
MICHAEL HARTL

TUTORIAL BY

TO BE DANGEROUS

COMMAND LINE

LEARN ENOUGH

Learn Enough™ Command Line to Be
Dangerous

Michael Hartl

Contents
1 Basics 4

1.1 Running a terminal . 7
Exercises . 10

1.2 Our first command . 10
Exercises . 14

1.3 Man pages . 14
Exercises . 18

1.4 Editing the line . 20
Exercises . 22

1.5 Cleaning up . 22
Exercises . 23

1.6 Summary . 23
Exercises . 23

2

2 Manipulating files 24
2.1 Redirecting and appending 26

Exercises . 29
2.2 Listing . 29

Exercises . 34
2.3 Renaming, copying, deleting 35

Unix terseness . 38
Exercises . 39

2.4 Summary . 39
Exercises . 39

3 Inspecting files 41
3.1 Downloading a file . 41

Exercises . 44
3.2 Making heads and tails of it 44

Wordcount and pipes . 45
Exercises . 47

3.3 Less is more . 47
Exercises . 51

3.4 Grepping . 52
Exercises . 56

3.5 Summary . 57
Exercises . 57

4 Directories 58
4.1 Structure . 58

Exercises . 61
4.2 Making directories . 63

Exercises . 64
4.3 Navigating directories . 65

Exercises . 69
4.4 Renaming, copying, and deleting directories 69

Grep redux . 71
Exercises . 73

3

4.5 Summary . 73
Exercises . 74

5 Conclusion 75

4

Learn Enough™ Command Line to Be Dangerous is an introduction to the
command line for complete beginners, the first in a series of tutorials designed
to teach the common foundations of “computer magic” (Box 1). It is aimed
both at those who work with software developers and those who aspire to be-
come developers themselves. Learn Enough™ Command Line to Be Danger-
ous assumes no prerequisites other than general computer knowledge (how to
launch an application, how to use a web browser, etc.), which among other
things means that it doesn’t assume you know how to use a text editor, or even
what a text editor is. Indeed, this tutorial doesn’t even assume you know what
a command line is, so if you’re confused by the title, you’re still in the right
place. Finally, even if you already have some familiarity with the command
line, you might enjoy following this tutorial (and doing the exercises) to brush
up on the basics.

Box 1. The magic of computer programming

Computer programming may be as close as we get to magic in the real world:
we type incantations into a machine, and—if the incantations are right—the ma-
chine does our bidding. To perform such magic, computer witches and wizards
rely not only on words, but also on wands, potions, and an ancient tome or two.
Taken together, these tricks of the trade are known as software development: com-
puter programming, plus tools like command lines, text editors, and version con-
trol. Knowledge of these tools is perhaps the main line between “technical” and
“non-technical” people (or, to put it in magical terms, between wizards or witches
and Muggles). The present tutorial represents the first step needed to cross this
line and learn enough software development to be dangerous—to be able to cast
computer spells, and get the machine to do our bidding.

My name is Michael Hartl, and I am perhaps best known as the creator of the
Ruby on Rails Tutorial, a book and screencast series that together constitute one
of the leading introductions to web development. (You may also know me, in my
more mathematical mode, as the founder of Tau Day and author of The Tau Man-
ifesto.) One of the most frequently asked questions about the Rails Tutorial is,
“Is the Rails Tutorial good for complete beginners?” The answer is, “Not really.”

5

http://learnenough.com/
http://learnenough.com/text-editor
https://en.wikipedia.org/wiki/Muggle
http://learnenough.com/
http://www.michaelhartl.com/
http://www.railstutorial.org/
http://railstutorial.org/book
http://screencasts.railstutorial.org/
http://tauday.com/
http://tauday.com/tau-manifesto
http://tauday.com/tau-manifesto

While it is possible for complete beginners to learn web development with the
Ruby on Rails Tutorial (and an impressively large number have), it can be chal-
lenging and occasionally frustrating, and I don’t generally recommend it. Instead,
I recommend starting here.

Many programming tutorials either gloss over the command line or assume
you already know it. But understanding the basics of the command line is
absolutely essential to becoming a skilled developer.1 Indeed, if you look at
the desktop of an experienced computer programmer, even on a system with a
polished graphical user interface like Macintosh OS X, you are likely to find a
large number of “terminal windows”, each containing a series of commands at
a command line (Figure 1). Proficiency at the command line is also useful for
anyone who needs to work with developers, such as product managers, project
managers, and designers.2 Making this valuable skill accessible to as broad
an audience as possible is the goal of Learn Enough™ Command Line to Be
Dangerous.

1 Basics
As author Neal Stephenson famously put it, “In the Beginning was the Com-
mand Line.” Although a graphical user interface (GUI) can dramatically sim-
plify computer use, in many contexts the most powerful and flexible way to
interact with a computer is through a command-line interface (CLI). In such an
interface, the user types commands that tell the computer to perform desired
tasks. These commands can then be combined in various ways to achieve a
variety of outcomes. An example of a typical command-line command appears
in Figure 2.

This tutorial covers the basics of the Unix command line, where Unix refers
to a family of operating systems that includes Linux, Android, iOS, and Mac-

1As discussed in Section 1, this statement applies to the Unix tradition, which is the principal computing
tradition behind the Internet and the World Wide Web, and the tradition followed by this tutorial.

2Knowing the command line is also essential for system administrators (sysadmins).

6

https://en.wikipedia.org/wiki/Neal_Stephenson
http://www.cryptonomicon.com/beginning.html
http://tron.wikia.com/wiki/User
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/System_administrator

Figure 1: Terminal windows on the desktop of an experienced developer.

Figure 2: A typical command-line command.

7

intosh OS X.3 Unix systems serve most of the software on the World Wide
Web, run most mobile and tablet devices, and power many of the world’s desk-
top computers as well. As a result of Unix’s central role in modern computing,
this tutorial covers the Unix way of developing software. The main exception to
Unix’s dominance is Microsoft® Windows™, which is not part of the Unix tra-
dition, but those who mostly develop using native Windows development tools
will still benefit from learning the Unix command line. Among other things, at
some point such users are likely to need to issue commands on a Unix server
(e.g., via the “secure shell” command ssh), at which point familiarity with
Unix commands becomes essential. As a result, Windows users are strongly
encouraged to run a free Linux virtual machine (as described in Box 2) in or-
der to get the most out of this tutorial. Another good option is to use a cloud
IDE4 such as Cloud9; to go this route, follow the “Development environment”
section in the Ruby on Rails Tutorial book.

Box 2. Running a virtual machine

In order to complete this tutorial, Windows users should install a couple of
free programs to run a virtual machine (a simulation of a computer) that allows
Windows to host a version of the Linux operating system. The steps appear as
follows:

1. Install the right version of VirtualBox for your system (free).

2. Download the TutorialPath Virtual Machine (large file).

3. Once the download is complete, double-click the resulting “OVA” file and
follow the instructions to install the Virtual Machine (VM).

4. Double-click the VM itself and log in using the default user’s password,
which is “foobar!”.

3In a fairly typical turn of events, the name Unix started as a pun on a rival system called Multics.
4An IDE, or integrated development environment, typically integrates several development tools (such as a

command line and a text editor) into one application.

8

http://c9.io/
https://www.railstutorial.org/book/beginning#sec-development_environment
http://railstutorial.org/book
https://www.virtualbox.org/
https://softcover-static.s3.amazonaws.com/TutorialPath-v.1.3.ova
http://www.catb.org/jargon/html/U/Unix.html

Figure 3: A Linux virtual machine running inside a host OS.

The result will be a Linux desktop environment (including a command-line termi-
nal program) pre-configured for this tutorial (Figure 3).

In the longer run, I recommend switching to a Mac as soon as possible. You
might have to save up a bit, as Macs are generally more expensive than Windows
machines, but in most cases the increased productivity will quickly pay for the
difference. (If you find yourself liking Linux, feel free to stick with it, but Macs
are generally easier to use with a better user interface. Plus, you can always run
Linux inside a VM, even on a Mac.)

1.1 Running a terminal
To run a command-line command, we first need to start a terminal, which is the
program that gives us a command line. On Macintosh OS X, you can open a

9

Figure 4: A terminal window.

terminal window with Spotlight by typing (Command-space) or by clicking
on the magnifying glass in the upper right and typing “terminal”;5 on Linux,
you can click the terminal icon as shown in Figure 3. The result should be
something like Figure 4, although the exact details on your system will likely
differ.

The example we saw in Figure 2 includes all of the typical elements of
a command: the prompt followed by a command, an option, and an argument
(Figure 5). It’s essential to understand that the prompt is supplied automatically
by the terminal, and you do not need to type it. (Indeed, if you do type it, it will
likely result in an error.) Moreover, the exact details of the prompt will differ,
and are not important for the purposes of this tutorial (Box 3).

5If you use OS X and are interested in using a more advanced and customizable terminal program, I recom-
mend installing iTerm, but this step is optional.

10

https://www.iterm2.com/

Figure 5: Anatomy of a command line. (Your prompt may differ.)

Box 3. What is the prompt?

Every command line starts with some symbol or symbols designed to “prompt”
you to action. The prompt usually ends with a dollar sign $, and is preceded by
information that depends on the details of your system. For example, on some
systems the prompt might look like this:

Michael's MacBook Air:~ mhartl$

In Figure 4, the prompt looks like this instead:

[~]$

and in Figure 5 it looks like this:

[projects]$

Finally, the prompt I’m looking at right now looks like this:

[learn_enough_command_line (master)]$

For the purposes of this tutorial, the details of the prompt are not important, but
we will discuss useful ways to customize the prompt starting in the next tutorial
after this one (Learn Enough™ Text Editor to Be Dangerous).

11

http://learnenough.com/text-editor

Exercises

Learn Enough™ Command Line to Be Dangerous includes a large number of
exercises. I strongly recommend getting in the habit of completing them before
moving on to the next section, as they reinforce the material we’ve just covered
and will give you essential practice in using the many commands discussed.

1. By referring to Figure 5, identify the prompt, command, options, argu-
ments, and cursor in each line of Figure 6.

2. Most modern terminal programs have the ability to create multiple tabs,
which are useful for organizing a set of related terminal windows. (For
example, when developing web applications, in addition to my main
command-line tab I often have separate tabs for running a local web
server and an automated test suite.) By examining the menu items for
your terminal program, figure out how to create a new tab. Extra credit:
Learn the keyboard shortcut for creating a new tab. (Learning keyboard
shortcuts for your system is an excellent habit to cultivate.)

1.2 Our first command
We are now prepared to run our first command, which prints the word “hello”
to the screen. (The place where characters get printed is known as “standard
out”, which is usually just the screen, and rarely refers to a physical printer.)
The command is echo, and the argument is the string of characters that we
want to print. To run the echo command, type “echo hello” at the prompt, and
then press the Return key (also called Enter):

$ echo hello
hello
$

(I recommend always typing the commands out yourself, which will let you
learn more than if you rely on copying and pasting.) Here we see that echo

12

Figure 6: A series of typical commands.

