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Abstract

In this review thesis, we model five body problem where four of the masses are

placed at the vertices of an isosceles trapezoid and fifth mass is placed at the center

of the system. We obtained the expression for m0 and M as a function of α and

β which are distance parameters. The regions of the central configurations where

positive masses can be selected are derived analytically as well as numerically.

Also it is shown that no central configurations are possible in the complement of

these regions.
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Chapter 1

Introduction

In classical mechanics, the 2-body problem (2BP) is to predict the motion of two

massive objects which are abstractly viewed as point particles. The 2BP is most

common in the case of a gravity that occurs in astronomy to determine orbits

of objects such as satellites, planets and stars. Newton solved 2BP by his fun-

damental law of gravity. Newtonian mechanics is a mathematical model whose

purpose is to account for the motions of the various objects in the universe. The

basic concept of this model were first enunciated by Sir Isaac Newton in a work

entitled “Philosophiae Naturalis Principia Mathematica”[1]. This work,

which was published in 1687. The problem has no significant solution if n ≥ 3.

Although we have a restricted 3-body problems (3BP) [2] it may provide us with

a particular solution. The 3BP is the problem of taking the initial positions and

velocities of three point masses and solving for their subsequent motion according

to Newton’s laws of motion and Newton’s law of universal gravitation. The 3BP

is a special case of the N-body problem (NBP). The 3BP is one of the oldest prob-

lems in classical dynamics that continues to throw up surprises. It has challenged

scientists from Newtons time to the present. It arose in an attempt to understand

the Suns effect on the motion of the Moon around the Earth. NBP also known as

many body problem [3]. The many body problem was first formulated precisely

by Newton. In its form where the object involve point masses: “it may be stated

as given at any time the position and velocities of three or more massive particles

1



Introduction 2

moving under their mutual gravitational forces, the mass also being known, calcu-

lated their positions and velocities at any other time”. The NBP which predicts

the individual motion of a system of celestial bodies that gravitationally attract

with each other. The statement of the problem is “what would be the orbit, if we

are given n celestial objects interacting with each others under the gravitational

forces.” Mathematicians and astronomers continued to work on the NBP over the

last four centuries. First of all, Kepler in his planetary motion laws defining the

elliptical trajectories of planets around the sun. Most important works in sci-

ence history in which Newton derived and formulated Kepler’s law [4]. Newton

turned his attention to comparatively more difficult systems, after the justifica-

tion of Kepler’s laws. Although, he was unable to achieve any breakthrough in

3BP throughout his life after much struggle. Alexis Clairaut was able to present

an approximation for the 3BP after twenty years of Newton’s death. After some

small adjustment, his work accounted for the moon’s perigee, which was Newton’s

aim. In the 19th century, many famous astronomers and mathematicians worked

on NBP [5].

1.1 Central Configuration (CC)

The idea of dynamics represented by complete masses collision or the rotating

equilibrium, we are led to the idea of a CC. In CC, “the acceleration of the ith

mass must be proportional to its position (relative to the center of mass of the

system)”; thus, r̈i = λri ∀ i = 1, 2, 3, ..., n. CC is common and basic concept in

the study of NBP. Consequently, for years the question of few bodies in CC and

general has fascinated considerable attention (see for example Albouy and Llibre

[6] and Shoaib and Faye [7]).

Moulton first published linear solutions to the NBP [8]. Palmore [10] proposed

many theorems in the study of points of equilibrium in the planar NBP. Papadakis

and Kanavos [11] studied the restricted photogravitational 5BP, they investigated

the movement of a massless object on a sphere. Kulesza et al. [12] have more

recently examined a restricted rhomboidal 5BP. The masses are arranged in the
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same plane as the 5th point is massless and the other masses on the vertices of

the rhombus. Ollongren [13] studied a restricted 5BP with three bodies of equal

mass m of the equilateral triangle placed on the vertices; rotating in circular orbits

in triangular plane under the mutual gravitational attraction around its gravita-

tional center. Under the gravitational attraction of other bodies a 5th body with

negligible mass as opposed to m moves in the plane.

Other notable studies are Kalvouridis [14] and Markellos et al. [15] on the re-

stricted 5BP. Another restrictive approach used to investigate 5BP is some sort

of symmetries added. For example, on a particular case of the 5BP, Roberts [16]

addressed relative equilibria. He investigated a CC which consists of five bodies,

four bodies are situated at the vertices of the rhombus and the 5th body is in the

middle. Mioc and Blaga [17] explain the similar problem but in the post Newto-

nian field of Manev. Existence of mono parametric families of relative equilibrium

was proved by them for the primaries (m0, 1,m, 1,m), where m0 is the central

mass, and proved the problem of the Manev square.

The CC of the 5BP were addressed by Albouy and Llibre [6]. They studied on

a sphere with a larger 5th mass at its center they considered four equal masses.

More recent studies on the symmetrically restricted 5BP include Shoaib et al.

[18, 19]. Lee and Santoprete [20] also studies on the symmetrically restricted 5BP.

Similarly Gidea and Llibre [21], and Marchesin and Vidal [22] discussed on the

symmetrically restricted 5BP. As yet, in the non-collinear general four and 5BP,

the basic interest has been on the same question: Is there a fixed arrangement of

bodies and unique CC for a given set of masses?

Ouyang and Xie [23] investigated about a four-body collinear problem and Mello

and Fernandes [24] discussed a rhomboidal 4BP and 5BP.

1.2 Thesis Contribution

In this thesis [9] we investigates four point masses at the vertices of an isosceles

trapezoid with masses m1 = m4 at the locations (∓0.5, rB), m2 = m3 at the

locations (∓α/2, rA), and m0 at the center of mass(c.o.m). In phase space we
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derive regions of CC, both numerically and analytically, where positive masses

can be chosen.

1.3 Dissertation Outlines

We divide this dissertation into five chapters.

In Chapter 1 introduction of the problem and aim of this research is briefly dis-

cussed. First of all we discussed the basics concept and history of the 2BP, 3BP

and NBP. The 2BP is the only problem in celestial mechanics that have analytical

solution.

In Chapter 2 contains some basic definitions related to celestial mechanics, New-

ton’s laws of motion, Newton law of gravitation and Kepler’s laws of planetary

motion. In the last portion of this chapter, the 2BP and the solution to the 2BP

is briefly discussed with the help of radial and transverse component.

In Chapter 3 the classical equations of motion for the trapezoidal 5BP are solved

with the help of diagram, the CC regions are studied using analytical as well as

numerical techniques for a specific case of the trapezoidal 5BP, where on the trape-

zoid vertices four of the masses are same. the graphs are also shown at the end of

this chapter.

In Chapter 4 the isosceles trapezoid 5BP is investigated for the regions of the

CC in its most basic form. We also discussed the special case for (α = β). The

CC regions are given numerically as well as analytically.

In Chapter 5 we summarizes the whole study with concluding remarks.

References used in the thesis are mentioned in Biblography



Chapter 2

Preliminaries

This chapter contains some important definitions, concepts, governing laws which

are essential to understand the work presented in next chapters.

2.1 Basics Definitions

2.1.1 Motion [25]

“Motion is the action used to change the location or position of an object with

respect to the surroundings over time”.

2.1.2 Mechanics [25]

“Mechanics is a branch of physics concerned with motion or change in position of

physical objects. It is sometimes further subdivided into:

1. Kinematics, which is concerned with the geometry of the motion,

2. Dynamics, which is concerned with the physical causes of the motion,

3. Statics, which is concerned with conditions under which no motion is

apparent”.

5
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2.1.3 Scalar [25]

“Various quantities of physics, such as length, mass and time, requires for their

specification a single real number (apart from units of measurement which are

decided upon in advance). Such quantities are called Scalars and the real number

is called the magnitude of the quantity”.

2.1.4 Vector [25]

“Other quantities of physics, such as displacement, velocity, momentum, force etc

require for their specification a direction as well as magnitude. Such quantities

are called Vectors”.

