
Learn
FileMaker Pro 19

The Comprehensive Guide to Building
Custom Databases
—
Second Edition
—
Mark Conway Munro

Learn FileMaker Pro 19
The Comprehensive Guide

to Building Custom Databases

Second Edition

Mark Conway Munro

Learn FileMaker Pro 19: The Comprehensive Guide to Building Custom Databases

ISBN-13 (pbk): 978-1-4842-6679-3 ISBN-13 (electronic): 978-1-4842-6680-9
https://doi.org/10.1007/978-1-4842-6680-9

Copyright © 2021 by Mark Conway Munro

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,1 NY Plazar,
New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6679-3. For more
detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Mark Conway Munro
Lewisburg, PA, USA

https://doi.org/10.1007/978-1-4842-6680-9

In loving memory of this noble beast.

She was my loyal companion for 13 years.

Rest in peace sweet girl.

I miss you.

Apache Munro

2007–2020

v

Part I: Using FileMaker �� 1

Chapter 1: Introducing FileMaker ��� 3

A Brief Introduction to Databases ��� 3

The History of FileMaker in a Nutshell �� 4

Nashoba Systems �� 4

Claris International �� 5

FileMaker ��� 5

Claris International Reborn �� 6

Adapting to the Integrated Full Stack ��� 7

Reviewing the Product Line �� 8

Creating with FileMaker Pro �� 9

Sharing with FileMaker Server and Cloud ��� 10

Accessing with FileMaker Go and WebDirect �� 11

Summary��� 11

Chapter 2: Exploring the Application �� 13

Introducing the Launch Center Window �� 13

Configuring Application Preferences ��� 14

Preferences: General ��� 15

Preferences: Layout ��� 17

Table of Contents

About the Author ���xxv

About the Technical Reviewer ���xxvii

Foreword ��xxix

Introduction ��xxxi

vi

Preferences: Memory �� 18

Preferences: Plug-Ins �� 19

Preferences: Permitted Hosts �� 19

Exploring Menus (Browse Mode) �� 19

FileMaker Pro Menu �� 20

File Menu ��� 20

Edit Menu �� 22

View Menu ��� 23

Insert Menu ��� 24

Format Menu ��� 24

Records Menu ��� 24

Scripts Menu ��� 25

Tools Menu �� 25

Window Menu �� 25

Help Menu ��� 26

Accessing Contextual Menus �� 26

Contextual Menus for Fields �� 26

Contextual Menus for Record Content Area ��� 27

Contextual Menus for Web Viewers ��� 27

Contextual Menus for Window Components �� 27

Contextual Menus for Calculation Formulas �� 27

Summary��� 28

Chapter 3: Exploring a Database Window �� 29

Identifying Window Regions and Modes ��� 29

Defining Window Modes �� 30

Defining Content Views ��� 31

Exploring the Window Header ��� 32

Status Toolbar (Browse Mode) ��� 32

Formatting Bar �� 36

Horizontal Ruler ��� 36

Table of ConTenTs

vii

Using Multiple Windows �� 37

Creating a New Window �� 37

Selecting a Window from the Menu �� 38

Hiding and Showing Windows ��� 38

Summary��� 39

Chapter 4: Working with Records ��� 41

Entering Data �� 41

Opening a Record �� 42

Understanding Field Focus �� 42

Modifying Field Contents ��� 42

Closing a Record �� 43

Creating, Deleting, and Duplicating Records ��� 44

Searching Records �� 44

Performing Fast Searches ��� 45

Using Find Mode �� 46

Working with Found Sets �� 58

Changing the Records in the Found Set �� 58

Sorting Records in the Found Set �� 59

Modifying Field Values in a Found Set ��� 61

Printing�� 65

Using Preview Mode �� 65

Page Setup �� 68

Print Dialog Options ��� 68

Summary��� 69

Chapter 5: Transferring Records ��� 71

Supported File Types ��� 71

Importing Records ��� 72

Performing an Import �� 73

Changing the Import Type �� 78

Setting Up an Automatic Recurring Import �� 80

Table of ConTenTs

viii

Exporting Records ��� 81

Specifying Export Fields �� 82

Summarizing Output into Groups �� 84

Summary��� 85

Part II: Defining Data Structures �� 87

Chapter 6: Working with Database Files �� 89

Creating a New Database File ��� 89

Creating a Database from a Starter Solution ��� 90

Creating a Database from a Blank Template ��� 91

Converting an Existing File into a Database �� 92

Configuring a Sandbox Table ��� 93

Changing the Default Table Name ��� 93

Adding Placeholder Fields ��� 94

Setting Up Placeholder Layouts ��� 98

Configuring File Options �� 104

File Options: Open�� 105

File Options: Icon ��� 106

File Options: Spelling ��� 106

File Options: Text ��� 107

File Options: Script Triggers ��� 108

Designing and Maintaining Healthy Files �� 108

Avoiding Design and Training Deficiencies �� 109

Restraining File Size �� 112

Avoiding File Damage �� 114

Exploring Maintenance Functions ��� 116

Troubleshooting a Damaged File ��� 120

Summary��� 123

Chapter 7: Working with Tables �� 125

Introducing Object Modeling ��� 125

Introducing the Manage Database Dialog (Tables) �� 127

Table of ConTenTs

ix

Planning Table Names ��� 128

Managing Tables ��� 129

Adding Tables �� 130

Renaming and Deleting Tables �� 139

Adding Tables to the Example Database ��� 139

Summary��� 140

Chapter 8: Defining Fields �� 141

Defining Field Data Types �� 141

Entry Fields �� 141

Display Fields �� 145

Introducing the Manage Database Dialog (Fields) �� 145

Planning Field Names ��� 147

Defining Default Fields �� 147

Creating Your Own Standard Fields ��� 148

Grouping Standard Fields �� 148

Managing Fields �� 150

Creating a New Field ��� 150

Duplicating an Existing Field ��� 150

Modifying a Field Name or Comment �� 150

Modifying a Field’s Type �� 150

Deleting Fields ��� 151

Setting Field Options ��� 151

Options for Entry Fields ��� 151

Options for Display Fields �� 163

Adding Fields to the Example Database �� 165

Defining Company Fields ��� 165

Defining Contact Fields�� 166

Defining Project Fields��� 166

Renaming and Modifying Default Fields �� 167

Summary��� 167

Table of ConTenTs

x

Chapter 9: Forming Relationships �� 169

Introducing Relationships ��� 169

Visualizing Relationships ��� 171

Indexing Match Fields ��� 176

Using Table Occurrences ��� 177

Planning a Learn FileMaker Relational Object Model �� 184

Managing Data Sources �� 184

Introducing the Manage External Data Sources Dialog ��� 184

Exploring the Edit Data Source Dialog ��� 185

Introducing the Manage Database Dialog (Relationships) �� 187

Working with Table Occurrences��� 187

Selecting Table Occurrences ��� 188

Interacting with Table Occurrences ��� 189

Arranging and Resizing Occurrences �� 190

Viewing Options ��� 191

Formatting Table Occurrences ��� 191

Editing Table Occurrences ��� 192

Adding Table Occurrences ��� 193

Deleting Occurrences �� 194

Printing the Relationship Graph ��� 194

Building Relationships �� 194

Adding Relationships ��� 194

Manipulating Relationships ��� 196

Adding Notes to the Graph �� 201

Implementing a Simple Relational Model ��� 202

Summary��� 203

Chapter 10: Managing Containers �� 205

Inserting Files into Containers �� 205

Using the Insert Menu ��� 206

Dragging and Dropping�� 207

Copying and Pasting �� 207

Table of ConTenTs

xi

Extracting Files from Containers ��� 207

Explaining Container Storage Options ��� 208

Storing Files Internally��� 208

Storing a Reference to an External File ��� 208

Using Managed External Storage �� 210

Defining Base Directories �� 210

Defining a Field’s External Storage Directory �� 214

Summary��� 217

Chapter 11: Defining Value Lists ��� 219

Introducing the Value Lists Dialogs ��� 219

Using Custom Values ��� 221

Using a List from Another File ��� 221

Using Values from a Field�� 222

Introducing the Specify Fields Dialog �� 223

Creating a List of All Records in a Table �� 224

Creating Conditional Value Lists �� 225

Summary��� 229

Part III: Writing Formulas and Using Functions ��������������������������������� 231

Chapter 12: Writing Formulas �� 233

Introducing Formulas �� 233

How Formulas Work �� 234

Defining Formula Components �� 235

Comments ��� 236

Constants ��� 237

Field References �� 238

Functions ��� 239

Operators ��� 241

Reserved Words ��� 250

Variables �� 250

Table of ConTenTs

xii

Exploring the Calculation Interface ��� 253

Exploring the Specify Calculation Dialog ��� 253

Writing Formulas ��� 254

Constant-Only Formula �� 255

Creating Intentional Errors��� 255

Experimenting with Storage Options ��� 256

Inserting Formula Components ��� 258

Creating Repeating Calculation Fields ��� 262

Including Space for Visual Formatting ��� 263

Adding Simple Calculations to the Example File ��� 265

Company Contact Count �� 266

Contact Full Name and Address Label ��� 266

Summary��� 267

Chapter 13: Exploring Built-in Functions�� 269

Working with Numbers, Dates, and Times �� 269

Using Number Functions ��� 270

Working with Dates and Times �� 271

Working with Text �� 275

Analyzing Text �� 276

Changing Data Types ��� 277

Converting Text Encoding �� 280

Modifying Text ��� 281

Parsing Text ��� 284

Working with Values �� 285

Counting and Parsing Values ��� 285

Manipulating Values �� 286

Introducing Get Functions ��� 289

Credentials and User Information �� 289

OS, Computer, and App �� 289

Records ��� 290

Table of ConTenTs

xiii

Layouts �� 290

Window �� 291

Accessing Fields ��� 293

Discovering Active ��� 293

Converting a Field Reference to Text ��� 293

Getting Field Content ��� 294

Getting Selected Text ��� 295

Aggregating Data �� 296

Average�� 297

Count ��� 299

List ��� 301

Sum ��� 303

Using Logical Functions �� 305

Case ��� 305

Choose ��� 307

Let�� 307

While �� 310

Nesting Functions into Complex Statements �� 313

Creating a Record Metadata String ��� 313

Creating a Record Count String ��� 314

Creating Sentence from Time Elapsed �� 314

Converting a Number to a Sentence �� 316

Summary��� 317

Chapter 14: Using JSON �� 319

Defining the JSON Format �� 319

Parsing JSON �� 322

Using JSONGetElement ��� 323

Using JSONListKeys �� 324

Using JSONListValues �� 325

Table of ConTenTs

xiv

Creating and Manipulating JSON �� 326

Using JSONSetElement ��� 326

Using JSONDeleteElement ��� 329

Using JSONFormatElements �� 330

Summary��� 330

Chapter 15: Creating Custom Functions ��� 331

Introducing the Custom Function Dialogs ��� 332

Creating a Custom Function �� 334

Adding Parameters to a Custom Function �� 336

Adding an Input Date Parameter ��� 337

Adding a Day Requested Parameter �� 338

Adding a Default Date Option �� 339

Stressing the Importance of Thorough Testing �� 340

Building Recursive Functions �� 342

Building Simple Recursive Functions �� 344

Controlling Recursion Limits with setRecursion �� 345

Embedding Test Code Inside a Function �� 346

Summary��� 348

Chapter 16: Introducing ExecuteSQL �� 349

Defining the ExecuteSQL Function �� 350

Understanding the Limits of ExecuteSQL �� 351

Creating SQL Queries �� 351

Defining SELECT Statements ��� 352

Using the SELECT Statement ��� 354

Inserting Literal Text in the Field List ��� 360

Concatenating Results ��� 361

Using the WHERE Clause ��� 362

Using the ORDER BY Clause �� 363

Using the JOIN Clause ��� 364

Using the GROUP BY Clause �� 365

Table of ConTenTs

xv

Using the UNION Clause �� 366

Limiting the Results of a Query ��� 366

Accessing the Database Schema �� 367

Selecting FileMaker_Tables �� 368

Selecting FileMaker_Fields ��� 369

Exploring Other SQL Features ��� 370

Summary��� 371

Part IV: Designing User Interfaces ��� 373

Chapter 17: Introducing Layouts �� 375

Understanding Contextual Access��� 375

Anatomizing a Layout �� 376

Planning Layouts ��� 377

Using Layout Mode ��� 379

Status Toolbar (Layout Mode) �� 380

Menu Changes (Layout Mode) ��� 384

Summary��� 394

Chapter 18: Getting Started with Layouts ��� 395

Working with Layout Parts �� 395

Defining Layout Regions and Controls ��� 395

Defining Part Types �� 397

Managing Parts ��� 398

Adding Layouts ��� 402

Creating a New Layout �� 402

Duplicating an Existing Layout �� 415

Configuring Layout Settings �� 416

General �� 416

Views ��� 417

Printing �� 418

Script Triggers ��� 419

Table of ConTenTs

xvi

Using the Manage Layouts Dialog ��� 419

Optimizing Layout Performance �� 421

Summary��� 421

Chapter 19: Exploring Layout Panes ��� 423

Exploring the Objects Pane ��� 423

Defining the Fields Tab �� 423

Defining the Objects Tab �� 425

Defining the Add-ons Tab �� 427

Exploring the Inspector Pane �� 428

Inspecting the Position Tab �� 428

Inspecting the Style Settings ��� 434

Inspecting the Appearance Settings �� 434

Inspecting the Data Settings ��� 438

Summary��� 444

Chapter 20: Creating Layout Objects �� 445

Inserting an Object onto a Layout ��� 445

Working with Field Objects ��� 446

Adding Fields to a Layout �� 448

Exploring the Specify Field Dialog ��� 449

Editing the Reference of an Existing Field ��� 450

Working with Field Labels ��� 450

Configuring a Field’s Control Style �� 450

Using Pop-up Menus for Two-Field Value List ��� 458

Bypassing Value List Entry Restrictions �� 460

Using Field Placeholders ��� 464

Showing Field Repetitions ��� 466

Working with Text �� 467

Creating Static Text �� 467

Creating Dynamic Placeholder Symbols �� 467

Creating Merge Fields ��� 468

Creating Merge Variables �� 469

Table of ConTenTs

xvii

Working with Button Controls ��� 469

Working with Buttons �� 469

Popover Button �� 474

Button Bar ��� 477

Making Any Object a Button �� 479

Working with Panel Controls ��� 480

Tab Control �� 480

Slide Control �� 482

Working with Portals ��� 484

Exploring the Portal Setup Dialog �� 484

Adding Objects to Portal Rows �� 486

Creating Records in a Portal Directly ��� 487

Deleting Portal Rows ��� 488

Filtering Portal Records ��� 489

Working with Web Viewers�� 492

Exploring the Web Viewer Setup Dialog ��� 493

Building a Web Page Using Data from Fields �� 495

Calling a FileMaker Script with JavaScript �� 497

Working with Charts �� 498

Creating a Chart Using Calculated Data �� 499

Creating a Chart Using the Found Set ��� 500

Summary��� 502

Chapter 21: Manipulating Objects �� 503

Selecting Objects �� 503

Resizing Objects ��� 504

Moving Objects ��� 505

Layout Positioning Helpers �� 505

Arranging and Aligning Objects ��� 509

Align �� 510

Resize To �� 510

Distribute ��� 511

Table of ConTenTs

xviii

Rotate �� 512

Group ��� 512

Lock ��� 513

Object Stacking ��� 513

Hiding Objects ��� 514

Using Hide to Toggle a Button Bar ��� 515

Conditional Formatting �� 516

Condition Formula Options �� 517

Conditionally Formatting a Project Status Field �� 519

Understanding Tab Order �� 521

Changing the Tab Order ��� 521

Using Functions of the Set Tab Order Dialog ��� 522

Naming Objects ��� 523

Summary��� 524

Chapter 22: Using Themes and Styles �� 525

Anatomizing Styles ��� 525

Using Themes ��� 529

Changing a Layout’s Theme �� 529

Managing Themes ��� 531

Using Styles �� 532

Editing an Object’s Style Settings �� 532

Designing a Custom Theme �� 534

Summary��� 536

Chapter 23: Customizing Menus ��� 537

Getting Started with Custom Menus Basics �� 537

Exploring the Manage Custom Menus Dialog ��� 540

Creating a Custom Menu Set �� 542

Adding Copies of Standard FileMaker Menus�� 542

Table of ConTenTs

xix

Customizing Menu Items �� 547

Exploring the Edit Custom Menu Dialog �� 547

Modifying a Standard Menu Item �� 550

Adding a Custom Menu ��� 553

Installing a Menu Set �� 558

Exploring the Link Between Commands and Menus ��� 558

Creating a Status-Based Custom Menu �� 561

Summary��� 563

Part V: Automating Tasks with Scripts �� 565

Chapter 24: Introduction to Scripting ��� 567

Introducing the Script Workspace ��� 568

Exploring the Workspace Toolbar �� 568

Exploring the Scripts Pane �� 569

Exploring the Script Content Area �� 570

Steps Pane �� 571

Menu Changes (Script Workspace) �� 572

Writing Scripts �� 575

Exploring Script Step Basics ��� 576

Specifying File Paths ��� 585

Formatting Paths ��� 586

Building Dynamic Paths ��� 589

Performing Other Scripts �� 591

Exploring the Specify Script Dialog ��� 592

Exchanging Data Between Scripts �� 593

Perform Script on Server ��� 596

Emphasizing the Importance of Context ��� 597

Managing Scripting Errors �� 598

Summary��� 599

Table of ConTenTs

xx

Chapter 25: Common Scripting Tasks �� 601

Scripting Basic Functions ��� 601

Allowing User Abort ��� 602

Setting Variables �� 603

Creating Navigation Scripts ��� 605

Interacting with Fields �� 608

Go to Field ��� 609

Set Field �� 609

Set Field by Name ��� 610

Set Selection ��� 611

Set Next Serial Value ��� 611

Accessing Folders and Files ��� 612

Get Folder Path �� 613

Manipulating Data Files ��� 614

Working with Records ��� 617

Import Records �� 617

Export Records �� 618

Using Conditional Statements ��� 618

Showing Custom Dialogs �� 620

Configuring Dialog Properties �� 621

Configuring Dialog Input Fields ��� 622

Capturing a Dialog Button Click ��� 623

Creating a Related Record Using a Dialog ��� 623

Confirming a Dialog Field Value ��� 624

Searching and Dealing with Found Sets ��� 625

Iterating with Repeating Statements �� 626

Looping Through a Found Set of Records �� 627

Looping Through Data ��� 629

Managing Windows ��� 631

Creating a New Window �� 631

Table of ConTenTs

xxi

Building a Custom Dialog Window ��� 633

Introducing the Card Window �� 637

Using Insert from URL ��� 639

Downloading a PDF File ��� 639

Accessing Zip Code Information �� 640

Using cURL Options ��� 640

Summary��� 641

Chapter 26: Debugging Scripts ��� 643

Introducing Debugging �� 643

Exploring the Debugging Interface �� 644

Debugging Options Under the Tools Menu ��� 644

Exploring the Script Debugger Window ��� 645

Exploring the Data Viewer ��� 647

Setting Custom Breakpoints ��� 648

Summary��� 649

Chapter 27: Using Script Triggers ��� 651

Defining Available Triggers �� 652

File Triggers ��� 652

Layout Triggers �� 654

Object Triggers��� 659

Understanding Event Precedence ��� 661

Opening a Database File �� 662

Committing a Record with Unsaved Changes ��� 662

Opening a New Window��� 662

Changing Layouts �� 663

Accessing Targets Before Event Completion ��� 663

Avoiding Trigger Exceptions �� 664

Summary��� 664

Table of ConTenTs

xxii

Chapter 28: Extending Features with Plug-ins ��� 665

Finding Plug-ins �� 665

MonkeyBread Software ��� 665

Productive Computing ��� 666

Prometheus Systems Consulting ��� 666

Troi Automatisering�� 667

Installing Plug-ins ��� 667

Accessing Plug-in Functions ��� 668

Summary��� 669

Part VI: Deploying, Securing, and Analyzing Files ����������������������������� 671

Chapter 29: Deploying and Accessing Databases �� 673

Deploying to a Folder Directory ��� 673

Deploying to an iOS Device ��� 674

Sharing Databases on a Network�� 676

Understanding Collaborative Limitations ��� 677

Configuring Network Settings ��� 678

Opening a Hosted Database �� 680

Hosting with FileMaker Server �� 681

Preparing a Host Computer ��� 682

Accessing the Admin Console ��� 683

Uploading Files to a FileMaker Server ��� 684

Managing Database Files �� 686

Restarting a Server Computer ��� 687

Using the Command-Line Interface ��� 687

Hosting with FileMaker Cloud ��� 689

Controlling FileMaker with Links, URLs, and AppleScript ��� 690

Sharing Bookmarks with Snapshot Links �� 690

Using the FileMaker URL ��� 691

Using AppleScript to Automate FileMaker ��� 694

Summary��� 699

Table of ConTenTs

xxiii

Chapter 30: Defining Accounts and Permissions �� 701

Defining Default Security �� 702

Defining User Accounts ��� 702

Adding a Password to the Default Account ��� 704

Creating a FileMaker File Account ��� 705

Creating an External Server Account ��� 706

Exploring Privilege Sets �� 708

Default Privilege Sets �� 708

Creating Custom Privilege Sets ��� 709

Using Credentials in Formulas �� 716

Understanding the Risks of Credential Embedding ��� 718

Leveraging Custom Extended Privileges ��� 719

Controlling File Access �� 721

Summary��� 721

Chapter 31: Analyzing and Modifying Files �� 723

Save a Copy as XML �� 723

Generating a Database Design Report �� 723

Generating a Design Report ��� 724

Exploring a HTML Design Report ��� 725

Exploring an XML Design Report ��� 726

Introducing Professional DDR Tools ��� 726

Exploring Developer Utilities ��� 727

Renaming Files �� 728

Specifying a Project Folder �� 729

Specifying Solution Options ��� 729

Tools Marketplace ��� 734

Summary��� 735

Index ��� 737

Table of ConTenTs

xxv

About the Author

Mark Conway Munro is a software developer and the author of AppleScript: Developer

Reference (2010, Wiley) and Learn FileMaker Pro 16 (2017, Apress). After a 1988

introduction to FileMaker, Mark began using AppleScript and FileMaker for information

management and process automation tasks. In 1994, Mark founded Write Track

Media, a computer consultancy firm that develops custom database and workflow

automation solutions. Mark builds time-saving custom systems for a diverse list of

clients across industries, including education, entertainment, finance, news, publishing,

manufacturing, and more. Understanding the virtue of using technology to free human

focus from repetitive tasks so they can pursue a higher level of productivity, Mark is

unwavering in his commitment to developing the highest-quality workflow management

solutions.

xxvii

About the Technical Reviewer

Brian Sanchez is a FileMaker developer, business workflow consultant, and a founding

member of aACE Software. Brian’s experience is wide reaching. For over 25 years, he

designed and implemented custom apps for inventory tracking, digital catalogs built

with FileMaker Go, plus asset management and pricing tools. His eclectic client list

includes catering businesses, event training companies, schools, TV casting agencies,

and European vacationing services. Brian holds multiple FileMaker certifications.

His development philosophy is to build systems with such integrity in the code and

architecture that the client never needs to call again – unless they’re looking to upgrade

the solution. Brian served as the technical editor of Learn FileMaker Pro 16 (2017,

Apress).

xxix

Foreword

In the 1990s and 2000s, I ran TECSoft, an AppleScript and FileMaker Pro development

shop in New York City. Our specialty was database publishing – the powerful ability of

Apple’s AppleScript technology to intelligently extract data from FileMaker databases

and to format it ready for print in page layout applications such as QuarkXPress and

Adobe InDesign.

We worked closely with Apple and Claris, the predecessor of FileMaker Inc., to

showcase the abilities of their technologies. In 1994, growing – and needing additional

developer talent – we asked our pal Eric Silver, the then New York area sales rep at Claris,

to be on the lookout for us. He told me about a FileMaker wizard he knew named Mark

Munro working at Jack Morton, an AV production company in New York.

Mark was responsible for organizing Morton’s production project data and managing

their workflow. We met and he explained their workflow and showed me how he had

organized it in FileMaker so that management was able to track projects from start to

finish, track the various assets involved, and track and accurately bill their clients for the

time and materials involved.

Mark’s work was amazing, and I immediately realized we had come across FileMaker

gold. All aspects of his company’s workflow were logically organized in a functional

workflow management tool and – most impressively of all – were clearly presented in an

easy-to-follow interface. It is mind-bending to realize that Mark had accomplished this

before FileMaker was a relational database.

We began working with Mark as a freelance FileMaker Pro and AppleScript gun

slinger. We threw our most complicated and demanding projects at him – a huge

workflow management and catalog publishing project at Sony Music and a very

complex and mission-critical graphic file creation project with drop-dead deadlines for

Associated Press, to name just a couple.

In short order, Mark had more than enough work to go out on his own as a full-

time FileMaker and AppleScript developer. As TECSoft’s focus turned to working

with Apple delivering AppleScript seminars and training sessions, we created the

TECSoft Developers Consortium (TDC) to handle the huge demand for FileMaker and

xxx

AppleScript integration projects our seminars generated. With Mark as TDC developer

#1, we were able to create an international referral network of FileMaker Pro and

AppleScript developers that became the largest FileMaker Pro and AppleScript brain

trust on Earth.

Mark has now been running his own successful development company, Write

Track Media, for over 25 years. What Mark possesses, more than any other developer

I’ve worked with, is a true talent for organization. Mark’s passion makes him eminently

qualified to pass along his mastery of FileMaker’s powerful organization tool. He just had

to write this book.

—John Thorsen Jr.

Connected Hearth, LLC

foreword

xxxi

Introduction

The previous edition of this book was published in 2017. In the introduction to Learn

FileMaker Pro 16, I reminisced about my first encounter with the software working

at Tannen’s Magic Shop in Manhattan back in 1988 and highlighted the evolutionary

changes that spanned the decades between. In the 3 years since that publication,

the technological march forward has continued with improvements to the FileMaker

application.

The product is now in version 19. The Apple subsidiary was renamed Claris to

reflect an expanding product line with more diversity than the former FileMaker-

centric offerings. The previous two versions of the desktop application – FileMaker

Pro and FileMaker Pro Advanced – are now rolled into a single title that includes all

development tools. Annual upgrades to the product have resulted in an accumulation

of feature changes. To stay relevant and reflect the current software, a new edition was

required.

In addition to revisions covering changes to the software, I was determined

to make improvements to the original book. Some changes were in response to

legitimate criticisms from readers. Although readers widely praised the first book,

some thought there were too many pages focused on a function reference section

that too closely resembles what is available in the online help guide. Others thought

there were not enough real-world examples. I felt the original book could have

been more succinct. I updated the text for feature changes and spent extra months

completely rewriting each section and producing what is almost an entirely new

book. I hope the effort shows.

xxxii

I love hearing from readers and welcome any feedback or questions. If you enjoy the

book, please consider posting a review on your favorite online bookseller’s site and/or

sharing on social media. Contact me directly by joining the Learn FileMaker FaceBook

group and connecting to my professional network on LinkedIn or through my business

website:

facebook.com/groups/LearnFileMaker/

linkedin.com/in/markconwaymunro

writetrackmedia.com

FileMaker is a highly capable tool used by millions worldwide. I hope you enjoy the

book and that it helps you on your journey.

—Mark Conway Munro

December 2020, Lewisburg, PA

InTroduCTIon

PART I

Using FileMaker

The FileMaker Pro desktop application merges a user interface and development

environment into a single experience. These chapters focus on the user experience to

serve as an introduction to the platform’s features:

 1. Introducing FileMaker

 2. Exploring the Application

 3. Exploring a Database Window

 4. Working with Records

 5. Transferring Data

3
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_1

CHAPTER 1

Introducing FileMaker
FileMaker Pro is a software platform used to create relational database applications for

modern workflows. Published by Apple subsidiary Claris International Inc., the software

is popular among novice programmers for its intuitive, low-code programming interface,

while professionals appreciate access to advanced technologies, robust customization

options, rich connectivity, and plug-in extensibility. A uniquely integrated architecture

combines the full stack of data, logic, and interface layers into a seamless programming

experience. Using the flagship desktop application, developers can collaboratively create

a secure, multi-user, cross-platform solution and rapidly deploy it to mobile, cloud, and

on-premise workflows. Solutions can range from simple spreadsheet-like worksheets

to artfully designed, feature-rich, interface-driven solutions. FileMaker is used by

independent consultants, employees of small businesses, and members of teams

working at medium to large businesses, nonprofits, and government agencies. Although

it is easy to learn, business leaders who can’t invest the time themselves and don’t

employ a development staff can easily find a professional consultant to develop a system

tailored to meet their needs. Whatever the skill set, FileMaker is an excellent choice for

building custom databases. This chapter introduces FileMaker, discussing

• A brief introduction to databases

• The history of FileMaker in a nutshell

• Adapting to the integrated full stack

• Reviewing product line

 A Brief Introduction to Databases
A database is a structured collection of information stored in a generic format that is

easily accessible for a wide variety of uses. The modern world is full of databases, and

we interact with them constantly through apps and websites. Most of these are focused

on one specific data type with predefined properties and procedures. For example, a

https://doi.org/10.1007/978-1-4842-6680-9_1#DOI

4

calendar application allows a user to create and manage events with properties of date,

time, attendees, notes, and alerts. Similarly, an email application allows management of

messages with predefined properties of sender, recipients, subject, and body. These could

each be thought of colloquially as an “event-base” and a “message-base” since, at their

base, they store and provide access to events and messages. From a wider perspective, both

events and messages are types of information; they are both forms of data. A calendar app

accesses and manages an event database. A mail application does the same with a message

database. Unlike these and countless other modern applications that provide front-end

access to an out-of-sight database, an open-ended database application has no predefined

data type; at its base is data, any kind of data. A database application like FileMaker allows

a developer to create custom solutions that manage any data they define.

Applications such as a calendar or mail app provide a predefined database that is

like a metaphorical filing cabinet, structurally locked and preconfigured by the vendor to

accept a specific type of information. A user is free to enter information into this predefined

framework but has little or no control over the framework itself. By contrast, a custom

database is the metaphorical equivalent of that same filing drawer completely empty and

unlocked so that you can define the content it accepts and decide how that information

is stored, related, displayed, used, and shared. Every project starts fresh with the same

blank slate waiting for you to define the framework and establish the capabilities that will

be available to the user. So, don’t make the mistake of thinking of FileMaker as a system

for only managing contacts or projects. Similar to how a word processing document can

contain a wide variety of different written content, a database built with FileMaker can

store information about anything a developer defines it to manage: companies, contacts,

inventory, invoices, messages, notes, people, products, tasks, and more.

 The History of FileMaker in a Nutshell
The early history of FileMaker is a zigzag between various names, publishers, platforms,

and numbering systems before eventually settling into a stable, modern track.

 Nashoba Systems
FileMaker started its life in the early 1980s as Nutshell, an MS-DOS computer program

developed by Nashoba Systems in Concord, Massachusetts, and distributed by

electronics marketer Leading Edge. When the Macintosh computer was introduced in

Chapter 1 IntroduCIng FIleMaker

5

early 1984, Nashoba saw an opportunity and combined the Nutshell database engine

with a graphic user interface to create a forms-based database product. Since Leading

Edge wanted to remain a DOS-only vendor, Nashoba turned to a new distributor,

Forethought, Inc. As a result, FileMaker version 1.0 was released in April 1985 for the

Macintosh platform. In 1986, it was renamed FileMaker Plus to match the release of the

Macintosh Plus. When Microsoft purchased Forethought in 1987, they tried to negotiate

a purchase of FileMaker, which was outselling their own Microsoft File database

application. However, Nashoba declined and began self-publishing the program,

now named FileMaker 4. By today’s standards, these early versions of FileMaker were

incredibly primitive. However, it was very capable for its time, and the software filled an

important need by providing an easy-to-use interface that became popular with the do-

it- yourself crowd.

 Claris International
In 1986, Apple formed Claris Corp. as a wholly owned subsidiary to develop and publish

Macintosh software titles such as MacWrite and MacPaint. In 1988, Claris purchased

Nashoba Systems to acquire FileMaker. By this time, Leading Edge and Nutshell had

disappeared as other DOS and Windows database products dominated the market. In

1988, FileMaker II was released by Claris to match the naming scheme of their other

products. After a few minor updates, the product was rebranded in 1990 under its

modern naming and versioning format when FileMaker Pro 1.0 was released. Claris

upgraded the product in 1992 with Windows support, making FileMaker Pro 2.0 the first

cross-platform version. They began publishing a server application in 1994. It wasn’t

until 1995 with the release of version 3.0 that FileMaker became fully relational. By 1997,

with version 4.0, FileMaker was a widely popular product and was outselling all other

Claris products. Apple absorbed those in-house and renamed the subsidiary after their

only remaining product.

 FileMaker
In 1998, the company changed its name to FileMaker Inc. to reflect the new singular

focus on the database product line. Over the subsequent decades, they transitioned

the product from an early relational database to a feature-rich development platform.

The product gained native support for Mac OS X and later to the modern macOS. Many

Chapter 1 IntroduCIng FIleMaker

6

features we take for granted today were added during this time. For example, a multi-

table file architecture, the ability to open multiple windows in a single file, calculation

variables, buttons, tabs, portals, web viewers, conditional formatting, built-in functions,

and script steps. They continued improving the product by adding script triggers,

integrated charts, filtered portals, themes, numerous new layout tools, recursive custom

functions, and custom menus. More recent additions include support for JavaScript

Object Notation (JSON), client URL (cURL), and Structured Query Language (SQL).

Also features like add-on tables, self-lookup tables for master-detail layouts, automatic

directory creation, FileMaker URL and FileMaker API. This era witnessed various

adjustments to the product line to include desktop, server, and mobile versions and saw

the version numbering scheme shift to whole numbers based on a consistent annual

upgrade schedule.

 Claris International Reborn
In 2019, FileMaker announced a resurrection of the Claris brand name and a rebranding

of the company as Claris International Inc. The name was changed to better reflect

plans for expanded offerings, such as the recently announced Claris Connect workflow

integration service. In May 2020, Claris released FileMaker Pro version 19 with notable

features like

• Drag & Drop Installation (macOS) — The macOS application is

a bundle with embedded resources that can be dragged into the

Applications folder for a one-step install.

• Add-ons — A revolutionary feature that allows a set of tables,

relationships, layout objects, and scripts to be added to a database by

dragging and dropping a widget onto a layout.

• JavaScript — Web Viewers and FileMaker scripts can now directly

communicate with each other. JavaScript libraries can be used to add

advanced interface elements in web viewers.

• Keyboard Navigation in Layout Mode — Quickly jump to other

layouts using the keyboard or a new selection dialog.

• Dark Mode Support (macOS) — Changes the visual appearance

based on settings in System Preferences.

Chapter 1 IntroduCIng FIleMaker

7

• Startup File — Preference to automatically open a specific file when

the application is launched.

• New Functions and Script Steps — Near Field Communication (NFC)

features, convert paths to and from FileMaker format, access card

dimensions, leverage the power of Core ML (Machine Learning), and

more.

 Adapting to the Integrated Full Stack
The FileMaker Pro desktop application employs an integrated architecture skillfully

combining the full stack of a presentation front end, process logic middleware, and

data storage back end. Unlike the traditional approach where these components are

physically separated and built with different languages, FileMaker folds all three into a

familiar, document-based user experience with an accessible low-code development

environment. Experienced software developers familiar with multitier architectures that

employ command-line languages may find this arrangement initially disorienting. They

may even be tempted to hastily and unjustly dismiss it as something only for beginners.

However, FileMaker expertly unites ease of use with powerful standards-based

technologies, uniting the best of both worlds in a powerful application for those who

look deeper than the façade. Although accessible to beginners, it is also a very capable

and extremely powerful development tool.

FileMaker flattens the learning curve for beginners but also provides an astonishing

flexibility in structural design options for advanced users. A database can be built as a

self-contained solution, where the full resource stack of every table, layout, and script

is all built inside of a single document file. Solutions built this way can be used like a

document file, duplicated and modified like a word processing template, or passed on

to a colleague like a spreadsheet file. They can be stored in your documents folder for

personal use or shared across a network with other users. More complex solutions may

benefit from the compact unified design but can optionally reach beyond the confines

of the document container and become modular solutions made up of more than one

file. Each module can incorporate tables from the others, opening up an enormous set of

design choices. FileMaker databases can also interface with other ODBC/JDBC database

systems and/or can act as a data source for other systems. This suggests a staggering

number of possible design combinations.

Chapter 1 IntroduCIng FIleMaker

8

Note See Chapter 7 for information on adding an external table into a
FileMaker database using Open Database Connectivity (odBC) or Java Database
Connectivity (JdBC).

While at the beginning of your FileMaker journey or when contemplating your first

database, don’t let the complexity of these options be a burden. It is not necessary to

wrestle with them at first. However, be cognizant of the possibility to expand a solution

beyond the confines of a single file and push further than the examples in this book.

What starts as a single file with a handful of tables can evolve into a variety of different

structural designs. A file can be combined with others, split into a data-separation

model where interface files are linked to separate data files, and more. To summarize, a

database solution can be constructed using any combination of any of the following:

• A custom single, self-contained, full-stack database

• A custom group of full-stack databases linked together

• A custom database acting as a back-end data source accessed by

FileMaker databases, websites, or other platforms

• A custom database acting as a front-end interface, incorporating

external tables from FileMaker databases or other platforms

• A custom database serving a specific data or interface function like

printing specific reports, storing historical data, serving as an access

point for mobile devices or web browsers, etc.

• A Claris starter template used as is or customized

• A module purchased from a third-party developer

• A file stored locally, hosted on a network server or in the cloud

 Reviewing the Product Line
The FileMaker platform, summarized in Table 1-1, is made up of several applications,

each designed to address a specific function in developing, using, and sharing databases.

Chapter 1 IntroduCIng FIleMaker

9

 Creating with FileMaker Pro
At the forefront of the product line is the flagship desktop application and the primary

focus of this book, FileMaker Pro. This application is the modern incarnation of the

legacy product, providing a multipurpose interface that can be used to create, share,

and access database files on macOS and Windows computers. It is the only product

that includes all the structural development tools required to define data models,

design interface layout, and assemble scripts. It includes both front end, back end, and

middleware in a single seamless low-code application programming interface.

The software provides front-end access to data through a familiar desktop document

format that displays interface layouts (Chapter 3). A graphical schema editor makes

it easy to define tables, fields, and relationships (Chapters 7–9). A layout editor allows

rapid development of rich interfaces that render and integrate table content and

interface objects (Chapters 17–22). A script editor skillfully balances object-driven

construction with formula code, making it easy to create reusable sequences of

automated events (Chapters 24–27). Credential management makes it simple to create

secure accounts that limit user access and activity within the file using various types of

internal or external authentication (Chapter 30).

Many advanced tools provide even more powerful control. Build a library of custom

functions that can be reused anywhere in the file (Chapter 15). Override the entire menu

bar with custom menus to take complete control of the user experience (Chapter 23).

A script debugger helps identify problems and evaluate performance (Chapter 26). Save

an entire database as XML, generate design reports with ease, and encrypt databases

with AES 256-bit encryption to protect networked databases (Chapter 31).

Table 1-1. A summary of each product in the FileMaker product line

Product Name Platform(s) Develop Use Share

FileMaker Pro Mac, Windows Yes Yes limited

FileMaker Server Mac, Windows no no Yes

FileMaker Cloud linux on aWS no no Yes

FileMaker Go ioS devices no Yes no

FileMaker WebDirect Web Browser no Yes no

Chapter 1 IntroduCIng FIleMaker

10

Data can be shared and integrated in a variety of ways. Users and scripts

can easily import and export data between databases and text-based data formats

(Chapter 5). Network sharing allows workgroups to simultaneously access the same

database in real time (Chapter 29). Numerous integration options are available to

connect to external systems using AppleScript (macOS), Claris Connect, Dynamic Data

Exchange (Windows), FileMaker API, JDBC, ODBC, SQL, and more.

Tip enable Use advanced tools under the General tab of application preferences
(Chapter 2) to access all advanced features.

 Sharing with FileMaker Server and Cloud
Two product offerings are used exclusively to host databases on a network for team

sharing: FileMaker Server and FileMaker Cloud.

FileMaker Server is a database-hosting software package offering scalable, secure,

and reliable round-the-clock access to databases for authorized users. Hosted files

can be simultaneously accessed by multiple users of FileMaker Pro, FileMaker Go, and

FileMaker WebDirect or through other systems using hosted databases as a back-end

data source. The server manages event scheduling for running database backups, system

level scripts (shell script or batch file), and FileMaker scripts in a hosted database.

Individual database scripts can be configured to run from the server rather than on a

user’s computer to offload tasks and save time. Administrators can access event and

error logs to troubleshoot problems or view performance metrics to help optimize

database performance. The server uses progressive downloading technology to begin

streaming media content for immediate display without hesitation.

FileMaker Cloud is a Claris-managed cloud-hosting version of FileMaker Server with

similar features plus full-time monitoring and support and the added ease of use for

allowing remote access.

Note although this book is focused on using and creating databases, Chapter 29
introduces network sharing.

Chapter 1 IntroduCIng FIleMaker

11

 Accessing with FileMaker Go and WebDirect
Two offerings allow use or access to databases developed with the desktop application:

FileMaker Go and FileMaker WebDirect.

FileMaker Go is an iOS-only app available free of charge from Apple’s App Store

that allows iPhone and iPad users to access databases when away from their desktop

computer. Users can open a database stored locally on their iOS devices or access

one remotely from a FileMaker Server or FileMaker Cloud server over Wi-Fi or cellular

networks. Optionally, databases built for the desktop can be designed with custom

scripts to detect a user’s mobile device and switch to layouts designed specifically for

smaller screens and touch navigation. Calculations and scripts can take advantage of iOS

technologies including media capture through the camera, signature capture through

the touch screen, barcode scanning, touch/face identification, and more. A database

can access information about the device’s battery, location, attitude, air pressure,

acceleration, magnetic heading, steps, and more.

FileMaker WebDirect is the easiest way to share a database on the web. With a few

settings, any database can allow access through a web browser without using coding

tools like PHP, HTML5, CSS, or JavaScript. All the web programming required to present

the database in a web front end is handled automatically by FileMaker Server or Cloud.

Layouts are automatically rendered in the browser, and, except for certain incompatible

script steps and the ability to work in multiple windows, most functionality is identical to

that on a desktop or iOS device.

 Summary
This chapter provided a brief introduction and historical overview of FileMaker, with a

summary of the present-day product line. Next, we begin our exploration of the desktop

application.

Chapter 1 IntroduCIng FIleMaker

13
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_2

CHAPTER 2

Exploring the Application
FileMaker Pro is a desktop application for macOS and Windows with a dual-purpose

interface that integrates features for using and developing databases. While other

products in the line can share or use database, the desktop application is required to first

create those databases. This chapter introduces the application, covering these topics:

• Introducing the Launch Center window

• Configuring application preferences

• Exploring menus (Browse mode)

• Accessing contextual menus

 Introducing the Launch Center Window
The Launch Center is a multi-tabbed window used to create new databases, access

existing databases, and link to educational resources. The window, shown in Figure 2-1,

will automatically open when you launch the application. Later, it can be accessed by

selecting any of the following items under the File menu, each corresponding to a tab

section of the window:

• Create New – Opens the Create tab to create a database, convert files

into a database, and access educational resources

• My Apps ➤ Show My Apps – Opens the My Apps tab to access

databases from a FileMaker Cloud server (subscription required)

• Favorites ➤ Show Favorites – Opens the Favorites tab to access

databases saved as favorites

• Recent ➤ Show Recent – Opens the Recent tab to access databases

recently open

https://doi.org/10.1007/978-1-4842-6680-9_2#DOI

14

Tip For now, ignore these options as we continue exploring application features.
Learn more about creating files in Chapter 6.

 Configuring Application Preferences
FileMaker’s application preferences allow control and customization of key features of

the local user environment, and these should be reviewed after installation. Preference

settings are separated into five tabs: General, Layout, Memory, Plug-ins, and Permitted

Hosts. To begin, open the Preference window by selecting a platform-specific menu:

• macOS – FileMaker Pro ➤ Preferences

• Windows – Edit ➤ Preferences

Figure 2-1. The FileMaker Pro Launch Center

Chapter 2 expLoring the appLiCation

15

 Preferences: General
The General preference tab, shown in Figure 2-2, controls the user interface, username,

update notifications, the availability of advanced tools, and startup file.

 General: User Interface Options

These user interface options control aspects of the application interface. The Allow drag-

and- drop text selection checkbox enables dragging between fields, between layouts, and

between fields and content from other applications. Take control of how many recently

opened files appear in the File menu and Launch Center with the Show recently opened

Figure 2-2. The tab containing the application’s general preferences

Chapter 2 expLoring the appLiCation

16

files options. Choose to enable opening the Manage Database window when creating a

new file (Chapter 7), and click the Reset button to reset all application dialogs to default

size and position.

There are a few Windows-only options, which are controlled by the operating system

on Macintosh computers and not shown earlier. These include options to increase

the size of layout objects for improved readability, selecting an interface language and

sharpening text.

 General: Username

The username setting identifies how a database will determine the name of a computer.

The behavior varies slightly by platform. On macOS, the username defaults to “System”

and uses the current user’s computer account name. Choose “Other” to enter a static

override for any user on the local computer. On a Windows computer, a custom name

must be entered.

 General: Application

The application settings control several options. The first two control whether FileMaker

checks for and notifies the user when a software update is available, full versions

and/or incremental updates. The startup file setting at the bottom accepts a file selection

that will automatically open when the application is launched. The Use advanced tools

checkbox should be selected to enable advanced application features on any computer

where development will occur. Enabling advanced tools reveals the entire Tools menu

(discussed later in this chapter) and other features, including

• Two items in the File ➤ Manage submenu, Custom Functions and

Custom Menus

• Using copy-paste with tables, field definitions, and themes

• The ability to import tables

Tip enable advanced tools and then quit and relaunch the app.

Chapter 2 expLoring the appLiCation

17

 Preferences: Layout
The Layout preference tab, shown in Figure 2-3, affects Layout mode behavior (Part 4).

Selecting Always lock layout tools enables automatic locking of a selected layout tool

until another layout tool is selected. Default behavior reverts to the cursor after an action

with another tool. Disabling this may be preferable as there is a way to manually lock a

tool selection.

The Add newly defined fields to current layout will add newly defined fields at the

bottom of the current layout and will expand the layout to accommodate. This can be

annoying since a carefully sized layout suddenly increases in height to accommodate

roughly placed new fields with a default styling. It is usually easier to just manually add

new fields to a layout after creating them.

The Save layout changes automatically option will automatically save changes made

in Layout mode when switching back to Browse mode without confirmation dialog.

Figure 2-3. The tab containing the application’s layout preferences

Chapter 2 expLoring the appLiCation

18

Consider turning this off to avoid saving accidental changes until you are confident in

your knowledge of layout design.

 Preferences: Memory
The Memory preference tab, shown in Figure 2-4, controls the file cache settings.

As changes are made to a database’s structure or content, FileMaker stores changes

in the RAM cache and periodically writes the accumulated data to the hard disk. The

settings on the File Cache preferences tab control how often the cache is saved. The

Attempt to set file cache to setting allocates an amount of memory for the file cache. Use a

higher value for improved performance and a lower value for less risk of data loss after a

crash. Choose when the cached data is written to disk by choosing a Save cache contents

option: during idle time or at a specified interval. The default settings here are usually

fine for most solutions.

Figure 2-4. The tab containing the application’s memory preferences

Chapter 2 expLoring the appLiCation

19

Note relaunch the application for cache changes to take effect.

 Preferences: Plug-Ins
The Plug-In preference tab contains a list of installed plug-ins (Chapter 28).

 Preferences: Permitted Hosts
The Permitted Hosts preference tab lists any host computers whose SSL certificates

cannot be verified. When a user attempts to connect to an unsecured host, FileMaker

asks the user if they want to accept the connection and then adds it to this list. Any prior

connections can be removed from the list here and will then require re-approval on the

next connection.

 Exploring Menus (Browse Mode)
The default Browse mode menu bar, shown in Figure 2-5, contains commands for data

entry and switching to other modes, including the deeper developer interface used to

define database structure and design layouts.

This section introduces the default Browse mode menus. There are many

contextually sensitive items that are not enabled under various circumstances, e.g., no

database is open, a script is running or paused, a modal window is open, or a user’s login

account (Chapter 30) doesn’t grant them access to the feature. Similarly, some or all

menus may be completely different under a variety of other conditions, including

• The Launch Center window or another file dialog is open.

• A window is in a non-Browse mode: Find (Chapter 4), Preview

(Chapter 4), or Layout (Chapter 17) modes.

Figure 2-5. The default Browse mode menu bar

Chapter 2 expLoring the appLiCation

20

• A modifier key such as Option is held down.

• A developer dialog is open.

• The database is using a custom menu set (Chapter 23).

 FileMaker Pro Menu
The FileMaker Pro menu, shown in Figure 2-6, is a macOS-only menu that contains

access to information about the application, preferences, and some operating system

features. These are used to get information about the application, open the preferences

window, and hide or quit the app and may include services from the operating system

and other applications. On Windows, this menu doesn’t exist, so Preferences are

available under the Edit menu, and an Exit item is added under the File menu to quit the

application.

 File Menu
The File menu, shown in Figure 2-7, contains many file and developer-related

functions. The menu’s functions include accessing, configuring, printing, transferring

data, and more.

The Create New item at the top opens the corresponding tab of the Launch Center

window, providing access to resources, starter templates, and spreadsheet conversion

functions and creating a new blank database. The next four submenu items each

provide resource access with an option open a window or directly access a resource.

Figure 2-6. The FileMaker Pro application menu

Chapter 2 expLoring the appLiCation

21

The My Apps, Favorites, and Recent submenus each correspond to a Launch Center tab

providing access to databases in a cloud account, saved as favorite or recently accessed.

The Hosts submenu provides access to hosted databases with an option to open a Hosts

window that summarizes servers by cloud, favorites, and local with an option to add,

edit, or remove hosts (Chapter 29).

The Manage submenu provides access to development options (described later in this

chapter), while the Sharing submenu provides control over who can access the current

database across a network and the local application’s ability to share open files

(Chapter 29). File Options opens a dialog of settings for the current database (Chapter 6),

and Change Password opens a dialog allowing a user to change the password for the current

user account if that capability is permitted by their security privileges (Chapter 30).

At the top of the output options is Page Setup (called Print Setup on Windows)

and Print which provide access to typical operating system dialogs used to configure

the current window for printing. Next, the Import Records and Export Records options

Figure 2-7. The File menu and Manage submenu

Chapter 2 expLoring the appLiCation

22

provide options for transferring data into or out of the current database (Chapter 5).

The Save/Send Record As submenu allows records to be saved as an Excel or PDF file

or a Snapshot link to a set of records (Chapter 29). The Send submenu has options for

creating a manual email or creating an email with a FileMaker URL link to the current

database (Chapter 31). The Save a Copy As menu can save the entire database as a

copy, compacted copy, or clone (Chapter 6). Finally, the Recover item begins a database

recovery process used to troubleshoot or salvage a damaged database (Chapter 6).

 File: Manage Submenu

The Manage submenu of the File menu, shown previously in Figure 2-7, contains access

to the embedded development interface for the current database file. Each of these is

discussed in later chapters:

• Database – Define tables, fields, and relationships (Chapters 7–9)

• Security – Configure access credentials (Chapter 30)

• Value Lists – Define lists of values (Chapter 11) to format fields for

faster data entry (Chapter 20)

• Layouts – Create and manage interface layouts (Chapter 18)

• Scripts – Create and manage scripts (Chapter 24)

• External Data Sources – Manage connections to other FileMaker and

ODBC databases (Chapter 9)

• Containers – Define image storage locations (Chapter 10)

• Custom Functions – Create and edit custom global formulas

(Chapter 15)

• Custom Menus – Create and edit custom menus (Chapter 23)

• Themes – Create and edit object styles (Chapter 22)

 Edit Menu
The Edit menu contains standard features that are enabled when editing the contents

of a field such as Undo, Cut, Copy, Paste, Clear, and Select All. These are ubiquitous

computer functions and need no further description. However, a few others are worth

Chapter 2 expLoring the appLiCation

23

mentioning. The Find/Replace menu contains functions for doing text replacements

within a field for one or more records, while Spelling contains options for correcting

text selected within a field or stepping through every field on the layout (Chapter 4).

The Export Field Contents item opens a dialog to specify a name and location of a file in

which to save the contents of the current field (Chapter 10).

 View Menu
The View menu, shown in Figure 2-8, contains functions that control the view of the

database. The first four items are viewing modes: Browse (default for data entry), Find

to begin a search (Chapter 4), Layout to design interfaces (Chapter 17), and Preview to

prepare for printing (Chapter 4). The Go to Layout submenu contains a list of layout

choices allowing manual navigation between them. The three View As options invoke a

new content view to the current layout. The togglable Status Toolbar item controls the

visibility of the window’s toolbar, while Customize Status Toolbar opens a customization

dialog. Formatting Bar and Ruler each toggle the visibility of an additional horizontal

extension of the toolbar, while the window magnification can be increased or decreased

by 50% using Zoom In and Zoom Out. Most of these are discussed in Chapter 3.

Figure 2-8. The View menu

Chapter 2 expLoring the appLiCation

24

 Insert Menu
The Insert menu contains contextually sensitive functions for inserting files or text into a

field (Chapter 4, “Modifying Field Contents”).

 Format Menu
The Format menu contains submenus for standard text styling functions when editing

field content including Font, Size, Style, Alignment, Spacing, and Color.

 Records Menu
The Records menu, shown in Figure 2-9, contains functions for creating, duplicating,

deleting, navigating, including, excluding, sorting, and manipulating (Chapter 4).