13

hello prints “hello” and then returns another prompt. Note that, for brevity,
I’ve omitted all characters in the prompt except the trailing dollar sign $.

Just to make the pattern clear, let’s try a second echo command:

$ echo "goodbye"
goodbye
$ echo 'goodbye'
goodbye
$

Note here that we’ve wrapped “goodbye” in quotation marks—and we also see
that we can use either double quotes, as in "goodbye", or single quotes, as
in ’goodbye’. Such quotes can be used to group strings visually, though in
many contexts they are not required by echo (Listing 1).

Listing 1: Printing “hello, goodbye” two different ways.

$ echo hello, goodbye
hello, goodbye
$ echo "hello, goodbye"
hello, goodbye
$

One thing that can happen when using quotes is accidentally not matching
them, as follows:

$ echo "hello, goodbye
>

At this point, it seems we’re stuck. There are specific ways out of this quandary
(in fact, in this case you can just add a closing quote and hit return), but it’s good
to have a general strategy for getting out of trouble (Figure 7).6 This strategy is
called “Ctrl-C” (Box 4).

6Image retrieved from https://www.flickr.com/photos/pheezy/5875298232 on 2015-07-19

14

Figure 7: This cat appears to be stuck and should probably hit Ctrl-C.

Box 4. Getting out of trouble

When using the command line, there are lots of things that can get you in
trouble, by which I mean the terminal will just hang or otherwise end up in a
state that makes entering further commands difficult or impossible. Here are some
examples of such commands:

$ echo "hello

$ grep foobar

$ yes

$ tail

$ cat

15

In every case, the solution is the same: hit Ctrl-C (pronounced “control-
see”). Here Ctrl refers to the “control” key on your keyboard, and C refers to the
key labeled “C”. Ctrl-C thus means “While holding down the control key, press
C.” In particular, C does not refer to the capital letter C, so you should not press
Shift in addition to Ctrl. (Ctrl-C sends a control code to the terminal and has
nothing to do with producing a capital C when typing normal text.) The result of
typing Ctrl-C is sometimes written as ^C, like this:

$ tail
^C

The origins of Ctrl-C are somewhat obscure, but as a mnemonic I like to
think of it as meaning “cancel”. However you remember it, do remember it: when
you get into trouble at the command line, your best bet is usually to hit Ctrl-C.

Note: When Ctrl-C fails, 90% of the time hitting ESC (escape) will do the
trick.

Exercises

1. Write a command that prints out the string “hello, world”. Extra credit:
As in Listing 1, do it two different ways, both with and without using
quotation marks.

2. Type the command echo ’hello (with a mismatched single quote),
and then get out of trouble using the technique from Box 4.

1.3 Man pages
The program we’re using to run a command line, which is technically known
as a shell,7 includes a powerful (though often cryptic) tool to learn more about

7Many introductions to the command line cover elements of the shell that require knowledge of a text editor,
knowledge which (as noted in the introduction) this tutorial does not assume. As a result, we’ll defer these

16

https://en.wikipedia.org/wiki/Control-C

available commands. This tool is itself a command-line command called man
(short for “manual”). Its argument is the name of the command (such as echo)
that we want to learn more about. The details are system-dependent, but on my
system the result of running man echo appears as in Listing 2.

Listing 2: The result of running man echo.

$ man echo
ECHO(1) BSD General Commands Manual ECHO(1)

NAME
echo -- write arguments to the standard output

SYNOPSIS
echo [-n] [string ...]

DESCRIPTION
The echo utility writes any specified operands, separated by single blank
(` ') characters and followed by a newline (`\n') character, to the stan-
dard output.

The following option is available:

-n Do not print the trailing newline character. This may also be
achieved by appending `\c' to the end of the string, as is done by
iBCS2 compatible systems. Note that this option as well as the
effect of `\c' are implementation-defined in IEEE Std 1003.1-2001
(``POSIX.1'') as amended by Cor. 1-2002. Applications aiming for
maximum portability are strongly encouraged to use printf(1) to
suppress the newline character.

:

On the last line of Listing 2, note the presence of a colon :, which indi-
cates that there is more information below. The details of this last line are
system-dependent, but on any system you should be able to access subsequent
information one line at a time by pressing the down arrow key, or one page at
a time by pressing the spacebar. To exit the man page, press “q” (for “quit”).
(This interface to the man pages is the same as for the less program, which
we’ll learn about in Section 3.3.)

important topics to the follow-on tutorials to this one (Section 5), starting with Learn Enough™ Text Editor to Be
Dangerous.

17

http://learnenough.com/text-editor
http://learnenough.com/text-editor

Figure 8: Applying man to man.

18

Because man itself is a command, we can apply man to man (Figure 8),8 as
shown in Listing 3.

Listing 3: The result of running man man.

$ man man
man(1) man(1)

NAME
man - format and display the on-line manual pages

SYNOPSIS
man [-acdfFhkKtwW] [--path] [-m system] [-p string] [-C config_file]
[-M pathlist] [-P pager] [-B browser] [-H htmlpager] [-S section_list]
[section] name ...

DESCRIPTION
man formats and displays the on-line manual pages. If you specify sec-
tion, man only looks in that section of the manual. name is normally
the name of the manual page, which is typically the name of a command,
function, or file. However, if name contains a slash (/) then man
interprets it as a file specification, so that you can do man ./foo.5
or even man /cd/foo/bar.1.gz.

See below for a description of where man looks for the manual page
files.

OPTIONS
-C config_file

:

We can see from Listing 3 that the synopsis of man looks something like
this:

man [-acdfFhkKtwW] [--path] [-m system] [-p string] ...

Crazy, right? This is what I meant above when I described man pages as “often
cryptic”. Indeed, in many cases I find the details of man pages to be almost
impossible to understand, but being able to scan over the man page to get a
high-level overview of a command is a valuable skill, one worth acquiring. To

8Image retrieved from https://commons.wikimedia.org/wiki/File:Jazz_at_Knicks_man_to_man_defense.jpg
on 2015-07-22

19

get used to reading man pages, I recommend running man <command name>
when encountering a new command. Even if the details aren’t entirely clear,
reading the man pages will help develop the valuable skill of technical sophis-
tication (Box 5).

Box 5. Technical sophistication

In mathematics, many subjects that can be developed by applying pure de-
duction to a small number of assumptions, or axioms. Examples include algebra,
geometry, number theory, and analysis. As a result, such subjects are completely
self-contained, and thus have no formal prerequisites. In principle, even a small
child could learn the subject from scratch. In practice, though, something else is
required, and mathematicians often recommend the informal prerequisite of math-
ematical maturity, which consists of the experience and general sophistication
needed to understand and write mathematical proofs.

In technology, a similar skill (or, more accurately, set of skills) exists in the
form of technical sophistication. Essentially, this consists of a miscellaneous
toolkit of computer tricks, combined with an attitude of getting the machine to
do your bidding (Box 1). As shown in Figure 9, technical sophistication includes
things like looking for promising menu items and knowing the kinds of search
terms to drop into Google. These skills are hard to teach directly, so as you
progress through this and subsequent Learn Enough™ tutorials, always be on the
lookout for opportunities to increase your technical sophistication by adding tools
to your kit (including, for example, the ability to get the gist of a program by scan-
ning its man page (Section 1.3)). Over time, the cumulative effect will be that, like
the author of Figure 9, you’ll have the seemingly magical ability to do everything
in every program.

Exercises

1. According to the man page, what is the official description of echo on
your system?

20

http://learnenough.com/

Figure 9: “Tech Support Cheat Sheet” (via xkcd.com). The only thing missing is “Have you
tried rebooting?”

21

https://xkcd.com/627/
http://xkcd.com/

2. The usual way of running echo includes a newline character (“enter”
or “return”) that puts the new prompt on a separate line, but there is a
command-line option to prevent this. By reading the man page for echo,
determine the command needed to print out “hello” without the trailing
newline, and verify using your terminal that it works as expected. Hint:
The result should look something like hello[...]$, where [...] rep-
resents the unimportant details of your prompt. (Note: This exercise may
fail when using the default terminal program on some older versions of
Macintosh OS X. In this case, I recommend installing iTerm (which isn’t
a bad idea anyway).)

1.4 Editing the line
Command lines include several features to make it easy to repeat previous com-
mands, possibly in edited form. The most basic is “up arrow”, which simply
retrieves the previous command. Pressing up arrow again moves further up the
list of commands, while down arrow goes back toward the bottom.

When typing a new command, or dealing with a previous command, it is
often convenient to be able to move quickly within the line. For example,
suppose we typed

$ goodbye

only to realize that we wanted to put echo in front of it. We could use the left
arrow key to get to the beginning of the line, but it’s easier to type Ctrl-A,
which takes us there immediately. Similarly, Ctrl-E moves to the end of the
line.9 Finally, Ctrl-U clears to the beginning of the line and lets us start over.

The combination of Ctrl-A, Ctrl-E, and Ctrl-U will work on most sys-
tems, but they don’t do you much good if you’re editing a longer line, such
as this one containing the first line of Sonnet 1 by William Shakespeare (List-
ing 4).

9There are also commands for moving one word at a time (ESC F and ESC B), but I hardly ever use them
myself, so it’s clear they are not required to be dangerous.

22

https://www.iterm2.com/
http://www.shakespeares-sonnets.com/sonnet/1

Figure 10: The original appearance of Shakespeare’s first sonnet.

Listing 4: Printing the first line of Shakespeare’s first sonnet.

$ echo "From fairest creatures we desire increase,"

Suppose we wanted to change “From” to “FRom” to more closely match the
text from the original sonnet (Figure 10).10 We could type Ctrl-A followed
by the right arrow key a few times, but on some systems it’s possible to move
directly to the desired spot by combining the keyboard and mouse via Option-
click. That is, you can hold down the Option key on your keyboard, and then
click with the mouse pointer on the place in the command were you want the
cursor. This would let us move right to the “o” in “From”, allowing us to delete
the “r” and yielding Listing 5 directly.

10Note that the Original Pronunciation (OP) of Shakespearean English is different from modern pronunci-
ation. Generally speaking, Shakespeare’s sonnets include many word pairs that don’t rhyme in modern En-
glish but do in OP. In the case of Figure 10, the word “memory” should be pronounced “MEM-or-aye”,
leading to a rhyme between lines 2 and 4 (ending in die and memory, respectively). Image retrieved from
https://commons.wikimedia.org/wiki/File:Sonnet_1.jpg on 2015-07-20

23

http://originalpronunciation.com/

Listing 5: The result of editing a longer command-line command.

