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Domain theory is a branch of mathematics that studies special types of partially ordered 
sets, commonly known as domains. Consequently, domain theory can be considered as 
a branch of order theory. The field has major applications in computing, where it is used 
to determine denotational semantics, especially for functional programming languages. 
The domain theory very generally formalizes intuitive ideas about convergence, and 
convergence is closely related to topology. 
The domain theory as a field of mathematics deals with information and computation. 
It treats the idea of states that contain partial information, which are ordered by the 
quantity of information they contain. As a result of that, the developed mathematical 
theory has a large number of applications in many computer science topics, particularly 
in the semantics of programming languages. In this book, we will cover both the 
mathematical theory and the applications of domain theory. The main themes include: 
the topics of approximation and continuity defined in the domain theory and their 
important connections with topology; the bases for computation with infinite objects; 
the development of a rich theory of fix-points, as a foundation for recursive definitions; 
the development of a rich set of data type constructions, and recursive definitions of 
domains themselves; and power domains, to support ideas of non-deterministic and 
probabilistic computation.
This edition covers different topics from domain theory in computer science, including: 
partial orders and groups, power domains and metrics, recursive data types (binary 
trees) and algebraicity and Boolean algebras. 
Section 1 focuses on partial orders and groups, describing characterizations and 
properties of a new partial order, natural partial orders on transformation semigroups 
with fixed sets, cyclic soft groups and their applications on groups, factorization of 
groups involving symmetric and alternating groups.
Section 2 focuses on power domains and metrics, describing FS+ domains, topology 
of GB-metric spaces, incoherency problems in a combination of description logics and 
rules, metrics for multiset-theoretic subgraphs.
Section 3 focuses on recursive data types (binary trees), describing binary tree’s 
recursion traversal algorithm and its improvement, the design of the minimum spanning 
tree algorithms, generating tree-lists by fusing individual tree detection and nearest 
neighbor imputation using airborne LIDAR data, a recursive approach to the Kauffman 
bracket, a novel multiway splits decision tree for multiple types of data.

PREFACE



Section 4 focuses on algebraicity and Boolean algebras, describing the deformation 
theory of structure constants for associative algebras, the Boolean algebra and central 
Galois algebras, on addition of sets in Boolean space, algebra and geometry of sets in 
Boolean space, multipath detection using Boolean satisfiability techniques.
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SOME CHARACTERIZA-
TIONS AND PROPERTIES 
OF A NEW PARTIAL ORDER

Xiaoji Liu and Fang Gui

School of Mathematics and Physics, Guangxi University for Nationalities, Nanning 
530006, China

ABSTRACT
On the basis of Löwner partial order and core partial order, we introduce 
a new partial order: LC partial order. By applying matrix decomposition, 
core inverse, core partial order, and Löwner partial order, we give some 
characteristics of LC partial order, study the relationship between LC partial 
order and Löwner partial order under constraint conditions, and illustrate its 
differences with some classical partial orders, such as minus, CL, and GL 
partial orders.

Citation: Xiaoji Liu and Fang Gui, “Some Characterizations and Properties of a New 
Partial Order”, Journal of Mathematics, volume 2020, article ID 3215038, https://doi.
org/10.1155/2020/3215038. 

Copyright: © 2020 by Authors. This is an open access article distributed under the 
Creative Commons Attribution License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.  
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INTRODUCTION
A binary relation on a nonempty set is called partial order if it satisfies 
reflexivity, transitivity, and antisymmetry. In recent years, more and more 
mathematicians have turned their attention to matrix partial ordering: 
Hauke and Markiewicz [1] introduced generalized Löwner order by polar 
decomposition; Baksalary and Trenkler [2] studied the core partial order of 
complex matrices; and Ando [3] studied the square inequality and strong 
order relation on Hilbert space. In this paper, a new partial order is introduced 
on the complex matrix set by matrix decomposition and Löwner and core 
partial orders.

First, we use the following notations. The symbol  denotes the 

set of m × n matrices with complex entries.  and  denote the set 
of n × n Hermitian matrices and Hermitian nonnegative definite matrices, 
respectively. The symbols  and rk(A) represent the conjugate 
transpose, range space, and rank of  respectively. The symbol 
ρ(A) represents spectral radius of .

The smallest positive integer k for which rk(Ak+1) = rk(Ak) is called the 
index of  and is denoted by Ind(A). When A is nonsingular, the 

index of A is 0. The symbol  stands for a set of n × n matrices of index 
less than or equal to 1.

Definition 1 (see [4, 5]). Let . If  satisfies the 
following equations:

		 (1)
then X is said to be the Moore–Penrose inverse of matrix A, and X is unique. 
It is usually defined by X = A†.

Furthermore, we denote PA = AA†.

Definition 2 (see [4, 5]). Let . If  satisfies the 
following equations:
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						      (2)
then X is said to be the core inverse of matrix A, and X is unique. It is 
usually defined by X = A#.

Lemma 1 (see [2]). Let  with rk(A) = r, then A can be expressed 
as

					     (3)

where  is unitary,  is the diagonal 
matrix of singular values of   and 

 satisfy  and .
Furthermore, when rk(A) = rk(A2), K is nonsingular, and

				    (4)
We give the definitions of some classical partial orders such as minus, 

Löwner, sharp, core, and C-N partial orders [2, 6–8].

•	

•	

•	

•	

•	 , and A2 ≤ B2, in which A = A1 
+ A2 and B = B1 + B2 are the C-N decompositions of A and B, 
respectively

Matrix decomposition is an important tool to study the theory of matrix 
partial orders. It is used to discuss some characteristics and properties 
of matrix partial orders and then to establish some matrix partial orders. 
For example, C-N partial order and core partial order are based on C-N 
decomposition and core decomposition, respectively [2, 7, 9].
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A particular concern is the generalized polar decomposition ([3], Chapter 
6, Theorem 7). Let . Then, A can be written as

		 (5)

where  is a partial isometry, i.e., ,  and 
 are Hermitian nonnegative definite matrices. The matrices EA, GA, 

and HA are uniquely determined by  and  
in which  and 

.
Based on the generalized polar decomposition, Hauke and Markiewicz 

[1] introduced the GL partial order: let  and A = GAEA and 
B = GBEB be their polar decompositions, where  and 

. Then,

				    (6)
After that, Wang and Liu [10] made the polar-like decomposition: let 

. Then, A can be written as

						      (7)
where EA, GA, and HA are given in ([3], Chapter 6, Theorem 7). On the basis 
of the polar-like decomposition, the WL partial order [10] is defined as

		  (8)
in which  and  are the polar-like 
decompositions of A and B, respectively. In [11], Wang and Liu introduced 
the CL partial order:

			   (9)

in which . It is also worthy to note that, under certain condi-
tions, CL partial order is equivalent to GL and Löwner partial orders [1, 11].
In this paper, we consider matrices over complex fields. Based on the above 
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research and inspired by generalized polar decomposition, we introduce a 
new partial order on the set of core matrices by using Löwner partial order 
and core partial order. It is dominated neither by minus partial order nor by 
Löwner partial order. Interestingly, under some conditions, LC partial order 
is equivalent to CL, GL, and Löwner partial orders.

MAIN RESULT

In this section, we introduce a new partial order on , derive some of 
its characteristics, consider its relationship with Löwner partial order under 
some constraints, and illustrate its difference from other partial orders with 
examples.

Let  and EA be as given in (5). Then,

		  (10)
where

		  (11)
We call (10) the P-2 expression of A. Furthermore, it is easy to check 

that

		  (12)

		  (13)

 is a EP-matrix,  and .
Let . Consider the binary operation:

		  (14)
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in which A = FAQA and B = FBQB are the P-2 expressions of A and B, 
respectively. In the following Theorem 1, we check that the binary operation 
is a partial order and call it the LC partial order.

Theorem 1. The binary operation (14) is a partial order on .
Proof.

(1) 	 Reflexive: let , and A = FAQA is the P-2 expression of A. 
We have

		  (15)

 So, .

(2) 	 Antisymmetric: let  and B = FBQB 
be their P-2 expressions. If A≤ LCB and B ≤ LCA, that is, if

		  (16)
 Then, A = B.
(3) 	 Transitive: suppose that A ≤ LCB and B ≤ LCC, that is, suppose

		  (17)
 From the transitivity of the Löwner partial order and core partial order, 

we have  and  that is, . By (1), (2), and (3), we know 

that the binary operation (14) is a partial order on .
Next, we give the characteristics of the LC partial order.

Theorem 2. Let  and A = FAQA, 
and B = FBQB be the P-2 expressions of A and B, respectively. Then, there 
exists a unitary matrix U such that
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		  (18)

where  TA1 and TA4 are both nonsingular, TA2, TA3, TA4, 
and TA5 are arbitrary matrices with appropriate sizes, ,

		  (19)

Proof. Let . Applying (11), we get A = FAQA, where

			   (20)
Furthermore, we write

				    (21)
where  and .

Let  and B = FBQB be the P-2 expression of 
B. Since A ≤ LCB, by applying (14), we have . Then, by applying ([2], 
Lemma 3), we get
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					     (22)
where TA4 is nonsingular. It is easy to check that

					     (23)
We write

					     (24)
Then, applying (13), we get B7 = 0, B8 = 0, B9 = 0, and

		  (25)

Since  and FB − FA ≥ 0, then we get 

 and

	 (26)
that is,

			   (27)
Since ρ(KA) ≤ 1, ρ(KB) ≤ 1, FA and FB are EP, and  we obtain 

 and . Therefore, we 
have (18).
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Next, we use Examples 1 and 2 to explain the difference between LC 
partial order and minus (Löwner, GL, or CL) partial order.

Example 1. Let

		  (28)
Then, rk(B) = 3, rk(A) = 2, and
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		  (29)
Since
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		  (30)

then . We have .
(1)	 Since rk(B − A) = 3 ≠ rk(B) − rk(A) = 1, A is not below B under 

the minus partial order
(2)	 Since B − A is not a positive semi-definite matrix, A is not below 

B under the Löwner partial order
Example 2. Let

		  (31)
in which
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		 (32)
Then, rk(B) = 3, rk(A) = 2, and
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		  (33)
Since
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		  (34)

so . We have A≤ LCB.
(1) But
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		  (35)
 is not a positive semidefinite matrix, so A is not below B 

under the CL partial order.
(2) 	 Since
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					     (36)
A is not below B under the GL partial order.

Theorem 3. Let . Then,

					     (37)
Proof. When rk(A) = rk(B), we have

				   (38)
Then,

			   (39)
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Therefore, .

Corollary 1 (see [7]). Let . Then,  if and only if 

.

In ([8], Theorem 8.5.15), Mitra has verified that when , 

there has  if and only if . By applying Theorem 3, Corollary 1, 
and ([8], Theorem 8.5.15), we get Corollary 2.

Corollary 2. Let  and rk(A) = rk(B) ≥ 1. Then,

					     (40)
An EP matrix is core invertible, and the core, Moore–Penrose, and group 

inverses of the matrix are identical. Next, we consider the case where both 
A and B are EP.

Theorem 4. Let A, B be EP, rk(B) > rk(A) ≥ 1,  A = FAQA, and B 
= FBQB be the P-2 expression of A and B. Then, there exists a unitary matrix 
U such that

				    (41)

where  and TA4 are both nons-

ingular, and 
Proof. Let A, B be EP, rk(B) ≥ rk(A) ≥ 1, . There exists a unitary 

matrix U such that
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		  (42)
Then, LA = 0, KA = Irk(A). Furthermore,

			  (43)
Since B is EP,

				   (44)
and rk(B) ≥ rk(A) ≥ 1, we get

			   (45)
Then,

		  (46)
Since ρ(KA) ≤ 1, ρ(KB) ≤ 1, and FA and FB are both EP, we have 

 and . And because  
and FB − FA ≥ 0, then
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		  (47)
Therefore,

			   (48)
So, we have (41).

It is noteworthy that  when A and B both are EP.
Example 3. Let

					    (49)
rk(B) = rk(A) = 2, and

		  (50)

We obtain . Since
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				    (51)

We have . But

					     (52)

B is not below A under the Löwner partial order. So, .
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INTRODUCTION
For any semigroup 𝑆, the natural partial order on (𝑆), the set of all idempotents 
on 𝑆, is defined by

					     (1)
In 1980, Hartwig [1] and Nambooripad [2] proved that if 𝑆 is a regular 

semigroup, then the relation

		  (∗)
is a partial order on 𝑆 which extends the usual ordering of the set 𝐸(𝑆).
Later in 1986, the natural partial order on a regular semigroup was further 
extended to any semigroup 𝑆 by Mitsch [3] as follows:

				    (2)
Let 𝑋 be a set and (𝑋) denote the semigroup of binary relations on the set 

𝑋 under the composition of relations. A partial transformation semigroup 
is the collection of functions from a subset of 𝑋 into 𝑋 with composition 
which is denoted by (𝑋). Let (𝑋) be the set of all transformations from 𝑋 into 
itself and it is called the full transformation semigroup on 𝑋. Then (𝑋) and 
(𝑋) are subsemigroups of (𝑋). It is well known that (𝑋) and (𝑋) are regular 
semigroups.

In 1986, Kowol and Mitsch [4] characterized the natural partial order on 
(𝑋) in terms of images and kernels. They also proved that an element 𝛼 ∈ 
(𝑋) is maximal with respect to the natural order if and only if 𝛼 is surjective 
or injective; 𝛼 is minimal if and only if 𝛼 is a constant map. Moreover, 
they described lower and upper bounds for two transformations and gave 
necessary and sufficient conditions for their existence.

Later in 2006, Namnak and Preechasilp [5] studied two natural partial 
orders on B(𝑋) and characterized when two elements of 𝐵(𝑋) are related 
under these orders. They also described the minimality, maximality, left 
compatibility, and right compatibility of elements with respect to each order.

Let 𝑌 be a subset of 𝑋. Recently, Fernandes and Sanwong [6] defined

				    (3)
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where 𝑋𝛼 denotes the image of 𝛼. Moreover, they defined (𝑋, 𝑌) to be the 
set of all injective transformations in (𝑋, 𝑌). Hence (𝑋, 𝑌) and (𝑋, 𝑌) are 
subsemigroups of 𝑃(𝑋).

In [7], Sangkhanan and Sanwong described natural partial order ≤ on (𝑋, 
𝑌) and (𝑋, 𝑌) in terms of domains, images, and kernels. They also compared 
≤ with the subset order and characterized the meet and join of these two 
orders. Furthermore, they found elements of (𝑋, 𝑌) and (𝑋, 𝑌) which are 
compatible and determined the minimal and maximal elements.
Let 𝑌 be a fixed subset of 𝑋 and

		  (4)
In 2013, Honyam and Sanwong [8] proved that Fix(𝑋, 𝑌) is a regular 

semigroup and they also determined its Green’s relations and ideals. 
Moreover, they proved that Fix(𝑋, 𝑌) is never isomorphic to 𝑇(𝑍) for any 
set 𝑍 when  and every semigroup 𝑆 is isomorphic to a 
subsemigroup of Fix(𝑋’, 𝑌’) for some appropriate sets 𝑋’ and 𝑌’ with 𝑌’ ⊆ 
𝑋’. Note that this also follows trivially from the fact that (𝑋) embeds in Fix(𝑋 
∪ 𝑍, 𝑍) for any set 𝑍 with 𝑋 ∩ 𝑍 = ∅. Recently, the authors in [9] proved that 
there are only three types of maximal subsemigroups of Fix(𝑋, 𝑌) and these 
maximal subsemigroups coincide with the maximal regular subsemigroups 
when 𝑋\𝑌 is a finite set with |𝑋\𝑌| ≥ 2.They also gave necessary and sufficient 
conditions for Fix(𝑋, 𝑌) to be factorizable, unit-regular, and directly finite.

In this paper, we characterize the natural partial order on Fix(𝑋, 𝑌) 
and find elements which are compatible under this order in Section 3. In 
Section 4, we describe the minimal elements, the maximal elements, and 
the covering elements. Moreover, we find the number of upper covers of 
minimal elements and the number of lower covers of maximal elements.

PRELIMINARIES AND NOTATIONS
In [8], the authors proved that Fix(𝑋, 𝑌) is a regular subsemigroup of 𝑇(𝑋). 
Note that Fix(𝑋, 𝑌) contains 1𝑋, the identity map on 𝑋. If 𝑌 = ∅, then Fix(𝑋, 
𝑌) = 𝑇(𝑋); and if |𝑋| = 1 or 𝑋 = 𝑌, then Fix(𝑋, 𝑌) consists of one element, 1𝑋. 
So, throughout this paper we will consider the case 𝑌 ⊊ 𝑋 and |𝑋| > 1.

For any 𝛼 ∈ (𝑋), the symbol 𝜋𝛼 denotes the partition of 𝑋 induced by the 
map 𝛼, namely,



The Domain Theory in Computer Science28

		  (5)

For  and  we say that  refines  
if for each  there exists  such that .

Throughout this paper, unless otherwise stated, let { : 𝑖 ∈ 𝐼}.
For each 𝛼 ∈ Fix(𝑋, 𝑌), we have 𝑦𝑖𝛼 = 𝑦𝑖 for all 𝑖 ∈  𝐼. So 𝑌 = 𝑌𝛼 ⊆ 𝑋𝛼. 

If 𝛼 ∈ Fix(𝑋, 𝑌), then we write

							       (6)
and take as understood that the subscripts 𝑖 and 𝑗 belong to the index sets 𝐼 
and 𝐽, respectively, such that 𝑋𝛼 = {𝑦𝑖 :𝑖∈ 𝐼}∪{𝑏𝑗 : 𝑗 ∈ 𝐽}, 𝑦𝑖𝛼−1 = 𝐴𝑖, and 
𝑏𝑗𝛼−1 = 𝐵𝑗.Thus 𝐴𝑖∩𝑌 = {𝑦𝑖} for all 𝑖∈𝐼, 𝐵𝑗 ⊆𝑋\𝑌 for all 𝑗∈𝐽 and {𝑏𝑗 : 𝑗 ∈ 
𝐽} ⊆ 𝑋 \ 𝑌. Here 𝐽 can be an empty set.

An idempotent 𝑒 in a semigroup 𝑆 is said to be minimal if 𝑒 has the 
property 𝑓 ∈ (𝑆) and 𝑓 ≤ 𝑒 implies 𝑓 = 𝑒.
In [8] the authors showed that

		  (7)
is the set of all minimal idempotents in Fix(𝑋, 𝑌) and it is an ideal of Fix(𝑋, 
𝑌). We note that 𝐸𝑚 is simply the set {𝛼 ∈ Fix(𝑋, 𝑌) : 𝑋𝛼 = 𝑌} and 𝛼 is an 
idempotent in Fix(𝑋, 𝑌) if and only if 𝑥𝛼 = 𝑥 for all 𝑥 ∈ 𝑋𝛼 \ 𝑌.

NATURAL PARTIAL ORDER ON FIX(𝑋, 𝑌)
Kowol and Mitsch [4] gave a characterization of the natural partial order on 
(𝑋). Later in 1994, Higgins [10] showed that if 𝑇 is a regular subsemigroup 
of a semigroup 𝑆, then the natural partial order on 𝑇 is the restriction to 𝑇 
of the natural partial order on 𝑆. Here we describe the natural partial order 
on Fix(𝑋, 𝑌) which is a regular subsemigroup of 𝑇(𝑋) without making use 
of Higgins’ result and when we take 𝑌 = 0, we recapture the result above by 
Kowol and Mitsch.
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We note that if 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) and 𝛼 = 𝛽𝛾 for some 𝛾 ∈ Fix(𝑋, 𝑌), then 
𝜋𝛽 refines 𝜋𝛼.

Since Fix(𝑋, 𝑌) is regular, we use (∗) to study the natural partial order 
on this semigroup.

Theorem 1. Let 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌). Then 𝛼 ≤ 𝛽 if and only if the following 
statements hold:

•	 𝑋𝛼 ⊆ 𝑋𝛽;
•	 𝜋𝛽 refines 𝜋𝛼;
•	 if 𝑥𝛽 ∈ 𝑋𝛼, then 𝑥𝛽 = 𝑥𝛼.
Proof. Suppose that 𝛼 ≤ 𝛽. Then, by (∗), we have

						     (8)
for some 𝜆, 𝛾 ∈ 𝐸(Fix(𝑋, 𝑌)). Thus 𝑋𝛼 = (𝑋𝜆) ⊆ 𝑋𝛽. Since 𝛼 = 𝛽𝛾, we get 
that 𝜋𝛽 refines 𝜋𝛼. Now, let 𝑥𝛽 ∈ 𝑋𝛼. Then 𝑥𝛽 = 𝑥’ 𝛼 for some 𝑥’ ∈ 𝑋 and 
thus 𝑥𝛽 = 𝑥’ 𝛼 = 𝑥’ 𝛽𝛾 = (𝑥’ 𝛽). Hence 𝑥𝛽 ∈ 𝑋𝛾 and then 𝑥𝛼 = 𝑥𝛽𝛾 = 𝑥𝛽 
since 𝛾 is an idempotent.

Conversely, assume that conditions (1)–(3) hold. By condition (1), we 
can write

					     (9)

where  and 𝐵𝑗, 𝐶𝑗, 𝐶𝑘 ⊆ 𝑋\𝑌. Since  and 
𝜋𝛽 refines 𝜋𝛼, we obtain  for all 𝑖 ∈  𝐼. If 𝐽 = ∅, then define 𝜆 = 𝛼 and 
thus 𝛼 = 𝜆𝛽. If 𝐽 ≠ ∅, then, for each 𝑗 ∈  𝐽, let 𝑐𝑗 ∈ 𝐶𝑗. So 𝑐𝑗𝛽 = 𝑏𝑗 ∈ 𝑋𝛼. By 
condition (3), 𝑐𝑗𝛼 = 𝑐𝑗𝛽 = 𝑏𝑗; that is, 𝑐𝑗 ∈ 𝐵𝑗 and hence 𝐶𝑗 ⊆ 𝐵𝑗. Define

					     (10)
We get 𝜆 ∈ (Fix(𝑋, 𝑌)) and 𝛼 = 𝜆𝛽.

If 𝐾 = ∅, then 𝛼 = 𝛽1𝑋. If 𝐾 ≠ ∅, then, for each 𝑘 ∈ 𝐾 , we choose 𝑐𝑘 ∈ 𝐶𝑘.
Case  1. Consider 𝑋𝛽 = 𝑋. Then 𝑋 \ 𝑋𝛼 = { : 𝑘 ∈ 𝐾}. We define 𝛾 ∈ 

Fix(𝑋, 𝑌) by
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			   (11)

To prove that 𝛼 = 𝛽𝛾, let 𝑥∈𝑋. If  for some 𝑖 or 𝑥 ∈  𝐶𝑗 for some 𝑗, 
then it is clear that 𝑥𝛼 = 𝑥𝛽𝛾. Now, if 𝑥 ∈  𝐶𝑘 for some 𝑘, then 𝑥𝛽 = 𝑐𝑘𝛽 and 
thus 𝑥𝛼 = 𝑐𝑘𝛼 since 𝜋𝛽 refines 𝜋𝛼. So (𝑥𝛽) = 𝑏𝑘𝛾 = 𝑐𝑘𝛼 = 𝑥𝛼. Hence 𝛼 = 𝛽𝛾. 
It remains to show that 𝛾 is an idempotent. Let 𝑥𝛾 ∈ 𝑋𝛾 \ 𝑋𝛼. Then 𝑥𝛾 = 𝑐𝑘𝛼 
for some 𝑘. Thus (𝑥𝛾) = (𝑐𝑘𝛼) = 𝑐𝑘𝛼 = 𝑥𝛾 since 𝑐𝑘𝛼 ∈ 𝑋𝛼.

Case  2. Consider 𝑋𝛽 ⊊ 𝑋. We choose 𝑐0 ∈ 𝑋 \ 𝑋𝛽 and define 𝛾’ ∈ Fix(𝑋, 
𝑌) by

		  (12)
By the same prove as given in Case 1, we get 𝛼 = 𝛽𝛾’ and (𝑥𝛾’)’ = 

𝑥𝛾’ for all 𝑥𝛾’ ∈ 𝑋𝛽. If 𝑥𝛾’ = 𝑐0, then (𝑥𝛾’)’ = 𝑐0𝛾’ = 𝑐0 = 𝑥𝛾’. So 𝛾’ is an 
idempotent. Therefore, 𝛼 ≤ 𝛽 by (∗).

Remark 2. If 𝑌 = ∅, then Fix(𝑋, 𝑌) = 𝑇(𝑋), and we have the characterization 
of ≤ on 𝑇(𝑋) which first appeared in [4, Proposition 2.3].

As a direct consequence of Theorem 1, we get the following corollary.
Corollary 3. Let 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) with 𝛼 ≤ 𝛽. If 𝑋𝛼 \ 𝑌 = 𝑋𝛽 \ 𝑌, then 𝛼 

= 𝛽.

Let 𝑆 be a semigroup. An element 𝑎 ∈ 𝑆 is said to be left (right) compatible 
with respect to the partial order ≤ if 𝑎𝑏 ≤ 𝑎𝑐 (𝑏𝑎 ≤ 𝑐𝑎) whenever 𝑏 ≤ 𝑐.

The following results describe all the left compatible and right compatible 
elements in Fix(𝑋, 𝑌) when ∅ ≠ 𝑌 ⊊ 𝑋. We also write 𝛼 < 𝛽 instead of 𝛼 ≤ 
𝛽 and 𝛼 ≠ 𝛽 for 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌).

Theorem 4. Assume that ∅ ≠ 𝑌 ⊊ 𝑋 and let 𝜆 ∈ Fix(𝑋, 𝑌). Then 𝜆 is left 
compatible if and only if 𝜆 is a minimal idempotent or 𝜆 is surjective.

Proof. Suppose that 𝜆 is left compatible. Assume by contrary that 𝜆 is 
not a minimal idempotent and 𝜆 is not surjective. So there are 𝑎 ∈ 𝑋𝜆 \ 𝑌 and 
𝑏 ∈ 𝑋 \ 𝑋𝜆. Define



Natural Partial Orders on Transformation Semigroups with Fixed Sets 31

		  (13)
Then 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) with 𝛼 < 𝛽 and thus 𝜆𝛼 ≤ 𝜆𝛽 since 𝜆 is left 

compatible. However, 𝑋𝜆𝛼 ⊆ 𝑋𝜆𝛽 ̸ since 𝑎 ∈ 𝑋𝜆𝛼 but 𝑎 ∉ 𝑋𝜆𝛽, a 
contradiction.

Conversely, let 𝛼≤𝛽. If 𝜆 is a minimal idempotent, then 𝜆𝛼 = 𝜆 = 𝜆𝛽. 
Now, assume that 𝜆 is surjective. So 𝑋𝜆𝛼 = 𝑋𝛼 ⊆ 𝑋𝛽 = 𝑋𝜆𝛽. Let 𝐴 ∈  𝜋𝜆𝛽. 
So 𝐴 = (𝜆𝛽)−1 = (𝑥𝛽−1)𝜆−1 for some 𝑥 ∈ 𝑋𝜆𝛽. Since 𝛼 ≤ 𝛽, we have that 𝜋𝛽 
refines 𝜋𝛼 and hence 𝑥𝛽−1 ⊆ 𝑥’ 𝛼−1 for some 𝑥’ ∈ 𝑋𝛼. Since 𝑥’ ∈ 𝑋𝛼, we get 
𝑥’ = 𝑢𝛼 for some 𝑢 ∈  𝑋 and 𝑢 = V𝜆 for some V ∈ 𝑋 because 𝜆 is surjective. 
Hence V𝜆𝛼 = 𝑢𝛼 = 𝑥’; that is, 𝑥’ ∈ 𝑋𝜆𝛼. Further, 𝐴 = (𝑥𝛽−1)−1 ⊆ (𝑥’ 𝛼−1)𝜆−1 
= 𝑥’ (𝜆𝛼)−1 ∈ 𝜋𝜆𝛼, thus 𝜋𝜆𝛽 refines 𝜋𝜆𝛼. Let 𝑎𝜆𝛽 ∈ 𝑋𝜆𝛼. So (𝑎𝜆) ∈ 𝑋𝛼 and 
then 𝑎𝜆𝛽 = 𝑎𝜆𝛼. By Theorem 1, we have 𝜆𝛼 ≤ 𝜆𝛽 which implies that 𝜆 is 
left compatible.

Theorem 5. The following statements hold.

•	 If |𝑌| = 1, then 𝜆 ∈ Fix(𝑋, 𝑌) is right compatible if and only if 𝜆 is 
a minimal idempotent or  is injective.

•	 If |𝑌| = 2, then 𝜆 ∈ Fix(𝑋, 𝑌) is right compatible if and only if 𝜆 
is injective.

Proof. (1) Assume that 𝑌 = {𝑦} and 𝜆 is right compatible. Suppose in 
the contrary that 𝜆 is not a minimal idempotent and 𝜆 is not injective. So we 
can write

						      (14)
where 𝑦 ∈  𝐴 and 𝐽 ≠ 0. Since 𝜆 is not injective, two cases arise.

Case  1. Consider |𝐴| ≥ 2. Choose 𝑎 ∈ 𝐴 \ {𝑦} and  for some 𝑗0 ∈ 
𝐽. Let 𝑋 \ {𝑎, 𝑐} = { : 𝑘 ∈ 𝐾} and define 𝛼 ∈ Fix(𝑋, 𝑌) by

					     (15)
we get 𝛼 < 1𝑋. Moreover, we have (1𝑋𝜆) = 𝑎𝜆 = 𝑦 = (1𝑋𝜆), hence there is 

 such that {𝑎, 𝑦} ⊆ 𝐵. However,  for all 𝐶 ∈  𝜋𝛼𝜆 
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since . This means that  does not refine 
𝜋𝛼𝜆. By Theorem 1, we get  a contradiction.

Case  2. Consider  for some 𝑗0 ∈ 𝐽. Choose  such that 
𝑎 ≠ 𝑏. Let 𝑋 \ {𝑎, 𝑏, 𝑦} = { : 𝑘 ∈ 𝐾}. Define 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) by

		  (16)
we get 𝛼 < 𝛽. Since (𝛽𝜆) = 𝑏𝜆 = 𝑎𝜆 = (𝛽𝜆), there is 𝐵 ∈  𝜋𝛽𝜆 
such that {𝑎, 𝑏} ⊆ 𝐵. However,  for all 𝐶 ∈  𝜋𝛼𝜆 since 

. So 𝜋𝛽𝜆 does not refine 𝜋𝛼𝜆. By 
Theorem 1, we get  a contradiction.

Conversely, let 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) be such that 𝛼 ≤ 𝛽. If 𝜆 is a minimal 
idempotent, then  and 𝛼𝜆 = 𝜆 = 𝛽𝜆; that is, 𝜆 is right compatible. 
Now, assume that 𝜆 is injective. Since 𝑋𝛼 ⊆ 𝑋𝛽, we get 𝑋𝛼𝜆 ⊆ 𝑋𝛽𝜆. Let 𝐴 
∈ 𝜋𝛽𝜆. So 𝐴 = (𝛽𝜆)−1 = (𝑥𝜆−1)𝛽−1 for some 𝑥 ∈ 𝑋𝛽𝜆 and hence (𝑥𝜆−1)𝛽−1 ⊆ 𝑥’ 
𝛼−1 for some 𝑥’ ∈ 𝑋𝛼. So 𝑥’ = 𝑢𝛼 for some 𝑢 ∈  𝑋. Since 𝜆 is injective, {𝑥’} 
= v𝜆−1 for some v ∈ 𝑋𝜆 and 𝑢𝛼𝜆 = 𝑥’ 𝜆 = v; that is, v ∈ 𝑋𝛼𝜆. Thus 𝑥’ 𝛼−1 = 
(v𝜆−1)−1 = v(𝛼𝜆)−1 ∈ 𝜋𝛼𝜆 which implies that 𝜋𝛽𝜆 refines 𝜋𝛼𝜆. Let 𝑎𝛽𝜆 ∈ 𝑋𝛼𝜆. 
So 𝑎𝛽𝜆 = 𝑏𝛼𝜆 for some 𝑏 ∈  𝑋. Since 𝜆 is injective, 𝑎𝛽 = 𝑏𝛼 and then 𝑎𝛽 ∈ 
𝑋𝛼. Thus 𝑎𝛽 = 𝑎𝛼 since 𝛼 ≤ 𝛽 and that 𝑎𝛽𝜆 = 𝑎𝛼𝜆. Therefore, 𝛼𝜆 ≤ 𝛽𝜆, and 
we conclude that 𝜆 is right compatible.

(2) 	 Suppose that 𝜆 is right compatible and 𝜆 is not injective. Write

					     (17)
where 𝑦𝑖 ∈ 𝐴𝑖 and |𝐼| ≥ 2. Since 𝜆 is not injective, two cases arise.

Case  1.  for some 𝑖0 ∈ 𝐼. Choose  and 
. Let  and define

				    (18)
Then 𝛼 < 1𝑋 and hence 𝛼𝜆 ≤ 1𝑋𝜆. We can see that 

 but  for all 𝐵∈𝜋𝛼𝜆 since 
. This means that  does not refine 𝜋𝛼𝜆, a 

contradiction.
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Case  2.  for some 𝑗0 ∈ 𝐽. This is virtually identical to Case 2 of 
(1) above.

MINIMAL AND MAXIMAL ELEMENTS
Let 𝑆 be a semigroup together with the partial order ≤. 𝑆 is said to be directed 
downward if every pair of elements has a lower bound. In other words, for 
any 𝑎 and 𝑏 in 𝑆, there exists 𝑐 in 𝑆 with 𝑐 ≤ 𝑎 and 𝑐 ≤ 𝑏. A directed upward 
semigroup is defined dually.

If 𝑌 = ∅, then Fix(𝑋, 𝑌) = 𝑇(𝑋) and it has neither minimum nor maximum 
elements under the natural order (see [4]). So, in Lemmas 6 and 7 we assume 
that ∅ ≠ 𝑌 ⊊ 𝑋.

Lemma 6. Assume that ∅ ≠ 𝑌 ⊊ 𝑋. Then the following statements are 
equivalent.

(1) 	 Fix(𝑋, 𝑌) has a minimum element.

(2) 	 Fix(𝑋, 𝑌) is directed downward.

(3) 	 |𝑌| = 1.

Proof. (1)⇒(2) This is clear.

(2)⇒(3) Assume that Fix(𝑋, 𝑌) is directed downward. Let  and 
𝐽 = 𝐼 \ {𝑖1, 𝑖2}. Consider

		  (19)
We have 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) and there is 𝛾 ∈ Fix(𝑋, 𝑌) such that 𝛾≤𝛼 and 

𝛾≤𝛽. By Theorem 1, 𝜋𝛼 refines 𝜋𝛾 and 𝜋𝛽 refines 𝜋𝛾. Then there is 𝐴∈𝜋𝛾 
such that (𝑋 \ 𝑌) ∪ {𝑦𝑖1 }⊆𝐴 and (𝑋\𝑌)∪{𝑦𝑖2 }⊆𝐴.Thus 𝑦𝑖1 , 𝑦𝑖2 ∈ 𝐴 and 
hence 𝑦𝑖1 = 𝑦𝑖2 . Since 𝑦𝑖1 , 𝑦𝑖2 are arbitrary elements in 𝑌, we obtain that 
|𝑌| = 1.

(3)⇒(1) Assume that 𝑌 = {𝑦}. It is easy to see that 𝜃 =  is the minimum 
element in Fix(𝑋, 𝑌).

Lemma 7. Assume that ∅ ≠ 𝑌 ⊊ 𝑋. Then the following statements are 
equivalent.

(1) 	 Fix(𝑋, 𝑌) has a maximum element.
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(2) 	 Fix(𝑋, 𝑌) is directed upward.

(3) 	 |𝑋 \ 𝑌| = 1.

Proof. (1)⇒(2) This is clear.
(2)⇒(3) Assume that Fix(𝑋, 𝑌) is directed upward. Let 𝑎, 𝑏 ∈ 𝑋 \ 𝑌 and 𝑋 \ 
{𝑎, 𝑏} = { : 𝑘 ∈ 𝐾}. Define

		  (20)
Then there is 𝛾 ∈ Fix(𝑋, 𝑌) such that 𝛼 ≤ 𝛾 and 1𝑋 ≤ 𝛾. Since 𝛼 and 1𝑋 are 

bijective, 𝛾 is also bijective and thus 𝑏𝛾 ∈ (𝑋𝛼 \ 𝑌) ∩ (𝑋1𝑋 \ 𝑌). So 𝑎 = 𝑏𝛼 
= 𝑏𝛾 = 𝑏1𝑋 = 𝑏. Since 𝑎, 𝑏 are arbitrary elements in 𝑋\𝑌, we get |𝑋 \ 𝑌| = 1.
(3)⇒(1) Assume that |𝑋 \ 𝑌| = 1. It is easy to see that 1𝑋 is the maximum 
element in Fix(𝑋, 𝑌).

We now describe minimal and maximal elements in Fix(𝑋, 𝑌) when 
. If |𝑌| = 1, then Fix(𝑋, 𝑌) has a minimum element by Lemma 

6 and it is minimal. In the same way, if |𝑋 \ 𝑌| = 1, then Fix(𝑋, Y) has a 
maximum element by Lemma 7 and it is maximal.

Theorem 8. Assume that  and let 𝛼 ∈ Fix(𝑋, 𝑌). Then 𝛼 is 
minimal if and only if 𝛼 is a minimal idempotent.

Proof. Assume that 𝛼 is minimal but 𝛼 is not a minimal idempotent. So 
we can write

					     (21)

where . Choose 𝑖0 ∈ 𝐼 and 𝑗0 ∈ 𝐽. Let 𝐼’ = 𝐼 \ {𝑖0}, 𝐽’ = 𝐽 \ {𝑗0} and 
define 𝛽 ∈ Fix(𝑋, 𝑌) by

			   (22)
Hence 𝛽 < 𝛼, which contradicts the minimality of 𝛼.
Conversely, assume that 𝛼 is a minimal idempotent and 𝛽 ≤ 𝛼. Since 𝑌 

⊆ 𝑋𝛽 ⊆ 𝑋𝛼 = 𝑌, we get 𝑋𝛽 = 𝑋𝛼 and hence 𝑋𝛽 \ 𝑌 ⊆ 𝑋𝛼 \ 𝑌. By Corollary 
3, we obtain 𝛽 = 𝛼.

Theorem 9. Assume that  and let 𝛼 ∈ Fix(𝑋, 𝑌). Then 𝛼 is 
maximal if and only if 𝛼 is injective or 𝛼 is surjective.

Proof. Let 𝛼 be maximal. Assume that 𝛼 is not injective and surjective. 
So there are 𝑎, 𝑏, 𝑐 ∈ 𝑋 such that 𝑎𝛼 = 𝑏𝛼 with 𝑎 ≠ 𝑏 and 𝑐 ∈ 𝑋 \ 𝑋𝛼. Write
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					     (23)

Case  1.  for some 𝑖0 ∈ 𝐼. We may assume that . Let 𝐼’ 
= 𝐼 \ {𝑖0} and define

				   (24)
Then 𝛽 ∈ Fix(𝑋, 𝑌) and 𝛼 < 𝛽 which contradicts the maximality of 𝛼.

Case  2.  for some 𝑗0 ∈ 𝐽. Then we let 𝐽’ = 𝐽 \ {𝑗0} and define

				   (25)
Then 𝛾 ∈ Fix(𝑋, 𝑌) and 𝛼 < 𝛾 which contradicts the maximality of 𝛼.
Conversely, assume that 𝛼 is injective or 𝛼 is surjective and 𝛼 ≤ 𝛽 for 

some 𝛽 ∈ Fix(𝑋, 𝑌). Then 𝑋𝛼 ⊆ 𝑋𝛽 and 𝑋𝛼 \ 𝑌 ⊆ 𝑋𝛽 \ 𝑌. Consider the case 
where 𝛼 is injective, by letting 𝑧 ∈ 𝑋𝛽 \ 𝑌. Then 𝑧 = 𝑥𝛽 for some 𝑥 ∈ 𝑋\𝑌 and 
𝑥𝛼 ∈ 𝑋𝛼 \ 𝑌 ⊆ 𝑋𝛽 \ 𝑌; that is, 𝑥𝛼 = 𝑥’𝛽 for some 𝑥’ ∈ 𝑋  \ 𝑌. So 𝑥’𝛽 ∈ 𝑋𝛼 
and 𝑥’𝛽 = 𝑥’𝛼 by Theorem 1. Since 𝛼 is injective, we get 𝑥 = 𝑥’ and thus 𝑧 
= 𝑥𝛽 = 𝑥’𝛽 = 𝑥𝛼 ∈ 𝑋𝛼 \ 𝑌, whence 𝑋𝛽 \ 𝑌 ⊆ 𝑋𝛼 \ 𝑌. Hence, in this case, 𝑋𝛼 
\ 𝑌 = 𝑋𝛽 \ 𝑌 and by Corollary 3 we obtain 𝛼 = 𝛽. In the case 𝛼 is surjective, 
we get 𝑋 \ 𝑌 = 𝑋𝛼 \ 𝑌 ⊆ 𝑋𝛽 \ 𝑌 ⊆ 𝑋 \ 𝑌; that is, 𝑋𝛼 \ 𝑌 = 𝑋𝛽 \ 𝑌. Again by 
Corollary 3, we have that 𝛼 = 𝛽. Therefore, 𝛼 is maximal.

Figure 1 shows the diagram of Fix(𝑋, 𝑌) when 𝑋 = {1, 2, 3, 4} and 𝑌 = 
{1, 2}. The notation (𝑎𝑏𝑐𝑑) for 𝛼 ∈ Fix(𝑋, 𝑌) means that 1𝛼 = 𝑎, 2𝛼 = 𝑏, 3𝛼 
= 𝑐, and 4𝛼 = 𝑑.

Figure 1.
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An element 𝛽 ∈ Fix(𝑋, 𝑌) is called an upper cover for 𝛼 ∈ Fix(𝑋, 𝑌) if 
𝛼 < 𝛾

Lemma 10. Assume that  and let 𝛼 ∈ Fix(𝑋, 𝑌). Then the 
following statements hold.

•	 If 𝛼 is not minimal in Fix(𝑋, 𝑌), then there is some lower cover of 
𝛼 in Fix(𝑋, 𝑌).

•	 If 𝛼 is not maximal in Fix(𝑋, 𝑌), then there is some upper cover 
of 𝛼 in Fix(𝑋, 𝑌).

Proof. (1) Let 𝛼 ∈ Fix(𝑋, 𝑌) be not minimal. By Theorem 8, 𝛼 is not a 
minimal idempotent. So we can write

		  (26)

where . Define 𝛽 as in the proof of Theorem 8, we get 𝛽 < 𝛼. Suppose 
that there is 𝜆 ∈ Fix(𝑋, 𝑌) such that 𝛽 ≤ 𝜆 ≤ 𝛼. Then by Theorem 1, 𝑋𝛽 ⊆ 𝑋𝜆 
⊆ 𝑋𝛼 and thus 𝑋𝛽 \ 𝑌 ⊆ 𝑋𝜆 \ 𝑌 ⊆ 𝑋𝛼 \ 𝑌. Since  
which implies 𝑋𝜆 \ 𝑌 = 𝑋𝛽 \ 𝑌 or 𝑋𝜆 \ 𝑌 = 𝑋𝛼 \ 𝑌, thus 𝜆 = 𝛽 or 𝜆 = 𝛼 by 
Corollary 3. Therefore, 𝛽 is a lower cover of 𝛼.

(2) 	 The proof is similar to (1), using 𝛽 or 𝛾 from the proof of Theorem 
9 as appropriate.

Now, we aim to find the number of upper covers of minimal elements 
and the number of lower covers of maximal elements when 𝑋 is a finite set. 
The following lemma is needed in finding such numbers.

Lemma 11. Assume that  and let 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) with 𝛼 < 𝛽. 
Then 𝛽 is an upper cover of 𝛼 if and only if |𝑋𝛽 \ 𝑋𝛼| = 1.

Proof. Write

		  (27)
Since 𝛼 < 𝛽, we can write

		  (28)

where  and 𝐶𝑘 is contained in either 𝐴𝑖 for some 𝑖 
or 𝐵𝑗 for some 𝑗. We get |𝐾| = |𝑋𝛽 \ 𝑋𝛼|.

Assume that 𝛽 is an upper cover of 𝛼. If |𝑋𝛽 \ 𝑋𝛼| = 0, then 𝑋𝛽 = 𝑋𝛼 
which implies that 𝛽 = 𝛼, a contradiction. For the case |𝑋𝛽 \ 𝑋𝛼| > 1, we 
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choose 𝑘0 ∈ 𝐾 and hence  for some 𝑖0 ∈ 𝐼 or  for some 𝑗0 
∈ 𝐽. Assume that  (the other case being similar). Let 𝐼’ = 𝐼 \ {𝑖0} 
and 𝐾’ = 𝐾 \ {𝑘0}. Define

		  (29)

Since  we get 𝛼 < 𝛾 < 𝛽, a contradiction. Therefore, |𝑋𝛽 \ 𝑋𝛼| 
= 1.

The converse is proved in similar fashion to Lemma 10 (1).
Let 𝑋 be a finite set with 𝑛 elements and 𝑌 a nonempty proper subset of 

𝑋 with 𝑟 elements. If |𝑌| = 1, then Fix(𝑋, 𝑌) has unique minimal element, say 

. By Lemma 11, each of upper covers of 𝛼 is of the form 
, where ∅ ≠ 𝐵 ⊆ 𝑋 \ {𝑦} and 𝑏 ∈ 𝑋   \ 𝑌. Since there are (2𝑛−1 − 1) ways to 
choose 𝐵 and 𝑛−1 choice of 𝑏, in this case there are in total (2𝑛−1 − 1)(𝑛 − 1) 
upper covers of 𝛼.

If |𝑋 \ 𝑌| = 1, then Fix(𝑋, 𝑌) has unique maximal element, the identity 
map. Let 𝐼 = {1, 2, . . . , 𝑛 − 1}, 𝑌 = {𝑦𝑖 : 𝑖 ∈ 𝐼}, and 𝑋 \ 𝑌 = {𝑏}. Then each 

of lower covers of 1𝑋 is of the form , where 𝐼’ = 𝐼 \ {𝑖0}. Since 
𝑖0 can be chosen from 𝐼, there are in total 𝑛 − 1 lower covers of 1𝑋.

Theorem 12. Assume that  and let 𝛼 ∈ Fix(𝑋, 𝑌). Then the 
following statements hold.

•	 If  is minimal, then there are

		  (30)
upper covers of 𝛼.

•	 If 𝛼 is maximal, then there are (𝑛 − 𝑟)(𝑛 − 1) lower covers of 𝛼.

Proof. Since 𝑌 is a finite set with 𝑟 elements, 𝑌 = {𝑦1, . . . , 𝑦𝑟} and 𝐼 = 
{1, . . . , 𝑟}.

•	 Let  be minimal in Fix(𝑋, 𝑌) and 𝛽 an upper cover of 𝛼. 
Then |𝑋𝛽 \ 𝑋𝛼| = 1 by Lemma 11; that is, 𝑋𝛽 = 𝑌 ∪ {𝑏} for some 
𝑏 ∈ 𝑋   \ 𝑌. Since 𝜋𝛽 must refine 𝜋𝛼, we can write
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						      (31)

where  and  for some 𝑖0 ∈ 𝐼. We claim that  
for all 𝑖 ∈ 𝐼 \ {𝑖0}. Assume by contrary that there is 𝑖1 ∈ 𝐼 \ {𝑖0} such that 

. Let . So  for some , but ; 
that is  a contradiction. So we can write

					     (32)
where 𝐼’ = 𝐼 \ {𝑖0}. Since there are  ways to choose 𝐵 and 𝑛 − 𝑟 
choices of 𝑏, in this case 𝛽 can have  forms, but 𝑖0 can be 
chosen from 𝐼 = {1, . . . , 𝑟}, so that there are in total  
upper covers of 𝛼.