2.1.5 Field [25]

“A field is a physical quantity associated with every point of spacetime. The

physical quantity may be either in vector form, scalar form or tensor form”.

2.1.6 Scalar Field [25]

“If at every point in a region, a scalar function has a defined value, the region is

called a scalar field. i.e.,

f : IR3−→ IR,

e.g., Temperature and pressure fields around the earth”.

2.1.7 Vector Field [25]

“If at every point in a region, a vector function has a defined value, the region is

called a vector field,
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V : IR3−→ IR3,

e.g., tangent vector around a smooth curve”.

2.1.8 Conservative Vector Field [25]

“A vector field V is conservative if and only if there exists a contentiously differ-

entiable scalar field f such that V = -∇f or equivalently if and only if,

∇×V = curlV = 0”.

2.1.9 Uniform Force Field [25]

“A force field which has constant magnitude and direction is called a uniform or

constant force field. If the direction of the field is taken as negative z direction

and magnitude is constant F0 > 0, then the force field is given by:

F = −F0k̂”.

2.1.10 Central Force [25]

“Suppose that a force acting on a particle of mass m such that

(a) it is always directed from m towards or away from a fixed point O,

(b) its magnitude depends only on the distance r from O.

Then we call the force a central force or central force field with the O as the center

of the force field. Mathematically, F is central force if and only if

F = f(r)r1 = f(r)
r

r
,
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where r1 = r
r

is a unit vector in the direction of r. The central force is one of

attraction towards O or repulsion from O according as f(r) < 0 or f(r) > 0

respectively”.

2.1.11 Degree of Freedom [25]

“The number of coordinates required to specify the position of a system of one or

more particles is called number of degree of freedom of the system.

Example: A particle moving freely in space requires 3 coordinates, e.g. (x, y, z),

to specify its position. Thus the number of degree of freedom is 3”.

2.1.12 Center of Mass [25]

“Let r1, r2, ...., rn be the position vector of a system of n particles of masses

m1,m2, ....,mn respectively. The center of mass or centroid of the system of par-

ticles is defined as that point having position vector,

r̂ =
m1r1 +m2r2 + ....+mnrn

m1 +m2....+mn

=
1

M

n∑
i=1

miri,

where

M =
n∑
i=1

mi,

is the total mass of the system”.

2.1.13 Center of Gravity [25]

“If a system of particles is in a uniform gravitational field, the center of mass is

sometimes called the center of gravity”.
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2.1.14 Torque [25]

“If a particle with a position vector r moves in a force field F, we define τ as torque

or moment of the force as

τ = r× F.

The magnitude of τ is

τ = rF sin θ.

The magnitude of torque is a measure of the turning effect produced on the particle

by the force”.

2.1.15 Momentum [25]

“The linear momentum p of an object with mass m and velocity v is defined as:

P = mv.

Under certain circumstances the linear momentum of a system is conserved. The

linear momentum of a particle is related to the net force acting on that object:

F = ma = m
dv

dt
=

d

dt
(mv) =

dP

dt
.

The rate of change of linear momentum of a particle is equal to the net force

acting on the object, and is pointed in the direction of the force. If the net force

acting on an object is zero, its linear momentum is constant (conservation of linear

momentum). The total linear momentum p of a system of particles is defined as

the vector sum of the individual linear momentum:
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P =
n∑
i=1

Pi”.

2.1.16 Point-like Particle [25]

“A point-like particle is an idealization of particles mostly used in different fields of

physics. Its defining features is the lacks of spatial extension:being zero-dimensional,

it does not take up space. A point-like particle is an appropriate representation

of an object whose structure, size and shape is irrelevant in a given context. e.g.,

from far away, a finite-size mass (object) will look like a point-like particle”.

2.1.17 Angular Momentum [25]

“Angular momentum for a point-like particle of mass m with linear momentum p

about a point O, defined by the equation,

L = r×P,

where r is the vector from the point O to the particle. The torque about the point

O acting on the particle is equal to the rate of change of the angular momentum

about the point O of the particle i.e.,

τ =
dL

dt
”.

2.1.18 Lorentz Transformation [25]

“Lorentz transformation is the relationship between two different coordinate frames

that move at a constant velocity and are relative to each other. The name of the

transformation comes from a Dutch physicist Hendrik Lorentz. There are two

frames of reference, which are”
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2.1.18.1 Inertial Frame of Reference [25]

“A frame of reference that remains at rest or moves with constant velocity with

respect to other frames of reference is called inertial frame of reference. Actually,

an unaccelerated frame of reference is an inertial frame of reference. In this frame

of reference a body does not acted upon by external forces. Newton’s laws of

motion are valid in all inertial frames of reference. All inertial frames of reference

are equivalent. A frame which is not inertial is called non inertial frame”.

2.1.19 Lagrange Points [25]

“A point in space where a small body with negligible mass under the gravitational

influence of two large bodies will remain at rest relative to the larger ones. These

points are locations in an orbital arrangement of two large bodies where a third

smaller body, affected solely by gravity, is capable of maintaining a stable position

relative to the two larger bodies. A lagrange point is also known as a equilibrium

point and Liberation point named after a French mathematician and atronomer

Joseph-Louis Lagrange. He was first to find these equlibrium points for the earth,

sun, and moon system. He found five points out of these three are collinear”.

2.1.20 Equilibrium Solution [25]

“The Equilibrium solution can guide us through the behavior of the equation that

represents the problem without actually solving it. These solutions can be found

only if we meet the sufficient condition of all rates equal to zero. If we have two

variables then,

ẋ = ẏ = ẍ = ÿ = ... = x(n) = y(n) = 0.

These solutions may be stable or unstable. The stable solutions regarding in

celestial Mechanics helps us find parking spaces where if a satellite or any object
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placed, it will remain there for ever. These type of places are also found along the

Jupiters orbital path where bodies called trojan are present. These equilibrium

points with respect to Celestial Mechanics are also called Lagrange points named

after a French mathematician and astronomer Joseph-Louis Lagrange. He was

first to find these equilibrium points for the Sun-Earth system. He found that

three of these five points were collinear”.

2.1.21 Holonomic and Non Holonomic Constraints [25]

“In classical mechanics, a constraint on a system is a parameter that the system

must obey. The limitation on the motion are often called constraints. If the

constraints condition can be expressed as an equation,

φ(r1, r2, ..., rn, t) = 0,

connecting the position vector of the particles and the time, then the constraints

are called holonomic, otherwise non-holonomic”.

2.1.22 Galilean Transformation [25]

“In physics, a Galilean transformation is used to transform between the coordi-

nates of two reference frames which differ only by constant relative motion within

the constructs of Newtonian physics. These transformations together with spatial

rotations and translations in space and time form the inhomogeneous Galilean

group (assumed throughout below). Without the translations in space and time

the group is the homogeneous Galilean group. The Galilean group is the group

of motions of Galilean relativity acting on the four dimensions of space and time,

forming the Galilean geometry. Galilean transformations, also called Newtonian

transformations, set of equations in classical physics that relate the space and time

coordinates of two systems moving at a constant velocity relative to each other.”
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2.1.23 Celestial Mechanics [25]

“Celestial mechanics is the branch of astronomy that deals with the motions of ob-

jects in outer space. Historically, celestial mechanics applies principles of physics

(classical mechanics) to astronomical objects, such as stars and planets, to pro-

duce ephemeris data. Actually celestial mechanics is the science devoted to the

study of the motion of the celestial bodies on the basis of the laws of gravitation.

