure 9.17 Estimate of amplitude imbalance against its true input.
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The imbalanced samples are generated based upon (9.100) and (9.101). The 
amplitude imbalance α  is then estimated from (9.107) while the phase angle 
imbalance is estimated from (9.111). Short sequence samples from the second 
segment to the ninth segment are used for estimation. The total number of 
samples is L = 128. The SNR of 37.8 dB, 27.8 dB, and 17.8 dB is used to 
obtain the performance in random noise.

Figure 9.15 is a plot of estimated phase angle imbalance against its true 
input. It can be seen that the estimate of phase angle imbalance is even better 
at larger angles than with smaller angles. The straight-line curve demonstrates 
the superiority of the estimate. As the SNR drops, the estimate accuracy also 
drops because (9.103) and (9.104) are no longer valid.

Figure 9.16 is a plot of estimated amplitude imbalance in random noise. 
The horizontal line shows that the estimated amplitude imbalance is inde-
pendent of the input phase angle imbalance. However, as the SNR drops, 
the estimation accuracy also drops but is still not too far away from the true 
input of 0.9.

Example 9.14

This example is similar to Example 9.13. However, the input phase angle 
imbalance δ  is fixed at 5° while the amplitude imbalance α  is allowed to 

Figure 9.18 Estimate of phase angle imbalance against amplitude imbalance.
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vary. Just as before, the SNRs of 37.8 dB, 27.8 dB, and 17.8 dB are used 
to get the performance of the estimation in noise. Figure 9.17 is a plot of 
the estimated amplitude imbalance against the input amplitude imbalance. 
Again, the straight-line curve shows that the estimate is excellent in noise. As 
the SNR drops, the accuracy also drops slightly when the input amplitude 
imbalance is large.

Figure 9.18 is a plot of phase angle imbalance against the input ampli-
tude imbalance. The horizontal line shows the estimate is independent of the 
magnitude of the input amplitude imbalance. However, as the SNR drops, 
the estimate accuracy also drops.

9.7 Summary

Five major synchronization issues in the receiver front end have been analyzed 
in detail in this chapter. They are DC offset, CFO, SCO, sampling time offset, 
and IQ imbalance.

The DC offset is caused by leakage from the receiver LO to the input of 
either the amplifier or mixer. Its appearance can cause a false alarm through 
the use of the normalized cross-correlation metric in the signal detection. 
However, it can also be easily removed though highpass filtering after the 
analog-to-digital conversion.

The CFO can be caused by the relative motion between the transmitter 
and the receiver. Using the periodic nature of the preamble signal, this offset 
can be estimated through correlation between periodic segments. The estimate 
improves through the averaging of estimates from adjacent segments.

The sampling time offset can cause the frame boundary difference 
between the transmitted and the received signal. This offset is simply a phase 
shift in the frequency domain. The effect is similar to the signal delay in a 
multipath channel and can be removed through channel estimate and adap-
tation discussed in the later chapters.

The SCO is caused by the difference in sampling time period between 
the transmitter and receiver clocks. The effect can be analyzed through a 
joint estimate of both SCO and CFO in the frequency domain from adja-
cent symbols. In the tracking mode or during data transmission, the known 
phases of pilot subcarriers are used. In the acquisition modes or during the 
preamble transmission, the periodic nature of adjacent segments and the zero 
guard period can be used for simplification. The least square optimization is 
used to estimate both SCO and CFO since there are more than two pilots in 
the tracking mode and in the acquisition mode. Under the special condition 
where either SCO or CFO is 0, a much simpler formula was derived.
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The IQ imbalance is caused by defects of circuit parts during the direct 
conversion process. This results in amplitude and phase disturbances in the 
LOs of the in-phase and quadrature-phase components. Both can be estimated 
in the acquisition mode much easier if the preamble waveform satisfies two 
special conditions. The first is that the in-phase and quadrature-phase signals 
have the same power. The second is that the in-phase and quadrature-phase 
signals are not correlated. The short sequence specified in the IEEE 802.11a 
meets these two conditions. After both phase and amplitude disturbances are 
estimated, they can be compensated and the original in-phase and quadrature-
phase signals are restored.

In the next chapter, both block-type and comb-type pilot patterns for 
the channel estimation are presented, and channel tracking using the LMS 
algorithm is also covered.

References

[1] Chiueh, T. -D., P. Y. Tsai, and I. W. Lai, Baseband Receiver Design for Wireless MIMO-
OFDM Communications, New York: Wiley, 2012.

[2] Razavi, B., “Design Considerations for Direct-Conversion Receivers,” IEEE Transactions 
on Circuits and Systems, Vol. 44, No. 6, June 1997, pp. 428−435.

[3] Oppenheim, A. V., and R. W. Schafer, Digital Signal Processing, Upper Saddle River, 
NJ: Prentice Hall, 1975.

[4] Moose, P. H., “A Technique for Orthogonal Frequency Division Multiplexing Frequency 
Offset Correction,” IEEE Transactions on Communications, Vol. 42, No. 10, 1994, pp. 
2908−2914.

[5] Morelli, M., and U. Mangali, “An Improved Frequency Offset Estimator for OFDM 
Applications,” IEEE Communication Letters, 1999.

[6] Speth, M., F. Classen, and H. Meyer, “Frame Synchronization of OFDM Systems in 
Frequency Selective Fading Channels,” 1997 IEEE 47th Vehicular Technology Conference. 
Technology in Motion, Vol. 3, pp. 1807−1811.

[7] Speth, M., S. Stefan, and A. Fechtel, “Optimum Receiver Design for Wireless Broad-
Band Systems Using OFDM-Part I,” IEEE Transactions on Communications, Vol. 47, 
No. 11, November 1999, pp. 1668−1677.

[8] Liu, S. Y., and J. W. Chong, “A Study of Joint Tracking Algorithms of Carrier Frequency 
Offset and Sampling Clock Offset for OFDM-Based WLANs,” IEEE International 
Conference on Communications, Circuits and Systems, Vol. 1, June 2002.

[9] Tubbax, J., et al., “Compensation of Transmitter Imbalance for OFDM Systems,” 2004 
IEEE International Conference on Acoustics, Speech, and Signal Processing (2004 ICASSP), 
Vol. 2, 2004.

6899_Book.indb   193 10/22/19   4:55 PM



194 Introduction to OFDM Receiver Design and Simulation

[10] Tseng, H. -Y., et al., “Compensation of Imbalance and DC Offset for OFDM 
Transmission over Frequency Selective Channels,” 2008 IEEE International Conference 
on Communications, 2008.

[11] Held, I., et al., “Low Complexity Digital IQ Imbalance Correction in OFDM WLAN 
Receivers,” 2004 IEEE 59th Vehicular Technology Conference, VTC 2004-Spring, Vol. 
2, pp. 1172−1176.

6899_Book.indb   194 10/22/19   4:55 PM



195

10
Channel Estimation and Tracking

10.1 Introduction

In a radio channel, there are normally reflecting objects and scatters in the sig-
nal propagation path. These obstacles include mountains, buildings, and even 
the ground. The directly transmitted signal is then reflected. The receiver may 
then receive multiple versions of the original signal with a different amplitude, 
phase, and arrival time. These multipath signals add together and may cause 
significant distortion of the received signal.

For OFDM, the signal bandwidth is normally larger than the coherence 
bandwidth of the channel. When this happens, the received signal suffers fre-
quency selective fading. In the time domain, this also means the delay spread 
is longer than the reciprocal of the signal bandwidth. This is also why a guard 
interval is added after each OFDM symbol to minimize the ISI.

The channel equalization technique for OFDM is quite simplified in the 
frequency-selective channel. The channel estimation is normally performed 
with the transmission of training symbols before the actual signal transmis-
sion. These training symbols are designed using subcarriers with a known 
amplitude and phase to the receiver. Based upon the received amplitude and 
phase of each subcarrier, the channel is easily estimated.

After the channel estimation, the original signal can be restored. If 
the channel is steady and does not change fast over time, the use of training 
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symbols to aid the channel estimation in the data acquisition mode is normally 
enough. However, the channel may not be steady and it is necessary to esti-
mate the channel frequently. The latter is done by inserting pilot subcarriers 
besides the data subcarriers to aid in the estimation.

If the channel varies fast, it can also be tracked for each received data 
symbol. Based upon the estimation error and the received signal, the chan-
nel at each data subcarrier is tracked using the method of steep descent. For 
OFDM, only one tap is necessary and the process is also greatly simplified.

In the following sections, the possible pilot structures are introduced 
first. For each pilot structure, the channel estimation is presented. After that, 
the tracking algorithm is analyzed. The simulation examples are also given to 
understand the effectiveness of each algorithm.

10.2 Pilot Patterns

For OFDM, the pilot patterns are usually given in a time-frequency diagram. 
Both time and frequency are represented in a group of small circles. Each 
circle represents an OFDM symbol in the time axis. In other words, a circle 
along the time axis has the time duration of an equivalent OFDM symbol. 
The same circle along the frequency axis has the equivalence of a subcarrier. 
If a circle is filled, it carries pilot subcarriers.

Many different pilot patterns can be designated. However, the most 
commonly used patterns are the block type and comb type. Both types are 
given in the following sections.

10.2.1 Block-Type Pilot Pattern

Figure 10.1 shows a typical block type pilot pattern [1]. Along the time axis, 
there is a filled node for every four empty nodes. Along the frequency axis, all 
the nodes are filled at a given time period. In terms of OFDM terminology, 
it means after for every four OFDM symbols, a symbol is transmitted with 
all its subcarriers designated as pilot subcarriers.

Using the block type pattern, pilot subcarriers are periodically trans-
mitted for the new channel estimation. Since pilot subcarriers do not carry 
data, the data transmission rate is reduced in exchange for better bit error 
rate performance. The period of pilot transmission depends upon the system 
requirement and the channel bandwidth.

Assuming that Tg is the guard interval, Ts is the symbol interval, Tbpsc is 
the number of data bits per subcarrier, Nsd is the number of data subcarriers 
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per symbol, and M is the data symbol count between pilot symbols, then the 
data transmission rate R is given here:

 

R =
MNbpsc N sdC

(M +1) Tg +Ts( )  (10.1)

where C is the coding rate. If there is no pilot transmission, then the follow-
ing equation results in:

 

R =
Nbpsc N sdC

Tg +Ts( )  (10.2)

Example 10.1

Assume that the modulation is QPSK and the channel spacing is 20 MHz. 
From Table 3.1, Tg = 0.8 µs, Ts = 3.2 µs, Nbpsc = 2, Nsd = 48, and C = 1/2 for 
the convolutional code. If there is no pilot transmission, the data rate is then

R = 2 ∗ 48∗0.5
3.2 + 0.8

= 12 Mbps

Assuming that now that one pilot symbol is sent every 4 data symbols, 
then the new data rate becomes

Figure 10.1 Block-type pilot pattern.
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R = 4 ∗2 ∗ 48∗0.5
5∗ 4

= 9.6 Mbps

With the transmission of a pilot symbol after 4 data symbols, the data 
rate then reduces from 12 Mbps to 9.6 Mbps.