•	 Assume that 𝛼 is maximal. Then 𝛼 is a bijection and we can write

						      (33)
where 𝐽 = {1, . . . , 𝑛 − 𝑟} and {𝑏𝑗 : 𝑗 ∈ 𝐽} = 𝑋 \ 𝑌 = {𝑐𝑗 : 𝑗 ∈ 𝐽}. Let 𝛽 be 
a lower cover of 𝛼. Then |𝑋𝛼 \ 𝑋𝛽| = 1; that is,  for some 𝑗0 
∈ 𝐽. Let 𝐽’ = 𝐽 \ {𝑗0} and . So  then 

 since 𝛽 < 𝛼. Hence 𝑥𝛼 = 𝑥𝛽 for all  and  
for some 𝑖0 ∈ 𝐼 or  for some 𝑗1 ∈ 𝐽’. Thus

					     (34)
where 𝐼’ = 𝐼 \ {𝑖0}, or

					     (35)
where 𝐾 = 𝐽 \ {𝑗0, 𝑗1}. For the first form and the second form, the numbers of 
ways of placing  is 𝑟 and 𝑛 − 𝑟 − 1, respectively. So the total number of 
ways of placing  is 𝑛 − 1. But 𝑗0 varies in the index set 𝐽; hence there are 
in total (𝑛 − 1)(𝑛 − 𝑟) lower covers of 𝛼.
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INTRODUCTION
Most of our real life problems in economics, engineering, environment, 
social science, and medical science involve imprecise data that contain 
uncertainties. To solve these kinds of problems, it is quite difficult to 
successfully use classical methods. However, there are some well-known 
theories (probability, fuzzy sets [1], vague sets [2], rough sets [3], etc.) which 
can be considered as mathematical tools for dealing with uncertainties. All 
these theories have their inherent difficulties pointed out by Molodtsov [4].

The theory of soft sets, proposed by Moldtsov [4], is an extension of set 
theory for the study of intelligent systems characterized by insufficient and 
incomplete information. His pioneer paper has undergone tremendous growth 
and applications in the last few years. Maji et al. [5] give an application of 
soft set theory in a decision making problem by using the rough sets and 
they conducted a theoretical study on soft sets in a detailed way [6]. Chen 
et al. [7] proposed a reasonable definition of parameterizations reduction 
of soft sets and compared them with the concept of attributes reduction in 
rough set theory.

The algebraic structures of set theories which deal with uncertainties 
have been studied by some authors. Rosenfeld [8] proposed fuzzy groups to 
establish results for the algebraic structures of fuzzy sets. Rough groups are 
defined by Biswas and Nanda [9], and some others (i.e., Bonikowaski [10] 
and Iwinski [11]) studied algebraic properties of rough sets. Fuzzification of 
algebraic structures was studied by many authors [8, 12, 13].

Many papers on soft algebras have been published since Aktaş and 
Çaǧman [14] introduced the notion of a soft group in 2007. Recently, Jun 
et al. [15] studied soft ideals and idealistic soft BCK/BCI-algebras. Acar 
et al. [16] introduced initial concepts of soft rings. Aygünoǧlu and Aygün 
[17] introduced the concept of fuzzy soft group and, in the meantime, they 
studied its properties and structural characteristics. Atagün and Sezgin [18] 
introduced and studied the concepts of soft subrings, soft ideal of a ring, and 
soft subfields of a field.

Our interest, in this paper, is to define order of the soft group and cyclic 
soft group by using definition of the soft group that was defined in [14]. 
We then find out the relationships between cyclic soft groups and classical 
groups. Finally, we conclude the study with suggestions for future work.
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PRELIMINARIES
The following definitions and preliminaries are required in the sequel of our 
work and they are presented in brief.

Throughout this work, 𝑈 is an initial universe set, 𝐸 is a set of parameters, 
(𝑈) is the power set of 𝑈, 𝐴 ⊂ 𝐸, and 𝐺 denotes a group with identity 𝑒.

Definition 1 (see [4]). A pair (𝐹, 𝐴) is called a soft set over 𝑈, where 𝐹 
is a mapping given by

						      (1)
In other words, a soft set over 𝑈 is a parameterized family of subsets of 

the universe 𝑈.
Definition 2 (see [6]). For two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) over 𝑈, (𝐹, 𝐴) 

is called a soft subset of (𝐺, 𝐵), if
•	 𝐴 ⊂ 𝐵 and
•	 ∀𝜀 ∈ 𝐴; (𝜀) and (𝜀) are identical approximations.
It is denoted by .
(𝐹, 𝐴) is called a soft superset of (𝐺, 𝐵) if (𝐺, 𝐵) is a soft subset of (𝐹, 

𝐴). It is denoted by .
Definition 3 (see [6]). If (𝐹, 𝐴) and (𝐺, 𝐵) are two soft sets, then (𝐹, 𝐴) 

AND (𝐺, 𝐵) is denoted (𝐹, 𝐴) ∧ (𝐺, 𝐵). (𝐹, 𝐴) ∧ (𝐺, 𝐵) is defined as (𝐻, 𝐴 × 
𝐵), where (𝛼, 𝛽) = (𝛼) ∩ 𝐺(𝛽), for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵.

Definition 4 (see [6]). If (𝐹, 𝐴) and (𝐺, 𝐵) are two soft sets, then (𝐹, 𝐴) 
OR (𝐺, 𝐵), denoted by (𝐹, 𝐴) ∨ (𝐺, 𝐵), is defined by (𝐹, 𝐴) ∨ (𝐺, 𝐵) = (𝐻, 𝐴 
× 𝐵), where (𝛼, 𝛽) = (𝛼) ∪𝐺(𝛽), ∀(𝛼, 𝛽) ∈ 𝐴 × 𝐵.

Definition 5 (see [6]). Union of two soft sets of (𝐹, 𝐴) and (𝐺, 𝐵) over 𝑈 
is the soft set (𝐻, 𝐶), where 𝐶 = 𝐴∪𝐵 and ∀𝑒 ∈ 𝐶,

		  (2)
It is denoted by .
Definition 6 (see [14]). Let (𝐹, 𝐴) be a soft set over 𝐺. Then (𝐹, 𝐴) is 

said to be a soft group over 𝐺 if and only if (𝑥) is subgroup of 𝐺 for all 𝑥∈𝐴.
Definition 7 (see [14]). One considers the following.
•	 (𝐹, 𝐴) is said to be an identity soft group over 𝐺 if (𝑥) = {𝑒} for 

all 𝑥∈𝐴, where 𝑒 is the identity element of 𝐺.
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•	 (𝐹, 𝐴) is said to be an absolute soft group over 𝐺 if (𝑥) = 𝐺 for all 
𝑥∈𝐴.

Definition 8 (see [14]). Let (𝐹, 𝐴) and (𝐻, 𝐾) be two soft groups over 𝐺. 
Then (𝐻, 𝐾) is a soft subgroup of (𝐹, 𝐴), written as  if

•	 𝐾 ⊂ 𝐴,
•	 (𝑥) is a subgroup of (𝑥) for all 𝑥∈𝐾.
Definition 9 (see [14]). Let (𝐹, 𝐴) and (𝐻, 𝐵) be two soft groups over 𝐺 

and 𝐾, respectively, and let 𝑓:𝐺 → 𝐾 and 𝑔:𝐴 → 𝐵 be two functions. Then 
one says (𝑓, 𝑔) is a soft homomorphism and (𝐹, 𝐴) is soft homomorphic to 
(𝐻, 𝐵), denoted by (𝐹, 𝐴) ∼ (𝐻, 𝐵), if the following conditions are satisfied:

•	 𝑓 is a homomorphism from 𝐺 onto 𝐾,
•	 𝑔 is a mapping from 𝐴 onto 𝐵,
•	 (𝐹(𝑥)) = (𝑔(𝑥)) for all 𝑥 ∈  𝐴.
In this definition, if 𝑓 is an isomorphism from 𝐺 to 𝐾 and 𝑔 is a one-to-

one mapping from 𝐴 onto 𝐵, then we say that (𝑓, 𝑔) is a soft isomorphism 
and (𝐹, 𝐴) is soft isomorph to (𝐻, 𝐵) which is denoted by (𝐹, 𝐴) ≃ (𝐻, 𝐵). 
The image of soft group (𝐹, 𝐴) under soft homomorphism (𝑓, 𝑔) will be 
denoted by ((𝐹), (𝐴)).

Definition 10 (see [14]). Let (𝐹, 𝐴) and (𝐻, 𝐵) be two soft groups over 𝐺 
and 𝐾, respectively. The product of soft groups (𝐹, 𝐴) and (𝐻, 𝐵) is defined 
as (𝐹, 𝐴) × (𝐻, 𝐵) = (𝑈, 𝐴 × 𝐵), where (𝑥, 𝑦) = (𝑥) × 𝐻(𝑦), for all (𝑥, 𝑦) ∈ 
𝐴 × 𝐵.

THE ORDER OF SOFT GROUPS
Since the elements of a cyclic group are the powers of the element, properties 
of cyclic groups are closely related to the properties of the powers of an 
element. In this paper, we define order of the soft group by using definition of 
the soft group that was defined in [14]. We then investigate their properties.

Definition 11. A pair (𝐹, 𝐴) is called surjective soft set over 𝑈, where 𝐹 
is a surjective mapping given by  : 𝐴 → 𝑃(𝑈).

Throughout this study, 𝐺 denotes a group and the soft set (𝐹, 𝐴) will be 
a surjective soft set. The element (𝑎) is used instead of the element (𝑎, (𝑎)) 
of (𝐹, 𝐴).

Definition 12. Let (𝐹, 𝐴) be a soft set over 𝐺 and (𝑥) ∈ (𝐹, 𝐴) for 𝑥 ∈  𝐴. 
Then (𝑥) = {𝑎𝑛 : 𝑎 ∈ 𝐹(𝑥), 𝑛 ∈ 𝑍} is called 𝑛- power of 𝐹(𝑥).
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Example 13. Let (𝐹, 𝐴) be a soft set over 𝑆3, where 𝐴 = 𝑆3, and let

		  (3)
be a soft set over group 𝑆3. And the third power of (123) is (123)3 = {𝑒3 , 
(123)3 , (132)3 } = {𝑒, 𝑒, 𝑒} = {𝑒}.

Of course, when the group is additive, the 𝑛th power of (𝑥) will be 
written by 𝑛(𝑥) = {𝑛𝑎 : 𝑎 ∈ 𝐹(𝑥), 𝑛 ∈ 𝑍}.

Theorem 14. Let (𝐹, 𝐴) be a soft set over 𝐺 and (𝑥), (𝑦) ∈ (𝐹, 𝐴) for 𝑥, 𝑦 
∈ 𝐴. Then, for all 𝑛 ∈  𝑍,

•	 (𝐹(𝑥) ∩ 𝐹(𝑦))𝑛 ⊆ 𝐹(𝑥)𝑛 ∩ 𝐹(𝑦)𝑛 , for all 𝑛 ∈  𝑍,
•	 (𝐹(𝑥) ∪ 𝐹(𝑦))𝑛 = 𝐹(𝑥)𝑛 ∪ 𝐹(𝑦)𝑛 , for all 𝑛 ∈  𝑍,
•	 (𝐹(𝑥) × 𝐹(𝑦))𝑛 = (𝑥) × 𝐹(𝑦)𝑛 , for all 𝑛 ∈  𝑍.
Proof. Let 𝑎𝑛 ∈ ((𝑥) ∩ (𝑦))𝑛 , for 𝑛 ∈  𝑍. From Definition 12 𝑎 ∈ (𝑥) 

∩ (𝑦) and 𝑎𝑛 ∈ 𝐹(𝑥)𝑛 and 𝑎𝑛 ∈ 𝐹(𝑦)𝑛 . This means that 𝑎𝑛 ∈ (𝑥) ∩ 𝐹(𝑦)𝑛 . 
This completes the proof. Theorem 14(2) and Theorem 14(3) can be proved 
similarly by using Definition 12.

In general, the opposite of Theorem 14(1) is not true. We illustrate an 
example of this situation.

Example 15. Let 𝐴 = {0, 1} and let  : 𝐴 → 𝑃(𝑍) be a function such that 
𝐹(0) = {2𝑘 : 𝑘 ∈ 𝑍} and 𝐹(1) = {2𝑘 + 1 : 𝑘 ∈ 𝑍}. The intersection is (0) ∩ 
(1) = ∅. So ((0) ∩ (1))2 = ∅. On the other hand (0)2 ∩ (1)2 ≠ ∅. Consequently 
((𝑥) ∩ (𝑦))𝑛 ≠ 𝐹(𝑥)𝑛 ∩ 𝐹(𝑦)𝑛 .

Definition 16. Let(𝐹, 𝐴) be a soft set over𝐺and 𝐹(𝑥) ∈ (𝐹, 𝐴). If there is 
a positive integer 𝑛 such that (𝑥) = {𝑒}, then the least such positive integer 
𝑛 is called the order of 𝐹(𝑥). If no such 𝑛 exists, then (𝑥) has infinite order. 
The order of (𝑥) is denoted by |(𝑥)|.

If (𝐹, 𝐴) is a soft group over 𝐺, then the order of (𝑥) ∈ (𝐹, 𝐴) coincides 
with the order of (𝑥), which is subgroup of 𝐺. Of course if there is any 
element 𝑥 in 𝐴 such that (𝑥) = {𝑒}, then the order of (𝑥) is 1.

Example 17. In Example 13 the order of element (123) is 3.
Let (𝐹, 𝑁) be a soft group over group of integer numbers 𝑍, where 𝐹 is 

a mapping from natural numbers 𝑁 to (𝑍) such that (𝑛) = 𝑛𝑍 for all 𝑛 ∈  𝑁. 
There is no any positive integer 𝑚 such that (𝑛) = {0}, so 𝐹(𝑛) has infinite 
order for all 𝑛 ∈ 𝑁 − {0}.
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Theorem 18. Let 𝐺 be finite group and (𝐹, 𝐴) a soft group over 𝐺. Then, 
the orders of elements of (𝐹, 𝐴) are finite.

Proof. It is straightforward.
Theorem 19. Let (𝐹, 𝐴) be a soft set over finite group 𝐺 and (𝑥) ∈ (𝐹, 

𝐴) for 𝑥 ∈  𝐴. Then, the order of (𝑥) is the least common multiple (LCM) of 
order of elements of (𝑥).

Proof. Let 𝑛 be the order of (𝑥). Then (𝑥) = {𝑒}. This means that 𝑎𝑛 = 𝑒 
for all 𝑎 ∈ (𝑥). We know from classical group theory that |𝑎| | 𝑛, namely, 𝑎, 
divides 𝑛 for all 𝑎 ∈ (𝑥). Thus, 𝑛 is common multiple of elements of (𝑥). Let 
𝑚 be another common multiple of elements of (𝑥). Then, by reason of 𝑎𝑚 = 𝑒 
for all 𝑎 ∈ (𝑥), (𝑥)𝑚 = {𝑒}. However, since 𝑛 is the least number that satisfies 
the condition (𝑥) = {𝑒}, hence 𝑛|𝑚. This completes the proof.

Theorem 20. Let 𝐺 be finite group, (𝐹, 𝐴) a soft group over 𝐺, and (𝑥) 
and (𝑦) the elements of (𝐹, 𝐴). Then, for all 𝑥, 𝑦 ∈ 𝐴, one has the following:

•	 |𝐹(𝑥) ∩ 𝐹(𝑦)| ≤ 𝐺𝐶𝐷(|𝐹(𝑥)|, |𝐹(𝑦)|) for 𝑥, 𝑦 ∈ 𝐴,
•	 |𝐹(𝑥) ∪ 𝐹(𝑦)| = 𝐿𝐶𝑀(|𝐹(𝑥)|, |𝐹(𝑦)|) for 𝑥, 𝑦 ∈ 𝐴,
•	 |(𝑥) × 𝐹(𝑦)| = |𝐹(𝑥)||𝐹(𝑦)| for 𝑥, 𝑦 ∈ 𝐴.
Proof. We consider the following.
•	 𝐹(𝑥) ∩ 𝐹(𝑦) is subgroup of 𝐹(𝑥) and 𝐹(𝑦), so |𝐹(𝑥) ∩ 𝐹(𝑦)| | |𝐹(𝑥)| 

and |𝐹(𝑥) ∩ 𝐹(𝑦)| | |𝐹(𝑦)|. It follows |(𝑥) ∩ 𝐹(𝑦)| ≤ 𝐺𝐶𝐷(|𝐹(𝑥)|, 
|𝐹(𝑦)|).

•	 Let |(𝑥) ∪ 𝐹(𝑦)| = 𝑘, |𝐹(𝑥)| = 𝑚, and |𝐹(𝑦)| = 𝑛. From Theorem 
14((𝑥) ∪ (𝑦))𝑘 = 𝐹(𝑥)𝑘 ∪ 𝐹(𝑦)𝑘 = {𝑒}. This follows 𝑛 | 𝑘 and 𝑚 
| 𝑘. Thus 𝑘 is a common multiple of 𝑚 and 𝑛. Let 𝑡 be another 
common multiple of 𝑚 and 𝑛. Consider ((𝑥) ∩ (𝑦))𝑡 = 𝐹(𝑥)𝑡 ∪ 
𝐹(𝑦)𝑡 = {𝑒} ∪ {𝑒} = {𝑒}. Since 𝑘 is the least positive integer that 
satisfied the condition ((𝑥) ∪ (𝑦))𝑘 = {𝑒}, 𝑘 divides 𝑡. Hence 𝑘 is 
LCM order of (𝑥) and (𝑦). This completes the proof.

•	 Since (𝑥) and (𝑦) are subgroups of 𝐺, it is seen easily.
Definition 21. Let 𝐺 be group and (𝐹, 𝐴) soft set over 𝐺. The set

		  (4)
is called nth power of soft set (𝐹, 𝐴).

Example 22. Let (𝐹, 𝐴) be a soft set over 𝑆3 defined in Example 13. 
Then, the second power of (𝐹, 𝐴) is that (𝐹, 𝐴)2 = {𝐹(𝑒)2 = 𝐹(𝑒), and 𝐹(12)2 
= 𝐹(𝑒), 𝐹(13)2 = 𝐹(𝑒), 𝐹(23)2 = 𝐹(𝑒), 𝐹(123)2 = 𝐹(132)}.
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Theorem 23. Let (𝐹, 𝐴) and (𝐸, 𝐵) be two soft sets over . Then,

•	 ((𝐹, 𝐴) ∨ (𝐸, 𝐵))𝑛 = (𝐹, 𝐴)𝑛 ∨ (𝐸, 𝐵)𝑛 ,
•	 if 𝐴 ⊆  𝐵 and, for all 𝑎 ∈ 𝐴, 𝐹(𝑎) and 𝐸(𝑎) are identical 

approximations, then ((𝐹, 𝐴) ∧ (𝐸, 𝐵))𝑛 ⊆ (𝐹, 𝐴)𝑛 ∧ (𝐸, 𝐵)𝑛 .
Proof. We consider the following.
•	 Suppose that (𝐹, 𝐴) ∨ (𝐸, 𝐵) = (𝐻, 𝐴 × 𝐵) and (𝐹, 𝐴) ∨ (𝐸, 𝐵) = 

(𝑇, 𝐴 × 𝐵). We can write ((𝐹, 𝐴) ∨ (𝐸, 𝐵)) = (𝐻, 𝐴 × 𝐵). Using 
Definition 21 and Theorem 14 we have

		 (5)
•	 Suppose that (𝐹, 𝐴) ∧ (𝐸, 𝐵) = (𝐻, 𝐴 × 𝐵) and (𝐹, 𝐴) ∧ (𝐸, 𝐵) = 

(𝑇, 𝐴 × 𝐵). Using the same arguments in (1), we have

		 (6)
If (𝐹, 𝐴) and (𝐸, 𝐵) are both soft groups, then, for all 𝑎, 𝑏 ∈ 𝐴, 𝐹(𝑎) 

and 𝐹(𝑏) are all subgroups of 𝐺, and so 𝐹(𝑎) and 𝐸(𝑏) contain the identity 
element 𝑒 of 𝐺. Thus, the set (𝑎) ∩ (𝑏) contains at least 𝑒; hence (𝐹(𝑎) ∩ 
𝐸(𝑏))𝑛 ≠ ∅. It means that if we take inTheorem 23(2)(𝐹, 𝐴) and (𝐸, 𝐵) as 
soft groups, not soft sets, then the extra condition can be added in Theorem 
23(2).

In classical groups, the order of a group is defined as the number of 
elements it contains. But in soft groups, it differs from classical groups.

Definition 24. Let (𝐹, 𝐴) be soft group over 𝐺. If 𝐺 is a finite group, then 
the least common multiple of orders of elements of (𝐹, 𝐴) is called order of 
(𝐹, 𝐴). If 𝐺 is an infinite group, then the order of (𝐹, 𝐴) is defined to be the 
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number of elements of (𝐹, 𝐴) and the order of soft group (𝐹, 𝐴) is denoted 
by |(𝐹, 𝐴)|.

Of course, if (𝐹, 𝐴) is surjective, then the number of elements of (𝐹, 𝐴) 
is the number of elements in 𝐴.

Example 25. In Example 13 the order of (𝐹, 𝐴) is 6 and in Example 17 
if we chose 𝑁 = 𝑁4 = {0, 1, 2, 3, 4} and (𝑛) = 𝑛𝑍, for 𝑛 ∈  𝑁4, then the order 
of soft group (𝐹, 𝑁4) is 5.

We give the following results similar to Lagrange Theorem in group 
theory.

Theorem 26. Let (𝐹, 𝐴) be a soft group over a finite group 𝐺 and (𝑥) ∈ 
(𝐹, 𝐴). Then one has the following.

•	 The order of (𝑥) divides the order of (𝐹, 𝐴). In particular, (𝑥)|(𝐹,𝐴)| 
= {𝑒}.

•	 The order of (𝐹, 𝐴) divides the order of 𝐺.

When 𝐺 is a finite group, then the order (𝐹, 𝐴) is a finite and the orders of 
elements of (𝐹, 𝐴) divide the order of (𝐹, 𝐴). However when 𝐺 is an infinite 
group, then the order of (𝐹, 𝐴) can be finite or infinite. Hence, Theorem 26 
is not true for infinite groups.

Theorem 27. Let 𝐺 be a finite group and let (𝐹, 𝐴) and (𝐸, 𝐵) be two soft 
groups over 𝐺. Then |(𝐹, 𝐴) ∧ (𝐸, 𝐵)| ≤ |(𝐹, 𝐴)| and |(𝐹, 𝐴) ∧ (𝐸, 𝐵)| ≤ |(𝐸, 𝐵)|.

Proof. Suppose that (𝐹, 𝐴) ∧ (𝐸, 𝐵) = (𝐻, 𝐶), where 𝐶 = 𝐴 × 𝐵. Using 
fundamental theorems and definitions in group theory and Definitions 24 
and 3, we have

	 (7)
The other inequality is shown similarly.

CYCLIC SOFT GROUPS
The class of cyclic groups is an important class in group theory. In this 
section, we study soft groups which are generated by one element of (𝐺). 
We define cyclic soft group and prove some of their properties which are 
analogous to the crisp case.

Definition 28. Let (𝐹, 𝐴) be a soft group over 𝐺 and 𝑋 an element of 
(𝐺). The set {(𝑎, ⟨𝑥⟩) : 𝐹(𝑎) = ⟨𝑥⟩, 𝑥 ∈ 𝑋} is called a soft subset of (𝐹, 𝐴) 
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generated by the set 𝑋 and denoted by ⟨𝑋⟩. If (𝐹, 𝐴) = ⟨𝑋⟩, then the soft 
group (𝐹, 𝐴) is called the cyclic soft group generated by 𝑋.

If (𝐹, 𝐴) is a cyclic soft group over 𝐺, then we can write it in this form 
(𝐹, 𝐴) = {(𝑎) = ⟨𝑥⟩ : 𝑎 ∈ 𝐴, 𝑥 ∈ 𝐺}, where {𝑥 ∈ 𝐺} is element of 𝑃(𝐺). That 
is to say, if all the elements of (𝐹, 𝐴) are generated by any elements of 𝑋 of 
(𝐺), then (𝐹, 𝐴) is a cyclic soft group over 𝐺.

If 𝐺 is a cyclic group, then (𝐹, 𝐴) is a soft cyclic group over 𝐺 since all 
subgroups of cyclic group are cyclic but the reverse is not always true.

As an illustration, let us consider the following example.
Example 29. Let 𝐺 = 𝑆3 be the symmetric group and 𝐴 = {𝑒, (12), (13), 

(23), (123)} the set of parameters. If we construct a soft set (𝐹, 𝐴) over 𝐺 
such that (𝑥) = {𝑦 ∈  : 𝑦 = 𝑥𝑛 , 𝑛 ∈ 𝑍} for all 𝑥 ∈  𝐴, then one can easily show 
that (𝐹, 𝐴) is a soft cyclic group over 𝐺; however 𝐺 is not a cyclic group.

In the following theorem, we can give some properties of cyclic soft 
groups that has similar features of the classical cyclic groups.

Theorem 30. One considers the following.

•	 If (𝐹, 𝐴) is a finite cyclic soft group generated by 𝑋, then |(𝐹, 𝐴)| 
= 𝐿𝐶𝑀(|𝑥𝑖|), where 𝑥𝑖 ∈ 𝑋.

•	 If (𝐹, 𝐴) is an infinite cyclic soft group generated by 𝑋, then |(𝐹, 
𝐴)| = |𝑋|.

•	 If (𝐹, 𝐴) is an identity soft group, then it is a cyclic soft group 
generated by {𝑒}.

•	 Let (𝐹, 𝐴) be an absolute soft group defined on 𝐺. Then, (𝐹, 𝐴) is 
a cyclic soft group if and only if 𝐺 is a cyclic group.

•	 Let (𝐹, 𝐴) be a soft group on 𝐺. If the order of 𝐺 is prime, then (𝐹, 
𝐴) is a cyclic soft group.

•	 A soft subgroup of a cyclic soft group is cyclic soft group.

Proof. It is easily seen from Definitions 24, 7, and 8.
Theorem 31. Let (𝑓, 𝑔) be a soft homomorphism of the soft group (𝐹, 𝐴) 

over 𝐺 into the soft group (𝐻, 𝐵) over 𝐾. If (𝐹, 𝐴) is a cyclic soft group over 
𝐺, then ((𝐹), (𝐴)) is a cyclic soft group over 𝐾.

Proof. First, we show that ((𝐹), (𝐴)) is a soft group over 𝐾. Since 𝑓 is a 
homomorphism from 𝐺 to 𝐾, ((𝑥)) = 𝐻(𝑔(𝑥)) is a subgroup of 𝐾 for all 𝑔(𝑥) 
∈ 𝑔(𝐴). Thus ((𝐹), (𝐴)) is a soft group over 𝐾. Since (𝑥) is cyclic subgroup 
for all 𝑥 in 𝐴, image of (𝑥) under 𝑓 is cyclic; that is, 𝑓(𝐹(𝑥)) = 𝐻(𝑔(𝑥)) is 
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cyclic subgroup of 𝐾 for all 𝑔(𝑥) ∈ 𝑔(𝐴). Consequently, ((𝐹), (𝐴)) is a cyclic 
soft group over 𝐾.

Theorem 32. Let (𝐹, 𝐴) and (𝐻, 𝐵) be two soft isomorphic soft groups 
over 𝐺 and 𝐾, respectively. If (𝐹, 𝐴) is a cyclic soft group, then so is (𝐻, 𝐵).

Proof. First of all note that since (𝐹, 𝐴) is a soft isomorphic to (𝐻, 𝐵), 
there is an 𝑓 homomorphism from 𝐺 to 𝐾 such that ((𝑥)) = 𝐻(𝑔(𝑥)) for all 
𝑥∈𝐴, where 𝑔 is a one-to-one mapping from 𝐴 onto 𝐵. Since (𝑥) is a cyclic 
subgroup for all 𝑥 in 𝐴 and 𝑓 is a homomorphism, then (𝑔(𝑥)) is a cyclic 
subgroup of 𝐾. Thus, all elements of (𝐻, 𝐵) are cyclic. This result completes 
the proof.

Theorem 33. If (𝐹, 𝐴) and (𝐻, 𝐵) are two cyclic soft groups over 𝐺, then 
(𝐹, 𝐴) ∧ (𝐻, 𝐵) is a cyclic soft group over 𝐺.

Proof. Let (𝐹, 𝐴) ∧ (𝐻, 𝐵) = (𝐸, 𝐴 × 𝐵), where (𝛼, 𝛽) = (𝛼) ∩ 𝐻(𝛽), ∀(𝛼, 
𝛽) ∈ 𝐴 × 𝐵. Since 𝐹(𝛼) and 𝐻(𝛽) are cyclic subgroups of 𝐺 for all 𝛼∈𝐴 and 
𝛽∈𝐵 and 𝐹(𝛼) ∩ 𝐻(𝛽) is a subgroup of both 𝐹(𝛼) and 𝐻(𝛽), 𝐹(𝛼) ∩ 𝐻(𝛽) is 
cyclic subgroup of 𝐺 for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵. Hence, (𝐻, 𝐴 × 𝐵) is cyclic soft 
group over 𝐺.

Theorem 34. Let (𝐹, 𝐴) and (𝐻, 𝐵) be two cyclic soft groups over 𝐺 and 

𝐴 ∩ 𝐵 = ∅. Then,  is a cyclic soft group over 𝐺.

Proof. It is trivial.
Theorem 35. Let (𝐹, 𝐴) and (𝐻, 𝐵) be two cyclic soft groups of finite 

orders 𝑚 and 𝑛 over 𝐺 and 𝐾, respectively. If 𝑚 and 𝑛 are relatively prime, 
then the product (𝐹, 𝐴) × (𝐻, 𝐵) is a cyclic soft group.

Proof. Let(𝑚, 𝑛) = 1. According to LagrangeTheorem, |(𝑥)| divides 𝑚 
and |𝐻(𝑦)| divides 𝑛 for all 𝑥∈𝐴 and for all 𝑦 ∈ 𝐵. Since (𝑚, 𝑛) = 1, |(𝑥)| and 
|𝐻(𝑦)| are relatively prime. So (𝑥) × (𝑦) is cyclic group for all (𝑥, 𝑦) ∈ 𝐴 × 
𝐵. This completes the proof.

CONCLUSION
In this paper, we have expanded the soft set theory. We have focused on order 
of the soft groups and investigated relationship between the order of soft 
groups and the order of classical groups. Additionally, we have studied the 
algebraic properties of cyclic soft groups with respect to a group structure. 
Our future work will focus on the relationships between cyclic soft groups 
and other algebraic structures such as rings and fields.
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INTRODUCTION
For a finite group G if there exist subgroups A and B of G such that G = 
AB, then G is called a factorizable group. Of course if neither of A nor B is 
contained in the other, then the factorization is called nontrivial. A knowledge 
of the factorizations of finite simple groups will help to investigate the 
general theory of factorizing finite groups. All possible factorizations of 
sporadic simple groups have been obtained in [4] and those of simple groups 
of Lie type of Lie rank 1 or 2 in [3].

A factorization G = AB where both A and B are maximal subgroups of G 
is called a maximal factorization of G. In [9], all the maximal factorizations 
of all the finite simple groups and their automorphism groups have been 
determined completely.

In another direction some results have been obtained assuming G = AB 
is a factorization of G with A and B simple subgroups of G. For example, in 
[8] finite groups G = AB where both A and B are isomorphic to the simple 
group of order 60 are classified, and in [10] finite groups G = AB where A is 
a non-abelian simple group and B A5 are determined. In [5], G = AB where 
A and B are simple groups of small order are considered.

In a series of papers, Walls considered groups which are a product of 
simple groups [13, 14]. In [15], groups which are product of a symmetric 
group and a group isomorphic to A5 are classified. This result is interesting 
because in the factorization G = AB one of the factors is not a simple group. 
Motivated by this result, in this paper we classify all groups G which are 
product of subgroups A and B such that  and . In 
this paper, A

n
 and S

n
 are the alternating and symmetric groups on n letters, 

respectively, and all groups are assumed to be finite.

PRELIMINARY RESULTS
Now A6 is a simple group of order 360 and it is easy to verify that the order 
of any proper subgroup of A6 is one of the numbers 1, 2, 3, 4, 5, 6, 8, 9, 10, 
12, 18, 24, 36, or 60. Therefore the size of sets on which A6 acts transitively 
and faithfully is one of the numbers 360, 180, 120, 90, 72, 60, 45, 40, 36, 30, 
20, 15, 10, or 6. Also since A6 ≅ L2(9), A6 has a 2-transitive action on a set of 
10 points and by consulting [10] one can see that if A6 acts k-transitively, k ≥ 
2, on a set of cardinality m, then either m = 10, k = 2 or m = 6 and k = 2,3, 
or 4. Now by [14, Lemma 7] we have the following decomposition.
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Lemma 2.1. For n a positive integer, S
n+1 = A6 Sn

 and A
n+1 = A6 An

 if and 
only if n = 5, 9, 14, 19, 29, 35, 39, 44, 59, 71, 89, 119, 179, or 359. We can 
write A10 = AB where A ≅ A6 and B ≅ A8 . Further, we can write S10 = AB 
and A10 × Z2 = AB where A ≅ A6 and B ≅ S8.

The only nontrivial decomposition A
m
 = AB, where A ≅ A6 and B ≅ A

n
, 

occurs if and only if m = n + 1, where n is one of the numbers mentioned in 
Lemma 2.1 or m = 10 and n = 8. To see this one can use [14, Theorem 9]. 
Because according to this theorem one of the groups in the decomposition 
G = AB, say A, must be a k-transitive permutation group and according to 
what we said earlier all the k-transitive permutation representations of A ≅ 
A6 are known.

For our work it is necessary to know if it is possible to decompose an 
alternating group as the product of A6 and S

n
.

Lemma 2.2. It is not possible to decompose the alternating group A
m
, 

m ≥ 7, as the product of A6 and a symmetric group S
n
, n > 1, unless m = 10 

and n = 8.

Proof. According to [9, Theorem D], if A
m
 acts naturally on a set Ω of 

cardinality m, and A
m
 = A6 Sn

, then there are two possibilities.

Case (i).  for some k, 1 ≤ k ≤ 5, and A6 is 
k-homogeneous on Ω. If k = 1, then  and it is easy 
to deduce n = m−1. Therefore A

n+1 = A6 Sn
 and so, S

n
 ≤ A

n+1 from which 
it follows that n = 1 which is not the case. If k ≥ 2 then by [7] A6 can 
only be k-transitive for k = 2,3, or 4. If k = 2, then m = 6 or 10. Since 
we have assumed that m ≥ 7, therefore, if m = 10, then A10 = A6 Sn

 and 
from  we obtain n ≥ 8 and the order consideration in 
A10 = A6 Sn

 leads to A10 = A6 S8. If k = 3 or 4, then m = 6 and again A6 = A6 
S

n
, a contradiction. Since in [9, Theorem D] the role of S

n
 and A6  may be 

interchanged, hence we may assume that  and S
n
 

is k-homogeneous for some 1 ≤ k ≤ 5. However, a contradiction is obtained 
in this case again.

Case (ii). m = 6,8, or 10. If m = 6 then A6 = A6 Sn
, a contradiction. If m 

= 8, then A8 = A6 Sn
 from which it follows that n ≥ 7, but it is easy to see that 

A8 has no subgroup isomorphic to S7 . If m = 10, then A10 = A6 Sn
 from which 

it follows that n = 7 or 8.
Now to rule out the case n = 7. We will use [16, Result 1.4]. Using the 

notation used in [16] the decomposition A10 = A6 S7 is exact and we have 
p = 7 and |∆| = k = 3 and therefore A6 must be 3-homogeneous which is 
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impossible by [7] unless A6 acts on Ω, |Ω| = 6 in a natural way and this is also 
a contradiction. However, if n = 8, then A10 = A6 S8 and this possibility holds 
because by Lemma 2.1 we have A10 = A6 A8 and since A10 has a subgroup 
isomorphic to S8, namely  we obtain A10 = A6S8.

In this paper we also use the following result which can be proved using 
the sub-group structure of L2 (q) given in [6].

Table 1. Primitive groups of degree k ≥ 5, k | 360.

Lemma 2.3. It is not possible to decompose the group L2 (q) as the 
product of A6 and S

n
, where n > 4.

Proof. By [6, page 213] if G = L2 (q), q = pf, has a subgroup isomorphic 
to A6 , then this subgroup must be of the form L2 (pm) where m | f. But 

 if and only if p = 3 and m = 2, hence . 
But again by [6] a symmetric group S

n
 can be a subgroup of G if and only if 

n ≤ 4, a contradiction.
[15, Lemma 3] is essential in this paper and so we will reproduce it here. 

We mention that it is not necessary to assume that B is a complete group and 
our rephrasing of the lemma is as follows.
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Lemma 2.4. Suppose G = AB is such that A is a simple group and B has 

a unique proper normal subgroup N which is simple. Let  and 
let M be a minimal normal subgroup of G. Then one of the following holds:

Our work also depends on the primitive groups of certain degrees. 
Primitive groups of degree up to 20 were obtained in [11] and up to 1000 in 
[2]. In Table 2.1, the list of all primitive groups of degree k ≥ 5 where k is a 
divisor of |A6 | = 360 is given. Notation for the names of groups in Table 2.1 
is taken from [1].

MAIN RESULTS
In this section, using Lemma 2.4, we characterize finite groups G = AB 
where  and . But first we deal with the possibilities 
which arise as different cases in Lemma 2.4.

Lemma 3.1. There is no simple group M such that M = AB where  
and , unless  and n = 8.

Proof. We will assume that M is a simple group having subgroups 
 and , such that M = AB and derive a contradiction. 

If C is a maximal subgroup of G containing B, then M = AC and 
. Therefore M is a primitive simple group 

of degree k, where k is a divisor of 360 and k ≥ 5. By Lemmas 2.2 and 2.3, 
we know that M cannot be isomorphic to an alternating group or a linear 
group L2 (g), unless  for which the decomposition A10 = A6 S8 is 
possible by Lemma 2.2.

Therefore by Table 2.1 we have the following possibilities 
for 

. Since , therefore M = U3 (3) is impossible. 
If M = M11 or M12 then 11 | |M| and hence n ≥ 11 which implies that 7 | |M| a 
contradiction. If M = M24, then 23 | |M| and so n ≥ 23 implying that 17 | |M|, 
a contradiction. The same reasoning rules out M = L4 (3), S4 (4) and S8 (2) 
considering 13 | |M| in the first case and 17 | |M| in the remaining two cases. 
If M = U4 (2), then as |U4 (2)| = 26 ·34 ·5 = |A6 Sn

| we must have n = 6 and 
therefore U4 (2) = A6 S6 , but by [1] U4 (2) has only one conjugacy class of 
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subgroups isomorphic to S6 and hence by [9, Proposition C, page 31] there 
is g ∈ U4 (2) such that  which by [12, page 26] is impossible. 
If M = L3 (4) = A6 Sn

, then n ≥ 7 but by [1] the group L3 (4) has no subgroup 
isomorphic to S7 . If M = S6 (2) = A6 Sn

, then as |S6 (2)| = 29 ·34 ·5 ·7 we obtain 
7 ≤ n ≤ 10 and since by [1] the group S6 (2) has no subgroup isomorphic to 
S9 hence n = 7 or 8. But order consideration yields n = 8 and so S6 (2) = A6 
S8 . By [1], the group A6 cannot be contained in a maximal subgroup of the 
form 25 : S6 . Again by [1], the group S6 (2) has only one conjugacy class of 
subgroups isomorphic to S8 and so  for some g ∈ S6 (2) which 
is impossible by [12, page 26]. Finally, if , then by [1] 
n ≤ 8 and order consideration gives a contradiction.

Lemma 3.2. Let G be a group such that G = AB where  and 

 then either  or one of the following cases holds:

•	 G = A
n+1 , n = 5,9,14,19,29,35,39,44,59,71,89,119,179, or 359

•	 G = A
n
, n ≥ 6, or

•	 G = A10 , n = 8.

Proof. First suppose that G is simple. By Lemma 2.1 the cases (i) and 
(iii) are possible and the case (ii) arise from the trivial factorization of A

n
. 

Now assume that the simple group G has the desired decomposition G = A6 
A

n
, n ≥ 5 and let C be a maximal subgroup of G containing A

n
. Therefore G 

= A6 C and m = [G : C] = [A6 : A6 ∩C] | 360.
Maximality of C in G implies that G is a simple primitive permutation 

group of degree m where m is a divisor of 360. Now by Table 2.1 we know 
that simple primitive permutation groups are alternating groups, sporadic 
simple groups and simple groups of Lie type with small orders. We consider 
the following cases:

•	 The group G is isomorphic to an alternating group. In this case by 
Lemma 2.1 and what follows after that we obtain all the cases (i), 
(ii), and (iii) of the lemma.

•	 The group G ≅ L2 (q) is a 2-dimensional linear group over the finite 
field GF(q). In this case by [3] factorization L2 (q) = A6 An

 is possible 
if and only if n = 6 and q = 9 which gives the trivial factorization.

•	 The group G is isomorphic to a sporadic simple group. In this 
case by Table 2.1 we have the following possibilities for G = M11 
,M12 ,M24 . But by [4] the factorization G = A6 Sn

, n ≥ 5, is not 
possible for G.
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The group G is isomorphic to one of the following linear groups:

. Since 
 therefore G ≠ U3 (3). If G = S4 (4) or S8 (2), then since 17 | 

|G| we must have n ≥ 17 and since  we get a contradiction. If G = 
L4 (3), then 13 | |G| and so n ≥ 13 which is impossible because . If 
G = U4 (2) = A6 An

, then order consideration yields n = 6. But by [1] the 
maximal subgroup of U4 (2) containing one of the A6 subgroups is conjugate 
to an S6 subgroup which is maximal in G. Therefore U4 (2) = A6 S6 which is 
impossible by the proof of Lemma 3.1. If G = L3 (4) = A6 An

, then by [1] n 
= 6, a contradiction because 7 | |G|. If G = S6 (2) = A6 An

 then since 34 | |G| 
and S6 (2) has no subgroup isomorphic to A9 we must have n = 8. But G = A6 
A8 and A8 is contained in a maximal subgroup of S6 (2) isomorphic to S8 and 
so G = A6 S8 which is impossible by Lemma 3.1. Finally if G = O8

+(2) = A6 
A

n
, then by [1] n ≤ 9 and order consideration gives a contradiction.

Now suppose that G is not isomorphic to A×B and let 1 ≠ M be a minimal 
normal subgroup of G. By [14, Lemma 1] M is elementary abelian, M ∩ A = 
M ∩ B = 1, and |M| divides 360 the order of A6 . Thus M is an elementary 
abelian subgroup of order 2, 22 , 23 , 3, 32 , or 5. By induction, as G/M = 
(AM/M)(BM/M) with AM/M ≅ A and BM/M ≅ B, that G/M is simple. Hence, 
either . Now  implies that A6 ≤ Aut(M), 
contrary to the possibilities for M. Now M = Z(G) and G/M is an alternating 
group. It follows that G is a covering group of an alternating group, contrary 
to [14, Theorem 10].

Theorem 3.3. Let G be a group such that G = AB, A ≅ A6 and B ≅ S
n
, n 

≥ 5. Then one of the following cases occurs:

•	

•	

•	  an automorphism of order 2 and A6 × A6 
is the minimal normal subgroup of G, n = 6

•	 G ≅ S
n+1, n = 5,9,14,19,29,35,39,44,59,71,89,119,179,359

•	

•	

•	  where τ acts as an automorphism 
of order 2 on both factors.
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Proof. Our proof is based on the results of Lemma 2.4 and here we use 
the same notation used in this lemma. Therefore, let M be a minimal normal 
subgroup of G and note that N ≅ A

n
. If  then one of the following 

possibilities occurs:
•	 M = G = AB is a simple group. In this case by Lemma 3.1 we 

have M ≅ A10 and n = 8 and case (b) occurs.
•	 G = MB, M ≅ A6 ×N, N ≅ A6.
•	 In this case n = 6 and G ≅ A6 S6 , S6 acts on A6 by conjugation and 

A6 ×A6 is the minimal normal subgroup of G and this is case (c) 
in the theorem.

•	 G = MB, M ≅ A6 An
 is simple. In this case by Lemma 3.2 three 

cases occur. If M = A
n+1, n = 5,9,14,19,29,35,39,44,59,71,89,11

9,179, or 359, then the same reasoning used in the proof of [15, 
Theorem 4] yields case (d). If M = A

n
, then G = S

n
, n ≥ 6 and 

this is the case (e). If M = A10 and n = 8, then a simple argument 
forces G ≅ S10 or A10 ×Z2 . If G ≅ S10 we have case (e) again. If 
we consider the alternating group A10 on the set {1,2,...,10}. Then 
since A6 has a 2-transitive action on 10 letters we obtain A10 = A6 
A8 where A8 is the pointwise stabilizer of the set {9,10}. Now the 
set stabilizer of {9,10} is isomorphic to S8 and is a subgroup of 
A10 containing this A8. Therefore  
implying A10 × Z2 ≅ A6 S8 which is the case (f).

•	  In this case 
 where τ acts as an outer automorphism of 

order 2 on both factors and this is the case (g).
•	 M ∩ A = 1, M ∩ B = 1 and |M| divides |A6|.
Since M is isomorphic to a direct product of simple groups either M is 

isomorphic to A6 , A5 or M is elementary abelian of order 2, 22 , 23 , 3, 32 , or 
5. If M ≅ A6 , then as MS

n
 ≤ G and M ∩ B = 1, G = MB ≅ A6 Sn

 with A6 as a 
minimal normal subgroup. This is the case (4) treated above. Consider 
. Suppose that . Then A is isomorphic to a subgroup of Aut(M). 
Considering the possibilities for M, this is impossible. Thus,  and 
by the modular law . Now since  is a normal 

subgroup of B, we must have either  or  

A
n
. If  then as before B is isomorphic to a subgroup of 
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Aut(M), contrary to the possibilities for M unless M A5 and n = 5. Now AM 
has index 2 in G, so  is a normal subgroup of G. This is case 

(4), above. If  then  is as in Lemma 3.2. However, none 
of these groups has a nontrivial center, a contradiction. Thus, we must have 

 and M ≤ Z(G) and hence, M has prime order. By induction, G/M 
= (AM/M)(BM/M) must be in the list, but  so only 
the parts (b), (d), (e), and (f) are possible. If part (e) holds, then we would 
have G = BM = B × M contrary to the fact that A has no subgroup of prime 
index. If part (b) or (d) holds, then G is the covering group of the symmetric 
group. Now we can see that BM/M must contain an involution which is the 
product of 2-cycles. It is known, see [10], that such an involution must lift 
to an element of order 4 in G, contrary to the fact that M ∩ B = 1. (Note that 
BM/M lifts to BM in G, see the argument in [14].) Now suppose that G/M 
= A10 × Z2 and n = 8. Thus G has a normal subgroup of order 2|M| which 
arguing as above must be the center of G. It follows that G is a covering 
group of A10. But as the Schur multiplier of A10 has order 2 this is impossible. 
This completes the proof.
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INTRODUCTION
Powerdomains are very important structures in Domain theory, which 
play an important role in modeling the semantics of nondeterministic 
programming languages. Three classical powerdomains are the Hoare or 
lower powerdomain [1], the Smyth or upper powerdomain [2], and the 
Plotkin or convex powerdomain [3].They are all free dcpo-algebras over 
(continuous) dcpos with special binary operators satisfying some equations 
and inequalities (see [4–12]).

In [13], Huth et al. concluded that the Hoare powerdomain (𝐿) over 
a pointed domain 𝐿 is a distributive 𝐹𝑆∨-lattice. In [14], Meng and Kou 
obtained that the Smyth powerdomain (𝐿) of a Lawson compact domain 𝐿 is 
an 𝐹𝑆∧-domain. Then we have a problem whether the Plotkin powerdomain 
can be characterized by some special 𝐹𝑆- domain. In this paper, we will 
introduce a new domain construction called the 𝐹𝑆+-domain which is a 
+-semilattice and there exists a directed family of finitely separated Scott 
continuous and +-semilattice homomorphisms which can approximate 𝑖𝑑𝐿, 
where the operation + is Scott continuous which satisfied the commutative, 
associative, and idempotency laws. And the category with 𝐹𝑆+-domains 
as objects and Scott continuous functions as morphisms is a Cartesian 
closed category. We will show that the Plotkin powerdomain (𝐿) over an 
𝐹𝑆-domain 𝐿 is an 𝐹𝑆+-domain, where the Plotkin powerdomain is the free 
dcpo-semilattice over a continuous dcpo.

