

JUNOS Automation Cookbook

Automate network devices on Juniper's operating system

Adam Chappell

BIRMINGHAM - MUMBAI

JUNOS Automation Cookbook
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2017

Production reference: 1220917

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-099-9

www.packtpub.com

../../../../../www.packtpub.com/default.htm

Credits

Author
Adam Chappell

Copy Editor
Juliana Nair

Reviewer
Mohammad Mohsinul Malik

Project Coordinator
Judie Jose

Commissioning Editor
Vijin Boricha

Proofreader
Safis Editing

Acquisition Editor
Meeta Rajani

Indexer
Rekha Nair

Content Development Editor
Abhishek Jadhav

Graphics
Kirk D'Penha

Technical Editor
Manish Shanbhag

Production Coordinator
Aparna Bhagat

About the Author
Adam Chappell first cut his teeth in the networking world in 1995 after an opportunity in
Finchley, North London, at what would become one of the pioneering dial-up Internet ISPs
in the United Kingdom. His early forays into network automation generally involved cron,
Perl, expect, and a healthy dose of hope and luck. As the commercial networking market
matured, he joined Interoute to develop one of the first large-scale European MPLS
networks, leading the market in the provision of private packet networking.

Adam was responsible for Interoute's unique network automation technology that
seamlessly stitches together industry-standard MPLS VPNs and private cloud compute
logical networks. Currently, he works in the thriving technology development team at
Interoute, between London and Prague, focusing on network technologies, software, and
security.

I’d like to say a very big thankyou to the team at Packt Publishing for their support with
this book. Meeta, Abhishek, Nipu, and Manish, they all deserve my salute for their
professionalism and dedication to the effort of putting a book together. I owe a debt of
gratitude to some of my colleagues at Interoute, including Gary for his efforts at making
Juniper VRR and VMX dance to his tune, Ivan for tolerating my experimentation on the
live network, and Shish and Alistair for my inane questions at all hours. But writing a
book like this doesn’t come without tolerance and support from those close to you. So, most
importantly, I would like to say a big thank you to my wife, Mila, and my children, Maty
and Tobi, for their extended patience.

About the Reviewer
Mohammad Mohsinul Malik is currently working as an advanced service consultant with
Juniper Networks, Malaysia.

He completed his engineering from Jamia Millia Islamia University, New Delhi, and has
around 11 years of experience in the IP networking industry. He has extensive hands-on
experience in large enterprise networks and tier 1 and tier 2 service providers.

His interests include SDN, NFV, network automation, IoT, network security, digital
forensics, and cloud technologies.

Malik has earned the networking industry’s most sought-after certifications and is among
an elite group of engineers in the world who hold such diverse certifications.

He has active triple JNCIE (SP, ENT, SEC), triple JNCSP (SP, ENT, SEC), triple JNCDS
(WAN, DC, SEC), JNCIP-DC, JNCIS-QFabric, and JNCIS-SDNA from Juniper Networks.
Also, he has earned other vendors certifications, such as CCIE-SP, CCNP-R&S, CISSP,
PCNSE7, MCSE, BCEFP, SCP, and so on.

He also likes exploring new technologies and spends his spare time in his home lab, playing
with software code.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

../../../../../www.packtpub.com/default.htm
../../../../../www.packtpub.com/default.htm
../../../../../www.packtpub.com/default.htm
../../../../../https@www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
athttps:/​/​www.​amazon.​com/​dp/​1788290992.

If you'd like to join our team of regular reviewers, you can e-mail us
atcustomerreviews@packtpub.com. We award our regular reviewers with free eBooks
and videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

../../../../../https@www.amazon.com/dp/1788290992
../../../../../https@www.amazon.com/dp/1788290992
../../../../../https@www.amazon.com/dp/1788290992
../../../../../https@www.amazon.com/dp/1788290992
../../../../../https@www.amazon.com/dp/1788290992
../../../../../https@www.amazon.com/dp/1788290992
../../../../../https@www.amazon.com/dp/1788290992
../../../../../https@www.amazon.com/dp/1788290992
../../../../../https@www.amazon.com/dp/1788290992
../../../../../https@www.amazon.com/dp/1788290992
../../../../../https@www.amazon.com/dp/1788290992
../../../../../https@www.amazon.com/dp/1788290992
../../../../../https@www.amazon.com/dp/1788290992

Table of Contents
Preface 1

Chapter 1: Configuring JUNOS through NETCONF 7

Introduction 7
JUNOS NETCONF over SSH setup 8

Getting ready 8
How to do it... 8
How it works... 11
There's more... 12

Making NETCONF RPC requests and replies 12
Getting ready 13
How to do it... 13
How it works... 15
There's more... 15

Discovering NETCONF RPCs 16
Getting ready 16
How to do it... 16
How it works... 17
There's more... 18
See also 18

Using NETCONF to apply configuration changes 19
Getting ready 20
How to do it... 20
How it works... 23

Processing NETCONF using classic Expect/TCL 25
Getting ready 26
How to do it... 26
How it works... 28

Processing NETCONF with Python 29
Getting ready 29
How to do it... 30
How it works... 32

Processing NETCONF with Node.js 33
Getting ready 34
How to do it... 34

[ii]

How it works... 36

Chapter 2: Working with the Junos REST API 39

Introduction 39
Junos REST API setup 40

Getting ready 40
How to do it... 41
How it works... 42
There's more 42

Making REST API calls to Junos with Python 44
Getting ready... 44
How to do it... 45
How it works... 47
There's more... 48

Making REST API calls to Junos with Node.js 49
Getting ready 49
How to do it... 50
How it works... 52

Managing passwords safely 53
Getting ready 54
How to do it... 54
How it works... 55

Applying configuration changes through the REST API 56
Getting ready 56
How to do it... 57
How it works... 60

Chapter 3: Using SLAX to Write Op Scripts 61

Introduction 61
Making remote procedure calls 62

Getting ready 62
How to do it... 63
How it works... 64

Using XPath predicate expressions 67
Getting started 67
How to do it... 67
How it works... 68

Working with regular expressions 68
Getting ready 68
How to do it... 69

[iii]

How it works... 70
Working with IP addresses 71

Getting ready 71
How to do it... 71
How it works... 73
There's more 75

Debugging SLAX scripts 75
Getting ready 75
How to do it... 76
How it works... 77
There's more 78

Making custom show commands 79
Getting ready 80
How to do it... 80
How it works... 82

Making configuration changes 83
Getting ready 84
How to do it... 84
How it works... 89

Chapter 4: Event Programming 92

Introduction 92
Archiving configurations after a change 93

Getting ready 93
How to do it… 93
How it works... 95
There's more 97

Capturing output after an event 98
Getting ready 98
How to do it… 98
How it works… 100
There's more 102

Custom responses to an event 102
Getting ready 102
How to do it… 103
How it works… 105
There's more 108

Dealing with a flapping interface 111
Getting ready 111
How to do it… 112

[iv]

How it works… 115
Dealing with a flapping OSPF neighbor 118

Getting ready 118
How to do it… 119
How it works… 124

DIY routing protocol 128
Getting ready 128
How to do it… 130
How it works… 133

Debugging event scripts 139
Getting ready 139
How to do it… 139
How it works… 143

Chapter 5: Automating JUNOS with PyEZ 144

Introduction 144
Setting up a PyEZ environment 145

Getting ready 145
How to do it… 145
How it works… 149
There’s more 151

Exploring the XML RPC using PyEZ 153
Getting ready 153
How to do it… 154
How it works… 155

Calling operational RPCs and setting timeouts 157
Getting ready 157
How to do it… 158
How it works… 160

Configuration analysis and reporting 164
Getting ready 165
How to do it… 166
How it works… 168

Making raw CLI commands from PyEZ 171
Getting ready 171
How to do it… 171
How it works… 173
There’s more 176

Using tables and views 177
Getting ready 177

[v]

How to do it… 177
How it works… 179
There's more 182

Using custom tables and views 183
Getting ready 184
How to do it… 184
How it works… 187

Making configuration changes with PyEZ 189
Getting ready 190
How to do it… 190
How it works... 192
There’s more 195

Template configurations with Jinja2 196
Getting ready 197
How to do it… 198
How it works... 203

Chapter 6: Advanced Visualization Applications 206

Introduction 206
Visualizing graphs 207

Getting ready 207
Graph principles 208
Graph data 208

How to do it... 209
Instantiating the template 209
Drawing the graph 210
Running the example graph 214

How it works... 214
Instantiating the template 214
Drawing the graph 215

Extracting graphs from ISIS 217
Getting started 217

ISIS primer 218
How to do it... 218
How it works... 220

Extracting graphs from OSPF 223
Getting ready 223

OSPF primer 224
How to do it... 224
How it works... 226

Extracting graphs from MPLS VPNs 228

[vi]

Getting ready 228
BGP MPLS VPN primer 228

How to do it... 229
How it works... 231
There's more 233

Chapter 7: Monitoring and Maintaining JUNOS 234

Introduction 234
Monitoring configuration changes network-wide 235

Getting ready 236
How to do it… 236

SSH file transfer 237
JUNOS OS event policy 238
Web server application 239
Web client application 243

How it works... 245
SSH File Transfer 245
JUNOS OS event policy 246
Web server application 247
Web client application 249

There's more 250
Monitoring interface performance 252

Getting ready 253
Object-oriented primer for Node.js 253

How to do it… 255
Server application 256
Web client application 263
Setting up and Running 268

How it works... 269
Server application 269
Web client application 271

There's more 274
Monitoring system health 274

Getting ready 274
How to do it... 275

Server application 275
Web client application 279

How it works... 282
Server application 282
Client application 283
Running the application 284

There's more 286
Monitoring MPLS LDP statistics 290

[vii]

Getting ready 290
How to do it... 291

Server application 291
Web client application 293

How it works... 296
Server application 296
Web client application 297

Chapter 8: Security Applications 299

Introduction 299
Enforcing configuration standards through commit scripts 299

Getting ready 300
How to do it... 300
How it works... 303

Loopback address 304
IGP interface deletion 305
EBGP policy default 305

Building BGP route filters 305
Getting ready 306
How to do it... 307
How it works... 311

Applying anti-spoofing filters 314
Getting ready 315
How to do it... 316
How it works... 325
There's more 327

Operating a distributed ACL function 328
Getting ready 329
How to do it... 330
How it works... 333

Chapter 9: Extending JUNOS with Ansible 337

Introduction 337
Installing Ansible 338

Getting ready 338
How to do it... 338
How it works... 340
There's more 342

Configuring Ansible for JUNOS 343
Getting ready 343
How to do it.. 343
How it works... 346

[viii]

Extracting estate-wide configurations 348
Getting ready 348
How to do it... 349
How it works... 350
There's more... 352

Performing platform-specific or group-specific operations 352
Getting ready 352
How to do it... 352
How it works... 355

Using variables and vaults 355
Getting ready 355
How to do it... 356
How it works... 358

Index 360

Preface
In the world of networking, Juniper’s Junos operating system powers some of the largest
and most demanding enterprise and service provider networks out there. Whether it’s the
flagship T, MX, and PTX series routers that power ISPs, the enterprise-friendly EX series
switches and SRX series firewalls or data center QFX-series, the aspect that remains in
common in Junos is the operating system originally based on BSD Unix.

What Juniper has capitalized on, however, is a universal configuration management
framework that powers all of the varied aspects of Junos and that is based on inter-
communication using XML. The choice of XML puts Junos in a prime position for
integrating its capabilities into larger systems by exposing its XML machine-to-machine
interfaces—so-called RPCs or Remote Procedure Calls—to automation applications.

In this book, we take a recipe-based approach to investigating and exploring the automation
technologies surrounding Junos and provide some examples of how to tackle common
network requirements.

What this book covers?
Chapter 1, Configuring JUNOS through NETCONF, explores the NETCONF standard
originally defined in RFC 4741, specifically, how it’s used over SSH to communicate with
Junos devices. We will work through some practical examples of communicating with
Junos programmatically from several technologies.

Chapter 2, Working with the Junos REST API, explores the relatively new REST interface
with Junos and how to make use of it in HTTP and HTTPS environments. We will develop
two sample REST clients that interact with Junos.

Chapter 3, Using SLAX to Write Op Scripts, explores Juniper’s SLAX technology for
manipulating the XML representations used by the foundations of Junos. We will look at
how to use SLAX as a macro language to make use of remote procedure calls and produce
customized, filtered output.

Chapter 4, Event Programming, builds upon the SLAX expertise and leverages the capability
to be proactive and respond to events. We’ll develop scripts to deal with common network
situations and even a make shift routing protocol.

Preface

[2]

Chapter 5, Automating Junos with PyEZ, focuses on the Juniper extension module to Python,
PyEZ, and its utility in programmatically working with Junos. You'll learn about PyEZ
primitives, such as facts, views, and tables, and get a taste of using YAML to write Jinja2
templates.

Chapter 6, Advanced Visualization Applications, helps us visualize some of the aspects of our
Junos network. We’ll build a basic graph utility for extracting information and then we'll
use a popular rendering engine to visualize elements of our network, such as routing
protocols.

Chapter 7, Monitoring and Maintaining Junos, looks at ways of monitoring what happens on
our Junos network. We’ll build a tool to monitor configuration changes as well as look at
how we can graphically monitor interface usage and other resources.

Chapter 8, Security Applications, looks at how we can use automation technologies to
maintain the security of our networks. We’ll build commit scripts to vet configuration
changes and look at BGP prefix filtering and anti-spoofing protection.

Chapter 9, Extending JUNOS with Ansible, explores how we can use the popular Ansible IT
automation framework in conjunction with Junos as part of a wider enterprise orchestration
system.

What you need for this book
In order to make use of the examples in this book, you’ll need a Unix-based management
device, which can be your laptop or a virtual machine on your laptop, and access to a Junos
platform. In some cases, it’s possible to run Junos in a virtual environment, such as with
Juniper’s latest vMX developments or with vRR - virtual route reflector. Finally, if all else
fails, you can also build an olive. But I'm not going to tell you how to do that!

Who this book is for
This book is for you if you’re a network engineer or operator with enthusiasm for network
technology and a persistent thirst for wanting to know how you can get Juniper routers and
switches to do more with less.

Preface

[3]

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it…, How it works…, There's more…, and See also). To give clear instructions on how to
complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: In this
case, the RPC that we call is get-interface-information

Preface

[4]

A block of code is set as follows:

 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:JUNOS="http://xml.juniper.net/JUNOS/15.1F6/JUNOS">
 <ok/>
 </rpc-reply>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<isis-database-entry>
 <lsp-id>lon-lab-access-4.00-00</lsp-id>
 <sequence-number>0x1002</sequence-number>

Any command-line input or output is written as follows:

adamc@router> show configuration interfaces em0.0 | display xml
 <rpc-reply xmlns:JUNOS="http://xml.juniper.net/JUNOS/
 15.1F6/JUNOS">

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

../../../../../www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support, and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​JUNOS- ​Automation- ​Cookbook. We also have other code bundles from our
rich catalog of books and videos available at https://github.com/PacktPublishing/.
Check them out!

../../../../../www.packtpub.com/default.htm
../../../../../www.packtpub.com/support
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/JUNOS-Automation-Cookbook
../../../../../https@github.com/PacktPublishing/default.htm

Preface

[6]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ ​/ ​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​JUNOSAutomationCookbook_ ​ColorImages. ​pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support, and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../https@www.packtpub.com/sites/default/files/downloads/JUNOSAutomationCookbook_ColorImages.pdf
../../../../../www.packtpub.com/submit-errata
../../../../../https@www.packtpub.com/books/content/support

1
Configuring JUNOS through

NETCONF
In this chapter, we will cover the following recipes:

JUNOS NETCONF over SSH setup
Making NETCONF RPC requests and replies
Using NETCONF to apply configuration changes
Processing NETCONF using classic Expect/TCL
Processing NETCONF with Python
Processing NETCONF with Node.js
Discovering NETCONF RPCs

Introduction
The Network Configuration Protocol (NETCONF) standard, defined most recently in RFC
6241, allows a network management application to access a JUNOS OS (or other vendor)
network element through the use of a series of Remote Procedure Calls (RPCs) carried over
a serialized XML transport.

For programmatic access to JUNOS OS devices, this method is preferable for the use of raw
command-line processing, since the data format is structured, precise, and suitable for
unambiguous machine reading.

In this chapter, we investigate how to setup NETCONF access to JUNOS OS devices and
then look at how to make use of that from common programming platforms.

Configuring JUNOS through NETCONF

[8]

JUNOS NETCONF over SSH setup
In this recipe, we'll prepare a JUNOS OS router for interaction using the NETCONF service.
We can do this in one of two ways:

Using NETCONF-over-SSH on dedicated TCP port 830,
Using NETCONF inline with mainstream SSH communications, on TCP port 22.

We'll set up secure SSH keys and a dedicated username for an automation application. Then
we'll configure the systems services hierarchy within the Junos OS for the specific method.

Getting ready
In order to complete this recipe, you need access to a JUNOS OS router, switch, or firewall,
and a general-purpose Linux/UNIX management host from which to control it.

How to do it...
The steps to prepare a JUNOS OS router for interaction using NETCONF services are as
follows:

Verify that SSH is configured on your router by ensuring that you have the1.
following configuration present:

 adamc@router> show configuration system services
 ssh;

Generate SSH keys. Generate a public/private key pair using the SSH utility,2.
ssh-keygen:

 unix$ ssh-keygen -C "JUNOS Automation" -f JUNOS_auto_id_rsa
 Generating public/private rsa key pair.
 Enter file in which to save the key (.ssh/id_rsa):
 JUNOS_auto_id_rsa
 Enter passphrase (empty for no passphrase): <type nothing here>
 Enter same passphrase again: <again, nothing>
 Your identification has been saved in JUNOS_auto_id_rsa.
 Your public key has been saved in JUNOS_auto_id_rsa.pub.

Configuring JUNOS through NETCONF

[9]

Once completed, verify that you have two new files in your working directory:3.

Filename Description

JUNOS_auto_id_rsa Private SSH key, reserved for use by your management
automation application only

JUNOS_auto_id_rsa.pub Corresponding public SSH key (think of it as a certificate) is able
to authenticate the private key.

Configure a dedicated user profile to be used for NETCONF access that makes4.
use of the previously generated key-pair. Apply the .pub file contents to the
Junos configuration.

 adamc@router> show configuration system login user auto
 uid 2001;
 class super-user;
 authentication {
 ssh-rsa "ssh-rsa [actual key omitted] JUNOS Automation"; ##
 SECRET-DATA
 }

Enable a dedicated NETCONF-over-SSH transport endpoint by configuring the5.
following service:

 adamc@router> show configuration system services
 ssh;
 netconf {
 ssh;
 }

Connect to the NETCONF service to witness the protocol greeting and validate6.
the correct operation:

 unix$ ssh -p 830 -i JUNOS_auto_id_rsa auto@10.0.201.201 -s
 netconf
 <!-- No zombies were killed during the creation of this user
 interface -->
 <!-- user auto, class j-super-user -->
 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:candidate:1.0
 </capability>
 <capability>urn:ietf:params:netconf:capability:confirmed-
 commit:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:validate:1.0

Configuring JUNOS through NETCONF

[10]

 </capability>
 <capability>urn:ietf:params:netconf:capability:url:1.0?
 scheme=http,ftp,file</capability>
 <capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:
 candidate:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:confirmed-
 commit:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:
 validate:1.0
 </capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:url:1.0?
 protocol=http,ftp,file</capability>
<capability>http://xml.juniper.net/netconf/JUNOS/1.0</capability>
 <capability>http://xml.juniper.net/dmi/system/1.0</capability>
 </capabilities>
 <session-id>35980</session-id>
 </hello>
]]>]]>

On the same SSH session, issue a test RPC to prove that things are working7.
normally. Enter the highlighted first line of the following text exactly as it is and
observe the response:

 <rpc><get-software-information/></rpc>
 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:JUNOS="http://xml.juniper.net/JUNOS/15.1F6/JUNOS">
 <software-information>
 <host-name>router</host-name>
 <product-model>olive</product-model>
 <product-name>olive</product-name>
 <JUNOS-version>15.1F6-S5.6</JUNOS-version>
 <package-information>
 <name>os-kernel</name>
 <comment>JUNOS OS Kernel 64-bit [
 20161130.340898_builder_stable_10]</comment>
 </package-information>
 <package-information>
 <name>os-libs</name>
 <comment>JUNOS OS libs [20161130.340898_builder_stable_10]
 </comment>
 </package-information>
 <package-information>
 <name>os-runtime</name>
 <comment>JUNOS OS runtime [20161130.340898_builder_stable_10]
 </comment>
 </package-information>
 […]

Configuring JUNOS through NETCONF

[11]

How it works...
In step 1, we verified that the SSH protocol was configured and available in order to access
the JUNOS device.

In step 2, we created an SSH public/private key-pair in order to allow any applications that
we create to be able to login and authenticate with the JUNOS device in the same way that
an ordinary user does. Key-based authentication is preferred over conventional password
authentication for this, because it removes the authentication step from the interactive
dialog under development.

In step 3, we created a dedicated user profile on the JUNOS device for automation
applications and associated it with the public key that we created. Any automation
application that makes use of the corresponding private key can be authenticated on the
JUNOS OS platform with the public key.

With step 4, we created a NETCONF-over-SSH service endpoint. This isn't technically
required, but it can be useful if you would like to treat ordinary user management traffic
independently from machine-to-machine programmatic access, and want to enforce such
policies via a firewall or similar.

In step 5, we connected to the NETCONF-over-SSH service on port 830 and observed its
welcome greeting. We used the -i switch in order to specify the private key that we
generated in step 2.

NETCONF-over-SSH runs on a separate TCP port to the conventional SSH
transport. The default, Internet Assigned numbers Authority (IANA) is
830, but JUNOS OS allows you to select any arbitrary number. When
NETCONF-over-SSH is used in this manner, the SSH server makes use of
a protocol feature called subsystems. This allows the SSH server to
directly connect to another internal component without consideration for
details such as pseudo-terminal or user shell.

For this reason though, when we connect from an ordinary SSH client, we
need to use the -s switch in order to specify that we want the NETCONF
subsystem.

Alternatively, it is possible to connect to the NETCONF service using the
convention SSH management interface in the following manner:

unix$ ssh -i JUNOS_auto_id_rsa auto@10.0.201.201 netconf

Configuring JUNOS through NETCONF

[12]

Finally, in step 6, we issued a very basic RPC request to ask the JUNOS OS device for
information about its system software. We can see the regularity in the structure of
communications between client and NETCONF server. The client's communications
consists of a remote procedure call request, enclosed in <rpc></rpc> tags. And the server
responds with a document structure enclosed within <rpc-reply></rpc-reply> tags.
The actual internal structure of the response depends on the exact RPC called, but the XML
format is easier to machine-read than a free-form text interface designed to please a human.

There's more...
In step 5 and step 6, we saw the guts of the NETCONF protocol dialog occurring. The server
said hello to us, and we issued a procedure call which the server duly answered. In actual
fact, we were being a little lax in our use of the NETCONF protocol standard there. If you
want to speak RFC-compliant NETCONF, it is customary for both the client and the server
to issue hello messages that describe their capabilities. The capabilities announced describe
concepts over and above some of the base NETCONF principles that are supported by the
element, and the manager. In this case, the JUNOS OS server has likely little concern for our
client capabilities and takes the IETF mantra of being liberal in acceptance, conservative in
communication, to heart.

The other significant point to note is the special sequence of characters used to delimit
successive XML messages. We see it at the end of a hello message, and at the end of every
RPC response the server answers:

]]>]]>

Technically, this framing sequence is actually deprecated within the latest specification of
the NETCONF-over-SSH standard, because it was discovered that it can legitimately appear
within the XML payload. The JUNOS OS implementation currently makes use of the
framing sequence to flag the end of its responses, but if you write software -- as we will -- to
read the NETCONF XML stream directly, then it is wise to be aware that this behavior
could change in the future.

Making NETCONF RPC requests and replies
With NETCONF-over-SSH happily configured on our network of JUNOS OS devices, we
can now connect over the network and make RPCs in order to inspect the operational status
of the device. Lets look at a couple of examples to learn the fundamentals of how the
JUNOS OS XML RPCs work.

Configuring JUNOS through NETCONF

[13]

Getting ready
Ensure you've completed the JUNOS NETCONF-over-SSH setup recipe previously and have
a working JUNOS OS device with a NETCONF interface in place. It doesn't necessarily
matter what the configuration of that device is.

How to do it...
The steps for making NETCONF RPC requests and replies are as follows:

Connect to the NETCONF-over-SSH server in a similar manner to the previous1.
recipe:

 unix$ ssh -i JUNOS_auto_id_rsa auto@10.0.201.201 netconf

Query the system ARP table by connecting to the NETCONF-over-SSH session in2.
a similar manner to the previous recipe and issuing the appropriate RPC:

 <rpc><get-arp-table-information/></rpc>
 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:JUNOS="http://xml.juniper.net/JUNOS/15.1F6/JUNOS">
 <arp-table-information
 xmlns="http://xml.juniper.net/JUNOS/15.1F6/JUNOS-arp"
 JUNOS:style="normal">
 <arp-table-entry>
 <mac-address>
 0a:00:27:00:00:00
 </mac-address>
 <ip-address>
 10.0.201.1
 </ip-address>
 <hostname>
 adamc-mac
 </hostname>
 <interface-name>
 em0.0
 </interface-name>
 <arp-table-entry-flags>
 <none/>
 </arp-table-entry-flags>
 </arp-table-entry>
 </arp-table-information>
 </rpc-reply>
]]>]]>

Configuring JUNOS through NETCONF

[14]

Repeat the query, but use the format tag to modify the output to be a plain text:3.

 <rpc><get-arp-table-information format="text"/></rpc>
 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:JUNOS="http://xml.juniper.net/JUNOS/15.1F6/JUNOS">
 <output>
 MAC Address Address Name Interface Flags
 0a:00:27:00:00:00 10.0.201.1 adamc-mac em0.0 none
 </output>
 </rpc-reply>
]]>]]>

Use an option to the ARP table RPC in order to disable the name resolution:4.

 <rpc><get-arp-table-information format="text"><no-
resolve/></get-
 arp-table-information></rpc>
 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:JUNOS="http://xml.juniper.net/JUNOS/15.1F6/JUNOS">
 <output>
 MAC Address Address Interface Flags
 0a:00:27:00:00:00 10.0.201.1 em0.0 none
 </output>
 </rpc-reply>
]]>]]>

Query the system routing table and inspect the output:5.

 <rpc><get-route-information/></rpc>
 [...]

Repeat the system routing table query, but apply an argument for a particular6.
destination:

 <rpc><get-route-information>
 <destination>10.0.201.201</destination></get-route-information>
 </rpc>
 [...]

Configuring JUNOS through NETCONF

[15]

How it works...
In steps 1 and step 2, we connected and issued a simple RPC to query the ARP table from the
router. The rather verbose XML response encodes structure that is the machine-readable
version of what we see in the CLI when we issue the show arp command. Each data atom
is enclosed hierarchically within XML tags indicating its type and any associated properties.
This structured output format lends itself particularly well for machine-to-machine
automation applications.

In step 3, we issued the same RPC, but requested JUNOS OS to give us the plain text output
so that we could compare the difference. In almost all cases, the plain text output seen when
we use the format="text" modifier to the RPC is identical to what we would see in the
CLI.

Since JUNOS OS 14.2, the XML API has also been able to output in the
JavaScript Object Notation (JSON) format. The popularity of this format
as a lightweight alternative to XML is bolstered by its support in
languages like Python and Node.js. If you're working with JUNOS OS 14.2
or later and using NETCONF directly with one of these languages, JSON
might be a useful feature for you.

In step 4, we see how options to the CLI commands are encoded within the XML RPC
format. In this case the show arp no-resolve option is typically used to prevent any
name resolution of IP addresses. It's simply an XML subtag to the main <get-arp-table-
information> tag.

Steps 5 and 6 go a step further looking at the RPC that implements the show route
command. In step 5, we show how arguments are added to the RPC.

There's more...
Looking at these example RPCs and the XML format within, we can see two clear styles.
One pairs together the opening and closing tags in a strict manner, allowing the inclusion of
options and arguments. The other allows an abbreviation of an otherwise empty pair of tags
by simply using a leading slash. Compare the following two RPCs, which are identically
supported by the JUNOS OS XML NETCONF interpreter:

<rpc><get-route-information/></rpc>
<rpc><get-route-information></get-route-information></rpc>

Configuring JUNOS through NETCONF

[16]

Discovering NETCONF RPCs
We've seen in the previous recipes how to use some common RPCs to query system state
information on our JUNOS OS devices. But how exactly did we discover the cryptic
connection between, for example, the CLI command show route and the RPC equivalent
<get-route-information>? The JUNOS OS management daemon, mgd, is responsible for
speaking the necessary native protocol to the type of client requesting information: either a
human operator on the CLI, or a machine interface via XML. It maps the available system
calls to both a CLI and an RPC. In this recipe, we'll explore this mapping.

Getting ready
Ensure you have access to a working JUNOS OS device. You don't necessarily need to have
completed the previous recipes on setting up NETCONF remote access.

How to do it...
The steps for the recipe are as follows:

Log in to the JUNOS OS device using your normal user credentials and choose1.
the operational mode CLI command that you'd like to work with:

 adamc@router> show arp
 MAC Address Address Name Interface Flags
 0a:00:27:00:00:00 10.0.201.1 adamc-mac em0.0 none

Execute the command, but use the pipe modifier in order to query the XML that2.
maps to the corresponding RPC call:

 adamc@router> show arp | display xml rpc
 <rpc-reply
 xmlns:JUNOS="http://xml.juniper.net/JUNOS/15.1F6/JUNOS">
 <rpc>
 <get-arp-table-information>
 </get-arp-table-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
 </rpc-reply>

Configuring JUNOS through NETCONF

[17]

Repeat the command, but this time use the pipe modifier in order to explore the3.
XML which maps to the response from the RPC call:

 adamc@router> show arp | display xml
 <rpc-reply
 xmlns:JUNOS="http://xml.juniper.net/JUNOS/15.1F6/JUNOS">
 <arp-table-information
 xmlns="http://xml.juniper.net/JUNOS/15.1F6/JUNOS-arp"
 JUNOS:style="normal">
 <arp-table-entry>
 <mac-address>0a:00:27:00:00:00</mac-address>
 <ip-address>10.0.201.1</ip-address>
 <hostname>adamc-mac</hostname>
 <interface-name>em0.0</interface-name>
 <arp-table-entry-flags>
 <none/>
 </arp-table-entry-flags>
 </arp-table-entry>
 </arp-table-information>
 <cli>
 <banner></banner>
 </cli>
 </rpc-reply>

How it works...
In step 1, we see the basic command that we're using as a CLI operator.

In step 2, the extra output pipe causes the JUNOS OS management daemon to not actually
execute the command, but instead tell us the RPC that it would use if it were executing the
command. So, in this case, we can see that it's <get-arp-table-information>, which is
the focus of our attention.

In step 3, we get to learn what the likely response from this RPC will be when our
automation app makes the RPC call. In this case, the normal tabular format seen by the
human is presented to a machine reader, with each of the fields decorated by XML tags.
This allows easy and unambiguous interpretation of the response.

Configuring JUNOS through NETCONF

[18]

There's more...
Using the JUNOS OS | xml rpc modifier is also particularly useful for understanding how
to present complicated arguments. In this case, for example, it's possible to see how we filter
the output of the show route command (which would ordinarily be large and unwieldy)
for a specific destination and table:

 adamc@router> show route table inet.0 1.0.0.1/32 | display xml
 rpc
 <rpc-reply xmlns:JUNOS=" http://xml.juniper.net/
 JUNOS/15.1F6/JUNOS">
 <rpc>
 <get-route-information>
 <destination>1.0.0.1/32</destination>
 <table>inet.0</table>
 </get-route-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
 </rpc-reply>

See also
Juniper make great efforts to document the JUNOS OS XML API. You can find the latest
version of their XML API explorer at https:/ ​/ ​apps. ​juniper. ​net/ ​xmlapi. It provides a
browser-based explorer of the configuration tags available and the operational mode RPCs
available as in the following screenshot:

../../../../../https@apps.juniper.net/xmlapi
../../../../../https@apps.juniper.net/xmlapi
../../../../../https@apps.juniper.net/xmlapi
../../../../../https@apps.juniper.net/xmlapi
../../../../../https@apps.juniper.net/xmlapi
../../../../../https@apps.juniper.net/xmlapi
../../../../../https@apps.juniper.net/xmlapi
../../../../../https@apps.juniper.net/xmlapi
../../../../../https@apps.juniper.net/xmlapi
../../../../../https@apps.juniper.net/xmlapi
../../../../../https@apps.juniper.net/xmlapi

Configuring JUNOS through NETCONF

[19]

Figure 1.1 Juniper XML API Explorer

Using NETCONF to apply configuration
changes
As you might expect, NETCONF isn't limited to querying the JUNOS OS device operational
status using RPCs. It can also influence the operating state of the device by applying
configuration changes. In contrast to other management models like SNMP however, one
doesn't manipulate individual data atoms to effect change. Instead, JUNOS OS makes use of
the concept of a candidate configuration which is applied to the various software daemons
when the candidate is committed. In this respect, NETCONF and the traditional user-based
CLI are consistent.

Configuring JUNOS through NETCONF

[20]

In this recipe, we'll look at the NETCONF directives necessary to make configuration
changes. We'll make a simple interface description change, and we'll also look at how to
delete configuration stanzas.

Getting ready
Make sure you've got access to a JUNOS OS platform that you can make changes on. Make
sure that you've got a working NETCONF-over-SSH capability with the JUNOS OS
platform as per the first recipe in this chapter, JUNOS NETCONF-over-SSH setup.

How to do it...
The steps for the recipe are as follows:

Familiarize yourself with the XML format used within JUNOS OS to represent1.
configuration data. Generally speaking, the XML representation follows the same
hierarchy as the configuration format itself. JUNOS OS itself can help you here.
Issue the show configuration | display xml command in order to see a
portion of the configuration expressed in XML:

 adamc@router> show configuration interfaces em0.0 | display xml
 <rpc-reply xmlns:JUNOS="http://xml.juniper.net/JUNOS/
 15.1F6/JUNOS">
 <configuration JUNOS:commit-seconds="3780" JUNOS:commit-
 localtime="1970-01-01 01:03:00 UTC" JUNOS:commit-user="adamc">
 <interfaces>
 <interface>
 <name>em0</name>
 <unit>
 <name>0</name>
 <family>
 <inet>
 <address>
 <name>10.0.201.201/24</name>
 </address>
 </inet>
 </family>
 </unit>
 </interface>
 </interfaces>
 </configuration>

Configuring JUNOS through NETCONF

[21]

Connect to the NETCONF-over-SSH server in the usual manner:2.

 unix$ ssh -i JUNOS_auto_id_rsa auto@10.0.201.201 netconf

Use the NETCONF-standard edit-config operation to submit a configuration3.
change to the NETCONF server. In this example, we update the description on
the em0.0 interface to something trivial:

 <rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <config>
 <configuration>
 <interfaces>
 <interface>
 <name>em0</name>
 <unit>
 <name>0</name>
 <description>Management interface</description>
 </unit>
 </interface>
 </interfaces>
 </configuration>
 </config>
 </edit-config>
 </rpc>

Verify that the operation was successful. The <ok/> RPC reply is what we want4.
to see here.
Commit the configuration by issuing the commit NETCONF primitive and5.
checking for the <ok/> RPC reply again:

 <rpc><commit/></rpc>
 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:JUNOS="http://xml.juniper.net/JUNOS/15.1F6/JUNOS">
 <ok/>
 </rpc-reply>
]]>]]>

Configuring JUNOS through NETCONF

[22]

Apply the same configuration, but delete the description attribute by including6.
the special operation="delete" XML attribute decoration:

 <rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <default-operation>none</default-operation>
 <config>
 <configuration>
 <interfaces>
 <interface>
 <name>em0</name>
 <unit>
 <name>0</name>
 <description operation="delete"/>
 </unit>
 </interface>
 </interfaces>
 </configuration>
 </config>
 </edit-config>
 </rpc>

Commit the candidate configuration again, and analyze the configuration and7.
system commit log by hand to verify what happened:

 <rpc><commit/></rpc>
 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:JUNOS="http://xml.juniper.net/JUNOS/15.1F6/JUNOS">
 <ok/>
 </rpc-reply>
]]>]]>

Configuring JUNOS through NETCONF

[23]

How it works...
In step 1, we need to work out what our configuration change looks like in the XML
representation that JUNOS OS requires. We can use the CLI to help us with that process.

In step 2, we connect to the NETCONF-over-SSH server in the usual manner.

In step 3, we submit the configuration change that we need, represented in XML, and then
in step 4 we look for the server's response. If it isn't the standard <ok/> response, there are a
couple of reasons why that might be:

The configuration submission contained an error:1.

 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-message>syntax error</error-message>
 <error-info>
 <bad-element>unti</bad-element>
 </error-info>
 </rpc-error>

The JUNOS OS configuration database is currently locked by another user:2.

 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>lock-denied</error-tag>
 <error-severity>error</error-severity>
 <error-message>
 configuration database locked by:
 adamc terminal pts/0 (pid 19893) on since 1970-01-01 01:09:14
 UTC, idle 00:03:11
 exclusive [edit]
 </error-message>
 <error-info>
 <session-id>19893</session-id>
 </error-info>
 </rpc-error>

Configuring JUNOS through NETCONF

[24]

The Junos OS provides several ways to manipulate the configuration.
Generally speaking a user modifies the configuration by taking a copy of
the current configuration. This is called the candidate. The user
manipulates the candidate using set and delete commands, and when
ready commits the configuration to make it live. The default behaviour is
for all users to manipulate a shared candidate configuration, but there are
also two other methods of operations. Configuring with private mode
provides the user with his own private candidate. The changes he makes
are guaranteed to be his own, and when he commits, the system will apply
his differences to the current configuration (even if the configuration has
changed since he checked out his basis for a candidate). exclusive mode
requests that the user lock the configuration, thereby preventing access by
other individuals until the user relinquishes the lock.

If all is okay, we proceed to the commit operation in step 5. This is the part of the process
where the new configuration actually gets applied. JUNOS OS produces the individual
instructions for each of the software processes from the configuration file, and then signals
each process to re-read the configuration and implement the change to the new state.

This phase can also have errors if the new configuration causes a runtime error. It's really
important to deal with this situation because the configuration change will not be removed,
so it has the potential to block up future commit operations as well.

Here's the RPC response that we get, for example, if we try to commit an Ethernet sub-
interface with zero-host portion:

 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:JUNOS="http://xml.juniper.net/JUNOS/15.1F6/JUNOS">
 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <source-daemon>
 dcd
 </source-daemon>
 <error-path>
 [edit interfaces em0 unit 10 family inet]
 </error-path>
 <error-info>
 <bad-element>
 address 1.0.10.0/24
 </bad-element>
 </error-info>
 <error-message>
 Cannot assign address 0 on subnet

Configuring JUNOS through NETCONF

[25]

 </error-message>
 </rpc-error>

In order to ensure that we undo the failed configuration attempt, we can use the discard-
changes RPC from NETCONF standard. This will cause the JUNOS OS device to discard
any changes in the global candidate configuration that we are working on.

 <rpc><discard-changes/></rpc>

In steps 6 and 7, we undo the change by submitting a new configuration with a delete
directive and then committing to that. Configuration deletions are quite simple, but it's
important to understand them. There are two notable differences from the configuration
addition:

The default-operation RPC property is set to None.
This property controls how JUNOS OS applies the supplied configuration with
respect to the existing candidate configuration. By default, JUNOS OS merges
configuration items, which is typically what we want when we're adding or
changing values. But when we're deleting configuration items, we don't want
JUNOS OS to accidentally create unnecessary configuration hierarchies.
The operation property for the item to be deleted is set to Delete.
This tells JUNOS OS that this particular element should be removed from the
configuration.

Processing NETCONF using classic
Expect/TCL
Don Libes' Expect, extending the ever-flexible Tool Command Language (TCL), forms one
of the original ways of automating I/O interaction with terminal-based UNIX processes.

It has been used for numerous applications, from managing the login process on modem
dial-up systems, to automating the interaction with network elements in ISP networks in a
programmatic way. While this activity of so-called screen-scraping-reading and parsing
output -- meant for humans in a machine-compatible way -- can be limited and subject to
future-proofing problems, it still represents a significant capability, and sometimes it can be
useful to make use of Expect with NETCONF-based network elements.

In this recipe, we explore using a simplistic Expect skeleton program to make RPC calls to
our JUNOS OS devices in order to execute commands and extract data.

Configuring JUNOS through NETCONF

[26]

Getting ready
To complete this recipe, you should have completed the previous recipe, JUNOS
NETCONF- over-SSH setup for your device, particularly with respect to establishing SSH
key-pairs.

You should ideally make use of Expect 5.45, or a compatible version on your management
host. At the time of writing, this version was available in the built-in software package
systems of OpenBSD 6.0 and Ubuntu Linux 16.04. Expect is particularly mature and stable
however, so if you can't match the exact version, it's unlikely that you'll run into trouble
with the example code that we have here.

Our Expect program, netconf.tcl, will be comprised of three main parts, which are as
follows:

Some initialization routines to read the command-line arguments
Set up of the NETCONF-over-SSH session
Interaction with the NETCONF-over-SSH session to make an RPC call, and
output the response

How to do it...
The steps for the recipe are as follows:

Create the interaction procedure first. To do this, create a TCL procedure that1.
accepts a string argument that will represent the command to run:

 proc cmdrpc { cmd } {
 send -- "<rpc><command format=\"text\">[join
$cmd]</command>
 </rpc>\r\n"
 set output ""
 expect {

 -re {<error-message>([^<]+)</error-message>} {
 send_error "Command RPC for $cmd caused error:
 $expect_out(1,string)\r\n"
 return
 }

 -re {<(configuration-)?output[^>]*>} {
 expect {
 -re {^[^<]+} {

Configuring JUNOS through NETCONF

[27]

 append output $expect_out(0,string)
 exp_continue
 }
 -re "</(configuration-)?output>" {}
 }
 regsub -all "<" $output "<" output
 regsub -all ">" $output ">" output
 regsub -all "&" $output "&" output
 return $output
 }

 default {
 send_error "Timeout waiting for RPC [join $cmd]\r\n"
 send_error [
 concat "\t" [
 regsub -all {[\r\n]+} $expect_out(buffer)
 "\r\n\t"
]
]
 return
 }
 }
 }

Read the environment command-line arguments in order to determine a2.
hostname and a command:

 if { [llength $argv] != 2 } {
 send_user "Usage: netconf.tcl hostname command\r\n"
 exit 1
 }
 set hostname [lrange $argv 0 0]
 set command [lrange $argv 1 1]

Establish a NETCONF-over-SSH session and call the previously defined3.
interaction procedure to send the RPC and extract the results:

 set DELIMITER {]]>]]>}
 if [spawn -noecho ssh -p 830 -i JUNOS_auto_id_rsa
 auto@$hostname -s netconf] {
 expect {
 $DELIMITER {
 set result [cmdrpc $command]
 if {$result ne ""} {
 send_user $result
 }
 }
 default {

Configuring JUNOS through NETCONF

[28]

 send_error "SSH protocol error (check
 authorized_keys?)\r\n"
 exit 1
 }
 }
 } {
 send_error "Unable to start SSH client for connection to
 $hostname\r\n"
 exit 1
 }
 close
 exit

How it works...
First of all, the command-line arguments are analyzed to get a hostname and a command to
run. Then we use the spawn command to start up a regular SSH client with the necessary
parameters to connect to the hostname. Note that we're using the auto username and the
key that we explicitly generated in the previous recipes.

The hard work happens in the interaction procedure, cmdrpc. It's comprised of two nested
expect loops. First of all, it open the dialog with the NETCONF host by sending the
command RPC along with the textual command that we want to execute. The first expect
loop runs, which attempts to determine if the RPC was successful or otherwise. If the
successful RPC branch is chosen, a second expect loop runs, which accumulates the lines
of output in a variable, ready to return. The second expect loop determines the end of the
output by looking for the appropriate XML closing tag. Finally the resulting output is
scanned to expand some special XML tokens, as per the JUNOS OS specification, and we
print the output for the user to see.

Configuring JUNOS through NETCONF

[29]

Depending on your familiarity with TCL and Expect, you might have a little bit of trouble
following the example code. If so, take heart. TCL can seem a little bit daunting because of
the quoting and escaping rules that are implemented using braces. In the table, there's a
handy phrase - book to compare an example to the typical UNIX shell, which might be a little
more widely understood.

TCL Shell Description

"text with
$variable"

"text with
$variable"

The double quotes group together the textual
output along with white space, but expand
any variables preceded with dollar signs ($)

{ literal
string block }

{ literal string
block }

Literal string block, including white space
and not performing variable expansion.

[command] $(command), or
`command`

Sub-shell or command invocation expansion.
Used to substitute the evaluation of an
expression or the result of a command or
procedure call

Processing NETCONF with Python
In recent years, Python has become one of the de-facto software development languages in
the automation and scripting world. Its benefits include an accessible and readable syntax, a
just-in-time compilation/interpretation model that allows rapid development cycles, and a
batteries included standard library that immediately lends itself to many common
situations.

In this recipe, we'll make use of a Python script, netconf.py, to connect to a JUNOS OS
device in order to issue CLI-like RPCs, much as in the Expect/TCL example. We'll do this
using just the basic standard libraries available out of the box in Python, so there is little
fussing about with pip or other package management tools.

Getting ready
In order to complete this recipe, make sure you've got access to a working JUNOS OS
device and have completed the JUNOS NETCONF over SSH setup recipe. Additionally, you
need a suitable Python development environment. In this case, we made use of macOS X
and OpenBSD with Python 2.7.13.

Configuring JUNOS through NETCONF

[30]

How to do it...
The steps for the following recipe are as follows:

Import the necessary standard library modules that we're going to use. In this1.
case, we just need access to basic system functionality, the subprocess module
(for managing child processes), and the XML parsing library:

 #!/usr/bin/env python

 import sys
 import subprocess
 import xml.etree.ElementTree as ET

Create a Python object class to represent the NETCONF client, making use of the2.
subprocess module in the Python standard library in order to call the
underlying operating system's SSH client. Define an appropriate constructor and
destructor function as shown:

 class NETCONFClient(object):

 DELIMITER = ']]>]]>\n'

 def __init__(self, hostname):
 self.ssh = subprocess.Popen([
 "/usr/bin/ssh",
 "-q",
 "-i", "JUNOS_auto_id_rsa",
 "-p", "830",
 "-s",
 hostname,
 "netconf",
],
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE)

 def __del__(self):
 self.ssh.stdin.close()

Define a method to read from the NETCONF-over-SSH stream, in a chunked,3.
line-by-line manner, attempting to parse the XML stream.

 def read(self):
 data=""
 for line in iter(self.ssh.stdout.readline,
 NETCONFClient.DELIMITER):

Configuring JUNOS through NETCONF

[31]

 if line=='':
 raise IOError("ssh session ended unexpectedly")
 data += line

 return ET.fromstring(data)

Define a method to write to the NETCONF-over-SSH stream in order to issue4.
RPCs:

 def cmdrpc(self, cmd):
 e = ET.Element("rpc")
 e.append(ET.Element("command", {'format': "text"}))
 e.find("command").text = cmd;
 self.ssh.stdin.write(ET.tostring(e))
 self.ssh.stdin.write(NETCONFClient.DELIMITER)

Write the main code to read the command-line arguments and instantiate the5.
NETCONFClient object:

 if len(sys.argv) < 3:
 print "Usage: netconf.py hostname command"
 sys.exit(1)

 netconf = NETCONFClient("auto@"+str(sys.argv[1]))
 response = netconf.read()
 netconf.cmdrpc(" ".join(sys.argv[2:]))
 response = netconf.read()

 output=response.find(".//{urn:ietf:params:xml:ns:
 netconf:base:1.0}output")
 config = response.find(".//{urn:ietf:params:xml:ns:
 netconf:base:1.0}configuration-output")
 error = response.find(".//{urn:ietf:params:xml:ns:
 netconf:base:1.0}error-message")

Output the response:6.

 if output != None:
 print output.text
 elif config != None:
 print config.text
 elif error != None:
 print error.text
 else:
 print "NETCONF server provided no usable response"

Configuring JUNOS through NETCONF

[32]

How it works...
Step 1 sets up the dependent standard library modules. In this case, we use only the well-
trodden modules included with the standard Python distribution. The sys module
provides access to the command-line environment. The subprocess module provides a
flexible way of managing child processes. ElementTree is the Python built-in XML parsing
environment.

In step 2, we create a Python new-style class with a constructor and a destructor. The
constructor invokes the subprocess module in order to manage a child process consisting
of an SSH client. We use the typical options of SSH to influence its behavior:

Option Description

-q Quiet mode. Typically omits message-of-the-day banners,
which are not helpful for machine reading.

-i JUNOS_auto_id_rsa Specify the private SSH key file.

-p 830 Establish TCP port 830 as the transport endpoint.

-s Invoke the SSH subsytem specified (netconf).

The destructor attempts to clean up by closing the standard input stream to the SSH client,
which will usually result in the SSH client disconnecting from the remote endpoint.

In step 3, we define a method to read data from the SSH client. The data is read line-by-line
until we see the special NETCONF delimiter token. When we see that, we know a message
has been completed and it is passed to the ElementTree routines for XML decomposition
as a Python object.

In step 4, we define the complimenting output method — a function to write a command
RPC. The method simply wraps the input parameter — which is the command line to be
executed — in the necessary XML decoration in order to invoke the command RPC.

Step 5 is about putting it all together. We read the command-line arguments to determine
the hostname and the command to use. Since most commands consist of multiple words,
the user is expected to quote the command. For example:

 unix$./netconf.py 10.0.201.201 "show route summary"

Configuring JUNOS through NETCONF

[33]

We call the method to read data from the SSH stream in order to eat the hello message -
we've no real need to understand its contents. Then we output a command RPC for the
desired command, and call the read method once more in order to receive the response.

As we handle the response from the command RPC, we anticipate receiving one of three
types of tag, as shown in the following table:

Tag Description

<output> Normal output from a show command or otherwise

<configuration-output> Output from the show configuration command

<error-message> An error message when something goes wrong

Note that the response.find() calls in step 5 make use of the so-called
fully qualified XML tag name. The braces denote an XML namespace
identifier. Namespaces allow the construction of XML documents
comprising of multiple tag dictionaries from multiple sources without
collision. They are a flexible tool, but they can make for wordy and
verbose text.

Finally, in step 6, we print what we've discovered for the user's attention.

Processing NETCONF with Node.js
Node.js is a popular JavaScript-based language used originally in the server-side web
environment, but now common in many application spaces. Its key benefit is its modern
JavaScript-dialect allowing object-oriented and prototypal object inheritance models, fused
together with Google's efficient V8 JavaScript engine, and an asynchronous, event-based
programming framework from the get-go. The asynchronous nature of Node.js makes it
ideal for advanced automation and control applications where one needs to communicate
with multiple elements at once.

In this recipe, we explore the use of a simple Node.js application acting as a NETCONF
client in a similar manner to the previous Python and Expect/TCL applications.

Configuring JUNOS through NETCONF

[34]

Getting ready
In order to complete this recipe, you should have already completed the JUNOS NETCONF
over SSH setup recipe and have a working JUNOS OS NETCONF host. You also need a
Node.js installation on the operating system of your choice. For our testing, we used a
variety of versions, from v0.10.35 through v6.10.0.

How to do it...
The steps for the recipe are as follows:

Firstly, install a viable XML parsing library. Out of the box, Node.js ships with no1.
XML parsing capability within its standard modules, so make use of the popular
xml2js library, written by Marek Kubica, and install it using the npm package
management tool:

 unix$ npm install xml2js

Import the required Node.js modules to operate. In this case, we make use of the2.
child_process module in order to control a child process and the XML parsing
module:

 #!/usr/bin/env node

 const util = require("util");
 const child_process = require('child_process');
 const xml2js = require('xml2js');

Define some program constants that we can refer to consistently later, including3.
the XML phrase for the command RPC and the invaluable NETCONF delimiter
that denotes the space between XML messages:

 const DELIMITER="]]>]]>";

 const xmlRpcCommand = function(command) {
 return [
 "<rpc>\n",
 "<command format=\"text\">\n",
 command,
 "</command>",
 "</rpc>\n",
 DELIMITER,
 "\n"
];

Configuring JUNOS through NETCONF

[35]

 };

Define a convenience utility subroutine for accessing the nested JavaScript object4.
dictionaries, which will be the result of parsing the XML.

 var walk = function(obj, path) {
 var result = obj;
 path.forEach(function (cur, ind, array) {
 if (result) result=result[cur];
 });
 return result;
 }

Parse the command-line arguments to determine a target hostname and a5.
command:

 if (process.argv.length!=4) {
 console.warn("Usage: netconf.js user@hostname command\n");
 process.exit(1);
 }
 var hostname = process.argv[2];
 var command = process.argv[3];

Start up a child process in order to run the SSH client to connect to the JUNOS OS6.
host:

 var child = child_process.spawn(
 "/usr/bin/ssh", [
 "auto@"+hostname,
 "-q",
 "-p", "830",
 "-i", "JUNOS_auto_id_rsa",
 "-s", "netconf"
]
);

Define the important event handlers to deal with the runtime interaction with the7.
SSH session, including handling things like reading data from the SSH session
and handling error conditions:

var data="";

child.stderr.on('data', function(chunk) {
process.stderr.write(chunk, "utf8"); });
child.stdout.on('data', function(chunk) {
 data+=chunk;
 if ((index=data.indexOf(DELIMITER))!=-1) {

Configuring JUNOS through NETCONF

[36]

 var xml = data.slice(0, index);
 data = data.slice(index + DELIMITER.length);
 xml2js.parseString(xml, function(err, result) {
 if (err) throw err;
 if (result['hello']) return;
 if (output=walk(result, ['rpc-reply',
 'output', 0])) {
 console.log(output);
 } else if (config=walk(result, ['rpc-reply',
 'configuration-information', 0,
 'configuration-output', 0])) {
 console.log(config);
 } else if (error=walk(result, ['rpc-reply',
 'rpc-error', 0,
 'error-message', 0])) {
 console.log(error);
 } else {
 console.log("Unexpected empty response");
 }
 child.stdin.end();
 });
 }
});

child.on('error', function(err) { console.log("SSH client error: ",
err); })

Finally, start the ball rolling by issuing a command RPC for the user-specified8.
CLI command:

xmlRpcCommand(command).forEach(function(cur, ind, array) {
 child.stdin.write(cur, "utf8")
});

How it works...
Step 1 sees us prepare the runtime environment by installing a module dependency. Node.js
package management system has application dependencies installed in the same directory
as the application, rather than polluting system directories. This makes for a more self-
contained application, but be aware that the node_modules directory in your application
directory is an integral part of your application.

Configuring JUNOS through NETCONF

[37]

In step 2, we start the source code and we start by pulling in the necessary Node.js modules
that we need to reference in this application. We use the child_process module to
manage a child SSH session, and we use the xml2js module to do the heavy work of
parsing the XML.

Step 3 defines some foundation constants. In this case, we need to use the NETCONF
delimiter, as in our other applications, in order to determine where XML messages start and
stop. And we also include an XML template for the command RPC that we will call.

In step 4, we create a helper routine. Because the XML parsing process will leave us with
complicated JavaScript dictionaries representing each of the tags in the XML document, we
want to make a nice, clean and easy syntax to walk an XML structure. Unfortunately,
Node.js isn't particularly tolerant to us de-referencing dictionary elements that are non-
existent. For example, if we have an object structured like this:

 routers = { 'paris--1': { version: '14.1R6', hardware: 'MX960' },
 'london--1': { version: '15.1F6-S6', hardware: 'MX960' },
 'frankfurt--1': { version: '15.1F6-S6', hardware: 'MX960' } }

We might look to query the software version using syntax like this:

 > routers['paris--1']['version']
 '14.1R6'

Unfortunately, this fails miserably if we try to reference a device that isn't in the dictionary.
Node.js throws a TypeError exception, stopping the application in its track:

> routers['amsterdam--1']['version']
TypeError: Cannot read property 'version' of undefined

Instead, we use the walk routine defined in step 4 to conditionally walk a path through a
JavaScript object, returning the undefined sentinel value at the earliest failure. This allows
us to deal with the error condition on an aggregate basis, rather than checking validity of
every element in the path:

 > walk(routers, ["paris--1", "version"])
 '14.1R6'
 > walk(routers, ["amsterdam--1", "version"])
 undefined

Configuring JUNOS through NETCONF

[38]

Step 5 sees us use the JavaScript dialect to parse the command-line arguments, and like the
previous recipes, we simply look to glean the target hostname and the command to execute.

Then the Node.js magic is put to work in steps 6 and 7. We start off a child process, which
involves the operating system forking and executing an SSH client in a similar manner to
the previous recipes. But instead of interacting with the SSH client with a series of
read/writes, we instead simply define event handlers for what happens in response to
certain events, and let the Node.js event loop do the rest.

In our case, we deal with different events, best described in pseudo code in the following
table:

Event Description

Data is received from the SSH client's
standard output

•
Read the data
•
Look for the NETCONF delimiter
•
If it's found, take all the data up to it, and try to parse it as XML
•
If it's not found, just store what we have for the next read

Data is received from the SSH client's
standard error

•
Print the same data (probably an error message) to the application
standard error channel

Successful XML Parse •
Print the content of any output, configuration - output, or error-
message tags

Step 8 actually solicits the output from the JUNOS OS device by emitting the RPC command
which executes the user's command. When the response is received, the prepared event
handlers perform their prescribed activities, which results in the output being printed.

2
Working with the Junos REST

API
In this chapter, we will cover the following recipes:

Setting up the Junos REST API
Making REST API calls to Junos with Python
Making REST API calls to Junos with Node.js
Managing passwords safely
Applying configuration changes through the REST API

Introduction
Representational State Transfer (REST) is an architecture style that common in web
application programming. Developed in tandem with HTTP/1.1, it encourages a
representation of application object state within the underlying HTTP protocol transactions
and an adherence to the semantics of the underlying HTTP verbs when applied to higher-
level application state.

Working with the Junos REST API

[40]

Simplistically, one of the key principles is that one should use the HTTP verbs in a manner
that is consistent with the application object state. The table illustrates the different HTTP
verbs and their specific applications:

HTTP Verb Application

GET Querying or reading the state of an object, given some sort of index

PUT Setting or directly writing the state of an object based on an index

POST Creating a new object within an underlying collection; or otherwise calling a
procedure that may modify an object

DELETE Deleting an object based upon an index reference

As well as the NETCONF-over-SSH interface that we've seen in Chapter 1, Configuring
Junos with NETCONF, more recent versions of JUNOS OS, starting with 14.2, include a
directly-addressable REST API which exposes the same RPCs that we seen with NETCONF.

In this chapter, we explore the REST API and how to use it with common programming
languages.

Junos REST API setup
In this recipe, we'll prepare a Junos OS router for accessing the REST API in order to allow a
software client to make RPC calls using convenient HTTP/HTTPS access methods.

Getting ready
In order to complete this recipe, you'll need access to a Junos OS router device running at
least Junos 14.2 or later because the REST feature is relatively new. At the time of writing, it
is available on T, M, MX, and SRX-series Juniper router devices.

Working with the Junos REST API

[41]

How to do it...
The steps for the following recipe are as follows:

Generate a private/public key-pair for a certificate using the Junos OS command1.
line. Give the certificate a convenient name. In this case, we use the name AUTO:

 adamc@router> request security pki generate-key-pair
certificate-
 id AUTO
 Generated key pair AUTO, key size 1024 bits

Use the key-pair to create a local self-signed certificate, specifying the domain2.
name, the IP address and the general host name as the subject:

 adamc@router> request security pki local-certificate generate-
 self-signed certificate-id AUTO domain-name router.mydomain.com
 subject CN=router ip-address 10.0.201.201
 Self-signed certificate generated and loaded successfully

Export the certificate to the filesystem:3.

 adamc@router> request security pki local-certificate export
 certificate-id AUTO filename router.pem
 certificate exported successfully

Copy the certificate PEM file to your application host to be later used with an4.
automation app:

 unix$ scp adamc@router:/var/tmp/router.pem .

Configure the REST system service:5.

 adamc@router# set system services rest http port 8080
 adamc@router# set system services rest https port 8443
 adamc@router# set system services rest https server-certificate
 AUTO

Ensure that you have configured a user profile with a valid password:6.

 adamc@router> show configuration system login user auto
 uid 2001;
 class super-user;
 authentication {
 encrypted-password “XXXXX”;
 }

Working with the Junos REST API

[42]

How it works...
In step 1, we use the foundation cryptographic functions within Junos OS to generate a pair
of keys: one private, one public. In step 2, the public version of the key is used to create a
certificate which is able to authenticate the router to connecting clients. Because we have no
explicit Certificate Authority (CA) framework in place, we use a self-signed certificate.

Steps 3 and 4 export this self-signed certificate as a text-based X.509 certificate and copy it to
the network management station respectively.

With step 5, we configure Junos OS to run the REST service using HTTP and HTTPS
specifying appropriate port numbers. You can localize these port numbers to whatever you
wish depending on your environment, but it's advisable to settle on a standard for all your
devices.

And finally, in step 6, we just set up a user account profile to be used by the REST API
access. If you already have something similar—perhaps from the previous recipes—just
note that in this case we need password authentication, not SSH key authentication.

If you only want to test, it's perfectly reasonable to simply configure plain
HTTP which is unencrypted, and you can skip steps 1 through 4. But
development and test code sometimes has an uncanny knack of becoming
production code quite quickly, so it's probably advisable to be familiar
with the HTTPS version as well.

There's more
In order to test that the REST API is working properly, Junos OS helpfully includes a simple
HTML/JavaScript web page which allows you to make REST calls from your browser. You
can enable this while getting to grips with the REST API using the following configuration:

 adamc@router# set system services rest enable-explorer

Once configured, you can point your browser at the Junos OS device by using the
configured port number and navigate to the REST API using a friendly web interface.

Working with the Junos REST API

[43]

If you can't seem to get the REST API to work on your Junos OS platform, the best place to
start troubleshooting efforts is the Routing Engine (RE) traffic filter. The RE filter is used to
police traffic destined towards the router's Routing Engine card or general CPU and it's
extensively used in situations where the router is in an internet-exposed environment.
Determine the name of the RE filter by using the command below, see the filter name
underscored, and then look up the corresponding firewall filter to see how you might need
to amend it in order to allow HTTP/HTTPS traffic from your application to the Junos OS
REST service. In most cases, it should be as easy as adding another term.

 adamc@router> show configuration interfaces lo0
 unit 0 {
 family inet {
 filter {
 input PROTECT-RE;
 }
 }
 }

Working with the Junos REST API

[44]

There are two ways to lock down access to the REST interface. One is the
low-level PROTECT-RE filter as we've seen. But additionally, Junos OS
supports a facility of white-listing client addresses.

adamc@router# set system services rest control
allowed-sources [10.0.201.1]

You should use both. The PROTECT-RE filter can be used to filter down
traffic destined to the RE to just what is required for management and
protocols, but you can then refine the traffic specification using the REST
configuration control to nominate hosts that you know will act as REST
clients.

Making REST API calls to Junos with Python
In this recipe, we'll use Python's built-in standard library routines for HTTPS in order to
access the Junos OS REST API. We'll build an example app, rest.py, that allows a user to
make simple RPC calls. In order to control the operation of the application, we'll define
some command-line arguments.

Command line option Description

-t xml | json | text Specify the output format

-r rpc Specify the actual RPC call

-c certificate Self-signed certificate from router

-p port HTTPS port number, default 8443

-u username Username to authenticate with

Getting ready...
In order to complete this recipe, you need access to a Junos OS router device running at
least Junos OS 14.2, and you should have completed the previous recipe, REST API Setup.
You'll also need access to a Python development environment.

Working with the Junos REST API

[45]

How to do it...
We're going to make a new Python app, rest.py, that will connect to the Junos OS REST
interface over SSH.

Create the Python script preamble and import the necessary standard library1.
routines.