During the time between pilot transmissions, the existing channel esti-
mation is used. Therefore, the block-type pilot pattern is normally used when 
the channel is not fast varying. However, it can still be slightly updated through 
tracking as will be discussed later.

10.2.2 Comb-Type Pilot Pattern

Figure 10.2 shows a comb-type pilot pattern [2, 3]. In this case, pilot subcarri-
ers are sent during every data symbol transmission. However, inside each data 
symbol, only certain subcarriers are designated as pilot subcarriers. In Figure 
10.2, subcarriers 0, 4, and 8 are pilot subcarriers and the others are data sub-
carriers. These three pilot subcarriers exist during every symbol transmission.

Strictly speaking, the data rate is still reduced because the pilot subcarriers 
for each data symbol do not carry data. The data rate is computed according 
to (10.2). Since the pilot subcarriers have the known amplitude and phase 
to the receiver, the channel can still be estimated at these pilot subcarriers. 
The channel at the data subcarriers then needs to be estimated through other 
means such as interpolation.

Figure 10.2 Comb-type pilot pattern.
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Since the channel is estimated at each data symbol, this type of pilot 
pattern is suitable for a fast varying channel. If the number of pilot carriers is 
not large enough, the accuracy of channel estimation at data subcarriers will 
suffer. The IEEE 802.11a specifies four subcarriers as pilot signals. They can 
be used for frequency offset and sampling clock offset estimation as discussed 
in Chapter 9. If necessary, they can also be used for channel estimation.

10.3 Channel Estimation

There are two major types of pilot patterns. One is the block type and the 
other is the comb type. The channel estimation for both types is given here.

10.3.1 Channel Estimation for the Block-Type Pilot Pattern

To send the OFDM signal, the frequency-domain subcarriers Xk is first trans-
formed to the time-domain samples xn following the inverse discrete Fou-
rier transform:

 
xn = 1

N
Xke j2pkn/N

k=0

N−1

∑  (10.3)

After propagating through the multipath channel, the signal xn is cor-
rupted. Assume that the impulse response is hn. Then the received sample yn 
is given by the following convolution of xn and xn:

 
yn = xihn−i

i=0

N−1

∑ + wn
 (10.4)

where wn is an additive Gaussian noise. The noise type could be thermal 
noise, interference noise, or others. To recover the transmitted subcarriers, the 
time-domain samples yn are again transformed back to the frequency domain 
following the discrete Fourier transform

 
Yk = yne− j2pnk/N

n=0

N−1

∑  (10.5)

Substituting (10.4) into (10.5), we have

 
Yk = xihn−ie

− j2pnk/N

i=0

N−1

∑ + wne− j2pnk/N

n=0

N−1

∑
n=0

N−1

∑  (10.6)
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The second term of (10.6) is simply Wk representing the kth noise sample 
in the frequency domain. Assuming that the frequency response of the channel 
is given by Hk, then it is related to hn by the following inverse Fourier transform

 
hi =

1
N

Hl e
j2pli/N

l=0

N−1

∑  (10.7)

Replacing i by n − i in (10.7), we have

 
hn−i =

1
N

Hl e
j2pl (n−i)/N

l=0

N−1

∑  (10.8)

Substituting (10.3) and (10.8) into (10.6), the following is obtained:

Yk =
1
Ni=0

N−1

∑
n=0

N−1

∑ Xme j2pmi/N

m=0

N−1

∑ 1
N

Hl e
j2pl (n−i)/N e− j2pnk/N

l=0

N−1

∑ +Wk

= Xm
l=0

N−1

∑
m=0

N−1

∑ Hl
1
N

e j2pn(l−k)/N

n=0

N−1

∑⎡

⎣
⎢

⎤

⎦
⎥

1
N

e j2pi(m−l )/N

i=0

N−1

∑⎡

⎣
⎢

⎤

⎦
⎥ +Wk

 (10.9)

However, the summation inside the bracket of (10.9) has the follow-
ing relationship:

 
e− j2prk/N

k=0

N−1

∑ =   N for r = jN , j an integer
0 otherwise{  (10.10)

Using (10.10), (10.9) then becomes

 

Yk = Xl Hl
l=0

N−1

∑ 1
N

e j2pn(l−k)/N

n=0

N−1

∑⎡

⎣
⎢

⎤

⎦
⎥ +Wk

= Xk Hk +Wk

 (10.11)

Equation (10.11) says that the discrete Fourier transform of the received 
samples is the addition of noise spectrum and the product of the transmitted 
data spectrum and channel spectrum. This relationship is true for every sub-
carrier index k. From (10.11), the channel response is given here:

 
Hk =

Yk
!

Xk
where Yk

! = Yk −Wk  (10.12a)
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If the random noise is negligible small or 0, then Hk is exactly recovered 
as given here:

 
Hk =

Yk
Xk

if Wk = 0  (10.12b)

Using the pilot subcarriers, Xk is known in the receiver. Therefore, from 
the received frequency domain samples, Yk, the channel frequency response 
Hk is then obtained.

For block-type pilot patterns, (10.12) gives the newest channel estimation 
for every M data symbols. Based upon this estimation, the data subcarriers 
can be recovered before any new channel estimation as given here:

 
Xk =

Yk
Hk

 (10.13)

10.3.2 Channel Estimation for Comb-Type Pilot Pattern

For the comb-type pilot pattern, there are only a finite number of pilot subcar-
riers. Even though the channel response can be estimated at the pilot subcar-
riers, there is no information available to estimate that at the data subcarriers. 
One popular method is to interpolate at the data subcarriers based upon the 
known channel response at the pilot subcarriers.

Depending upon the number of points used for interpolation, the inter-
polation can be linear, parabolic, and cubic. The number of points used is 2, 3, 
and 4 for linear, parabolic, and cubic interpolators, respectively. The Lagrange 
interpolation formula is used for each of these interpolators

10.3.2.1 Linear Interpolation

The easiest way is to use only two points for straight-line interpolation. The 
Lagrange interpolation formula is given by the following equation:

 
H (k) =

k − k1( )
k0 − k1( )H k0( ) +  

k − k0

k1 − k0( )H k1( )  (10.14)

where k0 and k1 are the two pilot subcarriers indexes and k is the data subcar-
rier index to be interpolated. The function values H(k0) and H(k1) are channel 
responses at the pilot subcarrier index k0 and k1. From (10.14), it is clear H(k) 
= H(k0) when k = k0 and H(k) = H(k1) when k = k1.
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Assume that the distance between k0 and k1 is D and k1 > k0. Assuming 
that k is larger than k0, then k can be written as

 k = k0 + mD  (10.15)

 k1 = k0 + D  (10.16)

Substituting (10.15) and (10.16) into (10.14), we have [1]

 
H (k) = (1− m)H k0( )+ mH k1( )  (10.17a)

 k = k0 + mD  (10.17b)

Equation (10.17) is the linear interpolation at point k using the two 
known data points at k0 and k1. For k < k0, µ  < 0 and (10.17) still applies.

10.3.2.2 Parabolic Interpolation

If there are three data points available, then it is parabolic interpolation. Assum-
ing that these three points are k0, k1, and k2, then the Lagrange interpolation 
formula is given here:

 

H (k) =
k − k1( ) k − k2( )

k0 − k1( ) k0 − k2( )H k0( )

+  
k − k0( ) k − k2( )

k1 − k0( ) k1 − k2( )H k1( )+ k − k0( ) k − k1( )
k2 − k0( ) k2 − k1( )H k2( )

 (10.18)

Let the distance between consecutive data points be a constant such that 
km+1 − km = D for m = 0, 1. Then we have the following:

 k = k0 + mD  (10.19)

 k1 = k0 + D  (10.20)

 k2 = k0 + 2D  (10.21)

Substituting (10.19), (10.20), and (10.21) into (10.18), we have [3]

H (k) =
m −1( ) m − 2( )

2
H k0( )+ m(2 − m)H k1( )+ m(m −1)

2
H k2( )  (10.22a)
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 k = k0 + mD  (10.22b)

Equation (10.22) is the second-order Lagrange interpolation using three 
data points k0, k1, and k2.

10.3.2.3 Cubic Interpolation

The interpolation order can go higher to use four data points, k0, k1, k2, and 
k3. The Lagrange interpolation formula is then given here:

 

H (k) =
k − k1( ) k − k2( ) k − k3( )

k0 − k1( ) k0 − k2( ) k0 − k3( )H k0( )+  
k − k0( ) k − k2( ) k − k3( )

k1 − k0( ) k1 − k2( ) k1 − k3( )H k1( )

+
k − k0( ) k − k1( ) k − k3( )

k2 − k0( ) k2 − k1( ) k2 − k3( )  H k2( )+ k − k0( ) k − k1( ) k − k2( )
k3 − k0( ) k3 − k1( ) k3 − k2( )H k3( )

 
 (10.23)

Again, the distance between consecutive data points is a constant D. 
That means km+1 − km = D for m = 0, 1, and 2. However, we let the interpola-
tion data point k be computed starting from k1. We then have the following:

 k = k1 + mD  (10.24)

 k0 = k1 − D  (10.25)

 k2 = k1 + D  (10.26)

 k3 = k1 + 2D  (10.27)

Substituting from (10.24) to (10.27) into (10.23), the following is obtained:

 
H (k) = C0H k0( )+C1H k1( )+C2H k2( )+C3H k3( )  (10.28a)

 k = k1 + mD  (10.28b)

where C0, C1, C2, and C3 are given here [4]:

 
C0 = − m(m −1)(m − 2)

6
 (10.29a)
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C1 =

m2 −1( )(m − 2)
2

 (10.29b)

 
C2 = − m(m +1)(m − 2)

2
 (10.29c)

 
C3 =

m m2 −1( )
6

 (10.29d)

The choice of linear, parabolic, or cubic interpolation will certainly 
affect interpolation accuracy. There are also three other factors that will have 
significant impact on the accuracy. The first is the number of pilot subcarriers 
available for interpolation. The second is the degree of channel spectral varia-
tions. If the channel frequency response has too many spectral cycles, then 
more pilot subcarriers are needed for interpolation. The last is the effects due 
to random noise. The dependence of interpolation accuracy on all of these 
factors is illustrated in the following examples.

Example 10.2

To illustrate the dependence of interpolation accuracy on the number of pilot 
subcarriers, channel spectral variations, and the interpolation method, a simple 
multipath model is used. Assume that the receiver receives signals from two 
major paths. One is the main signal xn and the other is the reflected signal 
bxn-m where b is the reflected amplitude and m is the sample delay. The received 
signal yn is then the sum of these two signals:

 yn = xn + bxn−m  (10.30)

Equation (10.30) is a special case of the more general formula given in 
(12.11).