It was founded by Newton and it is the oldest of the chapters of Physical Astron-

omy. The story of the mathematical representation of celestial motions starts in

the antiquity and, notwithstanding the prevalent wrong ideas placing the Earth

at the center of the universe, the prediction of the planetary motions were very

accurate allowing, for instance, to forecast eclipses and to keep calendars synchro-

nized with the motion of the Earth around the Sun. The epicycles, introduced by

Apollonius of Perga around 200 BC, allowed the observed motions to be repre-

sented by series of circular functions. They were used to predict celestial motions

for almost two millennia. Their long life was certainly related to the stagnation

that prevailed in the western world during the dark ages between the end of the

Helenic civilization and the Renaissance. In the 16th century, the Copernican rev-

olution put the Sun in center of the Universe. However, the breakthrough in our

knowledge of celestial motions was rather related to Tycho Brahe and Johannes

Kepler. Tycho, in his Uraniborg observatory, accurately measured the position of

the planets in the sky for more than 20 years. The work of Kepler is a monu-

ment to the human genius. First of all, Tychos data on Mars could not be fitted

to a heliocentric uniform motion. With respect to a uniform motion, sometimes

Mars was in advance, sometimes in retard. Kepler decided to tackle the problem

from scratch! Remember that mathematics had remained stagnant since antiquity

and the tools inherited from the Greeks, geometry and arithmetic, were the only

available. Kepler considered as working hypotheses that the Earth was uniformly

moving on a circle and that the motion of Mars was periodic and coplanar with

the motion of the Earth. Then he used Tychos observations to determine the

orbit of Mars. Tychos observations were apparent positions of the planets on the
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celestial sphere.Newtons theory of universal gravitation resulted from experimen-

tal and observational facts. The observational facts were those encompassed in

the three Kepler laws. The experimental facts were those reported by Galileo in

his book Discorsi intorno due nuove scienze (Discourses Relating to Two New

Sciences, which should not be confounded with his most celebrated Dialogue Con-

cerning the Two Chief World Systems). The basis of Newton theory arose from

the perception that the force keeping the Moon in orbit around the Earth is the

same that, on Earth, commands the fall of the bodies. This law inaugurated the

Celestial Mechanics. Newton initially studied the problem of the motion followed

by two bodies in mutual attraction. He showed that under ideal conditions, the

relative motion obeys laws which, in some sense, include the first two laws of

Kepler.”

2.1.24 Kepler’s Laws of Planetary Motion [25]

“Kepler’s three laws of planetary motion can be described as follows:

1. Keplers first law states that every planet moves along an ellipse, with the Sun

located at a focus of the ellipse. An ellipse is defined as the set of all points such

that the sum of the distance from each point to two foci is a constant.

2. Keplers second law states that a planet moves in its ellipse so that the line

between it and the Sun placed at a focus sweeps out equal areas in equal times.

3. The cube of the semi major axis of the planetary orbits are proportional to the

square of the planets periods of revolution. Mathematically, Kepler’s third law

can be written as:

T 2 =

(
4π2

GMs

)
r3,

where T is the time period, r is the semi major axis, Ms is the mass of sun and G

is the universal gravitational constant”.
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2.1.25 Newton’s Laws of Motion [25]

“The following three laws of motion given by Newton are considered the axioms

of mechanics:

1. First law of motion

Every particle persists in a state of rest or of uniform motion in a straight line

unless acted upon by a force.

2. Second law of motion

If F is the external force acting on a particle of mass m which as a reaction is

moving with velocity v, then

F =
d

dt
(mv) =

dP

dt
.

If m is independent of time this becomes

F = m
d

dt
(v) = ma,

where a is the acceleration of the particle

2. Third law of motion

For every action, there is an equal and opposite reaction”.

2.1.26 Newton’s Universal Law of Gravitation [25]

“Every particle of matter in the universe attracts every other particle of matter

with a force which is directly proportional to the product of the masses and in-

versely proportional to the square of the distance between them. Hence, for any

Preliminaries 12 two particles separated by a distance r, the magnitude of the

gravitational force F is:

F = G
m1m2

r2
r,
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where G is universal gravitational constant. Its numerical value in SI units is

6.67408×10−11m3kg−1s−2.”

2.2 Two Body Problem [26]

The two-body problem in classical mechanics is to predict the motion of two large

objects, which are abstractly known as point particles. The problem assumes that

the two objects communicate only with one another; the only force influencing

each object comes from the other one, and all other objects are ignored.

2.3 The Solution to the Two-Body Problem [26]

Newtons universal gravitational law is the governing law for the two bodies:

F = G
m1m2

r3
d, (2.1)

Figure 2.1: Center of mass of two body system.
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For two masses, m1 and m2 are separated by a d distance, and the universal

gravitational constant is G. The purpose here is to decide if the initial locations

and velocities are known, the direction of the particles for some time t. The force

of attraction F12 in Figure 2.1 is directed towards m1 along d, while the force F21

on m2 is directed in the opposite direction. According to Newtons third law of

motion,

F1 = −F2. (2.2)

From “Figure 2.1,

F12 = G
m1m2

d3
d, (2.3)

the equation of motion of the particles under their mutual gravitational attractions

is given by equations (2.1) and (2.2) using Newtons second law of motion and by

equations (2.1) and (2.2).

md̈1 = G
m1m2

d3
d, (2.4)

md̈2 = G
m1m2

d3
d, (2.5)

where the location vectors d1 and d2 are from the reference O, as shown in Figure

2.1. When the equations (2.4) and (2.5) are applied, we get:

m1d̈1 +m2d̈2 = 0. (2.6)

The integration of the equations above yields:

m1ḋ1 +m2ḋ2 = k1. (2.7)
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The total linear momentum of the system is a constant, i.e., m1vm1+m2vm2 = k1.

Again integrating equation (2.7) implies that:

md1 +m2d2 = k1t+ k2, (2.8)

where k1 and k2 represent the constant of integration. Using 2BPs description of

the centre of mass, D is defined as D:

(m1 +m2)D = m1d1 +m2d2,

mtD = m1d1 +m2d2, (2.9)

where mt = m1 +m2. We get the derivative of the (2.9) equation and compare it

with the (2.7) equation.

mtḊ = k1 ⇒ Ḋ =
k1

mt

= constant,

show that Ḋ = vc is constant.

Subtracting (2.6) from (2.5) from the equations gives:

d̈1 − d̈2 = G
m2

d3
d +G

m1

d3
d, (2.10)

d̈1 − d̈2 = G(m1 +m2)
d

d3
,

⇒ d̈ = β
d

d3
,

⇒ d̈− β d

d3
= 0, (2.11)

where β = G(m1 +m2) is defined as reduced mass and d1 − d2 = −d, see Figure

2.1. Taking the cross product of d with equation (2.11) we obtain:

d× βd̈ +
β2

d3
d× d = 0,
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⇒ d× d̈ = 0, (2.12)

integrating above equation yields:

d× ḋ = H, (2.13)

where H is a constant vector. We should write equation (2.12),

⇒ d× βd̈ = 0, (2.14)

⇒ d× F = 0, (2.15)

where F = βd̈.

The description of torque and angular momentum is taken from Chapter 2”:

τ =
dH

dt
= d× F. (2.16)

Comparing equations (2.16) and (2.17), we get:

τ =
dH

dt
= d× F = 0, (2.17)

dH

dt
= 0, (2.18)

H = constant,

i.e. angular momentum of the system is conserved.

2.3.1 Radial and Transverse Components of Velocity

and Acceleration [26]

The velocity components along and perpendicular to the radius vector joining m1

to m2 are ḋ and dθ̇ if the polar co-ordinates d and θ are taken in this plane as

shown in “Figure 2.2, then,
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ḋ = ḋi + dθ̇j, (2.19)

where the unit vectors i and j are located along and perpendicular to the vector

radius. Thus, by means of equations (2.13) and (2.16),

d× (ḋi + dθ̇j) = d2θ̇k = Hk, (2.20)

where the constant H is shown to be twice the radius vector definition rate of the

field. This is a mathematical version of the second law of Kepler. Now, if we use

the scalar product ḋ with the equation (2.11), we obtain equation (2.11) are as

under.