Next, we collect some basic notions needed in this paper. The reader can 
also consult [4, 5, 15, 16]. A poset 𝐿 is called a directed complete poset (a 
dcpo, for short) if any nonempty directed subset of 𝐿 has a sup in 𝐿. For 𝑥, 
𝑦 ∈ 𝐿, 𝑥 is way below 𝑦 (denoted by 𝑥 ≪ 𝑦) if and only if, for all directed 
subsets 𝐷 ⊆  𝐿 for which sup 𝐷 exists, the relation 𝑦 ≤ sup 𝐷 implies the 
existence of a 𝑑 ∈  𝐷 with 𝑥 ≤ 𝑑. A dcpo 𝐿 is called a continuous domain if, 
for all 𝑥 ∈  𝐿, 𝑥 = ⋁↑↡𝑥; that is, the set ↡𝑥 = {𝑎 ∈  : 𝑎 ≪ 𝑥} is directed and 𝑥 = 
⋁{𝑎 ∈ 𝐿 : 𝑎 ≪ 𝑥}. For a subset 𝐴 of 𝐿, let ↑ 𝐴 = {𝑥 ∈  : ∃𝑎 ∈ 𝐴, 𝑎 ≤ 𝑥}, ↓𝐴= 
{𝑥 ∈ 𝐿 : ∃𝑎 ∈ 𝐴, 𝑥 ≤ 𝑎}. We use ↑ 𝑎 (resp., ↓ 𝑎) instead of ↑ {𝑎} (resp., ↓ {𝑎}) 
when 𝐴 = {𝑎}. 𝐴 is called an upper (resp., a lower) set if 𝐴 = ↑ 𝐴 (resp., 𝐴 = 
↓ 𝐴). If (𝐿, ≤) is a dcpo, we define the Scott topology, denoted by (𝐿), which 
has as its topology of closed sets all directed complete lower subsets, that is, 
lower sets closed under directed sups. A function 𝑓 from a dcpo 𝐿 into a dcpo 
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𝑃 is continuous with respect to the Scott topologies if 𝑓 preserves suprema 
of directed subsets.

Recall the definition of 𝐹𝑆-domain: a dcpo 𝐿 is called an 𝐹𝑆-domain if 𝑖𝑑𝐿 
is approximated directly by a family of finitely separated Scott continuous 
functions. A Scott continuous function  : 𝐿 → 𝐿 is called finitely separated 
if there exists a finite set 𝑀𝑓 such that, for each 𝑥 ∈  𝐿, there exists 𝑚 ∈  𝑀𝑓 
such that 𝑓(𝑥) ≤ 𝑚 ≤ 𝑥.

𝐹𝑆+-DOMAINS

Categories of 𝐹𝑆+-Domains
For dcpos 𝐿 and 𝑃, the function space [𝐿 → 𝑃] of all Scott continuous 
functions from 𝐿 to 𝑃 with the pointwise order is a dcpo. Then for dcpo 
+-semilattices 𝐷 and 𝐸, we conclude that the function space [𝐷 → +𝐸] of all 
the Scott continuous and +-semilattice homomorphisms from 𝐷 to 𝐸 with the 
pointwise order is a dcpo +-semilattice from the following theorem, where 
the operation + satisfies the commutative, associative, and idempotency 
laws.

Theorem 1
Let 𝐷 and 𝐸 be dcpo +-semilattices; then [𝐷 → +𝐸] is a dcpo +-semilattice.

Proof. For any directed family {𝑓𝑗 ∈ [𝐷 → +𝐸] : 𝑗 ∈ 𝐽} and 𝑥 ∈ 𝐷, set 𝑓(𝑥) 
= ⋁𝑗∈𝐽𝑓𝑗(𝑥). It is obvious that 𝑓 is Scott continuous. Then

		  (1)
So 𝑓 is also a Scott continuous and +-semilattice homomorphism. Hence 

[𝐷 → +𝐸] is a dcpo.
For any 𝑥 ∈  𝐷, 𝑓, 𝑔 ∈ [𝐷 → +𝐸], we define (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥). For 

a directed set {𝑥𝑘 ∈  : 𝑘 ∈ 𝐾}, we have
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		  (2)
Then 𝑓 + 𝑔 is Scott continuous.
For a pair of points 𝑥, 𝑦 in D

		  (3)
That is, 𝑓 + 𝑔 is a +-semilattice homomorphism. So [𝐷 → +𝐸] is a 

+-semilattice.
Finally, by the Scott continuity of the operation +, we obtain the 

following conclusion. For the sup of the directed set {𝑓𝑗 ∈ [𝐷 → +𝐸] : 𝑗 ∈ 𝐽} 
and 𝑔 ∈ [𝐷 → +𝐸], if 𝑥 ∈  𝐷, then

		  (4)
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So + : [𝐷 → +𝐸] × [𝐷 → +𝐸] → [𝐷 → +𝐸] is Scott continuous.
We have obtained that [𝐷 → +𝐸] is a dcpo +-semilattice.
With respect to these special Scott continuous functions, we will 

introduce some new order structures.

Definition 2
A dcpo 𝐿 is called an 𝐹𝑆+-domain if it is a +- semilattice and there exists 
a directed family of finitely separated Scott continuous and +-semilattice 
homomorphisms which can approximate 𝑖𝑑L

For example, an 𝐹𝑆∧-domain is a continuous dcpo ∧- semilattice where 
𝑖𝑑 is approximated by a directed family of finitely separated Scott continuous 
functions preserving finite infs.

We know that an 𝐹𝑆+-domain is an 𝐹𝑆-domain.

Theorem 3.
Let 𝐷 and 𝐸 be 𝐹𝑆+-domains; then [𝐷 → +𝐸] and [𝐷 → 𝐸] are 𝐹𝑆+-domains.

Proof. Suppose that  and  are approximate identities for 𝐷 and 𝐸, 
respectively. Then we claim that the family

		  (5)
defined by

				    (6)
for 𝑓 ∈ [𝐷 → +𝐸] is an approximate identity for [𝐷 → +𝐸] where 𝛿 ⊗ 𝜖 is 
finitely separated. The proof is similar to the case of 𝐹𝑆-domains.

It suffices to show that 𝛿 ⊗ 𝜖 ∈ [𝐷 → +𝐸] → +[𝐷 → +𝐸]. Firstly, it is 
obvious that 𝛿 ⊗ 𝜖 is Scott continuous. Secondly, for a pair of points 𝑓, 𝑔 ∈ 
[𝐷 → +𝐸], we have for any 𝑥 ∈  D
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		  (7)
So we conclude that 𝛿 ⊗ 𝜖 is a +-semilattice homomorphism. Then [𝐷 

→ +𝐸] is an 𝐹𝑆+-domain. Similarly, [𝐷 → 𝐸] is also an 𝐹𝑆+-domain.

Theorem 4
The category with 𝐹𝑆+-domains as objects and Scott continuous functions as 
morphisms is a Cartesian closed category.

Note that the category with 𝐹𝑆+-domains as objects and Scott continuous 
and +-semilattice homomorphisms as morphisms is not a Cartesian closed 
category generally, because the evaluation maps do not preserve the finite 
+- operation.

Classify the Powerdomains
Definition 5 (see [5]). Let 𝐿 be a dcpo-algebra equipped with a Scott 
continuous binary operation + that satisfies the following equations: for any 
𝑎, 𝑏, 𝑐, ∈ 𝐿

•	 𝑎 + 𝑎 = 𝑎 (idempotency law);
•	 𝑎 + 𝑏 = 𝑏 + 𝑎 (commutative law);
•	 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 (associative law).
Then the dcpo-algebra is a commutative idempotent semigroup, called 

a dcpo-semilattice. The free dcpo-semilattice over a dcpo 𝐿 is called the 
convex or Plotkin powerdomain of 𝐿 and it is denoted by (𝐿).

If the binary operation + satisfies the inequality 𝑎 + 𝑏 ≤ 𝑎, then we obtain 
the upper or Smyth powerdomain, and it is denoted by 𝑃(𝐿), where 𝑎 + 𝑏 = 
𝑎 ∧ 𝑏.

Similarly, if the binary operation + satisfies 𝑎 + 𝑏 ≥ 𝑎, then it is called the 
lower or Hoare powerdomain, denoted by 𝑃(𝐿), where 𝑎 + 𝑏 = 𝑎 ∨ 𝑏.

Proposition 6 (see [5]). For subsets 𝐶 and 𝐷 of a preordered set (𝐿, ≤) 
one has
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•	 𝐶 =𝐻 ↓ 𝐶;
•	 𝐶 ≤𝐻 𝐷 iff ↓ 𝐶 ⊆  ↓ 𝐷;
•	 𝐶 ≪𝐻 𝐷 iff there exists a finite subset 𝐹 ⊆  𝐿 such that 𝐶 ⊆  ↓ 𝐹 ⊆ 

↡ 𝐷;
•	 𝐶 =𝑆 ↑ 𝐶;
•	 𝐶 ≤𝑆 𝐷 iff ↑𝐷 ⊆  ↑ 𝐶;
•	 𝐶 ≪𝑆 𝐷 iff 𝐷 ⊆ int𝜎(↑ 𝐶) iff 𝐷 ⊆ ↟ 𝐶;
•	 𝐶 = 𝑃 ↓ 𝐶 ∩ ↑ 𝐶 = sup{↓ 𝐹 ∩ ↑ 𝐹 : 𝐹 ≺ 𝐶, 𝐹 ⊆𝑓in 𝐿}, where 𝐹 ≺  𝐶 

iff 𝐹 ⊆ ↡ 𝐶 and 𝐶 ⊆ ↟ 𝐹;
•	 𝐶 ≤𝑃𝐷 iff ↓ 𝐶 ⊆  ↓ 𝐷 and ↑ 𝐷 ⊆  ↑ 𝐶;
•	 𝐶 ≪𝑃𝐷 iff 𝐶 ≪ 𝐻𝐷 and 𝐶 ≪ 𝑆𝐷.
Next, we draw the conclusion that some special 𝐹𝑆- domain categories 

concerning the operation + can be used to classify the powerdomains.

Theorem 7
If 𝐿 is an 𝐹𝑆-domain, then the convex powerdomain (𝐿) is an 𝐹𝑆+-domain.

Proof. Suppose that 𝐿 is an 𝐹𝑆-domain; then 𝐿 is a Lawson compact 
domain. Thus, (𝐿) is also a domain. Assume that  is 
the approximate identity for 𝐿, where  is a family of finitely separated 
Scott continuous functions; that is, for any 𝑓𝑖, there exists a finite set 𝑀𝑖 ⊆ 
𝐿 such that, for any 𝑥 ∈  𝐿, there exists some 𝑚 ∈ 𝑀𝑖 such that 𝑓(𝑥) ≤ 𝑚 ≤ 𝑥. 
We claim that {(𝑓𝑖):𝑃(𝐿) → 𝑃𝑃(𝐿)}𝑖∈𝐼 is the approximate identity for 𝑃𝑃(𝐿). It 
suffices to consider four steps as follows.

•	 𝑃(𝑓𝑖) ≤ 𝑃(𝑖𝑑). For 𝐴 ∈  (𝐿), define 𝑃(𝑓𝑖)(𝐴) = 𝑃(𝑓𝑖(𝐴)) = ↓ 𝑓𝑖 (𝐴) ∩ 
↑ 𝑓𝑖(𝐴). By Proposition 6, ↓ (𝐴) ∩ ↑ 𝑓𝑖(𝐴) ∈ 𝑃𝑃(𝐿). For any 𝑥 ∈  𝐴, 
let (𝐴) = {𝑚 ∈ 𝑀𝑖 : ∃𝑥 ∈ 𝐴, 𝑓𝑖(𝑥) ≤ 𝑚 ≤ 𝑥}; then 𝑓𝑖(𝑥) ≤ 𝑥 implies 
↓ 𝑓𝑖(𝐴) ⊆ ↓ 𝑀𝑖(𝐴) ⊆ ↓ 𝐴 and ↑ 𝐴 ⊆ ↑ 𝑀𝑖(𝐴) ⊆ ↑ 𝑓𝑖(𝐴). Hence (𝑓𝑖)
(𝐴) = 𝑃(𝑓𝑖(𝐴)) ≤ 𝑃 𝐴.

•	 sup{𝑃(𝑓𝑖) : 𝑖 ∈ 𝐼} = 𝑃(𝑖𝑑). For any 𝐴 ∈  (𝐿), it is obvious that 
sup{𝑃(𝑓𝑖)(𝐴) : 𝑖 ∈ 𝐼} ≤ 𝐴. Suppose 𝐴 ≰ sup{𝑃(𝑓𝑖)(𝐴) : 𝑖 ∈ 𝐼}. 
There is 𝐵 ∈  (𝐿) such that 𝐵 ≪ 𝑃𝐴 and 𝐵 ≰ sup{𝑃(𝑓𝑖)(𝐴) : 𝑖 ∈ 𝐼}. 
By 𝐵 ≪ 𝑃𝐴 and 𝐴 = sup{↓ 𝐹 ∩ ↑ 𝐹 : 𝐹 ≺ 𝐴, 𝐹 ⊆ 𝑓in𝐿}, there is 
some finite set 𝐹 ≺  𝐴 such that 𝐵 ≤ ↓ 𝐹 ∩ ↑ 𝐹. But for any finite 
set 𝐹 ≺  𝐴, we have 𝐹 = sup{𝑓𝑖(𝐹) : 𝑖 ∈ 𝐼}, where 𝐹 ≺  𝐴 iff 𝐹 ⊆ ↡ 
𝐴 and 𝐴 ⊆ ↟ 𝐹. Then ↓ 𝐹 ∩ ↑ 𝐹 = sup{↓ 𝑓𝑖(𝐹) ∩ ↑ 𝑓𝑖(𝐹) : 𝑖 ∈ 𝐼} 
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≤ sup{↓ 𝑓𝑖(𝐴) ∩ ↑ 𝑓𝑖(𝐴) : 𝑖 ∈ 𝐼}. This is a contradiction. Then we 
conclude that sup{𝑃(𝑓𝑖) : 𝑖 ∈ 𝐼} = 𝑃(𝑖𝑑).

•	 (𝑓𝑖) is Scott continuous and finitely separated. For a directed 

family  in 𝑃𝑃(𝐿), we have

		  (8)
Then (𝑓𝑖) is Scott continuous.
For any 𝐴 ∈  (𝐿), 𝑀𝑖(𝐴) is a finite set. By ↓ (𝐴) ⊆ ↓ 𝑀𝑖(𝐴) ⊆ ↓ 𝐴 and ↑ 

𝐴 ⊆ ↑ 𝑀𝑖(𝐴) ⊆ ↑ 𝑓𝑖(𝐴), it follows that ↓ 𝑀𝑖 (𝐴) ∩ ↑ 𝑀𝑖(𝐴) ∈ 𝑃𝑃(𝐿). Let  
= {↓ (𝐴) ∩ ↑ 𝑀𝑖(𝐴) : 𝐴 ∈ 𝑃𝑃(𝐿)}. Since (𝐴) ⊆ 𝑀𝑖 and M𝑖 is finite, it follows 
that  is a finite family of 𝑃𝑃(𝐿). And we have that, for any 𝐴, there exists 
↓ 𝑀𝑖(𝐴) ∩ ↑ 𝑀𝑖(𝐴) ∈  such that 𝑃(𝑓𝑖)(𝐴) ≤ 𝑃 ↓ 𝑀𝑖(𝐴) ∩ ↑ 𝑀𝑖(𝐴)≤𝑃𝐴; that 
is, 𝑃(𝑓𝑖) is finitely separated.

•	 (𝑓𝑖) is a +-semilattice homomorphism. For 𝐴, 𝐵 ∈ 𝑃𝑃(𝐿), since 
𝑃𝑃(𝐿) is a +-semilattice, 𝐴 + 𝐵 = ↓ (𝐴 ∪ 𝐵) ∩ ↑ (𝐴 ∪ 𝐵) ∈ 𝑃𝑃(𝐿):

		  (9)
Then we conclude that {(𝑓𝑖) : 𝑖 ∈ 𝐼} is the approximate identity for 𝑃𝑃(𝐿).
Thus the convex powerdomain 𝑃𝑃(𝐿) is an 𝐹𝑆+-domain.

Combined with the work of Huth et al. [13] and Meng and Kou [14], we 
conclude the following theorem.
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Theorem 8
Let 𝐿 be a domain. Then the following statements hold:

•	 if 𝐿 is Lawson compact, then the Smyth powerdomain 𝑃𝑆 (𝐿) is an 
𝐹𝑆⋀-domain (in [14]);

•	 if 𝐿 has a least point, then the Hoare powerdomain 𝑃𝐻(𝐿) is a 
distributive 𝐹𝑆⋁-lattice (in [13]);

•	 if 𝐿 is an 𝐹𝑆-domain, then the Plotkin powerdomain P𝑃(𝐿) is an 
𝐹𝑆+-domain.
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ABSTRACT
We define the concepts of 𝐺𝐵-metric in sets over 𝜎-complete Boolean 
algebra and obtain some applications of them on the theory of topology. We 
also study some related properties of them.

INTRODUCTION
Numerous studies have been made concerning geometries and topologies 
induced in sets by general distance functions. A formulation of the notion 
“generalized metric space (or 𝐺-metric space)” has been given [1]. In 
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this paper, we begin the elaboration of the topology induced in sets over 
𝜎-complete Boolean algebra.

In this paper, 𝐵 shall always denote a 𝜎-complete Boolean algebra. In 
𝐵, we denote the operations of join, meet, and complement by 𝑎 ∨ 𝑏, 𝑎 ∧ 𝑏 
and 𝑎′, respectively.

THE GB-METRIC SPACES
In 1952, a new structure of metric spaces, so called 𝐵-metric space was 
introduced by Ellis and Sprinkle [2], on the set 𝑋 to Boolean algebra (for 
details see [3, 4]).

Definition 2.1 (see [2]). A 𝐵-metric space is a set 𝑋 with a map 𝑑 ∶ 𝑋 × 
𝑋 → 𝐵 (𝐵 is 𝜎-Boolean algebra) with the properties

•	 𝑑(𝜉, 𝜂) = 0 if and only if 𝜉=𝜂,
•	 𝑑(𝜂, 𝜉) = 𝑑(𝜉, 𝜂), (symmetry), and
•	 (𝜉, 𝜁) ≤ (𝜉, 𝜂) ∨ 𝑑(𝜂, 𝜁), for all 𝜉, 𝜂, 𝜁 belong to 𝑋.
In [1], the present author has introduced a new structure of metric 

spaces which is a generalized idea of the ordinary metric space. The term 
generalized metric space is used in [5, 6].

Definition 2.2 (see [7]). Let 𝑋 be a nonempty set and 𝐺 ∶ 𝑋 × 𝑋 × 𝑋 → 
[0, ∞) be a function satisfying the following properties:
(𝐺1) (𝑥, 𝑦, 𝑧) = 0 if 𝑥 = 𝑦 = 𝑧,
(𝐺2) 0 < (𝑥, 𝑥, 𝑦); for all 𝑥, 𝑦 ∈  𝑋, with 𝑥 ≠ 𝑦,
(𝐺3) (𝑥, 𝑥, 𝑦) ≤ (𝑥, 𝑦, 𝑧), for all 𝑥, 𝑦, 𝑧 ∈  𝑋 with 𝑧 ≠ 𝑦,
(𝐺4) G(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥)=⋯, (symmetry in all three variables), 
and
(𝐺5) (𝑥, 𝑦, 𝑧) ≤ (𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧), for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋, (rectangle 
inequality).

Topology of GB-Metric Spaces
In this section we define generalized B-metric or GB-metric space and 
introduce some basic notions and results that are used in sequel.

Definition 2.3. Let X be a non empty set and GB : X × X × X → B, be a 
function satisfying the following properties
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Then, the function GB is called a generalized B-metric, or, more 
specifically, a GB-metric on X, and the pair (X, GB) is called a GB-metric 
space.

Example 2.4. Put = ∪ {0}. Define a map GB : × ×  → {0, 
1}

		  (2.1)
The map GB is a GB-metric on 
Remark 2.5. We can show that a GB-metric space is a generalized 

B-metric space over X.
Proposition 2.6. Every GB-metric space (X, GB) will define a B-metric 

 by .
Proof. Conditions 1 and 2 of B-metric are clearly and 3 follows from 

(GB5)
Proposition 2.7. Let GB be GB-metric on a ring X. For an element a ∈ X, 

the following maps are GB-metrics on the ring X:
ISRN Mathematical Analysis

Proposition 2.8. Let (X, d) be a B-metric space. Define a function, GB : X 
× X × X → B by GB(x, y, z) = d(x, y) ∨ d(y, z ) ∨ d(z, x) for x, y, z ∈ X. The 
map GB is a GB-metric on X, and consequently (X, GB) is a GB-metric space

Proof. Conditions (GB1), (GB2), and (GB4) are clear. We show that (GB3) 
and (GB5) are valid too.

	 (2.2)
And for (GB5), we have
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		  (2.3)
Proposition 2.9. Let (X, GB) be a GB-metric space, then for all x, y, z, a 

∈ X, it follows that:

Proposition 2.10. Let (X, GB) be a GB-metric space, then the following 
are equivalent:

Proof. Use 2 of Proposition 2.9.
Definition 2.11. Let (X, GB) be a GB-metric. For all x0 ∈ X, r ∈ B \ {0}, 

the GB-ball with center x0 and radius r is BGB(x0, r) = {y ∈ X | GB(x0, y, y) 
< r}. For any GB-ball, we can define BGB (x0, r) = {y ∈ X | GB(x0, y, y) ≤ r}.

Proposition 2.12. Let (X, GB) be a G-metric space. Then for all x0 ∈ X 
and r ∈ B \ {0}, we have

Proof. (1) follows directly GB(x, x, y) ≤ GB(x, y, z). Put δ = r – GB(x, y, 
y) and use (GB5), then deduce (2).

It follows from 2 of the above proposition that the family of all GB-balls

		  (2.4)
is the base of topology τGB on X, we call the GB-metric topology.

Definition 2.13. Let (X, GB) be a GB-metric space. The sequence {xn} ⊆ 
X is GB-convergent to x if it converges to x in the GB-metric topology, τGB.

Remark 2.14. Another topological notions as GB-Hausdorff, GB-
compact, GB-normal, and ... define similarly as usual.

Definition 2.15. Let (X, GB) and (X’, G’B) be GB-metric spaces, a 
function f : X → X’ is GB-continuous at a point x0 ∈ X if f−1(BGB’

) (f(x0), r)) 
∈ τ(G) for all r ∈ B \ {0}. We say f is GB-continuous if it is GB-continuous 
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at all points of X, that is, continuous as a function from X with the τGB-
topology to X’ with the τ’GB-topology.

Theorem 2.16. Let (X, GB) be a GB-metric space and f be a self-map of 
X into itself. Suppose f is GB-continuous at x0 ∈ X, if there is a point x ∈ 
X such that the sequence of iterates {fn(x)} converges to x0, then f(x0 ) = x0.

Proof. From (𝐺𝐵5), we derive 𝐺𝐵(𝑓(𝑥0), 𝑥0, 𝑥0) ≤ 𝐺𝐵(𝑓(𝑥0), 𝑓𝑛(𝑥), 𝑓𝑛(𝑥)) 
∨ 𝐺𝐵(𝑓𝑛(𝑥), 𝑥0, 𝑥0) = 𝐺𝐵(𝑓(𝑥0), 𝑓(𝑓𝑛−1(x)), 𝑓(𝑓𝑛−1(𝑥))) ∨ 𝐺𝐵(𝑓𝑛(𝑥), 𝑥0, 𝑥0) as 𝑛 
→ ∞ we deduce, 𝐺𝐵(𝑓(𝑥0), 𝑓(𝑓𝑛−1(𝑥)), 𝑓(𝑓𝑛−1(𝑥))) ∨ 𝐺𝐵(𝑓𝑛(𝑥), 𝑥0, 𝑥0) → 0, so 
the above equation will be 𝐺𝐵(𝑓(𝑥0), 𝑥0, 𝑥0) ≤ 0, therefore, 𝑓(𝑥0) = 𝑥0.

Theorem 2.17. Let (𝑋, 𝐺𝐵) be a 𝐺𝐵-metric space and 𝑓 ∶ 𝑋 → 𝑋 be 𝐺-
continuous. If for 𝑥 ∈  𝑋, the sequence {𝑓(𝑥)} has a convergent subsequence 

 𝐺𝐵-converges to 𝑝, and , 
then 𝑓 has a fixpoint.

Proof. Since  then by 𝐺𝐵-continuity of 𝑓 we have 
 and we have

		  (2.5)
As 𝑖 → ∞ we get 𝐺(𝑝, 𝑓(𝑝), 𝑓(𝑝)) ≤ 0, which implies that 𝑓(𝑝) = 𝑝.
Theorem 2.18. A 𝐺𝐵-metric space 𝑋 is 𝐺𝐵-Hausdorff.

Proof. Consider two elements 𝑥, 𝑦 belong to 𝑋 that 𝑥 ≠ 𝑦, and two subsets 
𝐴 = {𝑥 ∈ 𝑋   ∣ 𝐺(𝑥, 𝑥, 𝑧) < 𝐺𝐵(𝑥, 𝑥, 𝑦)} and 𝐵 = {𝑥 ∈ 𝑋   ∣ 𝐺𝐵(𝑥, 𝑥, 𝑦) < 𝐺𝐵(𝑥, 
𝑥, 𝑧)}. These are two disjoint neighbourhoods of 𝑥 and 𝑦, respectively. It is 
sufficient to prove that the subsets 𝐴 and 𝐵 are open. Suppose 𝑡 ∈  𝐴. Put 𝐺(𝑡, 
𝑡, 𝑧) = 𝑟1, 𝐺𝐵(𝑡, 𝑡, 𝑦) = 𝑟2 and 𝛿 = 𝑟2 − 𝑟1. If 𝑠 ∈ 𝐵𝐺(𝑡, 𝛿), then 𝐺𝐵(𝑠, 𝑠, 𝑧) < 
𝐺𝐵(𝑡, 𝑡, 𝑧) ∨ 𝐺𝐵(𝑠, 𝑠, 𝑡) < 𝑟2 = 𝐺𝐵(𝑡, 𝑡, 𝑦) < 𝐺𝐵(𝑡, 𝑡, 𝑠) ∨ 𝐺𝐵(𝑠, 𝑠, 𝑦) = 𝐺𝐵(𝑠, 𝑠, 
𝑦), therefore, 𝑠 ∈ 𝐴 and 𝐵𝐺𝐵(𝑡, 𝛿) ⊂ 𝐴. This proves 𝑋 is Hausdorff.

Theorem 2.19. A 𝐺𝐵-metric space 𝑋 is 𝐺𝐵-normal.

Proof. Let 𝐺(𝑥, 𝑥, D ⋀) = {𝐺𝐵(𝑥, 𝑥, 𝑦) ∣ 𝑦 ∈   𝐷}. Consider two closed 
disjoint subsets 𝐸 and 𝐹 of 𝑋. Put 𝐴 = {𝑥 ∈ 𝑋   ∣ (𝑥, 𝑥, 𝐹) < 𝐺(𝑥, 𝑥, 𝐸)} and 
𝐵 = {𝑥 ∈  𝑋𝐺𝐵(𝑥, 𝑥, 𝐸) < 𝐺𝐵(𝑥, 𝑥, 𝐹)}. It is clear that 𝐴, 𝐵 are disjoint open 
subsets of 𝑋, 𝐸 ⊂ 𝐴, and 𝐹 ⊂ 𝐵.

Corollary 2.20. A 𝐺𝐵-metric space 𝑋 is 𝐺𝐵-regular.
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Monoid Invariant 𝐺𝐵-Metric
Definition 2.21. A 𝐺𝐵-metric 𝑔𝑏 on a (𝑋, ⊙) is 𝑚-invariant (or monoid 
invariant) when 𝐺𝐵(𝑥 ⊙ 𝑎 , 𝑦 ⊙ 𝑎 , 𝑧 ⊙ 𝑎 ) ≤ 𝐺𝐵(𝑥, 𝑦, 𝑧) and 𝐺𝐵(𝑎 ⊙ 𝑥, 𝑎 ⊙ 
𝑦, 𝑎 ⊙ 𝑧) ≤ 𝐺𝐵(𝑥, 𝑦, 𝑧) are valid for any 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋.

Proposition 2.22. Let (𝑋, ⊙) be a monoid. If 𝐺𝐵 is an m-invariant 𝐺-
metric on X, then

(1) 	 𝐺(𝑥 ⊙ 𝑎 , 𝑦 ⊙  𝑏, 𝑧 ⊙  𝑐) ≤ 𝐺𝐵(𝑥, 𝑦, 𝑧) ∨ 𝐺𝐵(𝑎, 𝑏, 𝑐) and

(2) 	 𝐺𝐵(𝑥1 ⊙ 𝑥2 ⊙ 𝑥3 ⊙ ⋯ ⊙ 𝑥𝑛, 𝑦1 ⊙ 𝑦2 ⊙ 𝑦3 ⊙ ⋯ ⊙ 𝑦𝑛, 𝑧1 ⊙ 𝑧2 
⊙ 𝑧3 ⊙ ⋯ ⊙ 𝑧𝑛) ≤ 𝐺𝐵(𝑥1, 𝑦1, 𝑧1) ∨ 𝐺𝐵(𝑥2, 𝑦2, 𝑧2) ∨ 𝐺𝐵(𝑥3, 𝑦3, 𝑧3) ∨ 
⋯ ∨ 𝐺𝐵(𝑥𝑛, 𝑦𝑛, 𝑧𝑛).

Proof. (1) We have

	 (2.6)
(2) 	 It concludes by induction.
Put (𝑋, ⊙) is a monoid and 𝐺𝐵 be a 𝐺𝐵-metric on 𝑋. We call 𝐺𝐵 is left 

effective on 𝑋 if 𝐺(𝑎 ⊙ 𝑥, 𝑎 ⊙ 𝑦, 𝑎 ⊙ 𝑧) = 𝐺𝐵(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈  𝑋 then 
𝑎 = 𝑒. And we say 𝐺𝐵 is left free 𝐺𝐵-metric on 𝑋 if for a triple (𝑥, 𝑦, 𝑧) ∈ 𝑋  × 
𝑋 × 𝑋, 𝐺(𝑎 ⊙ 𝑥, 𝑎 ⊙ 𝑦, 𝑎 ⊙ 𝑧) = 𝐺𝐵(𝑥, 𝑦, 𝑧) then 𝑎 = 𝑒. The right effective 
(free) is defined samely, and we call 𝐺𝐵 is effective (free) if it is left and right 
effective (free) on 𝑋. Immediately we deduce, if 𝐺𝐵 is free 𝐺𝐵-metric on (𝑋, 
⊙) then it is effective 𝐺𝐵-metric.

Proposition 2.23. Put 𝑓 ∶ (𝑋, ⊙) → (𝑋’, ⊗) is a monoid homomorphism 
and 𝐺𝐵’ is a 𝐺𝐵-metric on 𝑋’ the following results are valid:

•	 𝐺𝐵 ∶ 𝑋  × 𝑋 × 𝑋 → 𝐵, (𝑥, 𝑦, 𝑧) ↦ 𝐺’(𝑓(𝑥), 𝑓(𝑦), 𝑓(𝑧)) is a 𝐺-
metric on (𝑋, ⊙).

•	 If 𝐺’𝐵 is m-invariant, then 𝐺𝐵 is m-invariant.

•	 The 𝐺𝐵-metric 𝐺𝐵 on 𝑋 is free (or effective) if 𝐺’𝐵 is free (or 
effective) on 𝑋’.

Let 𝐸 and 𝐹 be subsets of 𝑋. The set 𝐸 is congruent to 𝐹, written 𝐸 ≈ 𝐹, 
provided there exist a map 𝑓 ∶ 𝐸 → 𝐹 that for any 𝑥, 𝑦, 𝑧 ∈  𝐸, 𝐺(𝑥, 𝑦, 𝑧) = 
𝐺𝐵(𝑓(𝑥), 𝑓(𝑦), 𝑓(𝑧)) and that 𝐹 is congruent to 𝐸 by the map 𝑓−1 ∶ 𝐹 → 𝐸. The 
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map (𝑜𝑟 𝑓−1) is called a congruence between 𝐸 and 𝐹. Clearly every single 
set {𝑥}, 𝑥 ∈  𝑋 and each map 𝑓, {𝑥} congruent to {(𝑥)}.

Definition 2.24. A motion of 𝑋 is a congruence of 𝑋 with itself.
Proposition 2.25. Let (𝑋, 𝐺𝐵) be a 𝐺𝐵-metric space. The set 

 is a group.

Proof. The identity map belongs to ℳ(𝑋) so ℳ(𝑋) is not empty. Group 
action is composition of maps, so the identity map is the identity element. 
If 𝑔 ∈  ℳ(𝑋), then 𝐺𝐵(𝑔−1(𝑥), 𝑔−1(𝑦), 𝑔−1(𝑧)) = 𝐺𝐵(𝑔(𝑔−1(𝑥)), 𝑔(𝑔−1(𝑦)), 
𝑔(𝑔−1(𝑧))) = (𝑥, 𝑦, 𝑧), so 𝑔−1 ∈ ℳ(𝑥).

Theorem 2.26. Let (𝑋, 𝐺𝐵) be a 𝐺𝐵-metric space and 𝑓 ∶ 𝑋 → 𝑋 is a motion of 

𝑋, with the properties: if {𝑓𝑛} → 𝑥, then  
then the set of fixpoints of 𝑓 (or (𝑓)) is equal to the set of fixpoints of 
𝑓𝑛(or𝐹(𝑓𝑛)) for all 𝑛 ∈  ℕ.

Proof. Clearly (𝑓) ⊆ 𝐹(𝑓𝑛). Suppose 𝑥 ∈  (𝑓𝑛), so the sequence 

 because 𝑓𝑘𝑛(𝑥) = 𝑥, for all 𝑘 ∈  ℕ. Now by Theorem 
2.16, we conclude (𝑥) = 𝑥.

Proposition 2.27. Let (𝑋, ∗) be a monoid and 𝐺𝐵 be a 𝐺𝐵-metric on 𝑋.

•	 If for all 𝑎 ∈ 𝑋, 𝐿𝑎 and 𝑅𝑎 be motions of 𝑋, then 𝐺𝐵 is m-invariant.

•	 𝐿𝑎 (or 𝑅𝑎) (𝑎 ≠ 𝑒) cannot be a motion of 𝑋, if 𝐺𝐵 is effective.

Example 2.28. The 𝐺𝐵-metric defined in Example 2.4 is invariant on the 
monoid (𝕎, +), but it is not effective. Clearly for all 𝑘 ∈  ℕ, 𝑓𝑘 ∶ 𝕎 → 𝕎, 𝑛 
↦ 𝑛  + 𝑘 is a motion.
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knowledge base. It is shown that a semi-𝑆5 model can be computed via a 
fixpoint operator and is in fact a paraconsistent MKNF model when the 
knowledge base is incoherent. Moreover, we apply six-valued lattice to 
hybrid MKNF knowledge bases and present a suspicious semantics to 
distinguish different trust level information. At last, we investigate the 
relationship between suspicious semantics and paraconsistent semantics.

INTRODUCTION AND MOTIVATION
The Semantic Web [1] extends the current World Wide Web by standards 
and techniques that help machines to understand the meaning of data on the 
web to enable more powerful intelligent system applications. The essence of 
the Semantic Web is to describe data on the web by metadata that conveys 
the meaning of the data and that is expressed by means of ontologies.

Web Ontology Language (OWL) [1] is based on the Description Logic 
 [2] and has been recommended by the World Wide Web 

Consortium for representing ontologies. However, as monotonic logic, 
description logics (DLs for short) are not as expressive as needed for 
modeling some real world problems. Consequently, how to improve OWL 
has become a very important branch of research in the Semantic Web field, 
and one of the hot topics is how to better combine DL and rules in the sense 
of logic programming (LP), which is complementary to modeling in DL 
with respect to expressivity, have become a mature reasoning mechanism in 
the past thirty years.

Several integration methods have been proposed. As a bridge between 
monotonic reasoning and nonmonotonic reasoning, hybrid MKNF knowledge 
bases have favourable properties of decidability, flexibility, faithfulness, 
and tightness. However, due to nonmonotonicity of rules, hybrid MKNF 
knowledge bases may be incoherent; that is, they do not have an MKNF model 
due to cyclic dependencies of a modal atom from default negation of the atom 
in the rule part. Standard reasoning systems will break down in this case. 
Nevertheless, one might want to derive useful information from incoherent 
hybrid MKNF knowledge bases. This is similar to paraconsistency, where 
nontrivial consequences shall be derivable from an inconsistent theory. For 
distinguishing the former reasoning with the later, we use term paracoherent 
reasoning to denote reasoning with incoherent knowledge bases. Both types 
of reasoning for rules have been studied, for example, Sakama and Inoue 
[3] and Eiter et al. [4]. For hybrid MKNF knowledge bases, Huang et al. [5] 
presented paraconsistent semantics for it, where only inconsistency can be 
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handled. In this paper, we study the incoherency problem in hybrid MKNF 
knowledge bases and present a paracoherent reasoning system such that 
nontrivial conclusions can be drawn from incoherent knowledge bases.

The remainder of the paper is organized as follows. In Section 2 we have 
a quick look over hybrid MKNF knowledge bases. In Section 3, we present 
paracoherent semantics for hybrid MKNF knowledge bases on the basis of 
nine-valued lattice. In Section 4, we give suspicious MKNF models for such 
knowledge bases to distinguish different trust level information. In Section 
5, we discuss the related work. We conclude and discuss the future work in 
Section 6.

HYBRID MKNF KNOWLEDGE BASES
At first, the logic of MKNF is a variant of first-order modal logic with two 
modal operators: K and not. We present the syntax of MKNF formulae 
taken from [6]. Let Σ be a signature that consists of constants and function 
symbols and first-order predicates, including the binary equality predicate 
≈. A first-order atom (𝑡1,...,) is an MKNF formula, where 𝑃 is a first-order 
predicate and 𝑡𝑖 are first-order terms. Other MKNF formulae are built over 
Σ by using standard connectives in first-order logic and two modal operators 
as follows: true, ¬𝜑, 𝜑1 ∧ 𝜑2, ∃ : 𝜑, K𝜑, not𝜑. Moreover, the symbols ∨, ⊃, 
∀, and ≡ represent the usual boolean combination of previously introduced 
connectors.  Formulae of the form K𝜑 (not𝜑) are called modal  K-atoms (not-
atoms). Modal K-atoms and not-atoms are called modal atoms. An MKNF 
formula 𝜑 is called closed if it contains no free variables and called ground if 
it is without any variables. An MKNF formula 𝜑 is called modally closed if 
it is closed and all modal operators are applied to closed subformulae. [𝑡/𝑥] 
is the formula obtained from 𝜑 by substituting the term t for the variable 
x. Moreover, the equality predicate ≈ in Σ is interpreted as an equivalence 
relation on Δ, which is called a universe and contains an infinite supply of 
constants, besides the constants occurring in the formulae.

As shown in [6], hybrid MKNF knowledge bases consist of a finite 
number of MKNF rules and a decidable description logic knowledge base , 
which satisfies the following conditions: (i) each knowledge base  
can be translated to a formula  of function-free first-order logic with 
equality (see [2] for standard translation for description logic axioms), (ii) 
it supports ABox assertions of the form , where  is a predicate 
and each 𝑡𝑖 a constant of , and (iii) satisfiability checking and instance 
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checking (i.e., checking entailments of the form ) are 
decidable.

Definition 1. Let  be a DL knowledge base. A first-order function-free 
atom (𝑡1,...,) over Σ such that 𝑃 is ≈ or it occurs in  is called a DL atom; all 
other atoms are called non-DL atoms. An MKNF rule 𝑟 has the following 
form where 𝐻𝑖, 𝐴𝑖, 𝐵𝑖, are first-order function-free atoms:

		  (1)
The sets {K𝐻𝑖}, {K𝐴𝑖}, and {not𝐵𝑖} are called the rule head, the positive 

body, and the negative body, respectively. An MKNF rule 𝑟 is nondisjunctive 
if 𝑛 = 1; 𝑟 is positive if 𝑚 = 𝑘; 𝑟 is a fact if 𝑚 = 𝑘 = 0. A program  is 
a finite set of MKNF rules. A hybrid MKNF knowledge base  is a pair 

.
To ensure that the MKNF logic is decidable, DL safety is introduced as 

a restriction to MKNF rules.
Definition 2. An MKNF rule is DL safe if every variable in 𝑟 occurs in 

at least one non-DL atom K𝐵 occurring in the body of 𝑟. A hybrid MKNF 
knowledge base  is DL safe if all its rules are DL safe.

In the rest of this paper, without explicitly stating it, we only consider 
hybrid MKNF knowledge bases which are DL safe.

Definition 3. Given a hybrid MKNF knowledge base  = , the 
ground instantiation of  is the knowledge base  = , where 

 is obtained from  by replacing each rule r of  with a set of rules 
substituting each variable in r with constants from  in all possible ways.

Grounding the knowledge base  ensures that rules in  apply only 
to objects that occur in . And it has been proved by Motik and Rosati [6] 
that the MKNF models of  and  coincide.

Hybrid MKNF knowledge bases provide a paradigm for representing 
data sources on the web by rules and description logics simultaneously. 
Local closed world reasoning in the knowledge bases bridges the rules and 
DLs, accordingly overcomes the expressive limitation of rules and DLs, and 
enhance the expressivity.
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PARACOHERENT SEMANTICS FOR HYBRID MKNF 
KNOWLEDGE BASE
Huang et al. [5] presented a four-valued paraconsistent semantics for hybrid 
MKNF knowledge bases, which can handle inconsistent information in 
the knowledge base. However, there is a kind of knowledge base which 
has no four-valued paraconsistent MKNF model but still contains useful 
information, for instance, the following example.

Example 4. Let  be a ground knowledge base, where 
 and  (𝑝, 𝑎 are literals).

From [5], we know that  has no paraconsistent MKNF model. 
Generally, MKNF rule of the form K𝑎 ← not𝑎 will lead to incoherency, 
which is a kind of inconsistency but cannot be handled by four-valued 
paraconsistent semantics. Therefore, it is desirable to provide a framework 
for incoherent knowledge bases. In this section, we will present a nine-
valued semantics which is paraconsistent for incoherent knowledge bases.

Firstly, we introduce the nine-valued lattice . Besides the four basic 
values t, f, ⊤, and ⊥, which constitute four-valued lattice  and, 
respectively, represent true, false, contradictory (both true and false), and 
unknown (neither true nor false),  contains five extra truth values bt, 
bf, b⊤, tcb, and fcb, which denote believed true, believed false, believed 
contradictory, true with contradictory belief, and false with contradictory 
belief, respectively. These values constitute a lattice of nine-valued logic 

 [3] (as shown in Figure 1) such that ⊥≤ bf ≤ x ≤ xcb ≤ ⊤ and bx ≤ b⊤ ≤ 
xcb (x ∈ {t, f}).

Figure 1. Nine-valued Lattice .
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Let  be a first-order theory and  is the Herbrand base of 
. Let  A is a literal in , and let 𝐼 be a subset of 

. Then a nine-valued interpretation    under the logic  is defined as a 
function  such that, for each literal ,

		  (2)
where the term lub denotes least upper bound.

Every formula in  is assigned a value in . The intuitive meaning 
of new introduced operator  is “belief.” For instance,  means 
we believe that literal 𝐴 belongs to interpretation 𝐼, which coincides 
with the truth value bt. By the order structure of nine-valued lattice, 

 iff both  and  iff both  
and  iff both  and . Furthermore, 

 iff  iff 
 iff  iff  and 

 iff .
Under this logic, satisfaction of literals and default negation 

is defined as follows:  iff 

 and . 
Satisfaction of other connectors is defined as usual.

Now we come to the nine-valued semantics for hybrid MKNF knowledge 
bases.

For distinguishing the two hybrid MKNF knowledge bases with stable 
model semantics and nine-valued semantics, we call the latter -MKNF 
knowledge bases.
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We use the syntax of para-MKNF knowledge base presented by Huang 
et al. [5] as the syntax of -MKNF knowledge bases, which is similar to 
the classical knowledge base as presented in Section 2. The only difference 
between them is that MKNF rules are restricted to literals in para-MKNF 
knowledge bases. In our paper, we use MKNF rules defined as follows:

	 (3)
where 𝐻𝑖, 𝐴𝑖, and 𝐵𝑖 are first-order function-free literals.

Semantically, we first introduce -MKNF structure .

Definition 5. An -MKNF structure  consists of a nine-
valued interpretation  and two nonempty sets of nine-valued interpretation 
interpretations  and . A nonempty set of nine-valued interpretations 

 is called a -MKNF interpretation.

Definition 6. Let  be a -MKNF structure.  satisfaction 
of closed MKNF formulae is defined inductively as follows:

		  (4)
A -MKNF interpretation  is a semi-𝑆5 model of a given closed MKNF 

formula 𝜑, written as  if and only if  for each 
.
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How to obtain models of a knowledge base is a basic problem in the 
reasoning process. The next work is around this topic.

Let  be a ground -MKNF knowledge base. The set 
of K-atoms of  written as , is the smallest set that contains (1) all 
ground K-atoms occurring in  and (3) a modal atom K𝜉 for each ground 
modal atom not𝜉 occurring in . Let  
K𝐴 is an element in . Furthermore,  is the subset of 

 that contains all K-atoms occurring in the head of some rule in 
.  is a subset of .
We now recall the fixpoint operator of positive paraconsistent MKNF 

knowledge base, which will be used to search for the semi-𝑆5 models of 
-MKNF knowledge bases.

Definition 7 (see [5]). Let  be a ground positive 

para-MKNF knowledge base and . A mapping 

 is defined as

		 (5)

where the mapping  is defined as follows.

•	 If  for some ground integrity 
constraint  in , then 

.

•	 Otherwise, 
 where 

 for each ground MKNF rule  

   and 

.
Then we can use the following fixpoint procedure to compute 

paraconsistent MKNF models of positive para-MKNF knowledge bases:
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					     (6)
where 𝑛 is a successor ordinal and 𝜔 is a limit ordinal.

For general para-MKNF knowledge bases, a transformation was 
presented.

Definition 8. Let  be a ground para-MKNF knowledge 
base. Then its transformation is defined as  obtained by replacing each 
general rule in  with the following positive MKNF rule

					     (7)

					     (8)

			   (9)

				    (10)

Let  and  and 
min  there exists no  such that . Given a set 

 that is a subset of  is canonical if  implies 
 and  is 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙}.

Theorem 9. Let  be a ground para-MKNF 

knowledge base, and then each paraconsistent MKNF model of  

equals  where 𝑃ℎ is an element of the set 

.

Note that the transformation of general MKNF rules is a little different 
from the one in [5]. However, this does not affect the result of Theorem 9. In 
fact, both two transformations have the same essence, transforming default 
negation in the rule body to a literal in rule head, and the unique difference is 
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between “KK𝐵𝑘” and “K𝐵𝑘” in the transformed MKNF rules. But from the 
canonical condition, KK𝐵𝑘 implies K𝐵𝑘, which does not change the original 
proof of [5,Theorem 4]. Therefore, Theorem 9 still holds if replacing K𝑎 in 
(3) with KK𝑎. In a previous work, we have mentioned that K𝑎 is interpreted 
by “belief true,” corresponding to the truth value “bt.” As we have defined, 
a nine-valued interpretation can be represented by special Herbrand 
interpretation equipped with new elements of form K𝜀 based on classical 
Herbrand interpretation, in which 𝜀 is a literal.

Given a set  that is a subset of  is maximally canonical 

if there is no subset  of , such that  and 

 and :

		  (11)
With maximally canonical condition, semi-𝑆5 models of a hybrid MKNF 

knowledge base can be computed by the fixpoint operator presented in 
Definition 7.

Theorem 10. Let  be a -MKNF knowledge 

base, if 𝑃ℎ is an element of the set  and 

, then  is a semi-𝑆5 model of .

Proof. Given a maximally canonical element 

 and  is a 
paraconsistent 𝑆5 model of  by [5, Lemma 4]. For each transformed 
MKNF rules (3) and (7), if , for each 𝑛 + 1 ≤ 𝑖 ≤ 𝑚, then either 

, for some 1 ≤ 𝑘 ≤ 𝑛, or , for some 𝑚 + 1 ≤ 𝑡 ≤ 

𝑘. Case 1: , for some 1 ≤ 𝑘 ≤ 𝑛, then the corresponding MKNF 

rule of form (1) is satisfied. Case 2: , for some 𝑚 + 1 ≤ 𝑡 ≤ 

𝑘. Then for each nine-valued interpretation , which 

means  and then . In either case, corresponding 
MKNF rule of form (1) is satisfied. Let  and 

, and then  is a semi-𝑆5 model of .
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Corollary 11. If  is a coherent knowledge base, then its semi-𝑆5 
model coincides with paraconsistent MKNF model.

Proof. When  contains canonical element, it is also 
maximally canonical. Therefore, the result holds.

Theorem 12. Let  be a ground hybrid MKNF knowledge 

base, if  has an 𝑆5 model, it has a semi-𝑆5 model.

Proof. If  has an 𝑆5 model, then it is easy to construct a MKNF 

interpretation that satisfies . Then  contains 

maximally canonical elements. Thus  is not 
empty. Theorem holds.

Example 13. Consider the incoherent knowledge base  from 

Example 4. By Definition 8,  is transformed to :

		  (12)
We compute the fixpoint by applying the procedure presented 

in Section 3 to the knowledge base . By evaluating 

 recursively, 

. Also, it can be easily verified that 
.

SUSPICIOUS MKNF MODELS
As the beginning of this section, we give a motivation example as follows.

Example 14. Let  be a ground knowledge base, where  

 (𝑝, 𝑎, 𝑐 are 
literals).