Figure 2-9. The Records menu

Chapter 2 expLoring the appLiCation

25

 Scripts Menu
The Scripts menu provides access to the Script Workspace window and displays a list of

individual scripts that have been configured to appear here (Chapter 24).

 Tools Menu
The Tools menu, shown in Figure 2-10, contains access to key development functions

and is only available when the Use advanced tools preferences is enabled.

Figure 2-10. The Tools menu

The top three items provide access to debugging features (Chapter 26). The Custom

Menus submenu is used to define and select a custom menu set (Chapter 23). Analysis

tools like Save a Copy as XML and Database Design Report are used to create readable

documents listing internal structural resources (Chapter 31) for analysis or storage.

Developer Utilities opens a dialog with file encryption and other features (Chapter 31).

Finally, the Tools Marketplace provides a quick link to the online Claris Marketplace

where you can download or purchase development tools from third parties.

 Window Menu
The Window menu contains many window-related functions used to create additional

windows for a database or choosing among multiple windows for any open database

(Chapter 3).

Chapter 2 expLoring the appLiCation

26

 Help Menu
The Help menu provides access to online resources including a help guide, learning

resources, upgrades, the community website, and other application-related functions.

 Accessing Contextual Menus
There are numerous contextual menus that appear within FileMaker’s user and

developer interfaces when the user right-clicks on regions or objects. These are

summarized by field, record content area, web viewers, and windows. Each menu

provides a specific shortcut to contextually relevant commands based on the context of

the click. As you begin exploring databases in subsequent chapters, look for these time-

saving menus as a faster alternative to searching the crowded menu bar.

 Contextual Menus for Fields
There are six contextual menus for fields. These all contain cut-copy-paste functions

with other functions varying by field type or window mode:

• Text-Based Field (Browse Mode) – Formatting, inserting, sorting,

searching, charting, and exporting

• Text-Based Field (Find Mode) – Insert operator

• Container Field (Browse Mode) – Inserting file and exporting the

contents of the field

• Summary Field (Browse Mode) – Formatting, charting, and exporting

• Toolbar ➤ Quick Search Field (Browse Mode) – Spell and grammar

check, text substitutions, transformations, and speech functions

• Any Field (Layout Mode) – Text orientation, object style selection,

specifying the field, configuring as a button, defining conditional

formatting, configuring script triggers, formatting, and arranging

Chapter 2 expLoring the appLiCation

27

 Contextual Menus for Record Content Area
The content area of a database window has a contextual menu that varies depending on

the window mode:

• Browse Mode – Copy, create, duplicate, delete, sort, and save/send

records

• Find Mode – Copy, add, and delete find requests

• Preview Mode – Copy the page, configure the page, and print

• Layout Mode – Paste, set background style, and open dialogs for

theme and layout setup

 Contextual Menus for Web Viewers
There two contextual menus for Web Viewers that vary by window mode:

• Browse Mode – One option to reload the content

• Layout Mode – Functions to cut-copy-paste, set style, configure as a

button, configure the viewer settings, define conditional formatting,

configure script triggers, and set various formatting options

 Contextual Menus for Window Components
These three contextual menus appear on various window component:

• Layout Part (Layout mode) – Open the Part Definition dialog, and

choose the style or fill color of the part

• Ruler – Choose points, inches, or centimeters as the unit of measure

• Toolbar – Open the toolbar customization dialog

 Contextual Menus for Calculation Formulas
Every instance of the Specify Calculation dialog (Chapter 12) has a contextual menu

that includes text manipulation functions that vary slightly depending on if text is

selected or not.

Chapter 2 expLoring the appLiCation

28

 Summary
This chapter introduced the basics of the FileMaker Pro desktop application, covering

topics such as the default windows, preferences, and various menus. Next, we begin

exploring a database window.

Chapter 2 expLoring the appLiCation

29
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_3

CHAPTER 3

Exploring a Database
Window
A database window is a view into an open database file. As a full-stack development

environment, FileMaker’s windows have different window modes for data entry and

development. This chapter begins an exploration of a database window from a user

perspective, covering these topics:

• Identifying window regions and modes

• Exploring the window header

• Managing multiple windows

Since we don’t discuss creating database files until Chapter 6, to follow along with the

exploration of the window interface, take a moment to download the Learn FileMaker

sample files from the Apress website (https://www.apress.com/9781484266793), and

open the Chapter 3-5 file. This example contains a simple Contacts table with two layouts

with a simple custom theme to render nice example pictures for the book.

 Identifying Window Regions and Modes
A database window, shown in Figure 3-1, is divided into two primary regions: toolbar

and content area. The toolbar, discussed later in this chapter, is the header containing

two rows of controls that are uniform to all databases with some customization options.

The content area includes the area below the toolbar that displays a custom user

interface designed by a developer. In this example, the window is preconfigured with

a few simple interface elements. When creating a new blank file (Chapter 6), this area

would be completely blank and require a layout design (Chapters 17–22) which can

be more graphically elaborate. This area displays one layout at a time but can switch

https://doi.org/10.1007/978-1-4842-6680-9_3#DOI
https://www.apress.com/9781484266793

30

between any number of layouts created in the file. The rendering method of content

varies by the selected window mode and content view.

 Defining Window Modes
A window mode is a display state that optimizes a window’s interface for a specific

functional purpose. FileMaker has four modes that are described across several different

chapters: Browse, Find, Preview, and Layout.

Browse mode is the default window state and is used to interact with the content of a

database and perform data entry–related tasks. In Browse mode, the content area of the

window renders a set of records from a layout’s table. Depending on the design of the

Figure 3-1. The two window areas, toolbar (top) and content area (bottom)

Chapter 3 exploring a Database WinDoW

31

layout and account permissions, a user can interact with the data to create, view, edit,

delete, duplicate, search, sort, and omit records as well as interact with other objects.

Find mode is a window state used to enter search criteria. In Find mode, the layout

transforms into a blank record-like request into which the user enters criteria defining a

desired set of records prior to performing a search.

Preview mode is a window state that acts like a print preview, displaying the current

layout and found set of records as they would appear on a printed page. The layout will

appear similar to Browse mode but be presented in a nonfunctional state. So, fields will

not be editable, and buttons that aren’t hidden appear as non-clickable art. Also, objects

may hide, slide, compress, summarize, and change formatting depending on how they

are defined on the layout.

Layout mode is a window state used to create interface layouts. Special design tools

are used to add and configure objects to the layout.

Each mode has a unique toolbar, menu bar, and content area rendering

methodology. Depending on their access permissions (Chapter 30), a user can change

the mode of a window by clicking a mode button in the status toolbar, selecting a mode

from the View menu, or running a script that changes the mode. Using Browse mode is

discussed in this chapter and in Chapter 4 along with using Find and Preview modes.

Designing custom interface elements in Layout mode is explored in Chapters 17–22.

 Defining Content Views
A content view is an interface setting that determines how records are displayed in the

content area of a window in Browse mode. Depending on restrictions enforced by the

layout settings (Chapter 18, “Views”), a user can choose to view records in up to three

formats: Form, List, or Table. The current view of a layout can be changed by selecting

a menu item under the View menu, clicking a View As icon in the toolbar, or running a

script that changes the view.

In Form view, the window displays one record at a time rendered into one set of all

the layout elements. To see other records in this view, use the navigation controls in the

toolbar or custom interface elements designed to go to other records. This is analogous

to looking at one sheet of paper pulled out of a file cabinet or a single page in a book.

In List view, the window displays a continuous list of records that are rendered by

repeating the layout elements once for each. In this view, the user can scroll up or down

to see other records. This is analogous to looking across a sequence of tabs on folders in

a file cabinet or at a book’s table of contents.

Chapter 3 exploring a Database WinDoW

32

In Table view, the window displays a set of records in a spreadsheet-style format

of columns and rows while excluding other graphical elements that are present on the

layout. The user can rearrange and resize columns by dragging their headings. They can

sort the records by clicking on a heading. New fields (columns) and new records (rows)

can be created intuitively in a manner somewhat similar to a spreadsheet. An action

pop-up menu is hidden within each field’s heading and provides quick access to various

features including sorting, summarization, field control, and view control. Table views

aren’t high on design and customized functionality, but they provide a more familiar

environment for those used to working with spreadsheets and may be suitable for simple

databases that don’t require an elaborate interface.

 Exploring the Window Header
There are three horizontal bars that can be displayed or hidden in the toolbar area

of a window depending on the user’s access privileges, preferences, and the settings

established by the developer. These are the Status Toolbar, Formatting Bar, and Ruler.

 Status Toolbar (Browse Mode)
The Status Toolbar is the most prominent area running along the top of the window

containing controls pertinent to the current window mode. It is the only part of the

window header that is visible by default. Unless hidden and locked by a script, users can

toggle the visibility of the toolbar by selecting View ➤ Status from the menu.

 Default Toolbar Items (Browse Mode)

The default toolbar configuration for Browse mode is shown in Figure 3-2. The top

portions are customizable (discussed later in this section), and the bottom are static.

Chapter 3 exploring a Database WinDoW

33

Record Navigation Controls

The record navigation controls in the toolbar, shown in Figure 3-3, display information

about the records being viewed and allow a user to move around within the found set of

records (Chapter 4).

The toolbar’s navigation controls are

 1. Record Navigation Arrows – Click to move to the previous or next

record.

 2. Record Number & Slider – The number of the current record. Move

the slider or type a record number to jump to another record.

 3. Found Set Status – Shows the total record count, the found set

count (if a subset of the total), and the sort status. When viewing a

subset, click the circle icon to toggle between found and omitted

records.

Figure 3-2. The anatomy of the default Browse mode toolbar configuration

Figure 3-3. The default Browse mode navigation controls

Chapter 3 exploring a Database WinDoW

34

Function Buttons

The function buttons in the toolbar, shown in Figure 3-4, allow a user to perform various

record functions (Chapter 4) and access a menu of sharing functions (Chapter 29).

Quick Find Search Field

At the top right of the toolbar is a search field used to perform a Quick Find (Chapter 4,

“Searching with Quick Find”).

Layout Menu

The lower, non-customizable level of the toolbar starts with the Layout menu. In Browse

mode, this displays a list of visible layouts (Chapter 18) for manually navigating to

another layout, the same as the View ➤ Go To Layout menu.

Content View Buttons

Next in the lower bar are three content view buttons used to change the content as

formatted in the window view as described earlier in this chapter. The view buttons

enabled here are controlled by the current layout’s view settings (Chapter 18).

Preview Button

The toolbar’s Preview button changes the window into Preview mode (Chapter 4).

Formatting Bar Button

The Formatting Bar button toggles the visibility of a text-editing control bar between the

status toolbar and the content area of the window (described later in this chapter).

Figure 3-4. The default toolbar buttons in Browse mode

Chapter 3 exploring a Database WinDoW

35

Edit Layout Button

The Edit Layout button changes the window to Layout mode (Chapter 17).

 Customizing the Toolbar (Browse Mode)

The controls in the top portion of the toolbar are customizable at the user-computer

level. This means that a user can customize the inclusion and arrangement of controls

in the toolbar, which affect all databases they open on their computer. With a database

open, select the View ➤ Customize Status Toolbar menu to open a customization panel.

On macOS, this is a graphical panel attached to the window as shown in Figure 3-5.

On the lower left of this dialog is a Show menu that controls the button format in the

toolbar. The choices are as follows: Icon only, Text only, or the default, Icon and text. On

Windows, a less attractive list-based dialog appears with similar drag and drop options.

Figure 3-5. The toolbar customization panel for Browse mode (macOS)

Chapter 3 exploring a Database WinDoW

36

Adding, Removing, and Rearranging Toolbar Items

To add an item to the toolbar, drag an icon from the customization panel up into the

toolbar area and drop it. FileMaker will avoid duplication by automatically replacing

an object already present in the toolbar when that same control is dropped elsewhere.

To remove an item, drag it until it clears the toolbar area and release the mouse button.

Items can be rearranged by dragging them around within the toolbar.

Restoring the Default Toolbar Set

To restore the default control set, drag the group in the rectangle at the bottom of the

panel and drop it in the toolbar.

 Formatting Bar
The Formatting bar is an optional set of text-formatting controls, shown in Figure 3-6.

The bar appears between the bottom of the default status toolbar and the top of the

content area when the View ➤ Formatting Bar menu is selected or the button on the

lower right of the toolbar is clicked. These controls for font, style, size, color, highlight,

emphasis, and text alignment become enabled when the user clicks into a text field.

 Horizontal Ruler
A horizontal ruler can be activated and appears below the other header bars, as shown in

Figure 3-7. The View ➤ Ruler menu toggles the visibility of this ruler. The measurement

unit of the ruler can be changed using its contextual menu, with a choice of centimeters,

inches, and points. The Browse mode ruler isn’t useful until focus is inside a text field and

it shrinks to the size of the field and shows tabs and margins. These settings can also be

modified with layout tools (Chapter 19, “Exploring the Inspector Pane”).

Figure 3-6. The formatting bar and toggle button

Chapter 3 exploring a Database WinDoW

37

 Using Multiple Windows
When a database is opened, a window automatically appears and displays a default

layout. Users can navigate to other layouts within that window, or they can open

additional windows to access multiple simultaneous views into the same file. They

can view any combination of layouts and found sets of records. For example, a Contact

record can be viewed in one window, a Contact list in another, and a Company list in a

third. Opening a new window allows the preservation of a position in a found set in one

window while performing work on other records in the same or different tables. Users

and scripts can open and close windows as needed to complete a task more efficiently.

Scripts can create new windows off-screen to perform work without disrupting the

current view (Chapter 25).

 Creating a New Window
Select the Window ➤ New Window menu to manually create a new window. The new

window will open in front of and slightly offset from the current window. It will start as

an exact duplicate with the same properties of the current window: name (with suffix),

mode, view, dimensions, toolbar visibility, layout, found set, and current record. Once

open, these can be changed by searching, navigating, moving, and resizing.

Multiple windows are great for viewing records side by side or alternating between

different work. However, conflict warnings will occur if a user tries to edit a record that is

busy with active focus in another window. So, it is a good idea to encourage users to use

Figure 3-7. A ruler visible (top) and when a field has focus (bottom)

Chapter 3 exploring a Database WinDoW

38

this feature sparingly, reminding them to close out and return to a single window when

finished with a task that required multiple windows. Close a window by selecting the File

➤ Close Window menu, or click the close icon on the window title bar.

 Selecting a Window from the Menu
Each new window is added to the list at the bottom of the Window menu, as shown in

Figure 3-8. This is a blended list of all visible open windows for all open databases and

includes windows that are positioned off-screen. The list displays the current stacking

order of windows from front to back. Select a window to bring it to the front.

 Hiding and Showing Windows
A window can be hidden from view while remaining open. This happens automatically

when a database opens a database to access resources in it or when a script explicitly

hides the window. A user can manually hide a window by selecting the Window ➤ Hide

Window menu. Every hidden window is listed under the Window ➤ Show Window

submenu, as shown in Figure 3-9. Selecting a window from this list will make it visible

and bring it to the front. The Bring All To Front item makes all hidden windows visible.

Windows off-screen can be brought back into view all at once and arranged neatly with

onscreen windows using Tile Horizontally, Tile Vertically, and Cascade Windows. A

window can be minimized to the macOS or Windows dock by selecting the Minimize

Window menu item. When minimized, it is listed as an open window in the menu but

must be selected to bring it back into view.

Figure 3-8. The bottom of the Window menu lists all visible windows

Chapter 3 exploring a Database WinDoW

39

 Summary
This chapter explored the anatomy of a window, toolbar controls, and managing

multiple windows. In the next chapter, we begin working with records.

Figure 3-9. The submenu containing hidden windows

Chapter 3 exploring a Database WinDoW

41
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_4

CHAPTER 4

Working with Records
A record is a primary unit of content in a table, one group of values that together represent

a particular entity. Using the spreadsheet metaphor to analogize a database file to a

spreadsheet file, a table is like a sheet, a field like a column, and a record is like a row.

In a Contacts table, a record represents a person, while a record in an Inventory table

represents one product. When working in a database, users spend most of their time

performing tasks that involve creating, editing, deleting, omitting, searching, exporting,

importing, printing, and viewing records. Although a database can contain many different

tables each with its own collection of records, this chapter uses the Learn FileMaker

Chapter 3-5 sample file with a single Contacts table. This simplifies examples and provides

the basic context necessary for later development of more complex custom solutions. This

chapter explores user interactions with records, covering the following topics:

• Entering data

• Creating, deleting, and duplicating records

• Searching records

• Working with found sets

• Printing

 Entering Data
A data entry task involves opening a record, focusing on a field, modifying field contents,

moving from field to field, and then committing (closing) a record or reverting it.

https://doi.org/10.1007/978-1-4842-6680-9_4#DOI

42

 Opening a Record
Opening a record transforms the fields on a layout from displaying information into an

editable state ready for data input. To open the current record for data entry, click into

any editable field on the layout, or type the Tab key to enter the first editable field.

 Understanding Field Focus
A field has focus when it is currently ready to accept input. Only one field can have active

focus at a time, and this fact is visually indicated by a text cursor blinking within the field.

The visual appearance of the field may also change depending on the layout settings

applied to its in focus state (Chapter 22, “Editing an Object’s Style Settings”). A layout

should be designed to provide some visual change to make clear to users that the record

is opened and which field will receive their input. For example, the field borders might

become visible, change thickness, or have a color applied. The field’s fill color can also

change. In the Learn FileMaker sample file, focus is indicated by a simple darker border,

as shown in Figure 4-1. Focus can be shifted to other fields by either clicking on them

with the cursor or typing the Tab or other key(s) that move focus to the next field in the

tab order based on the field settings (Chapter 21).

 Modifying Field Contents
Once a record is open and a field has focus, the value in the field can be changed in

several different ways depending on the field’s data type (Chapter 8) or the layout

behavior and formatting options (Chapters 19 and 20). These may include typing, cut,

copy-paste, undo-redo, insert functions, or mouse clicks.

The most common method of entering data into any data entry field is by simply typing

on the keyboard. As long as a field is in focus, anything typed will flow in as its content.

Like most applications, FileMaker’s Edit menu has commands for cut, copy, paste,

undo, and redo. These functions only affect content stored in fields while they are in

Figure 4-1. A field in focus in the Learn FileMaker sample file

Chapter 4 Working With reCords

43

focus. Undo, for example, will step back text changes just made in the active field but

does not reverse actions such as record creation or deletion and doesn’t work after

changes are committed when a record closes.

When drag and drop is enabled in the application preferences (Chapter 2), text can

be dragged to rearrange it within a field. It can also be dragged from one field to another,

between fields in different windows and between fields and text in other applications.

The Insert menu and similarly named submenu of a field’s contextual menu

contain functions for quickly inserting content into fields. Each is contextually enabled

depending on the data type of the field in focus (Chapter 8) and the field’s editable status

on the layout (Chapter 19). Inserting different files is made possible by selecting the

Insert Picture, Insert Audio/Video, Insert PDF, or Insert File functions. Quickly insert the

Current Date, Current Time, or Current Username using other functions. The From Index

option is used to select and insert a value into the current field from an indexed list of

values entered into that field on any record. The From Last Visited Record option inserts

the value of the current field from the last record viewed.

Finally, fields can also be configured with a control style that allows data entry with

mouse clicks. For example, a check box style allows selection of boxes to enter a value,

while a calendar style provides a graphical calendar for date entries (Chapter 20).

 Closing a Record
After editing, a record must be closed to commit or revert changes. Reverting closes

a record and omits all changes made during the session. A record can be reverted

by selecting the Record ➤ Revert Record menu or running a script that performs

the function of the same name. Committing a record closes the record while saving

changes made during the session. During this process, FileMaker will perform data

entry validations and report problems if any are detected. A record can be committed

numerous ways. Manually commit a record by typing the Enter key or clicking on the

layout’s background, away from other objects. Other actions that will commit the current

record include navigating to another record, creating a new record, closing the current

window, closing the file, or running a script that uses the Commit Records/Request script

step.

Tip a layout can be configured to automatically save changes or present a
confirmation dialog when committing (Chapter 18).

Chapter 4 Working With reCords

44

 Creating, Deleting, and Duplicating Records
Users can create, delete, delete all, and duplicate records. All of these commands are

accessible to users through the Records menu or a custom script. Some are also accessible

through a toolbar icon or the record contextual menu on the background of a layout.

The New Record function will create a new blank record in the current layout’s table

of the front window and automatically open it with focus in the first field.

The Delete Record function will permanently delete the current record in the

window after presenting a warning dialog to confirm the user’s intent. A user can bypass

this warning dialog and instantly delete a record by holding Option (macOS) or Shift

(Windows) while selecting the Delete Record option. While this may be a useful tip for

power users, it can be dangerous and shouldn’t be shared with new users. It may be

prudent to disable this ability using custom menus (Chapter 23). The Delete All Records

function will delete every record being viewed in the found set.

The Duplicate Record function will create a duplicate of the current record with all

local field values retained.

Tip to reset the Learn FileMaker Chapter 3-5 sample data, choose the Reset
Sample Records under the Scripts menu.

 Searching Records
A FileMaker table can contain a maximum of 64 quadrillion total records. While most

tables will likely never reach that number, as the number grows, it becomes increasingly

difficult to find a specific record. Scrolling through even a few hundred records to find

one is unnecessarily time-consuming. Instead, a record search can quickly create a

smaller temporary subset of records based on user-specified criteria. Searching helps

users locate records for data entry work but also isolates a group of records for processes

like printing or exporting. FileMaker offers several methods for searching records: fast

searches using quick find or field selection, Find mode to build complex finds, SQL queries

(Chapter 16), or custom scripts (Chapter 24).

Caution except for sQL Queries, all searches are context sensitive and executed
from the perspective of a window’s layout!

Chapter 4 Working With reCords

45

 Performing Fast Searches
FileMaker offers two options for performing a single-criterion search: Quick Find and

Find Matching.

 Searching with Quick Find

The Quick Find feature searches for records in the current layout’s table where some

criteria are found in any field on the layout that is configured specifically for quick find

inclusion (Chapter 19, “Inspecting the Data Settings”). To perform this type of find

manually, enter a word or phrase into the search field located in the toolbar, shown

in Figure 4-2, and then type the Enter key. The records visible in the window will be

updated to only those with the matching value in a field, and the found/total record

counts in the navigation area will reflect the difference. Click the magnifier icon in the

quick find field to see a list of recent searches from any table in the file, and select one to

repeat it for the current layout’s table.

Caution after searching, the text remains in the search field but doesn’t interact
with the found set. if the user or a script changes the found set, the criteria linger
as an obsolete reminder of the last search, no longer relevant to the records
actually displayed.

 Searching with Find Matching

A find matching type of search uses the text selection within a field as the criteria to

quickly search for any records containing that value in the same field. There are three

functions available by highlighting some text in a field and right-clicking to access

the contextual menu, shown in Figure 4-3. Each of these functions will perform a

Figure 4-2. The Quick Find field in the toolbar

Chapter 4 Working With reCords

46

predefined type of search by matching the selected value in the current field. The Find

Matching Records option performs a new find for records where the field contains the

selected value. The others modify the current found set; Constrain Found Set performs a

narrowing find that retains only those records in the found set where the field contains

the selected value, and Extend Found Set performs an expanding find that adds to the

found set any records where the field contains the selected value.

 Using Find Mode
For more complex searching tasks, Find mode is a transitional window state that changes

the menu, toolbar, and content area for flexible entry of search criteria, as shown in

Figure 4-4. To begin, enter Find mode by selecting Find Mode under the View menu or

clicking the Find toolbar icon.

Figure 4-3. The find matching records functions of a field’s contextual menu

Chapter 4 Working With reCords

47

 Status Toolbar (Find Mode)

The Find mode toolbar changes to search-specific buttons, either the default Find

options or the user’s customized set.

Default Toolbar Items (Find Mode)

The default toolbar for Find mode is shown in Figure 4-5. Similar to Browse mode, the

top portion can be customized, and the bottom is static.

Figure 4-4. A window rendered in Find mode transforms to show find requests
and search-related toolbar functions

Chapter 4 Working With reCords

48

Navigation Controls

The navigation controls in Find mode are similar to those in Browse mode except that they

display information and navigation options pertaining to find requests instead of records.

Function Buttons

The function buttons in the Find mode toolbar are

• New Request – Create a new find request to enter alternate criteria

• Delete Request – Delete the current find request

• Perform Find – Execute the find and returns to browse mode with the

resulting found set

• Cancel Find – Return the window to Browse mode with the previous

found set

Saved Finds Menu

The Saved Finds button on the far right of the toolbar provides access to a menu of Finds

explicitly saved for the current table. These can be selected to instantly perform a find

instead of entering custom criteria. See “Working with Saved Finds” later in this chapter.

Layout Menu

The lower, non-customizable level of the Find mode toolbar starts with the Layout

menu. This works the same as in Browse mode allowing a user to switch layouts. In Find

mode, this can be useful if the user wishes to create a find using multiple fields that are

only visible on different layouts. However, since a find requires a table context, at the

Figure 4-5. The anatomy of the default Find mode toolbar

Chapter 4 Working With reCords

49

time of execution, only criteria entered on layouts for the same table as the current layout

will be considered part of the request. Therefore, use this only to access fields on layouts

for a single table since others will be ignored.

Content View Buttons

The Content View buttons work the same as in Browse (Chapter 3), rendering content as

a list, form, or table.

Matching Records Options

The Matching Records options are two togglable options that determine if records

matching the current find request will be included or omitted from the resulting found

set. See “Specifying a Matching Record Option” later in this chapter.

Insert Operators Menu

The Insert Operators menu contains search operators that can be inserted into a field

with or without other criteria to enhance the search parameters. See “Using Search

Operators” later in this chapter.

Customizing the Toolbar (Find Mode)

The Find mode toolbar is customizable at the user-computer level. Enter Find mode and

select the View ➤ Customize Toolbar menu to open the customization panel attached to

the window as shown in Figure 4-6. Although the available buttons are different, they can

be added or removed as described for Browse mode in Chapter 3.

Chapter 4 Working With reCords

50

 Entering Criteria and Performing the Find

In Find mode, the window’s content area is rendered as a blank version of the current

layout, called a find request. This appears similar to a record but is used to enter search

criteria. Unlike with the Quick Find and Find Matching Record functions where users

search for one piece of information at a time, a find request allows criteria to be typed

into more than one field. Users type criteria into specific fields to build more precise and

complex search requests. Criteria can be typed, pasted, or inserted into fields and can be

combined with search operators. For records to qualify as a match, they must match all

of the values entered in a single request.

Once the desired criteria are entered into the appropriate fields, the search process

can be performed by either typing Enter, clicking the Perform Find toolbar button, or

selecting the Requests ➤ Perform Find menu. FileMaker will search the current table for

matching criteria in the fields indicated and display a found set of the results. If there

are no results, a dialog will offer the user an option to return to Find mode and edit the

criteria or cancel the process and return to Browse mode.

Figure 4-6. The toolbar customization panel for Find mode

Chapter 4 Working With reCords

51

Try searching the Learn FileMaker sample records for a resulting found set of contacts

who work for a specific company, as shown in Figure 4-7, and follow these steps:

 1. Enter Find mode.

 2. Click into the Company field.

 3. Type some or all of the desired value, e.g., “Widget.”

 4. Click the Perform Find button in the toolbar or type Enter.

Experiment with different mixtures of criteria. For example, search for “Widget” in

the Company field and “Karen” in the First Name field. Since the results must contain

both values, only one record will be returned as a match.

Using Search Operators

A search operator is a character or set of characters that are used to narrow the focus

of search criteria typed in a field. Without an operator, FileMaker defaults to a “begins

with” type search, where matches are found at the beginning of words. So, searching for

“Widget” or “Wid Manu” or “W M” would all find records with “Widget Manufacturing”

in the field. Operators, described in Table 4-1, can be added to a field while in Find mode

by typing them directly into a field, using the Insert Operators menu in the toolbar or

selecting the Operators submenu from a field’s contextual menu. To see operators in

action, place an exclamation mark in the Company field to find all records with other

records with the same value, or search the First Name field for *n to find records with

names ending with that character.

Figure 4-7. The resulting found set of a search shows only matching records

Chapter 4 Working With reCords

52

Table 4-1. A description of the available Find mode operators

Operator Description

= By itself, finds records where that field is empty. in front of a value, matches a whole word

within the field, excluding partial matches.

== in front of a value, matches an entire phrase within the field.

! Finds records that have duplicate values in the field, i.e., any record whose value in the

field is also found in another record.

< Finds numeric or text values that are less than the value entered after the symbol.

≤ Finds numeric or text values that are less than or equal to the value entered after the symbol.

> Finds numeric or text values that are greater than the value entered after the symbol.

≥ Finds numeric or text values that are greater than or equal to the value entered after the symbol.

... Finds a range of values based on text placed before and after the operator. For example,

enter “1/15/2021…1/30/2021” (without the quotes) to find all records where the field

contains a date including or between the two dates entered.

// Finds records where the field contains today’s date.

? Finds records where the field contains an invalid value.

@ Finds records where the field contains a specific number of any character. For example,

“@@” will find “he” or “it,” while “@@@@” will find “door” or “test.”

Finds records where the field contains a specific number of any number. For example, “#”

will find “3” or “8” and “##” will find “33” or “81.”

* Use this in place of a character to create a search pattern indicating there must be some

value present. For example, by itself, it will find every record with any value in that field

(e.g., omitting empty), or typing “1/15/*” will find any records where the field contains a

date of January 15 for any year.

\ escapes the next character. this can be useful when searching for a literal operator by

treating the operator as part of the search criteria and not as an operator. For example, to

search for any records where the field contains a quote symbol, enter \".

`"" Used to match the phrase exactly as typed between the quote marks.

*"" Used to match the phrase typed between the quote marks anywhere in a field containing

a lot of text.

~ Used to perform a relaxed search in Japanese text.

Chapter 4 Working With reCords

53

 Manipulating a Previously Executed Find

Once a find has been performed, FileMaker offers three methods for further refining

the results without having to start over with a new request: modifying, extending, and

constraining the last find.

Modifying the Last Find

The Modify Last Find function re-creates the find request(s) and criteria of the last find

performed in the current table providing an opportunity to edit the criteria and perform

the modified search. This command is available in the Record menu, in the menu under

the toolbar’s Find icon, or as a step that can be included in scripts.

Extending the Last Find

The Extend Found Set command uses a new search to find and add matching records to

the current found set. This can be accessed two ways. In Browse mode, highlight some

text in a field, and select command from the contextual menu. The text selection is used

to find records not in the found set and add them. In Find mode, enter criteria and select

the Request ➤ Extend Found Set menu instead of Perform Find. The results will be added

to the current found set. For example, if viewing a found set of records with a State of

“NY,” enter Find mode, type “CO” into State, and select Extend Found Set. The result will

be an expanded list of contacts from both states.

Constraining the Last Find

The Constrain Found Set command uses a new request to remove records from the

current found set. This can be accessed two ways. While in Browse mode, highlight

some text in a field, and select Constrain Found Set from the field contextual menu.

The selection is used find and retain only records from the found set with the matching

value. In Find mode, enter criteria and select the Request ➤ Constrain Found Set menu

instead of Perform Find. Records in the last found set without the matching criteria will

be removed. For example, if viewing a result set of records with a Company of “Widget,”

enter Find mode, type “CO” in the State field, and then select Constrain Found Set. The

resulting found set will retain only the contacts from the previous found set that are from

Colorado.

Chapter 4 Working With reCords

54

 Managing Multiple Find Requests

Find mode creates a single default find request. This can be expanded to create more

complex searches. Each request provides one additional set of criteria defining values

that indicate if a matching record should be included or omitted from the result. The

results of all requests are combined into the final result. So, if one request specifies

records with a State of “NY” and another specifies records with a State of “CO,” the result

will be a combined list of those two sets of records. A single request containing multiple

field criteria acts as an “and” type search where a record must have all the values to be

included in the result. In other words, it must contain the specified value in one field and

the specified value in another. Conversely, multiple requests act as an “or” type search,

where a record must match all the criteria of at least one request. In other words, it must

contain specified values from one request or specified values from another request.

Users can create, delete, and duplicate find requests just like they can do with records

except that they are accessed through a Requests menu, which replaces the Records

menu while in Find mode. Some of these are also accessible through a toolbar icon or

the record contextual menu on the background of a layout.

 Specifying a Matching Record Option

Every new find request has a default Matching Record option set to “Include” which

means that records matching the request criteria will be included in the results. If this

option is toggled to “Omit” in the lower toolbar, then matching records will be excluded

from the results of the previous request(s). In the examples shown in Figure 4-8, the first

request will include every record with “Widget” in the Company field, and the second

request will omit from that set any matches with a First Name of “Jim.” The results will be

all contacts working for Widget company except for Jim. Using this setting with multiple

find requests makes it possible to construct and perform extremely complex include-

omit multi-criteria searches.

Chapter 4 Working With reCords

55

 Working with Saved Finds

Find requests can be saved for future reuse. In Browse mode, the Saved Finds menu is

accessible from the Find button toolbar and the Records ➤ Saved Finds menu. In Find

mode, it is available through the Saved Finds toolbar button. This menu is used to save

and manage saved finds as well as perform saved or recent finds.

The Save Current Find option will open a dialog to start the save process. A name can

be entered, and optionally, the criteria can be edited. In Browse mode, the last executed

find will be saved. In Find mode, the current find criteria entered will be saved.

The Edit Saved Finds option opens a dialog of the same name, shown in Figure 4-9,

that is used to create, edit, duplicate, or delete saved finds.

Figure 4-8. An example of a second find request set to omit results

Figure 4-9. The dialog used to view and manage saved finds

Chapter 4 Working With reCords

56

Managing a Find Request

When saving or editing a find, a Specify Options for the Saved Find dialog opens

displaying the name of the find. Clicking the Advanced button will open the stored

criteria in a Specify Find Requests dialog shown in Figure 4-10. Each line in this dialog

represents one request that makes up the find. Requests can be created, edited,

duplicated, or deleted using the buttons on this dialog. Each request specifies an action

(Find or Omit) and shows the criteria. Select a request and click Edit to open the editing

dialog.

Editing a Find Request Criteria

The Edit Find Request dialog, shown in Figure 4-11, is used to edit a find request for a

new or saved find. This dialog can be opened by clicking New, Edit or double-clicking

on a find request in the dialog in Figure 4-10. This dialog is also used by script steps that

create find requests or perform finds (Chapter 25, “Searching and Dealing with Found

Sets”).

Figure 4-10. The dialog used to view and manage find requests in a saved
find

Chapter 4 Working With reCords

57

In the dialog, you can edit the criteria of the request using the following controls:

 1. Action – Choose Find Records or Omit Records, which indicates the

matching records option for the request

 2. Criteria List – Lists each field criteria defined to make up the

request, displaying the selected row’s details below

 3. Table – Select a table occurrence to find a search field

 4. Fields – Select the search field

 5. Criteria – The value to search for in the selected field

 6. Insert Operator – Click to choose and insert an operator

 7. Criteria Buttons – Used to Add a new request, Change the

currently selected request, or Remove the selected request

Figure 4-11. The dialog used to edit a single request of a saved find

Chapter 4 Working With reCords

58

 Working with Found Sets
A found set is a group of records that are visible and navigable within the context of

a given window. While the found set may contain all records within a table, the term

generally refers to a subset of records generated by a search or other actions. Records that

are not part of the found set and not actively visible or navigable are called the omitted

set. Within a single window, a found set for each table is retained when navigating to

other layouts for the same table. When using multiple windows, the same table can

display a different found set in each window.

With the toolbar hidden, it is impossible for a user to know if the found set consists

of less than all records unless custom layout elements are created to display that

information. Even with the toolbar visible, it’s easy to miss. A new user might panic at

first wondering where all their records have gone when looking at a small found set for a

table that contains a large quantity of records. The difference is displayed in the record

count in the navigation area of the toolbar, as shown in Figure 4-12. When all records are

accessible, only the total count of records is displayed. When a subset is active, the first

number indicates how many records make up the visible found set, while the second

number indicates the total number of records including those that are omitted from the

found set.

 Changing the Records in the Found Set
The records in a found set can be changed by performing a find or one of several

commands in the Records menu. The Show All Records command replaces the found set

in the current window with all records in the table. The Omit Record command will move

the current record from the found set to the omitted set. This can be used to fine-tune

results by omitting individual records without the need to perform a new, more complex

search. The Omit Multiple command allows the user to specify any number of records

they wish to omit starting from the current record. For example, if the user is viewing

Figure 4-12. The record count when viewing all records (left) or a found set (right)

Chapter 4 Working With reCords

59

the first record of a found set of 100 records and choose to omit 10 records, the first 10

records will be omitted leaving the remaining 90 records. However, if they are viewing

record 50 of 100 and do the same thing, then records 50–59 will be omitted leaving

records 1–49 and 60–100. Finally, the Show Omitted Only command replaces the current

found set with the omitted set. Alternatively, click the circle icon in the navigation area of

the toolbar to toggle between the found or omitted records.

 Sorting Records in the Found Set
The record sort status is always indicated in the record navigation area of the toolbar

as shown in Figure 4-13. Records always default to creation order, which is considered

unsorted. They can be sorted based on a custom list of sort fields, which can be compiled

from local or related fields using the Sort Records dialog, shown in Figure 4-14. The

dialog can be opened by selecting the Sort Records command in the Records menu or the

record contextual menu. It is also available by clicking the Sort button in the toolbar.

Figure 4-13. The sort status is always displayed in the toolbar record count
area

Chapter 4 Working With reCords

60

The following sort controls are available:

 1. Field Selector – Select a field from the list which is based on the

table or layout selected in the pop-up menu above.

 2. Sort Order – Lists the current sort fields in the order they will be

used to sort records. Add a field by double-clicking it in the field

selector or with the Move button. Drag up or down to rearrange.

Remove a field by double-clicking here or with the Clear button.

To remove all fields, click Clear All.

 3. Sort Field Direction – Choose the sort direction of the selected

field: ascending (default), descending, or a custom order based on a

value list (Chapter 11). The icons are displayed next to fields in the

sort order list to indicate which option is assigned.

Figure 4-14. The dialog used to sort records

Chapter 4 Working With reCords

61

 4. Sort Option Checkboxes – Enable advanced sort control:

• Reorder Based on Summary Field – Select a summary field (Chapter 8)

to reorder records based on the position of the sort field’s value as

sub-summarized by another sort field. For example, a list of contacts

can be summarized by a state (sort field) but sorted by the number of

contacts living in each state (summary field).

• Override Field’s Language for Sort – Select a language used to

index text fields when sorting.

 5. Keep Records in Sorted Order – Deselect to stop records from

continuously resorting whenever the contents of a sort field is

modified.

 Modifying Field Values in a Found Set
Several commands can be used to modify field values across an entire found set: Replace

Field Contents, Relookup Field Contents, Find and Replace, and Spell-checking.

 Replace Field Contents

The Replace Field Contents command under the Records menu opens the dialog shown

in Figure 4-15. This is used to define a value that will be inserted into the current field on

every record in the found set, completely replacing the previous value. The replacement

value can be the literal value contained in the field of the current record, a serial number

starting from a specified number on the first record and incremented a specified amount

for each subsequent record, or the result of a calculation (Chapter 12).

Chapter 4 Working With reCords

62

Caution the replace process can’t be undone and should be used carefully.
Use custom menus (Chapter 23) to hide this feature from users who don’t
require it, and create a custom script (Chapter 24) to perform developer-defined
replacements safely.

 Relookup Field Contents

When a field is defined to copy data from related records using the Lookup feature

(Chapter 8, “Lookup for Field Dialog”), the copied values can be manually forced to

update for every record in the found set using the Relookup Field Contents command.

Caution the Lookup feature is a vestigial remnant from the days before better
auto-enter options and relationships were available.

Figure 4-15. The dialog used to define a replacement value

Chapter 4 Working With reCords

63

 Find and Replace

FileMaker’s Find and Replace function is reminiscent of those found in text editors. It

can locate text within one or all fields for one or all records in the current found set and

optionally replace matches with alternate text. The Find/Replace function from the Edit

menu will open a dialog of the same name, shown in Figure 4-16.

To begin, type text into the Find what field and optionally in the Replace with field.

The Direction pop-up menu offers the choice of moving forward or backward through

fields and/or records in a found set. Select the Match case checkbox for the find process

to be case-sensitive, and select Match whole words only to only consider a match when

the text in a field contains the entire, separate word(s) typed into the Find what field. The

Search across radio buttons instructs the function whether it should search all records in

the found set or limit itself to the current record. The Search within option controls if it

should search all fields on the layout or just the current field.

Once configured, the Find Next button locates and highlight the next instance of

the text in the Find what field in the current field, next field, or next record, depending

on the other settings in the dialog. The Replace & Find button will either locate the first

instance of a match, if one has not yet been made, or replace the currently highlighted

matched text with the replacement text and then locate the next instance of a match. The

Replace button performs the replace function if a find has already selected a matching

instance of the search text. Afterward, the cursor appears immediately after the replaced

text. The Replace All button replaces all matching instances of the search text based on

the settings in the dialog.

Figure 4-16. The dialog used to find and replace text

Chapter 4 Working With reCords

64

 Spell-checking

FileMaker has an integrated spell-checker that can process a piece of selected text, the

contents of a field, every field on the current record, or all records in the found set.

Exploring the Spelling Menu

The Spelling submenu of the Edit menu has several commands for standard

spell- checking functionality. The Check Selection command quickly spell-checks

selected text in the current field. Check Record checks the text in every field on the layout

for the current record, and Check All checks every field on the current layout for every

record in the found set. The Correct Word command checks the last word typed in a

field but is only enabled when the Check spelling as you type setting is set to Beep on

questionable spellings (Chapter 6, “File Options: Spelling”). You can Select Dictionaries to

choose a language and Edit User Directory to add custom terms to the user dictionary.

Contextual Spelling Features

When the Indicate questionable words with special underline file option is enabled,

any questionable words in the active field will be marked with a red underline.

This option applies to an entire file but can be turned off for individual fields on a layout

(Chapter 19, “Inspecting the Data Settings”). When on, a list of suggested spellings and

alternate words are available at the top of the text contextual menu for the selected word,

shown in Figure 4-17.

Chapter 4 Working With reCords

65

 Printing
The content area of a window can be previewed and printed using familiar operating

system Page Setup and Print dialogs.

 Using Preview Mode
Preview mode is a transitional window state that changes the menu, toolbar, and content

area for the purpose of viewing a layout in preparation for sending it to a printer or saving

as a PDF file. To preview a layout, select Preview Mode from the View menu, or click the

Preview toolbar icon. The toolbar options will change to print related functionality, and

the content area will become one or more non-interactive, non- editable pages rendered

exactly as they will appear when printed. Any interactive objects such as buttons, tabs,

slide controls, etc. will be displayed as a nonfunctional artwork. Depending on the

settings of each layout object, some objects and data may be invisible, reformatted, slide

into a new position, or be cut off at the page margins.

 Status Toolbar (Preview Mode)

The Preview mode toolbar will change to print-specific buttons, either default options or

the user’s customized set.

Figure 4-17. A contextual menu shows alternative spellings for questionable words

Chapter 4 Working With reCords

66

Default Status Toolbar Items (Preview Mode)

The default toolbar for Preview mode is shown in Figure 4-18. Similar to Browse mode,

the top portion can be customized, and the bottom is static.

Navigation Controls

The navigation controls in the Preview mode toolbar are similar to those in Browse and

Find modes except that they display information about and allow movement between

print pages instead of records or find requests. At first, the page count may be displayed

as a question mark if the entire document has not yet been rendered. Click through

pages or scroll to the end to update.

Function Buttons

The function buttons included in the default Preview toolbar are

• Save as Excel – Export the records into an Excel file

• Save as PDF – Save the preview as a PDF file

• Print – Open the dialog to send the preview to a printer

• Page Setup – Open the dialog to configure page setup to change the

rendering

Exit Preview Button

The Exit Preview button will end the preview and return the window to Browse mode.

Figure 4-18. The anatomy of the toolbar in Preview mode

Chapter 4 Working With reCords

67

Customizing the Status Toolbar (Preview Mode)

The Preview mode toolbar is customizable at the user-computer level. Enter Preview

mode and select the View ➤ Customize Toolbar menu to open the customization panel

attached to the window as shown in Figure 4-19. Although the available buttons are

different, they can be added or removed as described for Browse mode in Chapter 3.

Figure 4-19. The toolbar customization panel for Preview mode

Chapter 4 Working With reCords

68

 Page Setup
The Page Setup dialog (Print Setup in Windows) is a standard operating system dialog

used to configure how the current layout will behave when previewing or printing,

shown in Figure 4-20. This can be accessed in Browse, Preview, or Layout mode by

selecting Page Setup in the File menu. Here you can choose a printer, paper size,

orientation, and scale percentage.

 Print Dialog Options
The Print dialog is a standard operating system dialog for configuring a print job, shown

in Figure 4-21. This can be opened by selecting Print in the File menu or clicking Print in

the Preview mode toolbar.

Figure 4-20. The dialog to configure page setting

Chapter 4 Working With reCords

69

While most of the options are identical to other applications, a few are specific to

FileMaker. The Number pages from field accepts a page number that will be considered

the first page for numbering purposes. Three print options determine how the content

area of the window will be printed. Choose Records being browsed to include every

record in the found set or Current record to include only the current record selected or in

view when the Print dialog was opened. Choose Blank record, showing fields to print the

layout without any record data. The adjacent menu controls how fields will be printed: as

formatted, with boxes, with underlines, or with placeholder text.

 Summary
This chapter explored how users interact with records to enter data, perform searches,

and print. In the next chapter, we focus on importing and exporting records.

Figure 4-21. The dialog for preparing a job to send to a printer

Chapter 4 Working With reCords

71
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_5

CHAPTER 5

Transferring Records
FileMaker has import and export functions that transfer records between two locations,

manually or through an automatic scripted process. This allows sharing data to avoid

retyping, moving template data into a content table for customizing, migrating old

data into a newer version of a database, sending data to other systems, and more. This

chapter discusses the following data transfer topics:

• Supported file types

• Importing records

• Exporting records

 Supported File Types
FileMaker can import and export records in several formats, shown in Figure 5-1. In

addition, content imports are supported from ODBC and XML sources, or a folder

containing picture, movie, or text files.

Figure 5-1. The file types supported for record import (left) and export (right)

https://doi.org/10.1007/978-1-4842-6680-9_5#DOI

72

Note The new Custom-Separated Values import option allows a selection of
delimiter and replaces the former Tab-Separated Values.

 Importing Records
The import records function will create or update records in the table of the current

layout. Records can be imported from various sources: a table within the same file, an

external database, or one of various text-based data files. To explore the feature, import

some contact data into the Learn FileMaker Chapter 3-5 database. First, download the

free us-500.csv contacts sample file from www.briandunning.com/sample- data/. Then,

select the File ➤ Import Records ➤ File menu to open the Choose File dialog, as shown in

Figure 5-2.

The dialog allows a selection of a file from any folder directory. It can also be used

to access a database hosted on a FileMaker Server by clicking the Hosts button in the

Options area at the bottom (Chapter 29). This area also contains a Show pop-up menu

of import-compatible file types that highlights specific files in a crowded folder. The

checkbox to create a recurring import provides a shortcut by skipping the manual import

steps taken and automatically creating a new table, layout, and script for repeated use in

the future. For now, select and open the downloaded CSV file.

Figure 5-2. The dialog used to choose a file to import

ChapTer 5 Transferring reCords

http://www.briandunning.com/sample-data/

73

 Performing an Import
After selecting and opening the data file, a Specify Import Order dialog will appear, as

shown in Figure 5-3. The dialog contains regions for browsing source data, specifying an

import type, selecting a target table, and setting import options that vary depending on

the type of import being performed. The default is an add import, where all imported

records will be added as new records in the target table.

Figure 5-3. The import field-mapping dialog

ChapTer 5 Transferring reCords

74

Caution This dialog design was introduced in fileMaker 18 and is completely
different from earlier versions.

 Browsing the Source Data

The import source data is displayed in a list on the leftmost column and is navigable

using the arrows buttons above it. A pop-up menu enabled for text-based data file

imports displays a value indicating or controlling how the row/record displayed below

will be handled on import. The Data option, the default for all entries, means the data

will be imported as a normal record. Choosing the Use as Field Names option assigns

the current entry’s values as the source of field/column names. This can be assigned to

any single record and establishes the starting point in the source data for the import.

Any record preceding the record will automatically be assigned a value of Excluded,

indicating that it will not be imported. This allows multiple “header rows” containing

document information and column titles to be excluded from the actual data being

imported. Individual rows anywhere in the source data can also be excluded manually.

Moving to the right, the Source Field list shows the field names from the source data

if available. When importing from a text-based data file, these will say From source

file unless a record is assigned as the source of field names. When importing from a

FileMaker database, the actual field names will be displayed, and the only control over

the source data side of the dialog is the ability to navigate and view source data records.

 Selecting a Target Table

The target table is the destination table for incoming data and will default to the current

layout’s table. The Target pop-up menu, shown in Figure 5-4, provides one option for

creating a new table as part of the import process. The menu is a standard FileMaker

table selection menu that lists the Current Table, Related Tables, Unrelated Tables, and a

Manage Database with an additional import-only option of New Table. Since an import

must flow into the current layout’s context, most of these options are disabled when

importing. The only alternative to a target of the current table is to create a new table.

ChapTer 5 Transferring reCords

75

Selecting the New Table option will configure the dialog to automatically, create a

new table during the import and flow the data into it. The Target fields list will display

new names as a numerically sequence with an “f” prefix unless a row has been assigned

to Use as Field Names.

The Manage Database option is enabled and will open a dialog of the same name

(Chapters 7–9) to create new fields in the target table so they can be included in the

import without having to exit the import dialog.

 Mapping Fields from Source to Target

The target table and import source file may have more or less fields than the other and

in a different order. Therefore, it is necessary to indicate which source fields should be

imported and match them to an appropriate target field. This process of mapping fields

is the primary purpose of the Specify Import Order dialog.

Each selectable row of the central list shows columns for Source Fields, Mapping,

and Target Fields, and these last two each open a menu of options. The Mapping column

displays the import status of the corresponding two fields: Import or Don’t Import. Click

to reveal the menu of options, as shown in Figure 5-5.

Figure 5-4. The import target table pop-up menu

ChapTer 5 Transferring reCords

76

Each row of the Target fields column opens a menu that allows selection of which

field the corresponding source field should flow into, as shown in Figure 5-6. The current

row’s field will be highlighted in the list. An icon indicates each field’s current import

status: an arrow means they are already configured to receive input from the source, and

a clear oval indicates they are not. Fields that don’t accept data entry, like a calculation

or summary fields, will be grouped at the bottom under a Not for Importing folder. Click

to select the appropriate target field for the corresponding source field. Once all input

fields are mapped to targets, it’s time to configure import options.

Figure 5-5. The choice to import a selected field or not.

ChapTer 5 Transferring reCords

77

 Setting Import Options

The Import Options section at the bottom of the Specify Import Order dialog, shown in

Figure 5-7, controls various behaviors based on the type of import source.

The text-parsing options on the left control how the import source is parsed and are

only visible when importing from a text-based file. Here you can choose a character set

and field delimiter: comma, tab, semi-colon, space, or a custom value.

Figure 5-6. The options available for arranging the list of target fields

Figure 5-7. The import options section of the dialog

ChapTer 5 Transferring reCords

78

The import options on the right affect behaviors when the new information is placed

into database fields.

The Perform the auto-enter options checkbox controls which fields that have an

auto-enter setting defined (Chapter 8) will update their values as part of the import. This

allows serial numbers, creation, or modification data to be preserved from the source file

or updated based on the target field definitions. Fields that don’t receive data can trigger

their auto-enter options using this feature. Check the box to select all such fields, select

individual fields in the adjacent menu, or click the red gear icon to the right of individual

fields in the list above. When importing into the Learn FileMaker file, turn this on for all

fields.

The Preserve external container storage checkbox suppresses container field

content validation, allowing the target table to use existing external container contents

(Chapter 10). Select this when reimporting data back into an existing file or a copy of a

file, to avoid decrypting and re-encrypting external files when the base directory of the

source and target fields are the same.

The Repeating Fields option allows a choice between keeping repeating fields

(Chapter 8) together in a single record or splitting them into one imported record per

repetition. When the latter is selected, all non-repeating fields will be duplicated, with

one record generated for each of the repetitions.

 Finishing the Import

Once configured, click the Import button to perform the process. An Import Summary

dialog appears reporting the number of records added or updated, the number of

skipped records and fields, and how many tables were created, if any. A text file named

Import.log will be saved to the database’s folder containing details about the import

process and noting any errors that may have occurred. After the import process, the

found set in the window will be that of only the imported records.

 Changing the Import Type
Besides the add records style import described earlier, there are two other types of

import available: update and replace. Instead of creating records, these are used to

overwrite existing records. An import type selection panel is accessible by clicking in the

space between the source and target icons, shown in Figure 5-8.

ChapTer 5 Transferring reCords

79

 Updating Matching Records in Found Set

An update import is a nonlinear data transfer that will import each record of the source

data into an existing record based on match criteria. A match field is a new field mapping

designation, shown in Figure 5-9, used to tag one or more fields as criteria for matching

an incoming record to a record in the target table.

Figure 5-8. The hidden panel to select a different import type

ChapTer 5 Transferring reCords

80

During the import, each incoming source record will be matched to an existing

record based on the selected match field(s). If a matching record is found, the remaining

fields will be updated in their mapped target fields for that record. If a matching record

is not found, it will be skipped over unless the Add remaining data as new records

checkbox is selected at the bottom of the selection panel, shown previously in Figure 5-8.

 Replacing Records in Found Set

A replace import will use the incoming record values to overwrite fields on existing

records based on their linear position in the corresponding sets without any concern for

matching records. In other words, the values from the first record in the source data will

be used to replace values in the mapped fields of the first record in the target set. This

can be useful in a situation where you need to export a set of data, manipulate it outside

of FileMaker, and then immediately replace some or all field values of those same

records. When using this import type, typically, the source data and the target table’s

current found set should contain the same number of records. If the source record count

is less than the target found set, records in the found set beyond that source’s count will

not be modified. If the source data count is greater than the target table’s found set, the

import will stop after the number of records in that found set are finished, unless the Add

remaining data as new records checkbox is selected.