$ echo "FRom fairest creatures we desire increase,"

I usually move around the command line with a combination of Ctrl-A,
Ctrl-E, and right & left arrow keys, but for longer commands Option-click
can be a big help. (I also frequently change my mind about the exact command
I’m typing, in which case I usually find that hitting Ctrl-U and starting over
again is the fastest way to proceed.)

Exercises

1. Using the up arrow, print to the screen the strings “fee”, “fie”, “foe”, and
“fum” without retyping echo each time.

2. Starting with the line in Listing 4, use any combination of Ctrl-A,
Ctrl-E, arrow keys, or Option-click to change the occurrences of the
short s to the archaic long s “s” in order to match the appearance of the
original (Figure 10). In other words, the argument to echo should read
“FRom fairest creatures we desire increase,”. Hint: It’s unlikely that your
keyboard can produce “s” natively, so either copy it from the text of this
tutorial or Google for it and copy it from the Internet.

1.5 Cleaning up
When using the command line, sometimes it’s convenient to be able to clean
up by clearing the screen, which we can do with clear:

$ clear

A keyboard shortcut for this is Ctrl-L.
Similarly, when we are done with a terminal window (or tab) and are ready

to exit, we can use the exit command:

24

https://en.wikipedia.org/wiki/Long_s
http://lmgtfy.com/?q=unicode+long+s

Command Description Example
echo <string> Print string to screen $ echo hello
man <command> Display manual page for command $ man echo
Ctrl-C Get out of trouble $ tail^C
Ctrl-A Move to beginning of line
Ctrl-E Move to end of line
Ctrl-U Delete to beginning of line
Option-click Move cursor to location clicked
Up & down arrow Scroll through previous commands
clear or Ctrl-L Clear screen $ clear
exit or Ctrl-D Exit terminal $ exit

Table 1: Important commands from Section 1.

$ exit

A keyboard shortcut for this is Ctrl-D.

Exercises

1. Clear the contents of the current tab.

2. Open a new tab, execute echo ’hello’, and then exit.

1.6 Summary
Important commands from this section are summarized in Table 1.

Exercises

1. Write a command to print the string Use "man echo", including the
quotes; i.e., take care not to print out Use man echo instead. Hint:
Use double quotes in the inner string, and wrap the whole thing in single
quotes.

25

2. By running man sleep, figure out how to make the terminal “sleep” for
5 seconds, and execute the command to do so. After waiting the requisite
5 seconds, execute the command to sleep for 5000 seconds, realize that’s
well over an hour, and then use the instructions from Box 4 to get out of
trouble.

2 Manipulating files
Because this is a command-line tutorial, we’re not going to assume any famil-
iarity with programs designed to edit text. (Such programs, called text editors,
are the subject of the next tutorial in the sequence, Learn Enough™ Text Editor
to Be Dangerous.) This means that we’ll need to create files by hand at the
command line. But this is a feature, not a bug (Box 6), because learning to
create files at the command line is a valuable skill in itself.

Box 6. Learning to speak “geek”

One important part of learning software development is becoming familiar
with the hacker, nerd, and geek culture from which much of it springs. For ex-
ample, the phrase “It’s not a bug, it’s a feature” is a common way of recasting a
seeming flaw as a virtue. As the Urban Dictionary puts it:

It’s not a bug, it’s a feature
Excuse made by software developers when they try to convince the
user that a flaw in their program is actually what it’s supposed to be
doing.

The Jargon File, which includes an enormous and entertaining lexicon of
hacker terms, expands on this theme in its entry on feature:

Undocumented feature is a common, allegedly humorous euphemism
for a bug. There’s a related joke that is sometimes referred to as the

26

http://learnenough.com/text-editor
http://learnenough.com/text-editor
http://www.urbandictionary.com/define.php?term=It%27s+not+a+bug%2C+it%27s+a+feature&defid=6751775
http://www.catb.org/jargon/html/
http://www.catb.org/jargon/html/go01.html
http://www.catb.org/jargon/html/H/hacker.html
http://www.catb.org/jargon/html/F/feature.html
http://www.catb.org/jargon/html/B/bug.html

Figure 11: It’s not a bug, it’s a feature.

“one-question geek test”. You say to someone “I saw a Volkswa-
gen Beetle today with a vanity license plate that read FEATURE”.
If he/she laughs, he/she is a geek.

The joke here is that, because “bug” is a common slang term for a Volkswagen
Beetle, a Beetle with the vanity plate FEATURE is a real-life manifestation of
“It’s not a bug, it’s a feature” (Figure 11).

27

http://www.catb.org/jargon/html/G/geek.html

2.1 Redirecting and appending
Let’s pick up (more or less) where we left off in Section 1, with an echo com-
mand to print out the first line of Shakespeare’s first sonnet (Listing 4):

$ echo "From fairest creatures we desire increase,"
From fairest creatures we desire increase,

Our task now is to create a file containing this line. Even without the benefit of
a text editor, it is possible to do this using the redirect operator >:

$ echo "From fairest creatures we desire increase," > sonnet_1.txt

(Recall that you can use up arrow to retrieve the previous command rather than
typing it from scratch.) Here the right angle bracket > takes the string output
from echo and redirects its contents to a file called sonnet_1.txt.

How can we tell if the redirect worked? We’ll learn some more advanced
command-line tools for inspecting files in Section 3, but for now we’ll use the
cat command, which simply dumps the contents of the file to the screen:

$ cat sonnet_1.txt
From fairest creatures we desire increase,

The name cat is short for “concatenate”, which is a hint that it can be used
to combine the contents of multiple files, but the usage above (to dump the
contents of a single file) is extremely common. Think of cat as a “quick-and-
dirty” way to view the contents of a particular file (Figure 12).11

In order to add the second line of the sonnet (in modernized spelling), we
can use the append operator » as follows:

11Image retrieved from https://www.flickr.com/photos/tiffanyday/4076289684 on 2015-07-22

28

http://dictionary.reference.com/browse/concatenate

Figure 12: Viewing a file with cat.

29

$ echo "That thereby beauty's Rose might never die," >> sonnet_1.txt

This just adds the line to the end of the given file. As before, we can see the
result using cat:

$ cat sonnet_1.txt
From fairest creatures we desire increase,
That thereby beauty's Rose might never die,

(To get to this command, I hope you just hit up arrow twice instead of retyping
it. If so, you’re definitely getting the hang of this.) The result above shows
that the double right angle bracket » appended the string from echo to the file
sonnet_1.txt as expected.

Modernized treatments of the Sonnets sometimes emend Rose to rose
(thereby obscuring the likely meaning), and we can make a second file fol-
lowing this convention using two more calls to echo:

$ echo "From fairest creatures we desire increase," > sonnet_1_lower_case.txt
$ echo "That thereby beauty's rose might never die," >> sonnet_1_lower_case.txt

In order to facilitate the comparison of files that are similar but not identical,
Unix systems come with the helpful diff command:

$ diff sonnet_1.txt sonnet_1_lower_case.txt
< That thereby beauty's Rose might never die,

> That thereby beauty's rose might never die,

When discussing computer files, diff is frequently employed both as a noun
(“What’s the diff between those files?”) and as a verb (“You should diff the
files to see what changed.”). As with many technical terms, this sometimes
bleeds over into common usage, such as “Diff present ideas against those of
various past cultures, and see what you get.”12

12From the essay “What You Can’t Say” by Paul Graham (2004). As Graham notes:

30

http://dictionary.reference.com/browse/emend
https://en.wikipedia.org/wiki/Tudor_rose
http://www.paulgraham.com/say.html
http://paulgraham.com
http://www.paulgraham.com/saynotes.html

Exercises

At the end of each of the exercises below, use the cat command to verify your
answer.

1. Using echo and >, make files called line_1.txt and line_2.txt
containing the first and second lines of Sonnet 1, respectively.

2. Replicate the original sonnet_1.txt (containing the first two lines of
the sonnet) by first redirecting the contents of line_1.txt and then ap-
pending the contents of line_2.txt. Call the new file sonnet_1_co-
py.txt, and confirm using diff that it’s identical to sonnet_1.txt.
Hint: When there is no diff between two files, diff simply outputs noth-
ing.

3. Use cat to combine the contents of line_1.txt and line_2.txt in
reverse order using a single command, yielding the file sonnet_1_re-
versed.txt. Hint: The cat command can take multiple arguments.

2.2 Listing
Perhaps the mostly frequently typed command on the Unix command line is
ls, short for “list” (Listing 6).

Listing 6: Listing files and directories with ls. (Output will vary.)

$ ls
Desktop
Downloads
sonnet_1.txt
sonnet_1_reversed.txt

The verb “diff” is computer jargon, but it’s the only word with exactly the sense I want. It
comes from the Unix diff utility, which yields a list of all the differences between two files.
More generally it means an unselective and microscopically thorough comparison between two
versions of something.

31

Figure 13: The graphical equivalent of ls.

The ls command simply lists all the files and directories in the current di-
rectory (except for those that are hidden, which we’ll learn more about in a
moment). In this sense, it’s effectively a command-line version of the graph-
ical browser used to show files and directories (also called “folders”), as seen
in Figure 13. (We’ll sharpen our understanding of directories and folders in
Section 4.) As with a graphical file browser, the output in Listing 6 is just a
sample, and results will differ based on the details of your system. (This goes
for all the ls examples, so don’t be concerned if there are minor differences in
output.)

The ls command can be used to check if a file (or directory) exists, because
trying to ls a nonexistent file results in an error message, as seen in Listing 7.

Listing 7: Running ls on a nonexistent file.

$ ls foo
ls: foo: No such file or directory
$ touch foo
$ ls foo
foo

32

Listing 7 uses the touch command to create an empty file with name foo
(Box 7), so the second time we run ls the error message is gone. (The stated
purpose of touch is to change the modification time on files or directories, but
(ab)using touch to create empty files as in Listing 7 is a common Unix idiom.)

Box 7. Foo, bar, baz, etc.

When reading about computers, you will encounter certain strange words—
words like foo, bar, and baz—with surprising frequency. Indeed, in addition to ls
foo and touch foo, we have already seen four such references in this tutorial:
in a typical command-line command (Figure 2), in a virtual machine password
(foobar!, Box 2), again when getting out of trouble (grep foobar, Box 4),
and yet again in a man page (Listing 3). The first three were my own uses, but the
last I had nothing to do with:

...if name contains a slash (/) then man interprets
it as a file specification, so that you can do man
./foo.5 or even man /cd/foo/bar.1.gz.

Here we see both foo and bar making an appearance in the man page for man
itself—an unambiguous testament to their ubiquity in computing.

What is the origin of these odd terms? As usual, the Jargon File (via its entry
on foo) enlightens us:

foo: /foo/

1. interj. Term of disgust.

2. [very common] Used very generally as a sample name for abso-
lutely anything, esp. programs and files (esp. scratch files).