 #!/usr/bin/env python

 import sys
 import httplib
 import ssl
 import base64
 import argparse
 import getpass
 import json
 import os
 import io

 # Error handling
 def onError(exception_type, exception, traceback):
 sys,stderr.write("%s: %s\n" % (exception_type.__name__,
 exception))
 sys.excepthook = onError

Parse the following command-line arguments:2.

 cmdline = argparse.ArgumentParser(description="Python
 JUNOS REST Client")
 cmdline.add_argument("target", help="router - target
 router to query")
 cmdline.add_argument("-t", choices=["xml", "json", "text"],
 help="Type of output", default="xml")
 cmdline.add_argument("-r", metavar="rpc-call",
 help="RPC call to make", default="get-software-
 information")
 cmdline.add_argument("-c", metavar="certificate",
 help="Router's self-signed certificate .pem file")
 cmdline.add_argument("-p", metavar="port",
 help="TCP port", default=8443)
 cmdline.add_argument("-u", metavar="username",
 help="Remote username", default=getpass.getuser())
 args=cmdline.parse_args()

Working with the Junos REST API

[46]

Query the user for a password as shown in the following code:3.

 password=getpass.getpass("Password: ")
 basicAuthorization = base64.b64encode(args.u+":"+password)

Initialize the SSL/TLS environment:4.

 context = ssl.create_default_context(
 purpose=ssl.Purpose.SERVER_AUTH,
 cafile=args.c)
 context.check_hostname=False
 if args.c==None:
 context.verify_mode=ssl.CERT_NONE

Make the TLS connection and send the HTTPS request:5.

 conn = httplib.HTTPSConnection(args.target, args.p,
 context=context)

 headers = { 'Authorization' : 'Basic %s'
 % basicAuthorization,
 'Accept': "text/xml" if args.t=="xml"
 else "application/json" if args.t=="json" else
 "text/plain" }

 try:
 conn.request("GET", '/rpc/'+args.r, headers=headers)

 except ssl.SSLError as e:
 sys.stderr.write("SSL error: "+str(e))
 sys.exit()

 response = conn.getresponse()
 responseData = response.read()

Print the output:6.

 print response.status, httplib.responses[response.status]

 if responseData:
 print responseData

Working with the Junos REST API

[47]

How it works...
Step 1 is the usual boilerplate for any Python app. We import the necessary standard library
routines. Important for this recipe is the httplib and ssl libraries which provide
framework classes and methods for forming and comprehending HTTP requests and
responses as well as the same over SSL/TLS.

In step 2, we use the argparse library to implement a simple scan of the command line.
Our application has several runtime knobs, visible with the –h switch, and as the user
selects each one, we need to influence the internal variables to affect our application
appropriately.

In step 3, we prompt the user for a password that we store, in order to use it in the HTTP
authorization header.

Unlike the recipes where we communicate using NETCONF-over-SSH, the
Junos OS REST API server requires us to authenticate on a formal
username and password basis, rather than with SSH keys. Because
passwords are a relatively weaker layer of security, we deliberately avoid
using a command-line argument to capture the password.

We use an SSL context in step 4, which is simply a way of collecting together all of the
relevant SSL parameters into one place. Because we generated a self-signed certificate on
the router in the previous recipe, there is an opportunity to validate that certificate at this
stage. But if the user doesn't specify a certificate with the –c switch, we disable the
verification.

It's important to understand the concepts involved with SSL/TLS. The
certificate required by the Junos OS HTTPS-based REST server is a way
that the server can prove its authenticity to connecting clients. Think of it
as equivalent to the SSH host key check that happens when you first
connect to a host. Regardless of whether you include this certificate
verification step, the most important aspect of the HTTPS-based REST
server is the fact that the user credentials are sent with an encrypted
armour.

Step 5 creates the HTTPS connection to the Junos OS router and makes the RPC a HTTP GET
request. And finally in step 6, we report the received response to the user on the standard
terminal output.

Working with the Junos REST API

[48]

We can see an example interaction with our application in the following screenshot:

Figure 2.2 Example interaction with rest.py

There's more...
The support for JSON output in the Junos OS REST API is incredibly useful because it is so
easily convenient to parse by applications. We can make a small modification to our
program, for instance, to extract the details of the running software version and only print
that rather than the raw response from the REST server:

 print response.status, httplib.responses[response.status]

 if args.t=="json":
 data = json.loads(responseData)

 if 'software-information' in data:
 print "Software version: ",
 data['software-information'][0]
 ['junos-version'][0]['data']

Working with the Junos REST API

[49]

When run, the application prompts for a password, combines this with the username in the
-u switch—or whatever the OS determines as the current username—and then connects to
the specified REST server. If it has been provided with a certificate using the -c switch, it
verifies this with the certificate presented by the server before issuing the Junos OS RPC call
specified with the -r switch.

Making REST API calls to Junos with
Node.js
In this recipe, we'll make an example app, rest.js, using Node.js to connect to the Junos
OS REST API in order to make procedure calls. We'll use Node.js's built-in HTTPS support,
augmented with some extra external modules simply for convenience. For utility value,
we'll provide some command-line options to customize how the application runs.

Command line option Description

-t xml | json | text Specify the output format

-r rpc Specify the actual RPC call

-c certificate Self-signed certificate from router

-p port HTTPS port number, default 8443

-u username Username to authenticate with

Getting ready
In order to complete this recipe, you need access to a JUNOS router device running at least
JUNOS 14.2, and you should have completed the previous recipe on REST API Setup. The
JavaScript code that we'll use is compatible with Node.JS v0.12, v4.x and v6.x. You should
also be familiar with npm, the Node.js package manager.

Working with the Junos REST API

[50]

How to do it...
The steps for the recipe are as follows:

First of all, download two external dependencies that we require for the1.
application, namely getpass—in order to read a password silently from the
terminal, and argparse which is a convenient command-line parsing module
that operates in an almost identical way to the Python built-in module of the
same name. In your application source directly, use npm to install the two
modules:

 unix$ npm install argparse
 unix$ npm install getpass

Start the Node.js app source code with the usual boilerplate which defines the2.
interpreter and imports the necessary modules:

 #!/usr/bin/env node

 const https = require("https");
 const fs = require("fs");
 const os = require("os");

 const argparse = require("argparse");
 const getpass = require("getpass");

Define a function to implement the outgoing HTTPS request to the Junos OS3.
REST API using the built-in Node.js HTTPS module. We'll call this from the main
code:

 var httpsRequest = function(args) {
 var mimeType="text/xml";
 if (args.t=="json") mimeType="application/json";
 if (args.t=="text") mimeType="text/plain";

 var req = https.request({
 hostname: args.target,
 port: args.p,
 path: "/rpc/"+args.r,
 method: "GET",
 auth: args.u+":"+password,
 headers: {
 'Accept': mimeType,
 },
 ca: args.c?[fs.readFileSync(args.c,
 {encoding: 'utf-8'})] : [],

Working with the Junos REST API

[51]

 rejectUnauthorized: args.c?true:false,
 checkServerIdentity: function (host, cert) {
 return undefined;
 }
 }, function(response) {
 console.log(response.statusCode, response.statusMessage);
 // console.log('headers:', response.headers);
 response.on('data', function(data) {
 process.stdout.write(data.toString);
 });
 });

 req.on('error', function(err) {
 console.error(err);
 });

 req.end();
 }

Continue to specify the main execution path by parsing the command-line4.
arguments according to our pre-defined specification:

 var cmdline = new argparse.ArgumentParser({description: "NodeJS
 JUNOS REST Client"});

 cmdline.addArgument("target", { help: "Target router
 to query" });
 cmdline.addArgument("-t", { choices: ["xml",
 "json", "text"],
 help: "Type of output",
 defaultValue: "xml"}
);
 cmdline.addArgument("-r", { metavar: "rpc-call",
 help: "RPC call to make",
 defaultValue: "get-software-information" }
);
 cmdline.addArgument("-c", { metavar: "certificate",
 help: "Router's self-signed certificate
 .pem file" });
 cmdline.addArgument("-p", { metavar: "port",
 help: "TCP port",
 defaultValue: 8443 });
 cmdline.addArgument("-u", { metavar: "username",
 help: "Remote username",
 defaultValue: os.userInfo()['username'] }
);
 var args = cmdline.parseArgs();

Working with the Junos REST API

[52]

Finally, prompt the user for a password that will be used to connect to the REST5.
API service, triggering the HTTPS request upon completion:

 var password=null;
 getpass.getPass(function(err, pwd) {
 if (err) { console.warn(err) }
 else {
 password = pwd;
 process.nextTick(httpsRequest, args);
 }
 });

How it works...
In step 1, we must externally collect and install the extra Node.js modules that we need to
work with. By default, Node.js stores modules that your application depends upon within
the same directory as the application, in a sub-directory called node_modules. This has the
advantage of making your application quite portable. You can simply zip up the application
directory from your development environment, install it to production and reasonably
expect things to work.

In step 2, we start writing the Node.js code for our application which begins with the usual
interpreter definition to the operating system. We also create global constants to refer to
both the built-in and the external modules that we're going to use.

In step 3, we define a function that, when called, will do the hard work. httpsRequest
takes a dictionary object as an argument which provides the necessary information for the
address of the REST server, the username credentials, the media types and so on. Using this
information, we use Node.js's built-in HTTPS client to connect to the REST server, perform
a TLS handshake and then interact with the server.

The first argument to https.request() is basically just a re-arrangement of the argument
parameters that we've been provided in a fashion usable by the library routine, but there
are some complexities to note here, regarding the use of a certificate or otherwise.

If the application has been provided a certificate—using the –c switch—then we configure
the Node.js HTTPS client to:

Consider the certificate in the CA hierarchy chain, and
Validate the certificate for authenticity

Working with the Junos REST API

[53]

If there is no certificate, we disable the security verification. Regardless of the presence of a
certificate or otherwise, we configure the Node.js HTTPS client to not check the hostname.

The second argument to https.request() is a response handler which specifies what
should happen with the response data that we receive from the server. We define this as a
simple function that checks the HTTP status code to ensure that it is 200, and then prints the
received data as it is received.

With the activity functions all pre-prepared and defined, step 4 continues to parse the
command line arguments, using the utility functions provided by argparse, and step 5
prompts for the password. The actual HTTPS request is triggered from within the callback
routine as soon as we have the password to proceed.

When run, the application prompts for a password, combines this with the username in the
-u switch—or whatever the OS determines as the current username—and then connects to
the specified REST server. If it has been provided with a certificate using the -c switch, it
verifies this with the certificate presented by the server before issuing the Junos OS RPC call
specified with the -r switch.

Managing passwords safely
The previous recipes to connect to the Junos OS REST server might cause frustration for any
application that needs to run in an unattended manner. Who will enter the password? This
is not automation!

Dealing with the safe storage of security credentials can be tricky. The automation script
needs to be able to read the credentials in a clear manner in order to complete the
authentication process with the Junos OS device. But in most application execution
environments, the permission to execute the app usually coincides with the permission to
read the app executable file and, for just-in-time interpreted script languages, that includes
the sensitive credentials.

People sometimes try to get around this problem by using a command line switch or an
environment variable to store a password. This approach can be problematic though
because, on most UNIX systems, an application's execution environment—such as
environment variables or command-line arguments—can still be visible to other users on
the system.

In this recipe, we present a way of dealing with the password problem for automation apps
that avoids building passwords within scripts and instead makes a file cache of passwords
which can be protected using the UNIX file system permissions.

Working with the Junos REST API

[54]

Getting ready
In order to complete this recipe, you should have a working Python or Node.js REST client
from the previous chapters.

How to do it...
We're going to modify the initialization code within the application to check for the
presence of a password cache within a user-specific location. If the file is found, we read a
JSON-structured dictionary of username, remote device, and password. If the file is not
found, or is otherwise inaccessible, then we assume an interactive operation and read a
password from the terminal.

We can modify our Python rest.py app from the previous recipes to use this1.
technique with the following code:

 args=cmdline.parse_args()

 try:
 passwordFile = os.path.expanduser("~")+"/.pwaccess"
 if os.stat(passwordFile)[0]&63==0:
 passwords = json.load(open(passwordFile))
 password = passwords[args.u+"@"+args.target]
 else:
 sys.stderr.write("Warning: password file "+passwordFile+"
 must be user RW (0600) only!\n")
 sys.exit(1)

 except Exception as e:
 print(e)
 password=getpass.getpass("Password: ")

 basicAuthorization = base64.b64encode(args.u+":"+password)

We can modify our Node.js rest.js app from the previous recipes to use this2.
technique with the following code:

 var password=null;

 try {
 var passwordFile = os.userInfo()['homedir']+"/.pwaccess";
 var stat = fs.statSync(passwordFile);
 if ((stat.mode & 63) == 0) {
 var passwordList = JSON.parse(

Working with the Junos REST API

[55]

 fs.readFileSync(passwordFile)
);
 password = passwordList[args.u+"@"+args.target].
 toString();
 } else {
 console.warn("Warning: password file " + passwordFile + "
 must be user RW (0600) only!\n");
 process.exit(1);
 }
 process.nextTick(httpsRequest, args);
 }
 catch (e) {
 getpass.getPass(function(err, pwd) {
 if (err) { console.warn(err) }
 else {
 password = pwd;
 process.nextTick(httpsRequest, args);
 }
 });
 }

Prepare a password cache file to be used by the application, regardless of3.
whether user-interactive or system-borne invocation is to be used. An example
file is as follows:

 { "fred@10.0.201.201": "jackAndJill",
 "user@myrouter": "f00bar" }

Ensure that the permissions on the file are set securely so that only the owner of4.
the file can read it.

 unix$ chmod 0600 ~/.pwaccess

Regardless of whether the app will be used interactively by a user, or will be started from
cron or another script, a password cache file, ~/.pwaccess, can now be provided which
includes a mapping device to passwords.

How it works...
The modification in steps 1 and 2 are slightly different between Node.js and Python due to
the asynchronous nature of Node.js. But regardless, in both languages we use the stat
system call to check for both, the existence and the file permissions on a well-known file,
~/.pwaccess, in the user's home directory. If the file doesn't exist, the stat call will throw
an exception.

Working with the Junos REST API

[56]

We use the synchronous version of the stat call in Node.js which results in
the exception behavior, rather than an error parameter in a callback. It's
generally not wise to mix synchronous and asynchronous code in Node.js,
but using synchronous functions to set up execution before settling in a
asynchronous mode for main runtime is a common pattern.

If the file exists and has adequately secure permissions, we read it and attempt to parse it as
JSON. Again, any failures here will cause an exception, which we can handle later.
Assuming the JSON structure is read correctly, we learn an object dictionary keyed by
username and router device. We use this to extract the password for the remote device and
username, again ensuring that we throw an exception if the key is not found.

If any exceptions occur, we fallback to prompting the user for a password. Armed with the
password—either through the password cache or a diligent interactive user—the rest of the
code proceeds as previously.

In steps 3 and 4 we prepare the password file cache and ensure its permissions are safe.

Applying configuration changes through the
REST API
So far, we've only shown how to make use of operational RPCs. This allows us a fair
amount of control and flexibility, but it's also possible to change the configuration of Junos
OS through the REST API. In this recipe, we'll modify the previous Python code, rest.py,
and make a modified version, rest-conf.py, that takes a configuration change as a text
file and applies it to the specified Junos OS host, checking the loading process and the
commit process as it goes.

Getting ready
In order to complete this recipe, you'll need a Python development environment with access
to a Junos OS device upon which you've previously completed the REST API setup recipe.

Working with the Junos REST API

[57]

How to do it...
The steps for the recipe are as follows:

Start the Python source code with the usual boilerplate to define the interpreter1.
and the module import references. Include a general purpose exception handler.

 #!/usr/bin/env python

 import sys
 import argparse
 import getpass
 import os
 import io
 import email
 import xml.etree.ElementTree as ET
 import jxmlease
 import urllib3
 import requests
 import re

 def onError(exception_type, exception, traceback):
 sys.stderr.write("%s: %s\n" % (exception_type.__name__,
 exception))
 sys.excepthook = onError

Define a function to specify the RPC calls necessary to load and commit a2.
configuration. These will be concatenated together and delivered within a single
POST request.

 def configRpc(config):
 return str.format((
 "<lock><target><candidate/></target></lock>\r\n"
 "<edit-config><target><candidate/></target><config>"
 "{config}</config></edit-config>\r\n"
 "<commit/>"
 "<unlock><target><candidate/></target></unlock>\r\n"
), config=config)

Define a function to get the user password associated with the Junos OS account:3.

 def getPassword():
 password=""
 try:
 passwordFile = os.path.expanduser("~")+"/.pwaccess"
 if os.stat(passwordFile)[0]&63==0:
 passwords = json.load(open(passwordFile))

Working with the Junos REST API

[58]

 password = passwords[args.u+"@"+args.target]
 else:
 raise RuntimError(
 "Warning: password file %s must be user RW 0600 only!"
 % passwordFile)

 except Exception as e:
 password=getpass.getpass("Password: ")

 return password

Define a function to handle the response to a POST request:4.

 def decodePostResponse(response):
 print response.text
 response_parts=[]
 msg = email.message_from_string(
 "Content-Type: %s\r\n\r\n%s" %
 (response.headers['content-type'], response.text))

 for part in msg.walk():
 if (part.get_content_type()=="application/xml" or
 part.get_content_type()=="text/xml" or
 part.get_content_type()=="text/plain"):
 response_parts.append(part.get_payload(decode=True))

 if (len(response_parts)==0):
 raise RuntimeError("Unexpected empty POST response")

 try:
 lock=jxmlease.parse(response_parts[0])
 load=jxmlease.parse(response_parts[1])
 commit=jxmlease.parse(response_parts[2])

 except:
 raise RuntimeError("Malformed XML response:\n%s\n" %
 (response_parts[-1]))

 if ('ok' in lock and
 'load-success' in load and
 'commit-results' in commit):
 if not 'xnm:error' in commit['commit-results']:
 return "OK"
 else:
 return "FAIL"

Working with the Junos REST API

[59]

Parse the command-line arguments to determine the correct mode of operation:5.

 cmdline = argparse.ArgumentParser(description="Python JUNOS REST
 Client")
 cmdline.add_argument("target", help="Target router to query")
 cmdline.add_argument("-t", choices=["xml", "json", "text"],
 help="Type of output", default="xml")
 cmdline.add_argument("-c", metavar="certificate",
 help="Router's self-signed certificate .pem
 file")
 cmdline.add_argument("-p", metavar="port",
 help="TCP port", default=8443)
 cmdline.add_argument("-u", metavar="username",
 help="Remote username",
 default=getpass.getuser())
 cmdline.add_argument("-f", metavar="config", help="Configuration
 file to apply")
 args=cmdline.parse_args()

Issue a POST request in order to change the configuration and apply it:6.

 if args.c==None:
 urllib3.disable_warnings()

 config = open(args.f).read()

 MIME={
 "xml": "text/xml",
 "json": "application/json",
 "text": "text/plain"
 }

 r = requests.post("https://"+args.target+":"+str(args.p)+"/rpc",
 params={'stop-on-error': 1},
 auth=(args.u, getPassword()),
 headers = {
 'Content-Type': "text/xml",
 'Accept': MIME[args.t]
 },
 verify=args.c if args.c!=None else False,
 data=configRpc(config),
)

 if r.status_code==200:
 print decodePostResponse(r)
 else:
 raise RuntimeError("Unexpected server response: %s %s" %
 (str(r.status_code), r.reason))

Working with the Junos REST API

[60]

How it works...
Step 1 imports all of the Python modules that we're going to use. Most are within the
standard library distribution, but in this recipe we also make use of Juniper's jxmlease
module which makes parsing XML into Python data structures a bit easier.

Step 2 defines the sequence of RPCs that we will execute in order to make the configuration
change. In this case, we are using a sequence of four RPCs: lock, edit-config, commit,
unlock. We will encode an XML document defining these four RPCs in an HTTPS POST
request and submit it to the REST server.

Step 3 defines a function to implement a cached credential in the user's home directory,
falling back to an interactive prompt otherwise, as developed in the previous recipe.

Step 4 does the hard work of interpreting the response from the REST server to our POST
request. In ordinary circumstances we should get an XML response back for each RPC we
call, but there are some fringe circumstances where this doesn't happen. To create as robust
a logic as possible, we try to positively confirm the success of each part of the process in
sequence—lock, edit, commit, reporting any available context for the first one to fail.

In step 5, we make use of the argparse module in order to interpret the command line to
determine run-time parameters such as username, certificate file, and configuration file.

And then in step 6, we set the wheels in motion using the Python requests module, which
simplifies HTTP/HTTPS operations quite significantly when compared to the standard
library function.

In operation, we can see rest-conf.py working here.

unix$ more config.xml
<configuration>
 <system>
 <host-name>router</host-name>
 </system>
</configuration>

unix$./rest-rpc.py -u auto -f config.xml 10.0.201.201
OK

3
Using SLAX to Write Op Scripts

In this chapter, we will cover the following recipes:

Making remote procedure calls
Using XPath predicate expressions
Working with regular expressions
Working with IP addresses
Debugging SLAX scripts
Making custom show commands
Making configuration changes

Introduction
Juniper's XML management interface foundation allows interaction with the operating
system in a disciplined and structured way, which is ideal for machine-to-machine
interfaces and automation applications. Working with XML, however, can be a challenge.
Yes, it's structured and regular. Yes, it supports schemas that define the structure, but when
you have to manipulate data objects represented as XML, you need a way of expressing
data transformations.

The industry standard way to express the transformation of XML-formatted data is
Extensible Stylesheet Language Transformations (XSLT). It is commonly used in web
applications for transforming structured XML data into presentable HTML web pages or
similar.

Using SLAX to Write Op Scripts

[62]

Since the configuration state and operational state of JUNOS can be represented as XML,
using XSLT to represent requests and changes to internal states is also logical, but XSLT
itself is a bit cumbersome and unsightly. Instead, Juniper developed SLAX, which uses a C-
like syntax fused with XML in order to allow the expression of logic that transforms XML
data structures. It is directly equivalent to XSLT, but easier to read.

If you're familiar with UNIX, the best way to think of a SLAX script is as a pipeline
application that reads some input and delivers some output. The input and output in
question depend upon the context and environment of the script, which includes the
following common types:

Op script: User-initiated script, complete with command line environment and
arguments. Able to execute operational mode RPCs and make configuration
changes.
Commit script: Script executed in the event of a commit operation, allowing
custom logic to validate, check, and manipulate the post-inheritance candidate
configuration.

In this chapter, we delve into how JUNOS op scripts work and look at some practical
examples to solving common tasks in the JUNOS network environment.

Making remote procedure calls
In this recipe, we'll create a Stylesheet Language Alternative Syntax (SLAX) op script,
show-int.slax, in order to simulate the behavior of the show interfaces JUNOS CLI
command. We'll do this by executing the normal RPC associated with the show interface
command and pick out the information that we need.

Getting ready
In order to complete this recipe, you'll need access to a JUNOS router running with a basic
configuration. If available, a simple VM-based Juniper Olive or virtual Route Reflector
(vRR) is perfectly adequate for the level of complexity here.

Using SLAX to Write Op Scripts

[63]

How to do it...
We're going to create a SLAX script to call the necessary RPC to get the interface
information and with the structured XML document that is returned, we're going to pick
out a simple set of parameters and tabulate it in a neat form to make life simpler for the
operator. The example is a little contrived, but it's a good illustration of how to call RPCs
from within SLAX. The steps are given as follows:

Start with the mandatory SLAX boilerplate as recommended by Juniper. This1.
typically defines version numbers for compatibility and declares namespaces
using the following code:

 version 1.0;
 ns junos = "http://xml.juniper.net/junos/*/junos";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";
 import "../import/junos.xsl";

Make the RPC call in order to query the operational state of the interfaces by2.
querying the internal mgd and dcd JUNOS daemons. Use the following code:

 var $rpc = {
 <get-interface-information>;
 }
 var $result = jcs:invoke($rpc);

Use an unnamed template—or a match template—in order to discard script input3.
and simply respond with the XML structure associated with op script result sets.
Print a header line and then a line for each interface that is found. Use the
following code:

 match / {
 <op-script-results> {
 <output> {
 expr jcs:printf("%10s %6s %16s %16s %s\n",
 "Interface", "Status", "Local IP Addr", "Subnet",
 "Description");
 }
 for-each ($result//logical-interface) {
 <output> {
 expr jcs:printf("%10s %6s %16s %16s %s\n",
 name, ../oper-status,
 address-family/interface-address[1]/ifa
 local,
 address-family/interface-address[1]/ifa
 destination, description);

Using SLAX to Write Op Scripts

[64]

 }
 }
 }
 }

Copy the SLAX script to the JUNOS host. Use the following code:4.

 unix$ scp show-int.slax adamc@10.0.201.201:/var/db/scripts/op/
 show-int.slax
 100% 765 0.8KB/s 00:00

Configure the SLAX script to be used as an op script within JUNOS:5.

 adamc@router# set system scripts op file show-int.slax

Remember to copy the SLAX script to both routing engines if you are
running with a redundant routing-engine configuration. Alternatively,
make sure that you've configured commit synchronize.

Invoke the op script to see the results.6.

How it works...
Step 1 simply declares the XML namespace definitions. Each ns line associates a prefix tag
with a fully-qualified XML namespace identifier. XML namespace identifiers look exactly
like URLs. They are not URLs, they are simply unique strings, but the implied
organizational hierarchy is similar to that of a URL.

In step 2, we make a call to one of the internal JUNOS functions which invokes an XML
RPC. In this case, the RPC that we call is get-interface-information. We store the
result in a variable for analysis.

In step 3, we use an unnamed match term. Remember that SLAX and XSLT effectively
translate an XML document and by simply matching /, we're effectively saying that we
don't care about the input document. In the case of op scripts, the input document provides
little useful context to the situation.

Using SLAX to Write Op Scripts

[65]

We start by emitting an <op-script-results> tag, which is what the JUNOS SLAX
processor will be expecting from us, and we declare a line of output text by using the
<output> tag. The jcs:printf() function is similar to the printf functions in other
languages; it takes a format string with some arguments and produces a formatted string
with the arguments. In this case we use it to help us make a nice use of tabular space. The
format argument we use specifies five strings each with fixed widths apart from the last
one.

Next, we iterate through the contents of the result variable. Remember this contains the
result of the RPC which queried the interface status and is an XML document that describes
the state of an interface. For an example of what this looks like, see the following code
extract:

 <interface-information
 xmlns="http://xml.juniper.net/junos/15.1F6/junos-interface"
 junos:style="normal">
 <logical-interface>
 <name>em0.0</name>
 <local-index>64</local-index>
 <snmp-index>18</snmp-index>
 <description>Management</description>
 <if-config-flags>
 <iff-up/>
 <iff-snmp-traps/>
 <internal-flags>0x4000000</internal-flags>
 </if-config-flags>
 <encapsulation>ENET2</encapsulation>
 <policer-overhead>
 </policer-overhead>
 <logical-interface-bandwidth>0</logical-interface
 bandwidth>
 <traffic-statistics junos:style="brief">
 <input-packets>10845</input-packets>
 <output-packets>7565</output-packets>
 </traffic-statistics>
 <filter-information>
 </filter-information>
 <address-family>
 <address-family-name>inet</address-family-name>
 <mtu>1500</mtu>
 <address-family-flags>
 <ifff-is-primary/>
 <ifff-sendbcast-pkt-to-re/>
 </address-family-flags>
 <interface-address>
 <ifa-flags>

Using SLAX to Write Op Scripts

[66]

 <ifaf-current-preferred/>
 <ifaf-current-primary/>
 </ifa-flags>
 <ifa-destination>10.0.201/24</ifa-destination>
 <ifa-local>10.0.201.201</ifa-local>
 <ifa-broadcast>10.0.201.255</ifa-broadcast>
 </interface-address>
 </address-family>
 </logical-interface>
 </interface-information>

For each <logical-interface> tag we find in the result variable, we execute the control
loop which consists of an <output> tag and another printf() call. In this case, we print
interface-specific fields for each of the five headings that we previously printed. We identify
the interface-specific fields or properties by using their path within the XML document, also
known as an XPath. The XPath references and descriptions are placed in the following table:

XPath Reference Description

name The logical interface name

../oper-status The operational state of the
parent physical interface

address-family/interface-address[1]/ifa-local The local interface address

address-family/interface-address[1]/ifa-destination The link-layer address subnet
associated with the interface

description The user-configured description

The resulting SLAX script iterates through the interfaces on the JUNOS router and prints a
simple output allowing an operator a quick summary. The utility value of the tool is quite
limited compared to the JUNOS built-in commands, but it's a starting point for learning
how to build custom SLAX scripts that execute RPCs and interpret results:

 adamc@router> op show-int
 Interface Status Local IP Addr Subnet Description
 em0.0 up 10.0.201.201 10.0.201/24 Management
 gre.0 up 3.0.1.1 3.0.1/24
 lo0.0 up 2.0.0.56 Loopback
 lo0.16384 up 127.0.0.1
 lo0.16385 up 128.0.0.1

Using SLAX to Write Op Scripts

[67]

Using XPath predicate expressions
In this recipe, we'll build on our previous op script, show-int.slax, and enhance its
functionality so that it can limit the output based on characteristics of the interface. To
illustrate the capabilities of XPath predicates, we'll filter some of the annoying internal
interfaces that showed up in the output of the previous recipe.

Getting started
In order to complete this recipe, you'll need access to a JUNOS router running with a basic
configuration. Ideally, build upon the previous recipe and modify the source code.

How to do it...
The steps for the recipe are as follows:

Start with the show-int.slax source code from the previous recipe, but use the1.
new filename show-int-xpath.slax.
Modify the for-each control statement and make use of an XPath predicate in2.
order to hone in the scope of the selected range of items. The following are some
examples:

Only include Gigabit Ethernet interfaces:

 for-each ($result//
 logical-interface[starts-with(name, "ge-")]
) {

Only include loopback interfaces, if they are indexed with
0—ignore all others:

 for-each ($result//
 logical-interface[!starts-with(name, "lo0") ||
 name=="lo0.0"]) {

Using SLAX to Write Op Scripts

[68]

Copy the script to the JUNOS router—both routing engines if necessary—and3.
configure the script as a system op script:

 adamc@router# set system scripts op file show-int-xpath.slax

Invoke the op script to see the results.4.

How it works...
The node-list constructed in the for-each control statement is reduced when the
expression is followed by square brackets. The square brackets contain the predicate
function—a functional expression that must evaluate positively if the node is to be
considered within the code block of the for-each control statement.

Using the second example, it's possible to filter out the extraneous Loopback interfaces
displayed in our simple JUNOS virtual environment:

 adamc@router> op show-int-xpath
 Interface Status Local IP Addr Subnet Description
 em0.0 up 10.0.201.201 10.0.201/24 Management
 gre.0 up 3.0.1.1 3.0.1/24
 lo0.0 up 2.0.0.56 Loopback

This is a very simple example of how to use XPath predicates to manipulate the structured
data within the JUNOS XML API, but the technique is applicable in lots of situations within
JUNOS.

Working with regular expressions
In this recipe, we'll build on our original op script show-int.slax, and enhance its
functionality so that it can limit the output based on characteristics of the interface. In this
case, it will allow the user to specify a regular expression pattern and only interfaces whose
description match this pattern will be displayed.

Getting ready
In order to complete this recipe, you'll need access to a JUNOS router running with a basic
configuration.

Using SLAX to Write Op Scripts

[69]

How to do it...
The following are the steps for the recipe:

Start with the show-int.slax source code from the previous recipe, but this1.
time use the new filename show-int-regex.slax.
Right after the boiler-plate, declare a command-line argument that is to be user2.
provided in order to nominate the regular expression to use:

 param $description=".*";
 var $arguments = {
 <argument> {
 <name> "description";
 <description> "Match subset of interfaces based upon
 description";
 }
 }

Modify the for-each control statement and use an XPath predicate that3.
references the jcs:regex() function in order to test a regular expression:

 for-each ($result//
 logical-interface[jcs:regex(
 $description, description)]
) {

Copy the script to the JUNOS router—both routing engines if appropriate—and4.
configure the script as a system op script:

 adamc@router# set system scripts op file show-int-regex.slax

Invoke the op script to see the results. Use the optional description argument to5.
supply a regular expression in order to filter the list:

adamc@router> op show-int-regex
Interface Status Local IP Addr Subnet Description
em0.0 up 10.0.201.201 10.0.201/24 Management
gre.0 up 3.0.1.1 3.0.1/24
gre.101 up 3.0.101.1 3.0.101/24 CST 1G FOOB1/IPAC/10024
gre.102 up 3.0.102.1 3.0.102/24 CST 1G BODG1/IPAC/10089
gre.103 up 3.0.103.1 3.0.103/24 CST 1G DEVN1/IPAC/10054
gre.104 up 3.0.104.1 3.0.104/24 CST 1G BITB1/IPAC/10012
lo0.0 up 2.0.0.56 Loopback
lo0.16384 up 127.0.0.1
lo0.16385 up 128.0.0.1

Using SLAX to Write Op Scripts

[70]

adamc@router> op show-int-regex description FOO
Interface Status Local IP Addr Subnet Description
gre.101 up 3.0.101.1 3.0.101/24 CST 1G
FOOB1/IPAC/10024

How it works...
The param directive declares a parameter to the op script called description, and in our
case, it sets a default value of .*—a regular expression which will match everything. The
arguments structure simply provides an XML response that helps the JUNOS mgd daemon
structure an interactive CLI help page for the command-line argument.

This time the XPath predicate calls jcs:regex() to determine whether a given logical
interface should be processed or not. jcs:regex() performs a regular expression
evaluation upon the description of the interface. Regular expressions are powerful
expressions used to match text values and have useful application in text search and
validation. The following table gives a brief primer into regular expression syntax:

Regex Construct Matching Behavior

a Literal characters match themselves

a? Zero or one occurrences of the literal character

a* Any number of occurrences of the literal character

a{4,6} Between four and six occurrences of the literal character

[abcd] Any single character in the set

[abcd]? Zero or one occurrences of the literal character

[abcd]* Any number of occurrences of the characters in the set

. Any character at all (including a newline character)

.? Zero or one occurrence of any single character

.* Any number of occurrences of any single character

a | b Either a or b

Using SLAX to Write Op Scripts

[71]

If the regular expression matches the description of an interface, the interface is processed
and printed. In this example, an ISP router with lots of customer interfaces can quickly be
searched to find a specific customer.

Working with IP addresses
In this recipe, we'll build on our original op script, show-int.slax, and enhance its
functionality so that it can limit the output based on characteristics of the interface. In this
case, it will allow the user to nominate an IP address range in the CIDR notation, for
example 8.0.0.0/24, and will then restrict its output to interfaces associated with that
address range.

Getting ready
In order to complete this recipe, you'll need access to a JUNOS router running with a varied
set of network interfaces for different addresses.

How to do it...
We're going to write a SLAX script to call the interface information RPC and then filter the
output based upon the IP address. Save the code in a file called show-int-ipaddr.slax,
or similar.

The steps for the recipe are as follows:

Start with the usual SLAX boilerplater which defines namespaces and versions:1.

 version 1.0;
 ns junos = "http://xml.juniper.net/junos/*/junos";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";
 import "../import/junos.xsl";

Declare an op script parameter called subnet and default this to the string2.
0/0—an acceptable abbreviation for the IPv4 default route, meaning all
addresses:

 param $subnet="0/0";
 var $arguments = {
 <argument> {

Using SLAX to Write Op Scripts

[72]

 <name> "subnet";
 <description> "Match interfaces based upon subnet";
 }
 }

Make the RPC call to JUNOS to determine the operational state of the interfaces:3.

 var $rpc = {
 <get-interface-information>;
 }
 var $result = jcs:invoke($rpc);

Process the response within an unnamed global match term. First of all, take the4.
user-provided subnet parameter and call jcs:parse-ip in order to parse the
string and extract the various components:

 match / {
 var $subnet-ip = jcs:parse-ip($subnet);

Print a standard heading to give context to the per-interface fields that are output:5.

 <op-script-results> {
 <output> {
 expr jcs:printf("%10s %6s %16s %16s %s\n",
 "Interface", "Status", "Local IP Addr", "Subnet",
 "Description");
 }

Then iterate through all of the ifa-local XML elements which contain an6.
interface address, and more specifically, the locally-defined address of an
interface. For each of these elements, perform an IP lookup operation to compare
the network components of the local interface address and the subnet search
address:

 for-each ($result//ifa-local) {
 var $iplookup = {
 var $check = jcs:parse-ip(. _ "/" _ $subnet-ip[3]);
 if ($check[4]==$subnet-ip[4]) {
 expr $check[4] _ "/" _ $check[3];
 }
 }

If the lookup matches, print out a line of text with the relevant interface7.
information:

 if ($iplookup!="") {

Using SLAX to Write Op Scripts

[73]

 <output> {
 expr jcs:printf("%10s %6s %16s %16s %s\n",
 ../../../name, ../../../../oper
 status, ., ../ifa-destination, ../../../description);
 }
 }
 }
 }
 }

Copy the script to the JUNOS router—both routing engines if necessary—and8.
configure the script as a system op script:

 adamc@router# set system scripts op file show-int-ipaddr.slax

Invoke the script with the subnet argument in order to filter the view of9.
interfaces to those within a certain address range.

How it works...
First of all, we declare the subnet parameter and give it a default value. We also provide
some help text to be digested by mgd so that the CLI looks helpful to an unenlightened user.
Then we use the <get-interface-information> RPC in order to get the operational
state of the interfaces on the system.

But then things get interesting. We use jcs:parse-ip() in order to break down the simple
IP address string provided by the user into five helpfully distinct components. We store this
in a new variable: $subnet-ip. Take a look at the following figure:

Figure 3.1 Illustration of jcs:parse-ip

Using SLAX to Write Op Scripts

[74]

After printing the header using the usual printf-style syntax, we iterate through the
response to the <get-interface-information> RPC. Note that the XPath expression
searches for ifa-local elements anywhere within the returned response. This is useful,
because the element lives at a rather deep hierarchy in the response. See Figure 3.2.

For each interface address that we find, we call upon the services of jcs:parse-ip()
again, but with a subtle difference. We use the prefix length from the subnet search
argument! We're basically saying, Consider the interface address, but apply this subnet mask.
jcs:parse-ip() dutifully returns to us the network portion of the answer in index [4] and
this can be directly compared with the subnet search argument. If they match, it means
that the interface address, when using the search criteria mask, shares the same network
portion or, rather, one is contained by the other.

Figure 3.2 Performing an IP lookup using jcs:parse-ip()

Using SLAX to Write Op Scripts

[75]

If the lookup operation yields a match, then we proceed to print out the interface-specific
records, but note this time that we have to refer to the fields from the point of view of where
we are with the interface address context node, hence the parent-node backtracking with
../..

If you need to understand the XML structure of a particular JUNOS RPC,
execute the command in the CLI, but pipe the command output to display
xml. The CLI will show you the native XML format for the command
output. For example:

adamc@router> show interfaces | display xml

There's more
The really neat thing about using the jcs:parse-ip() function in order to parse the IP
address strings into structured data is that Juniper has thoughtfully made this function
multi-protocol aware. Specifically, it is IPv6-friendly. So without any change, you'll find
that the script will equally search IPv6 interfaces as well.

Debugging SLAX scripts
In this recipe, we'll take the original show-int.slax script again, but pretend that it's not
working and investigate the options available when you're trying to debug a script.

Getting ready
In order to complete this recipe, you'll need access to a JUNOS router. Only a basic
operating configuration is required.

Using SLAX to Write Op Scripts

[76]

How to do it...
We're going to use the original show-int.slax script from the first recipe, and modify it to
add diagnostic information. So load that file and follow the directions to make
modifications. The following are the steps for the recipe:

Decide what type of user interaction is most appropriate for the case that you are1.
working on. Consult the following table:

Use case Method

Immediate user feedback of runtime
situation events

<output> jcs:printf(“Something happened”);

Notification of information that
might have use beyond immediate
invocation

jcs:syslog(“user.notice”, “Something
happened”);

Developer feedback and diagnostic
information

jcs:progress(“Something happened”) and
observe with detail knob

Detailed interactive developer
feedback

SLAX debugger

Modify the show-int.slax script to include one of these options in order to2.
debug the main for-each loop. In this case, we'll use jcs:progress()

 match / {
 <op-script-results> {
 <output> {
 expr jcs:printf("%10s %6s %16s %16s %s\n",
 "Interface", "Status", "Local IP Addr", "Subnet",
 "Description");
 }
 for-each ($result//logical-interface) {
 expr jcs:progress("Checking interface ", name);
 <output> {
 expr jcs:printf("%10s %6s %16s %16s %s\n",
 name, ../oper-status,
 address-family/interface-address[1]/
 ifa local,
 address-family/interface-address[1]/ifa
 destination, description);
 }
 }
 }

Using SLAX to Write Op Scripts

[77]

 }

Run the show-int.slax script once more, but this time ensure that it has the3.
detail command line option invoked:

 adamc@router> op show-int detail
 1970-01-01 03:58:04 UTC: reading op script input details
 1970-01-01 03:58:04 UTC: testing op details
 1970-01-01 03:58:04 UTC: running op script 'show-int.slax'
 1970-01-01 03:58:04 UTC: opening op script
 '/var/db/scripts/op/show-int.slax'
 1970-01-01 03:58:04 UTC: reading op script 'show-int.slax'
 1970-01-01 03:58:04 UTC: Checking interface em0.0
 1970-01-01 03:58:04 UTC: Checking interface gre.0
 1970-01-01 03:58:04 UTC: Checking interface gre.101
 1970-01-01 03:58:04 UTC: Checking interface gre.102
 1970-01-01 03:58:04 UTC: Checking interface gre.103
 1970-01-01 03:58:04 UTC: Checking interface gre.104
 1970-01-01 03:58:04 UTC: Checking interface lo0.0
 1970-01-01 03:58:04 UTC: Checking interface lo0.16384
 1970-01-01 03:58:04 UTC: Checking interface lo0.16385
 1970-01-01 03:58:04 UTC: inspecting op output 'show-int.slax'
 Interface Status Local IP Addr Subnet Description
 em0.0 up 10.0.201.201 10.0.201/24 Management
 gre.0 up 3.0.1.1 3.0.1/24
 gre.101 up 3.0.101.1 3.0.101/24 CST 1G
 FOOB1/IPAC/10024 // Foobar Saunders and his Unix Entendres
 gre.102 up 3.0.102.1 3.0.102/24 CST 1G
 BODG1/IPAC/10089 // Bodgit and Scarper, Inc.
 gre.103 up 3.0.103.1 3.0.103/24 CST 1G
 DEVN1/IPAC/10054 // Devnull Networks Limited
 gre.104 up 3.0.104.1 3.0.104/24 CST 1G
 BITB1/IPAC/10012 // Bitbucket Routing, s.r.o.
 lo0.0 up 2.0.0.56 Loopback
 lo0.16384 up 127.0.0.1
 lo0.16385 up 128.0.0.1
 1970-01-01 03:58:04 UTC: finished op script 'show-int.slax'

How it works...
When we call jcs:progress(), an event message is emitted to the SLAX processor which
records the supplied message and logs it, independently of any main output which is
usually directed towards the XML processing input of mgd. This event message stream is
ordinarily not visible to casual users of op scripts unless they invoke the detail option.

Using SLAX to Write Op Scripts

[78]

There's more
In our preceding example, the debugging situation was quite simple. We just wanted to
ensure that we were processing all of the interfaces that we expected to be processing. But
sometimes debugging is much more complicated than that. When the troubleshooting
process is more complex than printf-style debugging, JUNOS comes with a fully-
fledged SLAX script debugger, which works in a similar manner to gdb and friends.

The steps for the recipe are as follows:

Start the debugger on the show-int.slax file. The code is as follows:1.

 adamc@router> op invoke-debugger cli show-int
 sdb: The SLAX Debugger (version 0.17.1)
 Type 'help' for help
 (sdb)

List the code to get situational awareness (the optional line number argument2.
allows us to skip the usual boilerplate at the beginning):

 (sdb) list 14
 show-int.slax:14: match / {
 show-int.slax:15: <op-script-results> {
 show-int.slax:16: <output> {
 show-int.slax:17: expr jcs:printf("%10s %6s %16s
 %16s %s\n", "Interface", "Status",
 "Local IP Addr", "Subnet",
 "Description");
 show-int.slax:18: }
 show-int.slax:19: for-each ($result//logical-
 interface) {
 show-int.slax:20: <output> {
 show-int.slax:21: expr jcs:printf("%10s %6s %16s %16s
 %s\n",
 show-int.slax:22: name, ../oper-status,
 show-int.slax:23: address
 family/interface-address[1]/ifa-local,
 show-int.slax:24: address
 family/interface-address[1]/ifa-destination, description);
 show-int.slax:25: }

Set a breakpoint within the for-each loop. Line 20 is a good place:3.

 (sdb) break 20
 Breakpoint 1 at file /var/db/scripts/op/show-int.slax, line 20

Using SLAX to Write Op Scripts

[79]

Let the script run and wait for it to hit the breakpoint.4.

 (sdb) run
 Reached breakpoint 1, at /var/db/scripts/op/show-int.slax:20
 show-int.slax:20: <output> {

Inspect the important variables of the script at this point, using XPath5.
expressions:

 (sdb) print .
 [node-set] (1)
 <logical-interface>
 <name>em0.0</name>
 <local-index>64</local-index>
 <snmp-index>18</snmp-index>
 <description>Management</description>
 […]

Let the script run the loop again:6.

 (sdb) over
 Reached breakpoint 1, at /var/db/scripts/op/show-int.slax:20
 show-int.slax:20:
 <output> {

Again inspect the loop variables to see how things have changed:7.

 (sdb) print .
 [node-set] (1)
 <logical-interface>
 <name>gre.0</name>
 <local-index>65</local-index>
 <snmp-index>508</snmp-index>

The SLAX debugger is a comprehensive and full-featured debugging assistance for when
your code becomes complex and requires troubleshooting.

Making custom show commands
In this recipe, we'll create a new SLAX op script, show-bgp.slax, in order to create a
slightly more readable and visible show bgp summary command. We'll do this by
executing the normal RPC associated with the show bgp neighbor command, extracting
the pertinent information, tabulating, and formatting it for output.

Using SLAX to Write Op Scripts

[80]

Getting ready
In order to complete this recipe, you'll need access to a JUNOS router running Border
Gateway Protocol (BGP) with a number of peers.

How to do it...
We're going to create a SLAX script to call the necessary RPC to get the BGP information,
then iterate through the returned structure, printing only a small but hopefully relevant
subset of the information. The steps for the recipe are as follows:

Start with the mandatory SLAX boilerplate as recommended by Juniper. This1.
typically defines version numbers for compatibility and declares namespaces.

 version 1.0;
 ns junos = "http://xml.juniper.net/junos/*/junos";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";
 import "../import/junos.xsl";

Make the RPC call in order to query the operational state of the BGP protocol2.
within the JUNOS routing protocol daemon:

 var $rpc = {
 <get-bgp-neighbor-information>;
 }
 var $result = jcs:invoke($rpc);

Use an unnamed template—or a match template—in order to ignore any script3.
input and to respond with the appropriate <op-script-results> XML
structure containing the necessary output. Make use of a for-each loop in order
to iterate through each bgp-peer structure extracting the interesting data:

 match / {
 <op-script-results> {
 <output> {
 expr jcs:printf("%16s %10s %10s %10s %10s
 %20s\n",
 "Peer", "ASN", "InMsgs", "OutMsgs", "OutQ",
 "State/PfxRcvd");
 }
 for-each ($result//bgp-peer) {
 var $pattern="[+]";
 var $peer-addrs = jcs:split($pattern, peer-

Using SLAX to Write Op Scripts

[81]

 address);
 if (peer-state=="Established") {
 if (bgp-rib/name=="inet.0") {
 <output> {
 expr jcs:printf("%16s
 %10u %10u %10u %10u %20u\n", $peer-
 addrs[1], peer-as,
 input-messages, output messages, bgp-
 output-queue/count,bgp
 rib[name=="inet.0"]/accepted-prefix-
count);
 }
 }
 } else {
 <output> {
 expr jcs:printf("%16s %10u %10u %10u
 %10u %20s\n", $peer-addrs[1], peer-as,
 input-messages, output-messages,bgp-
output-
 queue/count, peer-state);
 }
 }
 }
 }
 }

Copy the script to the JUNOS router—both routing engines if necessary—and4.
configure the script as a system op script:

 adamc@router# set system scripts op file show-bgp.slax

Invoke the op script to see the results:5.

 adamc@router> op show-bgp
 Peer ASN InMsgs OutMsgs OutQ
 State/PfxRcvd
 10.0.201.220 64500 757 848 0
 2
 10.0.201.230 64500
 Connect

Using SLAX to Write Op Scripts

[82]

How it works...
The interesting activities start in step 2 where we make the actual call to JUNOS's mgd
software daemon in order to query the operational BGP state. mgd in turn queries rpd,
formats the output nicely as XML, and returns it to us.

In step 3, we inspect the returned BGP structure and focus on several properties of it, as
shown in the table:

XPath Reference Description

peer-state A textual description of the BGP peer's current state

peer-id Numeric identifier of the peer, usually IP address

peer-address IP address of the BGP peer

peer-as The autonomous system number of the BGP peer

input-messages The number of received BGP messages

output-messages The number of transmitted BGP messages

bgp-output-queue Structure including the count of queued messages

We iterate through each of the returned bgp-peer structures. Firstly, we make use of the
jcs:split() built-in function in order to split up a string based upon a regular express.
This is necessary because JUNOS will return both the IP address and the port number -
separated by a plus (+) character—in the peer-address field if the session is connected.
This information is superfluous to our output requirements so we cut the string up and
grab the first field.

Note that the array index syntax starts at 1, not 0!

If the session is established and is connected to the main IPv4 internet routing table, then we
print out a line of text summarizing the details of accepted prefixes. If the session is not
established, we simply print the peer state.

Using SLAX to Write Op Scripts

[83]

Making configuration changes
In this recipe, we'll create a new SLAX-based op script, config-interface.slax, and use
it as a provisioning frontend command intended to assist an operator in network service
provisioning on Ethernet interfaces.

We'll assume an environment similar to the following diagram: an ISP router providing an
IP-layer service and connected to several Ethernet-layer access providers on different
interfaces. As a service request comes in to the provisioning center, an operator is required
to enter some configuration on the JUNOS router to provide the service. This typically
involves allocating some resources such as IP addresses and VLAN identifiers and applying
them to a provisioning template configuration.

To automate this activity, we'll create our SLAX script so that it will take a series of user
parameters and apply the configuration change directly to the JUNOS device. Additionally,
we can make the SLAX script automatically determine the next free VLAN identifier.

Figure 3.3 Example service provider access router

Using SLAX to Write Op Scripts

[84]

Getting ready
In order to complete this recipe, you'll need a JUNOS router with some physical Ethernet
interfaces attached. If you don't have this and you're using virtual Olive or vRR for testing,
you can also make do with GRE interfaces, but you'll have to modify the configuration
templates to remove the VLAN identifier configuration components, since these are not
applicable for GRE.

You should also have a good understanding of the JUNOS CLI structure. In this recipe,
we're going to use a feature called apply-macro. This feature allows a developer to extend
the JUNOS configuration by including opaque key-value pair attributes within the JUNOS
configuration. In our case, we're going to use the feature in order to implement a simple
mapping function between physical interfaces and the notion of carrier interconnections,
and to store some interconnect-specific metadata.

You might think that we could just use the physical interface name to
define the physical link to be used, and indeed this is possible. But in
large-scale ISP environments, where routers often have a large number of
interfaces and associated hardware, components get changed a lot. Just
because a service is configured on ge-0/1/0 one day, it doesn't mean that
it will always be there. So, de-referencing or abstracting the service
demarcation point from the physical asset or resource is a useful
technique.

How to do it...
We're going to create a new SLAX op script called config-interfaces.slax, upload it to
our JUNOS device, and then test it to see how it automates the workflow involved when
configuring lots of repetitive services. In order to support the SLAX tool, we're going to
augment the configuration of the physical interfaces on our JUNOS router to add
information such as the adjacent provider and the available VLAN ranges that can be used.

Using SLAX to Write Op Scripts

[85]

First of all, create the SLAX op script by making a new text file in your preferred text editor
and applying the source code, as described here:

First of all, include the usual Juniper op script boilerplater which defines1.
namespaces and versions.

 version 1.0;
 ns junos = "http://xml.juniper.net/junos/*/junos";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";
 import "../import/junos.xsl";

Then define within the SLAX scripts the special variable names that are expected2.
to be input parameters from the op script environment; for example, the
arguments provided by the user to determine our operation. In this case, we need
three crucial bits of data at a minimum as described in the following table:

Input parameter Description

service-id A descriptor used to identify the service. Commonly used in ISP environments where lots of
customers have similarly configured services, a service-id—usually an alphanumeric string - helps
us to quickly refer to the component that we're interested in.

interconnect An interconnect identifier. This helps us identify the underlying physical interface that we're going
to configure the logical service on.

wan-ip The point-to-point IP address that we'll use to configure the link.

As you get comfortable with the data flow, you'll likely be able to expand these
service parameters to include more sophisticated items such as traffic shaping,
QoS, ACLs, and so on. For now, we'll try to keep the example simple and readable
without bogging things down with lots of code, as follows:

 var $arguments = {
 <argument> {
 <name> "service-id";
 <description> "Service identifier";
 }
 <argument> {
 <name> "interconnect";
 <description> "Interconnect identifier";
 }
 <argument> {
 <name> "wan-ip";
 <description> "WAN IP address";
 }
 }

Using SLAX to Write Op Scripts

[86]

Then define the configuration template that we're going to use in order to3.
instantiate a service when a provisioning operator runs our SLAX script. In this
case, we do the bare minimum of defining an Ethernet VLAN, associating an IP
address, and setting a description field so that we can remember which services
are configured on which VLANs:

template configuration($interface, $unit, $wan-ip, $service-id) {
 <configuration> {
 <interfaces> {
 <interface> {
 <name> $interface;
 <unit> {
 <name> $unit;
 <description> $service-id;
 <vlan-id> $unit;
 <family> {
 <inet> {
 <address> {
 <name> $wan-ip;
 }
 }
 }
 }
 }
 }
 }
}

Then begin defining the main flow of the op script within an unnamed match4.
clause as usual. In this case, start off by checking the input parameters to make
sure that they are present, correct, and in the right format:

 match / {
 <op-script-results> {
 if ($service-id=="") {
 <xsl:message terminate="yes"> "Must specify service
 identifier string";
 }
 if ($interconnect=="") {
 <xsl:message terminate="yes"> "Must specify
 interconnect identifier string";
 }
 if (count(jcs:regex("^[0-9]+\\.[0-9]+\\.[0-9]+\\.[0
 9]+\\/[0-9]+$", $wan-ip))==0) {
 <xsl:message terminate="yes"> "WAN IP must be in
 form A.B.C.D/E " _ $wan-ip;
 }

Using SLAX to Write Op Scripts

[87]

Next use the RPC mechanisms to acquire a copy of the current configuration for5.
reference, so that we can map the interconnect identifier to a physical interface:

 var $config-rpc = {
 <get-configuration>;
 }
 var $result = jcs:invoke($config-rpc);

Use an XPath predicate expression to find the physical interface associated with6.
the interconnect identifier:

 var $interface =
 ($result/interfaces/interface/name[../apply-
 macro[name="PROVISION"]/data/value[../name=="interconnect-
 name"]==$interconnect])[1];
 if (count($interface)==0) {
 <xsl:message terminate="yes"> "No interface found
 for specified interconnect " _ $interconnect;
 }

Calculate the next available VLAN on the interconnect by making use of the7.
metadata stored within the apply-macro element:

 var $min = number($result/interfaces/
 interface[name=$interface]/
 apply-macro[name=="PROVISION"]/
 data/value[../name=="first-id"]);
 var $max = number($result/interfaces/
 interface[name=$interface]/
 apply-macro[name=="PROVISION"]/
 data/value[../name=="last-id"]);
 var $last = number($result/interfaces/
 interface[name=$interface]/
 unit[position()== last()]/name);
 if ($min<0 || $min>4094 || string($min)=="NaN") {
 <xsl:message terminate="yes">
 "VLAN interface range lower limit on interface " _
 $interface _ " invalid - reconfigure first-id";
 }
 if ($max<0 || $max>4094 || string($max)=="NaN") {
 <xsl:message terminate="yes">
 "VLAN interface range upper limit on interface " _
 $interface _ " invalid - reconfigure last-id";
 }
 var $next = {
 if ($last<$min) { expr $min; }
 else { expr $last + 1; }

Using SLAX to Write Op Scripts

[88]

 }
 if ($next > $max) {
 <xsl:message terminate="yes"> "Exceeded VLAN
 interface range on interface " _ $interface;
 }

Print status message to let the operator know what we're doing, and then8.
instantiate the configuration template with the parameters and apply it using the
load-configuration() call:

 <output> "Interconnect ID " _ $interconnect _
 " is on interface " _ $interface _
 ": using ranges " _ $min _ "-" _ $max;
 <output> "Configuring next available logical VLAN " _
 $next _ " with IP address " _ $wan-ip;
 var $connection = jcs:open();
 var $configuration = call configuration($interface,
 $unit=$next, $wan-ip, $service-id);
 var $commit-options = {
 <commit-options> {
 <synchronize>;
 <log> "Configuring interface " _ $interface _
 " unit " _ $next _ " with IP " _
 $wan-ip _ " for service " _ $service id;
 }
 };
 var $config-result := { call jcs:load-configuration(
 $connection, $configuration, $commit-options); };
 copy-of $config-result;
 expr jcs:close($connection);
 }
}

Upload the op script to the JUNOS device in the usual manner by copying it to9.
the /var/db/scripts/op directory and referencing it within the [system
scripts op] configuration hierarchy.
Prepare the necessary apply-macro stanza on each of the physical interfaces for10.
which the op script is going to configure the service.

 adamc@router> show configuration interfaces xe-1/1/1
 apply-macro PROVISION {
 first-id 1;
 interconnect-name PROVIDER-B;
 last-id 999;
 }

Using SLAX to Write Op Scripts

[89]

The apply-macro directive is a hidden command under JUNOS.
Persevere, endure the lack of tab-completion, and be careful with typos.

Test the op script to make sure that it works:11.

 adamc@router> op config-interfaces service-id FOOB1/IPAC/1234
 wan-ip 192.168.0.1/30 interconnect VDC4
 Interconnect ID VDC4 is on interface xe-1/1/1:
 using ranges 1-1004
 Configuring next available logical VLAN 1001 with IP address
 192.168.0.1/30
 re0:
 configuration check succeeds
 re0:
 commit complete

 adamc@router> show system commit
 0 2017-08-24 17:33:52 UTC by adamc via junoscript commit
 synchronize
 Configuring interface xe-1/1/1 unit 1001 with IP 192.168.0.1/30 for
 service FOOB1/IPAC/1234

How it works...
While there is a lot in common between this op script and the previous recipes that we've
worked with, there are also some new techniques in this recipe that require explanation. I'll
call them out piece by piece.

Steps 1 and 2 are pretty regular now and form the part of most, if not all, op scripts. In step 3,
we have something new, however: a SLAX template. SLAX templates are small usable
components of XML and SLAX that can be called upon as required with parametric input. It
can be convenient to think of templates like a function call in conventional programming
languages.

A SLAX template isn't exactly like a function call however, so be careful.
Note the fact that the variable namespace of the template is the same as
that of the main script which can be limiting.

In this case, we use a template to define the XML associated with the JUNOS configuration
that we're planning to apply, along with some variable components that are specified each
time we call the template.

Using SLAX to Write Op Scripts

[90]

If you need to understand how the JUNOS configuration statements map
into XML, the best method is to use the CLI to help you:

adamc@router> show configuration | display xml

In step 4, we start the main flow of the op script, with the unnamed match / template. In
this case, we have to vet the incoming input parameters from the user so it's important to
note the use of the XML <xsl:message> directive. Previously, we've used the <output>
tags, or a combination of jcs:output() and jcs:printf(). These functions are equally
valid, but <xsl:message>—which unfortunately includes no obvious SLAX template
function—is useful for the cases where we need to output a message and then immediately
stop processing. In that sense, it's similar to die() in Perl, or exit() in C.

In step 5, we invoke an RPC to get the XML representation of the configuration—a pattern
that we've seen before.

But in step 6, we make use of an XPath expression with a predicate in order to analyze the
configuration and to extract the name of the interface that we need to work on. This concept
requires a little focus to gain a full understanding, so I'll reproduce the relevant expression
here for convenience:

 $result/interfaces/interface/name[
 ../apply-macro[name="PROVISION"]/
 data/value[
 ../name=="interconnect-name"]==$interconnect])[1];

The XPath expression is best thought of as a sequence of search operations within the
hierarchical XML structure of the data. So assuming that the $result variable includes the
configuration data from the RPC in the previous step, the expression
$result/interfaces resolves to the interfaces child node of the main <configuration>
node. Similarly, $result/interfaces/interface resolves to the set of <interface>
nodes within the <interfaces> node, and $result/interfaces/interface/name
further refines to a list of all of the interface names within the configuration hierarchy.

The clever bit occurs in the XPath predicate contained within the square brackets. If you're
familiar with databases and SQL, one way to think of predicates is the WHERE clause in SQL
statements. Each of the square brackets constrains the current view of the node-set
according to the predicate expression. So an English explanation of the above statement
might be something like, all interface names where the value of the interconnect-name
field of the apply-macro PROVISION element is equal to $interconnect.

Using SLAX to Write Op Scripts

[91]

Finally, note that we take the first element as – 1 and not 0!—in case the operator
accidentally configured the macro more than once, because XPath expressions routinely
return node-sets: that is, a list of nodes.

In step 7, we use similar XPath expressions in order to extract the VLAN range information
from the metadata stored within the apply-macros configuration element, but we use an
interesting technique to find the last logical interface unit configured:

 var $last =
 number($result/interfaces/interface[name=$interface]/
 unit[position()== last()]/name);

Here the XPath predicate is [position()==last()]. This works because position()
returns the current position of the item being considered within the context of its parent,
and last() returns the last position in the same array. So we basically make use of the last
VLAN configured in order to determine the next VLAN to use.

Step 7 performs some logic to ensure that its determined next VLAN is within the range of
allowed VLANs before proceeding.

If this automatic VLAN allocation strategy doesn't suit your environment,
you can simply run the code by removing the first-id and last-id
metadata items, and simply capturing the VLAN identifier as an input
parameter.

In step 8, we now have all the information that we need in order to instantiate the
configuration, so we do that with the jcs:open(), jcs:load-configuration(),
jcs:close() pattern. This invokes the JUNOS RPCs in an exclusive edit mode which is
usually appropriate for automation applications.

Step 9 copies the op script to the JUNOS device as usual, but the extra step that we need in
this example is in step 10, where we set up the special metadata that the op script uses to
understand the VLAN configuration limits on the physical interface.

And then in step 11, we can witness the op script doing its magic. The operator invokes the
command, specifying a service identifier, an interconnect identifier, and an IP address, and
the script will determine the appropriate physical interface, choose the next free VLAN, and
configure a logical interface setting the description and IP address appropriately.

4
Event Programming

In this chapter, we'll cover the following recipes:

Archiving configurations after a change
Capturing output after an event
Custom responses to an event
Dealing with a flapping interface
Dealing with a flapping OSPF neighbor
DIY routing protocol
Debugging event scripts

Introduction
The JUNOS operating system provides a comprehensive set of network functionalities
across a series of platforms and in the previous chapters we've seen useful recipes that help
us automate or simplify some operations and configuration changes.

But all the recipes that we've seen so far have always been user-initiated. They needed a
user to invoke them in some way even if that user was a machine agent driving the JUNOS
device through NETCONF-over-SSH or through the REST API. What if we want to
automatically deal with events that might happen on the network with some prescribed
actions?

Event Programming

[93]

This is where the JUNOS event framework comes into its own. The JUNOS event
framework tightly integrates with the conventional syslog-style logging infrastructure and
enables users and operators to trap certain events and trigger custom actions based on
them.

Event policies use a very similar syntax to conventional routing policies, matching trigger
events, checking context or correlating events, and dispatching actions. Event scripts are
custom pieces of code, written in SLAX (or Python in modern versions of JUNOS) in order
to effect custom actions.

Archiving configurations after a change
In this recipe, we'll make use of a JUNOS event policy that fires whenever a configuration
change is committed. It will respond by taking a snapshot of the configuration, and
uploading it to a network management station for record-keeping.

Getting ready
In order to complete this recipe, you need access to a JUNOS device and a UNIX-like
network management station running an OpenSSH (or equivalent) server.