In the above paraconsistent hybrid MKNF knowledge base , both 
𝑐 and 𝑎 are the consequence of it. However, it is not difficult to find that 𝑎 
is derived by inconsistent information, while 𝑐 is not. Apparently 𝑎 is less 
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credible than 𝑐.Therefore, it is necessary to distinguish information derived 
by inconsistencies from others.

In order to distinguish two kinds of information, we introduce six-valued 
lattice, which is used by Sakama and Inoue [3] to present suspicious stable 
models for a program. As shown in Figure 2, there are two new introduced 
values sf and sf in six-valued lattice VI, which, respectively, stand for 
suspiciously false and suspiciously true. These newly introduced values 
together with  constitute six-valued lattice such that ⊥≤ sx ≤ x ≤ ⊤ 
(x ∈ {t, f}).

Figure 2. Six-valued Lattice VI.

Let  be a first-order theory,  is a literal in 
, and 𝐼 be a subset of  . Then a six-valued interpretation 𝐼 under 

the logic VI is defined as a function 𝐼:  such that, for each 
literal ,

		 (13)
Note that (𝐴) = st if and only if (¬𝐴) = sf. Under the logic VI, satisfaction 

of literals and default negation is defined as follows: 𝐼⊨6𝐴 if and only if st 
≤(𝐴)𝐼, 𝐼⊨6 ¬𝐴 if and only if sf ≤(𝐴)𝐼, 𝐼 ⊨6 not𝐴 if and only if (𝐴)𝐼 ≤ f, and 𝐼 
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⊨6 not¬𝐴 if and only if (𝐴)𝐼 ≤ t. Satisfaction of other connectors is defined 
as usual.

Given a hybrid MKNF knowledge base, its suspicious 𝑆5 models are 
defined by suspicious MKNF structure , which is defined as 
usual.

Definition 15. A suspicious MKNF structure  consists 
of a six-valued interpretation  and two nonempty sets of six-valued 
interpretation interpretations  and . A nonempty set of six-valued 
interpretations  is called a suspicious MKNF interpretation.

Definition 16. Let  be a suspicious MKNF structure. Six-
valued satisfaction of closed MKNF formulae is defined inductively as 
follows:

		  (14)
A suspicious MKNF interpretation  is a 𝑠𝑢𝑠𝑝𝑖- 𝑐𝑖𝑜𝑢𝑠 𝑆5 𝑚𝑜𝑑𝑒𝑙 

of a given closed MKNF formula 𝜑, written as  if and only if 

 for each .
To compute the suspicious 𝑆5 models, we introduce a new fixpoint 

operator , which is little different from the operator  on the 

definition of . We replace  with , which is 
defined as follows.
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•	 If  for some ground integrity 

constraint  in , then .

•	 Otherwise,  for each ground 

MKNF rule 

 where  if  

and  for each  

otherwise. .

Note that the only difference between operators  and  is 
replacing K𝐻𝑖 with  when K𝐻𝑖 is derived by inconsistent information. 
However, this will not affect the final results, since  implies 

 for any suspicious MKNF interpretation . The superscript 
“𝑠” in  is just like a label of suspicious information.

Given a hybrid MKNF knowledge base  and its transformation 
 as shown in Definition 8, let 𝑃ℎ be an element of the set 

 and . We 
call  the suspicious MKNF model of .

Theorem 17. Let  be a hybrid MKNF knowledge base. If  is a 

suspicious MKNF model of , then it is a suspicious 𝑆5 model of .

Proof. Let  be the corresponding MKNF interpretation, in which 
each literal  is replaced by 𝐻𝑖. It is easy to see that  is a paraconsistent 
MKNF model of . Moreover, for each literal  if and only 

if  and  if and only if . Thus  
satisfies each MKNF rule in . Hence the result follows.

RELATED WORKS
Huang et al. [5] presented a four-valued paraconsistent semantics for hybrid 
MKNF knowledge bases, which resolved the inconsistency problem but was 
invalid to incoherency.
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Michael Fink [7] proposed paraconsistent hybrid theory for handling 
paraconsistent and paracoherent information in a combination of DL and 
rules, which is based on here-and-there logic.

Sakama and Inoue [3] proposed a paraconsistent stable semantics for 
extended disjunctive programs. Moreover, they introduced suspicious stable 
models to distinguish facts affected by inconsistent information from others 
in a program. At last, in order to handle incoherency occurring in a program, 
they employed nine-valued lattice and presented semistable models, which 
is also used in [8] to cope with instability and also is the inspiration of our 
work on incoherency handling in hybrid MKNF knowledge bases.

CONCLUSION
In this paper we presented a semi-𝑆5 semantics for hybrid MKNF knowledge 
bases which is paraconsistent for incoherent knowledge bases. We showed 
that a semi-𝑆5 model can be computed via a fixpoint operator and is in fact 
a paraconsistent MKNF model when the knowledge base is incoherent. 
Furthermore, we applied six-valued lattice to hybrid MKNF knowledge 
bases and present a suspicious semantics to distinguish different trust level 
information.

Our future work can be directed towards several paths. First of all, a well-
founded semantics of hybrid MKNF knowledge bases has better complexity 
properties than paraconsistent semantics, and paraconsistent approach could 
be carried over to this paradigm. Moreover, in the real world, there are some 
other problems, such as probabilistic uncertainty, that cannot be coped with 
by classical reasoners. Then it is necessary to extend probabilistic semantics 
to hybrid MKNF knowledge bases.
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INTRODUCTION
In the real world, we face a lot of uncertain mathematical objects. Among 
them, some are easier to be formalized via graphs or tree structures or 
networks. Henceforth, the distances between such structures are vital as they 
provide deeper information between two different structures. In the article 
[1], we have shown how to define metrics for graphs with single-edged 
vertices. Single-edge graphs are graphs with at most one edge between 
any two vertices. Such graphical structures normally are deterministic. The 
basic idea is to, based on minimal matching concepts, define matched parts 
and mismatched parts of incoming or outgoing edges. However, due to 
the complexity of real applications, in particular some fuzzy or indecisive 
mathematical objects, the metrics we had defined in that paper are insufficient 
to cover the needs. Therefore, we put forward some novel metrics which 
could accommodate such complexity in this article. We would consider 
graphs with multiple edges between any two vertices. This mechanism 
could then be applied in modelling some indecisive objects. Our research 
is also partially motivated by some articles regarding fuzzy mathematical 
objects [2–5]. Furthermore, if one is interested in other variants of metrics 
for graphs, he could consult either [6] or [7].

MULTISETS
Let us introduce some defnitions and operations of multisets. Let  denote 
the set of all positive real numbers. Let  denote the set of all the natural 
numbers including 0. Let Γ denote the set of all the functions . Let 
Df be the domain of a function f. Let be the nonzero 

domain of f. Defne . In this article, we name 
each element in Γ< a multiset. Let  be arbitrary multisets. We use the 
notation  (i.e., f is a multisubset of g) to denote that for all 
, .

Definition 1 (empty multiset). We call the zero function in Γ< the empty 
multiset.

Definition 2 (equality ). .

Definition 3 (intersection ). The intersection of multiset f 
and g, denoted by the function , is defined by 

.
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Definition 4 (union ). The union of multiset f and g, 
denoted by the function , is defined to 

.
Definition 5 (difference ). Exclusion of multiset g from 

f, denoted by the function , is defined by 

.
Note that each multiset f in Γ< could be uniquely represented by either a 

set of descending form as follows:

				    (1)

or in short , or by a set of ascending form as 
follows:

				    (2)

or in short , where  
 for all . 

Define the cardinality of a multiset f by  .
Definition 6 (descending order). Define the p-th element in f by function 

OD as follows:

		  (3)
Definition 7 (ascending order). Define the p-th element in f by function 

OA as follows:
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		  (4)

METRICS
Let V be a set of vertices and E be a set of directed edges. Let  
denote the finite multipower set of . In this section, we show how to 
define metrics for labelled graphs and unlabelled graphs. The distance is 
mainly defined based on weights of the corresponding edges between the 
graphs.

Definition 8. We call  a 
multiset-theoretic graph if and only if

(1) 	 For each ,

(2) 	 For all , every element in  is non-negative 
and ,

where W is a multiset-valued weight function. Let SG denote the set of all 
the multiset-theoretic graphs. The main purpose of this article is to define 
some metrics for SG which is divided into two categories: labelled vertices 
and unlabelled vertices.

Definition 9. Let  denote the sum of all the elements in the 

multiset .

Metrics for Labelled Graphs and Subgraphs
In this section, we show how to define the distance between any two graphs 
(whose vertices are all named) that could be graphs with either compatible 
or incompatible vertices. In this subsection, we assume all the vertices are 
labelled. To begin with, we show how to define metrics for . 
These metrics will serve as the foundations for further construction of 
metrics. By the representations of multisets in descending and ascending 
forms as shown in (1) and (2), we have the following definitions. Based on 
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the minimal matchings between any two multisets of positive real numbers 
[8], we derive the following metrics.
Definition 10 (descending metric). Define

		  (5)
Definition 11 (ascending metric). Define

		  (6)
Definition 12 (halved metric). Define

		  (7)
where .

In this article, we assume . Indeed  could be 
decided by some mechanisms. We omit this part.

Example 13. Suppose 
. Then 

. . T h e n
 In the following, 

instead of explicitly showing the representative forms of a multiset, the 
distances of the corresponding form are understood from their contexts; 
for example,  

Lemma 14. dd, da and dh are all metrics on Γ<.

Proof. They follow from the absolute triangle property. Let  
be arbitrary. One could show the triangle property via the relation of 
cardinalities of f, g, and h. For a full proof, one could also consult the results 
in [8].

Now we need to develop much more complicated metrics via dd, da, and 
dh metrics. For each vertex, there are two approaches to define its adjacent 
vertices: inbound or outbound. Hence we have the following definitions. 
Define outbound set
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		  (8)
and inbound set

		  (9)

Definition 15. Define      

.

Example 16. Assume   
 

 
 

 
 

Let  be arbitrary. We have 
the following abbreviations:

(i) 	 ;

(ii) 	 ;

(iii)	  ;

(iv) 	 .
In this article, we put forward two equivalent categories of distance 

functions for subgraphs as follows.
Definition 17 (outbound measure: descending).

		  (10)
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Definition 18 (inbound measure: descending).

		  (11)

Definition 19 (outbound measure: ascending).

		 (12)

Definition 20 (inbound measure: ascending).

		  (13)
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Definition 21 (outbound measure: halved).

		  (14)

Definition 22 (inbound measure: halved).

		  (15)

Theorem 23.  (1)   are all metrics; (2) 

Proof. They all follow from the definitions, in particular the property 
of set difference and the facts that dd, da, and dh are all metrics. For a full 
proof, one could also consult the results in [1, 8].
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Since  , and dh to represent them, 
respectively, in the following.

Metrics for Unlabelled Graphs and Subgraphs
In this section, we show how to define the distance between any two 
graphs (whose vertices are all unnamed) that could be either compatible or 
incompatible graphs. Since all the vertices are unnamed, the distance could 
not be defined as the one in the labelled cases. Hence all the possibilities of 
the interactions between G1 and G2 (whose vertices are all unnamed) should 
be taken into consideration. However, we could fix one graph, say G1, and 
permute G2. Then one computes all the possible distances and chooses the 
optimal permutation of G2, in the sense of minimal distance. Let  denote 
the k-th graph whose vertices are identical to G with k-permutation of the 
names for the vertices.  indeed is treated as a naming system. There are 

 ways of assigning the names to the unnamed set V2. Based on metrics 

, we define the unlabelled distances as follows.

Definition 24.  .

Definition 25.  .

Definition 26. .

Theorem 27. , are all metrics.

Proof. They follow from the definitions. For a full proof, one could also 
consult the results in [1, 8].

COMPUTATIONS AND IMPLEMENTATIONS
In this section, we show how to implement all the above-mentioned metrics 
via adjacency matrices. Let V= . Suppose  is the 
set of all the graphs whose vertices are comprised of part or all of V. Let 

 defined as follows.

, and 
 defined as follows:
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		  (16)

Computations for Labelled Full Graphs
We call G1 and G2 full graphs. Based on the definitions 
regarding their components of distances, we have the following 
computations (which correspond to the original definitions, in 

matrix form): 

.
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Computations for Labelled Subgraphs
We call G3 and G4 subgraphs. To begin with, we show how to compute the 
distance between a full graph and a subgraph. Their interactive components 
of distances are illustrated in the following matrix form:

.
Now we show how to implement the computation of the distance 

between any two subgraphs via a matrix form and its norm as follows:

.

Computations for Unlabelled Full Graphs

Suppose the vertices in  are all unnamed. To compute 
the distance between unnamed G1 and G2, according to the 
definition, we need to pick the smallest distances between G1 and 

. To implement this, we fix 
the adjacency matrix of G1 and permutes the adjacency matrix of G2 and 
compute all the respective distances and then choose the least one and its 
resulting permutation. Through computation, we have the following result:

By setting  as follows: 
 for some unique k, one has 

.

Similarly, by setting  as follows: 
 for some 

unique k, one has . Furthermore, 
.
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Computations for Unlabelled Subgraphs

As for the , after our computations, the optimal corresponding 
subgraph in G1 is the truncated one with vertex lying in ; i.e., 

the optimal subgraph with respect to 
. Then . Similarly, the optimal subgraph with respect to 

 is . Furthermore, 

. By setting  as follows: 
 for some unique k, one has 

. By setting  as follows: 
 for some unique k, one has 

.
To sum up all the results regarding different metrics and graphs, we have 

Table 1.

Table 1. Implementations of all the metrics.

There are several observations worth mentioning:

(1) 	 ;
(2) 	 the distance between a full graph and a subgraph is higher than 

either the distances for full graphs or the subgraphs;
(3)	 the distance between unlabelled graphs is less than or equal to the 

one between labelled ones.
All these results agree with our theoretical definitions and derivations.

REAL WORLD APPLICATION
In this section, we demonstrate how to make a decision via our derived 
metrics when facing some uncertain situation in the real. Suppose country 
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B’s strategic deployment of air planes depends on country A’s attack force. 
The degree of attack force ranges from 0 to 100, in which 0 indicates that 
there is no loss in the combat while 100 indicates the opponent’s airbase is 
completely wiped out. Suppose A and B both have fives airbases in other 
countries C1, C2, C3, C4, and C5. Suppose A has 6 types of air planes A1, 
A2, A3, A4, A5, and A6. The number of each type of planes installed across 
different countries is listed in Table 2. Their respective attack forces are 30, 
45, 55, 76, 88, and 97. Suppose B’s observation of A’s planes and air flight 
of his planes from one base to other bases is recorded in Tables 3 and 4. The 
potential flights from one base to other bases for A are listed in Table 2. This 
table could be directly converted into an adjacency matrix (named PAF), in 
which “none” is replaced by 0 and contents in each Cij is rewritten in the forms 
of sets. Suppose B has 7 types of air planes: B1, B2, B3, B4, B5, B6, and 
B7. Their respective attack forces are 28, 41, 46, 52, 61, 70, 86. Suppose B 
owns  
planes for each corresponding type. Now the problem for B is how he should 
send his air planes to counterbalance his opponent. Based on the metrics in 
this article, we could make a decision toward such uncertain situation. Let 

 denote the numbers of air flight of A’s and B’s air planes k from 

airbase . Define

			   (17)
The optimal decision for B to counterbalance A is

				   (18)
where . Their individual solutions could be obtained via integer 
programming. Here we omit the final execution. If there is inconsistency 
between the choices of v, one could resort to subjective judgment or assigning 
weights between  to reach a final decision.
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Table 2. Country A’s installed air force.

  C1 C2 C3 C4 C5 subtotal
A1 2 0 1 1 3 7
A2 1 4 2 2 2 11
A3 2 3 3 2 0 10
A4 2 1 0 4 1 8
A5 1 1 0 2 0 4
A6 5 1 1 0 3 10
subtotal 13 10 7 11 9 50

Table 3. Country A’s potential air flight.

  C1 C2 C3 C4 C5
C1 0 A1,A3 A2, A4,A6 A3,A6 A1,A5,A6
C2 None 0 A2,A3,A5,A6 A2 A3,A5
C3 A2,A3 A1,A3,A6 0 A2 None
C4 A1,A2,A3,A4 A2 A4 0 A3,A5
C5 A1,A6 None A2,A4,A6 A6 0

Table 4. Country A’s potential attack force.

  C1 C2 C3 C4 C5
C1 0 30,55 45, 76,76,97 55,97,97,97 30,88,97
C2 None 0 45,55,55,76,97 45,45,45 55,88
C3 45,55,55 30,55,97 0 45 None
C4 30,45,55,76 45 76,76,76 0 55,88,88
C5 30,30,30,97 None 45,45,76,97 97 0

CONCLUSION
In this article, we have shown how to define distances between graphs 
over either a set of labelled or unlabelled vertices via a plethora of metrics 
for graphs. We also give computational approaches to implement the 
computation of these metrics via the operations on adjacency matrices. 
This implementation gives an efficient and fast computation of the distance 
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between any two such graphs. We also demonstrate how to apply these 
metrics in uncertain decision-making. Indeed, these metrics could be 
further applied in measuring the distance between real networks or tree-like 
structures.
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INTRODUCTION
Binary tree is a very important data structure in which each node has at most 
two children, which are referred to as the left child and the right child. In 
computing, binary trees are seldom used solely for their structure. Much 
more typical is to define a labeling function on the nodes, which associates 
some value to each node. Binary trees labelled this way are used to implement 
binary search trees and binary heaps, and are used for efficient searching 
and sorting. The designation of non-root nodes as left or right child presents 
matters in some of these applications, even when there is only one child, and 
it is particularly significant in binary search trees [1] . In mathematics, what 
is termed binary tree can vary significantly from author to author. Some use 
the definition commonly used in computer science, but others define it as 
every non-leaf having exactly two children and don’t necessarily order (as 
left/right) the children either [2] . The basic structure of the binary tree can 
be summarized as follows [3] .

•	 Degree of node: The number of children of a node is denoted as 
the degree of the node.

•	 Height of the tree: A tree’s maximum number of level is denoted 
as tree height (or depth).

•	 The i level of binary tree (i ≥ 1) has up to 2^(i − 1) nodes.
•	 Binary tree of depth k has at most 2^k − 1 nodes (k ≥ 1).
•	 To any binary tree, if the number of leaf node is a and the number 

of nodes of degree 2 is b, then a = b + 1.
•	 The depth of complete binary tree which have n nodes is (log 

(2^n)) + 1.
•	 For complete binary tree with n nodes and nodes hierarchically 

from top to bottom, from left to right are encoded, then to any 
node a (1 ≤ a ≤ n) has if a = 1, then node a is the root of binary 
tree and have no parent, if a > 1,then its parent is a/2 (Rounded 
down). If 2a > n, then node i have no child node, else its left child 
node is 2a. If 2a + 1 > n, then a have no right child node, else its 
right child node is 2a + 1.

•	 If the binary tree which degree is n has 2^n − 1 nodes, then it is 
called a full binary tree. Full binary tree is also called complete 
binary tree.

•	 For complete binary tree, the number of node which is 1 degree 
is only possible to 1 or 0.
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•	 For any tree, the total number of nodes = the sum of each node 
number + 1.

WHY USE A BINARY TREE TRAVERSAL AND ITS 
PRACTICAL APPLICATION
In binary tree, we often need to find the binary tree node that has some 
certain characteristics, or need to find all the nodes and process them. For 
example, based on digital image disorder binary tree traversal―A digital 
image scrambling method based on binary tree traversal, and discussed 
the periodic scrambling method and inverse transform. The method is 
simple and easy to operate, and suitable for images of any sizes. And it has 
good scrambling effect and great scrambling cycle. Under certain attacks, 
scrambled image can recover the original image. To some extent, it can meet 
the digital image encryption and hidden robustness requirements, and using 
binary tree traversal to expand the convex outer surface of the polyhedron 
(It can help some production construction). All of these require a binary tree 
traversal. However, the binary tree is a nonlinear structure, and each node 
may have two trees. So, we need to find rules that can make all nodes of a 
binary tree are arranged on a linear queue. So binary tree traversal of each 
node is in accordance with a path to access binary tree, and each note can be 
visited only once. Thus, the binary tree node is accessed sequentially formed 
by a linear sequence, whose result is that each node on the binary tree can be 
accessed more easily [4] .

BINARY TREE’S RECURSIVE TRAVERSAL  
ALGORITHM AND DESCRIPTION
Since the tree traversal rule is recursive, recursive traversal of a binary tree 
is very popular and convenient. Thus, according to the child-first traversal 
of a binary tree rules, there are three recursive traversal orders:

•	 Preorder: access root node, traverse the left subtree, traverse the 
right subtree

•	 Inorder: traverse the left subtree, access root node, traverse the 
right subtree

•	 Postorder: traverse the left subtree, traverse the right subtree, 
access root node
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It can be summed up as some rules. First, preorder traversal of the first 
root node is the root node, while postorder traversal of the last root node is 
the root node.

Second, the last root node of preorder traversal is the rightmost child 
node of the right subtree, the last node of inorder traversal is the most 
right node of the root node right subtree. Third, leftmost root node inorder 
traversal first node to the root of the left subtree, postorder traversal is the 
first node as a left subtree the left child node.

From the above rules, we can draw the following inferences. The whole 
tree sort can be derived through the preorder traversal and the postorder 
traversal. Inorder traversal and postorder traversal can determine a binary 
tree. Preorder traversal and postorder traversal cannot determine a binary 
tree by themselves.

Let’s write a first binary tree’s Preorder traversal, Inorder traversal and 
Postorder traversal

Public class BinaryTree implements BinaryTTree {
Public BinaryNode root;
Public BinaryTree(){this.root=null;}
Public Boolean isEmpty(){return this.root==null;}
}

Public void preOrder(){ // Preorder traversal
PreOrder(root);// Call the recursive method to preorder traversal
}
Public void preorder(BinaryNode p){
if(p!=null)
{
System.out.print(p.data.toString()+” ”);//access to root node
preOrder(p.left);// According to preorder traversal traverse left subtree，then 
recursive call
preorder(p.right);// According to preorder traversal traverse right 
subtree，then recursive call
}
Public void inOrder(){//inorder traversal
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inOrder(root);
}
Public void inOrder(BinaryNode p)
{
If(p!=null)
{
inOrder(p.left);
System.out.print(p.data.toString()+” ”);
inOrder(p.right);
}
}
Public void postOrder(){//postorder traversal
postOrder(root);
}
Public void postOrder(BinaryNode p)
{
If(p!=null)
{
postOrder(p.left);
postOrder(p.right);
System.out.print(p.data.toString()+” ”);
}
}

The above algorithm is based on the definition of the root node p to 
determine the entire recursive method, The root node p will be refined in 
each recursive And then find a child node p, and child node is priority. If 
there is child node, then continue to search until there has no child node, we 
can output the nodes which have searched before in order.
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ANOTHER ALGORITHM OF BINARY TREE  
TRAVERSAL ALGORITHM―NON-RECURSIVE 
CALLS ALGORITHM
The binary trees Preorder, Inorder and Postorder all belong to recursive 
algorithm. When the chain store of binary tree structure is given, the 
programming language with the recursive function can easily achieve the 
above algorithm. But recursive algorithm must have parameters. And it 
should distinguish multiple processing ways through different practical 
parameters. The method described above is regarding the node p as an 
argument. When p is a pointer which points to a different node, it means 
different trees. Accordingly, using different ways to call p is a matter of 
different traversing.

So the binary tree’s non-traversal algorithm needs to build a stack to 
store traversal. Its algorithm is described as follows: Setting an empty stack; 
Node p from the binary tree root node, when p is not empty or not empty 
stack, do the following cycle, and finish the binary tree until the stack is 
empty.

•	 If p is not empty, showing just arrived p junction, put p junction 
stack, enter p left subtree.

•	 If p is empty, but the stack is not empty, and finish the route, we 
need to return to find another path. The node returns just after the 
last point, as long as the stack find a node of the p-point he could 
enter the right subtree.

Thus, we can launch a non-recursive algorithm Binary Tree
1) 	 Non-recursive of Preorder Traversal’s Implement
In the following algorithm, binary tree stored by binary linked list, 

Create an array stack [Pointer] in order to achieve Stack, top in stack is used 
to indicate the current location of the stack.
void inOrder（BiTree bt）
{/* Non-recursive preorder binary tree */
BiTree stack[Point],t;
int top;
if (bt==NULL) return;
top=0;
t=bt;
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while(!(t==NULL&&top==0))
{ while(t!=NULL)
{ Visite(t.data); /* Data field access node */
if (top
{ stack[top]=t;
top++;
}
else { printf(“Stack Overflow”)；
return；
}
t=t.leftchild； /* Pointer to the left child of p */
}
if (top<=0) return; /* stack empty, then over*/
else{ top--;
t=stack[top]; /* Pop the top element from the stack */
Visite(t.data); /* access node data field */
t=t.rightchild; /* Pointer to the right child node p */
}
}
}

2) 	 Non-recursive of Inorder Traversal’s Implement
The non-recursive of inorder traversal’s come true, simply preorder 

traversal non-recursive algorithm in the Visite (t.data) moved to between t = 
stack [top] and t = t.rightchild.

3) 	 Non-recursive of Postorder Traversal’s Implement
In the following algorithm, array stack [Pointer] is used to achieve the 

overall structure of the stack. When the pointer variable p points to the 
current node to be processed, and node t is used to indicate the position 
of the current stack initial value of −1, sign integer variable amount can 
confirm that whether the node p has other children.
void Tree(Tree bt)
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/* Non-recursive of Postorder traversal bt*/
{ stacktype stack[Point];
Tree p;
int t,sign;
if (bt==NULL) return;
top=-1 /* The default value of -1 means no stack location element within 
the stack */
p=bt;
while (!(p==NULL && t==-1))
{ if (p!=NULL) /* The first node into the stack */
{ t++;
stack[t].link=t; /*into stack*/
stack[t].flag=1;
p=p.lchild; /* Get the node left child node*/
}
else { p=stack[t].link;
sign=stack[t].flag;
t--;
if (sign==1) /*if exist right child node*/
{top++;
stack[t].link=p;
stack[t].flag=2; /* Marking the second time out of the stack */
p=p.rightchild;
}
else { Visite(p.data); /* If not, the direct access to the node data field values 
*/
p=NULL;
}
}
}
}
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The nature of the entire non-recursive algorithm is through the 
establishment of a stack to store each node to traverse down the node 
element, and it can sequentially output according to the characteristics of 
the stack. In a recursive algorithm by means of a recursive loop we will 
find each of the nodes is in the whole recursive loop, but recursion can be 
removed at any time to view through putting the element r into the stack one 
by one, Although this way is more cumbersome than the recursive algorithm, 
it reduces more computing time and system resources. And it is easier to see 
the whole nature which traverse through the program algorithm.

IMPROVEMENT OF NON-RECURSIVE ALGORITHM
According to the above non-recursive algorithm, it can be seen that before 
preorder traversal and time complexity is O (n), then preorder compared 
to O (n^2), algorithm is relatively complicated. So what can be improved 
so that the complexity and the time when the same preorder it? Let’s first 
look postorder traversal non-recursive algorithm description, in process of 
postorder traversal non-recursive algorithm, to ensure the left and right child 
nodes are traversed, and left nodes must be traversed before the right in 
order to traverse the root node, we usually use the same array and stack on a 
non-recursive algorithm as described above, but they are more cumbersome. 
The postorder traversal of binary Tree determines its complexity of non-
recursive algorithm design. If we blindly consider the issue from the “left 
and right root nodes” perspective, the created algorithm is undoubtedly very 
complex. If we change the angle of thoughts, the binary operation after 
preorder access order reversed, that is the “root points to the right-to-left 
node” that we are familiar with and very simple “preorder traversal”. The 
difference is that the preorder traversal of a binary tree is the first access 
node and then left and right node access, and the “preorder traversal” 
here is the first visit and then visit the left node and right node. Here we 
don’t discuss the left node and right node of order, but this idea gave us 
space to think and provides another way of thinking for the design of the 
non-recursive algorithm of binary tree traversal. So we can use preorder 
traversal to output result, then use the result to reverse output. Then the 
result becomes the result of postorder traversal. We just need to set up a non-
recursive traversal more than a usual stack to store the previous preorder 
traversal non-recursive node obtained from before and then output it. Then 
there is the improved postorder traversal non- recursive algorithm program 
that I used to write with c language.
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Status PostOrderTraverse(BiTree T,Status(* visit)(TElemType e))
{
/* According to preorder traversal traversal binary thinking first */
InitStack(C1);InitStack(C2);/* Initialize the stack */
If(T)Push(C1,T);
While (！StackEmpty(C1))
{
Pop(C1,p);
Push(C2,p);
If(p->lchild) Push(C1,p->lchild);// The left node stack
If(p->rchild) Push(C1,p->lchild);// The right node stack
}
/* Output traversal sequence */
While(! StackEmpty(C2))
{
Pop(C2,p);
Visit(p->data);//output
}
Return OK;

CONCLUSION
Compared to the non-recursive algorithm, binary tree’s recursive traversal 
algorithm is more simple and clear. Through simple recursive call, we can 
write the binary tree traversal algorithm very quickly. However, recursive 
algorithm relies heavily on pointer node, which means the entire recursive 
algorithm will not continue to go on if the pointer is lost. Besides, a recursive 
algorithm is computationally intensive so it needs to call itself constantly to 
narrow the scope of the call, which leads to a low-efficient program. Thus, 
we think out the non- recursive calls. Although the non-recursive binary tree 
traversal is cumbersome procedure, it can better to see the whole process of 
traversal, such as how to use stack to storage node and then output it one 
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by one. And the efficiency of program is high and the calculate amount is 
small. In this way, the non-recursive algorithm has been optimized and its 
complexity has been reduced. And the program operates faster than before. 
Then, whether to select non-recursive or recursive algorithm depends on 
their own program.
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ABA based on nearest neighbor (NN) imputation was applied for understory 
trees. Our approach is intended to compensate for the weakness of LiDAR 
data and ITD in estimating understory trees, keeping the strength of ITD in 
estimating overstory trees in tree-level. We investigated the effects of three 
parameters on the performance of our proposed approach: smoothing of 
CHM, resolution of CHM, and height cutoff (a specific height that classifies 
trees into overstory and understory). There was no single combination of 
those parameters that produced the best performance for estimating stems 
per ha, mean tree height, basal area, diameter distribution and height 
distribution. The trees in the lowest LiDAR height class yielded the largest 
relative bias and relative root mean squared error. Although ITD and ABA 
showed limited explanatory powers to estimate stems per hectare and basal 
area, there could be improvements from methods such as using LiDAR 
data with higher density, applying better algorithms for ITD and decreasing 
distortion of the structure of LiDAR data. Automating the procedure of 
finding optimal combinations of those parameters is essential to expedite 
forest management decisions across forest landscapes using remote sensing 
data.

Keywords: Tree-List Generation, Individual Tree Detection, Nearest Neigh-
bor Imputation, Parameter Sensitivity, Airborne LiDAR

INTRODUCTION
A tree-list provides detailed data foresters often desire for management and 
planning such as tree species, diameter at breast height (DBH), tree height 
(HT), basal area (BA) and stem volume. Field cruising has been commonly 
used to obtain such data. Field cruising is costly, however, and remote 
sensing data can be used as auxiliary information to improve the accuracy 
and precision of estimates in forest inventory.

Among various remote sensing techniques, airborne light detection and 
ranging (LiDAR) has been increasingly used in forestry applications during 
the last decade. LiDAR has performed well in estimating forest attributes such 
as biomass (Næsset & Gobakken, 2008) , diameter distribution (Gobakken & 
Næsset, 2004) , volume and BA (Lindberg & Hollaus, 2012) . Tree-lists have 
also been estimated by LiDAR (Lindberg, Holmgren, Olofsson, Wallerman, 
& Olsson, 2010, 2013) or aerial photographs (Temesgen, LeMay, Froese, & 
Marshall, 2003) .
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In general, there are mainly two approaches using LiDAR data in 
forestry, the area-based approach (ABA) and the individual tree detection 
(ITD) approach (Vauhkonen, Maltamo, McRoberts, & Næsset, 2014) . ABA 
assumes that the vertical height distribution of laser point clouds is related to 
variables of interest in an area. A host of summary statistics derived from the 
point cloud are used to predict many forest inventory attributes. Information 
on the LiDAR point cloud is not fully utilized in ABA, i.e., most of the 
studies have focused on vertical height distribution in a sample plot and 
only a few studies using horizontal information obtained from the LiDAR 
point cloud. Pippuri, Kallio, Maltamo, Peltola, and Packalén (2012) found 
horizontal texture metrics from a canopy height model (CHM) could be 
used to predict the spatial pattern of trees, and horizontal landscape metrics 
from a CHM used to predict the need for first thinning.

In contrast, ITD identifies individual trees and provides estimates of 
forest attributes based on the identified individual trees. Although many 
variations exist, ITD commonly uses a rasterized CHM to segment individual 
trees with horizontal location of treetop and height across the CHM area. 
Thus, ITD has apparent advantages over ABA regarding utilization of 
horizontal information in LiDAR point clouds and can be more suitable for 
tree-level forest inventories than ABA. However, information on understory 
vegetation is likely to be missed when using ITD (Koch, Kattenborn, Straub, 
& Vauhkonen, 2014) . This is because rasterizing LiDAR point clouds into 
CHM means that there is a rounding effect of summarizing all the point 
clouds within a range of cells into one cell height value mainly focusing 
on higher point clouds making it difficult to detect or estimate understory 
vegetation. Additionally, it is well known that LiDAR has weaknesses for 
detecting or estimating understory vegetation regardless of the approach 
used because LiDAR data lack information on understory vegetation (lower 
proportion of point clouds in understory) (Takahashi, Yamamoto, Miyachi, 
Senda, & Tsuzuku, 2006) .

Many approaches have been proposed to overcome the limitations 
above. Maltamo, Eerikäinen, Pitkänen, Hyyppä, and Vehmas (2004) 
combined a theoretical probability distribution function with the tree height 
distribution estimated from ITD to detect small and suppressed trees. ITD 
first estimated the height distribution and the number of large trees. For small 
trees, two approaches have been used including―the complete Weibull 
distribution with the parameter prediction method and the left-truncated 
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Weibull distribution with estimation of parameters from the estimated 
height distribution by ITD. These approaches were tested for the estimation 
of the height distribution and the number of trees. DBHs for large and small 
trees were then predicted using the relationship between DBH and LiDAR 
metrics. Total timber volume and stem density were finally determined 
by summing the estimates from the two approaches for large and small 
trees. Lindberg et al. (2010) proposed a methodology to generate a tree-list 
combining a CHM-based ITD and ABA estimation. To better detect trees 
that are close to each other or small: 1) the number of trees per segment was 
estimated using a training dataset in which the number of field-measured 
trees for each tree crown segment was known, and 2) a candidate tree-list 
from the ITD was calibrated using the target distributions of HT and DBH 
estimated by a k-Nearest Neighbor (NN) approach. The combined approach 
improved the estimation of distributions for DBH and HT, and produced 
unbiased estimates of forest attributes. In addition to ITD based on CHM, 
Lindberg et al. (2013) utilized a 3D clustering method to model a tree crown 
using a priori information on the shape and proportions of tree crowns. The 
3D clustering method identified more trees below the tallest canopy layer 
and with a DBH < 20 cm than ITD based on CHM. Hamraz, Contreras, and 
Zhang (2017) proposed the use of vertical stratification of point clouds and 
LiDAR data with high point cloud density (50 points/m2), which would have 
more information on understory vegetation than the one with low density, 
to detect understory trees. The proposed approach improved detecting 
understory trees without affecting the overall quality of segmentation for 
overstory trees.

Many parameters affect the performance of tree segmentation by ITD; 
these can be classified into two parameters, biological and technical. For the 
biological parameter, Vauhkonen et al. (2012) claimed that the performance 
of ITD methods depends more on forest structure, stand density, and tree 
clustering than on detection techniques. For example, an estimated tree 
segment by ITD could have no, one, or several trees in it (Breidenbach, 
Næsset, Lien, Gobakken, & Solberg, 2010) , and trees in an understory 
under a dense upper canopy are hard to detect with LiDAR (Maltamo et al., 
2004) . On the other hand, the methods for ITD were reported as the primary 
parameter affecting the performance of ITD by Kaartinen et al. (2012) . 
Substantial differences in the percentage of matched and missed trees, and 
commission error were found among the ITD methods. Also, the accuracy 
of determining tree location, tree height, and crown delineation changed 
according to the ITD methods. In contrast, pulse density showed less impact 
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on ITD.
A typical ITD method consists of the following two steps: 1) generating a 

rasterized CHM with appropriate smoothing and resolution using normalized 
LiDAR point cloud data, and 2) tree segmentation using a segmentation 
technique on the rasterized CHM (finding local maxima as treetops and 
delineating tree crowns) (Yu, Hyyppä, Holopainen, & Vastaranta, 2010) . 
Therefore, the performance of ITD is affected by the parameters (smoothing 
and resolution for CHM, and the algorithm used for tree segmentation). In 
addition to these parameters, Wiggins (2017) reported that excluding trees 
below a specific height (minimum height cutoff) improved ITD’s accuracy 
for overstory trees. Maltamo, Tokola, and Lehikoinen (2003) noted that a 
proper value of the truncation parameter of Weibull for DBH distribution, 
which can be considered the same as a height cutoff, should be further 
studied. According to McGaughey (2016) and Wiggins (2017) , there might 
be an optimal parameterization that balances the smoothing of the CHM, 
resolution of the CHM, and the height cutoff to best identify individual 
trees, although Koch et al. (2014) and McGaughey (2016) pointed out that 
the optimal parameterization can vary over large forest areas with diverse 
and complicated structure. To offset the variation of the optimal parameters, 
Koch, Heyder, and Weinacker (2006) proposed applying different intensities 
of smoothing according to HT. This method would prevent under- and over-
representation of local HT maxima.

Other than ITD, detailed information on forest resources, such as a 
tree list or stand table, has been estimated by several methods that can be 
mainly classified into two categories: 1) diameter distribution modeling, 
and 2) imputation. In diameter distribution modeling, parameters of 
some theoretical distributions are estimated to describe the distribution 
of tree diameters. Three approaches commonly used are the parameter 
prediction method, parameter recovery method, and quantile prediction 
method (Temesgen et al., 2003) . Imputation methods directly substitute 
measured values from sample locations (references) for locations for which 
a prediction is desired (targets). The distance metric used to identify suitable 
references and the number of references used in a single imputation (k) 
are the key considerations to classify the imputation methods such as most 
similar neighbor, gradient nearest neighbor, or Random Forest NN (RF NN 
hereafter) (Eskelson et al., 2009) . Temesgen et al. (2003) used a set of proxy 
variables to represent a tree-list in NN imputations because there is no single 
variable to represent the tree-list. On the other hand, Strunk et al. (2017) 



The Domain Theory in Computer Science138

used plot identities as a response variable in NN imputations in evaluating 
NN strategies to impute a tree-list.

In our study, we combined ABA and ITD to estimate tree-list using 
LiDAR data inspired by the ideas from Maltamo et al. (2003) , Maltamo 
et al. (2004) and Wiggins (2017) . This was for overcoming the weakness 
of LiDAR data and the ITD method in identifying understory trees, and 
utilizing the strength of ITD over ABA. Maltamo et al. (2003) combined 
pattern recognition of single trees with the truncated Weibull distribution 
to estimate forest characteristics using digital video imagery. Trees were 
grouped into large (DBH > 17 cm) and small (DBH ≤ 17 cm) trees. The 
cutoff DBH value (17 cm) was the minimum size of trees that could be 
detected by the pattern recognition method. The value of 17 cm in DBH 
was used as a truncation parameter of the left-truncated Weibull. Pattern 
recognition was applied to large trees (DBH > 17 cm), and the diameter 
distribution modeling to small trees (DBH ≤ 17 cm), respectively. This idea 
was improved upon by Maltamo et al. (2004 ) , who combined ITD based 
on CHM for large trees and diameter distribution modeling for small trees. 
HT distribution was modeled using LiDAR metrics as auxiliary variables. 
Wiggins (2017) examined the effect of height cutoff on the accuracy of 
LiDAR data for estimating forest structure of taller trees and found that a 
12 m height cutoff produced better results in estimating forest structure and 
spatial pattern.

For ITD, we used watershed segmentation (Vincent & Soille, 1991) for 
overstory trees (trees taller than a height cutoff) and ABA by NN (k = 1) 
imputation for understory trees (trees shorter than the height cutoff). While 
the performances of diameter distribution modeling depended on the results 
from large tree estimation by the single tree pattern recognition in Maltamo 
et al. (2003) or the ITD based on CHM in Maltamo et al. (2004) , in this 
study, we used ITD and ABA independently. They were only linked by a 
height cutoff when generating a complete tree-list. Whereas Lindberg et al. 
(2010) estimated a tree-list for all trees by an ITD method and calibrated 
it, our approach separated a forest stand into overstory and understory 
trees, then applied different methods to the overstory and understory trees, 
respectively. We examined the effects of the combination of the three 
parameters, smoothing of CHM, resolution of CHM and the height cutoff, 
as well as LiDAR height classification of field plots on estimating tree-lists 
via ITD. The explanatory power of our approach was also investigated. We 
evaluated the performance of generating tree-lists in terms of BA, mean HT, 
stems per hectare (SPH), and distributions of DBH and HT.
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METHODS

Study Area
The study area (43.02435˚N, 124.056˚W) is located in southwestern Oregon 
with the extent of 647,951 hectares (Figure 1). The elevation of the area 
ranges approximately from 20 m to 1000 m above sea level in elevation. The 
range of slopes in the area is 0˚ to 89.97˚. Douglas-fir (Pseudotsuga menziesii) 
is the dominant tree species in the study area, and other important species 
are western hemlock (Tsuga heterophylla), red alder (Alnus rubra), Oregon 
myrtle (Umbellularia californica), bigleaf maple (Acer macrophyllum), 
tanoak (Notholithocarpus densiflorus), western redcedar (Thuja plicata), 
and grand fir (Abies grandis).

Figure 1. Map of study area and plots.

Airborne LiDAR
Airborne LiDAR data were collected between April 27th, 2008 and April 
5th, 2009 using Leica ALS50 Phase II instrumentation. The collection was 
acquired as logistical constraints and weather allowed. The average pulse 
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density (the average number of pulses returned from surfaces) was 8.10/m2 
for the study area. Table 1 shows the specifications for the LiDAR survey. 
Laser points with elevations above ground level lower than 1 m and higher 
than 91.44 m (300 feet) were excluded from the computation because they 
did not likely represent vegetation of interest (the maximum tree height 
measured in the field data was 88.4 m).

Table 1. LiDAR survey specifications.

Attribute Description
Sensor Leica ALS50 Phase II

Survey altitude 900 m (flown at 900 meters above ground level)
Pulse rate >105 kHz (>105,000 laser pulse per second)

Pulse mode Single
Mirror scan rate 52.5 Hz

Field of view 28˚ (±14˚ from nadir*)
Roll compensated Up to 20˚

Overlap 100% (50% side-lap)

*Point on the ground vertically beneath the laser sensor on the aircraft.

Field Data
Stratified sampling based on the LiDAR metrics (Hawbaker et al., 2009) 
was used for field data collection. Only the lands owned by the BLM or the 
Coquille Tribe in the study area were considered. Then, the non-forested 
areas were removed. Within this pre-selected area, a set of LiDAR grid 
metrics (22.86 m by 22.86 m) were calculated from the LiDAR point 
clouds. Using the principal component analysis, the 80th percentile and 
standard deviation of the LiDAR height were selected as describing best the 
variation in forest structure in the pre-selected area. Two thousand cells were 
randomly selected from the cells with the pre-selected area. Based on these 
random samples, the range of 80th percentile heights was subdivided into ten 
classes with a length of 6.10 m, and the range of standard deviations within 
each height class into three equal-width classes. The maximum height of the 
uppermost 80th percentile class was increased to 83.52 m to cover the values 
of the grid cells in the full dataset. A total of 30 bins (10 × 3) were created.

Every grid cell in the pre-defined area was assigned to the bins. Then, 
30 primary and 20 alternate plot locations from each bin were randomly 
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selected from the grid cells. 30 plot locations from each bin were measured 
by field crews from those 50 locations using the primary plot locations 
unless inconsistencies were found between the LiDAR measured structure 
and the actual state of the forest. Such inconsistencies were caused by 
disturbances, such as timber harvesting, fires, or wind throw that occurred 
after the LiDAR data acquisition. In that case, the next available alternate 
plot would replace the primary plot. Plot locations overlapping roads, and in 
tall shrub vegetation near the coast were discarded.

Field sampling was conducted between May 25, 2010 and May 10, 
2011. Nested plots with two plot sizes (12.68 m and 5.09 m) were used 
to measure large (both live trees with a DBH larger than 14 cm and dead 
trees with a height of 3.05 m or greater and a DBH of 14 cm or greater) and 
small (only live trees with a height taller than 1.37 m and a DBH less than 
14 cm) trees, respectively. Note that only the large tree data were used for 
this analysis. There was one missing plot, resulting in a total of 899 plots. 
Table 2 and Table 3 provide a plot-level and tree-level summary of the field 
measurements. The ten 80th percentile classes for the stratification sampling 
were used as LiDAR height classes in the current study (from “1” to “10” as 
height increases) to investigate the effect of LiDAR height classification of 
field plots on the performance of our proposed approach.

Table 2. Plot-level summary statistics of attributes from the field measurements.

Attribute Minimum Maximum Median Mean SD*
BA (m2/

ha) 0.0 236.5 50.3 61.9 45.9

HT (m) 0.0 63.3 23.4 24.6 10.1
SPH 

(stems/ha) 0.0 1462.9 316.3 354.1 222.1

*Standard deviation.

Table 3. Tree-level summary statistics from the field measurements.

Attribute Minimum Maximum Median Mean SD*
DBH (cm) 14.0 266.2 26.9 37.4 28.7

HT (m) 0.3 88.4 19.51 23.5 14.2

*Standard deviation.
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Generating Tree-Lists
The general steps of our approach are shown in Figure 2. Trees taller than a 
specified height (a height cutoff) were estimated by ITD using LiDAR data 
yielding the number and HT of the taller trees. DBHs for the taller trees 
were predicted based on the estimated HT using the relationship between 
DBH and HT from field data. For estimating the trees shorter than the height 
cutoff, tree-lists for target plots were first imputed with the tree-list from 
reference plots by RF NN imputation using both LiDAR and field data. 
Then, the shorter trees were selected from the imputed tree-lists. A complete 
tree-list can be generated by combining those estimated taller and shorter 
trees. The variables in the complete tree-list were the tree ID, HT, and DBH.

Figure 2. Flowchart of the approach.
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Individual Tree Detection
ITD was implemented by the function “TreeSeg” in the FUSION software 
(McGaughey, 2016) with the argument “ht_threshold” to estimate the tree-list 
for large trees. This function applies a generalized watershed segmentation 
algorithm by Vincent and Soille (1991) to a CHM. It should be noted that 
over-segmentation, known as one of the disadvantages of the watershed 
algorithm, may be produced with noisy imagery (Romero-Zaliz & Reinoso-
Gordo, 2018) . Conceptually, the CHM is inverted, so tree crowns appear as 
basins. Water fills the basins from local height minima in the CHM by the 
algorithm, and the basins fill and join with adjacent basins, then watershed 
edges are established (McGaughey, 2016) . This also can be explained at the 
pixel level on the CHM. In every CHM pixel above a height threshold, a 
path is placed by iteratively moving to the neighboring pixel with the largest 
height value until a local height maximum is reached. A tree crown segment 
is defined by cells that reach the same local height maximum (Lindberg & 
Holmgren, 2017) . The “ht_threshold” sets minimum height (height cutoff) 
for tree segmentation. Fractions of CHM below this height cutoff were 
excluded in the segmentation process. The other two parameters, the amount 
of smoothing and the resolution of the CHM, were applied in generating 
the CHM implemented by the function “CanopyModel” in FUSION. We 
set levels of those three parameters as follows: 1) 3 levels of smoothing 
of CHM―no smoothing, median filter using a 3 by 3 neighbor window 
and median filter using a 5 by 5 neighbor window, 2) 24 resolutions of 
CHM―0.2, 0.3, …, 2.4, and 2.5 m, 3) 9 percentile height cutoffs on the 
LiDAR height for each plot―10th, 20th, …, 90th. Because the range of HT is 
extensive, the LiDAR height percentiles were used as height cutoffs instead 
of absolute heights as in Wiggins (2017) .