Figure 5-9. The expanded mapping choice for match fields

ChapTer 5 Transferring reCords

81

 Setting Up an Automatic Recurring Import
Selecting the optional Set up as automatic recurring import checkbox in the Choose File

dialog, as shown previously in Figure 5-2, will completely bypass the rest of the import

process and create a new table, layout, and script that can be customized and used to

automate the same process in the future. When selected, it opens a Recurring Import

Setup dialog shown in Figure 5-10. This dialog remembers the path of the source data

and has three configurable options. Select Don't import first record to skip importing the

first record, and instead use it as field names. The other two fields allow entry of a layout

and script name to override the default names entered based on the import file name.

Figure 5-10. The Recurring Import Setup dialog

ChapTer 5 Transferring reCords

82

Once configured and continued, a new table will be created with the same name

as the source data file with a field for every column of data it contains. A new layout is

created with the specified name and every field displayed. A script is created with the

specified name that will navigate to the new layout, delete every record, and import

the records from the file thereby refreshing the data. All of these resources can then be

renamed and customized as needed to suit a specific workflow.

 Exporting Records
The Export Records function will save values from one or more selected fields from

every record in the current found set to a file of a specified type. To begin an export,

open a database, navigate to a desired layout, and optionally perform a find to isolate

a desired found set. Select the File ➤ Export Records menu to open the Export Records

to File dialog, as shown in Figure 5-11. In addition to a standard selection of file name

and folder location, a couple of FileMaker specific options are available below. Select

the Type of file for the export from the pop-up menu and one or both of the After saving

action shortcuts for opening or emailing the new file. Click Save to continue the process

and specify export fields.

Figure 5-11. A dialog used to specify an export location, file name, and type

ChapTer 5 Transferring reCords

83

 Specifying Export Fields
The Specify Field Order for Export dialog, as shown in Figure 5-12, is used to select the

fields that will be included in the export, the order they will be saved in the output file,

and some formatting options.

Figure 5-12. The dialog used to specify the export field order and settings

On the left, the data source pop-up menu is used to specify where to generate the

field list below it. By default, this has the Current Layout selected, showing only the fields

displayed on the current layout, both local and related. Select Current Table instead to

show every field from the current layout’s table occurrence, or choose a related table

occurrence to include related fields in the export (Chapter 9).

Fields can be added to the export order by double-clicking in the list or using the

Move or Move All button. The fields in the export list will be saved in the output file in

the order they appear and can be dragged into the desired order. Remove fields from

the export list by double-clicking, clicking the Clear or Clear All button, or typing the

Delete key.

ChapTer 5 Transferring reCords

84

Once the field order is set, there are a few options available. The Output file character

set pop-up menu specifies which character encoding will be used during the export. The

Apply current layout's data formatting checkbox will cause any number, date, or time

field to be exported with the data formatted as it is on the current layout rather than

the format of the actual data entered (Chapter 19, “Data Formatting”). For example, if a

number field contains “10” but is formatted on the current layout to display currency,

e.g., “$10.00,” this box must be checked to export the number formatted as currency.

 Summarizing Output into Groups
For more complex exports, the Group by feature allows values to be sub-summarized

during the export. If the found set of records is sorted, the Group By area of the dialog

will contain a list of the sort fields which can be used to summarize data during the

export. For example, imagine a found set of records shown in Table 5-1, with values as

shown in three fields: Company, Industry, and Quantity. The Quantity Summary field

is a summary that automatically totals the Quantity field for the six records (Chapter 8,

“Summary Fields”).

If these three fields were exported, the values in the resulting file would look the

same as they do in the table. However, the data can be exported as a summary report of

the total quantity for each industry by first sorting the records by the Industry field. Begin

an export, and when you reach the Specify Field Order dialog, the Group by area will have

a checkbox for the Industry field. Add the Industry field and the Quantity Summary field

Table 5-1. Hypothetical records showing how a non-grouped summary behaves

Company Industry Quantity Quantity Summary

online Tutor, LLC education 20 95

Learning resources education 15 95

Mutual investors Corp finance 5 95

dividend party, inc. finance 10 95

Knowledge Bound Co. publishing 35 95

Widget Books, inc. publishing 10 95

ChapTer 5 Transferring reCords

85

to the export list. An extra third field will be added automatically: Quantity Summary by

Industry. This last will be italicized to highlight the fact that it is not an actual field in the

database, but a sub-summary of the quantity by industry, as shown in Figure 5-13.

Figure 5-13. An example of a field export order using the group by feature

With this configuration, the export file would contain one row for each industry, the

total quantity for all three industries (only on the first row), and the total of each industry

in the third column, as shown in Table 5-2.

Table 5-2. Hypothetical data exported using

the Group by option

education 95 35

finance 15

publishing 45

ChapTer 5 Transferring reCords

86

 Summary
In this chapter, we explored the basics of importing and exporting records. In the next

chapter, we will move from the user perspective to the developer interface and begin

defining data structures.

ChapTer 5 Transferring reCords

PART II

Defining Data Structures

The first step to building a custom database is to create a new file and begin defining its

structural data schema, the tables, fields, relationships, containers, and value lists that

provide a foundation upon which interfaces will be constructed.

 6. Working with Database Files

 7. Working with Tables

 8. Defining Fields

 9. Forming Relationships

 10. Managing Containers

 11. Defining Value Lists

89
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_6

CHAPTER 6

Working with
Database Files
A database is a structured collection of information stored in a digital format that is

flexibly accessible for a variety of functions. A FileMaker database file is a document that

contains both structural elements defined by a developer and data entered by users.

A single file format has been shared by all versions of FileMaker between 12 and 19

and indicated by the file extension “fmp12.” This chapter covers the basics of creating,

configuring, and maintaining a database file, including

• Creating a new database file

• Configuring file options

• Designing and maintaining healthy files

Caution While the “fmp12” extension indicates file compatibility between
FileMaker versions 12 and 19, features introduced in newer versions are not
backward compatible in older versions.

 Creating a New Database File
A database file can be created from a starter solution, a blank file, or by converting a

spreadsheet or other text-based file into a FileMaker database. All of these are performed

from the Create tab of the Launch Center window, accessible by selecting Create New

from the File menu.

https://doi.org/10.1007/978-1-4842-6680-9_6#DOI

90

 Creating a Database from a Starter Solution
A starter solution is one of a set of templates provided by Claris as part of the FileMaker

installation. Although this book is focused on starting from a blank file, these templates

can be used as a starting foundation upon which to build a custom solution or serve as

a “learn by example” tutorial. To begin, create a copy of the Contacts starter template by

following the steps shown in Figure 6-1.

 1. Select the Create tab in the Launch Center window.

 2. Click on the Contacts icon under the Starter heading.

 3. Click the Create button.

 4. In the Save dialog sheet attached to the top of the window, specify

a name and save location.

Figure 6-1. The process of creating a new database from a starter solution

Chapter 6 Working With Database Files

91

Caution starters are designed by Claris as examples. the structural and
design choices they employ should not be taken as strict rules that must be
unquestionably followed.

 Creating a Database from a Blank Template
To create a new database from a blank template, select Launch Center, in the File menu,

and follow the steps shown in Figure 6-2.

 1. Select the Create tab in the Launch Center window.

 2. Select the Blank icon.

 3. Click the Create button.

 4. In the Save dialog sheet attached to the top of the window, enter

a name (type “Learn FileMaker” to follow along with the book’s

examples), choose a location, and click Save.

Figure 6-2. The dialog used to create a new blank database file

Chapter 6 Working With Database Files

92

Caution Files you create will appear different from screenshots in this book
because a custom theme was used for visual clarity. Download sample files from
apress.com to follow the examples.

 Converting an Existing File into a Database
FileMaker can automatically convert various files into a new database file. This includes

older FileMaker databases, spreadsheets, or other text-based data files. To begin, select

the Convert option on the Create tab of the Launch Center window, and then select a

source file. Alternatively, you can drag and drop the file directly onto the FileMaker

application file.

If the source file is a FileMaker database with the “fmp12” extension, it will simply

open since that is the current file format used by versions 12–19. If the file has the

previous “fmp7” extension, FileMaker 19 will recreate the file, saving a copy as the

current file format. Any file with an extension prior to that must first be converted to the

“fmp7” format using a copy of FileMaker 11 before FileMaker 19 can convert it to the

modern format.

If the source file is a structured data file, there are various options available in a

sequence of dialogs. The file can be one of various file types including tab separated,

comma separated, merge file, Excel workbooks (xls or xlsx), dbase, or from an XML or

ODBC data source. For example, assume an Excel spreadsheet. If the file selected for

conversion has multiple tabbed worksheets, a Specify Excel Data dialog will ask which

worksheet should be used as the data source. A save dialog will request a name and

location for the new file. The source file’s columns are used to automatically define a

table with fields named f1, f2, f3, etc. A Convert File dialog similar to the Specify Import

Order dialog (Chapter 5) opens allowing target table renaming and the option to use

field names from a selected source record. Once finished, the new database file will have

one table populated with the fields specified and with two layouts: a Form layout named

“Layout #1” and a List layout named “Layout #2.” The data structure and interface can

then be customized to suit your purposes.

Chapter 6 Working With Database Files

93

 Configuring a Sandbox Table
Before exploring file basics, let’s configure a rudimentary Sandbox table in the Learn

FileMaker database. This process will provide a quick overview of building a table with

fields and layouts, rapidly skimming over lessons that will be explored in more depth

in later chapters. It also provides an experimental sandbox for tinkering and visualizing

calculation results prior to later lessons on building layouts.

Tip Walking through these lessons will provide a crash course in setting up
a database. however, these steps are already done in the Learn FileMaker Pro
Chapter 6 file available from apress.com.

 Changing the Default Table Name
A new database file will automatically have a default table with the same name as the file.

So, the example database should already have one table named “Learn FileMaker” and a

blank layout of the same name. This default behavior may be adequate when a database

requires a table of the same name. For example, a database named Contacts or Projects

will likely require a similarly named table. However, for our purposes and to gain a little

practical experience, we will rename the default table to “Sandbox.”

First, we need to make sure the Manage Database dialog is open. Depending on

application settings (Chapter 2), the new file will open in Layout mode without opening

the dialog or will open in Browse mode with the dialog open. If in Layout mode, open

this dialog selecting the File ➤ Manage ➤ Database menu item. Then follow these steps,

shown in Figure 6-3:

Chapter 6 Working With Database Files

94

 1. Click on the Tables tab.

 2. Make sure the default Learn FileMaker table is selected.

 3. Type “Sandbox” into the Table Name field.

 4. Click the Change button, and then click OK.

 Adding Placeholder Fields
The renamed Sandbox table, probably already has five fields defined. Since version 17,

FileMaker automatically creates default fields (Chapter 8, “Defining Default Fields”). For

now, we will ignore these and create one field of each available data type to serve as an

example for experimentation on topics presented in forthcoming chapters.

 Creating Data Entry Fields

First, we will create six data entry fields that are capable of accepting input from a user.

To get started, click on the Fields tab. Then, follow the steps shown in Figure 6-4:

Figure 6-3. Highlighting the process of renaming the default table

Chapter 6 Working With Database Files

95

 1. Click in the white space under the default fields so no field is

selected.

 2. Type “Example Text” into the Field Name text area.

 3. Select Text from the Type menu.

 4. Click the Create button or type Enter.

For now, ignore other options and repeat this process for each of these field types:

 1. Create a Number field named “Example Number”

 2. Create a Date field named “Example Date”

 3. Create a Time field named “Example Time”

Figure 6-4. The process of creating a text field in the Sandbox table

Chapter 6 Working With Database Files

96

 4. Create a Timestamp field named “Example Timestamp”

 5. Create a Container field named “Example Container”

Note Field data types and options are discussed in Chapter 8.

 Creating a Calculation Field

Following the same process earlier, create a Calculation field named “Example

Calculation.” When the Specify Calculation dialog appears, follow the steps in Figure 6-5

to enter a temporary placeholder calculation formula:

 1. Type zero as a placeholder formula in the text area.

 2. Select Number for a result type.

 3. Click the OK button to close and save.

Note Calculation fields are discussed further starting in Chapter 12.

Figure 6-5. The process of creating a placeholder calculation in the Sandbox

Chapter 6 Working With Database Files

97

 Creating a Summary Field

Again, repeat the process to create a Summary field named “Example Summary.” When

the Options for Summary Field dialog appears, follow the steps in Figure 6-6 to select a

default summary process:

 1. Click the Total of radio button.

 2. Select the Example Number field from the Available Fields list.

 3. Click the OK button to close and save.

Note summary field options are discussed further in Chapter 8.

 Reviewing the Sandbox Fields

Once finished creating data entry, calculation, and summary fields, the Sandbox table

should contain five default fields and the eight example fields shown in Figure 6-7. Click

the OK button to close the Manage Database dialog, and save all changes made to the

Sandbox table.

Figure 6-6. The process of creating a summary field in the Sandbox

Chapter 6 Working With Database Files

98

 Setting Up Placeholder Layouts
Continuing with a rapid setup of sandbox resources, let’s set up two layouts: a Form view

layout for data entry and a List view for scrolling through records.

Note Content views were defined in more detail in Chapter 3.

Figure 6-7. The complete list of fields in the practice table

Chapter 6 Working With Database Files

99

 Renaming the Default Layout as a Form View

A new database file will automatically have a default Form layout with the same name

as the file. Initially there would have been a single Learn FileMaker layout. However,

when the default table name was changed to “Sandbox,” the layout should have changed

as well. So, if following the instructions in this section, there should be a blank layout

named “Sandbox.” Since we will be building two layouts for the same table, we need

to distinguish this one from the other layout by renaming it “Sandbox Form” following

these steps:

 1. Select the View ➤ Layout menu item to enter Layout mode.

 2. Select the Layout ➤ Layout Setup menu to open the Layout Setup

dialog.

 3. In the Layout Name field on the General tab, change the name to

“Sandbox Form” as shown in Figure 6-8.

 4. Click the OK button to close the window and save the change.

Figure 6-8. The Layout Setup dialog with the new layout name entered

Chapter 6 Working With Database Files

100

Note layout settings are discussed further in Chapter 18.

 Adding Fields to a Layout

If Layout preferences are set to automatically add new fields to the current layout

(Chapter 2), then the eight Example fields will already be present on the default layout. If

not, there are three ways to add fields to a layout. For now, use the Field tab of the Objects

pane by following these steps in Layout mode:

 1. Confirm that the Field tab is visible by selecting it under the View

➤ Objects ➤ Fields tab menu.

 2. Select the entire list of fields by clicking in the field list and then

selecting the Edit ➤ Select All menu item.

 3. Click, hold, and drag the list of fields onto the layout, as shown in

Figure 6-9. The fields should appear on the layout, neatly aligned

and sized according to their data type.

Chapter 6 Working With Database Files

101

Note learn about other ways to add fields to layouts in Chapter 20.

 Creating a List Layout

Next, add a List view layout, by selecting the Layout ➤ New Layout/Report menu, and

follow the steps in the dialog, shown in Figure 6-10:

Figure 6-9. Drag selected fields from the Fields tab to the layout

Chapter 6 Working With Database Files

102

 1. Enter “Sandbox List” into the Layout Name field.

 2. Click a layout category of Computer in the first row of icons.

 3. Click a layout type of List in the second row of icons.

 4. Click the Finish button to close the dialog and complete the

process.

Note other layout creation options are explored in Chapter 18.

When finished, an empty List view layout will appear with three parts: Header, Body,

and Footer. Because a List view has a vertical orientation, the process of adding fields will

change slightly, following the steps shown in Figure 6-11:

Figure 6-10. The dialog used to create a new layout or report

Chapter 6 Working With Database Files

103

 1. In the Field tab of the Object pane, confirm the Drag Preferences

disclosure triangle is open and showing additional controls.

 2. Select the Horizontal icon under Field Placement.

 3. Select the Labels option to put labels above fields.

 4. Select every Example field except the container field by clicking

on each field while holding the Command (macOS) or Windows

(Windows) key. We’ll skip the container field on the List view since

it will default to a large vertical footprint and attempt to expand

the layout.

 5. Next drag the selected fields onto the layout. Be sure to place them

high enough so they land completely within the defined layout

parts (horizontal white area).

Figure 6-11. Configure the Fields tab for dragging to a List view

Chapter 6 Working With Database Files

104

 6. Once placed, drag them down so that the fields are roughly

centered in the Body part, as shown in Figure 6-12.

 7. Position the labels squarely in the Header area using the mouse or

arrow keys.

 8. Remove the repetitive prefix from each field label by double-

clicking on each, and delete the extraneous “Example” portion.

 9. Finally, adjust the size and position of the last two fields so

nothing extends to the right in the gray area beyond the visible

layout, as shown in Figure 6-13.

Note Manipulating layout objects is discussed further in Chapter 21.

 Configuring File Options
The File Options dialog allows control over various behaviors of a database file. Unlike

application preferences, these options are stored in the database file and are accessible

only when a database is open. Select the File ➤ File Options menu to open the dialog

which is divided into five tabs: Open, Icon, Spelling, Text, and Script Triggers.

Figure 6-13. The List view with cleaned-up labels and fields

Figure 6-12. The fields dropped into the Body part of the layout

Chapter 6 Working With Database Files

105

 File Options: Open
The Open tab settings, shown in Figure 6-14, control what happens when a database is

first opened.

The Minimum version allowed to open this file text field allows you to limit the file

to only open for FileMaker versions at or above the version it is designed to support.

Although all versions from 12.0 through 19.1 share the same file format, a database that

uses features from newer versions should not be opened in an older version unless

specifically designed with alternate functionality based on version. If a database uses

features from newer versions, it is best to keep this set to the latest version. Enter both a

major and minor version number into the field (e.g., “19.0” instead of “19”).

The following four checkboxes control login and default interface functions:

• Log In Using – Specify automatic sign in credentials when a

file opens. Do not use when a database requires tight security

(Chapter 30).

• Allow Stored Credentials for Authentication – Controls if a user can

opt to save credentials on their local device for automatic entry

for future log-ins. Do not use for databases in a shared computer

environment or where tight security is important.

Figure 6-14. The file options for open behavior

Chapter 6 Working With Database Files

106

• Switch to Layout – Specify a default layout when opened. This layout

change runs prior to any Script Triggers (Chapter 27).

• Hide All Toolbars – Select to start with the toolbar hidden.

 File Options: Icon
The Icon tab, shown in Figure 6-15, allows customization of the icon that represents

the database in the Launch Center, making it easier to visually locate a desired file. The

default icon is the FileMaker 19 document icon. Choose an alternative from the built-in

list of Claris-provided icons, or specify a custom PNG or JPEG file by clicking Custom.

 File Options: Spelling
The Spelling tab, shown in Figure 6-16, controls automatic spell-check settings. The

Indicate questionable words with special underline checkbox will enable a red dotted

line under any potentially misspelled words in a field with focus unless that field or

object has been configured in the Inspector to explicitly disable the feature (Chapter 19,

“Inspecting the Data Settings”). With the Beep on questionable spellings selected, a sound

will be played anytime a user types a word that the dictionary thinks is misspelled.

Figure 6-15. The file options for assigning a custom icon

Chapter 6 Working With Database Files

107

 File Options: Text
The Text tab, shown in Figure 6-17, controls a few text entry options.

Figure 6-16. The file options for spell-checking

Figure 6-17. The file options for text entry

Chapter 6 Working With Database Files

108

The text handling checkboxes control certain special data entry considerations.

Enable Use smart quotes to always enter apostrophes and double-quotation marks in

fields as curly quotes. The Use Asian language line-breaking option controls how line

endings are handled when a word reaches the edge of a text field when using Asian

languages, and Use Roman language line-breaking does the same when using Roman

languages.

The data entry section handles formatting of various standard data like currency

symbols, dates, and times. When FileMaker creates a new database, the file is encoded

with regional settings from the operating system of the local computer. On macOS, these

can be found in the System Preferences ➤ Language & Region ➤ Advanced panel. Once

the file is created, these settings can’t be modified. However, the File Options dialog

allows selection of what happens when there is a difference between the user’s operating

system and the settings encoded in the database:

• Always Use Current System Settings – Select to use the current system

settings of the computer instead of those saved in the database file.

• Always Use File’s Saved Settings – Select to use the settings saved in

the database file.

• Ask Whenever Settings Are Different – Select to ask the user at launch

time which settings to use.

 File Options: Script Triggers
The Script Triggers tab is used to configure database to automatically trigger scripts in

response to interface events pertaining to the file (Chapter 27).

 Designing and Maintaining Healthy Files
FileMaker automatically saves changes made in a file so there is no need or ability to

explicitly perform a save function. Users can modify records, and developers can modify

the structural elements with confidence that the work will be written to disk. However,

things can go wrong, and it’s important to know how to avoid, identify, and remedy

problems in order to maintain healthy files. Before starting to design a custom database,

take a moment to review some of the problems that can occur and how to help ensure

they don’t end in tragedy.

Chapter 6 Working With Database Files

109

 Avoiding Design and Training Deficiencies
Most database accidents are the result of some form of user confusion caused by a

combination of lack of training, poor interface design, or careless scripting. A few

specific problems involve users overwriting existing records, forgetting to commit a

record, deleting records carelessly, or misidentifying a found set.

 Overwriting an Existing Record

Overwriting existing content is a more common problem than you might think and

occurs for a variety of different reasons, usually inexperience and mistaken assumptions

made worse by a combination of poor interface design and inadequate training.

People lacking general computer experience or specific database knowledge often

do not realize that they need to create a new record prior to typing data. Some assume

that the window is like a web form that is used for entry but sends the data elsewhere for

saving so they can type over and send again. Whatever the assumption, the best way to

avoid this problem is with explicit training to ensure that everyone understands that they

need to actually create a new record before typing information for a new entity.

Another cause of overwriting is when a user fails to duplicate a record and begin

editing the original thinking it is a new duplicate record. The problem here is that the

default Duplicate function doesn’t produce any visual differences between the original

and the duplicate record. The record count in the toolbar will increase, and if a field

containing a unique record identifier is on the layout, it would contain a different

value. Otherwise, the duplicate record will appear exactly the same as the original. If

the user types or clicks in a way that doesn’t actually produce a duplicate, they may

accidentally begin typing over the original. Training can help them know where to look

to visually confirm a new record has been created. However, a better way to avoid this

is to use a custom menu (Chapter 23) that replaces the default function with your own

custom script (Chapter 24). The script can create a duplicate record and then add the

word “Copy” after the value in a key field, clear out fields that should be modified when

creating a duplicate, and present a dialog to confirm the duplicate is ready for entry.

Users will become accustomed to seeing these overt indicators and, in their absence, be

more likely to realize that they failed to actually create a duplicate.

Similarly, an unnoticed failure to enter Find mode can result in inadvertent editing

of a record when the user mistakes it for a temporary find request. The changes to the

menu and toolbar in Find mode can easily be overlooked, and a find request appears

Chapter 6 Working With Database Files

110

very similar to a regular record. Newer versions of FileMaker have helpful indicators like

a little magnifying glass icon that appears in every field in Find mode. Adding your own

visual indicators to a layout can help further emphasize a successful switch in modes.

Layout elements that hide or change formatting in Find mode can help (Chapters 17–22).

The reverse happens when a user fails to switch from Find back to Browse and then

begins typing into find requests assuming they are new empty records. FileMaker has a

“circuit breaker” dialog that appears after several find requests are created, reminding

the user they are in Find mode. The custom visual indicators described earlier can also

help avoid this problem.

A good developer must be able to switch mental focus to test an interface design

from the perspective of a new user. It is important not to make biased assumptions that

users possess your knowledge of a database you create in order to preemptively identify

points of confusion before they cause a disaster.

 Forgetting to Commit a Record

At the completion of a data entry task, an edited record must be committed for it to

be saved and released for access by others. This happens automatically when a user

navigates to another record or closes a file. They can also manually commit a record

(Chapter 4, “Closing a Record”). If they leave a record open after completing the data

entry task, it creates an annoyance for other users waiting to see, access, or edit the data.

It can also cause conflicts for themselves if they try to access the open record in a second

window on their own computer. Leaving records with uncommitted changes can even

be dangerous and cause file damage (discussed later in this chapter). Encourage users to

always commit records promptly after making changes and consider using conditional

layout elements to visually indicate when a record has active focus. For example, a

Commit button can be placed on a layout that only appears when a record is active, and

a record heading text object can change color (Chapter 21).

 Deleting Records Carelessly

Accidental record deletion can be the result of either the inexperience of new users

or the overconfidence of experienced users. The delete confirmation dialog contains

a generically minimalistic message that assumes the user is aware of the context. As a

result, it does not adequately indicate which specific record(s) are about to be deleted,

and this can be a major problem when the user has lost track of context or isn’t paying

Chapter 6 Working With Database Files

111

attention. This is especially confusing on a List view when a user mistakenly assumes a

different record is selected than the one they intend to delete. Also, when using multiple

windows, they may think they are deleting a record in one window when they are really

in another. Ironically, this problem can more often affect experienced users. While a new

user may nervously read a dialog message and proceed with caution, an experienced

user can become sloppy and click through a dialog with an unwarranted overconfidence.

Record deletion is not something the Undo command can reverse so the only way to

retrieve deleted records is to re-import them from a backup copy of the database. So,

consider a few options to help avoid this problem.

A custom menu can override the delete functions and present a customized,

informative warning dialog that clearly articulates which record is going to be deleted

by including key identifying fields (Chapter 23, “Overriding a Menu Item Function”).

Adding a second confirmation dialog can also help avoid accidents, especially when

deleting a large found set. It is a little more inconvenient but can avoid the greater

inconvenience of erroneous deletions. Alternatively, a custom dialog can require a

user to type a word or phrase, providing an explicit confirmation of intent before a

script continues with the deletion request. Also, consider placing strict limits on how

many records can be deleted at once to avoid mistakes that wipe out an entire table’s

contents by having a custom script deny the request and present the record count in an

informative dialog. Finally, security settings (Chapter 30) can completely restrict access

to delete commands for users who aren’t authorized to delete records.

 Misidentifying a Found Set

When a user does not identify a found set, they may accidentally perform several

functions that affect more records than they intend. If a user thinks the found set

contains 10 records when it really contains 10,000, performing functions like Delete

All Records, Replace Field Contents, or Find/Replace can create a disaster. Make sure

that users understand what a found set is and how to confirm it prior to using these

functions. Create more informative dialogs with custom menus (Chapter 23) and

completely disable these features for users who don’t require them with security settings

(Chapter 30). Take extra care when creating scripts that run automatically since a poorly

designed script can perform these same functions with even greater rapidity than

humans, and the damage may not be immediately apparent.

Chapter 6 Working With Database Files

112

 Restraining File Size
Everything added to a database will increase the size of the file. Creating new tables,

fields, layouts, and scripts increases file size. Entering hundreds, thousands, or millions

of records increases file size. Indexed fields with large amounts of text and container

fields with large files inserted both increase file size. This is a natural process that doesn’t

pose an immediate problem, especially since FileMaker limits databases to the amount

of disk space available with a technical maximum of 8 terabytes. However, it is still a

good idea to follow the adage “less is more” and design a database to be as efficient as

possible both in its structure and content. Files with a large and convoluted structural

design can be slower and confusing to developers and may be prone to other problems.

There are two primary issues that can make a file larger than it needs to be: inefficient

design and fragmentation.

 Designing Efficiently

One way to maintain a slim file size and keep things operating efficiently is to design

efficiently. Although there are numerous design approaches and these topics are not

discussed until later chapters, the sooner you think about efficient design, the better.

When container fields store images or files internally, the database size will increase

by the size of the item stored. Obviously, this can make a huge impact on the file size

when storing hundreds or thousands of large images. If the database is hosted on

a server or used locally but doesn’t need to be a self-contained file, using external

container storage (Chapter 10) is recommended and will greatly reduce the file size by

storing files outside of the database file while rendering them as if they were internal so

the user doesn’t even notice a difference.

Another thing that rapidly increases the size of a file is field indexing, especially

on lengthy notes fields. Indexing is important for certain functions and shouldn’t be

avoided. However, to the extent possible, try to minimize field indexes (Chapter 8, “Field

Options: Storage”).

Another way to keep a database slim is using a more sophisticated structural and

interface design to avoid redundancy in tables, layouts, and scripts. Design open-

ended, dynamic resources that can be used more broadly and with variable features and

functions. A commonly used formula or a group of similar formulas can be moved into a

single custom function (Chapter 15) to avoid repeating the same code. A table designed

to store notes related to Contact records and a table storing notes related to a Project

Chapter 6 Working With Database Files

113

records could be combined. Layouts can be designed to provide global functionality,

accessed from anywhere using a Card window attached to the main window (Chapter 25,

“Managing Windows”). Scripts can be designed to accept parameters, flexibly process

different information, and perform multiple variations on a single operational function.

A graphically rich interface design can improve the user experience but can also

increase the size of the file and the length of time it takes to load and draw layouts. So,

try to find a balance between a visually stunning display and a practical, efficient design.

Use FileMaker’s built-in layout objects instead of custom graphics where possible. When

using custom icons, import them as SVG files into the file’s icon library (Chapter 20,

“Using an Icon Label”). Any custom graphics placed directly on the layout should be

optimized for screen use, using lower resolution especially if they are not on print layouts.

It is worth mentioning that a monolithic hub-and-spoke relationship structure

should be avoided in favor of a table occurrence group design (Chapter 9, “Using Table

Occurrences”). Although a convoluted relationship setup primarily causes performance

issues, it can also result in developer paralysis making better design in formulas, layouts,

and scripts more difficult. Remember, an inefficient design in some areas might seem

innocuous, but it can have negative repercussions elsewhere. Always strive for the best

structural and interface design possible.

Finally, although it creates a more complex overall structure, spreading tables across

multiple files can help reduce each file’s size. There are various ways of doing this by

mixing and matching different methods, briefly described in Chapter 1. For example,

a data separation model can be used where one or more files provide a small footprint

front-end interface that interacts with table content stored in one or more separate

dedicated data files acting like a traditional back-end source. This allows record content

to be distributed across one or more smaller files while still maintaining a single, unified

interface.

 Avoiding Fragmentation

As records are created and deleted through the course of normal data entry, empty space

can accumulate within the file. This can also happen as developers add and remove

resources. Over time, this artificially inflates the file’s size and may impact performance

and stability. Saving the file as a compacted copy (described later in this chapter) will

safely re-create the file, fitting as much data into each block as possible to reclaim

unused space by removing the bloat of empty “ghost” blocks.

Chapter 6 Working With Database Files

114

 Avoiding File Damage
Any digital file can become damaged. Since databases are typically accessed by many

users simultaneously across a network and are continually reading from and writing

to disk, they can be more vulnerable and at greater risk of data loss. Developers should

be aware of what can cause damage, how to avoid it, ways to detect it, and the correct

approach to repair it. Damage can range from a minor problem that initially goes

unnoticed to a catastrophic inability to open the file.

There are many symptoms that may appear like a damaged file until other causes

are ruled out. A field displaying a question mark instead of data can be evidence of

corruption when it isn’t a calculation returning the wrong type of data or a field width on

a layout being too small to fit content. Records missing or appearing blank may indicate

corruption. However, don’t panic until confirming it isn’t a mistaken found set, a layout

formatting issue, or the result of accidental record deletion. Also, incorrect search results

may indicate index corruption when it can’t be remedied by adjusting the settings or

recreating indices. Inadequate script design, inexperienced users, broken relationships,

and networking issues can all create situations that can be mistaken for corruption.

Other symptoms clearly indicate damage. A database performing a consistency

check when opened indicates the file wasn’t closed properly and could have damage.

If this happens randomly, without a crash event or force quit, it could indicate lingering

damage. The FileMaker application randomly crashing when working in the database

may be an operating system or networking issue, but it can also indicate corruption in

the database. Finally, sometimes, a dialog will simply inform that the file is damaged,

can’t be opened, or should be recovered.

The best ways to avoid file damage is to share properly across a network, make sure

that files are closed properly, and maintain hardware and software.

 Share Properly

When sharing a database with others, never place it in a directory that can be accessed by

more than one person at a time. This includes a folder on a file server or any type of cloud

storage, e.g., Dropbox, Google Drive, etc. Two users opening the same database file

directly from a folder will guarantee a corrupt file. Instead, use FileMaker’s peer-to-peer

sharing, or host the file on a FileMaker Server to ensure proper multi-user read/write

management and greater protection from user crashes (Chapter 29).

Chapter 6 Working With Database Files

115

 Close Files Properly

Most file damage occurs when a database was improperly closed. This can result in the

loss of data, corrupted data, and/or structural flaws. The proper close method is to close

all database windows or to quit the FileMaker application by selected the File ➤ Quit

Application menu. Some ways a database may be improperly closed include

• Computer power is interrupted, resulting in abrupt shutdown of an

open database.

• A system-wide crash that also crashes FileMaker.

• A glitch that causes FileMaker to unexpectedly quit.

• If the network connection is dropped as it is when the user’s

computer goes to sleep while a hosted database is open.

• A hasty force quit of the application with databases open when a user

mistakes a spinning cursor during a lengthy script process for a crash.

• A force quit is required to stop a faulty script endlessly looping with

abort capability turned off.

• Trying to open or make a copy of a live database actively hosted by

FileMaker Server.

Tip Databases hosted on a FileMaker server (Chapter 29) are cushioned
from user computer crashes and force quit damage. Files run locally are more
vulnerable.

 Maintain Hardware and Software

Always maintain stable and up-to-date hardware and software, paying close attention to

these details:

• Don’t rush to upgrade anything. Perform extensive testing on a safe

copy of your database prior to upgrading hardware or software.

• Keep host and user operating systems up to date.

Chapter 6 Working With Database Files

116

• Keep the FileMaker application up to date, including all interim bug

fix releases.

• Use an adequate uninterruptable power supply and surge protector

on all computers to avoid sudden shutdowns in the event of a power

loss, especially a database host server.

• Run regular hardware maintenance using a disk utility program, and

don’t let computers get outdated to the point of risking failure.

• Don’t allow the disk of a host computer to run out of space.

• Use fast hardware and networking equipment with adequate cabling.

• Perform regular database maintenance.

Tip Consider using FileMaker Cloud which handles most hardware and software
maintenance functions automatically.

 Exploring Maintenance Functions
There are several functions that can help maintain database integrity and troubleshoot

file damage. Each must be performed locally, so files hosted on a network must be taken

offline and manipulated directly in a copy of the FileMaker Pro desktop application.

These functions are Save a copy as, Consistency check, and Recover.

Tip always make regular backups of your databases, and preserve an extra
development copy of major structural changes. if damage occurs, the safest action
is to revert to a recent backup or recover data from the damaged file and import it
into a reliable backup.

 Saving a Copy As

The Save a Copy As function, accessible under the File menu, will create a new copy

of the open database as one of these four types selectable in the save file dialog: Copy,

Compacted, Clone, or Self-Contained.

Chapter 6 Working With Database Files

117

The Copy of current file option saves the database as an identical copy of itself

without any changes. This is identical to the Save As function in most applications and

can also be done by duplicating a closed file using the operating system file duplication

command. It doesn’t have any diagnostic function; it simply makes a copy.

The Compacted copy (smaller) option saves an optimized copy of the database

with empty space removed, resulting in a smaller file size. Used periodically, this can

maintain the health of a file, especially if a lot of content is deleted from a file or lots of

structural changes have occurred.

The Clone (no records) option saves a copy of the database’s structure only. This

will include tables, fields, relationships, page setup options, field definitions, custom

functions, layouts, scripts, and more, without any records. This can be used when

troubleshooting a problem as it quickly isolates a file’s structure from its content.

The Self-contained copy (single file) option saves a copy with external container data

(Chapter 10) embedded in the file’s container fields, making it fully self-contained.

 Performing a Consistency Check

A consistency check will read every block that makes up a file, verify the internal

structure of each block, and confirm it is properly linked to other blocks. This process

does not read the data within blocks, check the file schema, or check higher-level

structures; these functions are only performed by the full Recover process. Each time

a database opens, FileMaker checks the file and automatically performs a consistency

check if it detects that the file has been improperly closed. A manual consistency

check can be performed on any closed file as a troubleshooting step when damage is

suspected. Launch the FileMaker Pro application, and select the File ➤ Recover menu.

In the file selection dialog, shown in Figure 6-18, select the file suspected of damage.

Instead of clicking the Select button, which would begin the full Recover process, click

the Check Consistency button.

Chapter 6 Working With Database Files

118

FileMaker will immediately check the file and report the results in both a dialog and

Recover.log file. If no problems have been reported, the file is probably safe to continue

using. If damage is reported, it may recommend performing the recovery process. After

the consistency check is complete, the file selection dialog remains open so you can

choose to recover the file, perform a consistency check on a different file, or cancel.

 Recovering a File

When a database is damaged or acting buggy, the Recover function can be used to

rebuild a new copy of the file and regain access to its contents. This process is aggressive

and will do whatever is necessary to restore access to a file. It will rebuild the file block

by block and attempt to correct any corruption. However, if an object can’t be repaired,

it may be deleted. Because of its aggressive nature, the function should be used a

diagnostic or recovery tool and not for regular maintenance. To perform the recovery

process, launch the FileMaker Pro application, and select the File ➤ Recover menu. In

the file selection dialog, locate the damaged file, and click the Select button. In the Save

dialog, enter a name and select a save location for the new recovered copy of the file, and

optionally specify advanced options (described in the next section). Then click Save to

begin the recovery process.

FileMaker will rebuild the file to the specified save location and report the results.

Based on the information provided, you can determine if the recovered copy of the file

is safe for use or if you should transfer the content into a previously saved backup copy.

If no stable backup is available, it is possible to meticulously review the recovery log to

see what type of structural objects are reported as corrupt and then systematically delete

resources and repeat the recovery process over and over until you isolate the corrupt

Figure 6-18. Use the check consistency button instead of performing a full recovery

Chapter 6 Working With Database Files

119

resources. Then, each corrupted item can be deleted and recreated in the original file

and the process repeated until the recovery process reports the file has no problems.

However, preserving safe backups is the best practice.

Advanced Recovery Options

The Advanced Recover Options dialog, shown in Figure 6-19, controls how a recovery is

performed.

The Generate new file section controls which of three ways a new file will be created

during the recovery process. Select Copy file blocks as-is to copy all file blocks exactly as

they exist in the source file. The resulting file may still include damaged blocks. This is

the equivalent of just saving a copy of the current file. The Copy logical structure (same

as Compacted Copy) will copy all data in the source file without checking the blocks,

but it will rebuild the tree structure. The resulting file may still include damaged blocks.

This is the equivalent of saving a compacted copy of the current file. Finally, select Scan

blocks and rebuild file (drop invalid blocks) to completely rebuild the file, including only

undamaged and non-duplicate blocks. The resulting file may be structurally unsound

Figure 6-19. The advanced options for recovery a file

Chapter 6 Working With Database Files

120

and may only be suitable for data extraction into a reliable backup copy. This is the full

recovery process. The following checkboxes control optional functions during recovery:

• Scan Record Data and Rebuild Fields and Tables (schema) – Rebuilds

the file’s database schema (tables, fields, and relationships), removing

fields or records found to be at invalid locations within the file, and

re-creates missing fields and table definitions.

• Scan and Rebuild Scripts, Layouts, etc. (structure) – Rebuilds the file’s

structure (layouts, scripts, themes).

• Rebuild Field Index – Clears indexes with a choice of when to rebuild

them. Rebuilding now takes longer but is done before anyone uses

the file. Rebuilding later forces indexes to be rebuilt as needed when

users search or perform other functions. See Chapter 8 for more on

field indexing.

• Delete Cached Settings – Removes settings for last choices made when

printing, importing/exporting, sorting, finding, etc.

• Bypass Startup Script and Layout – Disables script triggers

(Chapter 27) and the file’s default layout, opening to a newly created

blank recovery layout instead.

 Troubleshooting a Damaged File
When a file explicitly reports damage and won’t open, you have no choice but to recover

and usually will need to extract the data into a reliable backup of the structure. However,

when a file opens but exhibits severe intermittent crashing, there are several steps

required to safely locate the damage, determine the best course of action, and transfer

records into a good structure.

 Locating Damage

The first troubleshooting step involves locating the damage by determining if it is in the

database structure or record data. Depending on what you find, your recovery option and

choice of file for future use may vary.

Chapter 6 Working With Database Files

121

Checking the Database Structure

To determine if the database structure is damaged, follow these steps:

 1. Create a troubleshooting copy of the original file, naming it

something unique, e.g., “Broken Database.”

 2. Isolate the structure by making a copy without any record data.

Open the Broken Database file, and perform the Save a Copy as

command, selecting Clone (no records) option and naming it

“Broken Database Structure.” Then close the Broken Database file.

 3. Next, compact the Broken Database Structure to preemptively fix

any minor issues that might get in the way of troubleshooting.

Open the Broken Database Structure file, and perform the Save a

Copy as command, selecting compacted copy (smaller) option and

naming it “Broken Database Structure Compacted.” Then close

the file.

 4. To diagnose the structure, Recover the Broken Database Structure

Compacted using default recovery settings (uncheck advanced

options) and saving it as “Broken Database Structure Recovered.”

If damage is found, you may be able to skip checking the record data and instead

recover the original file and transfer record data from that into a reliable backup

structure, ideally a preserved clone of a backup from a time prior to the introduction of

corruption. If the corruption has been lingering awhile and you do not have access to

such a file, you can use the recovered file generated previously as the structure. However,

keep in mind that the recovery process may result in renamed or deleted objects that

could not be recovered, so some work to remedy these may be required. For example, a

field might be renamed “Recovered Field,” or a “Recovered Blob” or “Recovered Library”

table occurrence can appear in the relationship graph. These may or may not indicate

corruption or data loss.

Caution if the FileMaker recovery report explicitly states that a file is not safe for
use, using it anyway is not recommended.

Chapter 6 Working With Database Files

122

Checking the Record Data

Once the file structure has been ruled out as the source of corruption, follow these steps

to determine if the record data is damaged:

 1. Open the Broken Database troubleshooting copy, and perform

the Save a Copy as command, selecting compacted copy (smaller)

option and naming it “Broken Database Records.” Then close

the file.

 2. Recover the Broken Database Records using default recovery

settings by unchecking the advanced options and naming it

“Broken Database Records Recovered.”

 Determining the Best Course of Action

If no damage is reported in both the file structure and record data, you can try to use the

recovered file at the conclusion of the record data check. If random crashes continue to

occur, consider transferring the record data into a safe structure anyway. If the structure

or record data reported damage, immediately transfer the record data to safe structure.

 Transferring Records into a Good Structure

To move record data from the recovered file into a reliable structure, follow these steps:

 1. Make a copy of either the recovered file from the conclusion of the

record data check (like the Broken Database Records Recovered

described earlier) or the original troubleshooting copy.

 2. Open the file.

 3. Perform a Find All to confirm a found set of all records.

 4. Export all records using the Excel Workbooks (.xlsx) type option.

Be sure to check the Use field names as column names in first row

option in the Excel Options dialog. In the Export Options dialog,

take care to select all fields from the Current Table and not just the

ones visible on the current layout.

Chapter 6 Working With Database Files

123

Caution exporting to a non-FileMaker format guarantees the data is cleanly
separated from any structural corruption. however, container fields are not
supported and can’t be exported. those must be manually restored in the new
database. You may attempt to export to the FileMaker format instead but then need
to double-check to confirm that no corruption follows the data in the transfer.

 5. Repeat steps 3 and 4 for every table in the database.

 6. Identify a stable copy of the database structure. Ideally use a clone

that was created from a time prior to the corruption event. If that

is not available, use a recovered copy (like the Broken Database

Structure Recovered from the previous process) as long as the

database structure is no longer reporting damage.

 7. Import the records from the spreadsheet(s) into each table of the

safe structure.

 Summary
This chapter explored the basics of creating, configuring, and maintaining the health of

database files. In the next chapter, learn how to create tables and begin developing an

object model that will define the fields that can be populated when entering records.

Chapter 6 Working With Database Files

125
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_7

CHAPTER 7

Working with Tables
A table is the fundamental unit of a database’s structural schema which forms a digital

representative of some type of entity being modeled. Tables create a digital space and

define a set of fields for storing data. This chapter explores the following topics:

• Introducing object modeling

• Introducing the Manage Database window (Tables)

• Planning table names

• Managing tables

• Adding tables to the example database

 Introducing Object Modeling
An object model or data model is an abstraction that defines elements of data for

database entries, describing how they relate both to each other and to properties of the

real-world entities they represent. A model is like an architectural blueprint that informs

FileMaker about the structure of the information a database will store and manage. The

term is used because the information is sometimes called a virtual model of the real

objects represented by that structure. Data modeling is the process of planning and

creating a model of the various properties, relationships, and actions that make up a data

model for a set of related entity classes that will be managed by a database. The elements

of an object model are tables, fields, and relationships.

A table allocates a space for a particular type of entity being modeled within the

database. These are analogous to a tab in a spreadsheet, as shown in Figure 7-1. The

term is used to refer to both the structural definition of a table as a storage model and to

the content collected within that structure. So, one may refer to a table’s fields (defined

structure) and a table’s records (content entered). Objects modeled as tables can be

broad categories (people or products), narrow subcategories (employees or cars),

https://doi.org/10.1007/978-1-4842-6680-9_7#DOI

126

properties of an entity (prices or components), actions (historical events or process

steps), or any other thing one may need to manage. In the early planning stages, a

model may take the form of a simple list of table names, e.g., Company, Person, and

Project. Later, this expands into a field list for each table and details about how they

all interconnect to form a relational hierarchy. Complex systems can contain models

defining dozens or hundreds of tables.

The spreadsheet metaphor continues for fields, records, and cells.

A field, similar to a column in a spreadsheet, is a defined container in which one

piece of information about the modeled entity will be stored. In the example shown,

each column heading names an individual field defining the column beneath it: First

Name, Last Name, Address, etc.

A record, similar to a row in the spreadsheet, represents one individual entry stored

within the table for one instance of the object being modeled. While the table in the

example represents people in general, a row, or record, represents one specific person.

The record is one instance of the table’s defined field set, created to store information

about a specific person.

A cell is the formal name of an intersection of a field and record. In FileMaker, these

are commonly referred to less formally as fields with the implied understanding of the

difference between an instance of a field definition for a specific record (cell) and the

field definition itself (field).

Figure 7-1. The basic anatomy of a database table

Chapter 7 Working With tables

127

 Introducing the Manage Database Dialog (Tables)
Tables are created and configured from the Tables tab of the Manage Database dialog,

shown in Figure 7-2. Once a database file is open, this dialog can be opened by selecting

the File ➤ Manage ➤ Database menu in Browse or Layout mode or selecting Database

in the Manage toolbar menu in Layout mode. It is also accessible from various developer

menus throughout the development interface, such as the Specify Import Order dialog

(Chapter 5).

The Tables tab displays a list of every table defined in the file. Each is made up of

five properties listed in columns. The first column displays the Table Name. The Source

column displays the source type of the table, either “FileMaker” or the name of an ODBC

data source. Details includes a count of Fields defined as the table structure and Records

of data content stored. Finally, Occurrences in Graph displays a comma-separated list of

every instance of the table in the relationship graph (Chapter 9).

Tables in the list can be selected to rename, delete, or copy and paste. A double-click

switches to the Fields tab for that table. The Table Name field below the list displays the

name of the selected table and is used to change the name or enter a name for a new

table. Clicking OK saves changes and closes the dialog. Clicking Cancel will close the

dialog without saving changes made in any tab.

Figure 7-2. The dialog used to manage tables

Chapter 7 Working With tables

128

 Planning Table Names
Table names can use a variety of different conventions depending on the preferences

of an individual developer and any technical requirements for compatibility when

the database is used as a source for inbound API, JDBC/ODBC, or WebDirect

connections. Names composed of multiple words can be delimited with a space (Project

Resource) and an underscore (Project_Resource) or have no space using “camel case”

(ProjectResources). They can be upper- or lowercase or any combination of the two.

Every table names must follow these rules:

• Each table must be named with a unique word or phrase.

• Names can include numbers but shouldn’t start with a number or a

period. Ideally, use only alphabetic characters.

• Names should not contain the name of built-in functions, especially

those that have no parameters such as Random or Pi.

• Although some reserved symbols and words can be used, they may

conflict in calculation formulas and should be avoided.

• A name can include spaces. However, for web integrations (other

than FileMaker Web Direct which doesn’t care), you may want to

avoid them completely.

Beyond these technical considerations, take a moment to consider what constitutes

a good table name. Every table should be clearly descriptive, concise but not cryptic,

and exist harmoniously with other tables. Here are a few suggestions to consider when

developing a list of table names:

• Names should clearly indicate the entity class modeled by the table,

concisely as possible without being cryptic.

• Use full words instead of abbreviations where possible. If a word is

too long, consult a thesaurus for a shorter alternative.

• Consider the full context of other tables in the file. A table named

Stuff is fine in a database that manages only one kind of stuff.

However, when modeling several kinds of stuff, use more descriptive

names like Inventory, Resources, Supplies, etc.

Chapter 7 Working With tables

129

• Use multiple words for clarity. When there are other tables

for similarly named entities, make sure that their names are

differentiated enough to avoid confusion.

• Be consistent, using the same format and keeping all names either

singular or plural. For example, use either Contact and Company or

Contacts and Companies.

• For large lists of tables, consider prefixes to organize them into

conceptual groups so they sort neatly in developer selection menus,

as shown in Figure 7-3.

 Managing Tables
Tables can be added, renamed, and deleted using the buttons on the Tables tab of the

Manage Database dialog.

Figure 7-3. A list of raw names (left) and the same with group prefixes (right)

Chapter 7 Working With tables

130

 Adding Tables
There are several different methods for adding tables: creating a new table, duplicating

an existing table, importing a table from another FileMaker database, or adding a table

from an external ODBC data source. Tables can also be automatically created while

importing records (Chapter 5, “Selecting a Target Table”).

 Creating a New Table

Manually create a new table from the Tables tab of the Manage Database dialog by typing

a name into the Table Name text area and clicking the Create button. The new table will

appear in the list with five default fields (Chapter 8, “Defining Default Fields”).

 Duplicating an Existing Table

When a new table will be significantly similar to an existing one, consider duplicating

to save time. The Copy and Paste buttons can be used to copy one or more tables and

paste a duplicate of them into the list. This even works between two files providing a

quick and simple way to replicate a table in a new database. The duplicate table(s) will

appear highlighted in the list, each with the same name as the original plus a unique

numeric suffix. Every field from the original table will be present in the new table, with

the same names and settings. However, record content is not copied from the original;

the duplicate table will contain no records.

 Importing a Table

The Import button on the Tables tab of the Manage Database dialog begins the process

of importing one or more tables from another FileMaker database. The source database

can be a database in a folder directory or one hosted by a FileMaker Server. To begin,

click the Import button. Locate and open the database file containing the tables to be

imported. Once opened, FileMaker will present an Import Tables dialog listing all the

tables available for import from the selected database, as shown in Figure 7-4. Check the

box next to the desired table(s) and click OK to import. Here too, only the structure will

be imported so the tables will contain no records.

Chapter 7 Working With tables

131

 Adding a Table from an ODBC Data Source (macOS)

Open Database Connectivity (ODBC) is a standard application programming

interface (API) that provides client applications a common language for interacting

with other database systems. Java Database Connectivity (JDBC) is a similar API for

accessing systems written in the Java language. FileMaker can use both ODBC and

JDBC to communicate with a Driver Manager application that uses a client driver to

communicate with an external data source, as shown in Figure 7-5.

Caution oDbC connections are only required to connect non-FileMaker
databases, not for FileMaker database connections.

FileMaker can act as an ODBC client application or as an ODBC and JDBC data

source. As a client application, FileMaker supports connections to external SQL data

sources such as those from Oracle, Microsoft SQL, and MySQL. Once connected, tables

from the external database can be added to the FileMaker database, and with a few

exceptions, they act like a native FileMaker table. The process of configuring a computer

and database for ODBC access is a relatively straightforward three-step process. First,

Figure 7-4. The dialog used to import tables from another FileMaker database

Figure 7-5. Connecting a FileMaker database to an ODBC data source

Chapter 7 Working With tables

132

prepare the host computer for an ODBC connection with a Driver Manager and Client

Driver. Next, connect the FileMaker database to the ODBC client driver. Finally, insert and

use ODBC tables in the FileMaker database. Let’s walk through an example of this process.

Preparing a Computer for an ODBC Connection

To prepare a FileMaker host computer for an ODBC Connection, install the ODBC

Manager application (freeware for macOS), install a client driver (such as Actual

Technologies ODBC Pack), and configure the driver for a specific external data

source. The host computer is the computer upon which the FileMaker database

is installed (a computer running FileMaker Server rather than a client computer

accessing it).

Installing the ODBC Manager Application

Download and install the freeware ODBC Manager application onto the host computer,

by following these steps:

 1. Download the ODBC Manager disk image from

www.odbcmanager.net.

 2. Locate the ODBC_Manager_Installer.dmg file in your Downloads

folder and launch it.

 3. The ODBC Manager disk image will appear on your desktop and

should open in a window.

 4. Double-click on the ODBC Manager.pkg file to launch the

installer.

 5. Step through the installer panels to complete the installation.

Once the installer has finished, the ODBC Manager application should be in your

Utilities subfolder of the macOS Applications folder.

Installing the ODBC Driver

Next, download and install an ODBC driver, like the one described here from Actual

Technologies, by following these steps:

 1. Download the Actual ODBC Pack disk image, available at

www.actualtech.com/download.php.

Chapter 7 Working With tables

http://www.odbcmanager.net
http://www.actualtech.com/download.php

133

 2. Locate the Actual_ODBC_Pack.dmg file in your Downloads folder

and launch it.