Taking DFT on both sides of (10.30), we have

 

Yk = Xk + bXke− j2pmk/N

= Xk 1+ be− j2pmk/N( )  (10.31)

From (10.31), the frequency channel response Hk is then given below:

 

Hk = 1+ be− j2pmk/N

= 1+ bcos
2pmk

N
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
− jbsin

2pmk
N

⎛
⎝⎜

⎞
⎠⎟

 (10.32)
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The real part Hkr and the imaginary part Hki of Hk are then written below:

 
Hkr = 1+ bcos

2pmk
N

⎛
⎝⎜

⎞
⎠⎟  (10.33)

 
−Hki = bsin

2pmk
N

⎛
⎝⎜

⎞
⎠⎟  (10.34)

In this example, the channel frequency response is a sine wave. The period 
is obtained by setting the cos argument to 2π . We then have

 
Period = N

m
 (10.35)

Clearly, as the delay m increases, the period decreases and it becomes 
more difficult to interpolate. This is illustrated in the next few examples.

Example 10.3

In this example, we illustrate how the number of pilot subcarriers may affect 
the interpolation accuracy. Parabolic interpolation is used and the number of 
pilot subcarriers is 8, 16, and 32. However, the total number of subcarriers is 
set to 64. Assuming that m = 3, N = 64, and b = 0.9, Figures 10.3, 10.4, and 
10.5 are the plots of both the original Hkr and −Hki/b and their interpolation 
against the subcarrier index k.

Figure 10.3 Parabolic interpolation using eight pilot subcarriers.
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Figure 10.4 Parabolic interpolation using 16 pilot subcarriers.

Figure 10.5 Parabolic interpolation using 32 pilot subcarriers.
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It is clear from the plots that the interpolation accuracy improves as 
the number of pilot subcarriers M increases. When M = 32, the interpolated 
curve is almost indistinguishable from the original. However, when M = 8, 
the interpolation is not considered as being good enough. The period is 64/3 
≅ 21 and is confirmed from the figure. Roughly, each cycle requires that at 
least 4 pilot subcarriers and 12 pilot subcarriers are needed in this example. 
This also shows when M = 16, the interpolation significantly improves.

Example 10.4

In this example, we show how the interpolation method affects the inter-
polation accuracy. When the number of pilot subcarriers is insufficient, the 
interpolation cannot have a good match to the original. Under this condition, 
the interpolation method really does not matter. It is not surprising that the 
linear interpolation may even be better than the higher-order interpolation. 
If there are a sufficient number of pilot subcarriers that exist, then the higher-
order interpolation shows some advantage in exchange for more computation 
time. However, if there are more than enough pilot carriers, then even linear 
interpolation can work well.

Figure 10.6 shows the linear interpolation using 16 pilot subcarriers 
and m = 3. The interpolation is not that bad. However, it is certainly not as 
good as the parabolic interpolation shown in Figure 10.4. Figure 10.7 shows 
linear interpolation using 32 pilot subcarriers and m = 3. The interpolation 
also has a fairly close match with the original. This also suggests that a lower-
order interpolation is acceptable when more than enough numbers of pilot 
subcarriers exist.

Figure 10.6 Linear interpolation using 16 pilot subcarriers.
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Example 10.5

In this example we show how the delay may affect the interpolation. If the 
delay decreases, the spectral period increases. Then the number of pilot sub-
carriers required also decreases. Figure 10.8 shows the parabolic interpolation 
with the delay reduced to m = 1 and the number of pilot subcarriers used is 
8. In this case, there is only one spectral cycle and the match is much better 
than that given in Figure 10.3.

Figure 10.9 is another plot with the number of subcarriers reduced to 
four. The pilot subcarriers selected are at k = 7, 23, 39, and 55. Because of 
the lack of pilot subcarriers near the beginning and end of the symbol, the 
match is not good there. However, the overall match is not bad. This is also 
the early statement that a minimum of 4 pilot subcarriers are required for 
each spectral cycle.

Example 10.6

In this example, the effects of random noise on the accuracy of parabolic inter-
polation are investigated. Four different numbers of subcarriers are considered 

Figure 10.7 Linear interpolation using 32 pilot subcarriers.
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Figure 10.8 Parabolic interpolation with delay = 1 sample and 8 pilot subcarriers.

Figure 10.9 Parabolic interpolation with delay = 1 sample and 4 pilot subcarriers.

and they are M = 4, 8, 16, and 32. The channel parameters used are the same 
as previous examples. They are m = 3, N = 64, and b = 0.9. For simplicity, 
assuming that Xk = 1, then Yk = Hk. To compute SNR, the signal amplitude 
is then the same as the channel amplitude. Both the channel amplitude and 
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noise amplitude at these pilot subcarriers can be averaged. The SNR in decibels 
is then computed based upon these average values.

Assume that Hkr and Hki represent the true channel response at subcarrier 
k. Assume that also Hkr

!  and Hkı
!  represent the estimated channel response at 

subcarrier k. Then the average deviation δ  per subcarrier is computed as follows:

 
d = 1

8
⎛
⎝⎜

⎞
⎠⎟

k=0

63

∑ Hkr − Hkr
!  ( )2

+ Hki − Hkı
!( )2⎡

⎣⎢
⎤
⎦⎥

 (10.36)

Assume also that the peak channel amplitude at a subcarrier is ⎪Hpeak⎪. 
Then the deviation percentage ε  is computed as

 

e = d
Hpeak

 (10.37)

Figure 10.10 is a plot of ε  in percentage against the SNR and four 
different numbers of pilot subcarriers. One common trend is the deviation 

Figure 10.10 The deviation percentage of channel estimation against the SNR and the 
number of pilot subcarriers.
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percentage increases as either the SNR decreases or M decreases. At SNR = 
42 dB, the ε  is 28.7% for M = 8 and 70.7% for M = 4. The high percentage 
deviation at such a high SNR shows that both M = 4 and M = 8 are unaccept-
able. For both M = 32 and M = 16, the deviation percentage is acceptable at 
a high SNR but not at a low SNR. If we would like the deviation percentage 
to be less than 10%, then the SNR has to be higher than 17 dB.

Also, in this example, it is assumed that m = 3 or 3 sample delay. This 
is why M = 16 works reasonably well. As m increases, the number of pilot 
subcarriers has to increase further. However, a higher number of pilot subcar-
riers takes away the data bandwidth and reduces the date rate. This could be 
a design problem for using the comb-type pattern.

In summary, the number of pilot subcarriers required for interpolation 
increases with increasing delay. If the number of subcarriers is insufficient, 
then the accuracy of interpolation also suffers.

10.4 Channel Tracking

As discussed previously, the channel frequency response can be exactly solved 
using the block-type pilot pattern. The simplicity of (10.12) shows the advan-
tage of OFDM against the single-carrier system over the frequency-selective 
channel. However, this pattern requires the use of all subcarriers to be pilot 
subcarriers and cannot be used frequently. The comb-type pilot pattern is used 
within each OFDM data symbol and is suitable for a fast-varying channel. 
Since only a finite number of pilot subcarriers are selected, the channel at other 
data subcarriers is estimated through interpolation. The accuracy may not be 
great depending upon the multipath delay and the number of pilot subcarriers.

10.4.1 The LMS Algorithm

Another method is to adaptively adjust the channel response based upon 
the LMS algorithm using a gradient search [5, 6]. The technique intends to 
minimize the mean-square error between the information sequence and its 
estimation. At the kth subcarrier, assume that the information data is Xk and 
the received data is Yk. The information data is estimated to be GkYk and Gk 
is the weighting coefficient. From (10.13), the weight Gk is simply the inverse 
of the channel frequency response. The difference between the desired and 
estimated response is the error signal ε k:

 ek = Xk −GkYk  (10.38)
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In (10.38), all quantities are complex in general. The Gk is determined 
by minimizing ⎪ε k⎪2 with respect to Gk. This is done by setting (∂⎪ε k⎪2)/∂Gk 
to zero. The partial derivative is given here:

 

∂ εk
2

∂Gk
= −2ekYk

∗  (10.39)

Since Yk is not 0, the only way for the left side of (10.39) to be 0 is to set 
ε k to 0. After doing that in (10.38), the Gk is solved to give

 
Gk =

Xk
Yk

 (10.40)

Clearly, Gk is the inverse of channel frequency response Hk given in 
(10.12). This is just another way of interpreting how Hk is obtained from the 
point of view of minimizing the MSE.

Since Xk is not always available, a weight-adjusting procedure is avail-
able to solve the problem. This procedure is the least mean square (LMS) 
algorithm using the method of steepest descent. The weight can be adjusted 
adaptively without any knowledge of the information sequence. Equation 
(10.40) applies to every subcarrier index k. The one-tap equalizer is then given 
by the following equation:

 
G j+1,k = G j ,k + m∇ e j ,k

2⎛
⎝

⎞
⎠  (10.41)

where

Gj,k: weight vector at the current or the jth iteration;
Gj+1,k: the weight vector at the next or the j + 1th iteration;
∇(⎪ε j,k⎪2): the gradient or partial derivative of the error ⎪ε j,k⎪2 against 

Gj,k;
µ : a scalar constant that controls the rate of convergence;
ε j,k: error between the estimation Gj,kYk and the reference Xk.

Substituting (10.39) into (10.41), we have

 
G j+1,k = G j ,k − 2me j ,kYk

∗  (10.42)
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The adaptation index j can also be considered as the jth received OFDM 
symbol. Equation (10.42) shows the adaptation depends upon the estimation 
error and the received subcarrier Yk

∗.

10.4.2 The Condition for Convergence

The adaptation given by (10.42) needs to be convergent or else it will fail. To 
derive the condition for convergence, the error ε j,k can be written in terms of 
Gj,k given by (10.38) [6]:

 
G j+1,k = G j ,k − 2m Xk −G j ,kYk( )Yk

∗  (10.43)

 
= G j ,k 1+ 2mYk

2( )− 2mXkYk
∗  (10.44)

Taking the expected value on both sides of (10.44), we have

 
E G j+1,k( ) = E G j ,k( ) 1+ 2mYk

2( )− 2mXkYk
∗  (10.45)

Setting j = 0, 1, and 2 and expressing the Gj+1,k in terms of G0,k, we have

 
E G1,k( ) = E G0,k( ) 1+ 2mYk

2( )− 2mXkYk
∗  (10.46)

E G2,k( ) = E G0,k( ) 1+ 2mYk
2( )2

− 2mXkYk
∗ − 2mXkYk

∗ 1+ 2mYk
2( )  (10.47)

E G3,k( ) = E G0,k( ) 1+ 2mYk
2( )3

− 2mXkYk
∗ − 2mXkYk

∗ 1+ 2mYk
2( )

− 2mXkYk
∗ 1+ 2mYk

2( )2  (10.48)

Repeating the process given in (10.46), (10.47), and (10.48), we have for 
the n + 1th iteration,

E Gn+1,k( ) = E G0,k( ) 1+ 2mYk
2( )n+1

− 2mXkYk
∗ 1+ 2mYk

2( )i

i=0

n

∑  (10.49)
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If n goes to infinity, the second term converges to the following:

 

2mXkYk
∗ 1+ 2mYk

2( )i

i=0

∞

∑ = 2mXkYk
∗ 1+ 2mYk

2( )i

i=0

∞

∑

=
2mXkYk

∗

−2mYk
2 = −

Xk
Yk

 (10.50)

Equation (10.50) shows that the second term of (10.49) converges to a 
finite number. In order for E(Gm+1,k)to converge, the first term of (10.49) must 
be 0 and the following condition must be satisfied:

 
−1 < 1+ 2mYk

2
< 1  (10.51)

The condition for convergence is then the following:

 

−1

Yk
2 < m < 0  (10.52)

Equation (10.52) shows that for convergence, the scalar constant µ  is 
related to the total power of the received kth subcarrier and it must be less 
than 0.