3. First on the standard list of metasyntactic variables used in syntax
examples. See also bar, baz, qux, quux, etc.

When ‘foo’ is used in connection with ‘bar’ it has generally traced to
the WWII-era Army slang acronym FUBAR [see original meaning],

33

http://www.catb.org/jargon/html/
http://www.catb.org/jargon/html/F/foo.html
http://www.catb.org/jargon/html/M/metasyntactic-variable.html
http://www.catb.org/jargon/html/B/bar.html
http://www.catb.org/jargon/html/B/baz.html
http://www.catb.org/jargon/html/Q/qux.html
http://www.catb.org/jargon/html/Q/quux.html
http://www.catb.org/jargon/html/F/FUBAR.html
http://www.urbandictionary.com/define.php?term=fubar

later modified to foobar. Early versions of the Jargon File interpreted
this change as a post-war bowdlerization, but it it [sic] now seems
more likely that FUBAR was itself a derivative of ‘foo’ perhaps influ-
enced by German furchtbar (terrible) — ‘foobar’ may actually have
been the original form.

Following the link to metasyntactic variables, we then find the following:

metasyntactic variable: n.

A name used in examples and understood to stand for whatever thing
is under discussion, or any random member of a class of things under
discussion. The word foo is the canonical example. To avoid confu-
sion, hackers never (well, hardly ever) use foo or other words like it as
permanent names for anything. In filenames, a common convention is
that any filename beginning with a metasyntactic-variable name is a
scratch file that may be deleted at any time.

Metasyntactic variables are so called because (1) they are variables
in the metalanguage used to talk about programs, etc.; (2) they are
variables whose values are often variables (as in usages like the value
of f(foo,bar) is the sum of foo and bar). However, it has been plausibly
suggested that the real reason for the term metasyntactic variable is
that it sounds good.

A common pattern when using the command line is changing directories
using cd (covered in Section 4) and then immediately typing ls to view the
contents of the directory. This lets you orient yourself and is a good first step
toward whatever your next action might be.

One useful ability of ls is support for the wildcard character * (read
“star”). For example, to list all files ending in “.txt”, we would type this:

34

http://www.catb.org/jargon/html/F/foobar.html
https://en.wikipedia.org/wiki/Sic
http://www.catb.org/jargon/html/M/metasyntactic-variable.html

$ ls *.txt
sonnet_1.txt
sonnet_1_reversed.txt

Here *.txt (read “star dot tee-ex-tee”) automatically expands to all the file-
names that match the pattern “any string followed by .txt”.

There are three particularly important optional forms of ls, starting with
the “long form”, using the option -l (read “dash-ell”):

$ ls -l *.txt
total 16
-rw-r--r-- 1 mhartl staff 87 Jul 20 18:05 sonnet_1.txt
-rw-r--r-- 1 mhartl staff 294 Jul 21 12:09 sonnet_1_reversed.txt

For now, you can safely ignore most of the information output by ls -l, but
note that the long form lists a date and time indicating the last time the file was
modified. The number before the date is the size of the file, in bytes.13

A second powerful ls variant is “list by reversed time of modification (long
format)”, or ls -rtl. This is particularly useful when there are a lot of files
in the directory, but you really only care about seeing the ones that have been
modified recently, such when confirming a file download. We’ll see an example
of this in Section 3.1, but you are free to try it now:

$ ls -rtl
<results system-dependent>

By the way, -rtl is the commonly used compact form, but you can also pass
the options individually, like this:

$ ls -r -t -l

13A bit is one piece of yes-or-no information (such as a 1 or a 0), and a byte is eight bits. Bytes are probably
most familiar from “megabytes” and “gigabytes”, which represent a million and a billion bytes, respectively. (The
official story is a little more complicated, but level of detail here is certainly enough to be dangerous.)

35

https://en.wikipedia.org/wiki/Megabyte

In addition, their order is irrelevant, so typing ls -trl gives the same result.
Finally, Unix has the concept of “hidden files (and directories)”, which

don’t show up by default when listing files. Hidden files and directories are
identified by starting with a dot ., and are commonly used for things like stor-
ing user preferences. For example, in Learn Enough™ Git to Be Dangerous,
we’ll create a file called .gitignore that tells a particular program (Git) to
ignore files matching certain patterns. As a concrete example, to ignore all files
ending in “.txt”, we could do this:

$ echo "*.txt" > .gitignore
$ cat .gitignore
*.txt

If we then run ls, the file won’t show up, because it’s hidden:

$ ls
sonnet_1.txt
sonnet_1_reversed.txt

To get ls to display hidden files and directories, we need to pass it the -a
option (for “all”):

$ ls -a
. .gitignore sonnet_1_reversed.txt
.. sonnet_1.txt

Now .gitignore shows up, as expected. (We’ll learn what . and .. refer to
in Section 4.3.)

Exercises

1. What’s the command to list all the files (and directories) that start with
the letter “s”?

2. What is the command to list all the files that contain the string “onnet”,
long-form by reverse modification time? Hint: Use the wildcard operator
twice.

36

http://learnenough.com/git

3. What is the command to list all files (including hidden ones) by reverse
modification time, in long form?

2.3 Renaming, copying, deleting
Next to listing files, probably the most common file operations involve renam-
ing, copying, and deleting them. As with listing files, most modern operating
systems provide a graphical user interface to such tasks, but in many contexts
it is more convenient to perform them at the command line.

The way to rename a file is with the mv command, short for “move”:

$ echo "test text" > test
$ mv test test_file.txt
$ ls
test_file.txt

This renames the file called test to test_file.txt. The final step in the
example runs ls to confirm that the file renaming was successful, but system-
specific files other than the test file are omitted from the output shown. (The
name “move” comes from the general use of mv to move a file to a different
directory (Section 4), possibly renaming it en route. When the origin and target
directories coincide, such a “move” reduces to a simple renaming.)

The way to copy a file is with cp, short for “copy”:

$ cp test_file.txt second_test.txt
$ ls
second_test.txt
test_file.txt

Finally, the command for deleting a file is rm, for “remove”:

$ rm second_test.txt
remove second_test.txt? y
$ ls second_test.txt
ls: second_test.txt: No such file or directory

37

Note that, on many systems, by default you will be prompted to confirm the
removal of the file. Any answer starting with the letter “y” or “Y” will cause
the file to be deleted, and any other answers will prevent the deletion from
occurring.

By the way, in the calls to cp and rm above, I would almost certainly
not type out test_file.txt or second_test.txt. Instead, I would type
something like test<tab> or sec<tab> (where <tab> represents the tab
key), thereby making use of tab completion (Box 8).

Box 8. Tab completion

Most modern command-line programs (shells) support tab completion, which
involves automatically completing a word if there’s only one valid match on the
system. For example, if the only file starting with the letters “tes” is test_file,
we could create the command to remove it as follows:

$ rm tes<tab>

The shell would then complete the filename, yielding rm test_file. Es-
pecially with longer filenames (or directories), tab completion can save a huge
amount of typing. It also lowers the cognitive load, since it means you don’t have
to remember the full name of the file—only its first few letters.

If the match is ambiguous, as would happen if we had files called
foobarquux and foobazquux, the word will be completed only as far as pos-
sible, so

$ ls foo<tab>

would be completed to

$ ls fooba

If we then hit tab again, we would see a list of matches:

38

$ ls fooba<tab>
foobarquux foobazquux

We could then type more letters to resolve the ambiguity, so typing the r after
fooba and hitting <tab> would yield

$ ls foobar<tab>

which would be completed to foobarquux. This situation is common
enough that experienced command-line users will often just hit something like
f<tab><tab> to get the shell to show all the possibilities:

$ ls f<tab><tab>
figure_1.png foobarquux foobazquux

Additional letters would then be typed as usual to resolve the ambiguity.

The default behavior of rm on an unconfigured Unix system is actually
to remove the file without confirmation, but (because deletion is irreversible)
many systems alias the rm command to use an option to turn on confirmation.
(As you can verify by running man rm, this option is -i, so in fact rm is really
rm -i.) There are many situations where confirmation is inconvenient, though,
such as when you’re deleting a list of files and don’t want to have to confirm
each one. This is especially common when using the wildcard * introduced
in Section 2.2. For example, to remove all the files ending with “.txt” using a
single command, without having to confirm each one, you can type this:

$ rm -f *.txt

Here -f (for “force”) overrides the implicit -i option and removes all files
immediately. (N.B. You are now in a position to understand the command in
Figure 2.)

39

https://en.wikipedia.org/wiki/Nota_bene

Figure 14: The terseness of Unix commands can be a source of confusion.

Unix terseness

One thing you might notice is that the commands in this section and in Sec-
tion 2.2 are short: instead of list, move, copy, and remove, we have ls,
mv, cp, and rm. Because the former command names are easier to understand
and memorize, you may wonder why the actual commands aren’t longer (Fig-
ure 14).

The answer is that Unix dates from a time when most computer users
logged on to centralized servers over slow connections, and there could be a
noticeable delay between the time users pressed a key and the time it appeared
on the terminal. For frequently used commands like listing files, the difference
between list and ls or remove and rm could be significant. As a result,
the most commonly used Unix commands tend to be only two or three letters
long. Because it makes them more difficult to memorize, this can be a minor

40

inconvenience when learning them, but over a lifetime of command-line use
the savings represented by, say, mv really add up.

Exercises

1. Use the echo command and the redirect operator > to make a file called
foo.txt containing the text “hello, world”. Then, using the cp com-
mand, make a copy of foo.txt called bar.txt. Using the diff com-
mand, confirm that the contents of both files are the same.

2. By combining the cat command and the redirect operator >, create a
copy of foo.txt called baz.txt without using the cp command.

3. Create a file called quux.txt containing the contents of foo.txt fol-
lowed by the contents of bar.txt. Hint: As noted in Section 2.1, cat
can take multiple arguments.

4. How do rm nonexistent and rm -f nonexistent differ for a non-
existent file?

2.4 Summary
Important commands from this section are summarized in Table 2.

Exercises

1. By copying and pasting the text from the HTML version of Figure 15, use
echo to make a file called sonnet_1_complete.txt containing the
full (original) text of Shakespeare’s first sonnet. Hint: You may recall
getting stuck when echo was followed by an unmatched double quote
(Section 1.2 and Box 4), as in echo ", but in fact this construction allows
you to print out a multi-line block of text. Just remember to put a closing
quote at the end, and then redirect to a file with the appropriate name.
Check that the contents are correct using cat (Figure 12).