After implementing ITD, we obtained a tree-list above a height cutoff 
including information on individual tree count, HT, a location of tree, and 
a number of CHM cells within a tree crown at a combination of smoothing, 
resolution of CHM, and height cutoff. To predict the DBHs of trees in the 
estimated tree-lists, an RF regression model for DBH was fitted with the 
HTs from the field data (16,200 trees). With this model, the DBHs of trees 
in the estimated tree-lists were predicted using the HTs of those trees. Then, 
those predicted DBHs were added to the estimated tree-lists. The model 
was fitted in R version 3.3.3 (R Core Team, 2017) using the R package 
“randomForest” (Liaw & Wiener, 2002) .
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Nearest Neighbor Imputation
To estimate tree-lists for understory trees, we used RF NN imputation 
instead of diameter distribution modeling because there were many sample 
plots with multimodal or irregular shapes in diameter distribution and 
some plots had a small number of trees. NN imputation directly substitutes 
measured values from references for targets. The type of NN imputation 
is determined mainly by the distance metric and number of neighbors (k) 
(Eskelson et al., 2009) . The distance metric measures the similarity between 
target and reference observations, and the k indicates how many reference 
observations are used in a single imputation (prediction). Four distance 
metrics, Euclidean, Mahalanobis, most similar neighbor and RF (Breiman, 
2001) , were tested. RF appeared the best for BA, SPH and error index (EI; 
will be defined in the following section), and Euclidean showed the best 
for HT (this result is not presented in this manuscript). Thus, we selected 
the RF algorithm as the distance metric and chose k = 1. RF builds multiple 
classification (or regression) trees, called forests, with bootstrap samples 
of training data, while selecting predictors randomly for the best split at 
each node in the trees. Distance in RF NN is computed as one minus the 
proportion of classification trees where a target observation is in the same 
terminal node as a reference observation (Crookston & Finley, 2008) . To 
estimate tree-lists by RF NN imputation, we imputed plot identities as in 
Strunk et al. (2017) .

To fit an NN model, it is necessary to define response and predictor 
variables. Predictor variables were derived from LiDAR point clouds at each 
filed plot location. It is not clear which a single response variable or multiple 
response variables should be used for estimating tree-lists because many 
attributes can be extracted from a tree-list. For example, Temesgen et al. 
(2003) used a set of 22 proxy variables to represent a tree-list. We considered 
several forest inventory attributes (basal area, stem volume, Lorey’s height, 
quadratic mean diameter, stems per ha) simultaneously to select appropriate 
predictor variables for estimating tree-lists via RF NN imputation. “Best 
subsets” was used as a variable selection method producing the best three 
predictors for each forest inventory attribute.

From the best predictors for each forest inventory attribute, we obtained 
a total of 11 predictors after removing duplicates. The selected predictors are 
shown in Table 4. Like leave-one-out validation, the target plot was excluded 
from training data when modeling. Nine different tree-lists for each height 
cutoff were generated from the estimated tree-lists by subtracting trees 



Generating Tree-Lists by Fusing Individual Tree Detection and Nearest... 145

above the corresponding height cutoff. The variable selection and imputation 
modeling were implemented in R version 3.3.3 (R Core Team, 2017) using 
R packages “yaImpute” (Crookston & Finley, 2008) and “randomForest” 
(Liaw & Wiener, 2002) .

Table 4. Selected predictor variables for RF NN imputation.

Metrics Min Max Mean SD Description

sqrt_mean (m) 2.4 63.1 27.7 13.5 LiDAR height quadratic mean

CHM_SD (m) 1.1 30.1 10.2 6.2 Height standard deviation of 
rasterized CHM

Vol_3D (m3) 768.9 30,258.3 12,461.5 6645.6 Volume of the region between 
rasterized CHM and ground

AShape.4 (m3) 792.7 20,231.1 8627.4 3938.8 3D alpha shape with alpha 
value of 4

mode_30th (m) 1.0 53.7 12.8 11.9
LiDAR height mode from the 
point clouds less than LiDAR 
height 30th percentile

SD_30th (m) 0.1 17.6 4.9 3.7

LiDAR height standard de-
viation from the point clouds 
less than LiDAR height 30th 
percentile

sqrt_10 (m) 1.8 8.8 5.6 1.2
LiDAR height quadratic mean 
from the point clouds under 
10 m

p.a.2 (%) 8.3 100.0 89.9 16.3 Percentage of first returns 
above height of 2 m

p.u.5 (%) 0.0 98.6 15.5 20.5 Percentage of first returns 
under height of 5 m

p.a.15 (%) 0.0 99.6 64.0 32.7

p.a.10th (%) 12.0 100.0 86.0 16.2

Performance Measures
Bias and root mean squared error (RMSE) (Walther & Moore, 2005) for 
mean HT, BA and SPH were computed as follows:

		  (1)
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		   (2)

where  is the prediction at the ith plot, y
i
 is the field-measured value at the 

ith plot, and n is the number of total sample plots.
Large trees would produce greater uncertainty in estimation than small 

ones because the larger trees have greater values of HT, DBH, etc. To see the 
effect of several parameters on tree-list estimation free from the influence of 
greater value, relative bias (RBias) and relative RMSE (RRMSE) were also 
calculated for each LiDAR height class by the equations below:

		   (3)

		   (4)

where  is the prediction at the ith plot in the hth LiDAR height class, y
ih
 is 

the field-measured value at the ith plot in the hth LiDAR height class,  is 
the average of field-measured values at in the hth LiDAR height class, h is 
the number of LiDAR height classes, and n

h
 is the number of sample plots 

in the hth LiDAR height class.
The error index (EI) (Reynolds, Burk, & Huang, 1988) was used to 

evaluate the size distributions of DBH and HT, respectively. EI measures the 
proportions of absolute deviation between the predicted and field-measured 
number of trees to the total number of field-measured trees over the entire 
distribution. EI for a plot was computed as:

		  (5)
where n

pi
 and n

oi
 are the predicted and observed numbers of trees, respectively, 

in DBH or HT class i. k is the number of DBH or HT classes. N is the total 
number of field-measured trees. The bin widths for classifying DBH and HT 
were 10 cm and 5 m, respectively.

The coefficient of determination measures (R2) the proportion of 
variance in a response variable that is explained by predictor variables. It 



Generating Tree-Lists by Fusing Individual Tree Detection and Nearest... 147

shows that how well a model’s predictions fit the observed values of the 
response variable, which means the actual explanatory power of the model. 
The R2 is calculated as:

		   (6)

where  is the prediction at the ith plot, y
i
 is the field-measured value at the 

ith plot,  is the average of field-measured values of the total sample plots, 
and n is the number of total sample plots.

RESULTS

Effects of Smoothing, Resolution, and Height Cutoff  
on Tree-List Estimation
All the resolutions with pixel size less than 1 m produced too large of 
estimates of SPH and yielded unreasonable estimates of other attributes 
regardless of the amount of smoothing and the height cutoff. Hence, 
resolutions with pixel sizes less than 1 m were dropped from the analysis. 
The amount of smoothing in CHM had a relatively small effect on tree-
list estimation compared to the other parameters. The smoothing generally 
decreased the variability of estimation among the resolutions at a given 
height cutoff or the height cutoffs at a given resolution. For this reason, we 
show the performance only from the smoothing of 3 by 3 neighbor window.

Most cases of the combinations of resolution and height cutoff resulted 
in the underestimation of SPH (Figure 3(a)). Unbiased SPH estimations 
were found around 1.1 m to 2.0 m in CHM resolution with the various height 
cutoffs. Generally, a higher cutoff had a smaller absolute bias compared 
with the absolute bias from a lower cutoff. In terms of precision, Figure 
3(b) shows that a higher cutoff had a relatively consistent RMSE along with 
resolutions in CHM, which means that higher cutoffs were less affected by 
resolution for SPH estimation than lower cutoffs as also shown in Figure 
3(a). The combinations of the finer resolutions (1.2 ~ 1.3 m) and the lower 
height cutoffs (p20 and p30) provided the lowest RMSEs. For overstory 
trees, the patterns of performance measures were similar to the patterns from 
the combined approach, but the best RMSEs were always found at height 
cutoff p90. For understory trees, bias and RMSE increased as height cutoff 
increased except for the bias at height cutoff p90.
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Figure 3. (a) Bias and (b) RMSE in SPH estimation: the left graph is for over-
story and understory trees via the combined approach by resolution of CHM 
and height cutoff; the middle graph is for overstory trees via ITD by amount of 
smoothing, resolution of CHM and height cutoff; and the right graph is for un-
derstory trees via RF NN by height cutoff (the horizontal dashed line indicates 
unbiased estimates).

For BA estimation, bias decreased as resolution decreased as shown in 
Figure 4(a). Unbiased BA estimation was achieved for the combination of 
several cutoffs from p10 to p60 and resolutions with pixel sizes larger than 1.7 
m. RMSE in BA estimation also decreased as resolution decreased (Figure 
4(b)). Lower cutoffs yielded lower RMSE. The lowest RMSEs appeared 
for resolutions around 1.8 ~ 2.0 m. For overstory trees, the differences in 
RMSE between height cutoffs at a given resolution were smaller than the 
differences for the combined approach except for 1.0 m resolution. For 
understory trees, bias and RMSE increased as height cutoff increased, and 
all height cutoffs overestimated SPH.
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Figure 4. (a) Bias and (b) RMSE in BA estimation: the left graph is for over-
story and understory trees via the combined approach by resolution of CHM 
and height cutoff; the middle graph is for overstory trees via ITD by amount of 
smoothing, resolution of CHM and height cutoff; and the right graph is for un-
derstory trees via RF NN by height cutoff (the horizontal dashed line indicates 
unbiased estimates).

HT estimation had better performance than the other attributes. The 
pattern for HT estimation was different from the other attributes. The best 
accuracy in HT estimation was found with the cutoff at p50 or p60 for any 
resolution. The poorest accuracy in HT estimation appeared only for the 
cutoff p10, which had a worse bias for HT estimation as resolution decreased. 
HT estimation became unbiased as resolution decreased except with cutoffs 
p10 and p20 (Figure 5(a)). Height cutoffs showing better RMSEs were 
p50 and p60 with the middle and higher resolutions, and p80 in the lower 
resolutions at any smoothing level. RMSE increased as resolution decreased 
especially for cutoffs p10, p20, and p30 (Figure 5(b)). Bias and RMSE of 
HT estimation for overstory trees only by ITD increased as the resolution 
decreased. For understory trees, Bias and RMSE for HT estimation also 
increased as height cutoff increased.
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Figure 5. (a) Bias and (b) RMSE in HT estimation: the left graph is for over-
story and understory trees via the combined approach by resolution of CHM 
and height cutoff; the middle graph is for overstory trees via ITD by amount of 
smoothing, resolution of CHM and height cutoff; and the right graph is for un-
derstory trees via RF NN by height cutoff (the horizontal dashed line indicates 
unbiased estimates).

For the lower resolutions, the lower cutoffs showed better DBH 
distribution estimation than the higher cutoffs, while it was the opposite 
with the higher resolutions (Figure 6(a)). This pattern was also observed 
in HT distribution estimation. The best DBH distribution was found with 
cutoffs p30 and p40 and lower resolutions while cutoff p90 had the best 
DBH distribution for the higher resolutions. The HT distribution estimation, 
in most cases, had the better result with the lower cutoffs than the higher 
cutoffs (Figure 6(b)). The cutoff p50 had the best performance in most cases, 
except p90 for 1 and 1.1 m resolutions, and p30 for 1.3 ~ 1.5 m resolutions. 
The resolutions with medium pixel sizes were better for estimating the 
HT distribution. For overstory trees, EI for DBH decreased as resolution 
decreased, and the lowest height cutoff p10 always yielded the best DBH 
distribution estimation at every resolution. DBH distribution estimation for 
overstory trees was poorer than for both overstory and understory trees. 
The best height cutoff for HT distribution of overstory trees estimation 
increased as resolution decreased. For understory trees, EIs for DBH and 
HT were reduced as height cutoff increased except for cutoff p80. Contrary 
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to HT estimation for both overstory and understory trees by the combined 
approach, the best height cutoffs in the estimation of the HT distribution for 
overstory trees by ITD was for higher cutoffs from p60 to p80 except for 
resolutions higher than 1.4 m.

Figure 6. (a) EI for DBH and (b) EI for HT: the left graph is for overstory and 
understory trees via the combined approach by resolution of CHM and height 
cutoff; the middle graph is for overstory trees via ITD by amount of smoothing, 
resolution of CHM and height cutoff; and the right graph is for understory trees 
via RF NN by height cutoff.

Compared to the combined approach for all trees or the ITD for 
overstory trees, NN imputation produced much lower biases for understory 
trees’ SPH, BA, and HT (Figures 3-5). The smallest biases for understory 
trees for SPH, BA and HT estimation were found at cutoffs p10, p20, and 
p40, respectively. The smallest RMSEs in the three attributes were observed 
only at cutoff p10.

Effects of Classification of Field Plots by LiDAR Height on 
Tree-List Estimation
The absolute and relative performance measures separated by LiDAR height 
class were calculated for each forest attribute estimated. The smallest group, 
class 1, showed distinct properties in those performances. For the absolute 
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measures, such as bias and RMSE, lower LiDAR height classes, especially 
the lowest class, generally yielded comparable or better performances for BA 
and SPH than the higher classes. However, based on the relative measures, 
the lowest class had much poorer results. Similar patterns were found in EIs 
for DBH and HT as well. The effect of the amount of smoothing in CHM by 
LiDAR height class was relatively small. The performances by height cutoff 
in a given resolution were averaged for this section because it is better to 
show the general effect of height class on tree-list estimation performance. 
For SPH estimation (Figure 7), bias decreased as resolution decreased for 
every height class, but the resolutions showing unbiasedness varied among 
height classes. Lower height classes had larger variability in bias among 
resolutions than higher height class. Height class 1 had much larger RBias 
at higher resolutions than the other height classes. Larger RMSE occurred in 
height classes 1 through 6, and the largest RMSE was found in height class 
3. RRMSE in height class 1 was largest at every resolution. Relatively larger 
RRMSEs at higher resolutions were observed in the taller height classes.

Figure 7. Bias, RBias, RMSE, and RRMSE for SPH estimation via the com-
bined approach by LiDAR height class and resolution of CHM: the values of 
each performance by height cutoff in a given resolution are averaged.

In BA estimation (Figure 8), biases in the taller height classes were 
generally larger than biases in the shorter height classes. This pattern was 
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similar for RBias except for height class 1. RBias in height class 1 was 
larger than the other height classes at resolutions less than or equal to 2.3 
m. Lower height classes generally had smaller RMSE than higher height 
classes, but height class 1 had a much larger RRMSE than the other height 
classes. Figure 9 shows the performance measures for HT estimation by 
height class. The pattern of HT estimation among height classes was different 
from the pattern of SPH and BA estimation. Height class 1 had comparable 
or better performance in bias, RBias, and RMSE. The primary difference 
in bias and RBias between class 1 and the other classes was that class 1 
mainly underestimated HT while the other classes overestimated. RRMSE 
for HT in height class 1 had slightly larger values than RRMSE from other 
height classes. Estimated distributions of DBH and HT for height class 1 
were much poorer than the distributions for the other classes. Except class 
1, lower height classes showed better performance in EIs for both DBH and 
HT than higher height classes. Lower resolution generally had lower EIs 
(Figure 10).

Figure 8. Bias, RBias, RMSE, and RRMSE for BA estimation via the com-
bined approach by LiDAR height class and resolution of CHM: the values of 
each performance by height cutoff in a given resolution are averaged.



The Domain Theory in Computer Science154

Figure 9. Bias, RBias, RMSE, and RRMSE for HT estimation via the combined 
approach by LiDAR height class and resolution of CHM: the values of each 
performance by height cutoff in a given resolution are averaged.

Figure 10. EIs for DBH and HT estimation via the combined approach by Li-
DAR height class and resolution of CHM: the values of each performance by 
height cutoff in a given resolution are averaged.
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Explanatory Power of Individual Tree Detection for Overstory 
Trees and Random Forest Nearest Neighbor Imputation for 
Understory Trees
Tables 5-7 show R2s for SPH, BA and HT estimation for trees over a given 
height cutoff (overstory trees) via ITD by resolution of CHM and height 
cutoff with smoothing using a 3 by 3 window. For SPH estimation (Table 
5), the best R2 was found at resolutions between 1.2 m and 1.7 m for each 
height cutoff. Height cutoff p90 yielded the largest R2, 0.501, and the best 
R2 decreased as the height cutoff decreased. The lowest height cutoff p10 
had negative R2 at all the resolutions. BA estimation by ITD showed poor 
explanatory power for overstory (Table 6). Most combinations of resolutions 
and height cutoffs had negative R2s, and the best R2 was 0.338 with the 
resolution 2.0 m and the height cutoff p10. Larger height cutoffs, from p70 
to p90 provided negative R2 at every resolution. In HT estimation (Table 7), 
the 1.0 m resolution yielded the best R2 at every height cutoff except p90. 
The middle height cutoffs, p50 or p60, had better R2 than the other height 
cutoffs. Inferior explanatory power was found at height cutoffs p10 and p90. 
The explanatory power for HT estimation generally decreased as resolution 
increased.



The Domain Theory in Computer Science156
Ta

bl
e 

5.
 E

xp
la

na
to

ry
 p

ow
er

 (
R

2 ) 
of

 S
PH

 v
ia

 I
TD

 f
or

 tr
ee

s 
ta

lle
r 

th
an

 g
iv

en
 h

ei
gh

t c
ut

of
fs

 w
ith

 th
e 

sm
oo

th
in

g 
of

 3
 b

y 
3 

ne
ig

hb
or

 w
in

do
w.

H
ei

gh
t

cu
to

ff

R
es

ol
ut

io
n 

(m
)

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

2.
3

2.
4

2.
5

p1
0

−0
.1

00
−0

.0
20

−0
.0

09
−0

.0
39

−0
.1

04
−0

.1
99

−0
.2

67
−0

.3
43

−0
.4

18
−0

.5
14

−0
.5

66
−0

.6
44

−0
.7

10
−0

.7
79

−0
.8

32
−0

.9
04

p2
0

−0
.1

15
0.

04
8

0.
10

6
0.

10
7

0.
06

9
−0

.0
08

−0
.0

59
−0

.1
24

−0
.1

92
−0

.2
80

−0
.3

26
−0

.3
99

−0
.4

58
−0

.5
23

−0
.5

74
−0

.6
41

p3
0

−0
.1

34
0.

08
4

0.
17

0
0.

19
6

0.
18

0
0.

12
2

0.
08

6
0.

02
9

−0
.0

27
−0

.1
10

−0
.1

47
−0

.2
16

−0
.2

67
−0

.3
32

−0
38

0
−0

.4
39

p4
0

−0
.1

39
0.

10
6

0.
21

5
0.

26
2

0.
26

2
0.

22
3

0.
19

6
0.

15
6

0.
10

4
0.

03
3

0.
00

0
−0

.0
62

−0
.1

03
−0

.1
67

−0
.2

10
−0

.2
61

p5
0

−0
.1

44
0.

12
4

0.
25

3
0.

31
1

0.
31

9
0.

29
7

0.
28

5
0.

25
2

0.
20

7
0.

14
2

0.
11

3
0.

05
4

0.
01

8
−0

.0
44

−0
.0

81
−0

.1
29

p6
0

−0
.1

31
0.

13
8

0.
27

4
0.

34
7

0.
36

4
0.

35
6

0.
35

7
0.

33
3

0.
29

6
0.

23
4

0.
21

1
0.

15
8

0.
12

7
0.

06
6

0.
03

9
−0

.0
11

p7
0

−0
.0

57
0.

19
8

0.
32

1
0.

38
6

0.
40

9
0.

40
3

0.
41

8
0.

40
0

0.
36

9
0.

31
9

0.
30

1
0.

25
2

0.
22

7
0.

17
1

0.
14

8
0.

10
1

p8
0

0.
04

8
0.

26
4

0.
37

1
0.

42
1

0.
45

2
0.

44
8

0.
46

4
0.

46
0

0.
43

4
0.

39
6

0.
39

0
0.

34
5

0.
32

5
0.

27
6

0.
25

5
0.

21
7

p9
0

0.
23

6
0.

37
6

0.
43

1
0.

46
4

0.
49

7
0.

48
0

0.
50

0
0.

50
1

0.
48

3
0.

45
4

0.
45

5
0.

42
3

0.
41

7
0.

37
2

0.
35

3
0.

33
0



Generating Tree-Lists by Fusing Individual Tree Detection and Nearest... 157
Ta

bl
e 

6.
 E

xp
la

na
to

ry
 p

ow
er

 (R
2 ) 

of
 B

A
 v

ia
 IT

D
 fo

r t
re

es
 ta

lle
r t

ha
n 

gi
ve

n 
he

ig
ht

 c
ut

of
fs

 w
ith

 th
e 

sm
oo

th
in

g 
of

 3
 b

y 
3 

ne
ig

h-
bo

r w
in

do
w.

H
ei

gh
t

cu
to

ff
R

es
ol

ut
io

n 
(m

)

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

2.
3

2.
4

2.
5

p1
0

−2
.4

21
−1

.0
08

−0
.4

43
−0

.1
97

0.
03

3
0.

17
8

0.
24

0
0.

28
3

0.
32

6
0.

28
4

0.
33

8
0.

29
4

0.
28

9
0.

32
2

0.
27

1
0.

28
0

p2
0

−2
.9

47
−1

.3
20

−0
.6

65
−0

.3
78

−0
.1

02
0.

07
8

0.
16

8
0.

22
0

0.
27

9
0.

24
2

0.
31

4
0.

27
0

0.
27

3
0.

31
8

0.
26

3
0.

28
6

p3
0

−3
.5

93
−1

.7
17

−0
.9

72
−0

.6
28

−0
.3

00
−0

.0
65

0.
04

9
0.

11
8

0.
19

7
0.

16
6

0.
26

5
0.

21
7

0.
23

2
0.

28
7

0.
22

9
0.

26
6

p4
0

−4
.3

06
−2

.1
59

−1
.3

03
−0

.9
04

−0
.5

16
−0

.2
19

−0
.0

88
0.

01
1

0.
10

6
0.

08
4

0.
20

3
0.

16
1

0.
18

2
0.

25
6

0.
19

7
0.

25
3

p5
0

−5
.0

72
−2

.6
63

−1
.7

06
−1

.2
44

−0
.7

94
−0

.4
32

−0
.2

73
−0

.1
41

−0
.0

35
−0

.0
52

0.
09

5
0.

05
5

0.
08

9
0.

18
1

0.
13

2
0.

20
2

p6
0

−6
.0

58
−3

.3
23

−2
.2

42
−1

.7
40

−1
.2

01
−0

.7
52

−0
.5

61
−0

.3
87

−0
.2

53
−0

.2
57

−0
.0

68
−0

.1
08

−0
.0

51
0.

06
0

0.
01

1
0.

09
8

p7
0

−6
.5

10
−3

.7
24

−2
.5

98
−2

.1
04

−1
.5

25
−1

.0
37

−0
.8

32
−0

.6
16

−0
.4

88
−0

.4
88

−0
.2

54
−0

.2
95

−0
.2

33
−0

.1
18

−0
.1

33
−0

.0
40

p8
0

−7
.1

05
−4

.3
72

−3
.1

69
−2

.7
52

−2
.1

16
−1

.5
74

−1
.3

77
−1

.0
92

−0
.9

90
−0

.9
28

−0
.6

41
−0

.7
07

−0
.6

15
−0

.4
79

−0
.5

01
−0

.3
54

p9
0

−6
.6

62
−4

.7
46

−3
.6

38
−3

.2
39

−2
.7

37
−2

.1
25

−2
.0

20
−1

.7
48

−1
.6

48
−1

.6
13

−1
.2

63
−1

.3
86

−1
.2

45
−1

.0
45

−1
.0

84
−0

.8
72



The Domain Theory in Computer Science158
Ta

bl
e 

7.
 E

xp
la

na
to

ry
 p

ow
er

 (R
2 ) 

of
 H

T 
vi

a 
IT

D
 fo

r t
re

es
 ta

lle
r t

ha
n 

gi
ve

n 
he

ig
ht

 c
ut

of
fs

 w
ith

 th
e 

sm
oo

th
in

g 
of

 3
 b

y 
3 

ne
ig

h-
bo

r w
in

do
w.

H
ei

gh
t

cu
to

ff
R

es
ol

ut
io

n 
(m

)

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

2.
3

2.
4

2.
5

p1
0

0.
07

3
0.

02
2

−0
.0

52
−0

.1
56

−0
.2

23
−0

.2
98

−0
.3

47
−0

.4
27

−0
.5

04
−0

.6
21

−0
.6

39
−0

.7
33

−0
.7

94
−0

.8
44

−0
.9

52
−1

.0
40

p2
0

0.
51

4
0.

48
1

0.
44

7
0.

38
5

0.
36

4
0.

30
0

0.
28

3
0.

23
1

0.
19

2
0.

11
3

0.
11

0
0.

05
4

0.
01

3
−0

.0
14

−0
.0

70
−0

.1
31

p3
0

0.
70

0
0.

68
1

0.
66

1
0.

62
9

0.
61

9
0.

57
8

0.
56

7
0.

53
6

0.
52

3
0.

46
9

0.
46

3
0.

43
4

0.
40

7
0.

38
9

0.
34

9
0.

30
7

p4
0

0.
78

4
0.

77
0

0.
76

0
0.

73
8

0.
73

6
0.

71
8

0.
70

9
0.

69
5

0.
68

5
0.

65
0

0.
63

9
0.

62
5

0.
62

0
0.

59
7

0.
56

9
0.

55
4

p5
0

0.
80

4
0.

79
7

0.
78

8
0.

77
2

0.
77

1
0.

76
2

0.
75

1
0.

74
4

0.
73

3
0.

71
0

0.
70

8
0.

69
4

0.
68

6
0.

67
6

0.
65

5
0.

65
2

P6
0

0.
77

5
0.

76
8

0.
75

6
0.

74
8

0.
75

1
0.

74
5

0.
73

8
0.

72
8

0.
72

3
0.

71
3

0.
70

2
0.

69
9

0.
68

7
0.

69
1

0.
66

7
0.

67
1

p7
0

0.
67

6
0.

67
3

0.
67

0
0.

65
9

0.
66

3
0.

65
8

0.
65

2
0.

64
1

0.
63

7
0.

62
8

0.
62

1
0.

61
1

0.
60

8
0.

61
3

0.
59

2
0.

59
8

p8
0

0.
45

3
0.

45
0

0.
43

2
0.

42
4

0.
41

4
0.

41
9

0.
41

1
0.

40
5

0.
39

3
0.

39
2

0.
38

7
0.

38
2

0.
38

3
0.

37
9

0.
36

7
0.

35
7

p9
0

0.
02

8
0.

03
3

0.
01

0
0.

01
4

−0
.0

01
−0

.0
01

−0
.0

08
−0

.0
15

−0
.0

01
−0

.0
21

−0
.0

17
−0

.0
03

−0
.0

39
−0

.0
06

−0
.0

38
−0

.0
24

Ta
bl

e 
8 

sh
ow

s t
he

 e
xp

la
na

to
ry

 p
ow

er
 o

f R
F 

N
N

 im
pu

ta
tio

n 
fo

r t
re

es
 u

nd
er

 a
 g

iv
en

 h
ei

gh
t c

ut
of

f (
un

de
rs

to
ry

 tr
ee

s)
. F

or
 H

T 
es

tim
at

io
n,

 th
e 

R
2 s

 w
er

e 
ar

ou
nd

 0
.5

. H
ow

ev
er

, t
he

 R
2 s

 fo
r B

A
 a

nd
 S

PH
 e

st
im

at
io

n 
w

er
e 

m
uc

h 
po

or
er

 th
an

 th
e 

R
2 s

 fo
r H

T 
es

tim
at

io
n 

or
 e

ve
n 

ha
d 

ne
ga

tiv
e 

va
lu

es
. F

or
 u

nd
er

st
or

y 
tre

es
 fo

r e
ac

h 
fo

re
st

 in
ve

nt
or

y 
at

tri
bu

te
, t

he
 sc

at
te

r p
lo

ts
 o

f o
bs

er
ve

d 
vs

. p
re

di
ct

ed
 v

ia
 R

F 
N

N
 im

pu
ta

tio
n 

di
d 

no
t s

ho
w

 a
ny

 a
no

m
al

y.
 T

he
 lo

w
er

 h
ei

gh
t c

ut
of

f w
e 

us
ed

, t
he

 m
or

e 
ob

se
rv

at
io

ns
 w

ith
 

ze
ro

 v
al

ue
s w

e 
ha

d.
 T

he
 p

re
di

ct
io

n 
re

su
lts

 fo
r t

ho
se

 o
bs

er
va

tio
ns

 w
ith

 z
er

o 
va

lu
es

 w
er

e 
in

fe
rio

r f
or

 e
ve

ry
 h

ei
gh

t c
ut

of
f.



Generating Tree-Lists by Fusing Individual Tree Detection and Nearest... 159

Table 8. Performance measures of RF NN imputation by inventory attributes 
for trees shorter than given height cutoffs.

Height 
cutoff SD SPH ∗ BiasSPH RMSESPH

R SPH 
2

SD 
BA * BiasBA

RM-
SEBA

R BA 2 SD 
HT * BiasHT

RM-
SEHT

R HT 2

p10 89.20 0.73 87.99 0.03 9.13 −0.25 10.56 −0.34 6.09 −0.15 4.15 0.54

p20 115.32 1.72 110.63 0.08 11.35 0.08 13.26 −0.37 7.46 −0.05 4.88 0.57

p30 133.73 5.01 129.52 0.06 13.77 0.38 15.41 −0.25 8.11 0.10 5.69 0.51

p40 146.14 6.07 145.21 0.01 15.95 0.51 17.79 −0.25 8.58 0.04 6.12 0.49

p50 156.35 7.83 158.25 −0.03 18.42 1.00 20.59 −0.25 8.89 0.05 6.23 0.51

p60 166.25 8.42 168.72 −0.03 22.11 1.22 24.12 −0.19 9.05 −0.10 6.32 0.51

p70 177.05 9.04 179.29 −0.03 25.18 1.41 26.86 −0.14 9.20 0.08 6.40 0.52

p80 187.56 10.80 193.97 −0.07 29.47 2.16 29.78 −0.02 9.24 0.05 6.84 0.45

p90 197.84 8.78 204.64 −0.07 35.78 2.20 34.17 0.09 9.55 0.08 7.27 0.42

*Standard deviation of field-measured inventory attribute under given 
height cutoffs.

DISCUSSION
No single combination of smoothing, resolution and height cutoff was found 
to produce the best results for all performance measures (Table 9). Koch et 
al. (2014) and McGaughey (2016) also reported similar findings. Similarly, 
ITD’s performance varied depending on the algorithm used to delineate trees 
in the CHM (Kaartinen et al., 2012) . Differences in performance between the 
lowest LiDAR height class and the other classes were found based on both 
absolute and relative performance measures. Kaartinen et al. (2012) reported 
that the HT class did not generally impact the accuracy of HT estimation, but 
greater uncertainty was observed for ITD methods capable of finding small 
trees. According to Hopkinson et al. (2005) , vegetation classes with short 
height, such as low shrub and aquatic vegetation, yielded the largest relative 
errors in canopy height estimation, whereas tall vegetation classes showed 
the largest absolute errors. The low level of penetration of LiDAR returns 
into the sub-canopy surface might be an essential reason for the high relative 
bias for low shrub and aquatic vegetation. For aquatic vegetation, it was also 
believed that the weak laser backscatter from the saturated ground caused 
the high relative bias. These results were very similar to ours although the 
smallest height class in our research almost exclusively consisted of trees.
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Table 9. Best performance for each assessment by estimation method.

Method Target BiasSPH RMSESPH BiasBA RMSEBA BiasHT RMSEHT EIDBH EIHT

Combined All 0.3079 212.2541 0.0233 35.0225 1.0967 8.4800 91.0333 91.2693

3/2.1/p90* No/1.3/ 
p30

5/2.0/ 
p30 3/2.0/p10 No/2.3/ 

p50
No/2.0/ 
p50

No/2.3/ 
p40 No/1.9/p50

ITD Overstory 0.5497 89.4945 0.0189 29.7892 1.7553 7.7367 96.6311 83.4631

5/1.2/p50* 3/1.7/p90 No/1.8/
p20

No/2.4/ 
p60

No/1.0/ 
p60

No/1.0/ 
p40

No/2.3/ 
p10 No/1.9/p70

NN Under-
story 0.7256 87.9857 0.0829 10.5628 0.0420 4.1457 98.2339 101.8002

p10† p10 p20 p10 p40 p10 p90 p90

NN All −0.3958 217.6176 0.1438 36.2711 −0.4132 8.3843 91.6049 96.4568

*The first argument indicates the amount of smoothing, the second resolution 
in CHM, and the third percentile height cutoff for the combined method. 
†This represents percentile height cutoff.

As we reported above, resolutions with pixel sizes less than 1.0 m 
were dropped in the analysis because it yielded unreasonably large SPH 
estimations.

Pouliot, King, Bell, and Pitt (2002) claimed that in high-resolution 
imagery, tree detection and crown delineation became more complicated. 
This is because high-resolution imagery can display very detailed objects 
such as branches causing tree crowns to deviate from the conic shape. 
Thus, more tree crowns could be estimated at higher image resolutions. 
Conversely, in low-resolution imagery, it is more challenging to identify 
crown boundaries because they become less distinct. Another reason for our 
large SPH estimation might be data pits, which are height irregularities in a 
CHM. The function ‘CanopyModel’ in FUSION used for generating CHMs 
in our study fills pixels without LiDAR point clouds using an eight-way 
search and a distance-weighted average (McGaughey, 2016) . However, it 
might be difficult to avoid irregularities in height on a CHM if laser pulses 
used for our LiDAR data acquisition penetrated deeply into tree crowns 
causing large height variations within individual tree crowns (Persson, 
Holmgren, & Soderman, 2002) . Image smoothing with various filters using 
mean, median, or Gaussian approaches have been applied to reduce data 
pits (Persson et al., 2002; Yu, Hyyppä, Vastaranta, Holopainen, & Viitala, 
2011) . In our study, the smoothing did not work well at resolutions with 
pixel sizes larger than 1.0 m although the smoothing using a 5 by 5 window 
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showed smaller SPH estimation than no smoothing and the smoothing with 
a 3 by 3 window. A pit-free CHM proposed by Khosravipour, Skidmore, 
Isenburg, Wang, and Hussin (2014) was found to improve the accuracy of 
tree detection based on either high or low-density LiDAR data; however, this 
approach could help solve our large SPH estimation at the finer resolutions.

The ratio of average crown diameter to image pixel size was proposed 
as a guide to determine an optimal image resolution for tree detection and 
crown delineation using digital camera imagery (Pouliot et al., 2002) . With 
a small crown diameter to pixel size ratio, it is hard to have distinct crown 
boundaries in an image, resulting in under-segmentation. However, a large 
crown diameter to pixel size ratio might cause high variability within a 
crown in an image resulting in over-segmentation. Although our data from 
field surveys do not have information on crown diameter, there might be 
significant variations in the tree crowns considering the diversity of forest 
stands in our study area. This might be one of the reasons why the high 
CHM resolutions overestimated SPH in our study. Barnes et al. (2017) found 
that no single CHM resolution produced the best performance of ITD for 
both healthy and diseased larch trees, claiming that not only the tree crown 
size but also the maximum tree height governed an optimal size of CHM 
resolution. The performance of ITD with high-resolution CHMs (0.15 m) 
was best for plots with low maximum height (<20 m), and the performance 
with low-resolution CHMs (0.5 m) was best for plots with high maximum 
height (>30 m).

LiDAR point cloud density might be related to the optimal CHM 
resolution as with the tree crown diameter. With LiDAR data of high point 
cloud density, high CHM resolution could yield high within-crown variations 
on a CHM. Inversely, with LiDAR data of low point cloud density, low 
CHM resolution could produce less distinct crown boundaries making it 
difficult to identify tree crowns. The high CHM resolutions should have 
yielded good performance in that the LiDAR data used for this study had 
low point cloud density. However, the high diversity of forest stands in the 
study area might add more within-crown variations. Even though an optimal 
resolution of CHM was set based on the crown diameter to CHM resolution 
ratio, it should be noted that the performance of ITD was still affected by 
LiDAR point cloud density for trees with small DBH (<20 cm) as reported 
in Khosravipour et al. (2014) .

The results of large SPH estimation are quite different from previous 
studies. Stere?czak, Będkowski, and Weinacker (2008) reported that the 
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0.25 and 0.5 m resolutions in CHMs were better than the 1.0 m resolution 
for estimating SPH through individual tree delineation based on a similar 
method to Heurich and Weinacker (2004) . It was found that the number of 
detected trees decreased as the resolution of CHM decreased (Stere?czak et 
al., 2008) , and this was also observed in our work, excluding height cutoffs 
p10 and p20. Smreček et al. (2018) showed very similar results to ours for 
SPH estimation based on ITD. At the highest resolution (0.5 m), the number 
of trees identified was hugely overestimated; the number of trees identified 
decreased as the CHM resolution decreased from 0.5 m to 2.0 m, as was 
the case in our study. The optimal resolutions for tree identification were 
1.0 and 1.5 m depending on the sample plot. Smreček et al. (2018) claimed 
that this was because the CHM with 0.5 m resolution was too detailed. We 
observed many estimated trees from ITD with extreme small areas compared 
to their estimated heights. Those trees should have been removed from the 
estimated tree-list using an appropriate criterion. With this filtering process, 
overestimation at high resolutions would be decreased.

Most combinations of parameters resulted in underestimating SPH. 
According to Lindberg et al. (2010) , ITD underestimates SPH because 
ITD often misses trees below dominant trees or recognizes trees close 
to each other as one tree. It was expected that there would be more 
underestimation as pixel size increased. The larger pixel size we have, the 
more aggregated information we would get, so lower resolution also would 
result in underestimating SPH. For this reason, estimates of BA decreased 
as resolution decreased. The approach of Lindberg et al. (2010) could give 
an improvement for estimating overstory trees for our study. Considering 
that most of the combinations for overstory trees by ITD produced negative 
biases in SPH estimation in our study (Figure 3(a)), estimating of the number 
of trees per segment would improve the negative biases in SPH estimation 
by increasing the number of detected trees.

Performance measures for HT estimation were better than measures for 
the other variables tested. This might be because LiDAR directly measures 
heights of target objects, so there is less uncertainty in height estimation 
than other attribute estimation. According to Stere?czak et al. (2008) , there 
was no difference between the three resolutions (0.25, 0.5, and 1.0 m) in 
CHM for HT estimation. For understory trees, biases in HT estimation less 
than 0.15 m in absolute value were produced by RF NN at every height 
cutoff. The higher the height cutoff applied, the larger the RMSE obtained. 
This is attributed to the fact that RF NN will have more and larger trees to 
estimate with higher height cutoffs.
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While RF NN imputation showed better performance in estimating SPH 
than the combined approach and tree segmentation (Figures 3-6), this does 
not mean that RF NN imputation is better than the combined approach or 
ITD. It is because the target trees for those two methods are different from 
each other (tall trees above a height cutoff for ITD and short trees below 
the height cutoff for RF NN imputation). Therefore, the values dealt with 
in RF NN imputation were smaller than ITD. Based on relative measures 
not included on this manuscript, RF NN imputation was generally better in 
RBias, comparable in EIs, and worse in RRMSE.

The errors for BA and mean HT estimation in taller height classes were 
larger than in shorter height classes contradicting the fact that airborne 
LiDAR has difficulty in detecting understory vegetation. This might be 
because large trees have larger DBH and HT than small trees. To offset this 
potential issue, relative performance measures such as RBias and RRMSE 
were calculated. These relative measures revealed that the performance of 
estimation in shorter height classes was poorer than for the trees in taller 
height classes. Stere?czak et al. (2008) found a similar phenomenon for 
young stands.

There was also no single combination of the three parameters tested 
for explanatory powers that proved best overall. While HT estimation was 
good, estimation of BA and SPH were poor. Especially, BA estimation was 
very poor. The negative R2 indicates (Tables 5-8) our results were worse 
than the mean value of the data. However, the combinations of parameters 
for each forest attribute could be a partial guide of generating tree-lists for 
the forest attributes. First, for overstory trees, R2 for SPH had larger values 
with the finer resolution and the higher height cutoff. On the contrary to 
SPH, R2 for BA had larger values with the coarser resolution and the lower 
height cutoff. R2 for HT had larger values with the finer resolution and the 
middle height cutoff. For understory trees, R2 for SPH had larger values 
with lower height cutoff, and R2 for BA with higher height cutoff. BA 
estimation for overstory trees via ITD had more uncertainty sources than 
the other attributes, including SPH estimation and subsequent prediction 
of DBH for each detected individual tree (estimated HT used to predict 
DBH provided additional uncertainty source to the DBH prediction). These 
uncertainty sources might partially explain the poor performance in BA 
estimation. Utilizing the limited information in LiDAR data might affect the 
poor performance for the explanatory powers. We used CHM-based ITD; 
this method has limitation summarizing LiDAR point clouds within a range 
of cell into one cell height value regardless of generating a pit-free CHM. 
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Instead, 3D ITD methods have been recently studied using information in 
LiDAR as much as possible (Kandare, Ørka, Chan, & Dalponte, 2016) . 
However, the 3D ITD methods required more complex algorithms to 
implement, and also processing time could be a new parameter to consider 
(Pirotti, Kobal, & Roussel, 2017) .

It is well known that it is difficult to estimate characteristics of 
understory vegetation. Eskelson, Madsen, Hagar, and Temesgen (2011) 
used beta regression to estimate percent shrub cover, and it yielded poor 
explanatory power. Rahman and Gorte (2008) developed a tree filtering 
technique to separate dominant tree and undergrowth vegetation, but it was 
found difficult to separate undergrowth vegetation very close to a tree using 
the filtering. Liu, Shen, Zhao, and Xu (2013) suggested a method to extract 
individual tree crowns from airborne LiDAR in residential areas showing 
promising applications, but also reported that small trees were omitted if 
there were an only small number of points representing them in the dataset. 
Our results for understory trees via RF NN were not good (Table 8). To 
improve NN estimation with LiDAR data having low point cloud density, 
we investigated many LiDAR metrics such as metrics from LiDAR point 
clouds under several height cutoffs as Wing et al. (2012) proposed to estimate 
understory vegetation cover with airborne LiDAR. Some of the metrics 
from understory point clouds were selected for NN imputation (Table 4). 
However, it did not greatly improve the performance of NN imputation 
compared to NN imputation without those metrics (not presented here). 
This might fundamentally be because our LiDAR data lacked information 
on understory vegetation.

In NN imputation, one of the critical parameters is the selection of a 
number of neighbors for imputation modeling or distance metrics used to 
measure the similarity between the reference and target plot using auxiliary 
variables (Eskelson et al., 2009) . While their result varied among different 
forest types, Strunk et al. (2017) reported that k = 3 and Mahalanobis distance 
metric produced better performance over other NN strategies in estimating 
tree-lists. In this study, we only used k = 1 and RF as a distance metric in 
NN modeling. Combination of the two parameters needs to be examined 
for understory vegetation. In addition to these two factors, implementing 
variable selection procedure for NN imputation to each LiDAR height class 
could have the potential to improve NN modeling performance.

Compared to the results of HT estimation, results related to DBH 
estimation such as BA and EI for DBH showed poorer performance. It is 
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known that predicting tree-level DBH from height-derived metrics has 
considerable variability (Matti Maltamo & Gobakken, 2014) . Kaartinen et 
al. (2012) reported that estimation of DBH based on HT and crown size 
would have considerable uncertainty because allometric equations used for 
estimating DBH are sensitive to errors in input data such as the size of tree 
crown or HT. Another potential reason is the dead trees in the field data. The 
Pearson’s correlation coefficients between the field-measured HT and DBH 
for live and dead trees are 0.771 and 0.212, respectively. Even though the 
dead trees account for only 8.8% of a total number of field-measured trees, 
appropriate handling for dead trees would give opportunities to improve 
estimating tree-lists.

The scanning angle is another parameter to consider for LiDAR projects 
(Gatziolis & Andersen, 2008) . If the scanning angle increases, it facilitates 
changes in pulse propagation direction and increases the distance the pulse 
moves through the canopy. The change in pulse direction and the increased 
distance are related to LiDAR data artifacts such as returns below the ground. 
Therefore, with a wide scanning angle, LiDAR data might have more data 
artifacts than with a narrow-angle. Additionally, these data artifacts could 
increase when data acquisition is carried out on a slope, as an off-nadir 
scanning angle increases on the slope (Gatziolis & Andersen, 2008) .

39.4% of our field plots had slopes more than 30˚ based on digital terrain 
models from the study site. Khosravipour, Skidmore, Wang, Isenburg, and 
Khoshelham (2015) showed that normalized LiDAR point clouds could 
distort tree locations detected from CHM and height estimation depending 
on the steepness of slope and crown shape. For the slope of more than 30˚ 
44.6% of correctly detected trees with wider and irregular crown shapes 
were affected by the horizontal and vertical displacements. They suggested 
using a non-normalized CHM to avoid the adverse effect of the distortion 
by steep slopes, especially in a heterogeneous forest with multiple species. 
The slope was also found to affect the ABA approach by distorting heights 
of LiDAR point clouds (Hansen et al., 2017) . They proposed two methods, 
Procrustean transformation and histogram matching, to counter the distortion 
of LiDAR point clouds on slope terrain for extracting LiDAR metrics. These 
point cloud distortions by slope terrain could worsen our results for both 
overstory and understory estimations.

Another issue is that there was the time lag between LiDAR acquisition 
and field surveys. This might have the potential source of error, particularly 
for younger fast-growing stands. Also, there were seasonal differences in 
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the LiDAR acquisition dates (e.g., April through June in the spring, June 
through August in the summer, and September and October in the fall). 
According to Gatziolis and Andersen (2008) , the seasonal differences can 
induce considerable variability in canopy penetrability by LiDAR pulses 
especially for deciduous forests (e.g., leaf-on and leaf-off conditions) and 
weather-related limitations. The variability in canopy penetrability might 
increase uncertainty in modeling forest attributes, and the weather-related 
limitations could make it difficult to keep the quality of LiDAR data 
consistent over our whole study area. Time windows, part of LiDAR data 
acquisition considerations in Gatziolis and Andersen (2008) , should be 
carefully planned according to project objectives.

CONCLUSION
We proposed an approach to combine ITD and ABA to generate a tree-list 
using airborne LiDAR data and field measured data. The approach aimed 
to compensate for the disadvantage of LiDAR data and ITD in estimating 
understory trees, and to keep the strength of ITD in estimating overstory 
trees in tree-level. The selected parameters, smoothing, resolution and height 
cutoff, were examined to determine how they affected the performance of the 
proposed approach. There was no single combination of the three parameters 
that provides the best estimation results for all the forest attributes in this 
study. For each attribute, the best results depended on different combinations 
of those parameters. This is concurrent with what Koch et al. (2014) and 
McGaughey (2016) reported. However, our study provided the ranges and 
patterns of the selected parameters that yielded better performance results 
for each forest attribute, which could be a partial guide of estimating tree-
lists using airborne LiDAR. It would be practical and useful to determine 
how to automatically find the optimal combinations of those parameters 
across the forest landscape using remote sensing data. In addition to the 
three parameters tested in the present study, the automation for the optimal 
combinations would require considering additional parameters such as forest 
types, tree species, tree-size parameters (tree crown width or maximum tree 
height) and topography.

There are several topics for further study to improve the combined 
approach. A denser point cloud data would have more information on both 
overstory and understory vegetation in a forest, thus could increase the 
combined approach’s performance. The algorithm used to generate a CHM 
and to delineate trees on the CHM is another critical parameter in ITD. 
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Comparison of different algorithms for processing the CHM is an active 
area of research. Estimating the number of trees per crown segment would 
help obtain unbiased SPH estimation. A point cloud based ITD method 
could lead to improvement by utilizing more information in LiDAR data. A 
minimum crown area by ITD should be examined so that tiny crown would 
not degrade the quality of the predicted tree-lists. The effect of slope on 
CHM generation and LiDAR metrics extraction need to be considered for 
better estimation. Fusing ITD and ABA to predict overstory and understory 
vegetation shown in this research indicates that forest analysts can benefit 
from the predictive abilities of the imputation approach and the quality 
information provided by LiDAR. In that, the approach presented herein can 
be sufficient for strategic inventory purposes.

Acronyms
ABA:		  Area-based approach
BA:		  Basal area
CHM:		  Canopy height model
DBH:		  Diameter at breast height
SPH:		  Stems per hectare
EI:		  Error index
HT:		  Tree height
ITD:		  Individual tree detection
NN:		  Nearest neighbor
LiDAR:	 Light detection and ranging
R2:		  Coefficient of determination
RBias:		  Relative bias
RF:		  Random forest
RMSE:		 Root mean squared error
RRMSE:	 Relative root mean squared error
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INTRODUCTION
The Kauffman bracket polynomial was introduced by L. H. Kauffman in 1987 
[1] in concern with link invariants. The bracket polynomial soon became 
popular due to its connections with the Jones polynomial, dichromatic 
polynomial, and the Potts model. While the HOMPLY polynomial and the 
bracket polynomial are distinct with different topological properties, there 
is a very beautiful relationship between them due to F. Jaeger [2] , and it is 
also observed in a special case by Reshetikhin [3] .