Substituting (10.50) and (10.52) to (10.49) and setting n to ∞, we 
finally have

 
E G∞ ,k( ) = Xk

Yk
 (10.53)

Equation (10.53) is the same as (10.40). This shows that the gain adapta-
tion given by (10.42) converges to the exact or Wiener-Hopf equation given 
by (10.40).

Equation (10.53) is important in the sense that the ideal solution can be 
reached by simply performing the adaptation given by (10.42) as long as µ  is 
chosen to satisfy (10.52). The error ε j,k given by (10.38) requires the knowledge 
of the reference Xk which is unknown. However, it can be estimated from 
the previous ( j − 1)th iteration. Based upon this estimation, the gain can be 
estimated in the next iteration.

The adaptation speed depends upon the coefficient µ . If it is too small, 
it may take a long time to converge. If it is too large, it may not converge at 
all. One way to choose the adaptation coefficient µ  is in the following:
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m = −a
Yk ,max

2  (10.54)

where Yk,max is the maximum of the kth subcarrier. Substituting (10.54) into 
(10.52), we have

 

0 < a <
Yk ,max

2

Yk
2  (10.55)

The parameter α  given in (10.55) controls the convergence behavior and 
a proper selection is necessary.

10.4.3 Examples

In the following examples, we concentrate on a single subcarrier k using 
QPSK. Assume the multipath channel is given by (10.33) and (10.34). From 
the training sequence, the initial gain G is then given here:

 
Gk =

Xk
Yk

= 1
Hkr + jHki

=
Hkr − jHki

Hkr
2 + Hki

2  (10.56)

Later, assume the channel suffers gradual fading which is determined 
by the factor b in (10.33) and (10.34). Since b is changed, the initial value of 
Gk given by (10.56) is no longer valid. If it is not updated, the receiver per-
formance will degrade.

Using (10.42) for adaptation, the error given by (10.38) can be used to 
determine how good the convergence is.

Example 10.7

Let k = 24, b = 0.9, N = 64, and m = 3, and then from (10.33) and (10.34) we 
can set some initial values given in (10.57a) to (10.57d):

 X24 = 0.707(1+ j)  (10.57a)

 H24 = 1.636 + 0.707 j  (10.57b)

 Y24 = 0.657 +1.657 j  (10.57c)

 G24 = 0.515− 0.223 j  (10.57d)
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If the channel does not change, the G24 given by (10.57d) can be used 
to achieve a perfect demodulation. Assume now that b drops to 0.8 and is 
maintained for at least 20 symbol periods. Since H24 is changed, the gain 
G24 is also changed. If the gain is not updated, an error always occurs and 
cannot be removed.

Assume now that the gain is updated according to (10.42). Depending 
upon the selection of α , there is a different convergence behavior. Figure 10.11 
is a plot of the error magnitude ⎪ε k⎪ given in (10.38) against the iteration 
number. The plot starts at iteration 1 when b drops to 0.8.

Depending upon the adaptation and α , there are four different curves. If 
there is no adaptation, the error remains the same and can never be reduced. 
For both α  = 0.1 and 0.5, the adaptation converges. However, the conver-
gence speed at α  = 0.5 is much faster than at α  = 0.1. For α  = 0.1, the error is 
close to 0 at the end of iteration. For α  = 0.5, the error is exactly 0 at iteration 
number 5. It has to be careful to continue increasing α . When α  is increased 
to 1.1, the error continues increasing because the convergence condition given 
by (10.55) is not satisfied.

Figure 10.11 The demodulation error against the iteration number without fading.
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Example 10.8

In this example, the fading factor b is assumed to drop from 0.9 to 0.8 in 20 
steps. In other words, b drops according to the following formula:

 b = 0.9 − 0.005n  (10.58)

where n is the iteration number. Besides the change of b values, all the other 
conditions follow the same as given in Example 10.6. At b = 0.9, all the initial 
parameter values are given in (10.57).

Figure 10.12 is a plot of the error magnitude ⎪ε k⎪ against the iteration 
number. There are four curves. One is without adaptation. The other three 
curves have α  = 0.1, 0.5, and 1.12. The error magnitude is the same at iteration 
number 1 for all. This is because at iteration number 0, the error magnitude is 
zero. Without adaptation, the error continues increasing with increasing itera-
tion number. With adaptation, the error depends upon the choice of α . The 
error does not go to 0 because the channel frequency response changes due 
to the b variations at every iteration number. For α  = 0.5, the error is better 
than that for α  = 0.2. At α  = 1.12, the error is small initially and diverges 
eventually, because the convergence condition given by (10.55) is not satisfied.

Figure 10.12 The error magnitude against iteration number with fading.
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10.5 Summary

Two pilot patterns were used to estimate the channel. One is the block type 
and the other is the comb type. The pilot patterns are usually given in a time-
frequency diagram.

For the block-type pattern, the pilot subcarriers are periodically inserted 
at all subcarriers. This type is used when the channel variation is slow. At the 
insertion symbol time, there are no data subcarriers. Therefore, the channel 
is accurately estimated at all subcarriers. Since the transmission of the pilot 
symbol is an overhead, the price paid is a reduction in the data rate.

For the comb-type pattern, the pilots are sent all the time but only a 
finite number of subcarriers are dedicated to be pilots. This type is used when 
the channel is fast varying. Even though the channel at the pilot subcarri-
ers can be exactly determined, the channel at the data subcarriers has to be 
estimated through interpolation. Lagrange interpolation using polynomials 
is used. Depending upon the interpolation order, linear, parabolic, and cubic 
interpolation formulas were derived. The interpolation accuracy depends upon 
the sample delay, interpolation order, the number of pilot subcarriers, and 
random noise. Clearly, the interpolation accuracy increases with an increasing 
number of available pilot subcarriers. Since the number of pilot subcarriers is 
limited and there is uncertainty on the sample delay, the interpolation may 
not generate a good channel estimate.

The channel tracking provides an alternative to comb pilot pattern. The 
LMS algorithm uses a gradient search to adaptively adjust the channel response. 
The channel at every data subcarrier can be independently tracked and only 
one tap is necessary. The tracking depends upon the received subcarrier samples 
and the mean-square error between the information sequence and its estimate. 
As long as the adaptation coefficient is selected to meet the convergence con-
dition, the channel estimation error is significantly reduced in comparison to 
without any tracking. Another advantage is adaptive channel tracking does 
not need pilot subcarriers, and the data rate will not additionally suffer.

The next chapter concentrates on the decoding process. Both hard deci-
sion decoding and soft decision decoding are discussed.
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11
Data Decoding

11.1 Introduction

In previous chapters, we have discussed signal detection, synchronization, 
channel estimation, and tracking. After the completion of those steps, each 
OFDM symbol should be correctly identified. The next step is the demodu-
lation after channel removal to recover the in-phase and quadrature-phase 
samples for each subcarrier. These IQ samples are then demapped. Both hard 
decision decoding and soft decision decoding are covered.

For the hard decision decoding, both a brute-force approach and a sim-
plified approach are discussed. The brute-force approach has to compute all 
the Euclidean distances against all the constellation points. For the simplified 
approach, each bit is determined individually based upon a simple metric for 
the I bits and Q bits. After demapping and subsequent deinterleaving, Viterbi 
decoding follows and the distance metric is based upon computing the Ham-
ming distance. The Viterbi decoder output is then descrambled to recover the 
data bit sequence.

For the soft decision decoding, the IQ samples are used together with 
Viterbi decoding for demapping and error correction. The difference from the 
hard decision decoding is that the distance metric is based upon computing 
the Euclidean distance in each branch of the Viterbi decoder. A simplified log 
likelihood ratio (LLR) for soft decoding is also discussed. The transmitter and 
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receiver block diagrams are also slightly modified for the purpose of discuss-
ing soft decision decoding.

Both hard decision decoding and soft decision decoding are discussed 
in the following sections.

11.2 Demodulation

Figure 4.13 shows a typical receiver block diagram. After ADC and cyclic 
prefix removal, the FFT is performed to transform the samples from the time 
domain to the frequency domain. The channel effects can then be removed 
using the techniques discussed in Chapter 10. After the in-phase I samples 
and quadrature-phase Q samples are recovered, the next step is demodulation.

On demodulation, there are two different ways data can be decoded. 
One is hard decision decoding and the other is soft decision decoding. In the 
hard decision decoding, the I and Q samples are first demapped before pass-
ing to the convolutional decoder. The Hamming distance is used to find the 
right path through the trellis diagram to correct errors. In the soft decision 
decoding, the I and Q samples are not demapped initially. They are used to 
compute the Euclidean distance in the Viterbi decoder to find the right path 
for error correction. Since the I and Q samples have a range of possible val-
ues, more information is carried. This additional information provides the 
improved error correction capability of the Viterbi decoder.

Both hard decision and soft decision decoding are covered in the fol-
lowing sections.

11.3 Hard Decision Decoding

In the hard decision decoding, the first step is to transform the I and Q samples 
into data bits. There are two ways to do it. One way is to use the conven-
tional Euclidean distance, which is time-consuming. The other is a simplified 
demapper without loss of accuracy [1]. Both approaches are discussed in the 
following sections.

11.3.1 Conventional Demapper

Let Yk represent the kth received subcarrier of an OFDM symbol as given here:

 
Yk = YI ,k + jYQ ,k

 (11.1)
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where YI,k and YQ,k represent the in-phase and quadrature-phase sample of the 
kth subcarrier. Let Hk represent the channel estimation of the kth subcarrier. 
After removing the channel degradation, the restored subcarrier Zk is then 
given according to (10.13):

 
Zk =

Yk
Hk

 (11.2)

Assume also that there are M constellation points for a given modula-
tion. Let the ith constellation point be given as

Ai =
AI ,i + jAQ ,i

N

where N is the normalization factor. The Euclidean distance between Zk and 
Ai is then given here:

 

Di = Zk − Ai
2

=
NZI ,k − AI ,i( )2

+ NZQ ,k −   AQ ,i( )2⎡
⎣⎢

⎤
⎦⎥

N 2

 (11.3)

If there are M constellation points, there are M such computations 
according to (11.3). Since N is a constant, the decision rule can be based upon 
the following modified Di:

 
Di = NZI ,k − AI ,i( )2

+ NZQ ,k −   AQ ,i( )2

 (11.4)

The lth constellation point Al is selected if Dl is the minimum. Once Al 
is determined, the corresponding bit sequence is obtained.