41

https://www.learnenough.com/command-line-tutorial#fig-copy_paste_sonnet_1

Command Description Example
> Redirect output to filename $ echo foo > foo.txt
» Append output to filename $ echo bar » foo.txt
cat <file> Print contents of file to screen $ cat hello.txt
diff <f1> <f2> Diff files 1 & 2 $ diff foo.txt bar.txt
ls List directory or file $ ls hello.txt
ls -l List long form $ ls -l hello.txt
ls -rtl Long by reverse modification time $ ls -rtl
ls -a List all (including hidden) $ ls -a
touch <file> Create an empty file $ touch foo
mv <old> <new> Rename (move) from old to new $ mv foo bar
cp <old> <new> Copy old to new $ cp foo bar
rm <file> Remove (delete) file $ rm foo
rm -f <file> Force-remove file $ rm -f bar

Table 2: Important commands from Section 2.

FRom fairest creatures we desire increase,
That thereby beauties Rose might neuer die,
But as the riper should by time decease,
His tender heire might beare his memory:
But thou contracted to thine owne bright eyes,
Feed’st thy lights flame with selfe substantiall fewell,
Making a famine where aboundance lies,
Thy selfe thy foe,to thy sweet selfe too cruell:
Thou that art now the worlds fresh ornament,
And only herauld to the gaudy spring,
Within thine owne bud buriest thy content,
And tender chorle makst wast in niggarding:
Pitty the world,or else this glutton be,
To eate the worlds due,by the graue and thee.

Figure 15: A copy-and-pastable version of Shakespeare’s first sonnet (cf. Figure 10).

42

https://en.wikipedia.org/wiki/Cf.

2. Type the sequence of commands needed to create an empty file called
foo, rename it to bar, and copy it to baz.

3. What is the command to list only the files starting with the letter “b”?
Hint: Use a wildcard.

4. Remove both bar and baz using a single call to rm. Hint: Use the
wildcard pattern from the previous exercise.

3 Inspecting files
Having seen how to create and manipulate files, now it’s time to learn how to
examine their contents. This is especially important for files too long to fit on a
single screen. In particular, we saw starting in Section 2.1 how to use the cat
command to dump the file contents to the screen, but this doesn’t work very
well for longer files.

3.1 Downloading a file
To give us a place to start, rather than creating a long file by hand (which is
cumbersome) we’ll download a file from the Internet using the powerful curl
utility, which allows us to interact with URLs at the command line. Although
it’s not part of the core Unix command set, the curl command is widely avail-
able on Unix systems. To make sure it’s available on your system, we can use
the which command, which looks to see if the given program is available at
the command line.14 The way to use it is to type which followed by the name
of the program—in this case, curl:

$ which curl
/opt/curl

14Technically, which locates a file on the user’s path, which is a list of directories where executable programs
are located.

43

I’ve shown the output on my system (usually read as “user bin curl”), but the
result on your system may differ. In particular, if the result is just a blank line,
you will have to install curl, which you can do by Googling for “install curl”
followed by the name of your operating system.

Once curl is installed, we can download a file containing a large corpus of
text using the command in Listing 8.

Listing 8: Using curl to download a longer file.

$ curl -OL https://cdn.learnenough.com/sonnets.txt
$ ls -rtl

Be sure to copy the command exactly; in particular, note that the option -OL
contains a capital letter “O” (O) and not a zero (0). (Figuring out what these
options do is left as an exercise (Section 3.5).) Also, on some systems (for
mysterious reasons) you might have to run the command twice to get it to
work; by inspecting the results of ls -rtl, you should be able to tell if the
initial call to curl created the file as expected. (If you do have to repeat the
curl command, you could press up arrow twice to retrieve it, but see Box 9
for alternatives.)

Box 9. Repeating previous commands

Repeating previous commands is a frequent task when using the command line.
So far in this tutorial, we’ve used the up-arrow key to retrieve (and possibly edit)
previous commands, but this isn’t the only possibility. An even quicker way to find
and immediately run a previous command involves using the exclamation point !,
which in the context of software development is usually pronounced “bang”. To
run the previous command exactly as written, we can use “bang bang”:

$ echo "foo"
foo
$!!

44

echo "foo"
foo

A closely related usage is “bang” followed by some number of characters, which
runs the last command that started with those characters. For example, to run the
last curl command, we could type this:

$!curl

This would save us the trouble of typing out the options, the URL, etc. Depend-
ing on our history of commands, the even terser !cu or !c would work as well.
This technique is especially useful when the desired command last happened many
commands ago, which can make hitting up arrow cumbersome.

A second and incredibly powerful technique is Ctrl-R, which lets you search
interactively through your previous commands, and then optionally edit the result
before executing. For example, which could try this to bring up the last curl
command:

$ <Ctrl-R>
(reverse-i-search)`': curl

Hitting return would then put the last curl command after our prompt and allow
us to edit it (if desired) before hitting return to execute it. When your workflow
happens to involve repeatedly running a variety of similar commands, sometimes
it can seem like “all commands start with Ctrl-R.”

The result of running Listing 8 is sonnets.txt, a file containing all 154
of Shakespeare’s sonnets. This file contains 2620 lines, far too many to fit on
one screen. Learning how to inspect its contents is the goal of the rest of this
section. (Among other things, we’ll learn how to determine that it has 2620
lines without counting them all by hand.)

45

Exercises

1. Use the command curl -I www.learnenough.com to fetch the
HTTP header for the Learn Enough website. What is the HTTP sta-
tus code of the address? How does this differ from the status code of
learnenough.com?

2. Using ls, confirm that sonnets.txt exists on your system. How big
is it in bytes? Hint: Recall from Section 2.2 that the “long form” of ls
displays a byte count.

3. The byte count in the previous exercise is high enough that it’s more
naturally thought of in kilobytes (often treated as 1000 bytes, but actually
equal to 210 = 1024 bytes). Using the -h (“human-readable”) option to
ls, list the long form of the sonnets file with a human-readable byte
count.

4. Suppose you wanted to list the files and directories using human-readable
byte counts, all, by reverse time-sorted long-form. Why might this com-
mand be the personal favorite of the author of this tutorial?15

3.2 Making heads and tails of it
Two complementary commands for inspecting files are head and tail, which
respectively allow us to view the beginning (head) and end (tail) of the file. The
head command shows the first 10 lines of the file (Listing 9).

Listing 9: Looking at the head of the sample text file.

$ head sonnets.txt
Shake-speare's Sonnets

I

15Having known about ls -a and ls -rtl for a while—which together yield the suggestive command ls
-artl—one day I decided to add an “h”’ (for obvious reasons). This is actually how I accidentally discovered
the useful -h option some years ago.

46

http://www.learnenough.com/
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

From fairest creatures we desire increase,
That thereby beauty's Rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel

Similarly, tail shows the last 10 lines of the file (Listing 10).

Listing 10: Looking at the tail of the sample text file.

$ tail sonnets.txt
The fairest votary took up that fire
Which many legions of true hearts had warm'd;
And so the general of hot desire
Was, sleeping, by a virgin hand disarm'd.
This brand she quenched in a cool well by,
Which from Love's fire took heat perpetual,
Growing a bath and healthful remedy,
For men diseas'd; but I, my mistress' thrall,
Came there for cure and this by that I prove,
Love's fire heats water, water cools not love.

These two commands are useful when (as is often the case) you know for sure
you only need to inspect the beginning or end of a file.

Wordcount and pipes

By the way, I didn’t recall offhand how many lines head and tail show by
default. Since there are only 10 lines in the output, I could have counted them
by hand, but in fact I was able to figure it out using the wc command (short for
“wordcount”; recall Figure 14).

The most common use of wc is on full files. For example, we can run
sonnets.txt through wc:

$ wc sonnets.txt
2620 17670 95635 sonnets.txt

47

Here the three numbers indicate how many lines, words, and bytes there are in
the file, so there are 2620 lines (thereby fulfilling the promise made at the end
of Section 3.1), 17670 words, and 95635 bytes.

You are now in a position to be able to guess one method for determining
how many lines are in head sonnets.txt. In particular, we can combine
head with the redirect operator (Section 2.1) to make a file with the relevant
contents, and then run wc on it, as shown in Listing 11.

Listing 11: Redirecting head and running wc on the result.

$ head sonnets.txt > sonnets_head.txt
$ wc sonnets_head.txt

10 46 294 sonnets_head.txt

We see from Listing 11 that there are 10 lines in head wc (along with 46 words
and 294 bytes). The same method, of course, would work for tail.

On the other hand, you might get the feeling that it’s a little unclean to
make an intermediate file just to run wc on it, and indeed there’s a way to avoid
it using a technique called pipes. Listing 12 shows how to do it.

Listing 12: Piping the result of head through wc.

$ head sonnets.txt | wc
10 46 294

The command in Listing 12 runs head sonnets.txt and then pipes the re-
sult through wc using the pipe symbol | (Shift-backslash on QWERTY key-
boards). The reason this works is that the wc command, in addition to taking a
filename as an argument, can (like many Unix programs) take input from “stan-
dard in” (compare to “standard out” mentioned in Section 1.2), which in this
case is the output of head sonnets.txt shown in Listing 9. The wc program
takes this input and counts it the same way it counts a file, yielding the same
line, word, and byte counts as Listing 11.

48

Exercises

1. By piping the results of tail sonnets.txt through wc, confirm that
(like head) the tail command outputs 10 lines by default.

2. By running man head, learn how to look at the first n lines of the file. By
experimenting with different values of n, find a head command to print
out just enough lines to display the first sonnet in its entirety (Figure 10).

3. Pipe the results of the previous exercise through tail (with the appro-
priate options) to print out only the 14 lines composing Sonnet 1. Hint:
The command will look something like head -n <i> sonnets.txt
| tail -n <j>, where <i> and <j> represent the numerical argu-
ments to the -n option.

4. One of the most useful applications of tail is running tail -f to view
a file that’s actively changing. This is especially common when monitor-
ing files used to log the activity of, e.g., web servers, a practice known
as “tailing the log file”. To simulate the creation of a log file, run ping
learnenough.com > learnenough.log in one terminal tab. (The
ping command “pings” a server to see if it’s working.) In a second tab,
type the command to tail the log file. (At this point, both tabs will be
stuck, so once you’ve gotten the gist of tail -f you should use the
technique from Box 4 to get out of trouble.)

3.3 Less is more
Unix provides two utilities for the common case of wanting to look at more than
just the head or tail of a file. The older of these programs is called more, but
(I’d guess initially as a tongue-in-cheek joke) there’s a more powerful variant
called less.16 The less program is interactive, so it’s hard to capture in print,
but here’s roughly what it looks like:

16On some systems, apparently they’re exactly the same program, so less really is more (or, more accurately,
more is less).

49

https://en.wikipedia.org/wiki/Tail_(Unix)#File_monitoring
http://unix.stackexchange.com/questions/604/isnt-less-just-more

$ less sonnets.txt
Shake-speare's Sonnets

I

From fairest creatures we desire increase,
That thereby beauty's Rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

II

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
sonnets.txt

The point of less is that it lets you navigate through the file in several useful
ways, such as moving one line up or down with the arrow keys, pressing space
bar to move a page down, pressing Ctrl-F to move forward a page (i.e., the
same as spacebar) or Ctrl-B to move back a page. To quit less, type q (for
“quit”).