How to do it…
We're going to locate a directory on the UNIX host where configuration backups will be
stored, then configure the JUNOS device with the relevant event policy to respond
appropriately. The steps for the recipe are as follows:

Create a user profile and home directory pair on the UNIX host that we can1.
assign to the JUNOS device for login purposes. The exact steps for creating a user
may vary between operating systems, but adduser is normally the utility to
employ as a superuser (using the sudo or doas tool). Set the password to an
appropriate password that you can deploy on your JUNOS infrastructure:

Event Programming

[94]

Debian Linux OpenBSD
user$ sudo adduser junos
Adding user junos...
Adding new group junos (1001) ...
Adding new user junos (1001) with
group junos ...
Creating home directory
“/home/junos” ...
Copying files from /etc/skel ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated
successfully

$ doas adduser
Enter username []: junos
Enter full name []:
Enter shell [ksh]:
Uid [1001]:
Login group junos [junos]:
Login group is ``junos''.
Invite junos into other groups: guest no
[no]:
Login class authpf bgpd daemon default
pbuild staff unbound [default]:
Enter password []:
Enter password again []:

If necessary, take any site-specific steps you might need in order to restrict the2.
access that the new UNIX access possesses. All we really require is the ability to
log in with SSH/SCP and write files. Steps to consider might include:

Using a restricted shell
Using disk quotas to restrict disk consumption
Using a chroot or jail environment

On the JUNOS device, configure the destination network management server by3.
replacing the IP address, path, and password details with your own:

 adamc@router# set event-options destinations NMS archive-sites
 "scp://junos@10.0.201.220//home/junos" password MyPasswordHere
 [edit event-options]
 adamc@router# show
 destinations {
 NMS {
 archive-sites {
 "scp://junos@10.0.201.220//home/junos" password
 "9fQ390BEevLBI-w"; ## SECRET-DATA
 }
 }
 }

Event Programming

[95]

Then configure the event policy logic to respond to a configuration commit with4.
the copy operation:

 adamc@router# set event-options policy BACKUP-CONFIG events
 ui_commit_completed
 adamc@router# set event-options policy BACKUP-CONFIG then
 upload filename
 committed
 adamc@router# destination NMS

 [edit event-options]
 adamc@router# show
 policy BACKUP-CONFIG {
 events ui_commit_completed;
 then {
 upload filename committed destination NMS;
 }
 }

Commit the new configuration and observe that the configuration file appears on5.
the UNIX NMS host in the correct place:

 $ ls -l
 total 16
 -rw-r----- 1 junos junos 2870 Aug 25 2017
 router_20170825_192610_juniper.conf.gz
 -rw-r----- 1 junos junos 2866 Aug 25 2017
 router_20170825_192835_juniper.conf.gz

How it works...
Steps 1 and 2 simply create an appropriate directory location on the UNIX-based NMS host.
You can do this in any way suitable for your environment, but just take care that access to
the NMS host that you are providing for use by the JUNOS devices cannot be abused by
unauthorized users who can somehow get their details on the shared credentials.

In step 3, we tell the JUNOS router the details about the upload site. The specific details of
the upload destination are captured separately like this so that they can be referenced by
many different triggered event policies. The format of the destination string is quite specific.
It is as follows:

protocol://username@hostname[:port]//remote-path

Event Programming

[96]

protocol can be either SCP or FTP, but for the purposes of this recipe, we've preferred the
secure SSH-based SCP protocol. If you operate your SSH server on a non-standard TCP
port, you can specify the port number in the port component of the URL. Note that it's
important to specify the remote-path. If we don't specify it, the JUNOS SCP client will try
to write to the root directory on the remote host, which is unlikely to be permissible.

The password field is specified separately and this needs to be synchronized with the
password created on the network management host in step 1.

Step 4 then defines the specific event policy that is going to perform the action for us. The
syntax is very similar to JUNOS routing policy language, so if you're familiar with that,
you'll likely be at home with it very quickly. We'll reproduce it here quickly for clarity:

 policy BACKUP-CONFIG {
 events ui_commit_completed;
 then {
 upload filename committed destination NMS;
 }
 }

The events element specifies the events that we want to trap and the then clause defines the
activities that we want to occur. In our case, we match the UI_COMMIT_COMPLETED event
and respond with an activity to upload a file to the NMS destination that we previously
defined. The filename that we upload can be any accessible file on the device, but the
special name committed refers to the currently committed configuration.

We trap the UI_COMMIT_COMPLETED event here rather than any of the
other UI_COMMIT events because, the commit operation does take a
measurable time, and we don't want to try to copy the committed
configuration file before it's really committed.

If you experienced any problems or difficulties with this recipe, it's probably best to focus
on the SSH access to the NMS host as the source of the problems. You can perform the copy
operation manually to verify things using the following sequence of commands:

adamc@router> start shell
% scp /config/juniper.conf.gz junos@10.0.201.220:/home/junos/test
junos@10.0.201.220's password:
juniper.conf.gz 100% 2935 2.9KB/s 00:00

Event Programming

[97]

There's more
The SSH/SCP method of transferring files to the network management host makes use of a
secure, encrypted transport; however, it comes with the downside that you need to store
access passwords within the JUNOS configuration. This is difficult to avoid, because
Juniper doesn't provide an obvious, supported way of making use of SSH keys for
authentication. If you have a strong aversion to storing passwords in your JUNOS
configuration file, and you understand the caveats of deviating from Juniper's
recommendations, then you can implement SSH key-based authentication for SCP file
transfers that originate from event-policies.

Start up a BSD shell from your JUNOS host and use the su command to become a1.
root user:

 adamc@router> start shell
 % su -
 Password: [your root password here]
 root@router:~ #

Change into the root's home directory:2.

 root@router:~ # cd /root

Use the OpenSSH key generation utility to make an RSA key-pair for the root3.
user on the JUNOS device:

 root@router:~ # ssh-keygen
 Generating public/private rsa key pair.
 Enter file in which to save the key (/root/.ssh/id_rsa):
 Enter passphrase (empty for no passphrase): [hit enter]
 Enter same passphrase again: [hit enter]
 Your identification has been saved in /root/.ssh/id_rsa.
 Your public key has been saved in /root/.ssh/id_rsa.pub.
 The key fingerprint is:
 5a:81:c0:e9:d9:cc:c1:92:e7:44:bd:43:6f:48:2d:75 root@router
 The key's randomart image is:
 +--[RSA 2048]----+
 | ..=.. o. E |
 | =.=.= .. |
 | . X.+.= |
 | o = +.o |
 | So |
 | o |
 | . |
 | |
 | |

Event Programming

[98]

 +-----------------+
 ssh-rsa [key removed]

The OpenSSH utility will have made two files: a private and a public key. Copy4.
the public key to the network management station host and append it to the
JUNOS user's trusted key file, like this:

 root@router:~ # cat ~/.ssh/id_rsa.pub | ssh junos@10.0.201.220
 "cat >> .ssh/authorized_keys"
 junos@10.0.201.220's password: [the JUNOS user password]

Now try to log in to the network management host from the JUNOS device again5.
and, this time, the SSH session should be able to authenticate you based on the
key alone and without a password:

 root@router:~ # ssh junos@10.0.201.220
 Last login: Fri Aug 18 13:37:54 2017 from 127.0.0.1
 OpenBSD 6.0 (GENERIC) #2148: Tue Jul 26 12:55:20 MDT 2016

 $

This means that you can now remove the password parameter from the destination in the
configuration. But, just as a final reminder, be cautious with this method, because you've
basically configured functionality specific to the OpenSSH client that JUNOS is using
without JUNOS's explicit knowledge. It is possible that certain features, either now or in the
future, might interfere with this.

Capturing output after an event
In this recipe, we'll configure a JUNOS event policy that reacts to an operational event,
executes a CLI command to obtain output, and relays that command output to the NMS
server for record-keeping.

Getting ready
In order to complete this recipe, you need access to a JUNOS device and a UNIX-like
network management station running an OpenSSH (or equivalent) server. You should have
configured the NMS host with a suitable account profile so that the JUNOS device can
access it. Steps 1 and 2 in the previous recipe on archiving configurations can help you
complete this if necessary.

Event Programming

[99]

How to do it…
The steps for the recipe are as follows:

Verify the configuration of the network management host to ensure that an1.
account profile exists that can be used by the JUNOS router in order to upload
files.

 user$ touch test.txt
 user$ scp test.txt junos@10.0.201.220:/home/junos/test.txt

If necessary, configure the JUNOS device with the access details for the2.
destination of the network management station.

 adamc@router# set event-options destinations NMS archive-sites
 "scp://junos@10.0.201.220//home/junos" password MyPasswordHere
 [edit event-options]
 adamc@router# show
 destinations {
 NMS {
 archive-sites {
 "scp://junos@10.0.201.220//home/junos" password
 "9fQ390BEevLBI-w"; ## SECRET-DATA
 }
 }
 }

Configure an event policy on the JUNOS device to trap the3.
SNMP_TRAP_LINK_DOWN event and respond by executing a CLI command.

 adamc@router# set event-options policy SHOW-INT events
 snmp_trap_link_down
 adamc@router# set event-options policy SHOW-INT then execute-
 commands commands "show interfaces"
 adamc@router# set event-options policy SHOW-INT then execute
 commands output-filename show-int
 adamc@router# set event-options policy SHOW-INT then execute-
 commands destination NMS
 [edit event-options]
 adamc@router# show
 policy SHOW-INT {
 events snmp_trap_link_down;
 then {
 execute-commands {
 commands {
 "show interfaces";
 }

Event Programming

[100]

 output-filename show-int;
 destination NMS;
 }
 }
 }

Commit the configuration and then cause a physical interface event by removing4.
an Ethernet cable (or disabling a virtual NIC, if you're using VM testbed).
On the network management host, observe the arrival of a text file containing the5.
output of the specified command. The file contains the XML format of the
command output.

 $ ls -l
 -rw------- 1 junos junos 27973 Aug 25 2017
 router_20170825_201345_show-int
 $ head -20 router_20170825_201345_show-int
 <?xml version="1.0" encoding="us-ascii"?>
 <junoscript xmlns="http://xml.juniper.net/xnm/1.1/xnm"
 xmlns:junos="http://xml.juniper.net/junos/15.1F6/junos"
 schemaLocation="http://xml.juniper.net/junos/15.1F6/junos
 junos/15.1F6/junos.xsd" os="JUNOS" release="15.1F6-S5.6"
 hostname="router" version="1.0">
 <!-- session start at 2017-08-25 20:13:45 UTC -->
 <!-- No zombies were killed during the creation of this user
 interface-->
 <!-- user root, class super-user -->
 <rpc-reply
 xmlns:junos="http://xml.juniper.net/junos/15.1F6/junos">
 <interface-information
 xmlns="http://xml.juniper.net/junos/15.1F6/junos-interface"
 junos:style="normal">
 <physical-interface>
 <name>cbp0</name>
 <admin-status junos:format="Enabled">up</admin-status>
 <oper-status>up</oper-status>
 <local-index>130</local-index>
 <snmp-index>501</snmp-index>
 <if-type>Ethernet</if-type>
 <link-level-type>Ethernet</link-level-type>
 <mtu>1514</mtu>
 <if-device-flags>
 <ifdf-present/>
 <ifdf-running/>
 […]

Event Programming

[101]

How it works…
Step 1 validates that the network management host is able to act as a repository for any
generated output files by trying a simple SCP operation in advance.

Step 2 defines the details of the network management host on the JUNOS device so that it
can be used as the subject of any event policy that may be triggered.

Step 3 defines the critical event policy that matches the event associated with a physical
interface going down and specifies a response action for executing a command.

The JUNOS event framework is comprehensive and almost every event
generated by the system can be trapped and acted on with the event-
policy logic. If you're looking to understand what events may be
associated with a specific activity, the best way to explore the events is by
using the CLI help feature, which will happily explain each of the events,
its cause, and its attributes.
adamc@router> help syslog

The most significant part of this configuration is shown here:

 execute-commands {
 commands {
 "show interfaces";
 }
 output-filename show-int;
 destination NMS;
 }

Multiple commands can be specified, and the output-filename attribute is prefixed with
the router name and the date and time in order to facilitate chronological sorting of multiple
extracts.

Event Programming

[102]

There's more
It's possible to arrange for the format of the captured output to be the native CLI ASCII text
rather than XML by using the output-format statement. In our example, we can modify the
configuration of the event-policy so that it looks like this in order to get the output as a
plain text:

 adamc@router> show configuration event-options policy SHOW-INT
 events snmp_trap_link_down;
 then {
 execute-commands {
 commands {
 "show interfaces";
 }
 output-filename show-int;
 destination NMS;
 output-format text;
 }
 }

Custom responses to an event
In this recipe, we'll build on what we've learnt with the event policy framework in the
previous two recipes, but we'll explore custom scripts that can fire when an event triggers.
Specifically, we'll enhance the previous recipe so that, instead of just capturing the output to
the show interface command, we actually interpret the SNMP_TRAP_LINK_DOWN event to
extract the effected interface and then only execute the command for that interface.

Getting ready
In order to complete this recipe, you need access to a JUNOS device and a UNIX-like
network management station running an OpenSSH (or equivalent) server. You should have
configured your network management host with a suitable account profile so that the
JUNOS device can access it. Steps 1 and 2 in the first recipe on archiving configurations can
help you complete this step if necessary.

Event Programming

[103]

How to do it…
The steps for the recipe are as follows:

Verify the configuration of the network management host to ensure that an1.
account profile exists that can be used by the JUNOS router in order to upload
files:

 user$ touch test.txt
 user$ scp test.txt junos@10.0.201.220:/home/junos/test.txt

If necessary, configure the JUNOS device with the access details for the2.
destination of the network management station:

 adamc@router# set event-options destinations NMS archive-sites
 "scp://junos@10.0.201.220//home/junos" password MyPasswordHere

 [edit event-options]
 adamc@router# show
 destinations {
 NMS {
 archive-sites {
 "scp://junos@10.0.201.220//home/junos" password
 "9fQ390BEevLBI-w"; ## SECRET-DATA
 }
 }
 }

Create a SLAX op script, show-interfaces.slax, that calls the <get-3.
interface-information> RPC and outputs the results. Make the SLAX script
take a command-line argument interface that determines which interface to
show:

 version 1.0;
 ns junos = "http://xml.juniper.net/junos/*/junos";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";
 import "../import/junos.xsl";

 param $interface="lo0";
 var $arguments = {
 <argument> {
 <name> "interface";
 <description> "Interface to show";
 }
 }

Event Programming

[104]

 var $rpc = {
 <get-interface-information> {
 <interface-name> $interface;
 }
 }
 var $result = jcs:invoke($rpc);

 match / {
 <op-script-result> {
 copy-of $result;
 }
 }

Copy the op script to the JUNOS device and register it within the [system4.
scripts op] hierarchy:

 $ scp show-interfaces.slax
 adamc@10.0.201.201:/var/db/scripts/op
 adamc@router# set system scripts op file show-interfaces.slax

Test the op script by running it against an interface on the system to make sure5.
that it works:

 adamc@router> op show-interfaces interface lo0.0
 Logical interface lo0.0 (Index 72) (SNMP ifIndex 16)
 Description: Loopback
 Flags: SNMP-Traps Encapsulation: Unspecified
 Input packets : 14
 Output packets: 14
 Protocol inet, MTU: Unlimited
 Flags: Sendbcast-pkt-to-re
 Addresses, Flags: Primary Preferred Is-Default Is-Primary
 Local: 2.0.0.56
 Addresses
 Local: 2.0.0.57

Create an event policy that triggers based upon the SNMP_TRAP_LINK_DOWN6.
event, and responds by running our new op script. Use the destination specifier
to direct the output to your network management station:

 adamc@router> show configuration event-options
 policy SHOW-INT {
 events snmp_trap_link_down;
 then {
 event-script show-interfaces.slax {
 arguments {
 interface "{$$.interface-name}";

Event Programming

[105]

 }
 output-filename show-int;
 destination NMS;
 }
 }
 }

Commit the configuration and then test the event detection by disabling an7.
Ethernet interface or removing a cable. On the network management station, you
should observe the creation of a file in response to the event, and this time the
command executed should have included an argument that refers to the interface
affected within the event log:

 $ more router_20170826_132342_show-int

 root@router> op show-interfaces.slax interface "em1"
 Physical interface: em1, Enabled, Physical link is Down
 Interface index: 9, SNMP ifIndex: 23
 Type: Ethernet, Link-level type: Ethernet, MTU: 1514
 Device flags : Present Running No-Carrier
 Interface flags: Hardware-Down SNMP-Traps
 Link type : Full-Duplex
 Current address: 08:00:27:17:3e:14, Hardware address:
 08:00:27:17:3e:14
 Last flapped : 2017-08-26 12:30:07 UTC (00:53:35 ago)
 Input packets : 292
 Output packets: 0
 Logical interface em1.0 (Index 65) (SNMP ifIndex 24)
 Flags: Device-Down SNMP-Traps 0x4000000 Encapsulation: ENET2
 Input packets : 292
 Output packets: 0
 Protocol inet, MTU: 1500
 Flags: Sendbcast-pkt-to-re
 Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 Destination: 4.4.4/24, Local: 4.4.4.4, Broadcast: 4.4.4.255

How it works…
Step 1 verifies that we can successfully login to the network management station and create
files in a writable directory by running a local-only SSH session.

Event Programming

[106]

Step 2 defines the network management station and associated credentials as a destination
within the JUNOS event management framework. Once declared in this way, the network
management station can be the subject of upload activities from event policies, which may
fire in response to events triggered.

In step 3, we create a simple SLAX script that just executes the show interface command
for a given interface. It calls the <get-interface-information> RPC and then uses the
copy-of directive to directly copy the received XML node-set into the <op-script-
result> XML stream so that it is interpreted by the mgd, the JUNOS management
daemon, and the CLI.

This script is a simple standalone op script that can be executed from the CLI and indeed
that's exactly what we do in step 4 to ensure that it works correctly.

In step 5, we configure the JUNOS event management framework to listen out for a specific
event – in our case the SNMP_TRAP_LINK_DOWN event—and to take action when such an
event occurs. The action that we take is defined within the then clause to run a defined
script with some properties that can be summarized in the following table:

Action Description

event-script The filename of the script to run. In our case, show-
interfaces.slax.

arguments Any arguments that should be supplied to the script.

output-filename A name for the stem part of the file that will capture the output.
(JUNOS will add the router hostname and timestamp to the filename
to facilitate logging and recording).

destination A reference for where to upload a copy of the generated file.

In this case, the arguments statement is the most useful part of the event policy because it
allows us to extract data from the incoming event and channel it into the op script so that
useful action can be taken. The syntax of the arguments statement warrants some
explanation.

 arguments {
 interface "{$$.interface-name}";
 }

Event Programming

[107]

The first token—interface—in the parameters is the name of the argument of the op
script. Recall that op scripts take their arguments as key-value pairs, so this is the
mechanism that links useful data from the received event to an input parameter in the op
script.

 param $interface="lo0";
 var $arguments = {
 <argument> {
 <name> "interface";
 <description> "Interface to show";
 }
 }

The second token is a meta-token that refers to the attributes of the event. Event attributes
are simply named properties of the event that can vary within each event. If we use the
help syslog command, we can analyze the attributes that are associated with each event.
The attributes are shown within angle brackets and underscored here for visibility.

 adamc@router> help syslog snmp_trap_link_down
 Name: SNMP_TRAP_LINK_DOWN
 Message: ifIndex <snmp-interface-index>, ifAdminStatus
 <admin
 status>, ifOperStatus <operational-status>, ifName
 <interface-name>
 Help: linkDown trap was sent
 Description: The SNMP agent process (snmpd) generated a linkDown
 trap because the indicated interface changed state
 to 'down'.
 Type: Event: This message reports an event, not an error
 Severity: warning
 Facility: LOG_DAEMON

In step 6, we actually see the logic all come together. When the configuration is committed,
the JUNOS event management daemon, eventd, loads the information associated with how
to handle the SNMP_TRAP_LINK_DOWN event and when we simulate a link down—either by
pulling a cable or otherwise disabling a network interface—the event fires and runs the op
script, resulting in the output of the SLAX script being copied by SSH/SCP to the network
management station.

Event Programming

[108]

There's more
The most useful aspect of the event response op script above is the ability to bind attributes
from events to arguments within an op script in order to take action. In the recipe, we used
this behavior to communicate the name of the interface to the op script. However, there is
an alternative method to using this channel of communication.

JUNOS also recognizes the notion of an event script, which is a SLAX script that directly
consumes the XML content associated with an event and can act on the increased richness
of information.

So instead of mapping attributes to arguments, we can write an event script that uses XPath
expressions on an input document in order to analyze in detail the intricacies of events that
occur on the JUNOS device. An equivalent of the show-interfaces.slax op script using
the native event framework input looks like this. Let's call it show-interfaces-
event.slax.

 version 1.0;

 ns junos = "http://xml.juniper.net/junos/*/junos";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";
 import "../import/junos.xsl";

 match / {
 var $interface = event-script-input/trigger-event/
 attribute-list/attribute/
 value[../name=="interface-name"];
 <event-script-result> {
 var $rpc = {
 <get-interface-information> {
 <interface-name> $interface;
 }
 }
 var $result = jcs:invoke($rpc);
 copy-of $result;
 }
 }

Event Programming

[109]

We arrange for JUNOS to run this native event script with an almost identical syntax to
previously, just omitting the arguments statement and instead registering the script
underneath the [event-options event-scripts] hierarchy.

 adamc@router# show event-options
 policy SHOW-INT {
 events snmp_trap_link_down;
 then {
 event-script show-interfaces-event.slax {
 output-filename show-int;
 destination NMS;
 }
 }
 }
 event-script {
 file show-interfaces-event.slax;
 }

Native event scripts also need to be copied into a different directory on the JUNOS device.
They live within /var/db/scripts/event rather than /var/db/scripts/op.

 user$ scp show-interfaces-event.slax
 adamc@10.0.201.201:/var/db/scripts/event
 show-interfaces-event.slax
 100% 498 0.5KB/s 00:00

Now, when the event fires, the clever bit happens when we assign the $interface variable
from the XPath expression. The XPath expression traces the route through the XML
document from the top-level root node of <event-script-input>, through <trigger-
event>, through <attribute-list> to an <attribute> value where the adjacent name
is interface-name.

The path through the XML data is emboldened in the extract below.

<event-script-input xmlns:junos="http://xml.juniper.net/junos/*/junos">
 <trigger-event>
 <id>SNMP_TRAP_LINK_DOWN</id>
 <type>syslog</type>
 <generation-time junos:seconds="1503756206">2017-08-26 14:03:26
UTC</generation-time>
 <process>
 <name>mib2d</name>
 <pid>3706</pid>
 </process>
 <hostname>router</hostname>
 <message>SNMP_TRAP_LINK_DOWN: ifIndex 23, ifAdminStatus up(1),
ifOperStatus down(2), ifName em1</message>

Event Programming

[110]

 <facility>daemon</facility>
 <severity>warn</severity>
 <attribute-list>
 <attribute>
 <name>snmp-interface-index</name>
 <value>23</value>
 </attribute>
 <attribute>
 <name>admin-status</name>
 <value>up(1)</value>
 </attribute>
 <attribute>
 <name>operational-status</name>
 <value>down(2)</value>
 </attribute>
 <attribute>
 <name>interface-name</name>
 <value>em1</value>
 </attribute>
 </attribute-list>
</trigger-event>
[...]
</event-script-input>

While the structure of the <event-script-input> document remains
largely the same between events, the attributes themselves can vary. One
way to witness the <event-script-input> document directly is to
enable traceoptions then delve into escript.log within the log
directory.
adamc@router# set event-options event-script traceoptions
flag input

One thing to note when using native event scripts, as opposed to op scripts triggered by an
event policy, is that the output from event scripts is always in XML format. The output-
format directive has no effect on the output of event scripts.

When choosing whether to use an op script triggered by event policy, a native event script,
or a CLI command, use the following table to help determine the best fit.

Feature/Capability Event Script Op Script Command

Input data Rich analysis of
input event
possible using
XPath

Attributes must be
mapped into arguments
by event-policy

No parametric input
possible

Event Programming

[111]

Output format XML only XML or Plain Text using
output-format directive

XML or Plain Text
using output-format
directive

Output locations Local or remote
SCP

Local or remote SCP Local or remote SCP

Dealing with a flapping interface
In this recipe, we'll be building upon the code that we developed in the previous recipe in
order to deal with a situation where we have a flapping interface causing problems in the
network.

Often, when an interface goes down, several computational efforts get underway to
recalculate alternate routing options, whether the interface is an internal or external link.
When an interface flaps, that is, goes up and down repeatedly, this route recalculation
burden can be excessive and can cause further complications and threats to network
stability.

We'll introduce some automation that can take an action that is similar to what a human
would do when faced with the same situation. In this case, we'll catch the situation where
we've seen the interface flap three times in the space of 60 seconds, and we'll disable it,
recording a comment.

Because shutting down an interface under automation could be hazardous, we'll make use
of the JUNOS apply-macro feature in order to allow the operator to opt-in interfaces to
automated flap control.

Getting ready
In order to complete this recipe, you'll need access to a JUNOS router upon which you can
influence the network interfaces, so that you can easily simulate network down and up
events. If you're working in a virtualized environment with vRR, Olive, or vMX, you can
likely achieve the same effects through the hypervisor control application. Worst case, if
you can't create network down and up events for your interfaces, you can cheat and
simulate events using logger. See the recipe on Debugging event scripts for the low-down on
this technique.

Event Programming

[112]

How to do it…
We don't need to capture any detailed output from the operation of our event script in this
recipe, so we can skip the steps associated with ensuring that we have a valid output
destination and a compatible SSH/SCP server, and jump straight into the code.

Create a new SLAX script, handle-link-flap.slax, composed of three parts.1.
First the mandatory event script boilerplate:

 version 1.0;

 ns junos = "http://xml.juniper.net/junos/*/junos";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

 import "../import/junos.xsl";

Secondly, create the configuration template that we'll apply if we need to disable2.
the interface:

 template disable-interface($interface, $comment) {
 <configuration> {
 <interfaces> {
 <interface> {
 <junos:comment> $comment;
 <name> $interface;
 <disable>;
 }
 }
 }
 }

Then use an unnamed match term to take the event script input and implement3.
the necessary logic to decide which interface is flapping and whether it is eligible
for shutdown:

 match / {
 <event-script-results> {

 var $interface = event-script-input/trigger-event/
 attribute-list/attribute/value[../name=="interface-
 name"];

 var $get-config-rpc = {
 <get-configuration
 database="committed" inherit="inherit"> {

Event Programming

[113]

 <configuration> {
 <interfaces> {
 <interface> {
 <name> $interface;
 }
 }
 }
 }
 }
 var $result = jcs:invoke($get-config-rpc);

 if (!jcs:empty($result/interfaces/
 interface[apply-macro/name=="DISABLE-ON-FLAP" &&
 name==$interface])) {

 var $comment = "disabled by handle-link-flap.slax on "
 _
 $localtime _ " because of flapping";
 var $message = "handle-link-flap.slax " _
 "disabled interface " _ $interface;

 var $connection = jcs:open();
 var $configuration = call disable-interface($interface,
 $comment);
 var $commit-options = {
 <commit-options> {
 <log> $message;
 }
 };
 var $config-result := { call jcs:load-configuration(
 $connection, $configuration, $commit-options);
 };
 expr jcs:close($connection);

 if ($config-result//xnm:error) {
 expr jcs:syslog("user.err",
 "handle-link-flap.slax failed to disable " _
 "interface " _ $interface _ " because: " _
 $config-result//xnm:error/message);
 } else {
 expr jcs:syslog("user.info", $message);
 }
 }
 }
 }

Event Programming

[114]

Upload the completed handle-link-flap.slax to your JUNOS device and4.
register it with the [event-options event-scripts] hierarchy:

 $ scp handle-link-flap.slax
 adamc@10.0.201.201:/var/db/scripts/event

 adamc@router# set event-options event-scripts
 file handle-link-flap.slax

Now use an event policy to determine the criteria needed for the event script to5.
run. We want the script to run whenever the same interface has flapped (gone up
and down) more than three times in a minute:

 adamc@router> show configuration event-options
 policy LINK-FLAP {
 events snmp_trap_link_down;
 within 60 {
 trigger after 3;
 events snmp_trap_link_down;
 }
 attributes-match {
 "{$$.interface-name}" equals
 snmp_trap_link_down.interface-name;
 }
 then {
 event-script handle-link-flap.slax;
 }
 }

Mark any interfaces that you want the script to work on by applying the specially6.
named macro term DISABLE-ON-FLAP:

 adamc@router> show configuration interfaces em1
 apply-macro DISABLE-ON-FLAP;
 unit 0 {
 family inet {
 address 10.0.211.201/24;
 }
 }

Commit the completed event policy and interface configuration, and then7.
simulate network events by taking an interface down and up in order to provoke
the script.

Event Programming

[115]

How it works…
Steps 1, 2, and 3 jump straight in to defining custom logic that we want to run when the
JUNOS event framework has determined that the criteria are met. So the SLAX script we
create can assume straight away that a link has been flapping and jump straight into a
decisive action. Step 1 defines the usual boilerplate that we need for event scripts, and step 2
creates an SLAX/XML template for the configuration snippet that we're going to commit if
we need to disable an interface. Step 3 is where all of the logic is implemented and I'll walk
you through it slowly.

Firstly, we use an XPath expression to extract the interface name attribute from the
incoming event data. We do this using an XPath predicate, effectively saying, Give me the
content of the path trigger-event/attribute-list/attribute/value where the
attribute/name sibling node is interface-name.

XPath Expression

event-script-input/trigger-event/attribute-list/attribute/value[../name=="interface-name"];

 <event-script-input
 xmlns:junos="http://xml.juniper.net/junos/*/junos">
 <trigger-event>
 <id>SNMP_TRAP_LINK_DOWN</id>
 <type>syslog</type>
 <generation-time junos:seconds="1503756206">2017-08-26 14:03:26
 UTC</generation-time>
 <process>
 <name>mib2d</name>
 <pid>3706</pid>
 </process>
 <hostname>router</hostname>
 <message>SNMP_TRAP_LINK_DOWN: ifIndex 23, ifAdminStatus up(1),
 ifOperStatus down(2), ifName em1</message>
 <facility>daemon</facility>
 <severity>warn</severity>
 <attribute-list>
 <attribute>
 <name>snmp-interface-index</name>
 <value>23</value>
 </attribute>
 <attribute>
 <name>admin-status</name>
 <value>up(1)</value>
 </attribute>
 <attribute>
 <name>operational-status</name>
 <value>down(2)</value>

Event Programming

[116]

 </attribute>
 <attribute>
 <name>interface-name</name>
 <value>em1</value>
 </attribute>
 </attribute-list>
 </trigger-event>
 [...]
 </event-script-input>

Armed with the interface name, we can construct a <get-configuration> RPC call to get
the configuration status of the interface. We do this so that we can check the status of the
DISABLE-ON-FLAP macro.

We test for the presence of the macro using jcs:empty()—which tells us if we have an
empty node-set—when we search through the interface nodes looking for an interface
where:

The name of the interface matches the name that we extracted from the event
input, and
The interface contains an element called apply-macro, with a child element
called name, with a text value of DISABLE-ON-FLAP

If the interface is a candidate for us to disable, then we construct some text messages for
diagnostic purposes in the $comment and $message variables and then invoke a call to
jcs:load-configuration() in order to install our configuration changes. The exact
configuration changes are defined in the template disable-interface: we simply need to
pass in the interface name and a comment that is annotated on the interface to help the
operator.

After uploading the completed SLAX script to the events directory in step 4, step 5 focuses
on defining the event policy that will cause our event handling script to run. It's important
to get this right. We don't want to disable interfaces in the wrong situations. The logic that
we're looking for is as follows; we want to consider an interface for shutdown if, and only if:

The interface goes down, and
Within the last 60 seconds, the interface has gone down more than three times

The within 60 clause of the event policy allows us to specify coincidentally corroborating
events that must occur in order for our handler to fire, and the attributes-match clause
provides a way for us to link attributes from the main triggering event to the ancillary
corroborating events. The $$ syntax is the notation for the triggering event.

Event Programming

[117]

Once we mark our interfaces of interest with the special DISABLE-ON-FLAP macro, we can
see the script in action if we create some network havoc in the background.

Aug 27 17:52:26 router mib2d[3713]: SNMP_TRAP_LINK_DOWN: ifIndex 23,
ifAdminStatus up(1), ifOperStatus down(2), ifName em1
Aug 27 17:52:33 router rpd[3714]: RPD_OSPF_NBRDOWN: OSPF neighbor
10.0.211.220 (realm ospf-v2 em1.0 area 0.0.0.0) state changed from Full to
Down due to KillNbr (event reason: interface went down)
Aug 27 17:52:33 router mib2d[3713]: SNMP_TRAP_LINK_DOWN: ifIndex 23,
ifAdminStatus up(1), ifOperStatus down(2), ifName em1
Aug 27 17:52:39 router rpd[3714]: RPD_OSPF_NBRDOWN: OSPF neighbor
10.0.211.220 (realm ospf-v2 em1.0 area 0.0.0.0) state changed from Loading
to Down due to KillNbr (event reason: interface went down)
Aug 27 17:52:39 router mib2d[3713]: SNMP_TRAP_LINK_DOWN: ifIndex 23,
ifAdminStatus up(1), ifOperStatus down(2), ifName em1
Aug 27 17:52:46 router rpd[3714]: RPD_OSPF_NBRDOWN: OSPF neighbor
10.0.211.220 (realm ospf-v2 em1.0 area 0.0.0.0) state changed from Loading
to Down due to KillNbr (event reason: interface went down)
Aug 27 17:52:46 router mib2d[3713]: SNMP_TRAP_LINK_DOWN: ifIndex 23,
ifAdminStatus up(1), ifOperStatus down(2), ifName em1
Aug 27 17:52:46 router mgd[23942]: UI_COMMIT: User 'root' requested
'commit' operation (comment: handle-link-flap.slax disabled interface em1)
Aug 27 17:52:47 router mgd[23942]: UI_COMMIT_COMPLETED: commit complete

Looking at the interface configuration, we can see that the script has indeed shut down the
offending interface, pending operator intervention.

 adamc@router> show configuration interfaces
 /* disabled by handle-link-flap.slax on Sun Aug 27 17:52:46 2017
 because of flapping */
 em1 {
 apply-macro DISABLE-ON-FLAP;
 disable;
 unit 0 {
 family inet {
 address 10.0.211.201/24;
 }
 }
 }

Event Programming

[118]

Dealing with a flapping OSPF neighbor
In this recipe, we'll look at the situation of a flapping internal OSPF neighbor, possibly
caused by a flapping physical layer interface. In contrast with the previous recipe, where we
simply trapped multiple instances of a flapping interface and shut the interface down, in
this scenario, we'll deal with the situation slightly differently.

What we'll do is trap multiple sequential occurrences of an OSPF neighbor going away --for
whatever reason—and, so long as he's the only OSPF neighbor on the link (which is a
common situation in large ISP backbones where point-to-point WAN links are the norm),
we'll poison the associated OSPF interface cost in order to influence traffic away from the
link.

The underlying issue that is causing the degraded communication to the OSPF neighbor
will remain, which means that we're preserving scene-of-crime evidence for our NOC staff
to troubleshoot, but production traffic has been routed away from the problem in the
meantime.

Getting ready
In order to complete this recipe, you'll need access to a pair of JUNOS routers, with two
interfaces between them, able to speak OSPF. We're only going to work on one of the
routers, however; thus as long as the second router implements OSPF, it doesn't necessarily
have to be JUNOS.

In our case, we make use of OpenBSD which comes with its own OSPF implementation,
and the logical topology looks like this.

Figure 4.1 Dual-attached OSPF speakers

Event Programming

[119]

How to do it…
First of all we'll set up the environment in the topology diagram using two routers, JUNOS,
and OpenBSD, speaking OSPF on common subnets.

Configure the JUNOS router with the appropriate network interfaces, em0, em1,1.
and lo0.

 adamc@router> show configuration interfaces
 em0 {
 unit 0 {
 family inet {
 address 10.0.201.201/24;
 }
 }
 }
 em1 {
 unit 0 {
 family inet {
 address 10.0.211.201/24;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.255.255.201/32 {
 primary;
 preferred;
 }
 }
 }
 }

On the OpenBSD router, effect the same thing by configuring the2.
/etc/hostname.if class of files, then running the netstart shell script to
configure the interfaces.

 # cat /etc/hostname.em0
 inet 10.0.201.220 255.255.255.0 10.0.201.255 description LAN
 # cat /etc/hostname.em1
 inet 10.0.211.220 255.255.255.0 10.0.211.255 description LAN
 # cat /etc/hostname.lo0
 inet 127.0.0.1 255.0.0.0 NONE
 inet alias 10.255.255.220 255.255.255.255 NONE
 # sh /etc/netstart
 # ifconfig em0

Event Programming

[120]

 em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST>
 mtu 1500
 lladdr 08:00:27:19:a2:d3
 description: LAN
 index 1 priority 0 llprio 3
 media: Ethernet autoselect (1000baseT full-duplex)
 status: active
 inet 10.0.201.220 netmask 0xffffff00 broadcast 10.0.201.255
 # ifconfig em1
 em1: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST>
 mtu 1500
 lladdr 08:00:27:ca:88:08
 description: LAN
 index 2 priority 0 llprio 3
 media: Ethernet autoselect (1000baseT full-duplex)
 status: active
 inet 10.0.211.220 netmask 0xffffff00 broadcast 10.0.211.255
 # ifconfig lo0
 lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 32768
 index 4 priority 0 llprio 3
 groups: lo
 inet6 ::1 prefixlen 128
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4
 inet 127.0.0.1 netmask 0xff000000
 inet 10.255.255.220 netmask 0xffffffff

Create a simple OSPF area 0 configuration between the two devices that includes3.
both the em0 and em1 interfaces and the loopback addresses. Arrange for em1 to
be the preferred network link by setting a better (lower) metric than em0.

 adamc@router> show configuration protocols ospf
 area 0.0.0.0 {
 interface lo0.0 {
 passive;
 }
 interface em0.0 {
 metric 100;
 }
 interface em1.0 {
 metric 10;
 }
 }

Event Programming

[121]

Do the same on the OpenBSD host, and then start the OSPF daemon.4.

 # cat /etc/ospfd.conf
 area 0.0.0.0 {
 interface lo0:10.255.255.220 {
 metric 1
 passive
 }
 interface em0 {
 metric 100
 }
 interface em1 {
 metric 10
 }
 }
 # ospfd

On the JUNOS device, use the show commands to verify that the OSPF5.
adjacencies with the BSD box are created and are in place.

 adamc@router> show ospf neighbor
 Address Interface State ID Pri Dead
 10.0.201.220 em0.0 Full 10.0.201.220 1 30
 10.0.211.220 em1.0 Full 10.0.201.220 1 30

Show the routing table and verify that em1 is the preferred interface for traffic to6.
the BSD loopback address.

 adamc@router> show route 10.255.255.220
 inet.0: 40 destinations, 40 routes (40 active, 0 holddown, 0
 hidden)
 + = Active Route, - = Last Active, * = Both
 10.255.255.220/32 *[OSPF/10] 00:02:48, metric 11
 > to 10.0.211.220 via em1.0

Once the OSPF routing environment is set up, we can proceed with the
mechanisms of responding to events in order to provide the logic for handling the
OSPF cost change. We'll create an event script that will be called with a
RPD_OSPF_NBRDOWN event that occurs when we lose sight of an OSPF neighbor. It
will respond by making an appropriate configuration change.

Event Programming

[122]

Create a new event script, handle-ospf-flap.slax, from the following7.
components. First of all, include the required boilerplate:

 version 1.0;

 ns junos = "http://xml.juniper.net/junos/*/junos";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

 import "../import/junos.xsl";

Then include a configuration template for the change to the [protocols ospf8.
] hierarchy that we'll make if we need to poison an interface.

 template set-ospf-interface-cost($interface, $comment) {
 <configuration> {
 <protocols> {
 <ospf> {
 <area> {
 <name> "0.0.0.0";
 <interface> {
 <junos:comment> $comment;
 <name> $interface;
 <metric> 65535;
 }
 }
 }
 }
 }
 }

Finally, use a standard unnamed match term in order to implement the main9.
logic of the event script.

 match / {
 <event-script-results> {

 var $interface = event-script-input/
 trigger-event/attribute-list/
 attribute/
 value[../name=="interface-name"];
 var $neighbor = event-script-input/
 trigger-event/attribute-list/
 attribute/
 value[../name=="neighbor-address"];

 var $ospf-rpc = {

Event Programming

[123]

 <get-ospf-interface-information> {
 <detail>;
 <interface-name> $interface;
 }
 }
 var $result = jcs:invoke($ospf-rpc);

 var $adj-count = $result/ospf-interface/adj-count;
 var $cost = $result/ospf-interface/interface-cost;

 if ($adj-count==0 && $cost!=65535) {

 var $comment = "metric " _ $cost _
 " changed to 65535 by handle-ospf-flap.xls on " _
 $localtime _ " because of flapping neighbor " _
 $neighbor;
 var $message = "handle-ospf-flap.slax changed metric " _
 "on interface " _ $interface _ " from " _ $cost _
 " to 65535 because of neighbor " _ $neighbor;

 var $connection = jcs:open();
 var $configuration = call set-ospf-interface-cost(
 $interface, $comment);
 var $commit-options = {
 <commit-options> {
 <log> $message;
 }
 };
 var $config-result := { call jcs:load-configuration(
 $connection, $configuration, $commit-options); };
 expr jcs:close($connection);

 if ($config-result//xnm:error) {
 expr jcs:syslog("user.err",
 "handle-ospf-flap.slax failed to poison interface " _
 $interface _ " because: " _
 $config-result//xnm:error/message);
 } else {
 expr jcs:syslog("user.info", $message);
 }
 }
 }
 }

Event Programming

[124]

Upload handle-ospf-flap.slax to your JUNOS device and register it within10.
the [event-options event-scripts] hierarchy.

 $ scp handle-ospf-flap.slax
 adamc@10.0.201.201:/var/db/scripts/event
 adamc@router# set event-options event-scripts file handle-ospf-
 flap.slax

Create an event policy that will determine the precise situations in which the11.
event script will be called. In this case, we have some strict criteria. We want the
event handling routing to fire whenever an OSPF neighbor has bounced up and
down more than twice in three minutes.

 adamc@router> show configuration event-options
 policy OSPF {
 events rpd_ospf_nbrdown;
 within 180 {
 trigger after 2;
 events rpd_ospf_nbrdown;
 }
 attributes-match {
 "{$$.interface-name}" equals rpd_ospf_nbrdown.interface-
 name;
 }
 then {
 event-script handle-ospf-flap.slax;
 }
 }

Commit the event policy and simulate a network interface breakage in order to12.
observe the event script magic in action.

How it works…
Steps 1 and 2 create the appropriate network addressing configuration on both the JUNOS
device and the OpenBSD host. If you're working in an all JUNOS environment, this is
probably slightly easier.

Steps 3 and 4 then proceed to set up the OSPF protocol as per the logical topology diagram.
We actively speak the OSPF protocol on interfaces em0 and em1, while using the loopback
address as a passive OSPF interface, as is common practice.

In step 5, we validate that the JUNOS router and the OpenBSD router are happily talking
OSPF with one another.

Event Programming

[125]

Steps 6, 7, and 8 involve the creation of a custom event script handler on the JUNOS device
that will be called whenever any OSPF neighbor goes away. We break the construction of
the script down into three distinct sections.

Step 6 creates the usual boilerplate required for an event script and step 7 creates a
framework template for the configuration change that we will apply to the JUNOS device in
the event of an OSPF neighbor flapping. Note that we take the interface name as a
parameter, along with a comment, and we simply adjust the metric on that interface to
65535—the largest unsigned 16-bit number. The comment parameter is applied to the
configuration in the same way that the CLI annotate command is used.

Step 8 encodes the crux of the logic of our event script. First of all we extract the following
pieces of information from the incoming event XML:

The interface from which the OSPF neighbor was lost
The address of the OSPF neighbor

We hold onto the latter for reporting in syslog and configuration commit logs, and we use
the former to call the JUNOS RPC in order to extract information about the OSPF properties
of an interface.

The response to the <get-ospf-interface-information> RPC looks like this:

 <ospf-interface-information
 xmlns="http://xml.juniper.net/junos/15.1F6/junos-routing">
 <ospf-interface>
 <interface-name>em1.0</interface-name>
 <ospf-interface-state>DR</ospf-interface-state>
 <ospf-area>0.0.0.0</ospf-area>
 <dr-id>10.0.201.201</dr-id>
 <bdr-id>10.0.201.220</bdr-id>
 <neighbor-count>1</neighbor-count>
 <interface-type>LAN</interface-type>
 <interface-address>10.0.211.201</interface-address>
 <address-mask>255.255.255.0</address-mask>
 <mtu>1500</mtu>
 <interface-cost>10</interface-cost>
 <dr-address>10.0.211.201</dr-address>
 <bdr-address>10.0.211.220</bdr-address>
 <router-priority>128</router-priority>
 <adj-count>1</adj-count>
 <hello-interval>10</hello-interval>
 <dead-interval>40</dead-interval>
 <retransmit-interval>5</retransmit-interval>
 <ospf-stub-type>Not Stub</ospf-stub-type>
 <authentication-type>None</authentication-type>

Event Programming

[126]

 <ospf-interface-protection-type>None</ospf-interface
 protection-type>
 <ospf-interface-topology>
 <ospf-topology-name>default</ospf-topology-name>
 <ospf-topology-id>0</ospf-topology-id>
 <ospf-topology-metric>10</ospf-topology-metric>
 </ospf-interface-topology>
 </ospf-interface>
 </ospf-interface-information>

Again we use XPath expressions to extract the <adj-count> and the <interface-cost>
elements.

Element Description

<adj-count> The number of adjacent neighbors attached to the interface

<interface-cost> The cost metric associated with the interface

If there are no other neighbors on the interface (this is important, because we may not want
to interrupt other traffic!), and the interface cost is not already 65535, then we proceed to
invoke a configuration change to amend the interface so that its metric is 65535. We leave a
helpful diagnostic annotation on the metric field reminding the operator what the old value
was so that he is able to restore it when the OSPF or interface-related problem has gone
away. And with that, we are done. We just need to upload the new event script to the
JUNOS device and register it as an event script in the [event-options event-scripts
] hierarchy, which we do in step 9.

In step 10, we are able to refine the exact situation in which the event script is called. We
make use of JUNOS's rich event policy language for this. It allows us to specify several
criteria before the event script will be called, and the configuration change is made:

The triggering event is RPD_OSPF_NBRDOWN
There are at least three other RPD_OSPF_NBRDOWN corroborating events within a
180 second period of the triggering event
The interface-name attribute on the corroborating events matches that of the
triggering event

Event Programming

[127]

Testing out the event script in an environment where we can disrupt OSPF neighbour
communications, we can see the following behavior.

The OSPF interface configuration is in its normal state:

adamc@router> show configuration protocols ospf area 0.0.0.0
interface lo0.0 {
 passive;
}
interface em0.0 {
 metric 100;
}
interface em1.0 {
 metric 10;
}

The routing for the OpenBSD host is via the preferred em1 interface with the lower metric.

 adamc@router> show route 10.255.255.220
 inet.0: 40 destinations, 40 routes (40 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.255.255.220/32 *[OSPF/10] 00:49:24, metric 11
 > to 10.0.211.220 via em1.0

Then, once we observe the OSPF neighbor flapping, we see the intervention of the event
script modifying the configuration.

Aug 27 15:36:47 router rpd[3714]: RPD_OSPF_NBRDOWN: OSPF neighbor
10.0.211.220 (realm ospf-v2 em1.0 area 0.0.0.0) state changed from Full to
Down due to InActiveTimer (event reason: neighbor was inactive and declared
dead)
Aug 27 15:37:36 router rpd[3714]: RPD_OSPF_NBRDOWN: OSPF neighbor
10.0.211.220 (realm ospf-v2 em1.0 area 0.0.0.0) state changed from Full to
Down due to InActiveTimer (event reason: neighbor was inactive and declared
dead)
Aug 27 15:38:24 router rpd[3714]: RPD_OSPF_NBRDOWN: OSPF neighbor
10.0.211.220 (realm ospf-v2 em1.0 area 0.0.0.0) state changed from Full to
Down due to InActiveTimer (event reason: neighbor was inactive and declared
dead)
Aug 27 15:38:24 router mgd[22585]: UI_COMMIT: User 'root' requested
'commit' operation (comment: handle-ospf-flap.slax changed metric on
interface em1.0 from 10 to 65535 because of neighbor 10.0.211.220)
Aug 27 15:38:25 router mgd[22585]: UI_COMMIT_COMPLETED: commit complete

Event Programming

[128]

If we look at the configuration, we can see that interface em1.0 has been reconfigured with a
much higher metric in order to dissuade any transit traffic.

adamc@router> show configuration protocols ospf area 0.0.0.0
interface lo0.0 {
 passive;
}
interface em0.0 {
 metric 100;
}
/* metric 10 changed to 65535 by handle-ospf-flap.xls on Sun Aug 27
 15:38:24 2017 because of flapping neighbor 10.0.211.220 */
interface em1.0 {
 metric 65535;
}

In summary, the event script is able to harness an information-rich stream of information
from the JUNOS event management framework and respond with a prescribed action to a
link problem in order to do our best for the routing system as a whole until an operator can
troubleshoot it in detail.

DIY routing protocol
In this recipe, we're going to deal with the perennial problem of static routes. Static routes
are wonderful for allowing network operators to customize their network topology, but
they're just that—static. In contrast to a dynamic routing protocol, nothing about a static
route gives us any assurance that the route we're following is really alive or dead. This is
especially the case in modern environments dominated by multi-access link-layers such as
Ethernet where there is no inherent mechanism for determining host liveness on the subnet
beyond ARP and neighbor discovery.

The standards-based way to solve this problem is Bidirectional Forwarding Detection
(BFD) defined in IETF RFC 5880—and I encourage you to explore that option as well, but if
you're in a situation where you can't run a dynamic protocol, or the other end cannot run
BFD for some reason, the technique that we present here might help you out.

Getting ready
To complete this recipe, you'll need access to a single JUNOS router that supports Real-time
Performance Monitoring (RPM) probes, and a host on a directly connected network who
can act as our next-hop.

Event Programming

[129]

We'll use a logical topology such as this:

Figure 4.2 DIY routing protocol topology

We'll configure static routing from the JUNOS device to the 10.255.255.220/32 host
address on the BSD box on the understanding that it is running some sort of service of
interest, such as a web server.

We're then going to configure an RPM probe on the JUNOS device to monitor the liveness
of the next-hop on the BSD box. This is all without the BSD box doing anything to assist in
this, beyond answering ICMP pings as it ordinarily would.

We'll feed the output events from the RPM probe into an event script that will manipulate
the static routing configuration on the JUNOS router. We will call our script Brilliantly
Useful Routing Protocol (BURP)!

The name BURP pays a small homage to an innovative piece of software written by a team
of people who were significantly influential in the embryonic phase of commercially viable
dial-up Internet access in the UK. Years before commercial router vendors had ISP-grade
solutions (and, in fact, before Juniper even existed!), Demon Internet ran its own
proprietary routing protocol (with the same acronym, albeit a slightly less affectionate
expansion!) to track the static IP addresses of connecting subscribers. This author was
fortunate enough to work amongst the team of people that made that work and gained huge
experience in doing so.

Event Programming

[130]

How to do it…
First of all, let's set up the network elements so that they are consistent with the logical
topology in the diagram.

Configure the OpenBSD UNIX host so that it has the appropriate network1.
addresses on its interfaces.

 # cat /etc/hostname.em1
 inet 10.0.211.220 255.255.255.0 10.0.211.255 description LAN
 # cat /etc/hostname.lo0
 inet 127.0.0.1 255.0.0.0 NONE
 inet alias 10.255.255.220 255.255.255.255 NONE

Next configure the JUNOS router with a static route for the special address of2.
interest, 10.255.255.220, which we'll call the service address. However, don't
use the ordinary syntax for defining a static route with a next-hop. Instead, use
the following method, which deploys a qualified-next-hop where we can
adjust the routing-preference level.

 adamc@router> show configuration routing-options
 static {
 route 10.255.255.220/32 {
 next-hop 10.255.255.220;
 qualified-next-hop 10.0.211.220 {
 preference 4;
 }
 }
 }

Now create the SLAX script, burp.slax, that will act as an event handler for3.
when pings respond and when they don't.

 version 1.0;

 ns junos = "http://xml.juniper.net/junos/*/junos";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

 import "../import/junos.xsl";

 match / {
 <event-script-results> {

 var $owner = event-script-input/
 trigger-event/

Event Programming

[131]

 attribute-list/
 attribute/value[../name=="test-owner"];
 var $nexthop = event-script-input/
 trigger-event/
 attribute-list/
 attribute/value[../name=="test-name"];
 var $event = event-script-input/trigger-event/id;

 if ($owner=="BURP") {

 var $get-config-rpc = {
 <get-configuration> {
 <configuration> {
 <routing-options> {
 <static>;
 }
 }
 }
 }

 var $result = jcs:invoke($get-config-rpc);

 var $configuration := {
 <configuration> {
 <routing-options> {
 <static> {
 for-each ($result//routing-options/
 static/
 route/
 qualified-next-hop) {
 if (name==$nexthop) {
 if ($event=="PING_TEST_COMPLETED"
 && @inactive=="inactive") {
 <route> {
 <name> ../name;
 <qualified-next-hop active="active"> {
 <name> name;
 }
 }
 }
 if ($event=="PING_TEST_FAILED"
 && !@inactive=="inactive") {
 <route> {
 <name> ../name;
 <qualified-next-hop inactive="inactive"> {
 <name> name;
 }
 }

Event Programming

[132]

 }
 }
 }
 }
 }
 }
 }

 if (count($configuration/configuration/
 routing-options/
 static/
 route/
 qualified-next-hop)>0) {
 var $connection = jcs:open();
 var $commit-options = {
 <commit-options> {
 if ($event=="PING_TEST_COMPLETED") {
 <log> "Activating NH(s) with address: " _ $nexthop;
 }
 if ($event=="PING_TEST_FAILED") {
 <log> "De-activating NH(s) with address: " _ $nexthop;
 }
 }
 };
 var $config-result := { call jcs:load-configuration(
 $connection, $configuration, $commit-options); };
 if ($config-result//xnm:error) {
 expr jcs:syslog("user.err",
 "burp.slax failed to reconfigure static routes "
 _ "in response to "_ $event _ " for "
 _ $nexthop _ " because: "
 _ $config-result//xnm:error/message);
 }
 expr jcs:close($connection);
 }
 }
 }
 }

Copy the event script to the JUNOS host and register it within the [event-4.
options event-scripts] configuration hierarchy.

 $ scp burp.slax
 adamc@10.0.201.201:/var/db/scripts/event
 adamc@router# set event-options event-scripts file burp.slax

Event Programming

[133]

Configure an RPM probe to track the ping-ability or otherwise of the BSD em15.
interface.

 adamc@router> show configuration services rpm
 probe BURP {
 test 10.0.211.220 {
 probe-type icmp-ping;
 target address 10.0.211.220;
 probe-count 5;
 test-interval 15;
 }
 /* can add more test addresses in here, as required */
 }

Configure an event policy to co-ordinate the communication between the RPM6.
probe and the event handling script.

 adamc@router> show configuration event-options
 policy BURP {
 events [ping_test_completed ping_test_failed];
 then {
 event-script burp.slax;
 }
 }

Test out the BURP event handler's ability to activate and deactivate qualified-7.
next-hop elements in the configuration based upon the RPM—eported
reachability.

How it works…
In step 1, we're simply configuring the BSD host as we would do for any normal host or
gateway device. The em1 interface on the BSD host acts as intermediate transport address.
The address itself isn't relevant to the actual end-application. The important address, for
which we'll manage the routing, is the lo0 address on the BSD host.

Event Programming

[134]

In step 2, we tell the JUNOS device about the lo0 interface on the BSD box. We use an
unusual static route configuration on JUNOS that you might not be used to.

Typical static route configuration Our static route configuration
static {
 route 10.255.255.220/32 {
 next-hop 10.255.211.220;
 }
}

static {
 route 10.255.255.220/32 {
 next-hop 10.255.255.220;
 qualified-next-hop 10.0.211.220 {
 preference 4;
 }
 }
}

qualified-next-hop is identical to ordinary next-hops associated with
static routes, but the properties of the static route, such as the route
preference and metric, can be adjusted for next-hop.

What's unusual here is that we set the main next-hop to be the same as the destination of
the static route. This obviously doesn't achieve much, but because a static route needs to
have some sort of next-hop, this element acts as a dummy placeholder, making the static
route a valid configuration, even if our event handling script deactivates the real next-hop
defined in the qualified-next-hop element because of reachability.

The other thing to note here is the preference 4 clause. All routes in the routing table
possess a preference, and the preference is associated with the source of the route, that is,
which software agent installed the route into the routing table. Static routes usually have a
preference of 5, so we install our qualified-next-hop with preference 4 (lower is better),
since it is based on more refined information.

Route source Route preference (lowest is best)

Directly connected networks 0

Static routes 5

OSPF 10

ISIS level 1 15

ISIS level 2 18

BGP 170

Event Programming

[135]

Now ordinarily, we wouldn't have much scope or opportunity for re-routing without a
dynamic routing protocol. If the Ethernet link between the JUNOS device and the OpenBSD
host was in fact a multi-access segment hosted on an Ethernet switch, then failures on the
Ethernet interface on either host would not be communicated to the other host, preventing
either device from taking a re-route action.

In step 3, we create our special event handling script, burp.slax, that will take input events
that define whether a next-hop is responding to pings or otherwise. The event script starts
with the usual boilerplate, which defines versions and namespaces, but soon jumps into the
main action with the usual unnamed match term. The script is not insignificant in size, so
we'll explain each part.

Firstly, we capture from the event input data the following data items:

The owner of a probe test
The name of a probe test—we establish a convention that the name of an RPM
probe test is the same as the target address, for convenience.
The event that triggered this, for example, either PING_TEST_COMPLETE, or
PING_TEST_FAILED

We wrap the rest of the script logic in an if clause that ensures that the owner is a well-
known name that we define as BURP. This will allow us to group together all of the RPM
tests within one single owning group, which will aid configuration management later.

Assuming that the event owner of an incoming event is indeed BURP (and not some other
RPM-based activity), the next thing we do is extract the static route configuration, so that
we know the active or inactive state of the qualified-next-hop elements associated with all
static routes on the JUNOS device.

Then we prepare an XML node-set fragment to represent and capture the configuration
changes that we need. We store this as $configuration, and the encapsulated XML is
generated conditionally depending upon:

The presence of any static routes in the current configuration that use as next-hop
the address reported in the triggering event,
The activated or deactivated state of the same, and
The type of event that triggered this, either PING_TEST_COMPLETED or
PING_TEST_FAILED

Event Programming

[136]

The following table explains our logic:

Current static route
configuration for next-
hop described in event
information

Reachability of next-hop as reported
by RPM

Configuration change

Not present n/a No action

Activated PING_TEST_COMPLETED No action

Activated PING_TEST_FAILED Deactivate next-hop

Deactivated PING_TEST_COMPLETED Activate next-hop

Deactivated PING_TEST_FAILED No action

If the $configuration variable includes any lines of configuration involving qualified-
next-hop elements, we invoke a configuration operation with jcs:load-
configuration() in order to effect the change. Now, jcs:load-configuration()
deploys the configuration in exclusive mode, so there is a chance that the operation will fail
if an operator is already busy changing configuration in exclusive mode. However, this
situation recovers itself as soon as the configuration database is free again. So if the change
operation fails, we simply use jcs:syslog() to report the event.

With the script completed, uploaded to the JUNOS host, and registered correctly in the [
event-options event-scripts] configuration hierarchy, we define the RPM probe
that will test the reachability of the next-hop. We simply use a basic ICMP ping test, with
the following properties:

5 probes
Spaced 1 second apart,
Every 15 seconds

As a final step, we use the event policy framework to stitch together the RPM event
outcomes with our custom event handler. We trap the two events that we're interested in:

PING_TEST_COMPLETED: meaning that all is well, and the next-hop is pingable
PING_TEST_FAILED: meaning that the next-hop experienced loss while pinging

And we respond by firing our burp.slax event script.

Event Programming

[137]

Finally, we're ready to observe our new BURP script operating by simulating network
interface failure on the OpenBSD box. First of all, we inspect the current routing
configuration and observe that there are two qualified-next-hop elements defining the
destination routing for 10.255.255.220.

 adamc@router> show configuration routing-options static
 route 10.255.255.220/32 {
 next-hop 10.255.255.220;
 qualified-next-hop 10.0.211.220 {
 preference 4;
 }
 qualified-next-hop 10.0.201.220 {
 preference 4;
 }
 }
 route 1.2.3.4/32 {
 next-hop 1.2.3.4;
 qualified-next-hop 10.0.211.220 {
 preference 4;
 }
 }

 adamc@router> show route 10.255.255.220

 inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0
 hidden)
 + = Active Route, - = Last Active, * = Both

 10.255.255.220/32 *[Static/4] 00:00:10
 > to 10.0.201.220 via em0.0
 to 10.0.211.220 via em1.0

If we then shutdown the BSD box em1 interface, thus preventing the ping response to the
10.0.211.220 address, we see the script fire up.

Aug 28 13:53:12 router rmopd[3725]: PING_TEST_FAILED: pingCtlOwnerIndex =
BURP, pingCtlTestName = 10.0.211.220
Aug 28 13:53:13 router mgd[12978]: UI_COMMIT: User 'root' requested
'commit' operation (comment: De-activating NH(s) with address:
10.0.211.220)
Aug 28 13:53:13 router mgd[12978]: UI_COMMIT_COMPLETED: commit complete

Event Programming

[138]

If we then inspect the routing configuration, we can see that BURP has intervened and
deactivated the broken next-hop. This is reflected in the current routing table, thus allowing
the JUNOS to disqualify broken network paths, and choose alternatives.

adamc@router> show configuration routing-options static
route 10.255.255.220/32 {
 next-hop 10.255.255.220;
 inactive: qualified-next-hop 10.0.211.220 {
 preference 4;
 }
 qualified-next-hop 10.0.201.220 {
 preference 4;
 }
}
route 1.2.3.4/32 {
 next-hop 1.2.3.4;
 inactive: qualified-next-hop 10.0.211.220 {
 preference 4;
 }
}

adamc@router> show route 10.255.255.220

inet.0: 19 destinations, 19 routes (19 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.255.255.220/32 *[Static/4] 00:00:50
 > to 10.0.201.220 via em0.0

At the time of writing, a bug or other anomaly seemed to cause double-
reporting of PING_TEST_FAILURE events, and this causes two
independent event handling scripts to both try to commit a configuration
change. The situation isn't fatal, however, since the JUNOS configuration
management engine ensures that only one of them can win, and they both
determine the correct change to make. It can be slightly annoying though
because the messages log will show errors associated with configuration
database access.

Event Programming

[139]

Debugging event scripts
In this recipe, we explore the options available for troubleshooting and debugging event
scripts. Because event scripts are, by their nature, triggered by network, or device-related
events rather than human interaction, the ordinary interactive methods for troubleshooting
software complexity and bugs are left wanting. In order to optimize the code/run/debug
cycle for event scripts, we outline some useful techniques here to help.

Getting ready
In order to complete this recipe, you should have access to the JUNOS router or device. You
don't need an actual event script to debug. We'll just walk through the techniques with
some examples.

How to do it…
Take a structured approach to event script debugging. Don't let the disassociation between
the execution of the code and the actions of the user frustrate you. Work through these
check items step-by-step to help find where your code is diverging from expected behavior
and why. Apply patience.

First of all, start with the event policy configuration that is supposed to be firing1.
your event. Is it configured correctly? It must define the event to match and the
action to take. If you want to capture the output then you also need to specify an
output-filename and a destination. The events can be multiple in nature, in
which case your event script should be called when any of the events fire.
Next look at how your policy interacts with other event policies. The JUNOS2.
eventd daemon will process event policies sequentially in configuration file
order and it's possible for an earlier policy to trap an event and re-prioritize it, or
even ignore it completely, which might mean that you don't get called. Pay
attention to event policy order and optimize it as required.
Check your script code source, its location on the filesystem, and its registration3.
in the configuration file. Event scripts must be stored in
/var/db/scripts/event and configured within the [event-options
event-script] hierarchy. Op scripts must be stored in /var/db/scripts/op
and configured within the [system scripts op] hierarchy.