Example 11.1

Figure 11.1 shows the constellation of a QPSK modulation. The normalization 
factor is N = 2 . The four constellation points are then A1 = (1 + j)/ 2 , A2 
= (1 − j)/ 2 , A3 = (−1 + j)/ 2 , and A4 = (−1 − j)/ 2 . The coordinates of the 
constellation points are plotted as NAi. Assume that the received kth subcar-
rier after removing the channel frequency response is Zk = (0.8/ 2 )(1 + j). 
From (11.4), the decision metric is then the distance from 0.8 + 0.8j to 1 + j, 
1 − j, −1 + j, and −1 − j. They are given by D1 = 0.08, D2 = 3.28, D3 = 3.28, 
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and D4 = 6.48. Since D1 is the minimum, the constellation point selected is 
A1. Based upon A1, the data bit sequence is mapped to be 11.

For QPSK, only four Euclidean distances need to be computed. For 
64-QAM, the number of distance computations jumps to 64 for each subcar-
rier. Therefore, it is necessary to simplify the computations.

11.3.2 Simplified Demapper

The approach given in the previous section is to first find the best constel-
lation point. Based upon this constellation point, all the sequence bits are 
obtained at the same time. In the simplified approach [1], each bit is decoded 
separately. This is possible due to the way the bits sequence is assigned to the 
constellation point.

To simplify the presentation, let UI,k and UQ,k be defined here:

 
U I ,k = NZI ,k  (11.5)

 
U Q ,k = NZQ ,k  (11.6)

Substituting (11.5) and (11.6) into (11.4), we have

 
Di = U I ,k − AI ,i( )2

+ U Q ,k −   AQ ,i( )2
 (11.7)

Figure 11.1 QPSK constellation.
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To further simplify the presentation, the index i is dropped and we have

 

D = U I ,k − AI( )2
+ U Q ,k −   AQ( )2

= DI + DQ

 (11.8)

where DI and DQ are given here:

 
DI = U I ,k − AI( )2

 (11.9)

 
DQ = U Q ,k − AQ( )2

 (11.10)

Assume that each constellation point is mapped to 2m bits. As will 
become clear later, the first m bits are in-phase bits, while the second m bits 
are quadrature-phase bits. Each bit is either bI,i or bQ,i where i ranges from 1 
to m. The in-phase bits are determined by DI while the quadrature-phase bits 
are determined by DQ.

Each bit is either 0 or 1 and has its own decision region. For the in-phase 
bits, they are either R0

I,i or R1
I,i where i is the bit number. For the quadrature-

phase bits, they are either R0
Q,i or R1

Q,i.

11.3.2.1 Simplified QPSK Demodulation

For the QPSK, each constellation point has 2 bits and m = 1. The 2-bit sequence 
is represented by bI,1bQ,1. As can be seen from Figure 11.1, the decision region 
is to the left of the y-axis if the first bit is 0 and to the right of the y-axis if 
the first bit is 1. In other words, R0

I,1 is for UI,k < 0 while R1
I,1 is for UI,k > 0. 

Since the decision boundary is the y-axis, the first bit is the in-phase bit and 
is determined by DI.

For the second bit, the decision region is the x-axis. The decision region 
is above the x-axis if the second bit is 1 and below the x-axis if the second bit 
is 0. In other words, R0

Q,1 is for UQ,k < 0 while R1
Q,1 is for UI,k > 0. Since the 

decision region is the x-axis, the second bit is the quadrature-phase bit and is 
completely determined by DQ.

Using DI, the first bit is 1 if the following is true:

 
U I ,k −1( )2

<  U I ,k +1( )2
 (11.11)

From (11.11), we have UI,k > 0 if the first bit is 1 and UI,k < 0 if the first 
bit is 0. This quantitatively justifies the previous argument.
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Using DQ, the second bit is one if the following is true:

 
U Q ,k −1( )2

<  U Q ,k +1( )2
 (11.12)

From (11.12), we similarly have UQ,k > 0 if the first bit is 1 and UQ,k < 0 
if the first bit is 0.

In summary, the decision rule is given here:

 
bI ,1 =

1 if     U I ,k > 0
0 if     U I ,k < 0

⎧
⎨
⎩

 (11.13a)

 
bQ ,1 =

1 if     U Q ,k > 0
0 if     U Q ,k < 0

⎧
⎨
⎪

⎩⎪
 (11.13b)

Example 11.2

In Example 11.1, the received kth subcarrier is Zk = (0.8/ 2 )(1 + j). Multiplying 
by the normalization factor 2 , we have Uk = (0.8)(1 + j). The in-phase and 
quadrature-phase components are then UI,k = 0.8 and UQ,k = 0.8. From (11.13), 
the bits are decoded as bI,1 = 1 and bQ,1 = 1. The sequence of 2 bits is then 11.

Equation (11.13) shows that the computation of Euclidean distance is 
completely removed. A simple comparison of the in-phase and quadrature-
phase component against 0 determines the baud bits.

11.3.2.2 Simplified 16-QAM Demodulation

For 16-QAM, each constellation point has 4 bits. The first two bits are in-
phase bits and the last two bits are quadrature-phase bits. The bit sequence is 
given by bI,1bI,2bQ,1bQ,2. Figure 11.2 shows the partitions of the first in-phase 
bit bI,1. As can be seen, the partition boundary is the y-axis. The partition R0

I,1 
is to the left of the y axis while R1

I,1 is to the right of the y-axis. Therefore, the 
shortest distance is determined by DI.

In each partition, there are two constellation points on the x-axis. The 
first step is to choose the constellation point in each partition. In the parti-
tion R1

I,1, the two constellation points are 3 and 1. The constellation point 3 
is chosen if the following is true:

 
U I ,k − 3( )2

< U I ,k −1( )2
 (11.14)
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After some simple algebra, (11.14) leads to the condition UI,k > 2. Simi-
larly, constellation point 1 is chosen if UI,k < 2.

In the partition R0
I,1, there are also two constellation points −1 and −3. 

The constellation point −3 is chosen if the following is true:

 
U I ,k + 3( )2

< U I ,k +1( )2
 (11.15)

Equation (11.15) leads to the condition UI,k < −2. Similarly, the condi-
tion becomes UI,k > −2 if the constellation point −1 is chosen.

For UI,k > 2, the constellation point in partition R1
I,1 is 3 and the closest 

constellation point in partition R0
I,1 is −1. Therefore, bI,1 = 1 if the following 

is true:

 
U I ,k − 3( )2

< U I ,k +1( )2
 or U I ,k > 1  (11.16)

Following the similar logic, the following are obtained:

U I ,k < −2 and bI ,1 = 0 if U I ,k + 3( )2
< U I ,k −1( )2

or U I ,k < −1  (11.17)

U I ,k < 2 and bI ,1 = 1 if  U I ,k −1( )2
< U I ,k +1( )2

 or U I ,k > 0  (11.18)

Figure 11.2 The partitions of the first in phase bit of 16-QAM.
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 (11.19)

From (11.16) to (11.19), bI,1 is decoded based upon the following criteria:

 
U I ,k −1 U I ,k > 2  (11.20a)

 
U I ,k U I ,k < 2  (11.20b)

 
U I ,k +1 U I ,k < −2  (11.20c)

For each criterion, the first term determines whether the bit is 1 or 0. 
For example, the first criterion is to set bI,1 = 1 for UI,k − 1 > 0 and bI,1 = 0 for 
UI,k − 1 < 0 under the condition of UI,k > 2.

Figure 11.3 shows the partitions of the second in-phase bit bI,2. The two 
vertical lines y1 and y2 generate three partitions. The partition R0

I,2 is to the 
left of y1 and to the right of y2 while the partition R1

I,2 is between y1 and y2. 
The constellation point is 3 if the partition R0

I,2 is to the right of y2 and −3 if 
the partition R0

I,2 is to the left of y1.
For constellation R1

I,2, there are two possible constellation points −1 and 
1 on the x-axis. To choose 1 as the constellation point, the following inequal-
ity must be satisfied:

Figure 11.3 The partitions of the second in-phase bit of 16-QAM.
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U I ,k −1( )2

< U I ,k +1( )2
or U I ,k > 0  (11.21)

Similarly, to choose −1 as the constellation point, the condition becomes 
UI,k < 0.

Based upon the same logic as before, bI,2 = 0 if the following inequali-
ties are true:

 
U I ,k − 3( )2

< U I ,k −1( )2
 or −U I ,k + 2 < 0 for U I ,k > 0  (11.22a)

 
U I ,k + 3( )2

< U I ,k +1( )2
 or U I ,k + 2 < 0 for U I ,k < 0  (11.22b)

Similarly, bI,2 = 1 if the following inequalities are true:

 
U I ,k −1( )2

< U I ,k − 3( )2
 or −U I ,k + 2 > 0 for U I ,k > 0  (11.23a)

 
U I ,k +1( )2

< U I ,k + 3( )2
 or U I ,k + 2 > 0 for U I ,k < 0  (11.23b)

Equations (11.22) and (11.23) can be combined to have the simple cri-
terion −⎪UI,k⎪ + 2. The interpretation is then bI,2 = 1 if −⎪UI,k⎪ + 2 > 0 and 
bI,2 = 0 if −⎪UI,k⎪ + 2 < 0.

Equation (11.20) can be further simplified. For criterion (1), UI,k − 1 is 
always greater than 0 if UI,k > 2. Therefore, the criterion is similar to bI,1 = 1 
for UI,k > 0. Similarly, for criterion (3), UI,k + 1 is always less than zero if UI,k 
< −2. The criterion is then the same as bI,1 = 0 for UI,k < 0. Based upon these 
arguments, (11.20) and (11.23) can be combined to give the following criteria:

 
bI ,1:  U I ,k  (11.24a)

 
bI ,2 :   − U I ,k + 2  (11.24b)

Similarly, the quadrature-phase bits have the following criteria:

 
bQ ,1:  U Q ,k  (11.25a)

 
bQ ,2 :   − U Q ,k + 2  (11.25b)
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Equations (11.24) and (11.25) are significantly simplified in comparison 
with the computations of 16 Euclidean distances to decode one subcarrier.