ḋ.
d2d

dt2
+ β

ḋ.d

d3
= 0,

after integrated we have get,

1

2
ḋ.ḋ− β

d
= C, (2.21)

1

2
v2 − β

d
= C, (2.22)

where C is a constant of integration. This is the type of energy conservation in the

system. The C quantity is not absulate energy 1β2/2 is associated with kinetic

energy, and −mu/r is associated with the potential energy of the system, i.e.

total energy of the system is conserved. Recall the components of the acceleration

vector along and perpendicular to the radius vector from celestial mechanics:

a = (d̈− dθ̇2)i +
1

d

d

dt
(d2θ̇)j,
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Figure 2.2: Center of mass of two body system.

apply the above equation in (2.11), we get

(d̈− dθ̇2) = − β
d2
, (2.23)

1

d

d

dt
(d2θ̇) = 0. (2.24)

After further integrating equation (2.21), we get the following angular momentum

integral:

d2θ̇ = H, (2.25)

under such type of substitution,

u =
1

d
. (2.26)

The exclusion of the time between the equations (2.20) and (2.22) means that:
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d2u

dθ2
+ u =

β

H2
. (2.27)

The general solution of above equation is:

u =
β

H2
+B cos(θ − θ0), (2.28)

where B and θ0 are two constants of integration. Substitute u = 1
d

in above

equation:

1

d
=

β

H2
+B cos(θ − θ0), (2.29)

⇒ d =

H2

β

1 + H2B
β

cos(θ − θ0)
,

⇒ d =
p

1 + e cos(θ − θ0)
,

where

p =
H2

β
,

e =
H2B

β
.

The direction of one celestial body around another is defined by eccentricity e.

Thus,

(i) If 0 < e < 1 then the orbit is elliptical,

(ii) If e = 1 then the orbit is a parabolic,

(iii) If e > 1 then the orbit is a hyperbolic.

Therefore, a conic is the solution to the two-body problem, including the first law

of Kepler as a special case. Mathematically can be defined as, e = c/a,

c is the distance from focus to the center and,
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a represent the semi major axis,

b represent the minor axis.

where

a2 = b2 + c2

c2 = a2 − b2.

2.4 N-Body Problem

N-body problem also known as many body problem. The many body problem was

1st formulated precisely by Newton. In its form where the object involve a point

masses it may be stated as follow:

Given at any time the position and velocities of three or more massive particles

moving under their mutual gravitational forces, the mass also being known, cal-

culated their positions and velocities at any other time.

2.4.1 The Equations of Motion in the NBP

The 2BP deals much of the important work in astrodynamics, but sometimes we

need to model the real world by including other bodies. The next logical step,

then, is to drive formulas for 3BP. A further generalization of three body problem

is n-body problem. In general, solving general differential equations of motions in

n-body problem requires a fixed number of integration constants.

Consider a simple gravity problem in which we have constant acceleration

over time, a(t) = a0. If we integrate this equation, we obtain the velocity,

v(t) = a0t + v0. Integrating once more provides, r(t) = r0 + v0t +
1

2
a0t

2. To

complete the solution, we must know the initial conditions. This example is a

straight froward analytical solution using the initial values, or a function of the

time and constants of integration, called integrals of the motion. Unfortunately,

this isn’t always the simple case. When initial conditions alone dont provide a
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solution, integrals of the motion can reduce the order of differential equations,

also called the degrees of freedom of the dynamical system. Ideally, if the number

of integrals equals the order of differential equations, we can reduce it to order

zero. These integrals are constant functions of the initial conditions, as well as the

position and velocity of at any time, hence the term constants of the motion.

For the n-body problem, a system of 3n second order differential equations, we

need 6n integrals of motion for a complete solution. Conservation of linear mo-

mentum provides six, conservation of energy one, and conservation of total angular

momentum three, for a total of ten. There are no laws analogous to Keplers first

two laws to obtain additional constants, thus we are left with a system of order

6n− 10 for n ≥ 3.

These equations for n bodies n ≥ 3, deny all attempts at closed-form solutions.

H. Brun, in 1887, showed that there were no other algebraic integrals. Although

Poincareé later generalized Brun’s work, we still have only the ten known inte-

grals. They give us insight into the motions within the three body and n-body

problems. Conservation of total linear momentum assumes no external forces are

on the system.

First, here we set up the equations of motions of n massive particles of masses

mi(i = 1, 2, 3, ...n)” whose radius vectors from an un accelerated point O are ri

while their mutual radius vectors are given by rij where,

rij = rj − ri. (2.30)

From Newton’s laws of motion and the law of gravitation,

mir̈i = G

n∑
j=1,j 6=i

mimj

r3ij
rij, (2.31)

here we note that rij implies that the vector between mi and mj is directed for mi

to mj, thus

rij = −rji. (2.32)

where G is universal constant.



Chapter 3

Central Configuration Regions in

Varying Central Mass With Four

Equal Masses

3.1 Equation of Motion

The classical equation of motion for the NBP has the following form:

mi
d2ri
dt2

=
∑
j 6=i

mimj(rj − ri)

|rj − ri|3
, i = 1, 2, 3, ..., n, (3.1)

where the units are chosen such that value of gravitational constant is one, ri is

the location vector of the i-th body. “A central configuration(CC) is a particular

configuration of the N-body where the acceleration vector of each body is pro-

portional to its position vector and the proportionality constant is same for the

N-bodies,” therefore,

n∑
j=1,j 6=i

mj(rj − ri)

|rj − ri|3
= −λ(ri − c) , i = 1, 2, 3, ..., n, (3.2)

25
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c =
m1r1 +m2r2 +m3r3 + ....+mnrn

Mt

, (3.3)

where c is the center of mass of the system and Mt is the total mass of the system.

Figure 3.1: Configurations of four and five body trapezoidal

Let us consider the masses of five bodies m0, m1, m2, m3 and m4. In Figure

3.1 m0 is at rest at center of mass (c.o.m) of the system and m1, m2, m3 and m4

are placed at the vertices of an isosceles trapezoid. The geometry of the problem

is symmetric about the y-axis. From the Figure 3.1, the c.o.m of m2 and m3 is at

A, and the c.o.m of m1 and m4 is at B. Let m2 = m3= m and m1 = m4= M . For

the five bodies, coordinates selected are given as:



CC Regions in Varying Central Mass With Four Equal Masses 27

r0 = (0, 0),

r1 =

(
− 1

2
,−rB

)
,

r2 =

(
− α

2
, rA

)
,

r3 =

(
α

2
, rA

)
,

r4 =

(
1

2
,−rB

)
,

(3.4)

where the distance from the center of mass of the system to the center of mass of

m2 and m3 is at rA and the distance from the center of mass of the system to the

center of mass of m1 and m4 is at rB. Without loss of generality, suppose that r23

= - αr41 and rBA = |rA - rB| = βr41.

To find the vectors rA and rB, we will use the center of mass of the system defined

as:

c =
mrA +MrB
m+M

,

because the c.o.m is at origin i.e, c = 0, therefore above equation will simplify as,

mrA +MrB = 0,

⇒ rA = −M
m

rB or rB = −m
M

rA,

or rA =
M

m
rB or rB =

m

M
rA,

where

|rA| = rA and |rB| = rB.

We know that rBA = rA - rB = r,
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rB = rA − r,

rB = − M

m
rB − r, ∵ rA = −M

m
rB

rB +
M

m
rB =− r,(

m+M

m

)
rB = − r,

rB = −
(

m

m+M

)
r,

|rB| =

(
m

m+M

)
|r|,

or

rB =

(
m

m+M

)
r, (3.5)

where |rB| = rB and |r| = r. Similarly

rA =

(
M

m+M

)
r.

Using equation (3.5) in 2nd expression of equation (3.4), we get:

r1 =

(
− 1

2
,− m

m+M
r

)
. (3.6)

Following the same procedure, we can get the value of r2, r3 and r4 as:

r2 =

(
− α

2
,

M

m+M
r

)
, (3.7)
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r3 =

(
α

2
,

M

m+M
r

)
, (3.8)

r4 =

(
1

2
,− m

m+M
r

)
. (3.9)

Taking the magnitude of equation (3.6), we obtained:

|r1| = r1 =

(
1

4
+

m2

(m+M)2
r2
)1/2

,

r1 =

(
1

4
+

m2

(m+M)2
β2r241

)1/2

, (r = βr41)

r1 =

(
1

4
+

m2β2

(m+M)2

)1/2

, r41 = 1 (see Figure 3.1)

r31 =

(
1

4
+

m2β2

(m+M)2

)3/2

.