Event Programming

[140]

The boilerplate for event scripts and op scripts is subtly different, so make sure
that you've got that right.

Event scripts should match this pattern:

 version 1.0;

 ns junos = "http://xml.juniper.net/junos/*/junos";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

 import "../import/junos.xsl";

 match / {
 <event-script-results> {
 // your code here
 }
 }

Op scripts should match this pattern, including the param declaration for input
parameters.

 version 1.0;

 ns junos = "http://xml.juniper.net/junos/*/junos";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

 import "../import/junos.xsl";

 param $interface="lo0";

 var $arguments = {
 <argument> {
 <name> "interface";
 <description> "Interface to show";
 }
 }
 match / {
 <op-script-result> {
 // your code here
 }
 }

Event Programming

[141]

If you're not sure that your script is getting called, or you're not sure that it's4.
getting the right data, use this basic set of steps to catch events and record the
XML data structure associated with them so that you can be sure that the data
you're looking for is definitely there.

Create debug-event.slax with the following content and copy it to
/var/db/scripts/event.

 version 1.0;
 ns junos = "http://xml.juniper.net/junos/*/junos";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

 import "../import/junos.xsl";

 match / {
 <event-script-results> {
 copy-of .;
 }
 }

Pair that up with the following JUNOS configuration:

 adamc@router# show event-options
 event-script {
 file debug-event.slax;
 }
 policy MY-POLICY {
 events snmp_trap_link_down; /* specific events sought */
 then {
 event-script debug-event.slax {
 output-filename debug;
 destination DEBUG;
 }
 }
 }
 destinations {
 DEBUG {
 archive-sites {
 /var/tmp;
 }
 }
 }

Event Programming

[142]

When your event fires, the simple debug-event.slax script will simply
echo it to the output destination which will write it to a file in to the
/var/tmp directory on the JUNOS device. You'll be able to find the file as
router_DATE_TIME_debug. Analyze the file, and look at the XML attributes
in order to compare them with your XPath or a similar logic for matching.

Use help syslog EVENT_NAME to get the CLI view on the valid attributes that are5.
associated with an event.

 adamc@router> help syslog BGP_PREFIX_LIMIT_EXCEEDED
 Name: BGP_PREFIX_LIMIT_EXCEEDED
 Message: <peer-name>: Configured <message>(<limit>) exceeded for
 <nlri-type> nlri: <prefix-count>
 (instance <instance>)
 Help: Number of prefixes exceeds the maximum limit
 Description: The number of prefixes received/accepted on the BGP
 session exceeds the configured maximum
 limit.
 Type: Event: This message reports an event, not an error
 Severity: warning
 Facility: LOG_DAEMON
 Action: You may want to modify the configuration statement
 to use a higher value for the
 received/accepted number of prefixes.

If you're happy with your event script, but you need an easy way to trigger it6.
without causing the real event, consider using the Juniper-modified version of
the BSD tool logger. This tool will create a synthetic event and inject it into the
event management framework in much the same way as a real event. Use this
tool from the BSD system shell as follows:

Command line
switch

Description

-e Specify the event by name, for example, UI_COMMIT,
SNMP_TRAP_LINK_DOWN

-a Set a key=value attribute pair (can be multiple)

 % logger -e SNMP_TRAP_LINK_DOWN -a interface-name=gre.0 "gre.0
 interface changed state to down"

Event Programming

[143]

How it works…
In steps 1 and 2, we're looking at the JUNOS event-policy logic because this is the first port
of call when the event management framework has to map an incoming event to some
action or activity. We look at not only the policy that we're interested in, but also the other
policies to consider any unanticipated interaction. It's crucially important that the event
handling process works in tandem with the rest of the system, or we can easily create
catastrophic event loops.

In step 3, we do some basic schoolboy error checking to make sure that we've adhered to all
the correct protocols for the use of the event script technology that we're using. Because op
scripts and event scripts are similar, it can be easy to make mistakes here.

In step 4, we're stopping short of pulling our hair out in frustration and taking a known-
good configuration that has expected results and making sure that it works correctly. The
debug-event.slax script is the simplest possible shim layer between the event
management framework and the output channels, but it's a good way to test that:

We are receiving the event that we're expecting to receive when something
happens on the network
The event that we are receiving contains the data that we need in order to apply
our specific logic

Because we use a local file as an output channel, we also eliminate any problems with
botched SSH keys or passwords that might get in the way and prevent us from seeing the
output of the script.

Step 5 makes use of the interactive help available in the JUNOS system. The help syslog
command has information about all of the known events in the event management
framework and can be considered authoritative.

Finally in step 6, we make use of a synthetic way of injecting an event to see if the problem
lies with the generation of the event itself. The advantage with this method is that we can
easily manipulate the attributes to see how our event script logic responds.

In summary, these steps provide a comprehensive set of troubleshooting procedures to help
make event script programming more productive.

5
Automating JUNOS with PyEZ

In this chapter, we’ll cover the following recipes:

Setting up a PyEZ environment
Exploring the XML RPC using PyEZ
Calling operational RPCs and setting timeouts
Configuration analysis and reporting
Making raw CLI commands from PyEZ
Using tables and views
Defining custom tables and views with YAML
Making configuration changes with PyEZ
Template configurations with Jinja2

Introduction
With a formidable history starting in December 1989, Guido van Rossum’s Python
programming language – fusing a desire for simplicity, clarity and reliability over code
elegance, speed and performance – continues to be a highly popular technology choice for
engineers writing glue code: the sort of code that interfaces different systems together.

Juniper have recognized Python’s dominance in the area of scripting and automation, and
supported the development of the open source framework PyEZ, a Python library module
that provides a useful abstraction layer over and above SSH and NETCONF in order to
allow you to write Python code using high-level functional primitives that achieve useful
actions on the JUNOS network elements.

Automating JUNOS with PyEZ

[145]

In this chapter, we’ll explore a series of recipes that makes use of the PyEZ framework in
order to achive commonly sought after activities.

Setting up a PyEZ environment
In this recipe, we’ll set up PyEZ for Python and make a simple application to connect to one
of our JUNOS devices and gather a basic outline of the system.

Getting ready
In order to complete this recipe, you’ll need Python 2.7 in a Linux or BSD-based
development environment of your choice. For ease of illustration here, we’ll use Ubuntu
16.04 LTS and Python 2.7.12, which is supplied from the default software repositories, but
I’ll also comment on some potential installation hiccups on other OSes and how to get
around them.

You should have also completed Chapter 1, JUNOS NETCONF over SSH Setup in order to
prepare your JUNOS device for management.

How to do it…
the steps for the recipe are as follows:

Verify that your JUNOS device can be accessed via the NETCONF protocol:1.

 unix$ ssh -p 830 -i junos_auto_id_rsa auto@10.0.201.201 -s
 netconf
 <!-- No zombies were killed during the creation of this user
 interface -->
 <!-- user auto, class j-super-user -->
 [...]

If not, revisit Chapter 1, JUNOS NETCONF over SSH Setup in order to:2.
Generate SSH keys
Set up an automation user
Configure NETCONF over SSH

Automating JUNOS with PyEZ

[146]

On your automation or management server, proceed to install the necessary3.
Python components in order to enable PyEZ. Firstly, you need pip – which is the
Python package manger, a successor to easy_install:

 ubuntu@ubuntu-xenial:~$ sudo apt-get install python-pip
 Reading package lists... Done
 Building dependency tree
 Reading state information... Done
 The following additional packages will be installed:
 build-essential dpkg-dev g++ g++-5 libalgorithm-diff-perl
 libalgorithm-diff-xs-perl libalgorithm-merge-perl libdpkg-perl
 libexpat1-dev
 libfile-fcntllock-perl libpython-all-dev libpython-dev
 libpython2.7 libpython2.7-dev libstdc++-5-dev python-all python
 all-dev python-dev
 python-pip-whl python-pkg-resources python-setuptools python
 wheel python2.7-dev
 Suggested packages:
 debian-keyring g++-multilib g++-5-multilib gcc-5-doc libstdc++6
 5-dbg libstdc++-5-doc python-setuptools-doc
 The following NEW packages will be installed:
 build-essential dpkg-dev g++ g++-5 libalgorithm-diff-perl
 libalgorithm-diff-xs-perl libalgorithm-merge-perl libdpkg-perl
 libexpat1-dev
 libfile-fcntllock-perl libpython-all-dev libpython-dev
 libpython2.7 libpython2.7-dev libstdc++-5-dev python-all python
 all-dev python-dev python-pip
 python-pip-whl python-pkg-resources python-setuptools python-
 wheel
 python2.7-dev
 0 upgraded, 24 newly installed, 0 to remove and 10 not upgraded.
 Need to get 41.5 MB of archives.
 After this operation, 91.8 MB of additional disk space will be
 used.
 Do you want to continue? [Y/n] y
 […]

Continue to install the PyEZ framework package, using pip:4.

 ubuntu@ubuntu-xenial:~$ pip install junos-eznc
 Collecting junos-eznc
 Collecting netaddr (from junos-eznc)
 Collecting PyYAML>=3.10 (from junos-eznc)
 Collecting pyserial (from junos-eznc)
 Collecting ncclient>=0.5.3 (from junos-eznc)
 Collecting jinja2>=2.7.1 (from junos-eznc)
 Collecting six (from junos-eznc)

Automating JUNOS with PyEZ

[147]

 Collecting paramiko>=1.15.2 (from junos-eznc)
 Collecting lxml>=3.2.4 (from junos-eznc)
 Collecting scp>=0.7.0 (from junos-eznc)
 Collecting setuptools>0.6 (from ncclient>=0.5.3->junos-eznc)
 Collecting MarkupSafe>=0.23 (from jinja2>=2.7.1->junos-eznc)
 Collecting pynacl>=1.0.1 (from paramiko>=1.15.2->junos-eznc)
 Collecting pyasn1>=0.1.7 (from paramiko>=1.15.2->junos-eznc)
 Collecting bcrypt>=3.1.3 (from paramiko>=1.15.2->junos-eznc)
 Collecting cryptography>=1.1 (from paramiko>=1.15.2->junos-eznc)
 Collecting cffi>=1.4.1 (from pynacl>=1.0.1->paramiko>=1.15.2
 >junos-eznc)
 Collecting ipaddress (from cryptography>=1.1->paramiko>=1.15.2
 >junos-eznc)
 Collecting idna>=2.1 (from cryptography>=1.1->paramiko>=1.15.2
 >junos-eznc)
 Collecting asn1crypto>=0.21.0 (from cryptography>=1.1
 >paramiko>=1.15.2->junos-eznc)
 Collecting enum34 (from cryptography>=1.1->paramiko>=1.15.2
 >junos-eznc)
 Collecting pycparser (from cffi>=1.4.1->pynacl>=1.0.1
 >paramiko>=1.15.2->junos-eznc)
 Successfully built PyYAML ncclient MarkupSafe pycparser
 Installing collected packages: netaddr, PyYAML, pyserial,
 setuptools, six, pycparser, cffi, pynacl, pyasn1, bcrypt,
 ipaddress, idna, asn1crypto, enum34, cryptography, paramiko, lxml,
 ncclient, MarkupSafe, jinja2, scp, junos-eznc
 Successfully installed MarkupSafe PyYAML asn1crypto bcrypt cffi
 cryptography enum34 idna ipaddress jinja2 junos-eznc lxml ncclient
 netaddr paramiko pyasn1 pycparser pynacl pyserial scp setuptools-
 20.7.0 six

Use the following basic Python program as a basis for testing access to your5.
JUNOS device. Replace the parameters in the device constructor call as follows:
The table gives the value of different parameters:

Parameter Value

host IP address or DNS/hostname corresponding to your JUNOS
device

user Username configured for automation

ssh_private_key_file File containing the private key portion of the SSH key
generated for use by the automation user profile

Automating JUNOS with PyEZ

[148]

 #!/usr/bin/env python

 from pprint import pprint
 from jnpr.junos import Device
 dev = Device(host='10.0.201.201', user='auto',
 ssh_private_key_file="junos_auto_id_rsa")
 dev.open()
 pprint(dev.facts)
 dev.close()

Run the program, and observe that you should the output of so-called facts. Facts6.
are PyEZ’s abstraction of critical properties that determine the operation of your
JUNOS device.

 {'2RE': False,
 'HOME': '/var/home/user',
 'RE0': {'last_reboot_reason': '0x10:misc hardware reason',
 'mastership_state': 'master',
 'model': 'RE-VRR',
 'status': 'Testing',
 'up_time': '10 days, 1 hour, 57 minutes, 37 seconds'},
 'RE1': None,
 'RE_hw_mi': False,
 'current_re': ['master', 'node', 'fwdd', 'member', 'pfem', 're0'],
 'domain': None,
 'fqdn': 'vrr-fra-c0b',
 'hostname': 'vrr-fra-c0b',
 'hostname_info': {'re0': 'vrr-fra-c0b'},
 'ifd_style': 'CLASSIC',
 'junos_info': {'re0': {'object': junos.version_info(major=(15, 1),
 type=F, minor=6-S5, build=6),
 'text': '15.1F6-S5.6'}},
 'master': 'RE0',
 'model': 'VRR',
 'model_info': {'re0': 'VRR'},
 'personality': 'MX',
 're_info': {'default': {'0': {'last_reboot_reason': '0x10:misc
 hardware reason',
 'mastership_state': 'master',
 'model': 'RE-VRR',
 'status': 'Testing'},
 'default': {'last_reboot_reason':
 '0x10:misc hardware reason',
 'mastership_state': 'master',
 'model': 'RE-VRR',
 'status': 'Testing'}}},
 're_master': {'default': '0'},
 'serialnumber': 'VR5568416ECE',

Automating JUNOS with PyEZ

[149]

 'srx_cluster': None,
 'srx_cluster_id': None,
 'srx_cluster_redundancy_group': None,
 'switch_style': 'BRIDGE_DOMAIN',
 'vc_capable': False,
 'vc_fabric': None,
 'vc_master': None,
 'vc_mode': None,
 'version': '15.1F6-S5.6',
 'version_RE0': '15.1F6-S5.6',
 'version_RE1': None,
 'version_info': junos.version_info(major=(15, 1), type=F,
 minor=6-S5, build=6),
 'virtual': True}

How it works…
Step 1 validates that access to JUNOS works correctly. This tests:

IP-layer connectivity between our management host and the JUNOS device,
That the NETCONF-over-SSH service is running on TCP port 830
Our ability to create an SSH session with the provided key.

If any of these conditions don’t hold, then we circle back on one of the recipes as described
in step 2.

In step 3, we use the apt-get features of Ubuntu in order to download the Python package
manager, pip. pip provides a simplistic way of managing external Python packages and
modules. In a lot of cases, pip will be installed along with Python and this step may not
even be necessary.

Step 4 makes use of pip in order to install PyEZ, which has the Python module name of
junos-eznc. pip automatically works out any dependencies that PyEZ requires from the
package manifest and downloads them. There are a significant number of dependencies.

Automating JUNOS with PyEZ

[150]

Some are more important than others, but at a high-level the important dependency
packages are:

Package Description

lxml XML parsing library based on libxml2; alternative to Python standard
ElementTree API

paramiko SSH client/server library to implement in native Python

ncclient NETCONF client, used for communicating with JUNOS NETCONF-over-SSH
service

jinja2 Modern, Django-like template language; useful for parameterizing XML
documents

If you’re installing on BSD or an alternate non-Linux system and you
experience problems installing the PyEZ dependency packages, check
with your operating system vendor native package repository before
using pip. You may find there are pre-prepared packages that install the
necessary Python modules. This is particularly the case for the Python
modules that make use of underlying C and require compilation. The
Python lxml library is one such example. On OpenBSD, look in the ports
collection for packages starting with py-.

In step 5, we create the Hello, World! equivalent of a PyEZ framework program: a program
that connects to a single JUNOS device, logs in and extract overview summary information.

While the source code looks rather simplistic, what is going on under the hood is more
complex. When we call the Device() constructor and open() the resulting object, PyEZ is
creating a NETCONF session with the target that we specify and making use of the
ncclient Python package to do so. The paramiko module provides the underlying SSH
transport and that is passed the necessary credentials in order to authenticate the SSH
session.

Automating JUNOS with PyEZ

[151]

When the NETCONF client/server communication begins, the lxml routines are used to
parse the messages, and one of the first things that occurs is that PyEZ framework makes a
series of operational RPC calls to establish basic system information, or facts. This
dictionary is printed to the Terminal. The following table shows some of the significant
facts:

Key Description

2RE Boolean indicating whether or not there is more than one routing engine
installed

model String indicating the model of the chassis, for example, MX960, MX480, VRR
and so on.

master Either RE0 or RE1 depending upon master arbitration process

serialnumber Unit serial number

version String indicating the JUNOS version

There’s more
If you’re not using SSH key-based authentication for whatever reason, there are a couple of
options available for managing passwords. You can either default to using the executing
user’s username and prompt interactively for a password:

#!/usr/bin/env python

from pprint import pprint
from jnpr.junos import Device
from getpass import getpass

dev = Device(host='10.0.201.201', password=getpass())
dev.open()

pprint(dev.facts)
dev.close()

Automating JUNOS with PyEZ

[152]

Or, you can use a strategy similar to that deployed in Chapter 3, Using Slax to Write Op
Scripts when using the REST interface. Adopt a user-specific file cache of the stored
credentials for the target hosts:

#!/usr/bin/env python

import sys
import getpass
import os
import json
from pprint import pprint
from jnpr.junos import Device

def getPass(target):
 try:
 passwordFile = os.path.expanduser("~")+"/.pwaccess"
 if os.stat(passwordFile)[0]&63==0:
 passwords = json.load(io.open(passwordFile))
 return(passwords[target])
 else:
 sys.stderr.write("Warning: password file "+passwordFile+" must be
user RW (0600) only!\n")
 sys.exit(1)

 except Exception as e:
 return(getpass.getpass("Password: "))

target="10.0.201.201"
user="auto"
password=getPass(user+"@"+target)

dev = Device(host=target, user=user, password=password)
dev.open()

pprint(dev.facts)

dev.close()

Automating JUNOS with PyEZ

[153]

If you run into trouble while trying these basic methods for connecting, use the following
guide to help you troubleshoot:

Error message Description

jnpr.junos.exception.ConnectAuthError:
ConnectAuthError

One of:
Provided password is
incorrect.
Provided SSH key filename
is incorrect
Public/private keys don’t
match

jnpr.junos.exception.ConnectRefusedError:
ConnectRefusedError

NETCONF-over-SSH
service not configured

jnpr.junos.exception.ConnectTimeoutError:
ConnectTimeoutError

Remote IP address did not
responding, or intermediate
network routing problem or
firewall filter

Exploring the XML RPC using PyEZ
In this recipe, we’ll use the PyEZ framework to explore the XML RPC APIs to determine the
necessary calls for equivalent command lines and parameters. Introspecting the XML RPC
API like this can be a useful technique for building bigger fully-fledged automation
applications.

Getting ready
In order to complete this recipe, you’ll need Python 2.7 in a Linux or BSD-based
development environment of your choice. You should have already:

Configured NETCONF-over-SSH setup (Chapter 1, Configuring JUNOS through
NETCONF)
Set up a PyEZ Environment (Chapter 2, Working with Junos REST API).

Automating JUNOS with PyEZ

[154]

How to do it…
We’re going to use the Python interactive shell (or REPL – read-evaluate-print loop) in order
to use PyEZ to connect to a JUNOS device, and then we’re going to explore the XML RPCs
for certain commands:

Start up the Python interpreter and load the essential PyEZ framework classes1.
and the associated XML parsing routines:

 Python 2.7.13 (default, Dec 17 2016, 23:03:43)
 [GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on
 darwin
 Type "help", "copyright", "credits" or "license" for more
 information.
 >>> from jnpr.junos import Device
 >>> from lxml import etree

Instantiate a device profile for the JUNOS router, and call the open() method in2.
order to connect:

 >>> router = Device(host="10.0.201.201", user="auto",
 ssh_private_key=”junos_auto_rsa_id”)
 >>> router.open()
 Device(10.0.201.201)

Call the display_xml_rpc() method for the command that you want to know3.
the XML RPC representation for, and use the etree.dump() method to show the
XML:

 >>> etree.dump(router.display_xml_rpc("show interfaces"))
 <get-interface-information>
 </get-interface-information>

Investigate how the different command line options, such as extensive or4.
detail, are encoded within the XML RPC call:

 >>> etree.dump(router.display_xml_rpc("show interfaces detail"))
 <get-interface-information>
 <detail/>
 </get-interface-information>

 >>> etree.dump(router.display_xml_rpc("show interfaces
 extensive"))
 <get-interface-information>
 <extensive/>
 </get-interface-information>

Automating JUNOS with PyEZ

[155]

 >>> etree.dump(router.display_xml_rpc("show interfaces media"))
 <get-interface-information>
 <media/>
 </get-interface-information>

Also investigate how arguments to the command line are encoded within the5.
XML RPC:

 >>> etree.dump(router.display_xml_rpc("show interfaces em0"))
 <get-interface-information>
 <interface-name>em0</interface-name>
 </get-interface-information>

 >>> etree.dump(router.display_xml_rpc("show route 10.0.201.0/24
 table inet.0"))
 <get-route-information>
 <destination>10.0.201.0/24</destination>
 <table>inet.0</table>
 </get-route-information>

Notice that some command lines don’t have a direct equivalent within the XML6.
RPC namespace:

 >>> etree.dump(router.display_xml_rpc("show system processes"))
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 TypeError: Argument 'elem' has incorrect type (expected
lxml.etree._Element, got str)
 >>> router.display_xml_rpc("show system processes")
 'invalid command: show system processes| display xml rpc'

How it works…
In steps 1 and 2, we simply initialize the Python environment and connect to the remote
JUNOS node.

In the subsequent steps, we use the display_xml_rpc() method on the Device object in
order to make an RPC call to the JUNOS device which executes the equivalent of the |
display xml rpc command modifier in order to determine the XML RPC associated with
the command line.

Because Juniper haven’t implemented absolutely every aspect of the command line
functionality into the XML RPI API, sometimes it isn’t possible to translate the command
line into an RPC call, as seen in step 6.

Automating JUNOS with PyEZ

[156]

But when an XML RPC call is available, it is returned within an XML structured document
and the lxml.etree.dump() function shows the raw format. Once learned, the XML RPC
can be called directly using its name as a method appended to the Device.rpc attribute:

 >>> result = router.rpc.get_interface_information(terse=True,
 interface_name="em0")
 >>> etree.dump(result)
 <interface-information style="terse">
 <physical-interface>
 <name>
 em0
 </name>
 <admin-status>
 up
 </admin-status>
 <oper-status>
 up
 </oper-status>
 <logical-interface>
 <name>
 em0.0
 </name>
 <admin-status>
 up
 </admin-status>
 <oper-status>
 up
 </oper-status>
 <filter-information>
 </filter-information>
 <address-family>
 <address-family-name>
 inet
 </address-family-name>
 <interface-address>
 <ifa-local emit="emit">
 10.0.201.201/24
 </ifa-local>
 </interface-address>
 </address-family>
 </logical-interface>
 </physical-interface>
 </interface-information>

Automating JUNOS with PyEZ

[157]

The names of the RPC, and indeed any arguments or options, must be
vetted and filtered before being made available to Python. The hyphens
from the XML are converted into underscores for the PyEZ RPC call.

PyEZ synthesizes the RPC call upon demand based upon the child attribute supplied to the
Device.rpc object. This has the advantage that PyEZ itself doesn’t necessarily need to
change or update as and when the JUNOS XML RPC API updates. But it also means that
PyEZ cannot help validate the well-formedness of the RPC call before supplying it to the
JUNOS device. It simply acts as a re-formatting intermediary between the JUNOS
NETCONF channel and the Python environment in which you might develop your
automation application.

Calling operational RPCs and setting
timeouts
In this recipe, we’ll learn how to make operational RPC calls to JUNOS through the XML
RPC API using the PyEZ framework, and we’ll use that knowledge to build up the
beginning of a software tool that could be used as an ISP looking glass.

A looking glass is a read-only view onto an ISP’s routers in order to allow
customers and peers alike an ability to perform a self-serve troubleshoot
activity by querying the provider’s routers to understand the routing of
traffic to specific destinations.

We’ll also tweak PyEZ’s default settings to make it more patient for RPCs that might issue
lots of output, taking significant time, such as when dealing with large configuration files.

Getting ready
In order to complete this recipe, you’ll need Python 2.7 in a Linux or BSD-based
development environment of your choice. You should have already:

Configured NETCONF-over-SSH setup (Chapter 1, Configuring JUNOS through
NETCONF)
Set up a PyEZ Environment (Chapter 2, Working with Junos REST API).

../../../../../https@cdp.packtpub.com/junos_automation_cookbook/wp-admin/post.php@post=41&action=edit&save=save#post_32
../../../../../https@cdp.packtpub.com/junos_automation_cookbook/wp-admin/post.php@post=41&action=edit&save=save#post_34

Automating JUNOS with PyEZ

[158]

How to do it…
We’re going to build a Python script, pyez-show-route.py, which will use the PyEZ
framework to login to a JUNOS router and query the routing table for an internet
destination, extract the returned data, and print it nicely on the user’s console. The user will
be able to invoke our script in the following way:

pyez-show-route.py [-h] [-p port] [-u username] [-t target] [-R instance]
destination

The following table provides the different arguments and their description:

Argument Description

-p TCP port to contact NETCONF-over-SSH

-u Username

-t Target device

-R Routing instance on the JUNOS router

The steps for the recipe are as follows:

Start by defining the interpreter as usual and defining the Python modules that1.
we’ll use. Most importantly, include the jnpr.junos.Device reference.

 #!/usr/bin/env python

 from jnpr.junos import Device
 import sys
 import getpass
 import os
 import json
 import argparse

Use a general exception handling function to report any errors simply and neatly.2.
(You can comment the last line out while developing if you need a full stack
trace):

 def onError(exception_type, exception, traceback):
 print "%s: %s" % (exception_type.__name__, exception)
 sys.excepthook = onError

Automating JUNOS with PyEZ

[159]

Use the argparse module to query the command line arguments invoked by the3.
user:

 cmdline = argparse.ArgumentParser(description="Python JUNOS PyEZ
 Route lookup")
 cmdline.add_argument("destination", help="Network destination to
 lookup")
 cmdline.add_argument("-p", metavar="port", help="TCP port",
 default=8443)
 cmdline.add_argument("-u", metavar="username", help="Remote
 username", default=getpass.getuser())
 cmdline.add_argument("-t", metavar="target", help="Target router
 to query", required=True)
 cmdline.add_argument("-R", metavar="instance", help="Routing
 instance to use", default="")
 args=cmdline.parse_args()

If you’re using passwords, instead of SSH key-based authentication, you can4.
make use of the getPass() function from the first recipe in this chapter to store
passwords. For brevity, I haven’t included that code again.

 password=getPass(args.u+"@"+args.t) if 'getPass' in globals()
 else ""

Open a connection to the JUNOS device.5.

 dev = Device(host=args.t,
 user=args.u,
 port=args.p,
 password=password)
 dev.open()
 dev.timeout = 60

Call the RPC to query the routing table.6.

 result = dev.rpc.get_route_information(normalize=True,
 destination=args.destination, detail=True, table=args.R+".inet.0"
 if args.R!="" else "inet.0")

Extract the destination from the routing table lookup.7.

 print "%s/%s" % (result.findtext("route-table/rt/rt-
 destination"),
 result.findtext("route-table/rt/rt-prefix-length"))

Automating JUNOS with PyEZ

[160]

Iterate through the routes returned for the destination, extracting key parameters8.
and printing them in an easy to read format:

 for route in result.findall("route-table/rt/rt-entry"):
 protocol = route.findtext("protocol-name")
 task = route.findtext("task-name")
 age = route.findtext("age")
 active = len(route.findall("current-active"))
 info = ""
 if protocol=="BGP":
 info+="NEXT_HOP "+route.findtext("gateway")+" LOCAL_PREF
 "+route.findtext("local-preference")+" AS_PATH
 "+route.findtext("as- path")
 print "%c\t%s (%s) %s" % ("*" if active==1 else " ", task if
 protocol=="BGP" else protocol, age, info)

 nexthops = route.xpath("nh")
 for nh in nexthops:
 selected = len(nh.xpath("selected-next-hop"))
 to = nh.findtext("to")
 via = nh.findtext("via")
 print "\t\t\t\t%c%s %s %s" % (">" if selected==1 else " ",
 to
 if to!=None else "", "via" if via!=None else "", via)

Finally, close the PyEZ session with the JUNOS device to free up any allocated9.
resources:

 dev.close()

How it works…
In step 1, we create a Python environment with the required modules imported into the
namespace. In step 2, we define a simple exception handler to print a message and exit if
and when things go wrong.

As we move to step 3, we set up the execution of our script by parsing the command line
arguments in order to set the runtime options. We use the argparse module to do the work
for us here, because it’s quick, convenient, and is included in the standard Python
distribution. The only change from previous recipes using Python’s argparse compared to
this is that we demote the target device to be specified by a –t switch rather than the main
argument. This is because we want the main argument to be the destination to query.

Automating JUNOS with PyEZ

[161]

In step 4, we include an optional hook to our password caching code that we’ve used in
previous recipes. The getPass() code isn’t included in this recipe, but can be found in the
first recipe on Setting up a PyEZ environment. The syntax in step 4 arranges for the
getPass() function to be called if it exists in the scope of the global namespace, so if you
include it in the source code, it will be used, but otherwise we set the password to an empty
string and assume that we’ll use SSH key-based authentication to login to our JUNOS
devices.

In step 5, we use the PyEZ framework Device() constructor to create an object representing
our JUNOS device, and then call the open() method in order to have PyEZ connect to the
JUNOS device. We also take a moment to adjust the default timeout period from 30 seconds
to 60 seconds.

Changing the timeout period will affect any RPCs called on the JUNOS
device. It is also possible to change the timeout on a per-RPC basis by
including the dev_timeout attribute in the RPC method call.

In step 6, we actually make the RPC call to ask JUNOS to look up the route and give us the
information. As we saw from the previous recipe, Exploring the XML RPC API, the name of
the RPC has its hyphens replaced by underscores to work with PyEZ.

The extra arguments given to the RPC warrant explanation, however:

RPC Argument Behavior

destination =
args.destination

Provides the destination argument to the RPC for the
show route command. Extracted directly from the
command line.

detail = True Provides the detail option to the show route RPC so that
we get the detailed response structure in return.

table = args.R+".inet.0"
if args.R!="" else
"inet.0"

Uses the default inet.0 table unless the user specified a
routing-instance with the –R switch

normalize = True An internal switch used by PyEZ in order to normalize
the whitespace between XML tags. Recommended to
include it so that data responses are consistent.

Automating JUNOS with PyEZ

[162]

When the RPC call completes, we get the result of the route lookup stored in the result
variable as an XML structure. Here’s an extract of some example XML output of the route
information. I’ve underscored the attributes of the XML document that we’re interested in,
and in steps 7 and 8, you can see how we use the lxml functions in order to reference the
various parts of the XML document.

 <route-information>
 <route-table>
 <table-name>inet.0</table-name>
 <destination-count>649440</destination-count>
 <total-route-count>649460</total-route-count>
 <active-route-count>649411</active-route-count>
 <holddown-route-count>20</holddown-route-count>
 <hidden-route-count>9</hidden-route-count>
 <rt style="detail">
 <rt-destination>212.23.32.0</rt-destination>
 <rt-prefix-length>19</rt-prefix-length>
 <rt-entry-count format="1 entry">1</rt-entry-count>
 <rt-announced-count>1</rt-announced-count>
 <rt-entry>
 <active-tag>*</active-tag>
 <current-active/>
 <last-active/>
 <protocol-name>BGP</protocol-name>
 <preference>170</preference>
 <preference2>-201</preference2>
 <nh-type>Router</nh-type>
 <nh-index>10792</nh-index>
 <nh-address>0x1e4412c</nh-address>
 <nh-reference-count>1947711</nh-reference-count>
 <nh-kernel-id>0</nh-kernel-id>
 <gateway>89.202.210.101</gateway>
 <nh indent="16">
 <nh-string>Next hop</nh-string>
 <to>89.202.210.101</to>
 <via>ge-11/0/0.200</via>
 <selected-next-hop/>
 <session>16a</session>
 </nh>
 <rt-entry-state>Active Ext</rt-entry-state>
 <local-as>3291</local-as>
 <peer-as>8928</peer-as>
 <age seconds="799463">1w2d 6:04:23</age>
 <metric>10</metric>
 <validation-state>unverified</validation-state>
 <task-name>BGP_8928.89.202.210.101</task-name>
 <announce-bits>4</announce-bits>

Automating JUNOS with PyEZ

[163]

 <announce-tasks>0-KRT 3-RT 11-BGP_RT_Background 12-
Resolve
 tree 4</announce-tasks>
 <as-path>AS path: 8928 I AS path: Recorded</as-path> <!-
 buggy!>
 <communities>
 <community>3291:10301</community>
 <community>3291:10901</community>
 <community>3291:11001</community>
 <community>8928:10900</community>
 <community>8928:11002</community>
 <community>8928:20901</community>
 <community>8928:65190</community>
 <community>8928:65191</community>
 </communities>
 <bgp-rt-flag>Accepted</bgp-rt-flag>
 <local-preference>200</local-preference>
 <peer-id>212.23.38.217</peer-id>
 </rt-entry>
 </rt>
 </route-table>
 </route-information>

lxml provides us with three useful functions for analyzing the XML data structure. They
are explained in the following table:

lxml function Functionality

find() Returns the first occurrence of an XML node with this tag name, supporting
limited XPath location specification

findtext() Returns the text associated with an XML node (that is the inner text inside the
node).

findall() Returns a list of all of the nodes that match the limited XPath location
specification

In step 8, we run through two nested for loops to run iterating through:

The route entries returned for the destination: the <rt-entry> tags,
The nexthops associated with the routes (in the case of equal-cost multi-path
routing): the <nh> tags.

Automating JUNOS with PyEZ

[164]

We include some special logic for BGP in order to print the specific BGP attributes that
make internet route lookup useful, such as the <as path> and <local-preference>
attributes.

Some versions of JUNOS 14.1 feature a bug where the AS Path attribute
reported by the XML interface is garbled and includes data from other
fields. This can be seen in our preceding sample output.

When troubleshooting the fields and attributes of the returned XML
document, lxml’s etree.dump() function is invaluable. While debugging,
you may want to import from lxml etree in order to be able to write
statements such as the following to extract the raw XML output:
print etree.dump(result)

Configuration analysis and reporting
In this recipe, we’ll use the PyEZ framework to make operational RPCs to the JUNOS device
in order to query configuration information. We’ll apply some logic and summarization
with a view to producing a report that offers some indication on the level of load or
configuration burden experienced by the JUNOS device. Such benchmarking is a common
requirement in ISP networks, where it is not always possible to dimension the capacity of a
router simply by its physical interfaces. Logical configuration consumes control plane
resource as well and needs to be considered. This in turn can affect decision making for
chassis sizing. The following table presents the description for different resources used:

Resource Description

Physical interfaces The number of physical interfaces likely determines the amount of
traffic capacity bandwidth available, and also the diversity of traffic

Logical interfaces Each logical interface usually represents a customer service, or an
interconnect peer. This comes with the responsibility of next-hop
resolution, ARP, possibly Netflow and so on.

ACLs The number of interfaces with ACLs might affect the performance
of the underlying packet forwarding engines.

VRRP Commonly used LAN redundancy protocol, allowing default-route
hosts to have a resilient gateway, VRRP requires the routing-
engines on the JUNOS device to send regular keepalives

Automating JUNOS with PyEZ

[165]

VRRP with
authentication

Like VRRP, but the authentication requirement often means that
such workload cannot be off-loaded to the distributed linecards

Layer 2 Circuits Logical service provided to a customer to provide a transparent
point-to-point LAN service. Brings with it the overhead of an LDP
session at least.

Routing Instances Virtual routing tables for customers, containing routing
information, interfaces, and ARP tables. Each routing instance
consumes memory

BGP peers Resources are required for each BGP peer, and depend on the peer-
specific configurations and routing policy

BGP peers with
aggressive hold
timers

External domain convergence requirements sometimes drive the
configuration of aggressive hold-timers on BGP sessions. These
require the routing-engine to send regular keepalives on the BGP
sessions more often, consuming more resources.

bgp precision-timers causes modern JUNOS (>14) to off-load BGP
keepalive processing to an alternate thread of execution. When combined
with modern FreeBSD kernels that allow symmetric multi-processing on
modern routing engines, this can go a long way to easing the resource
consumption experienced with the last point.

Getting ready
In order to complete this recipe, you’ll need Python 2.7 in a Linux or BSD-based
development environment of your choice. You should have already completed:

Configured NETCONF-over-SSH setup (Chapter 1, Configuring JUNOS through
NETCONF)
Set up a PyEZ Environment (Chapter 2, Working with Junos REST API).

../../../../../https@cdp.packtpub.com/junos_automation_cookbook/wp-admin/post.php@post=41&action=edit&save=save#post_32
../../../../../https@cdp.packtpub.com/junos_automation_cookbook/wp-admin/post.php@post=41&action=edit&save=save#post_34

Automating JUNOS with PyEZ

[166]

How to do it…
We’re going to write a Python script, pyez-config-scan.py, in order to get the
configuration of a JUNOS device and then sum up the totals of various configuration
aspects. We’ll then output in a tabular form the totals for consideration by an operator. You
can modify the patterns used to look for different configuration resources without much
difficulty. The steps for the recipe are as follows:

Start the Python script by defining the interpreter and importing the necessary1.
modules:

 #!/usr/bin/env python

 from jnpr.junos import Device
 import sys
 import getpass
 import os
 import json
 import argparse

Next, include a simple general purpose exception handler:2.

 def onError(exception_type, exception, traceback):
 print "%s: %s" % (exception_type.__name__, exception)
 sys.excepthook = onError

Use the argparse Python standard library module in order to parse the3.
command line arguments and determine the runtime logic needed.

 cmdline = argparse.ArgumentParser(description="Python JUNOS PyEZ
 Client")
 cmdline.add_argument("target", help="Target router to query")
 cmdline.add_argument("-p", metavar="port", help="TCP port",
 default=8443)
 cmdline.add_argument("-u", metavar="username", help="Remote
 username", default=getpass.getuser())
 args=cmdline.parse_args()

Include a hook for password-based authentication using the getPass() routine4.
defined in the first recipe, Setting up a PyEZ environment:

 password=getPass(args.u+"@"+args.target) if 'getPass' in
 globals() else ""

Automating JUNOS with PyEZ

[167]

Call the PyEZ framework to connect to the JUNOS device and gather basic facts.5.
Change the RPC timeout to 60 seconds in case the configuration file is large:

 dev = Device(host=args.target, user=args.u, port=args.p,
 password=password)
 dev.open()
 dev.timeout = 60

Call the RPC in order to extract the current committed configuration:6.

 config = dev.rpc.get_configuration(normalize=True)

Use XPath expressions in order to evaluate the structure of the XML7.
configuration and determine the presence, absence, and extent of certain features:

 ifd = config.xpath("interfaces/interface")
 ifl = config.xpath("interfaces/interface/unit")
 iflacli = config.xpath("interfaces/interface/unit/family
 /inet/filter/input")
 iflaclo = config.xpath("interfaces/interface/unit/
 family/inet/filter/output")
 vrrp = config.xpath("interfaces/interface/unit/family
 /inet/address/vrrp-group")
 vrrpauth = config.xpath("interfaces/interface/unit/
 family/inet/address/vrrp-group/authentication-key")
 vrf = config.xpath("routing-instances/instance[instance-
 type='vrf']")
 ibgp = config.xpath("protocols/bgp//neighbor[type='internal' or
 ../type='internal']")
 ebgp = config.xpath("protocols/bgp//neighbor[type='external' or
 ../type='external']")
 bgpv = config.xpath("routing-
 instances/instance/protocols/bgp//neighbor")
 bgpht = config.xpath("//bgp//neighbor[hold-time<30 or ../hold-
 time<30]")
 l2c = config.xpath("protocols/l2circuit//virtual-circuit-id")

Print out the summary totals of the configuration resources observed:8.

 print " Hostname:\t %s" % dev.facts['hostname']
 print " Model:\t %s" % dev.facts['model']
 print " Version:\t %s\n" % dev.facts['version']

 print "Physical interfaces:\t %u" % len(ifd)
 print " Logical interfaces:\t %u" % len(ifl)
 print " with input ACL:\t %u" % len(iflacli)
 print " with output ACL:\t %u" % len(iflaclo)

Automating JUNOS with PyEZ

[168]

 print " with VRRP:\t %u" % len(vrrp)
 print " with VRRP/auth:\t %u" % len(vrrpauth)
 print " L2 circuits:\t %u" % len (l2c)
 print " Routing instances:\t %u" % len(vrf)
 print " IBGP peers:\t %u" % len(ibgp)
 print " EBGP peers:\t %u" % len(ebgp)
 print " L3VPN BGP peers:\t %u" % len(bgpv)
 print " BGP w/ HOLD < 30:\t %u" % len(bgpht)

Finally, close the PyEZ framework device object, freeing up associated memory9.
and resources:

 dev.close()

How it works…
In step 1, we begin as always with the standard Python preamble, referencing the modules
that we’re going to make use of. In step 2, we define a custom exception handler that will
run in the event of an unanticipated exception. It will print the error message and exit,
which is appropriate behavior for a short-lived script like this.

In step 3, we read the command line argument using the standard library argparse
functions. The only command line options present influence the connection strategy
affecting variables such as the remote TCP port number and username.

In step 4, we call the custom getPass() function if it is present and defined. If you’re in an
environment where you’re using passwords rather than SSH-based key authentication,
remember to include the getPass() code from the first recipe, and prepare the appropriate
~/.pwaccess cache file.

In step 5, we use the PyE framework Device() constructor to create an object representing
the remote JUNOS device and then call the open() method in order to connect. For good
measure, we adjust the timeout for RPCs to 60 seconds, from the default of 30 seconds.

In step 6, we call the get-configuration RPC in order to get the current committed
configuration and we use the normalize=True directive to have PyEZ cleanse the
incoming XML for us and make whitespace regular.

Automating JUNOS with PyEZ

[169]

In step 7, we use the xpath() method on the returned result set in order to process the
results and obtain some summary totals. In previous recipes, we used the find(),
findtext() and findall() methods. The xpath() method is similar to the findall()
method; however, it provides support for a richer set of XPath expressions including XPath
predicates that support syntax, as described in the following table:

XPath Expression Description

/ The absolute root node in the result set.

. The current node in the result set.

.. The parent node in the result set.

tag A node called tag.

//tag Multi-node search operator. Will find the shallowest occurrence of
tag.

[tag] A child node called tag.

[tag=’text’] A child node called tag, with text value.

[@attribute=’text’] A node attribute of text value.

Let’s look at some of the XPath expressions we use to extract the configuration data.

The first one, ifd, is pretty simple. We simply extract all of the <interface> nodes from
the <interfaces> parent node. Because the result set returned to us is essentially a single
node of type <configuration>, the expression that we give to xpath() starts with the
name of the first tag that we want to match: in this case interfaces. Within the XML
structure, each interface has an <interface> tag within the <interfaces> container. So
ifd ends up storing a list of <interface> objects. All we need to do is count them. ifl
follows an identical principle, but counting the <unit> objects instead.

vrf is the next interesting one. We’re counting the number of routing-instances, but only if
the instance-type is set to VRF. The XPath predicate whittles down the selection for us.

Note here in lxml’s xpath() implementation that we have to use the
single equals (=) operator for comparison, while in a lot of languages
single equals means assignment. It’s unfortunate, especially when other
implementations of XPath allow us to use the more conventional double
equals (==) to mean an equality test. Try not to let it become a bad habit.

Automating JUNOS with PyEZ

[170]

bgp builds upon the same principle. Count the number of peers where the <type> field is
set to either external or internal. But bgp has to deal with the configuration complexity
that the type property can be set at either the neighbor level or the group level. The
predicate syntax uses the ../ operator to shift up the tree from the neighbour to the group
to check both.

bgpht shows that we can do numeric comparisons on fields as well. In this case, we check if
the hold timer is set to less than 30 seconds, and if so we class it as an aggressive timer and
count it.

In step 8, we simply print the results of all our hard work in a neat fashion, giving a nice
summary to the operator of the workload presented to our JUNOS device.

Let’s see some example output:

w200324:ch5 chappa10$./pyez-config-scan.py -p 8931 -u auto_script
127.0.0.1
 Hostname: lon-lab-score-2-re0
 Model: MX960
 Version: 15.1F6-S4.2

Physical interfaces: 99
 Logical interfaces: 1292
 with input ACL: 6
 with output ACL: 8
 with VRRP: 1064
 with VRRP/auth: 1041
 L2 circuits: 3
 Routing instances: 116
 IBGP peers: 17
 EBGP peers: 6
 L3VPN BGP peers: 48
 BGP w/ HOLD < 30: 0

w200324:ch5 chappa10$./pyez-config-scan.py -p 8930 -u auto_script
127.0.0.1
 Hostname: lon-lab-score-1-re1
 Model: MX960
 Version: 14.1R6.4

Physical interfaces: 103
 Logical interfaces: 3809
 with input ACL: 11
 with output ACL: 11
 with VRRP: 3609
 with VRRP/auth: 2058
 L2 circuits: 12

Automating JUNOS with PyEZ

[171]

 Routing instances: 141
 IBGP peers: 12
 EBGP peers: 10
 L3VPN BGP peers: 42
 BGP w/ HOLD < 30: 0

pyez_config_scan.py can easily produce the basis of a really useful tool for logical
resource planning.

Making raw CLI commands from PyEZ
In this recipe, we’ll use the PyEZ framework to execute an RPC on our JUNOS device that
simply executes a raw command line string. Even though the unstructured, human-focused,
command line text output is perilous to work with for automation applications, sometimes
there are situations where you just need the output to a specific command.

We’ll look at ways that PyEZ can help with that.

Getting ready
In order to complete this recipe, you’ll need Python 2.7 in a Linux or BSD-based
development environment of your choice. You should have already completed:

Configured NETCONF-over-SSH setup (Chapter 1, Configuring JUNOS through
NETCONF)
Set up a PyEZ Environment (Chapter 2, Working with Junos REST API)

How to do it…
We’re going to write a new Python script, pyez-command-line.py, that will take an
argument a Junos device name and a command line to execute on the device:

pyez-show-route.py [-h] [-p port] [-u username] target “command”

../../../../../https@cdp.packtpub.com/junos_automation_cookbook/wp-admin/post.php@post=41&action=edit&save=save#post_32
../../../../../https@cdp.packtpub.com/junos_automation_cookbook/wp-admin/post.php@post=41&action=edit&save=save#post_34

Automating JUNOS with PyEZ

[172]

The following table gives the argument and description used with pyez-show-route.py:

Argument Description

-p TCP port to contact NETCONF-over-SSH

-u Username

Start by defining the UNIX script interpreter in the first line of the file as usual1.
and then import the Python standard library and PyEZ definitions required to do
the job:

 #!/usr/bin/env python

 import sys
 import getpass
 import os
 import json
 import argparse
 from jnpr.junos import Device
 from lxml import etree

Define a general-purpose exception handler to pick up any errors:2.

 def onError(exception_type, exception, traceback):
 print "%s: %s" % (exception_type.__name__, exception)
 sys.excepthook = onError

Parse the command line arguments using the Python argparse module:3.

 cmdline = argparse.ArgumentParser(description="Python JUNOS PyEZ
 Command Line Tool")
 cmdline.add_argument("target", help="Target router to query")
 cmdline.add_argument("command", help="Command line to run")
 cmdline.add_argument("-p", metavar="port", help="TCP port",
 default=830)
 cmdline.add_argument("-u", metavar="username", help="Remote
 username", default=getpass.getuser())
 args=cmdline.parse_args()

Look up a user password using the getPass() routine:4.

 password=getPass(args.u+"@"+args.target) if 'getPass' in
 globals() else ""

Automating JUNOS with PyEZ

[173]

Create a PyEZ Device object, specifying the necessary connection specifications,5.
and have PyEZ open() it:

 dev = Device(host=args.target, user=args.u, port=args.p,
 password=password)
 dev.open()
 dev.timeout = 60

Determine the XML RPC that corresponds to the command and then make an6.
appropriate RPC call. Print the results:

 rpc = dev.display_xml_rpc(args.command)

 if type(rpc) is etree._Element:
 rpc.attrib['format']='text'
 result = dev.rpc(rpc)
 print result.text

 else:
 print "XML RPC for command not available: ", rpc

Close the device, freeing up any consumed resources:7.

 dev.close()

How it works…
In step 1, we pull the necessary Python standard library and PyEZ framework definitions
into the global namespace so that we can make use of them. And then in step 2, we establish
a general-purpose handler routine that should be called if any exceptions are thrown.

In step 3, we pick apart the command-line arguments with arpgarse help. We’re
configured to recognise switches to define the user name and the destination TCP port for
the NETCONF over SSH session. Then the extra parameters after the switches are the target
hostname, and the actual command line – in quotation marks – respectively:

unix$./pyez-command-line.py -h
usage: pyez-command-line.py [-h] [-p port] [-u username] target command

Python JUNOS PyEZ Command Line Tool

positional arguments:
 target Target router to query
 command Command line to run

Automating JUNOS with PyEZ

[174]

optional arguments:
 -h, --help show this help message and exit
 -p port TCP port
 -u username Remote username

In step 4, we check for the presence of the getPass() routine in the global namespace. If
it’s present, we call it in order to obtain a password to use with the username, otherwise we
assume SSH key authentication.

In step 5, we invoke PyEZ by creating a Device object, specifying everything that we’ve
learned from the command line switches to assist connection and authentication. When we
make the open() call, PyEZ actually connects to the JUNOS device and collects initial
device information.

We don’t actually make any use of that information, but instead we use the
display_xml_rpc() method of the Device object in order to translate the requested
command line into the XML RPC format. Under the hood, PyEZ is actually doing this by
connecting to the JUNOS device and issuing something similar to the | display xml rpc
command.

With the response XML structure, we need to make a simple change. We use the lxml
functionality in order to add an attribute to the RPC to specify that we want to see the
output in plain text. This is because we have no idea about which RPCs the user will call, so
we can’t begin to interpret them. All we can do is return the textual output and assume that
the user may be using UNIX tools such as grep, perl and awk to manipulate the text.

Let’s look at this manipulation of the XML structure with the help of the etree.debug()
routine in the interactive Python REPL shell:

unix$ python
Python 2.7.13 (default, Dec 17 2016, 23:03:43)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from jnpr.junos import Device
>>> from lxml import etree
>>> dev = Device(host="10.0.201.201", user="auto").open()
>>> xml = dev.display_xml_rpc("show interfaces em0")
>>> xml
<Element get-interface-information at 0x102fb0998>
>>> etree.dump(xml)
<get-interface-information>
 <interface-name>em0</interface-name>
</get-interface-information>

>>> xml.attrib['format']="text"

Automating JUNOS with PyEZ

[175]

>>> etree.dump(xml)
<get-interface-information format="text">
 <interface-name>em0</interface-name>
</get-interface-information>

Let’s also see what happens if display_xml_rpc() cannot translate our command into an
XML RPC:

>>> dev.display_xml_rpc("show system processes")
'invalid command: show system processes| display xml rpc'

Instead of returning an Element object, it simply returns an error message string. Because
it’s possible that the user will try our script with badly-formed commands or, indeed,
commands that might not be resolvable to an XML RPC, we address this in step 6 by
inspecting the object type returned by display_xml_rpc() to make sure that we can
proceed to call it. If all is well, we simply print the output to the script standard output
channel, and then close the device to free up resources:

unix$./pyez-command-line.py -u auto 10.0.201.201 "show route"

inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.201.0/24 *[Direct/0] 01:56:33
 > via em0.0
10.0.201.201/32 *[Local/0] 01:56:33
 Local via em0.0
10.0.211.0/24 *[Direct/0] 01:56:33
 > via em1.0
10.0.211.201/32 *[Local/0] 01:56:33
 Local via em1.0

unix$./pyez-command-line.py -u auto 10.0.201.201 "show interfaces em0"

Physical interface: em0, Enabled, Physical link is Up
 Interface index: 8, SNMP ifIndex: 17
 Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps
 Device flags : Present Running
 Interface flags: SNMP-Traps
 Link type : Full-Duplex
 Current address: 08:00:27:2d:4c:9f, Hardware address:
 08:00:27:2d:4c:9f
 Last flapped : 1970-01-01 00:03:03 UTC (13:46:11 ago)
 Input packets : 10628
 Output packets: 7320

 Logical interface em0.0 (Index 69) (SNMP ifIndex 18)

Automating JUNOS with PyEZ

[176]

 Flags: Up SNMP-Traps 0x4000000 Encapsulation: ENET2
 Input packets : 10623
 Output packets: 7320
 Protocol inet, MTU: 1500
 Flags: Sendbcast-pkt-to-re, Is-Primary
 Addresses, Flags: Is-Default Is-Preferred Is-Primary
 Destination: 10.0.201/24, Local: 10.0.201.201, Broadcast:
 10.0.201.255

There’s more
PyEZ actually includes a more direct way of invoking command line output, using the
cli() method. However, the cli() method comes with a stark warning about only being
used for debugging and development and emits a Python warning, which is usually
enough to put you off using this technique in production applications.

>>> dev.cli("show interfaces em0")
/usr/local/Cellar/python/2.7.13/Frameworks/Python.framework/Versions/2.7/li
b/python2.7/site-packages/jnpr/junos/device.py:598: RuntimeWarning:
CLI command is for debug use only!
Instead of:
cli('show interfaces em0')
Use:
rpc.get_interface_information(interface_name='em0')

 warnings.warn(warning_string, RuntimeWarning)
'\nPhysical interface: em0, Enabled, Physical link is Up\n Interface
index: 8, SNMP ifIndex: 17\n Type: Ethernet, Link-level type: Ethernet,
MTU: 1514, Speed: 1000mbps\n Device flags : Present Running\n Interface
flags: SNMP-Traps\n Link type : Full-Duplex\n Current address:
08:00:27:2d:4c:9f, Hardware address: 08:00:27:2d:4c:9f\n Last flapped :
1970-01-01 00:03:03 UTC (13:13:28 ago)\n Input packets : 9874\n
Output packets: 6717\n\n Logical interface em0.0 (Index 69) (SNMP ifIndex
18)\n Flags: Up SNMP-Traps 0x4000000 Encapsulation: ENET2\n Input
packets : 9869\n Output packets: 6717\n Protocol inet, MTU: 1500\n
Flags: Sendbcast-pkt-to-re, Is-Primary\n Addresses, Flags: Is-Default
Is-Preferred Is-Primary\n Destination: 10.0.201/24, Local:
10.0.201.201, Broadcast: 10.0.201.255\n'

The cli() method is slightly less pious with its warnings for the
commands that lack an XML RPC equivalent.

Automating JUNOS with PyEZ

[177]

Using tables and views
In this recipe, we’ll make use of a PyEZ framework feature that greatly eases the complexity
of calling RPCs and parsing XML result sets with XPath expressions. Tables are used to map
data atoms from the XML responses structured returned by RPCs into Python-friendly data
structures for easy use and analysis by automation software.

In this case, we’ll use a table and a view in order to inspect the Junos device hardware
inventory.

Getting ready
In order to complete this recipe, you’ll need Python 2.7 in a Linux or BSD-based
development environment of your choice. You should have already completed:

Configured NETCONF-over-SSH set up (Chapter 1, Configuring JUNOS through
NETCONF)
Set up a PyEZ environment (Chapter 2, Working with Junos REST API)

How to do it…
We’re going to write a new Python script, pyez-hardware.pyez, that will take an
argument a JUNOS device name, and will respond with a list of hardware components
within.

pyez-table-hardware.py [-h] [-p port] [-u username] target

Argument Description

-p TCP port to contact NETCONF-over-SSH

-u Username

../../../../../https@cdp.packtpub.com/junos_automation_cookbook/wp-admin/post.php@post=41&action=edit&save=save#post_32
../../../../../https@cdp.packtpub.com/junos_automation_cookbook/wp-admin/post.php@post=41&action=edit&save=save#post_34

Automating JUNOS with PyEZ

[178]

We’re going to do this using a pre-defined Table/View combination that ships with the
PyEZ framework. The steps for the recipe are as follows:

First of all, start by including the usual Python preamble of script interpreter and1.
Python modules. Include the jnpr.junos.op.inventory.ModuleTable
definition:

 #!/usr/bin/env python

 import sys
 import getpass
 import os
 import json
 import argparse
 from jnpr.junos import Device
 from jnpr.junos.op.inventory import ModuleTable

Define a general-purpose exception handler to pick up any errors:2.

 def onError(exception_type, exception, traceback):
 print "%s: %s" % (exception_type.__name__, exception)
 sys.excepthook = onError

Then, parse the command line arguments using the Python argparse module:3.

 cmdline = argparse.ArgumentParser(description="Python JUNOS PyEZ
 Hardware Tool")
 cmdline.add_argument("target", help="Target router to query")
 cmdline.add_argument("-p", metavar="port", help="TCP port",
 default=830)
 cmdline.add_argument("-u", metavar="username", help="Remote
 username", default=getpass.getuser())
 args=cmdline.parse_args()

Look up a user password using the getPass() routine:4.

 password=getPass(args.u+"@"+args.target) if 'getPass' in
 globals() else ""

For the target device, create a PyEZ Device object, specifying the necessary5.
connection specifications, and have PyEZ open() it:

 dev = Device(host=args.target, user=args.u, port=args.p,
 password=password)
 dev.open()
 dev.timeout = 60

Automating JUNOS with PyEZ

[179]

Call the ModuleTable() constructor on the device in order to create the table,6.
then invoke its get() method. With the resulting list, iterate through each of the
items, printing the five key properties of a module:

Name
Serial number
Part number
Revision
Description

 modules = ModuleTable(dev).get()
 for item in modules:
 print "%s\t%s\t%s\t%s\t%s" % (item.jname, item.sn, item.pn,
 item.ver, item.type)

Finally, once done, close the device to free any allocated resources:7.

 dev.close()

How it works…
In step 1, we pull the necessary Python standard library and PyEZ framework definitions
into the global namespace so that we can make use of them. Steps 2 through 5 are all very
similar to what we’ve seen in previous recipes: setting error handlers, parsing command-
line arguments, and opening the PyEZ Device() constructor respectively.

But of particular note, though, in step 1 is the reference to
jnpr.junos.op.inventory.ModuleTable, which is, PyEZ-included class that represents
a JUNOS device hardware module and is instantiated through a Python factory loader shim
from a piece of YAML definition.

YAML is a markup language that is able to define hierarchical
datastructures, in a similar way to JSON and XML. It is able to represent
simple key-value pairs, lists and associative arrays. Like Python, it places
significance on indent to define depth and logical scoping.

Let’s take a look at the source files involved to get a good understanding of what’s going on:

$ more /usr/local/lib/python2.7/site-packages/jnpr/junos/op/inventory.py
"""
Pythonifier for Inventory Table/View
"""
from jnpr.junos.factory import loadyaml

Automating JUNOS with PyEZ

[180]

from os.path import splitext
YAML = splitext(__file__)[0] + '.yml'
globals().update(loadyaml(_YAML_))

The inventory.py module does little more than import a helper function to load in class
representation in YAML. The trick in the magic is in the YAML file itself;

$ more /usr/local/lib/python2.7/site-packages/jnpr/junos/op/inventory.yml

ModuleTable:
 rpc: get-chassis-inventory
 item: .//chassis-sub-module|.//chassis-module|.//chassis-sub-sub-module
 key:
 - name
 view: ModuleTableView

ModuleTableView:
 fields:
 jname: name
 sn: serial-number
 pn: part-number
 ver: version
 type: description

The YAML file describes two structures:

A table, which is simply an encapsulation of an RPC call to JUNOS with the
identification of a key field
A view, which is the list of attributes for each “row” in the database that is of
interest.

In the following table, there are several properties which are important. We include a
description of them here (even though not all of the parameters are used in our example).

Parameter Description

rpc The specific RPC that should be called in order to return the data; for example,
<get-chassis-inventory>

args Optional arguments to the RPC in order to influence its output. For example,
<detail> and <brief> are related.

Automating JUNOS with PyEZ

[181]

item The main XML data entity to select as the table container. In our example, we
actually use a union of several items (using the | syntax), because the <get-
chassis-inventory> RPC returns several different types based on the
hierarchical nature of the hardware installation taxonomy.

key A unique identifier that distinguishes the data items within the table container. By
default, name is used.

view A reference to a mapping object that is responsible for translating the XML fields
within the table container, or XPath expressions, into the fields into Python
attributes

Within the view, we then have a simple mapping from fields of a Python object to data
atoms within the XML document.

Skipping forward to step 6, we invoke the YAML-instantiated Python class called
ModuleTable against our freshly created JUNOS device, and when we invoke the get()
method, this causes PyEZ to make the necessary RPC calls specified in the YAML
definition. In our case, it will issue a <get-chassis-inventory> call and pick out chassis
module, sub-module, and sub-sub-module entities.

For each of the fields that are defined in the YAML view, we receive a property on the
resulting Python object, so we can iterate through the table using a for loop and simply
print the properties. The result is very similar to the JUNOS show chassis hardware
command, but the obvious benefit is that each of the underlying data atoms have been
processed intimately by our Python application so, for instance, if we wanted to extract
information about the routine engine, we could do so by only including rows of the table
where the jname field was appropriate.

Let's see some example output from our MX in the lab:

$./pyez-table-hardware.py -u auto_script -p 8930 127.0.0.1
Midplane TR2396 710-013698 REV 03 MX960 Backplane
FPM Board KE9580 710-014974 REV 03 Front Panel Display
PDM QCS1148501L 740-013110 Rev 03 Power Distribution Module
PEM 2 QCS1831V1ST 740-029344 Rev 08 DC 4.1kW Power Entry Module
PEM 3 QCS1831V1S4 740-029344 Rev 08 DC 4.1kW Power Entry Module
Routing Engine 0 9009199007 740-031116 REV 10 RE-S-1800x4
Routing Engine 1 9009218911 740-031116 REV 10 RE-S-1800x4
CB 0 CADL7370 750-031391 REV 23 Enhanced MX SCB
CB 1 CADL7322 750-031391 REV 23 Enhanced MX SCB
CB 2 CADL7487 750-031391 REV 23 Enhanced MX SCB
FPC 0 KD6421 750-018124 REV 04 DPCE 4x 10GE R
CPU KD0609 710-013713 REV 06 DPC PMB
PIC 0 BUILTIN BUILTIN None 1x 10GE(LAN/WAN)
PIC 1 BUILTIN BUILTIN None 1x 10GE(LAN/WAN)

Automating JUNOS with PyEZ

[182]

Xcvr 0 T08L87866 740-014279 REV 01 XFP-10G-LR
PIC 2 BUILTIN BUILTIN None 1x 10GE(LAN/WAN)
Xcvr 0 7Z3019B00768 740-014279 REV 01 XFP-10G-LR
PIC 3 BUILTIN BUILTIN None 1x 10GE(LAN/WAN)
FPC 4 KD5670 750-018124 REV 04 DPCE 4x 10GE R
CPU KD3497 710-013713 REV 06 DPC PMB
PIC 0 BUILTIN BUILTIN None 1x 10GE(LAN/WAN)
Xcvr 0 7Z3019B00778 740-014279 REV 01 XFP-10G-LR
PIC 1 BUILTIN BUILTIN None 1x 10GE(LAN/WAN)
Xcvr 0 T08K64723 740-014279 REV 01 XFP-10G-LR
PIC 2 BUILTIN BUILTIN None 1x 10GE(LAN/WAN)
PIC 3 BUILTIN BUILTIN None 1x 10GE(LAN/WAN)
Xcvr 0 7Z3019B00771 740-014279 REV 01 XFP-10G-LR
Fan Tray 0 ACDD0456 740-057995 REV 01 Enhanced Fan Tray
Fan Tray 1 ACDD0581 740-057995 REV 01 Enhanced Fan Tray

There's more
The PyEZ framework comes with a large number of pre-defined tables and views affording
a high-level abstraction on a significant variety of JUNOS operational and configuration
resources and elements.