Example 11.3

Assume 16-QAM and the received kth subcarrier is Zk = (−0.5 + 3j)/ 10
. The normalization factor is 10 . After multiplying by 10 , the received 
Zk = (−0.5 + 3j). Using the brute-force approach, it is necessary to compute 
16 Euclidean distances. Figure 11.4 is a plot of these 16 Euclidean distances 
against the decimal equivalent of the bit sequence. The minimum is 0.25 cor-
responding to the decimal number 6. The bit sequence is then 0110. The two 
in-phase bits are 01 and the two quadrature-phase bits are 10.

Equation (11.24) and (11.25) can be used to quickly get the same answer. 
The in-phase and quadrature-phase components are UI,k = −0.5 and UQ,k = 3. 
To decode the in-phase bits, we have from (11.24), UI,k < 0 while −⎪UI,k⎪ + 2 
= 1.5 > 0. The two in-phase bits are then 01. To decode the two quadrature-
phase bits, we have from (11.25), UQ,k > 0 while −⎪UQ,k⎪ + 2 = −1 < 0. The 
two quadrature-phase bits are then 10. The whole bit sequence is then 0110, 
which is the same as that from the brute-force computation.

11.3.2.3 Simplified 64-QAM Demodulation

Figure 2.6 shows the constellation for 64-QAM. The constellation points are 
1, 3, 5, and 7 on the positive x-axis and −1, −3, −5, and −7 on the negative 
x-axis. The same is true on the y-axis. Each constellation point has 6 bits. 
There are 3 in-phase bits and 3 quadrature-phase bits. The bit sequence can 

Figure 11.4 Plot of Euclidean distances for QAM-16 and Uk = −0.5 + 3j.
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be written as bI,1bI,2bI,3bQ,1bQ,2bQ,3. Following the same procedure as given in 
the previous two sections for QPSK and 16-QAM, the results are given here:

 

bI ,1: (1) U I ,k U I ,k ≤ 2

(2) U I ,k −1 2 <U I ,k ≤ 4

(3) U I ,k − 2 4 <U I ,k ≤ 6

(4) U I ,k − 3 U I ,k > 6

(5) U I ,k +1 −4 ≤U I ,k < −2

(6) U I ,k + 2 −6 ≤U I ,k < −4

(7) U I ,k + 3 U I ,k < −6

 (11.26)

 

bI ,2 : (1) − U I ,k + 3 U I ,k ≤ 2

(2) 4 − U I ,k 2 < U I ,k ≤ 6

(3) − U I ,k + 5 U I ,k > 6

 (11.27)

 

bI ,3: (1) U I ,k − 2 U I ,k ≤ 4

(2) − U I ,k + 6 U I ,k > 4
 (11.28)

Equation (11.26) can be further simplified. Criteria (2), (3), and (4) are 
always positive under the specified positive values of UI,k. This is the same 
as bI,1 = 1 for UI,k > 0. Similarly, criteria (5), (6), and (7) are always negative 
under the specified negative values of UI,k. Again, this is the same as bI,1 = 0 
for UI,k < 0. Criterion (1) also suggests bI,1 = 1 for UI,k > 0 and bI,1 = 0 for UI,k 
< 0. In other words, bI,1 is completely determined by UI,k.

Equation (11.27) can also be further simplified. Criterion (1) is always 
positive for ⎪UI,k⎪ ≤ 2. Criterion (3) always generates negative values for ⎪UI,k⎪ 
> 6. Both are either always positive or always negative under the second cri-
terion. In other words, bI,2 is completely determined by 4 − ⎪UI,k⎪ without 
any conditions.

Equation (11.28) shows that there are two criteria to specify bI,3 under 
two separate conditions. These two criteria can be replaced by a single criterion 
−⎥⎪UI,k⎪ − 4⎪ + 2 without any attached conditions [1]. By tracing through 
all possible values of UI,k, it can be seen that this single criterion is equivalent 
to (11.28).
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From the above arguments, the further simplified criteria to determine 
the in-phase bits are summarized here [1]:

 

bI ,1:  U I ,k

bI ,2 :  4 − U I ,k

bI ,3:  − U I ,k − 4 + 2

 (11.29)

Similarly, the quadrature-phase bits are determined by the follow-
ing criteria:

 

bQ ,1:  U Q ,k

bQ ,2 :  4 − U Q ,k

bQ ,3:  − U Q ,k − 4 + 2

 (11.30)

Example 11.4

Assume the modulation is 64-QAM and the received Zk = (1.5 + j)/ 42 . The 
normalization factor is 42 . Multiplying by 42 , we have Uk = 1.5 + j. Figure 
11.5 is a plot of Euclidean distance against all 64 possible bit sequences. The 
minimum is 54 and the corresponding bit sequence is 110110.

Figure 11.5 Plot of Euclidean distance for 64-QAM and Uk = 1.5 + j.
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Using the simplified approach, the in-phase and quadrature-phase com-
ponents are UI,k = 1.5 and UQ,k = 1, respectively. The three criteria for the 
in-phase bits from (11.29) are 1.5, 2.5, and −0.5, respectively. The in-phase 
bit sequence is then 110. For the quadrature-phase bits, the three criteria gen-
erate 1, 3, and −1. The quadrature phase bit sequence is then also 110. The 
complete bit sequence is then 110110. The simplified approach generates the 
same answer but with much less computation.

11.3.3 Deinterleaver and Viterbi Decoding

After the I and Q samples are demapped, the bit sequence must first be dein-
terleaved. The deinterleaver process is discussed in Chapter 7. The output bit 
sequence from the deinterleaver is then fed into the Viterbi decoder. The details 
of the Viterbi decoder are also discussed in Chapter 7.

The Viterbi decoder in Chapter 7 is illustrated using Hamming distance 
as the distance metric. The received baud is compared with the baud from each 
trellis branch to get the distance. For a 1/2 convolutional decoder, each baud 
has 2 bits. Table 7.3 lists the Hamming distance for all the possible bauds. In 
essence, this is hard decision decoding.

11.3.4 Descrambler

The last step in the decoding process is to pass the corrected bit sequence from 
the Viterbi decoder to a descrambler to recover the data bits. The scrambler 
in the transmitter is necessary for data security. The scrambler using the shift 
register sequence is discussed in Chapter 5.

Since the receiver knows exactly how the data is scrambled in the trans-
mitter, the descrambling process is pretty easy and is illustrated in Figure 5.7.

11.4 Soft Decision Decoding

For soft decision decoding, two slightly modified transmitter and receiver 
block diagrams are given first. After understanding the overall architectures, 
the soft decision processes then follows.

11.4.1 Transmitter and Receiver Block Diagram

For the soft decision decoding, a typical transmitter block diagram is shown 
in Figure 11.6. In comparing with Figure 4.1, the only change is that the error 
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correction encoder and interleaver are replaced by the outer encoder, inter-
leaver, and convolutional encoder. The outer encoder could be a Reed-Solomon 
encoder, which can be applied to reduce block errors [2, 3]. However, it can 
be another error correction encoder depending on the specific application. For 
example, the outer encoder could be a quaternary convolutional encoder [4]. 
The output from the outer encoder then passes through an interleaver and then 
a convolutional encoder before getting into the modulation process. After the 
modulator, it follows what is given in Figure 4.1.

A typical receiver block diagram is shown in Figure 11.7. In compar-
ing with Figure 4.13, the demodulation, deinterleaver, and error correction 
decoder are replaced by Viterbi decoder, deinterleaver, and outer decoder. After 
the channel effects are removed, the I and Q samples have a range of values 
and include valuable information. They will not be demapped immediately. 
Instead, they will be used in combination with a Viterbi decoder to generate 
the bit sequence.

The output from the Viterbi decoder then goes through deinterleaver 
and outer decoder before getting into the descrambler to recover the data 
bit sequence.

Figure 11.6 A typical soft decision encoder block diagram.

Figure 11.7 A typical soft decision decoder block diagram.
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11.4.2 Soft Decoding Using the Euclidean Distance

Using the soft decision in the Viterbi decoding, the only difference from the 
hard decision is the distance metric. As was mentioned before, the metric used 
is the Euclidean distance. For simplicity in the illustration, assume that QPSK 
is used for the modulation. For each branch in the Viterbi trellis diagram, let 
the received sample be given as I + jQ. Each branch output baud is 00, 01, 11, 
or 10. Their equivalent values in the constellation are given in Table 2.2. Let 
each branch baud be represented as BI + jBQ. Then the Euclidean distance is 
simply given here:

 
D = I − BI( )2

+ Q − BQ( )2
 (11.31a)

To save computation time, D can also be computed as follows:

 
D = I − BI + Q − BQ  (11.31b)

In each branch, the Hamming distance for hard decision decoding is 
then replaced by D given in (11.31).

Following the same process as in hard decision decoding, the path score is 
accumulated for each additional branch. At the last branch, the path with the 
minimum accumulated distance is the optimum path. The input bit sequence 
is then determined from this optimum path.

11.4.3 Soft Decoding Using LLR

The simplified demodulation discussed in Section 11.3.2 simplifies the hard 
decision demodulation. However, the soft bit values defined are actually derived 
from LLR, which is very similar to what has been presented in Section 8.4. 
Assume that the constellation point is a in the decision region R1

I,j and b in 
the decision region R0

I,j for the jth I bit. Then point a is selected if the follow-
ing LLR is true

 
p y

RI , j
1

⎛

⎝
⎜

⎞

⎠
⎟ > p y

RI , j
0

⎛

⎝
⎜

⎞

⎠
⎟  (11.32)

where y is the received in-phase sample. Assuming that y is Gaussian distrib-
uted with standard deviation σ , (11.32) then becomes
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1
2ps e

−( y−a)2

2s2
⎡
⎣⎢

⎤
⎦⎥ > 1

2ps e
−( y−b)2

2s2
⎡
⎣⎢

⎤
⎦⎥  (11.33)

Removing the common term and taking logarithm on both sides of 
(10.33), we have

 ( y − a)2 < ( y − b)2   if a is selected  (11.34)

Comparing the Euclidean distance given in (11.34) is the basis for the 
discussion of the hard decision decoding presented in Section 11.3. However, 
it is actually derived from the LLR.

Based upon the LLR, the soft bit values are defined for QPSK in (11.13), 
for 16-QAM in (11.24) and (11.25) and for 64-QAM in (11.29) and (11.30). 
It has been shown these soft bit values can be applied for soft Viterbi decod-
ing successfully [1].

11.4.4 Further Decoding Process

In reference to Figure 11.7, further processes after soft Viterbi decoder are 
shown. The corrected data bit sequence is then deinterleaved and further 
decoded through the outer decoder. The output bit sequence from the output 
decoder is then descrambled to recover the original data bits.

11.5 Summary

The data demodulation starts after the receiver has completed the process of 
IQ recovery, synchronization and frequency offset estimation. There are two 
different ways for data demodulation. One is hard decision decoding and the 
other is soft decision decoding.