Perhaps the most powerful aspect of less is the forward slash key /, which
lets you search through the file from beginning to end. For example, suppose
we wanted to search through sonnets.txt for “rose” (Figure 16),17 one of
the most frequently used images used in the Sonnets.18 The way to do this in
less is to type /rose (read “slash rose”), as shown in Listing 13.

17Image retrieved from https://commons.wikimedia.org/wiki/File:Tudor_Rose.svg on 2015-07-21
18Though undated, most of Shakespeare’s sonnets were probably composed during the reign of Queen Eliz-

abeth, whose royal house adopted a rose (Figure 16) as its heraldic emblem. Given this context, Shakespeare’s
choice of floral imagery isn’t surprising, but in fact only a few commentators on the Sonnets have noticed the
seemingly obvious reference.

50

https://en.wikipedia.org/wiki/Elizabeth_I_of_England
https://en.wikipedia.org/wiki/Elizabeth_I_of_England
https://en.wikipedia.org/wiki/Tudor_dynasty
https://en.wikipedia.org/wiki/Heraldry
https://hankwhittemore.wordpress.com/tag/sonnet-1/

Figure 16: A famous rose from the time of Shakespeare.

51

https://en.wikipedia.org/wiki/Tudor_rose

Listing 13: Searching for the string “rose” using less.

Shake-speare's Sonnets

I

From fairest creatures we desire increase,
That thereby beauty's Rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

II

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
/rose

The result of pressing return after typing /rose in Listing 13 is to highlight
the first occurrence of “rose” in the file. You can then press n to navigate to the
next match, or N to navigate to the previous match.

The last two essential less less commands are G to move to the end of the
file and 1G (that’s 1 followed by G) to move back to the beginning. Table 3
summarizes what are in my view the most important key combinations (i.e.,
the ones I think you need to be dangerous), but if you’re curious you can find a
longer list of commands at the Wikipedia page on less.

I encourage you to get in the habit of using less as your go-to utility for
looking at the contents of a file. The skills you develop have other applications
as well; for example, the man pages (Section 1.3) use the same interface as
less, so by learning about less you’ll get better at navigating the man pages
as well.

52

https://en.wikipedia.org/wiki/Less_(Unix)

Command Description Example
up & down arrow keys Move up or down one line
spacebar Move forward one page
Ctrl-F Move forward one page
Ctrl-B Move back one page
G Move to end of file
1G Move to beginning of file
/<string> Search file for string /rose
n Move to next search result
N Move to previous search result
q Quit less

Table 3: The most important less commands.

Exercises

1. Run less on sonnets.txt. Go down three pages and then back up
three pages. Go to the end of the file, then to the beginning, then quit.

2. Search for the string “All” (case-sensitive). Go forward a few occur-
rences, then back a few occurrences. Then go to the beginning of the
file and count the occurrences by searching forward until you hit the end.
Compare your count to the result of running grep All sonnets.txt
| wc. (We’ll learn about grep in Section 3.4.)

3. Using less and / (“slash”), find the sonnet that begins with the line “Let
me not”. Are there any other occurrences of this string in the Sonnets?
Hint: Press n to find the next occurrence (if any). Extra credit: Listen to
the sonnet in both modern and original pronunciation. Which version’s
rhyme scheme is better?

4. Because man uses less, we are now in a position to search man pages
interactively. By searching for the string “sort” in the man page for ls,
discover the option to sort files by size. What is the command to display
the long form of files sorted so the largest files appear at the bottom?
Hint: Use ls -rtl as a model.

53

https://www.youtube.com/watch?v=Qabr7nyHpVc
https://www.youtube.com/watch?v=Qabr7nyHpVc
http://originalpronunciation.com/

3.4 Grepping
One of the most powerful tools for inspecting file contents is grep, which
probably stands for something, but it’s not important what.19 Indeed, grep is
frequently used as a verb, as in “You should totally grep that file.”

The most common use of grep is just to search for a substring in a file. For
example, we saw in Section 3.3 how to use less to search for the string “rose”
in Shakespeare’s sonnets. Using grep, we can find the references directly, as
shown in Listing 14.

Listing 14: Finding the occurrences of “rose” in Shakespeare’s sonnets.

$ grep rose sonnets.txt
The rose looks fair, but fairer we it deem
As the perfumed tincture of the roses.
Die to themselves. Sweet roses do not so;
Roses of shadow, since his rose is true?
Which, like a canker in the fragrant rose,
Nor praise the deep vermilion in the rose;
The roses fearfully on thorns did stand,
Save thou, my rose, in it thou art my all.
I have seen roses damask'd, red and white,
But no such roses see I in her cheeks;

With the command in Listing 14, it appears that we are in a position to
count the number of lines containing references to the word “rose” by piping
to wc (as in Section 3.3), as shown in Listing 15.

Listing 15: Piping the results of grep to wc.

$ grep rose sonnets.txt | wc
10 82 419

Listing 15 tells us that 10 lines contain “rose” (or “roses”, since “rose” is
a substring of “roses”). But you may recall from Figure 10 that Shakespeare’s
first sonnet contains “Rose” with a capital “R”. Referring to Listing 14, we see

19It comes from “globally search a regular expression and print”, but I told you it wasn’t important.

54

http://www.urbandictionary.com/define.php?term=slartibartfast

that this line has in fact been missed. This is because grep is case-sensitive by
default, and “rose” doesn’t match “Rose”.

As you might suspect, grep has an option to perform case-insensitive
matching as well. One way to figure it out is to search through the man page
for grep:

• Type man grep

• Type /case and then return

• Read off the result (Figure 17)

(As noted briefly in Section 1.3, the man pages use the same interface as the
less command we met in Section 3.3, so we can search through them using /.)

Applying the result of the above procedure yields Listing 16. Comparing
the results of Listing 16 with Listing 15, we see that we now have 12 matching
lines instead of only 10, so there must be a total of 12−10 = 2 lines containing
“Rose” (but not “rose”) in the Sonnets.20

Listing 16: Doing a case-insensitive grep.

$ grep -i rose sonnets.txt | wc
12 96 508

The grep utility is insanely powerful, especially when combined with so-
called regular expressions, but learning grep and grep -i are almost enough
to be dangerous (including the important application of grepping processes
(Box 10)). We’ll see the third and final grep variant needed to be dangerous
in Section 4.

Box 10. Grepping processes

20Actually, “ROSE”, “RoSE”, “rOSE”, etc., all match as well, but “Rose” is the likeliest candidate. Confirming
this hunch is left as an exercise (Section 3.4).

55

Figure 17: The result of searching man grep for “case”.

56

One of the many uses of grep is filtering the Unix process list for running
programs that match a particular string. (On Unix-like systems such as Linux and
OS X, user and system tasks each take place within a well-defined container called
a process.) This is especially useful when there’s a rogue process on your system
that needs to be killed. (A good way to find such processes is by running the top
command, which shows the processes consuming the most resources.)

For example, at one point in the Ruby on Rails Tutorial book, it’s important
to eliminate a program called spring from the process list. To do this, first the
processes need to be found, and the way to see all the processes on your system is
to use the ps command with the aux options:

$ ps aux

Per Figure 14, ps is short for “process status”. And for confusing and obscure
reasons, options to ps aren’t written with a dash (so it’s ps aux instead of ps
-aux). (How on earth are you supposed to know this? That’s what this tutorial is
for.)

To filter the processes by program name, you pipe run the results of ps through
the grep:

$ ps aux | grep spring
ubuntu 12241 0.3 0.5 589960 178416 ? Ssl Sep20 1:46
spring app | sample_app | started 7 hours ago

The result shown gives some details about the process, but the most important
thing is the first number, which is the process id, or pid (often pronounced to
rhyme with “kid”). To eliminate an unwanted process, we use the kill command
to issue the Unix terminate code (which happens to be 15) to the pid:

$ kill -15 12241

This is the technique I recommend for killing individual processes, such as a rogue
web server (with the pid found via ps aux | grep server), but sometimes

57

http://railstutorial.org/book
http://www.freebsd.org/cgi/man.cgi?query=ps&manpath=SuSE+Linux/i386+11.3
http://www.freebsd.org/cgi/man.cgi?query=ps&manpath=SuSE+Linux/i386+11.3
https://en.wikipedia.org/wiki/Unix_signal#List_of_signals

it’s convenient to kill all the processes matching a particular process name, such
as when you want to kill all the spring processes gunking up your system. In
this case, you can kill all the processes with name spring using the pkill
command as follows:

$ pkill -15 -f spring

Any time something isn’t behaving as expected, or a process appears to be frozen,
it’s a good idea to run top or ps aux to see what’s going on, pipe ps aux
through grep to select the suspected processes, and then run kill -15 <pid>
or pkill -15 -f <name> to clear things up.

Exercises

1. By searching man grep for “line number”, construct a command to find
the line numbers in sonnets.txt where the string “rose” appears.

2. You should find that the last occurrences of “rose” is (via “roses”) on
line 2203. Figure out how to go directly to this line when running less
sonnets.txt. Hint: Recall from Table 3 that 1G goes to the top of the
file, i.e., line 1. Similarly, 17G goes to line 17. Etc.

3. By piping the output of grep to head, print out the first (and only the
first) line in sonnets.txt containing “rose”. Hint: Use the result of the
second exercise in Section 3.2.

4. In Listing 16, we saw two additional lines that case-insensitively matched
“rose”. Execute a command confirming that both of the lines contain the
string “Rose” (and not, e.g., “rOSe”). Hint: Use a case-sensitive grep
for “Rose”.

5. You should find in the previous exercise that there are three lines match-
ing “Rose” instead of the two you might have expected from Listing 16.

58

Command Description Example
curl Interact with URLs $ curl -O example.com
which Locate a program on the path $ which curl
head <file> Display first part of file $ head foo
tail <file> Display last part of file $ tail bar
wc <file> Count lines, words, bytes $ wc foo
cmd1 | cmd2 Pipe cmd1 to cmd2 $ head foo | wc
less <file> View file contents interactively $ less foo
grep <string> <file> Find string in file $ grep foo bar.txt
grep -i <string> <file> Find case-insensitively $ grep -i foo bar.txt
ps Show processes $ ps aux
top Show processes (sorted) $ top
kill -15 <pid> Kill a process $ kill -9 24601
pkill -15 -f <name> Kill matching processes $ pkill -9 -f spring

Table 4: Important commands from Section 3.

This is because there is one line that contains both “Rose” and “rose”,
and thus shows up in both grep rose and grep -i rose. Write a
command confirming that the number of lines matching “Rose” but not
matching “rose” is equal to the expected 2. Hint: Pipe the result of grep
to grep -v, and then pipe that result to wc. (What does -v do? Read
the man page for grep (Box 5).)