Some of the most common ones include:

Import File Module(s) Description

jnpr.junos.op.arp ArpTable Mappings between IP
addresses and Ethernet
MAC addresses in the
global routing instance

jnpr.junos.op.bfd BfdSessionTable BFD session
information

jnpr.junos.op.bgp bgpTable BGP neighbor
information

jnpr.junos.op.ethports EthPortTable Table of interface,
filtered to be Ethernet
media only, with
Ethernet media related
information

Automating JUNOS with PyEZ

[183]

jnpr.junos.op.inventory ModuleTable Distributed line card
and modular hardware
information

jnpr.junos.op.l2circuit L2CircuitConnectionTable Layer 2 pseudowire
circuit information

jnpr.junos.op.routes RouteTable,
RouteSummaryTable

Routing table views.
(tip: use the destination
arg in order to avoid
long-running and
resource consuming
operations on full-table
Internet routers)

Summarizing, we can see that tables and views greatly simplify the process of inspecting
JUNOS operational state by providing an abstraction layer over and above the foundation
RPC calls, allowing us to map the resulting XML from RPC calls directly into Python data
structures where we can implement our automation logic.

Using custom tables and views
In this recipe, we’ll build on the learning from the previous recipe, regarding tables and
views. PyEZ includes a built-in table for looking at BGP neighbors but with operational
experience, it can be a bit lacking in utility. The deficiencies include:

The table uses the peer_id attribute to identify the remote peer. When the
peering session is not established, this is simply the value of the configured
neighbor to whom TCP sessions will be directed and it’s generally useful. But
when the session establishes, this field changes to show the router ID of the
remote peer - a system-wide identifier, rather than an interface identifier - which
is unlikely to be the same for EBGP peers in an internet context.
The view associated with the table omits some of the BGP I/O parameters, which
can be useful in troubleshooting slow readers and writers and associated
problems.

So, as we did in Chapter 5, Automating JUNOS with PyEZ, let’s try to re-invent the infamous
Cisco-style of show ip bgp output for our JUNOS OS BGP-speaking device, without the
usual address-family breakdown.

Automating JUNOS with PyEZ

[184]

Getting ready
In order to complete this recipe, you’ll need Python 2.7 in a Linux or BSD-based
development environment of your choice.

You should have already completed the following activities:

Junos NETCONF-over-SSH setup (Chapter 1, Configuring JUNOS with
NETCONF)
Setting up PyEZ environment (Chapter 2, Working with the JUNOS REST API).

How to do it…
We’re going to borrow the basic definitions from the PyEZ bundled BGP table and view but
we’re going to modify them so that they include the extra fields in the view that we’re
interested in.

We’ll do that by writing a new YAML definition to define our improved table and view,
and loading that on-the-fly into the PyEZ class framework, without using a separate static
import file.

Start in the usual way by specifying the Python interpreter and import the1.
namespaces that we require for the recipe:

 #!/usr/bin/env python

 import sys
 import getpass
 import os
 import json
 import argparse
 from jnpr.junos import Device
 from jnpr.junos.factory.factory_loader import FactoryLoader
 import yaml

Trap any encountered errors:2.

 def onError(exception_type, exception, traceback):
 print "%s: %s" % (exception_type.__name__, exception)
 sys.excepthook = onError

Automating JUNOS with PyEZ

[185]

Parse the command line to determine the essential endpoint connectivity3.
parameters:

 cmdline = argparse.ArgumentParser(description="Python JUNOS PyEZ
 BGP Tool (custom)")
 cmdline.add_argument("target", help="Target router to query")
 cmdline.add_argument("-p", metavar="port", help="TCP port",
 default=830)
 cmdline.add_argument("-u", metavar="username", help="Remote
 username", default=getpass.getuser())
 args=cmdline.parse_args()

Optionally, look up a user password using the getPass() routine:4.

 password=getPass(args.u+"@"+args.target) if 'getPass' in
 globals() else ""

Specify the YAML source for a custom BGP table and view that will include the5.
necessary parameters that we want:

 bgpYAML = """

 BgpTable:
 rpc: get-bgp-summary-information
 key: peer-address
 item: bgp-peer
 view: BgpView

 BgpView:
 fields:
 asn: peer-as
 address: peer-address
 state: peer-state
 routes_accepted: bgp-rib/accepted-prefix-count
 routes_received: bgp-rib/received-prefix-count
 output_msgs: output-messages
 input_msgs: input-messages
 out_q: route-queue-count
 """

Dynamically load the YAML into the PyEZ class framework:6.

 myModule = FactoryLoader().load(yaml.load(bgpYAML))
 globals().update(myModule)

Automating JUNOS with PyEZ

[186]

For the target device, create a PyEZ device object, specifying the necessary7.
connection specifications, and have PyEZ open() it. Disable automatic facts
gathering:

 dev = Device(host=args.target, user=args.u, port=args.p,
 password=password, gather_facts=False)
 dev.open()
 dev.timeout = 60

Create an instance of the BGP table bound to the newly created device, and8.
populate it using the get() method:

 peers = BgpTable(dev).get()

Use a for loop to iterate through the members of the table, print out for each9.
BGP peer, the critical information:

 peers = BgpTable(dev).get()

 print "%20s\t%10s\t%10s\t%10s\t%s\t%s" % ("Peer", "ASN",
 "InMsgs", "OutMsgs", "OutQ", "State/PfxRcvd")
 for peer in peers:
 routes_received = reduce(lambda x, y: int(x)+int(y),
 peer.routes_received) if type(peer.routes_received)==list else
 peer.routes_received
 routes_accepted = reduce(lambda x, y: int(x)+int(y),
 peer.routes_accepted) if type(peer.routes_accepted)==list else
 peer.routes_accepted

 print "%20s\t%10s\t%10s\t%10s\t%s\t%s" %
 (peer.address.split("+")[0],
 peer.asn,
 peer.input_msgs,
 peer.output_msgs,
 peer.out_q,
 str(routes_accepted)+"/"+str(routes_received) if
 (peer.state=="Established") else peer.state)

Once completed, close() the device and free resources:10.

 dev.close()

Automating JUNOS with PyEZ

[187]

How it works…
Steps 1 through 4 are common to most of the previous recipes that we’ve covered in this
chapter, so I won’t linger on them. Step 5 is where the action starts. We define a new table
and view using the YAML format language in order to describe the relationships between
objects and encapsulate it within a Python triple-quoted string.

In the BGP table that we define, we replicate some of the original BGP table and view, but
we also make some changes:

The RPC is changed to get-bgp-summary-information. It’s a slightly lighter
call, with less information, but it’s all we need.
The table key is changed to be that of a peer-address, on the understanding
that it is much more likely to be a unique parameter. It’s not impossible that we
might see the same peer-id attribute if we have multiple peering sessions
between the same router on different interfaces.
Extra fields are added to the view in order to reflect the additional inspection that
we want on the BGP peers: specifically, a view onto the received and accepted
routes, per RIB, and the average output queue length.

In step 6, we perform the actual dynamic loading of the YAML-defined object. We use the
Python YAML library and PyEZ’s FactoryLoader() constructor in order to load the
YAML from a string, and instantiate it into a PyEZ table and view, respectively.

The update() method is used in order to merge the myModule dictionary into the global
namespace, making available the BgpTable and BgpView names for our application.

In step 7, we create the PyEZ device profile along with connection parameters as normal and
then open() it, causing PyEZ to attempt to connect to the NETCONF service on our JUNOS
device.

In this case, we opt to disable fact-gathering due to some experiences of
trouble when associated with PyEZ tables that use significant response-
sized RPCs. Your mileage may vary.

Then in step 8, we instantiate one of our custom BgpTable objects and have it populated
from the status of the PyEZ JUNOS device. Under the hood, PyEZ calls the RPC specified
within the YAML definition, and collects all of the fields nominated in the view.

Automating JUNOS with PyEZ

[188]

The peers object that is returned is enumerable – iterable in Python-speak - using Python’s
standard iterator functionality and so, in step 9, we can walk through the table with a simple
for loop and inspect each of the attributes of each peer and print them in a useful
representation.

In our case, this gives us an opportunity to deal with the slight inconsistency surrounding
the peer-address field that is observable on the RPC responses.

When the BGP session is established, the peer-address field returns additional information
about the TCP port number endpoint, suffixed after a (+) sign. See the following figure.
This is helpful for some situations, but it makes our nice tabular output messy. To deal with
the problem, we can massage the field in Python with the split() method.

XML format comparison of BGP peers in different states

Note also the returned data for accepted_routes and received_routes can vary.
Usually it’s simply a string representation of an integer, but if the BGP peer has multiple
address families configured (using multi-protocol BGP – common in MPLS and other
applications), then JUNOS thoughtfully returns this data per address-family, or more
accurate, per routing information base (RIB) used. In this PyEZ converts the multiple items
into a list.

For our summary view, such detail isn’t required. We just want a count of prefixes heard
and accepted, so we make use of the Python lambda function to quickly add up all items in
the list, if indeed the returned item is a list.

Automating JUNOS with PyEZ

[189]

The final output can be seem here, offering a simple view on BGP session status and
performance, per-session, per-line:

w200324:ch5 chappa10$./pyez-custom-table.py -u auto 10.0.201.201
 Peer ASN InMsgs OutMsgs OutQ
State/PfxRcvd
 10.0.201.90 90 0 0 0 Connect
 10.0.201.91 91 0 0 0 Connect
 10.0.201.92 92 0 0 0 Active
 10.0.201.93 93 0 0 0 Active
 10.0.201.94 94 0 0 0 Active
 10.0.201.220 64500 666 728 0 10/10

Making configuration changes with PyEZ
In this recipe, we’ll explore the PyEZ framework and the facilities it provides for
manipulating the configuration on JUNOS devices. We’ll create an PyEZ application, pyez-
edit-prefix-list.py, that can manipulate a named prefix-list on a JUNOS device. The
prefix-list list might be part of an advanced routing protocol policy configuration which we
won’t attempt to configure, but we’ll provide the ability to add and remove prefixes from
the prefix-list, using a command line interface like this:

Command line argument Description

-h Offers brief help text

-t router IP address of JUNOS router to target

-a prefix/len Prefix to add to the list

-d prefix/len Prefix to delete from the list

-l prefix-list Name of the prefix-list

-p port Connects to NETCONF-over-SSH using a specified TCP port

-u username Authenticates with NETCONF-over-SSH using this userename

The user mandatorily specifies the target Junos device using the –t switch and the prefix-
list name using –l. If required, the user can customise the connection method by specifying
the NETCONF-over-SSH port with –p, and he can also influence the username used to
authenticate using –u.

Automating JUNOS with PyEZ

[190]

Following this, the user mandatorily specifies –a to add a prefix or –d to delete a prefix, or
alternatively the user can specify mixed, multiple instances of either operation. At runtime,
the tool deletes the specified prefixes first, and then adds the required new prefixes.

Any observed errors at configuration load time, or at commit time, are reported simply and
clearly, and then the program exits.

Getting ready
To complete this recipe, you’ll need a working PyEZ environment and an accessible Junos
OS platform to configure. The following pre-requisite recipes can help.

Junos NETCONF-over-SSH setup (Chapter 1, Configuring JUNOS through
NETCONF)
Setting up PyEZ environment (Chapter 2, Working wih the JUNOS REST API)

How to do it…
The steps for the recipe are as follows:

Use the boilerplate that has become standard in the PyEZ recipes: import Python1.
namespaces, set up error handling, and then parse the command-line arguments:

 #!/usr/bin/env python

 import sys
 import getpass
 import os
 import json
 import argparse
 from jnpr.junos import Device
 from jnpr.junos.utils.config import Config
 from jnpr.junos.exception import ConfigLoadError
 def onError(exception_type, exception, traceback):
 print "%s: %s" % (exception_type.__name__, exception)
 sys.excepthook = onError

 cmdline = argparse.ArgumentParser(description="Python JUNOS PyEZ
 Prefix List Tool")
 cmdline.add_argument("-t", metavar="router", help="Target router
 to query", required=True)
 cmdline.add_argument("-a", metavar="prefix/len", help="Prefix to

Automating JUNOS with PyEZ

[191]

 add", action="append")
 cmdline.add_argument("-d", metavar="prefix/len", help="Prefix to
 delete", action="append")
 cmdline.add_argument("-l", metavar="prefix-list", help="prefix-
 list name", required=True)
 cmdline.add_argument("-p", metavar="port", help="TCP port",
 default=830)
 cmdline.add_argument("-u", metavar="username", help="Remote
 username", default=getpass.getuser())
 args=cmdline.parse_args()

Optionally, call the getPass() routine, if you’re using it, to consult the password2.
cache for the target router:

 password=getPass(args.u+"@"+args.target) if 'getPass' in
 globals() else ""

Validate the input arguments to make sure that we at least have some prefixes to3.
add or remove:

 if (args.a==None and args.d==None):
 print "Nothing to do!"
 sys.exit(1)

Create a PyEZ framework device with the appropriate connection profile4.
information and call the open() method upon it to have PyEZ connect:

 dev = Device(host=args.t, user=args.u, port=args.p,
 password=password)
 dev.open()
 dev.timeout = 120

Create a Config() object, specifying private mode, and then repeatedly load the5.
set or delete operations depending on the type of operation specified by the user:

 with Config(dev, mode="private") as config:
 if args.d!=None:
 for p in args.d:
 try:
 config.load("delete policy-options prefix-list %s %s" %
 (args.l, p), format="set")
 except ConfigLoadError, e:
 if (e.rpc_error['severity']=='warning'):
 print "Warning: %s" % e.message
 else:
 raise
 if args.a!=None:

Automating JUNOS with PyEZ

[192]

 for p in args.a:
 try:
 config.load("set policy-options prefix-list %s %s" %
 (args.l, p), format="set")
 except ConfigLoadError, e:
 if (e.rpc_error['severity']=='warning'):
 print "Warning: %s" % e.message
 else:
 raise

Output a configuration difference to the Terminal so that user can validate6.
operations:

 diff = config.diff()
 if (diff!=None):
 print diff

Commit the configuration and close the device:7.

 config.commit()

 dev.close()

How it works...
In step 1, we import the usual Python standard library and PyEZ frameworks. The notable
additions, compared with previous recipes, are:

Module Description

jnpr.junos.utils.config.Config Models a JUNOS candidate configuration

jnpr.junos.exception.ConfigLoadError Represents an error that can occur during
configuration load

argparse is used, as usual, to parse the command line arguments. We make use of the
action=“Append” direction to the add_argument() method to ensure that the –a and –d
switches can take on multiple values. In return, argparse will build a list of values rather
than a single token. We make sure that the prefix-list and the target router are mandatory
items by setting the attribute required=True.

Automating JUNOS with PyEZ

[193]

If SSH authentication is being done by username and password, the getPass() routine,
defined earlier in the chapter, can be used to consult a vault of passwords from the user
home directory in step 2.

In step 3, we check the command-line argument args.a and args.d, respectively, in order
to make sure that at least one of them has some prefixes to work on. If both are empty, the
program exits, reporting the situation.

In step 4, we called the PyEZ Device() constructor with the device address and
authentication parameters in order to prepare a NETCONF session with the device. When
we call the open() method, PyEZ tries to make the connection and complete the
authentication.

In this case, because configuration commit operations can sometimes take
longer than ordinary operational commands, we change the default
timeout value associated with the device to be a generous 2 minutes.

In step 5, we make use of a Python with construct to create a context block. The Config()
constructor creates an object from the device parameter and the requested private
configuration mode, and this lasts for the lifetime of the loop. The private configuration
mode is used in order to not interfere with any other users who may be collaborating on
changes in the shared candidate configuration.

Within the body of the loop, we tackle the deletions in args.d first, and then the additions,
in args.a. The logic is identical. We call the load() method on the config object and
format the supplied string to include the prefix-list name and the prefix. We catch any
ConfigLoadError exceptions that are thrown from this operation. If they are only
warnings, then we print them to the Terminal so that the user sees them, but ultimately
continue. Otherwise, we re-raise the exception, stopping things in their tracks.

Once the deletions are loaded, the additions are processed in exactly the same way. The
only difference is in the use of the set or delete configuration directives.

Once the configuration is loaded, we’re able to perform a difference analysis between the
loaded candidate and the current running configuration. We print this to the terminal so the
user can see a confirmation of the result of the operation, and then we commit the
configuration so that the router invokes it and begins to operate it.

Automating JUNOS with PyEZ

[194]

In use, the utility looks like this:

 unix$./pyez-edit-prefix-list.py –h

 Python JUNOS PyEZ Prefix List Tool

 arguments:
 -h, --help show this help message and exit
 -t router Target router to query
 -a prefix/len Prefix to add
 -d prefix/len Prefix to delete
 -l prefix-list prefix-list name
 -p port TCP port
 -u username Remote username

 unix$./pyez-edit-prefix-list.py -t 10.0.201.201 -u auto -l AS-
 FOOBAR -a 10.0.0.0/8

 [edit policy-options]
 prefix-list FOO { ... }
 + prefix-list AS-FOOBAR {
 + 10.0.0.0/8;
 + }

 unix$./pyez-edit-prefix-list.py -t 10.0.201.201 -u auto -l AS-
 FOOBAR -a 11.0.0.0/8

 [edit policy-options prefix-list AS-FOOBAR]
 + 11.0.0.0/8;
 unix$./pyez-edit-prefix-list.py -t 10.0.201.201 -u auto -l AS-
 FOOBAR -a 12.0.0.0/8

 [edit policy-options prefix-list AS-FOOBAR]
 + 12.0.0.0/8;

 unix$./pyez-edit-prefix-list.py -t 10.0.201.201 -u auto -l AS-
 FOOBAR -a 13.0.0.0/8

 [edit policy-options prefix-list AS-FOOBAR]
 + 13.0.0.0/8;

 unix$./pyez-edit-prefix-list.py -t 10.0.201.201 -u auto -l AS-
 FOOBAR -d 13.0.0.0/8

 [edit policy-options prefix-list AS-FOOBAR]
 - 13.0.0.0/8;

 unix$./pyez-edit-prefix-list.py -t 10.0.201.201 -u auto -l AS-

Automating JUNOS with PyEZ

[195]

 FOOBAR -d 13.0.0.0/8
 Warning: warning: statement not found

There’s more
In this recipe, we called the load() method of the Config object in order to submit the
configuration as a plain string. We can also use the load() method with the named
parameter path=“filename” in order to have PyEZ directly read the configuration from a
file on disk.

We used the named parameter, format=“set”, to tell PyEZ the format in which the
configuration should be expected. It is also possible to supply configuration to JUNOS
through PyEZ in one of the alternate formats.

Format parameter Description Default file
extension

format=“set” Plain-text set/delete instructions .set

format=“text” Plain-text hierarchical braced configuration (as
seen in the show configuration)

.conf, .txt

format=“xml” Structured XML document representing the
configuration

.xml

When loading the configuration from a file, PyEZ will guess at the format based on the
filename, but this can be overriden with the format parameter. PyEZ will also guess at the
format the plain string input to the load() method as well.

On newer versions of JUNOS (l4.2) and later, it is also possible to submit
JSON-based configuration instruction, and PyEZ can facilitate this.

Automating JUNOS with PyEZ

[196]

Template configurations with Jinja2
In this recipe, we’ll build on the abilities from the previous recipe by using PyEZ to make
configuration changes on JUNOS devices. But we’ll expand our skill set by defining a
template that describes a class of change in terms of mandatory boilerplate configuration
and parametric resources. We’ll use the Jinja2 template language for this.

Then we'll see how we can instantiate the template configuration, by simply specifying the
parametric values each time in order to make repeated configuration changes in an efficient
and error-free manner.

This type of capability is extremely useful for large-scale service providers who want to
achieve deterministic, repeated configurations with low error rates. The following figure is
about the ISP topology using template-based configuration:

Example ISP topology using template-based configuration

Automating JUNOS with PyEZ

[197]

Getting ready
In order to complete this recipe, you should have access to a Python 2.7 development
environment and a JUNOS OS router that you have configuration rights on. You should be
faimilar with the PyEZ patterns used in this chapter until now, and you should also be
familiar with using PyEZ to load configurations.

First of all, we’re going to look at a typical simple configuration representing a customer’s
service and identify the invariants – the components that never change. We can represent
these components in the template statically. In our basic customer configuration, we might
configure these aspects:

Point-to-point interface to the customer site equipment
VLAN encapsulation
Association with a private routing-instance
Static routing for networks routes to the customer site

Here’s an example, JUNOS configuration representing the preceding aspects:

 interfaces {
 em2 {
 unit 100 {
 vlan-id 100;
 family inet {
 address 192.168.100.1/30;
 }
 }
 }
 }

 routing-instances {
 VRF-100 {
 instance-type vrf;
 interface em2.100;
 route-distinguisher 8928:100;
 vrf-target target:8928:100;
 routing-options {
 static {
 route 10.0.0.0/8 next-hop 192.168.100.2;
 }
 }
 }
 }

Automating JUNOS with PyEZ

[198]

How to do it…
We’ll identify the variables, build a Jinja2 template, then create a PyEZ application to take
the input parameters from the user and deploy them to the router:

Determine the variable components of our configuration task. They are1.
summarized in the following list:

Physical interface
Logical unit identifier
VLAN identifier
Local interface IP address
VRF identifier
Route distinguisher (for MPLS VPN configuration)
Route target community (for MPLS VPN configuration)
Customer site router IP address
Customer-located networks

Reduce the variable components of the configuration into the most minimalist2.
form by using derivations: deriving one value in the configuration from another
input parameter. This brings simplicity through minimizing input parameters,
but it also enforces consistency. Sometimes derivations are obvious: for example,
the logical unit identifier can be the same as the VLAN identifier. At times, the
derivations require solid adherences to a local convention. For example, in our
case we could say that we have a local convention that re-uses the VRF numeric
identifier with the route-target community and the route distinguisher. In this
way, variables become primary or secondary depending on whether they require
direct parameter input, or whether they can be derived from another parameter.

Variable Component Source

Physical Interface Primary input parameter

VLAN Identifier Primary input parameter

Point-to-point subnet Primary input parameter

VRF identifier Primary input parameter

Customer LAN subnet(s) Primary input parameter

PE interface IP address Derived from point-to-point subnet

CE interface IP address Derived from point-to-point subnet

Automating JUNOS with PyEZ

[199]

Route distinguisher Derived from VRF identifier

Route target Derived from VRF identifier

Logical unit identifier Derived from VLAN identifier

In this case, reduce the input parameters to five primary items that need to be provided by
our upstream automation client. All of the other parameters of the configuration can be
derived from those five input data atoms:

Input parameter Description

ifd Physical interface

p2p Point to point subnet

vrf VRF identifier

cst Customer LAN subnet(s)

vlan VLAN identifier

Define a configuration template using Jinja2 syntax with XML, making use of the3.
input parameters to define the parts of the configuration that will change. Save
the file as config.xml:

 <configuration>
 <interfaces>
 <interface>
 <name>{{ifd}}</name>
 <unit>
 <name>{{vlan}}</name>
 <vlan-id>{{vlan}}</vlan-id>
 <family>
 <inet>
 <address>
 <name>{{p2p_pe}}/30</name>
 </address>
 </inet>
 </family>
 </unit>
 </interface>
 </interfaces>
 <routing-instances>
 <instance>
 <name>VRF-{{vrf}}</name>
 <instance-type>vrf</instance-type>
 <interface>

Automating JUNOS with PyEZ

[200]

 <name>{{ifd}}.{{vlan}}</name>
 </interface>
 <route-distinguisher>
 <rd-type>8928:{{vrf}}</rd-type>
 </route-distinguisher>
 <vrf-target>
 <community>target:8928:{{vrf}}</community>
 </vrf-target>
 <routing-options>
 <static>
 {% for route in cst %}
 <route>
 <name>{{route}}</name>
 <next-hop>{{p2p_ce}}</next-hop>
 </route>
 {% endfor %}
 </static>
 </routing-options>

 </instance>
 </routing-instances>
 </configuration>

Create a new Python PyEZ application, pyez-jinja.py, to load the template4.
and deploy it to the router. Use the standard boilerplate that we’ve adopted for
the rest of this chapter, but also include the struct and socket Python libraries
in order to allow us to manipulate the point-to-point subnet parameter:

 #!/usr/bin/env python

 import sys
 import getpass
 import os
 import json
 import argparse
 import struct
 import socket
 from jnpr.junos import Device
 from jnpr.junos.utils.config import Config
 from jnpr.junos.exception import ConfigLoadError

 def onError(exception_type, exception, traceback):
 print "%s: %s" % (exception_type.__name__, exception)
 sys.excepthook = onError

Automating JUNOS with PyEZ

[201]

Parse the command line arguments, but add the template input parameters to5.
argparse’s list of arguments:

 cmdline = argparse.ArgumentParser(description="Python JUNOS PyEZ
 Config Template Tool")
 cmdline.add_argument("-f", metavar="template", help="Template
 file to use", required=True)
 cmdline.add_argument("-t", metavar="router", help="Target router
 to configure", required=True)
 cmdline.add_argument("-p", metavar="port", help="TCP port",
 default=830)
 cmdline.add_argument("-u", metavar="username", help="Remote
 username", default=getpass.getuser())
 cmdline.add_argument("--p2p", metavar="subnet", help="PE-CE
 subnet, A.B.C.D", required=True)
 cmdline.add_argument("--ifd", metavar="interface", help="Physical
 interface", required=True)
 cmdline.add_argument("--vlan", metavar="vlan", help="VLAN
 identifer", required=True)
 cmdline.add_argument("--vrf", metavar="VRF", help="VRF
 identifier", required=True)

 cmdline.add_argument("--cst", metavar="prefix/len", help="Prefix
 to statically route", action="append")

 args=cmdline.parse_args()

Optionally use getPass() to load a password from a user file:6.

 password=getPass(args.u+"@"+args.target) if 'getPass' in
 globals() else ""

Use the Python struct and socket library routines to convert the p2p input7.
parameter into two forms: one for the ISP PE router, and one for the customer site
router:

 p2p_pe = socket.inet_ntoa(struct.pack("!L",
 (struct.unpack("!L", socket.inet_aton(args.p2p))[0] &
 0xfffffffd) + 1))
 p2p_ce = socket.inet_ntoa(struct.pack("!L",
 (struct.unpack("!L", socket.inet_aton(args.p2p))[0] &
 0xfffffffd) + 2))

Automating JUNOS with PyEZ

[202]

Call the PyEZ Device() constructor with the usual host access and8.
authentication settings, and then call the open() method.

 dev = Device(host=args.t, user=args.u, port=args.p,
 password=password)
 dev.open()
 dev.timeout = 120

Deploy the configuration by creating a Config() object, calling its load()9.
method and referencing the template file with a set of parameters representing
the input. Print the difference report and commit the change.

 with Config(dev, mode="private") as config:
 try:
 config.load(template_path=args.f, template_vars={
 'ifd': args.ifd,
 'vlan':args.vlan,
 'vrf': args.vrf,
 'p2p_pe': p2p_pe,
 'p2p_ce': p2p_ce,
 'cst': args.cst if args.cst!=None else []
 })
 except ConfigLoadError, e:
 if (e.rpc_error['severity']=='warning'):
 print "Warning: %s" % e.message
 else:
 raise

 diff = config.diff()
 if (diff!=None):
 print diff
 config.commit()

 dev.close()

Automating JUNOS with PyEZ

[203]

How it works...
Steps 1 and 2 are important preparatory and planning steps. In these steps, we look at
examples of how we configure the customer's service and identify the invariants - the parts
that don't change. Anything else is parametric input to the process and will need to be
supplied to the automation application. We can reduce the dataset that needs to be specified
to the automation application by deriving resources and variables where appropriate.

Reducing variable input through derivation requires an understanding of
the JUNOS configuration, and sometimes a thorough understanding of the
protocol mechanics involved. For example, it's perfectly reasonable to say
that we can derive logical interface unit numbers from VLAN numbers
because they share scope and range. Unit numbers can typically range
from 0-16383, while VLAN numbers have a 12-bit address space
allowing a range of up to 4096. If the situation were reversed, we couldn't
have encoded the VLAN identifier within the logical unit number.

In step 3, we get stuck into writing a template using the Jinja language. Jinja isn't
particularly complicated as a template language and it shares a lot of properties with other
template languages. In this recipe, we show two key features of Jinja:

Variable substitution: When a string is enclosed within double-brackets, the text
is replaced with the variable definition of the same name. So for example
<name>{{ifd}}</name> gets replaced by the XML necessary to describe the
physical interface name, for example, xe-0/0/1, or similar.
Iteration: We can introduce a for loop to iterate through the customer static
routes in cst input parameter by writing Jinja directives within {% -- %}
constructs. This is an ideal mechanism for implementing repeating or optional
configuration.

In step 5, we modify the command-line argument parsing routine from the previous recipes
to make sure that we include parameters that will be expanded in the template. We add our
five key parameters to the argparse list of arguments.

Automating JUNOS with PyEZ

[204]

Step 7 is responsible for the magic that allows us to take a single IP address from the user,
but derive two usable addresses for either end of the point-to-point link. It requires some
explanation. inet_aton() converts an IP address to an unsigned integer. For IPv4, this is a
32-bit integer. We can easily take this number and use a binary mask, 0xfffffffd, in order
to clear the last two least significant bits of the address. This is the equivalent of applying a
/30 subnet mask to the IP address in order to obtain the network-layer address. From this
base network-layer address, we can then either add 1, or add 2, depending on whether we
want to get an IP address for the ISP router or for the customer site router.

In this case, we're making an assumption that the ISP adheres to a
convention that sees it take the lowest IP address on the link, while the
customer takes the highest address.

With the simple mathematical addition applied, we can then use inet_ntoa() again to
return the numeric format IP address back to a string. Python's struct pack/unpack calls are
just useful helper functions for mapping a character string of four-characters to an unsigned
integer of the same size, and back again.

In step 8, we create the Device() object and open() it, causing PyEZ to connect to the
remote JUNSO OS device and start talking to NETCONF, and then in step 9, we invoke the
high-level PyEZ configuration object on the device, referencing both the template file that
we want to use, and the parameters that we want to apply.

Notice that we have to check whether the user supplies any optional customer networks,
because Jinja won't like executing a for loop without a list, and argparse will
unfortunately not give us an empty list if the user doesn't specify the option.

Looking at the tool in action, we can see that it's a great step on the way to mass-producing
repeatable configurations, provided one is able to clearly identify the parameters of the
service that need to vary:

 unix$./pyez-jinja.py -t 10.0.201.201 -u auto -f config.xml --p2p
 192.168.10.0 --ifd em2 --vlan 210 --vrf 210 --cst 1.2.0.0/16 --
 cst 1.3.0.0/16

 [edit interfaces em2]
 + unit 210 {
 + vlan-id 210;
 + family inet {
 + address 192.168.10.1/30;
 + }
 + }

Automating JUNOS with PyEZ

[205]

 [edit routing-instances]
 + VRF-210 {
 + instance-type vrf;
 + interface em2.210;
 + route-distinguisher 8928:210;
 + vrf-target target:8928:210;
 + routing-options {
 + static {
 + route 1.2.0.0/16 next-hop 192.168.10.2;
 + route 1.3.0.0/16 next-hop 192.168.10.2;
 + }
 + }
 + }

 unix$./pyez-jinja.py -t 10.0.201.201 -u auto -f config.xml --p2p
 192.168.10.0 --ifd em2 --vlan 210 --vrf 210 --cst 1.4.0.0/16

 [edit routing-instances VRF-210 routing-options static]
 route 1.3.0.0/16 { ... }
 + route 1.4.0.0/16 next-hop 192.168.10.2;

6
Advanced Visualization

Applications
In this chapter, we'll cover the following recipes:

Visualizing graphs
Extracting graphs from ISIS
Extracting graphs from OSPF
Extracting graphs from MPLS VPN

Introduction
In a lot of work that we do with network routers, switches and firewalls, we are forced to
work with the raw command-line based interface that JUNOS supports. This has the
advantage of being precise, exact, and always consistent and up to date with the
functionalities and capabilities of the software. But it doesn't always lend itself well to
communicating complex concepts to humans who might often benefit from alternate visual
representations in order to process ideas more quickly and with better understanding.

One of the great benefits of Juniper's tightly-integrated XML API is the fact that there is a
machine-readable interface to manipulate the core primitives and fundamentals of the
JUNOS device. But secondarily, with this machine interface it is also possible to build
alternate interface models onto the aspects of the working JUNOS OS system.

Advanced Visualization Applications

[207]

We've already seen the benefits of being able to use the same RPC that an in-built JUNOS
command might use, but modifying the output to focus on a particular component, based
upon our use-case of interest.

In this chapter, we'll focus on some of the core routing protocols and service functionalities,
and explore options for graphically representing the insights that we can glean from the
JUNOS XML RPCs.

Visualizing graphs
In this recipe, we'll build a generic utility function for taking a graph (in other words a
network of nodes and links), and representing it on an HTML canvas so that it can be
viewed in a web browser. We'll create a Python application, render-graph.py, that will
take as input a JSON representation of a graph and output a completed HTML page that
renders the graph and allows user manipulation.

Combining graph data with HTML template to produce interactive map

Getting ready
In order to complete this recipe, you don't need access to a JUNOS device—yet! You need a
Python 2.7 development environment and a web browser. We'll make use of the excellent
VivaGraph graph visualization library, written by Andrei Kashcha, and simply write the
HTML and JavaScript that call the fundamental functions in that library to do the work for
us.

Advanced Visualization Applications

[208]

Graph principles
Unsurprisingly, graph theory underpins a lot of the work that we do in networking, so it
can be helpful to have a basic understanding of the terminology especially where the same
terms are not universally used. Let's make some terms clear and unambiguous so we know
what we're talking about going forward.

Term Description

Node, or vertex (plural:
vertices)

A single element within the network.

Link or edge A connection between nodes.

Directed link A uni-directional connection between nodes.

Graph The collection of nodes and links within the network.

Directed graph A graph where the links (or edges) are single-directional only.

Pseudo-node A node introduced into the graph to represent a link that isn't
purely point-to-point, such as a multi-access LAN segment.

Modern IP networks very rarely have single-directional links in normal operation, but the
routing protocols that underpin them do, in fact, consider network links in this manner.
This allows the operator, for example, to configure different metrics (or costs) to a link
depending on the direction.

Graph data
For our recipe, we need to establish a neutral software-readable format to exchange
information about network graphs. In this case, we'll use JSON—with the simplicity of a
well-known schema that defines our nodes and links.

At the top-level of our JSON extract is a JavaScript object—a hash, or associative array.

Field Description

nodes A list of node identifiers

links A list of link 3-tuples, describing source node, destination node, and link metric
respectively

Advanced Visualization Applications

[209]

In our case, we're likely to use router names as node identifiers, and the IGP distance or cost
metric can be used as the link metric. Furthermore, we'll establish a convention that pseudo-
nodes—false nodes added to artificially represent multi-access links—will use an identifier
that starts with an underscore (_). This will allow downstream visualization programs to
treat them differently if required.

An example graph structure might look like this in the Python interactive interpreter:

{'links': [['Ams', 'Fra', 10],
 ['Fra', 'Par', 10],
 ['Par', 'Lon', 10],
 ['Lon', 'Ams', 10]],
 'nodes': ['Ams', 'Fra', 'Lon', 'Par']}

When written in compressed white-space JSON, it looks like this:

'{"nodes": ["Ams", "Fra", "Lon", "Par"], "links": [["Ams", "Fra", 10],
["Fra", "Par", 10], ["Par", "Lon", 10], ["Lon", "Ams", 10]]}'

This encoding will be the vehicle by which we can communicate a description of a network
graph between:

Discovery agents: Components that are extracting graphs from the network
Visualizing agents: Components that are rendering a graph visually for a user's
consumption

In this recipe, we're creating the latter.

How to do it...
We're going to produce a Python template instantiation tool that will combine the JSON
representation of the graph with an HTML template that renders the graph. And we're
going to produce an HTML/JavaScript template which reads the JSON and uses
VivaGraph's capabilities to render an SVG canvas representing the graph.

Instantiating the template
Produce a simplistic Python template instantiation tool, render-graph.py, that will
combine a graph.json file with a graph.html.template file in order to produce a final
graph.html file.

#!/usr/bin/env python

Advanced Visualization Applications

[210]

import sys
import argparse
import os
import io
from string import Template

Error handling
def onError(exception_type, exception, traceback):
 print "%s: %s" % (exception_type.__name__, exception)
sys.excepthook = onError

cmdline = argparse.ArgumentParser(description="Python Graph processor")
cmdline.add_argument("graph", help="JSON file describing graph")
cmdline.add_argument("-t", metavar="template", help="Template file",
 default="graph.html.template")
cmdline.add_argument("-o", metavar="output filename",
 help="File to output completed HTML",
 default="graph.html")
args=cmdline.parse_args()

jsonGraph = open(args.graph).read()
template = Template(open(args.t).read())

open(args.o, "w").write(template.substitute(graph=jsonGraph))

Drawing the graph
We'll create an HTML/JavaScript template, graph.html.template, based loosely on one
of the many rich VivaGraph examples in order to interpret the JSON and invoke
VivaGraph in order to make an interactive graph.

First of all, make a directory for the project, download the VivaGraph library1.
source from the repository on GitHub and extract the distribution library:

 $ mkdir graphdev
 $ cd graphdev
 $ git clone https://github.com/anvaka/VivaGraphJS.git
 Cloning into 'VivaGraphJS'...
 remote: Counting objects: 3135, done.
 remote: Total 3135 (delta 0), reused 0 (delta 0), pack-reused
 3135
 Receiving objects: 100% (3135/3135), 2.64 MiB | 1.44 MiB/s, done.
 Resolving deltas: 100% (1673/1673), done.
 $ cp VivaGraphJS/dist/vivagraph.js .

Advanced Visualization Applications

[211]

Next begin work on the actual HTML template file, graph.html.template.2.
Produce the boilerplate HTML header defining the title, referencing our
dependency on the VivaGraph library and then inlining our own code:

 <!DOCTYPE html>
 <html>
 <head>
 <title>Test Graph</title>
 <script type="text/javascript" src="vivagraph.js"></script>
 <script type="text/javascript">

Start the main JavaScript code by declaring a placeholder for the JSON network3.
graph data. This will be substituted by our Python template rendering tool. Parse
the JSON and reconstruct JavaScript objects and then proceed to inspect the
objects and create VivaGraph data structures representing the graph:

 var json=${graph};

 function main () {
 var filter = new RegExp(window.location.search.slice(1));
 var data = JSON.parse(json);
 var graph = Viva.Graph.graph();

 for (var n=0; n<data['nodes'].length; n++) {
 if (filter!="" && data['nodes'][n].match(filter)) {
 graph.addNode(data['nodes'][n]);
 }
 }
 for (var l=0; l<data['links'].length; l++) {
 if (filter!="" && (data['links'][l][0].match(filter) ||
 data['links'][l][1].match(filter))) {
 graph.addLink(data['links'][l][0],
 data['links'][l][1],
 { metric:data['links'][l][2] });
 }
 }

Make use of VivaGraph's directed layout engine which allows us a customization4.
over how nodes interact with each other. Use a custom springTransform
method in order to force VivaGraph to consider the link metrics from our JSON
network representation when defining the properties of the links between nodes:

 var optimalSpringLength = 42;
 var directedLayout = Viva.Graph.Layout.forceDirected(graph, {
 springLength : optimalSpringLength,
 springTransform: function (link, spring) {

Advanced Visualization Applications

[212]

 spring.length = Math.log(link.data.metric) *
 optimalSpringLength
 }
 });

Call the VivaGraph SVG graphics constructor in order to create a view pane5.
based on SVG for our network graph. Also define two constants that will
determine that size of a node:

 var svgGraphics = Viva.Graph.View.svgGraphics();
 var WIDTH = 180;
 var HEIGHT = 32;

Define a hook function that is able to influence the identity of a node on the6.
graph. In our case, we want a node to include at least a rectangular box and a
textual label based upon the node's identifier. Additionally, though, we don't
want to draw the same attention to pseudo-nodes.

 // Node placement hook
 svgGraphics.node(function(node) {
 var svg = Viva.Graph.svg('g');
 if (node.id.startsWith("_")) {
 var svgCircle = Viva.Graph.svg('circle').attr('r',
 "8").attr('stroke', "black").attr('fill', "white");
 svg.append(svgCircle);
 } else {
 var svgText = Viva.Graph.svg('text').text(node.id).attr('y',
 "+16px").attr('font-family', "monospace");
 var svgRect = Viva.Graph.svg('rect').attr('width',
 WIDTH).attr('height', HEIGHT).attr('fill', "cyan");
 svg.append(svgRect);
 svg.append(svgText);
 }
 svg.addEventListener('click', function () {
 directedLayout.pinNode(node,
 !directedLayout.isNodePinned(node));
 });
 return svg;
 });

Advanced Visualization Applications

[213]

Define another hook function that is able to influence the placement process for7.
nodes on the graph. The VivaGraph layout engine will initially select random
positioning for new nodes on the graph, and inform us of an origin location, but
typically we need to center our nodes around this origin position.

 svgGraphics.placeNode(function(svg, pos) {
 if (svg.firstChild.tagName=="rect") {
 svg.attr('transform', 'translate(' +
 (pos.x - WIDTH/2) + ',' +
 (pos.y - HEIGHT/2) +')');
 } else {
 svg.attr('transform', 'translate(' +
 (pos.x) + ',' +
 (pos.y) +')');
 }
 });

Finish our customizations of the VivaGraph objects and run() the renderer in8.
order to get the nodes on the SVG canvas and showing.

 var renderer = Viva.Graph.View.renderer(graph, {
 graphics: svgGraphics,
 layout: directedLayout
 });
 renderer.run();
 }

Finish the HTML definitions and set our main() function to run as soon as the9.
main HTML body component has loaded.

 </script>

 <style type="text/css" media="screen">
 html, body, svg { width: 100%; height: 100%;}
 </style>
 </head>

 <body onload='main()'>
 </body>
 </html>

Advanced Visualization Applications

[214]

Running the example graph
Take the example graph that we proposed at the beginning of the recipe, and use it as a test:

$ cat test.json
'{"nodes": ["Ams", "Fra", "Lon", "Par"], "links": [["Ams", "Fra", 10],
["Fra", "Par", 10], ["Par", "Lon", 10], ["Lon", "Ams", 10]]}'

Run the template instantiation Python code on it in order to produce a finalized
graph.html file.

$./render-graph.py test.json

Use your browser to view the resulting file. Observe that VivaGraph has placed the four
nodes from the example graph in the center and has placed links between them and that
you can freely interact with the graph, moving nodes about as you please.

How it works...
There are two main processes at work here:

the Python-based template instantiation tool, and
the HTML/Javascript-based template to invoke VivaGraph.

Instantiating the template
For render-graph.py, we leverage the standard Python library framework Template
which is very happy to process a text file and make variable substitutions based on a special
sequence. So our tool reads in the JSON graph specified on the command line and then
reads a template from a default file, graph.html.template.

With both the JSON graph data and template content available to the tool, it uses the
Template.substitute() method in order to search through the template text,
substituting any occurrences of $graph with the JSON data from the file we specify on the
command line. The output is written to a file with a default filename of graph.html.

Both the template filename and the output filename can be customized using argparse, as
usual.

Advanced Visualization Applications

[215]

Drawing the graph
The HTML file is defined in template form in graph.html.template. There is actually not
much template activity happening here at all. We're simply using the template capability so
that we can rapidly substitute different graphs—all in JSON format—into the same
HTML/JavaScript logic without much overhead.

After we've defined the usual HTML headings, we create a main() function in which we do
all of our work. We start by extracting a possible filtering expression from the URL and
making a regular expression from it. This means that the user can append a filter expression
to the URL using the query string (?) operator, and we can act upon his wishes to restrict
the list of nodes that we view. This is a particularly useful feature when analyzing large
graphs that are too unwieldy when laid out automatically or pseudo-randomly by a
computer. It allows the user to look at the part of the network that he wants to focus on.

In the rest of step 3, we iterate firstly through the nodes list, and then the links list, adding
the nodes and links respectively, to the VivaGraph data structures, but only if they pass the
filtering regular expression.

In step 4, we create an instance of the ForceDirectedLayout class, which is an
encapsulation of logic for laying out nodes in a graph according to physical rules such as
elasticity and mass-related gravity. We do this because it allows us to customize the length
of links between nodes, depending upon the metric that we've defined in our graph. This
means we can represent whether a link is a long-distance link or a short-distance link, either
in terms of physical geography or in terms of routing protocol distance.

We use the Math.log() function in order to make the wide variety of link metrics more
palatable for the units in which VivaGraph will work, which at some point have to
translate to screen real estate.

If you're interested in the behaviour of the ForceDirectedLayout
graphs, you might want to consult the VivaGraph documentation for
more information. Of particular interest are the other parameters that we
can supply in the constructor options, namely, springCoeff, dragCoeff,
gravity.

Advanced Visualization Applications

[216]

In step 5, we construct the VivaGraph SVG rendering engine and set the default geometry
parameters for a node, and in step 6 we influence the logic for deciding how a node should
be drawn. We implement two different methods depending on the node type.

Type Visualization

Node Light-blue rectangle with a labeling text box shifted to overlap

Pseudonode Simple white-filled circle, with light-blue stroke and no label

It's also here in step 6 that we define what happens in response to a click event. This is
useful because the dynamic, force-based layout engine--while enticing to look at as it
arranges nodes within the universe of our browser window and its own physical laws-- can
become frustrating if a user cannot manipulate the view to move elements. We define a
handler for the click event that causes the node to toggle its pinned status.

When a node is pinned, it is fixed in space, will not move, and acts as an immovable
constraint to the objects around it. In this way, when the user is focusing on a situation, he
can pin the nodes that he is interested in, and see the adjacent nodes float around according
to effects that loosely might represent a network metric such as IGP cost.

In step 7, we override the default placement logic, but not to do anything significant. We just
adjust the transform on the SVG element and adjust it depending on whether it is a circle or
a rectangle. We need to do this because the origin co-ordinates of a circle is the center, as
you might expect, but the origin of a rectangle is the top-left corner. So we apply a negative
x and y offset equal to half our width and height, respectively, in order to compensate for
this and re-center the rectangle.

Finally in steps 8 and 9, we finish the definition of our main() function by calling the
renderer's run() method and then we set up the main() to be called as soon as the main
HTML body load event fires.

The resulting graph--based upon our test JSON from earlier in the recipe--is simple, but
effective at demonstrating the capabilities. VivaGraph has used the link metrics from the
file--all equal in our example--in order to define a link length, and it has applied some
default physical elastic and gravitational properties that allow the link length to be
stretched or compressed depending upon the constraints imposed by the other nodes.

Observe that you can drag the nodes about in order to satisfy your own placement
requirements, and that when you click on a node--to drag it--the node is also pinned to the
canvas so that it won't move. When you click on it again, it will revert to a position,
determined mainly by its location in the graph and the forces imposed upon it.

Advanced Visualization Applications

[217]

This reminds us about the fun aspects of network engineering!

Finally rendering the test graph from JSON data

Extracting graphs from ISIS
In this recipe, we'll write a Python PyEZ-based script, process-isis.py, to connect to one
of our JUNOS OS devices and extract the ISIS link-state database. Because of the nature of
link-state protocols like ISIS, a single router in the estate holds all of the information of the
whole network. In this case, the link-state database knows about all other routers in the IGP
domain and the adjacent devices to which they connect. We can use this information to help
visualise our network.

Getting started
In order to complete this recipe, you'll need a Python 2.7 development environment and
access to an ISIS-speaking JUNOS OS device. Ideally, you'll also have completed the
previous recipe on visualizing graphs, so that you can provide the extracted information
and obtain a visual representation of the protocol in return.

Advanced Visualization Applications

[218]

ISIS primer
ISIS is the link-state routing protocol of choice in the OSI suite. Though the OSI protocol
suite never came to be at a global internet scale, it does hold some interesting contrasts
when compared to the TCP/IP protocol suite that we're all very much accustomed to. In
summary, the key features of the OSI suite are:

Multi-domain, multi-area, multi-level addressing, with variable length
addressing fields, but fixed hierarchy
Node-based addressing rather than interface-based addressing

Despite the difference in underlying the transport protocol suite, ISIS found popularity on
large-scale service-provider networks during the years that the IETF were still
standardising OSPF. Today, it is a first-class link-state routing protocol used as an interior
gateway protocol in many networks.

ISIS operates by flooding Link State Packets (LSPs): not to be confused with MPLS LSPs.
Each router (or Intermediate System in OSI-speak) emits an LSP that describes itself and the
adjacencies it possesses. The LSP packet is populated by so-called TLVs, type-length-value
tuples. The flexibility of TLVs means that ISIS is quite extensible. New features can be
bolted on to new TLV types that flood throughout the domain without obstacles even
across routers that aren't aware of the features.

On JUNOS, one can inspect the ISIS link state database with the show isis database
detail command. We'll use the equivalent XML RPC in our Python script to extract the
crucial information from the ISIS link state database and output a JSON representation of
our network graph.

How to do it...
We're going to write a Python PyEZ script, process-isis.py, to connect to one of our
JUNOS OS routers, extract the link-state database, and then output a compressed JSON
representation of the network graph seen by ISIS.

Include the standard boilerplate that we base all of our Python-based automation1.
apps on. Define the interpreter, import the standard library modules, set a
general purpose exception handler

 #!/usr/bin/env python

 import sys
 import getpass

Advanced Visualization Applications

[219]

 import os
 import json
 import argparse
 import struct
 import socket
 import io
 from jnpr.JUNOS import Device
 from lxml import etree
 # Error handling
 def onError(exception_type, exception, traceback):
 sys.stderr.write("%s: %s\n" % (exception_type.__name__,
 exception))
 sys.excepthook = onError

Use argparse to process the command-line options, and if necessary call2.
getPass() to obtain a per-user, per-device password.

 cmdline = argparse.ArgumentParser(
 description="Python JUNOS PyEZ ISIS Database Extraction Tool")
 cmdline.add_argument("target", metavar="target",
 help="Target router to query")
 cmdline.add_argument("-p", metavar="port",
 help="TCP port", default=830)
 cmdline.add_argument("-u", metavar="username",
 help="Remote username", default=getpass.getuser())

 args=cmdline.parse_args()

 password=getPass(args.u+"@"+args.target) if 'getPass' in
 globals() else ""

Call upon the PyEZ framework using the Device() constructor, specifying the3.
credentials and then open() the device to actually connect. Set an appropriate
timeout, then issue the <get-isis-information> RPC in order to extract the
information.

 dev = Device(host=args.target, user=args.u, port=args.p,
 password=password)
 dev.open()
 dev.timeout = 60
 result = dev.rpc.get_isis_database_information
 (normalize=True, detail=True)

Advanced Visualization Applications

[220]

Iterate through the results of the RPC, and populate a Python dictionary4.
containing a nodes and links entry.

 graph={'nodes': [], 'links': []}
 for entry in result.xpath("isis-database[level='2']/isis-
 database-entry"):
 lspid = entry.findtext("lsp-id")
 node=lspid[:-3]
 if not node.endswith(".00"):
 node="_"+node;
 if not node in graph['nodes']:
 graph['nodes'].append(node)
 for neighbor in entry.xpath("isis-neighbor"):
 neighborid = neighbor.findtext("is-neighbor-id")
 metric = neighbor.findtext("metric")
 topology = neighbor.findtext("isis-topology-id")
 if topology=="" or topology=="IPV4 Unicast":
 if not neighborid.endswith(".00"):
 neighborid="_"+neighborid;
 if not neighborid in graph['nodes']:
 graph['nodes'].append(neighborid)
 graph['links'].append([node, neighborid, metric])

Close the device and output the JSON representation to the standard output5.
stream.

 dev.close()

 print repr(json.dumps(graph))

How it works...
The first steps should all be quite familiar by now. Connect to the JUNOS device,
authenticate, and make a remote procedure call. Let's take a look at an example response to
the RPC, and the parts of the message that we're interested in.

 <isis-database-information
xmlns="http://xml.juniper.net/JUNOS/14.1R6/JUNOS-routing"
JUNOS:style="detail">
 <isis-database>
 <level>1</level>
 </isis-database>
 <isis-database>
 <level>2</level>
 <isis-database-entry>

Advanced Visualization Applications

[221]

 <lsp-id>lon-lab-access-4.00-00</lsp-id>
 <sequence-number>0x1002</sequence-number>
 <checksum>0x6e7</checksum>
 <remaining-lifetime>26185</remaining-lifetime>
 <isis-neighbor>
 <isis-topology-id>IPV4 Unicast</isis-topology-id>
 <is-neighbor-id>lon-lab-access-4.01</is-neighbor-
 id>
 <metric>1000</metric>
 </isis-neighbor>
 <isis-neighbor>
 <isis-topology-id>IPV4 Unicast</isis-topology-id>
 <is-neighbor-id>lon-lab-access-4.02</is-neighbor-
 id>
 <metric>1001</metric>

The main logic is contained within step 4 where we create an initial Python dictionary to
represent our container JSON object and set empty lists for the nodes and links
component respectively. We then proceed to use an XPath predicate selector to find any of
the <isis-database-entry> records from the <isis-database> parent node.

We use the predicate because we only want to look at the level 2 database.
ISIS operates a link-state protocol at two levels. Level 1 routing controls
the propagation of OSI system IDs within a given area, where an area is an
address prefix. Level 2 routing controls the propagation of OSI system IDs
between areas. In most cases, the level 2 database is going to be the richest
source of information about our network. The level 1 database will only
contain system IDs for a single area.

Next, we attempt a reasonable attempt at extracting the node name. This is complicated in
ISIS because the name of the link state packet update incorporates several different
components. At the end of the hostname are a pair of hexadecimal numbers separated by a
hypen (-). These have the following semantics in order:

The first number represents the circuit or interface identifier with 00 being
reserved as being for the main node, and all other non-zero numbers representing
a pseudo-node LSP for which this router is the designated router on the segment
The second number represents a fragment identifier, allowing a link-state update
to cross several packets

Advanced Visualization Applications

[222]

ISIS LSP formats: main system node on the left; pseudo-nodes on the right

So to identify the node name—be it a real physical node, or a pseudo-node—we chop off
the last three characters in order to leave us with the system name. Then we take a look at
the end of the string to see if it ends with a double-zero. If it does, it means it's a real node,
otherwise it's a pseudo-node. Because we probably want these two different types of node
rendered differently in the graphical browser, we make a point of adhering to a convention
prefixing the pseudo-node with an underscore (_).

If you happen to name your network nodes with names that actually do
begin with underscores, then you might need to reconsider this tack and
make a slight change!

Then we iterate through every neighbor listed in the link-state packet and infer an
adjacency between the main node and the declare neighbor. We add it to the list of links.

Note that ISIS has recently implemented a multi-topology feature that can make this
troublesome. It's possible to maintain a per-address family ISIS adjacency. As a result in
dual-stack IPv4/IPv6 environments, where the ISIS multi-topologies feature is used, we can
easily get a situation with duplicate links. So as a result, we look for the <isis-topology-
id> field to either be empty, meaning basic single topology mode, or set to IPv4 Unicast,
meaning multi-topology mode is in use and that the adjacency is for IPv4.

Advanced Visualization Applications

[223]

In step 5, we output the result of our collected nodes and links in a JSON format so that they
can be used by the graph rendering process. Figure 6.4 shows an example ISIS visualization
from the lab network.

Screenshot of example ISIS extract analysis

Extracting graphs from OSPF
In this recipe, we'll write a Python PyEZ-based script, process-ospf.py, to connect to one
of our JUNOS OS devices and extract the OSPF link-state database. Like the previous recipe
looking at ISIS, OSPF is a link-state protocol that shares a lot of properties with ISIS. A
single router usually holds the link-state database information for all other routers in the
same area, and single-area backbone environments are common. We can use this
information to help visualize our network.

Getting ready
In order to complete this recipe, you'll need a Python 2.7 development environment and
access to an OSPF-speaking JUNOS OS device. Ideally, you'll also have completed the first
recipe on visualizing graphs, so that you can provide the extracted information and obtain a
visual representation of the protocol in return.

Advanced Visualization Applications

[224]

OSPF primer
OSPF Version 2 was first specified in IETF RFC 1247 in 1991. Version 2 was mainly a
response to critique and early operational experience of the original draft specification, and
while many extensions and additions have been made to the protocol, they are generally
backwardly compatible with this specification. OSPF operates within the TCP/IP protocol
suite, unlike ISIS, but otherwise behaves in a very similar manner. Each router within the
interior domain floods link state advertisements (LSAs) sharing information with all other
routers about itself, its neighbors and their IP-layer attachments. Receiving routers receive
LSAs, build a topology graph, execute a Djikstra-style shortest path first algorithm on the
graph and install the resulting network routes into the router forwarding table.

On JUNOS, one can inspect the OSPF link state advertisments with the show ospf
database detail command. We'll use the equivalent XML RPC in our Python script to
extract the crucial information from the OSPF link state advertisements and output a JSON-
representation of our network graph.

How to do it...
We're going to write a Python PyEZ script, process-ospf.py, to connect to one of our
JUNOS OS routers, extract the OSPF link-state advertisements, and then output a
compressed JSON representation of the network graph.

Start with the typical boilerplate to start a Python script. Define the script1.
interpreter. Import the required standard library modules. Define a general error
handler.

 !/usr/bin/env python

 import sys
 import getpass
 import os
 import json
 import argparse
 import struct
 import socket
 import io
 from jnpr.JUNOS import Device
 from lxml import etree

 # Error handling
 def onError(exception_type, exception, traceback):
 sys.stderr.write("%s: %s\n" %

Advanced Visualization Applications

[225]

 (exception_type.__name__, exception))
 sys.excepthook = onError

Use the argparse module as usual to parse any command-line arguments.2.
Optionally call the getPass() routine to get a password from the cache if
required for your environment.

 cmdline = argparse.ArgumentParser(
 description="Python JUNOS PyEZ OSPF Database Extraction Tool")
 cmdline.add_argument("target", metavar="target",
 help="Target router to query")
 cmdline.add_argument("-p", metavar="port",
 help="TCP port", default=830)
 cmdline.add_argument("-u", metavar="username",
 help="Remote username", default=getpass.getuser())
 args=cmdline.parse_args()

 password=getPass(args.u+"@"+args.target) if 'getPass' in
 globals() else ""

Call upon the PyEZ framework to connect to the JUNOS OS device by calling the3.
Device() constructor with the appropriate authentication options and then
calling the open() method.

 dev = Device(host=args.target, user=args.u, port=args.p,
 password=password)
 dev.open()
 dev.timeout = 60
 result = dev.rpc.get_ospf_database_information(
 normalize=True, detail=True)

Create a Python dictionary object to store the nodes and links and then iterate4.
through the results of the RPC call using a for loop in order to extract the
important data.

 graph={'nodes': [], 'links': []}

 for entry in result.xpath(
 "ospf-database[../ospf-area-header/ospf-area='0.0.0.0']"):
 lsaid = entry.findtext("lsa-id")
 lsatype = entry.findtext("lsa-type")
 if (lsatype=="Router"):
 graph['nodes'].append(lsaid)
 for link in entry.xpath("ospf-router-lsa/ospf-link"):
 linkid=link.findtext("link-id")
 linktype=link.findtext("link-type-name")
 metric=link.findtext("metric")

Advanced Visualization Applications

[226]

 if (linktype=="PointToPoint"):
 graph['links'].append([lsaid, linkid, metric])
 if (linktype=="Transit"):
 graph['links'].append([lsaid, "_"+linkid, metric])

Close the device and print the JSON representation to the standard output5.
stream.

 dev.close()

 print repr(json.dumps(graph))

How it works...
As in the ISIS recipe, the initial steps of this recipe should be quite familiar. Connect to the
JUNOS device, authenticate and then make a remote procedure call. In this case we call the
<get-ospf-database-information> RPC, so let's take a look at a typical response from
that RPC so that we can get an understanding of the fields that we have to extract.

 <ospf-database-information
 xmlns="http://xml.juniper.net/JUNOS/15.1F6/JUNOS-routing">
 <ospf-area-header>
 <ospf-area>0.0.0.0</ospf-area>
 </ospf-area-header>
 <ospf-database
 heading=" Type ID Adv Rtr Seq Age Opt Cksum Len">
 <lsa-type>Router</lsa-type>
 <lsa-id>10.0.4.15</lsa-id>
 <advertising-router>10.0.4.15</advertising-router>
 <sequence-number>0x80000030</sequence-number>
 <age>603</age>
 <options>0x2</options>
 <checksum>0xead9</checksum>
 <lsa-length>60</lsa-length>
 <ospf-router-lsa>
 <bits>0x0</bits>
 <link-count>3</link-count>
 <ospf-link>
 <link-id>10.0.211.201</link-id>
 <link-data>10.0.211.220</link-data>
 <link-type-name>Transit</link-type-name>
 <link-type-value>2</link-type-value>
 <ospf-topology-count>0</ospf-topology-count>
 <metric>10</metric>
 </ospf-link>
 <ospf-link>

Advanced Visualization Applications

[227]

 <link-id>10.0.201.201</link-id>
 <link-data>10.0.201.220</link-data>
 <link-type-name>Transit</link-type-name>
 <link-type-value>2</link-type-value>
 <ospf-topology-count>0</ospf-topology-count>
 <metric>100</metric>
 </ospf-link>

We iterate through the results of the RPC simply looking for Router-type LSAs only. Within
the Router LSA, we can find the name of the originating router from the <lsa-id> field.
Then we iterate through the <ospf-link> entries to glean an understanding of the
adjacencies that the router is claiming. If the <link-type-name> field is PointToPoint
then we know that we're talking about a direct router-router adjacency so we create a link
in our Python dictionary to reflect that. If the <link-type-name> field is Transit, then we
know there is a multi-access or broadcast segment attached and we use our convention of
naming the connecting node with an underscore (_) in order to represent a pseudo-node
rather than an actual active OSPF speaker.

We have no real need to look at the other types of LSA that OSPF floods, although doing so
might help us understand the actual IP-layer topology involved. In this case, we make an
assumption that an OSPF adjacency between routers is sufficient for a routing protocol
exchange and a traffic forwarding relationship, which is pragmatic and not unreasonable.

Figure 6.5 shows an example screenshot of our OSPF analysis as applied to my virtual
router setup, connected to OpenBSD's ospfd.

Screenshot of OSPF graph analysis

Advanced Visualization Applications

[228]

Extracting graphs from MPLS VPNs
In this recipe, we'll write a Python PyEZ-based script, process-mplsvpn.py, to connect to
one of our JUNOS OS devices and query the BGP table for routing information related to a
specific customer VPN. We'll use the associated BGP information to determine the
customer-level network prefixes within the VPN and the Provider Edge (PE) routers
involved in serving that MPLS VPN. We can visualize this information in a graph format.

Getting ready
In order to complete this recipe, you'll need a Python 2.7 development environment and
access to a BGP-speaking JUNOS OS device. Ideally, you'll also have completed the first
recipe on visualizing graphs, so that you can provide the extracted information and obtain a
visual representation of the protocol in return.

BGP MPLS VPN primer
BGP-based MPLS VPNs were first specified in IETF RFC 2547 in 1999. MPLS VPN
technology spent the early 2000s competing hard with legacy private network technologies
such as ATM/Frame Relay and overlay IPSec-based networks. It finally established ground
as the most technically viable and cost-effective way for a service-provider network to
logically partition his physical network into private routing instances for use by customers.

Under the hood, the service-provider's typical BGP topology is augmented with an extra
address family that widens the address space field in order to carry a route
distinguisher—something to distinguish one customer's private address space from
another's. In addition to the route distinguisher, the extended community attributes are
used to indicate VPN membership of the routing information through what is known as a
route-target. A route-target can best be thought of as an identifier of a group of sites who all
participate in the same private network routing.

On JUNOS, we can query the BGP routing table through the use of the <get-route-
information> XML RPC, and we can qualify the RPC further by specifying that we want
to look at the layer-3 VPN routing table, and that we want to only look at routes with a
route-target community that matches the VPN that we wish to analyze.

Advanced Visualization Applications

[229]

How to do it...
We're going to write a Python PyEZ script, process-mplsvpn.py, to connect to one of our
JUNOS OS routers, extract the BGP routing information for the VPN community of interest,
and then output a compressed JSON representation of the resulting network graph.

Start with the typical boilerplate in order to define the script interpreter, import1.
the Python standard library modules. Define a general purpose error handler to
print a polite message and exit.