On the hard decision decoding, the received I and Q samples have to 
be demapped first. There are two different approaches. One is the brute-force 
approach by finding the minimum Euclidean distance against all the constel-
lation points. The other is a simplified approach by decoding a single bit each 
time based upon it is I bits or Q bits. The decision rules for QPSK, 16-QAM, 
and 64-QAM are derived. This greatly simplifies the required computations 
and speeds up the demodulation process. After the demapping is complete, 
the transmitted bit stream is recovered after additionally going through the 
process of deinterleaving, FEC decoding, and descrambling.
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On the soft decision decoding, the transmitter and receiver block dia-
grams are slightly modified and discussed. The soft Viterbi decoding is then 
described. The I and Q samples are demapped in combination with the Viterbi 
decoding. The difference from the hard Viterbi decoding is the computation 
of distance metric. The soft decision uses Euclidean distance while the hard 
decision uses the Hamming distance.

The soft bit values given in the hard decision for the simplified demodu-
lation are derived from the LLR by comparing two different decision regions 
for bit 1 and bit 0. These LLR values can be applied successfully to the soft 
Viterbi decoding. Following Figure 11.7, the input data bit sequence can 
eventually be recovered.

The next chapter presents the simulation results of the OFDM perfor-
mance in a multipath channel.
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12
Simulation Study of a Multipath 
Channel on OFDM

12.1 Introduction

Up to this point, all the major components in the transmitter and the receiver 
have been presented. They were provided in Figures 4.1 and 4.13 for the trans-
mitter and receiver block diagrams. The complete system is then simulated to 
find out the effectiveness of the OFDM to combat the impact of a multipath 
channel and random Gaussian noise.

Both the transmitter and receiver software were written in C language 
running on a laptop. The Ubuntu Linux operating system was used to gener-
ate the results. However, the commands and operations are not different from 
the Linux operating system.

The transmitter waveform follows exactly what was specified in the IEEE 
802.11a. The receiver algorithms have been discussed in the previous chapters. 
Another goal for the simulation is to justify these algorithms. On the Vit-
erbi decoding, only hard decision decoding is used. The unique algorithm is 
the maximum likelihood detection based upon normalized cross-correlation 
for signal acquisition. Other algorithms are the block pilot pattern inserted 
at a given period for channel estimation, the convolutional codes including 
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punctured convolutional codes for error corrections, and the LMS algorithm 
using the method of steep descent for channel tracking.

In the following, a multipath channel model is presented first. Simula-
tion examples for OFDM performances over both an AWGN and a multipath 
channel are then given.

12.2 Characterization of Multipath Channel

From (8.1), the transmitted signal x(t) with a carrier frequency of fc is given here:

 
x(t) = Re s(t)e j2pfct( )  (12.1)

where s(t) is the source signal. To characterize the multipath channel, assume 
that there are L(t) paths. The number of paths at any given time is time-
dependent. This means that, at any time, the number of signals the receiver 
receives is not a constant. Corresponding to each path, assume the delay is 
τn(t), the Doppler shift is ∈n(t), and the attenuator factor is αn(t). The received 
signal r(t) is then given by

 
r(t) =

n=1

L(t )

∑an(t)x t − tn(t)( )e j2pt∈n(t )  (12.2)

The Doppler shift, ∈n(t), from each path is also time-dependent. Assum-
ing that the angle between the direction of motion and the signal propagation 
path is θ n(t), then the Doppler shift can be written as here:

 
∈n (t) = vfc cos θn(t)( )/c  (12.3)

where c is the light velocity and v is the velocity of motion. Substituting (12.1) 
into (12.2), the following equation results:

 
r(t) = Re an(t)s t − tn(t)( )e− j2pfctn (t )e+ j2p∈n(t )t

n=1

L(t )

∑⎡
⎣
⎢

⎤

⎦
⎥e j2pfct

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (12.4)

The quantity inside the bracket is the equivalent lowpass signal z(t) and 
is given by

 
 z(t) = an(t)s t − tn(t)( )e− j2p( fctn (t )−∈n(t )t )

n=1

L(t )

∑  (12.5)
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Then the phase term in (12.5) can be combined to give

 
jn(t) = −2p fctn(t)− εn(t)t( )  (12.6)

Substituting (12.6) into (12.5), the following results [1]:

 
z(t) = an(t)e jjn (t )s t − tn(t)( )

n=1

L(t )

∑  (12.7)

Equation (12.7) shows that there is an amplitude perturbation αn(t) and 
a phase perturbation φ n(t) corresponding to each path. The phase term φ n(t) 
can cause the signal fading. Depending upon the magnitude of phase term 
φ n(t), the signals from different paths may add constructively or destructively. 
If it is the constructive addition, the combined signal strength increases. How-
ever, if it is the destructive addition, the combined signal strength decreases. 
These signal variations are called signal fading.

Equation (12.7) can be further simplified by defining the weighting 
factor here:

 wn(t) = an(t)e jjn (t )  (12.8)

Substituting (12.8) into (12.7), we have

 
z(t) = wn(t)s t − tn(t)( )

n=1

L(t )

∑  (12.9)

From (12.9), the received lowpass signal z(t) is the summation of the 
delayed version of the original signal s(t) multiplied by a time-dependent 
weighting factor wn(t). This weighting factor is, in general, complex and has 
both amplitude and phase variations.

From (12.9), the equivalent channel impulse response h(τ , t) at time t 
is given here:

 
h(t ,t) = wn(t)d t − tn(t)( )

n=1

L(t )

∑  (12.10)

The received signal z(t) is the output of passing the source signal s(t) 
through the channel characterized by h(τ , t). Equation (12.10) is justified by 
the following convolutional integral:
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z(t) = h(t ,t)s(t − t) dt∫
= wn(t)d t − tn(t)( )s(t − t)dt

n=1

L(t )

∑∫

=   wn(t)s t − tn(t)( )
n=1

L(t )

∑

 (12.11)

From the derivation of (12.11), the channel impulse response given by 
(12.10) is justified. Equation (12.9) is used as the basis for the simulation of 
a multipath channel.

12.3 Computation of SNR

In a multipath channel, only one is the direct path and the others are due to 
reflections. For the direct path, the delay is τ 1(t). Equation (12.11) can then 
be rewritten as

 
z(t) = w1(t)s t − t1(t)( )+   wn(t)s t − tn(t)( )

n=2

L(t )

∑  (12.12)

In the receiver, the received signal after adding the noise n(t) becomes

 y(t) = z(t)+ n(t)  (12.13a)

Taking the discrete Fourier transform of (12.13a), we have the following:

 Yk = Zk + Nk  (12.13b)

The kjth subcarrier of the mth symbol in the frequency domain is denoted 
as Zmkj

. Assume that the total number of data subcarriers is NSD. The average 
signal energy of these data subcarriers for the mth symbol is then

 
Em = 1

NSD

⎛
⎝⎜

⎞
⎠⎟

Zmk j

2

j=1

NSD

∑  (12.14)

The noise energy in the frequency domain can be computed in a similar 
fashion and is given here:
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Nm = 1

NSD

⎛
⎝⎜

⎞
⎠⎟

Nmk j

2

j=1

NSD

∑  (12.15)

where Nmkj
 is the noise energy at the subcarrier index kj of the mth symbol 

and Nm represents the average noise energy of the mth symbol in the fre-
quency domain.

Assuming that there are a total of N symbols, the average bit SNR Eb/
N0 is then given by

 

Eb
N0

= 1
N

⎛
⎝⎜

⎞
⎠⎟

Em
Nmm=1

N

∑  (12.16)

12.4 Transmitter Architecture for Simulation

For simulation, the transmitter architecture is the same as given in Figure 
4.1. The transmitter waveform follows exactly the specification of the IEEE 
802.11a. The channel spacing is 20 MHz. Four different modulation techniques 
were studied and they are BPSK, QPSK, 16-QAM, and 64-QAM. The error 
control coding selected is the convolutional coder. The three possible coding 
rates are 1/2, 3/4, and 2/3. The data scrambling and interleaving follow those 
specified in Chapters 5 and 7.

The preamble includes both short sequence and long sequence. The short 
sequence has 10 segments and each segment lasts 0.8 µs. The total number of 
samples is then 160. The long sequence has two data symbols of 3.2 µs each 
and two guard intervals of 0.8 µs each. The short sequence then lasts 8 µs and 
the same is true for the long sequence. The total preamble period is then 16 µs.

Each data symbol has a duration of 3.2 µs and a cyclic prefix of 0.8 
µs. The total signal duration for each symbol is then 4 µs. The number of 
subcarriers is 48 for data and 4 for pilots and the resulting total becomes 52. 
The size of IFFT is 64. This means that there are 12 unused subcarriers and 
their complex amplitudes are set to zero. Before the data transmission, a signal 
symbol of 4 µs is also inserted.

The channel is tracked in two ways. The first is that block type pilot pat-
terns are inserted at a given period. The second is to the use the LMS algorithm 
to track the channel at every data subcarrier. For the block-type pilot pattern, 
the actual data rate is reduced according to (10.1) due to the overhead trans-
mission. However, there is the advantage of reducing the bit error rate (BER).
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12.5 Receiver Architecture for Simulation

The receiver architecture follows that were given in Figure 4.13. Before the 
data demodulation, there will be synchronization and signal detection. The 
detection algorithm used is the maximum likelihood detection based upon 
the simple rule according to (8.27). The decision metric is the normalized 
cross-correlation.

The long sequence has two data symbols. The second data symbol is 
used for the initial estimation of the channel. The equalization starts at the 
signal symbol and continues with the following data symbols. The multipath 
channel can have fading and the wn(t) given in (12.10) varies with time. This 
means that the channel must also be tracked and the LMS algorithm based 
upon (10.42) is used.

The effectiveness of transmitting the block pilot patterns is also simulated. 
In other words, the channel is estimated every M data symbols. At the end 
of the new channel estimation, it is then tracked until the next pilot period.

After the channel equalization, the sequence of demodulation, dein-
terleaving, descrambling, and convolutional decoding follow to restore the 
originally transmitted data.

The performance metric is the BER, defined here:

BER = Total number of bits in error
Total number of transmitted bits

The unit is normally in percentage.

12.6 Simulation Studies

The simulation of OFDM is grouped into two categories. The first is the addi-
tion of noise, but there are no multipath degradations. The second is with both 
noise and multipath degradations.

The details are given in the following sections.

12.6.1 Performance over AWGN

In the following, the transmitter and receiver architecture described in Sec-
tions 12.4 and 12.5 are simulated. The signal detection accuracy can impact 
the BER performance. Therefore, the beginning data sample number detected 
is checked for every run. As described in Chapter 8, the detection is per-
formed in two steps. The first step is coarse detection and the second step is 
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fine detection. It was found that the beginning sample location is accurately 
determined without error for Eb/N0 > 5.2 dB. For Eb/N0 between 2.38 dB and 
5.2 dB, there is one sample error for the coarse detection. However, the fine 
detection can accurately correct the error. In other words, the signal detection 
plays no role in the BER performance.