 3. The Actual ODBC Pack disk image will appear on your desktop

and should open in a window.

 4. Double-click on the Actual ODBC Pack.pkg file to launch the

installer.

 5. Step through the installer panels to complete the installation.

Note the driver is a fully functional demo, limited to display only the first three
rows resulting from any query. purchase a license key from actual technologies
web store to remove this limit.

Configuring Driver

Next, add and configure a driver for the specific database to which a connection will be

made. Begin by opening the ODBC Manager application, shown in Figure 7-6.

Then follow these steps in the dialog:

 1. Click on the System DSN tab.

 2. Click the Add button.

Figure 7-6. The ODBC Manager with a single connection

Chapter 7 Working With tables

134

 3. In the panel that opens, choose a driver appropriate for the target

database: Actual access, Actual open source databases, Actual

oracle, or Actual SQL server.

 4. Enter settings into the multi-panel driver specific configuration

dialog. These vary but generally include the server address,

database name, username, and password.

 5. Click the Done button to close the configuration dialog.

 6. The final panel of the configuration dialog allows you to test the

connection.

 7. Quit the ODBC Manager application.

Connecting a FileMaker Database to the ODBC Client Driver

Connect your FileMaker database to the ODBC driver you just configured. This is done

by setting up an external data source in the database and then adding table(s) from the

external source into the FileMaker relationship graph.

Setting Up External Data Source

Select the File ➤ Manage ➤ External Data Sources menu item to open the Manage

External Data Source dialog, shown in Figure 7-7. From here, you can create, edit, and

delete references to external databases.

Figure 7-7. The dialog to manage external data sources

Chapter 7 Working With tables

135

To add a new external source, click the New button to open the Edit Data Source

dialog. At first, the dialog will ask for a File Path List because the Type is set to FileMaker.

Once you select ODBC instead, the dialog will change, as shown in Figure 7-8.

Follow these steps to configure a connection to the ODBC driver:

 1. Name – Enter a unique name for the data source for use within

FileMaker.

 2. Type – Select ODBC radio button.

 3. DSN – Click the Specify button.

Figure 7-8. The process for setting up an external data source

Chapter 7 Working With tables

136

 4. Select ODBC Data Source – Select the desired data source from the

list defined in the ODBC Manager application, and then click to

close the dialog.

 5. Authentication Options – Optionally indicate how a username and

password should be entered at the user level when a database

attempts to access the data source. For the smoothest user

experience, enter the username and password directly here so the

user doesn’t have to repeat that process.

 6. Filter Tables – Optionally add filtering criteria to control which

tables are displayed when a connection is made. This can be

helpful when a database has many tables and you need to limit

which are available within FileMaker to avoid failures. When

finished, click OK to close the Edit Data Source dialog.

Adding to Relationship Graph

Unlike with the creation of a new FileMaker table, which is added to the Tables tab of the

Manage Database dialog and automatically appears in the Relationship graph (Chapter 9),

a new ODBC table is manually added to the graph which automatically adds it to the

table list. To do this, open the Manage Database dialog and click on the Relationships

tab. Then follow these steps shown in Figure 7-9:

Chapter 7 Working With tables

137

 1. Click the Add button.

 2. In the Specify Table dialog that opens, select the ODBC connection

in the Data Source menu.

 3. Select the table.

 4. Click the OK button to add the table to the occurrence graph and

list of tables.

Defining an ODBC “Shadow Table” in FileMaker

When an ODBC table is added to the relationship graph, FileMaker automatically creates

a shadow table in the Tables tab. This is an internal representation that mirrors the

external table. These appear in the list on the Tables tab with italic formatting. Although

this brings the external table into the database and allows interactions similar to a native

FileMaker table, there are a few notable differences, including

• Schema Lock – The structure of the external data source is not

available for modification from within FileMaker. The shadow table

in FileMaker allows some modification, but this does not affect the

remote table.

Figure 7-9. The process for adding an ODBC source to the relationship graph

Chapter 7 Working With tables

138

• Deleting Fields – Fields can be deleted from the shadow table to help

thin out the amount of data queried, but the fields remain in the

remote table.

• Modifying Fields – Auto-Enter settings (Chapter 8) for fields can be

customized for the shadow table.

• Adding Supplemental Fields – Fields can be added to the shadow

table but are limited to unstored calculations and summary fields

and are not added to the remote table.

• Data Types – When the remote table has separate data types for

certain information that are handled as a single data type by

FileMaker (e.g., integers and floating-point data instead of just

number fields), a calculation may be required to convert data into a

FileMaker data type.

• Data Entry Limitations – When the amount of data for certain field

types is limited, FileMaker will try to respect these limits to avoid

problems, but special care may be required.

• Data Updates – Automatic refreshes of record changes in the external

table are less frequent across the network than changes to native

FileMaker tables. Use the Refresh Window script step to force an

update and ensure that the data displayed is current.

• Record Locking – Unlike native tables, records open for editing are

not locked, so users can be editing the same record simultaneously.

A warning dialog will alert users if the record had been modified

since they began editing and give them the ability to stop to avoid

overwriting the other user’s changes.

• Indexing – FileMaker can’t index SQL fields, so searches in external

tables should be limited to those fields already indexed by the remote

table to avoid long delays.

Tip Claris’ technical brief “introduction to external sQl sources” contains more
information about oDbC, JDbC, and the various connection options to and from
FileMaker databases.

Chapter 7 Working With tables

139

 Renaming and Deleting Tables
A table selected in the Tables tab from the Manage Database dialog can be renamed or

deleted. To rename, enter a new name in the Table Name text area, and click the Change

button. To delete, click the Delete button. A Delete Tables warning dialog will appear

to confirm you want to continue, as shown in Figure 7-10. The dialog includes a check

box that, when selected, will also delete the corresponding table occurrence in the

relationship graph (Chapter 9). If not selected, any table occurrences in the graph will

become <missing table> placeholders. A deleted table’s field definitions and records will

always be deleted, while layouts will remain until manually deleted or reassigned.

 Adding Tables to the Example Database
Before continuing, add three tables to the Learn FileMaker database: Company, Contact,

and Project. For now, create the tables and leave the automatically created default fields,

table occurrences, and layouts in place. Once finished, the dialog should appear as

shown in Figure 7-11.

Figure 7-10. The warning dialog when deleting tables

Chapter 7 Working With tables

140

 Summary
This chapter explored the basics of working with tables, both natively in FileMaker and

connecting to an external SQL data source. In the next chapter, we learn how to add

fields to tables and configure their various properties.

Figure 7-11. The Learn FileMaker database tables with default fields

Chapter 7 Working With tables

141
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_8

CHAPTER 8

Defining Fields
A field is a defined data entry space within a table. Using the spreadsheet analogy, a field

is like a column, named and configured to contain a specific type of data. This chapter

focuses on the following field-related topics:

• Defining field data types

• Introducing the Manage Database dialog (fields)

• Planning field names

• Defining default fields

• Managing fields

• Setting field options

• Adding fields to the example database

 Defining Field Data Types
FileMaker supports eight different types of fields which fall into one of two categories:

entry fields and display fields.

 Entry Fields
An entry field is a field capable of data input by a user, script, or import process.

FileMaker has six types of entry fields, each for a specific class of data: text, number, date,

time, timestamp, and container.

https://doi.org/10.1007/978-1-4842-6680-9_8#DOI

142

Note By definition, an entry field can accept input. However, a user’s ability to do
so in a given instance will depend on the field’s layout presence (Part 4) and the
user’s security settings (Chapter 30).

 Text Fields

A text field is used to store any combination of letters, symbols, or numbers as a string of

any length up to ten million characters. The content of a text field can be plain text with

layout settings controlling display format, or they can include embedded formatting

information, richly styled with font, size, style, and color. When sorting records by a text

field, the values will be sorted in alphabetical order. This means that numbers contained

within the text will be sorted as text and evaluated one character at a time; e.g., a value of

“10” will sort before “2,” since 1 comes before 2.

Tip Use a text field to store numbers that contain leading zeros.

 Number Fields

A number field is used to store any numeric value ranging from 10^–400 to 10^400 up

to one billion characters per field. A value in a number field can include non-numeric

characters that are used to format numbers. For example, a number field can contain

“5000” or “$5,000.00.” While these additional characters don’t adversely affect data entry,

finding, or sorting, ideally only numerals should be physically entered into the field

since currency formatting can be applied dynamically using field display layout settings

(Chapter 19, “Data Formatting”). When sorting records by a number field, the values in

the field will be sorted in numeric order, so a value of “10” will sort properly after “2.”

 Date Fields

A date field is used to store a formal date within a range from January 1, 0001, through

December 31, 4000. Dates must be typed using the short date format matching the

database setting for dates and times which was inherited from the computer upon which

the file was created (Chapter 6, “File Options: Text”). In the United States, the default

CHaPter 8 Defining fielDs

143

format is typically “<month>/<day>/<year>.” For example, January 15, 2017, would be

entered into a date field as “1/15/2017.” Although all dates must be entered as short

dates, a field on a layout can be configured to display the value in one of a variety of

formats (Chapter 19, “Data Formatting”). When sorting records by a date field, the values

will be sorted chronologically.

Two-Digit Date Conversion

FileMaker requires all dates to have four-digit years. Any entry in a date field with a two-

digit year will automatically be converted to a four-digit year using a formula based on

the year in which the data entry action occurs. This includes all entry methods: manual

typing, importing, auto-enter formulas, or script step entry. The conversion process

assumes that a date with a two-digit year is more likely to refer to a time further in the

past than the future. Therefore, automatic conversion of a date’s year from two to four

digits will adjust so the date falls within either the next 30 years or the preceding 70 years

based on the current year when the data is entered. So, in 2020, typing “1/1/51” or earlier

will be automatically converted to “1/1/1951,” while “1/1/50” will convert to “1/1/2050.”

A database managing dates that fall outside of a 100-year range or that don’t fit this

division pattern must be

• Entered with four-digit years

• Entered into a text field instead of a date field where they can remain

two-digit years

• Entered into a field with an auto-enter formula or script trigger that

converts the date to the appropriate four-digit equivalent before

FileMaker imposes its automatic conversion

Caution Prior to the year 2000, fileMaker allowed two-digit dates. When
upgrading an old database, these will automatically receive a century of 1900
unless manually converted before upgrading!

CHaPter 8 Defining fielDs

144

 Time Fields

A time field is used to store a formal time string. Times must be typed using the time

format matching the database setting for dates and times which was inherited from the

computer upon which the file was created. In the United States, the default format is

typically “<hour>:<min>:<sec> <am|pm>” or “10:30:00 am.” Times can refer to a time

of day or an amount of time, which can be used to denote things like time allotted or

elapsed. For example, “0:15:00” refers to 15 minutes. When sorting records by a time

field, the values will be sorted chronologically by the amount of time.

 Timestamp Fields

A timestamp field is used to unify a formal date and time in a single string. FileMaker

allows timestamp values to range from January 1, 0001, 12:00 AM, through December 31,

4000, 11:59:59 PM. As with separate date and time values, a timestamp must be entered

in a short format matching the database’s settings for each component, which are

inherited from the computer upon which the file was created. The two components are

entered with a space between them: “<date> <time>.” For example, “1/1/2021 3:00 PM”

or “8/1/2021 8:00 AM.”

Tip Dates, times, and timestamps are stored as numbers expressing time passed
from a fixed point: dates as a number of days passed since January 1, 0001, and
times as a number of seconds passed since midnight. for example, “8/1/2002” is
stored as 737638, and “10:00:00 aM” is stored as 36000. therefore, formulas can
add or subtract a number of days to a date or seconds to a time.

 Container Fields

A container field is used to store a document. Files can be placed into container fields by

a variety of functions including Insert, Copy/Paste, or Drag/Drop. A database running on

an iOS device can use the Insert from Device script step to insert music, photo, camera,

microphone, or signature data into a container. Depending on the configuration of

the database and field, the files displayed in containers can exist within the database

structure or be linked to it from an external folder location (Chapter 10). Some file types

CHaPter 8 Defining fielDs

145

have an Interactive content layout setting that allows for interactivity similar to their

native applications (Chapter 19). For example, a PDF file can be stored in a field with

a layout configuration that allows users to view and navigate through the pages of the

document as if they were viewing it in Adobe Acrobat. Other file types with interactive

options are photos, movies, and audio files.

 Display Fields
A display field is a non-editable field that automatically displays a value determined by

its settings. FileMaker has two types of display fields: calculation and summary.

 Calculation Fields

A calculation field is defined with a formula statement that is evaluated by FileMaker to

produce a result (Chapter 12). These are similar to cells in a spreadsheet with a formula

applied with two major differences. First, the formula applies to the entire column, so

each record uses the same formula to evaluate a result for the field. The formula can

include variable conditions that evaluate differently for different records, but the overall

formula itself remains the same for all. Second, it is impossible for a user to type into the

cell, wipe out the formula, and enter data instead.

 Summary Fields

A summary field is a field that automatically calculates a value based on another field’s

values across a set of records, based on the current user’s context of a found set and sort

order. For example, a summary field can calculate and display the total value of a field for

every record in a found set or for subsets of records based on key sort fields. Summaries

are configured with a combination of field options (explained later in this chapter) and

layout part setup (Chapter 18).

 Introducing the Manage Database Dialog (Fields)
Fields are created and defined in the Fields tab of the Manage Database dialog shown in

Figure 8-1. Select File ➤ Manage ➤ Database menu and click on the Fields tab.

CHaPter 8 Defining fielDs

146

The controls for field definitions include

 1. Table Pop-up – Select a table to see its fields below.

 2. Field List – Displays a list of fields defined in the selected table.

Select one to configure, rename, duplicate, or delete.

 3. Field Name and Comment – Enter a new name for the selected

field or a name for a new field. Enter a short developer comment

about the selected field.

 4. Type – Select a type for a new field or to change the selected.

 5. Options – Click to edit field settings based on type.

 6. Buttons – Used to create a new field or change, duplicate, delete, or

copy-paste selected fields.

Figure 8-1. The dialog used to manage fields

CHaPter 8 Defining fielDs

147

 Planning Field Names
Field naming should follow the same general guidelines as tables: they can have spaces,

should avoid reserved words and symbols, and be descriptive of content without being

excessively long. They can also be assigned name prefixes to form groups for sorting

in the developer lists. However, with fields, this often requires a reversal of natural

language flow, and that may be confusing for users in certain situations. For example,

while Company Name and Company URL make sense, using Name First and Name Last

instead of First Name and Last Name keeps the fields conceptually together in a list but

may seem unnatural and may be confusing to users. While table names remain mostly

hidden from users, field names are more visible when performing certain functions

like import, export, sort, and more. On layouts, field labels can be renamed to avoid

confusion. However, a user who is familiar with fields labeled First Name and Last

Name may be confused by a dialog where those fields are suddenly called Name First

and Name Last. When using this kind of naming technique, you may need to create a

script driven processes for various functions to avoid users seeing the name differences.

Alternatively, train users about the differences in names so they aren’t confused.

 Defining Default Fields
Starting with FileMaker 17, every new table is created with default fields that are pre-

configured to automatically enter standard metadata. Once created, these can be edited,

renamed, or removed as desired. The file that controls which fields are created for any

future table is named DefaultFields.xml file and is located in a language subfolder of the

FileMaker Pro application. These fields are

• PrimaryKey – Enters a Universally Unique Identifier (UUID) for each

record

• CreationTimestamp – Enters when a record is created

• CreationBy – Enters the name of the record creator

• ModificationTimestamp – Enters when a record was last modified

• ModificationBy – Enters the name of the last modifier

CHaPter 8 Defining fielDs

148

 Creating Your Own Standard Fields
Some developers define alternative and/or additional standard fields that they always

add to tables in every database they create. A standard field is a field that can universally

apply to any table, no matter what type of object is modeled by its content. They don’t

need to be limited to auto-entered metadata values like the preceding default fields.

Instead, they can be any field that stores content or provides some type of function that

can apply generically no matter the table’s entity or purpose. As you develop more, ideas

for standard fields may become plentiful although not every standard field should be

forced into every table. Some universal standards will be easily applicable to every table.

Other group standards may apply to only certain types of tables, while other optional

standards may be applied sparingly as needed. Here are a few ideas for standardization

across all tables:

• Status – A data entry status field that stores a progress value, e.g., new,

active, hold, or done. The specific values may vary from one table to

the next.

• Notes – A freeform notes field used to store information about the

record itself or the entity represented by the record.

• Errors – A calculation used to automatically compile and display data

entry error notifications on layouts, providing instant feedback to

users about problems with key fields.

• Title – A calculation that combines fields to create a heading for

display at the top of entry layouts or in the body of a List view or

portal rows to help users quickly identify a particular record.

Tip Custom standard fields can be copy and pasted into new tables or added to
the Defaultfields.xml file for automatic insertion.

 Grouping Standard Fields
Since a standard field will be used consistently in lots of tables and across many

solutions, extra care should be taken when naming them. While grouping prefixes will

help sort fields in lists, consider the addition of a super grouping prefix, a single word to

CHaPter 8 Defining fielDs

149

separate fields into two “top level” groups: standard and custom. For example, a prefix

of “Record” can indicate a standard field containing metadata, while a table-specific

prefix indicates a custom field, e.g., using “Contact” to indicate a field specific to a table

containing contacts, as shown in Figure 8-2.

Although this approach may at first appear visually cluttered, as a list expands to

include dozens or hundreds of fields, some kind of name-group organization can be

beneficial.

Figure 8-2. Examples of unprefixed fields (left) and prefix-grouped fields (right)

CHaPter 8 Defining fielDs

150

 Managing Fields
From the Fields tab of the Manage Database window, fields can be created, duplicated,

renamed, modified, and deleted.

 Creating a New Field
Manually create a new field from the Fields tab of the Manage Database dialog by

typing a name into the Field Name text area. Then choose a data type for the field in the

Type menu, and click the Create button. The new field should appear in the list. When

creating a new Summary or Calculation field, FileMaker will immediately open an

options dialog based on the selected type. These can be opened later for an existing field

by clicking the Options button (described later in this chapter).

 Duplicating an Existing Field
When a new field will be similar to an existing field, consider duplicating to save time.

Select one or more fields, and use the Copy and Paste buttons or click Duplicate. The

duplicate field(s) will appear highlighted in the list, each with the same name as the

original plus either a unique numeric suffix or a suffix of “Copy” depending on which

method of duplication you use. All the settings of the duplicate fields will be the same as

the originals. However, field content for existing records is not copied from the original,

so the duplicate fields will be empty of content. Fields can be pasted in the same table, a

different table in the file, or a table in a different database file.

 Modifying a Field Name or Comment
An existing field’s name and comment can be changed by selecting it, entering a new

value in the respective text area, and clicking the Change button.

 Modifying a Field’s Type
Once a field is created and has data entered, changing its type should be a rare

occurrence. However, if necessary, due to a mistake or the need to structurally change

a database, select the field, choose a new value from the Type menu, and then click

the Change button. Depending on the original and new type, a dialog may warn that

CHaPter 8 Defining fielDs

151

existing content in the field will be converted to the new type across all existing records.

Changing from text to a date or timestamp will convert dates previously entered as text

into formal dates and automatically convert years to four digits as needed (see “Two-

Digit Date Conversion” earlier in this chapter). Changing a container to another data

type will remove any non-textual data from the field. For example, the actual embedded

file or image data would be removed leaving only the name or path of the file. Changing

to a calculation or summary will result in the permanent loss of any previous manually

entered input.

 Deleting Fields
Fields can be deleted from a table by selecting them and clicking the Delete button. A

warning dialog will confirm the deletion request. The selected fields(s) will disappear

from the list immediately; however, the actual deletion doesn’t occur until you click the

OK button to close the Manage Database dialog. Click Cancel instead if you made an

error and don’t want to save the deletion change. FileMaker does a pretty good job of

cleaning up instances of the field on layouts. However, you may need to manually delete

any lingering <missing field> references on layouts in other files. Any references to a

deleted field in script steps or formulas will need to be manually removed or reassigned.

 Setting Field Options
In addition to a field’s name, type, and comment properties, there are numerous options

available for configuration depending on the type of field. To edit these options, select a

field and click the Options button.

 Options for Entry Fields
All entry fields have similar options that only vary slightly from one to the next. These

are controlled through an Options for Field dialog with settings spread across four tabs:

Auto-Enter, Validation, Storage, and Furigana.

CHaPter 8 Defining fielDs

152

 Field Options: Auto-Enter

The Auto-Enter options tab of the Options for Entry dialog, shown in Figure 8-3, controls

data that will be automatically entered into the field when a new record is created or

when certain conditions are met.

Caution although all of the options are checkbox controls, the first five operate
as radio buttons, allowing only one to be selected since they would overwrite each
other.

Automatically Enter the Following Data into This Field

Some of these settings are limited or disabled for certain entry fields depending on the

specific data type they contain. The options include auto-entering

• Creation – Select a value to be entered at record creation: Date, Time,

Timestamp, Name, or Account Name.

• Modification – Select a value to be entered when a record is modified

(same options as the preceding ones).

Figure 8-3. The Auto-Enter tab of the options dialog for entry fields

CHaPter 8 Defining fielDs

153

• Serial Number – Enter a serialized number at record creation or on

first commit. The number is based on the value in the next value

text area and automatically incremented each time by the value in

increment by.

• Value from Last Visited Record – Enters a value into a new record from

the same field on the last record the user viewed.

• Data – Enters the static text value in the adjacent text area.

• Calculated Value – Define a formula that generates a result entered

into the field (Chapter 12). The Do not replace checkbox will cause

the field to not evaluate the calculation if a value already exists from a

preceding option or contains data previously entered by the user.

• Looked-up Value – Copies a value from a related field.

Caution a calculated value set to not replace existing values will evaluate once
when a record is created and will not reevaluate again if a value was generated,
including when duplicating a record.

Lookup for Field Dialog

A lookup field automatically copies a value from a specific field from a related record

immediately after a key field defining the relationship is updated. This is used to place

a copy of a value locally from a related record so that it will remain in place even if the

related record is deleted. This feature is a vestigial remnant from the pre-relationship

days that will likely be deprecated in future releases. Instead, consider using either an

auto-enter calculation or direct placement of a related field on a layout. To configure a

lookup, click the Looked-up value checkbox on the Auto-Enter tab of the Options for Field

dialog. This will open a Lookup for Field dialog, shown in Figure 8-4.

CHaPter 8 Defining fielDs

154

The dialog contains the following controls:

 1. Starting with Table – Select a table occurrence for the field

being defined to serve as the starting context if multiple table

occurrences exist for its table (Chapter 9)

 2. Lookup from Related Table – Select a table related to the starting

table to identify the relational conduit through which a field value

will be copied

 3. Copy Value from Field – Choose a field from the selected lookup

table occurrence whose value should be copied into the field

being defined when the lookup happens

 4. Don’t Copy Contents if Empty – Select to halt the lookup if the

selected field is empty, in favor of any existing value

 5. If No Exact Match Then – Choose an action to perform if no related

record is found

Figure 8-4. The dialog for configuring lookup settings

CHaPter 8 Defining fielDs

155

Prohibit Modification of Value During Data Entry

This checkbox at the bottom of the Auto-Enter tab of the Options for Field dialog makes

the field non-editable at the data level regardless of a user’s security settings or the field’s

configuration on a layout. After any auto-enter option(s) have been performed, the

field’s value will be non-editable unless this setting is changed. This is useful for default

fields such as the primary key and record metadata or any other entry fields that you

want to be read-only after an initial automatic entry is complete.

 Field Options: Validation

The Validation tab of the Options for Entry dialog, shown in Figure 8-5, defines entry

requirements for the field, allowing the database to automatically validate input and

enforce rules. If one or more requirements are specified, FileMaker will validate data

entered into the field. When a field fails a validation check, the user is notified and given

a choice for corrective action.

Figure 8-5. The Validation tab of the options dialog for entry field

CHaPter 8 Defining fielDs

156

Validation Control

The options at the top of the Validation tab control when input is validated and whether

a user can override a validation warning. Select Always to cause the field to validate

when data entry is performed and when importing into the field or Only during data

entry to validate only during data entry and not during import.

Caution fields set to always validate will cause fileMaker to not import a record
if validation fails. these will be reported with the total incidence of import errors
without providing any additional detail!

Check the Allow user to override box to change the validation warning options as

shown in Figure 8-6. With the override option off, the warning dialog has two buttons.

The Revert Field button will remove the data entry changes, restoring the previous saved

value, while the OK button returns the user to the uncommitted record where they can

edit their entry to comply with the validation requirements before attempting to commit

again. With the override option on, the Revert Field option remains and is joined by a

new message offering to override the warning. Clicking the No button returns the user to

edit the uncommitted record, while clicking Yes ignores the validation warning, accepts

the changes as entered, and continues committing the record.

Validation Requirements

The following validation requirements can be imposed on data entered into the field:

• Strict Data Type – Restricts values to one of the following options:

Numeric Only, 4-Digit Year Date, or Time of Day.

Figure 8-6. The warning with allow override off (left) and on (right)

CHaPter 8 Defining fielDs

157

Tip the 4-Digit Year option here requires entry of a full year before fileMaker
performs its automatic conversion and can be used to avoid inadvertent
conversions for dates outside of that span.

• Not Empty – Requires a value in the record.

• Unique Value – Requires the input to be unique for the field across all

records in the table.

• Existing Value – Requires the input to already exist in the same field

for at least one other record in the table.

• Member of Value List – Requires the input to be present in the

specified value list (Chapter 11).

• In Range – Requires the input to be within a range specified, which

can be text, date, time, or numeric values.

• Validated by Calculation – Allows a custom validation formula

(Chapter 12). The formula must evaluate to true (non-zero) for the

entry to pass the validation test.

• Maximum Number of Characters – Requires input of a character

length equal to or less than the number specified (for non-container

fields only).

• Maximum Number of Kilobytes – This option replaces the preceding

one for container fields, specifying an upper limit on the size of a file

that can be placed into the field.

Display Custom Message if Validation Fails

When the validation of a field fails, FileMaker will generate a dialog message like those

shown previously in Figure 8-6. The default message will include details about the

specific validation failure, which can be helpful when multiple validation criteria are

applied to a single field. The Display custom message option allows the entry of an

alternative custom static message for a field.

CHaPter 8 Defining fielDs

158

Exploring Validation Alternatives

Some developers use FileMaker’s validation options sparingly and prefer alternatives.
Many data entry errors can be anticipated and automatically corrected using an Auto-
Enter Calculation formula to clean up and replace the value entered. For example, the
GetAsNumber, Filter, Trim, and Substitute functions can automatically remove undesirable
characters that are typed in a field (Chapter 13). Keeping paragraph returns out of a
field can be done by making the Return key move to the next field for fields on layouts
using Behavior settings in the Inspector pane (Chapter 19). When an error can’t be easily
avoided or auto-corrected, an error-detecting calculation field can display a list of fields
with detectable validation errors. This removes an obtrusive dialog and allows searching/
sorting records with errors; however, users can ignore it. An OnObjectValidate script
trigger (Chapter 27) assigned to a field can run a script that checks the field for detectable
errors and stops the user from exiting the field until they are corrected. This allows a more
elaborate, formula-driven dialog message to explain the problem. An OnRecordCommit
script trigger can halt record commit until detected problems are corrected.

 Field Options: Storage
The Storage options tab of the Options for Entry dialog, shown in Figure 8-7, controls how

information is stored and indexed within a field.

Figure 8-7. The Storage tab of the options dialog for entry fields

CHaPter 8 Defining fielDs

159

Global Storage

A local field is replicated as a unique instance of itself for each record like a cell in a

spreadsheet where every record can contain a different value. The value placed within

the field is considered local to a single record, which is separate and different from the

same field on any other records. Local fields can only be displayed and accessed from

the context of their parent table or a table related to that table. Every newly defined field

starts out as local field but can be configured as global. A global field contains one value

that will be shared across every record in the table and can be accessed from any context

within the database. Using the spreadsheet analogy where a column represents a defined

field and a row a record, a global field is like a column with the same value in every cell

of that column for every row, except there is only one value that is the same from the

perspective of any individual record.

In the Storage tab of the Options for Field dialog, the Use global storage checkbox

converts a field to use global storage. FileMaker will present a warning dialog indicating

that existing values within the field will be lost when the change occurs. Once a field is

global, it can be used for a variety of special purposes, including

• Storing a fixed value that is available to any calculation formula or

layout regardless of context, e.g., a tax rate

• Creating a control field like a menu of options, e.g., a pop-up menu of

portal filtering or sorting options

• Providing temporary storage for scripts to place information that

needs to interact with other calculation fields

• Storing static text or graphics that will be displayed on a multiple

layout as iconography, branding, etc

• Storing print report headings or other temporary information

A global variable is preferable for most uses because it doesn’t clog up the field

definition list. However, it is limited to a single file. A global field in a table occurrence

added to other files allows content to be shared globally between files to create a

solution-wide global.

The value placed into a global field is retained from one session to the next only

when entered on a non-hosted database that is open on a local copy of the FileMaker Pro

desktop application. When opened across a network, values placed into a global field

CHaPter 8 Defining fielDs

160

will not be saved between sessions and are not shared between users who access the

file simultaneously. Each time the database is opened from a server host, the field will

contain the value entered when it was last opened locally by the desktop application.

Tip in ancient times, developers used global fields for a variety of functions that
are now better managed with variables (Chapters 12 and 25), custom functions
(Chapter 15), merge variables (Chapter 20), and script parameters (Chapter 24).
Use global fields sparingly!

Repeating

A repeating field is a field defined to store multiple values for a single record. Instead

of creating a separate field for each additional value of a certain type, a single field can

be defined to repeat any number of times, e.g., a single phone number field can be

defined to store multiple numbers as if they were separate fields. Any type of field can

be made to repeat. For an entry field, indicate a number of desired repetitions in the text

area provided on the Storage tab of the Options for Field dialog. For a calculation field,

enter the number of repetitions in the Specify Formula dialog (Chapter 12). A summary

field becomes repeating when the field it summarizes is repeating and the option to

summarize repetitions individually is selected (described later in this chapter).

The Maximum number of repetitions entered in the Storage tab of the Options for

Field dialog defines the number of separate values the field can contain. To allow user

entry into two or more of these repetitions, the field must be configured to repeat on

a layout (Chapter 19, “Inspecting the Data Settings”). There are a few implications to

consider when using repeating fields, including

• Repeating fields are never scrollable on a layout.

• You can add more repetitions later, but the number displayed on a

layout must be manually adjusted to include them.

• The Hide function (Chapter 21, “Hiding Objects”) hides the entire

field, including all repetitions displayed on the layout.

• A Find process will search in all repetitions, including those not

displayed on the current or any layout. It is not possible to limit a find

to just a specific repetition.

CHaPter 8 Defining fielDs

161

• A Sort process will only look at the first repetition.

• Calculations that use a combination of repeating and non-repeating

fields may not work together without the usage of the Extend function

(Chapter 12, “Creating Repeating Calculation Fields”).

• An auto-enter calculation only works on the first repetition.

• Repeating values might not work properly in sub-summary parts of

reports (Chapter 18) and may need to be condensed into a single

value with an aggregating function such as List (Chapter 13).

Tip Historically, repeating fields were used to achieve the function now provided
by portals (Chapter 20). Use this feature sparingly!

Indexing

A field index is a hidden list of words or values automatically generated from a non-

global field’s content. This list is used when performing searches, determining the

uniqueness of a field value, and connecting records through relationships. A field’s

index serves a function similar to a book index, quickly separating the individual terms

and allowing faster location of them without having to visually scan through every

page. FileMaker uses two kind of indexes, depending on the type of field and the option

selected. A value index is created from every paragraph return-delimited line of text in

a field. This is used to match related records and to search a field for matching values.

Here, it helps to think of a “value” as a paragraph. This is used primarily for relationships,

where each value is used to find a match in a related table. A word index is created from

each unique word in a text field or a text calculation field. These are used for faster

searching.

Caution indexing is required for some relational functions and improves search
performance. However, it increases the file size of a database and should be used
with conscious intent.

CHaPter 8 Defining fielDs

162

Indexing options in the Storage tab of the Options for Field dialog include

• Indexing: None – Prevents indexing completely. Use this for fields that

don’t require fast searching and won’t be used to form relationships.

Also, to cause a calculation to re-evaluate often.

• Indexing: Minimal – Create only a value index for the field.

• Indexing: All – Create a value index for non-text fields and both a

word and value index for text fields.

• Automatically Create Indexes as Needed – Allow FileMaker to

create indexes as needed, e.g., when a user performs a search on a

previously unindexed field, this automatically switches None to All to

generate and store an index.

• Default Language – Specify the language to use when indexing

and sorting values in a text field. The default value will match the

operating system of the computer upon which the file was created.

Tip there may be situations where you want to customize the indexing settings
to save file size. However, the default settings allow fileMaker to adjust them
based on user and developer activity.

Container Storage Options

Container fields can’t be indexed, so the Storage tab of the Options for Field dialog

does not have the preceding options available when editing them and instead displays

container storage options (Chapter 10).

 Field Options: Furigana

The Furigana tab of the Options for Entry dialog specifies a phonetic translation of

Japanese text typed into the field. For more information on Japanese functions, see

Claris’ documentation website.

CHaPter 8 Defining fielDs

163

 Options for Display Fields
Options for calculation and summary fields are different than entry fields. Clicking the

Options button or double-clicking will open an alternative dialog of options specifically

focused for the field type.

For a calculation field, the Options button opens a Specify Calculation dialog where a

formula can be entered and selection of the result data type, repetitions, storage options,

and an evaluation context can be configured (Chapter 12).

For a summary field, the Options button opens an Options for Summary Field dialog

for specifying the type of summarization, target field, and more. The summarization type

selected determines what summary operation will be performed on the selected field for

a group of records in order to arrive at a value which will be placed into the field being

defined. The available summary operations that can be performed for a field across a

group of records are

• Total of – Calculates the total value

• Average of – Calculates the average value

• Count of – Counts how many records contain a value

• Minimum of – Extracts the lowest available value

• Maximum of – Extracts the highest available value

• Standard Deviation of – Calculates the standard deviation from the

mean of all the values

• Fraction of Total of – Calculates the ratio of the value to the total of all

the values in that field

• List of – Creates a carriage return-delimited list of every non-blank

value

 Options for Summary Field Dialog

The Options for Summary Field dialog is divided into five general sections, shown in

Figure 8-8.

CHaPter 8 Defining fielDs

164

Caution the options below provide an overview of summary settings and may
seem too abstract until one sees a complex report built with sub-summary parts
(Chapter 18, “adding layouts”).

The dialog contains the following controls:

 1. Summarization Type – Specify the type of summarization to use

(listed in the previous section).

 2. Available Fields – Choose a field from which to pull and

summarize data. The list includes eligible fields from the table of

the field being defined.

 3. Conditional Options – This area will display either one, two, or

none of the following options depending on which summarization

type is selected: Running total, Restart summary for each sorted

group, Weighted average, Running count, and By population or

Subtotaled.

Figure 8-8. The dialog for summary options with additional controls visible

CHaPter 8 Defining fielDs

165

 4. Summarize Repetitions – When a repeating field is selected, identify

how repetitions will be handled. Select Individually to display a

separate summary for each repetition, making the summary field

repeating. Choose All together to add all repetitions for a record,

and treat it as a single value in the summarization process.

 5. Conditional Secondary Field Choice – Depending on the preceding

selected options, a field selection may be required for one of these

secondary functions:

 a. When Sorted by – Some operations allow a field to restart the

summarization when a new sort value is detected. This creates

summaries for multiple subgroups of records within a single found

set. For example, you might want to summarize sales per employee

or revenue per client using this feature. This option is available with

the Total of or Count of summary type when the Restart summary

for each sorted group option is selected or when the Fraction of

Total of summary type is used with the Subtotaled option selected.

 b. Weighted by – When using the Average of summary type with the

Weighted average option selected, a field can be selected that will

be used to weight the results.

 Adding Fields to the Example Database
At the end of the last chapter, we added three tables to the Learn FileMaker example

database: Company, Contact, and Project. Now, using the lessons of this chapter, we can

add a few fields to each of these. While these are not comprehensive lists these tables

require in a real-world solution, they provide a few key fields to continue our exploration

of building databases.

 Defining Company Fields
In the Company table, create the following entry fields:

• Company Name (text)

• Company Description (text)

CHaPter 8 Defining fielDs

166

• Company Industry (text)

• Company Website (text)

• Company Status (text)

 Defining Contact Fields
In the Contact table, create the following fields:

• Contact Name First (text)

• Contact Name Last (text)

• Contact Company ID (text)

• Contact Address Street (text)

• Contact Address City (text)

• Contact Address State (text)

• Contact Address Zip (number)

• Contact Address Country (text)

 Defining Project Fields
In the Project table, create the following fields:

• Project Company ID (text)

• Project Contact ID (text)

• Project Name (text)

• Project Description (text)

• Project Budget (number)

• Project Budget Summary (summary as a Total of the Project

Budget field)

CHaPter 8 Defining fielDs

167

 Renaming and Modifying Default Fields
To follow along with the examples in the rest of the book and to gain some experience

modifying field definitions, perform the following changes to the five default fields in

all tables:

• Rename PrimaryKey to “Record ID” and change its Auto-Enter from a

Calculated value to a Serial number starting with “000001.”

• Rename CreationTimestamp to “Record Creation Timestamp.”

• Rename CreatedBy to “Record Creation User.”

• Rename ModificationTimestamp to “Record Modification

Timestamp.”

• Rename ModifiedBy to “Record Modification User.”

Tip save time by doing these in one table and copy-paste them to replace
default fields in other tables.

 Summary
This chapter explored the basics of defining fields. In the next chapter, we turn attention

to forming relational links between tables.

CHaPter 8 Defining fielDs

169
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_9

CHAPTER 9

Forming Relationships
A relational database allows connections to be defined between tables to automatically

connect individual records based on field values. This chapter covers the following

topics pertaining to relationships:

• Introducing relationships

• Managing data sources

• Introducing the manage database dialog (Relationships)

• Working with table occurrences

• Building relationships

• Adding notes to the graph

• Implementing a simple relational model

 Introducing Relationships
A relationship defines a connection between tables that forms a context of bidirectional

conduits that link individual records in one table to one or more individual records

in another. As a digital model of real-world phenomenon, a database uses tables to

represent entities, fields to store properties of entities, and relationships to reflect how

those entities connect or interact.

Consider how the relationship between a company and employees would be

modeled in a database. Each can be represented by a table: Company and Contact.

Fields are created in each to store properties about the entities that are important for

database work. For example, a company’s address, description, industry, name, and

website would be fields. Similarly, a contact’s email, name, phones, and title would

be fields. Next, looking at how these two relate in reality, we can identify the need for

https://doi.org/10.1007/978-1-4842-6680-9_9#DOI

170

a connection between them. Each company may employ one or more people, and

conversely, each person is typically employed by a company. From this, we can define at

least one relationship requirement in the database: each Contact record will require the

option to be connected to a Company record. A person can be linked as an employee of a

company, and conversely, a company can have one or more people linked as employees.

Every table created in a database adds a potential for more connections. For

example, companies may need links to inventory, projects, budgets, assets, and

procedures, while contacts may need links to phones, emails, and web addresses. Each of

those imply more connections as the database grows. A project and budget may require

links to tasks, timesheets, and invoices. The connections required will vary based on the

database’s purpose and the type of tables included in the object model. A relationship

is defined when a developer decides a connection found in reality needs to be rendered

in the digital object model and explicitly specifies the field criteria used to compare and

match values between records.

Relationships make it possible to create navigable links between records in related

tables. They also create a relational context between tables which can be used by

calculations, layouts, and scripts to access or display field values from various tables.

Relationships transform a bunch of isolated tables into an interconnected network

of information that can be dynamically accessed, displayed, and manipulated in

numerous ways. Fields use a relationship when they pull related values to perform

lookups, auto- enter calculations, or validation (Chapter 8). Formulas use them to

access or manipulate related fields to calculate results (Chapter 12). Layouts can display

individual fields from related records or include a list of related records as a portal

from another table (Chapter 20). Layout objects can use values from related fields in

calculation formulas for conditional formatting, placeholder text, script parameters,

tooltips, and hide functions (Chapter 21). Numerous script steps use relationships in

formulas or when referencing a field (Chapters 24 and 25). Users can select fields from

related tables in dialogs when manually exporting, importing, searching, and sorting.

Tip While most relationships establish a connection between two different tables,
it is possible to connect records to other records in the same table or to connect a
record to itself, called a self-join.

Chapter 9 Forming relationships

171

 Visualizing Relationships
A match field is any field used to form one side of the criteria for a relationship. Two

match fields pair together with an operator to form a single criterion for defining a

relationship. Any field can be used as a match field, although most relationships use

keys. A key field is a field that uniquely identifies a record in a table. While many fields

are candidates, a good choice for a key is one that is both unique and unchanging.

For example, although a Contact record’s email address field is unique to a person,

it can change if the person’s work changes or they move to a new service provider

for a personal account. This makes it a poor candidate for a relational key because a

change would sever the connection between previously linked records. Because of this,

most developers establish a field that stores an automatically entered, anonymous,

incremental, unique, and unchanging identification number as a standard practice in

every table. This can be a simple auto-entered serial number (Chapter 8, “Field Options:

Auto-Enter”) or a more complex Universally Unique Identifier (Chapter 8, “Defining

Default Fields”). These serve as a primary key, a key field that contains a value that

identifies a record in the same table the field is defined. For example, a Record ID field

in a Company table stores a primary key that identifies a specific company record, e.g.,

“1105” for Widgets Manufacturing. When a primary key is placed in a field where it

identifies a record in another table in order to form a relationship, it is called a foreign key

because it identifies a record foreign to the table containing it. Together, a primary key

field and foreign key field form the basis for most relationships. Since these often create

a hierarchical relationship, they are often referred to as a parent-child connection, as

illustrated in Figure 9-1. In this example, the Record ID is the primary key of a Company,

and the Contact Company ID field in Contact table contains a foreign key. When the

values in both fields are equal, a relational link is formed between two records.

Each relationship must include at least one set of match fields but can include

additional criteria. When more than one match field pair is defined, records will only

link when all criteria match. The example illustrated in Figure 9-2 shows an additional

Figure 9-1. An illustration of a single key field pair forming a relationship

Chapter 9 Forming relationships

172

set of fields, a Company Contact Portal Filter in Company and a Contact Address State

in Contact. These second match fields would allow a user viewing a company record to

select a state from a list, and that would be used to “filter” the list of contacts in a portal

view, so it only displays those with an address in that state (Chapter 20, “Filtering Portal

Records”).

Relationships fall into one of the three general classifications named based on

the number of matching records possible on each side: one-to-one, one-to-many, and

many- to- many. FileMaker has a unique multi-key option that can be used to create

one-to- many or many-to-many connections. These configurations can be enforced at

the field validation level and/or through interface mechanisms that physically limit

what can be selected or inserted into a key field. Another option is a Cartesian join

that relates every record in one table to every record in another. These are set up at the

relationship settings level with an operator.

 One-to-One Relationship

A one-to-one relationship is a connection where a record in either table can only be

matched to a single record in the other. The example in Figure 9-3 illustrates one set of

matched records where a Contact record’s primary Record ID is entered as a foreign key

in the Cubicle record’s Contact ID field. The directionality of assignment is optional as

there is no inherent requirement for which entity is primary and which secondary. As

a developer, you can choose either a cubicle assigned to a person as shown or a person

assigned to a cubicle, depending on your preference or other logistical considerations.

The setup requires both key fields to be validated to contain a single value that is unique

across all records within their respective tables. So, in the example shown, each contact

can only be assigned a single cubicle, and each cubicle can only be assigned one contact.

Figure 9-2. An illustration of a relationship established by two match fields

Chapter 9 Forming relationships

173

 One-to-Many Relationship

A one-to-many relationship is a connection where a record in one table can be matched

to one or more records in another. The example in Figure 9-4 illustrates one set of

matched records where a Company primary Record ID has been entered as a foreign

key into the Contact Company ID field of two records in a Contact table. This type of

relationship is used often due to the number of real-world situations where an entity

can relate to multiple entities. A company may have multiple offices, products, and

employees. A person may have multiple phone numbers, email addresses, and web

pages. A parent can have many children. This last example is why this arrangement is

often referred to metaphorically as a parent-child-type relationship since, biologically, a

child has only one father or one mother, but either one parent can have many children.

The setup requires the primary key field to be validated to contain a single, unique value,

while the foreign key field in the other table allows non-unique values. The directionality

of assignment is dictated by the fact that the many side must contain the foreign key

from the table containing the unique primary key.

Figure 9-3. Illustrating a one-to-one connection

Figure 9-4. Illustrating a one-to-many connection

Chapter 9 Forming relationships

174

 Many-to-Many Relationship

A many-to-many relationship is a connection where records on both tables can be

connected to one or more records from the other. This is typically done by using a join

table. A join table is a third table that exists primarily as a junction point, pivoting the

connection between two related tables. Because of this, they are sometimes called

junction tables. A join table has at least two foreign key fields, each containing a primary

key from one of the two tables being joined. The example in Figure 9-5 illustrates such

a relationship using a join table. The primary key from both Table 1 and Table 2 are

each entered in a foreign key field on a single record in the join table, establishing a

connection between the two tables.

An example of a many-to-many relationship is found connecting a company to

contacts when there is a need to connect a person to their current employer while

maintaining connections to their past employers, as illustrated in Figure 9-6. In this

example, a Company table and a Contact table are connected through a join table named

Contact Employer. The “Widgets Manufacturing” Company record has a connection to

two join records that each connect to a contact record, one for Jim and one for Karen.

While Jim’s record has only a single connection to one join record, Karen’s Contact

record connects back to two companies: “Widgets Manufacturing” and “Zen Historical

Artifacts.” The use of the join table allows a record on either side to link to any number of

records on the other side.

Figure 9-5. Illustrating a many-to-many connection through a join table

Figure 9-6. Illustrating connections with a many-to-many relationship

Chapter 9 Forming relationships

175

Technically, a join table is not a single relationship since it really consists of

two one-to-many relationships. However, it is often referred to as one relationship,

especially when a join table exists only to facilitate the wider connection of two

regular tables. In those cases, the join table contains only the two fields and is

completely hidden from view and has no user accessible interface. However, joins

can include additional fields that are specific to the union of the two entities. For

example, a phone number and email address for the contact at a particular company

could be stored in a join table record. They can also have interfaces and even

connections to other tables as needed.

 FileMaker’s Unique Multi-key Option

FileMaker has the unique ability to define a relationship using a key field containing

multiple values. A multi-key field is a text or calculation field that contains a return-

delimited list of keys used as a match field in a relationship. When a match field

contains values separated by a return, each paragraph is treated as its own value and

used to form a match, so the presence of any one value from one field found in the

other will match and form a relational connection. Multi-key fields can be used to

create a one-to-many relationship or a many-to-many relationship without the need

for an intervening join table. The example in Figure 9-7 demonstrates this technique

by showing a connection between two tables using a multi-key field as the match field

on both sides. The field in the first record of Table 1 finds three matching records in

Table 2 even though none of the fields contain all the same values. Matches are formed

when at least one paragraph value is found on both sides. Setting up a multi-key,

many-to-many relationship requires the match fields to be a text field (or a calculation

field returning a text value) that allows multiple values and does not validate to require

unique values. Although this example uses state names, any value, including serial

numbers, can be used.

Chapter 9 Forming relationships

176

There are pros and cons to this technique. For example, there is no intersecting table

in which to add fields or build layouts like with a join table so this isn’t a good choice if

that is required. However, relational connections are retained when duplicating a record

since the keys are contained locally instead of in a separate join table. So, if the first

record in Table 1 in Figure 9-7 were duplicated, it would retain all the same connections

to records in the other table.

 Indexing Match Fields
A relationship forms a bidirectional conduit which allows either table to act as the local

starting context (parent) for formulas and layouts from which the other related table is

targeted (child). However, in order for the connection to produce results, every match

field used in the targeted (child) table must either be indexed or a global. Since calculation

fields can’t be indexed when their formula contains related fields, a calculated match

field on the targeted side must only include fields local to that table. Global fields can’t

be indexed but will still work on either side of the relationship. However, they are only

really practical on the local (parent) side since they produce a match to every record

when used on the target (child) side.

Figure 9-7. An illustration of a multi-key field relational connection

Chapter 9 Forming relationships

177

 Using Table Occurrences
Instead of directly connecting tables, relationships are actually connections between an

abstraction of a table. In FileMaker, a table occurrence is a representative instance of a

table placed into a graphical worksheet called the relationship graph. Although the tables

are technically linked, it is done through a specific occurrence instance of the table. This

avoids circular connections between tables and enables multiple connections between

the same two tables based on different criteria. It even allows self-join connections

between a table and itself.

Every table is automatically represented in the relationship graph with a default table

occurrence. Although this appears to be and can be thought of as the table, it is only an

occurrence of the table. As a database grows, multiple connections involving the same

table become necessary but risk becoming circular, as illustrated in Figure 9- 8 (left).

Here, the connections between company-to-contact and company-to-project are standard

one-to-many relationships and don’t pose a problem. However, when a contact-to-project

connection is required, it would create an overall circular connection between the three

tables which is forbidden. To resolve this, a new occurrence of the Contact table is created

and used for the new relationship (right). Both instances of Contact represent the same

table but from a different relational context.

Context is a critically important concept in FileMaker. While a table is an isolated

data structure defining and storing information in fields and records, a table occurrence

specifies that data from a specific relational context and is used everywhere to control

what tables are accessible from a given perspective. A calculation field’s formula

operates from a context that must be selected if there is more than one occurrence for

the field’s parent table. Value lists can be configured to filter values from a field to only

those in an occurrence from a specific starting interface context (Chapter 11). Each

layout requires an occurrence assignment that controls which fields can be displayed

Figure 9-8. A circular connection (left) is solved with a new occurrence (right)

Chapter 9 Forming relationships

178

and establishes the context for object formulas. Numerous script steps automatically

execute from the user context, based on the occurrence assigned to the layout active in

the current window at the time they execute.

As more occurrences are added, they can be chained together in sequences. In the

previous example, there is a connection from Company to Project to Contact-2. Each

step between occurrences is often referred to as a “hop,” referring to the number of

occurrence steps to get from a starting occurrence to a target. A calculation, layout, or

script step can access fields through any number of hops along a single relational chain,

but reaching across too many can become problematic. In the preceding example, a

formula in Company can access fields from Contact-2 but only for the first related Project

record because it has to reach through that relational conduit. A more direct route to

the other Contact occurrence directly connected to the Company occurrence provides

access to all company contacts.

As the relational model grows in complexity, it can quickly become a monolithic

mess that is both confusing and technically dangerous. Developers with less experience

tend to rapidly connect more and more occurrences into one gigantic multipronged

chain of occurrences, a single mass that is referred to as a hub-and-spoke monolith.

Instead, the recommended approach is to build multiple separate table occurrence

groups. Given the reliance on relational context everywhere in a database’s development,

a better understanding of these two approaches can make the difference between

creating an efficient system and a colossal mess.

Caution these discussions of relational models may be overwhelming to
beginners, especially prior to creating layouts. however, it will be worth the effort
to avoid mistakes later.

 Avoiding Hub-and-Spoke Monoliths

A hub-and-spoke monolith is a relational model where table occurrences are linked

into a massive interconnected group, as illustrated in Figure 9-9. This structure tends to

be adopted as an intuitive default by most new developers. They start by connecting a

handful of default table occurrences. Then, as they attempt to add new relationships that

would be circular, FileMaker prompts them to create new occurrences, and they leave

the default name of the table with a numeric suffix. Soon, they have dozens or hundreds

of poorly named occurrences interconnected in one massive group.

Chapter 9 Forming relationships

179

Although this is not inherently problematic and can be a valid choice for simple

databases, there are good reasons to avoid hub-and-spoke models completely. There is

no easy way to tell which occurrences have been or should be used as a starting context,

and as a result, hundreds or thousands of calculations, interfaces, and scripts zigzag

around the structure, creating a conceptual gridlock. It quickly becomes confusing

to keep track of which occurrence matches a certain context, e.g., trying to choose

between Contact-1, Contact-2, Contact-3, and Contact-4 in a formula requires time-

consuming detective work. False starts and backtracking are necessary to correct a

layout that is originally assigned the wrong context and only discovered after placing

dozens of objects that now need to be reconfigured. Adding new features begins to feel

like a tedious chore, and the ability to conceptualize the whole structure requires an

enormous effort. As the grip of the convoluted structure tightens, the mind-numbing

confusion is just the beginning. A small oversight can result in the loss of data when a

script performs a function from the wrong context or a user types into a field through

the wrong relationship because of an interface error caused by developer fatigue.

Calculations reaching out in every direction across an excessive number of hops begin

to make simple tasks dramatically slower and may return incorrect results. Eventually,

technical problems appear as users struggle with unbearably slow performance and may

even experience random application crashes. The temptation to blame the technology

becomes overwhelming, but it is really the fault of a poor structural design chosen by an

inexperienced developer.

Figure 9-9. Illustrating a hub-and-spoke monolithic relationship model

Chapter 9 Forming relationships

180

The professional developer understands that a well-designed relational model

is critically important for both technical reasons and the protection of their own

sanity. A database is a complex integration of numerous components, and just as

interface design is important to avoid user confusion, equal care should be taken

in one’s approach to structural design to avoid developer confusion and functional

failure. Many of the problems with the hub-and-spoke model can be softened by

conscientiously improving one’s practices. For example, naming occurrences clearly

and establishing a rule about which will be used as the starting context for calculations

and layouts will help. Limiting formulas to reach out one or two hops from a given

context helps too. But these techniques still require extra work to set up and conscious

effort to follow. In the end, the best solution is to avoid this model completely and

instead use occurrence groups!

 Embracing Table Occurrence Groups

The table occurrence group relationship model establishes a primary table occurrence

for every table and a rule that these are never directly interconnected to each other.