 #!/usr/bin/env python

 import sys
 import getpass
 import os
 import json
 import argparse
 import struct
 import socket
 import io
 from jnpr.JUNOS import Device
 from lxml import etree
 # Error handling
 def onError(exception_type, exception, traceback):
 print "%s: %s" % (exception_type.__name__, exception)
 sys.excepthook = onError

Use the argparse module, in order to scan the command-line arguments for any2.
necessary variations in operation. In this case, we simply include options to vary
the username and remote TCP port. Call the getPass() routine to locate a
password from the cache, if required.

 cmdline = argparse.ArgumentParser(
 description="Python JUNOS PyEZ MPLS VPN Extraction Tool")
 cmdline.add_argument("target", metavar="target",
 help="Target router to query")
 cmdline.add_argument("community", metavar="community",
 help="target:NNN:NNN")
 cmdline.add_argument("-p", metavar="port",
 help="TCP port", default=830)
 cmdline.add_argument("-u", metavar="username",
 help="Remote username", default=getpass.getuser())
 args=cmdline.parse_args()
 password=getPass(args.u+"@"+args.target) if 'getPass' in
 globals() else ""

Advanced Visualization Applications

[230]

Call upon the PyEZ framework to establish a session with the remote JUNOS OS3.
device by calling the Device() constructor with the appropriate authentication
parameters and then calling the open() method on the returned object. Call the
<get-route-information> RPC, being sure to specify the bgp.l3vpn.0 table
and including the route-target community.

 dev = Device(host=args.target, user=args.u, port=args.p,
 password=password)
 dev.open()
 dev.timeout = 60
 result = dev.rpc.get_route_information(normalize=True,
 detail=True, table="bgp.l3vpn.0", community=args.community)

Initialize a Python dictionary in preparation for storing the nodes and links, and4.
start by entering the route-target VPN community attribute as a central point.
The user is expected to input this on the command line. Then iterate through the
routing table results from the RPC and add the appropriate nodes and links to the
dictionary.

 graph={'nodes': [], 'links': []}
 graph['nodes'].append(args.community)

 for route in result.xpath("route-table/rt"):
 destination = route.findtext("rt-destination")
 if not destination in graph['nodes']:
 graph['nodes'].append(destination)
 for entry in route.xpath("rt-entry"):
 nh = entry.findtext("protocol-nh/to")
 if not nh in graph['nodes']:
 graph['nodes'].append(nh)
 graph['links'].append([args.community, nh, 10])
 graph['links'].append([nh, destination, 10])

Close the device and output the JSON representation of the graph to the standard5.
output stream.

 dev.close()

 print repr(json.dumps(graph))

Advanced Visualization Applications

[231]

How it works...
The initial steps in this recipe are quite simple to follow. Our Python script parses command
line arguments in order to obtain two mandatory parameters:

A router hostname to connect to
A route-target community to search for

Then we call the <get-route-information> RPC in order to query the routing table, but
we constrain the query by specifying the BGP layer-3 VPN table, and we also stipulate that
we only want to see routes that carry our specific route-target extended community
attribute.

It's crucially important to add the constraining parameters to the <get-
route-information> RPC. If you don't, you may find yourself
downloading the global Internet table, decorated with XML. PyEZ will
likely timeout the RPC on duration, but not before eating through
significant memory on your management station, and you might impose
an inconsiderate CPU burden on your JUNOS OS device if you keep
trying the operation.

Let's take a look at the likely XML response to our RPC.

 <route-information
 xmlns="http://xml.juniper.net/JUNOS/14.1R6/JUNOS-routing">
 <!-- keepalive -->
 <route-table>
 <table-name>bgp.l3vpn.0</table-name>
 <destination-count>6834</destination-count>
 <total-route-count>6849</total-route-count>
 <active-route-count>6834</active-route-count>
 <holddown-route-count>0</holddown-route-count>
 <hidden-route-count>0</hidden-route-count>
 <rt JUNOS:style="detail">
 <rt-destination>4886:1:1.1.1.1</rt-destination>
 <rt-prefix-length>32</rt-prefix-length>
 <rt-entry-count JUNOS:format="1 entry">1</rt-entry-
 count>
 <rt-announced-count>1</rt-announced-count>
 <rt-state></rt-state>
 <rt-entry>
 <active-tag>*</active-tag>
 <current-active/>
 <last-active/>
 <protocol-name>BGP</protocol-name>

Advanced Visualization Applications

[232]

 <preference>170</preference>
 <preference2>-101</preference2>
 <route-distinguisher>4886:1</route-distinguisher>
 <nh-type>Indirect</nh-type>
 <nh-address>0x429db97c</nh-address>
 <nh-reference-count>1</nh-reference-count>
 <nh-kernel-id>0</nh-kernel-id>
 <gateway>89.202.215.3</gateway>
 <protocol-nh JUNOS:indent="16">
 <to>89.202.215.3</to>
 <mpls-label>Push 165</mpls-label>
 <label-ttl-action>prop-ttl</label-ttl-action>
 <load-balance-label>Label 165: None; </load-
 balance-label>
 <indirect-nh>0x2 no-forward INH Session ID:
 0x0</indirect-nh>

Our iteration logic is quite simple here. We scan each returned route to extract the
destination and its associated <protocol-nh> attribute, which will typically represent the
BGP-layer next-hop for the destination.

It looks like we could take the BGP next-hop attribute from the
<gateway> field in the extract above. Indeed, there is also a <learned-
from> field in the non-detailed view. The information is not the same
however. If you're using BGP route reflection in your network, the BGP
next-hop attribute may not be the same as the learned router. Typically,
the route reflector will preserve the original BGP next-hop attribute in
order to avoid getting into the traffic flow. He's simply there to pass on the
BGP messages, not the traffic.

Advanced Visualization Applications

[233]

Figure 6.6 includes a screenshot of an example MPLS VPN discovery.

MPLS VPN graph analysis

There's more
With the MPLS VPN analysis, we successfully extracted and represented the following information:

The customer site network prefix
The BGP-speaking PE router serving the customer
The VPN route-target attribute

The later specifications of the BGP MPLS VPNs RFC, RFC4364, in section 7.4, makes a
recommendation in the use Route Origin extended communities in order to unambiguously
identify CE-layer routers in MPLS VPN topologies. We could add this capability to our
process-mplsvpn.py tool by extracting the <extended-community> attribute of the
routing table output. This would provide an extra layer in the graph, allowing a user to see
which customer networks were at which site, served by which CE.

7
Monitoring and Maintaining

JUNOS
In this chapter, we'll cover the following recipes:

Monitoring configuration changes network-wide
Monitoring interface performance
Monitoring system health
Monitoring MPLS LDP statistics

Introduction
Juniper supports a large variety of hardware platforms, each enriched with the functionality
of JUNOS, enabling customers to operate various applications: from single-domain
enterprise networking through to large-scale, carrier-grade, service provider multi-tenanted
networking. Regardless of where you are on that scale, once you've used the rich JUNOS
functionality to solve a particular network problem, nothing stays constant. Unsolicited
change is inevitable, whether it be caused by growth in network traffic and the need to
upgrade, or outside intervention in network links causing logical topology changes.

An invaluable aid to any network engineer's toolkit is a rich capability when it comes to
monitoring variables and metrics associated with the JUNOS device. Is the device operating
in the designed tolerances? Are there any outstanding cautions or warnings that require
human intervention to address? Remember that automation is not about walking away
from the maintenance of a platform, rather it is about being more intelligent and raising the
sophistication of the activities with which we labor our human engineer counterparts in
order to maximize usefulness.

Monitoring and Maintaining JUNOS

[235]

In this chapter, we'll explore a series of recipes that help provide capability in the field of
monitoring your JUNOS device, allowing you to develop applications and systems that
help keep your network healthy and working.

Monitoring configuration changes network-
wide
In this recipe, we'll take a fleet of JUNOS devices and outfit them with a policy to report
events regarding configuration changes to a central network management host. On the
central network management host, we'll operate a background daemon process that
observes incoming configuration events and reports them to an interactive user-interface, it
allows an operator or a NOC screen to keep track of real-time configuration changes on the
network, maintaining network situational awareness:

Figure 7.1 Configuration monitoring system schematic

Monitoring and Maintaining JUNOS

[236]

Getting ready
In order to complete this recipe, you'll need:

Access to the development/management platform, with the following software
available:

OpenSSH server software or equivalent
Node.js v4 or v6

Administrative rights in order to configure user accounts on the
development/management platform
Configuration access to JUNOS devices in order to setup event policy

How to do it…
There are four separate components to the recipe:

An OpenSSH server that accepts incoming file transfers to a spool directory,
A JUNOS configuration that will instruct the device to respond to configuration
commit events, and execute commands to upload configuration via SSH to a
server
A web server application that:

Listens for web client connections and interacts with them to
present a log of changes
Monitors the contents of an incoming spool directory and reacts to
arrivals by communicating the contents to any connected web
clients in real-time

A basic web page incorporating JavaScript in order to implement the web client

Monitoring and Maintaining JUNOS

[237]

SSH file transfer
The steps are as follows:

First of all prepare a UNIX user account on the development/management1.
platform in order to allow the JUNOS host (or hosts) to upload a report after a
configuration change. The exact method to create a user account on your system
might vary but here are two common methods on Debian Linux and OpenBSD
respectively:

Debian Linux OpenBSD
user$ sudo adduser junos
Adding user junos...
Adding new group junos (1001) ...
Adding new user junos (1001) with
group junos ...
Creating home directory
“/home/junos” ...
Copying files from /etc/skel ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated
successfully

$ doas adduserEnter username []: junos
 Enter full name []:
 Enter shell csh ksh nologin sh [ksh]:
uid [1001]:
Login group [junos]:
Login group is ``junos''. Invite junos
into other groups: guest no [no]:
Login class authpf bgpd daemon default
pbuild staff unbound [default]:
Enter password []:
Enter password again []:

Take the time to secure this account on the management host. We only want it to2.
be able to accept files from the JUNOS devices and not be abused by any
unauthorized user in the network. Consider any of the following possible steps to
secure the account:

Using a restricted shell
Using disk quotas to restrict disk consumption
Using a chroot or jail environment

Create some sub-directories in the newly-created user's home directory to store3.
the incoming configuration reports, and to store the web application:

 $ mkdir config-monitor
 $ mkdir spool

Monitoring and Maintaining JUNOS

[238]

JUNOS OS event policy
The steps are as follows:

On the JUNOS host, configure an event handling policy that should be run in1.
response to the configuration commit completions and specify an archive
repository for uploading files. Use the execute-commands mechanism to run a
series of JUNOS OS commands in response to the event:

 adamc@router> show configuration event-options
 policy CONFIG-DIFF {
 events ui_commit_completed;
 then {
 execute-commands {
 commands {
 "show configuration | match Last\ commit:";
 "show configuration | compare rollback 1";
 }
 output-filename commit;
 destination NMS;
 output-format text;
 }
 }
 }

Repeat this step for any and all JUNOS devices that you want to monitor in this2.
manner.

Optionally, make some test commit operations and verify that the output of the3.
files makes it to the management server:

 $ ls -l *_commit
 -rw------- 1 JUNOS JUNOS 56 Sep 7 12:12
 router_20170907_121209_commit
 -rw------- 1 JUNOS JUNOS 102 Sep 7 12:12
 router_20170907_121237_commit
 -rw------- 1 JUNOS JUNOS 341 Sep 7 12:18
 router_20170907_121845_commit
 -rw------- 1 JUNOS JUNOS 229 Sep 7 12:18
 router_20170907_121853_commit

 $ more router_20170907_121853_commit

 root@router> show configuration | match Last\ commit:

 ## Last commit: 2017-09-07 12:18:53 UTC by adamc

Monitoring and Maintaining JUNOS

[239]

 root@router> show configuration | compare rollback 1

 [edit interfaces em2]
 - description Foo;
 + description bar;

Web server application
We're going to create a Node.js application that will act as a long-running daemon fulfilling
the responsibilities of interacting with the client web users and monitoring a file spool
directory where JUNOS OS devices will upload their configuration reports following a
commit event:

Create a directory to keep the application components in one place. We're going1.
to use some external library components and modules, and Node.js implements
third-party linkage by storing the required modules in a node_modules
directory within the dependent app, rather than installing modules system-wide.
This goes some way to help create a self-contained application:

 $ cd config-monitor

Install into your application development directory the socket.io package.2.
socket.io provides a rich and comprehensive functionality enabling real-time
sockets for web applications:

 $ npm install socket.io
 |
 socket.io@2.0.3 node_modules/socket.io
 ├── object-assign@4.1.1
 ├── socket.io-adapter@1.1.1
 ├── socket.io-parser@3.1.2 (isarray@2.0.1, has-binary2@1.0.2,
 component-emitter@1.2.1)
 ├── debug@2.6.8 (ms@2.0.0)
 ├── socket.io-client@2.0.3 (to-array@0.1.4, component-
 emitter@1.2.1, indexof@0.0.1, object-component@0.0.3, base64-
 arraybuffer@0.1.5, component-bind@1.0.0, has-cors@1.1.0,
 backo2@1.0.2, parseuri@0.0.5, parseqs@0.0.5, engine.io-
 client@3.1.1)
 └── engine.io@3.1.1 (base64id@1.0.0, cookie@0.3.1, ws@2.3.1,
 engine.io-parser@2.1.1, accepts@1.3.3, uws@0.14.5)

Monitoring and Maintaining JUNOS

[240]

Proceed to create the main Node.js application, config-monitor.js, in the3.
main application directory. Do this all in a single file for ease and simplicity. Start
by defining the interpreter, some configurable run-time constants, and the
modules upon which we depend:

#!/usr/bin/env node

// Runtime configuration
const SPOOLDIR = process.env['HOME'] + "/spool"; // Where to
collect files
const INTERVAL = 5000; // How often to scan
const GRACE = 2000; // Minimum age of file before processing

// Dependency modules
const fs = require("fs");
const os = require("os");
const util = require("util");
const app = require('http').createServer(handler)
const io = require('socket.io')(app);

Declare a global associative array that will keep track of files in the spool4.
directory:

 var CACHE={};

To aid diagnostics, implement a simple printf style interface for printing5.
debugging messages:

 const STDOUT=1;
 const STDERR=2;
 const fprintf = function(fd, fmt) {
 utilfmt_args = Array.prototype.slice.call(arguments, 1);
 var str = util.format.apply(null, utilfmt_args);
 fs.writeSync(fd, str);
 }
 const printf = function() {
 Array.prototype.unshift.call(arguments, STDOUT);
 fprintf.apply(null, arguments);
 }

Start the main part of the program by defining a function, startFileScan(),6.
that will read a directory asynchronously and call a callback function to handle
the results:

 const startFileScan = function() {
 fs.readdir(SPOOLDIR, processFileResults);

Monitoring and Maintaining JUNOS

[241]

 }

Then implement the callback function, processFileResults(), that will take a7.
list of files that have been found in the spool directory. The function needs to
compare the results from the scan against the results in our own CACHE variable.
First of all, it should remove any files from the CACHE variable if they don't exist
in the most recent scan, since they've obviously been deleted. Then it must
analyze any files found in the scan that we either don't know about (since they're
new), or that have a different modification time (since they've been changed).
Any interesting files that we find, we promote them by calling
outputDiffReport():

const processFileResults = function(err, files) {
 fprintf(STDERR,
 "processFileResult: %d file(s) found in %s\n",
 files.length, SPOOLDIR);
 if (err!=undefined) {
 fprintf(STDERR, "Can't read spool directory %s: %s\n",
 SPOOLDIR, err.code);
 return;
 }

 for (var f in CACHE) {
 if (files.indexOf(f)==-1) {
 delete CACHE[f];
 }
 }

 var currentFile = undefined;
 const doStat = function(err, stats) {
 if (err) {
 fprintf(STDERR, "Error stat()ing %s: %s\n",
 currentFile, err.code);
 } else {
 if (currentFile!==undefined) {
 if (!(currentFile in CACHE) || !
 (CACHE[currentFile].getTime()==
 stats.mtime.getTime())) {
 if (stats.mtime.getTime() +
 GRACE < Date.now()) {
 CACHE[currentFile]=stats.mtime;
 process.nextTick(outputDiffReport,
 currentFile, CACHE[currentFile]);
 }
 }
 }

Monitoring and Maintaining JUNOS

[242]

 }
 currentFile = files.pop();
 if (currentFile===undefined) {
 process.nextTick(function() {
 setTimeout(startFileScan, INTERVAL);
 });
 } else {
 fs.stat(SPOOLDIR + "/" + currentFile, doStat);
 }
 };
 process.nextTick(doStat);
 }

Continue by defining the logic for outputDiffReport(), the function that deals8.
with the situation where a new file has been found, or an old file modified. The
handler should take the filename and its modification time as parameters, and
should send a message to all connected web clients, then remove the file in order
to tidy up:

 const outputDiffReport = function(filename, mtime) {
 var data="";
 try {
 data = fs.readFileSync(SPOOLDIR + "/" +
 filename, { encoding: "utf8" });
 } catch(err) {
 fprintf(STDERR,
 "Can't read incoming filename %s: %s\n",
 filename, err.code);
 }
 content = data.split(/\n/).filter(function(x) {
 return x.match(/^[+\-#\[]/);
 }).join("\n");

 io.emit('update', { 'content': content,
 'mtime': mtime.toISOString(),
 'file': filename
 });

 fs.unlink(SPOOLDIR + "/" + filename, function() {});
 }

Implement the web-based interface by defining a response handler that will be9.
called when web requests are received. The response handler simply needs to
serve out a static piece of HTML which will also include the client-side Javascript
web client implementation:

 function handler (req, res) {

Monitoring and Maintaining JUNOS

[243]

 fs.readFile(__dirname + '/index.html',
 function (err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }
 res.writeHead(200);
 res.end(data);
 });
 }

Arrange for any errors to be dealt with in a consistent way:10.

 process.on('uncaughtException', function(err) {
 console.log("ERROR: ", err.message);
 process.exit(1);
 });

Kick things off by configuring the HTTP instance to listen on a port number, and11.
scheduling a call to scan the spool directory:

 app.listen(8080);
 process.nextTick(startFileScan);

Web client application
The steps for this section are as follows:

Create a file index.html within the web application directory. In the <head> of1.
the HTML tag, implement some simplistic CSS styling rules in order to
differentiate the configuration extract text from the comment text:

 <!DOCTYPE HTML>
 <html>
 <head>
 <title>JUNOS Configuration Monitor</title>

 <style>
 div {
 margin: 0px;
 }

 .heading {
 display: block;
 font-family: sans-serif;
 font-size: 18px;

Monitoring and Maintaining JUNOS

[244]

 font-weight: bold;
 }

 .comment {
 display: block;
 font-family: sans-serif;
 background-color: black;
 color: white;
 }

 .log {
 border: solid 1pt black;
 display: block;
 font-family: monospace;
 white-space: pre;
 }
 </style>

Then include a client-side JavaScript in order to connect the server to event2.
configuration changes:

 <script src="/socket.io/socket.io.js"></script>
 <script>
 var socket = io();
 socket.on('update', function (data) {

 var comment = document.createElement("div");
 comment.className="comment";
 comment.appendChild(document.createTextNode(data['mtime']
 + ": " + data['file']));

 var log = document.createElement("div");
 log.className="log";
 log.appendChild(document.createTextNode(data['content']));

 var container = document.getElementById("container");
 container.appendChild(comment);
 container.appendChild(log);

 window.scrollTo(0,document.body.scrollHeight);

 });
 </script>
 </head>

Monitoring and Maintaining JUNOS

[245]

Finally, add a basic HTML body skeleton to index.html which defines the3.
container element which the JavaScript will dynamically update in response to
events from the server:

 <body>
 <div class="heading">
 Junos Configuration Monitor
 </div>

 <div id="container">
 <div class="comment">
 Configuration reports
 </div>

 <div class="log">
 Committed configuration differences will appear here
 </div>

 </div>
 </body>
</html>

With all the files in place, start the server by invoking ./config-monitor.js at the
command line with no arguments.

How it works...
The config-monitor.js server process is the central work-horse behind the magic that
happens within this recipe. It receives the transcripts of JUNOS OS show commands which
report differences and floods them out to the connected web clients using the impressive
socket.io real-time framework library. However, config-monitor.js workload is
made significantly easier, by being able to rely on the underlying operating system's SSH
facility, and UNIX permissions system in order to receive files and authenticate incoming
connections. Instead of the dealing with the complexity of the SSH protocol, it can simply
monitor a spool directory to watch for new files.

SSH File Transfer
We use the standard features of the OpenSSH UNIX server in order to facilitate a secure
login to an account with a dedicated home directory. We create a new user and ensure that
his home directory has two sub-directories within it:

Monitoring and Maintaining JUNOS

[246]

Figure 7.2 Configuration monitor directory layout

spool houses the incoming files from the JUNOS OS devices. config-monitor contains
the web server application code, the client-side HTML, and JavaScript.

JUNOS OS event policy
In order to get the JUNOS OS device to signal when a user has made a configuration
change, we use the event policy framework to define rules and actions for when events
occur. We trap the event that occurs when a commit operation has been completed:

adamc@router> help syslog ui_commit_completed
Name: UI_COMMIT_COMPLETED
Message: commit complete
Help: 'commit' operation completed successfully
Description: Changes to the candidate configuration were committed
successfully.
Type: Event: This message reports an event, not an error
Severity: warning
Facility: ANY

We then use the execute-commands action in order to tell JUNOS that when the event
occurs it should run a series of operational mode commands. In this case, we run two
different commands and it's worth exploring each one to understand what we're trying to
achieve:

The first one simply extracts the header from the configuration file which gives us some
meta-data about the commit that recorded this configuration:

adamc@router> show configuration | match Last\ commit:
Last commit: 2017-09-07 17:52:14 UTC by auto

The second command compares the current committed configuration with that of the
previous version:

adamc@router> show configuration | compare rollback 1
[...]

Monitoring and Maintaining JUNOS

[247]

We have to be sure to use the output-format directive in order to stipulate that we want a
text output format rather than XML, since the eventual audience for this information is a
diligent NOC operator who will be sitting at a terminal screen.

In order to get the output of these two commands off-box and onto our management server,
we make use of the destination directive to reference a specific archive site. In the archive
site definition, we can specify all of the attributes of the remote server, including the remote
SSH password.

If you want to avoid encoding passwords in your configuration and
would rather that the JUNOS device used SSH keys, it is possible, but a
little tricky. See Chapter 4, Event Programming,recipe, Archiving
configurations after a change.

Web server application
The web server application forms a fully-fledged Node.js application written in a single file
for ease of instruction and illustration here.

The built-in Node.js HTTP module is used to implement the web server, and socket.io
integrates into the web server in order to catch some URLs. In particular it will capture
URLs to the path /socket.io/ in order to deliver the extra payload to the client to help
with the task of achieving real-time communication with the various web technologies.

Like all Node.js applications, this one sits in an event loop waiting for I/O or events and
responding with prescribed handling functions. Cataloging the events and their
programmed responses can be insightful for understanding the operation of the program:

Event Response

Start of program • Create HTTP server
• Create socket.io implementation on HTTP server
• Schedule a file scan

HTTP request
/socket.io

• Serve socket.io supporting files (implemented by socket.io)

HTTP request (other) • Serve the file index.html from the application direction

File scan completes • Take the first file in the list and check its modified time using the
stat() system call

Monitoring and Maintaining JUNOS

[248]

stat() call completes • Check if the file is interesting (not previously known, or known but
with different modified time). If so, emit an update event with the
filename, modified time and content
• Take the next file in the list and check its modified time using the
stat() system call. If there is no next file, schedule another file
scan within 5 seconds (or the value of INTERVAL)

Update event • Flood the information (filename, modified time, file contents) to all
currently connected web clients (Implemented by socket.io).
• Delete the file

The web application scans the spool directory at a frequency defined by the INTERVAL
constant, which we default to be 5000 milliseconds. First of all, it removes from its cache
information any files which don't now exist on the disk (Perhaps the operator has cleaned
the spool directory manually).

Then it proceeds to find any and all files which are either:

Not known in the CACHE variable
Known in the CACHE variable with a different timestamp

It adds any newly found files to the cache, and then reports their contents to any connected
web clients.

We make use of a grace period, specified by the constant GRACE, to avoid trying to read files
just as they're being written. Because read and write operations are necessarily broken up
into small units based on block sizes, underlying disk resources and network packet sizes, it
is possible that we could wake up to scan the spool directory and notice a new file before
the SSH copy process has finished writing it. The grace period helps us avoid this. The file is
only promoted to be reported on if its last modification is at least at certain time ago. In our
case, we determine a good grace period to be two seconds.

Our reliance on timestamps to put distance between the JUNOS SCP
writes is not infallible. It should be noted that while the server process is
writing the file, we depend on the fact that the timestamp is legitimately
comparable to the current time. This might not be the case if the spool
directory is on a network share or similar. And it could also be the case
that a network glitch causes the upload operation to stall and write
operations to pause for a time long enough that we think the file is done.
Generally, the grace period logic is simply designed to prevent us getting
ahead of ourselves in normal situations.

Monitoring and Maintaining JUNOS

[249]

When we do finally report on a newly-found file, we apply a little bit of regular expression
munging on the content. To make for a nice condensed log view on the web client operator
browser, we pull out any blank lines, or lines which we think are not part of the important
story. For example, the JUNOS OS device will upload a full transcript of the execute-
commands session, including the shell prompt and typed command.

This isn't of interest to our web client operator, so we can just grab any lines that contain +,
- or #.

 content = data.split(/\n/).filter(function(x) {
 return x.match(/^[+\-#\[]/);
 }).join("\n");

Web client application
The web client is implemented in a single piece of HTML, which creates the skeleton
structure of a document and then uses JavaScript event handlers in conjunction with the
client-side socket.io framework to generate the page content as and when event
information is received from the server. When a new update is received, we use the
standard JavaScript DOM manipulation function in order to find the container <div> and
add a new pair of child <div> elements to that thus representing the heading comment, and
the configuration commit extract respectively.

As a final touch, when we update the DOM, we take time to adjust the window scroll
position to the bottom of the document, allowing useful viewing without constant user
attention.

If you're considering something like this for a NOC screen view, be wary
that in its current form, the web document will simply get bigger and
bigger, causing the browser to consume more and more memory. A
strategy of occasional refresh, or more intelligent expiring of elements
might be preferable.

In use then, we can see a clear view of configuration events accompanied by timestamp,
source router and an actual configuration difference. This is an invaluable view on a
network of many elements when one is trying to troubleshoot or co-ordinate planned works
in a maintenance window:

Monitoring and Maintaining JUNOS

[250]

Figure 7.3 Configuration monitor screenshot

There's more
The web application we developed here is actually quite simple. It monitors a spool
directory and floods any received information to any connected web client browsers.
Because of this simplicity, and the flexibility of the JUNOS OS event policy framework, it is
quite possible to extend this functionality into a structured syslog() replacement system.
We define the events that we're interested in on the JUNOS devices, and any follow-up
command that we might need to execute, and the output is sent to our unified web-based
console for immediate attention.

For example, if we add the following event policy across our estate, we can get alerts on
BGP prefix-limits as they happen, with an accompanying show bgp summary command
output:

policy BGP {
 events BGP_PREFIX_LIMIT_EXCEEDED;

Monitoring and Maintaining JUNOS

[251]

 then {
 execute-commands {
 commands {
 "show bgp summary";
 }
 output-filename bgp;
 destination NMS;
 output-format text;
 }
 }

Now when a BGP peer trips its configured advertised prefix limit, the event will fire,
execute the show bgp summary command and upload the results to the management
server where they will be flooded to the web console:

Figure 7.4 Configuration monitor extended to report on more general events

Monitoring and Maintaining JUNOS

[252]

Sadly, the one problem with this approach is that the execute-commands action of event
policies cannot currently include parameterized substitutions from event information. Full-
on event scripts have access to structured event information and they can be used instead of
execute-commands actions, but event scripts have the slight downside that their output
format is always XML, which would require a translation layer within the config-
monitor.js or web client layer. This translation would necessarily have to be aware of the
output commands so that the XML model can be interpreted and presented.

Monitoring interface performance
In this recipe, we'll use the JUNOS OS NETCONF interface in order to extract real-time
interface performance data and present it in a web interface. We'll write a server application
that connects to the devices in our estate, issues a NETCONF remote procedure call to
extract the data, and then shares this data amongst web-based clients. For convenience and
simplicity, we'll avoid the task of storing the actual interface usage data and focus our
application on real-time uses such as monitoring the state of interfaces while performing
reconfiguration work. Consider it an extension to the command line interface, but in a
visual form:

Figure 7.5 Interface monitoring system schematic

Monitoring and Maintaining JUNOS

[253]

Getting ready
In order to complete this recipe, you'll need:

Access to a development/management platform, with the following software
available:

Node.js v4 or v6
Access to JUNOS OS devices that you want to monitor, all pre-configured with
NETCONF-over-SSH services enabled, and with credentials available.
A basic knowledge of JavaScript and the Node.js frameworks surrounding it, and
familiarity with the Node.js way: the asynchronous pattern of calling a function to
do something, and specifying what should happen next.

We're going to stand on the shoulders of some extra third-party routines and libraries in
order to support us. In no particular order of significance:

Brian White's ssh2 library for Node.js: an SSH implementation in pure JavaScript
which allows us to run SSH with multiple endpoints in an asynchronous manner
without the need for child_processes to the ssh command line binary (like
we've done previously in Chapter 1, Configuring JUNOS through NETCONF and
Chapter 3, Using SLAX to write Op Scripts).
Marek Kubica's xml2js library for Node.js: a simple XML parsing library that
presents objects in JSON.
Richard Heyes's RGraph library: a client-side JavaScript library for producing
attractive graphs in the browser.
The MIT-licensed socket.io real-time application framework for Node.js.

Object-oriented primer for Node.js
In the code that we create, we'll generally be using a simple object-oriented technique of
abstracting related data types into encapsulating objects. If this sounds a bit technical, it can
be useful to re-acquaint yourself with some of the basic tenets of implementing classic
object-oriented programming techniques in JavaScript, which is notable by its prototypal
model.

Monitoring and Maintaining JUNOS

[254]

To create a class of object in Javascript, we use a function definition. But when the function
is invoked with Javascript's new operator, a new object is created and the function is used as
the constructor for the class:

function Thing(name) {
 // do construction activities here
};
var t = new Thing();

Instance variables are defined immediately within the constructor definition and anchored
to this. this has a controversial reputation in JavaScript because of the confusion that can
sometimes be caused by its scoping rules. Suffice to say, in this example, we avoid these
scoping problems by adhering to a practice of always explicitly defining an alternate to
this - self, bound to the functional scope block - and using it where we would normally
use this:

function Thing(name) {
 var self=this;
 self.name = name;
};

var t = new Thing(“Fred”);
console.log(t.name); // prints “Fred”

When we want to define methods that act on our object, we add them to the prototype
chain. The prototype chain is a fundamental principle central to JavaScript's prototypal
inheritance model, but the important aspect to understand here is that it helps define a
search method for seeking object properties that is ordered in terms of specificity. For
example, a class of objects might all inherit a common method, but it's possible for specific
objects to override that implementation with their own:

function Thing(name) {
 var self=this;
 self.name = name;
};

Thing.prototype.sayGreeting = function() {
 var self = this;
 console.log("Hello " + self.name);
}

var t = new Thing(“Fred”);
t.sayGreeting(); // prints “Hello Fred”

Monitoring and Maintaining JUNOS

[255]

But a common pattern that we see, when using Node.js, is the need to call a function and
provide a callback completion handler for when an asynchronous operation has completed
(or failed). When we use this with classic object-oriented methods, we need to be cautious
not to fall into the JavaScript this scope trap:

function Thing(name) {
 var self=this;
 self.name = name;
};

Thing.prototype.sayGreeting = function() {
 var self = this;
 console.log("Hello " + self.name);
}

Thing.prototype.delayedGreeting = function(delay) {
 var self = this;
 setTimeout(self.sayGreeting, delay);
}

var t = new Thing(“Fred”);
t.delayedGreeting(1000); // doesn't work – prints Hello undefined…

The right way to solve the problem is to use a technique known as currying – creating an
anonymous function in order to preserve the scope of the self variable in order to ensure
that the function gets called with the correct this context:

Thing.prototype.delayedGreeting = function(delay) {
 var self = this;
 setTimeout(function() { self.sayGreeting(); }, delay);
}
var t = new Thing(“Fred”);
t.delayedGreeting(1000); // works: prints “Hello Fred” after 1000ms

With that quick primer out of the way, you should hopefully find it easier to understand the
code that we use in this and other Node.js recipes.

How to do it…
We're going to create two different pieces of code. The server application, collector.js,
will run on the management server and will be responsible for collecting data from the
JUNOS OS devices. The client-side web application, interfaces.html, will be delivered
by the server to the web client and will run in the user's browser, displaying the graph and
any associated data.

Monitoring and Maintaining JUNOS

[256]

Server application
The server application will take a simple command-line argument to refer it to a
configuration file, which will define a series of JUNOS OS devices that will be polled. The
configuration file will include the necessary SSH credentials for access to the devices to be
polled:

Make a directory on the management server in order to store all of the resources1.
associated with this project and start by downloading all of the necessary pre-
requisite Node.js packages:

 $ npm install socket.io
 └─┬ socket.io@2.0.3
 ├─┬ debug@2.6.8
 │ └── ms@2.0.0
 [...]

 $ npm install xml2js
 └─┬ xml2js@0.4.19
 ├── sax@1.2.4
 └── xmlbuilder@9.0.4

 $ npm install argparse
 └─┬ argparse@1.0.9
 └── sprintf-js@1.0.3

Create collector.js in your preferred text editor environment and start by2.
adding the following boilerplate which imports the Node.js modules and defines
some run-time constants:

 #!/usr/bin/env node

 const INTERVAL = 10000;

 // Dependency modules
 const fs = require("fs");
 const path = require("path");
 const repl = require("repl");
 const os = require("os");
 const util = require("util");
 const app = require('http').createServer(httpHandler)
 const io = require('socket.io')(app);

 const xml2js = require('xml2js');
 const ssh2 = require('ssh2');
 const argparse = require('argparse');
 const Client = require('ssh2').Client;

Monitoring and Maintaining JUNOS

[257]

Include the definition of some utility functions that will help us out. In this case,3.
fprintf() satisfies our appetite for retro C-style formatting of debug messages,
and walk() helps us navigate a hierarchical JavaScript dictionary without
tripping up over undefined dictionary de-references:

 const STDOUT=1;
 const STDERR=2;
 const fprintf = function(fd, fmt) {
 utilfmt_args = Array.prototype.slice.call(arguments, 1);
 var str = util.format.apply(null, utilfmt_args);
 fs.writeSync(fd, str);
 }
 const printf = function() {
 Array.prototype.unshift.call(arguments, STDOUT);
 fprintf.apply(null, arguments);
 }

 var walk = function(obj, path) {
 var result = obj;
 path.forEach(function (cur, ind, array) {
 if (result!=undefined) result=result[cur];
 });
 return result;
 }

Next define the XML dialogs that will be used when conversing with the JUNOS4.
OS devices:

 const DELIMITER="]]>]]>";
 const xmlhello = '<?xml version="1.0" encoding="UTF-8"?>' +
 '<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">' +
 '<capabilities>' +
 '<capability>urn:ietf:params:netconf:base:1.0</capability>'+
 '</capabilities>' +
 '</hello>\n';
 const xmlrpc = "<rpc><get-interface-information> " +
 "<media/></get-interface-information></rpc>\n";
 const xmlclose = "<rpc><close-session/></rpc>\n";

Define a JavaScript-style class to represent the remote JUNOS OS devices and5.
handle our communication with it, interfacing with the underlying ssh2 and
xml2js libraries are required:

 function JUNOSDevice(id, host, port, username,
 password, privateKey) {
 var self = this;

Monitoring and Maintaining JUNOS

[258]

 self.id = id;
 self.host = host;
 self.port = port;
 self.username = username;
 self.password = password;
 self.privateKey = privateKey;
 self.stream = null;
 self.client = null;
 self.buffer = "";
 self.connectTimer=null;

 self.scheduleConnect(0);
 };

Continue by defining some methods associated with the JUNOS OS device,6.
starting with methods for connecting an SSH session to the devices:

 JUNOSDevice.prototype.scheduleConnect = function(interval) {
 var self = this;
 if (self.connectTimer) return;
 self.connectTimer = setTimeout(function() {
 self.connect();
 }, interval);
 }

 JUNOSDevice.prototype.connect = function() {
 var self = this;
 self.connectTimer=null;
 fprintf(STDERR, "%s:%s: Trying to connect SSH\n",
 self.host, self.port);
 self.client = new Client();
 self.client.on("ready", function() {
 self.client.subsys('netconf', function(err, stream) {
 if (err) {
 fprintf(STDERR, "%s:%s: SSH failed: %s\n",
 self.host, self.port, err.message);
 } else {
 self.stream = stream;
 stream.on('data', function(chunk) {
 self.doRead(chunk);
 });
 stream.on('close', function(code, signal) {
 self.client.end();
 });
 stream.on('error', function(err) {
 fprintf(STDERR,
 "%s:%s: NETCONF SSH stream error: %s\n",
 self.host, self.port, err.message);

Monitoring and Maintaining JUNOS

[259]

 });
 self.stream.write(xmlhello+DELIMITER+"\n");
 }
 });
 });
 self.client.on("error", function(err) {
 if (err.level=="client-socket") {
 fprintf(STDERR, "%s:%s: socket connection error\n",
 self.host, self.port);
 }
 if (err.level=="client-ssh") {
 fprintf(STDERR, "%s:%s: SSH protocol error: %s\n",
 self.host, self.port, err.description);
 }
 self.scheduleConnect(INTERVAL);
 });
 self.client.on("end", function() {
 fprintf(STDERR, "%s:%s: SSH session ended\n",
 self.host, self.port);
 self.scheduleConnect(INTERVAL);
 });

 var connectOptions = {
 host: self.host,
 port: self.port,
 username: self.username,
 password: self.password
 };
 try {
 connectOptions['privateKey'] =
fs.readFileSync(self.privateKey);
 } catch(e) {}

 self.client.connect(connectOptions);
 }

Then define a method to handle read events. When data is available from the7.
remote JUNOS devices, the received XML needs to be parsed and decoded:

 JUNOSDevice.prototype.doRead = function(chunk) {
 var self = this;

 self.buffer += chunk.toString();
 var index=self.buffer.indexOf(DELIMITER)

 if (index!=-1) {
 var xml = self.buffer.slice(0, index);
 self.buffer = self.buffer.slice(index +

Monitoring and Maintaining JUNOS

[260]

 DELIMITER.length + 1);

 xml2js.parseString(xml, { normalize: true,
 ignoreAttrs: true },
 function(err, result) {
 self.processXMLResponse(err, result);
 });
 }
 }

Pair this up with a method to handle responses from the XML parser which will8.
be producing the structured data that we can work with. The XML message
handler needs to define actions for each of the potential messages that might be
received:

 JUNOSDevice.prototype.processXMLResponse =
 function(err, result) {
 var self = this;
 var interfaces=null;
 if (err) {
 fprintf(STDERR,
 "Unable to parse XML in response from %s: %s\n",
 self.host, err.message);
 } else if (result['hello']) {
 fprintf(STDERR, "%s:%s: Hello message received\n",
 self.host, self.port);
 self.stream.write(xmlrpc+DELIMITER+"\n");

 } else if (interfaces=walk(result, ['rpc-reply',
 'interface-information', 0,
 'physical-interface'])) {
 fprintf(STDERR,
 "%s:%s: Interface information received: %d interface(s) found\n",
 self.host, self.port, interfaces.length);
 for (i=0; i<interfaces.length; i++) {
 var name = walk(interfaces, [i, "name", 0]);
 var description = walk(interfaces,
 [i, "description", 0]);
 var stats = walk(interfaces,
 [i, "traffic-statistics", 0]);
 var opstatus = walk(interfaces,
 [i, "oper-status", 0]);

 if ((name.startsWith("xe-") ||
 name.startsWith("ge-") ||
 name.startsWith("et-")) &&
 opstatus=="up") {

Monitoring and Maintaining JUNOS

[261]

 GROUPS[self.id].emit('interface-stats', {
 __time: Date.now(),
 name: name,
 description: description,
 stats: stats });
 }
 }
 setTimeout(function() {
 self.stream.write(xmlrpc+DELIMITER);
 }, INTERVAL);
 } else if (error=walk(result, ['rpc-reply',
 'rpc-error', 0, 'error-message', 0])) {
 fprintf(STDERR,
 "%s:%s: RPC error message received: %s\n",
 self.host, self.port, error);
 } else if (ok=walk(result, ['rpc-reply', 'ok', 0])=="") {
 fprintf(STDERR, "%s:%s: OK message received\n",
 self.host, self.port);
 } else {
 fprintf(STDERR,
 "%s:%s: Unexpected XML message received\n",
 self.host, self.port);
 fprintf(STDERR, "%s\n", util.inspect(result,
 { depth: 8}));
 }
 }

Get the main block of code rolling, by defining the GROUPS variable to keep track9.
of which web client is interested in which device. Then use the familiar argparse
module to process the command line arguments and read the configuration file:

 var GROUPS=[];

 var cmdline = new argparse.ArgumentParser({
 description: "NodeJS JUNOS Interface monitoring server"
 });
 cmdline.addArgument("-f", {
 metavar: "file",
 help: "JSON configuration file",
 defaultValue: "config.json"
 });
 var args = cmdline.parseArgs();

 const CONFIG = JSON.parse(fs.readFileSync(args.f));

Monitoring and Maintaining JUNOS

[262]

Use socket.io to create a real-time web socket available to connect clients and10.
define a connection handler that outputs the configuration to clients so that they
know which devices are available to monitor:

 io.on('connection', function (socket) {
 fprintf(STDERR, "Connection on main socket from %s\n",
 socket.id);
 socket.emit('config',
 Object.keys(CONFIG).map(function(id) {
 return CONFIG[id]['host']+
 ":"+CONFIG[id]['port']}));
 });

Then go through each line in the configuration file which represents a JUNOS OS11.
device, and create:

A group socket that web clients can join, in order to be informed of
statistics
A JUNOSDevice object, which we defined earlier to represent the
device and its SSH communications:

 for (id in CONFIG) {

 var group = io.of("/device"+id);
 GROUPS[id]=group;

 group.on('connection', function(socket) {
 fprintf(STDERR,
 "Connection on group socket from %s\n",
 socket.id);
 socket.on('disconnect', function(reason) {
 fprintf(STDERR,
 "Disconnection from group socket by %s\n",
 socket.id);
 });
 });

 var session = new JUNOSDevice(id,
 CONFIG[id]['host'],
 CONFIG[id]['port'],
 CONFIG[id]['user'],
 CONFIG[id]['password'],
 CONFIG[id]['key']
);
 }

Monitoring and Maintaining JUNOS

[263]

Include a general purpose exception handling routine that will catch any12.
unanticipated errors, print a simple message and then exit:

 process.on('uncaughtException', function(err) {
 console.log("ERROR: ", err.message);
 process.exit(1);
 });

Use the Node.js built-in HTTP web server in order to service requests from the13.
client and set up a simple configuration that supports the delivery of:

The main interfaces.html file,
Supporting client-side libraries such as RGraph:

 function httpHandler (req, res) {
 var filename=__dirname + "/interfaces.html";
 if (req.url.startsWith("/RGraph")) {
 filename=__dirname+"/RGraph/"+path.basename(req.url);
 }
 fs.readFile(filename, function (err, data) {
 if (err) {
 res.writeHead(404, "Not found");
 return res.end();
 }
 res.writeHead(200);
 res.end(data);
 });
 }

Start the server listening on an appropriate TCP port:14.

 app.listen(8080);

Web client application
The client application is downloaded from the server and is run in the user's browser. It
establishes a real-time web socket to the server, and upon connection the server informs the
client of devices available for inspection. As the user chooses a device of interest, the client
attaches to the associated socket group in order to receive updates. As the updates arrive,
the client will draw the graph within the browser environment:

Create interfaces.html in a text editor of your preference and input the1.
following HTML framework to define some simple stylesheets and to reference
the socket.io and RGraph client-side libraries. Leave a space within the
<script> tags for placing our web client logic:

Monitoring and Maintaining JUNOS

[264]

 <!DOCTYPE HTML>
 <html>
 <head>
 <title> JUNOS Interface Performance Monitor</title>

 <style>
 div {
 /*display: block;*/
 font-family: sans-serif;
 font-size: 12px;
 margin: 25px;
 }

 div.heading {
 display: block;
 font-family: sans-serif;
 font-size: 18px;
 font-weight: bold;
 }
 </style>

 <script src="RGraph.common.core.js" ></script>
 <script src="RGraph.common.key.js"></script>
 <script src="RGraph.line.js" ></script>
 <!--[if lt IE 9]><script src="excanvas.js"></script><![endif]-
->

 <script src="/socket.io/socket.io.js"></script>

 <script>
 <!-- Our code will go here -->
 </script>

 </head>

 <body>
 <div class="heading">
 JUNOS Interface Performance Monitor
 </div>

 <div>
 Please select device:
 <select id="selector"></select>
 </div>

 <div id="container">
 <!-- Graphs go here -->
 </div>

Monitoring and Maintaining JUNOS

[265]

 </body>

 </html>

Within the <script> tags, continue the main code which starts with some run-2.
time constants and a utility function to convert a number into an appropriately
suffixed abbreviation. For example, Mbps, Gbps:

 const MAXDATA = 12; // maximum number of data samples
 const CANVAS_WIDTH = 750;
 const CANVAS_HEIGHT = 300;

 // Graph helper: add a suitable suffix to a number
 function scaleBits(obj, x) {
 if (x>1e12) return x/1e12 + "T";
 if (x>1e9) return x/1e9 + "G";
 if (x>1e6) return x/1e6 + "M";
 if (x>1e3) return x/1e3 + "k";
 return x;
 };

Define the WebClient constructor function, which is the central component of3.
the client:

 function WebClient() {
 var self = this;
 self.GRAPHS={}; // references to the RGraph objects
 self.DATA={}; // the data collected from the server
 self.socket = io();
 self.socket_device = null;
 self.container = document.getElementById("container");
 self.selector = document.getElementById("selector");

 self.socket.on('config', function(data) {
 self.configureDevices(data); });
 };

Define a method for configuring the user interface to reflect the server's report of4.
available devices:

 WebClient.prototype.configureDevices = function(config) {
 var self = this;
 while (self.selector.firstChild) {
 self.selector.removeChild(selector.firstChild);
 }
 for (i=0; i<config.length; i++) {
 self.selector.appendChild(new Option(config[i]));

Monitoring and Maintaining JUNOS

[266]

 }
 self.selector.onchange = function() {
 self.selectNewDevice();
 }
 self.selector.selectedIndex=0; self.selectNewDevice();
 };

Define a method for selecting one of the available devices, and updating the local5.
user interface appropriately.

 WebClient.prototype.selectNewDevice = function() {
 var self = this;
 if (self.socket_device!=null) self.socket_device.close();

 // Clear the data stores
 for (var name in self.GRAPHS) {
 RGraph.reset(document.getElementById(name));
 delete self.GRAPHS[name];
 }
 for (var name in self.DATA) { delete self.DATA[name]; }

 // Remove the canvas objects
 while (self.container.firstChild) {
 self.container.removeChild(self.container.firstChild);
 }

 RGraph.ObjectRegistry.clear();

 // Create new socket, bound to new device namespace
 self.socket_device =
 io("/device"+self.selector.selectedIndex);
 self.socket_device.on('interface-stats', function(data) {
 self.updateGraphs(data)
 });
 };

Define a method for updating the displayed graphs when the server reports new6.
data for the device:

 WebClient.prototype.updateGraphs = function(data) {
 var self = this;
 var name = data['name'];
 var stats = data['stats'];
 var description = data['description'];
 var timestamp = data['__time'];

 if (self.DATA[name]==undefined) {
 self.DATA[name]={};

Monitoring and Maintaining JUNOS

[267]

 }
 for (var key in stats) {
 if (self.DATA[name][key]==undefined) {
 self.DATA[name][key]=[];
 }
 self.DATA[name][key].push(stats[key][0]);
 if (self.DATA[name][key].length>MAXDATA) {
 self.DATA[name][key].shift();
 }
 }
 if (self.DATA[name]['__time']==undefined) {
 self.DATA[name]['__time']=[];
 };
 self.DATA[name]['__time'].push(timestamp);
 if (self.DATA[name]['__time'].length>MAXDATA) {
 self.DATA[name]['__time'].shift();
 }

 var canvas = document.getElementById(name);
 if (canvas==null) {
 canvas = document.createElement("canvas");
 canvas.width=CANVAS_WIDTH; canvas.height=CANVAS_HEIGHT;
 canvas.setAttribute("id", name);
 self.container.appendChild(canvas);
 }
 var graph = new RGraph.Line({
 id: name,
 data: [self.DATA[name]['input-bps'],
 self.DATA[name]['output-bps']
],
 options: {
 colors: ['green', 'red'],
 key: ['in', 'out'],
 title: name + " (" + description + ")" + " (bps)",
 labels: self.DATA[name]['__time'].map(function(d) {
 return new Date(d).toTimeString().split(" ")[0];
 }),
 textSize: 10,
 // spline: true,
 scaleFormatter: scaleBits,
 }
 });
 self.GRAPHS[name]=graph;
 RGraph.reset(canvas);
 graph.draw();
 };

Monitoring and Maintaining JUNOS

[268]

Arrange for the WebClient class to be kick-started when the page has loaded,7.
finally closing the <script> tags.

Setting up and Running
Download and unzip the RGraph software into the application project directory.1.
For the purposes of this recipe, I have used the latest stable version, dated
2017-08-26, available at https:/ ​/​www. ​rgraph. ​net/​downloads.
Prepare a JSON configuration file in the application project directory listing each2.
of the JUNOS OS devices to connect to. For my SSH-tunnelled lab environment, I
use the following:

 $ more config.json
 [
 { "host": "127.0.0.1", "user": "auto", "privateKey":
 "JUNOS_auto_id_rsa", "port": 8930 },
 { "host": "127.0.0.1", "user": "auto", "privateKey":
 "JUNOS_auto_id_rsa", "port": 8931 }
]

On the management server in your application project directory, you should have3.
the following files:

Filename Description

interfaces.html The client-side HTML/Javascript to be delivered to a connecting web
client

collector.js The server-side component

config.json Configuration file specifying the JUNOS OS devices

node_modules Directory containing all pre-requisite Node.js packages and modules

RGraph Directory containing the RGraph Javascript graphing software

Start the collector.js server running and use your browser to open the4.
appropriate URL. In our case, we used TCP port 8080.

../../../../../https@www.rgraph.net/downloads
../../../../../https@www.rgraph.net/downloads
../../../../../https@www.rgraph.net/downloads
../../../../../https@www.rgraph.net/downloads
../../../../../https@www.rgraph.net/downloads
../../../../../https@www.rgraph.net/downloads
../../../../../https@www.rgraph.net/downloads
../../../../../https@www.rgraph.net/downloads
../../../../../https@www.rgraph.net/downloads
../../../../../https@www.rgraph.net/downloads
../../../../../https@www.rgraph.net/downloads

Monitoring and Maintaining JUNOS

[269]

How it works...
The server application and web client application work in tandem to distribute the
extracted interface performance data from the JUNOS routers efficiently to the user's
browsers, depending on user interface selections.

Server application
The server application is a multi-protocol Node.js application, written in a single file for
convenience and ease of illustration here. It has two major I/O functions:

Speaking HTTP and the WebSocket overlay (for real-time sockets
communication) to web clients
Communicating NETCONF over SSH to JUNOS OS routers

The asynchronous I/O model of Node.js allows us to implement this quite efficiently within
a single application. An event loop polls for I/O from the operating system and dispatches
prescribed event handlers as required.

Steps 1 through 3 see us setup the beginning of a Node.js application, download the
necessary library modules and reference the namespace of our application. Notice also that
in step 2, we identify a run-time constant, INTERVAL, which defines how long we wait
between poll cycles.

In step 4, we define the XML dialog that we are going to be working with. In this case, we're
working with the <get-interface-information> RPC and specifically the <media>
version of it, which returns us a structured XML that typically looks like the following. The
parts of the XML that we're interested in are: the name, the operational status, and the
traffic statistics, shown in bold type:

<interface-information
xmlns="http://xml.juniper.net/JUNOS/14.1R6/JUNOS-interface"
JUNOS:style="normal">
 <physical-interface>
 <name>xe-0/0/0</name>
 <admin-status JUNOS:format="Enabled">up</admin-status>
 <oper-status>down</oper-status>
 <local-index>194</local-index>
 <snmp-index>760</snmp-index>
 <link-level-type>Ethernet</link-level-type>
[…]
 <traffic-statistics JUNOS:style="brief">
 <input-bps>0</input-bps>
 <input-pps>0</input-pps>

Monitoring and Maintaining JUNOS

[270]

 <output-bps>0</output-bps>
 <output-pps>0</output-pps>
 </traffic-statistics>
[…]
</interface-information>

In order to be able to connect to the JUNOS OS device and extract the XML associated with
a remote procedure call, we need to implement a NETCONF-over-SSH transport. And that's
what we start to do in step 5, in the form of the JUNOSDevice class definition. This class
implements a simplistic NETCONF protocol over the top of an SSH session created by the
ssh2 library. The JUNOSDevice class manages the SSH session and associated credentials,
and deals with connecting to the remote endpoints and sending and receiving messages.

In step 6, we define a strategy for making connections to the NETCONF-over-SSH service.
We make use of two-phase connect strategies using the connectTimer flag in the
JUNOSDevice. This looks overly complicated, but it affords us the luxury of being able to
try to connect more than once and not have anything go awry. This means that we can
easily specify the scheduleConnect method as a remedy in exception handlers that deal
with errors without unduly worrying about the state or duplicating connections.

Step 6 deals with a multi-layer SSH setup. First of all we set up the SSH client session which
has to deal with authentication. Then we request the NETCONF subsystem which results in
us getting a readable and writable stream. We tie up the data event on the NETCONF
subsystem stream to our doRead() method which we define in step 7. doRead() simply
takes a chunk of data and looks for the presence of the special NETCONF delimiting
sequence. It uses this to break up messages and send them off to the xml2js library for
parsing into structured data.

In step 8, we define the function that deals with the output from the XML processing
activity. We run an if-then-else ladder implementing intelligent responses to the XML
messages that we might hear from the server. The only messages that we're really interested
in at this stage are the <hello> message, in which case we issue our <get-interface-
information> RPC, and the <rpc-reply> message, in which case we try to extract the
communicated information and relay it onto interested web clients.

Having defined all the event handlers, we get the main part of the code underway in step 9.
The GROUPS variable is initialized to a JavaScript array. It will hold, in each element, a
socket.io group socket for each device declared in the configuration file. Sending a
message to the group socket will result in it being sent to any of the web clients that have
subscribed to the group. This is a nice, easy and convenient way of avoiding the server
flooding all information to all clients. The server only sends information for a given JUNOS
OS device to the web clients that have selected that device in their user interface.

Monitoring and Maintaining JUNOS

[271]

In step 10, we specify the socket.io prescribed action that should happen when a web
client connects. In our case, we emit a data package containing the details of our
configuration. This allows the client to read the list of devices that are available and to
present them to the UI.

In step 11, we go through each device that has been specified in the configuration file, and
we kick off a JUNOSDevice() constructor call for each one. This will, in turn, attempt to
connect to all of the remote devices, simultaneously, and asynchronously.

The final steps needed for making the server work are in steps 12 and 13. socket.io and
Node.js's HTTP module are doing the lion's share of work with respect to the real-time web
sockets and HTTP, but we do need to let the HTTP server know how to serve
interfaces.html, the source code for the web client on the browser, and any related
dependencies (such as RGraph). We do that with the logic defined in the httpHandler
function.

Finally, we start listening for incoming HTTP requests from clients in step 13.

Web client application
In the client application, life starts when the user downloads interfaces.html, which is
served by the server in response to almost any URL on the server, for convenience.
interfaces.html is a simple HTML5 document with a basic layout which defines a
heading and an empty drop-down selection box.

The Javascript attached to interfaces.html defines the WebClient class, which
encapsulates the main cut and thrust of the web client logic. The web client is triggered as
soon as the page is loaded and starts by connecting a socket.io resource to the server for
real-time communications. When the server notices us connect, he responds with a config
event. The event structure contains a configuration data package which gives us a list of
devices that he's monitoring and are available for selection:

Monitoring and Maintaining JUNOS

[272]

Figure 7.6 Chrome Javascript object inspection: configuration event

configureDevices() uses this to dynamically update the drop-down selection box with
the names of the devices so that the user can choose from the list.

Whenever the user makes a selection from the drop-down list, selectNewDevice()
signals the interest to the server by joining the associated socket.io group socket
namespace. Then, when the server issues an update for the device we've selected, it will
come to the group socket for the device and will be picked up by updateGraphs().

updateGraphs() responds to an update event from the server by manipulating the
browser document in order to create a drawing canvas for any interfaces that are reported
in the update. It captures the data, stores it in a global array, then calls RGraph in order to
render the graph based on the current data:

Figure 7.7 Chrome Javascript objection inspection: data event

Monitoring and Maintaining JUNOS

[273]

Each and every time the server issues an update event with statistics, the web client applies
the data to the graph, giving us a rapidly available visual indication of physical interface
performance. The figure give below shows us the system in action:

Figure 7.8 Screenshot of JUNOS interface performance monitoring

Monitoring and Maintaining JUNOS

[274]

There's more
In our examples, we used the interface statistics from 10 Gigabit Ethernet interfaces on
MX-960s running JUNOS 14.1 and 15.1F. In both these cases, the <get-interface-
information> RPC responses can be seen to provide us with interface counters already
differentiated over unit time. This greatly eases the burden for our application because we
can rely on the JUNOS metering and calculations, and simply plot the reported number.

On some platforms, you may not always get a reported rate. Or the statistic that you're
interested in monitoring might simply be an absolute gauge in the XML responses. If this is
the case, and you require the graph to show the rate of change, then it's necessary to take a
slightly more complicated tactic. Instead of plotting the value directly, as we do here, you
must collect the data into a global array - as we already do - but then populate the graph by
using the rate of change between samples. So if you have ten data points from the network
element, that will translate to nine segments of rate of change. Because our collector code
reports a timestamp with each data point, it's possible to reasonably calculate a rate of
change in this manner.

We look at such a tactic later, when we look at graphing MPLS traffic accounting statistics.

Monitoring system health
In this recipe, we'll build on the techniques and the code produced in Chapter 7, Monitoring
and Maintaing JUNOS, and we'll extend it to make a more generalized NETCONF collector
tool that is able to poll general system health properties such as CPU workload.

Getting ready
In order to complete this recipe, you'll need:

Access to a development/management platform, with the following software
available:

Node.js v4 or v6
Access to JUNOS devices that you want to monitor, all pre-configured with
NETCONF-over-SSH services enabled and credentials available.

Monitoring and Maintaining JUNOS

[275]

You need a working knowledge of JavaScript, and the common Node.js pattern of calling a
function or method and providing a callback completion handler to deal with the result of
the call. You should have already completed Chapter 7, Monitoring and Maintaining JUNOS,
because we'll use that source code, and monitor it to extend it.

How to do it...
We're going to use the existing framework established in the previous recipe in order to
extract the data associated with the <get-routing-engine-information> XML remote
procedure call. We're going to look at the fields associated with the system load average,
which is roughly defined as the average number of processes waiting for CPU time over a
period of time. The JUNOS OS device reports have three common averaging periods:

1-minute
5-mintes
15-minutes

Server application
We're going to update the collector.js tool in order to support the collection of multiple
RPCs, and we'll write a new HTML client component to show a graph based upon the data
that we've collected:

Copy the existing collector.js from the previous recipe directory into a new1.
directory.
Modify the collector.js application so that it can support more than a single2.
RPC. Update the constant xmlrpc at the top of the file to use a JavaScript array
instead of a simple string:

 const xmlrpc = [
 "<rpc><get-interface-information><media/></get-interface-
 information></rpc>\n",
 "<rpc><get-route-engine-information/></rpc>\n"
];

Monitoring and Maintaining JUNOS

[276]

Modify the constructor function for the JUNOSDevice class so that it has an3.
instance member which can track the state of which RPCs have run and which
are still to be requested.

 function JUNOSDevice(id, host, port, username,
 password, privateKey) {
 var self = this;
 self.id = id;
 self.host = host;
 self.port = port;
 self.username = username;
 self.password = password;
 self.privateKey = privateKey;
 self.stream = null;
 self.client = null;
 self.buffer = "";
 self.connectTimer=null;
 self.cursor=0;

 self.scheduleConnect(0);
 };

Define a method for the JUNOSDevice class which can be used to send the next4.
message in the running sequence:

 JUNOSDevice.prototype.sendNextMsg = function() {
 var self = this;
 if (self.cursor<xmlrpc.length) {
 setTimeout(function() {
 self.stream.write(xmlrpc[self.cursor]+
 DELIMITER+"\n");
 self.cursor++; }, 0);
 } else {
 self.cursor=0;
 setTimeout(function() {
 self.stream.write(xmlrpc[self.cursor]+
 DELIMITER+"\n");
 self.cursor++; }, INTERVAL);
 }
 };

Monitoring and Maintaining JUNOS

[277]

Update the processXMLResponse() method in order to:5.

Make use of the sendNextMsg() method instead of calling
stream.write() directly
Add logic to handle the receipt of the <route-engine-
information> message:

 JUNOSDevice.prototype.processXMLResponse =
 function(err, result) {
 var self = this;
 var interfaces=null;
 if (err) {
 fprintf(STDERR,
 "Unable to parse XML in response from %s: %s\n",
 self.host, err.message);
 } else if (result['hello']) {
 fprintf(STDERR, "%s:%s: Hello message received\n",
 self.host, self.port);
 self.sendNextMsg();

 } else if (routingEngines=walk(result,
 ['rpc-reply', 'route-engine-information', 0,
 'route-engine'])) {
 fprintf(STDERR,
"%s:%s: Routing engine information received: %d item(s) found\n",
 self.host, self.port, routingEngines.length);
 for (i=0; i<routingEngines.length; i++) {
 var name = walk(routingEngines,
 [i, "serial-number", 0]);
 var model = walk(routingEngines,
 [i, "model", 0]);
 var slot = walk(routingEngines,
 [i, "slot", 0]);
 var master = walk(routingEngines,
 [i, "mastership-state", 0]);
 var load1 = walk(routingEngines,
 [i, "load-average-one", 0]);
 var load5 = walk(routingEngines,
 [i, "load-average-five", 0]);
 var load15 = walk(routingEngines,
 [i, "load-average-fifteen", 0]);
 GROUPS[self.id].emit('system-stats', {
 __time: Date.now(),
 name: name,
 model: model,
 slot: slot,

Monitoring and Maintaining JUNOS

[278]

 master: master,
 stats: [load1, load5, load15]});
 }
 self.sendNextMsg();

 } else if (interfaces=walk(result, ['rpc-reply',
 'interface-information', 0,
 'physical-interface'])) {
 fprintf(STDERR,
 "%s:%s: Interface information received: %d interface(s)
 found\n",
 self.host, self.port, interfaces.length);
 for (i=0; i<interfaces.length; i++) {
 var name = walk(interfaces,
 [i, "name", 0]);
 var description = walk(interfaces,
 [i, "description", 0]);
 var stats = walk(interfaces,
 [i, "traffic-statistics", 0]);
 var opstatus = walk(interfaces,
 [i, "oper-status", 0]);

 if ((name.startsWith("xe-") ||
 name.startsWith("ge-") ||
 name.startsWith("et-")) && opstatus=="up") {
 GROUPS[self.id].emit('interface-stats', {
 __time: Date.now(),
 name: name,
 description: description,
 stats: stats });
 }
 }
 self.sendNextMsg();

 } else if (error=walk(result, ['rpc-reply',
 'rpc-error', 0, 'error-message', 0])) {
 fprintf(STDERR,
 "%s:%s: RPC error message received: %s\n",
 self.host, self.port, error);
 } else if (ok=walk(result, ['rpc-reply',
 'ok', 0])=="") {
 fprintf(STDERR, "%s:%s: OK message received\n",
 self.host, self.port);
 } else {
 fprintf(STDERR,
 "%s:%s: Unexpected XML message received\n",
 self.host, self.port);
 fprintf(STDERR, "%s\n", util.inspect(result,

Monitoring and Maintaining JUNOS

[279]

 { depth: 8}));
 }
 }

Update the HTTP handler routine in order to allow it to serve a new web client6.
file, system.html, as well as the existing file:

 function httpHandler (req, res) {
 var filename=__dirname + "/system.html";
 if (req.url=="/interfaces.html") filename=__dirname +
 "/interfaces.html";
 if (req.url.startsWith("/RGraph")) {
 filename=__dirname+"/RGraph/"+path.basename(req.url);
 }
 fs.readFile(filename, function (err, data) {
 if (err) {
 res.writeHead(404, "Not found");
 return res.end();
 }
 res.writeHead(200);
 res.end(data);
 });
 }

Web client application
We're going to create a new web client that will query the collected data and display it
using RGraph with appropriately worded legends and text:

Start by copying interfaces.html from the previous recipe directory into a1.
new directory. Give the HTML file a new name - system.html to match the
expectations of the server HTTP configuration.