Similarly, we find

r32 =

(
α2

4
+

M2β2

(m+M)2

)3/2

,

r33 =

(
α2

4
+

M2β2

(m+M)2

)3/2

,

r34 =

(
1

4
+

m2β2

(m+M)2

)3/2

,

r312 =

((
1

2
− α

2

)2

+ β2

)3/2

,

r313 =

((
1

2
+
α

2

)2

+ β2

)3/2

,

r324 =

((
1

2
+
α

2

)2

+ β2

)3/2

,

r334 =

((
1

2
− α

2

)2

+ β2

)3/2

.



CC Regions in Varying Central Mass With Four Equal Masses 30

Equation (3.1) becomes for i = 1,

r̈1 =
4∑

j 6=1,j=0

mj(rj − r1)

|rj − r1|3
,

r̈1 =
m0(r0 − r1)

|r0 − r1|3
+
m2(r2 − r1)

|r2 − r1|3
+
m3(r3 − r1)

|r3 − r1|3
+
m4(r4 − r1)

|r4 − r1|3
,

r̈1 =
−m0(r1)

r31
+
m(r12)

r312
+
m(r13)

r313
+
M(r14)

r314
. (3.10)

Similarly for i = 2, 3 and 4,

r̈2 =
−m0(r2)

r32
+
M(r21)

r321
+
m(r23)

r323
+
M(r24)

r324
, (3.11)

r̈3 =
−m0(r1)

r33
+
M(r31)

r331
+
m(r32)

r332
+
M(r34)

r334
, (3.12)

r̈4 =
−m0(r4)

r34
+
M(r41)

r341
+
m(r42)

r342
+
M(r43)

r343
. (3.13)

Now we put the value of r1, r12, r13 and r14 in equation (3.10), equation (3.10)

becomes,

r̈1 =
−m0(r1)

d
+
m(r12)

a
+
m(r13)

b
+M(r14). (3.14)

Similarly equations (3.11)—(3.13) take the following form,

r̈2 =
−m0(r2)

c
+
M(r21)

a
+
m(r23)

α3
+
M(r24)

b
, (3.15)

r̈3 =
−m0(r1)

c
+
M(r31)

b
+
m(r32)

α3
+
M(r34)

a
, (3.16)

r̈4 =
−m0(r4)

d
+M(r41) +

m(r42)

b
+
M(r43)

a
, (3.17)
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where

a =

((
1

2
− α

2

)2

+ β2

)3/2

,

b =

((
1

2
+
α

2

)2

+ β2

)3/2

,

c =

(
α2

4
+

M2β2

(m+M)2

)3/2

,

d =

(
1

4
+

m2β2

(m+M)2

)3/2

.

As m0 is at rest at c.o.m so r̈0 = 0. The c.o.m is at origin; therefore, r0 = 0.

Hence the CC equation r̈0 = −λr0 will simplify be 0 = 0 form, therefore we don’t

have fifth equation. Let r = rA − rB (see Figure 3.1) and then using the geometry

of our problem we get the relationships between ri, (i = 1− 4), and r and r41 as:

z

r1 = − m

M +m
r +

1

2
r41,

r2 =
M

M +m
r +

1

2
αr41,

r3 =
M

M +m
r− 1

2
αr41,

r4 = − m

M +m
r− 1

2
r41.


(3.18)

Using above expression in equation (3.14), we obtain

1

2
r̈41 −

m

M +m
r̈ = −m0

d

((
− m

M +m

)
r +

1

2
r41

)
+
m

α

((
α− 1

2

)
r41 + r

)
+M(−r41) +

m

b

(
r−

(
α + 1

2

)
r41

)
.

Simplifying the above expression, we get
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1

2
r̈41 = − m0

d

(
1

2
r41

)
+
m

α

((
α− 1

2

)
r41

)
−M(r41)−

m

b

((
α + 1

2

)
r41

)
,

r̈41 =

(
− m0

d
+
m

α
(α− 1)− 2M − m

b
(α + 1)

)
r41. (3.19)

Similarly equation (3.15) in terms of r and r41 yields,

α

2
r̈41 +

M

m+M
r̈ = −m0

c

((
α

2

)
r41 +

M

m+M
r

)
+
M

a

((
1− α

2

)
r41 − r

)
+
m

α3

(
− αr41

)
+
M

b

((
− 1

2
− α

2

)
r41 − r

)
.

Comparing the coefficient of r on both sides,

M

m+M
r̈ = − m0

c

(
M

m+M

)
r− M

a
r− M

b
r,

M

m+M
r̈ = −

(
m0

c

(
M

m+M

)
− M

a
− M

b

)
r,

r̈ = − m+M

M

(
m0

c

(
M

m+M

)
− M

a
− M

b

)
r,

r̈ = −
(
m0

c
+
m+M

a
+
m+M

b

)
r. (3.20)

We know that c.o.m is at origin, the conditions for equation of CC for the trape-

zoidal 5BP are,

r̈i = −λri, i = 1, 2, 3, ..., n (3.21)

Using (3.21) in equation (3.19), we get

(
− m0

d
+
m

a
(α− 1)− 2M − m

b
(α + 1)

)
r41 = − λr41,
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(
− m0

d
+
m

a
(α− 1)− 2M − m

b
(α + 1)

)
r41 + λr41 = 0,(

− m0

d
+
m

a
(α− 1)− 2M − m

b
(α + 1) + λ

)
r41 = 0, ,

⇒ − m0

d
+
m

a
(α− 1)− 2M − m

b
(α + 1) + λ = 0,

m0

d
− m

a
(α− 1) + 2M +

m

b
(α + 1) = λ. (3.22)

Similarly equation (3.20) becomes,

m0

c
+
m+M

a
+
m+M

b
= λ. (3.23)

Equation (3.16) is similar to equation (3.14) and reduces to equation (3.22). Also

equation (3.17) is similar to equation (3.15) and becomes equation (3.23). Out of

four equations (3.14) to (3.17), we have left only two equations (3.22) and (3.23),

therefore in the next section we will solve these equations for m0, m and M , which

explains the region of CC of 5BP.

3.2 Varying Central Mass with Four Equal Masses

Let us suppose the four bodies having equal masses located at the vertices such

that mi = M, i = 1− 4 and λ = 1. The CC’s equations (3.22) and (3.23) become,

m0

d
− M

a
(α− 1) + 2M +

M

b
(α + 1) = 1, (3.24)

m0

c
+
M +M

a
+
M +M

b
= 1, (3.25)
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where

d =

(
1

4
+

M2β2

(M +M)2

)3/2

,

d =

(
1

4
+
M2β2

(4M2)

)3/2

=

(
1

4
+
β2

4

)3/2

= e.

c =

(
α2

4
+

M2β2

(M +M)2

)3/2

,

c =

(
α2

4
+
M2β2

(4M2)

)3/2

=

(
α2

4
+
β2

4

)3/2

= f.

Simplifying equations (3.24) and (3.25),

m0

e
+M

(
2− 1

a
(α− 1) +

1

b
(α + 1)

)
= 1, (3.26)

m0

f
+ 2M

(
1

a
+

1

b

)
= 1. (3.27)

We need to solve equations (3.26) and (3.27) for M and m0. First of all we take

equation (3.27) and find the value of m0 in terms of M . Solving equation (3.27)

for m0, we get

m0 = f

(
1−M

(
2

a
+

2

b

))
. (3.28)

Using equation (3.28) in (3.26) and simplifying, we obtain

f

e

(
1−M

(
2

a
+

2

b

))
+M

(
2− 1

a
(α− 1) +

1

b
(α + 1)

)
= 1,
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f

e
− f

e
M

(
2

a
+

2

b

)
+M

(
2− 1

a
(α− 1) +

1

b
(α + 1)

)
= 1,

−f
e
M

(
2

a
+

2

b

)
+M

(
2− 1

a
(α− 1) +

1

b
(α + 1)

)
= 1− f

e
.