The Kauffman bracket (polynomial) is actually not a link invariant 
because it is not invariant under the first Reidemeister move. However, it 
has many applications and it can be extended to a popular link invariant, 
the Jones polynomial. In the present work we shall confine ourselves to the 
Kauffman bracket to avoid this work from unnecessary length and to leave 
it for applications.

This paper is organized as follows: In Section 2 we shall give the basic 
ideas about knots, braids, and the Kauffman bracket. In Section 3 we shall 
present the main results.

BASIC NOTIONS

Links
A link is a disjoint union of circles embedded in ℝ3. A one-component link 
is called a knot. Links are usually studied via projecting them on a plan; 
a projection with extra information of overcrossing and undercrossing is 
called the link diagram.

Two links are isotopic if and only if one of them can be transformed to the 
other by a diffeomorphism of the ambient space onto itself. A fundamental 
result by Reidemeister [4] about the isotopic link diagrams is: Two unori-
ented links L1 and L2 are equivalent if and only if a diagram of L1 can be 
transformed into a diagram of L1 by a finite sequence of ambient isotopies of 
the plane and the local (Reidemeister) moves of the following three types:
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The set of all links that are equivalent to a link L is called a class of L. 
By a link L we shall always mean the class of L.

The main question of knot theory is Which two links are equivalent 
and which are not? To address this question one needs a knot invariant, 
a function that gives one value on all links that belong to a single class 
and gives different values (but not always) on knots that belong to different 
classes. The present work is basically concerned with this question.

Braids
Braids were first studied by Emil Artin in 1925 [5] [6] , which now play an 
important role in knot theory, see [7] -[9] for detail.

An n-strand braid is a set of n non intersecting smooth paths connecting 
n points on a horizontal plane to n points exactly below them on another 
horizontal plane in an arbitrary order. The smooth paths are called strands 
of the braid.

The product ab of two n-strand braids is defined by putting the braid b 
above the braid a and then gluing their common end points.

A braid with only one crossing is called elementary braid. The ith 
elementary braid x

i
 on n strands is:
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A useful property of elementary braids is that every braid can be written 
as a product of elementary braids. For instance, the above 2-strand braid is 

.

The closure of a braid b is the link  obtained by connecting the lower 
ends of b with the corresponding upper ends.

An important result by Alexander [10] connecting knots and braids is: 
Each link can be represented as the closure of a braid. This result motivated 
knot theorists to study braids to solve problems of knot theory.

Remark 2.1 In the last section, all the concerned links will be closures of 
products of elementary braids.

The Kauffman Bracket
Before the definition it is better to understand the two types of splitting of a 
crossing, the A-type and the B-type splittings:

In the following, the symbols  and  represent respectively the 
unknot and the disconnected sum.
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Definition 2.2 The Kauffman bracket is the function  
defined by the axioms:

Here L, L
A
, and L

B
 are three links which are isotopic everywhere except 

at one crossing where the look as in the figure:

Proposition 2.3 The Kauffman polynomial is invariant under second and 
third Reidemeister moves but not under the first Reidemeister move [11] .

Main Results
In this section we shall introduce a recursive relation for the Kauffman 

bracket, shall give an explicit formula of , and shall express  

as the product of  and .
First of all we give the Kauffman bracket of the k-twist unknot U

k
:

Lemma 3.1 The Kauffman bracket of the k-twist unknot is

Proof. We prove it by induction on k:
The case k = 0 holds by definition as U0 is the unknot without any 

crossings. Now, with the assumption that the result holds for an arbitrary k, 
we have
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Theorem 3.2 (A recursive relation) The following relation holds for any 
n ≥ 2:

		  (3.1)
Proof. We prove it using directly the definition and Lemma 3.1:

From this recursive relation, we get the explicit formula for the 2-strand 

braid link :

Proposition 3.3 The Kauffman bracket of the link  is

Proof. We prove it by induction on n.
For n = 2, we have
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which satisfies the recursive relation.
With the assumption that the relation holds for an arbitrary n, we, using 

Theorem 3.2, get

This completes the proof.
In the following we give the Kauffman bracket polynomial of the closure 

of the braid  (n factors); this sequence contains the 

powers of the Garside element .

Proposition 3.4 The Kauffman bracket of  
satisfy the recurrence relations:
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Proof. Simply, apply the definition for different values of k, and write 
recursively each next bracket in terms of the previous one.

Lemma 3.5 The Kauffman brackets for k = 0 are:

Proof. The proofs of first three cases are given (proofs of remaining 
cases are similar):
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Theorem 3.6 For any k ≥ 0 the Kauffman bracket of 

 is given by:

Proof. We prove it by induction on k. The case k = 0 is covered by 
Lemma 3.5, and the inductive step can be checked with Proposition 3.4.

For instance,

In connected sum  of the braid link  with the trivial knot U
k
 

has the diagram:

Lemma 3.7

Proof. We prove it by induction on k:
For k = 1, we have
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Now, with the assumption that the result holds for an arbitrary k, we 
have

as required.

The following result confirms that the Kauffman bracket of  is 

actually the product .
Theorem 3.8 For any m, n ≥ 2,

Proof. We prove it by induction on n:
When n = 2,
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		  (3.2)

Suppose the result holds for n = k, that is .
Now, using Lemma 3.7, we have

This completes the proof.
Corollary 3.9
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Proof. It is obvious: 
Corollary 3.10

and

Proof. The result follows immediately from Theorem 3.8 as 

 and span 
For the following, let us fix the notation L

abc
 for the link with the 

understanding that the link contains a, b,

and c crossings of type x1, x2,  and x1, respectively, and that .

Proposition 3.11 The Kauffman bracket of the link L
abc

 is

Proof. We prove it by induction on b:
For b = 1, we have
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Now, with the assumption that the result holds for an arbitrary k, we 
have b = k + 1

as required.

Proposition 3.12 The Kauffman bracket of the link  is
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Proof. We prove it by induction on d:
For d = 1, we have

Now, with the assumption that the result holds for d = k, we have
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Abdul Rauf Nizami, Mobeen Munir, Umer Saleem, Ansa Ramzan as 
was required.
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clustering. This method can combine multiple numerical features, multiple 
categorical features, or multiple mixed features. Experimental results show 
that MSDT has excellent performance for multiple types of data.

INTRODUCTION
Despite the great success of deep neural network (DNN) model in image 
processing, speech recognition, and other fields in recent years, decision 
trees have competitive performance compared to DNN scheme, such as the 
advantage of interpretability, less parameters, and good robustness to noise, 
and can be applied to large-scale data sets with less computational cost. 
Therefore, the decision tree is still one of the hotspots in the field of machine 
learning today [1–3]. The research mainly focused on the construction 
method of decision trees, split criterion [4], decision trees ensemble [5, 6], 
mixing with other learners [7–9], decision trees for semisupervised learning 
[10], and so on.

Despite practical success, the optimal construction of decision trees 
has been theoretically proven to be NP-complete [11]. In order to avoid the 
local optimal solution, some researchers adopted evolutionary algorithms 
to build decision trees [12–14]. However, due to the time complexity, the 
most popular algorithms, such as ID3 [15], C4.5 [16], and CART [17], 
and their various modifications [18] are greedy by nature and construct the 
decision tree in a top-down, recursive manner. Besides, they only act on one 
dimension at a time and thus result in an axis-parallel split. In the induction 
of decision tree, if the candidate features are numerical, a suitable cut point 
needs to be searched. Instances in the training set are divided into the left 
node or the right node according to the following formula:

		  (1)
where xl denotes the value of the instance on the feature Al and θl is the cut 
point.

Axis-parallel trees have the advantages of fast induction and strong 
comprehensibility. However, in the case of highly correlated features, a very 
bad situation may arise. Figure 1 gives an illustration. The parallel splits will 
be carried out many times with a stair case-like structure, which leads to the 
complexity of the decision tree structure.
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Figure 1. Axis-parallel splits and oblique split.

To solve the problem of parallel decision trees, some researchers 
introduced oblique decision trees. In such oblique decision trees, the nonleaf 
node tests the linear combination of features, i.e.,

		  (2)
where al represents the coefficient for the lth feature, θ is the threshold, and p 
is the number of features. In Figure 1, the instances of the two classes can be 
completely separated by one oblique split. Therefore, it is generally believed 
that the oblique splits can often produce smaller decision trees and better 
generalization performance for the same data.

It is much more difficult to search the optimal oblique hyperplanes than 
the optimal axis-parallel hyperplanes. To solve this problem, numerous 
techniques have been applied, for example, hill-climbing [17], simulated 
annealing [19], and genetic algorithm [20]. Among them, a large amount 
of research work has been done on reducing the risk of falling into local 
optimal solution, such as Simulated Annealing Decision Tree (SADT) [19], 
which used the simulated annealing algorithm; OC1 [21] method combined 
the ideas of CART-LC [17] and SADT.
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In searching oblique hyperplanes, thousands of candidates have been 
tried in both simulated annealing algorithm and genetic algorithm, resulting 
in low time efficiency. So many researchers used linear discriminant analysis, 
linear regression, perceptron, SVM, and other methods to find suitable 
oblique hyperplanes. Fisher’s decision tree (FDT) [22] takes advantage 
of dimensionality reduction of Fisher’s linear discriminant and uses the 
decomposition strategy of decision trees to come up with an oblique decision 
tree. FDT is only applicable to binary classification problems. Based on 
ADTree [23], Hong et al. [24] proposed the multivariate ADTree. Paper [24] 
presented and discussed the different variations of ADTree (Fisher’s ADTree, 
Sparse ADTree, and Regularized Logistic ADTree). Wickramarachchi et al. 
[25] explored a decision tree algorithm (HHCART). HHCART uses a series 
of Householder matrices to reflect the training data during tree construction. 
Shah and Sastry [26] defined separability of instances as the split criterion 
that optimized their evaluation function at each node and then presented 
the Alopex Perceptron Decision Tree algorithm for learning a decision tree. 
Menze et al. [27] presented an oblique tree forest method, which used LDA 
and ridge regression to conduct oblique splits.

In the above oblique methods, the trees with fewer nodes and better 
accuracy can be obtained. However, there are also some deficiencies, mainly 
including three aspects.

Inability to Directly Employ the Methods for Categorical Data
The oblique splits use the linear combination of features. Therefore, the 
categorical features need to be converted into one or more numerical 
features [28]. This transformation may bring new biases to the classification 
problems, thus reducing the generalization ability of the models.

High Time Cost
The oblique splits always require complex matrix calculation when using 
linear discriminant analysis, ridge regression, or other methods. Although 
these methods are more efficient than simulated annealing and genetic 
algorithm, they still pay more cost than the axis-parallel methods, such as 
C4.5.
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Some Methods Cannot Be Suitable for Multiclassification  
Problems
Generally, the oblique split methods conduct the binary splits. Although the 
binary tree can also be directly used for multiclassification problems, some 
binary splits rely on class label, such as FDA, original SVM, etc., which 
makes some algorithms like FDT in [22] limited to binary classification 
problems. In addition, some models need to convert multiclassification 
problems into binary ones [7].

In order to overcome the above shortcomings, this paper proposes 
a multiway splits decision tree for multiple types of data (numerical, 
categorical, and mixed data). The specific characteristics of this method are 
as follows:

•	 Categorical features are handled directly.
•	 The time complexity is similar to that of the axis-parallel split 

algorithms.
•	 It is not necessary to convert multiclassification problems into 

binary ones by using the multiway splits directly.
The remainder of the paper is organized as follows. In Section 2, we 

review RELIEF-F and k-means algorithms briefly. Section 3 presents our 
algorithm and discusses its time complexity. Section 4 presents and analyzes 
the compared experimental results with other decision trees. The last section 
gives the conclusion of this paper.

PRELIMINARIES
The proposed decision tree method needs to weight the features by RELIEF-F 
algorithm and split the nodes by the weighted k-means algorithm. Therefore, 
this section reviews the two algorithms and their variations.

RELIEF-F Algorithms
The RELIEF algorithm [29] is popular to feature selection. It estimates the 
weights of features according to the correlation between individual feature 
and class label. RELIEF randomly samples an instance R from the training 
set and then searches its two nearest neighbors H and M: H is from the same 
class (called near Hit) and M is from different class (called near Miss). If 
the distance between R and H on feature A is less than the distance between 
R and M, RELIEF will increase A’s weight. On the contrary, RELIEF will 
decrease the weight.



The Domain Theory in Computer Science196

In fact, RELIEF’s estimate W(A) of feature A is an approximation of the 
following difference of probabilities:

	
									         (3)
where P(·|·) represents the conditional probability.

RELIEF algorithm only deals with binary classification problems. 
Kononeill addressed an algorithm called RELIEF-F for multiclassification 
problems [30]. 

The algorithm picks m instances. For each instance R, its knn nearest 
neighbors are searched in each class

The weight W(A) is calculated as follows:

	 (4)
where  represents the proportion of class  instances to the total instances 
and  represents the th nearest neighbor to  in class .  calculates the difference 
between two instances R1 and R2 on the feature  as follows:
where p(T) represents the proportion of class T instances to the total instances 
and Mj(T) represents the jth nearest neighbor to R in class T. diff(A, R1, R2) 
calculates the difference between two instances R1 and R2 on the feature A 
as follows:

		  (5)

k-Means, k-Modes, and k-Prototypes
The k-means is widely used in real world applications due to its simplicity 
and efficiency.

Let D be a set of n instances. D is characterized by a set of p features 
and needs to be clustered into k clusters C1, C2, . . . , Ck. First, randomly pick 
some instances as the centers of the initial k clusters μ1, μ2, . . . , μk, and then 
calculate the cluster label for each instance xi as follows:
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					     (6)
After all the instances are partitioned, each cluster center will be updated 

by the following formula:

					     (7)
Repeat formulas (6) and (7) until the variable E in formula (8) converges 

to the local optimal solution or the preset number of iterations is reached:

				    (8)
However, the classical k-means is only worked on the numerical data. The 

k-modes and k-prototypes are variants of k-means for categorical and mixed 
data, respectively [31]. When k-modes processes the categorical variables, 
the center of each cluster is represented by modes. When calculating the 
distance between instance and cluster center, the distance on each feature is 
calculated by formula (5) and then accumulated.

It is straightforward to integrate the k-means and kmodes into the 
k-prototypes. dis(xi, μj) is the distance between instance xi and cluster center 
μj as follows:

		  (9)
where dis_n(xi, μj) represents the distance on the numerical variables and 
dis_c(xi, μj) represents the distance on the categorical variables, respectively. 
γ is used to adjust the proportion of dis_n(xi, μj) and dis_c(xi, μj), γ ∈ [0, 1].

OUR PROPOSED ALGORITHM
Our proposed MSDT has three differences with most oblique methods: (i) 
MSDT does not use greedy methods to pursue maximum impurity reduction, 
(ii) MSDT uses a combination of multiple variables to do multiway splits for 
nonleaf nodes, and (iii) MSDT treats categorical features in a similar way to 
numerical features.
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Multiway Splits
Most oblique methods conduct binary splits, while the proposed algorithm 
performs multiway splits; that is, in one split, multiple hyperplanes are 
generated simultaneously, and the feature space is divided into several 
disjoint regions. Ho [32] categorized the linear split methods into three 
types, axis-parallel linear splits, oblique linear splits, and piecewise linear 
splits, while our method falls into the third. Piecewise linear split methods 
find k anchors in feature space, and each instance is clustered according to 
the nearest neighbor anchor. Figure 2 shows the 5-way splits of the two-
dimensional feature space.

Figure 2. Piecewise linear splits.

Location of Anchor
Finding suitable split hyperplanes is the key problem in most decision tree 
induction algorithms. Under piecewise linear splits, the problem of finding 
appropriate hyperplanes is equivalent to that of finding appropriate anchors. 
Usually, anchor selection can use the class centroids, or cluster centers 
generated by some clustering algorithms. In MSDT, we first use RELIEF-F 
to weight features and then use k-means with weighted distance to cluster 
instances.



A Novel Multiway Splits Decision Tree for Multiple Types of Data 199

Why Do We Use k-Means?
If the instances are linearly separable, it is obviously more efficient to use 
simply the class centroids than cluster centers as anchors. However, when the 
instances of some classes are distributed in different regions of the feature 
space, the class centroids may no longer be suitable for being anchors. For 
example, in Figure 3, the circular instances are distributed in two different 
areas. If the solid line that is perpendicular to the line between the two 
class centroids is used to separate the instances, the effect is obviously not 
satisfactory. The instances in Figure 3 are obviously distributed into two 
clusters. If the instances are divided by the dotted line that is a perpendicular 
bisector of the two cluster centers, at least the circular instances on the right 
side of the figure can be distinguished.

Figure 3. Split results of class centroids as anchors and cluster centers as an-
chors.
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The split method proposed is based on clustering assumption. The 
clustering assumption states that the samples belonging to the same cluster 
belong to the same class. k-means methods partition instances according 
to some (dis)similarity measures; hence, the leaf nodes of MSDT can be 
regarded as some prototypes, and the class of a test instance depends on 
which prototype the instance is more similar to.

The univariate decision trees can produce a comprehensible classification 
mode, due to the knowledge representation method—a decision tree is 
a graphical representation and can be easily converted into a set of rules 
written in a natural language. Some researchers believe that multivariate 
decision trees are not able to convert into the comprehensible rules. The 
other researchers think that multivariate tree with fewer nodes is easy to 
understand. MSDT is easy to understand due to two reasons. One is that 
MSDT has fewer nodes compared to univariate decision trees. The other one 
is that the similarity with the prototype is easy to understand by the users 
and it can replace the rules generated by the univariate decision tree.

Why Do We Weight Features?
The original k-means is an unsupervised clustering algorithm, which is 
suitable for unlabeled data. And the optimization goal is to minimize (8). 
The goal of split is to reduce the class impurity of current node as much as 
possible. Note that the two goals are not the same. Therefore, we estimate the 
correlations between features and label to weight features. When calculating 
the distance from an instance to a cluster center, we give a larger weight to 
the feature strongly related to the label that enlarges the contribution of the 
feature to the distance. Otherwise, we give a smaller weight that reduces 
the contribution of the uncorrelated feature to the distance. In this way, the 
optimization goal of k-means algorithm is close to that of node split.

Figure 4 shows an example to illustrate the effectiveness of feature 
weighting. The solid line comes from unweighted features, and the dotted 
line comes from weighted features when the weight of A1 is 0.05 and the 
weight of A2 is 0.95. It is obvious that some instances have been corrected.
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Figure 4. Split results of unweighted and weighted features.

To further illustrate the role of feature weighting, we use dataset iris to 
carry out a simple experiment: 150 samples of dataset iris come from three 
classes, and each class has 50 samples. We directly use k-means algorithm to 
cluster and obtain 10 misclassified samples. The specific results are shown 
in Table 1.

Table 1. Split results of unweighted features for the iris dataset.

  Setosa Versicolor Virginica
Child node 1 50 0 0
Child node 2 0 44 4
Child node 3 0 6 46

Then, we use the RELIEF-F algorithm to calculate the weights of four 
features, which are 0.09, 0.14, 0.34, and 0.39, respectively. In the process of 
k-means clustering, the distances between instances and cluster centers are 
calculated by (10), where p indicates the number of features and wl indicates 
the weight of the lth feature. We obtain 6 misclassified samples, and the 
specific results are shown in Table 2.
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		  (10)

Table 2. Split results of weighted features for the iris dataset.

  Setosa Versicolor Virginica
Child node 1 50 0 0
Child node 2 0 48 4
Child node 3 0 2 46

Our proposed split method is shown in Algorithm 1, which will be used 
to split nodes for numerical data.

Algorithm 1. Multi_split.

In the fifth step of Algorithm 1, lmax represents the maximum number of 
iterations. In the experiments, we set it to 6 by default. The reason for setting 
such a small value is mainly to consider the time efficiency of the algorithm. 
In addition, the purpose of clustering is to split nodes. Even if the clustering 
algorithm does not converge, the partition results can still be accepted.

Categorical Feature
As mentioned in the previous subsection, the split method can be directly 
applied to numerical features. For categorical features, RELIEF-F algorithm 
can still be used to weight features. However, in the process of clustering, 
the representation of cluster center and the distance from instance to cluster 
center need to be redefined.

The k-modes extends the k-means by replacing the means of numerical 
variables with the modes of the categorical variables. Yet it is less precise to 
calculate the distance. What is more, choosing different modes may cause 
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opposite conclusion while there are several modes for a feature.
Here is an example. Suppose there are two clusters C1 and C2 described 

by two categorical features A1 and A2, and each cluster contains 10 instances 
as is shown in Table 3. The modes of C1 and C2 for A1 are a11, which 
makes A1 useless for distinguishing the distances between instances and the 
clusters. There are two modes for A2 in C1 and C2, respectively. Suppose that 
there is an instance q = (a11, a21); if μ1 = (a11, a21) is selected as the center 
of C1 and μ2 = (a11, a23) for C2, distance between q and μ1 is 0 and distance 
between q and μ2 is 1; hence, q is nearer to C1. If μ1 = (a11, a22) is selected 
as the center of C1 and μ2 = (a11, a21) for C2, distance between q and μ1 is 1 
and distance between q and μ2 is 0; hence, q is nearer to C2.

Table 3. The distribution of values.

To avoid the less precision and the ambiguity of distance measure on the 
modes, we use the probability estimation of each categorical feature value 
to represent the cluster center and define a function to calculate the distance 
from instance to cluster center.

Let D be a set of categorical data described by p categorical features. 
Number of instances in D is n and instances are partitioned into k clusters. 
There are d(i,j) with different values  for the lth feature Al 
of the jth cluster .

Definition 1.  represents the set of instances with value of xl on the 

feature A
l
 in C

j
, where 

. The condition probability is estimated as follows:

					     (11)
Sj,l is the summary of all values of A

l
 in C

j
, defined as follows:

		  (12)
Definition 2. The center of C

j
 is represented by the following vector:

			   (13)
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Definition 3. diff(Al, ω, Sj,l) represents the distance between value ω and 
Sj,l for Al:

		  (14)
Definition 4. dis_c(xi, μj) represents the weighted distance between 

instance xi and center μj:

				    (15)
According to formula (15), in the above example, the weights of two 

features are 1. The distances between instance q = (a11, a21) and two 
cluster centers (μ1 and μ2) in Table 3 are 0.7 = 0.1 + 0.6 and 1.2 = 0.6 + 0.6, 
respectively. It means that q is closer to C1, which is in accordance with the 
human’s intuition.

To cluster categorical data, we use formula (13) to replace formula (7) in 
step 4 and step 7 of Algorithm 1 and formula (15) to formula (10) in step 6.

Mixed Features Data
For mixed data, the vector of cluster center consists of two parts: one is the 
means of numerical features and the other is the vector as shown in (13). In 
this case, we use (9) to calculate the distance from instance to cluster center, 
where dis_n and dis_c are obtained by (10) and (15), respectively. As the 
ratio of numerical and categorical features differs by the datasets, we choose 
γ in (9) that makes the most reduction of GINI index, where γ ∈ {0.1, 0.2, . 
. . , 0.9}.

MSDT and Time Complexity Analysis
The multi_split function is prompted for node splits. Algorithm 2 describes 
the construction process of MSDT.
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Algorithm 2. MSDT.

In step 2 of Algorithm 1, RELIEF-F is used to get the weights. Time 
complexity of RELIEF-F is , where p is the feature 
number, n is the instance number, m is the sampling number, and knn is the 
nearest neighbor number. In this paper, m is set log2 n, knn is set 1, and 
log2, knn is negligible, so the time complexity of RELIEF-F in this paper is 

.
Steps 4 to 9 of Algorithm 1 are the clustering process, and the time 

complexity is , where k is cluster number and I is iteration 
number. When we use Algorithm 1 to split nodes, the max iterations Imax is 
6; it means that time complexity may reach  in the worst case.

Considering the above two parts, the time complexity of Algorithm 1 is 
. Compared with the time complexity of the classical 

axis-parallel splits, there is an extra k. When k is large, this algorithm is 
lower efficiency than the axis-parallel algorithms. Compared with binary 
splits, if the node numbers of the decision trees are the same, the operations 
in k-way splits are obviously less than in binary splits.

OC1 [21] is a classic oblique decision tree, whose time complexity 
is  in the worst case. In [25], the time complexities of 
HHCART(A) and HHCART(D) are  and 

, respectively. In [22], the speed of FDT for 
splitting node is close to or even better than that of axis-parallel split method. 
The time complexity of this method is . Unfortunately, it can only 
be applied in binary classification problems.
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In summary, when k is small, the efficiency of the proposed split method 
is close to classical axis-parallel split methods, and it is better than most 
oblique split methods.

EXPERIMENTS
In this section, we use experimental results to demonstrate the effectiveness 
and performance of our proposed algorithm. In the first part, the experiments 
are used to illustrate the effectiveness of clustering, feature weighting, and 
the novel distance calculation method for categorical feature. The second 
parts compare MSDT with classical decision trees and another two oblique 
trees. Finally, we use a larger dataset covertype to compare with two axis-
parallel trees.

Datasets
As shown in Table 4, the 20 UCI datasets [33] are used to evaluate the 
proposed algorithm, where the number of instances, the number of classes, 
and feature types (numerical data 1–10, categorical data 11–15, and mixed 
data 16–20) are varied and are sufficiently representative to demonstrate the 
performance of MSDT. In column Features with  is 
number of numerical features and categorical features, respectively. Abalone 
is treated as a 3-category classification problem (grouping classes 1–8, 9 and 
10, and 11 on).

Table 4. Datasets.

No. Name Abb. Instanc-
es

Fea-
tures Classes

1 Blood Transfusion Service 
Center Blood 748 4 2

2 Glass identification Glass 214 9 6
3 Image segmentation Image 2130 19 7
4 Iris Iris 150 4 3
5 Letter recognition Letter 20000 16 26
6 Multiple features-mor MF-mor 2000 6 10

7 Waveform database generator 
(version 1) Wav1 5000 21 3

8 Waveform database generator 
(version 2) Wav2 5000 40 3
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9 Wine Wine 178 13 3
10 Yeast Yeast 1484 8 10
11 Balance scale Balance 625 4 3
12 Car evaluation Car 1728 6 4

13 Chess (King-Rook vs. King-
Pawn) Chess 3196 36 2

14 Hayes-Roth Hayes 160 4 3
15 MONK’s problems MONK 432 6 2
16 Abalone Abalone 4177 7&1 3
17 Contraceptive method choice CMC 1473 2&7 3
18 Flags Flags 194 10&19 8
19 Teaching assistant evaluation TAE 151 1&4 3
20 Zoo Zoo 101 15&1 7

Comparison of Different Piecewise Linear Split Methods
The piecewise linear split methods can be summarized as two steps. First, 
find appropriate anchors. Then, divide instances according to the nearest 
anchor. On the basis of this approach, our proposed algorithm is improved 
in three aspects: feature weighting, clustering, and special categorical 
feature processing. This section combines these three changes into multiple 
functions and compares the performances in multiple types of data. These 
functions are shown in Table 5.

Table 5. Split function description.

Function 
name

Function description
Feature 
weighting Clustering Cluster center and distance of 

categorical feature
Fun 0 ✗ ✗ k-modes
Fun 1 ✓ ✗ k-modes
Fun 2 ✗ ✓ k-modes
Fun 3 ✓ ✓ k-modes
Fun 4 ✗ ✗ Definitions 1–4
Fun 5 ✓ ✗ Definitions 1–4
Fun 6 ✗ ✓ Definitions 1–4
Fun 7 ✓ ✓ Definitions 1–4
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The pessimistic pruning algorithm is adopted after the decision trees are 
generated. In addition, the average results of all experiments are obtained by 
10 repetitions of 10-fold cross-validation.

Numerical Data
In terms of numerical data, the proposed algorithm uses weighted k-means 
to optimize cluster center position. In order to demonstrate the role of 
clustering and feature weighting, we implement four different node split 
functions to generate decision trees. Fun0 directly uses the center of each 
class as the anchor. Instances are divided according to the nearest anchor. 
Euclidean distance is used for distance calculation. Fun1 also uses the center 
of each class as the anchor. However, in the process of selecting the nearest 
anchor for each instance, RELIEF-F is firstly used to calculate the weight 
of each feature. Then remove features whose weights are less than 1/5 of 
the maximum. Finally, the distance is calculated according to formula (10). 
Fun2 uses the center of each class as the initial cluster center of k-means and 
the outputs of k-means as the partition results. Fun3 combines Fun1 with 
Fun2 and is our proposed algorithm for numerical data.

Table 6 gives the classification accuracy of the 4 functions in 10 datasets, 
and the best entry in each row is bolded. As can be seen, Fun3 gets the best 
accuracy on 9 of 10 datasets and the average improvement is 4.16% higher 
than Fun0. In particular, the accuracy increases by more than 8% on Glass 
and Letter. The average accuracy of 10 datasets shows that Fun1 is about 
1.07% higher than Fun0, and Fun3 is 1.39% higher than Fun2. The results 
show that feature weighting improves the classification performance. Fun2 
is about 2.77% higher than Fun0, and Fun3 is 3.09% higher than Fun1. The 
reason for improvement is using clustering.

Table 6. Comparison of the accuracy for different splitting functions on nu-
merical data (%).

  Fun 0 Fun 1 Fun 2 Fun 3
Blood 76.44 76.78 77.02 77.53
Glass 61.68 63.46 66.92 70.47
Image 91.68 92.56 94.79 96.01

Iris 91.40 96.00 93.07 96
Letter 72.96 78.18 89.61 91.77

MF-mor 69.77 70.00 70.48 71.13



A Novel Multiway Splits Decision Tree for Multiple Types of Data 209

Wav1 82.30 81.76 80.92 82.30
Wav2 80.58 80.35 79.34 80.65
Wine 95.73 93.60 95.56 95.11
Yeast 52.63 53.19 55.14 55.84

Average 77.52 78.59 80.29 81.68

Categorical and Mixed Data
On the categorical and mixed data, we implement eight different split 
functions to generate decision trees. Fun0 directly uses the center of each 
class as the anchor. For categorical features, modes are used to replace the 
means of numerical features as the component of anchors. When calculating 
the distance between instance and anchor, the distance on each feature is 
calculated by formula (5) and then summed. The difference between Fun1 
and Fun0 is that the weight of each feature is calculated by RELIEF-F. 
Then remove features whose weights are less than 1/5 of the maximum. 
The distance between the instance and the anchor is obtained by formula 
(15) and formula (9). Fun2 adds clustering process on Fun0. k-modes and 
k-prototypes are used for categorical data and mixed data, respectively. Fun3 
combines Fun1 and Fun2. Fun4-7 corresponds to Fun0-3 respectively. On the 
categorical features, the calculation of cluster centers and distances adopts 
the method described in Section 3.3 (formulas (13) and (15), respectively). 
Fun7 is our proposed algorithm for categorical and mixed data.

Table 7 gives the classification accuracy of the 8 functions in 5 categorical 
datasets (Balance, Car, Chess, Hayes, and MONK) and 5 mixed datasets 
(Abalone, CMC, Flags, TAE, and Zoo), and the best entry in each row is 
bolded. Except for CMC and Zoo, Fun7 obtains the best accuracy, and the 
average is 11.77% higher than Fun0. As can be seen, Fun1 is better than 
Fun0, Fun3 is better than Fun2, Fun5 is better than Fun4, and Fun7 is better 
than Fun6. The average improvement is 5.37%. This is the contribution 
of feature weighting. It is shown that Fun2 is better than Fun0, Fun3 is 
better than Fun1, Fun6 is better than Fun4, and Fun7 is better than Fun5. 
The average improvement is 4.45%. The reason is the use of clustering. 
Meanwhile, we can see that Fun4-7 is averagely 1.48% better than Fun0-3. 
This improvement is the statistical distribution of feature values instead of 
modes.
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Table 7. Comparison of the accuracy for different splitting functions on cat-
egorical and mixed data.

  Fun 0 Fun 1 Fun 2 Fun 3 Fun 4 Fun 5 Fun6 Fun 7
Balance 72.51 70.75 73.42 73.47 68.94 71.04 69.23 76.45
Car 74.88 86.11 76.89 89.48 81.92 83.76 92.73 96.45
Chess 80.05 95.66 90.42 95.96 71.51 93.68 92.62 99.17
Hayes 71.00 76.88 72.00 77.88 59.25 71.56 66.69 79.75
MONK 73.98 85.23 83.94 88.03 88.80 97.41 88.17 99.63
Abalone 59.12 59.44 61.33 61.46 50.56 55.66 61.66 62.84
CMC 45.19 44.31 49.04 45.66 43.13 45.10 44.60 47.95
Flags 47.01 57.06 50.31 60.05 47.73 59.12 48.76 62.42
TAE 47.75 49.07 59.47 53.97 56.56 58.41 61.85 63.77
Zoo 95.64 96.73 95.74 96.53 95.54 96.04 95.74 96.34
Average 66.71 72.12 71.26 74.25 66.39 73.18 72.21 78.48

Comparison with Other Decision Trees
In order to verify the performance of our proposed algorithm, we selected 
four decision trees: J48 (WEKA’s implementation of C4.5), CARTSL (scikit-
learn’s implementation of optimal CART), OC1, and HHCART(A). Since 
CARTSL and OC1 do not support categorical features, we convert categorical 
features to numerical features using the One Hot method. The 10 repetitions 
of 10-fold cross-validation were used in our experiments to report the 
average accuracy and tree size of 5 classifiers on the test set. Friedman test 
and Nemenyi test will be used to analyze the algorithm difference.

The accuracy over the numerical datasets by each method is shown in 
Table 8. As can be seen, MSDT gets the best accuracy on 5 of 10 datasets 
and the average accuracy is 81.68%. It is 1.91%, 4.42%, 1.15%, and 1.81% 
higher than other four trees, respectively. In order to further demonstrate the 
differences of the classifiers, the Friedman test is used. We use the averages 
of the ranks of 5 classifiers on 10 datasets to calculate FF = 7.129032. Here, 
with 5 algorithms and 10 datasets, FF follows the F − distribution with 4 and 
36 degrees of freedom, and the critical value is F(4, 36) = 2.634. So, we reject 
the null hypothesis; namely, there are significant differences among the five 
classifiers. Nemenyi method is used for post hoc test. Critical interval (CD) 
is obtained by the following formula:.
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		  (16)
where k is the number of algorithms and N is the number of datasets. When 
k = 5, N = 10 and significance α = 0.05, qα = 2.728, the calculated critical 
interval CD = 1.92899. In the case of these conclusions, the MSDT and OC1 
have obvious performance advantages compared with CARTSL.

Table 8. The accuracy of five classifiers on numerical data.

Dataset
Accuracy % (rank)

J48 CARTSL OC1 HHCART(A) MSDT

Blood 78.09 ± 0.50(1) 70.51 ± 0.70(5) 77.34 ± 0.56(3) 76.50 ± 0.45(4) 77.53 ± 0.68(2)

Glass 66.73 ± 2.84(3) 66.59 ± 2.06(4) 68.43 ± 2.80(2) 64.02 ± 3.14(1)  

Image 96.55 ± 0.26(3) 96.32 ± 0.39(4) 96.78 ± 0.33(2) 97.22 ± 0.25(1) 96.01 ± 0.40(5)

Iris 95.13 ± 0.73(3) 95.07 ± 0.61(4) 94.67 ± 0.62(5) 95.33 ± 0.63(2) 96.00 ± 0.00(1)

Letter 88.09 ± 0.23(5) 88.19 ± 0.17(4) 89.72 ± 0.20(2) 88.23 ± 0.22(3) 91.77 ± 0.16(1)

MF-mor 72.01 ± 0.62(1) 65.11 ± 0.43(5) 70.15 ± 0.48(3) 69.83 ± 0.63(4) 71.13 ± 0.43(2)

Wav1 76.50 ± 0.32(4) 75.38 ± 0.52(5) 80.07 ± 0.33(2) 79.83 ± 0.33(3) 82.30 ± 0.32(1)

Wav2 75.29 ± 0.61(4) 74.27 ± 0.43(5) 79.68 ± 0.56(2) 79.01 ± 0.45(3) 80.65 ± 0.42(1)

Wine 93.54 ± 0.88(3) 90.00 ± 1.46(5) 92.54 ± 0.98(4) 94.47 ± 0.86(2) 95.11 ± 1.23(1)

Yeast 55.77 ± 0.93(3) 51.14 ± 1.01(5) 55.90 ± 1.06(1) 54.28 ± 1.11(4) 55.84 ± 0.93(2)

Average 79.77(3) 77.26(4.6) 80.53(2.6) 79.87(3.1) 81.68(1.7)

The accuracy over the categorical and mixed datasets by each method 
is shown in Table 9. MSDT gets the best accuracy on 4 of 10 datasets and 
the average accuracy is 78.48%. It is 3.62%, 1.1%, 1.56%, and 1.88% 
higher than four other trees, respectively. We use the averages of the ranks 
of 5 classifiers on 10 datasets to calculate F

F
 = 1.48951. Here, the critical 

value is F(4, 36) = 2.634. So, we cannot reject the null hypothesis; namely, 
there is no significant difference among the five classifiers. In the case of 
these conclusions, on categorical and mixed data, the advantages of three 
multivariate decision trees over two univariate decision trees are not so 
obvious. Especially in OC1, one categorical feature is transformed into 
multiple numerical features by One Hot method, which greatly increases the 
dimension of feature space. In the new feature space, the data becomes very 
sparse, and OC1 cannot find a suitable split hyperplanes.
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Table 9. The accuracy of five classifiers on categorical and mixed data.

Dataset
Accuracy % (rank)

J48 CARTSL OC1 HHCART(A) MSDT

Balance 64.00 ± 1.18(5) 76.91 ± 0.82(3) 80.36 ± 1.49(2) 82.82  1.12(1) 76.45 ± 2.05(4)

Car 92.52 ± 0.63(5) 97.31 ± 0.22(1) 96.27 ± 0.76(4) 96.91 ± 0.53(2) 96.45 ± 0.23(3)

Chess 99.41 ± 0.10(2) 99.54 ± 0.06(1) 98.58 ± 0.15(5) 99.23 ± 0.17(3) 99.17 ± 0.21(4)

Hayes 75.13 ± 1.55(5) 83.00 ± 1.52(1) 79.26 ± 1.56(3) 76.37 ± 1.16(4) 79.75 ± 2.14(2)

MONK 96.11 ± 1.54(3) 91.94 ± 1.51(5) 93.37 ± 1.53(4) 98.57 ± 1.58(2) 99.63 ± 0.85(1)

Abalone 61.30 ± 0.45(2) 57.52 ± 0.54(5) 60.05 ± 0.34(3) 59.29 ± 0.43(4) 62.84 ± 0.28(1)

CMC 51.61 ± 0.66(1) 47.40 ± 0.47(4) 46.92 ± 1.46(5) 47.83 ± 0.73(3) 47.95 ± 1.38(2)

Flags 64.34 ± 3.34(1) 61.96 ± 1.03(3) 60.35 ± 3.62(5) 61.73 ± 1.49(4) 62.42 ± 2.04(2)

TAE 51.43 ± 4.67(5) 62.91 ± 1.87(3) 63.10 ± 3.97(2) 53.26 ± 4.57(4) 63.77 ± 3.79(1)

Zoo 92.77 ± 0.01(3) 95.35 ± 0.00(2) 90.98 ± 0.33(4) 89.99 ± 0.02(5) 96.34 ± 0.45(1)

Average 74.86(3.2) 77.38(2.8) 76.92(3.7) 76.60(3.2) 78.48(2.1)

The tree size over 20 datasets by each method is shown in Table 10. In 
terms of the complexity of model structure, the average number of nodes 
in three multivariate decision tree is lower than the other two univariate 
decision trees. We use the averages of the ranks of 5 classifiers on 20 datasets 
to calculate F

F
 = 3.35294. Here, with 5 algorithms and 20 datasets, F

F
 

follows the F-distribution with 4 and 76 degrees of freedom, and the critical 
value is F(4, 76) = 2.492. So, we reject the null hypothesis. Nemenyi method 
is used for post hoc test. Critical interval is obtained; CD = 1.364. In the 
case of these conclusions, the MSDT has obvious performance advantages 
compared with J48.

Table 10. The tree size of five classifiers.

Dataset
Tree size (rank)

J48 CARTSL OC1 HHCART(A) MSDT

Blood 12.60 ± 0.87(2) 179.64 ± 1.00(5) 7.88 ± 0.75(1) 16.56 ± 0.88(3) 32.72 ± 2.50(4)

Glass 46.68 ± 1.66(5) 44.93 ± 0.56(3) 32.65 ± 0.78(2) 27.73 ± 0.67(1) 46.55 ± 2.15(4)

Image 80.28 ± 1.28(4) 69.22 ± 0.79(2) 57.62 ± 0.93(1) 70.43 ± 1.46(3) 161.59 ± 4.57(5)

Iris 8.40 ± 0.24(4) 8.56 ± 0.14(5) 5.10 ± 0.08(2) 5.60 ± 0.12(3) 4.00 ± 0.00(1)

Letter 2326.72 ± 9.04(5) 2098.23 ± 9.34(3) 2285.22 ± 9.81(4) 1795.23 ± 8.91(1) 1893.41 ± 11.64(2)

MF-mor 162.40 ± 5.54(2) 462.94 ± 1.89(5) 153.32 ± 3.55(1) 212.97 ± 4.74(4) 174.07 ± 1.29(3)

Wav1 546.74 ± 7.62(5) 484.45 ± 2.61(4) 470.26 ± 6.17(3) 465.34 ± 6.62(2) 178.12 ± 5.12(1)

Wav2 585.42 ± 9.45(5) 453.02 ± 1.73(2) 481.54 ± 8.05(4) 480.38 ± 9.17(3) 126.18 ± 10.69(1)

Wine 9.54 ± 0.31(4) 10.47 ± 0.62(5) 9.25 ± 0.30(3) 7.83 ± 0.27(2) 4.00 ± 0.72(1)

Yeast 328.70 ± 4.12(4) 463.38 ± 2.33(5) 260.47 ± 9.81(2) 303.25 ± 6.40(3) 101.52 ± 9.00(1)
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Balance 42.05 ± 1.31(2) 140.83 ± 1.47(4) 159.93 ± 2.36(5) 57.82 ± 1.42(3) 31.13 ± 5.48(1)

Car 170.45 ± 1.27(4) 97.18 ± 1.11(2) 91.46 ± 1.19(1) 186.54 ± 2.28(5) 141.60 ± 1.32(3)

Chess 54.66 ± 1.07(4) 52.15 ± 0.64(2) 53.70 ± 0.96(3) 49.62 ± 1.38(1) 106.96 ± 2.90(5)

Hayes 27.13 ± 0.55(4) 22.09 ± 0.33(3) 20.73 ± 0.47(2) 29.75 ± 0.51(5) 18.63 ± 0.94(1)

MONK 39.14 ± 1.83(3) 59.09 ± 6.33(5) 56.28 ± 5.92(4) 20.93 ± 3.41(2) 18.54 ± 1.08(1)

Abalone 589.00 ± 18.45(3) 965.09 ± 2.66(5) 679.45 ± 13.25(4) 401.11 ± 9.52(2) 270.67 ± 19.72(1)

CMC 247.16 ± 6.21(3) 611.94 ± 3.87(5) 538.95 ± 8.36(4) 108.92 ± 4.78(1) 139.64 ± 6.33(2)

Flags 62.63 ± 2.07(5) 45.01 ± 0.52(3) 39.87 ± 1.28(2) 54.28 ± 2.11(4) 26.86 ± 1.74(1)

TAE 93.01 ± 3.75(4) 56.40 ± 0.53(2) 50.57 ± 0.66(1) 68.82 ± 0.72(3) 114.40 ± 1.76(5)

Zoo 11.00 ± 0.00(3) 9.65 ± 0.00(1) 12.07 ± 0.23(5) 10.53 ± 0.07(2) 11.08 ± 0.57(4)

Average 272.19(3.75) 316.71(3.55) 273.32(2.7) 218.68 (2.65) 180.08 (2.35)

Comparison on Big Data
The data set covertype comes from UCI [35], which is a 7-classification 
problem, which includes 581012 instances and 54 features. 10 of 54 features 
are numerical, and the remainders are Boolean. MSDT and J48 regard 
Boolean as categorical features, and CARTSL is regarded as numerical 
features. The 10 repetitions of 10-fold cross-validation are used. Table 11 
provides the accuracy of the three classifiers, the size of the tree, and the 
time to build the tree.

Table 11. The performance of three classifiers on covertype

  J48 CARTSL MSDT
Accuracy (%) 94.58 ± 0.09 94.30 ± 0.11 94.64 ± 0.12
Tree size 28348.11 ± 274.83 51728.89 ± 347.59 25736.90 ± 235.86
Time (s) 71.61 ± 1.52 45.58 ± 0.56 150.12 ± 2.66

The three classifiers achieve similar accuracies on covertype. In terms of 
tree size, MSDT has the least number of nodes. The running time provided 
in Table 11 is the time to build a tree and does not include the time consumed 
by loading data and testing. J48 runs slower than CARTSL, which does not 
mean that there is a significant difference in time complexity between the 
two algorithms. The difference may be caused by the different development 
language. There are two reasons why MSDT gets the most expensive time 
consumption. One is that the time complexity of our proposed method is 
higher than that of the axis-parallel methods when dividing a node. The other 
one is that the axis-parallel methods mainly perform relational operations, 
for instance, “<.” Our method needs to calculate a large number of distances, 
which requires arithmetic operations of real number. Although multiway 



The Domain Theory in Computer Science214

splits can reduce the number of times to split nodes, the time consumed by 
our method is about 2 to 3 times that of the axis-parallel methods from the 
experimental results.

CONCLUSION
The decision trees generated by the oblique splits often have better 
generalization ability and fewer nodes. However, most oblique split 
methods are time-consuming and cannot be directly used for categorical 
data, and some of these methods can only be used for binary classification 
problems. Our proposed algorithm MSDT uses feature weighting and 
clustering to multiway splits of nonleaf nodes, which can be directly applied 
to multiclassification problems. Meanwhile, it has a time complexity similar 
to that of the axis-parallel algorithms. In addition, we give the representation 
of cluster center and the distance from instance to cluster center, which 
enables clustering to be used in categorical and mixed data. Experimental 
results show that MSDT has a good generalization accuracy on multiple 
types of data.
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INTRODUCTION
An idea to study deformations of structure constants for associative algebras 
goes back to the classical works of Gerstenhaber [1, 2]. As one of the 
approaches to deformation theory he suggested “to take the point of view 
that the objects being deformed are not merely algebras, but essentially 
algebras with a fixed basis” and to treat “the algebraic set of all structure 
constants as parameter space for deformation theory” [2].

Thus, following this approach, one chooses the basis P0, P1,..., PN 

for a given algebra A, takes the structure constants  defined by the 
multiplication table

				    (1.1)

and looks for their deformations , where  is 
the set of deformation parameters, such that the associativity condition

				    (1.2)
or similar equation is satisfied.

A remarkable example of deformations of this type with M = N 
+ 1 has been discovered by Witten [3] and Dijkgraaf et al. [4]. They 
demonstrated that the function F which defines the correlation functions 

 and so forth in the deformed two-dimensional 
topological field theory obeys the associativity equation (1.2) with the 
structure constants given by

		 (1.3)

where the constants are  and  
where the variable x0 is associated with the units element. Each solution of 
the WDVV equations (1.2) and (1.3) describes a deformation of the structure 
constants of the N + 1- dimensional associative algebra of primary fields Φj.

The interpretation and formalization of the WDVV equation in terms of 
Frobenius manifolds proposed by Dubrovin [5, 6] provides us with a method 
to describe class of deformations of the so-called Frobenius algebras. An 
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extension of this approach to general algebras and corresponding F-manifolds 
has been given by Hertling and Manin [7]. The beautiful and rich theory 
of Frobenius and F-manifolds has various applications from the singularity 
theory to quantum cohomology (see, e.g., [6, 8, 9]).

An alternative approach to the deformation theory of the structure 
constants for commutative associative algebras has been proposed recently 
in [10–14]. Within this method the deformations of the structure constants are 
governed by the so-called central system (CS). Its concrete form depends on 
the class of deformations under consideration and CS contains, as particular 
reductions, many integrable systems like WDVV equation, oriented 
associativity equation, and integrable dispersionless, dispersive, and discrete 
equations (Kadomtsev-Petviashvili equation, etc.). The common feature of 
the coisotropic, quantum, discrete deformations considered in [10–14] is that 
for all of them elements pj of the basis and deformation parameters xj form a 
certain algebra (Poisson, Heisenberg, etc.). A general class of deformations 
considered in [13] is characterized by the condition that the ideal  

generated by the elements  representing the 
multiplication table (1) is the Poisson ideal. It was shown that this class 
contains a subclass of so-called integrable deformations for which the CS 
has a simple and nice geometrical meaning.