Any connection between two tables must be established by connection from a primary

occurrence to a new secondary occurrence of a table to avoid any direct connections between

primaries. This is also called an anchor-buoy model since each primary occurrence acts

as an independent anchor to which related secondary occurrences can be attached where

they are said to float away from it. In the setup illustrated in Figure 9- 10, a column of primary

tables (gray) stands in a disconnected column on the left. Each secondary table (clear) that

connects to these is a duplicate copy of a primary table. Using this model and following a few

rules can solve most of the confusion and potential for technical complications found with

the hub-and-spoke method.

Chapter 9 Forming relationships

181

Each primary occurrence on the left establishes the foundational anchor for an

occurrence context group. These should be named with the actual table name to make

clear that they represent the primary root occurrence, e.g., Company, Contact, Project,

etc. When building interfaces, only these primary occurrences should be used as the

context for calculation fields and layouts. The physical separation between groups

limits how far and in which direction a field or interface formula can reach out to access

related fields since they are limited to related secondary occurrences related within their

small “island” group.

Each secondary occurrence “floats” off to the right from a primary. These should be

named in a way that indicates the starting context group they connect to and include

path information about how they relate back to the root primary occurrence of that

group. This can take various forms but ideally starts with the name of the primary

occurrence, with a delimiter indicating a hop to a new occurrence, and then the name

of the secondary occurrence table. For example, a secondary Contact occurrence

connected to the primary Company occurrence might be named “Company | Contact.”

The secondary part of the name could include additional information used to identify

the nature of the relationship, e.g., “Company | Contact Employees” indicating that

this Contact occurrence is used from company contexts and links to contacts that are a

company’s employees.

Figure 9-10. Illustrating a table occurrence group relationship model

Chapter 9 Forming relationships

182

Tip Consider capitalizing the table name portion for emphasis. Company |
CONTACT makes clear that the occurrence starts from Company but is actually an
occurrence of the Contacts table.

The “secondary” nomenclature here doesn’t refer to the distance from the primary

but indicates a classification status of occurrences that are not primary. So, any

occurrence any number of hops away from the primary is called secondary. For example,

an occurrence of a Phone Number table might be connected to a secondary Contact

occurrence which is connected to the primary Company as shown in Figure 9-11. It is a

third occurrence in a chain, two hops removed from the primary occurrence, but is still

referred to as a “secondary” occurrence indicating the non-primary status of both.

Tip although secondary occurrences can extend further, it’s a good idea to limit
each branch to about two or three hops if possible.

To illustrate this setup, consider two contextual groups anchored to Company and

Contact tables, as shown in Figure 9-12. The primary Company occurrence would

be used as the context for every company calculation and layout. The three tables

connected to it may be used within formulas (Chapter 12) and to define a portal on

a layout (Chapter 20) accessing related Contact, Project, and Invoice records. The

protruding Phone occurrence, two hops from Company, is added if the contact portal

needs to display a phone number for a contact or if a calculation or script needs to

access that information from the context of a Company.

Figure 9-11. An example of two secondary occurrences extending from a primary

Chapter 9 Forming relationships

183

Similarly, the primary Contact occurrence would be used as the context for every

contact calculation field and layout. The attached Company occurrence could be used

to display the contact’s employer name on a layout and used by scripts to navigate from

a contact record to its related parent company. The Phone and Letter occurrences can

provide the context for portals on contact layouts.

Using the occurrence group method will necessitate some redundancy in the

relationship graph, and it may initially seem counterintuitive as unnecessarily

increasing the number of occurrences. However, if implemented properly,

eventually, the benefits prove themselves, and you will be thankful you took the

time to implement it. The separation between groups streamlines performance and

makes it easier to conceptually navigate the structure. Limiting all formulas and

layouts to a primary occurrence starting context makes it easier to reach targets

and avoids confusion. A naming scheme that includes the path from the primary

keeps occurrence groups sorted in the selection menus throughout the development

interface, synchronizing the orderly relational structure in a list and making the

selection of a target table even easier.

Figure 9-12. An illustration of two hypothetical occurrence groups

Chapter 9 Forming relationships

184

 Planning a Learn FileMaker Relational Object Model
After the remaining lessons in this chapter, we will follow the table occurrence group

method and set up three simple occurrence groups in the Learn FileMaker database, as

shown in Figure 9-13. Each of the three primary occurrences on the left will be used as

the context for any calculation formula and layout, while the secondary occurrences on

the right can be used to create calculations, portals, and scripts.

 Managing Data Sources
A data source is a defined reference to other FileMaker and ODBC databases. When

building a self-contained database that doesn’t access external tables, there is no need

to define data sources since the implied source will always be the current file. However,

when creating a multi-file database or integrating ODBC tables (Chapter 7), additional

data sources will be required.

 Introducing the Manage External Data Sources Dialog
External data sources are created, edited, and deleted from the Manage External Data

Source dialog, shown in Figure 9-14. This dialog can be accessed by selecting the File

➤ Manage ➤ External Data Sources menu. It is also accessible at the bottom of the

Figure 9-13. The plan for table occurrences in the Learn FileMaker database

Chapter 9 Forming relationships

185

Data Source pop-up menu found on the Specify Table dialogs that appear in various

locations of the development interface. Once open, click New to open the Edit Data

Source dialog and define a new connection to an external data source.

 Exploring the Edit Data Source Dialog
Creating or editing a data source is performed in an Edit Data Source dialog, shown

in Figure 9-15. This dialog is opened from the Manage External Data Source dialog by

clicking New, selecting a data source and clicking Edit, or double-clicking directly on a

data source in the list.

Figure 9-14. The dialog used to manage external data sources

Chapter 9 Forming relationships

186

The Name entered is used to identify the source in menus throughout the

development interface. The Type option offers two choices based on the data source

being targeted and will change the interface depending on which is selected. The

remainder of this section assumes a selection of FileMaker. The File Path List is used to

specify one or more paths to the target data source (Chapter 24, “Specifying File Paths”).

FileMaker will link to the first path that points to an existing database file. Click Add

File to add a path automatically for a selected file, or type one manually. For details on

configuring an ODBC type data source, see Chapter 7, “Adding a Table from an ODBC

Data Source.”

Figure 9-15. The dialog used to edit a selected data source

Chapter 9 Forming relationships

187

 Introducing the Manage Database Dialog
(Relationships)
Like tables and fields, table occurrences and relationships are created in the Manage

Database dialog. Select File ➤ Manage ➤ Database to open the dialog, and make sure

the Relationships tab is selected, as shown in Figure 9-16. The scrollable white area

is the relationship graph where table occurrences are added and interconnected to

define relationships. Each table should already be present in the graph but with no

relationships connecting them. The row of buttons beneath this is used to perform

various tasks within the graph area.

 Working with Table Occurrences
A table occurrence is a graphical representation of an instance of a table displayed in

the relationship graph. Before defining relationships between occurrences, let’s review

the basics of selecting, interacting, arranging, viewing, formatting, editing, adding, and

deleting occurrences.

Figure 9-16. The dialog used to manage relationships

Chapter 9 Forming relationships

188

 Selecting Table Occurrences
A selected occurrence will be highlighted with a blue shaded border, and its size,

position, and formatting can be modified. Occurrences can be selected using a variety

of different methods with the Object Selection Cursor activated, as shown in Figure 9-17.

To select a single occurrence, click directly on it in the graph. To select multiple non-

clustered occurrences, hold the Shift key and click on each desired occurrence. A second

click on a previously selected occurrence while holding the key will deselect it. To select

multiple occurrences clustered together in a group, click on the background and then

hold and drag until the selection rectangle encompasses the desired occurrences. Every

occurrence touched by the selection box will be selected. Hold the Command (macOS)

or Windows (Windows) key while dragging to only select items that are completely within

the selection box’s boundary.

When working with large numbers of occurrences, the menu shown in Figure 9-18 that

opens under the Select Tables tool has two options to help locate specific instances. The

Select related tables 1-away option automatically selects every occurrence that is directly

related to the selected occurrence. The Select tables with the same source table function

selects every occurrence that shares the same source table as the selected occurrence,

which can be helpful trying to find other instances of a table in a complex graph.

Figure 9-17. The cursor tool used to select and manipulate occurrences

Figure 9-18. The tool for selecting similar tables

Chapter 9 Forming relationships

189

 Interacting with Table Occurrences
With the cursor tool selected, an occurrence box can be moved, collapsed, expanded,

resized, and scrolled from the points highlighted in Figure 9-19.

 1. Click and hold the heading of an occurrence to drag the box, and

reposition it within the graph. Hover the cursor over the arrow

icon to reveal an informative metadata popover.

 2. On the right of the heading is an expansion toggle button icon.

A single-click will toggle the state of the occurrence between

one of three states. Without any relational connections, one

click collapses the box, and another click expands it. With

relationship connections, an intermediate state collapses halfway

showing only match fields used to form relationship(s) to other

occurrences (not shown).

 3. Drag the thin bar on the sides and bottom to resize the width or

height, respectively.

 4. Drag the bottom corners to resize the width and/or height

depending on the direction.

Figure 9-19. Occurrence manipulation points when collapsed (top) and
expanded (bottom)

Chapter 9 Forming relationships

190

 5. When fully expanded, this arrow icon that appears at the top,

bottom, or both is used to scroll up or down the list of fields.

Individual clicks will move up or down one field at a time; holding

will continuously scroll the list until released.

Practice in the Learn FileMaker file by collapsing all the occurrences and moving

them one above the other so they are roughly lined up in a vertical stack, as shown in

Figure 9-20.

 Arranging and Resizing Occurrences
The arrange tools are used to align and resize groups of selected occurrences based on a

selection from a hidden menu under these four icons, shown in Figure 9-21:

 1. Horizontally aligned by left, center, or right edges.

 2. Vertically aligned by top, middle, or bottom edges.

Figure 9-20. The four table occurrences collapsed and arranged in a stack

Figure 9-21. Arrange tools contain menus for arranging and resizing occurrences

Chapter 9 Forming relationships

191

 3. Distribute horizontally or vertically.

 4. Resize the width, height, or both, to smallest or largest.

 Viewing Options
The tools section includes four controls that modify the magnification of the relationship

graph, shown in Figure 9-22:

 1. Adjust Magnification – Adjust the magnification to make every

table occurrence fit in the view without scrolling.

 2. Magnification – Click to activate, and then click in the graph to

increase the zoom by 25%.

 3. Reduction – Click to activate, and then click in the graph to

decrease the zoom by 25%.

 4. Percentage – Manually set the magnification percentage from

1 to 400.

 Formatting Table Occurrences
The only formatting tool for table occurrences is a color menu accessible by clicking on

the color tool located to the right of the Delete icon in the Tables/Relationships section.

Color coding can be used in many ways to visually group table occurrences. Apply a

color to all primary table occurrences and another to secondary or apply a color to each

occurrence group. Colors can indicate the type of operator used to connect a secondary

occurrence to a primary one, or color can denote the function of the occurrence, e.g.,

one color for those used as child portals, another for parent tables, etc. Colors can

Figure 9-22. The tools used to adjust the magnification of the relationship graph

Chapter 9 Forming relationships

192

also be used to indicate the development status of each occurrence, e.g., highlighting

those being worked on or deprecated. Whatever specific scheme you choose, coloring

occurrences can help you visually navigate a complex relationship graph.

 Editing Table Occurrences
Table occurrences are edited using the Specify Table dialog. This dialog is opened by

double-clicking an occurrence or by selecting one and clicking the Edit Selection button

icon, shown in Figure 9-23.

 Introducing the Specify Table Dialog

From the Specify Table dialog, shown in Figure 9-24, the data source, table, and name can

all be modified for the occurrence. When selecting a different table, the name will always

update to that table unless it has been edited since opening the dialog.

Figure 9-24. The dialog used to specify which table is assigned to an occurrence

Figure 9-23. The tool used to edit an existing occurrence

Chapter 9 Forming relationships

193

Figure 9-25. The tool used to add a new table occurrence

 Adding Table Occurrences
Table occurrences can be added to the graph for any table that exists in any data source

defined in the current file. This can be done by creating a new table occurrence or

duplicating an existing one.

 Creating a New Occurrence

To create a new table occurrence, start by clicking the Add Table button icon, shown in

Figure 9-25. This will open the Specify Table dialog described earlier. Optionally, choose

a data source if the table you want to add is in a different file. After the occurrence is

created, it can be resized and positioned as desired.

 Duplicating an Existing Occurrence

To duplicate the selected occurrence(s), click the Duplicate Table button icon, shown

in Figure 9-26. There are many great reasons to duplicate existing occurrences instead

of creating new ones. When an occurrence already exists for the new target table,

duplicating it saves the step of assigning the table manually. A duplicate also retains the

size and formatting of the original, saving you the time required to modify the default

styling of a new occurrence. Duplicating a group of related occurrences will retain all

relational connections between them.

Figure 9-26. The tool used to duplicate an existing occurrence

Chapter 9 Forming relationships

194

 Deleting Occurrences
Table occurrences can be deleted by selecting and typing the Delete key or clicking the

Delete tool shown in Figure 9-27. Remember that this will only delete the occurrence of

the table and not the actual table. However, any resources that use the occurrence as

a context will be affected by the deletion. So, layouts and scripts may require updating

after deleting occurrences assigned to or used within them.

 Printing the Relationship Graph
The Pages tools shown in Figure 9-28 provide control over page breaks and page setup in

preparation for printing the relationship graph.

 Building Relationships
Once occurrences are present in the graph, they can be linked to define relationships.

 Adding Relationships
A relationship is formed when a connection between two occurrences is established.

This can be done either by dragging a connection between two occurrences or using the

Add Relationship button.

Figure 9-28. The tools used to prepare the graph for printing

Figure 9-27. The tool used to delete an existing occurrence

Chapter 9 Forming relationships

195

Figure 9-29. Dragging a new relational connection between occurrences

 Dragging a Connection Between Occurrences

The most intuitive way of creating a connection between two occurrences is to use the

cursor to drag a connection from a field in one occurrence to a field in another, thereby

establishing a relationship based on those two match fields. To begin, locate the two

occurrences in the graph that will be connected, and click the icon in the upper-right

corner of both until they are fully expanded. Scroll until the desired match field for the

relationship is in the visible region of each list. Click and hold on a match field from

one occurrence. As you begin to drag the cursor toward the other occurrence, a line will

appear connected to the first match field, shown in Figure 9-29. Once the cursor is on top

of the desired match field in the other occurrence, release it and the line connecting the

two will be established.

Tip save time by quickly dragging a connection between any two fields currently
visible and then edit the relationship (described later) and select the desired fields
in dialog’s larger and more easily scrollable lists.

 Using the Add Relationship Button

The other way to create a new relationship is by clicking the Add Relationship button in

the toolbar, shown in Figure 9-30. Clicking this button opens an empty Edit Relationship

dialog (discussed later in this chapter) with both tables set to <unknown>. Since the

connection is empty, occurrences and match fields must be manually selected.

Chapter 9 Forming relationships

196

 Manipulating Relationships
A relationship is represented in the graph by a line connecting two occurrences with a

selector box in the middle, as shown in Figure 9-31. The box will display the operator

used to form a match between the two fields, with the default being an equal sign.

On each end of the line where it connects to an occurrence is an indication of the

relationship type, shown enlarged in Figure 9-32. A straight line, like that on the left,

indicates a one connection, and the “crow’s feet” on the right side indicates a many.

Therefore, in this example, there is a one-to-many relationship connection from

Company to Contact. FileMaker determines this by looking only at the auto-enter

settings for the fields. Since the Record ID field in Company is configured to auto-enter a

unique serial id for each record, it is displayed as a one. On the other side, the field has

no restrictions, so it assumes a many.

Figure 9-31. The relationship line with a selector box in the middle

Figure 9-30. The tool used to create an empty relationship

Figure 9-32. End-of-line symbols indicate the type of connection on each side

Chapter 9 Forming relationships

197

Caution the end-of-line indicators only reflect field definition restrictions, not
entry options on layouts or script functions.

When moving occurrences, the relationship lines will stay connected on both sides,

regardless of one box’s position relative to the other box. The line will split into three

straight, pivoting segments, as shown in Figure 9-33. After moving a box far enough, the

line will snap to the other side of the occurrence box in order to maintain a connection.

 Introducing the Edit Relationship Dialog

Relationships are edited in the Edit Relationship dialog, shown in Figure 9-34. This can

be opened by either double-clicking the relationship connection box or by selecting the

relationship and clicking the Edit Selection tool.

Figure 9-33. The line splits into straight segments when an occurrence is moved

Chapter 9 Forming relationships

198

The controls on the dialog include

 1. Table Occurrence – Select an occurrence for each side of the

relationship when creating a new relationship. If editing an

existing relationship, these are non-editable and can only be

edited directly on the occurrence box in the graph.

 2. Selected Match Field – Select a pair of match fields to be added or

changed in the list below.

 3. Comparative Operator – Select an operator to control how the

match fields will be compared.

 4. Selected Match Field Buttons – Click to add the selected fields as

new criteria to the list below or change to update the fields in the

selected combination below.

 5. Link Field(s) – Lists the criteria defining the relationship.

Figure 9-34. The dialog used to edit a relationship’s settings

Chapter 9 Forming relationships

199

 6. Link Field Buttons – Click to duplicate or delete the

selected link field.

 7. Relationship Options – Specify certain behaviors for each side of

the relationship.

 Selecting a Comparative Operator

A comparative operator is used to specify how match field values will be compared to

detect a relational match. The available operators are shown in Table 9-1.

 Relationship Options

The settings at the bottom of the Edit Relationship dialog, shown in Figure 9-35, control

three functions for behavior on each side of the relationship.

Table 9-1. A list of comparative operators available for relationships

Operator Description

= match when values in both fields are equal to each another.

≠ match when values in both fields are not equal to each other.

< match when the value in the left field is less than the value in the right field.

≤ mach when the value in the left field is less than or equal to the value in the

right field.

> match when the value in the left field is greater than the value in the right field.

≥ match when the value in the left field is greater than or equal to the value in the

right field.

X match every record on the left side of the relationship will be matched to all records

on the right side, regardless of the actual values contained in the selected fields.

this is often referred to as a Cartesian Product, Cartesian Join, or Cross Join, where

a connection between two tables is unrestricted by any criteria and every record

will be a match no matter the criteria.

Chapter 9 Forming relationships

200

Allowing Creation of Related Records

The Allow creation of records option makes it possible for users to create records in an

occurrence by typing into a related field from the other occurrence placed on a layout.

This is commonly used in portals to allow easy creation of new records (Chapter 20,

“Creating Records in a Portal Directly”).

Automatically Delete Related Records

The Delete related records option causes records in the table to be automatically deleted

when a related record on the other side is deleted by a user or script. This is especially

useful for deleting “child” records when their “parent” record is deleted. For example,

when a Company record is deleted, any related Contact records can also be deleted if this

feature is enabled on the Company | Contact side. Only use this when the lack of a parent

record creates problematic “ghost records,” detached records that aren’t accessible or

usable without a parent. To retain related records and allow them to later be attached to

a new parent record, leave this option disabled.

Sorting Related Records

The Sort records option enables a specific record sort at the relationship level. While

a portal can be configured to sort records for display (Chapter 20, “Exploring the

Portal Setup Dialog”), this feature sorts them at the relational root so they are sorted

when a calculation or script reaches through a relationship to access related records

directly. This is important when using the List function (Chapter 13) when the order is

important.

Figure 9-35. Relationship options for each occurrence

Chapter 9 Forming relationships

201

 Adding Notes to the Graph
A relationship note is a free-floating, colored box that can be added in the graph to contain

developer notes. A note is created by selecting the Text tool, shown in Figure 9- 36, and

then clicking and dragging in the relationship graph. An Edit Note dialog, shown in

Figure 9-37, allows entry and editing of the note text as well as specification of the font,

size, text color, and background color of the note. The dialog will automatically open

when creating a new note or when double-clicking on an existing one. Once saved, a note

can be moved, resized, minimized, aligned, or deleted just like a table occurrence.

Tip a note can be created without selecting the text tool by clicking and dragging
on the background while holding option (macos) or alt (Windows).

Figure 9-36. The tool used to create a new note

Figure 9-37. A note (left) and the dialog used to edit it (right)

Chapter 9 Forming relationships

202

 Implementing a Simple Relational Model
Now the previously described simple relationship model can be implemented in the

Learn FileMaker database. Align the four primary table occurrences into a vertical

stack. First create two duplicates of the Contact occurrence, and name one “Company |

Contact” and the other “Project | Contact.” Then make two duplicates of the Company

occurrence, and name them “Contact | Company” and “Project | Company.” Then

arrange them and form the following relationships between these, shown in Figure 9-38:

• Link Company to Company | Contact – This can be used to display a

portal of every contact who is linked to a company.

• Link Contact to Contact | Company – This can be used to display the

name of the company on a contact record and provide a navigable

link from the latter to the former.

Figure 9-38. The relational model for the Learn FileMaker test file

Chapter 9 Forming relationships

203

• Link Project to Project | Contact – This will link a project to a contact

record as the primary contact.

• Link Project to Project | Company – This will link a project to a

company record, allow displaying the name on a project record, and

provide a navigable link between them.

 Summary
This chapter introduced data sources, table occurrences, and relationships. In the next

chapter, we will explore managing container fields and storage options.

Chapter 9 Forming relationships

205
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_10

CHAPTER 10

Managing Containers
A container field is a type of field that can store and display a document file. Formally,

the content of a container is referred to as a binary large object or basic large object,

both commonly expressed as the acronym “BLOB,” which is a collection of binary data

representing an image, audio, or any file type (except folders) stored as a single data

entry in a database. In FileMaker, container fields have a variety of options that influence

how files are inserted into a field, where that material is actually stored (internally or

externally), and how it is displayed when placed on a layout. This chapter provides an

overview of the options for defining container fields, covering the following topics:

• Inserting files into containers

• Extracting files from containers

• Explaining container storage options

• Using managed external storage

 Inserting Files into Containers
When a container field is visible and accessible to a user on a layout, a document file can

be inserted using a function from the Insert menu, by dragging and dropping or copying

and pasting. Depending on the field definitions and layout settings for a container field,

each method has different options and limitations that may impact how the document is

inserted and the size of the database file.

Tip To follow along with these examples, open the Sandbox Form layout of the
Learn FileMaker database.

https://doi.org/10.1007/978-1-4842-6680-9_10#DOI

206

 Using the Insert Menu
The Insert menu contains four options for inserting a file into a container field with focus,

shown in Figure 10-1. These options are also available in the field’s contextual menu

and as script steps. Choosing any options will open a Choose File dialog, automatically

optimized for the type of file corresponding to the menu item.

• Picture – Insert and display a picture’s content.

• Audio/Video – Insert an audio or video file. This is only enabled when

the field’s layout settings allow Interactive content, which allows the

file to be played directly from within the field without having to open

the file in another application.

• PDF – Inserts a PDF file. This is only enabled when the field’s layout

settings allow Interactive content, which allows the file’s pages to be

viewed directly from within the field without having to open it in

another application.

• File – Inserts any type of file into a field. The file will appear as it does

in a directory folder, represented by an icon with no option to view or

interact with its content.

Note For more on layout settings, see Chapter 19, “Data Formatting Options for
Containers.”

Figure 10-1. The options for inserting a file into a container field

ChapTer 10 Managing COnTainers

207

 Dragging and Dropping
Using drag and drop to insert a file from a directory into a container field on the current

layout is the most intuitive method available. When dropping a file, FileMaker will

automatically use the appropriate storage method based on dropped file’s type and

the configuration of the field. For example, if you drop an image, it will be inserted and

displayed as if you selected the Insert Picture menu. If you drop a PDF or audio file into

a field that has not been configured for Interactive content, the file will be placed into the

field and displayed as a preview of the first page of the PDF or as a file icon. However, if

the field is configured for interactivity, the file will be inserted as if you chose the menu

corresponding to the file type and will be fully interactive. When dropping, there is no

way for a user to manually specify external storage (discussed later in this chapter).

Instead, the field’s defined method of storage will be automatically applied.

 Copying and Pasting
Using copy and paste to insert a file into a container is another convenient option.

The clipboard can contain an actual file copied from a folder, the content of an image

copied from a picture file opened in photo editing software, or a properly formatted text

reference to a file. The result of pasting is identical to that of dragging and dropping, and

there is no way to manually specify external storage (unless pasting a text reference).

 Extracting Files from Containers
When a container field on a layout is editable, a user can save a copy of the contents

from the record into a folder directory of their choosing using the Export Field Contents

function. This is available under the Edit menu, in the field’s contextual menu, and as

a script step. When selected, a dialog of the same name will open, allowing the user to

choose a folder in which to export the document. The file name will default to the name

of the document in the container but can be renamed in this dialog. The dialog includes

the option to automatically open the file and to create an email with the extracted file as

an attachment.

Tip This feature can also be used to save selected text from a field into a
text file.

ChapTer 10 Managing COnTainers

208

 Explaining Container Storage Options
A container field can be configured to store files in one of two ways: storing the actual file

inside of the database file or storing a reference to a file located outside the database file.

 Storing Files Internally
When a new container field is defined, it defaults to store content internally. This means

that the entire content of a file is replicated inside the database file. This has some

advantages and disadvantages.

A huge advantage is that internal storage maintains portability of the database since

all elements are stored in a single document file. This may be important when accessing

the database locally in a manner similar to a word processing or spreadsheet document.

Although portability isn’t an issue for shared databases hosted on a server (Chapter 29),

internal storage ensures that the files stored in container fields are universally accessible

regardless of any given user’s lack of ability to access external files on an unmounted file

server or an inaccessible coworker’s computer. Since the file is literally copied into the

database structure, if a user can access that, they can access the container content.

The downside to internal storage is that each file inserted into a field increases the

size of the database file. This is not inherently a problem since a FileMaker database

can be up to 8 terabytes in size. However, as the size of the file grows, performance

can become degraded, especially when many users share access to a database over a

network.

Generally, if the number or size of files stored in container fields is excessive, it’s a

good policy to insert file references into the fields and store the actual file externally.

The user won’t notice a difference in how they interface with the content if it is done

correctly.

 Storing a Reference to an External File
A container field file reference is a text string that stores an external file’s location, type,

and other information which varies by type. For example, a container image reference

includes the dimensions of the original image, a path to the file relative to the database,

and an absolute path to the image. This example shows a reference to an image file

located on a user’s desktop:

ChapTer 10 Managing COnTainers

209

size:731,960

image:../../../../../../../../../Desktop/Flower Picture.jpg

imagemac:/Macintosh HD/Users/john_smith/Desktop/Flower Picture.jpg

Storing references in container fields maintains a lean, efficient database. Although the

insertion process only stores a reference in the field, that external file will still be rendered

in the interface as if it were stored internally, based on the field’s settings. From the user’s

perspective, there is no difference when the field displays its content on a layout.

There are two methods for using external files: custom-managed and database- managed.

 Using Custom-Managed References in Any Directory
The traditional approach to using external references in container fields is custom- managed

external storage where the external location of a referenced file can be any directory. After the

reference is inserted, the file remains unchanged in the folder where it was selected.

The choice to use a reference insertion instead of file insertion is made when a user or script

inserts a document into a container by selecting a Store only a reference to the file checkbox

option at the bottom of the Insert dialog, shown in Figure 10-2.

This option works fine for many situations, but it is not without risk. If the choice

is left up to the user, the result is likely to be a mixture of some insertions as files and

others as references. Also, some references may be located in a directory that is not

accessible to other users. For example, inserting a reference to a file on the user’s

Figure 10-2. The option to store a reference as an override to the field’s settings

ChapTer 10 Managing COnTainers

210

desktop will produce a missing file error when other users attempt to view or access the

container field. Similarly, a document located on a file server that is not accessible or

not currently mounted will show as a missing file. These problems can be alleviated with

custom scripts controlling container insertions, limiting insertions to only files or only

references, and requiring referenced files to be stored on a universally accessible volume

like a network file server. However, even with all of these techniques used, there is still

a disadvantage. If the server volume, folder directories, or files are moved, renamed, or

deleted, the reference link will be broken. For the best results, use reference storage with

a managed directory on a FileMaker Server.

 Using Database-Managed References in a Central Directory
The best choice for container field storage, especially for networked databases, is to use

database-managed external storage where the database automatically saves an external

copy of every inserted file into a managed folder and inserts a reference to it in the field.

In this setup, no users have access to the actual folder directory that contains the files.

Instead, FileMaker acts as a broker between the user and the stored material. This keeps

documents safely stored and linked to records. Each field can be individually configured

to control how managed files are stored.

 Using Managed External Storage
To use database-managed external storage, you must define base directories and

configure container fields to use them.

 Defining Base Directories
A base directory is a developer-defined path to a folder directory that acts as the root

location into which one or more container fields can store documents. The folder

defined is fully managed by FileMaker, which will automatically create the folder and

then manage an internal directory structure of subfolders and files depending on the

settings defined for the base directory and individual fields. Every database file contains

one default directory, automatically defined with the same name as the database and a

formula prefix of [database location] meaning that the external container directory will

be stored in the same folder as the database file.

ChapTer 10 Managing COnTainers

211

Note if a database file is renamed, the default base directory will not change but
can be manually updated for consistency.

 Exploring the Manage Containers Dialog
External containers are defined in the Manage Containers dialog which can be opened

by selecting the File ➤ Manage ➤ Containers menu. This dialog has two tabs: Storage

and Thumbnails.

Exploring the Storage Tab

The Storage tab of the Manage Containers dialog, shown in Figure 10-3, contains a list

of defined base directories. This is where you create, edit, and delete base directories.

You can initiate a transfer of documents using the Transfer Data button, which becomes

highlighted after a field’s assigned base directory is changed and documents are detected

in the old location (see “Changing a Field Container Settings” later in this chapter).

Figure 10-3. The list of base directories used for managed containers

ChapTer 10 Managing COnTainers

212

Caution Base directories can’t be edited when a database is hosted on a
FileMaker server. Take the file offline and open with the FileMaker pro desktop
application to edit.

Creating a New Base Directory

The number of base directories in a given database file is completely up to the developer.

The default directory can be shared by every container field in every table in the file.

Alternatively, every table or even every field can be assigned a separate directory. To

create a new base directory, click the New button. This will open a New Base Directory

dialog, shown in Figure 10-4. This window contains a single text area into which you can

either type a directory path or drop a folder to automatically insert its path. A path must

be formatted as shown in the examples.

Figure 10-4. The dialog used to specify a base directory’s path

ChapTer 10 Managing COnTainers

213

Editing a Base Directory

A directory path can be edited as long as it doesn’t yet contain any managed files. If

empty, double-click or click the Edit button in the Manage Containers dialog to open the

selected base directory in the Edit Base Directory dialog (same as the New Base Directory

dialog shown in Figure 10-4). If the directory does already contains files, create a new

base directory, point any field using the old one to the new one, transfer the existing

container documents, and then delete the old directory.

Deleting a Base Directory

When a base directory is no longer used, it can be deleted as long as it doesn’t contain

any managed files. Select it in the list and click the Delete button. FileMaker requires at

least one base directory defined in a file, so a delete request will be rejected if there is

only one in the list.

Note FileMaker will delete the definition of the base directory from the list, not
the actual external folder.

Exploring the Thumbnails Tab

The Thumbnails tab of the Manage Containers dialog, shown in Figure 10-5, controls

automatic thumbnail generation which can speed up interface rendering of containers,

especially when transferred across a network. To activate thumbnails, select the

Generate and store thumbnails for images checkbox to allow FileMaker to automatically

generate and display a thumbnail for images when a layout attempts to display them.

Then choose between the two storage options. The Permanent storage option will cause

thumbnails to be cached both on-disk and in-memory, with the on-disk portion retained

when the database is closed. Use this for the fastest performance. The Temporary storage

option will cause thumbnails to be cached in-memory only. When the database is

closed, the cache is discarded. This will be slightly slower but save hard drive space.

ChapTer 10 Managing COnTainers

214

 Defining a Field’s External Storage Directory
Once a base directory is defined, it can be assigned to container fields. The external

storage settings for a container field are configured on the Storage tab of the Options for

Field dialog, shown in Figure 10-6. Open the Manage Database dialog, click on the Fields

tab, and double-click on a container field. Then select on the Storage tab.

Figure 10-5. The dialog used to specify a thumbnail generation

ChapTer 10 Managing COnTainers

215

Enable the Store container data externally checkbox and choose a base directory

from the pop-up menu. Once a directory is selected, choose a storage methodology.

The secure storage option will encrypt documents and automatically distribute the files

randomly across automatically created subdirectories in a subdirectory within the base

directory. This option automatically avoids conflicts between files with the same name

stored in any field that is using the same base directory. The open storage option keeps

document data in the original file format and uses a developer specified subdirectory

which is required to avoid conflicts between similarly named items stored for different

tables and fields. If using the same base directory for many fields across different tables

in the database, use a formula to generate a subdirectory that includes the appropriate

subfolders to avoid overwrite conflicts between records. Click the Specify button to enter

a subdirectory formula like the following example which creates a hierarchy of folders

for table, field, and serial number to ensure one container item per folder:

"Sandbox/Example Container/" & Record ID & "/"

Figure 10-6. The container field storage options

ChapTer 10 Managing COnTainers

216

Caution FileMaker Cloud server requires all containers to use secure storage.

 Changing a Field Container Settings

FileMaker automatically recognizes when a change is made to a container field’s

configuration. This includes changing between unmanaged internal or managed

external storage, changing the field’s base directory or subdirectory, or switching

between secure or open storage. When a modified field definition is saved, a Container

Data Transfer dialog will list any container fields modified during the session, as shown

in Figure 10-7. To immediately transfer the external files to their new base directory,

make sure the field has a check in the box and click Transfer. If you click Close instead,

the unperformed transfer will be retained and can be performed later using the Manage

Containers dialog’s Transfer Data button.

Figure 10-7. The dialog indicating the need to transfer container field content

ChapTer 10 Managing COnTainers

217

 Summary
This chapter explored inserting and extracting files from container fields as well as

various methods of managing containers. In the next chapter, we explore how to define

value lists.

ChapTer 10 Managing COnTainers

219
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_11

CHAPTER 11

Defining Value Lists
A value list is a return-delimited sequence of values. Lists can be created by formulas

(Chapter 13, “Aggregating Data”) or by defining one as a centralized resource. A

predefined list can be a set of static values or values dynamically compiled from the

contents of a field gathered directly from a table or through a relationship. Once defined,

these lists can be assigned to a field to enable selection-based data entry by means of

drop-down lists, pop-up menus, checkboxes, and radio buttons (Chapter 20, “Configuring

a Field’s Control Style”). Using value lists as the control style for a field increases data

entry speed and ensures accuracy and consistency. This chapter covers the following

topics regarding defining value lists, including

• Introducing the Value Lists dialog

• Using custom values

• Using a list from another file

• Using values from a field

 Introducing the Value Lists Dialogs
Predefined lists are configured using the Manage Value Lists dialog, shown in Figure 11- 1.

This dialog can be opened by selecting the File ➤ Manage ➤ Value Lists menu, clicking

the pencil icon in the Inspector pane for fields assigned a list-based control style

(Chapters 19 and 20) or with the Open Manage Value Lists script step. This dialog is used

to create, edit, duplicate, and delete lists.

https://doi.org/10.1007/978-1-4842-6680-9_11#DOI

220

Tip Value lists can be copied and pasted between two files.

List settings are defined in the Edit Value List dialog. This dialog opens when creating

a new list or editing an existing list in the dialog in Figure 11-1. After entering a name for

the list, there are three options for how values are generated:

• Use Values from Field – Generate a list from field values, defined in a

Specify Field dialog

• Use Value List from Another File – Select a value list from a different

FileMaker database for use in this one

• Use Custom Values – Manually define a return-delimited list of values

in the field below

Caution Examples in this section only define a list. See Chapter 20, “Configuring
a Field’s Control Style,” to learn how to assign a list to fields on layouts.

Figure 11-1. The dialog used to manage value lists

ChaptEr 11 DEFining ValuE liStS

221

 Using Custom Values
A value list defined with manually entered custom values can be used for quick data

entry of a set of static values, e.g., a category, country, group, location, status, and more.

This defines a list of information that doesn’t exist elsewhere in the database and is typed

directly into the editing dialog. For example, create a simple example status list that can

be assigned to fields such as Company Status. In the Manage Value Lists dialog, click the

New button to open the Edit Value List dialog, and then perform these steps shown in

Figure 11-2:

 1. Enter a name for the value list, e.g., “Record Status.”

 2. Select the Use custom values option.

 3. Enter values into the text area, e.g., “Active” and “Inactive.”

 Using a List from Another File
A value list in one database can be defined to subscribe to a list defined in another

database. This helps to eliminate redundancy in multi-file systems by defining a list

once and sharing it in other files. The following example assumes a second file named

Figure 11-2. A value list using custom values

ChaptEr 11 DEFining ValuE liStS

222

“Sample External List” with a value list named “Address States.” From the Learn

FileMaker database, open the Manage Value Lists dialog, and click the New button to

open the Edit Value List dialog. Then enter a name and follow these steps to configure

the list as shown in Figure 11-3:

 1. Select the Use value list from another file option.

 2. If the other database is already defined as an external file source,

it will show up in the first pop-up menu. If not, it can be defined

by selecting Add FileMaker Data Source from that menu and then

locating and selecting the other database.

 3. Once the file has been selected, the following Value list pop-up

menu will become activated, allowing a selection from lists defined

in the external file. Select the target list and close the dialog.

 Using Values from a Field
A list can gather values from a target field to dynamically generate a list that changes

based on record content. By using field data as the source, the value list content can be

easily edited by authorized users, developers, or scripts and dynamically adjust the value

over time. This is particularly useful when creating a list to aid users in assigning a record

in one table to a record in another, e.g., assigning a Company record as the parent of a

Contact, Project, Invoice, etc. Instead of remembering or finding a company’s primary

Figure 11-3. A value list using a list from an external database file

ChaptEr 11 DEFining ValuE liStS

223

key and typing it manually or copy-pasting, a pop-up menu or drop-down list control

style allows a user to select a company by name, and the primary key is entered for them

automatically. By default, lists using field values are context-insensitive, meaning they

will include values from every record in the field’s table and are usable from any context.

However, a list can also be configured to conditionally limit the values by declaring a

starting context and pulling values through a relationship instead, thereby limiting the

list to a single table’s layouts.

 Introducing the Specify Fields Dialog
Start by creating a new value list, assign it a name, and select the Use values from field

radio button. This will automatically open a Specify Fields dialog, shown in Figure 11-4.

Figure 11-4. The dialog used to specify a list generated from field values

ChaptEr 11 DEFining ValuE liStS

224

To define the list, specify the field(s) that will be used to generate values and indicate

which values to include and how they will be displayed, using these controls in the

dialog:

 1. Use Values from First Field – Choose a table occurrence and field

to specify the first field that will be used in the list. This value will

be inserted in a field when a selection is made.

 2. Also Use Values from Second Field – Optionally, choose a second

field from the same occurrence or one related to it. This value is

displayed in lists for identification purposes but not inserted when

a selection is made. For example, if the first field uses a company

primary key number, the second field can display the human-

readable company name.

 3. Choose Which Values Are Included – The Include all values option

generates a list of unique values from the selected field(s) for all

records in the table. The Include only related values starting from

option generates a list of values for only related records starting from

the context of a table occurrence selected. This creates a contextual

value list that changes depending on which record a user is viewing.

 4. Show Values Only from Second Field – Limits to display values only

from second field but will still insert the first value when a selection

is made.

 5. Sort Values Using – Select which of the two fields to use to sort the list

when displaying more than one field.

 6. Re-sort Values Based on – Select a language to use when sorting

values. This is useful when using languages where the dictionary

sort order is different from the indexed sort order, e.g., distinguishing

between characters with and without diacritical marks.

 Creating a List of All Records in a Table
By default, a value list set to use values from a field pulls from every record in the table

and can therefore be used on any layout in the database without concern for the

relational context of the layout’s table (Chapter 17, “Understanding Contextual Access”).

ChaptEr 11 DEFining ValuE liStS

225

The example previously shown in Figure 11-4 creates a value list using the Record ID

and Company Name fields for all records in the Company table. Once configured and

saved, this list can be assigned to a field as a pop-up menu or drop-down list in any table

(Chapter 20, “Configuring Field Control Style”). For example, in the Contact table, the

Contact Company ID field is used to store a foreign key that connects a contact record

to a company. To allow a user to quickly enter this, the value list can be assigned to that

field as a pop-up menu on the Contact Form layout.

 Creating Conditional Value Lists
A conditional value list contains filtered choices that represent only a subset of the

available record values. By offering a smaller list of only relevant values, users can more

easily locate the value they need. This can be used in numerous ways. For example,

when assigning a Company as the parent to a Contact, a conditional list can be limited

to only include active company records. Similarly, assigning a Product to an Invoice can

limit the list to only include products based on the value of a category field or the type of

company receiving the invoice. When selecting a Template to use to generate an Email

record, this can filter the list to only approved records for categories that are relevant to

the type of email being generated.

There are two ways to create a conditional value list: using a dedicated relationship

and using a calculation field. For the examples to follow, we will use the Company Status

field in the Company table of Learn FileMaker database to create a value list that is

conditioned to only display company records that have an “Active” status.

 Using a Dedicated Relationship

A relationship-driven conditional value list is compiled through a relationship (Chapter 9),

thereby creating a list containing a subset of values from only matching records. Creating

a conditional value list using a relationship involves the selection of a starting occurrence

which represents the interface context that will be used when pulling values from the

selected list fields. Usually, this is the occurrence assigned to the table of the layout where

the list will be used. However, it can also be any occurrence that is related to the layout’s

occurrence. The relational criteria from the starting occurrence to the list occurrence

controls which matching records are included in the list and which are excluded. As an

example, build a value list in the Learn FileMaker file that includes only Company records

where the Company Status field contains a value of “active.” Since the value list requires

ChaptEr 11 DEFining ValuE liStS

226

a relationship to work, we will declare a use context as the Contact table, i.e., the value

list will be usable from any layout assigned to the Contact table. To begin, perform a few

preparatory steps.

First, create a calculation field in the Contact table named “Contact Company Status

Match” with a formula of “Active” and with a calculation result type of text (Chapter 12).

Since the formula result will be the same for every record and since it will be a local key in

the relationship (Chapter 9, “Indexing Match Fields”), it can be set to store a global value.

Next, in the relationship graph, create a new occurrence of the Company table, and

name it “Contact | Company for Active List,” and position it to the right of the Contact

table. This will be the occurrence from which the list will pull values.

Finally, connect this new occurrence to Contact with a relationship as shown in

Figure 11-5. Now, from the perspective of the Contact table (the starting occurrence),

the Company values pulled through this relationship will be only those with a Company

Status value of “Active.”

Once finished, create a new value list set to Use values from field and specify the

fields as shown in Figure 11-6:

 1. Choose fields from the new occurrence created earlier.

 2. Select the Include only related values starting from option.

 3. Select Contact as the starting occurrence.

Figure 11-5. The new relationship for the conditional value list

ChaptEr 11 DEFining ValuE liStS

227

Once saved, assign the value list to the Contact Company ID field on a Contact layout

as the source for a pop-up menu or drop-down list (Chapter 20, “Configuring a Field’s

Control Style”). Then, when clicking in that field, it should display a list of only the active

companies.

Caution if the value list is empty, confirm that some Company records that have
an “active” status.

Although there are many valid uses for this technique, a relationship-driven value

list is not always the best choice. Since the filtering mechanism is a relationship, it is

inherently context sensitive. To implement the same feature on layouts for other tables,

it would require a duplicate set of resources. For example, to add the same list of active

companies to a Project table would require a link calculation match field created there,

Figure 11-6. The configuration of the conditional value list

ChaptEr 11 DEFining ValuE liStS

228

a new dedicated table occurrence connecting Project to Company, and an additional

value list. To add it to Invoices requires yet another duplication of these resources.

Implementing such a value list in six different tables would require one set of those four

resources for each, giving you a total of twenty-four additional components. So, using this

technique for a widely used feature like an active company list would quickly clog up the

relationship graph and value list definitions with extraneous resources to accommodate

what should be a simple global value list. In cases like this, use a calculation-driven

conditional list instead.

 Using a Calculation Field

A calculation-driven conditional value list generates a subset of records using a

calculation field in the source table whose formula result (Chapter 12) controls which

records are included or excluded. Since FileMaker ignores empty values when building

a list from a field, the only record values included in the list are those that produce a

calculation result. When the fields used in the formula are local and indexed, this is

usually the best choice for creating a conditional value list that is both context neutral

and resource efficient. Used in place of the last example, this will create one list of active

companies that can be used anywhere in a database without additional resources. To

begin, create a calculation field in the Company table named Company Name for Active

List that returns a text result and has a formula of

Case (Company Status = "Active" ; Company Name ; "")

Then create a value list that uses the Record ID as the first field and the

aforementioned calculation field as the second field, as shown in Figure 11-7. When

creating a list this way, only the second field needs to be conditionally generated from a

calculation. Once created, this list can be used from any layout context, regardless of the

source table and without requiring a dedicated relationship.

ChaptEr 11 DEFining ValuE liStS

229

 1. Select Record ID from the Company table as the first field.

 2. Select the Company Name for Active List calculation field as the

second field.

 3. Select the Include all records option.

 Summary
This chapter explored how to create predefined value lists a variety of different ways.

Assigning these to layout objects is discussed further in Chapters 19 and 20. In the next

chapter, we begin learning how to write formulas.

Figure 11-7. The configuration of a calculation-driven conditional value list

ChaptEr 11 DEFining ValuE liStS

PART III

Writing Formulas and
Using Functions

Formulas are used throughout the development interface in field definitions, custom

functions, layout objects, custom menus, and script steps. These chapters cover the

basics of writing formulas:

 12. Writing Formulas

 13. Exploring Built-in Functions

 14. Using JSON

 15. Creating Custom Functions

 16. Introducing ExecuteSQL

233
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_12

CHAPTER 12

Writing Formulas
A calculation formula is an equation made up of one or more statements expressing

operations that, when performed, produce a result. Formulas can analyze, compare,

concatenate, condense, convert, expand, format, parse, replace, or summarize any of

FileMaker’s supported data types. They can range in size from a simple mathematical

equation to an extremely complex collection of interrelated expressions and nested

logical clauses involving values of any data type. This chapter introduces the basics of

writing formulas, covering the following topics:

• Introducing formulas

• Defining formula components

• Exploring the calculation interface

• Writing formulas

• Adding calculations to the Learn FileMaker file

 Introducing Formulas
Formulas are used in numerous places in the development interface. The Replace Field

Contents dialog has an option to insert a formula result (Chapter 4). Many programming

dialogs or panels have Options, Specify, Fx, or Pencil icon buttons that access a formula

dialog. The same applies to a Specify option in some pop-up menus. When defining a

calculation field, a formula is entered. Regular fields accept formulas to generate an

auto-enter value and a validation result (Chapter 8). Custom functions define global

formulas (Chapter 15). The Inspector pane in Layout mode accepts formulas to hide

objects and create placeholder text and tooltips (Chapter 19). Many layout objects

accept formulas to determine their name or other criteria, including Button Bars,

Buttons, Popovers, Tabs, Portals, Charts, and Web viewers (Chapter 20). Custom menus

can use formulas to determine a name and visibility (Chapter 23). Script parameters

https://doi.org/10.1007/978-1-4842-6680-9_12#DOI

234

can be generated with a formula (Chapter 24), and numerous script steps can or must

be configured with formulas (Chapter 25). Security privileges can be configured to use

formulas to determine access to schema resources (Chapter 30). The developer Data

Viewer dialog has an Edit Expressions dialog that accepts formulas to continuously

monitor a result (Chapter 31). All of these open a Specify Calculation window, as shown

in Figure 12-1. This dialog is where formulas are constructed.

 How Formulas Work
A calculation formula is created by assembling various text components into a written

statement that express how a result should be produced. When saving a new or modified

formula, FileMaker scans the statement to check for syntax errors, e.g., such as broken

references, missing functions, or incorrectly structured statements. When a problem

is detected, the save process is halted, the error is highlighted in the statement, and a

dialog message explains the details of the error. This process is repeated until there are

no errors detected, and the code can be successfully compiled and saved. Once saved,

a formula remains in an idle state, until it is called by any process which prompts an

evaluation of its statement to produce a result.

Figure 12-1. A dialog used to define a calculation formula

Chapter 12 Writing Formulas

235

A formula can be called numerous ways. A field’s auto-enter formula is called when

a record is created or when fields used in the formula are altered. When a layout object is

rendered, any formulas used by it will be called. This applies to objects that use formulas

to generate a name, hide condition, contextual formatting, or other interface- related

properties or conditions. A script step’s calculation element is called when the step is

executed as the script runs. A formula can be called by another formula, e.g., a calculation

field including another calculation field in its formula or a custom function calling another

custom function or a calculation field.

When called, the formula’s statement is evaluated, which means that the code

is converted into a result by working through each operation in a specific order

of precedence. Formulas are always evaluated from the context of a specific table

occurrence. A formula used in a field definition requires a manually selected context of

any table occurrence for the table in which the field exists. A formula associated with an

interface element will use the context of the table occurrence of the layout upon which

the object is being rendered. A formula used in a script step will use the context of the

table occurrence of the layout displayed in the current window at the time it is executed.

Formulas used in custom menus also use the current layout’s table as a context.

The result of a formula is returned to the calling process which handles it in a way

appropriate to its function. For example, a calculation field contains the result of its

formula and displays it when placed on a layout. A layout object name may change its

displayed name, visibility, or appearance based on the result. The Set Variable script step

places the result of its formula into a variable. The Show Custom Message script step will

place a result into a dialog presented on screen. The type of object and the aspect of its

configuration that called the formula determines the destination or use of the result.

When a formula is unable to create a result due to an execution error, it will return

a question mark. For example, if a formula is using a field that has been deleted or is

inaccessible from the current context, the formula may return an error. Similarly, using

a custom function that has been deleted or providing a result as a data type inconsistent

with the expectations of the calling process will return an error.

 Defining Formula Components
A formula expression can be built using any combination of comments, constants, field

references, functions, operators, reserved keywords, and variables.

Chapter 12 Writing Formulas

236

 Comments
A comment is a text string inserted into a formula that is completely ignored when the

code is evaluated. Comments can be used to break code into sections or act as integrated

documentation for developers, providing details about the functions it performs, how it

works, a record of changes, or notes about unfinished work. A comment may be placed

at the top of the formula or anywhere between individual statements or sections of code.

There are two styles of comment available: end-of-line and multiline.

 Creating End-of-Line Comments

An end-of-line comment starts at any double forward slash and continues until the next

paragraph return. Any text placed between the slashes and the end of line indicated by

the return will be ignored by FileMaker when the formula is evaluated. The following

example has several end-of-line comments. The first and second paragraphs are both

comments and demonstrate that each line requires a new set of slashes to produce a

comment. The third paragraph has a comment starting in the middle of the paragraph,

after a formula adding two numbers. The formula portion of this line will be evaluated,

while the comment portion will be ignored. The result will be the total of the two

numbers: four.

// This is a comment

// To continue on a second line you must use another set of symbols

2 + 2 // This comment starts in the middle of a line, after a formula

 Creating Multiline Comments

A multiline comment uses an initiating and terminating symbol to indicate the start and

end of a comment. These are used to “comment out” an entire block of paragraphs.

To enter a multiline comment, use a forward slash and asterisk to indicate the start of

the comment and the reverse, an asterisk and forward slash, to indicate the end of the

comment. Any text between these two will be completely ignored by FileMaker when

the formula is evaluated. In the following example, the formula has two block comments

that will be ignored with a formula between them that will be evaluated, again producing

a result of the total of the two numbers: four.

Chapter 12 Writing Formulas

237

/*

This is a comment

The comment continues on additional lines

3 + 4 including this entire line

Until you terminate it here

*/

2 + 2

/*

This is another comment with returns as spaces

The comment continues on additional lines until terminated

*/

 Constants
A constant, sometimes referred to as a literal, is a static, unchanging value literally

typed into a formula. The value can be any of FileMaker’s data types: text, number, date,

time, or timestamp. A quantity, city name, event date, and start time are all examples of

constants when typed literally into a formula. Numeric constants can be typed directly

into a formula, while other text-based constants like dates, times, and strings must be

contained within quotation marks so that it is interpreted as a literal value instead of as a

field reference, function name, or variable. The following shows examples of each type of

constant, as they might appear in a formula:

150

"New York"

"1/15/2017"

"10:15:00"

"1/15/2017 10:15:00"

A date and time constant entered as literal strings are seen as text and must be

converted into actual date and time values in order to be treated as such. This is done

using a built-in function: GetAsDate, GetAsTime, and GetAsTimestamp.

GetAsDate ("1/15/2021”)

GetAsTime ("10:15:00")

GetAsTimestamp ("1/15/2017 10:15:00")

Chapter 12 Writing Formulas

238

Tip learn more about built-in functions in Chapter 13.

 Field References
A field reference is a pointer to a field that allows field values to be dynamically accessed

by a calculation. A formula that contains only a reference to a First Name field will result

in the value contained in that field for the current record based on the evaluation context.

Complex formulas can use field references in conjunction with other components to

produce various results by combining, comparing, parsing, or otherwise manipulating the

values fields contain.

Depending on the type of calculation and the location of the field relative to the

evaluation context, a reference is considered either local or related. A local field is

a field that exists within the table of the current context. For a calculation field, the

current context is that field’s table so any fields referenced that are also in that table are

considered local to the calculation. For a formula used outside of a calculation field, the

context will always be the table occurrence assigned to the window’s layout at the time of

evaluation. A reference to a field in a table outside the formula’s operating context table

is considered a related field.

References are typed or inserted into a formula without quotation marks. When a

field reference is used in a formula other than a calculation field, it must include a table

occurrence to specify the relational context from which values should be pulled. This

is done by combining an occurrence and field name with a double colon delimiter.

For example, a reference to a First Name in an occurrence named “Contact” would be

formatted as Contact::First Name. FileMaker will warn you that a “specified table can’t be

found” when a reference is missing the required table occurrence.