Simplifying the above expression, we obtain

M =
ab(f − e)
g(α, β)

, (3.29)

where

g(α, β) = 2af + 2bf + eb(α− 1)− ea(α + 1)− 2eab.

Now using equation (3.29) in (3.28), we get

m0

f
+ 2

ab(f − e)
g(α, β)

(
1

a
+

1

b

)
= 1,

m0 =
efh(α, β)

g(α, β)
, (3.30)

where

h(α, β) = a+ b− α(a− b)− 2ab.

3.2.1 Positivity analysis of M and m0

There are three factors in the expressions of M and m0 ( i.e, (f − e), g(α, β) and

h(α, β)) which can make M and m0 negative. The sign analysis of (f −e), g(α, β)
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and h(α, β) is required to obtain the regions of CC in αβ-plane where M > 0

and m0 > 0.

(i) As α ∈ (0, 1), α2 < 1; so e > f ∀ α and β, then (f − e) < 0.

(ii) For sign analysis of h(α, β), we obtain the following region where h(α, β) < 0;

h(α, β) < 0,

a+ b− α(a− b)− 2ab < 0,

a+ b− αa+ αb− 2ab < 0,

b+ αb− 2ab < αa− a,

b(1 + α− 2a) < a(α− 1),

b <
a(α− 1)

1 + α− 2a
.

The region R1 for which f − e < 0 and h(α, β) < 0 is given below,

R1 =

{
(α, β)|0 < α < 1, β > 0, b <

a(α− 1)

1 + α− 2a

}
. (3.31)

Ideally we need to get a region that’s obviously described by the α or β function.

It is not possible to get solution of h(α, β) < 0 in terms of α or β in closed

form because of the involvement of radicals. Therefore, we approximate it by a

polynomial of degree 2 in α as shown below.

happ ≈− 2β6 − 1.5β4 + 2(j − 0.19)β2 + 0.5j + 0.03(1.5β4

− (2.25β2 + 0.75)j−1 − 0.09)α2 + O(α3), (3.32)

where j =
√
β2 + 0.25. The equation h(α, β)app ≈ 0 shows α in term of β which

gets a boundary between h(α, β) < 0 and h(α, β) > 0:
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α1(β) ≈ 1.15

√
j(−β6 − 0.75β4 + (j − 0.18)β2 + 0.25j − 0.02)

jβ4 − 1.5β2 − 0.07j − 0.5

= K1(β). (3.33)

Therefore, region R1 can now be rewritten as below:

R1 =

{
(α, β) | β > 0, α(β) < K1(β)

}
. (3.34)

It is numerically satisfied that h(α,β) = 0 and h(α, β)app ≈ 0 are nearly same

graphs for all α and β and R1 is shown in figure (3.2).

(iii) For sign analysis of g(α, β), we obtain the following region where

g(α, β) < 0;

g(α, β) < 0,

2af + 2bf + eb(α− 1)− ea(α + 1)− 2eab < 0,

a(2f − e(α + 1)) + 2bf + eb(α− 1)− 2eab < 0,

a(2f − e(α + 1)) + 2bf + eb(α− 1)− 2eab < 0,

2bf + eb(α− 1)− 2eab < −a(2f − e(α + 1)),

b(2f + e(α− 1)− 2ea) < −a(2f − e(α + 1)),

b <
a(e(α + 1)− 2f)

e(α− 1) + 2f − 2ea
.

The region R2 for which f − e < 0 and g(α, β) < 0 are given below,

R2 =

{
(α, β)|0 < α < 1, β > 0, b <

a(−2f + e(α + 1))

2f + e(α− 1)− 2ea

}
. (3.35)
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Figure 3.2: CC regions in trapezoidal 5BP varying central mass
with four same masses.

Ideally we want to obtain a region that’s obviously described by the α or β function.

It is not possible to get a solution of g(α, β) < 0 in terms of α or β in closed

form because of the involvement of radicals. Therefore, we approximate it by a

polynomial of degree 2 in α as shown below.

g(α, β)app ≈− 0.77β6 + 0.38β5 − 0.74β4 + 0.06β3

− 0.3β2 − 0.04j−1(0.08β + 1.5β5 + 0.75β3

− 0.3j
√
β2 + 1(β6 + β4 − 0.36))α2. (3.36)
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The real valued function g(α, β)app ≈ 0 shows α in terms of β which gets a bound-

ary between g(α, β) < 0 and g(α, β) > 0:

α2 ≈
(

(j(0.77β6 − 0.38β5 + 0.74β4 − 0.06β3

+ 0.3β2 + 0.04)).

(
0.08β + 1.5β5 + 0.75β3

− 0.3j
√
β2 + 1(β6 + β4 − 0.36)

)−1)1/2

= K2(β). (3.37)

It is numerically satisfied that g(α, β) = 0 and g(α, β)app = 0 have almost same

graphs for all α and β in Figure 3.2, so R2 becomes,

R2 =

{
(α, β) | β > 0, α2(β) < K2(β)

}
. (3.38)

Numerically, region R2 is shown in Figure 3.2. As the numerator of M is negative

for all α and β, so R2 gives a CC region in αβ-plane where M > 0. Similarly

m0 > 0 in (R1 ∩R2) ∪ (Rc
1 ∩Rc

2). As Rc
2 = ∅ and R1 ⊂ R2, therefore

R3 = (R1 ∩R2) = R1, (3.39)

gives the region of CC for this specific system of 5BP where all masses are positive.

Numerically, R1, R2 and R3 are shown in Figure 3.2. The CC regions where M > 0

or m0 > 0 and M > 0 and m0 > 0 are shown in Figure 3.3—3.5 respectively. This

Figures shows that the positive region of masses m0 and M which means the

shaded region of our region gives the values of α and β. This α and β put the

value the value of a, b, c and d. The value of a, b, c and d put in m0 and M to find

the positive value of m0 and M . The α and β are distance parameter it means

we change the value of α and β than the value of m0 and M also change. The

positivity of m0 and M depends upon the value of α and β. If we choose α and β

in the shaded region of graph than m0 and M must be positive.



CC Regions in Varying Central Mass With Four Equal Masses 40

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

α

β

Figure 3.3: M > 0 (Shaded Region)
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Figure 3.4: m0 > 0 (Shaded Region)
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Figure 3.5: M > 0 and m0 > 0 (Shaded Region)



Chapter 4

Central Configuration Regions in

Central Mass and Two Pairs of

Same Masses

The geometry in Figure 3.1 is same about the line AB, where A is the c.o.m of m2

and m3, and B is the center of mass of m1 and m4. Let m1 = m4 = M and m2 =

m3 = m. We suppose that m ≤ M and m = CM , where 0 < C ≤ 1. With these

assumptions, equations (3.22) and (3.23) reduce to the following equations,

m0

e∗
− CM

a
(α− 1) + 2M +

CM

b
(α + 1) = 1, (4.1)

m0

f ∗
+
CM +M

a
+
CM +M

b
= 1, (4.2)

where

d =

(
1

4
+

C2M2β2

(CM +M)2

)3/2

,

d =

(
1

4
+

C2M2β2

(CM +M)2

)3/2

=

(
1

4
+

C2β2

(1 + C)2

)3/2

= e∗.