In the present paper we will discuss a purely algebraic formulation of 
such integrable deformations. We will consider the case when the algebra 
generating deformations of the structure constants, that is, the algebra formed 
by the elements pj of the basis and deformation parameters xk(deformation 
driving algebra (DDA)), is a Lie algebra. The basic idea is to require that 

all elements  are left divisors of zero and 
that they generate the ideal J of left divisors of zero. This requirement gives 
rise to the central system which governs deformations generated by DDA. 
This central system of equations for structure constants differs, in general, 
from the associativity condition. So, deformed algebras form families of 
commutative but not necessarily associative algebras.

Here we will study the deformations of the structure constants for the 
three-dimensional algebra in the case when the DDA is given by one of 
the three-dimensional Lie algebras. Such deformations are parametrized 
by a single deformation variable x. Depending on the choice of DDA and 
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identification of p1, p2, and x with the elements of DDA, the corresponding 
CS takes the form of the system of ordinary differential equations or the 
system of discrete equations (multidimensional mappings). In the first case 
the CS contains the third-order ODEs from the Chazy-Bureau list as the 
particular examples. This approach provides us also with the Lax form of 
the above equations and their first integrals.

The paper is organized as follows. General formulation of the deformation 
theory for the structure constants is presented in Section 2. Quantum, discrete, 
and coisotropic deformations are discussed in Section 3. Three-dimensional 
Lie algebras as DDAs are analyzed in Section 4. Deformations generated by 
general DDAs are studied in Section 5. Deformations driven by the nilpotent 
and solvable DDAs are considered in Sections 6 and 7, respectively.

DEFORMATIONS OF THE STRUCTURE CONSTANTS 
GENERATED BY DDA
So, we consider a finite-dimensional commutative algebra A with (or without) 
unit element P0 in the fixed basis composed by the elements 

. The multiplication table (1) defines the structure constants . The 

commutativity of the basis implies that . In the presence of the 

unit element one has  where  is the Kronecker symbol.
Following Gerstenhaber’s suggestion [1, 2] we will treat the structure 

constants  as the objects to deform and will denote the deformation 
parameters by . For the undeformed structure constants the 
associativity conditions (1.2) are nothing else than the compatibility conditions 
for the table of multiplication (1.1). In the construction of deformations we 
should first specify a “deformed” version of the multiplication table and 
then require that this realization is self-consistent and meaningful.

Thus, to define deformations one has the following.

•	 We associate a set of elements  
with the elements of the basis  and deformation 
parameters .
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•	 We consider the Lie algebra B of the dimension N + M with the 
basis elements  obeying the commutation relations:

		  (2.1)

•	 We identify the elements  with 
the elements , thus defining the deformation driving 
algebra (DDA). Different identifications define different DDAs. 
We assume that the element p0 commutes with all elements of 
DDA and we put p0 = 1. The commutativity of the basis in the 
algebra A implies the commutativity between pj, and in this paper 
we assume the same property for all xk. So, we will consider the 
DDAs defined by the commutation relations of the type

		 (2.2)

where  and  are some constants.
•	 We consider the elements

		 (2.3)
of the universal enveloping algebra U(B) of the algebra DDA(B). 

These fjk “represent” the table (1) in U(B).
•	 5We require that all fjk are left zero divisors and have a common 

right zero divisor.
In this case fjk generate the left ideal J of left zero divisors. We remind 

that non-zero elements a and b are called left and right divisors of zero if ab 
= 0 (see e.g., [15]).

Definition 2.1. The structure constants  are said to define deforma-
tions of the algebra A generated by given DDA if all fjk are left zero divisors 
with common right zero divisor.

To justify this definition we first observe that the simplest possible 
realization of the multiplication table (1) in U(B) given by the 
equations fjk = 0, j, k = 1,...,N is too restrictive in general. Indeed, for 
instance, for the Heisenberg algrebra B [12] such equations imply that 

 and, hence, all  are constants. So, one 
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should look for a weaker realization of the multiplication table. A condition 
that all fjk are left zero divisors is a natural candidate. The condition of 
compatibility of the corresponding equations fjk · Ψjk = 0, j, k = 1,...,N 
where Ψjk are right zero divisors requires that the l.h.s. of these equations 
and, hence, Ψjk should have a common divisor (see, e.g., [15]). We restrict 
ourselves to the case when  where Φjk 
are invertible elements of U(B). In this case one has the set of equations

						      (2.4)
that is, all left zero divisors fjk have common right zero divisor Ψ.

These conditions impose constraints on . To clarify these 
constraints we will use the associativity of U(B). First we observe that due 
to the relations (2.2) one has the identity (p0 = 1)

						      (2.5)

where  are certain functions of x1,...,xM only. Then, taking into 
account (2.2) and associativity of U(B), one obtains

		  (2.6)
where

		  (2.7)
Thus, the identity (2.6) gives

				    (2.8)
Due to the relations (2.4), (2.8) implies that

							       (2.9)
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These equations are satisfied if

(2.10)
This system of equations plays a central role in our approach. If Ψ has 

no left zero divisors linear in pj, the relation (2.10) is the necessary condition 
for existence of a common right zero divisor for fjk since U(B) has no zero 
elements linear in pj (see e.g., [16]).

At N ≥ 3 it is also a sufficient condition. Indeed, if  are such that 
(2.10) is satisfied, then

				    (2.11)
Generically, it is the system of (1/2)N2(N – 1) linear equations for N(N + 

1)/2 unknowns fst with noncommuting coefficients . At N ≥ 3 for generic 

(nonzeros, nonzero divisors)  the system (2.11) implies that

				    (2.12)

				    (2.13)
where αjk, βlm, and γjk are certain elements of U(B) (see e.g., [17, 18]). Thus, 
all fjk are right zero divisors. They are also left zero divisors. Indeed, due to 
Ado’s theorem (see e.g., [16]) finite-dimensional Lie algebra B and, hence, 
U(B) are isomorphic to matrix algebras. For the matrix algebras zero divisors 
(matrices with vanishing determinants) are both right and left zero divisors 
[15]. Then, under the assumption that all αjk and βlm are not zero divisors, the 
relations (2.12) imply that the right divisor of one of fjk is also the right zero 
divisor for the others.

At N = 2 one has only two relations of the type (2.12) and a right zero 
divisor of one of f11, f12, f22 is the right zero divisor of the others. We note that 
it is not easy to control assumptions mentioned above. Nevertheless, (2.4) 
and (2.10) certainly are fundamental one for the whole approach.

We will refer to the system (2.10) as the Central System (CS) governing 
deformations of the structure constants of the algebra A generated by a 
given DDA. Its concrete form depends strongly on the form of the brackets 

 which are defined by the relations (2.2) for the elements of the 
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basis of DDA. For stationary solutions  the CS (2.10) is reduced 
to the associativity conditions (1.2).

QUANTUM, DISCRETE, AND COISOTROPIC  
DEFORMATIONS
Coisotropic, quantum, and discrete deformations of associative algebras 
considered in [10–14] represent particular realizations of the above general 
scheme associated with different DDAs.

For the quantum deformations one has M = N and the deformation 
driving algebra is given by the Heisenberg algebra [12]. The elements of 
the basis of the algebra A and deformation parameters are identified with the 
elements of the Heisenberg algebra in such a way that

		  (3.1)
where ħ is the real constant (Planck’s constant in physics). For the Heisenberg 
DDA

							       (3.2)
and consequently

	 (3.3)
Quantum CS (3.3) governs deformations of structure constants for associative 
algebra driven by the Heisenberg DDA. It has a simple geometrical meaning 
of vanishing Riemann curvature tensor for torsionless Christoffel symbols 

 identified with the structure constants  [12].
In the representation of the Heisenberg algebra (3.1) by operators 

acting in a linear space H left divisors of zero are realized by operators 
with nonempty kernel. The ideal J is the left ideal generated by operators fjk 
which have nontrivial common kernel or, equivalently, for which equations

					     (3.4)

have nontrivial common solutions . The compatibility condition for 
(3.4) is given by the CS (3.3). The common kernel of the operators fjk forms 
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a subspace HΓ in the linear space H. So, in the approach under consideration 
the multiplication table (1) is realized only on HΓ, but not on the whole 
H. Such type of realization of the constraints is well known in quantum 
theory as Dirac’s recipe for quantization of the first-class constraints [19]. In 
quantum theory context equation (3.4) serves to select the physical subspace 
in the whole Hilbert space. Within the deformation theory one may refer to 
the subspace HΓ as the “structure constants” subspace. In [12] the recipe 
(3.4) was the starting point for construction of the quantum deformations.

Quantum CS (3.3) contains various classes of solutions which 
describe different classes of deformations. An important subclass is given 
by isoassociative deformations, that is, by deformations for which the 
associativity condition (1.2) is valid for all values of deformation parameters. 
For such quantum deformations the structure constants should obey the 
following equations:

					     (3.5)

These equations imply that  where Φn are some 
functions while the associativity condition (1.2) takes the following form:

					     (3.6)
It is the oriented associativity equation introduced in [5, 20]. Under the 

gradient reduction  equation (3.7) becomes the 
WDVV equations (1.2) and (1.3).

Non-isoassociative deformations for which the condition (3.5) is not 
valid are of interest too. They are described by some well-known integrable 
soliton equations [12]. In particular, there are Boussinesq equation among 
them for N = 2 and Kadomtsev-Petviashvili (KP) hierarchy for the infinite-
dimensional algebra of polynomials in the Faa’ de Bruno basis [12]. In the 
latter case the deformed structure constants are given by

		  (3.7)
With

		  (3.8)
where τ is the famous tau-function for the KP hierarchy and 
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 where 
 are Schur polynomials defined by the generating formula 

.
Discrete deformations of noncommutative associative algebras are 

generated by the DDA with M = N and commutation relations

		  (3.9)
In this case

		  (3.10)
where for an arbitrary function φ(x) the action of Tj is defined by Tjφ(x0,...,xj 
,...,xN) = φ(x0,...,xj + 1,...,xN). The corresponding CS is of the form

				    (3.11)

where the matrices Cj are defined as . The 
discrete CS (3.11) governs discrete deformations of associative algebras. 
The CS (3.11) contains, as particular cases, the discrete versions of the 
oriented associativity equation, WDVV equation, Boussinesq equation, and 
discrete KP hierarchy and Hirota-Miwa bilinear equations for KP τ-function 
[13].

For coisotropic deformations of commutative algebras [10, 11] again M 
= N, but the DDA is the Poisson algebra with pj and xk identified with the 
Darboux coordinates, that is,

	 (3.12)
where {, } is the standard Poisson bracket. The algebra U(B) is the 
commutative ring of functions and divisors of zero are realized by functions 
with zeros. So, the functions fjk should be functions with common set Γ of 
zeros. Thus, in the coisotropic case the multiplication table (1) is realized by 
the following set of equations [10]:

					     (3.13)
The compatibility condition for these equations is (see e.g., [10])

				    (3.14)
The set Γ is the coisotropic submanifold in R2(N+1). The condition (3.14) 

gives rise to the following system of equations for the structure constants:
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  (3.15)

while the equations  have the form of associativity 
conditions  (1.2):

	 (3.16)
Equations (3.15) and (3.16) form the CS for coisotropic deformations 

[10]. In this case  is transformed as the tensor of the type (1,2) under the 
general transformations of coordinates xj, and the whole CS of (3.15) and 
(3.16) is invariant under these transformations [14]. The bracket  
has appeared for the first time in [21] where the so-called differential 
concomitants were studied. It was shown in [16] that this bracket is a tensor 

only if the tensor  obeys the algebraic constraint (3.16). In [7] the CS of 
(3.15) and (3.16) has appeared implicitly as the system of equations which 
characterizes the structure constants for F-manifolds. In [10] it has been 
derived as the CS governing the coisotropic deformations of associative 
algebras.

The CS of (3.15) and (3.16) contains the oriented associativity equation, 
the WDVV equation, dispersionless KP hierarchy, and equations from the 
genus zero universal Whitham hierarchy as the particular cases [10, 11]. 
Yano manifolds and Yano algebroids associated with the CS of (3.15) and 
(3.16) are studied in [14].

We would like to emphasize that for all deformations considered above 
the stationary solutions of the CSs obey the global associativity condition 
(1.2).

THREE-DIMENSIONAL LIE ALGEBRAS AS DDA
In the rest of the paper we will study deformations of associative algebras 
generated by three-dimensional real Lie algebra L. The complete list of such 
algebras contains 9 algebras (see e.g. [16]). Denoting the basis elements by 
e1, e2, e3, one has the following nonequivalent cases:

(1) 	 abelian algebra L1,

(2) 	 general algebra 
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(3) 	 nilpotent algebra ,
(4)–(7) four nonequivalent solvable algebras: 

 with 

(8)-(9) simple algebras L8 = so (3) and L9 = so (2,1).
In virtue of the one-to-one correspondence between the elements of the 

basis in DDA and the elements pj, x
k an algebra L should have an abelian 

subalgebra and only one of its elements may play the role of the deformation 
parameter x. For the original algebra A and the algebra B one has two options.

(1) 	 A is a two-dimensional algebra without unit element and B = L.
(2) 	 A is a three-dimensional algebra with the unit element and B = L0 

⊕ L where L0 is the algebra generated by the unity element p0.
After the choice of B one should establish a correspondence between p1, 

p2, x and e1, e2, e3 defining DDA. For each algebra L
k
 there are obviously, in 

general, six possible identifications if one avoids linear superpositions. Some 
of them are equivalent. The incomplete list of nonequivalent identifications 
is as follows

•	 algebra ; DDA is the commutative 
algebra with

	 			   (4.1)
•	 algebra L2:

case (a)  the corresponding DDA is 
the algebra L2a

 with the commutation relations:

			   (4.2)
case (b)  the corresponding DDA L2b

 is 
defined by

	 			   (4.3)
•	 algebra  DDA L3 is

	 		  (4.4)
•	 solvable algebra L4 with 

 DDA L4 is

	 		  (4.5)
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•	 solvable algebra L5 at 
 DDA L5 is

		  (4.6)
For the second choice of the algebra B = L0 ⊕ L mentioned 

above the table of multiplication (1.1) consists of the trivial part 
 and the nontrivial part:

					     (4.7)
For the first choice B = K the multiplication table is given by (4.7) with 

A = D = K = 0.
It is convenient also to arrange the structure constants A, B, . . . , N into 

the matrices C1, C2 defined by . One has

				    (4.8)
In terms of these matrices the associativity conditions (1.2) are written 

as

						      (4.9)
Simple algebras L8 and L9 do not contain two commuting elements to 

be identified with p1 and p2, and, hence, they cannot be DDA. Deformations 
generated by algebras L6 and L7 will be considered elsewhere.

DEFORMATIONS GENERATED BY GENERAL DDAS
(1) Commutative DDA (4.1) does not force any deformation of structure 
constants. So, we begin with the three-dimensional commutative algebra 
A and DDA L2a

 defined by the commutation relations (4.2). These relations 
imply that for an arbitrary function φ(x)

					     (5.1)
where Δ1 = (x∂/∂x), Δ2 = 0. Consequently, one has the following CS:

		  (5.2)
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In terms of the matrices C1 and C2 defined above this CS has a form of 
the Lax equation:

						      (5.3)
The CS (5.3) has all remarkable standard properties of the Lax equations 

(see e.g. [20, 21]): it has three independent first integrals:

		  (5.4)
and it is equivalent to the compatibility condition of the linear problems:

						      (5.5)
where Φ is the column with three components and λ is a spectral parameter. 
Though the evolution in x described by the second linear problem (5.5) is too 
simple, nevertheless the CS (5.2) or (5.3) has the meaning of the isospectral 
deformations of the matrix C2 that is typical to the class of integrable systems 
(see e.g. [22, 23]).

CS (5.3) is the system of six equations for the structure constants D, E, 
G, L,M, N with free A, B, C:

					     (5.6)
where  and so forth. Here we will consider only simple 
particular cases of the CS (5.6). First it corresponds to the constraint A = 0, 
B = 0, C = 0, that is, to the nilpotent P1. The corresponding solution is

		  (5.7)
where α, β, γ, δ, μ are arbitrary constants. The three integrals for this solu-
tion are
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		  (5.8)
The second example is given by the constraint B = 0, C = 1, G = 0 for 

which the quantum CS (3.3) is equivalent to the Boussinesq equation [12]. 
Under this constraint the CS (5.6) is reduced to the single equation:

							       (5.9)
and the other structure constants are given by

			   (5.10)
where α, β, γ are arbitrary constants. The corresponding first integrals are

   (5.11)
Integral I3 reproduces the well-known first integral of (5.9). Solutions 

of (5.9) are given by elliptic integrals (see e.g., [24]). Any such solution 
together with the formulae (5.10) describes deformation of the three-
dimensional algebra A driven by DDA L2a

.
Now we will consider deformations of the two-dimensional algebra A 

without unit element according to the first option mentioned in the previous 
section. In this case the CS has the form (5.3) with the 2 × 2 matrices

					     (5.12)
or in components

					     (5.13)
In this case there are two independent integrals of motion:

		  (5.14)
The corresponding spectral problem is given by (5.5). Eigenvalues of 

the matrix C2, that is,  are invariant 
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under deformations and . We note also an obvious invariance 
of (5.6) and (5.13) under the rescaling of x.

The system of (5.13) contains two arbitrary functions B and C. In virtue 
of the possible rescaling P1 → μ1P1, P2 → μ2P2 of the basis for the algebra A 
with two arbitrary functions μ1, μ2, one has four nonequivalent choices (1) B 
= 0, C = 0, (2) B = 1, C = 0 (3) B = 0, C = 1, and (4) B = 1, C = 1.

In the case B = 0, C = 0 (nilpotent P1) the solution of the system (5.13) is

 (5.15)
where α, β, γ are arbitrary constants. For this solution the integrals are equal 
to I1 = α, I2 = γ + (1/2)α2, and .

At B = 1, C = 0 the system (5.13) has the following solution:

		  (5.16)
where α, β, γ, δ are arbitrary constants. The integrals are 

. The formulae (5.15) and (5.16) provide us with 
explicit deformations of the structure constants.

In the last two cases the CS (5.13) is equivalent to the simple third-order 
ordinary differential equations. At B = 0, C = 1 with additional constraint I1 
= 0 one gets

					     (5.17)
while at B = 1, C = 1, and I1 = 0 the system (5.13) becomes

				    (5.18)
The second integral for these ODEs is

				    (5.19)
Equation (5.17) with  is the Chazy V equation from the 

well-known Chazy-Bureau list of the third-order ODEs having Painlevé 
property [25, 26]. The integral (5.19) is known too (see e.g. [27]).
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The appearance of the Chazy V equation among the particular cases of 
the system (5.13) indicates that for other choices of B and C the CS (5.13) 
may be equivalent to the other notable third-order ODEs. It is really the 
case. Here we will consider only the reduction C = 1 with I1 = N + E = 0. In 
this case the system (5.13) is reduced to the following equation:

			   (5.20)

where . The second integral is

				    (5.21)

and .
Choosing particular B or Φ, one gets equations from the Chazy-Bureau 

list. Indeed, at Φ = 0 one has the Chazy V equation (5.17). Choosing 
, one gets the Chazy VII equation:

				    (5.22)
At B = 2G (5.20) becomes the Chazy VIII equation:

							      (5.23)
Choosing the function Φ such that

					    (5.24)
one gets the Chazy III equation:

						      (5.25)
In the above particular cases the integral I2 (5.21) is reduced to those 

given in [27].
All Chazy equations presented above have the Lax representation (5.3) 

with E = −N = −(1/2)(G’ + G2 + GB, M = −(1/2)(G’’ + 3GG’ + G3 + G2B + 
(GB)’), C = 1, and the proper choice of B.

Solutions of all these Chazy equations provide us with the deformations 
of the structure constants (5.12) for the two-dimensional algebra A generated 
by the DDA L2a

.
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(2) 	 Now we pass to the DDA L2b
. The commutation relations (4.3) 

imply that

			   (5.26)
where φ(x) is an arbitrary function and Tφ(x) = φ(x + 1). Using (5.26), one 
finds the corresponding CS:

	 (5.27)
where Δ1 = T − 1, Δ2 = 0. In terms of the matrices C1 and C2, this CS is

							       (5.28)
For nondegenerated matrix C1 one has

							       (5.29)
The CS (5.29) is the discrete version of the Lax equation (5.3) and has 

similar properties. It has three independent first integrals:

			   (5.30)
and it represents itself the compatibility condition for the linear problems:

							       (5.31)
Note that det C2 is the first integral too.

The CS (5.28) is the discrete dynamical system in the space of the 
structure constants. For the two-dimensional algebra A with matrices (5.12) 
it is

						      (5.32)
where B and C are arbitrary functions. For nondegenerated matrix C1, that 
is, at BG − CE ≠ 0, one has the resolved form (5.29), that is,

				    (5.33)
This system defines discrete deformations of the structure constants.
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NILPOTENT DDA
For the nilpotent DDA L3, in virtue of the defining relations (4.5), one has

				    (6.1)
or

						     (6.2)
where a21 = 1, a11 = a12 = a22 = 0. Using (6.2), one gets the following CS:

	 (6.3)
In the matrix form it is

						      (6.4)
For invertible matrix C1

							       (6.5)
This system of ODEs has three independent first integrals:

			   (6.6)
and it is equivalent to the compatibility condition for the linear system:

							       (6.7)
So, as in the previous section the CS (6.4) describes isospectral 

deformations of the matrix C1. This CS governs deformations generated by 
L3.

For the two-dimensional algebra A without unit element the CS 
is given by (6.4) with the matrices (5.12). First integrals in this case are 

 and . Since 
det C1 is a constant on the solutions of the system, then at det C1 ≠ 0 one can 
always introduce the variable y defined by x = y det C1 such that CS (6.5) 
takes the form



The Domain Theory in Computer Science240

				    (6.8)

where  and so forth and M, N are arbitrary functions. At 
 this system becomes

						      (6.9)
Choosing M = N = 0, one gets

			   (6.10)
The solution of this system is

	 (6.11)
where α, β, γ, δ are arbitrary constants subject to the constraint βγ − αδ = 
1. First integrals for this solution are .

With the choice M = 0, N = 1 and under the constraint I1 = B + G = 0 the 
system (6.8) takes the form

			   (6.12)
This system can be written as a single equation in the different equivalent 

forms. One of them is

					     (6.13)
where α is an arbitrary constant and

		  (6.14)
The second integral is equal to −1.
Solutions of (6.13) can be expressed through the elliptic integrals. 

Solutions of (6.13) and the formulae (6.14) define deformations of the 
structure constants driven by DDA L3.
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SOLVABLE DDAS
(1) 	 For the solvable DDA L4 the relations of (4.5) imply that

			   (7.1)
where φ(x) is an arbitrary function and T is the shift operator Tφ(x) = φ(x + 
1). With the use of (7.1) one arrives at the following CS:

					     (7.2)
For nondegenerated matrix C1 (7.2) is equivalent to the equation 

 or

					     (7.3)

where . Using this form of the CS, one promptly concludes 
that the CS (7.2) has three independent first integrals:

	 (7.4)
and it is representable as the commutativity condition for the linear system:

						      (7.5)
For the two-dimensional algebra A one has the CS (7.2) with the matrices 

(5.12). It is the system of four equations for six functions:

					     (7.6)
Choosing B and C as free functions and assuming that BG − CE ≠ 0, 

one can easily resolve (7.6) with respect to TE, TG, TM, TN. For instance, 
with B = C = 1 one gets the following four-dimensional mapping:
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						      (7.7)
(2) 	 In a similar manner one finds the CS associated with the solvable 

DDA L5. Since in this case

	 (7.8)
the CS takes the form

							       (7.9)
For nondegenerated C2 it is equivalent to

						      (7.10)

where . Similar to the previous case the CS has three first 
integrals:

	 (7.11)
and it is equivalent to the compatibility condition for the linear system:

					     (7.12)
Note that the CS (7.9) is of the form (3.11) with T1 = T, T2 = T−1. Thus, 

the deformations generated by L5 can be considered as the reductions of the 
discrete deformations (3.11) under the constraint .

A class of solutions of the CS (7.9) is given by

						      (7.13)

where g is 3 × 3 matrix and T0 = 1, T1 = T, T2 = T−1. Since  one 

has  and hence  where Φ0, Φ1, Φ2 are arbitrary 
functions. So, this subclass of deformations are defined by three arbitrary 
functions.
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To describe the isoassociative deformations for which C1(x)C2(x) = 
C2(x)C1(x) for all x these functions should obey the systems of equations:

  (7.14)
It is a version of the discrete oriented associativity equation.
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ABSTRACT
Let B be a Galois algebra with Galois group G, J

g
 = {b ∈ B ∣b x = g(x) b   

for all   x ∈ B} for g ∈ G, and BJ
g
 = Be

g
 for a central idempotent e

g
. Then a 

relation is given between the set of elements in the Boolean algebra (B
a
, ≤) 

generated by {0, e
g
 ∣ g ∈ G} and a set of subgroups of G, and a central Galois 

algebra Be with a Galois subgroup of G is characterized for an e ∈ B
a
.

INTRODUCTION
Galois theory of rings have been intensively studied [1, 3, 4, 5, 6, 7]. Let B 
be a Galois algebra with Galois group G and J

g
 = {b ∈ B | bx = g(x)b for all 
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x ∈ B} for each g ∈ G. In [4], it was shown that BJ
g
 = Be

g
 for some central 

idempotent e
g
 of B. Let B

a
 be the Boolean algebra generated by {0, e

g
 | g ∈ 

G}. In [7], the following structure theorem for B was given: there exist {e
i
 ∈ 

B
a
 | i = 1,2,...,m for some integer m} and some subgroups H

i
 of G such that 

 where Be
i
 is a central Galois algebra with 

Galois group H
i
 for each i = 1,2,...,m and  

which is a commutative Galois algebra with Galois group induced by and 

isomorphic with G in case  where C is the center of B. We 
observe that (1)  which is a nonzero monomial in B

a
 for a 

maximal subset H
i
 of G, (2) H

i
 is a subgroup of G, and (3) Be

i
 is a central 

Galois algebra with Galois group H
i
. In the present paper, we will discuss a 

general case: what kind of elements e in B
a
 and subgroups H

e
 give a central 

Galois algebra Be with Galois group H
e
? We will show that (1) for any 

nonzero monomial  of B
a
 for some subset S of G, let H

e
 = 

{g ∈ G | e ≤ e
g
, that is, ee

g
 = e}; then H

e
 is a subgroup of G, (2) when H

e
 ≠ 

{1}, Be is a central Galois algebra with Galois group H
e
 if and only if e is 

a nonzero minimal element in B
a
 (i.e., Be is one of the components of B as 

given in [7, Theorem 3.8]), (3) for a nonzero monomial e = Π
g∈S

 e
g
 of B

a
 

for some subset S of G, let T
e
 = {g ∈ G | e = e

g
}; then T

e
 is a subgroup of G 

if and only if e = 1, and (4) let H1 = {g ∈ G | e
g
 = 1}. Then e

g
 = 0 for each 

g ∉ H1 if and only if B is either a central Galois algebra with Galois group 
H1 or a commutative Galois algebra with Galois group G. Thus, {Be | e is 
a nonzero minimal element in B

a
} are the only central Galois algebras with 

Galois group H
e
 arising from nonzero monomials e in B

a
, and when B

a
 = 

{0,1}, B is a central Galois algebra with Galois group H1 and the center C is 
a commutative Galois algebra with Galois group G/H1. This fact generalizes 
the DeMeyer theorem for a Galois algebra with an indecomposable center 
C (see [1, Theorem 1]).

DEFINITIONS AND NOTATIONS
Let B be a ring with 1, C the center of B, G an automorphism group of B of 
order n for some integer n, and BG the set of elements in B fixed under each 
element in G. B is called a Galois extension of BG with Galois group G if 
there exist elements {a

i
, b

i
 in B, i = 1,2,...,m} for some integer m such that 

 for each g ∈ G. B is called a Galois algebra over R if 
B is a Galois extension of R which is contained in C, and B is called a central 
Galois ex-tension if B is a Galois extension of C. Throughout this paper, we 
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assume that B is a Galois algebra with Galois group G. Let J
g
 = {b ∈ B | bx 

= g(x)b for all x ∈ B} and  for each 
g ∈ G, where A ⊂ B. In [4], it was shown that BJ

g
 = Be

g
 for some central 

idempotent e
g
 of B. We denote by B

a
 the Boolean algebra generated by {0, e

g
 

| g ∈ G; ≤}, where e ≤ e’ if ee = e.

THE MONOMIALS AND SUBGROUPS
Let e be a nonzero monomial of  for a subset S of G. We 
have two subsets of G, H

e
 = {g ∈ G | e ≤ e

g
} and T

e
 = {g ∈ G | e = e

g
}. We are 

going to show that H
e
 is a subgroup of G, and that T

e
 is a subgroup of G if and 

only if e = 1. Let K be a subgroup of G. Then K is called a nonzero subgroup 
of G if  and K is called a maximal nonzero subgroup of G if K 

⊂ K’, where K’ is a nonzero subgroup of G such that  
then K = K’. We note that each nonzero subgroup is contained in a unique 
maximal nonzero subgroup of G. We will show that there exists a one-to-
one correspondence between the following three sets: (1) the set of nonzero 
monomials in B

a
, (2) the set of maximal nonzero subgroups of G, and (3) 

the set of Galois extensions in B generated by a nonzero monomial e with a 
maximal Galois subgroup of G.

Lemma 3.1
Let e be a nonzero monomial in Ba and He = {g ∈ G | e ≤ eg}. Then He is a 
subgroup of G.

Proof
For any g, h ∈ H

e
, e ≤ e

g
, and e ≤ e

h
. Hence e ≤ e

g
e

h
. But J

g
J

h
 ⊂ J

gh
, so 

BJ
g
J

h
 ⊂ BJ

gh
. Therefore Be

g
e

h
 ⊂ Be

gh
. Thus e

g
e

h
 ≤ e

gh
; and so e ≤ e

g
e

h
 ≤ e

gh
. 

This implies that gh ∈ H
e
. Noting that G is finite, we conclude that H

e
 is a 

subgroup of G.

Theorem 3.2
There exists a one-to-one correspondence between the set of nonzero 
monomials in Ba and the set of maximal nonzero subgroups of G.
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Proof
Define f : e → H

e
 for a nonzero monomial e in B

a
, where H

e
 is given in 

Lemma 3.1. By Lemma 3.1, H
e
 is a subgroup of G. Also, by the definition 

of H
e
, it is easy to see that H

e
 is a maximal nonzero subgroup of G. Thus 

f is well defined. Next we show that f is one to one. Let e and e’ be two 
nonzero monomials in B

a
 such that f (e) = f (e’), that is, H

e
 = H

e’
. Then 

. Thus f is one to one. Moreover, let K be 
a maximal nonzero subgroup of G. Then  and K = {g ∈ G 
| e ≤ e

g
} by the definition of a maximal nonzero subgroup of G. Thus f (e) = 

K. Therefore f is a bijection.
Let N(H

e
) be the normalizer of H

e
 in G for a nonzero monomial e in B

a
. 

We next show that Be is a Galois extension with a maximal Galois subgroup 
G(e) where G(e) = {g ∈ G | g(e) = e}, and G(e) = N(H

e
). Consequently, 

we can establish a one-to-one correspondence between the set of maximal 
nonzero subgroups of G and the set of Galois extensions in B generated by a 
nonzero monomial e with a maximal Galois subgroup of N(H

e
).

Lemma 3.3
For a nonzero monomial e in B

a
, let G(e) = {g ∈ G | g(e) = e}. Then, (1) G(e) 

= N(H
e
), where N(H

e
) is the normalizer of H

e
 in G, and (2) Be is a Galois 

extension with a maximal Galois subgroup of .

Proof
(1)	 For any g ∈ N (H

e
), since 

. Hence g(e) = e; and so g ∈ 
G(e). Conversely, for any g ∈ G(e),

	 (3.1)

Thus . Therefore ; and so ghg−1 ∈ H
e
 for 

each h ∈ H
e
. This implies that g ∈ N(H

e
).

(2) 	 Since B is a Galois algebra with Galois group G and e ∈ CG(e), 
Be is a Galois extension with a maximal Galois subgroup of 
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 (see [7, proof of Lemma 3.7]). Moreover, let g ∈ 
G but . Then . Thus g is not an automorphism 
of Be; and so G(e) is the maximal Galois group contained in G for 
Be.

Theorem 3.4
There exists a one-to-one correspondence between the set of maximal 
nonzero subgroups of G and the set of Galois extensions in B generated by a 

nonzero monomial e with a maximal Galois subgroup  such 
that G(e) = N(H

e
).

Proof
Let α : e → Be for each nonzero monomial e in B

a
. Then, by Lemma 3.3, Be 

is a Galois extension in B generated by e with a maximal Galois subgroup 
 such that G(e) = N(H

e
). Clearly, α is a bijection from the set 

of nonzero monomials in B
a
 to the set of Galois extensions Be for a nonzero 

monomial e in B
a
 with a maximal Galois subgroup  which 

is N(H
e
). Thus Theorem 3.4 is an immediate consequence of Theorem 3.2.

In the following, we show that the set T
e
 = {g ∈ G | e = e

g
} for a nonzero 

monomial e in B
a
 is not a subgroup of G unless e = 1.

Theorem 3.5
Let e be a nonzero monomial in B

a
 and T

e
 = {g ∈ G | e = e

g
}. Then T

e
 is a 

subgroup of G if and only if e = 1.

Proof
Assume T

e
 is a subgroup of G. Then 1 ∈ T

e
; and so e = e1 = 1. Conversely, 

assume e = 1. Then T
e
 = T1 = {g ∈ G | 1 = e

g
}. But the condition that 1 = e

g
 

is equivalent to that 1 ≤ e
g
, so T

e
 = T1 = H1 where H1 is given in Lemma 3.1. 

Hence by Lemma 3.1, T
e
 is a subgroup of G.

CENTRAL GALOIS ALGEBRAS
In Section 3, Lemma 3.1 proves that for a nonzero monomial e ∈ B

a
, H

e
 

(= {g ∈ G | e ≤ e
g
}) is a subgroup of G. In [7], it was shown that if H is a 

maximal subset of G such that  then H is a subgroup of G. 
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We will show that the maximal subset H is exactly H
e
 for a minimal nonzero 

monomial e ∈ B
a
. Thus Be is a central Galois algebra with Galois group 

H
e
 (see [7, Theorem 3.6]). Next is a characterization of the central Galois 

algebra Be with Galois group H
e
 for a nonzero monomial e ∈ B

a
.

Theorem 4.1
Let e be a nonzero monomial in B

a
 such that H

e
 ≠ {1}. The following 

statements are equivalent:

•	 Be is a central Galois algebra with Galois group He.

•	 eJ
g
 = {0} for each .

•	 e is a minimal nonzero monomial in B
a
.

Proof. 
(1)⇒(2). Since B is a Galois algebra over a commutative ring R with Galois 
group  (see [4, Theorem 1]). Hence

		  (4.1)
By hypothesis, Be is a central Galois algebra with Galois group H

e
, so 

. But by [7, Lemma 3.3],  for each h ∈ H
e
; 

and so . Thus  that is, eJ
g
 = {0} 

for each .

(2)⇒(1). Since  and 
eJ

g
 = {0} for each . By [7, Lemma 3.3] 

again,  for each h ∈ H
e
. Hence , where 

 which is the center of Be. 
Moreover, B is a Galois R-algebra, so it is a separable R-algebra. Thus, Be is 
a separable algebra over Re (see [2, Proposition 1.11, page 46]). Therefore, 
Be is a central Galois algebra over Ce (see [3, Theorem 1]).
(3)⇒(2). Since e is a minimal nonzero monomial in B

a
, for each g ∈ G, either 

e ≤ e
g
 or ee

g
 = 0. Since e ≤ e

g
 for each g ∈ H

e
, we have that ee

g
 = 0 for each 

. Therefore, BeJ
g
 = Bee

g
 = {0}; and so eJ

g
 = {0} for each .
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(2)⇒(3). Suppose e is not a minimal nonzero monomial in B
a
. Then there ex-

ists a g ∈ G such that 0 < ee
g
 < e. By the definition of  and 

so ee
h
 = e for each h ∈ H

e
. Hence . Therefore, 

. This implies that  for some . This contradicts hypothesis 
(2). Thus statement (3) holds.

When e is a minimal nonzero monomial in B
a
, Theorem 4.1 shows that 

Be is a central Galois algebra with Galois group H
e
. Hence the order of H

e
 is 

a unit in Be (see [4, Corollary 3]). Moreover, by Lemma 3.3, Be is a Galois 
extension with Galois group G(e) which is N(H

e
), so we have a structure of 

Be.

Theorem 4.2
For a minimal nonzero monomial e in Ba, Be is a central Galois algebra with 
Galois group He and Ce is a commutative Galois algebra with Galois group 
G(e)/He.

Proof
Since e is a minimal nonzero monomial in B

a
, Be is a central Galois algebra 

with Galois group H
e
 by Theorem 4.1. Hence |H

e
|, the order of H

e
, is a unit in 

Ce. Moreover, by Lemma 3.3, Be is a Galois extension with Galois group G(e) 
which is N(H

e
), so H

e
 is a normal subgroup of G(e). Let {a

i
,b

i
 | i = 1,2,...,m} 

be a G(e)-Galois system for Be. Then,  for each g 

∈ G(e). Let  and . Then, 
x

i
 and y

i
 are invariant under each element in H

e
. Hence, x

i
, y

i
 ∈ Ce since 

. It is straightforward to verify that {x
i
,y

i
} is a G(e)/H

e
-Galois 

system for Ce.
Theorem 4.1 characterizes a central Galois algebra Be for a minimal 

nonzero monomial e ∈ B
a
. Next we want to characterize a central Galois 

algebra B1 for the maximal monomial 1 in B
a
.

Theorem 4.3

Let H1 = {h ∈ G | e
h
 = 1}. Then e

g
 = 0 for each  if and only if B 

is either a central Galois algebra with Galois group H1 or a commutative 
Galois algebra with Galois group G.
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Proof

(⇒) Case 1. . Since e
g
 = 0 for each  for each 

. Hence, by (2)⇒(1) in Theorem 4.1, B (= B1) is a central Galois 
algebra with Galois group H1. Case 2. H1 = {1}. By hypothesis, e

g
 = 0 for 

each  in G, so . Thus B is a commutative 
Galois algebra with Galois group G.

(⇐) Assume B is a central Galois algebra with Galois group H1. Then 
. Hence, by (1)⇒(2) in Theorem 4.1, J

g
 = 1J

g
 = {0} for each 

. Thus e
g
 = 0 for each . Next, assume B is a commutative 

Galois algebra with Galois group G. Then J
g
 = {0} for each  in G (see 

[3, Proposition 2]). Hence e
g
 = 0 for each  in G. Therefore H1 = {1} 

and e
g
 = 0 for each .

As a consequence of Theorem 4.3, the DeMeyer theorem (see [1, Theorem 
1]) for central Galois algebras with a connected center is generalized.

Corollary 4.4
Let B be a Galois algebra with Galois group G. If B

a
 = {0,1}, then B is a 

central Galois algebra with Galois group H1 and C is a commutative Galois 
algebra with Galois group G/H1.

Proof
Since B

a
 = {0 ,1}, e

g
 = 0 for each ; and so the corollary holds.

We conclude the present paper with an example of a Galois algebra B 
such that B

a
 = {0,1}, but its center C is not indecomposable.

Example 4.5
Let R[i, j, k] be the quaternion algebra over the real field R, B = R[i, j, k] 
⊕ R[i, j, k], and G = {1, g

i
, g

j
, g

k
, g, gg

i
, gg

j
, gg

k
}, where g

i
(a1, a2) = (ia1i

−1, 
ia2i

−1), g
j
(a1, a2) = (ja1j

−1, ja2j
−1), g

k
(a1, a2) = (ka1k

−1, ka2k
−1), and g(a1, a2) = 

(a2, a1) for all (a1, a2) in B. Then,
(1) 	 B is a Galois extension with a G-Galois system: {a1 = (1, 0), a2 

= (i, 0), a3 = (j, 0), a4 = (k, 0), a5 = (0, 1), a6 = (0, i), a7 = (0, j), 
a8 = (0, k); b1 = (1/4)(1, 0), b2 = −(1/4)(i, 0), b3 = −(1/4)(j, 0), b4 
= −(1/4)(k, 0), b5 = (1/4)(0, 1), b6 = −(1/4)(0, i), b7 = −(1/4)(0, 
j), b8 = −(1/4)(0, k)}.



The Boolean Algebra and Central Galois Algebras 255

(2) 	 BG = {(r, r) | r ∈ R} ≅ R.
(3) 	 By (1) and (2), B is a Galois algebra over R with Galois group G.
(4) 	 J1 = C = R ⊕ R, J

gi
 = (Ri) ⊕ (Ri), J

gj
 = (Rj) ⊕ (Rj), J

gk
 = (Rk) ⊕ 

(Rk), and J
g
 = Jgg

i
 = Jgg

j
 = Jgg

k
 = {0}.

(5) 	 BJ1 = BJ
gi
 = BJ

gj
 = BJ

gk
 = B1 and BJ

g
 = BJ

ggi
 = BJ

ggj
 = BJ

ggk
 = 

{0}. Hence e1 = e
gi
 = e

gj
 = e

gk
 = 1 and e

g
 = e

ggi
 = e

ggj
 = e

ggk
 = 0. 

Thus B
a
 = {0,1}.

(6) 	 H1 = {1, g
i
, g

j
, g

k
} and B is a central Galois algebra with Galois 

group H1.
(7) 	 C = R ⊕ R which is a commutative Galois algebra with Galois 

group G/H1 ≅ {1, g}.
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ABSTRACT
In many problems of combinatory analysis, operations of addition of 
sets are used (sum, direct sum, direct product etc.). In the present paper, 
as well as in the preceding one [1], some properties of addition operation 
of sets (namely, Minkowski addition) in Boolean space Bn are presented. 
Also, sums and multisums of various “classical figures” as: sphere, layer, 
interval etc. are considered. The obtained results make possible to describe 
multisums by such characteristics of summands as: the sphere radius, weight 
of layer, dimension of interval etc. using the methods presented in [2], as 
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well as possible solutions of the equation X + Y = A, where X, Y, A ⊆ Bn, are 
considered. In spite of simplicity of the statement of the problem, complexity 
of its solutions is obvious at once, when the connection of solutions with 
constructions of equidistant codes or existence the Hadamard matrices is 
apparent. The present paper submits certain results (statements) which are 
to be the ground for next investigations dealing with Minkowski summation 
operations of sets in Boolean space.

Keywords: Hadamard Matrices, Minkowski Addition, Multiset, Cardinality, 
Multisum, Interval, Quadrate, Boolean Space, Stabilizer, Additive Channel

Sum of Sets According to Minkowski

If  are points in Bn, where Bn, is a 
Boolean space, then:

where ⊕ is the mod 2 addition operation.
This addition operation for members of Bn can be extended in subsets 

of Bn.

In other words, if , then:

		  (1)
Thus, the sum of subsets X + Y is consisted of sums of points belonging 

to X and Y, respectively.

Examples.
1. 	 if X ∈ 2Bn, y ∈ Bn, then {X + y} is the “shift” of the set X to the 

point y, and .
2. 	 if X is a subset in Bn, then X + X = X.
3.	  X + Bn = Bn for any X ∈ 2Bn.
Also, {X + Y} can be interprated as union of “shifts” of the sets X onto 

points of the sets Y.

The family , with an introduced Minkowski addition operation 
“+” forms a monoid with the neutral element , which is one member set 
having the zero element of Bn.
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The following inequality is valid:

Both limits are achievable here. The following statements describe the 
sets in which these limits are achieved.

Definition [2]. The pair (X, Y) is called additive if for any  and 
 the following is valid:

Statement 1. The upper limit is achieved if f (X, Y)  is an additive pair.

Corollary. If  then  for all 
.

We consider an arbitrary subgroup G ⊆ Bn and the action of this subgroup 
on the family 2Bn:

where g ∈ G. Thus, G acts on 2Bn with shifts transferring the subset into its 
“shift”.

Definition [3]. A stabilizer of the set X with respect to the group G is the 
union of “shifts” G

X
 from G, conserving X, i.e. gX = X for all g ∈ G

X
.

Statement 2. The lower limit is achieved if there exists z ∈ Bn, for which X 
+ z ⊆ G

y
 or Y + z ⊆ G

x
.

Corollary. If , then  for all Z ⊆ Y.
Now let  and .
Example.
1. If  is a group of shifts, then for  the following 
is valid:

In this case X has a non-obvious stabilizer if all constituents of X can be 
partitioned into the pairs (x, x + v), x ∈ X, i.e.  with respect to 

. For m = 4 we get . It is clear that in 
this case X + v = X and v ∈ G

X
. Thus, all subsets of X, having a non-obvious 

stabilizers, are described above.
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In the general form the stabilizer G
X
 for an arbitrary group G and an 

arbitrary set X ⊆ Bn can be described in the following terms [3] .
Statement 3. The constituent g ∈ G

X
 if the set X can be partitioned into 

the pairs (v
i
, v

j
) in such a way that v

i
 + v

j
 = g for all pairs which are included 

in the partition.
This statement can be obtained by analogical consideration for G = Bn 

as in [4].
From the above statement one can construct the following algorithm 

for building the stabilizer G
X
 of an arbitrary set X for the subgroup G ⊆ Bn, 

acting on 2Bn. And at same time .
1. 	 First we build the multiset C = X + X.
2. 	 Then we choose all the pairs in C having the multiplicity m.
3. 	 Then we build all partitions in A out of these pairs.
4. 	 If {P

X
} is the set of all partitions of X having the same weights in 

pairs x ∈ C, then

Example.
1. Let 

Then:

This means that all pairs  
have the multiplicity 2 in the sum X + X. Then we have:

The sum of the pairs in each of the solutions is the same. Hence, the 
following set:

is a stabilizer for X.
Below we present the simple properties of the operation “+”―it is 

addition in the sense of Minkowski, as was mentioned above―which can 
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be taken as properties of an algebraic system with basic set 2Bn and those for 
operations of addition, union of sets, set intersection etc.

1. 	 Assosiativity:

2. 	 Commutativity:

3. 	 Distributivity with respect to union:

4. 	
There are finitely many other relations connecting constituents of the 

algebraic system described above.

Sum of Spheres in Bn

Let  be the Hamming distance between the points x, y ∈ Bn 
and  be the set of the points of the sphere of the radius t with the centre 
at the point v ∈ Bn. In other words,  is the sphere of the radius t having 
the point v as its centre. And at that,  for all a ∈ Bn.

Statement 4 [1].

		  (2)

Statement 5.

Here  is the set complement of the sphere  in Bn and  is the 
logic “negation” of the binary set v. We assume that , for t < 0.

Proof. Let us note that if , then . As:

then for  we have:

or:
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and if t = n, then .
Example.

1. 	 We consider the sphere . Then .
Formula (2) in the preceding statement allows the following 

generalization connected with addition.

Let  and  be the set of points belonging to the union of 
spheres of the radii p with the centres at the points M, that is:

 is the “generalized” sphere of the radius p having its centre at the 
point M.

Statement 6 [1] . The following presentation is valid:

Corollary. For  the following take place:

1. 	

2.	  
Statement7 [1] . The following relation is valid:

for 
and the next one is valid:

for .
Corollary. For  the following is valid:
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The Sum of Facets in Bn

A facet, or sub-cube, or interval in Bn is the set of points satisfying the 
following condition [5] [6] :

where (≤) is a coordinate-wise partial order relation in Bn:

 where .
In other words, an interval can be given by a word of the length n in the 

alphabet , the letters of which are ordered linearly: .
Indeed, if:

then the code λ(J) of the interval J is built in the following way.

Let . Then:

Examples.

1. 	 If , then .

2. 	 If , then .

If  is the code of the interval J, then all points of 
the interval J are obtained from the code λ(J) by replacing the letters in an 
arbitrary way by zeros or units.

Let λ1(J) and λ2(J) be the numbers of letters 1 and c, respectively included 
in λ(J) which is the code of the interval J. it is clear that λ2(J) is the dimension 

of J, i.e.  and .
If the operation “⋆” is introduced in the alphabet A by the following Caley 
table [7]:
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then the sum of the intervals J of the system defined above as a sum of 
subsets is the interval the code of which is calculated by the codes of items 
(addends) using the above Caley table.