Caution a few examples early in this chapter mention built-in functions which
are not explained until later, here or in subsequent chapters.

Chapter 12 Writing Formulas

239

 Keeping Field References Dynamic

Field references are automatically dynamic and will update to reflect field or table

occurrence name changes. It is possible and sometimes desirable to construct a field

reference by appending text constants; however, this should be avoided because it creates a

reference to a field that is not dynamic. For example, if a formula needs to conditionally pull

from one of two fields, you might be tempted to construct the reference as text and then use

the GetField and Case functions to construct a reference and retrieve the field value, like this:

GetField ("Contact::" Case (aValue = 1 ; "First" ; "Last") & " Name"

Using the Case function (Chapter 13), this example constructs a reference to either the

First Name or Last Name field in a Contact table depending on the aValue variable and

then gets the field value. This code will work fine until you change the name of the table

occurrence or either of the two fields. While it may be unlikely that you ever rename certain

field names, there are many instances where name changes might be desired. Referencing

fields with static constants like this can be disastrous if a name changes. Doing so requires

you to manually locate and update every referencing formula or never changing any field

name. Instead, consider using techniques that keep field references dynamic even when

they need to vary. In this modified example, the Case statement chooses one of two full,

dynamic references instead of a text-based construction.

Case (aValue = 1 ; Contact::First Name ; Contact::Last Name)

For complex situations where listing every possible field reference in a statement

isn’t practical, use the GetFieldName function to convert a dynamic field reference into a

text string (Chapter 13, “Converting a Field Reference to Text”), and then manipulate the

result to produce a new field reference (Chapter 13, “Working with Text”).

 Functions
A function is a predefined, named formula that is evaluated to return a result. Functions

are like subroutines in other programming languages since they allow some specific

functionality to be off-loaded to a process outside of the current formula to help avoid

redundancies. Within FileMaker, there are two kinds of functions: built-in functions

(Chapters 13 and 14) and custom functions (Chapter 15). In this section, we will

introduce calling functions using simple pattern to illustrate their use in formulas. See

those other chapters for more specific information.

Chapter 12 Writing Formulas

240

 Calling a Function from a Formula

A function call can be placed into a formula by typing its name or selecting it through the

interface (described later). Generally, functions are named with two or more capitalized

words, phrased without spaces that concisely describe the process they perform. So, a

function call is simply that name placed into a statement, shown in pattern here:

FunctionName

 Calling a Function with Parameters

A function parameter is a value that can vary with each call to the function. Some

functions use parameters to allow input provided by the calling formula. Parameters may

contain material for manipulation or instructions about the process(es) to be performed.

Parameters are listed after the function name, enclosed within a set of parentheses. If

a function accepts more than one parameter, they are listed in order, separated with

semicolons after the function name. Examples of both are shown here:

ExampleFunction (parameter)

ExampleFunction (parameter1 ; parameter2 ; parameter3)

The value of a parameter in a function call can be a constant, field reference, literal,

nested function, or variable expression as illustrated in these examples, each calling a

hypothetical function that has a single parameter.

ExampleFunction ("Hello, World")

ExampleFunction (5000)

ExampleFunction (Invoice Tax Rate * Invoice Subtotal)

ExampleFunction (AnotherFunction (15))

 Optional Parameters

Some built-in functions have optional parameters that can be included or ignored as

needed. When inserting a function call into a formula, FileMaker will denote optional

parameters with braces as shown in this pattern.

ExampleFunction (parameter1 {; parameter2 ; parameter3})

Chapter 12 Writing Formulas

241

In this case, the braces indicate that parameter1 is required, while parameter2 and

parameter3 are optional. Before compiling the formula, the braces must be removed

along with any optional parameters that won’t be used. The following examples show

one call to the same hypothetical function without optional parameters and a second

call to the same function with optional parameters included.

ExampleFunction (parameter1)

ExampleFunction (parameter1 ; parameter2 ; parameter3)

 Nesting Function Calls

A parameter can accept an expression as a value, including calls to other functions. In

this example, ExampleFunction2 will be evaluated first, and the result will be used as the

parameter for ExampleFunction1.

ExampleFunction1 (ExampleFunction2 (parameter))

 Operators
An operator is a symbol used to express a type of operation within a formula. FileMaker

has many different operators: comparison, logical, mathematical, and textual.

Caution For clarity, examples in this section use simple formulas containing
only constants. however, they can be used with any combination of formula
components.

 Comparison Operators

A comparison operator is a symbol used to compare two values, either a literal value or

the evaluated result of two expressions. The result of an expression using a comparison

operator will be a Boolean value, represented respectively by a 1 (true) or 0 (false).

Equal To

An equal to symbol is used to compare two values for similarity. The equation will

evaluate true if the values are identical and false if they are not.

Chapter 12 Writing Formulas

242

100 = 100 // result = 1

150 = 100 // result = 0

"New York" = "New York" // result = 1

"New York" = "NY" // result = 0

GetAsDate ("1/15/2021") = GetAsDate ("1/15/2021") // result = 1

GetAsDate ("1/15/2021") = GetAsDate ("7/20/2021") // result = 0

GetAsTime ("9:30:00") = GetAsTime ("9:30:00") // result = 1

GetAsTime ("9:30:00") = GetAsTime ("12:15:00") // result = 0

Not Equal To

Comparing two values for dissimilarity can be performed using either a not equal to

symbol or a less than and greater than symbol side by side. An equation will evaluate

false if the values are identical and true if they are not, as demonstrated in these

examples:

100 ≠ 100 // result = 0
150 ≠ 100 // result = 1
"New York" <> "New York" // result = 0

"New York" <> "NY" // result = 1

GetAsDate ("1/15/2021") ≠ GetAsDate ("1/15/2021") // result = 0
GetAsDate ("1/15/2021") ≠ GetAsDate ("7/20/2021") // result = 1
GetAsTime ("9:30:00") ≠ GetAsTime ("9:30:00") // result = 0
GetAsTime ("9:30:00") ≠ GetAsTime ("12:15:00") // result = 1

Tip the not equal to symbol can be created by typing an equal sign while holding
the option key on macos.

Greater Than

A greater than symbol is used to compare the relative alphabetical, chronological, or

numerical positions of two values. The equation will evaluate to true if the value on the

left is greater in position compared to the value on the right.

150 > 100 // result = 1

Chapter 12 Writing Formulas

243

100 > 100 // result = 0

"Bear" > "Automobile" // result = 1

"Atlanta" > "New York" // result = 0

GetAsDate ("1/15/2021") > GetAsDate ("1/10/2021") // result = 1

GetAsDate ("1/15/2021") > GetAsDate ("7/10/2021") // result = 0

GetAsTime ("12:30:00") > GetAsTime ("9:15:00") // result = 1

GetAsTime ("9:30:00") > GetAsTime ("10:45:00") // result = 0

Greater Than or Equal To

Comparing the relative positions of two values can be performed using either a greater

than or equal to symbol or a greater than symbol followed by an equal sign. The

equation will evaluate true if the value on the left is greater in position or the same value

compared to the value on the right, as shown in these examples:

100 ≥ 100 // result = 1
100 ≥ 150 // result = 0
"Bear" >= "Automobile" // result = 1

"New York" >= "Ohio" // result = 0

GetAsDate ("1/15/2021") ≥ GetAsDate ("7/20/2016") // result = 1
GetAsDate ("1/15/2021") ≥ GetAsDate ("7/10/2021") // result = 0
GetAsTime ("12:30:00") ≥ GetAsTime ("12:30:00") // result = 1
GetAsTime ("9:30:00") ≥ GetAsTime ("10:45:00") // result = 0

Tip the ≥ symbol can be created by typing a greater than symbol while holding
the option key on macos.

Less Than

A less than symbol is used to compare the relative positions of two values. The equation

will evaluate true if the value on the right is greater in position than the value on the left.

100 < 350 // result = 1

100 < 100 // result = 0

"Automobile" < "Car" // result = 1

Chapter 12 Writing Formulas

244

"New York" < "New York" // result = 0

GetAsDate ("7/20/2016") < GetAsDate ("1/15/2021") // result = 1

GetAsDate ("7/10/2021") < GetAsDate ("1/15/2021") // result = 0

GetAsTime ("9:15:00") < GetAsTime ("12:30:00") // result = 1

GetAsTime ("10:45:00") < GetAsTime ("9:30:00") // result = 0

Less Than or Equal To

Comparing the relative positions of two values can be performed using either a less than

or equal to symbol or a less than symbol followed by an equal sign. The equation will

evaluate true if the value on the left is greater in position or the same value compared to

the value on the right, as shown in these examples:

100 ≤ 100 // result = 1
100 ≤ 50 // result = 0
"Automobile" <= "Bear" // result = 1

"Ohio" <= "New York" // result = 0

GetAsDate ("7/20/2016") ≤ GetAsDate ("1/15/2021") // result = 1
GetAsDate ("7/10/2021") ≤ GetAsDate ("1/15/2021”) // result = 0
GetAsTime ("12:30:00") ≤ GetAsTime ("12:30:00") // result = 1
GetAsTime ("10:45:00") ≤ GetAsTime ("9:30:00") // result = 0

Tip the ≤ symbol can be created by typing a greater than symbol while holding
the option key on macos.

 Logical Operators

A logical operator is a keyword used to build compound conditions by joining two or

more separate expressions into a single expression or, in one case, to negate a single

expression to reverse a Boolean result. The result of an expression using a logical

operator will be a Boolean.

Tip use parenthesis to help visualize the separate expressions on either side of a
logical operator and ensure proper execution order.

Chapter 12 Writing Formulas

245

AND

The AND operator is used to combine two separate Boolean expressions into a combined

equation that will evaluate true only if the result of both expressions are true.

(150 > 100) AND ("Bear" > "Automobile") // result = 1

(150 > 100) AND ("Bear" = "Automobile") // result = 0

OR

The OR operator is used to combine two separate Boolean expressions into a combined

equation that will evaluate true if the result of at least one of the two expressions is true.

(150 > 100) OR ("Bear" < "Automobile") // result = 1

(150 < 100) OR ("Bear" = "Automobile") // result = 0

XOR

The XOR operator is used to combine two separate Boolean expressions into a combined

equation that will evaluate true if the result of only one of the two equations is true. If both

equations are true, it will return false.

(150 > 100) XOR ("Bear" < "Automobile") // result = 1

(150 > 100) XOR ("Bear" ≠ "Automobile") // result = 0
(150 < 100) XOR ("Bear" = "Automobile") // result = 0

NOT

The NOT operator is a unique logical operator that will negate the result of any expression

to its right, thereby reversing the Boolean result of that expression. If the expression

evaluates true, putting this operator in front of it will reverse it to return false and vice

versa.

NOT (150 > 100) // result = 0

NOT ("Tuesday" < "Monday") // result = 1

A reversal can also be achieved by comparing the Boolean result of an expression to

0. In this example, the false (0) result from the parenthesized expression is reversed by

the subsequent comparison to 0:

(150 < 100) = 0 // result = 1

Chapter 12 Writing Formulas

246

 Mathematical Operators

A mathematical operator is a symbol used to perform or control arithmetic computations

with one or more values or expressions. The mathematical operations can be performed

not only on numbers but on other data types such as dates, times, and timestamps.

Note For mathematical operations, dates and times are converted to a number
(Chapter 8, “Defining Field Data types”).

Addition

The plus symbol is used to add the value on the right to the value on the left.

100 + 50 // result = 150

GetAsDate ("1/5/2021") + 5 // result = 1/10/2017

GetasTime ("1:15:00") + 300 // result = 1:20:00

Subtraction

The minus symbol is used to subtract the value on the right from the value on the left.

100 – 50 // result = 50

GetAsDate ("1/5/2021") - 2 // result = 1/3/2017

GetasTime ("1:15:00") - 300 // result = 1:10:00

Multiplication

The multiply symbol is used to multiply the value on the left by the value on the right.

100 * 50 // result = 5000

GetAsDate ("1/5/2021") * 2 // result = 1475590

Division

The division symbol is used to divide the value on the left by the value on the right.

100 / 50 // result = 2

GetAsTime ("1:15:00") / 2 // result = 2250

Chapter 12 Writing Formulas

247

Raising to a Power

The power of symbol is used to raise the value on the left to the power of the value

on the right.

100^2

Precedence

A set of parentheses is used to change the order of evaluative precedence (discussed

later in this chapter). FileMaker will evaluate formulas from left to right after first

evaluating expressions that are enclosed within parentheses, working from the inside

out and based on an order of precedence. Although these two equations perform the

same mathematical operations on the same numbers in the same order, the results are

drastically different due to the control of precedence imposed with parentheses:

100 * 2 + 50 / 25 // result = 202

((100 * 2) + 50) / 25 // result = 10

 Text Operators

A text operator is a symbol used to construct an equation that combines text items

into a single item and performs other text-related functions. These include quoting,

concatenating, paragraph returns, and backslashes.

Quoting Text

A pair of quotation marks is used to indicate a literal text constant. Text entered into a

formula without quotation marks will be interpreted as a field, function, or variable. Date

and time constants must be enclosed in quotation marks.

"John"

"1/15/2021"

Concatenate Text

The ampersand symbol is used to join text values into a single value.

"John" & " " & "Smith" //result = John Smith

Chapter 12 Writing Formulas

248

Paragraph Return

The paragraph return symbol is used to insert a carriage return into a text value and

can be placed in a calculation. Although a single return character can be placed outside

of quotes as shown in the second example, putting multiple returns together outside

quotes will produce an error and fail to compile. All three examples in the following

return the same result:

"John Smith" & "¶" & "Jim Smith"

"John Smith" & ¶ & "Jim Smith"

"John Smith¶Jim Smith"

// result = John Smith¶Jim Smith

Tip the paragraph return symbol can be created by typing a “7” while holding
down the option key on macos.

Backslash

Quotes are operators and are not actually part of the value they contain. The backslash

symbol is used to force an operator to be used literally instead. This is referred to as

escaping a string since it allows operator use in a string without causing errors. For

example, a backslash preceding a quote symbol will force the quote symbol to be treated

as text and become part of the result. Without the backslash, FileMaker will interpret the

formula as having a syntax error and not allow it to be saved.

5" // result = syntax error, will not compile

"5\"" // result = 5"

"Hello, World" // result = Hello, World

"\"Hello, World\"" // result = "Hello, World"

Tip Filemaker’s built-in Quote() function will automatically enclose an existing
value into quoted text.

Chapter 12 Writing Formulas

249

Reserved Name

FileMaker will allow a reserved keyword or function name to be used as a table name or

field name. However, when referencing these in a formula, an error may occur because

FileMaker has no way to distinguish between it as a field reference instead of an operator

or function call. For example, you can name a field “AND,” but when referring to it in a

formula, it must be wrapped in curly brackets with a preceding dollar sign in order for it

to be interpreted as a field and compile:

${AND}

Tip avoid using reserved names as table or field names!

 Understanding Operator Precedence

Operators in a calculation formula are evaluated in the following order of precedence:

 1. Comments

 2. Space, backslash, paragraph return, reserved name

 3. Parentheses

 4. NOT

 5. Power of (^)

 6. Multiplication, division

 7. Addition, subtraction

 8. Ampersand

 9. Equal to, not equal to, greater than, less than, greater than or equal

to, less than or equal to

 10. OR, XOR

Chapter 12 Writing Formulas

250

 Reserved Words
A reserved word is a word, term, or symbol used by FileMaker for function names,

predefined parameters, and operators and to construct SQL statements. These should

not be used as names for tables, fields, custom functions, and other objects to avoid

problems when writing formulas. Claris provides a list on their site by searching

“Reserved words in FileMaker Pro” or following this address:

https://support.claris.com/s/article/Reserved-words-in-FileMaker-

Pro- 1503693036814

 Variables
A variable is a developer-named letter, word, or phrase that stores a value which can be

used in a calculation formula and other places in the development interface.

 Types of Variables

FileMaker has three different variable types, each with a different naming requirement

and scope: statement, local, and global. Although variables can be named using a

variety of different formats, there are a few general naming considerations to keep in

mind. Variable names should avoid reserved words and field names to avoid confusion

and conflicts in formulas. As with names elsewhere, variable names should be concise

to avoid clutter but with enough descriptive clarity to indicate what data it contains.

Overall, be consistent in case; choose either camel-case (variableNameExample), dot-

delimited (variable.name.example), underscore-delimited (variable_name_example), or

some other format of your choosing.

Statement Variables

A statement variable is a variable initialized within Let or While statements (Chapter 13).

These only exist when the statement is being actively evaluated. Except for the normal

restrictions, FileMaker imposes no special naming requirements to a statement variable.

Names can be as short as a single character or a lengthy, multi-word phrase like any of

the following examples. Since statement variables are limited to the statement in which

they are defined, they can’t conflict with similarly named variables in other formulas

or within the same formula outside of the statement containing them. Therefore,

Chapter 12 Writing Formulas

251

standardized names can be reused from one formula to the next without concern for

conflict.

X

data

firstName

first_Name

dateToProcess

table.name

Local Variables

A local variable is a variable that persists temporarily during the evaluation of a formula,

custom function or the execution of a script. A local variable can be initialized within a

Let or While statement (Chapter 13) and with the Set Variable script step (Chapter 25)

and has a variety of uses. Store information at one position in a script for use later in

the same script, share information between a script and a custom function, or store

information from one iteration to the next in a recursive custom function (Chapter 15).

FileMaker requires that local variables be named with a single dollar symbol prefix.

Beyond that, the name can be as short as a single character or a lengthy, multi-word

phrase and can use any of a variety of delimiters, as shown in the following examples.

Since local variables are limited to the formula or script in which they are defined, they

can’t typically conflict with similarly named variables in other scripts. However, multiple

calls to custom function from the same script will retain any local variables used by that

function.

$x

$data

$firstName

$recordNumber

$dateToProcess

$date.to.process

$date_to_process

Chapter 12 Writing Formulas

252

Global Variable

A global variable is a variable that is accessible from any formula anywhere within

a single database file and will persist until the file is closed. Like local variables, a

global variable can be initialized within a Let or While statement and the Set Variable

script step. Global variables can be used to store custom preference settings that

control custom functionality, stage data being prepared for some purpose, or log

troubleshooting information to help track down problems with complex, multi-script

processes or iterative formulas.

Tip limit global variables to information truly used universally within the file!
avoid using them to exchange data between scripts; use parameters instead
(Chapter 24).

FileMaker requires that global variables be named with a double dollar symbol

prefix. Beyond that, names can be as short as a single character or a lengthy, multi-word

phrase and can use any of a variety of delimiters, as shown in the following examples.

Since they are global, they must each be uniquely and carefully named to avoid

confusion and conflicts with other global variables used for different purposes in the

same file. However, since they are not shared between files, standardized names can be

reused from one file to the next without concern about them overwriting each other.

$$x

$$data

$$firstName

$$recordNumber

$$dateToProcess

$$date.to.process

$$date_to_process

Tip the Data Viewer (Chapter 26, “exploring the Data Viewer”) can be used to
monitor global variables anytime and local variables during the execution of a
script.

Chapter 12 Writing Formulas

253

 Exploring the Calculation Interface
To experiment with formulas, use the Example Calculation field of the Sandbox table in

the Learn FileMaker database. To begin, follow these steps:

 1. Open the Learn FileMaker database.

 2. Switch to the Sandbox layout.

 3. Select the File ➤ Manage ➤ Database menu item.

 4. Click on the Fields tab.

 5. Confirm Sandbox in the Tables pop-up on the upper left.

 6. Click on the Example Calculation field.

 7. Click the Options button.

 Exploring the Specify Calculation Dialog
All formulas are written in a Specify Calculation dialog, shown in Figure 12-2.

Figure 12-2. The dialog window used to specify a calculation formula

Chapter 12 Writing Formulas

254

 1. Field Selector Pane – Select a table occurrence and choose a field

to insert a field reference into the formula.

 2. Context Indicator – For calculation fields only, choose an

occurrence to serve as the context for the formula if more than

one occurrence exists for the field’s table.

 3. Formula Text Area – This is the formula’s code. Type, drag-drop,

copy-paste, or insert content by clicking on the panes to the left

and right to build the formula.

 4. Operators – Use these buttons to quickly insert an operator.

 5. Functions Pane – A list of built-in, custom, and plug-in provided

functions that can be inserted into the formula. They can be

organized hierarchically or alphabetically.

 6. Settings for calculation fields only:

• Calculation Result Is – Select a data type for the result for field

calculations. Other formulas automatically specify by object or

function type, e.g., button names must be text.

• Number of Repetitions – Specify the number of repetitions.

• Do Not Evaluate Checkbox – Select to automatically return no

value if every field referenced in the formula is empty.

• Storage Options – Open a dialog of storage options.

 Writing Formulas
Formulas can contain any combination of components and range greatly in

complexity. All the examples in this section assume the formula is being typed into the

Sandbox::Example Calculation field in the Learn FileMaker database, so you can see the

results in that field on the Sandbox Form layout.

Chapter 12 Writing Formulas

255

 Constant-Only Formula
A constant-only formula is a formula that evaluates to a literal value without performing

any actual operations. It is basically a statement containing a single value that will always

evaluate to a result of the same value. These have a practical value as a way of storing static

information such as a current tax rate or value(s) used as a relationship match field to

connect to a subset of related records of a certain type. For now, it will serve as the most

basic example to get us started writing simple formulas. Type “Hello World” into the formula

area, and select a calculation result data type of text. The dialog should now look as shown in

Figure 12-3. After saving the formula, the Example Calculation field on the layout should now

display the text "Hello World" for every record. The result is the same because the formula

returns a static value. For it to vary from one record to the next, the formula would require

components that vary from one record to the next, such as field references.

 Creating Intentional Errors
Before moving forward, it is important to understand the difference between a syntax

error and a result error. A syntax error is an error with the format or language of the code

which causes it to fail when attempting to compile and save the formula. To illustrate

Figure 12-3. A simple calculation formula with a static result

Chapter 12 Writing Formulas

256

this with the simple constant formula, remove the final quotation symbol from the

previous formula. When you attempt to save the calculation, FileMaker will display the

error dialog message shown in Figure 12-4. When a syntax error is detected, FileMaker

will not allow you to save the formula until it is correctly formatted. Not every syntax

error message will be this specific, but it usually gives you enough information to help

determine the nature of the error.

By contrast, a compiled and saved formula can produce a result error indicating

a problem with the formula’s settings or a component used within one or more of its

operations. In this case, the result of the formula will be a question mark. To illustrate

this, restore the formula’s closing quote mark to eliminate the syntax error. Then change

the selection in the Calculation result is pop-up menu to date, time, or timestamp.

FileMaker will allow the formula to be saved because the syntax is correct and it doesn’t

compare the result type setting (date) to the actual result data type (text) because it

assumes you have responsibly created a formula that produces the result you indicated.

When you look at the field on a record, the result will be displayed as a question mark.

Not every mismatch type produces a syntax error. Some, like number and container, will

display a text result that looks normal but may not behave as expected when searching,

sorting, or using the information in other formulas.

 Experimenting with Storage Options
Like entry fields, calculation fields have storage options that control how the result of a

formula is stored, shown in Figure 12-5. The settings for global storage and indexing work

similar to entry fields (discussed in Chapter 8) with an additional option for indexing.

The Do not store calculation results checkbox forces a calculation to never index results

and instead automatically recalculates anytime the field is accessed or displayed. This

box is unchecked by default when a new field is created.

Figure 12-4. An example error message for formula syntax errors

Chapter 12 Writing Formulas

257

To demonstrate the effect of storage, start with the "Hello World" formula

configured to return a text result and the Do not store box unchecked. Save the formula

and confirm that the field displays correctly in Browse mode. Then, open the formula

again and type two forward slashes in front of the text to convert the entire formula into a

comment, as shown in this example.

// "Hello World"

Without making other changes, save the formula and again view it in Browse mode.

Don’t be surprised if it still displays the value “Hello World” as if nothing changed. This

is due to the existing records containing a stored result. If you select the Record ➤ New

Record menu, the new record will correctly display a blank value in the field reflecting

the fact that the formula is commented out. With the checkbox set to not recalculate

the results, the previous value remains in older records and appears unchanged until

something triggers an update.

Like other field types, calculations use index settings to pre-process data in a way

that will speed up searches or establish relationships. However, this setting allows a

calculation field to not recalculate an updated result when nothing else triggers it to

Figure 12-5. The Storage Options dialog with indexing disabled

Chapter 12 Writing Formulas

258

reevaluate. If the formula is modified significantly, it will prompt every record to refresh

the results. For example, if the formula changes to a completely different text constant,

it will update to display the new value. To force the commented out example work

correctly, check the Do not store calculation results checkbox, save, and view in Browse

mode. The field will be empty for all records, including existing records.

Although this simple example isn’t a practical representation of the kinds of

challenges you will face, it illustrates simply that there will be times when you need to

adjust the storage settings. For example, a formula that uses built-in functions like Get

(FoundCount) or Get (RecordNumber) will require forced recalculate by checking

the box forbidding storage. Unlike these, formulas that include references to fields will

update automatically whenever those field values are modified.

 Inserting Formula Components
The Specify Calculation dialog allows the insertion of field references, functions, and

operators into a formula. Text can be entered many ways: type, copy-paste, or drag-drop

text. Field references and function calls can also be inserted by double-clicking on an

item in the panes on either side of the dialog.

 Using Auto-complete

The formula area of the dialog combines text-based entry with dynamic assistance that

detects key phrasing and presents an auto-complete suggestion interface, as shown in

Figure 12-6. As you type, the list of available components refreshes to include a mixture

of every built-in function, custom function, and field that starts with the letter or phrase

typed. In the example, the letter “E” causes a list of three functions and a bunch of fields.

As you continue typing – “Ex,” “Exa,” and “Exam” – the list continuously filters until you

see only a list of our example fields.

Chapter 12 Writing Formulas

259

When the auto-complete list appears, you have the option to ignore it while

continuing to type or to select an item for rapid insertion. An item can be located in the

list by scrolling, vertically navigating with the arrow keys, or continuing to type enough

text until the desired item is the default selection at the top of the list. Once located and

selected, insert it into the formula by either double-clicking or typing the Enter key.

 Using the Field Selection Pane

The field selection panel, shown in Figure 12-7, is used to locate and insert a field

reference.

Figure 12-6. An example of the auto-complete function when typing into formulas

Chapter 12 Writing Formulas

260

The pop-up menu at the top is used to select which table occurrence’s fields are

listed below. The default selection is based on the current context. When editing a

calculation field, the default will be the table containing the field being defined, and

the occurrence list will be separated into related and unrelated occurrences to help

distinguish which relationships can be used. When editing a formula for a layout

object, script step, or other item, the list defaults to the current layout’s table and

lists all occurrences alphabetically leaving you responsible for safely selecting a valid

relationship based on the appropriate context that will be active at the moment of

execution. Once an occurrence is selected, the field list updates and can be searched or

sorted. To insert a reference into the formula, double-click it.

Figure 12-7. The field selection pane on the left side of the dialog

Chapter 12 Writing Formulas

261

 Using the Function Selection Pane

The function selection panel, shown in Figure 12-8, is used to locate and insert a function

into a formula. It includes a list of built-in functions (Chapter 13), custom functions

(Chapter 15), and plug-in functions (Chapter 28). The list of functions can be grouped

by category (shown) or listed alphabetically using a menu hidden under the sort icon.

Search by keyword in the text area or by selecting one category from the sort menu. After

locating a desired function, double-click it to insert it into the formula. At the bottom of

this pane is a short description and a help button to open the online documentation for

the selected function.

Figure 12-8. The function pane on the right side of the dialog

Chapter 12 Writing Formulas

262

 Creating Repeating Calculation Fields
A calculation field can be defined as repeating by entering a number in the Number of

repetitions at the bottom of the Specify Calculation dialog. A repeating calculation works

like a repeating entry field (Chapter 8). However, there are a few techniques and built-in

functions that may be necessary when working with repeating calculation fields.

 Using Repeating Fields in a Repeating Calculation

Repeating calculations work as expected when all fields used in the formula are

configured with the same number of repetitions as the calculation field. The example

illustrated in Figure 12-9 shows two entry fields containing numbers that are added

into a sum within a calculation field. Each field is defined with three repetitions. In the

example shown, the calculation field’s formula would be defined to add the numbers

together. The formula is automatically applied to each repetition set of the two entry

fields, and the resulting value for each is placed into the corresponding repetition in the

calculation field.

Repeating Number 1 + Repeating Number 2

 Using Non-repeating Fields in a Repeating Calculation

When non-repeating fields are used in a repeating calculation field’s formula, use the

Extend function to allow the non-repeating field to be virtually expanded to match

the number of repetitions. The example illustrated in Figure 12-10 shows one single-

repetition entry field, another entry field with three repetitions, and a calculation field

with three repetitions.

Figure 12-9. An illustration of a calculation where all fields have the same
number of repetitions

Chapter 12 Writing Formulas

263

For the formula to successfully apply the value in the non-repeating field to each

value in the repeating field and generate three results, the formula must extend the non-

repeating field as shown in the following example. The single value will be treated as if it

were three separate repetitions, each populated with the same value.

Extend (Non-Repeating Number) + Repeating Number 1

 Other Repetition Functions

There are other built-in functions that are useful in both repeating and non-repeating

calculations. The Get (ActiveRepetitionNumber) function returns a number indicating which

repetition of the current field has the cursor focus. This can be used by interface- related

calculations and script steps to determine where the cursor is located within a repeating

field. The GetRepetition function can be used to extract the value from a specific repetition

of a specified repeating field. The Get (CalculationRepetitionNumber) function returns

a number indicating which repetition of a repeating calculation field is currently being

evaluated. This allows the calculation field formula to know which repetition of its own

field structure is currently being evaluated when each repetition needs to perform slightly

different functionality.

 Including Space for Visual Formatting
When compiling a formula, FileMaker will ignore any extra spaces, tabs, and paragraph

returns that are outside of quoted text. This means you can add white space throughout

a formula to spread out the code and make it easier to read. When writing formulas,

consider a policy of always adding space between items to expand complex statements

into an easier to read format.

Figure 12-10. An illustration of a mixture of repeating and non-repeating fields

Chapter 12 Writing Formulas

264

 Adding a Space Between Items

Space can be added between formula components to spread the text horizontally

and making it easier to read. The following pairs of code show a cramped example

without spaces and the same line repeated with space added. In each set, the two are

functionally identical.

(150+50)/25

(150 + 50) / 25

$FirstName&$Space&$LastName

$FirstName & $Space & $LastName

Get(CurrentDate)

Get (CurrentDate)

 Expanding Complex Statements

Formulas involving complex Case, Let, Substitute, While, and certain JSON functions

(Chapters 13 and 14) can benefit from spaces, tabs, and carriage returns. While the exact

format may vary depending on the complexity of the statement and the use of nested

clauses, the following simple examples show a few patterns of the author’s preferred

format for separating and indenting complex statements to enhance their visual format:

// CASE Example

Case (

 Condition1 = result1 ;

 Condition2 = result2

)

// LET Example

Let ([

 var1 = expression1 ;

 var2 = expression2

] ;

 calculation

)

// SUBSTITUTE Example

Chapter 12 Writing Formulas

265

Substitute (

 Text ;

 [searchString1 ; replaceString1] ;

 [searchString2 ; replaceString2]

)

 Managing Character Limits

FileMaker limits the overall text of each formula to 30,000 characters. When writing

lengthy formulas, the natural tendency to avoid adding spaces, tabs, and paragraph

returns to save space and avoid hitting that limit. However, there are techniques that can

be employed to manage space without requiring code to become condensed and less

readable. First, evaluate the reasons why the formula is so long. With some exceptions,

lengthy formulas often have redundant elements and phrases. A lengthy field reference

used repeatedly can be condensed into a shorter statement variable with a Let statement

(Chapter 13). For example, a field reference of Contact::Contact Name First can be

placed into a variable called something like “nameFirst” and used repeatedly, with

each subsequent instance using far less space. Also, renaming variables to shorten their

length without losing clarity can save space. Some parts of a formula can be offloaded

to a custom function (Chapter 25), especially when the functionality is generic and

used elsewhere in the database. Another option is to break a complex calculation into

separate fields or script steps, rather than trying to force a huge process into one.

Tip make a habit of efficient coding with meticulous attention to clarity and an
efficient technical design regardless of formula length.

 Adding Simple Calculations to the Example File
To experiment with formulas, add a couple of simple calculations to tables in the Learn

FileMaker database.

Chapter 12 Writing Formulas

266

 Company Contact Count
In the Company table, follow these steps to add a new calculation field called “Company

Contact Count” with a formula that counts related contact records:

 1. Open the Manage Database dialog and select the Fields tab for the

Company table.

 2. Create the new calculation field.

 3. Select the Company | Contact table occurrence from the pop-up

menu in the field selection panel.

 4. In the formula area, begin typing “Count” and select the Count

function from the auto-complete list.

 5. Double-click on the Record ID field from the Company | Contact

table occurrence. The formula should read

Count (Company | Contact::Record ID)

 6. Make sure the result type is number.

 7. Click to save and close the dialog.

 8. Place the new field on the Company layout to confirm that

it accurately counts the related contacts for each company.

Remember that the count will vary from one record to the next

depending on company assignments to contacts.

 Contact Full Name and Address Label
In the Contact table, add a new calculation field named “Contact Name Full” and define

the formula to concatenate the first and last names. This can be used on layouts and in

calculations instead of constantly using the two fields in formulas separately.

Contact Name First & " " & Contact Name Last

Then, add another field named “Contact Address Label” and define the formula to

contain the address formatted as a single text value. The formula will look like this:

Contact::Contact Name Full & "¶" &

Contact::Contact Address Street & "¶" &

Chapter 12 Writing Formulas

267

Contact::Contact Address City & ", " &

Contact::Contact Address State & " " &

Contact::Contact Address Zip

// Result =

Karen Smith

521 Loft Street

Sleepytown, CA 55555

Tip use the Case or List functions (Chapter 13) to build a label without extra
space caused by missing information in empty fields.

 Summary
This chapter introduced the basics of writing formulas. In the next chapter, we will see

many practical examples of formulas using a variety of useful built-in functions.

Chapter 12 Writing Formulas

269
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_13

CHAPTER 13

Exploring Built-in
Functions
FileMaker includes a library of over 300 built-in functions that can be used in formulas to

perform common functionality. This chapter explores many essential built-in functions,

covering the following topics:

• Working with numbers, dates, and times

• Working with text

• Working with value lists

• Introducing Get functions

• Accessing fields

• Aggregating data

• Using statement functions

Note Although most examples show literal values used as parameters,
remember these can be variables, field references, nested expressions, and even
nested calls to other functions.

 Working with Numbers, Dates, and Times
There are numerous functions available for getting, generating, parsing, and

manipulating numbers, dates, and times.

https://doi.org/10.1007/978-1-4842-6680-9_13#DOI

270

 Using Number Functions
Beyond the obvious basic mathematical operations available, there are many built-in

functions that provide more advanced numeric functionality: Int, Random, Round, Mod,

Set Precision, and Truncate.

 Int

The Int function returns the integer part of a number by dropping any digits to the right

of the decimal without rounding.

Int (34.2653) // result = 34

Int (-2.85) // result = -2

Int (10 / 3) // result = 3

 Random

The Random function generates a pseudo-random number between 0 and

.99999999999999999999. The result can be multiplied by any integer to generate a

random number between 0 and that number.

Random // result = .69521348632189605699

Random // result = .49928041600104466902

Random // result = .16828354164749970145

Int (10 * Random) // result = 8

Int (10 * Random) // result = 3

Int (25 * Random) // result = 4

Int (25 * Random) // result = 16

 Round

The Round function rounds a number to a chosen number of decimal places. It accepts a

number and precision parameter, with the latter being the number of decimal places that

should be included in the result generated from the former.

Round (10.1564 ; 2) // result = 10.16

Round (10 / 3 ; 0) // result = 3

ChApter 13 exploring Built-in FunCtions

271

 Mod

The Mod function calculates a remainder from the result of a number being divided by

a divisor. It accepts a number and divisor as parameters. This is can be used to convert

units of measure, such as seconds to minutes, minutes to hours, or days to years.

Mod (100 ; 60) // result = 40

Mod (410 ; 365) // result = 45

Int (310 / 60) & " hours, " & Mod (310 ; 60) & " minutes"

// result = 5 hours, 10 minutes

 SetPrecision

The SetPrecision function evaluates a math expression with a specified precision. This

is not a rounding or truncating function but a way of expanding the decimal precision

beyond the default of up to 16 digits returned by FileMaker. It accepts an expression and

precision as parameters, with the latter being a number between 16 and 400 indicating

the desired precision. Providing a precision value less than 16 will return the default of

up to 16 digits.

22 / 7 // result = 3.1428571428571429

SetPrecision (22 / 7 ; 20) // result = 3.14285714285714285714

SetPrecision (22 / 7 ; 30) // result = 3.142857142857142857142857142857

 Truncate

The Truncate function shortens a number to a specified decimal precision without

rounding. It accepts a number and precision as parameters.

Truncate (10.246913 ; 2) // result = 10.24

Truncate (22 / 7 ; 4) // result = 3.1428

 Working with Dates and Times
Built-in functions allow getting, creating, parsing, and calculating date- and time-related

information.

ChApter 13 exploring Built-in FunCtions

272

 Getting Current Information

There are several Get functions that return the current date, time, or timestamp.

Get (CurrentDate) // result = 1/15/2021

Get (CurrentTime) // result = 2:05:10 PM

Get (CurrentTimestamp) // result = 1/15/2017 2:05:10 PM

Getting Coordinated Universal Time (UTC)

This function returns the current time in Coordinated Universal Time (UTC) to the

nearest millisecond without regard to the current time zone. UTC was previously known

as Greenwich Mean Time (GMT) and is the primary time standard used to regulate

clocks. The result represents the current time of the computer running the script in the

form of the number of milliseconds since “1/1/0001 12:00 AM,” without regard to the

user’s current time zone.

Get (CurrentTimeUTCMilliseconds) // result = 63603934624024

To calculate the time for a specific time zone, factor in the UTC time zone adjustment

for the region. For example, when New York City is 4 hours behind UTC, this formula will

return the time adjusted for that region:

GetAsTimestamp (

 Round ((Get (CurrentTimeUTCMilliseconds) + (-4 * 3600000)) / 1000 ; 0)

)

Caution universal time is not adjusted for daylight savings, so the preceding
example will be off by an hour half of the year unless your formula adjusts for that
change.

 Creating Dates

The Date function accepts a numeric month, day, and year parameters and returns a date

object. The following examples demonstrate how a date object is created. The first provides

three values used to construct the date. The second shows that any of the parameters

can be expressions which will be evaluated prior to the construction of the date.

ChApter 13 exploring Built-in FunCtions

273

The third example shows how the function will automatically shift to a new month, day,
or year if the month or day provided falls out of range. For example, a month value of 13
causes the function to automatically return a date for January of the next year.

Date (1 ; 15 ; 2021) // result = 1/15/2021
Date (1 ; 15 ; 2021 + 10) // result = 1/15/2031
Date (13 ; 15 ; 2021) // result = 1/15/2022

The automatic date shift can be used to dynamically calculate the last day of any
month regardless of the number of days in that month. Build a date for the following
month with a negative one for the day. The result will be one day before the first of the
month specified, i.e., the last day of the previous month.

Date (4 ; -1 ; 2021) // result = 3/30/2021
Date (7 ; -1 ; 2021) // result = 6/29/2021

 Parsing Dates
Each of these parsing functions accepts a date parameter and returns a specific component
indicated by the function name. The date provided can be a formal date from a date field or

constructed with the Date function. It also accepts a literal text-based date.

Day (Date (1 ; 15 ; 2021)) // result = 15

Day ("2/26/2021") // result = 26

DayName (Date (1 ; 15 ; 2021)) // result = Friday

DayName ("6/27/1758") // result = Tuesday

DayOfWeek (Date (1 ; 15 ; 2021)) // result = 6

DayOfWeek ("6/27/1758") // result = 3

DayOfYear (Date (1 ; 15 ; 2021)) // result = 15

DayOfYear ("6/27/1758") // result = 178

Month (Date (1 ; 15 ; 2021)) // result = 1

Month ("6/27/1758") // result = 6

MonthName (Date (1 ; 15 ; 2021)) // result = "January"

MonthName ("6/27/1758") // result = "June"

WeekOfYear (Date (1 ; 15 ; 2021)) // result = 3

WeekOfYear ("6/27/1758") // result = 26

Year (Date (1 ; 15 ; 2021)) // result = 2021

Year ("6/27/1758") // result = 1758

ChApter 13 exploring Built-in FunCtions

274

The WeekOfYearFiscal function calculates a number representing the week of a

year for a given date based on a specified starting date for a workweek. This is useful in

accounting applications to calculate if a year has an extra pay period because a week is

split across the calendar year boundary. These examples show how Friday, January 2,

2009, can be either the first week of 2009 or the fifty-third week of 2008 depending on the

day number provided as the start of the week, indicated by the second parameter.

WeekOfYearFiscal ("1/2/2009" ; 1) // result = 53

WeekOfYearFiscal ("1/2/2009" ; 2) // result = 1

WeekOfYearFiscal ("1/2/2009" ; 3) // result = 1

WeekOfYearFiscal ("1/2/2009" ; 4) // result = 1

WeekOfYearFiscal ("1/2/2009" ; 5) // result = 1

WeekOfYearFiscal ("1/2/2009" ; 6) // result = 1

WeekOfYearFiscal ("1/2/2009" ; 7) // result = 53

 Creating Times

The Time function accepts a numeric hour, minute, and second parameters and returns a

time object.

Time (9 ; 15 ; 55) // result = 9:15:55

Time (2 ; 8 ; 19) // result = 2:08:19

 Creating Timestamps

The Timestamp function accepts a date and time parameter and returns a timestamp

object. These examples show that timestamps will automatically add the appropriate

AM/PM suffix to the time portion.

Timestamp ("1/15/2021" ; "9:15:55")

// result = 1/15/2021 9:15:55 AM

Timestamp (Date (5 ; 10 ; 1990) ; Time (10 ; 30 ; 00))

// result = 5/10/1990 10:30:00 AM

If the hours are out of normal range, as in military time, the function will

automatically convert to civilian time, also with the appropriate AM/PM suffix:

Timestamp ("1/15/2021" ; "15:15:55")

// result = 1/15/2021 3:15:55 PM

ChApter 13 exploring Built-in FunCtions

275

 Parsing Times

Each of these functions accepts a time or timestamp parameter and returns a specific

component.

Hour ("09:15:55 AM") // result = 9

Hour ("4/20/2021 03:30:00 PM") // result = 15

Minute ("09:15:55 AM") // result = 15

Minute ("4/20/2021 03:30:00 PM") // result = 30

Seconds ("09:15:55 AM") // result = 55

Seconds ("4/20/2021 03:30:00 PM") // result = 0

 Calculating Time Elapsed

There are several ways to calculate the time elapsed from a start and end dates, times,

and timestamps. These examples can be used with values stored in fields and variables

or hard coded into formulas (as shown). The first example calculates the number of

days elapsed, simply subtracting the latter from the former. The others demonstrate

calculating time elapsed.

GetAsDate ("1/30/2021") - GetAsDate ("1/15/2021") // result = 15

Time (11 ; 15 ; 48) - Time (8 ; 10 ; 35) // result = 3:05:13

GetAsTime ("4:15:00 pm") - GetAsTime ("11:15:00 am") // result = 5:00:00

Although timestamps work the same, these will return the amount of time elapsed

between the two date-time combinations. When these span across multiple days, the

results may not be easily human readable, as demonstrated by the following example.

See the “Converting Seconds into a Sentence” example at the end of this chapter to see

how to convert time elapsed into a human-readable form.

GetAsTimestamp ("8/1/2021 10:15 AM") - GetAsTimestamp ("1/1/2021 10:00 AM")

// result = 5088:15:00

 Working with Text
There are numerous functions available for performing various operations on text values

such as analyzing, changing data type, formatting, modifying, and parsing.

ChApter 13 exploring Built-in FunCtions

276

 Analyzing Text
There are three functions available that are used to analyze text: Length, PatternCount,

and Position.

 Length

The Length function counts the total number of characters in the text provided,

automatically converting non-text values to text before counting. For example, a number

will be converted to text and the number of digits returned, e.g., 24 will return “2.”

Length ("Hello World") // result = 11

Length ("Two¶Paragraphs") // result = 14

Length (359) // result = 3

Remembering that formal date objects are different than a date string, notice the

difference in the following examples. The first example converts the date into a number

and then to text and then counts the number of digits. A date string will simply count

characters, producing a different value.

Length (1/15/2021) // result = 17

Length ("1/15/2021") // result = 9

 PatternCount

The PatternCount function counts the number of times a piece of text contains a search

string. The first parameter specifies the text to be searched and the second the string

whose pattern will be counted. The result is a number indicating the number of times

the search string is detected inside the text.

PatternCount ("Hello, World. How is your world today?" ; "world")

// result = 2

PatternCount ("15839" ; "4") // result = 0

PatternCount ("Jim¶John¶Jo" ; "Jo") // result = 2

The function is not case-sensitive and searches for matches anywhere in the text,

including as part of a word or paragraph.

PatternCount ("The age of his page caused RAGE." ; "age") // result = 3

ChApter 13 exploring Built-in FunCtions

277

Tip the PatternCount function finds partial matches in paragraphs. use
FilterValues to find full paragraph values instead (see “Manipulating Value lists”
later in this chapter).

 Position
The Position function finds the numeric starting position of the first character of a

specified occurrence of some text in the provided text. The function accepts four

parameters. The text parameter provides the text that will be searched and the

searchString indicates what pattern of text to locate. A start parameter is a number

indicating the character position, counting from the left, where the search will begin.

Finally, the occurrence parameter is a number indicating the desired occurrence of a

match found in the search string after the starting position that should be used as the

result. So, if a string exists multiple times in the text, the last two parameters can be used

to specify where to begin searching and/or which match of many should be returned.

Position (text ; searchString ; start ; occurrence)

Position ("Where is Waldo today?" ; "Waldo" ; 1 ; 1) // result = 10

Position ("Where is Waldo today?" ; "Waldo" ; 1 ; 2) // result = 0

Position ("Waldo is looking for Waldo?" ; "Waldo" ; 1 ; 2) // result = 22

 Changing Data Types
There are several functions used to convert values into a different data type: Boolean,

date, number, text, time, and timestamp. Each accepts a single value of any data which it

attempts to convert into the desired type indicated by the function name.

 GetAsBoolean
The GetAsBoolean function will convert any value into a Boolean. The result will be 1 (true)

when the data provided converts to a non-zero result or a container field contains a value.

Otherwise, the result will be 0 (false).

GetAsBoolean ("Hello, World") // result = 0

GetAsBoolean ("Hello" = "World") // result = 0

GetAsBoolean ("100") // result = 1

ChApter 13 exploring Built-in FunCtions

278

 GetAsDate
The GetAsDate function will convert a value into a formal date object. The data provided

can contain leading zeros or not, as shown in these examples:

GetAsDate ("1/5/2021") // result = 1/5/2021

GetAsDate ("01/05/2021") // result = 1/5/2021

Text-based dates that include a two-digit year will be automatically converted with

the assumption that the date falls within the next 30 years or the preceding 70 years

from the current date (Chapter 8, “Two-Digit Date Conversion”). Dates intended to fall

outside of that range will get incorrect results if you don't use four-digit years. These

examples assume a current date of January 5, 2021:

GetAsDate ("1/5/17") // result = 1/5/2017

GetAsDate ("1/5/95") // result = 1/5/1995

GetAsDate ("1/5/50") // result = 1/5/1950

When a number is provided, it will be used to calculate the number of days that have

passed since January 1, 0001. For example:

GetAsDate (737805) // result = 1/15/2021

 GetAsNumber
The GetAsNumber function will convert a value into a number. This can be useful to

ensure proper results when a value is compared to or sorted with other numbers. When

providing numbers as text, they are converted back into numbers. For example:

GetAsNumber ("1234") // result = 1234

GetAsNumber ("015") // result = 15

GetAsNumber ("13.75") // result = 13.75

When converting text, any non-numeric characters will be automatically ignored.

GetAsNumber ("$25.09") // result = 25.09

GetAsNumber ("He ran 9.75 miles.") // result = 9.75

In some cases, relying on automatic filtering of non-numeric characters might not

provide in a desirable result.

GetAsNumber ("3 men ran 9.75 miles.") // result = 39.75

ChApter 13 exploring Built-in FunCtions

279

These examples assume a value of “03” is contained in a Qty text field and show the

importance of converting text into a number prior to comparing it to other numeric

values. Because of the leading zero on the text-based number in the field, the two values

don't appear to be the same (in the first example) until the text is converted to a number

(in the second example).

3 = Qty // result = 0

3 = GetAsNumber (Qty) // result = 1

Similarly, comparisons will fail when a value isn’t numeric. The following examples

assume a value of “20” is contained in a Qty text field. Since it is a text value, 20 will

appear as a smaller value than 3 because the text is compared character by character

rather than the entire value compared as a number. Once converted to a number, as

shown in the second example, it evaluates correctly.

3 > Qty // result = 1

3 > GetAsNumber (Qty) // result = 0

 GetAsText

The GetAsText function converts any value to a text string.

GetAsText (58.75) // result = "58.75"

GetAsText (05:15:00) // result = "5:15:00"

GetAsText (6/30/2016 5:20:49 PM) // result = "6/30/2016 5:20:49 PM"

The function will even convert a container content into one of two values depending

on how the file is stored (Chapter 10, “Explaining Container Storage Options”). When

stored internally, the name of the file will be returned. When a file is stored as a

reference, the result will be a metadata string that varies by file type but includes the file’s

name and path.

GetAsText (Contact::Image)

 // result = Mark Munro.jpg

GetAsText (Contact::Image)

 // result =

 size:191,175

 image:Mark Munro.jpg

 imagemac:/Macintosh HD/Users/admin/Desktop/Mark Munro.jpg

ChApter 13 exploring Built-in FunCtions

280

 GetAsTime
The GetAsBoolean function converts a text-based time or timestamp value into a time

object to ensure proper results when compared to or sorted with other times. Non-time

values will result in an error.

GetAsTime ("5:15:00") // result = 5:15:00

GetAsTime ("Hello, World") // result = ?

 GetAsTimestamp
The GetAsTimestamp function converts a text-based value into a timestamp object

to ensure proper results when compared to or sorted with other times. When the text

provided does not contain information for a full timestamp, the function will fill in the

missing information. For example, when a date is provided without time information,

the function returns a timestamp for midnight on the specified date. When a number is

provided, the function returns timestamp for that number of seconds since the first of

January in the year 0001.

GetAsTimestamp ("1/5/2017 5:15:00") // result = 1/5/2017 5:15:00

GetAsTimestamp ("1/1/2017") // result = 1/1/2017 12:00 AM

GetAsTimestamp (100000) // result = 1/2/0001 3:46:40 AM

 Converting Text Encoding
There are three functions that are useful when preparing text for web-related uses or

other uses.

 Encoding Text for URLs
The GetAsURLEncoded function encodes text for use in a Uniform Resource Locator

(URL). Any style information is removed from the text, and all characters are converted

to UTF-8 format. Any non-letter or digit characters that are in the upper ASCII range

are percent encoded, meaning they are converted to a percent symbol followed by the

hexadecimal value of the character, e.g., spaces are converted to “%20”. The function

accepts a single text parameter.

GetAsURLEncoded ("Hello World") // result = "Hello%20World"

GetAsURLEncoded ("10% Surcharge") // result = "10%25%20Surcharge"

ChApter 13 exploring Built-in FunCtions

281

 Converting to CSS

The GetAsCSS function converts formatted text into the Cascading Style Sheet (CSS)

format, preserving the font, font size, font color, and font style attributes in a markup

format. The style information must be applied directly to the actual text content as this

function doesn’t look at layout settings applied to change how a field displays text. The

following example assumes a record in a Contact table with a field named Contact Notes

that contains the word “Hello” where the font is “Arial,” the font size is 18, the font style is

bold, and the font color is red.

GetAsCSS (Contact::Contact Notes)

// result = <span style="font-family: 'Arial';font-size: 18px; color:

#FF2712;font-weight:bold;" >Hello

 Converting Text to SVG

The GetAsSVG function converts text to the Scalable Vector Graphics (SVG) format,

which supports more text formats than HTML and may represent text more accurately

in certain cases. This example assumes a record in a Contact table with a field named

Contact Notes that contains the same styled text from the previous example.

GetAsSVG (Contact::Contact Notes)

// result =

<stylelist>

<style#0>"font-family: 'Arial';font-size: 18px;color: #FF2712;font-weight:

bold;",begin: 1, end: 4</style>

</stylelist>

<data>

Hello

</data>

 Modifying Text
There are many functions available for performing text modifications, including

changing case, filtering, and substituting characters.

ChApter 13 exploring Built-in FunCtions

282

 Changing Case

Three functions, each accepting a single text parameter, change the case of characters to

Upper, Lower, and Proper.

Upper ("Hello, World") // result = "HELLO, WORLD"

Upper ("this is screaming") // result = "THIS IS SCREAMING"

Lower ("Hello, World") // result = "hello, world"

Lower ("THIS IS SCREAMING") // result = "this is screaming"

Proper ("hello, world") // result = "Hello, World"

Proper ("THIS IS SCREAMING") // result = "This Is Screaming"

 Filter

The Filter function removes unwanted characters from a text value. Two parameters are

required: the text to be filtered followed by a string of allowable characters. Any character

not present in the second parameter will be removed from the text provided in the first.

Filter ("Hello World" ; "1234567890") // result = ""

Filter ("1 Hello 2 World 3" ; "1234567890") // result = "123"

Filter ("Las Vegas, NV 89101" ; "1234567890") // result = "89101"

Filter ("(212) 555-1234" ; "1234567890") // result = "2125551234"

Filter ("The total purchase is $5,000.00" ; "1234567890$.,") // result =

"$5,000.00"

Tip see FilterValues later in this chapter to perform a similar function with entire
paragraphs instead of individual characters.