Modify the <title> and heading-class <div> tags to change the text to reflect2.
the different metrics and graph report:

 <!DOCTYPE HTML>
 <html>
 <head>
 <title> JUNOS System Health Monitor</title>
 [...]

[...]
<body>
 <div class="heading">

Monitoring and Maintaining JUNOS

[280]

 JUNOS System Health Monitor
 </div>

Modify the selectNewDevice() method of WebClient in order to change the3.
name of the event of interest that the client listens out for:

 WebClient.prototype.selectNewDevice = function() {
 var self = this;
 if (self.socket_device!=null) self.socket_device.close();

 // Clear the data stores
 for (var name in self.GRAPHS) {
 RGraph.reset(document.getElementById(name));
 delete self.GRAPHS[name];
 }
 for (var name in self.DATA) { delete self.DATA[name]; }

 // Remove the canvas objects
 while (self.container.firstChild) {
 self.container.removeChild(self.container.firstChild);
 }

 RGraph.ObjectRegistry.clear();

 // Create new socket, bound to new device namespace
 self.socket_device =
 io("/device"+self.selector.selectedIndex);
 self.socket_device.on('system-stats', function(data) {
 self.updateGraphs(data)
 });
 };

Modify the updateGraphs() method of WebClient in order to:4.
Include the extra data fields that we're interested in: routing-engine
model, slot, mastership state
Update the method of storing the time-series data in the DATA global
variable
Update the graph configuration to include three traces, one for each of
the extracted items of data

Monitoring and Maintaining JUNOS

[281]

Include a key legend to explain the association to the user
Format the number on the Y-axis to two decimal places:

 WebClient.prototype.updateGraphs = function(data) {
 var self = this;
 console.log(data);
 var name = data['name'];
 var stats = data['stats'];
 var model = data['model'];
 var slot = data['slot'];
 var master = data['master'];
 var timestamp = data['__time'];

 var description = model + " (serial " + name + ")";
 if (slot!=undefined) description+=": slot " + slot;
 if (master=="master") description+=": master";

 if (self.DATA[name]==undefined) {
 self.DATA[name]={};
 }
 for (var i=0; i<stats.length; i++) {
 if (self.DATA[name][i]==undefined) {
 self.DATA[name][i]=[];
 }
 self.DATA[name][i].push(stats[i]);
 if (self.DATA[name][i].length>MAXDATA) {
 self.DATA[name][i].shift();
 }
 }
 if (self.DATA[name]['__time']==undefined) {
 self.DATA[name]['__time']=[];
 }
 self.DATA[name]['__time'].push(timestamp);
 if (self.DATA[name]['__time'].length>MAXDATA) {
 self.DATA[name]['__time'].shift();
 }

 var canvas = document.getElementById(name);
 if (canvas==null) {
 canvas = document.createElement("canvas");
 canvas.width=CANVAS_WIDTH; canvas.height=CANVAS_HEIGHT;
 canvas.setAttribute("id", name);
 self.container.appendChild(canvas);
 }
 var graph = new RGraph.Line({
 id: name,
 data: [self.DATA[name][0],

Monitoring and Maintaining JUNOS

[282]

 self.DATA[name][1],
 self.DATA[name][2]],
 options: {
 colors: ['green', 'red', 'blue'],
 key: ['1min avg', '5min avg', '15min avg'],
 title: "Number of processes in CPU ready queue: " +
 description,
 labels: self.DATA[name]['__time'].map(function(d) {
 return new Date(d).toTimeString().split(" ")[0];
 }),
 textSize: 10,
 scaleDecimals: 2,
 }
 });
 self.GRAPHS[name]=graph;
 RGraph.reset(canvas);
 graph.draw();
 };

How it works...
The structure of the server application and its interaction with the network elements and
client application is very similar to the previous recipe, Monitoring interface performance. The
most significant difference is the implementation of a queue of XML messages in the
collection server. This allows a single collection server to be used with a variety of web
client applications, with the web client application focusing on a different aspect of the
collected data, or perhaps presenting the data in a different way.

Server application
In step 1, we simply copy the previous recipe collector.js file as a basis for our
improvements. In step 2, we modify the variable determining the XML dialog with the
network elements so that instead of maintaining a single string, it now maintains a list of
strings which we intend the server to cycle through within an polling interval. In order to
keep track of where we are in this list, we need a cursor - something to remind us of the
message that we sent, and the next message that we should send. So in step 3, we add this to
the constructor of JUNOSDevice() as an instance variable.

Monitoring and Maintaining JUNOS

[283]

Next, in step 4, we implement sendNextMsg(), a method that can be used by the XML
processing results in order to kick off the next request. This can be called upon completion
of the processing of a request, in order to set flight to the next request. sendNextMsg()
includes the necessary logic to understand when it has reached the end of the list, and when
it is necessary to cycle back round to the beginning after waiting for the interval time.

In step 5, we update the if-then-else ladder-structure in processXMLResponse() to
bolt in a handler for the <route-engine-information> response. We do this while
leaving the existing <interface-information> handler in place so that the same
collector server process can do both jobs. The two different response handlers both perform
similar logic:

They test for the presence of the requisite XML tag,
If it's found, they extract the data of interest to the downstream application,
Then they emit a response-specific event and send it to the socket group
associated with the response and specifically the device.

This means that a web client connected to the socket group for a router, say, Lon-004-
score-1 will receive events for each and any of the XML responses that the server receives
from that device. The web client may only have a client-side logic that is able to prepare
visual graphs for a small portion of this, but it means that the scope for enhanced, multi-
view web client applications is not restricted.

Note that each handler for XML responses calls upon the services of sendNextMsg() to
bounce the next request back to the server, keeping the dialog warm.

In step 6, we need to update the logic for serving static files, since we need the web client to
be able to download the new source code, system.html. Indeed we go as far as making the
system.html source file the default option.

Client application
There are two major modifications to the web client application to make it render a graph
that displays the load average. After adjusting the titles in step 2, we update the
selectNewDevice() method in step 3 in order to change the name of the event of interest
which fires the updateGraph() method. Previously, for the interface.html application,
we used an event name called interface-stats. For this application, we use a different
name, system-stats. The different unique names allows us to support multiple web client
applications with the same collector server process.

Monitoring and Maintaining JUNOS

[284]

Then in step 4, we modify the updateGraphs() function in order to render the new graph.
The differences from the interfaces graph are slight; the name of each graph is built up from
a description of the model of the routing engine, its serial number and whether it is housed
in a slot in a distributed chassis. And we also make an effort to include the master ship
status of the route engine.

The data sources are in a different array, and we have three of them, rather than two and
the metric being plotted is likely to be a low number where we value decimals, so we
include the scaleDecimal directive for RGraph to ensure that we get enough resolution on
the Y-axis.

Running the application
When we start the server application at the command line, we see a series of event reports
as things happen. The server application first of all tried to connect to the SSH client for
each of the JUNOS endpoints that are declared in the configuration file. It then tried to
retrieve, in order, interface and route-engine information from all endpoints. Then it
recorded the web socket connections from the web clients. The main socket telemetry is a
client connecting to the main page and receiving a configuration event telling it about
available devices. The group socket telemetry is an attachment to a device of interest, based
upon the drop-down list in the user interface:

0$./collector.js -f config.json
127.0.0.1:8930: Trying to connect SSH
127.0.0.1:8931: Trying to connect SSH
127.0.0.1:8933: Trying to connect SSH
127.0.0.1:8933: Hello message received
127.0.0.1:8933: Interface information received: 18 interface(s) found
127.0.0.1:8933: Routing engine information received: 1 item(s) found
127.0.0.1:8931: Hello message received
127.0.0.1:8930: Hello message received
127.0.0.1:8931: Interface information received: 155 interface(s) found
127.0.0.1:8931: Routing engine information received: 2 item(s) found
Connection on main socket from k7ONwkTpAEwLhTcEAAAA
Connection on group socket from /device2#k7ONwkTpAEwLhTcEAAAA
127.0.0.1:8930: Interface information received: 246 interface(s) found
Connection on main socket from PlqINze0J88-_XHWAAAB
Connection on group socket from /device0#PlqINze0J88-_XHWAAAB
127.0.0.1:8930: Routing engine information received: 2 item(s) found
127.0.0.1:8933: Interface information received: 18 interface(s) found
127.0.0.1:8933: Routing engine information received: 1 item(s) found
127.0.0.1:8931: Interface information received: 155 interface(s) found
127.0.0.1:8931: Routing engine information received: 2 item(s) found
127.0.0.1:8930: Interface information received: 246 interface(s) found

Monitoring and Maintaining JUNOS

[285]

127.0.0.1:8930: Routing engine information received: 2 item(s) found

Figure 7.9 Screenshot of JUNOS system health monitoring

Monitoring and Maintaining JUNOS

[286]

There's more
The other metric that is particularly useful in assessing general system health is the CPU
utilization percentages. Generally an operating system is able to account for the number of
cycles spent by the CPU on user activities, operating system activities and interrupt time.
These statistics are available to us in the RPC response to <get-route-engine-
information>, and so it is possible for us to modify this recipe to:

Capture <cpu-user>, <cpu-background>, <cpu-system>, <cpu-interrupt>,
<cpu-idle> elements from the RPC response,
Add these to the system-stats event emitted,
Create a system.html modification that produces a pie-chart showing the
percentage of time spent within each state.

The steps are as follows:

Within the server application, we just need to add the extra data items that need1.
to be extracted from the RPC. In the processXMLResponse() method, add these
parts (emboldened):

 } else if (routingEngines=walk(result, ['rpc-reply', 'route-engine-
information', 0, 'route-engine'])) {
 fprintf(STDERR,
 "%s:%s: Routing engine information received: %d item(s) found\n",
 self.host, self.port, routingEngines.length);
 for (i=0; i<routingEngines.length; i++) {
 var name = walk(routingEngines,
 [i, "serial-number", 0]);
 var model = walk(routingEngines,
 [i, "model", 0]);
 var slot = walk(routingEngines,
 [i, "slot", 0]);
 var master = walk(routingEngines,
 [i, "mastership-state", 0]);
 var load1 = walk(routingEngines,
 [i, "load-average-one", 0]);
 var load5 = walk(routingEngines,
 [i, "load-average-five", 0]);
 var load15 = walk(routingEngines,
 [i, "load-average-fifteen", 0]);

 var cpu_user = walk(routingEngines,
 [i, "cpu-user", 0]);
 var cpu_background = walk(routingEngines,
 [i, "cpu-background", 0]);

Monitoring and Maintaining JUNOS

[287]

 var cpu_system = walk(routingEngines,
 [i, "cpu-system", 0]);
 var cpu_interrupt = walk(routingEngines,
 [i, "cpu-interrupt", 0]);
 var cpu_idle = walk(routingEngines,
 [i, "cpu-idle", 0]);

 GROUPS[self.id].emit('system-stats', { __time: Date.now(),
 name: name,
 model: model,
 slot: slot,
 master: master,
 stats: [load1, load5, load15],
 cpustats: [cpu_idle,
 cpu_interrupt, cpu_system,
 cpu_background, cpu_user
]
 });
 }
 self.sendNextMsg();

Modify the HTTP source file list to include a new web client application; let's call2.
it system-cpu.html:

// HTTP bootstrap handler routine. Serves out the client HTML
 function httpHandler (req, res) {
 var filename=__dirname + "/system.html";
 if (req.url=="/system-cpu.html") filename=__dirname +
 "/system-cpu.html";
 if (req.url=="/interfaces.html") filename=__dirname +
 "/interfaces.html";
 if (req.url.startsWith("/RGraph")) {
 filename=__dirname+"/RGraph/"+path.basename(req.url);
 }
 fs.readFile(filename, function (err, data) {
 if (err) {
 res.writeHead(404, "Not found");
 return res.end();
 }
 res.writeHead(200);
 res.end(data);
 });

Copy system.html to a new file system-cpu.html, and at the top of the file,3.
include the RGraph bar chart module. We'll display the CPU utilisation
percentages as a stacked bar-graph against time:

Monitoring and Maintaining JUNOS

[288]

 <script src="RGraph.common.core.js" ></script>
 <script src="RGraph.common.key.js"></script>
 <script src="RGraph.line.js" ></script>
 <script src="RGraph.bar.js" ></script>

Then modify the updateGraphs() method in order to deal with the five-tuple of4.
CPU utilization percentages coming in from the server:

 WebClient.prototype.updateGraphs = function(data) {
 var self = this;
 console.log(data);
 var name = data['name'];
 var stats = data['stats'];
 var cpustats = data['cpustats'];
 var model = data['model'];
 var slot = data['slot'];
 var master = data['master'];
 var timestamp = data['__time'];

 var description = model + " (serial " + name + ")";
 if (slot!=undefined) description+=": slot " + slot;
 if (master=="master") description+=": master";

 if (self.DATA[name]==undefined) {
 self.DATA[name]={};
 }
 if (self.DATA[name]['cpustats']==undefined) {
 self.DATA[name]['cpustats']=[];
 }
 self.DATA[name]['cpustats'].push(cpustats);
 if (self.DATA[name]['cpustats'].length>MAXDATA) {
 self.DATA[name]['cpustats'].shift();
 }

 if (self.DATA[name]['__time']==undefined) {
 self.DATA[name]['__time']=[];
 }
 self.DATA[name]['__time'].push(timestamp);
 if (self.DATA[name]['__time'].length>MAXDATA) {
 self.DATA[name]['__time'].shift();
 }
 var canvas = document.getElementById(name);
 if (canvas==null) {
 canvas = document.createElement("canvas");
 canvas.width=CANVAS_WIDTH; canvas.height=CANVAS_HEIGHT;
 canvas.setAttribute("id", name);
 self.container.appendChild(canvas);
 }

Monitoring and Maintaining JUNOS

[289]

 var graph = new RGraph.Bar({
 id: name,
 data: self.DATA[name]['cpustats'],
 options: {
 labels: self.DATA[name]['__time'].map(function(d) {
 return new Date(d).toTimeString().split(" ")[0];
 }),
 key: ['idle', 'interrupt', 'system', 'background', 'user'],
 colors: ['green', 'red', 'brown', 'yellow', 'orange'],
 title: "CPU Utilisation: " + description,
 ymax: 100.0,
 hmargin: 0,
 grouping: 'stacked',
 }
 });

The result should be a pretty visible indication of where the CPU resources on your system
are being spent:

Figure 7.10 Screenshot of JUNOS system health monitoring with CPU utilisation

Monitoring and Maintaining JUNOS

[290]

Monitoring MPLS LDP statistics
In this recipe, we'll use the Node.js framework that we created in the previous recipes in
order to query the JUNOS XML API and extract MPLS LDP information about label-
switched paths across the network. The MPLS label-switched path information is valuable
to understand because it generally provides an insight into end-to-end traffic flows, in
contrast with the per-link interface monitoring that we've already completed.

Getting ready
In order to complete this recipe, you'll need:

Access to a development/management platform, with the following software
available:

Node.js v4 or v6
Access to JUNOS OS devices that you want to monitor, all pre-configured with
NETCONF-over-SSH services enabled and credentials available.

It's useful to understand the XML RPC message that we're going to process in this recipe, so
let's take a look at it:

<rpc-reply xmlns:JUNOS="http://xml.juniper.net/JUNOS/14.1R6/JUNOS">
 <ldp-traffic-statistics-information
 xmlns="http://xml.juniper.net/JUNOS/14.1R6/JUNOS-routing">
 <ldp-traffic-statistics>
 <ldp-prefix>10.0.146.16/30</ldp-prefix>
 <ldp-traffic-type>Transit</ldp-traffic-type>
 <ldp-traffic-statistics-packet-count>513949</ldp-traffic-
 statistics-packet-count>
 <ldp-traffic-statistics-byte-count>32049814</ldp-traffic-
 statistics-byte-count>
 <ldp-traffic-multiple-fec>No</ldp-traffic-multiple-fec>
 </ldp-traffic-statistics>
 <ldp-traffic-statistics>
 <ldp-prefix JUNOS:display="none">10.0.146.16/30</ldp-
 prefix>
 <ldp-traffic-type>Ingress</ldp-traffic-type>
 <ldp-traffic-statistics-packet-count>1240</ldp-traffic-
 statistics-packet-count>
 <ldp-traffic-statistics-byte-count>41212</ldp-traffic-
 statistics-byte-count>
 <ldp-traffic-multiple-fec>No</ldp-traffic-multiple-fec>
 </ldp-traffic-statistics>

Monitoring and Maintaining JUNOS

[291]

The <get-ldp-traffic-statistics-information> RPC produces a table of
information that reports the number of bytes and packets switched down a given label-
switched path. Because a label-switched path is synonymous with a FEC - a forwarding
equivalence class - which is simply another term for an IP destination. On most MPLS/IP
networks however, the IP destination is simply the destination of the outgoing router - as
determined by the ingress JUNOS PE router, not the actual packet destination itself.

Notice how the JUNOS router gives two entries in the table: one for transit LSPs and one for
ingress LSPs. This is a differentiation between traffic that originated at this node, versus
traffic that originated at another node and is simply transiting through this node as MPLS.
We're interested in the first category because it allows us to build up a matrix of source-
destination pairs, which can help us plan where to put new circuits.

How to do it...
We're going to take the source code from the previous recipes as a basis and modify it. We
want the server application to collect the <get-ldp-traffic-statistics-
information> data and send it to the web client, and we want the web client to visualise
the data in an appropriate graph.

Server application
We'll use the existing framework from one of the previous recipes as a basis, and modify it
for our needs.

Take the collector.js source code from the system health monitoring recipe.1.
(Ensure it has the modification so that it can poll multiple XML RPCs).
Add in the <get-ldp-traffic-statistics-information> RPC to the list of2.
XML RPCs at the top of the file. (There's no need to keep any of the other RPCs
unless you intend to use the collector with the other associated web clients):

const xmlrpc = [
"<rpc><get-interface-information><media/></get-interface-
information></rpc>\n",
"<rpc><get-route-engine-information/></rpc>\n",
"<rpc><get-ldp-traffic-statistics-information/></rpc>\n"
];

Monitoring and Maintaining JUNOS

[292]

Modify the processXMLResponse() function in order to deal with the response3.
to the LDP information RPC, and emit an ldp-stats event to any interested,
connected web client:

 } else if (ldp=walk(result, ['rpc-reply',
 'ldp-traffic-statistics-information', 0,
 'ldp-traffic-statistics'])) {
 fprintf(STDERR,
 "%s:%s: LDP traffic statistics: %d interface(s) found\n",
 self.host, self.port, ldp.length);
 var stats={};
 for (i=0; i<ldp.length; i++) {

 var prefix = walk(ldp, [i, "ldp-prefix", 0]);
 var type = walk(ldp, [i, "ldp-traffic-type", 0]);
 var bytes = walk(ldp,
 [i, "ldp-traffic-statistics-byte-count", 0]);

 if (type=="Ingress") {
 stats[prefix]=bytes;
 }
 }
 GROUPS[self.id].emit('ldp-stats', {
 __time: Date.now(),
 stats: stats
 });

 self.sendNextMsg();

Update the httpHandler routine to allow the Node.js web server to serve a source4.
file for a new web client that we will create. We'll call it mpls.html. As
previously, there is no need to keep the logic to allow the other HTML files if you
are not using them:

function httpHandler (req, res) {
 var filename=__dirname + "/system.html";
 if (req.url=="/mpls.html") filename=__dirname + "/mpls.html";
 if (req.url=="/system-cpu.html") filename=__dirname + "/system-cpu.html";
 if (req.url=="/interfaces.html") filename=__dirname + "/interfaces.html";
 if (req.url.startsWith("/RGraph")) {
 filename=__dirname+"/RGraph/"+path.basename(req.url);
 }
 fs.readFile(filename, function (err, data) {
 if (err) {
 res.writeHead(404, "Not found");
 return res.end();
 }

Monitoring and Maintaining JUNOS

[293]

 res.writeHead(200);
 res.end(data);
 });
}

Web client application
Again we'll take the web client framework from one of the previous recipes, and modify
that to our needs. What we want to achieve is a horizontal bar chart that lists the MPLS
destinations downwards, illustrating the traffic level on the x-axis.

Copy the system.html example from the Monitoring system health recipe, and1.
rename it to mpls.html.
First of all, change the title of the HTML document to something more2.
appropriate:

 <!DOCTYPE HTML>
 <html>
 <head>
 <title>JUNOS MPLS Traffic Monitor</title>

Then, include the necessary RGraph Javascript source code to support horizontal3.
bar graphs:

 <script src="RGraph.common.core.js" ></script>
 <script src="RGraph.common.key.js"></script>
 <script src="RGraph.hbar.js"></script>

 <script src="/socket.io/socket.io.js"></script>

Because we're only displaying a single graph on a page, rather than a graph per-4.
interface, or per-routing engine, we can simplify the web client a somewhat. It
doesn't need to keep track of the graphs on the page any more, so remove the
reference to self.GRAPHS in the constructor.

 function WebClient() {
 var self = this;
 //self.GRAPHS={};
 self.DATA={}; // the data collected from the server
 self.socket = io();
 self.socket_device = null;
 self.container = document.getElementById("container");
 self.selector = document.getElementById("selector");

 self.socket.on('config', function(data) {

Monitoring and Maintaining JUNOS

[294]

 self.configureDevices(data); });

 };

Likewise, simplify the selectNewDevice() method as well. It has no need to5.
clear any existing graphs or canvases as the previous version did. It simply needs
to clear any data held: in the DATA array. It should also set an event handler for
the ldp-stats event:

 WebClient.prototype.selectNewDevice = function() {
 var self = this;
 if (self.socket_device!=null) self.socket_device.close();

 for (var name in self.DATA) { delete self.DATA[name]; }

 // Remove the canvas objects
 while (self.container.firstChild) {
 self.container.removeChild(self.container.firstChild);
 }

 RGraph.ObjectRegistry.clear();

 // Create new socket, bound to new device namespace
 self.socket_device =
 io("/device"+self.selector.selectedIndex);
 self.socket_device.on('ldp-stats', function(data) {
 self.updateGraphs(data)
 });
 };

Re-define the updateGraphs() method which is called whenever any new data6.
arrives. This needs complete re-definition because it changes quite significantly
from the previous versions. In this case, the function takes the incoming data and
determines the rate of change since the last sample:

 WebClient.prototype.updateGraphs = function(data) {
 var self = this;
 var stats = data['stats'];
 var timestamp = data['__time'];

 var rates={};

 if (self.DATA['last']!=undefined) {

 for (var fec in stats) {
 rates[fec] =
 ((stats[fec] - self.DATA['last'][fec])*8) /

Monitoring and Maintaining JUNOS

[295]

 ((timestamp - self.DATA['timestamp'])/1000);
 }

 var sortFunction = function(a,b) {
 if (rates[b]<rates[a]) return -1;
 if (rates[b]>rates[a]) return 1;
 return 0;
 }
 var labels = Object.keys(stats).sort(sortFunction);
 var graphData = [];
 for (var i=0; i<labels.length; i++) {
 graphData.push(rates[labels[i]]);
 }

 var canvas = document.getElementById("ldp-stats");
 if (canvas==null) {
 canvas = document.createElement("canvas");
 canvas.width=CANVAS_WIDTH;
 canvas.height= 25 * labels.length;
 canvas.setAttribute("id", "ldp-stats");
 self.container.appendChild(canvas);
 }

 RGraph.reset(canvas);

 var graph = new RGraph.HBar({
 id: 'ldp-stats',
 data: graphData,
 options: {
 // backgroundBarcolor1: 'white',
 // backgroundBarcolor2: 'white',
 title:
 "MPLS LDP-signalled Ingress LSPs (bps)",
 backgroundGrid: true,
 labelsAbove: true,
 // colors: ['red'],
 labels: labels,
 scaleFormatter: scaleBits
 }
 });

 graph.grow();

 }

Monitoring and Maintaining JUNOS

[296]

Update the title of the web client in the HTML body, to match the heading meta-7.
data.

 <body>
 <div class="heading">
 JUNOS MPLS Traffic Monitor
 </div>

How it works...
The server application collects the essential accounting statistics from the Junos network
element, while the web client application data pro-rates the data over time and renders a
visible graph to the user. Let's take a look at each part in detail.

Server application
The server application follows the same principles learned in the previous recipes. It
instantiates a JUNOSDevice Javascript object for each of the declared JUNOS OS devices in
the configuration file, making use of ssh2 to manage the SSH session, and using xml2js in
order to maintain a flowing XML dialog with each element simultaneously.

After exchanging pleasant XML greetings, the server eventually issues the <get-ldp-
traffic-statistics-information> RPC to the JUNOS device and when the response
comes back, the new code introduced in this recipe fires. It proceeds to extract the following
data from the XML RPC response:

Element Description

ldp-prefix The IP-layer prefix, or forwarding equivalence
class, represented by the label-switched path

ldp-traffic-type Whether the traffic statistics represents traffic
originated on this node from external sources
(Ingress), or whether the traffic is in-flight
from other MPLS PE routers (Transit).

ldp-traffic-statistics-byte-count The bytes switched into this label-switched path

Note that the byte count reported is an absolute gauge number, increasing with each new
packet switched. It is not a measure of the rate of traffic flow, which is usually what is
interesting for the purposes of dimensioning networks.

Monitoring and Maintaining JUNOS

[297]

For any reported statistics that are Ingress in nature, a key-value pair is added to a
dictionary, representing the prefix and the associated byte count. All of the key-value pairs
are packaged up into an ldp-stats event and dispatched to interesting web clients using
socket.io's group socket feature.

Web client application
On the web client, life starts as usual with a config event message being received from the
server as soon as he notices us connect. The associated data identifies the elements that the
server is currently communicating with according to his configuration file, so the
configureDevices() method of WebClient is able to customize a drop-down control to
include these elements for user selection.

When an element is selected, selectNewDevice() prepares the scene by clearing away the
canvas - in case there was a previous graph - and resetting the data structures. It opens a
group socket to the server, which is associated with the device, and sets up a callback of
updateGraphs() to be run whenever there is an ldp-stats message.

updateGraphs() maintains two sets of data:

The current set of byte counters, per prefix as reported by the incoming server
event
The previous set of byte counters, per prefix

Each data set has an associated timestamp, and if both data sets are present - that is, it is not
the first time that we've been called - then updateGraphs() proceeds to calculate the rate
of change of the per-prefix statistics based on the difference in the timestamps. Because the
reported counts are in bytes and the timestamps are in milliseconds, we need to do a bit of
multiplication to get the bits-per-second number that is most convenient in network circles.

The resulting set of numbers, in bits-per-second, are sorted in descending order along with
the prefix names associated with them. These are then fed into RGraph's horizontal bar
graph constructor in order for it to render a visualization of the data.

In this case, because the graph isn't constantly moving against a time-series source, we can
also use the grow() RGraph call in order to animate the drawing of the graph and add a
little bit of pizzazz to the mix.

Monitoring and Maintaining JUNOS

[298]

The resulting output is real-time snapshot of the interior destinations within the network,
sorted by current traffic rate to the destination:

Figure 7.11 Screenshot of MPLS LDP statistics reporting

8
Security Applications

In this chapter, we'll look at the following recipes:

Enforcing configuration checks with commit scripts
Building BGP route filters
Applying anti-spoofing filters
Operating a distributed ACL function

Introduction
One of the most significant motivating factors associated with increasing automation in our
networks is that of reliability. If we can increase the determinism in our network— through
software regularly applying the same templates and processes—then we gain confidence
and assurance in behavior through predictability and regularity. A network that behaves
regularly is simpler to operate, easier to troubleshoot and generally easier to manage. But
the other benefit that comes out of regularity and reduced complexity is improved security.
In this chapter, we'll look at a series of recipes that help take some of the manual labour
costs out of security-related tasks and procedures.

Enforcing configuration standards through
commit scripts
In this recipe, we'll look at how we improve the security and stability of our network
environment by ensuring that configuration standards are maintained and that common
configuration errors are detected and prevented by the JUNOS system.

Security Applications

[300]

Getting ready
In order to complete this recipe, you just need access to a working JUNOS system that you
can configure and upon which you can deploy SLAX scripts.

We will implement logic on the JUNOS device that prevents the following situations from
occurring, thus warning the operator about the problem.

Loopback interface deletion:The loopback interface often acts as a system
identifier for some protocols and features and so deletion or deactivation of the
loopback address creates a problematic situation
Internal ISIS/OSPF interface deletions:The interior gateway protocol is usually
a fundamental mainstay of the network topology and configurations that remove
interfaces from a working ISIS or OSPF configuration that are likely to be errors
EBGP peers without import policies:Unfiltered EBGP peering relationships can
cause the import of bad or unauthorized routing information which can affect the
stability of the network

Indeed, so significant is the last issue related to route leakage, that the IETF has issued RFC
8212, asking BGP implementations to not permit EBGP sessions to operate without some
sort of policy intention input from the operator.

How to do it...
We're going to deploy a SLAX commit script which will operate after each candidate
configuration is submitted and which will apply logic rules to validate whether the
configuration is sensible before either allowing the configuration to continue or aborting the
operation with an error message.

Create a new SLAX script, commit.slax, and start with the required SLAX1.
boilerplate for a commit script:

 version 1.0;

 ns JUNOS = "http://xml.juniper.net/JUNOS/*/JUNOS";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/JUNOS/commit-scripts/1.0";

 import "../import/JUNOS.xsl";
 match configuration {
 /* our code goes here */
 }

Security Applications

[301]

Within the configuration braces, insert logic to validate:2.

The presence of internet addresses on the loopback interface, and
That the status of the interface is not disabled:

 /* lo0.0 needs to exist and have address */
 var $num_lo0_inets = count(interfaces/interface[name=="lo0"]/
 unit[name=="0"]/family/inet/address);
 if ($num_lo0_inets==0) {
 <xnm:error> {
 <edit-path> "[edit interfaces lo0]";
 <message> "interface must exist and have inet address";
 }
 }

 /* lo0.0 cannot be disabled */
 var $num_lo0_disabled =
 count(interfaces/interface[name=="lo0"]/disable
 | interfaces/interface[name=="lo0"]/
 unit[name=="0"]/disable);
 if ($num_lo0_disabled!=0) {
 <xnm:error> {
 <edit-path> "[edit interfaces lo0]";
 <message> "loopback interface nor unit 0 must not be disabled "
_
 $num_lo0_disabled;
 }
 }

Continue with logic to scan the proposed configuration for interfaces, checking3.
them against the current operational OSPF interface state:

 var $candidate = .;
 var $ospfrpc = {
 <get-ospf-interface-information>;
 }
 var $ospfresult = jcs:invoke($ospfrpc);
 for-each ($ospfresult/ospf-interface) {
 var $if = jcs:split("\\.", interface-name);
 var $nbrs = neighbor-count;
 var $ifd = $if[1];
 var $ifl = $if[2];
 if (jcs:empty($candidate/interfaces/
 interface[name==$ifd]/
 unit[name==$ifl]) && $nbrs!=0) {
 <xnm:error> {
 <edit-path> "[edit interfaces " _ $ifd _

Security Applications

[302]

 " unit " _ $ifl _ "]";
 <message> "interface currently operating OSPF " _
 "(non-zero neighbor count): deactivate OSPF before removing";
 }
 }
 }

Do the same for ISIS, adjusting the operational RPC involved:4.

 var $isisrpc = {
 <get-isis-interface-information> {
 <detail>;
 }
 }
 var $isisresult = jcs:invoke($isisrpc);
 for-each ($isisresult/isis-interface) {
 var $if = jcs:split("\\.", interface-name);
 var $adjs = interface-level-data[level=='2']/adjacency-count;
 var $ifd = $if[1];
 var $ifl = $if[2];
 if (jcs:empty($candidate/interfaces/interface
 [name==$ifd]/unit[name==$ifl])
 && $adjs!=0) {
 <xnm:error> {
 <edit-path> "[edit interfaces " _ $ifd _
 " unit " _ $ifl _ "]";
 <message> "interface currently operating ISIS " _
 "(non-zero adj count): deactivate ISIS before removing";
 }
 }
 }

Finally, include logic to scan all BGP peers that are external and ensure that they5.
have a defined import policy:

 for-each (protocols/bgp/group[type=="external"]/
 neighbor[count(import)==0 && count(../import)==0])
 {
 var $group = ../name;
 var $peer = name;
 <xnm:error> {
 <edit-path> "[edit protocols bgp group " _ $group _
 " neighbor " _ $peer _ "]";
 <message> "EBGP peers must have an import policy";
 }
 }

Security Applications

[303]

Upload the commit.slax commit script to your JUNOS device, copying it to6.
both the routing engines if necessary.

 $ scp commit.slax 10.0.201.201:/var/db/scripts/commit

 adamc@router# run copy /var/db/scripts/commit/commit.slax
 re1:/var/db/scripts/commit
 adamc@router# set system scripts commit file commit.slax

Test out the commit script by simply running a commit check. This will run the7.
commit script as part of the checking process but without actually deploying the
change.

 adamc@router# delete interfaces lo0

 [edit]
 adamc@router# commit check
 [edit interfaces lo0]
 interface must exist and have inet address
 error: 1 error reported by commit scripts
 error: commit script failure

How it works...
The JUNOS configuration commit process is already a complex and comprehensive process.
When a user types commit, several activities go on under the hood to get the configuration
where it should be. In normal operation, without commit scripts, the JUNOS validates the
new candidate configuration file against a set of internal rules and then attempts to
determine which parts of the configuration have changed. Based on the components that
have changed, it signals the underlying daemons that may need to reload configuration.

The commit full command is also available which signals all daemons
and instructs them to re-read their configuration directives. It can be a
useful troubleshooting tool if you suspect a problem with the detection of
configuration changes.

Security Applications

[304]

When we deploy a commit script, however, the process changes. JUNOS takes the
candidate configuration, processes any apply-groups directives and the result is called the
post-inheritance candidate configuration. It passes this configuration to each and every
commit script configured on the system and allows the commit scripts to implement their
own logic and output actions, which can be any or all of:

Emitting a warning message
Emitting an error message
Writing something to the system log
Submitting a change
Submitting a transient change (a change to the configuration right now, but one
that won't be persistent).

By default, if the commit script emits no actions, the operation is deemed to be successful.
But if the commit script emits an error event, the commit operation is stopped, and the user
is informed of the message and the context.

In our case we make use of the ability to stop a commit operation through the issuance of an
error in the event that any of our required checks fail. Let's look at the required checks in
detail.

Loopback address
The loopback address is often used as a point of significance in IP networks, providing
router identifiers and other lynchpins that are not dependent on any single physical
interface. Accidental deletion or deletion of the loopback address can cause significant
disruption, so commit script logic to prevent that is welcome.

In our commit script, we perform two checks. First of all we could check that the number of
IP addresses configured on the Lo0.0 interface is non-zero. Then we check that there is no
attempt to disable either the main loopback interface, or the logical unit 0 interface.

Note that sometimes SLAX has a problem with processing conditionals
which mix functional SLAX expression with XPath expressions. When this
is the case, the answer is usually to pre-compute the SLAX expression and
function call first of all and store in a variable.

Security Applications

[305]

IGP interface deletion
Interfaces within the IGP—be it ISIS or OSPF—often have rules or conventions regarding
their manipulation. Formal out-of-service procedures might require operators to increase
metrics before a shutdown or similar. What is unusual and unhelpful is the deletion or
removal of an interface from the configuration, especially if it is currently participating in
the IGP.

For this test, we make use of jcs:invoke() in order to make an RPC call to query the
active interfaces within the protocols. We check the returned list to ensure that each
interface is present in the configuration, and for each one that isn't, we emit an error
message informing the user of the situation.

EBGP policy default
Inadvertently, accepting inter-domain routes via BGP can be hazardous to health. Generally
speaking, networks have only a small number of EBGP peering sessions that provide a full-
table of internet routing information, and any other EBGP peers which accidentally
advertise routes that they should not, can be contained by deploying import policies to filter
the routes accepted.

In order to implement this check, we use an XPath expression to analyze the configuration
under the [protocols bgp] hierarchy. What we want to see is that for every BGP
group we have that is an external type, every neighbor within that group has an import
directive. Or if that is not the case, the group itself should have an import directive.

Building BGP route filters
In this recipe, we'll look at leveraging some automation power into the task of maintaining
BGP route filters. BGP route filters are an essential part of any internet service provider's
toolkit for maintaining a safe and stable network, and indeed protecting the safe-running of
the global internet. BGP route filters apply a permit/deny policy to the BGP routing protocol
relationship between ISP's autonomous systems according to a prescribed and documented
policy. This means that if one party to the relationship accidentally misconfigures their
BGP-speaking router and advertises routes that they don't intend to, the other party's BGP-
speaking router should be equipped with filters that understand the malfunction in
behavior.

Security Applications

[306]

The theory is good, but the history of the internet has shown that the practice is often
difficult to get right. Sometimes customers don't register their routes correctly. Sometimes
they are in a desperate time-critical need to turn up a BGP session and get service.
Sometimes providers forget to filter a customer if they have a special configuration.

In this recipe, we'll produce a tool that will scan a JUNOS router device configuration
looking for prefix-lists that match a specific naming convention, and for those that it finds, it
will consult the public Internet Routing Registry(IRR) databases in order to download the
latest version of the equivalent prefix-list and then upload it to the router.

We'll build in some safety checks:

If a prefix-list is bigger than a certain size, we won't process it. There comes a
limit to the usefulness of prefix-based filtering for routing policies involving lots
of routes.
If the IRR copy of the prefix-list looks like it has a lot of deletions, compared to
the existing loaded prefix-list, we'll also bail out of automatically updating it, and
ask the user to issue an explicit switch instructing us to go further.

We'll want to see the command-line interface that looks something like this:

Argument/Parameter Description

build-route-filter.py Main executable filename

-h Display help and summary usage

-p TCP port Specify an alternative TCP port to connect to the JUNOS
device

-u username Specify a username to authenticate

-f prefix-list-name Force an update of the named prefix-list

target The router whose configuration we wish to process

Getting ready
In order to complete this recipe, you'll need access to a JUNOS router device with
configured prefix-lists. You don't actually need to be running BGP to dry-run this
recipe—the software we'll create will simply update the prefix-list resources themselves and
allow the operator to bind a BGP session with a prefix-list. But you should be familiar with
BGP and concepts such as:

Security Applications

[307]

Peering sessions
Autonomous systems and AS numbers
Advertising and accepting routing information, Network-Layer Reachability
Information (NLRI) or, more simply, prefixes
Route filters and AS path filters

You'll also needAlexandre Snarskii's excellent bgpq3 package which is a blazingly fast
command-line utility designed to communicate with IRRs such as RIPE, ARIN and RADB
and output a prefix-list containing the appropriate entries.

You can download bgpq3 from here:http:/ ​/ ​snar. ​spb.​ru/ ​prog/ ​bgpq3/ ​.​

How to do it...
We're going to create a Python script, build-route-filters.py, that will login to a
specified router, audit the prefix-list names, and then consult the IRRs in order to create
updated versions of those prefix-lists.

First of all, ensure that bgpq3 is installed on your system and working by1.
running a test query.

 $ bgpq3 -Jl eltel AS20597
 policy-options {
 replace:
 prefix-list eltel {
 81.9.0.0/20;
 81.9.32.0/20;
 81.9.96.0/20;
 81.222.128.0/20;
 81.222.160.0/20;
 81.222.192.0/18;
 85.249.8.0/21;
 85.249.224.0/19;
 89.112.0.0/17;
 217.170.64.0/19;
 }
 }

../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm
../../../../../snar.spb.ru/prog/bgpq3/default.htm

Security Applications

[308]

Assuming all is good, continue to create build-route-filters.py in your2.
preferred development or text editor environment. Start by specifying Python as
the script interpreter and importing the standard library modules required for
this recipe.

 import sys
 import io
 import getpass
 import os
 import json
 import argparse
 import subprocess
 import tempfile
 from jnpr.JUNOS import Device
 from jnpr.JUNOS.utils.config import Config
 from jnpr.JUNOS.exception import RpcError

Continue by defining some runtime constant definitions that will influence how3.
the program works.

 SUFFIX=".auto"
 IRRTOOL="bgpq3"
 MAX_PREFIXES=5000
 MAX_DELS=10

Include a general purpose exception handler, defined to print a simple one-line4.
error message and exit.

 # Error handling
 def onError(exception_type, exception, traceback):
 sys.stderr.write("%s: %s\n" % (exception_type.__name__,
 exception))
 sys.excepthook = onError

Use the argparse module in order to parse the command-line arguments5.
according to the specification defined in the beginning of the recipe. Make use of
the getPass() routine defined in the earlier chapters if required.

 cmdline = argparse.ArgumentParser(
 description="Python JUNOS BGP Prefix-list build tool")
 cmdline.add_argument("target", metavar="router",
 help="Target router to analyse/configure")
 cmdline.add_argument("-p", metavar="port", help="TCP port",
 default=830)
 cmdline.add_argument("-u", metavar="username",
 help="Remote username", default=getpass.getuser())

Security Applications

[309]

 cmdline.add_argument("-f", metavar="prefix-list",
 help="Dismiss change size concerns for prefix-list",
 action="append", default=[])
 args=cmdline.parse_args()
 password=getPass(args.u+"@"+args.target) if 'getPass' in
 globals() else ""

Make use of the PyEZ framework and connect to the specified device by calling6.
the Device() constructor and then calling open() on the returned object.

 dev = Device(host=args.target, user=args.u, port=args.p,
 password=password)
 dev.open()
 dev.timeout = 120

Use the get_config() RPC in order to request the current configuration file7.
from the JUNOS device. Apply a filter to restrict the returned configuration to
that which is contained within the policy-options hierarchy.

 configuration = dev.rpc.get_config(filter_xml='<policy-options>
 </policy-options>')

Iterate through the prefix-lists discovered on the device configuration, looking8.
specifically for any prefix-lists that end with the suffix defined at the top of the
file, .auto. For each prefix-list of interest, call upon the services of bgpq3 in
order to query the IRR databases and write the results to a temporary file. The
use of typical PyEZ configuration deployment pattern to deploy the new prefix-
list to the router is as follows:

 for name in configuration.xpath("policy-options/prefix-list/name"):
 if name.text.endswith(SUFFIX):
 sys.stdout.write("Checking prefix list: %s\n"
 % (name.text))

 try:
 with tempfile.NamedTemporaryFile() as file:
 subprocess.check_call([
 IRRTOOL, '-J', '-S', 'RIPE',
 ("-l %s"%name.text),
 name.text[:-len(SUFFIX)]
], stdout=file)
 prefix_count = len(open(file.name).read().
 splitlines())
 if (prefix_count>MAX_PREFIXES):
 sys.stdout.write(
 "Skipping %s: too many prefixes (%d>%d)\n" %

Security Applications

[310]

 (name.text, prefix_count, MAX_PREFIXES))
 else:

 try:
 with Config(dev, mode="private") as config:
 config.load(path=file.name,
 format="text")
 diff = config.diff()
 if (diff!=None):
 adds=0
 dels=0
 for line in diff.splitlines():
 if line.startswith("+"):
 adds+=1
 if line.startswith("-"):
 dels+=1
 sys.stdout.write(diff)
 if (dels>MAX_DELS and
 not name.text in args.f):
 sys.stdout.write(
 "%s: %d add(s), %d del(s): too many deletes - skipping\n" %
 (name.text, adds, dels))
 else:
 sys.stdout.write(
 "%s: %d add(s), %d del(s): committing\n" %
 (name.text, adds, dels))
 config.commit(comment=
 "Automatic prefix-filter update for %s" % name.text)
 else:
 sys.stdout.write(
 "No work to do for %s\n" % (name.text))

 except RpcError, e:
 sys.stderr.write(
 "Error occurred while trying to configure %s: %s\n" %
 (name.text, e.message))

 except subprocess.CalledProcessError, e:
 print e
 sys.stderr.write(
 "Failed to run %s: return code %d\n" %
 (IRRTOOL, e.returncode))

Security Applications

[311]

Having now repeated the prefix-list generation process using bgpq3 for all of the9.
prefix-lists discovered on the JUNOS device, close the PyEZ device resource to
free up any associated resources.

 dev.close()

How it works...
Our Python script starts up and scans the command line argument for options that
influence its behaviour. We allow the user to specify the parameters associated with
username, port number, and target router address. We also grant the user access to a -f
switch—to force the update of a particular prefix-list.

Once established, the script scans the JUNOS device looking for any prefix-list objects
in the policy-options hierarchy that are named with the SUFFIX denoted at the top of
the file. We've chosen an initial default value of .autofor this.

For every matching prefix-list found, the script will call upon bgpq3—specified by name
using the runtime constant IRRTOOL, in case the full pathname needs to be provided—in
order to build the prefix-list. We use several switches to the invocation of bgpq3 that should
be explained.

Command option Purpose

-J Indicates output in the Juniper text-based format

-l name Specifies a name for the generated prefix-list

-S RIPE Specifies the use of the RIPE database IRR platform

There are other IRR platforms that can be used and in fact bgpq3 will
default to scanning a recommended series of RIPE, RADB and APNIC.
The different IRR choices offer different balances between completeness of
information, security and authenticity. Some of the IRR services will also
mirror their peers, offering a mixed view. In our case, the RIPE IRR
platform offers a benefit for European customers because the IRR platform
is intrinsically linked into the address resource allocation system that
assigns IP addresses and autonomous system numbers. This means that a
routing policy registered in RIPE is very likely to be correct if it's based
upon European resources.

Security Applications

[312]

If bgpq3 returns a prefix-list that exceeds MAX_PREFIXES in number, then
build_route_filters.py will record an error message and ignore it. Prefix-lists take up
resources on the router platforms and so, for large routing policies that consist of a lot of
routing prefixes exchanged between BGP peers, it might be more efficient to use AS path
filtering, or other techniques.

Peer-locking is one novel approach to tackling the problem of preventing
route leaks of bad advertisements. It was pioneered by Job Snijders at NTT
and designed to secure peering sessions between large ISPs from being
overriden by invalid data from customer BGP peers. A lighter variation on
peer-locking, where one filters BGP customers of any AS path attributes
that contain well-known large-scale ISPs can also be an effective way to
ensure that you're not a part of a route leakage event.

Assuming that the prefix-list is of a manageable size, PyEZ will configure it on the router
device and obtain a difference report. At this point, build-route-filters.py will look to
ensure that there are no more than MAX_DELS deletions from the prefix-list. If there are
more than this, it could conceivably represent some sort of error, and blindly following the
reduction in prefixes might result in the filtration of legitimate prefixes that are currently
being accepted.

It's at this point that we need the auto-pilot to switch off, and an intelligent human to come
along and assess the situation. If the human determines that the deletions from the prefix-
list are acceptable, he can simply re-invoke the tool again using the -f switch with the
specified prefix-list name in order to accept and commit that prefix-list.

Regardless of intervention or not, when build-route-filters.py commits the prefix-list
change, it also submits a commit message so that a later operator can see what's happened
and when.

Let's see build-route-filters.py in action. First of all we log on to our test JUNOS
router, and create some empty prefix-lists and deliberately break some other ones. Then we
run the tool and watch it fill in the blanks.

$./build-route-filters.py -u auto 10.0.201.201
Checking prefix list: AS-COLOCLUE.auto

[edit policy-options prefix-list AS-COLOCLUE.auto]
+ 94.142.240.0/21;
+ 185.52.224.0/22;
+ 193.135.150.0/24;
+ 195.72.124.0/22;
+ 195.114.12.0/24;
+ 195.114.13.0/24;

Security Applications

[313]

AS-COLOCLUE.auto: 6 addition(s), 0 deletion(s): committing
Checking prefix list: AS-INTEROUTE.auto
Skipping AS-INTEROUTE.auto: too many prefixes (119450>5000)
Checking prefix list: AS-PCH.auto
No work to do for AS-PCH.auto
Checking prefix list: AS-EIRCOM.auto

[edit policy-options prefix-list AS-EIRCOM.auto]
+ 185.136.252.0/24;
+ 185.136.253.0/24;
+ 185.136.254.0/24;
AS-EIRCOM.auto: 3 addition(s), 0 deletion(s): committing
Checking prefix list: AS-LINX.auto
No work to do for AS-LINX.auto

If we cause trouble and go to add some fake prefixes to the prefix-listAS-
COLOCLUE.autoon the router, we'll be able to see that the script will bail out and require us
to re-steady the situation manually.

adamc@router# show | compare
[edit policy-options prefix-list AS-COLOCLUE.auto]
+ 1.1.1.1/32;
+ 1.1.1.2/32;
+ 1.1.1.3/32;
+ 1.1.1.4/32;
+ 1.1.1.5/32;
+ 1.1.1.6/32;
+ 1.1.1.7/32;
+ 1.1.1.8/32;
+ 1.1.1.9/32;
+ 1.1.1.10/32;
+ 1.1.1.11/32;

$./build-route-filters.py -u auto 10.0.201.201
Checking prefix list: AS-COLOCLUE.auto

[edit policy-options prefix-list AS-COLOCLUE.auto]
- 1.1.1.1/32;
- 1.1.1.2/32;
- 1.1.1.3/32;
- 1.1.1.4/32;
- 1.1.1.5/32;
- 1.1.1.6/32;
- 1.1.1.7/32;
- 1.1.1.8/32;
- 1.1.1.9/32;
- 1.1.1.10/32;
- 1.1.1.11/32;

Security Applications

[314]

AS-COLOCLUE.auto: 0 addition(s), 11 deletion(s): too many deletions -
skipping

$./build-route-filters.py -u auto -f AS-COLOCLUE.auto 10.0.201.201
[edit policy-options prefix-list AS-COLOCLUE.auto]
- 1.1.1.1/32;
- 1.1.1.2/32;
- 1.1.1.3/32;
- 1.1.1.4/32;
- 1.1.1.5/32;
- 1.1.1.6/32;
- 1.1.1.7/32;
- 1.1.1.8/32;
- 1.1.1.9/32;
- 1.1.1.10/32;
- 1.1.1.11/32;
AS-COLOCLUE.auto: 0 addition(s), 11 deletion(s): committing

Hopefully, build-route-filters.py, or a variation on it, can help you take the sting out
of BGP filter maintenance on your network.

Applying anti-spoofing filters
In this recipe, we'll create an automation assistant to help us deploy anti-spoofing filters in
our network. Anti-spoofing filters are packet filters that validate the source addresses of
packets received from an interface to make sure that they are consistent with routing
information in the reverse direction. They are important because they defeat one of the most
significant vectors of distributed denial-of-service (DDOS) attacks: traffic seemingly
originating from false source addresses. To implement source address filtering, the router's
receiving interface is configured to perform a Reverse Path Forwarding (RPF) check: a
lookup of the source address in the routing table to see if the same interface would be used
for outgoing traffic if the source was a destination.

The IETF and internet community blessed RFC 2827—a recommendation on implementing
source address filtering as Best Common Practice 38 (BCP.38), a strong mandate that
network operators should endeavor to implement the feature wherever possible.

Security Applications

[315]

But as with BGP route filtering, the theory can be simpler than the practice. One of the
practical problems with source address filtering is that it doesn't make any allowances for
asymmetric traffic: traffic that takes one route on the way out, but returns via another route.
If the node performing source address filtering doesn't see your source address in its
routing table via the interface that you've just come in from, you will be discarded.

Because of this brutal response, network service providers must be extremely cautious in
mass deployment of a technology that could otherwise bring great mitigating benefits to
some of the DDoS problems that threaten the internet.

The generally accepted wisdom is that BCP.38—source address filtering—can reasonably be
applied at the very edge of the network where most information is known about the
network addressing, and where a dynamic routing protocol is not in use.

What we provide in this recipe is some assistance in performing checks to ensure that a
dynamic protocol is indeed not running and the RPF checking is eligible to be turned on for
an interface.

Getting ready
In this recipe, we'll produce a SLAX op script that will audit a running configuration to find
interfaces that are eligible to run source address filtering—known in JUNOS as rpf-
check—and will optionally configure it, either across the whole box or on an interface by
interface basis.

Our script will use a command-line interface that operates in the following manner:

Parameter Description

mode check Audits interfaces for RPF check eligibility(Default mode).

mode apply Configures interfaces for RPF checking.

mode remove Remove RPF checking from an interface.

interface interface Specifies an interface to operate on.

In order to complete this recipe, you need access to a general management and
development UNIX host in order to create the SLAX script and access to the JUNOS device
upon which you'll run the script.

Security Applications

[316]

How to do it...
We're going to create a SLAX script, rpf-tool.slax, piece by piece, that will run as a
JUNOS op script and will both audit and configure the JUNOS feature rpf-check in order
to implement a source address check upon the traffic received on an interface.

Firstly, define the SLAX boilerplate required for all JUNOS op scripts:1.

 version 1.0;

 ns JUNOS = "http://xml.juniper.net/JUNOS/*/JUNOS";
 ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
 ns jcs = "http://xml.juniper.net/JUNOS/commit-scripts/1.0";

 import "../import/JUNOS.xsl";

Then declare the command-line arguments:2.

 param $interface="";
 param $mode="check";
 var $arguments = {
 <argument> {
 <name> "interface";
 <description> "Operate on the nominated interface only";
 }
 <argument> {
 <name> "mode";
 <description> "check | apply | remove";
 }
 }
 var $if = jcs:split("\\.", $interface);

Make an XML API request to extract the current configuration using3.
jcs:invoke():

 var $rtf = {
 <get-configuration database="committed"> {
 <configuration> {
 <interfaces>;
 <routing-instances>;
 <protocols>;
 }
 }
 }
 var $currentConfiguration = jcs:invoke($rtf);

Security Applications

[317]

Start the main op-script-result loop by printing out a tabular header, but only if4.
we're in the check-only mode:

 match / {
 <op-script-results> {

 /* If we're just checking, print a header to help
 readability
 */
 if ($mode=="check") {
 expr jcs:output(jcs:printf(
 "Interface RPF analysis/configuration tool"));
 expr jcs:output(jcs:printf(
 " Flags: + eligible, - ineligible, * running, !
 excluded"));
 expr jcs:output(jcs:printf(
 "%-1.1s %-14.14s %-12.12s %-24.24s %s",
 " ", "Interface", "Instance",
 "Description", "Address/Config"));
 }

And then follow up by creating a new $configuration variable by using the5.
node-set operator in order to prepare a new candidate configuration. Use a for
loop to iterate through all of the interfaces, determining:

The physical and logical names of the interfaces
The description of the interfaces
The routing instance of the interfaces
Whether the interface is configured for IPv4
Whether the interface is configured for IPv6
Whether RPF check is currently configured for IPv4
Whether RPF check is currently configured for IPv6

 var $configuration := {
 <configuration> {
 <interfaces> {
 for-each ($currentConfiguration/
 interfaces/interface/
 unit[../name==$if[1]][name==$if[2]]
 | $currentConfiguration/
 interfaces/interface/
 unit[$interface==""]) {

 var $physical = ../name;
 var $unit = name;
 var $logical = $physical _ "." _ $unit;

Security Applications

[318]

 var $description =
 jcs:first-of(description, ../description);
 var $instance = $currentConfiguration//
 routing-instances/
 instance/name[../interface/name==$logical];
 var $rpf = {
 if (count(family/inet/
 rpf-check)>0) { expr "Y"; }
 else { expr "N"; }
 }
 var $rpf6 = {
 if (count(family/inet6/
 rpf-check)>0) { expr "Y"; }
 else { expr "N"; }
 }
 var $inet = {
 if (count(family/inet)>0) { expr "Y"; }
 else { expr "N"; }
 }
 var $inet6 = {
 if (count(family/inet6)>0) { expr "Y"; }
 else { expr "N"; }
 }

 var $address = {
 for-each (family/inet/address) {
 expr "inet " _ name _ " ";
 }
 for-each (family/inet6/address) {
 expr "inet6 " _ name _ " ";
 }
 }

Then continue surveying the interface properties, but move on to whether the6.
interface is declared within the dynamic routing protocol sections:

 var $ospf = {
 if (count($currentConfiguration//
 protocols/
 ospf//
 interface/
 name[.==$logical])>0) { expr "Y"; }
 else { expr "N"; }
 }
 var $ospf3 = {
 if (count($currentConfiguration//
 protocols/
 ospf3//

Security Applications

[319]

 interface/
 name[.==$logical])>0) { expr "Y"; }
 else { expr "N"; }
 }
 var $rip = {
 if (count($currentConfiguration//
 protocols/
 rip//
 neighbor/
 name[.==$logical])>0) { expr "Y"; }
 else { expr "N"; }
 }
 var $ripng = {
 if (count($currentConfiguration//
 protocols/
 ripng//
 neighbor/name[.==$logical])>0) { expr "Y"; }
 else { expr "N"; }
 }
 var $isis = {
 if (count($currentConfiguration//
 protocols/
 isis//
 interface/
 name[.==$logical])>0) { expr "Y"; }
 else { expr "N"; }
 }
 var $ldp = {
 if (count($currentConfiguration//
 protocols/
 ldp//
 interface/
 name[.==$logical])>0) { expr "Y"; }
 else { expr "N"; }
 }

Include some special logic for BGP determination, because with BGP we don't7.
define an interface. We define a neighbor and use the routing table to find the
interface:

 var $bgp-peers = {
 for-each (family/inet/address
 | family/inet6/address) {
 var $addr = jcs:parse-ip(name);
 var $network = $addr[4];
 var $plen = $addr[3];

 for-each ($currentConfiguration/

Security Applications

[320]

 protocols/bgp//
 neighbor[jcs:empty($instance)] |
 $currentConfiguration/
 routing-instances/
 instance//protocols/bgp//
 neighbor[../../../../name==$instance]) {
 var $peer = {
 var $ip-peer = jcs:parse-ip(name);
 if ($addr[2] == $ip-peer[2]) {
 expr name _ "/" _ $plen;
 }
 }
 if ($peer!="") {
 var $ip-peer = jcs:parse-ip($peer);
 if ($network==$ip-peer[4]) {
 expr $peer _ " ";
 }
 }
 }
 }
 }

 var $bgp = {
 if ($bgp-peers!="") { expr "Y"; }
 else { expr "N"; }
 }

Include an opportunity to call a locally-defined procedure in order to perform8.
local policy logic for including or excluding an interface from RPF checking:

 var $exclude = {
 call local-policy-exclusions($physical,
 $logical, $unit, $description,
 $currentConfiguration);
 }

Then, based upon the information surveyed about the interface, define a flag9.
character to indicate eligibility for RPF checking versus the current status of RPF
checking:

Security Applications

[321]

Flag Meaning

* Interface is currently running RPF checks

! Interface is excluded by the local policy function

+ Interface is eligible for RPF checking

- Interface is not eligible for RPF checking

The following is the code for the same:

 var $flag = {
 /* IPv4 and IPv6: both running RPF? */
 if ($inet=="Y" && $inet6=="Y" &&
 $rpf=="Y" && $rpf6=="Y") {
 expr "*"; /* running */
 /* IPv4 only: running RPF */
 } else if ($inet=="Y" && $inet6=="N" &&
 $rpf=="Y") {
 expr "*";
 /* IPv6 only: running RPF */
 } else if ($inet=="N" && $inet6=="Y" &&
 $rpf6=="Y") {
 expr "*";

 /* Otherwise, check local exclusions */
 } else if ($exclude=="Y") {
 expr "!";

 /* If not running protocols, eligible */
 } else if (($inet=="Y" || $inet6=="Y") &&
 $bgp=="N" && $ospf=="N" && $ospf3=="N"
 &&
 $isis=="N" && $rip=="N" && $ripng=="N"
 &&
 $ldp=="N") {
 expr "+";

 /* ... otherwise, it is not eligible */
 } else {
 expr "-";
 }
 }

Security Applications

[322]

Create textual comments—for the display mode—to explain the association with10.
routing protocols:

 var $comment = {
 if ($bgp=="Y") { expr "BGP "; }
 if ($ospf=="Y") { expr "OSPF "; }
 if ($ospf3=="Y") { expr "OSPFv3 "; }
 if ($rip=="Y") { expr "RIP "; }
 if ($ripng=="Y") { expr "RIP-NG "; }
 if ($isis=="Y") { expr "IS-IS "; }
 if ($ldp=="Y") { expr "LDP "; }
 }

If we are in theapply mode, then build up the configuration stanzas necessary to11.
configure RPF checking:

 if ($mode=="apply") {

 if ($flag=="+") {
 <interface> {
 <name> $physical;
 <unit> {
 <name> $unit;
 if ($inet=="Y" && $rpf=="N") {
 expr jcs:output(
 "Applying RPF inet configuration to interface ", $logical);
 <family> {
 <inet> {
 <rpf-check>;
 }
 }
 }
 if ($inet6=="Y" && $rpf6=="N") {
 expr jcs:output(
 "Applying RPF inet6 configuration to interface ", $logical);
 <family> {
 <inet6> {
 <rpf-check>;
 }
 }
 }
 }

Security Applications

[323]

But emit a comment if the interface is not eligible for RPF checking, yet we've12.
been explicitly asked to configure it:

 } else if ($interface!="") {
 if ($flag=="!") {
 expr jcs:output("Interface ", $logical,
 "specifically excluded by local-policy-exclusions");
 } else if ($flag=="-") {
 expr jcs:output("Interface ", $logical,
 " not eligible for RPF configuration: ",
 $comment);
 } else if ($flag=="*") {
 expr jcs:output("Interface ", $logical,
 " already includes RPF configuration");
 }
 }

If we're in the remove mode, build up the necessary configuration stanza:13.

 } else if ($mode=="remove") {
 if ($rpf=="Y" || $rpf6=="Y") {
 <interface> {
 <name> $physical;
 <unit> {
 <name> $unit;
 if ($rpf=="Y") {
 expr jcs:output(
 "Removing RPF inet configuration from interface ", $logical);
 <family> {
 <inet> {
 <rpf-check delete="delete">;
 }
 }
 }
 if ($rpf6=="Y") {
 expr jcs:output(
 "Removing RPF inet6 configuration from interface ", $logical);
 <family> {
 <inet6> {
 <rpf-check delete="delete">;
 }
 }
 }
 }
 }
 }

Security Applications

[324]

Otherwise, simply print a tabular row for the interface, describing its name,14.
description, address family and eligibility for RPF checking:

 } else {
 expr jcs:output(jcs:printf(
 "%-1.1s %-14.14s %-12.12s %-24.24s %s%s",
 $flag, $logical, $instance,
 $description, $address, $comment));
 }
 }
 }
 }
 }

Finally, if we're about to make changes, prepare a summary report describing15.
how many interfaces are affected:

 if ($mode=="apply" || $mode=="remove") {

 var $numIf = count($configuration//interface);
 var $numInet = count($configuration//inet);
 var $numInet6 = count($configuration//inet6);

 var $logmsg = {
 if ($mode=="apply" && $interface=="") {
 expr "Apply RPF to all interfaces: " _ $numIf _
 " interface(s) affected: " _ $numInet _
 " inet, " _ $numInet6 _ " inet6";
 }
 else if ($mode=="remove" && $interface=="") {
 expr "Remove RPF from all interfaces: " _ $numIf _
 " interface(s) affected: " _ $numInet _
 " inet, " _ $numInet6 _ " inet6";
 } else if ($mode=="apply" && $interface!="") {
 expr "Apply RPF to interface: " _ $interface _
 ": " _ $numInet _ " inet, " _ $numInet6 _
 " inet6";
 } else if ($mode=="remove" && $interface!="") {
 expr "Remove RPF from interface: " _ $interface _
 ": " _ $numInet _ " inet, " _ $numInet6 _ "
 inet6";
 }
 }

Security Applications

[325]

Commit the configuration, outputting the summary report:16.

 var $commit-options = {
 <commit-options> {
 <log> $logmsg;
 }
 }

 expr jcs:output($logmsg);
 if ($numIf > 0) {
 var $connection = jcs:open();
 var $result := {
 call jcs:load-configuration($connection,
 $configuration, $commit-options); }
 copy-of $result;
 expr jcs:close($connection);
 } else {
 expr jcs:output("No affected interfaces: configuration not
 applied");
 }
 }
 }
 }

How it works...
The structure and layout of the op script can make it difficult to follow, partly because
SLAX op scripts are an XML pipeline, but we can focus on the cut and thrust of the logic
that each step is trying to achieve.