Figure 12.1 shows the BER performance in decibels over AWGN. For 
comparison purposes, four modulation schemes, BPSK, QPSK, 16-QAM, and 
64-QAM, are included. The error correction coding applied is the convolu-
tional coder of coding rate = 1/2. The detailed structure is given in Section 
7.4.3. As expected, BPSK has the best performance while 64-QAM has the 
worst performance.

For BPSK, the BER is 0 at Eb/N0 = 8.71 dB, 0.000385 at Eb/N0 = 7.71 
dB, 0.000866 at Eb/N0 = 6.71 dB, and 0.00182 at Eb/N0 = 5.71 dB. The 
inclusion of error correction coding and interleaver significantly improve the 
error rate performance.

The simulation results also show that the BER is 0 at Eb/N0 = 8.71 dB 
for BPSK, 12.71 dB for QPSK, 18.81 dB for 16-QAM, and 26.72 dB for 
64-QAM. As the modulation becomes more complicated to increase the data 
rate, there is also a requirement for a higher SNR.

Table 12.1 lists the Eb/N0 for BPSK, QPSK, 16-QAM and 64-QAM 
at around the same BER. There is about 5.9-dB improvement in Eb/N0 using 
BPSK instead of QPSK. If QPSK is used instead of 16-QAM, the improve-
ment of Eb/N0 is about 7.1 dB.

Figure 12.1 BER performance over AWGN using a convolutional of coding rate = 1/2.
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The punctured convolutional coder has been discussed in Chapter 7. It 
is generated based upon the coder rate = 1/2 by dropping bits at a specified 
pattern. The net result is an increase in date rate at a cost of a higher BER. 
Figure 12.2 a plot of BER performance over AWGN by comparing a rate = 
1/2 and a rate = 3/4 convolutional coder. Both QPSK and BPSK modulations 
are used in the comparisons.

As expected, the BER of the rate = 1/2 coder is always lower than the 
punctured coder of rate = 3/4. At the same BER, that means a higher Eb/N0 
is required for rate = 3/4 coder. An example is shown in Table 12.2 by listing 
the Eb/N0 at around the BER of 0.012.

Table 12.1 
Eb /N0 Comparisons of Different Modulations at Around the Same BER

Modulation Coding Rate BER Eb/N0

BPSK ½ 0.71% 4.82

QPSK ½ 0.65% 10.71

16-QAM ½ 0.68% 17.81

64-QAM ½ 0.50% 24.81

Figure 12.2 BER comparisons between QPSK and BPSK.
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For QPSK, the Eb/N0 increase in using the coding rate of 3/4 instead 
of 1/2 is 1.5 dB to achieve about the same BER. However, from Table 4.1, 
the data rate increases from 48 Mbps to 72 Mbps using a 20-MHz channel 
spacing. For BPSK, there is an increase of Eb/N0 by 2.5 dB in using coding 
rate of 3/4 instead of 1/2. Again, from Table 4.1, the data rate increases from 
24 Mbps to 36 Mbps using a 20-MHz channel spacing. If a higher data rate 
is required, then a slight loss in Eb/N0 is not a bad option. The BER becomes 
zero at Eb/N0 = 12.71 dB for QPSK and at Eb/N0 = 8.72 dB for BPSK using 
a bit coding rate of 3/4.

12.6.2 Performance over a Multipath Channel

In the previous section, the BER performance over background noise was 
given. In a real environment, there can be additional multipath delay and signal 
fading. To minimize the impact of these degradations, two techniques were 
discussed in Chapter 10. The first is the LMS algorithm to track the channel 
response. The second is to add a block-type pilot pattern. The efficiency of 
both techniques is simulated in this section.

Before the simulation data is given, the simulated multipath channel 
and simulation parameters are first presented.

12.6.2.1 Multipath Channel Model for Simulation

A multipath channel characterized by (12.11) is written here

 
z(t) =   wn(t)s t − tn(t)( )

n=1

L(t )

∑  (12.17)

In (12.17), wn(t) is the signal fading and can have both amplitude and 
phase perturbations and τ n(t) is the path delay. For the simulation study, we 
consider two multipath channels or L(t) = 2. One path is the main path and 

Table 12.2 
Eb /N0 Comparisons Between Rate = 1/2 and 3/4 at Around the Same BER

Modulation Coding Rate BER Eb/N0

QPSK 1/2 1.30% 10.01

QPSK 3/4 1.28% 11.51

BPSK 1/2 1.3% 4.22

BPSK 3/4 1.24% 6.71
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the other path is the reflected path due to obstacles. For the main path or 
n = 1, the propagation delay is assumed negligible and is set to zero. For the 
reflected path or n = 2, τ 2(t) is assumed to be a constant, τ . Based upon these 
two simplifications, (12.17) becomes

 z(t) = w1(t)s(t)+ w2(t)s(t − t)  (12.18)

In (12.18), the weighting coefficients ω 1(t) and ω 2(t) are complex and 
time variant. In the simulation, they are further given by the following 
two equations:

 
w1(t) = w1 p + d1(t)  (12.19)

 
w2(t) = w2 p + d2(t)  (12.20)

where δ1(t) and δ2(t) are small perturbations around their principal values. For 
the main path, the principal value is w1p and for the reflected path, the principal 
value is w2p. Both δ 1(t) and δ 2(t) are complex and can be written as follows:

 dn(t) = dnr (t)+ jdni (t) n = 1,2  (12.21)

Both δnr(t) and δni(t) are assumed to be Gaussian random variables with 
a zero mean and standard deviation of σ n. This standard deviation can be 
considered as the volatility or strength of the fading. The larger the standard 
deviation, the stronger is the signal fading.

For each path, a set of two random variables are generated every M data 
symbols. One is for the real part, δ nr(t), and the other is for the imaginary 
part, δ ni(t). We assume that the channel cannot change that fast. Between 
the beginning and ending symbols, the channel is estimated through linear 
interpolation at these M symbols. Let t = 0 and t = MT represent the begin-
ning and ending time of any M symbol period where T is the symbol duration. 
The symbol duration here includes the guard interval. Assume further that 
δ n(0) represents the channel perturbation at t = 0 and δ n(MT ) represents the 
channel perturbations at t = MT. Then at t = kT, the channel perturbation, 
δ n(kT ), is given by

 
dn(kT ) = dn(0)+ k

M
dn(MT )− dn(0)( )  (12.22)

For each symbol, the channel remains the same without any change 
throughout the entire duration. After computing δ n(kT ), (12.19) and (12.20) 
can be used to compute wn(t).
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12.6.2.2 Key Parameter Values for Simulation

For the simulation study, the transmitted waveform given by the IEEE 802.11a 
is used. The channel spacing is 20 MHz. The modulation is QPSK using 1/2 
convolutional error correction coding. The data scrambling and interleaving 
are all included in the simulation. Each symbol lasts 4 µs, which includes 3.2 
µs for data and 0.8 µs for the guard interval.

Since the LMS algorithm is used to track the channel, the performance 
depends strongly on how the tracking coefficient µ  defined in (10.54) is 
used. If the µ  is too large, the channel estimation error diverges and system 
performance degrades. However, if it is too small, the convergence speed is 
too slow. To obtain an appropriate value, some test runs were applied and the 
parameter α  given in (10.54) is set to 0.01.

On the block pilot pattern, the known data is inserted with three dif-
ferent periods. They are 5, 10, and 20. If the period is N, that means a known 
pilot symbol is inserted after every N symbols. Table 4.1 shows that the data 
rate for QPSK using the 1/2 coding rate and 20-MHz channel spacing is 12 
Mbps. For periods of 5, 10, and 20, the new data rate is reduced to 10 Mbps, 
10.9 Mbps, and 11.42 Mbps, respectively.

On the channel model, the parameter M defined in (12.22) is set to 20 
and the delay for the reflected path is set to 0.2 µs. The principal values for 
w1p and w2p are set as 1 and 0.5, respectively. The fading strength is given by 
its standard deviation, σ n. This means that w1(t) in (12.19) may have values 
ranging from 1 − σ n to 1 + σ n and w2(t) in (12.20) may have values ranging 
from 0.5 − σ n to 0.5 + σ n. Three different values of σ n, 0.1, 0.25, and 0.3, 
are used in the simulation.

12.6.2.3 Simulation Results

As was mentioned before, two approaches are used to minimize the impact 
of a multipath channel with signal fading. One is the LMS algorithm and 
the other is the block pilot pattern. On the block pilot pattern, the channel 
at the data symbols between the inserted pilot patterns is still tracked using 
the LMS algorithm.

Figure 12.3 is a plot of BER in percentage against the Eb/N0 (dB) when 
the fading standard deviation is 0.1. Three different noise seeds of 93, 40, and 
60 are used and the average BER from these three runs is performed. There 
are four curves. One curve is for the LMS algorithm without any block pilot 
pattern. The other three curves have a block pilot pattern with pilot periods 
of 5, 10, and 20 symbols. The LMS algorithm is still used to track the chan-
nel at the data symbols. The LMS algorithm tracks the channel very well as 
is evidenced by the negligible error rate percentage when the Eb/N0 is above 
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20 dB. When the Eb/N0 is below 20 dB, the performance advantage of add-
ing a block pilot pattern is obvious. As the period of pilot pattern increases, 
the error percentage also increases. When the pilot period is 20 symbols, the 
data rate only decreases to 11.42 Mbps from the original 12 Mbps without a 

Figure 12.3 BER comparisons with fading standard deviation = 0.1.

Figure 12.4 BER comparisons with fading standard deviation = 0.25.
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Figure 12.5 BER comparisons with fading standard deviation = 0.3.

block pilot pattern. However, the BER is significantly improved and especially 
at a low Eb/N0.

Figures 12.4 and 12.5 are similar plots except the fading standard devia-
tion is increased to 0.25 and 0.3. The advantage of adding a block pilot pattern 
can clearly be seen. There is a small price paid due to data rate decrease, but 
the big gain in BER performance is still a worthy approach.

12.7 Summary

A multipath channel was characterized and simulated. First, the BER in 
AWGN was compared for four different modulations, BPSK, QPSK, 16-QAM, 
and 64-QAM. As the constellation bit encoding becomes more complex, the 
performance also degrades. The BPSK has the best performance and there is 
a gain of around 5.9 dB in Eb/N0against QPSK while 64-QAM has the worst 
performance. Under the same modulation, punctured convolutional coding 
can gain in data rate increase with a slight price paid on BER performance.

For QPSK and 1/2 convolutional encoding, the BER performance in a 
multipath channel was further performed. Two approaches were studied. One 
is the LMS algorithm only. The other is the same LMS algorithm with an 
added block pilot pattern. The result shows that the addition of block pilots 
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can significantly improves the BER, especially at a low Eb/N0. The price paid 
is only a slight decrease in date rate.
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