 Substitute

The Substitute function replaces a search string within a piece of text with a replacement

string. When specifying one search-replacement pair, the function is called with three

parameters as shown here.

Substitute (text ; searchString ; replacementString)

ChApter 13 exploring Built-in FunCtions

283

These examples demonstrate the function making simple replacements where one

search value is replaced with one replacement value:

Substitute ("One Two Four" ; "Four" ; "Three")

 // result = "One Two Three"

Substitute ("Hello World? It is good to see you?" ; "?" ; "!")

 // result = "Hello World! It is good to see you!"

To specify multiple search-replace pairs in a single statement, each set of search and

replacement strings is contained within square brackets and separated by a semicolon as

shown in the following pattern:

Substitute (text ;

 [searchString1 ; replacementString1] ;

 [searchString2 ; replacementString2] ;

 [searchString3 ; replacementString3]

)

The following example demonstrates two search-replace pairs, first replacing “Four”

with “Three” and then replacing “Six” with “Four”:

Substitute ("One Two Four Six" ; ["Four" ; "Three"] ; ["Six" ; "Four"])

// result = "One Two Three Four"

In this example, the result will be the text in the Notes field with all carriage returns

and tabs removed:

Substitute (Table::Notes ; ["¶" ; ""] ; [" " ; ""])

This example shows a crude method of clearing extra space in a piece of text using

three substitutions – replacing a quadruple space, triple space, and double space with a

single space in succession to ensure that most extra spaces are removed:

Substitute (Table::Text Field ; [" " ; " "] ; [" " ; " "] ; [

" " ; " "])

Tip to guarantee all extra spaces are removed, repeatedly substitute double
spaces with single spaces until none remain using the While function (described
later in this chapter).

ChApter 13 exploring Built-in FunCtions

284

 Parsing Text
Several text parsing functions can extract characters or words from the beginning,

middle, or end of a text value. These include Left, Right, Middle, LeftWords, RightWords,

and MiddleWords.

 Extracting Characters

The Left function extracts a specified number of characters from the provided text

starting from the first character on the left. If the number specified is greater than the

number of characters in the text provided, the function simply returns the original value.

Left ("Hello, World" ; 8) // result = "Hello, W"

Left ("Hello, World" ; 100) // result = "Hello, World"

The Right function extracts a specified number of characters starting from the last

character on the right.

Right ("Hello, World" ; 5) // result = "World"

The Middle function extracts a specified number of characters from a specified

position within a text string. Unlike the Left and Right functions, Middle requires a start

parameter indicating where to begin pulling the specified number of characters.

Middle (text ; start ; numberOfCharacters)

Middle ("Good Morning Everyone." ; 6 ; 7) // result = "Morning"

Middle (123456789 ; 4 ; 3) // result = 456

 Extracting Words

The LeftWords function extracts a specified number of words from the text provided,

starting from the first word on the left. The words returned will include any space and

punctuation that fall within the range specified.

LeftWords ("Hello, World. How are you?" ; 3) // result = "Hello, World. How"

LeftWords ("Hello, World. How are you?" ; 2) // result = "Hello, World"

The RightsWords function extracts a specified number of words from the text

provided, starting from the last word on the right.

RightWords ("Hello, World. How are you?" ; 3) // result = "How are you"

ChApter 13 exploring Built-in FunCtions

285

The MiddleWords function extracts a specified number of words from the text provided,

starting from a specified word anywhere in the text provided. The following example extracts

two words starting from the third word:

MiddleWords ("Hello World. How are you?" ; 3 ; 2) // result = "How are"

 Working with Values
A value is a return-delimited list of text values where each paragraph is considered a

single value unit. FileMaker provides several functions specifically for counting, parsing,

and manipulating value lists.

 Counting and Parsing Values
Several built-in functions can count and parse values in lists: ValueCount, LeftValues,

RightValues, MiddleValues, and GetValue.

Caution unlike text counting and parsing, these functions work with values, i.e.,
entire paragraphs.

 ValueCount

The ValueCount function counts the number of values in the text specified.

ValueCount ("John¶Jane¶Jim¶Joe¶") // result = 4

 LeftValues

The LeftValues function extracts a specified number of values from a list, starting from

the first value.

LeftValues ("John¶Jane¶Jim¶Joe¶" ; 2) // result = "John¶Jane¶"

LeftValues ("159¶245¶396¶721¶" ; 3) // result = "159¶245¶396¶

LeftValues ("John¶Jane¶Jim¶Joe¶" ; 10) // result = "

John¶Jane¶Jim¶Joe¶"

ChApter 13 exploring Built-in FunCtions

286

 RightValues

The RightValues function extracts a specified number of values from a list, starting from

the last value.

RightValues ("John¶Jane¶Jim¶Joe¶" ; 2) // result = "Jim¶Joe¶"

 MiddleValues

The MiddleValues function extracts a number of values specified by the third parameter

from a list of values in the first parameter starting from a value specified by the second

parameter. In this example, one value is extracted, starting with the second.

MiddleValues ("John¶Jane¶Jim¶Joe¶" ; 2 ; 1) // result = "Jane¶"

Caution When extracting values from the left, right, or middle, a carriage return
after the last value will be included and may need to be removed for use with other
text functions.

 GetValue

The GetValue function extracts a single value from a list by numeric position, without a

trailing return character. If the number specified is greater than the number of values in

the list provided, an empty string will be returned.

GetValue ("John¶Jane¶Jim¶Joe¶" ; 3) // result = "Jim"

GetValue ("159¶245¶396¶721¶" ; 2) // result = 245

GetValue ("John¶Jane¶Jim¶Joe¶" ; 18) // result = ""

 Manipulating Values
A few functions can manipulate values in a list, including FilterValues, SortValues, and

UniqueValues.

ChApter 13 exploring Built-in FunCtions

287

 FilterValues

The FilterValues function removes unwanted values from a list. The function accepts two

parameters: textToFilter contains the values that will be manipulated, and filterValues

indicates the desired values that are allowed to remain in the result. The result will be the

original text with any values not specified in filterValues removed.

FilterValues (textToFilter ; filterValues)

Any filterValues that exists more than once will be included, in the same order as

they originally appear. Notice how partial paragraph matches are not included in the

results. For example, even though “NYC” includes “NY,” it is filtered out because this

function matches values (entire paragraphs) and not partial strings.

FilterValues ("NY¶IN¶OH¶PA¶NY¶IN¶NYC" ; "PA¶NY") // result = "NY¶PA¶NY¶"

FilterValues ("10¶100¶10¶1000" ; "10") // result = "10¶10¶"

This formula can be used to safely detect a full value match in situations where

PatternCount would fail because it finds partial pattern matches. This is shown in the

following two examples, both checking to see if “age” exists in a list of values. In first

example, PatternCount finds three text pattern matches, so it returns a true value even

though there is no complete paragraph value match. In the second example, FilterValues

filters out all three values because none exactly match. So, the second example correctly

returns a false result, indicating that a full value of “age” is not present in the list.

PatternCount ("Rage¶Page¶Sage" ; "age") > 0 // result = 1

FilterValues ("Rage¶Page¶Sage" ; "age") ≠ "" // result = 0

 SortValues

The SortValues function will rearrange the order of values in a list based on a specified

data type. To sort values as text using the file’s default locale, only a single parameter is

required, the text to sort. Optional parameters allow specification of a datatype and/or

locale. All three varieties are shown here:

SortValues (values)

SortValues (values ; datatype)

SortValues (values ; datatype ; locale)

ChApter 13 exploring Built-in FunCtions

288

The values parameter is a list of return-delimited text values to be sorted. The

datatype parameter is a number from 1 to 5 indicating the data type to use when

sorting: 1, text; 2, numeric; 3, date; 4, time; and 5, timestamp. A positive number

indicates an ascending sort, while a negative number sorts descending. The locale

parameter indicates one of several dozen locales to use when sorting, e.g., French,

Norwegian, Ukrainian, etc. The result of the function will be the list provided rearranged.

SortValues ("New York¶Illinois¶Pennsylvania¶California")

// result =

 California

 Illinois

 New York

 Pennsylvania

These three examples sort the same list of numbers different ways. The first sorts

as text because no datatype is specified. The result puts 20 after 100 because “2” sorts

alphabetically after “1,” and the sort is performed one text character at a time. The

second specifies a numeric sort and the third a descending numeric sort.

SortValues ("100¶10¶200¶20") // result = "10¶100¶20¶200"

SortValues ("100¶10¶200¶20" ; 2) // result = "10¶20¶100¶200"

SortValues ("100¶10¶200¶20" ; -2) // result = "200¶100¶20¶10"

 UniqueValues

The UniqueValues function returns a value list with any duplicate values removed. This

function also accepts additional datatype and locale parameters that work the same as

SortValues.

UniqueValues (values)

UniqueValues (values ; datatype)

UniqueValues (values ; datatype ; locale)

These examples show the difference between results when treating the data as text

(default) or specifying a numeric result. Notice that “10” and “10.0” are treated differently

as text but the same when using a numeric datatype.

UniqueValues ("15¶125¶10¶125¶10.0") // result = "15¶125¶10¶10.0"

UniqueValues ("15¶125¶10¶125¶10.0" ; 2) // result = "15¶125¶10"

ChApter 13 exploring Built-in FunCtions

289

 Introducing Get Functions
Get functions provide a single piece of information about the computer’s system, the user’s

environment, the current database context, or the status of various processes. These are

useful when creating conditional formulas or scripts that return different results or perform

a different task based on some aspect of the current context or situation. They each require

a single unchanging parameter, a keyword that indicates the desired information.

Get (<StaticParameter>)

Tip For a complete list of functions and fuller description of those listed here, see
FileMaker’s documentation.

 Credentials and User Information
These functions get information about the user and their database account credentials

(Chapter 30).

Get (UserName) // result = Karen Camacho

Get (AccountName) // result = k.camacho

Get (AccountExtendedPrivileges) // result = fmapp

Get (AccountPrivilegeSetName) // result = [Full Access]

Get (AccountGroupName) // result = dbmarketing

 OS, Computer, and App
These functions get information about the user’s computer and application, or the host

computer.

Get (ApplicationArchitecture) // result = x86_64

Get (ApplicationLanguage) // result = English

Get (ApplicationVersion) // result = ProAdvanced 19.0.1

Get (HostApplicationVersion) // result = Server 19.0.1

Get (HostName) // result = Production-FileMaker-Server.

local

ChApter 13 exploring Built-in FunCtions

290

Get (HostIPAddress) // result = 10.0.1.50

Get (SystemDrive) // result = Macintosh HD

Get (SystemIPAddress) // result = 10.0.1.27

Get (SystemLanguage) // result = "English"

Get (SystemPlatform) // result = 1

Get (SystemVersion) // result = 10.15.5

 Records
These functions get information about the records in the current layout’s table. The

results shown assume the current table contains 500 records and the user is viewing the

15th record in a found set of 125.

Get (FoundCount) // result = 125

Get (TotalRecordCount) // result = 500

Get (RecordNumber) // result = 15

Get (ActiveRecordNumber) // result = 15

The difference between RecordNumber and ActiveRecordNumber is subtly confusing

but useful for layout work. Formulas used in custom functions, custom menus, and

script steps all operate from the window context and will always return the same value

for both of these two functions because the record number will always be the currently

active record number. Alternatively, a formula used on a layout object operates from the

record context so the RecordNumber will always be different for each record, while the

ActiveRecordNumber will always be the same for the entire found set. This can be useful

with the Hide feature (Chapter 21, “Hiding Objects”) where the following formula will

hide a button or other object on every record except the current one.

Get (RecordNumber) ≠ Get (ActiveRecordNumber)

 Layouts
These functions get information about the current layout in the front window:

Get (LayoutName) // result = Sandbox – List

Get (LayoutNumber) // result = 2

Get (LayoutTableName) // result = Sandbox

ChApter 13 exploring Built-in FunCtions

291

Get (LayoutViewState) // result (Form View) = 0

 // result (List View) = 1

 // result (Table View) = 2

 Window
Many Get functions return window properties and dimensions.

 Getting Window Properties

These functions provide information about the frontmost window’s name, mode, style,

or zoom level.

Get (WindowName) // result = "Learn FileMaker"

Get (WindowMode) // result (Browse) = 0

 // result (Find) = 1

 // result (Preview) = 2

 // result (Printing) = 3

 // result (Layout) = 4

Get (WindowStyle) // result (Document) = 0

 // result (Floating) = 1

 // result (Dialog) = 2

 // result (Card) = 3

Get (WindowZoomLevel) // result = 100

 Getting Window Dimensions

Several Get functions access measurement from one of four dimensional domains, as

shown in Figure 13-1. These are useful when setting a window position or size with script

steps (Chapter 25).

ChApter 13 exploring Built-in FunCtions

292

Each of the four domains has a Height and Width function. Because a window can

move around the desktop area, it has an additional Top and Left function.

Get (ScreenHeight) // result = 1440

Get (ScreenWidth) // result = 2560

Get (WindowDesktopHeight) // result = 1417

Get (WindowDesktopWidth) // result = 2560

Get (WindowHeight) // result = 613

Get (WindowWidth) // result = 840

Get (WindowTop) // result = 75

Get (WindowLeft) // result = 100

Get (WindowContentHeight) // result = 492

Get (WindowContentWidth) // result = 825

These functions can be used with the New Window and Move/Resize Window

script steps (Chapter 25, “Managing Windows”) to center a window at a specific point

on screen by calculating a new top and left position based on the height and width

in relation to the screen dimensions. First, get the center point of the screen in each

direction by dividing the height and width in half. Then subtract half of the window’s

Figure 13-1. The four domains of measurement accessible with Get functions

ChApter 13 exploring Built-in FunCtions

293

corresponding dimension from those respective measurements. The following formulas

calculate these two measurements to center an existing window. When creating a new

window, the measurements for the window would need to be manually entered since

the window doesn’t exist yet.

(Get (ScreenHeight) / 2) – (Get (WindowHeight) / 2) // Top

(Get (ScreenWidth) / 2) – (Get (WindowWidth) / 2) // Left

 Accessing Fields
Any calculation can include field references that directly access field content (Chapter 12,

“Field References”). Several functions allow additional access to various meta- information

about fields or advanced access to the data contained within.

 Discovering Active
While any function has direct contextual access to any local or related field, a few functions

access information about the field currently active within the interface. This is useful

when creating functionality that needs to be aware of the current user’s activity to provide

responsive and adaptable features.

Get (ActiveFieldName) // result = Full Name

Get (ActiveFieldContents) // result = Mark Munro

Get (ActiveFieldTableName) // result = "Contacts"

 Converting a Field Reference to Text
The GetFieldName function accepts a field reference and returns the entire reference as

a string. This function can allow field name manipulations with dynamic references to

avoid hard-coding names that may break in the future if a field or table name is changed

(Chapter 12, “Keeping Field Names Dynamic”).

GetFieldName (Contact::Name First) // result = "Contact::Name First"

ChApter 13 exploring Built-in FunCtions

294

 Getting Field Content
There are two built-in functions that return the contents of a field in very specific ways.

These are GetField and GetNthRecord.

 GetField

The GetField function returns the contents of a field based on a text-based field reference

instead of a dynamic field reference. This is useful when building a field reference

dynamically or using a reference stored in a text field or variable. The parameter can be

either the name of the field or a full text-based reference to the table and field, with the

latter required for fields in a related table.

GetField ("Contact Name Full") // result = Mark Munro

GetField ("Contact::Contact Name Full") // result = Mark Munro

Since the function requires a text-based reference, providing a dynamic reference to a

field will fail unless that field referenced happens to contain a text reference to third field.

For example, if a field named “Referring Field” contains the text “Contact::Contact Name

Full,” then the function will accept a dynamic reference to the referring field and use its

content to identify the target field and retrieve its content. This is the only instance where

the function works as expected with a dynamic reference, as demonstrated in the following

three examples. The first passes a text reference to the referring field and returns the actual

contents of that field. The second passes a dynamic reference to the referring field so it uses

the reference contained in the field to identify and successfully return the value of the

full name field. Although the third also passes a dynamic reference, the field contains the

name “Mark Munro” which does not contain a text reference, so it returns an error.

GetField ("Contact::Referring Field") // result = Contact::Contact

Name Full

GetField (Contact::Referring Field) // result = Mark Munro

GetField (Contact::Contact Name Full) // result = ?

 GetNthRecord

The GetNthRecord function returns the contents of a field from a record within the found

set, regardless of the current record. The fieldName parameter must contain a dynamic

reference to a field and the recordNumber parameter the numeric position of a record in

ChApter 13 exploring Built-in FunCtions

295

the current found set, together specifying the desired value. This example would return

the contents of the Contact Name Full field from the fifth record in the found set from the

Contact table.

GetNthRecord (Contact::Contact Name Full ; 5)

This function can be used with an iterative process to “step” through a found set

and gather information across numerous records much faster without having to change

the context of the active record. Use the While function (this chapter), a recursive

custom function (Chapter 15), or a looping script (Chapter 25, “Iterating with Repeating

Statements”).

 Getting Selected Text
Two Get functions allow a calculation to extract the currently selected text within the

field with current active focus. The Get (ActiveSelectionSize) function returns the

number of characters selected, and Get (ActiveSelectionStart) returns the character

position at which a selection of text within a field begins. Together, these make

it possible to extract a selection and replace it with another value. The following

examples use functions discussed previously in this chapter to demonstrate how to

access selection ranges assuming the Contact Notes field has focus (although the Get

(ActiveFieldContents) function can be used instead to pull contents from any field).

In three different steps, we get the selected text, the text before the selection, and the

text after it. Once these three are held in a variable as separate values, the selection can

be modified and then reassembled for placement back into the field using a Set Field

(Chapter 25) or used in some other way.

The Middle function is called with a reference to the field as the first parameter. This

example will extract the selected text from the active field:

Middle (

 Contact::Contact Notes ;

 Get (ActiveSelectionStart) ;

 Get (ActiveSelectionSize)

)

The Left function can extract characters before the selection.

ChApter 13 exploring Built-in FunCtions

296

Left (
 Contact::Contact Notes ;
 Get (ActiveSelectionStart) - 1
)

The Right function extracts the text remaining after the selection.

Right (
 Contact::Contact Notes ;
 Length (Contact::Contact Notes) - Get (ActiveSelectionStart) - Get (

ActiveSelectionSize) + 1
)

 Aggregating Data
Aggregate functions can summarize fields and perform statistical computations on
numbers, dates, and times. Each of these functions can accept a single repeating field or
a list of non-repeating, repeating, or related fields: Average, Count, List, and Sum. Due to
the similarity in behavior and the number of different combinations of input possible, all

the examples in this section use the same data as shown in Figure 13-2.

Figure 13-2. A set of fields, local and related, with simple values that are used for
all the examples in this section

ChApter 13 exploring Built-in FunCtions

297

 Average
The Average function calculates the average of all values in one or more fields. It can

accept a single repeating or related numeric field or multiple numeric fields (repeating

or not) with a semicolon delimiter.

Average (field)

Average (field1 ; field2 ; field3 ; etc.)

 Using the Average Function with Local Fields

A list of non-repeating local fields will return the average based on all the values

contained within the fields provided:

Average (Example::NonRepeating1 ; Example::NonRepeating2 ;

Example::NonRepeating3)

// result = 2

A single repeating local field will return the average based on all the values contained

within that field:

Average (Example::Repeating1)

// result = 6

A list of repeating local fields used in a non-repeating calculation will return the

average based on the first repetition from each field provided:

Average (Example::Repeating1 ; Example::Repeating2 ; Example::Repeating3)

// result = 9

A list of repeating local fields used in a repeating calculation returns the average

for each repetition of the result based on the corresponding repetition from each field

provided:

Average (Example::Repeating1 ; Example::Repeating2 ; Example::Repeating3)

// repetition 1 = 9

// repetition 2 = 10

// repetition 3 = 11

// repetition 4 = 12

// repetition 5 = 13

ChApter 13 exploring Built-in FunCtions

298

 Using the Average Function with Related Fields

A single related, non-repeating field will return the average based on all the values from

that field for each record related to the local record performing the calculation:

Average (Related::NonRepeating1)

// result = 32

A list of related, non-repeating fields returns the average based on the values from the

fields provided for the first related record:

Average (Related::NonRepeating1 ; Related::NonRepeating2 ;

Related::NonRepeating3)

// result = 20

A single related, repeating field will return the average based on the values from every

repetition from every record related to the local record performing the calculation:

Average (Related::Repeating1)

// result = 37

A list of related, repeating fields used in a non-repeating calculation will return the

average based on the values from the first repetition of those fields from the first record

related to the local record performing the calculation:

Average (Related::Repeating1 ; Related::Repeating2)

// result = 24.5

A list of related, repeating fields used in a repeating calculation will return the average

based on the values from the corresponding repetition from each field provided from the

first record related to the local record performing the calculation:

Average (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 24.5

// repetition 2 = 25.5

// repetition 3 = 26.5

// repetition 4 = 27.5

// repetition 5 = 28.5

ChApter 13 exploring Built-in FunCtions

299

 Count
The Count function counts the number of values in one or more fields. Although the

examples shown here count lists of numeric values, the function will count any type of

data files. For example, both “8¶10¶2” and “Mon¶Tues¶Wed” contain three values.

Count (field)

Count (field1 ; field2 ; field3 ; etc.)

 Using the Count Function with Local Fields

A list of non-repeating local fields will return the total non-blank value count based on all

the values contained within the fields provided:

Count (Example::NonRepeating1 ; Example::NonRepeating2 ;

Example::NonRepeating3)

// result = 3

A single repeating local field will return the total non-blank value count based on all

the values contained within that field:

Count (Example::Repeating1)

// result = 5

A list of repeating local fields used in a non-repeating calculation will return the total

non-blank value count based on the first repetition from each field provided:

Count (Example::Repeating1 ; Example::Repeating2 ; Example::Repeating3)

// result = 3

A list of repeating local fields used in a repeating calculation returns the total non-

blank value count for each repetition of the result based on the corresponding repetition

from each field provided:

Count (Example::Repeating1 ; Example::Repeating2 ; Example::Repeating3)

// repetition 1 = 3

// repetition 2 = 3

// repetition 3 = 3

// repetition 4 = 3

// repetition 5 = 3

ChApter 13 exploring Built-in FunCtions

300

 Using the Count Function with Related Fields

A single related, non-repeating field will return the total non-blank value count based on

all the values from that field for each record related to the local record performing the

calculation:

Count (Related::NonRepeating1)

// result = 3

A list of related, non-repeating fields returns the total non-blank value count based on

the values from the fields provided for the first related record:

Count (Related::NonRepeating1 ; Related::NonRepeating2 ;

Related::NonRepeating3)

// result = 3

A single related, repeating field will return the total non-blank value count based on

the values from every repetition from every record related to the local record performing

the calculation:

Count (Related::Repeating1)

// result = 15

A list of related, repeating fields used in a non-repeating calculation will return the

total non-blank value count based on the values from the first repetition of those fields

from the first record related to the local record performing the calculation:

Count (Related::Repeating1 ; Related::Repeating2)

// result = 2

A list of related, repeating fields used in a repeating calculation will return the total

non-blank value count based on the values from the corresponding repetition from each

field provided from the first record related to the local record performing the calculation:

Count (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 2

// repetition 2 = 2

// repetition 3 = 2

// repetition 4 = 2

// repetition 5 = 2

ChApter 13 exploring Built-in FunCtions

301

 List
The List function generates a return-delimited list of values for one or more fields, or

other values.

List (field)

List (field1 ; field2 ; field3 ; etc.)

 Using the List Function with Local Fields

A list of non-repeating local fields will return a carriage return-delimited list based on all

the values contained within the fields provided:

List (Example::NonRepeating1 ; Example::NonRepeating2 ;

Example::NonRepeating3)

// result = 1¶2¶3

A single repeating local field will return a carriage return-delimited list based on all

the values contained within that field:

List (Example::Repeating1)

// result = 4¶5¶6¶7¶8

A list of repeating local fields used in a non-repeating calculation will return a carriage

return-delimited list based on the first repetition from each field provided:

List (Example::Repeating1 ; Example::Repeating2 ; Example::Repeating3)

// result = 4¶9¶14

A list of repeating local fields used in a repeating calculation will return a carriage

return-delimited list for each repetition of the result based on the corresponding

repetition from each field provided:

List (Example::Repeating1 ; Example::Repeating2 ; Example::Repeating3)

// repetition 1 = 4¶9¶14

// repetition 2 = 5¶10¶15

// repetition 3 = 6¶11¶16

// repetition 4 = 7¶12¶17

// repetition 5 = 8¶13¶18

ChApter 13 exploring Built-in FunCtions

302

 Using the List Function with Related Fields

A single related, non-repeating field will return a carriage return-delimited list based on

all the values from that field for each record related to the local record performing the

calculation:

List (Related::NonRepeating1)

// result = 19¶32¶45

A list of related, non-repeating fields will return a carriage return-delimited list based

on the values from the fields provided for the first related record:

List (Related::NonRepeating1 ; Related::NonRepeating2 ;

Related::NonRepeating3)

// result = 19¶20¶21

A single related, repeating field will return a carriage return-delimited list based on

the values from every repetition from every record related to the local record performing

the calculation:

List (Related::Repeating1)

// result = 22¶23¶24¶25¶26¶35¶36¶37¶38¶39¶48¶49¶50¶51¶52

A list of related, repeating fields used in a non-repeating calculation will return a

carriage return-delimited list based on the values from the first repetition of those fields

from the first record related to the local record performing the calculation:

List (Related::Repeating1 ; Related::Repeating2)

// result = 22¶27

A list of related, repeating fields used in a repeating calculation will return a carriage

return-delimited list based on the values from the corresponding repetition from each

field provided from the first record related to the local record performing the calculation:

List (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 22¶27

// repetition 2 = 23¶28

// repetition 3 = 24¶29

// repetition 4 = 25¶30

// repetition 5 = 26¶31

ChApter 13 exploring Built-in FunCtions

303

 Sum
The Sum function adds a series of numbers into a total.

Sum (field)

Sum (field1 ; field2 ; field3 ; etc.)

 Using the Sum Function with Local Fields

A list of non-repeating local fields will return the sum total based on all the values

contained within the fields provided:

Sum (Example::NonRepeating1 ; Example::NonRepeating2 ;

Example::NonRepeating3)

// result = 6

A single repeating local field will return the sum total based on all the values

contained within that field:

Sum (Example::Repeating1)

// result = 30

A list of repeating local fields used in a non-repeating calculation will return the sum

total based on the first repetition from each field provided:

Sum (Example::Repeating1 ; Example::Repeating2 ; Example::Repeating3)

// result = 27

A list of repeating local fields used in a repeating calculation returns the sum total

for each repetition of the result based on the corresponding repetition from each field

provided:

Sum (Example::Repeating1 ; Example::Repeating2 ; Example::Repeating3)

// repetition 1 = 27

// repetition 2 = 30

// repetition 3 = 33

// repetition 4 = 36

// repetition 5 = 39

ChApter 13 exploring Built-in FunCtions

304

 Using the Sum Function with Related Fields

A single related, non-repeating field will return the sum total based on all the values from

that field for each record related to the local record performing the calculation:

Sum (Related::NonRepeating1)

// result = 96

A list of related, non-repeating fields returns the sum total based on the values from

the fields provided for the first related record:

Sum (Related::NonRepeating1 ; Related::NonRepeating2 ;

Related::NonRepeating3)

// result = 60

A single related, repeating field will return the sum total based on the values from

every repetition from every record related to the local record performing the calculation:

Sum (Related::Repeating1)

// result = 555

A list of related, repeating fields used in a non-repeating calculation will return the

sum total based on the values from the first repetition of those fields from the first record

related to the local record performing the calculation:

Sum (Related::Repeating1 ; Related::Repeating2)

// result = 49

A list of related, repeating fields used in a repeating calculation will return the sum

total based on the values from the corresponding repetition from each field provided

from the first record related to the local record performing the calculation:

Sum (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 49

// repetition 2 = 51

// repetition 3 = 53

// repetition 4 = 55

// repetition 5 = 57

ChApter 13 exploring Built-in FunCtions

305

 Using Logical Functions
Logical functions are used to test conditions to produce variable results and perform

other evaluative functions. These include four absolutely essential functions: Case,

Choose, Let, and While.

 Case
The Case function evaluates one or more expressions and returns a result corresponding

to the first expression that returns a true result. If none of the expressions are true, an

optional default result can be included. The function produces a conditional result

similar to nested if-then functions, but it handles multiple statements with less verbiage.

At a minimum, the function requires parameters consisting of one test-result pair where

the result is only evaluated and returned if the test portion is true. The test parameter

must contain a text or numeric expression that evaluates to a Boolean. The result

parameter can be a literal result or an expression that generates any result.

Case (test ; result)

Any number of additional test conditions can be added, and each will be evaluated

in order until one evaluates true and causes the corresponding result to be returned.

Case (test ; result ; test2 ; result2)

Case (test ; result ; test2 ; result2 ; test3 ; result3)

A final, untested result can be included at the end to serve as the result when no

prior test conditions produce a true result. If no default is provided, the result will be

nothing when all tests are false. In this example, if the test and test2 conditions are both

false, the result will be whatever is produced by the defaultResult statement.

Case (test ; result ; test2 ; result2 ; defaultResult)

As these statements grow, consider adding tabs and carriage returns to reformat

them vertically, putting each pair on its own line and making the statement easier to

read and follow the logical execution of tests.

ChApter 13 exploring Built-in FunCtions

306

Case (

 test ; result ;

 test2 ; result2 ;

 test3 ; result3 ;

 test4 ; result4 ;

 defaultResult

)

This example builds a sentence and uses Case to optionally pluralize the word

“widget” if the value in the Qty field is greater than one.

"Enclosed find " & Qty & " widget" & Case (Qty > 1 ; "s") & " for

inspection."

// result examples (varying by Qty) =

// Enclosed find 1 widget for inspection.

// Enclosed find 8 widgets for inspection.

In this example, a field named Elapsed contains the number of days an invoice is past

due and generates one of four different text results indicating its status. If the value is 32,

the result will be “Past Due” because the first two tests were false and the third was true.

Similarly, a value of 64 will result in “Delinquent,” while a value of 20 will receive the “On

Time” default result.

Case (

 Elapsed > 90 ; "Severe" ;

 Elapsed > 60 ; "Delinquent"

 Elapsed > 30 ; "Past Due"

 "On Time"

)

Note FileMaker does include a built-in If function but that is largely shunned in
favor of the superiority of Case.

ChApter 13 exploring Built-in FunCtions

307

 Choose
The Choose function evaluates a single test condition to generate an integer and uses

that number to select from a list of one or more result values. The test parameter must

contain a text or numeric expression that evaluates to an integer. Any number of result

parameters can be included and will be returned based on the number generated by the

test. The results can be literal values or expressions that evaluate to any data result. The

indexing is zero-based, so the first result listed will be returned if the test evaluates to a 0,

the second result for a 1, etc.

Choose (test ; result0 ; result1 ; result2 ; result3)

In this example, a Status field contains a number from 0 to 4, and the Choose

function is used to convert this into a textual status.

Choose (Status ; "Low" ; "Guarded" ; "Elevated" ; "High" ; "Severe")

This example uses a random number to pick one of four names.

Choose (Random * 4 ; "Jim Thomas" ; "Shannon Miller" ; "Charlene Smith" ;

"Karen Camacho")

 Let
The Let function initializes one or more variables prior to performing an embedded

calculation statement. The function accepts two expressions as parameters. The

variable declaration parameter is made up of one or more variable names, each with

an expression that produces its value, separated by an equal sign. Variables can be a

mixture of any type: statement, local, or global (Chapter 12, “Types of Variable”). The

expression for each can be a literal value, function call, or expression that produces

any type of result that will become the corresponding variable’s value. The calculation

parameter can be any expression that produces the result of the overall statement.

Let (variable = expression ; calculation)

When initializing more than one variable, square brackets must be added around the

declaration parameter and a semicolon between each variable-expression pair.

ChApter 13 exploring Built-in FunCtions

308

Let ([

 variable = expression1 ;

 variable2 = expression2 ;

 variable3 = expression3

] ;

 calculation

)

The Let function is useful when constructing complex formulas. Lengthy field names

can be compressed into short variables to save space when they are used multiple times

in a formula. Complex expressions made up of many nested functions or clauses can be

separated into a cascade of shorter expressions that produce a variable’s value in steps,

making it easier to read and edit. This can also eliminate the negative performance

impact of performing the same operation on large sets of related record, e.g., using the

Sum function on a large set of related records multiple times.

For a simple example, a reference to a Contact::Contact Last Name field may be

used in a Case statement several times, each repeating the full field reference. With a

Let statement, the field’s value can be inserted into a short variable named lastName,

name.last, or just last that can be used in its place. This is illustrated in the following two

examples that build a three-level folder path to a folder using the first letter of the last

name, the first three letters of the last name, and the last name with a condition to use

a placeholder when the last name isn’t specified; for example, “Munro” would become

“M:Mun:Munro:”. Here we can see four references to the same field repeated in the

formula to produce this result:

Case (

 Contact::Contact Last Name = "" ; "Missing Name:" ;

 Left (Contact::Contact Last Name ; 1) & ":" &

 Left (Contact::Contact Last Name ; 3) & ":" &

 Contact::Contact Last Name & ":"

)

Alternatively, using a Let statement, a single field reference is used to place the field’s

value into a short variable. Then, if that variable is empty, it is replaced with the missing

placeholder. Finally, it is used to construct the path.

ChApter 13 exploring Built-in FunCtions

309

Let ([

 last = Contact::Contact Last Name ;

 last = Case (last = "" ; "Missing Name:" ; last)

] ;

 Left (last; 1) & ":" & Left (last; 3) & ":" & last & ":"

)

The preceding example uses a cascading declaration which uses the same variable

to establish a value for one variable in a stepped succession that separates a complex

statement into a more readable format. In the preceding example, the last variable was

first set to the field name and then reset in a second declaration step if empty. This

allows complex nested statements to be separated into steps that can be more easily

read. In the following example, four functions are nested in a single line and can be very

hard to read, especially in more complex formulas. Working from the inside out, this

example first gets content from a Notes field, from which the GetValue function extracts

the first paragraph, then uses the TextFormatRemove function to eliminate all formatting,

and then uses the Substitute function to replace dashes with periods.

Substitute (TextFormatRemove (GetValue (Contact::Notes ; 1)) ; "-" ; ".")

In the modified example that follows, each of these steps is performed on a separate

variable declaration in a Let statement. Since it is building a single value in steps,

the same variable name can be used so each step replaces the previous value, in a

downward cascading flow.

Let ([

 result = Contact::Notes ;

 result = GetValue (result ; 1) ;

 result = TextFormatRemove (result) ;

 result = Substitute (result ; "-" ; ".")

] ;

 result

)

This technique isn’t necessarily the best for every situation. Even the preceding

example looks a little more crowded using Let instead of nesting. One may argue that,

in this case, adding returns and tabs to space out the nesting would be a better solution.

However, in situations with statements more complex than this simple example, the Let

statement can be used in this manner with great success.

ChApter 13 exploring Built-in FunCtions

310

 While
The While function is a complex statement that repeats a series of logical steps as long

as a specified condition is true. The function accepts four parameters. First, one or more

initialization variables are declared as the first parameter. These set up values similar to

a Let statement. A condition parameter is a Boolean expression that controls the looping

action. As long as this result evaluates true and the maximum number of allowable

iterations hasn’t been reached, the function will repeat the logical steps. Next, one or

more logic variables contain variable declarations that will be repeated over and over

until the function terminates. These are also structured like the initial variables and a Let

statement. Finally, the result parameter is an expression that generates the final result

of the statement. This can include values stored in any of the initial variables or logic

variables.

While (

 [initialVariable] ;

 condition ;

 [logicVariables] ;

 result

)

 Removing Double Spaces with a While Statement

The following simple example demonstrates the basic structure of a While function. First, a

data variable is initialized to the value of a Notes field in a Contact table. This is a statement

variable that will be available within the While statement during execution. Next, a

condition is established that will cause the function to repeat as long as the data variable

contains any double spaces. The logic portion reinitializes the data variable with double

spaces replaced with a single space. This will continue looping until there are no double

spaces left, thereby correcting any number of extra spaces: double, triple, quadruple, etc.

Finally, after the condition fails to find double spaces and terminates, the cleaned up data

variable becomes the result and returns the text without any extra spaces.

While (

 [

 data = Contact::Notes

] ;

ChApter 13 exploring Built-in FunCtions

311

 PatternCount (data ; " ") ;

 [

 data = Substitute (data ; " " ; " ")

] ;

 data

)

Place this formula into an auto-enter calculation (Chapter 8, “Field Options:

Auto-Enter”) that replaces an existing value to have any double spaces typed by a user

automatically removed from the field. Just change the field reference to Self and the

formula can be used for any field.

Tip Consider creating a custom function to automatically clean text (Chapter 15)
and use that for the auto-enter formula on any field.

 Compiling a List of Related Records Using While
The following example pulls a list of names and titles from Contact records related to

the current Company record and merges these values together to form a single contact

list. In other words, a list of return-delimited names and a list of return-delimited titles

become a return-delimited list of “name title” for each related record. The two lists

are initialized into a variable, and these are counted, and two control variables are

initialized. As long as the current value is less than or equal to the count of values, the

logical variables will be repeated. There the entry for the current value is created and

added to the result variable. Then the current variable is incremented by one. When all

values have been processed, the statement exits and returns the accumulated results.

While (

 [

 names = List (Company | Contact::Contact Name Full) ;

 titles = List (Company | Contact::Contact Title) ;

 count = ValueCount (names) ;

 current = 1 ;

 result = ""

] ;

 count ≥ current ;

ChApter 13 exploring Built-in FunCtions

312

 [

 entry = GetValue (names ; current) & " " & GetValue (titles;

current) ;

 result = result & Case (result ≠ "" ; "¶") & entry ;
 current = current + 1

] ;

 result

)

Caution the List function excludes blank values. if even one related record in the
preceding example is missing a value in one of the two fields, the merged results
will be mismatched for every subsequent record.

 Compiling a List of Local Records Using While
This example generates the same results as in the preceding example, but instead of

looping through lists pulled from records in a related table, it loops through a found

set of records in the current table by employing the GetNthRecord function (described

previously in this chapter).

While (

 [

 count = Get (FoundCount) ;

 current = 1 ;

 result = ""

] ;

 count ≥ current ;
 [

 name = GetNthRecord (Contact::Contact Name Full ; current) ;

 title = GetNthRecord (Contact::Contact Title ; current) ;

 entry = name & " " & title ;

 result = result & Case (result ≠ "" ; "¶") & entry ;
 current = current + 1

] ;

 result

)

ChApter 13 exploring Built-in FunCtions

313

 Nesting Functions into Complex Statements
Built-in functions can be combined and nested to create statements as complex as

necessary to produce any desired result. The examples in this section demonstrate the

move from simple statements to more complex by combining various functions and

statements.

 Creating a Record Metadata String
This example gathers information about a record and creates a string displaying that

information. Each result can be displayed on a layout in a field or a formula-named

object like a button bar (Chapter 20). The Let statement pulls values from metadata fields

and assembles them into a single value displaying the record serial number and created/

modified dates and times.

Let ([

 id = Record ID ;

 creator = Record Creation User ;

 created = Record Creation Timestamp ;

 modifier = Record Modification User ;

 modified = Record Modification Timestamp ;

 creation =

 Right ("0" & Month (created) ; 2) & "." &

 Right ("0" & Day (created) ; 2) & "." &

 Year (created) ;

 modification =

 Right ("0" & Month (modified) ; 2) & "." &

 Right ("0" & Day (modified) ; 2) & "." &

 Year (modified)

] ;

 "ID " & id & " | " &

 "Created on " & creation & " by " & creator & " | " &

 "Modified on " & modification & " by " & modifier

)

// result = ID 55326 | Created on 07.01.2020 by Admin | Modified on

07.01.2020 by Admin

ChApter 13 exploring Built-in FunCtions

314

 Creating a Record Count String
This example assembles a string that displays a record navigational string, including

the current record number and total record count. If the user is viewing a found set, it

includes that number as well.

Let ([

 total = Get (TotalRecordCount) ;

 found = Get (FoundCount) ;

 current = Get (ActiveRecordNumber)

] ;

 "Record " & current & " of " & found &

 Case (found ≠ total ; " Found (" & total & " Total)")
)

// result (viewing all) = Record 2 of 6

// result (viewing found set) = Record 2 of 4 Found (6 Total)

Caution When using the preceding example as a calculation field formula, turn
indexing off under Storage Options to ensure constant updates.

 Creating Sentence from Time Elapsed
This example creates a human-readable statement of time elapsed. First a Let statement

begins initializing variables starting with start and end with a timestamp value. Although

these are set to hard-coded values for this demonstration, they could be provided by a

field, variable, or other function. The end is then subtracted from the start and converted

to a number to establish the seconds elapsed. This number is then passed through four

cascading steps to determine the number of days, hours, minutes, and seconds elapsed

while, at each step, deducting the extracted amount from the elapsed seconds. These

use the Int function which returns the integer part of a number without rounding by

dropping any digits to the right of the decimal. Once these four values are calculated and

placed into variables, the calculation portion of the statement produces the final result.

This uses a sequence of four Case statements nested in a List statement which is nested

in Substitute statement. Each Case checks to see if the corresponding value is not zero

ChApter 13 exploring Built-in FunCtions

315

which is required for inclusion. If included, it constructs a sentence with a conditional

suffix, e.g., “1 day” or “10 days.” Each of these is added to a return-delimited value

list using List which is then converted into a comma-space-delimited sentence using

Substitute.

Let ([

 start = GetAsTimestamp ("8/1/2021 10:00 AM") ;

 end = GetAsTimestamp ("8/2/2021 11:15:10 AM") ;

 elapsed = GetAsNumber (end - start) ;

 days = Int (elapsed / 86400) ;

 elapsed = elapsed - (days * 86400) ;

 hours = Int (elapsed / 3600) ;

 elapsed = elapsed - (hours * 3600) ;

 minutes = Int (elapsed / 60);

 elapsed = elapsed - (minutes * 60) ;

 seconds = Int (elapsed)

] ;

 Substitute (

 List (

 Case (days ≠ 0 ; days & " day" & Case (days > 1 ; "s")) ;
 Case (hours ≠ 0 ; hours & " hour" & Case (hours > 1 ; "s")) ;
 Case (minutes ≠ 0 ; minutes & " minute" & Case (minutes > 1 ;

"s")) ;

 Case (seconds ≠ 0 ; seconds & " second" & Case (seconds > 1 ;
"s"))

) ; "¶" ; ", "

)

)

// result = 1 day, 1 hour, 15 minutes, 10 seconds

ChApter 13 exploring Built-in FunCtions

316

 Converting a Number to a Sentence
This example converts a number into a sentence using Let, Case, Choose, and other

functions. In the variable declaration portion of the Let statement, a number is pulled

from a field and placed into an n variable. The Length and GetAsText functions count

the characters of the number and puts that into the count variable. Next, three variables

are initialized with one digit of the number as needed based on the digits. The first

(right) digit is placed into a, the second (middle) into b, and the third (left) into c using

a combination of Left, Middle, Right, GetAsNumber, and Case functions. The calculation

portion contains four Case statements that conditionally use the positional digit to insert

a text representation of each value which are then concatenated to form the resulting

sentence. Depending on the input number, the function will return a result from “1 Year”

up to “Nine Hundred Ninety Nine Years.”

Let ([

|

 n = Example Number ;

 t = GetAsText (n) ;

 count = Length (t) ;

 a = GetAsNumber (Right (t ; 1)) ;

 b = Case (count > 1 ; GetAsNumber (Left (Right (t ; 2) ; 1))) ;

 c = Case (count > 2 ; GetAsNumber (Left (t ; 1)))

] ;

 Case (c > 0 ;

 Choose(c ; "";

 "One "; "Two "; "Three "; "Four "; "Five "; "Six "; "Seven "; "Eight

"; "Nine "

) & "Hundred ") &

 Case (b > 1 ;

 Choose(b ; ""; "";

 "Twenty "; "Thirty "; "Forty "; "Fifty "; "Sixty "; "Seventy ";

"Eighty "; "Ninety ")

) &

ChApter 13 exploring Built-in FunCtions

317

 Case (a > 0 and b ≠ 1 ;
 Choose(a ; "";

 "One "; "Two "; "Three "; "Four "; "Five "; "Six "; "Seven "; "Eight

"; "Nine ")

) &

 Case (b = 1 ;

 Choose(a ;

 "Ten "; "Eleven "; "Twelve "; "Thirteen "; "Fourteen "; "Fifteen ";

"Sixteen "; "Seventeen "; "Eighteen "; "Nineteen ")) &

 "Year" & Case (n > 1 ; "s")

)

// result (if the number field contains 32) = Thirty Two Years

 Summary
This chapter discussed many useful built-in functions. Remember that FileMaker has

over 300 built-in functions that are available when writing formulas. A few more of

these will be mentioned in the forthcoming chapters, and all are described in the online

help guide accessible from the hint at the bottom of the Functions pane in the Specify

Calculation dialog. In the next chapter, we will continue our exploration of built-in

functions looking at the JavaScript Object Notation (JSON) functions.

ChApter 13 exploring Built-in FunCtions

319
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_14

CHAPTER 14

Using JSON
JavaScript Object Notation (JSON) is an open-standard, lightweight, data-interchange

format originally specified by Douglas Crockford in 2000, standardized in 2013, and

finalized to its current version in 2017. It was derived from the JavaScript Programming

Language to fulfill a need for a language-independent, real-time, server-to-browser

exchange protocol that didn’t require plug-ins. JSON objects are formatted using a

relatively simple key/value pair structure that is easy for humans and machines to read

and write. As a result, it has become popular with Representational State Transfer (REST)

web services as an indispensable tool for a variety of data exchanges. FileMaker added

a set of built-in functions in version 16 that can be used to create and manipulate JSON

data. These are essential when working with data in the format provided by external

services and can also be employed when using JSON as an internal format for data

exchange between scripts and other functions. This chapter introduces JSON, covering

the following topics:

• Defining the JSON format

• Parsing JSON

• Manipulating JSON

 Defining the JSON Format
A JSON object is a bracketed list of elements that combine an identifying key with an

associated value. Similar structures are referred to many ways in other languages,

including array, dictionary, hash table, keyed list, record, and struct. The key is always

a text string that acts like a label to name and identify the element. An element’s value

contains some data content that is one of the following types:

• JSONString – A text string

• JSONNumber – A numeric value

https://doi.org/10.1007/978-1-4842-6680-9_14#DOI

320

• JSONBoolean – A true or false value

• JSONArray – An ordered list of comma-separated values contained

within square brackets

• JSONObject – A JSON object nested in the element of a parent object

• JSONNull – A null value

• JSONRaw – A value that will be determined by the JSON parser

A JSON object with a single element containing an id number is formatted with the

label in quotes, a colon followed by the value, all enclosed in curly brackets as follows.

Here the key’s value is a JSONumber:

{"id":5103}

In this example, the value contains JSONText, a person’s first name:

{"First":"John"}

A multi-element object uses a comma to separate each uniquely named element. For

example, an object containing data about a person may combine elements for id, first

name, last name, and title, as shown here:

{"id":5103,"First":"John","Last":"Smith","Title":"Chief Technology

Officer"}

JSON doesn’t care about white space around the elements, so the preceding object

can be formatted in a multi-line format, as shown here:

{

 "id":5103,

 "First":"John",

 "Last":"Smith",

 "Title":"Chief Technology Officer"

}

A JSON array is a type of object that contains a list of unlabeled values or elements.

These are formatted as comma-separated values enclosed in square brackets as shown

in the following example of an array of numbers:

[1,2,3,4,5]

Chapter 14 Using JsOn

321

An array can contain other data types, including text as shown in this example:

["Karen","Charlene","Jeff","Susan","Howard"]

The value of an element can even be another object, creating a nested hierarchy of

objects. This example shows an object with two product elements, each containing a

nested JSONObject of product metadata:

{

 "Product1":{"name":"Widget 1","price":39.99,"vendor":15},

 "Product2":{"name":"Widget 2","price":55.48,"vendor":38}

}

An element value can also contain an array, as shown here where the friends and

colleagues elements are each a JSONArray that contains a list of names.

{

 "friends":["Dan","Brian","Carolyn","Karen"],

 "colleagues":["Brian","Michael","Mary","Walker","Nadya"]

}

Similarly, arrays can contain objects. This example shows an array of two items, an

object with two Product elements and another object with two Employee elements:

[

 {"Product1":"Widget 1","Product2":"Widget 2"},

 {"Employee1":"William"," Employee2":"Janice"}

]

While some systems and servers will return data in a JSON format defined by them,

when creating JSON in FileMaker, the structure of an object can be whatever you define.

Any number of objects, arrays, and data types can be mixed and matched, joined,

or nested, using custom labels you define to create a unique structure based on the

requirements of your custom system.

Tip Validate JsOn object formatting at www.jsonlint.com.

Chapter 14 Using JsOn

http://www.jsonlint.com

322

 Parsing JSON
FileMaker provides three JSON functions that parse data, each requiring two parameters:
a json object (or empty string) and a keyOrIndexPath that optionally references a specific
element key, array index position, or a path to a nested element: JSONGetElement,
JSONListKeys, JSONListValues.

Let’s work through some examples from the assumption that the Example Text field
in the Sandbox table contains the following JSON that contains vendor information:

{
 "id":350,
 "name":"First Class Widgets",
 "category":"Manufacturing",
 "contact":
 {
 "phone":"555-867-5309",
 "email":"sales@widgets.nope",
 "web":"www.widgets.nope"
 },
 "products":
 [
 {
 "aisles":[3,8]
 "id":1000,
 "name":"Widget 1",
 "price":39.99,
 },
 {
 "aisles":[2,4]
 "id":1001,
 "name":"Widget 2",
 "price":59.99,
 }
]

}

Chapter 14 Using JsOn

323

 Using JSONGetElement
The JSONGetElement function will return the value of a specified element from the json

data provided.

JSONGetElement (json ; keyOrIndexOrPath)

 Referring to an Element by Key

To refer to an element by key, use its label name in the keyOrIndexOrPath parameter.

This example shows a call requesting the name element:

JSONGetElement (Sandbox::Example Text ; "name") // Result = First

Class Widgets

This example requests the contact element, so the result is a JSON object.

JSONGetElement (Sandbox::Example Text ; "contact")

// Result =

 {

 "phone":"555-867-5309",

 "email":"sales@widgets.nope",

 "web":www.widgets.nope

 }

 Referring to an Element by Array Index

When the object is an array, the keyOrIndexOrPath parameter should be a number in

square brackets indicating the zero-based position of the desired element. By using an

index position of 2, this example will extract the third value from an array of names as

shown in this example.

JSONGetElement (["Michael","Mary","Walker","Karen"] ; "[2]") // Result =

Walker

Chapter 14 Using JsOn

324

 Referring to an Element by Path

When parsing complex JSON with elements containing nested objects and arrays, a path

can be used to refer to elements deeper than the first level. A JSON path is specified by

denoting each key necessary to traverse the hierarchical structure down to the desired

element, each separated by a period. Using the vender example, to get the phone

element, we must specify that it is contained within the contact element, as shown here:

JSONGetElement (Sandbox::Example Text ; "contact.phone")

// Result = 555-867-5309

A path can reach down as many levels as necessary, and they can mix object keys

and array index positions. In this example, we get the price of the product at the second

position in the array by including the index position [1], as shown here:

JSONGetElement (Sandbox::Example Text ; "products.[1].price")

// Result = 59.99

Similarly, this example will extract the second array position from the aisle element of

the first array position of the product element:

JSONGetElement (Sandbox::Example Text ; "products.[0].aisles.[1]")

// Result = 8

 Using JSONListKeys
The JSONListKeys function returns a list of the name of every key in the object or a

specified element.

JSONListKeys (json ; keyOrIndexOrPath)

This example shows how to get a list of the keys in the example json:

JSONListKeys (Sandbox::Example Text ; "")

// Result =

 category

 contact

 id

 name

 products

Chapter 14 Using JsOn

325

The keyOrIndexOrPath parameter can be used to specify a nested element

containing an object or array. This example will return a list of keys for the contact

element:

JSONListKeys (Sandbox::Example Text ; "contact")

// Result =

 phone

 email

 web

Because arrays are unlabeled lists, the keys returned will be a list of the zero-based

index positions of items, as shown here specifying the product element:

JSONListKeys (Sandbox::Example Text ; "products")

// Result =

 0

 1

 Using JSONListValues
The JSONListValues function will return a list of the value of every key for an element

containing an object or array.

JSONListValues (json ; keyOrIndexOrPath)

This works the same as JSONListKeys except it returns the values instead of the

keys, as shown in this example which returns the values of every element of the contact

element:

JSONListValues (Sandbox::Example Text ; "contact")

// Result =

 555-867-5309

 sales@widgets.nope

 www.widgets.nope

Chapter 14 Using JsOn

326

 Creating and Manipulating JSON
FileMaker provides three functions used to manipulate elements within a JSON object:

JSONSetElement, JSONDeleteElemnet, and JSONFormatElements.

 Using JSONSetElement
The JSONSetElement function sets the value of one or more elements in an object,

creating them if necessary. The function call has four parameters, shown here:

JSONSetElement (json ; keyOrIndexOrPath ; value ; type)

The json parameter can contain an object, array, or an empty string when creating

a new object. The keyOrIndexOrPath and value are required and specify the element

key that should be created or modified and the content it should contain. The type

parameter can specify a data type of the value or be an empty string, and FileMaker will

use a type determined by the content provided. The following example creates a simple

object with a name element:

JSONSetElement ("" ; "name" ; "First Class Widgets"; "")

// Result = {"name":"First Class Widgets"}

Assuming the preceding result is placed into a variable named data, this example

shows how to add an element to the existing object, in this case a category element:

JSONSetElement (data ; "category" ; "Manufacturing"; "")

// Result =

 {

 "name":"First Class Widgets",

 "category":"Manufacturing”

 }

Setting the value of an element that already exists in the object provided will replace

the existing value with the new value.