42
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c =

(
α2

4
+

M2β2

(CM +M)2

)3/2

,

c =

(
α2

4
+

M2β2

M2(1 + C)2

)3/2

=

(
α2

4
+

β2

(1 + C)2

)3/2

= f ∗.

m0 = f ∗
(

1−
(

1 + C

a
+

1 + C

b

)
M

)
. (4.3)

Using (4.3) in equation (4.1) and simplifying, we obtain

−f ∗
(

1−
(

1 + C

a
+

1 + C

b

)
M

)
/e∗ +

CM

a
(α− 1)− 2M − CM

b
(α + 1) = − 1,

−f
∗

e∗
+
f ∗

e∗

(
1 + C

a
+

1 + C

b

)
M +

CM

a
(α− 1)− 2M − CM

b
(α + 1) = − 1,

M

(
2e∗ − f ∗

(
1 + C

a
+

1 + C

b

)
− e∗C

a
(α− 1) +

e∗C

b
(α + 1)

)
= e∗ − f ∗,

M

(
2e∗ − f ∗

(
(1 + C)b+ (1 + C)a

ab

)
− e∗C

a
(α− 1) +

e∗C

b
(α + 1)

)
= e∗ − f ∗,

M

(
2e∗ab− C(α− 1)be∗ + C(α + 1)ae∗ − f ∗(1 + C)b− f ∗(1 + C)a

ab

)
= e∗ − f ∗.

M =
(e∗ − f ∗)ab
D(α, β, C)

, (4.4)

where

D(α, β, C) = 2e∗ab+ αCe∗(a− b) + (a+ b)(Ce∗ − f ∗(C + 1)).

Now using equation (4.4) in (4.3), we get

m0 =
e∗f ∗N(α, β, C)

D(α, β, C)
, (4.5)

where
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N(α, β, C) = 2ab+ αC(a− b)− a− b,

D(α, β, C) = 2e∗ab+ αCe∗(a− b) + (a+ b)(Ce∗ − f ∗(C + 1)).

The value of M and m0 represents regions of CC for 5BP in αβC-plane. e.g,

(i) α = 0.2, β = 0.8 and C = 0.3, the value of M = 0.26 and the value of m0 =

0.04.

(ii) α = 0.4, β = 0.7 and C = 0.5, the value of M = -0.5 and the value of m0 = 0.4.

As can be seen in number (ii), for particular values of α and β either of the masses

becomes negative, which is unrealistic. So, we need to find closed regions in CC

where no mass can be negative. The sign investigates of (e∗−f ∗), D(α, β, C), and

N(α, β, C) is required which is given below.

(i) e∗ − f ∗ > 0: it is simple to prove that e∗ − f ∗ > 0 in R4 = R4a +R4b +R4c,

where

R4a =

{
(α, β, C)|0 < C < 0.6, 0 < α < 1, 0.5

√
α2(1 + C)− C − 1

C − 1
< β < 1

}
,

R4b =

{
(α, β, C)|0.6 < C < 1, 0 < α <

√
5C − 3

C + 1
, 0 < β < 1

}
,

R4b =

{
(α, β, C)|0.6 < C < 1,

√
5C − 3

C + 1
< α < 1, 0 < β < 0.5

√
α2(1 + C)− 1− C

C − 1

}
.

Region R4 is shown in Figure 4.1.

(ii) The sign analysis of N(α, β, C) is similar as h(α, β) as in previous but it is

comparatively easier to write a closed form solution of N(α, β, C) = 0 as C(α, β) =

(a+b−2ab)/(α(a−b)). The h(α, β) depends upon α and β and N(α, β, C) depends

upon α, β and C. This is the only difference between h(α, β) and N(α, β, C).

Therefore, N(α, β, C) is positive in the following region,
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Figure 4.1: (e∗ − f∗)(α,β,C) > 0(colored).

N(α, β, C) > 0,

2ab+ αC(a− b)− a− b > 0,

αC(a− b) > a+ b− 2ab,

C >
a+ b− 2ab

α(a− b)
.

The region R5 for which N(α, β, C) > 0 is given below:

R5 =

{
(α, β, C)|a+ b− 2ab

α(a− b)
< C < 1, β > 0, 0 < α < 1

}
. (4.6)

Similarly Napp(α, β, C) of as follows:
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Napp(α, β, C) ≈ (1.5β4 −
√
j(1.5C − 0.75β2j−1 − 0.375j−1)− 0.1)α2

+(2β6 + 1.5β4 + 0.375β2 −
√
j(2β2 + 0.5) + 0.03). (4.7)

Equation Napp(α, β, C) ≈ 0 shows α in terms of β and C which gets a boundary

between the region where, Napp(α, β, C) < 0 and Napp(α, β, C) > 0:

α3(β, C) ≈

√
−2β6 − 1.5β4 − 0.375β2 +

√
j(2β2 + 0.5)− 0.03

1.5β4 −
√
j(1.5C − 0.75β2j−1 − 0.375j−1)

= K3(β, C). (4.8)

Therefore, region R5 can now be rewritten as below:

R5 =

{
(α, β, C)|0 < C < 1, β > 0, 0 < α < K3(β, C)

}
. (4.9)

It is numerically satisfied that N(α, β, C) and Napp(α, β, C) are nearly same graphs

for all α, β and C. R5 is shown in Figure 4.2.

(iii) The sign analysis of D(α, β, C) is similar in nature to g(α, β) as in previous

but it is comparatively easier to write a closed form solution of D(α, β, C) = 0 as

C(α, β) = (a+b)f ∗−2e∗ab/αe∗(a−b)+(a+b)e∗−(a+b)f ∗. Therefore, D(α, β, C)

is positive as follows,

D(α, β, C) > 0,

2e∗ab+ αCe∗(a− b) + (a+ b)(Ce∗ − f ∗(C + 1)) > 0,

2e∗ab+ αCe∗(a− b) + (a+ b)Ce∗ − (a+ b)f ∗(C + 1) > 0,
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2e∗ab+ αCe∗(a− b) + (a+ b)Ce∗ − (a+ b)f ∗C − (a+ b)f ∗ > 0,

αCe∗(a− b) + (a+ b)Ce∗ − (a+ b)f ∗C > (a+ b)f ∗ − 2e∗ab,

Cαe∗(a− b) + (a+ b)e∗ − (a+ b)f ∗ > (a+ b)f ∗ − 2e∗ab,

Figure 4.2: N(α,β,C) > 0(colored).

C >
(a+ b)f ∗ − 2e∗ab

αe∗(a− b) + (a+ b)e∗ − (a+ b)f ∗
.

The region R6 for which D(α, β, C) is positive as given below,

R6 =

{
(α, β, C)| (a+ b)f ∗ − 2e∗ab

[αe∗(a− b) + (a+ b)e∗ − (a+ b)f ∗]
< C < 1, β > 0, 0 < α < 1

}
.

(4.10)
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Similarly the polynomial approximation of D(α, β, C) is given as below:

Dapp(α, β, C) ≈ j4(1.5Ce∗2e∗j2 − β2(−C3 3
√
e∗ + β)(C + 1)−2) + 0.68C2α

2,

where

C2 = (−1.5Ce∗j − β) + e∗
2/3

(0.62 + 0.75C(1 + Cj2)).(−0.06 + β4)(1 + 6j2Ce∗
1/3

)(C + 1)−2.

Equation Dapp(α, β, C) ≈ 0 shows α in terms of β and C which gets a boundary

between the region where, Dapp(α, β, C) < 0 and Dapp(α, β, C) > 0:

α3(β, C) ≈ j2
(

1

C2

(−1.5Ce∗2e∗j2 + β2(−C3 3
√
e∗ + β).(C + 1)−2)

−0.68C2α
2

)1/2

= K4(β, C) (4.11)

Therefore, region R6 can now be rewritten as,

R6 =

{
(α, β, C)|0 < C < 1, β > 0, 0 < α < K4(β, C)

}
.

R6 is shown in Figure 4.3.

From the above investigation we summarize the region of CC where M > 0 is,

R7 = (R4 ∩R6) ∪ (Rc
4 ∩Rc

6). (4.12)
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Figure 4.3: D(α,β,C)> 0(colored).

Similarly, the CC region where m0 > 0 is,

R8 = (R5 ∩R6) ∪ (Rc
5 ∩Rc

6). (4.13)

This provides CC region for this particular setup of 5BP as,

R9 = (R7 ∩R8) (4.14)

R9 is shown in Figure 4.4. In the complement of this region no CC is possible.