Statement 7 [1] . The sum J1 + J2 is an interval with the code 
 and dimension 

.
Examples.
1. If , then 
On the other hand, we get by definition:

i.e. .
2. If , then  for any interval J2.

Statement 8 [1]. , where ρ is the Hausdorff distance 
between the sets [8] .

Thus, the distance between the intervals J1 and J2 is the number of 
occurrence of letters 1 in the code of their sum.

Sum of Layers in Bn

Let  be the p-th layer of an -dimensional cube or sphere 
of the radius p and the centre at zero [9] [10] .

By definition  is the sum of layers in Bn, consisting of the union 
of sums of the points one of which has the weight and the second has the 
weight q. It is clear that the symmetrical group Sn operates on each layer in 
the following manner:

if , then 
Hence, g permutes the coordinates of the point , leaving its Hamming 

weight unchanged.

At the same time the relation  is valid for 
.
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Thus, each layer  is a transitive set or an orbit of operation of the 
group Sn on the cube Bn.

Let .
Statement 9 [1] . The following formula is valid:

		  (3)
For not large values of the layer the following table of addition is valid:

Note that Formula (3) can be rewritten for any number of terms, using 
the above-mentioned property of distributivity.

Indeed, using (3), we get:

which makes possible to use (3) again.
Example.

1. 	 Let us find the sum . We have:

NB. As each layer  is a sphere of the radius p and the centre at zero 
point, then all the preceding formulae are rules of ‘sphere’ addition.

Sum of Subsets in Bn

If we take subspaces in Bn as terms of the sum X + Y, we will get a well-
known object. Indeed, if X, Y is a subspace in Bn, then (X + Y) is a subspace, 
too, and we have:

in terms of cardinality:
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Thus, “theory of addition of subspaces” being a well-developed part 
of linear algebra, makes possible to answer many questions concerning the 
subject problem.

Sum of Spheres in Bn

The k-dimensional interval we denote by Jk.
According to statement 6, we have:

i.e.  is the union of all spheres of the radii t with centres at the 
points in the interval Jk, or:

Let 

Statement 10. 

For the cardinality of the set  the following is true:

Corollary. , where  is the cardinality of the 

sphere of the radius t1 in .

Proof. If , for any point the following is valid:

if . Indeed, in this case belongs to the sphere of the radius t with 
the centre at . Inversely, if  

and  then  for any point y in the interval 
Jk, that is:
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Therefore, 

Sum of a Layer and an Interval in Bn

Analogous to the preceding statement and corollary we get the sum of the 
sets .

Statement 11. The following relation is valid:

Corollary. The cardinality of the set  is calculated as follows:

Sum of a Sphere and a Layer in Bn

Statement 12. The following is valid:

where 
Proof. We have from statements 9 and 6:

Q.E.D.

EQUATION IN SETS
Let  be the monoid of all subsets with operation of addition (1) in Bn 
as was defined above. This monoid is of certain interest both in classical 
discrete analysis [8] and for a number of problems connected with theory of 
information [4] .
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The ‘simplest’ equation in sets is as follows:

					      (4)
where .
It is clear that Equation (4) always has the trivial solution 

Examples.
1. 	 If A = Bn, then one can choose Bn for X, and any subset of Bn for 

Y.
2. 	 If A is a subspace of Bn, then A + A = A and, therefore, Equation 

(4) has the solution X = Y = A.

3. 
Now, let:

Then ; consequently, the Hausdorff distance between 
the sets X and Y:

is expressed by the norm of the sum of these solutions.
On the other hand, if:

then  is the reciprocal spectrum of the distance between the points of 
the sets X and Y and:

that is,   is the spectrum of the distance between the 
points of the set X, or rather, the spectrum of X.

Thus, the set X + X describes, to a considerable extent, the set of 
distances between the points of X or the spectrum of X.

In an additive channel of communication [4] the class of equivalence has 
one to one presentation by transitive sets of certain ‘generating’ channels. The 
problem is to order these transitive sets through cardinalities of ‘generating’ 
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channels. We need the following numerical parameters, which depend on 
solutions of Equation (4) and on the right hand side of A.

Let 
We introduce the following parameters:

Introduction of such definitions as  and  is explained by 
the fact that the equation X + X = A can sometimes have no solution (for 
instance, for  or for ), though the equation X + X = A 
always has a solution.

Then, for the minimal and maximal cardinality set , where 
, we get respective boundary values, which make possible to 

narrow the region , i.e. the region of the set of solutions of Equation (4) 
(we shall see this below).

It is not hard to prove that:

		  (5)
As every solution (X, X) of the equation X + X = A is a solution for (4), 

then we present the following useful statement which makes possible to 
obtain solutions of the equation X + X = Y from solutions of the Equation 
(4), under certain limitations.

Statement 13. If  is a solution of the equation X + Y = A, then 
 is a solution of the equation X + X = A, iff  and 

.
Statement 14. For the subspace  the following is valid:
(a) 	

(b) 	 .
Proof. It follows from (5) that it is sufficient to prove for (a) that:
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Let  is a solution of the equation X + Y = A, for which:

		  (6)

On the other hand, it follows from Statement 13 that  is a 
solution of the equation X + X = A and, consequently, . 
Taking into account this and (6), we get:

The proof for the case (b) is analogical.
Statement 15. The following estimations are valid:

1. 	  for the subspaces  for 

2. 	  for .

3. 	 If  is a subspace, then equality in  
takes place if dim A = 1, 2 or 4.

Proof. Items 1 and 2 of this statement were proved in [1] , and we prove 
only item 3.

Necessity. We assume that:

		  (7)
and that the pair  is a solution for the equation X + Y = A.

It follows from (7) that:

		  (8)

According to the statement, we have that the set  is a solution for 

the equation X + X = A, as well. We consider a Boolean matrix  

having points from  in its rows. We denote by ki the number of 
units in the i-thcolumn of this matrix. As A is a subspace, then the following 
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equality is true: , i.e.  and . 
Consequently, . This and (8) give:

		   (9)
For  and  this equation has no solution for every 

k. Consequently,  or . Now it is easy to find the solution of 
Equation (9):  or 4.

Sufficiency. Let  be the basis for the space Ak. We consider 
the following sets:

As  then for  we have:

.
The statement is proved.
Examples.

1. 	 The pair  where  is a solution of the equation: 
 for .

2.	 The pair  where  is a solution 
of the equation:  for .

If we keep to these examples, then we can assume that there exists some 
monotonous dependence of the function m(A) on the cardinality A. But one 
can manage to find the possible connection between the right hand side of 
Equation (4) and the function m(A) for the case if A is the halfspace.

Corollary. For the halfspace A1, A2 the inequality  
is valid if .

The “seemingly obvious” hypothesis that the upper limit of m(A) is 
reached for all  is refuted by the following examples.
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Examples.
1. 	 Let . In this case there is no solution of Equation (4), 

satisfying the condition: . Consequently, since for k = 5 the 
following is valid:

 and the upper limit is reached in this example.
2. 	 Let A = B7 ⋅ X = {(0 0 0 0 0 0 0), (0 0 0 0 1 0 0), (0 0 0 0 1 1 0), 

(0 0 0 1 1 0 1), (0 0 1 0 0 0 1), (0 0 1 0 1 1 1), (0 1 0 0 0 0 0), (0 1 
0 0 1 0 0), (0 1 1 0 1 0 0), (0 1 1 0 1 0 1), (0 1 1 1 0 1 1), (0 1 1 1 
1 0 0), (0 1 1 1 1 1 0), (1 0 0 0 0 1 0), (1 0 0 1 1 0 1), (1 0 0 1 1 1 
0), (1 0 1 0 0 0 0), (1 0 1 1 0 1 1), (1 1 0 0 1 0 1),(1 1 0 1 1 0 0)}.

We have:  Consequently, the upper 
limit is not reached in this example.

Statement 16 [11] . If , then the solution of the equation X + 
X = A is an equidistant code with a distance between any two points equal 
k, and . At the same time  if there exists a Hadamard 
matrix of the order n + 1 [12] .

Consequently, the problem of constructing of an equidistant code with 
the distance k having the minimal cardinality can be formulated in terms of 
solvability of the equation X + X = A.

Definition. The set  is called a quadrate if the following equation:

					      (10)
is solvable.

It is clear that a quadrate always contains the zero point.
Example.
1. 	 If A is a halfspace in Bn, then, as it was mentioned above, A + A = 

A and, therefore, A is a quadrate. If , then 
A is a quadrate if .

The notion of ‘quadrate’ is connected with problems of equivalence 
of additive channels [4] where description of the class of equivalence is 
connected with finding of all solutions of the following equation:
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Let:

We denote by  the cardinality of the maximal code with the 
minimal distance d [6] .

Statement 17. .

From this and taking into account the known estimations  (the 
upper limit; see [6] ) we get:

Statement18.The following inequality is valid:

At the same time equality takes place if there exists a perfect code in Bn 
with the minimal distance d.

Consequently, the problem of constructing the code of maximal 
cardinality ? in particular, a perfect code ? is reduced to finding the solution 
of maximal cardinality for Equation (10) among all quadrates of the union 
of layers .

Statement 19 [1] . If A, B is a quadrate, then (A + B) is a quadrate too.
Corollary. The preceding statement is valid for any number of summands.
Now let  be a group of invertible matrices having components in the 
field .
Definition. The set of matrices  is called stabilizer of the set 

 if all matrices in GA conserve A, i.e. , where .
At the same time, if , then .

Statement 20. Let GA be a stabilizer of the set  and . Then 
the pair  is the solution of the equation X + X = A, as well.
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MULTISETS
The second definition of addition of sets from 2Bn is connected with 
multiplicity of containing each member into the sum A + B [4] .

Definition. A multisum of two sets  is called multiset:

 		  (11)

in which each member  is counted as many times as it comes in sum 
(11), and α is the multiplicity of the member .

Examples.

1.	  If  then .

2.	 If  , then 

It is clear that by definition , in which the cardinality of 
the multiset is the sum of the multiplicities of its members.

In particular, the following expression is valid:

where C is an arbitrary subset in Bn and  is the multiplicity of the constituent 
.

It follows from this that:

Let 

Statement 21. For the multiset  the following formula is valid:

		   (12)

where  is the multiplicity of the 
member of the multiset  with the weight .
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Proof. Let z be any member of the multiset . Since: 
 and  is an even number, then  

always is presentable in the form: .
We assume (without violating generality) that: 

 where  

 and 
Hence, we have:

that is:

From this, taking into account Statement 9, we get Formula (12).
Corollary. For  we have:

а) 	

b) 	
if  and:

c) 	
if 

Statement 22. For the multiset  the following is valid:

where ; and at the same time:
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is the multiplicity of the members of .
Corollary. For  the following is valid:

a) 

b) 
Statement 23. For the multiset  the following equality is 

valid:

where  and at the same time:

is the multiplicity of the members .
Corollary. For  the following equality is valid:

Statement 24. For the multiset  the following formula is valid:

where  is the multiplicity of x.

Corollary. For  the following is valid:

Statement 25. For the multiset  the following formula is valid:

where  and at the same time:
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is the multiplicity of .
Corollary. For  the following is valid:

Statement 26. For the multiset  the following is valid:

where  is the interval with the code: 
, and  is the multiplicity of the 

members of .
Finally, we define the operation “/”, that is, subtraction for multisets.

Let 

Definition.  where 

Example. We consider the multisets:

From Statements 22 and 12 we get:
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DISTANCE BETWEEN SUBSETS BN

Let  and Bn be the set of all words of finite length in the 
alphabet B. For  we take:

It is clear that  is the Hausdorff distance between the subsets 
X Y, and , and  is the Hamming distance 
between the points: , where 

 and ⊕ is the addition operation 
with respect to mod 2.

The Hausdorff distance has essential role in many problems of discrete 
analysis [1] and thus has certain interest. On the other hand, there only are a 
few essential results concerning distances between the subsets Bn, and their 
investigation offers significant difficulties.

First, we present the following simple properties of the Hausdorff 
distance:

1) 	
2) 	

3) 	

4) 	 .
Let us note that, generally speaking, the Hausdorff distance does not 

satisfy the triangle inequality:

					     (1)
which is demonstrated in the following picture:

But inequality (1) holds true if .
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Distance between Spheres in Bn

Let  be a sphere of radius p with the center at . We take, for 
an arbitrary subset, :

Thus, we have the following two equvalent interpretations for :

1) 	  is the set of all points in Bn which are at the distance ≤ p 
from the set М;

2) 	  is the set of all points in Bn, covered by the spheres of the 
radius p with the centers at points of the set M.

Examples.

1) 	 , for an arbitrary point: ;

2) 	 , for an arbitrary ;

3) 	 If  = Bn and , then p is the radius of the 
covering of the set Bn [2] .

Theorem 1. .
Proof. We consider two cases.

a)  Then,

and, consequently,

b) . We present them in the 
form:

From here we have:

As  consequently we have:



The Domain Theory in Computer Science282

Then, taking into account that:

we have:

The theorem is proved.
Let:

Taking into account that the sphere of the radius p with the center at 

 and the sphere of the radius q with the center at  contain, 
respectively, as many points as:

we get the following corollary.

Corrollary. If , then:

The value of the function  for definite values of  was 
calculated in [1] .

Theorem 2. If , then:
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The general form of the standard generating function for the distance 

between the subsets  has the following form:

		   (2)

The summation in (2) is over all pairs of the subsets  with 

Let us consider a few examples.

1) 	 .
In this case, we have:

Thus, , which is the well-known function of 
distribution of distances between the points in the space Bn with the metrics 
of Hamming.

2) 	 p = 1, and q is an arbitrary positive integer which does not exeed 
2n.

In this case:

		   (3)
As:

for arbitrary points  and any subset , then we get 
from (3):
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Then:

		   (4)
Consequently, the distance between the zero point and an arbitrary 

subset Y equals the minimal weight of the points which are in Y.

Hence, , if there are not points with  in Y. 

The numbers of subsets Y with  and the condition  are 
found by the following formula:

		 , (5)

where 

where  is the cardinality of the sphere with the radius r in Bn

From (5), we get the following statement:

Lemma1. If  is the number of the subsets of cardinality q (in 
Bn) having the distance to the zero point, then:

For 
Theorem 3. The following formula holds true:

		   (6)
Proof. By definition:



Algebra and Geometry of Sets in Boolean Space 285

From this and Lemma 1, taking into account (3) and (4), we get:

The theorem is proved.

If  is the generating function of the random value  
uniformly distributed on the pairs , where , then the following 
holds true.

Corollary 1. The following formula holds true:

Corollary 2. The following holds true:

Corollary 3. The formula for  follows from (6).
Proof. From (6) we get for p = 1:

Corollary 4. For q = 2, the following formula holds true:

Proof. By definition and from Corollary 2, we derive:

		   (7)
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Transforming the terms in (7), we get:

		   (8)
Then, using the following formulas:

Let us “compress” the sum:

By definition, we have:

Furthermore, if:

then:
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Further:

And:

From here it follows that .
Then:

Taking this and (8) into account, we get:

And the generating function:

can be expressed by the following parameters:

2) 	 if , then the family of all subsets of cardinality p, having 

distances  from M is expressed as . Indeed, 
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 contains all the points of Bn, having distances  
from the set M.

Hence, the set  does not contain such points; consequently, 

for an arbitrary subset  the expression  
holds true.

The cardinality of this family is:

2) 	 The number of all m-element subsets having the distance r from 
M is:

Summarizing all the previous, we get the following statement.
Theorem 4. The following expression is true:

SUM OF SETS IN BN

Let ; we take:

The operation “+” is defined in the family 2Bn of all subsets of Bn, and 

(2Bn, “+”) is a monoid with the neutral element  [3] [4] .
Besides, the following inequality holds true:
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Here both limits are reachable.
The properties of “+” are as follows:

Examples.
If X is a subspace in Bn, then:

Let the following holds true:

Then 
Thus, there is certain analogy between the norm of the sum of points and 

the distance between those points, as well as between the norm of the sum of 
the sets and the distance between those sets.

In the general form, the following statement connecting the operations 
“∪” и+, is true:

Sum of Facets in Bn and the Distance between Them

A facet or interval in Bn is the set of points  where the partial 

order  is defined in the classic way [5] [6] :

Every interval J can be written in the form of a word of the length n, in 
the alphabet  the letters of which are ordered linearly: 
Examples.
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If  and  then every point of J can be pre-
sented by the word , which means the following: all the points which 
are obtained from the word  by the substitution either 0 or 1 for a 
letter of the given word, are contained in the interval J. Consequently, the 
cardinality of the interval J is  for the given case, i.e. . Hence, 
each interval J has its corresponding code word  in the alphabet A. The 
number of letters c in the code  is the dimension of the interval J, i.e. is 

. And the following formula is obvious:

If the operation “*” is introduced on the alphabet A:

then the sum  of the intervals  and  is the Minkowski sum:

Examples.

1) 	 If  then  i.e. 
 which corresponds to the definition of the 

sum .

2) 	 If , then  for every interval .

The distance between the intervals  and , having the codes  
and -taking into account the introduced definitions-are calculated in 
the following way.

Let  be the number of occurrences of letter 1 in the code of the 
interval J.

Statement 1. 
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Thus, the distance between the intervals  and  is the number of 
occurrences of letter 1 in the code of their sum.

Examples.

1) 	 Let 

Then 

Let  be the family of all p-dimensional intervals of Bn.Then 

Let us consider the direct product  and introduce uniform 
distribution on it with the generating function:

Theorem 5. The following formula is true:

where .

Let us consider the matrix  the rows of which are the codes 

 of the intervals from the family 
Lemma 2. The following expression is true:

where  is the number of zeros and, respectively, units in the i-th column 
of the matrix .

Proof. According to the definition:

		   (9)
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where 

and  is the code of the interval .
It follows from (9):

		   (10)

The internal sum in (10) equals the number of such pairs  in 

which one of  is unit and the other is zero, i.e. is . The Lemma 
is proved.

Example.
1) 	 Let S(3) be the family of all edges in B3. We consider the matrix 

of their codes:

The total number of the edges in B3 is . Each 
column of the matrix has the length 12, and all letters of the alphabet 

 occur in equal number, 4 times. Therefore, 
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From here, we get:

2) 	 In the general form, if S(n)  is the family of all edges in Bn, each column 

contains  letters c and . 
From here, we get:

		  (11)
Thus, the sum of the pairwise distances between the intervals in Bn is 

calculated by formula (11).

The Sum of Spheres in Bn

In the general form, the following statement holds true.
Lemma 3. The following formula is true:

Proof. By definition:

Thus, the above introduced parameter  of the setМis rather easily 
expressed in the terms of the operation “+”.

Lemma4.  if .
Proof. If , then either v is at the distance  from  
or there is a point  such that .
Then, from , it follows that , for all .

From here we get:

or:

Hence, 
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And if , then there is a point  such that 
.

Hence,  and, consequently, , that is, 

, and the proof is completed.
Theorem 6. The following expression is true:

			    (12)
Proof. We have from Lemma 4:

.
Then, we have from Lemma 3:

And the proof is over.
Formula (12) defines the rule of “addition” for arbitrary spheres in the 

space Bn.

Sum of Layers in Bn

Let  be the p-th layer of the n-dimensional cube, or be 
the sphere of the radius p with the center at zero [7] [8] .

According to definition,  is the sum of the layers in Bn or it is the 
sum of the points with the weights p and q. As , 

then all points from  have weights from the interval .
Then, the following statement is true.
Lemma 5. The following expression holds true:
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Proof. First, let us note the following.

If , and  then . Consequently, every layer 
 is invariant with respect to the operation of the symmetric group  

and, for , we have:

In standard terms, the symmetric group  operates on Bn, and every 
layer is a transitive set or an orbit of action of the group .

If , then  where . Therefore, 
for each permutation  we have:  
and we get:

Taking this into account, to describe the set , it is sufficient to 
describe only the weights of the points which are included into this sum. The 
minimal weight of these is .

We discuss the following outline:

Here  and the “block” of the first 2 units is shifted 
by a unit in each consecutive word. Thus, we get all weights: 
In the general case, the situation is absolutely analogous, and the weights are 
arranged as follows:

for 
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Here the condition for z holds true:

Examples.

Theorem 7. The following expression is true:

where 
Proof. From Lemmas 3 and 5, we have:

The proof is over.

Sum of Subspaces in Bn

As usual, let  be the subspace generated by the vectors from the set 
X, or be the space “worn” on X.

Statement 2. 
and:

Statement 3. Let 
And if:

						       (13)
then the following equality is true:
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Proof. We assume the contrary, that is, 
Then, we have:

Hence, . Consequently, . That is, 
.

This contradicts the initial condition and the proof is over.
The following example shows that condition (12) is not necessary.
Example.

Let  Then 

 although 

EQUATIONS IN SETS
The “simplest” equation by sets is the following:

		   (14)

where .

Equation (14) always has the trivial solution:  where 
.

The significance of Equation (14) is explained by the following 
circumstances.

1) 	 The standard problems of covering and partitioning in the Boolean 
space Bn [6] can be formulated as problems of describing the set 
of solutions of Equation (14).

2) 	 For certain additional conditions, the solution of Equation (14) 
forms a perfect pair (perfect code) in the additive channel of 
communication [9] .

3) 	 The set of all solutions of Equation (14) coincides with the class 
of equivalence of the additive channel of communication [3] .

Examples.

1) 	 If  we can take  as the solution  
for Equation (14).
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2) 	 If A is a subspace of Bn, then Equation (14) has the following 

solution: .
The following statements are true:

Statement 4. If the equations  are solvable, then 
the equation  also is solvable.

Proof. Let the pairs  be the 
solutions of the equations  and 

, respectively. Then for the pairs  we have 

 as was required 
to be proved.

Statement 5. For  the equation:

has the solution 
Statement 6. For  and  the equation  has 
the following solution:

where 
Statement 7. For  the equation 

 has the following solution:

Statement 8. The sets of solutions  of the equations  and 
 coincide for all 

Below, when discussing Equation (14), without violating generality, we may 
assume  if necessary.
Statement 9. The equation  has no solution for 

Proof. If  and , for  we have  and 
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 Thus, X is an equidistant code [2] , therefore, 
. Consequently:

From here it follows that the equation  has no solution for 

 if .

Statement 10. The equation  (in “facets”, i.e. X, A are facets 
in Bn) is solvable iff the code of the interval A does not contain the letter 1.

Let  be a solution of the equation . As the following 
equality:

holds iff:

then the following statement is true.

Statement 11. If  is a solution of the equation , then 
 is a solution of the equation , iff  and 

.

Statement 12. If A is a subspace from Bn, then every subset  
is a solution of the equation .

In an additive channel of communication [3] an equivalence class has 
a unique representation by transitive sets of certain “generating” channels. 
The problem is to order these transitive sets by cardinalities of “generating” 
channels.

Let 
We introduce the following parameters:

Such definition of  is justified, because it is not always that the 

equation  has solutions for instance, if  or for 
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), though the equation  always has a solution.
One can easily prove that:

		   (15)

Statement 13. For the subspace  the following is true:

Proof. It follows from (15) that it is sufficient to prove that the following 
equality is true:

Let  be a solution of the equation , for which:

		   (16)
On the other hand, it follows from Statement 11 that  is a 

solution of the equation  and, consequently, . 
Taking this and (16) into account, we get:

Theorem 8. The following estimations are true:

1) 	

2) 	  for the subspace  for 
Proof. We have:

From this and definition of addition of sets we get:

Consequently:
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To prove the 2nd estimation, we consider such subspaces  
for which the following is true:

Let:

where 
Let us prove that 
We have:

As (Statement 12)  we 
get:

Then, using:

we get:

Hence, taking this and Statement 13 into account we get:

The statement is proved.
Examples.

1) 	 . We have:
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2) 	 . We have:

but actually:

3) 	 . We have:

We consider the set:

We have:  Hence, 
4) 

We have:

But actually 

Suggestion. For each  the following is true:
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presents a framework for modeling the multipath detection problem as a 
SAT application. It also provides simulation results that demonstrate the 
effectiveness of the proposed scheme in detecting the multipath components 
in frequency-selective Rayleigh fading channels.

INTRODUCTION
There has been a growing interest in developing high data rate mobile radio 
systems to support a wide range of applications such as real-time multimedia 
services and high-speed internet access. To achieve this goal, wide band 
transmission schemes are being investigated including single carrier and 
multicarrier spread spectrum techniques, Ultra-wideband systems, and 
OFDM-based schemes. Multipath propagation, caused by reflection, 
refraction, and scattering of radio waves as they pass through the wireless 
channel, is considered as one of the main challenges in wide band mobile 
radio communication systems. Multipath propagation results in receiving 
multiple copies of the transmitted signal. In narrow band transmission 
schemes, where the multipath components are very close and unresolved by 
the receiver, severe fading is observed in the received signal strength leading 
to significant degradation in the bit error rate (BER) performance of the 
system. On the other hand, in wide band signal transmission, where multipath 
components could be resolved by the receiver, multipath propagation can be 
exploited using a RAKE receiver to improve the system BER performance 
through the diversity gain from the different copies of the received signal. 
However, for full utilization of the multipath scenario, it is very important 
for the receiver to first detect the presence of these multipath components 
and identify their corresponding parameters (time delay, amplitude, and 
phase).

In spread spectrum systems, a pseudo-random (PN) code is used to 
spread the message spectrum over a wide bandwidth. At the receiving end, 
a time-synchronized version of the same PN code is used to despread the 
signal and recover the original message [1]. Synchronization is very crucial 
for the proper operation of the system. It can be accomplished by searching 
a range of delays for the correct multipath delays. The uncertainty range 
represents the possible delays that the signal may have and is related to the 
channel memory. The delay range is usually specified as cells that are one-
chip or one-half of a chip apart, where a chip is the shortest element in the 
PN code. The search for the multipath components through these cells, that 
is, finding the cells that have strong energy and hence multipath components, 
can either be done in a serial or parallel fashion [2–5].
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In serial search, one cell at a time is tested by measuring the signal 
energy at that cell using a single correlator circuit. If the energy exceeds a 
preset threshold, then the cell is declared as a multipath cell, either directly 
or after a verification stage, while if the energy is below the threshold, then 
it is declared as a no multipath cell. The search advances to the next cell and 
the process is continued until all cells in the uncertainty range are tested. 
The other search strategy uses parallel search where the energies of all cells 
are calculated simultaneously using a bank of parallel correlators and cells 
with energy above the threshold are declared as multipath cells. Apparently, 
serial search is slower compared to parallel search as it takes longer time to 
search all the cells and find the delays. On the other hand, serial search has a 
much lower reduced complexity (both hardware and processing).

A common drawback of existing schemes is that in searching for the 
correct cells they do not utilize the inherent structure of the PN code. In the 
worst case or in a low SNR environment, these schemes need to search all 
possible cells in the search window, which could be as large as the length of 
the PN code, in order to find the correct cells. For example, for a PN code 
with a length of 2047 chips (generated by an 11-stage shift register) the 
serial and parallel search schemes need to test 2047 cells if the search step is 
one chip or twice of that if the search step is one-half of a chip. This testing 
may need to be repeated many times if the multipath components were not 
detected at the first trial due to noise and fading. In this paper, we propose 
a PN code acquisition scheme that exploits the structure of the PN code to 
reduce the number of decisions needed to find correct cells. The proposed 
scheme is based on using advanced Boolean Satisfiability (SAT) techniques 
to perform intelligent search of the uncertainty region and hence reduce the 
number of decisions needed to find the correct cells significantly. This is 
done by searching only PN code phases that result in minimum difference 
(minimum distance) between the PN code in the received signal and a locally 
generated PN code.

Recently, Boolean Satisfiability (SAT) has been shown to be very 
successful in solving complex problems in various Engineering and Computer 
Science applications. Such applications include Formal Verification [6], 
FPGA routing [7], Power Optimization [8, 9], Fault Tolerance [10], and 
Microprocessor Verification [11]. SAT has also been extended to a variety 
of applications in Artificial Intelligence including other well-known NP-
complete problems such as graph colorability, vertex cover, hamiltonian 
path, and independent sets [12]. Despite SAT being an NP-Complete 
problem [13], many researchers have developed powerful SAT solvers 
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that are able of handling problems consisting of thousands of variables and 
millions of constraints [14–22]. Briefly defined, the SAT problem involves 
a set of Boolean variables and a set of constraints expressed in product-of-
sum form. The goal is to identify an assignment to the variables that would 
satisfy all constraints or prove that no such assignment exists.

Even though in recent years we have seen a surge in the application 
of SAT techniques to assist in finding solutions to various Engineering 
problems, very few researchers reported on the use of SAT-based techniques 
in mobile communication-related research. In this paper, we propose the 
formulation of the PN acquisition problem as a SAT instance and use 
intelligent SAT search engines for multipath detection.

The reminder of this paper is organized as follows. Sections 2 and 3 
present the signal model and an overview of SAT, respectively. Section 4 
describes the proposed scheme and shows how to formulate the PN code 
acquisition problem as a SAT instance. Simulation results are presented and 
discussed in Section 5. Finally, the paper is concluded in Section 6.

SIGNAL MODEL
A direct-sequence spread spectrum system is investigated in this paper. The 
signal model assumes that a separate pilot signal is transmitted along with 
the data channel to allow for PN code acquisition and tracking as well as 
channel estimation. The transmitted signal is given by

		  (1)
where P is the transmitted power, di is a random sequence of information 
data with di ∈ ±1, W and V are orthogonal codes with length N (i.e., Walsh 
codes) used to separate the pilot channel from the data channel, Gp is the 
pilot channel power gain relative to the data channel, ck ∈ ±1 is the spreading 
pseudo-random (PN) code, N is the PN code length which is the same as 
the number of chips per bit, that is, N = Tb/Tc, Tb is the bit duration, Tc is the 
chip duration, and g(t) is the chip pulse shape. M is the number of data bits.

The radio channel is modeled as a frequency-selective Rayleigh fading 
channel, which is a common model for mobile radio systems, using narrow-
band transmission. The received signal is given by
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		 (2)
where L is the number of paths, βl is the lth path complex coefficient with 
Rayleigh amplitude and uniform phase distribution over [0, 2π), τl is the 
lth path delay that we would like to estimate, and n(t) is an additive white 
Gaussian noise (AWGN) with zero mean and two-sided power spectral 
density N0/2 that models the effect of the receiver noise.

To maximize the signal-to-noise ratio, the received base-band signal is 
first applied to a chip-matched filter to produce the following signal samples 
at the chip rate:

		  (3)
In conventional PN code acquisition schemes, the output of the chip-

matched filter is correlated with a locally generated PN code with different 
offsets that cover the delay uncertainty region (possibly the whole PN code 
period) as follows:

		  (4)
where the index  indicates the delay offset under test. The correlation results 
in (4) are used to estimate the energy at different delay offsets and a decision 
is made on the existence of the multipath delays based on the highest energy 
values. It is also common to use a preset threshold where only energy values 
that exceed the threshold are declared as potentially correct multipath 
components while others are ignored. Note that in some cases, especially for 
very long PN codes, it is possible to perform the correlation over a fraction 
of the code length and the upper limit in (4) will be less than N −1.

The main objective of the acquisition system is to maximize the 
probability of detection while minimizing the probability of false alarm. 
Based on the outcome of the decision process, we can have one of the 
following events.

•	 Detection: This event occurs when the energy value exceeds 
the threshold and the estimated delay matches one of the actual 
delays of the multipath components in the received signal. We 
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would like to maximize the detection probability to improve the 
performance of the RAKE receiver in detecting the transmitted 
data.

•	 False Alarm: This event occurs when the energy value exceeds 
the threshold but the estimated delay did not match any of the 
actual delays of the multipath components. We would like to 
minimize the false alarm probability since the RAKE receiver 
would be using a signal that has no useful energy to detect the 
data.

•	 Miss: This event occurs when the energy value is below the 
threshold but the delay offset has a correct multipath component. 
We would like to minimize such event since the RAKE receiver 
will not get all useful energy in detecting the data.

It is also noted that there are other performance criteria for evaluating 
code acquisition schemes, such as the mean acquisition time and the 
probability of achieving correct acquisition within a specified period of time 
[23].

BOOLEAN SATISFIABILITY
The last few years have seen significant advances in Boolean satisfiability 
(SAT) solving. These advances have lead to a successful deployment of SAT 
solvers in a wide range of problems in Engineering and Computer Science. 
Given a set of Boolean variables and a set of constraints expressed in 
product-of-sum form, the goal of SAT solver is to find a variable assignment 
that satisfies all constraints or prove that no such assignment exists. The 
term “Satisfiability” emerges from that fact that we are asked to find a 
satisfying assignment, while the term “Boolean” comes from the fact that 
such assignment consists of only true or false variable states.

The SAT problem is usually expressed in conjunctive normal form 
(CNF). A CNF formula φ on n binary variables x1, ... , xn is the conjunction 
(AND) of m clauses ω1, ... ,ωm each of which is a disjunction (OR) of one or 
more literals, where a literal is the occurrence of a variable or its complement. 
A formula φ maps to a unique n-variable Boolean function f (xn, ... , xn) [24]. 
Clearly, a function f can be represented by many equivalent CNF formulas. 
We will refer to a CNF formula as a clause database and use “formula” and 
“CNF formula” interchangeably.



Multipath Detection Using Boolean Satisfiability Techniques 311

A variable x is said to be assigned when its logical value is set to 0 or 1 
and unassigned otherwise. A literal  is a true (false) literal if it evaluates to 1 
(0) under the current assignment to its associated variable, and a free literal 
if its associated variable is unassigned. A clause is said to be satisfied if at 
least one of its literals is true, unsatisfied if all of its literals are false, unit if 
all but a single literal are set to false, and unresolved in the remaining cases. 
A formula is said to be satisfied if all its clauses are satisfied, and unsatisfied 
if at least one of its clauses is unsatisfied. In summary, the SAT problem is 
defined as follows. Given a Boolean formula in CNF, find an assignment of 
variables that satisfies the formula or prove that no such assignment exists.

In the following example, the CNF formula

		  (5)
consists of 3 variables, 3 clauses, and 6 literals. The assignment {a = 1, b = 
0,c = 0} violates the third clause and unsatisfies φ, whereas the assignment 
t {a = 1, b = 0,c = 1} satisfies φ. Note that a problem with n variables will 
have 2N possible assignments for the variables. The above example with 3 
variables has 8 possible assignments.

Despite the SAT problem being NP-Complete [13], there have been 
dramatic improvements in SAT solver technology over the past decade. 
This has lead to the development of several powerful SAT algorithms that 
are capable of solving problems consisting of thousands of variables and 
millions of constraints. Such solvers include GRASP [18], zChaff [17], 
Berkmin [20], MiniSAT [16], and RSat [21]. In the next three subsections, 
we describe the basic SAT search algorithm, recent extensions to the SAT 
solver input, and the use of hardware with SAT.

Backtrack Search
Most modern complete SAT algorithms can be classified as enhancements 
to the basic Davis-Logemann-Loveland (DLL) backtrack search approach 
[25]. The DLL procedure performs a search process that traverses the 
space of 2N variable assignments until a satisfying assignment is found 
(the formula is satisfiable), or all combinations have been exhausted (the 
formula is unsatisfiable). It maintains a decision tree to keep track of 
variable assignments and can be viewed as consisting of three main engines: 
(1) Decision engine that makes elective assignments to the variables, (2) 
Deduction engine that determines the consequences of these assignments, 
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typically yielding additional forced assignments to, that is, implications of, 
other variables, and (3) Diagnosis engine that handles the occurrence of 
conflicts, that is, assignments that cause the formula to become unsatisfiable, 
and backtracks appropriately. An example of a decision tree is shown in 
Figure 1.

Figure 1. An example of a satisfiable SAT instance showing its corresponding 
decision tree.

Recent studies have proposed the use of the conflict analysis procedure 
in the diagnosis engine [18]. The idea is whenever a conflict is detected, 
the procedure analyzes the variable assignments that cause one or more 
clauses to become unsatisfied. Such analysis can identify a small subset of 
variables whose current assignments can be blamed for the conflict. These 
assignments are turned into a conflict-induced clause and augmented with 
the clause database to avoid regenerating the same conflict in future parts 
of the search process. In essence, the procedure performs a form of learning 
from the encountered conflicts. Today, conflict analysis is implemented in 
almost all SAT solvers [16–18, 20, 21].

More Expressive Input
Restricting the input of SAT solvers to CNF formulas can restrict their usage 
in various domains. Therefore, researchers have focused on extending SAT 
solvers to handle stronger input representations. Specifically, SAT solvers 
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[14–16, 19, 22] have recently been extended to handle pseudo-Boolean (PB) 
constraints which are linear inequalities with integer coefficients that can be 
expressed in the normalized form [14] of

		  (6)
where ai, b ∈ Z+ and xi are literals of Boolean variables. Note that any CNF 
clause can be viewed as a PB constraint; for example, clause (a ∨ b ∨ c) is 
equivalent to (a + b + c ≥ 1).

PB constraints can, in some cases, replace an exponential number of 
CNF constraints. They have been found to be very efficient in expressing 
“counting constraints” [14]. Furthermore, PB extends SAT solvers to handle 
optimization problems as opposed to only decision problems. Subject to 
a given set of CNF and PB constraints, one can request the minimization 
(or maximization) of an objective function which consists of a linear 
combination of the problem’s variables:

						      (7)
This feature has introduced many new applications to the SAT domain. 

Recent studies have also shown that SAT-based optimization solvers can in 
fact compete with the best generic integer linear programming (ILP) solvers 
[14, 15].

Hardware-Based SAT Solvers
Note that SAT solvers can be implemented in hardware. Several studies 
proposed the use of FPGA reconfigurable systems to solve SAT problems 
[26–29]. Hardware solvers could be a standalone or as an accelerator where 
the problem is partitioned between the hardware solver and the attached 
computer using software. Many different architectures were proposed to 
solve SAT problems in hardware. Linearly connected set of finite state 
machines, control unit, and deduction logic was proposed in [29]. The 
authors in [29] implemented their algorithm on Xilinx XC4028 FPGA. 
While in [26], the authors proposed a technique for modeling any Boolean 
expression. Their objective is to set the function output to 1. A backtrack 
algorithm is used to propagate the output back to the input and finding an 
assignment of the inputs to satisfy a logical 1 at the output.
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The authors in [27] proposed an architecture for evaluating clauses 
in parallel. In their architecture, the clauses are separated into a number 
of groups and the deduction is performed in parallel. Then the results are 
merged together to allow the assignment to the variables.

A software/hardware solver for SAT was introduced in [28]. In their 
approach, they minimized the hardware compilation time which greatly 
reduced the total time to solve the problem. They also implemented their 
solver on an FPGA.

SAT MODEL FOR PN CODE ACQUISITION
This section describes how to formulate the PN Code acquisition problem as 
a SAT instance to be able to process the received signal and find the delays 
of the L multipath components. As explained earlier, the received baseband 
signal is passed through a chip-matched filter to obtain the signal in (4). This 
signal contains delayed versions of the PN code (multipath components) plus 
a data part and noise. Since we are dealing with Boolean satisfiability (SAT), 
the first step is to convert the matched filter output to a binary sequence zb = 
{zb[0], zb[1], ... , zb[n − 1]} as follows:

		  (8)
Although hard decisions are in general not sufficient statistics for 

estimating the delay, but in the context of the developed SAT model for 
PN acquisition it would be enough to provide an estimate of the received 
PN code and hence allows for the SAT search to be implemented as will be 
discussed later.

The basic idea of the proposed algorithm is to locally generate a block 
of size n of the PN code using the known shift register (SR) structure with 
different initial states. A state is basically the content of the shift register 
at any instant of time. The SAT solver is used to find the initial state that 
would result in a PN sequence that is very close (ideally the same) to the 
received sequence zb. Since an m-stage SR is used, then we will have 2m − 1 
possible initial states to be tested. However, the SAT solver uses intelligent 
algorithms to efficiently traverse the decision tree and quickly find a valid 
solution as described in Section 3. Once a solution is found, that is, finding 
an initial state of the SR that will result in the smallest difference (we also 
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call it distance) between the locally generated PN code and the received 
sequence, the delay of the first multipath component is obtained from this 
initial state. The SAT solver then searches for the next initial state that would 
result in the next smallest distance to find the delay of the second multipath 
component. This process is repeated until all L multipath components are 
detected.

In order to illustrate how the state of the SR can be used to find the 
delay of a multipath component and without loss of generality, we assume a 
2-stage SR used to generate a PN code of length 22 − 1 = 3 chips as shown 
in Figure 2. Both stages are used to generate the feedback input to the SR 
through the XOR gate. Since we have two stages in the SR, there are 3 
possible initial states, and once the SR is clocked at the chip rate, then the 
following states would be generated: {01, 10, 11}, {10, 11, 01}, or {11, 01, 
10} depending on which initial state was used. Suppose that the transmitter 
uses a PN code with initial state of 01 and the channel causes a delay of one 
chip, then the initial state of the PN code to be used by the receiver to match 
the received signal would be 10. On the other hand, if the channel causes a 
two-chip delay, then the solution for the initial state would be 11. Hence, we 
can estimate the channel delay based on the initial state of the SR that would 
result in best match with the received signal.

Figure 2. An example of a network with 8 data bits and 2 SR bits.
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In order to use the advanced SAT solvers to find the L multipath delays 
in the received signal, the problem must be first expressed in the SAT solver 
input format as described in Section 3. To illustrate our approach, let us 
assume a system consisting of n received chips, and a Shift Register (SR) 
with m stages. The code length N is equal to (2m − 1) levels as shown in 
Figure 3.

Figure 3. Sample layout of Shift Register bits.

Three sets of variables are defined for the problem as follow.
•	 A Boolean variable Ci is defined for each chip at the matched 

filter output at sample time i, that is, a total of n variables. A value 
of 1 or 0 for each variable indicates that the corresponding chip 
is a 1 or 0, respectively. Note that this variable is the same as the 
sequence zb that was introduced in (8).

•	 A Boolean variable Qi is defined for each matched filter output as 
the difference between the Ci and the PN code chip, that is, a total 
of n variables.

•	 A Boolean variable Sij is defined for each SR stage i at each level 
j, that is, a total of m × (2m − 1) variables.

Thus, the total number of needed Boolean variables is equal to 2n + m 
× (2m − 1).
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The following set of CNF and PB constraints are generated.
•	 Received Chips Constraints: This constraint is used to set the 

input sequence utilized by the SAT solver to be compared with 
the locally generated PN code. The input sequence is obtained 
from (8). For each received chip i, its corresponding Ci bit is set 
to 0 or 1 depending on the feed data. This can be expressed using 
a single PB constraint per chip as follows:

					    (9)
that is, a total of n PB constraints.

•	 Initial State Constraints: This constraint is used to ensure that the 
initial SR state should have at least one bit assigned to 1 to avoid 
having an all-zero state for the SR. This can be expressed using a 
single PB constraint as follows:

					    (10)
•	 Shifting Constraints: This constraint implements the shifting 

operation as the shift register is clocked; for example, S22 = S11, 
S32 = S21, ..., is expressed using the following equality constraint 
per SR stage:

		  (11)
This results in a total of (m − 1) (2m − 2) equality constraints. Each 

equality constraint of format (x = y) can be expressed using two CNF 
constraints as shown in Table 1.

Table 1. Expressing logical constraints using CNF constraints.

•	 Feedback Constraints: This constraint ensures that the correct 
SR stages as used in the feedback part of the PN code generator. 
The PN code feedback relation is expressed using the following 
XOR constraint per initial SR content:
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		  (12)
where p, q ∈ {1, ... , n} is selected according to the feedback 
connection of the PN code generator. This results in a total of (2m 
− 2) XOR constraints. Each XOR constraint of format (x = y ⊕ 
z) is expressed using four CNF constraints as shown in Table 1.

•	 Difference Constraints: The mismatch between the received chip 
sequence and locally generated PN code, taken from the mth stage 
of the SR and for a given initial state k, is calculated as follows:

	 (13)
This results in n XOR constraints. As mentioned earlier each XOR constraint 
can be expressed using four CNF constraints.

•	 Optimization Function: The objective of the SAT algorithm is 
to search through the possible initial SR states that results in 
minimizing the error (distance) between the received sequence 
and locally generated code. This is expressed using the following 
PB optimization objective:

		  (14)
The algorithm finds the smallest L values of the distance and the 

corresponding SR initial states. Then, the L multipath delays are estimated 
from the states as was explained earlier.

To further illustrate the formulation in SAT input, consider the example 
in Figure 2. The system consists of 8 data bits and 2 SR bits. Hence, the code 
length N is 3. The SAT problem generates a total of 2 × 8 + 2(22 − 1) = 22 
Boolean variables. The figure displays the needed constraints.

SIMULATION RESULTS
In this paper, we simulated a direct-sequence spread spectrum system with a 
PN code of length 2047 (11-stage shift register) operating over a frequency-
selective Rayleigh fading channel with uniform power delay profile and 
a normalized Doppler of 10−3. The Doppler frequency is normalized by 
the PN code length. Every simulation was repeated for 2000 independent 
trials. Although a square pulse shape was used for each chip, other pulse 
shaping methods may be used with no impact on the use of the proposed 
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scheme. The number of paths is assumed to be three. The performance is 
measured by the probability of detecting at least one, two, or three multipath 
components as a function of the signal-to-noise ratio per chip (SNRc). This 
was done by finding the three minimum distances according to (14) and then 
checking if the initial shift register state corresponds to the correct delay 
or not. If the state matches the delay, then detection is declared; otherwise 
a miss is declared; Note that this is possible because we are performing 
simulation analysis, but in practice we expect to use a threshold to decide 
if a path exists or not. The effect of the duration of the correlation period 
used in calculating the difference between the locally generated PN code 
and the received data on the detection probability is also investigated. The 
performance is compared to that of a conventional energy-detector algorithm 
that measures the correlation at every possible offset and selects the energy 
of the three strongest paths. In these simulations, the Boolean Satisfiability 
(SAT) algorithm finds the delays of the three initial states of the SR that 
results in minimum error. All experiments were performed on an Intel Xeon 
3.2 GHz workstation with 4 GB of RAM. We used the PBS 0-1 SAT-based 
ILP solver [14] for all experiments. Note that the above parameters were 
chosen for illustration purposes and are not expected to cause any restriction 
in the application of the proposed algorithm. Figure 4 shows the detection 
probabilities for a relatively short correlation period of 128 chips. It is clear that 
the multipath detection performance is relatively poor for both the SAT-based 
and conventional algorithms, although the latter shows better performance.

Figure 4. Probability of detection with 128 chips correlation.
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The multipath detection performance is shown in Figures 5, 6, and 
7 for a correlation period of 256, 512, and 1024 chips, respectively. The 
results show that the performance improved significantly to about 80% for 
detecting the three paths at an SNRc of zero dB. The detection of at least 
one or two paths is quite high indicating that the algorithm is successful in 
finding these delays. We also remark that as the correlation period increases, 
the SAT-based algorithm performance becomes closer to the conventional 
algorithm. Note that the SAT algorithm finds the correct delays by searching 
through the decision tree in an intelligent way and hence results in a reduced 
number of decisions compared to a brute force search strategy.

Figure 5. Probability of detection with 256 chips correlation.
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Figure 6. Probability of detection with 512 chips correlation.

Figure 7. Probability of detection with 1024 chips correlation.

The SAT-based algorithm searched for the possible states that match 
the received signal with the PN code and the states that result in minimum 
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difference, that is, the minimum distance between the received signal and 
locally generated sequence, is used to find the delay estimate. Figure 8 
shows the minimum distance found at different values of the correlation 
period over an AWGN channel. It is observed that the difference tends to 
decrease as the SNRc increases because the SAT algorithm is supplied with 
more reliable data for the search.

Figure 8. Minimum distance versus SNRc.

Finally, we notice that it is difficult to make a direct comparison of the 
computational cost between the proposed SAT-based algorithm and the 
conventional correlation based since the metrics used by the algorithms 
are different. In particular, the conventional scheme uses the number of 
multiplications and additions needed to search for the multipath components 
and this is typically quantified as N2 multiply-and-add operations where N is 
the PN code length and assumed to be the search window. For the proposed 
SAT scheme, the complexity is measured by the number of decisions made 
while traversing the decision tree to look for a valid solution to the instance. 
The SAT solver uses advanced algorithms to intelligently traverse the 
decision tree and eliminate unsatisfiable paths. Depending on the instance’s 
constraints, the SAT solver might be able to find a solution faster for some 
instances than others. In our simulations, most instances were solved after 
N decisions.
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CONCLUSIONS
A new multipath detection algorithm using Boolean satisfiability (SAT) 
techniques has been presented. The SAT-based algorithm uses the 
deterministic structure of the PN spreading code to perform an intelligent 
search for the possible propagation delays. Simulation results showed that 
the proposed scheme was successful in providing correct delay estimates 
with high reliability over a multipath frequency-selective Rayleigh channel.
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