3.5 Summary
Important commands from this section are summarized in Table 4.

Exercises

1. The history command prints the history of commands in a particu-
lar terminal shell (subject to some limit, which is typically large). Pipe
history to less to examine your command history. What was your
17th command?

2. By piping the output of history to wc, count how many commands

59

you’ve executed so far.

3. One use of history is to grep your commands to find useful ones you’ve
used before, with each command preceded by the corresponding number
in the command history. By piping the output of history to grep,
determine the number for the last occurrence of curl.

4. In Box 9, we learned about !! (“bang bang”) to execute the previous
command. Similarly, !n executes command number n, so that, e.g., !17
executes the 17th command in the command history. Use the result from
the previous exercise to re-run the last occurrence of curl.

5. What do the O and L options in Listing 8 mean? Hint: Pipe the output
of curl -h to less and search first for the string -O and then for the
string -L.

4 Directories
Having examined many of Unix utilities for dealing with files, the time has
come to learn about directories, sometimes known by the synonym folders
(Figure 18). As we’ll see, many of the ideas developed in the context of files
also apply to directories, but there are many differences as well.

4.1 Structure
The structure of Unix-style directories is typically a list of directory names
separated by forward slashes, such as

$ /Users/mhartl/ruby

or

60

Figure 18: The correspondence between folders & directories.

$ /usr/local/bin

As seen in Figure 18, these representations correspond to directories in a hi-
erarchical filesystem, with (say) mhartl a subdirectory of User and ruby a
subdirectory of mhartl.

Conventions vary when speaking about directories: a user directory like
/Users/mhartl would probably be read as “slash users slash mhartl” or
“slash users mhartl”, whereas omitting the initial slash in spoken language
is common for system directories such as /usr/local/bin, which would
probably be pronounced “user local bin”. Because all Unix directories are ulti-
mately subdirectories of the root directory / (pronounced “slash”), the leading
and separator slashes are implied. Note: Referring to forward slashes incor-
rectly as “backslashes” is a cause of suffering, and should be strictly avoided.

The most important directory for a particular user is the home directory,
which on my OS X system is /Users/mhartl, corresponding to my user-
name (mhartl). The home directory can be specified as an absolute path,
as in /Users/mhartl, or using the shorthand for the home directory is the

61

https://xkcd.com/727/

tilde character ~ (which is typed using Shift-backtick, located just to the left
of the number 1 on most keyboards). As a result, the two paths shown in
Figure 18 are identical: /Users/mhartl/ruby/projects is the same as
~/ruby/projects. (Amusingly, the reason the tilde character is used for the
home directory is simply because the “Home” key was the same as the key for
producing “~” on some early keyboards.)

In addition to user directories, every Unix system has system directories for
the programs essential for the computer’s normal operation. Modifying system
files or directories requires special powers granted only to the superuser, known
as root. The superuser is so powerful that it’s considered bad form to log in as
root; instead, tasks executed as root should typically use the sudo command
(Box 11).

Box 11. “sudo make me a sandwich.”

sudo gives ordinary users the power to execute commands as the superuser.
For example, let’s try touching a file in the system directory /opt as follows:

$ touch /opt
touch: /opt/foo: Permission denied

Because normal users don’t have permission to modify /opt, the command fails,
but it succeeds with sudo:

$ sudo touch /opt/foo
Password:

As shown, after entering sudo we are prompted to enter our user password; if en-
tered correctly, and if the user has been configured to have sudo privileges (which
is the default on most desktop Unix systems), then the command will succeed. As
shown in Figure 19, this pattern of being denied at first, only to succeed using
sudo, is a common theme in computing.

To check that the file really was created, we can ls it:

62

http://unix.stackexchange.com/questions/34196/why-was-chosen-to-represent-the-home-directory

$ ls -l /opt/foo
-rw-r--r-- 1 root wheel 0 Jul 23 19:13 /opt/foo

Note that (1) a normal user can ls a file in a system directory (without sudo)
and (2) the name root appears in the listing, indicating that the superuser owns
the file. (The meaning of the second term, wheel, is a little obscure, but you can
learn about it on a site called, appropriately enough, superuser.)

To remove the file we just created, we again need superuser status:

$ rm -f /opt/foo
rm: /opt/foo: Permission denied
$ sudo !!
$!ls
ls: /opt/foo: No such file or directory

Here the first rm fails, so we’ve run sudo !!, which runs sudo and then the
previous command , and we’ve followed that up with !ls, which runs the previous
ls command (Box 9).

As a final comment, I’d like to note the English pronunciation of something
like sudo !!, which is important when communicating via spoken language. As
noted in Box 9, !! is pronounced “bang bang”. There is disagreement, though, on
the pronunciation of sudo. Some people say “SOO-doh”, so that it sounds like the
prefix pseudo, but in fact sudo is composed of the command su (which, contrary
popular belief, stands for “substitute user” and not “superuser”) followed by the
English word “do”. In other words, sudo is a contraction of “substitute user do”.
Since (outside of solfège and The Sound of Music) the word “do” rhymes with
“too”, the correct pronunciation of sudo is “SOO-doo”, and sudo !! would
therefore be read as “SOO-doo bang bang”.

Exercises

1. Write in words how you might speak the directory ~/foo/bar.

63

http://superuser.com/questions/191955/what-is-the-wheel-user-in-os-x
http://www.linfo.org/su.html
https://en.wikipedia.org/wiki/Solf%C3%A8ge
https://youtu.be/_dpGmAc3kMk

Figure 19: “Sandwich” (via xkcd.com) derives humor from the behavior of sudo.

64

https://xkcd.com/149/
http://xkcd.com/

2. In /Users/bill/sonnets, what is the home directory? What is the
username? Which directory is deepest in the hierarchy?

3. For a user with username bill, how do /Users/bill/sonnets and
~/sonnets differ (if at all)?

4.2 Making directories
So far in this tutorial, we’ve created (and removed) a large number of text files.
The time has finally come to make a directory to contain them. Although most
modern operating systems include a graphical interface for this task, the Unix
way to do it is with mkdir (short for “make directory”, per Figure 14):

$ mkdir text_files

Having made the directory, we can move the text files there using a wildcard:

$ mv *.txt text_files/

We can confirm the move worked by listing the directory:

$ ls text_files/
sonnet_1.txt sonnet_1_reversed.txt sonnets.txt

(Depending on how closely you’ve followed this tutorial, your results may
vary.)

By default, running ls on a directory shows its contents, but we can show
just the directory using the -d option:

$ ls -d text_files/
text_files

This usage is especially common with the -l option (Section 2.2):

65

$ ls -ld text_files/
drwxr-xr-x 7 mhartl staff 238 Jul 24 18:07 text_files

Finally, we can change directories using cd:

$ cd text_files/

Note that cd typically supports tab completion, so (as described in Box 8) we
can actually type cd tex<tab>.

After running cd, we can confirm that we’re in the correct directory using
the “print working directory” command, pwd, together with another call to ls:

$ pwd
/Users/mhartl/text_files
$ ls
sonnet_1.txt sonnet_1_reversed.txt sonnets.txt

These last steps of typing pwd to double-check the directory, and especially
running ls to inspect the directory contents, are a matter of habit for many a
grizzled command-line veteran. (Your result for pwd will, of course, be differ-
ent, unless you happen to be using the username “mhartl” on OS X.)

Exercises

1. What is the option for making intermediate directories as required, so that
you can create, e.g., ~/foo and ~/foo/bar with a single command?
Hint: Refer to the man page for mkdir.

2. Use the option from the previous exercise to make the directory foo and,
within it, the directory bar (i.e., ~/foo/bar) with a single command.

3. By piping the output of ls to grep, list everything in the home directory
that contains the letter “o”.

66

4.3 Navigating directories
We saw in Section 4.2 how to use cd to change to a directory with a given
name. This is one of the most common ways of navigating, but there are a
couple of special forms worth knowing. The first is changing to the directory
one level up in the hierarchy using cd .. (read “see-dee dot-dot”):

$ pwd
/Users/mhartl/text_files
$ cd ..
$ pwd
/Users/mhartl

In this case, because /Users/mhartl is my home directory, we could have
accomplished the same thing using cd by itself:

$ cd text_files/
$ pwd
/Users/mhartl/text_files
$ cd
$ pwd
/Users/mhartl

The reason this works is that cd by itself changes to the user’s home directory,
wherever that is. This means that

$ cd

and

$ cd ~

are equivalent.
When changing directories, it’s frequently useful to be able to specify the

home directory somehow. For example, suppose we make a second directory
and cd into it:

67

$ pwd
/Users/mhartl
$ mkdir second_directory
$ cd second_directory/

Now if we want to change to the text_files directory, we can cd to text_-
files via the home directory ~:

$ pwd
/Users/mhartl/second_directory
$ cd ~/text_files
$ pwd
/Users/mhartl/text_files

Incidentally, we’re now in a position to understand the prompts shown in Fig-
ure 6: I have my prompt configured to show the current directory, which might
be things like [~], [ruby], or [projects]. (We’ll discuss how to customize
the prompt in Learn Enough™ Text Editor to Be Dangerous. Especially ea-
ger (or impatient) readers can exercise their technical sophistication (Box 5) by
Googling for how to do it.)

Closely related to .. for “one directory up” is . (read “dot”) which means
“the current directory”. The most common use of . is when moving or copying
files to the current directory:

$ pwd
/Users/mhartl/text_files
$ cd ~/second_directory
$ ls
$ cp ~/text_files/sonnets.txt .
$ ls
sonnets.txt

Note in that the first call to ls returns nothing, because second_directory
is initially empty.

Another common use of . is in conjunction with the find command, which
like grep is insanely powerful, but in my own use it looks like this 99% of the
time:

68

http://learnenough.com/text-editor
http://lmgtfy.com/?q=bash+customize+prompt

$ cd
$ find . -name '*.txt'
./text_files/sonnet_1.txt
./text_files/sonnet_1_reversed.txt
./text_files/sonnets.txt

In words, what this does is find files whose names match the pattern *.txt,
starting in the current directory . and then in its subdirectories.21 The find
utility is incredibly useful for finding a misplaced file at the command line.

Perhaps my favorite use of . is in “open dot”, which will work only on
Macintosh OS X:

$ cd ~/ruby/projects
$ open .

The remarkable open command opens its argument using whatever the default
program is for the given file or directory. (A similar command, xdg-open,
works on some Linux systems.) For example, open foo.pdf would open the
PDF file with the default viewer (which is Preview on most Macs). In the case
of a directory such as ., that default program is the Finder, so open . produces
a result like that shown in Figure 18.