Hence, the CC region for 5BP with a stationary central mass and two pairs of

masses is determined by R7 and R8 and is given by R9 = R7 ∩ R8. Numerically,

in Figure 4.4 colored part shows R9. To get the understanding of CC region R9

its cross sections are shown in Figures 4.5—4.14 for different values of C.
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Figure 4.4: CC region in trapezoid 4 + 1 body problem.

Figure 4.4 shows that the CC region in trapezoidal 5BP it mean we choose the

value of α, β and C in the shaded region and get the positive masses m0 and M .

If we choose the value c = 0.1 and c= 0.2, the graph shown in Figure 4.5 and

Figure 4.6. similarly we check the CC region if we put c = 0.3, c= 0.4, c = 0.5,

c = 0.6, c = 0.7, c = 0.8, c = 0.9 and the last one we select c = 1 as shown in

graph Figure 4.7 to 4.14. If we put c = 1 than we goes to the first case in which

four of the masses are equal and situated at the vertices of and isosceles trapezoid.

if we select α, β and C in the above Figure than our system which is two pair

os masses are equal following the CC condition. otherwise our system does not

the follow the CC condition. The CC condition states that “ the acceleration is

directly proportional to the position vector ”. in our case we put the mass m0 at

the center of the system and this is the (c.o.m) of our system so we put c = 0.

Generally c is not equal to zero.
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Figure 4.5: M,m0 > 0 and C = 0.1
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Figure 4.6: M,m0 > 0 and C = 0.2
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Figure 4.7: M,m0 > 0 and C = 0.3
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Figure 4.8: M,m0 > 0 and C = 0.4.
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Figure 4.9: M,m0 > 0 and C = 0.5
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Figure 4.10: M,m0 > 0 and C = 0.6
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Figure 4.11: M,m0 > 0 and C = 0.7
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Figure 4.12: M,m0 > 0 and C = 0.8
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Figure 4.13: M,m0 > 0 and C = 0.9
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Figure 4.14: M,m0 > 0 and C = 1
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4.1 Special Case (α = β)

To absolute understanding of five body case with masses of two pairs we study a

special case where α = β. This decreases the variables from three to two while

we get sustain the basic geometry with masses of two pairs it means we draw the

between β and C. Now we put the value α=β in equation (4.15) and (4.16) and

shown in Figure 4.15, 4.16 and 4.17. It is simple to solve the analytical expressions

by substituting a, b, e∗, f ∗ with the following new values:

a∗ = 1.4(0.2− 0.4β + β2)3/2,

b∗ = 1.4(0.2 + 0.4β + β2)3/2,

e∗ =

(
β2C2

(C + 1)2
+ 0.25

)3/2

,

f∗ =
β3

8

(
4

(C + 1)2
+ 1

)3/2

.

Using a∗, b∗, e∗ and f∗ in the given equations and find the value of m0 and M in

term of β and C,

m0

e∗
− CM

a∗
(α− 1) + 2M +

CM

b∗
(α + 1) = 1, (4.15)

m0

f∗
+
CM +M

a∗
+
CM +M

b∗
= 1, (4.16)

CC regions are shown for α = β in Figure 4.15—4.17. It is obvious from Figure

4.17 there is no CC are valid for β < 0.42. For β > 0.42 there exists minimum

one C s.t both m0 and M are positive and form CC of five body trapezoid.
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Figure 4.15: CC region in 5BP when
α = β, m0 > 0
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Figure 4.16: CC region in 5BP when
α = β, M > 0
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Figure 4.17: CC region in 5BP when
α = β, m0 > 0 and M > 0.



Chapter 5

Conclusion

In this review research work [9] CC’s region in symmetric 5BP, we model 5BP

where fifth mass is placed at the center of the system and other four masses are

placed at the vertices of an isosceles trapezoid where m0 is situated at the center

of the system and m1,m2,m3 and m4 are situated at the vertices of an isosceles

trapezoid.

Using the symmetry of the problem firstly we wrote the positions of all masses as

a linear combination of vectors r and r41 (see equation (3.18)). This helped us to

reduce the dimension of the problem to a manageable level. Secondly we studied

a special case where all mi = M , (i = 1, 2, 3, 4) it means all the masses situated

at the vertices of isosceles trapezoid are same. We obtained the expression for m0

and M as a function of α and β, where α and β are the distance parameter.

Furthermore we discussed the CC’s regions using the positivity of masses m0 and

M and identified CC, region over the α and β plane where m0 and M are

positive for 5BP.

In the second case we made expression for m0 and M as function of three

parameter α, β and C. In this case we considered two pair of equal masses and a

varying central mass and CC’s region were defined both numerically and

analytically. We summarize this the special case in which we select α = β and

our system depends upon two variable β and C. Lastly we also found regions in

phase space where no CC’s are possible for mi > 0, (i = 1, 2, 3, 4)

59



Bibliography

[1] I. Newton, “Philosophiae naturalis principia mathematica.” University of Cal-

ifornia digital Library, vol. 2000, pp. 203–224.

[2] J. Simmons, A. McDonald, and J. Brown, “The restricted 3-body problem

with radiation pressure,” Celestial mechanics, vol. 35, no. 2, pp. 145–187,

1985.

[3] J. Wisdom and M. Holman, “Symplectic maps for the n-body problem,” The

Astronomical Journal, vol. 102, pp. 1528–1538, 1991.

[4] J. L. Russell, “Kepler’s laws of planetary motion: 1609–1666,” The British

journal for the history of science, vol. 2, no. 1, pp. 1–24, 1964.

[5] R. G. Littlejohn and M. Reinsch, “Gauge fields in the separation of rotations

andinternal motions in the n-body problem,” Reviews of Modern Physics,

vol. 69, no. 1, p. 213, 1997.

[6] A. Albouy and J. Llibre, “Spatial central configurations for the 1+ 4 body

problem,” cmds, vol. 292, p. 1, 2002.

[7] M. Shoaib and I. Faye, “Collinear equilibrium solutions of four-body prob-

lem,” Journal of Astrophysics and Astronomy, vol. 32, no. 3, pp. 411–423,

2011.

[8] F. R. Moulton, “The straight line solutions of the problem of n bodies,” The

Annals of Mathematics, vol. 12, no. 1, pp. 1–17, 1910.

[9] M. Shoaib, “Regions of central configurations in a symmetric 4+ 1-body prob-

lem,” Advances in Astronomy, vol. 2015, 2015.

60



Bibliography 61

[10] J. I. Palmore, “Collinear relative equilibria of the planarn-body problem,”

Celestial mechanics, vol. 28, no. 1-2, pp. 17–24, 1982.

[11] K. Papadakis and S. Kanavos, “Numerical exploration of the photogravita-

tional restricted five-body problem,” Astrophysics and Space Science, vol. 310,

no. 1-2, pp. 119–130, 2007.

[12] M. Kulesza, M. Marchesin, and C. Vidal, “Restricted rhomboidal five-body

problem,” Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 48,

p. 485204, 2011.

[13] A. Ollongren, “On a particular restricted five-body problem an analysis with

computer algebra,” Journal of symbolic computation, vol. 6, no. 1, pp. 117–

126, 1988.

[14] T. Kalvouridis, “A planar case of the n+ 1 body problem: the’ringproblem,”

Astrophysics and space science, vol. 260, no. 3, pp. 309–325, 1998.

[15] V. Markellos, K. Papadakis, and E. Perdios, “The plane restricted five-body

problem,” in Joint European and National Astronomical Meeting, 1997.

[16] G. E. Roberts, “A continuum of relative equilibria in the five-body problem,”

Physica D: Nonlinear Phenomena, vol. 127, no. 3-4, pp. 141–145, 1999.

[17] V. Mioc and C. Blaga, “A class of relative equilibria in the manev five-body

problem,” Hvar Observatory Bulletin, vol. 23, pp. 41–48, 1999.
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