In step 1, we define the standard boilerplate required for every SLAX op script on JUNOS.
In step 2 we declare interface and mode special global parameters. This tells the CLI to
expect the user to try to use these keywords for parameters. In the arguments node-set, we
can actually include some tokens that will populate the CLI interactive help. Finally we take
the interface and split it into two parts, separated by a period (.), because we'll likely need
the interface components in this way as we explore the XML representation of the
configuration.

In step 3, we use the jcs:invoke()call in order to request a copy of the configuration in
XML format. Technically speaking, all op script code should be within the global match
terms but simple variable assignment like this is permissible.

Security Applications

[326]

In step 4, we're inside the global match term and the first thing we do is print a table header
if we've been invoked in thecheck mode—or indeed, if the user hasn't bothered to specify a
mode.

And then in step 5, we start off the beginning of a mammoth $configuration node-set
assignment in order to capture a new candidate configuration to reconfigure interfaces in
the system based upon:

Whether we're in apply or remove mode
Whether the interfaces are currently running RPF check
Whether the interfaces are running a routing protocol
Whether the interfaces are excluded for other, local policy reasons

Step 6 performs the tests to determine whether the interface is currently configured within
any of the usual interior gateway protocols. And step 7 does the more complicated step of
answering the same question for BGP. In this case, we look through the BGP neighbors and
see if any match the directly connected subnet of the interface that we're currently
assessing.

Note that this double for-each loop—processing both interfaces and BGP
sessions—can get quite computationally expensive if we have a lot of BGP
sessions and a lot of interface. We have to circle around each loop,
considering both factors.

In step 8, we include a call to a local-policy-exclusions function, which we haven't
actually included in the source code. The idea is to provide a locally-customizable hook in
order to add logic to the per-interface decision. We'll look at an example local-policy-
exclusions function later.

In step 9, we define a symbolic flag variable based on the determinations that we've made
from the assessment of routing protocol association and interface eligibility. This flag will
be used in the tabular column if the user is in show mode. In step 10, we make further
preparation for the tabular view again, by creating short textual labels to annotate each
interface and the reason for our decision on eligibility of RPF check.

In step 11, if the user has invoked us in apply mode, then we begin to build the XML
structure that represents a reconfiguration of the interface to enable the rpf-check
directive. If we're trying to apply an interface because it's been explicitly nominated using
the interface parameter, but it isn't eligible, then we print a message explaining the
problem in step 12. In step 13, we do the equivalent of step 11 but for the remove mode logic.

Security Applications

[327]

In step 14, if we're in show mode, we simply render the table row for the interface, including
the flag and textual annotation that we prepared. Finally in steps 15 and 16 we prepare a log
message and send the prepared configuration off to jcs:load-configuration() for
processing and eventual commit.

The end result is that the operator gets a simple interface to help him assess the interfaces
on his router for the suitability of running the RPF check logic in order to improve security
through anti-spoofing filters.

Here's an example of the tool in action. With no parameters, we get a tabular report
showing us each interface:

adamc@router> op rpf-tool
Interface RPF analysis/configuration tool
 Flags: + eligible, - ineligible, * running, ! excluded
 Interface Instance Description Address/Config
- em0.0 inet 10.0.201.201/24 BGP OSPF
- em1.0 inet 10.0.211.201/24 OSPF
+ em2.145 VRF-145 Customer inet 192.168.12.1/30

From there we can choose to apply RPF checking to an interface explicitly, or just apply it
across the whole box.

adamc@router> op rpf-tool mode apply
Applying RPF inet configuration to interface em2.145
Apply RPF to all interfaces: 1 interface(s) affected: 1 inet, 0 inet6
commit complete

adamc@router> op rpf-tool
Interface RPF analysis/configuration tool
 Flags: + eligible, - ineligible, * running, ! excluded
 Interface Instance Description Address/Config
- em0.0 inet 10.0.201.201/24 BGP OSPF
- em1.0 inet 10.0.211.201/24 OSPF
* em2.145 VRF-145 Customer inet 192.168.12.1/30

There's more
In step 8, we left scope for including a locally-defined function that could apply extra logic
to determining whether or not an interface was eligible for RPF checking. Let's look at an
example function that could help with that logic.

Security Applications

[328]

In this case, the function gets called with information about the interface under scrutiny. It
gets a copy of the physical interface name, the logical unit number, the description and the
result set from the current configuration. Based on whether the template function returns a
Yor a Nwe determine if we want to exclude the interface from RPF checking or not.

template local-policy-exclusions($physical, $logical,
 $unit, $description, $currentConfiguration) {

 /* No interfaces where the physical interface is "lo0" */
 if ($physical == "lo0" || $physical == "fxp0") {
 expr "Y";

 /* No interfaces that contain the magic description tag */
 } else if (jcs:empty(jcs:regex("\\{.*no-rpf.*\\}",
 $description))==false) {
 expr "Y";

 /* No unnumbered interfaces: they might be hiding
 * BGP that we didn't spot */
 } else if (jcs:empty($currentConfiguration/interfaces//
 family/inet/unnumbered-address[
 ../../../name==$unit &&
 ../../../../name==$physical])==false) {
 expr "Y";

 /* Example: No interfaces where we find DHCP in the configuration */
 } else if (jcs:empty($currentConfiguration/interfaces//
 family/inet/dhcp[
 ../../../name==$unit &&
 ../../../../name==$physical])==false) {
 expr "Y";

 /* Default behaviour: no exclusion */
 } else {
 expr "N";
 }
}

Operating a distributed ACL function
In this recipe, we'll develop a capability to rapidly deploy packet filters to all devices in our
network, making use of BGP to transport the specification of the packet filter rules to all the
routers in our network.The capability, defined formally in IETF RFC 5575 and often
informally called FlowSpec, is particularly useful in defending large networks against
distributed DOS attacks.

Security Applications

[329]

It's important to note that these are not full-on session-based firewall rules, but rather a
specification of packet-level characteristics that can be applied to incoming traffic in order
to determine if special handling is needed. In our case, we'll take a specification of packets
based on the following fields in the IP header and we will apply the discard action.

Source address
Destination address
Source TCP/UDP port
Destination TCP/UDP port
Protocol

In this way, the capability is very useful when implementing black-list type policies across a
large network estate with an abundance of entry-points.

Getting ready
In order to complete this recipe, you'll need access to at least one JUNOS OS router that you
want to install FlowSpec rules on and a Python 2.7 development environment. We're going
to make use of Thomas Mangin's invaluable ExaBGP tool, which is a BGP implementation
written in Python in order to implement a fast and flexible way to inject FlowSpec rules into
our network.

ExaBGP deploying access-control lists to multiple JUNOS OS routers

Security Applications

[330]

How to do it...
We're going to set up ExaBGP on our Python development and management host and then
configure it to connect to our JUNOS OS routers in order to provide them with a feed of
access control rules that they should apply to all interfaces. For the purposes of this recipe,
we'll use our test JUNOS OS VM on 10.0.201.201 as our router, and our management host
will be on 10.0.201.1.

Download and install ExaBGP. For the purposes of this recipe, we're using1.
ExaBGP 3.4.18 with Python 2.7.12.

 $ pip install exabgp

Create an ExaBGP configuration file, flowspec.cfg, which is responsible for2.
configuring ExaBGP to connect to our JUNOS routers, communicate with them
by using the IP flow address family, and take instructions from a downstream
Python helper script, acl-server.py, which we will write. Replace the
parameter values with locally significant and appropriate values:

router-id and local-address should be the local interface address
of your ExaBGP host.
local-as and peer-as should be the autonomous system number
you use for internet routing. If you don't have an autonomous system
number, choose one from the range64512 - 65534 which are reserved
for private use.

 group GROUP {
 router-id 10.0.201.1;
 local-address 10.0.201.1;
 local-as 8928;
 peer-as 8928;
 hold-time 180;

 process ACL-SERVER {
 encoder text;
 run acl-server.py;
 }

 neighbor 10.0.201.201 {
 family {
 ipv4 flow;
 }
 }
 }

Security Applications

[331]

Create a simple Python ExaBGP helper script which will feed FlowSpec access3.
control rules to ExaBGP.

 #!/usr/bin/env python

 import sys
 import time

 FILENAME = "/var/tmp/rules.txt"

 rules = open(FILENAME).read().splitlines()
 for r in rules:
 sys.stdout.write(
 "announce flow route { match { " + r +
 " } then { discard; } }\n")
 sys.stdout.flush()
 while True:
 sys.stdin.read()

On the JUNOS OS routers that will participate in the distributed packet filter,4.
configure a BGP session for the inet flow address family. Use a no-
validation policy to effectively disable validation.

 protocols {
 bgp {
 group FLOWSPEC {
 type internal;
 neighbor 10.0.201.1 {
 passive;
 family inet {
 flow {
 no-validate ANY;
 }
 }
 }
 }
 }
 }
 policy-options {
 policy-statement ANY {
 then accept;
 }
 }

Security Applications

[332]

Create an initial rules file with a test rule to block.5.

 $ cat /var/tmp/rules.txt
 source 1.2.3.4/32; destination 5.6.7.8/32; destination-port 5959;
 protocol 6;

Start up ExaBGP using the configuration file that we specified in step 2.6.

exabgp flowspec.cfg
[...]
Sat, 16 Sep 2017 17:39:35 | INFO | 24267 | reactor | Flow added to
neighbor 10.0.201.201 local-ip 10.0.201.1 local-as 8928 peer-as
8928 router-id 10.0.201.1 family-allowed in-open : flow destination
5.6.7.8/32 source 1.2.3.4/32 protocol =TCP destination-port =5959
extended-community rate-limit 0
Sat, 16 Sep 2017 17:39:36 | INFO | 24267 | reactor | Performing
dynamic route update
Sat, 16 Sep 2017 17:39:36 | INFO | 24267 | reactor | Updated peers
dynamic routes successfully
Sat, 16 Sep 2017 17:39:38 | INFO | 24267 | network | Connected to
peer neighbor 10.0.201.201 local-ip 10.0.201.1 local-as 8928 peer-
as 8928 router-id 10.0.201.1 family-allowed in-open (out)

Confirm that the JUNOS OS BGP session is up and running with the inet flow7.
address family.

adamc@router> show bgp summary
Peer AS InPkt OutPkt OutQ Flaps Last
Up/Dwn
10.0.201.1 8928 8 9 0 3 2:50
Establ
 inetflow.0: 1/1/1/0

Examine the JUNOS routing table inetflow.0 to confirm that the FlowSpec8.
routeshave indeed been learned.

adamc@router> show route table inetflow.0

inetflow.0: 1 destinations, 1 routes (1 active, 0 holddown, 0
hidden)
+ = Active Route, - = Last Active, * = Both

5.6.7.8,1.2.3.4,proto=6,dstport=5959/term:1
 *[BGP/170] 00:05:40, localpref 100, from
10.0.201.1
 AS path: I, validation-state: unverified
 Fictitious

Security Applications

[333]

How it works...
The ExaBGPimplements a BGP adaptor of kinds, enabling third-party applications to
interface with the network's BGP mesh in order to glean information and also to instruct the
network through routing information. Itis capable of speaking many of the multi-protocol
address families supported by BGP, but the only address family required in this case is
IPv4-flow and IPv6-flow.

The flow sub-type of the address family is denoted within protocol terms
as a Subsequent address family identifier (SAFI) and is assigned a code.
Vanilla unicast IPv4 makes use of SAFI 1, whereas flow-spec IPv4 makes
use of SAFI 133.

We establish a BGP topology that connects our ExaBGP management host with our JUNOS
OS routers. In our case, this is a single peering to the router that we want to be able to
dynamically populate with flow specification information. But in a production
environment, you will need to choose a deployment strategy from one of the following in
order to ensure that your FlowSpec information permeates across your autonomous system,
or at least to your exterior, perimeter routers that will benefit most from it.

ExaBGP AS BGP Type Connection Scope BGP Session Type

Different EBGP Single or dual routers Normal EBGP, but for inet-flow SAFI

Same IBGP All routers Normal IBGP, but for inet-flow SAFI

Same IBGP Single/dual routers Reflector client IBGP for inet-flow
SAFI.

Once the BGP session is running, ExaBGP interfaces with our helper Python script which
simply takes the contents of a file and communicates it to ExaBGP. ExaBGP converts each
line from the file into a BGP advertisement within the inet-flow address family. Our
Python script does little messaging or syntax checking of the data within the rules.txt
file, so the file format is dependent upon ExaBGP's comprehensive understanding of the
inet-flow address family, a subset of which is described in the table below.

Criteria Example Matching method

source 1.2.3.4/32 Source address of packet is checked against address and
mask

destination 5.6.7.8/32 Destination address of packet is checked against address
and mask

Security Applications

[334]

port 80 Source and destination TCP/UDP port is checked

source-port 80 Source TCP/UDP port is checked

destination-port 80 Destination TCP/UDP port is checked

protocol 6 IP-layer protocol is checked

Under the hood, in the FlowSpec encoding of packet matching criteria lies a complex and
capable method that allows the specification of multiple values and, indeed, ranges. This is
exposed within ExaBGP in several ways.

Port ranges can be described by making use of the (operator, value) internal structure used
within the BGP protocol. When one speaker communicates a FlowSpec rule concerning a
port number to another speaker, he doesn't simply pass a 16-bit integer as you might
expect. Instead, he passes a variable length structure which is comprised of a chain of
operations and values. This means that arguments such as >5959, >=5959, <5959, <=5959
are all legal and valid within the FlowSpec protocol and understood by ExaBGP. An entry
like this in the rules file, produces the expected results.

source 1.1.1.1/32; destination 1.1.1.1/32; port >=5959; protocol 6;

adamc@router> show route table inetflow.0

inetflow.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

1.1.1.1,1.1.1.1,proto=6,port>=5959&<=65535/term:1
 *[BGP/170] 00:00:01, localpref 100, from 10.0.201.1
 AS path: I, validation-state: unverified
 Fictitious

The output as seen from the JUNOS OS device above likely gives you a clue on how to
handle inclusive ranges such as 100-200. You'd be right.

source 1.1.1.1/32; destination 1.1.1.1/32; port >=100&<=200; protocol 6;

adamc@router> show route table inetflow.0

inetflow.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

1.1.1.1,1.1.1.1,proto=6,port>=100&<=200/term:1
 *[BGP/170] 00:00:00, localpref 100, from 10.0.201.1
 AS path: I, validation-state: unverified
 Fictitious

Security Applications

[335]

The internal protocol mechanisms that combine the port value comparisons include an
AND field, that determines whether the result of consecutive operations should be AND'd
or OR'd together. Thus, it's possible to implement port range operations

Multiple port directives can be included in a single rule. Even though normally all criteria
in the rule have to match, a repeated port match has logical OR semantics. So for example,
the following rules (which should be on a single-line):

source 1.1.1.1/32; destination-port =5959; destination-port =5960; protocol
6;

adamc@router> show route table inetflow.0
inetflow.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
*,1.1.1.1,proto=6,dstport=5959,=5960/term:1
 *[BGP/170] 00:00:04, localpref 100, from 10.0.201.1
 AS path: I, validation-state: unverified
 Fictitious

One intriguing thing that is seemingly difficult to achieve in ExaBGP's
syntax, and even in the equivalent JUNOS OS syntax, is a logical NOT on a
parameter. For example, traffic not destined to port 80. The RFC hints at
the fact that the greater-than and less-than operators can be joined to
create the logically equivalent predicate, less than 80 or greater than 80, but
neither the ExaBGP syntax nor the JUNOS OS syntax seems to accept this
or implement it correctly.

Once the JUNOS device accepts the BGP route, it is subject to some RFC-mandated
validation checking. The validation checking is designed to align the FlowSpec rule with the
equivalent BGP route in the unicast address family and to ensure that the origins of packet
filtering information and the origins of routing information are consistent. The validation is
important, but if you're implementing a centrally run FlowSpec server like we are, the rules
that you apply are certainly not going to share BGP origin or neighbor qualities with the
underlying unicast routing table. As a result, we need to take out the validation step.
Thankfully, JUNOS allows us to do just this using its capable policy engine. So we define a
promiscuous policy which allows all addresses to be accepted without the usual FlowSpec
validation steps.

Security Applications

[336]

Once validated, the JUNOS router accepts the FlowSpec route into his local routing
information base, and if BGP policies allow it, advertises it to his other FlowSpec-capable
neighbours. This way the information disseminates throughout the network. Additionally,
the JUNOS OS router installs the FlowSpec rules into the firewall rule set of all attached
packet forwarding engines.

This can be observed by looking at the special firewall filter called
__flowspec_default_inet__.

adamc@router> show firewall filter __flowspec_default_inet__

Filter: __flowspec_default_inet__
Counters:
Name Bytes Packets
1.1.1.1,* 0 0

9
Extending JUNOS with Ansible

In this chapter, we'll cover the following recipes:

Installing Ansible
Configuring Ansible for JUNOS
Extracting estate-wide configurations
Performing platform-specific or group-specific operations
Using variables and vaults

Introduction
We've already covered a wide variety of technologies that help us reduce the labour
involved with operating and maintaining our JUNOS routers and devices, but in this
chapter we'll look in detail at how to integrate some of these JUNOS automation efforts
with other IT systems, using the automation and orchestration software framework called
Ansible.

Ansible is an open-source automation toolkit that assists with provisioning software and
inventory, application deployment and configuration management. It's well suited to
JUNOS because Ansible's fundamental method of communicating with elements is via SSH,
which of course is the native method of managing JUNOS devices. Ansible is also
supported by Juniper, who has led the open-source development of Ansible roles—vendor-
or task-related plugins specific to an application environment—specifically to support
JUNOS devices.

Extending JUNOS with Ansible

[338]

Installing Ansible
In this recipe, we'll set up an Ansible control server and demonstrate some basic Ansible
commands. We'll run some basic commands using Ansible to gain an understanding of the
fundamentals.

Getting ready
In order to complete this recipe, you'll need a Python 2.7 development environment. For the
purposes of this recipe, we used Ubuntu 16.04, which ships by default with Python 3 out of
the box, but Python 2.7 is also available from the Ubuntu repositories.

How to do it...
We're going to install Ansible on our management host and then use it to connect to itself to
test basic Ansible commands.

First of all, we're going to install Python 2.7, since it may not be installed as the1.
default Python interpreter in Ubuntu 16.04:

 ubuntu@ubuntu-xenial:~$ sudo apt-get install -y python2.7
 python-pip

Then, we'll install Ansible using the Python package manager:2.

ubuntu@ubuntu-xenial:~$ pip install ansible
Collecting ansible
[...]
Successfully built ansible pycrypto
Installing collected packages: MarkupSafe, jinja2, PyYAML, six,
pycparser, cffi, pynacl, pyasn1, bcrypt, ipaddress, idna,
asn1crypto, enum34, cryptography, paramiko, pycrypto, setuptools,
ansible
Successfully installed MarkupSafe-1.0 PyYAML-3.12 ansible-2.3.2.0
asn1crypto-0.22.0 bcrypt-3.1.3 cffi-1.11.0 cryptography-2.0.3
enum34-1.1.6 idna-2.6 ipaddress-1.0.18 jinja2-2.9.6 paramiko-2.2.1
pyasn1-0.3.4 pycparser-2.18 pycrypto-2.6.1 pynacl-1.1.2
setuptools-36.3.0 six-1.10.0

Extending JUNOS with Ansible

[339]

Verify that you're using Ansible 2.1 or greater, which has core in-built support for3.
JUNOS network elements:

ubuntu@ubuntu-xenial:~$ ansible --version
ansible 2.3.2.0
 config file =
 configured module search path = Default w/o overrides
 python version = 2.7.12 (default, Nov 19 2016, 06:48:10) [GCC
5.4.0 20160609]

Create a working directory to test basic Ansible functionality:4.

ubuntu@ubuntu-xenial:~$ mkdir ansible
ubuntu@ubuntu-xenial:~$ cd ansible/
ubuntu@ubuntu-xenial:~/ansible$

Create a basic inventory file that simply includes the local UNIX host as an5.
element:

ubuntu@ubuntu-xenial:~/ansible$ echo "127.0.0.1" > hosts
ubuntu@ubuntu-xenial:~/ansible$ cat hosts
127.0.0.1

Generate an SSH key-pair if not already done, and ensure that the local6.
authorized_keys configuration allows the key (so that key-based SSH logins
can be used):

 ubuntu@ubuntu-xenial:~$ ssh-keygen
 Generating public/private rsa key pair.
 Enter file in which to save the key (/home/ubuntu/.ssh/id_rsa):
 Enter passphrase (empty for no passphrase):
 Enter same passphrase again:
 Your identification has been saved in /home/ubuntu/.ssh/id_rsa.
 Your public key has been saved in /home/ubuntu/.ssh/id_rsa.pub.
 The key fingerprint is:
 SHA256:Akpv6g4/11I97IGuFKNHs/Y3AfikkuIMLXSSKEeGKiQ
 ubuntu@ubuntu-
 xenial
 The key's randomart image is:
 +---[RSA 2048]----+
 | . |
 |E.o |
 |=oo .. |
 |==.+..o |
 |+o+.B+.=S |
 |+ +=.=+.* |
 |=oo.=+ . + |

Extending JUNOS with Ansible

[340]

 | *.+o.o + |
 | .+o.o.. . |
 +----[SHA256]-----+
 ubuntu@ubuntu-xenial:~$ cat ~/.ssh/id_rsa.pub >>
 ~/.ssh/authorized_keys

Test out Ansible by performing a basic ping test to ensure that it has management7.
access to the local node:

 ubuntu@ubuntu-xenial:~/ansible$ ansible -i hosts -m ping all
 127.0.0.1 | SUCCESS => {
 "changed": false,
 "ping": "pong"
 }

How it works...
In step 1, we're making sure that we've got Python 2.7 available. Even though this isn't the
latest and greatest version of Python, it is unfortunately the case that not all software is
compatible and ready for the Python 3 change which breaks some syntactic features.
Ansible 2.x has recently become Python 3 capable, and the Juniper PyEZ framework works
with Python 3.5 and above, but at the time of writing, some of the other Juniper Ansible
modules that we'll want to look at have not been certified as compatible with Python 3. So
for the purpose of this recipe, we'll make use of Python 2.7.

In step 2, we use the built-in Python package manager, pip, to install Ansible. It is a
complex package and has many dependencies on other components. If you experience
difficulty in installing any of these components using pip, check whether your operating
system vendor has pre-packaged versions. Then in step 3, we verify which version we've
installed. In our case, it's the latest stable release, which is version 2.3.2.0.

Ansible 2.1 and greater includes native support within the core
functionality for working with JUNOS devices. On versions of Ansible
prior to 2.1, it was necessary to use the ansible-galaxy functionality in
order to import roles and modules defined by Juniper. The core JUNOS
support and the Juniper-provided role support can co-exist and some of
the functionality does overlap.

We then make a working directory in order to experiment with Ansible and start by
creating the most basic resource: the inventory file. In Ansible, the inventory file is the list of
hosts under management. The file is simply a text file containing the hostname or IP
addresses, and it can optionally be separated into section use .INI-file style [sections] to
define groups of hosts.

Extending JUNOS with Ansible

[341]

For the purposes of testing, we define a single host, localhost or 127.0.0.1, in order to test
Ansible's basic operation. At its core, Ansible makes use of SSH in order to manage the
elements in its charge and has a philosophy of agent-less behavior. The remote nodes only
need an SSH service and a Python interpreter in order to be manageable. It achieves this
through a tactic of pushing out agent code on demand by using the SSH-based SCP and
SFTP protocols.

In order to make sure that SSH works in the way that Ansible expects it to, we generate a
public-private key-pair in step 6. Now, if you've already done this step from some of our
earlier recipes, you have no need to repeat it. But to complete this recipe, just make sure that
the key you generated—which you probably installed onto your JUNOS devices—is also
installed on your management host as well in the ~/.ssh/authorized_keys file.

In step 7, we finally test Ansible by asking it to perform a ping operation on all of the nodes
under its control. Since this is only a single node at this time, the response is slightly
underwhelming but assuring nonetheless. Ansible comes back with a report for the host
that reports success, and no system state change. This is quite an important notion, because
Ansible's main benefit is the ability to schedule tasks on remote nodes combined with
contextual awareness of the environment and the state. So consequently, Ansible has to
understand state changes.

A ping operation in this sense simply means that the SSH client connected to the remote
element and validated that everything was as it should be.

Let's break down the command line to remind ourselves what the different options are.

Command line
option

Meaning

-i hosts Specification of the inventory file. If not specified, Ansible will
attempt to use a global, system-wide hosts file, usually
/etc/ansible/hosts.

-m ping Invoke the ping module.

all The target specification, or the list of devices within the inventory
that are subject to the task.

We specify the custom inventory file by using the -i switch, and we load in an Ansible
module, called ping using the -m switch.

Extending JUNOS with Ansible

[342]

There's more
The Ansible inventory file is flexible and can deal with per-host parameter association. For
example, we don't have to rely on IP addressing to nominate hosts, and we can also deal
with situations where Ansible needs to access the devices using different usernames. If we
modify our hosts file in order to add an extra OpenBSD device from our LAN with different
credentials, we can update the inventory file to look like this.

localhost ansible_host=127.0.0.1 ansible_user=ubuntu
openbsd ansible_host=10.0.201.220 ansible_user=user

Now, when we run our Ansible ping test, we can see both boxes respond and report as
available.

ubuntu@ubuntu-xenial:~/ansible$ ansible -i hosts -m ping all
localhost | SUCCESS => {
 "changed": false,
 "ping": "pong"
 }
 openbsd | SUCCESS => {
 "changed": false,
 "ping": "pong"
 }

Pinging boxes is all well and good, but it's a long way from large-scale system management.
Ansible's core foundation is built upon the notion of modules—small software components
that deal with a particular aspect of system management. The module directory included
with Ansible is large and comprehensive and third-party vendors can also provide their
own modules. Here are some of the basic examples, but a complete list is available at the
Ansible documentation web site http:/ ​/ ​docs.​ansible. ​com/ ​ansible/ ​latest/ ​list_ ​of_​all_
modules.​html.

shell: Executes commands in nodes
setup: Gathers facts about remote hosts
file: Sets attributes of files
copy: Copies files to remote locations
get_url: Downloads files from HTTP, HTTPS, or FTP to node

Here we can see a basic shell tool module being used to query the uptime of all of the
servers in our estate. In this case, we add the -a switch in order to pass in an argument to
the Ansible module.

 ubuntu@ubuntu-xenial:~/ansible$ ansible -i hosts -m shell -a uptime
 all

../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html
../../../../../docs.ansible.com/ansible/latest/list_of_all_modules.html

Extending JUNOS with Ansible

[343]

 localhost | SUCCESS | rc=0 >>
 22:08:24 up 2:35, 2 users, load average: 0.01, 0.01, 0.00

 openbsd | SUCCESS | rc=0 >>
 3:11AM up 2 days, 12:43, 2 users, load averages: 0.22, 0.13, 0.10

Configuring Ansible for JUNOS
In this recipe, we'll enhance our Ansible environment to work with JUNOS devices by
making some changes. We'll use the core modules that ship with Ansible 2.1 and greater in
order to remotely execute commands on the JUNOS devices.

Getting ready
In order to complete this recipe, you should have completed the previous recipe, Installing
Ansible, and you'll need access to a JUNOS device for testing.

How to do it..
We're going to install the specific Python modules that enable the Ansible JUNOS_*
modules to effectively communicate with JUNOS devices, routers, and switches. We'll also
make some Ansible system changes in order to accommodate this.

First of all, we're going to install the PyEZ JUNOS-eznc package on our Ansible1.
control host because it contains some essential NETCONF-over-SSH functionality
that Ansible will use:

 ubuntu@ubuntu-xenial:~$ pip install JUNOS-eznc
 Collecting JUNOS-eznc
 Collecting netaddr (from JUNOS-eznc)
 Collecting PyYAML>=3.10 (from JUNOS-eznc)
 Collecting pyserial (from JUNOS-eznc)
 [...]
 Successfully built ncclient
 Installing collected packages: netaddr, PyYAML, pyserial,
 setuptools, six, pycparser, cffi, pynacl, pyasn1, bcrypt,
 ipaddress, idna, asn1crypto, enum34, cryptography, paramiko,
lxml,
 ncclient, MarkupSafe, jinja2, scp, JUNOS-eznc
 Successfully installed MarkupSafe-1.0 PyYAML-3.12 asn1crypto-
 0.22.0 bcrypt-3.1.3 cffi-1.11.0 cryptography-2.0.3 enum34-1.1.6

Extending JUNOS with Ansible

[344]

 idna-2.6 ipaddress-1.0.18 jinja2-2.9.6 JUNOS-eznc-2.1.6
lxml-3.8.0
 ncclient-0.5.3 netaddr-0.7.19 paramiko-2.2.1 pyasn1-0.3.5
 pycparser-2.18 pynacl-1.1.2 pyserial-3.4 scp-0.10.2 setuptools-
 36.5.0 six-1.10.0

Then we're going to make a change to the Ansible configuration file in order to2.
disable SSH host key checking. Firstly, we need to check if there is an existing
Ansible configuration file. We can do this with the base ansible command, by
using the --version switch:

 ubuntu@ubuntu-xenial:~$ ansible --version
 ansible 2.3.2.0
 config file =
 configured module search path = Default w/o overrides
 python version = 2.7.12 (default, Nov 19 2016, 06:48:10) [GCC
 5.4.0 20160609]

If the section marked config file is blank, as it is in our output above, then it's3.
clear that there is currently no explicit configuration file present, and Ansible is
using burned-in defaults. This is a common situation. If this is the case, you can
simply proceed to make a new file in your home directory called .ansible.cfg.
If a file is reported in the output above, however, you need to modify that file.
Regardless of whether a new file is being created or not, an entry must be made
within the file to disable the SSH host key checking:

 [defaults]
 host_key_checking = False

Proceed to add the JUNOS device to the Ansible inventory file, but include with4.
it some special metadata variables that will customize how Ansible will treat the
device. From the following example, you must customize the values for:

ansible_host: the IP address or DNS name of your JUNOS device
ansible_user: the username of the user account profile to be used for
automation
ansible_ssh_private_key_file: the name of the file that stores the
SSH private key

 JUNOS-vm ansible_host=10.0.201.201 ansible_user=auto
 ansible_ssh_private_key_file=/home/user/auto/JUNOS_auto_id_rsa
 ansible_connection=local

Extending JUNOS with Ansible

[345]

With the device added to the Ansible inventory file, it is time to do a test5.
operation to see if Ansible is able to communicate correctly:

 ubuntu@ubuntu-xenial:~/ansible$ ansible -i hosts JUNOS -m ping
 JUNOS-vm | SUCCESS => {
 "changed": false,
 "ping": "pong"
 }

Beyond verifying connectivity and operation, we can use test one of the newer6.
Ansible 2.1—and—above modules for gathering facts about the JUNOS device:

 ubuntu@ubuntu-xenial:~/ansible$ ansible -i hosts JUNOS-vm -m
 JUNOS_facts
 JUNOS-vm | SUCCESS => {
 "ansible_facts": {
 "ansible_net_filesystems": [
 [...]
],
 "ansible_net_gather_subset": [
 "hardware",
 "default",
 "interfaces"
],
 "ansible_net_hostname": "router",
 "ansible_net_interfaces": {
 "em0": {
 "admin-status": "up",
 "macaddress": "08:00:27:2d:4c:9f",
 "mtu": "1514",
 "oper-status": "up",
 "speed": "1000mbps",
 "type": "Ethernet"
 },
 "em1": {
 "admin-status": "up",
 "macaddress": "08:00:27:17:3e:14",
 "mtu": "1514",
 "oper-status": "up",
 "speed": "1000mbps",
 "type": "Ethernet"
 },
 "gre": {
 "admin-status": "up",
 "macaddress": null,
 "mtu": "Unlimited",
 "oper-status": "up",

Extending JUNOS with Ansible

[346]

 "speed": "Unlimited",
 "type": "GRE"
 },
 "lo0": {
 "admin-status": "up",
 "macaddress": "Unspecified",
 "mtu": "Unlimited",
 "oper-status": "up",
 "speed": "Unspecified",
 "type": "Loopback"
 },
 "ansible_net_memfree_mb": 1074000,
 "ansible_net_memtotal_mb": 2061144,
 "ansible_net_model": "olive",
 "ansible_net_serialnum": null,
 "ansible_net_version": "15.1F6-S5.6"
 },
 "changed": false
 }

How it works...
Ansible is focused on dealing with Linux/UNIX systems out of the box, and some of the
features don't translate perfectly smoothly to JUNOS, even if JUNOS is based upon a BSD
UNIX platform. One of the first things to understand is that while Ansible itself uses SSH to
communicate with most nodes, it makes some assumptions about the SSH environment that
it logs in to that are typical for Linux/UNIX systems, but not necessarily appropriate for
fixed applications underlying UNIX operating systems such as JUNOS.

For example, when you log in to a JUNOS device with SSH, you don't see the vanilla UNIX
shell command. And you don't have direct access to the underlying UNIX command line
that the base operating system brings. It isn't restricted, of course—JUNOS allows you to
start shell if you need to interact with the underlying system - but the established way
to communicate with the device via SSH is using the JUNOS CLI. Using the JUNOS CLI as
the shell environment to SSH prevents Ansible from performing the typical activities that it
performs for other devices. So, when it comes to managing JUNOS devices with Ansible, we
need to make some allowances and adjustments.

Instead of using SSH directly, we make use of NETCONF interface provided by the Python
PyEZ and NETCONF libraries. It's this reason that requires us to install the PyEZ
framework and the all of the supporting modules such as ncclient and paramiko in step
1.

Extending JUNOS with Ansible

[347]

We tell Ansible not to communicate with the nodes directly over SSH by using the
ansible_connection=local directive in the inventory file. This results in the modules
being invoked locally on the management host. The modules are still able to understand
that they need to work on behalf of a remote JUNOS node, so they invoke the necessary
NETCONF facilities to get the job done.

It is perhaps a little confusing that the underlying NETCONF facilities
used on the local management host still actually use SSH in order to
communicate to the JUNOS host. They connect directly to the NETCONF-
over-SSH subsystem, and as a result need to understand the details
required for authentication, for which they refer to the per-host variables
defined in the inventory file, even though the connection mode is local.

An incompatibility in the underlying NETCONF and SSH libraries is the reason that we
need to disable SSH host key checking in step 3. The first time that an SSH client connects to
a host, a key exchange and caching exercise is usually done and, in interactive sessions, this
involves the user having an opportunity to validate the host key. This interaction gets
blocked when Ansible invokes the automatic tasks, so to work around that problem, we
disable the host key checking.

But once the SSH host key checking is disabled, and the JUNOS element is correctly
registered within the inventory database, normal Ansible business can continue, and in steps
5 and step 6 we see some examples of so-called ad-hoc commands, one involving the ping
module and one invoking the JUNOS_facts module to connect to the JUNOS device and
extract information.

At the time of writing, the Ansible core support for JUNOS devices is in the preview status,
which means it is subject to change, but it currently includes a wide range of functionality,
including the following notable modules.

Module Capabilities

junos_command Ability to run a CLI command on a Junos device and return the
output in either plain-text, XML, or JSON format. Can implement
wait/retry logic.

junos_config Ability to upload a configuration fragment to the Junos host in any
of plain-text, XML, JSON or set-mode command format. Can
optionally backup the current configuration file before applying
any changes.

Extending JUNOS with Ansible

[348]

junos_facts Ability to connect to a Junos host and extract a dictionary of useful
data including software version, and optionally, a download of the
configuration file.

junos_rpc Ability to run an arbitrary NETCONF RPC on a Junos host with
arguments. Output format can be XML (default), plain-text or
JSON.

junos_static
_route

Higher-level abstraction of junos_config allowing Ansible
playbook-writer to create/delete/manipulate static routing entries.

The full list of Ansible core modules for Junos can be found here: http:/ ​/​docs. ​ansible.
com/​ansible/​latest/ ​list_ ​of_ ​network_ ​modules. ​html#junos.

In addition to this, Juniper has its own GitHub-hosted repository of similar and enhanced
functionality, which can be installed by using the ansible-galaxy tools. Together this can
make Ansible a powerful choice in an environment where it's necessary to integrate
automation development together with other enterprise technologies.

Extracting estate-wide configurations
In this recipe, we'll make use of Ansible for JUNOS in order to have the configuration files
from all of our routers copied back to the central Ansible control and management server.
We'll define the hosts that we want managed, and how to authenticate with them, and we'll
write a playbook—a series of activities that daisy-chain together—in order to orchestrate
the activity.

Getting ready
In order to complete this recipe, you need a working Ansible environment, and you should
have installed the PyEZ framework and related NETCONF client libraries in order to be
able to communicate with the JUNOS nodes with NETCONF-over-SSH.

../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos
../../../../../docs.ansible.com/ansible/latest/list_of_network_modules.html#junos

Extending JUNOS with Ansible

[349]

How to do it...
We're going to register our devices within the Ansible inventory file and then run a
playbook that will capture the configuration files from them.

Update the hosts file for the Ansible installation to include all of the JUNOS1.
devices that you want managed. Remember to specify the connection=local
directive in order to use the locally-originated NETCONF-over-SSH channel to
the network elements, rather than direct SSH.

 ubuntu@ubuntu-xenial:~/ansible$ cat hosts
 [JUNOS-devices]
 JUNOS1 ansible_host=10.0.201.201 ansible_user=auto
 ansible_ssh_private_key_file=/home/user/auto/JUNOS_auto_id_rsa
 ansible_connection=local
 JUNOS2 ansible_host=10.0.201.202 ansible_user=auto
 ansible_ssh_private_key_file=/home/user/auto/JUNOS_auto_id_rsa
 ansible_connection=local
 JUNOS3 ansible_host=10.0.201.203 ansible_user=auto
 ansible_ssh_private_key_file=/home/user/auto/JUNOS_auto_id_rsa
 ansible_connection=local

Write a playbook specification in YAML, archive-config.pb, that directs a2.
sequence of two actions to be performed on the fleet of devices.

 - name: Archive configuration
 hosts: JUNOS
 gather_facts: no
 tasks:
 - JUNOS_facts:
 gather_subset: config
 register: facts
 - copy: content="{{ facts.ansible_facts.ansible_net_config }}"
 dest="/var/tmp/{{ ansible_net_hostname }}.cfg"

Run the playbook using ansible-playbook in order to execute the actions3.

 ubuntu@ubuntu-xenial:~/ansible$ ansible-playbook -i hosts
archive-
 config.pb

 PLAY [Archive configuration]
 **

 TASK [JUNOS_facts]

Extending JUNOS with Ansible

[350]

 **
 ok: [JUNOS1]
 ok: [JUNOS2]
 ok: [JUNOS3]

 TASK [copy]
**
 changed: [JUNOS1]
 changed: [JUNOS2]
 changed: [JUNOS3]

 PLAY RECAP

*
 JUNOS1 : ok=2 changed=1 unreachable=0 failed=0
 JUNOS2 : ok=2 changed=1 unreachable=0 failed=0
 JUNOS3 : ok=2 changed=1 unreachable=0 failed=0

Check the /var/tmp/ directory to find the resulting files.

ubuntu@ubuntu-xenial:~/ansible$ ls -l /var/tmp/
total 3404
-rw-rw-r-- 1 ubuntu ubuntu 24816 Sep 17 06:03 JUNOS1.cfg
-rw-rw-r-- 1 ubuntu ubuntu 9846 Sep 17 06:03 JUNOS2.cfg
-rw-rw-r-- 1 ubuntu ubuntu 14250 Sep 17 06:03 JUNOS3.cfg

How it works...
All of the JUNOS OS devices are placed within the hosts inventory file in a group called
JUNOS-devices, using the INI-file style [group] syntax. This allows us to refer to the
collective, rather than individual hosts, when we go to define actions and tasks.

Then we create a playbook, which is a set of task definitions. In our case, we have used one
playbook that consists of two tasks, executed in sequence:

JUNOS_facts: The module to extract basic platform and inventory information,1.
including configuration.
copy: An Ansible core module used to manipulate files.2.

The playbook defines the scope of the activities as JUNOS-devices. This could be a single
host, a host group or a host pattern, but in our case it's a reference to the group in the
inventory file.

Extending JUNOS with Ansible

[351]

The JUNOS_facts task is given a gather_subset: config key-value pair as a sub-
parameter. This instructs it to augment its usual behaviour of collecting basic system facts
with a process to actively extract the currently committed configuration.

It also contains the register directive which is the main directive to extract output from
Ansible tasks. The register directive creates a playbook-scope variable that can be used by
subsequent tasks in the play. So in our case, we register our interest in the output of the fact
extraction process, which is documented to be a Python dictionary of various useful
properties, and give it a simple name, facts. This is then usable by subsequent modules.

The second task in the play proceeds to copy a file into the /var/tmp directory on the local
Ansible management control system. It uses Jinja2-style {{ template substitution }}
in order to expand the facts variable that its predecessor has captured. In this case, the
configuration on the JUNOS router is available within the facts dictionary, so the copying
task can directly refer to that content and output it to a destination file. The destination file
is determined also through variable substitution. We use the ansible_net_hostname
variable to obtain the name of the remote JUNOS device.

So for each affected host, Ansible proceeds to run each of the named tasks against the host,
using the variables that we've defined in the inventory file. When a task runs, you'll notice
that it has one of the several return codes:

Response Meaning

ok The operation completed successfully.

changed The operation completed and the internal state of the resource was
changed.

unreachable The operation couldn't complete because the host couldn't be reached.

failed The operation was attempted but didn't complete successfully.

The play continues to run while the operations succeed, and the copy task notes that it has
changed the destination file through its operation, so it returns the changed response.

If you run the playbook again, you'll see that the copy operation is smart
enough to understand when the content hasn't changed, and on the
second time through, it will simply record an ok response.

The end result is a directory containing the configuration files from all of the JUNOS
devices declared in the inventory file.

Extending JUNOS with Ansible

[352]

There's more...
Quite often when we're trying to do a combined task across a large fleet of devices, it is
useful to break down any serialization of the process. Ansible can help with that because it
is able to run a playbook task list in parallel forked threads. If we define the -f switch on
the invocation of the ansible-playbook, the job can be divided down into the specified
number of threads.

Performing platform-specific or group-
specific operations
In this recipe, we'll build on the experiences of previous recipes by using Ansible to deploy
to configurations to a restricted set of devices without our estate, perhaps based upon either
hardware type or software type. We'll explore adding variables to our inventory record
which can influence playbooks, and we'll also look at dynamically determining playbook
execution.

Getting ready
In order to complete this recipe, you need a working Ansible environment, and you should
have installed the PyEZ framework and related NETCONF client libraries in order to be
able to communicate with the JUNOS nodes with NETCONF-over-SSH.

How to do it...
We're going to update our inventory list to add a custom variable to each host record which
defines its hardware type, and then we're going to run a playbook that selectively adds
some firewall configuration, based on the value of this variable.

Modify our inventory file in order to collect together all of the common variables1.
under one INI-style group called [JUNOS-devices:vars].

 [JUNOS-devices:vars]
 ansible_user=auto
 ansible_ssh_private_key_file=/home/user/auto/JUNOS_auto_id_rsa
 ansible_connection=local

Extending JUNOS with Ansible

[353]

Then define the JUNOS devices themselves with the variables that actually vary2.
per-host.

 [JUNOS-devices]
 JUNOS1 ansible_host=10.0.201.201 hardware=vm
 JUNOS2 ansible_host=10.0.201.202 hardware=mx960-mpc
 JUNOS3 ansible_host=10.0.201.203 hardware=mx960-dpc

Create a playbook YAML definition, config.pb, to call upon the JUNOS_config3.
module in order to apply set-mode style configuration to the JUNOS device. Use
the when modifier to specify a condition for when the activity should occur.

 - name: Conditional configuration
 hosts: JUNOS
 gather_facts: no
 tasks:
 - JUNOS_config:
 lines:
 - set firewall filter BORDER term 10 from protocol icmp
 - set firewall filter BORDER term 10 then reject
 comment: Firewall filter update
 when: hardware == "mx960-mpc"

Use the ansible-playbook command in order to invoke the playbook and see4.
the results.

 ubuntu@ubuntu-xenial:~/ansible$ ansible-playbook -i hosts
 config.pb

 PLAY [Conditional configuration]

 TASK [JUNOS_config]

 skipping: [JUNOS1]
 ok: [JUNOS2]
 skipping: [JUNOS3]

 PLAY RECAP

 **
 JUNOS1 : ok=0 changed=0 unreachable=0 failed=0
 JUNOS2 : ok=1 changed=1 unreachable=0 failed=0
 JUNOS3 : ok=0 changed=0 unreachable=0 failed=0

Extending JUNOS with Ansible

[354]

Modify the playbook specification to include an initial JUNOS_facts task. Use5.
this to capture the software version of the device in question and then adjust the
when modifier to make a decision based upon this, rather than the hardware.

 - name: Conditional configuration
 hosts: JUNOS
 gather_facts: no
 tasks:
 - JUNOS_facts:
 gather_subset: config
 register: facts
 - JUNOS_config:
 lines:
 - set firewall filter BORDER term 10 from protocol icmp
 - set firewall filter BORDER term 10 then reject
 comment: Firewall filter update
 when: facts.ansible_facts.ansible_net_version == "15.1F6-
 S5.6"

Run the playbook again and observe that Ansible now completes the same6.
configuration tasks on a different device.

 ubuntu@ubuntu-xenial:~/ansible$ ansible-playbook -i hosts
 config.pb

 PLAY [Conditional configuration]
 **

 TASK [JUNOS_facts]
 **
 ok: [JUNOS1]
 ok: [JUNOS2]
 ok: [JUNOS3]

 TASK [JUNOS_config]

 ok: [JUNOS1]
 skipping: [JUNOS2]
 skipping: [JUNOS3]

 PLAY RECAP

 JUNOS1 : ok=2 changed=1 unreachable=0 failed=0
 JUNOS2 : ok=1 changed=0 unreachable=0 failed=0
 JUNOS3 : ok=1 changed=0 unreachable=0 failed=0

Extending JUNOS with Ansible

[355]

How it works...
The playbook execution environment inherits all of the variables defined with the host
inventory specification so it is able to act upon assertions or other information present
therein. When Ansible reads the group specifications, it also looks for a section in the hosts
file with the same name as the group suffixed with :vars, in our case JUNOS-
devices:vars. It applies the variables observed in this section to all devices within the
main JUNOS-devices section.

In the first playbook, we simply had the JUNOS_config task run on the condition that the
hardware variable that we defined in the hosts file was an appropriate value. So if we went
to the trouble to class each device under management and record it within the inventory
file, this would be a useful way to perform hardware-specific activities across the whole
fleet of devices.

Sometimes though, we need to make a decision based upon what we have seen in the field.
In the second playbook, we first perform an exploratory JUNOS_facts task on all devices
under management and ensure that this will register its captured facts in a variable
accessible to the later playbook tasks.

Then, once the JUNOS_facts task has run, the JUNOS_config task can run as previously,
but it can act on the information learned from the first task. We can use the when modifier
in order to limit execution of the JUNOS_config task to situations when the data obtained
from the fact-deriving mission exhibits the characteristics we want. In our case, we use this
ability to verify the software version.

Using variables and vaults
In this recipe, we'll explore one of the recommended Ansible principles of separating host
inventory information from variables that define per-host and per-group behaviour. We've
already seen in the previous recipes that we can break out variables into a group definition
within the Ansible inventory file, and in this recipe, we'll take it further by making a specific
file to define per-group variables. We'll consider the case where some of the variables in
that per-group profile might contain sensitive information and require protection. Indeed
that is the case for our use of the JUNOS_* Ansible core modules because they require us to
communicate SSH username and passwords.

Extending JUNOS with Ansible

[356]

Getting ready
In order to complete this recipe, you need a working Ansible environment. You should also
have installed the PyEZ framework and related NETCONF client libraries in order to be
able to communicate with the JUNOS nodes with NETCONF-over-SSH.

How to do it...
We're going to create a new Ansible host inventory with a group to encapsulate all of our
JUNOS OS devices. We'll define per-group variables for the JUNOS OS devices in a separate
file and we'll encrypt that file by using an Ansible vault.

First of all, create an Ansible hosts file to describe the estate of devices. Include1.
with each host the IP address and the port number of the NETCONF-over-SSH
service:

 [JUNOS-devices]
 JUNOS1 ansible_host=10.0.201.201 ansible_port=830
 JUNOS2 ansible_host=10.0.201.202 ansible_port=830
 JUNOS3 ansible_host=10.0.201.203 ansible_port=830

Create a subdirectory in the Ansible inventory directory—the directory that2.
contains the host files—and name it group_vars.

 ubuntu@ubuntu-xenial:~/ansible$ mkdir group_vars

In this directory, create a YAML-file specifying the group-level variables that3.
applies to all hosts in JUNOS-devices. In this, we're going to include a common
SSH username and password, rather than using a key-based authentication.

 ansible_connection: local netconf_auth:
 username: auto
 password: my-secret-password

Extending JUNOS with Ansible

[357]

In order to keep this file under lock and key, use the ansible-vault utility to4.
encrypt the file with a password.

 ubuntu@ubuntu-xenial:~/ansible/group_vars$ ansible-vault encrypt
 JUNOS-devices.yml
 New Vault password: [enter a password here]
 Confirm New Vault password: [repeat the password]
 Encryption successful

Now, to test out the Ansible vault configuration, create a playbook that simply5.
extracts the facts from the JUNOS devices in the inventory and reports the
sofware version. Call this file facts.pb.

 - name: Getting facts using vault secured password
 hosts: JUNOS-devices
 gather_facts: no
 tasks:
 - JUNOS_facts:
 gather_subset: config
 provider:
 host: "{{ ansible_host }}"
 port: "{{ ansible_port }}"
 username: "{{ username }}"
 password: "{{ password }}"
 register: facts
 - debug:
 var: facts.ansible_facts.ansible_net_version

Run the playbook to see the interaction with the secure vault.6.

 ubuntu@ubuntu-xenial:~/ansible$ ansible-playbook -i hosts
 facts.pb
 ERROR! Decryption failed on
 /home/ubuntu/ansible/group_vars/JUNOS-devices.yml

Ansible is unable to read the file JUNOS-devices.yml, because it's been7.
encrypted. However, Ansible can read the file if we provide the password as we
invoke the playbook. We can do that with the --ask-vault-pass switch.

 ubuntu@ubuntu-xenial:~/ansible$ ansible-playbook --ask-vault-
 pass -i hosts facts.pb
 Vault password:

 PLAY [Getting facts using vault secured password]
 **

Extending JUNOS with Ansible

[358]

 TASK [JUNOS_facts]

 ok: [JUNOS1]
 ok: [JUNOS2]
 ok: [JUNOS3]

 TASK [debug]
 **
 ok: [JUNOS1] => {
 "facts.ansible_facts.ansible_net_version": "15.1F6-S5.6"

 }
 ok: [JUNOS2] => {
 "facts.ansible_facts.ansible_net_version": "15.1F4-S7.1"
 }
 ok: [JUNOS3] => {
 "facts.ansible_facts.ansible_net_version": "14.1R6.4"
 }

 PLAY RECAP

 JUNOS1 : ok=2 changed=0 unreachable=0 failed=0
 JUNOS2 : ok=2 changed=0 unreachable=0 failed=0
 JUNOS3 : ok=2 changed=0 unreachable=0 failed=0

How it works...
When Ansible reads the hosts inventory file, it determines the hosts and how they map to
groups from the structure of the file. As we've seen, we can place hosts into groups by using
the classic INI-file syntax. But for each group—and host-defined, Ansible also takes the time
and trouble to look for files in the inventory directory that might assist with providing more
information about the hosts.

Filename Description

group_vars/group-name.yml Group-wide variables that should be applied

host_vars/host-name.yml Host-specific variables that should be applied

The YAML files contain key-value pairs to define variables that should be in-scope for any
playbooks that work with the host or a host in the group. Under normal circumstances,
these files are plain readable and indeed this makes it easier to read and write them.

Extending JUNOS with Ansible

[359]

But in our case, because we included sensitive password information within the files, we
choose to armour the files with encryption. The ansible-vault utility is able to do this for
us. It's a command-line utility that will take a filename, prompt the user for a password and
then replace the on-disk file with one that is encrypted. It places a special header in the file
so that other Ansible-related tools can tell that the file has been encrypted and that it will
require decryption and a password to do so.

Then we define a two-task play. The first task performs the Juniper-specific task gathering
exercise. This task will explore the device and come back with a Python dictionary of
useful-key value attributes that can tell us about the device. For the first task, we use the
register directive in order to capture the result of the task in a variable named facts.
Then in the second task, which is a simple local debug task, we output the contents of the
captured facts, specifically the ansible_net_version variable which encapsulates the
software version information.

When we launch ansible-playbook however, it cannot read the group_vars/JUNOS-
devices file, because it is encrypted. Ansible recognizes the encryption header and
prompts the user for a password. After it successfully opens the vaulted file, it can progress
the play as defined in the playbook.

In this way, we've managed to take all the best precautions to protect sensitive credential
information used for accessing our device, but we have also managed to unify all activities
that require the access under the umbrella of a single supervising agent which can unlock
and provide the data as required.

As of Ansible 2.3, there is support for providing SSH private key material
from within variables vaulted within files, but unfortunately this is only
applicable to native Ansible SSH connected devices. For JUNOS, the
JUNOS modules are limited to support for specifying username, password
and private key file—as we did previously. This is subtly different of
course, because in this case the actual key contents are kept outside of the
secure Ansible vault. If the SSH key material is password protected, then
the underlying NETCONF client may be able to use the Ansible-provided
password to unlock the SSH key, but this is quite dependent on
NETCONF client functionality.

Index

A
Ansible core modules
 reference 348
Ansible
 configuration, for JUNOS 343
 installing 338
 reference 342
anti-spoofing filters
 applying 314, 328

B
Best Common Practice38 (BCP.38) 314
BGP MPLS VPN 228
BGP route filters
 building 305, 314
bgpq3
 download link 307
Bidirectional Forwarding Detection (BFD) 128
Border Gateway Protocol (BGP) 80
Brilliantly Useful Routing Protocol (BURP) 129

C
Certificate Authority (CA) 42
classic Expect/TCL
 used, for processing NETCONF 25
commit script
 about 62
 EBGP policy default 305
 IDP interface deletion 305
 loopback address 304
 used, for enforcing configuration standards 299
configuration analysis 164
configuration changes
 applying, NETCONF used 20
 applying, through REST API 56
 creating 83, 89, 91

 JUNOS OS event policy 238, 246
 making, with PyEZ 189
 monitoring network-wide 235
 SSH file transfer 237, 245
 web client application 243
 web server application 247
configuration standards
 enforcing, through commit scripts 299
configurations
 archiving, after modification 93, 98
custom show commands
 creating 79
custom tables and views
 using 183, 188

D
distributed ACL function
 operating 328, 336
distributed denial-of-service (DDOS) 314
DIY routing protocol 128, 135, 138

E
estate-wide configurations
 extracting 348, 352
event scripts
 debugging 139, 143
event
 custom responses 102, 106
Extensible Stylesheet Language Transformations

(XSLT) 61

F
flapping interface
 dealing with 111, 116
flapping OSPF neighbor
 dealing with 118

[361]

G
generally
 link state advertisements (LSAs) 224
graph
 data 208
 drawing 210, 215
 example graph, executing 214
 extracting, from ISIS 217
 extracting, from MPLS VPNs 228
 extracting, from OSPF 223
 instantiating 209
 principles 208
 template, instantiating 214
 visualizing 207

I
interface performance
 monitoring 252
 object-oriented primer, using for Node.js 253
 RGraph, setting up 268
 server application 256, 269
 web client application 263, 271
Internet Routing Registry (IRR) 306
IP addresses
 working with 71, 75
ISIS
 about 218
 graphs, extracting 217
issues
 EBGP peers, without import policies 300
 internal ISIS/OSPF interface deletions 300
 loopback interface deletion 300

J
JavaScript Object Notation (JSON) 15
Jinja2
 iteration 203
 used, for template configurations 196
 variable substitution 203
Juniper 234
JUNOS event policy
 configuring 98
Junos NETCON
 over SSH setup 12

Junos REST API
 setting up 40, 43
Junos
 Ansible, configuring 343
 REST API calls, making with Node.js 49
 REST API calls, making with Python 44

M
MPLS LDP statistics
 monitoring 290
 server application 291, 296
 web client application 293, 297
MPLS VPNs
 graphs, extracting 228

N
NETCONF RPC
 discovering 16
 requests and replies, creating 12, 15
NETCONF
 processing, classic Expect/TCL used 25
 processing, with Node.js 33
 processing, with Python 29
 used, for applying configuration changes 19
Network Configuration Protocol (NETCONF) 7
Node.js
 used, for making REST API calls to Junos 49
 used, for processing NETCONF 33

O
op script 62
operational RPCs
 calling 157
OSPF neighbor
 dealing with 126
OSPF
 about 224
 graphs, extracting 223

P
passwords
 secure management 53, 56
platform-specific or group-specific operations
 performing 352

Provider Edge (PE) 228
PyEZ
 environment, setting up 145, 151
 raw CLI commands, creating 171
 used, for exploring XML RPC 153
 used, for making configuration changes 189
Python
 used, for making REST API calls to Junos 44
 used, for processing NETCONF 29

R
raw CLI commands
 creating, from PyEZ 171
Real-time Performance Monitoring (RPM) 128
regular expressions
 working with 68, 71
remote procedure calls (RPC)
 about 7
 making 62, 66
reporting 164
Representational State Transfer (REST) 39
REST API calls, to Junos
 making, with Node.js 49
 making, with Python 44
REST API
 configuration changes, applying 56, 60
Reverse Path Forwarding (RPF) 314
RGraph
 reference 268
Routing Engine (RE) 43

S
Scalable Vector Graphics (SVG) 212
SLAX scripts

 debugging 75, 79
Stylesheet Language Alternative Syntax (SLAX) 62
Subsequent address family identifier (SAFI) 333
system health
 application, running 284
 client application 283
 monitoring 274
 server application 275, 282
 web client application 279

T
tables
 using 177
template configurations
 instantiating, with Jinja2 196
timeouts
 setting 157
Tool Command Language (TCL) 25

V
variables
 using 355
vaults
 using 355
views
 using 177
virtual Route Reflector (vRR) 62

X
XML API explorer
 reference 18
XML RPC
 exploring, with PyEZ 153
XPath predicate expressions
 using 67

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Configuring JUNOS through NETCONF
	Introduction
	JUNOS NETCONF over SSH setup
	Getting ready
	How to do it...
	How it works...
	There's more...

	Making NETCONF RPC requests and replies
	Getting ready
	How to do it...
	How it works...
	There's more...

	Discovering NETCONF RPCs
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using NETCONF to apply configuration changes
	Getting ready
	How to do it...
	How it works...

	Processing NETCONF using classic Expect/TCL
	Getting ready
	How to do it...
	How it works...

	Processing NETCONF with Python
	Getting ready
	How to do it...
	How it works...

	Processing NETCONF with Node.js
	Getting ready
	How to do it...
	How it works...

	Chapter 2: Working with the Junos REST API
	Introduction
	Junos REST API setup
	Getting ready
	How to do it...
	How it works...
	There's more

	Making REST API calls to Junos with Python
	Getting ready...
	How to do it...
	How it works...
	There's more...

	Making REST API calls to Junos with Node.js
	Getting ready
	How to do it...
	How it works...

	Managing passwords safely
	Getting ready
	How to do it...
	How it works...

	Applying configuration changes through the REST API
	Getting ready
	How to do it...
	How it works...

	Chapter 3: Using SLAX to Write Op Scripts
	Introduction
	Making remote procedure calls
	Getting ready
	How to do it...
	How it works...

	Using XPath predicate expressions
	Getting started
	How to do it...
	How it works...

	Working with regular expressions
	Getting ready
	How to do it...
	How it works...

	Working with IP addresses
	Getting ready
	How to do it...
	How it works...
	There's more

	Debugging SLAX scripts
	Getting ready
	How to do it...
	How it works...
	There's more

	Making custom show commands
	Getting ready
	How to do it...
	How it works...

	Making configuration changes
	Getting ready
	How to do it...
	How it works...

	Chapter 4: Event Programming
	Introduction
	Archiving configurations after a change
	Getting ready
	How to do it…
	How it works...
	There's more

	Capturing output after an event
	Getting ready
	How to do it…
	How it works…
	There's more

	Custom responses to an event
	Getting ready
	How to do it…
	How it works…
	There's more

	Dealing with a flapping interface
	Getting ready
	How to do it…
	How it works…

	Dealing with a flapping OSPF neighbor
	Getting ready
	How to do it…
	How it works…

	DIY routing protocol
	Getting ready
	How to do it…
	How it works…

	Debugging event scripts
	Getting ready
	How to do it…
	How it works…

	Chapter 5: Automating JUNOS with PyEZ
	Introduction
	Setting up a PyEZ environment
	Getting ready
	How to do it…
	How it works…
	There’s more

	Exploring the XML RPC using PyEZ
	Getting ready
	How to do it…
	How it works…

	Calling operational RPCs and setting timeouts
	Getting ready
	How to do it…
	How it works…

	Configuration analysis and reporting
	Getting ready
	How to do it…
	How it works…

	Making raw CLI commands from PyEZ
	Getting ready
	How to do it…
	How it works…
	There’s more

	Using tables and views
	Getting ready
	How to do it…
	How it works…
	There's more

	Using custom tables and views
	Getting ready
	How to do it…
	How it works…

	Making configuration changes with PyEZ
	Getting ready
	How to do it…
	How it works...
	There’s more

	Template configurations with Jinja2
	Getting ready
	How to do it…
	How it works...

	Chapter 6: Advanced Visualization Applications
	Introduction
	Visualizing graphs
	Getting ready
	Graph principles
	Graph data

	How to do it...
	Instantiating the template
	Drawing the graph
	Running the example graph

	How it works...
	Instantiating the template
	Drawing the graph

	Extracting graphs from ISIS
	Getting started
	ISIS primer

	How to do it...
	How it works...

	Extracting graphs from OSPF
	Getting ready
	OSPF primer

	How to do it...
	How it works...

	Extracting graphs from MPLS VPNs
	Getting ready
	BGP MPLS VPN primer

	How to do it...
	How it works...
	There's more

	Chapter 7: Monitoring and Maintaining JUNOS
	Introduction
	Monitoring configuration changes network-wide
	Getting ready
	How to do it…
	SSH file transfer
	JUNOS OS event policy
	Web server application
	Web client application

	How it works...
	SSH File Transfer
	JUNOS OS event policy
	Web server application
	Web client application

	There's more

	Monitoring interface performance
	Getting ready
	Object-oriented primer for Node.js

	How to do it…
	Server application
	Web client application
	Setting up and Running

	How it works...
	Server application
	Web client application

	There's more

	Monitoring system health
	Getting ready
	How to do it...
	Server application
	Web client application

	How it works...
	Server application
	Client application
	Running the application

	There's more

	Monitoring MPLS LDP statistics
	Getting ready
	How to do it...
	Server application
	Web client application

	How it works...
	Server application
	Web client application

	Chapter 8: Security Applications
	Introduction
	Enforcing configuration standards through commit scripts
	Getting ready
	How to do it...
	How it works...
	Loopback address
	IGP interface deletion
	EBGP policy default

	Building BGP route filters
	Getting ready
	How to do it...
	How it works...

	Applying anti-spoofing filters
	Getting ready
	How to do it...
	How it works...
	There's more

	Operating a distributed ACL function
	Getting ready
	How to do it...
	How it works...

	Chapter 9: Extending JUNOS with Ansible
	Introduction
	Installing Ansible
	Getting ready
	How to do it...
	How it works...
	There's more

	Configuring Ansible for JUNOS
	Getting ready
	How to do it..
	How it works...

	Extracting estate-wide configurations
	Getting ready
	How to do it...
	How it works...
	There's more...

	Performing platform-specific or group-specific operations
	Getting ready
	How to do it...
	How it works...

	Using variables and vaults
	Getting ready
	How to do it...
	How it works...

	Index