A final navigational command, and one of my personal favorites, is cd -,
which cds to the previous directory, wherever it was:

$ pwd
/Users/mhartl/second_directory
$ cd ~/text_files
$ pwd
/Users/mhartl/text_file
$ cd -
/Users/mhartl/second_directory

I find that cd - is especially useful when combining commands, as described
in Box 12.

21My directory has a huge number of text files, ’cause that’s just how I roll, so the command I ran was really
find . -name ’*.txt’ | grep text_files, which filters out anything that doesn’t match the directory
being used in this tutorial.

69

Box 12. Combining commands

It’s often convenient to combine commands at the command line, such as when
installing software using the Unix programs configure and make, which often
appear in the following sequence:

$./configure ; make ; make install

This line runs the configure program from the current directory ., and then
runs both make and make install. (You are not expected to understand what
these programs do, and indeed they won’t work on your system unless you happen
to be in the directory of a program designed to be installed this way.) Because they
are separated by the semicolon character ;, three commands are run in sequence.

An even better way to combine commands is with the double-ampersand &&:

$./configure && make && make install

The difference is that commands separated by && run only if the previous com-
mand succeeded. In contrast, with ; all the commands will be run no matter what,
which will cause an error in the likely case that subsequent commands depend on
the results of the ones that precede them.

I especially like to use && in combination with cd -, which lets me do things
like this:

$ build_article && cd ~/tau && deploy && cd -

Again, you are not expected to understand these commands, but the general idea
is that we can (say) build an article in one directory, cd to a different directory,
deploy (perhaps a website) to production, and then cd back (cd -) to the original
directory, where we can continue our work. Then, if need be, we can just use up
arrow (or one of the techniques from Box 9) to retrieve the whole thing and do it
all again.

70

Exercises

1. How do the effects of cd and cd ~ differ (or do they)?

2. Change to text_directory, then change to second_directory us-
ing the “one directory up” double dot operator ...

3. From wherever you are, create an empty file called nil in text_direc-
tory using whatever method you wish.

4. Remove nil from the previous exercises using a different path from the
one you used before. (In other words, if you used the path ~/text_-
directory before, use something like ../text_directory or /Us-
ers/<username>/text_directory.)

4.4 Renaming, copying, and deleting directories
The commands for renaming, copying, and deleting directories are similar to
those for files (Section 2.3), but there are some subtle differences worth noting.
The command with the least difference is mv, which works just as it does for
files:

$ mkdir foo
$ mv foo/ bar/
$ cd foo/
-bash: cd: foo: No such file or directory
$ cd bar/

Here the error message indicates that the mv worked: there is no file or direc-
tory called foo. (The word bash refers to the shell being run, in this case the
“Bourne Again SHell”.) The only minor subtlety is that the trailing slashes
(which are typically added automatically by tab completion (Box 8)) are op-
tional:

71

https://www.gnu.org/software/bash/

$ cd
$ mv bar foo
$ cd foo/

This issue with trailing slashes never makes a difference with mv, but with
cp it can be a source of much confusion. In particular, when copying directo-
ries, the behavior you usually want is to copy the directory contents including
the directory, which on many systems requires leaving off the trailing slash.
When copying files, you also need to include the -r option (for “recursive”).
For example, to copy the contents of the text_files directory to a new di-
rectory called foobar, we use the command shown in Listing 17.

Listing 17: Copying a directory.

$ cd
$ mkdir foobar
$ cd foobar/
$ cp -r ../text_files .
$ ls
text_files

Note that we’ve used .. to make a relative path, going up one directory and
then into text_files. Also note the lack of a trailing slash in cp -r ../-
text_files .; if we included it, we’d get Listing 18 instead.

Listing 18: Copying with a trailing slash.

$ cp -r ../text_files/ .
$ ls
sonnet_1.txt sonnet_1_reversed.txt sonnets.txt text_files

In other words, Listing 18 copies the individual files, but not the directory itself.
As a result, I recommend always omitting the trailing slash, as in Listing 17; if
you want to copy only the files, be explicit using the star operator, as in:

72

$ cp ../text_files/* .

Unlike renaming (moving) and copying directories, which use the same mv
and cp commands used for files, in the case of removing directories there’s a
dedicated command called rmdir. In my experience, though, it rarely works,
as seen here:

$ cd
$ rmdir second_directory
rmdir: second_directory/: Directory not empty

The error message here is what happens 99% of the time when I try to remove
directories, because rmdir requires the directory to be empty. You can of
course empty it by hand (using rm repeatedly), but this is frequently inconve-
nient, and I almost always use the more powerful (but much more dangerous)
“remove recursive force” command rm -rf, which removes a directory, its
files, and any subdirectories without confirmation (Listing 19).

Listing 19: Using rm -rf to remove a directory.

$ rm -rf second_directory/
$ ls second_directory
ls: second_directory: No such file or directory

As the error message from ls in Listing 19 indicates (“No such file or
directory”), our use of rm -rf succeeded in removing the directory.

The powerful command rm -rf is too convenient to ignore, but remember:
“With great power comes great responsibility” (Figure 20).22

Grep redux

Now that we know a little about directories, we are in a position to add a useful
grep variation to our toolkit from Section 3.4. As with cp and rm, grep takes

22Image retrieved from https://www.flickr.com/photos/whatleydude/13950241545 on 2015-07-22

73

https://en.wikipedia.org/wiki/Uncle_Ben#.22With_great_power_comes_great_responsibility.22

Figure 20: This superhero understands how to use the power of rm -rf responsibly.

a “recursive” option, -r, which in this case greps through a directory’s files and
the files in its subdirectories. This is incredibly useful when you’re looking for
a string in a file somewhere in a hierarchy of directories, but you’re not sure
where the file is. Here’s the setup, which puts the word “sesquipedalian” in a
file called long_word.txt:

$ cd text_files/
$ mkdir foo
$ cd foo/
$ echo sesquipedalian > long_word.txt
$ cd

The final cd puts us back in the home directory. Suppose we now want to find
the file containing “sesquipedalian”. The way not to do it is this:

74

https://en.wikipedia.org/wiki/Spider-Man
http://dictionary.reference.com/browse/sesquipedalian

$ grep sesquipedalian text_files
grep: text_files: Is a directory

Here grep’s error message indicates that the command didn’t work, but adding
-r does the trick:

$ grep -r sesquipedalian text_files
text_files/foo/long_word.txt:sesquipedalian

Because case rarely matters, I recommend making a habit of adding the -i
option when grepping recursively, as follows:

$ grep -ri sesquipedalian text_files
text_files/foo/long_word.txt:sesquipedalian

Armed with grep -ri, we are now equipped to find strings of our choice in
arbitrarily deep hierarchies of directories.

Exercises

1. Make a directory foo with a subdirectory bar, then rename the subdi-
rectory to baz.

2. Copy all the files in text_files, with directory, into foo.

3. Copy all the files in text_files, without directory, into bar.

4. Remove foo and everything in it using a single command.

4.5 Summary
Important commands from this section are summarized in Table 5.

75

Command Description Example
mkdir <name> Make directory with name $ mkdir foo
pwd Print working directory $ pwd
cd <dir> Change to <dir> $ cd foo/
cd ~/<dir> cd relative to home $ cd ~/foo/
cd Change to home directory $ cd
cd - Change to previous directory $ cd && pwd && cd -
. The current directory $ cp ~/foo.txt .
.. One directory up $ cd ..
find Find files & directories $ find . -name foo*.*
cp -r <old> <new> Copy recursively $ cp -r ~/foo .
rmdir <dir> Remove (empty) dir $ rmdir foo/
rm -rf <dir> Remove dir & contents $ rm -rf foo/
grep -ri <string> <dir> Grep recursively (case-insensitive) $ grep -ri foo bar/

Table 5: Important commands from Section 4.

Exercises

1. Using a single command-line command, make a directory foo, change
into it, create a file bar with content “baz”, print out bar’s contents, and
then cd back to your home directory. Hint: Combine the commands as
described in Box 12.

2. What happens when you run the previous command again? How many
of the commands executed? Why?

3. Explain why the command rm -rf / is unbelievably dangerous, and
why you should never type it into a terminal window, not even as a joke.

4. How can the previous command be made even more dangerous? Hint:
Refer to Box 11. (This command is so dangerous you shouldn’t even
think it, much less type it.)

76

5 Conclusion
Congratulations! You’ve officially learned enough command line to be danger-
ous. Of course, this is only one step on a longer journey, both toward command-
line excellence (Box 13) and software development wizardry. As you proceed
on this journey, you will probably discover that learning computer magic can
be exciting and empowering, but it can also be hard. Indeed, you may already
have discovered this fact, either on your own or while doing this tutorial. To
those brave magicians-in-training who wish to proceed, I offer the following
sequence, which is currently in preparation:

1. Software development foundations

(a) Learn Enough™ Command Line to Be Dangerous (you are here)

(b) Learn Enough™ Text Editor to Be Dangerous

(c) Learn Enough™ Git to Be Dangerous

2. Web technology basics

(a) Learn Enough™ HTML to Be Dangerous

(b) Learn Enough™ CSS to Be Dangerous

3. Ruby web development track

(a) Learn Enough™ Ruby to Be Dangerous

(b) Learn Enough™ Ruby Web Development to Be Dangerous

(c) Learn Enough™ Ruby on Rails to Be Dangerous

4. Professional-grade Ruby web development

• The Ruby on Rails Tutorial

Only the first and last titles in the above list are complete, but all the other links
go to landing pages where you can sign up to be notified when the next tutorial
in the sequence is ready. See you there!

77

http://www.learnenough.com/command-line
http://www.learnenough.com/text-editor
http://www.learnenough.com/git
http://www.learnenough.com/html
http://www.learnenough.com/css
http://www.learnenough.com/ruby
http://www.learnenough.com/ruby-web-development
http://www.learnenough.com/ruby-on-rails
http://www.railstutorial.org

Box 13. Additional resources

I recommend following the Learn Enough™ sequence, as it represents the
shortest path to technical proficiency and software development skills, but at some
point you’ll probably want to expand your command-line skills as well. When that
time comes, I recommend consulting this list, which consists mainly of resources
recommended by readers of the present tutorial:

• Conquering the Command Line book and screencasts by Mark Bates (which
like the present tutorial is available for free online)

• edX course on Linux

• Codecademy course on the command line

• The similarly named The Command Line Crash Course and A Command
Line Crash Course

• Learning the Shell

78

http://conqueringthecommandline.com/
http://conqueringthecommandline.com/book
https://www.edx.org/course/introduction-linux-linuxfoundationx-lfs101x-2
https://www.codecademy.com/courses/learn-the-command-line
http://cli.learncodethehardway.org/book/
http://www.vikingcodeschool.com/web-development-basics/a-command-line-crash-course
http://www.vikingcodeschool.com/web-development-basics/a-command-line-crash-course
http://linuxcommand.org/lc3_learning_the_shell.php