JSONSetElement ({"name":"Honda"} ; "name" ; "Ford"; "")

// Result = {"name":"Ford"}

Chapter 14 Using JsOn

327

Tip instead of writing JsOn manually, always use the JsOnsetelement function
to create a new element to help avoid mistakes.

 Specifying a Data Type

The previous examples leave the type parameter blank because the data provided is

obviously text, and we can rely on FileMaker to choose the correct format. Often you will

need to specify a type to ensure the correct result. For example, if the value starts with a

numeric digit and no type is specified, FileMaker will automatically treat it like a number.

This means that text with leading zeros or dates will be converted into a number unless

you specify the correct data type. To illustrate the importance of specifying a type for

text-based text strings, consider the difference in these results:

JSONSetElement ("" ; "phone" ; "555-867-5309" ; "")

// Result = {"phone":555}

JSONSetElement ("" ; "phone" ; "555-867-5309" ; JSONString)

// Result = {"phone":"555-867-5309"}

 Setting Multiple Values at Once

You can set multiple keys with a single call by using semicolon-delimited, square-

bracketed sets of keyOrIndexOrPath, value, and type parameters, as shown in this

example that sets two elements at once:

JSONSetElement ("" ;

 ["name" ; "First Class Widgets"; ""] ;

 ["category" ; "Manufacturing"; ""]

)

// Result =

 {

 "name":"First Class Widgets",

 "category":"Manufacturing"

 }

Chapter 14 Using JsOn

328

 Setting a Value by Path

When working with complex objects that need elements containing objects and arrays,

it is necessary to specify a path that refers to elements deeper than the first level. This

example sets the name element at the top level and then sets a contact element as an

object containing a phone and email element:

JSONSetElement ("" ;

 ["name" ; "First Class Widgets"; ""] ;

 ["contact.phone" ; "555-867-5309"; JSONString] ;

 ["contact.email" ; " sales@widgets.nope "; “”]

)

// Result =

{

 "name":"First Class Widgets",

 "contact":

 {

 "phone":"555-867-5309",

 "email":"sales@widgets.nope"

 }

}

 Setting Array Values

JSONSetElement can target an index position in an array as described for

JSONGetElement. The index value must be enclosed in square brackets to avoid

the number being used to create or refer to a key instead of an array position, as

demonstrated by the following examples. The first shows how to correctly create a value

in an array. The second shows the incorrect result when failing to use brackets.

JSONSetElement ("" ; "[0]" ; "Claris" ; "")

// Result = ["Claris"]

JSONSetElement ("" ; "0" ; "Claris" ; "")

// Result = {"0":"Claris"}

When setting an element in an existing array, the value at the index position will be

replaced with the new value, even if it is a different data type. This example replaces the

number in the third array position with some text:

Chapter 14 Using JsOn

329

JSONSetElement ("[1,2,3,4]" ; "[2]" ; "Claris" ; "")

// Result = [1,2,"Claris",4]

If an index position specified is beyond the range of existing values, FileMaker will

insert one or more null placeholders to target the desired position.

JSONSetElement ("" ; "[3]" ; "Claris" ; "")

// Result = [null,null,null,"Claris"]

JSONSetElement ("[1,2,3,4]" ; "[6]" ; "Claris" ; "")

// Result = [1,2,3,4,null,null,"Claris"]

Arrays work the same as keys in paths. This example will change the price of the first

product in the vendor example:

JSONSetElement (Sandbox::Example Text ; "products.[0].price" ; "45.00" ; "")

 Using JSONDeleteElement
The JSONDeleteElement function will delete an element from an object. The function call

has two parameters, shown here:

JSONDeleteElement (json ; keyOrIndexOrPath)

The specified element will be completely removed, as shown in the following

example which removes the name element, leaving only the id remaining:

JSONDeleteElement ({"name":"Honda", "id":350} ; "name")

// Result = {"id":350}

Deleting an index position in an array will automatically shift values to avoid an

empty position.

JSONDeleteElement ("[1,2,3,4,5]" ; "[2]")

// Result = [1,2,4,5]

Deleting works with paths as well. This example will completely remove the first

price from the first product of the vendor example, shifting the second price into the

position of the first:

JSONDeleteElement (Sandbox::Example Text ; "products.[0].price")

Chapter 14 Using JsOn

330

 Using JSONFormatElements
The JSONFormatElements function reformats an object by inserting extra space to render

it in an easier to read format. FileMaker will always remove spaces from an object when

performing any of the manipulation functions, so this function is useful when reviewing

the results:

JSONFormatElements(

 {"id":5103,"First":"John","Last":"Smith","Title":"Chief Technology

Officer"}

)

// Result

 {

 "id":5103,

 "First":"John",

 "Last":"Smith",

 "Title":"Chief Technology Officer"

 }

 Summary
This chapter introduced JSON and explored the built-in functions used to create, parse,

and manipulate objects and elements. In the next chapter, we will learn how to create

custom functions.

Chapter 14 Using JsOn

331
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_15

CHAPTER 15

Creating Custom
Functions
A custom function is a developer-defined formula that expands on the built-in functions

within the database it is installed. Formulas can be off-loaded away from individual

formulas and placed into a custom central library of easily accessible functionality.

Unlike regular formulas, custom functions can be defined to accept parameters, can

be recursive, and can be accessed directly from any formula or script in the database.

A well-designed, open-ended, reusable custom function can reduce redundancies in

formulas, simplify calculations, and save time. In this chapter, we discuss the process of

creating and using custom functions, covering topics such as

• Introducing the Manage Custom Functions dialog

• Introducing the Edit Custom Function dialog

• Adding parameters to a custom function

• Accessing fields from custom functions

• Building recursive custom functions

Note Custom functions can only be created and edited with advanced tools
enabled (Chapter 2).

https://doi.org/10.1007/978-1-4842-6680-9_15#DOI

332

 Introducing the Custom Function Dialogs
Custom functions are created and managed from the Manage Custom Functions dialog,

shown in Figure 15-1. To open it, select the File ➤ Manage ➤ Custom Functions menu.

This dialog is used to create, edit, duplicate, delete, and import custom functions.

Tip Custom functions can be copied and pasted between two files or imported.

To begin, click New to open a new function in the Edit Custom Function dialog,

shown in Figure 15-2. This dialog opens when creating a new function or editing

an existing one. It is similar to a Specify Calculation dialog but with a few important

differences.

Figure 15-1. The dialog used to manage custom functions

Chapter 15 Creating Custom FunCtions

333

The Function Name field allows the function to be named so it can be called by other

formulas in the same way built-in functions are called.

Several tools are used to define optional Function Parameters. Parameters are

positional input variables that are assigned a value when another formula calls the

function. These work like parameters on built-in functions except you define them.

Create a new parameter by entering a name and clicking the plus icon. Select and

rename an existing parameter and click the pencil icon to save that change. Parameters

can be deleted by clicking the minus icon. Once in the list, they can be drag-arranged to

specify their order. Since parameters are positional, values passed when the function is

called are inserted into the variable at the corresponding position in the list. Changing

the order of an existing function’s parameters will require rearranging the values in

any existing call. Once created, double-click a parameter in the list to insert it into the

formula below.

Figure 15-2. The dialog used to define a custom function

Chapter 15 Creating Custom FunCtions

334

The function’s formula is entered into the formula text area. Unlike the Specify

Calculation dialog, there is no auto-complete suggestion interface so everything must

be typed manually or inserted using the buttons and lists in the top half of the dialog.

Although functions execute in the current window’s context and can include field

references, these must be manually entered because there is no selection pane for fields

on this dialog. This is due to the fact that functions are accessible to any field, interface,

or script formula and it is safer to push field values into the formula as a parameter to

avoid making the function unnecessarily context sensitive.

The top-right area contains controls for inserting operators and function calls into

the formula. The Availability option at the bottom allows a choice to make a function

accessible to only accounts with full access (Chapter 30).

Beyond these differences, custom functions are written just like other formulas and

must adhere to the same 30,000-character limit.

 Creating a Custom Function
To begin, create a simple custom function without parameters named GetMonday that

calculates the date for the Monday of the current week using the following formula:

Let ([

 dateToday = Get (CurrentDate) ;

 numAdjustment = DayOfWeek (dateToday) – 2

] ;

 dateToday - numAdjustment

)

The formula uses a Let statement to put today’s date into a variable called dateToday.

To determine the number of days today’s date needs to be adjusted to land on a Monday,

it converts dateToday using the built-in DayOfWeek function. Then, since we know

Monday is always the second day of a calendar week, we subtract 2 from that number

and put the result into a variable named numAdjustment. Finally, that adjustment

number will be subtracted from today’s date to arrive at the date for this week’s Monday.

For example, if today is a Friday, that is the sixth day of the week. Since we want to

determine the corresponding Monday, which is the second day of the week, we subtract

2 from that number to arrive at the number of days we need to subtract from the current

day in order to arrive at a Monday in the current week. No matter what day it is today, the

result of this formula will always be the corresponding Monday’s date.

Chapter 15 Creating Custom FunCtions

335

To create this custom function, open the Manage Custom Functions dialog, and click

the New button to open the Edit Custom Function dialog. Then follow the steps shown in

Figure 15-3, first entering a name of “GetMonday” and then entering the formula. Click

the OK button to save the function and then click OK in the Manage Custom Functions

dialog.

Once finished, the new function can be inserted into any formula using the same

process used to insert a built-in function. Test this in the Sandbox table by following

these steps:

 1. Open the Fields tab for the Sandbox table in the Manage Database

dialog.

 2. Double-click the Example Calculation field or select it and click

the Options button.

 3. Change the field’s formula to GetMonday.

Figure 15-3. The steps required to create the example custom function

Chapter 15 Creating Custom FunCtions

336

 4. Change the calculation result type to date.

 5. Click OK to save the calculation formula and close the Specify

Calculation dialog.

 6. Click OK to save and close the Manage Database dialog.

Now view the result on the Sandbox Form layout for any record. If the calculation

containing this function call were evaluated on January 7, 2021, a Thursday, the result

should be the preceding Monday: January 4, 2021.

 Adding Parameters to a Custom Function
The previous example demonstrates how to construct a simple custom function.

However, it lacks usefulness due to severely limited flexibility. Although its use of the

current date does offer some flexibility and will continue to work in the future, it is locked

to only return the Monday relative to today. With parameters and modifications to the

formula, the function can be expanded to calculate any specified weekday from any

starting date.

As previously introduced (Chapter 12, “Calling a Function with Parameters”), a

function parameter is a value that can vary with each call to the function allowing

formulas to push specific values into an open-ended function. Parameters provide

variable input and/or instructions for what processing should be performed and allow a

function to adapt to different situations. When defining a custom function, any number

of parameters can be created for any functional purpose and named whatever you

want. Since there is no way to control the type of data a formula passes to your function

as a parameter, be sure to choose a name that describes the intended data type(s) it is

intended to receive. For example, a parameter named input is too vague, while dateInput

or startDate clearly states what type of data is expected. For our example, we want to add

two parameters to our function: an input date named “dateInput” and a desired result

weekday named “dayRequested.”

Chapter 15 Creating Custom FunCtions

337

 Adding an Input Date Parameter
First, create a duplicate of the previous function that we will expand to calculate

the corresponding Monday from any starting date provided in a parameter named

“dateInput.” Open the Manage Custom Functions dialog, select the GetMonday function,

and click the Duplicate button. Then click the Edit button to open the function in the

Edit Custom Function dialog, and make the changes shown in Figure 15-4.

 1. Change the name of the function to “GetMonday2.”

 2. Type the parameter name “dateInput,” and then click the + button

to create the parameter in the list below.

 3. Modify the code so that the dateInput parameter is used in place

of the current date and is converted to a date using the GetAsDate

function. Also, rename the dateToday variable to dateToProcess:

Figure 15-4. The steps required to modify the duplicate function

Chapter 15 Creating Custom FunCtions

338

Let ([

 dateToProcess = GetAsDate (dateInput) ;

 numAdjustment = DayOfWeek (dateToProcess) – 2

] ;

 dateToProcess - numAdjustment

)

Save the function and modify the formula in the Example Calculation field to call

the new function. Since it converts the input to a date automatically, the parameter can

be either a text field containing a date value, a date field, a literal text string containing a

date, or a date value built with a function. An example of each option of these is shown

here:

GetMonday2 (Sandbox::Example Text)

GetMonday2 (Sandbox::Example Date)

GetMonday2 ("1/7/2021")

GetMonday2 (Date (1 ; 7 ; 2021))

Save the formula and view the results in Browse mode. The result should be the

Monday relative to whatever date you specified as input.

 Adding a Day Requested Parameter
Next, add an additional parameter called dayRequested that accepts a weekday name

and returns a date for that weekday relative to the dateInput provided. First, create a

duplicate of the GetMonday2 function. Since the new, expanded function will no longer

be locked to a Monday result, the new function’s name should change to “GetDay.” Add a

second parameter named “dayRequested.” Finally, change the code as shown here:

Let ([

 dateToProcess = GetAsDate (dateInput) ;

 list = "Sunday¶Monday¶Tuesday¶Wednesday¶Thursday¶Friday¶Saturday" ;

 list = Left (list ; Position (list ; dayRequested ; 1; 1)) ;

 dayNumber = ValueCount (list) ;

 numAdjustment = DayOfWeek (dateToProcess) – dayNumber

] ;

 dateToProcess - numAdjustment

)

Chapter 15 Creating Custom FunCtions

339

The code will accept a day name (e.g., “Wednesday”) in the dayReqeusted parameter

and convert that into a day number (4) by finding that day’s position in a list of day

names. This is done by adding three steps to the formula. A new list variable is initialized

to contain a paragraph return-delimited list of weekday names. In the next line, the list

variable is modified using the Left and Position functions to reduce the list to only the

day names prior to the one requested. So, if “Wednesday” was the day requested, list

would contain “Sunday¶Monday¶Tuesday¶W.” Finally, the ValueCount function is used

to convert that list into the weekday number (4), which is placed into the dayNumber

variable. This determines the numAdjustment value which is used to adjust the input

date as in previous versions. Once the new function is saved, modify the formula in the

Example Calculation to call the new function. In this example, the result will be the date

of Friday for the week of January 4, 2021:

GetDay ("1/4/2021" ; "Friday") // result = 1/8/2021

GetDay ("1/4/2021" ; "Wednesday") // result = 1/5/2021

 Adding a Default Date Option
As a further refinement, modify the function to automatically use a default date when

one is not specified in the dateInput parameter. This provides a shortcut for any formula

calling the function that wants to use the current date. Currently, if the function were

used to calculate the Friday for the current date, right now, a calling formula would be

required to explicitly include today’s date in the call as shown here:

GetDay (Get (CurrentDate) ; "Friday")

Modifying the first line of the Let statement from the last example, a Case statement

can automatically default to the current date when none is provided in the parameter.

When a call passes an empty string instead of a date, this condition will allow the

function to produce a result. Modify the first line of the Let statement as shown here:

dateToProcess = Case (dateInput = "" ; Get (CurrentDate) ; GetAsDate

(dateInput)) ;

Chapter 15 Creating Custom FunCtions

340

Now, a formula can request a day relative to the current date by passing in an empty

string in the first parameter or for a specific date by providing one, as shown in the

following two examples:

GetDay ("" ; "Friday")

GetDay ("1/4/2021" ; "Friday")

 Stressing the Importance of Thorough Testing
Every formula should be carefully tested prior to live production use. Being accessible

from anywhere in the database, a custom function requires greater care. This is

especially true for complex functions that accept parameter input. A single test showing

a function working may not be adequate since different input may cause conditions

not anticipated by the formula. Instead, perform as many tests as possible with a

variety of input to confirm that it will handle a full range of possible values in various

combinations.

The testing requirements of each custom function will be different. Start by asking

what variety of input might be received. There are many questions we might ask

regarding the previous example. What if the date provided is at the start of the week: a

Sunday or a Monday? What if the date is at the end of the week: a Friday or a Saturday?

What if the day requested is the same day of the date provided? Will the function work

under each of these circumstances? Will it operate correctly when requesting any day of

the week relative to any date? Do all the anticipated data types – date, timestamp, and

text string with a date – return an accurate result? To confirm this, we should devise a set

of tests for each condition and confirm the results. To begin, convert the list of questions

into a list of test scenarios that will adequately confirm the desired functionality with

a large enough sampling of input. In our example, at the minimum, the following tests

should be performed:

• dateInput – Run seven tests, one test for each day of the week as

input, also, at least one test of each accepted data type.

• dayRequested – Run seven tests, one test for each day of the week.

Chapter 15 Creating Custom FunCtions

341

This indicates the need for at least 16 tests. Rather than perform these tests

manually, one by one, the following single calculation formula, entered in the Example

Calculation field, covers them all at once by producing a single text result that lists all the

various results:

Let ([

 dateInput = Date (1 ; 17 ; 2021)

] ;

 "Input = " & dateInput & " (" & DayName (dateInput) & ")¶" &

 "+1 Sunday=" & GetDay (dateInput + 1 ; "Sunday") & "¶"

 "+2 Sunday=" & GetDay (dateInput + 2 ; "Sunday") & "¶" &

 "+3 Sunday=" & GetDay (dateInput + 3 ; "Sunday") & "¶" &

 "+4 Sunday=" & GetDay (dateInput + 4 ; "Sunday") & "¶"

 "+5 Sunday=" & GetDay (dateInput + 5 ; "Sunday") & "¶" &

 "Sunday=" & GetDay (dateInput; "Sunday") & "¶"

 "Monday=" & GetDay (dateInput ; "Monday") & "¶"

 "Tuesday=" & GetDay (dateInput; "Tuesday") & "¶"

 "Wednesday=" & GetDay (dateInput; "Wednesday") & "¶" &

 "Thursday=" & GetDay (dateInput; "Thursday") & "¶" &

 "Friday=" & GetDay (dateInput; "Friday") & "¶" &

 "Saturday=" & GetDay (dateInput; "Saturday") & "¶"

 "Timestamp=" & GetDay (GetAsTimestamp (dateInput) ; "Sunday") & "¶" &

 "Text Date=" & GetDay (GetAsText (dateInput) ; "Sunday") & "¶" &

 "Text TS=" & GetDay (GetAsText (GetASTimestamp (dateInput)) ;

"Sunday") & "¶"

)

// result =

 Input = 1/17/2021 (Sunday)

 +1 Sunday=1/17/2021

 +2 Sunday=1/17/2021

 +3 Sunday=1/17/2021

 +4 Sunday=1/17/2021

 +5 Sunday=1/17/2021

 +6 Sunday=1/17/2021

 Sunday=1/17/2021

Chapter 15 Creating Custom FunCtions

342

 Monday=1/18/2021

 Tuesday=1/19/2021

 Wednesday=1/20/2021

 Thursday=1/21/2021

 Friday=1/22/2021

 Saturday=1/23/2021

 Timestamp=1/17/2021

 Text Date=1/17/2021

 Text TS=1/17/2021

Caution Be sure to change the example Calculation result data type to “text”
since this test formula returns text instead of a date.

This formula uses a Let statement to place a start date into a variable and uses that

to perform repeated calls to the function and concatenate the results into a string result.

The first six results show that, as the dateInput is incremented to cover each day of an

entire week, the result for the requested Sunday remains the same. The next seven

results show that using the same dateInput while requesting a different day of the week

works since the results span a 7-day period. Finally, the last three results show that when

the dateInput is a timestamp, text-based date, or text-based timestamp, the result remains

the same. With this test completed and confirmed, it should now be safe to use this

custom function.

 Building Recursive Functions
A recursive function is a formula that is capable of generating calls that are self- referencing,

i.e., calling and executing itself from within itself. In FileMaker, custom functions are

the only formulas that can be recursive. Recursion is often confused with the iterative

functionality found in looping scripts or in the new While function (Chapter 13). Although

there are similarities and many tasks can be accomplished using either, recursion is

actually very different. In a repeating, or iterative process, a piece of code is executed

numerous times in succession; each iteration is completed before the next begins. By

contrast, a recursive process creates and runs successive new instances of the same

code during execution of the preceding instance, a difference illustrated in Figure 15-5.

Chapter 15 Creating Custom FunCtions

343

Each instance queues up in memory forming what is known as a call stack until it

reaches a termination point known as a base case where it stops calling itself and

produces a result that cascades back up the stack, collapsing it.

Both the iterative and recursive options are superior to hard-coded statements that

restrict the number of iterations. For example, using If or Case statements requires each

possible iteration to be explicitly stated in a fixed sequence. Similarly, a Let statement

can perform a fixed number of cascading variable declaration. While this is fine for static

choices that never change and don’t vary in number, often a more dynamic approach is

warranted.

A looping script is easy to set up and runs quickly. However, scripts can’t be triggered

from within a formula, so they are limited to interface-related actions and events. Also,

they can be bulky to set up since they require iteration control variables along with lines

to perform whatever functionality is required.

For an exclusively formula-based solution, the choices are the iterative While

function or a recursive custom function. The While function has the advantage of

working in any formula, while recursion is limited to custom functions. The nested

hierarchy of the recursive stack can be more difficult to conceptualize, but using the

While function is not without its own confusion. It can feel overly wordy in simple

examples and mind-boggling in more complex ones. Using While may be a little faster

and doesn’t have the same memory impact. Although many programming challenges

can be handled with either approach, when performing a complex, repeated process

through hierarchical data, recursion is often the only practical choice.

Figure 15-5. The difference between iterative looping (left) and recursion (right)

Chapter 15 Creating Custom FunCtions

344

 Building Simple Recursive Functions
To grasp the basic structure of a recursive function, start with some simple examples. First,

create a new function named “DateRange” that accepts startDate and endDate parameters

and uses these to return a list of every date in the range using the formula here:

startDate &

Case (endDate = startDate ; "" ; "¶" & DateRange (startDate + 1 ;

endDate))

The formula concatenates the start date and the result of a Case statement, which

determines if a recursive call should be issued to increment the date forward. If the

end date equals the start date, the formula returns an empty string, thereby providing a

terminating base case. If the two dates are different, a paragraph return is included, and

then the function calls itself with the start date incremented by one. Each recursive call

repeats this process until the start date equals the end, creating a result as shown in the

following example:

DateRange (GetAsDate ("1/1/2021") ; GetAsDate ("1/5/2021"))

// result =

 1/1/2021

 1/2/2021

 1/3/2021

 1/4/2021

 1/5/2021

Create another function named “MergeValues” that accepts two return-delimited

text value lists and returns a blended list. The code for this function shown in the

following assumes two parameters, column1 and column2:

Let ([

 current = GetValue (column1 ; 1) & " " & GetValue (column2 ; 1) ;

 column1 = RightValues (column1 ; ValueCount (column1) - 1) ;

 column2 = RightValues (column2 ; ValueCount (column2) - 1)

] ;

 current & Case (column1 ≠ "" ; "¶" & MergeValues (column1 ; column2))
)

Chapter 15 Creating Custom FunCtions

345

In this example, the Let statement is used to step through the task. The first value from

both inputs is extracted and concatenated into a current variable with a space between

them. Then, the two input parameters are reduced by one value using the ValueCount

and RightValues functions to remove the first value. The result is the value in the current

variable, and if there are values remaining, a paragraph return and recursive call continue

the process. This example call has three labels and phone numbers as input and shows the

corresponding result:

MergeValues ("Work¶Home¶Cell" ; "555-2121¶555-3421¶555-2645")

// result =

 Work 555-2121

 Home 555-3421

 Cell 555-2645

 Controlling Recursion Limits with setRecursion
To avoid infinite regress for situations when a recursive function doesn’t provide a

terminating base case, FileMaker imposes a limit on the number of iterations a recursive

stack can include. Any formula that exceeds this limit will return an error expressed as a

question mark. Prior to FileMaker 18, the limit varied depending on the type of recursion

used. Functions using tail recursion, where the recursive call is the final step at the end of

the function’s formula leaving no processing unfinished, had a limit of 50,000 total recursive

calls, in contrast to head recursion, where the placement of a recursive call anywhere within

the formula was previously limited to 10,000 total calls. However, in version 18, both tail- and

head-recursive calls and the While function have a default limit of 50,000 iterations. Also

introduced in that version is the setRecursion function which allows a developer to set the

maximum number of iterations allowed higher or lower than this default limit.

setRecursion (expression ; maxIterations)

This is a conditioning function which sets the iterative terms for processing the

expression it encloses. Any recursive function calls or While statements included in the

first parameter’s statement will be limited to the number specified by the maxIterations

parameter. This can be used to increase or decrease the maximum number of iterations

allowed. For example, try calling the previous DateRange function with a start and end date

more than 30 days apart from within a setRecursion statement limited to 30 iterations. This

example fails because the recursive calls neccesary to finish the task exceed the limit of 30.

Chapter 15 Creating Custom FunCtions

346

setRecursion (DateRange ("1/1/2021" ; "2/10/2021") ; 30)

// result = ?

Next, increase the limit to an amount greater than the range of dates to see it

functions properly. If the preceding example were modified with a limit of 60, it is more

than enough to cover the range of dates specified, and a proper result will be delivered.

The following example shows the function increasing the limit to 250,000 in order to

execute a simple While statement that increments a counter up to 200,000:

SetRecursion (

 While (

 counter = 0 ;

 counter < 200000 ;

 counter = counter + 1 ;

 counter

) ; 250000

)

 Embedding Test Code Inside a Function
Earlier we discussed writing test code to quickly perform multiple tests of the GetDay

custom function with a variety of different input. Recursion opens the possibility

of storing that test code inside of the custom function it tests. While it may seem

unnecessary to save test code at all, it may be prudent to retest a function anytime it is

modified in the future. A Case statement can be used to detect a test request and perform

an alternate set of code. In this example, the dateInput parameter will be used to

determine if the call to the function was asking for test results or normal operations and

run one or the other accordingly as shown in the following pattern:

Case (dateInput = "Test" ; <<test code>> ; <<normal code>>)

Using this format, we can combine the previous example test code with the

original function code to convert the formula into the following combined statement.

To demonstrate this technique, create a new function called GetDay2 with this new

capability. In this example, if the dateInput receives a value of “Test,” it will perform the

test routine; otherwise, it will assume the parameter contains a date and will perform its

normal function.

Chapter 15 Creating Custom FunCtions

347

Case (dateInput = "Test" ;

// Test Code

 Let ([

 dateInput = Date (1 ; 17 ; 2021)

] ;

 "Input = " & dateInput & " (" & DayName (dateInput) & ")¶" &

 "1 Sunday=" & GetDay2 (dateInput + 1 ; "Sunday") & "¶" &

 "+2 Sunday=" & GetDay2 (dateInput + 2 ; "Sunday") & "¶"

 "+3 Sunday=" & GetDay2 (dateInput + 3 ; "Sunday") & "¶" &

 "+4 Sunday=" & GetDay2 (dateInput + 4 ; "Sunday") & "¶"

 "+5 Sunday=" & GetDay2 (dateInput + 5 ; "Sunday") & "¶" &

 "+6 Sunday=" & GetDay2 (dateInput + 6 ; "Sunday") & "¶" &

 "Sunday=" & GetDay2 (dateInput; "Sunday") & "¶" &

 "Monday=" & GetDay2 (dateInput ; "Monday") & "¶" &

 "Tuesday=" & GetDay2 (dateInput; "Tuesday") & "¶" &

 "Wednesday=" & GetDay2 (dateInput; "Wednesday") & "¶"

 "Thursday=" & GetDay2 (dateInput; "Thursday") & "¶"

 "Friday=" & GetDay2 (dateInput; "Friday") & "¶" &

 "Saturday=" & GetDay2 (dateInput; "Saturday") & "¶" &

 "Timestamp=" & GetDay2 (GetAsTimestamp (dateInput) ; "Sunday") & "¶"

 "Text Date=" & GetDay2 (GetAsText (dateInput) ; "Sunday") & "¶" &

 "Text TS=" & GetDay2 (GetAsText (GetAsTimestamp (dateInput)) ;

"Sunday") &

)

;

// Regular Code

 Let ([

 dateToProcess = GetAsDate (dateInput) ;

 list = "Sunday¶Monday¶Tuesday¶Wednesday¶Thursday¶Friday¶Saturday" ;

 list = Left (list ; Position (list ; dayRequested ; 1; 1)) ;

 dayNumber = ValueCount (list) ;

 numAdjustment = DayOfWeek (dateToProcess) – dayNumber

] ;

 dateToProcess - numAdjustment

)

)

Chapter 15 Creating Custom FunCtions

348

 Summary
This chapter covered the basics of developing your own custom functions and the

possibility of making them recursive. In the next chapter, we explore using the Structured

Query Language (SQL) with the ExecuteSQL function.

Chapter 15 Creating Custom FunCtions

349
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_16

CHAPTER 16

Introducing ExecuteSQL
The Structured Query Language (SQL) is a standardized programming language used to

manage relational databases and perform numerous operational functions to the data

they store. It was created in the 1970s and became the standard programming language

for relational databases. The American National Standards Institute (ANSI) and the

International Organization for Standardization (ISO) adopted an official SQL standard

in 1986 and 1987, respectively. Since then, many updates to the standard have been

released jointly by both organizations. Numerous companies now develop proprietary

and open source SQL-compliant database systems. While FileMaker is not built on the

standard, it has some support for performing SQL queries internally and externally.

In version 9.0 (2007), FileMaker introduced the ability to create live connections to

external ODBC data sources (Chapter 7). Version 12.0 (2012) introduced the ExecuteSQL

function which can perform queries against FileMaker tables from any calculation

within a FileMaker database. A SQL Query is a text-based statement used to instruct a

database to perform an action. The most frequently used type of query and the only one

supported by the ExecuteSQL function in FileMaker is the SELECT query, which contains

data retrieval instructions for a desired result set. Experienced SQL programmers

will appreciate the direct back-end access of this feature but may find the limitation

constraining. Others may find the divergence from FileMaker’s interface context–centric

data access confusing. But the ability to perform a search, sort, and summarize data

directly within a calculation formula in a completely context-independent manner is

something many will appreciate. It isn’t necessary to learn SQL or to use this command

to create databases since it doesn’t replace native FileMaker features. However, it is

worth learning for situations where it complements those features more efficiently. This

chapter explores the ExecuteSQL function, covering the following topics:

• Defining the ExecuteSQL function

• Creating SQL queries

• Accessing the database schema

https://doi.org/10.1007/978-1-4842-6680-9_16#DOI

350

 Defining the ExecuteSQL Function
The ExecuteSQL function allows a formula to retrieve data directly from any table

occurrence within the file’s relationship graph completely independent of any

relationship between it and the current interface context. A call to the function must

include three parameters: sqlQuery, fieldSeparator, and rowSeparator. It can also accept

one or more optional arguments.

ExecuteSQL (sqlQuery ; fieldSeparator; rowSeparator)

ExecuteSQL (sqlQuery ; fieldSeparator; rowSeparator ; arguments)

The parameters in the statement are defined as follows:

• sqlQuery – A text expression or reference to a field that contains

a SELECT statement which specifies the location and criteria for

fetching a desired record and field result.

• fieldSeparator – A text string containing the character(s) that should

be used as a separator between fields in the result. If left empty, a

comma is the default.

• rowSeparator – A text string containing the character(s) that should

be used as a separator between records in the result. If left empty, a

paragraph return is the default.

• arguments – One or more text values that are used as dynamic

parameters in the query, replacing question marks typically in a

WHERE clause.

The results of the function will be a text string with the value for each specified field

for every matching record delimited by the specified or default separators. For example,

using default separators, the result will be paragraphs representing records made up of

comma-separated field values.

Caution This is a calculation function and should not be confused with the
similarly named script step!

ChapTer 16 InTroduCIng exeCuTeSQL

351

 Understanding the Limits of ExecuteSQL
The ExecuteSQL function has a few limitations that are important to note. There are

features not supported that experienced SQL programmers may expect and others that

experienced FileMaker developers may incorrectly assume.

• As mentioned in the introduction, the function is currently limited

to the SELECT command only. It does not support any other common

SQL functions that perform record changes or modify schema such

as DELETE, INSERT, UPDATE, INSERT INTO, CREATE TABLE, DELETE

TABLE, etc.

• FileMaker’s relational connections are not recognized or required

by the function. A SELECT statement must use a JOIN clause to

dynamically create temporary relationships for use within the query.

• The function does not recognize the current layout context. Instead,

it directly accesses a table based on the occurrence specified.

• Values must be sent to the function with SQL-92 compliant date and

time formats with no braces. To apply the correct formatting in a

query, use a DATE, TIME, or TIMESTAMP conditioning operator, or the

value may be evaluated as a literal string. It will not accept the ODBC/

JDBC formats for date, time, and timestamp constants contained in

braces.

• The function will return date, time, and number data using the

Unicode/SQL format rather than the date and time settings of the

database file or operating system. So, these must be converted for use

as dates in FileMaker.

• Sorting performed by the function uses the Unicode binary sort

order.

 Creating SQL Queries
At a minimum, the sqlQuery portion of the ExecuteSQL function requires a SELECT

statement, which can include numerous optional clauses, and these can be used to

perform numerous different data retrieval tasks.

ChapTer 16 InTroduCIng exeCuTeSQL

352

 Defining SELECT Statements
When calling the ExecuteSQL function, the sqlQuery parameter must contain a properly

formatted SELECT statement. Minimally, this defines what to find and from where,

following the pattern shown here:

SELECT <what> FROM <where>

Usually, the what is the name of one or more fields and the where is the name of the

table occurrence from which to extract them. For example, the following example would

return the contents of a Name field from every record in a Contact table occurrence:

SELECT Name FROM Contact

The preceding code shows an example of the simplest statement, requesting one

field from all records. There are many optional clauses that are shown in the following

and briefly defined in Table 16-1:

SELECT/SELECT DISTINCT <fields>

FROM <tables>

JOIN <table> ON <formula>

WHERE <formula>

GROUP BY <fields>

HAVING <formula>

UNION <select>

ORDER BY <fields>

OFFSET <number> ROW/ROWS

FETCH FIRST <number> PERCENT/ROWS/ROW/ONLY/WITH TIES

ChapTer 16 InTroduCIng exeCuTeSQL

353

 Formatting Requirements

There are a few formatting requirements to keep in mind when writing SELECT

statements. These include

• Command and Object Names – The names of tables, fields, and

statement commands within a query are not case sensitive. However,

typing SQL commands and operators in upper case helps to visually

differentiate them from field and criteria values.

Table 16-1. The definitions of each available clause of a SELECT statement

Keyword Clause Description

SELECT Specifies one or more fields to select. Can include fields, constants, calculations,

and functions. use an asterisk to select all fields.

SELECT

DISTINCT

adding the DISTINCT operator will remove any duplicates from the result.

FROM Specifies one or more tables from which to select the fields.

JOIN defines a table and relational formula to allow the results to include fields

through a temporary relationship.

WHERE defines one or more criteria formulas that specify qualifications for records

included in the result.

GROUP BY Identifies one or more selected fields used to summarize the results.

HAVING defines one or more formulas that specify the criteria for the inclusion of a

grouped result. HAVING is to a GROUP BY what a WHERE is to a SELECT.

UNION used to combine two or more SELECT statements into a single result.

ORDER BY Identifies one or more selected fields to use to sort the results.

OFFSET Specifies a starting point within the selected set for the records that will be

included in the result.

FETCH FIRST Specifies the number of records that should be retrieved from the starting point,

either the first record or a record specified by OFFSET.

AS Creates a shorter alias for a table name that can be used elsewhere in the

statement as a prefix to identify a field’s table, especially when there is more

than one table involved, like when using a JOIN clause.

ChapTer 16 InTroduCIng exeCuTeSQL

354

• Criteria – Literal criteria, such as that used within a JOIN, WHERE,

and HAVING clause, are case sensitive and will fail to locate matching

values of a different case. Also, all textual criteria must be enclosed in

single quotations.

• Name Separators – When listing multiple tables and fields, always use

a comma-space delimiter between them.

• Quotations – Table and field names don’t need to be enclosed in

double quotations unless they contain spaces. Table names that

begin with non-alphabetic characters must be enclosed in double

quotations even when they don’t contain spaces. Since the SELECT

statement is itself contained in quotations, quotes used within must

be escaped with a preceding backslash.

 Using the SELECT Statement
Although the SELECT statement is the only one supported by the ExecuteSQL function, it

is very capable. Before delving into the many different optional clauses, let’s explore the

basic statement and discuss techniques for using it effectively.

 Selecting an Entire Table
The most basic query is one in which every field will be selected for every record. This can

be performed with a simple statement.

SELECT * FROM <TableName>

The statement must always begin with the word SELECT followed by an indication of

which fields to select and from which table. In this case, the asterisk informs FileMaker

to select all fields. The <TableName> placeholder shown in the preceding example is

replaced with the name of an actual table occurrence whose base table the function

should access. The SELECT statement shown in the following example will fetch every

field from the Contact table:

SELECT * FROM Contact

Put this in quotes and use it as the first parameter of an ExecuteSQL statement as

shown in this example:

ExecuteSQL ("SELECT * FROM Contact" ; "" ; "")

ChapTer 16 InTroduCIng exeCuTeSQL

355

Enter this formula in the Example Calculation field of the Learn FileMaker database.

After confirming that the Calculation result type is set to return text, save the formula,

and the result displayed in Figure 16-1 should appear in the field in Browse mode. Each

paragraph of the result is a single record that contains a comma-separated list of every

field value, both in creation order.

Figure 16-1. An example of the result of a SQL query

Note although the examples in this chapter assume the formula is used in a
calculation field, these can be used in any formula.

 Selecting Individual Fields

For situations where you don’t need every field for every record in a table, the SELECT

statement can specify individual fields.

Specifying a Single Field

To select a single field from a Contact table, change the asterisk to the name of the field,

remembering to enclose it in escaped quotes if it contains spaces. The following formula

selects the Contact Address City field from every record of the Contact table. This will

result in a return-delimited list of city names. Notice that the list includes the field value

for every record, so it will include many duplicates.

ExecuteSQL ("SELECT \"Contact Address City\" FROM Contact" ; "" ; "")

// result =

 Hamilton

 Ashland

 Chicago

 San Jose

ChapTer 16 InTroduCIng exeCuTeSQL

356

 Sioux Falls
 San Jose
 Ashland
 ...etc...

Specifying Multiple Fields

To select multiple fields, list each in a comma-space separated string:

SELECT <Field1>, <Field2>, <Field3> FROM <Table>

For example, to select the Contact Address City and Contact Address State fields
from the Contact table, use the following formula. The result of this statement will be a
comma-delimited list of city and state names.

ExecuteSQL (
"SELECT \"Contact Address City\", \"Contact Address State\" FROM Contact" ;
"" ; ""
)
// result =
 Hamilton,OH
 Ashland,OH
 Chicago,IL
 San Jose,CA
 Sioux Falls,SD
 San Jose,CA
 Ashland,OH
 ...etc...

 Keeping References Dynamic
In the previous examples and others to follow, table and field names are typed directly
into the query statement as static text. While fine for examples in a book, when writing
queries for live production databases, consider using dynamic references so changes to
the database structure don’t break query containing formulas (Chapter 12, “Keeping
Field References Dynamic”). The following example demonstrates the technique:

Let ([
 reference = GetFieldName (Contact::Contact Name First) ;

 reference = Substitute (reference ; "::" ; "¶") ;

ChapTer 16 InTroduCIng exeCuTeSQL

357

 tableName = Quote (GetValue (reference ; 1)) ;

 fieldName = Quote (GetValue (reference ; 2))

] ;

 ExecuteSQL ("SELECT " & fieldName & " FROM " & tableName ; "" ; "")

)

The Let statement in the preceding example converts a field reference into a string

and places it into the reference variable. The Substitute function replaces the two

colons with a paragraph return and places that result into the reference variable. In the

preceding example, reference will contain this value:

Contact¶Contact Name First

Next, the GetValue function extracts the first and second paragraph from the

reference variable and places them into the tableName and fieldName variables,

respectively, while the Quote function wraps these in quotations to protect against

spaces in the names. From there, those variables are used to construct the SELECT

statement which becomes a parameter for ExecuteSQL. When structured this way, any

changes to the table or field name will automatically be reflected here, and the query will

continue to function as expected.

 Getting Unique Values with SELECT DISTINCT

To automatically alphabetize results and remove duplicates, use the SELECT DISTINCT

command. The following example will generate a list of alphabetically sorted, unique

values from the Contact Address City field of the Contact table:

"SELECT DISTINCT \"Contact Address City\" FROM Contact"

The uniqueness of the result is based on the entire record value, not individual fields

within it. For example, when selecting only the city, the results will include only one

entry for “San Jose.” However, if multiple fields are selected, like a street address and city

shown in the following example, the results will include multiple entries for San Jose

since the full record now includes other values. For example, “123 First Street,San Jose” is

not fully equal to “1837 Fifth Ave,San Jose,” so both would be included in the result.

"SELECT DISTINCT \"Contact Address Street\", \"Contact Address City\" FROM

Contact"

ChapTer 16 InTroduCIng exeCuTeSQL

358

 Reformatting SELECT Statements for Clarity

Unlike the preceding examples that are short and easy to read, SELECT statements can

quickly grow in complexity and wrap to multiple lines. There are two techniques that can

be used to reformat statements and avoid visual clutter: adding extra space and using a

Let statement.

Adding Extra Space with Tabs and Paragraph Returns

FileMaker will ignore paragraph returns and tabs in the sqlQuery text string so these can

be used to separate the statement into readable blocks, as shown in the following pattern.

A combination of a tab and paragraph return separates each clause of the statement onto

its own line, where it is indented to stand out from the enclosing statement. Following this

pattern will make the statement easier to read:

ExecuteSQL ("

 SELECT <field>

 FROM <table>

 JOIN <table> ON <formula>

 WHERE <formula>

 ORDER BY <field>

" ; "" ; "")

When multiple fields, find conditions, or other components are used, those can be

pushed onto their own line, further indented for additional clarity as shown here in this

pattern:

ExecuteSQL ("

 SELECT

 <field1>,

 <field2>,

 <field3>

 FROM <table>

 JOIN <table> ON <formula>

 WHERE

 <condition1> and

 <condition2> and

 <condition3>

ChapTer 16 InTroduCIng exeCuTeSQL

359

 ORDER BY

 <field1>,

 <field2>

" ; "" ; "")

Using a LET Statement

Another method of eliminating the visual confusion of a complex query is the use of a Let

statement. The entire SELECT query can be built in pieces using separate variables that

are finally combined into a single variable and inserted into the ExecuteSQL statement,

as shown in this example:

Let ([

 sFields = "SELECT <Fields>" ;

 sTable = "FROM <Table> " ;

 sJoin = "JOIN <table> ON <formula> " ;

 sWhere = "WHERE <formula> " ;

 sGroup = "GROUP BY <fields> " ;

 SQL = sFields & sTable & sJoin & sWhere & sGroup

] ;

 ExecuteSQL (SQL ; "" ; "")

)

Tip Create a custom function to accept a field reference and other criteria and
return the query statement.

 Exploring the Benefits of Aliases

An alias is a short text string that can act as a proxy for a table name elsewhere in a

SELECT statement. When a SELECT statement contains repeated references to more

than one table, as in a JOIN clause (discussed later in this chapter), aliases are used to

identify the table containing a field. Although an alias can be made up of any number

of characters, as a space-saving mechanism shorter is always better. To establish an

alias, use the AS clause after the identification of a table, and follow it with a text alias, as

shown in the following pattern:

ChapTer 16 InTroduCIng exeCuTeSQL

360

SELECT <field> FROM <table> AS <alias>

For example, to create an alias c for the Contact table, format it like this:

SELECT <field> FROM Contact AS c

Once the alias c is established, it can be used as a prefix on any field name, in any

clause, to identify the table to which a field belongs. While aliases are not required when

selecting fields from a single table, the following example demonstrates how aliases

work. Notice that the alias is defined at the end of the statement but can be used in

previous clauses.

SELECT c.Notes FROM Contact AS c

When a field with spaces in its name is enclosed in double quotations, the alias prefix

should precede the name outside of the quotes.

SELECT c.\"Contact First Name\" FROM Contact AS c

Although an alias is unnecessary in the following short examples, as a demonstration

of the formatting with or without an alias, each of these will generate the exact same

result:

SELECT Notes FROM Contact

SELECT Contact.Notes FROM Contact

SELECT c.Notes FROM Contact AS c

Note aliases will be used in more complex examples later in this chapter.

 Inserting Literal Text in the Field List
Literal text strings can be inserted before, between, and after field names within the

SELECT statement and will be repeated in the results for each record. Literals must

be enclosed in single quotation marks and separated by a comma. This example

demonstrates a 'Name:' label inserted into the field results.

ExecuteSQL ("

 SELECT

ChapTer 16 InTroduCIng exeCuTeSQL

361

 'Name: ',

 \"Contact Name First\",

 \"Contact Name Last\"

 FROM Contact"

; " " ; "")

// Result

 Name: Cynthia,Johnson

 Name: Karen,Camacho

 Name: Sandy,Robinson

 Name: Thomas,Smithfield

 Concatenating Results
A query can include instructions for pre-processing separate field values into combined

results using concatenation, the action of linking things together in a chain or series.

Instead of receiving a result of raw comma-delimited set of field names which would

require further parsing and manipulating, concatenation provides more useful results.

This can be achieved using either the + or || operators, although the latter is both more

reliable and less likely to be confused with the same operator used in mathematical

calculations. The following example query shows first and last names being

concatenated into a single string, with a space inserted between them:

ExecuteSQL ("

 SELECT \"Contact Name First\" || ' ' || \"Contact Name Last\"

 FROM Contact

" ; "" ; "")

// Result

Cynthia Johnson

Karen Camacho

Sandy Robinson

Thomas Smithfield

Alternatively, the plus-sign delimiter would produce the same results.

SELECT \"Contact Name First\" + ' ' + \"Contact Name Last\"

ChapTer 16 InTroduCIng exeCuTeSQL

362

In the preceding two simple examples, the same result could also have been achieved

by placing a space in the fieldDelimiter parameter. However, when more fields are selected,

concatenation allows different delimiters between different sets of fields where the field

delimiter is the same for every field. The following example shows a more realistic example

of using both concatenation and a custom delimiter to return a contact's full name and

mailing address as a three-paragraph result. The first-last name and city-state-zip are each

concatenated, and then a custom field and record delimiter format the results into a list of

mailing addresses.

ExecuteSQL ("

 SELECT

 \"Contact Name First\" + ' ' + \"Contact Name Last\",

 \"Contact Address Street\",

 \"Contact Address City\" + ', ' +

 \"Contact Address State\" + ' ' +

 \"Contact Address Zip\"

 FROM Contact" ; "¶" ; "¶¶")

// Result

 Cynthia Johnson

 123 Main Street

 Youngstown, OH 44504

 Karen Camacho

 42 Memory Lane

 Brooklyn, NY 11111

 Sandy Robinson

 631 Front Street

 Lafayette, IN 47901

 Using the WHERE Clause
Adding a WHERE clause to a SELECT statement allows the query to target specific records based

on search criteria. The <formula> portion can contain one or more expressions that define

the criteria used to match records, typically including a field, an operator, and a search value.

SELECT <field> FROM <table> WHERE <formula>

ChapTer 16 InTroduCIng exeCuTeSQL

363

 Creating a WHERE Clause with a Single Expression

To limit the results to contacts from California, a WHERE formula would be composed of

the field name (in quotes if required), an equal sign as the operator, and ‘CA’ in single

quotes. The following example demonstrates this by requesting the first and last name

of every contact within that state. Remember, when this is inserted into the ExecuteSQL

function call, the entire statement would be enclosed in quotes, and the quotes around

field names would need to be escaped with a backslash.

SELECT

 "Contact Name First",

 "Contact Name Last"

FROM Contact

WHERE "Contact Address State" = 'CA'

 Creating a WHERE Clause with Multiple Expressions

For complex criteria, a WHERE clause can contain multiple search expressions separated

by a comparison operator of AND or OR. For example, when searching for contacts living

in a city that is common to many states, such as ‘Milford,’ use two expressions to specify

both the city and the state. To do this, use the AND operator between the two expressions,

requiring results to match both criteria.

WHERE "Contact Address City" = 'Milford' AND "Contact Address State" = 'PA'

Similarly, to find contacts from two different states, for example, from Pennsylvania

or Ohio, use an OR operator to allow the results to include results from either expression.

 WHERE "Contact Address State" = 'PA' OR "Contact Address State" = 'OH'

 Using the ORDER BY Clause
The ORDER BY clause can be added to specify result sorting.

SELECT <field> FROM <table> ORDER BY <fields>

The following example returns a list of the last name of every contact sorted by state.

SELECT "Contact Name Last" FROM Contact ORDER BY "Contact Address State"

ChapTer 16 InTroduCIng exeCuTeSQL

364

Combining the ORDER BY with a WHERE clause, the following example will return the

last name of every contact living in a city named ‘Milford’ sorted by state.

SELECT "Contact Name Last"

FROM Contact

WHERE "Contact Address City" = 'Milford'

ORDER BY "Contact Address State"

 Using the JOIN Clause
Adding a JOIN clause creates a temporary relationship between two table occurrences

that exist only during the execution of the SQL query. These are used to select fields

from two tables and return a blended result. A JOIN allows other clauses like WHERE or

ORDER BY to refer to fields from either table or both. For example, Contact records can be

selected where related Company records are located in a specific state and the resulting

contact list can be sorted by company name. The JOIN clause contains the name of a

table that should be related to the FROM table with a formula expressing the criteria that

should be used to form the temporary relationship. The full formula pattern is shown

here:

SELECT <field> FROM <table1> JOIN <table2> ON <formula>

The following example connects Contact and Company tables to select every

contact’s first name and their related company’s name when the Contact Company ID

field in Contacts (aliased con) equals the Record ID field in Company (aliased com). It

assigns an alias to the tables and uses these as a prefix in the field list and the join clause.

SELECT

 con."Contact Name First",

 com."Company Name"

FROM Contact AS con

JOIN Company AS com ON

 con."Contact Company ID" = com."Record ID"

ChapTer 16 InTroduCIng exeCuTeSQL

365

 Using the GROUP BY Clause
Adding a GROUP BY clause generates an aggregate value based on one or more fields.

This is a SQL equivalent of a native FileMaker summary field (Chapter 8); both generate

a summarization of data based on a sort-grouping field. For example, if a Contact

table had a field named State and another named Invoices that contained a total of a

customer’s invoice amounts, the following code without a GROUP BY clause will return a

list of each contact record’s State and Invoice amount as shown in the following example:

SELECT State, Invoices FROM Contact ORDER BY State

// Result =

 AK,1000

 AK,500

 AK,250

 AZ,500

 AZ,750

 Etc.

By using the Sum function on the Invoices field and adding a GROUP BY clause that

specifies the State field, the following example would return a summary of invoice

amounts, totaled by state. Notice that the ORDER BY clause is removed from this example.

It is not required since the GROUP BY clause sorts the records in order to group and

summarize the results.

SELECT State, Sum (Invoices) FROM Contact GROUP BY State

// Result =

 AK,1750

 AZ,1250

 CA,2500

 Adding a HAVING Clause

Combining a HAVING and GROUP BY clause allows the statement to define which grouped

results will be included, acting like a WHERE clause but for summarized results. Building

on the previous example, the following example uses a HAVING clause to only include

results for states where the summary of Invoices is greater than a certain dollar amount.

Here, the summarized entry for AZ from the previous example has been removed

ChapTer 16 InTroduCIng exeCuTeSQL

366

because the summary total of 1250 was under the threshold of 1500 that is specified in

the HAVING clause.

SELECT State, Sum (Invoices) FROM Contact GROUP BY State HAVING Sum (

Invoices) > 1500

-- Result =

AK,1750

CA,2500

 Using the UNION Clause
Adding a UNION clause can combine the results of two or more SELECT statements,

whether from the same table with the same or different criteria or from different tables,

as long as each selects the same number of fields and each field position is the same

data type across them all. For example, if the first SELECT statement returns three fields

with the data types of text, number, and text, a second SELECT statement must also return

three fields with the same data types in the same order. The following is a simplified

pattern of adding UNION between two SELECT statements that doesn’t show other clauses

which can be included in either or both statements.

SELECT <fields1> FROM <table1> UNION SELECT <fields2> FROM <table2>

By default, this clause automatically excludes duplicate entries from the merged

result. Use UNION ALL to include all results, even duplicates.

 Limiting the Results of a Query
The OFFSET and FETCH FIRST clauses can be used separately or in unison to control the

number of results returned by a query.

 Using the OFFSET Clause

The OFFSET clause is used to specify a number of records to exclude from the top of the

result. This example will exclude the first 20 records and return results starting from

record 21:

SELECT "Record ID" FROM Contact OFFSET 20 ROWS

ChapTer 16 InTroduCIng exeCuTeSQL

367

 Using the FETCH FIRST Clause

The FETCH FIRST clause limits the number of rows returned. This example will return

only the first ten results:

SELECT "Record ID" FROM Contact FETCH FIRST 10 ROWS ONLY

 Combining the OFFSET and FETCH FIRST Clauses

A combination of the OFFSET and FETCH FIRST clauses can fetch specific groups of

records from the result. This allows subsets of results to be extracted in a sequence of

small batches, often referred to as paging results, where each query returns one “page” of

results at a time. The OFFSET portion indicates where the desired group begins, and the

FETCH FIRST portion limits the number of records accessed from that starting point. This

code shows several examples of accessing batches of records, ten at a time.

SELECT "Record ID" FROM Contact FETCH FIRST 10 ROWS ONLY

SELECT "Record ID" FROM Contact OFFSET 10 ROWS FETCH FIRST 10 ROWS ONLY

SELECT "Record ID" FROM Contact OFFSET 20 ROWS FETCH FIRST 10 ROWS ONLY

SELECT "Record ID" FROM Contact OFFSET 30 ROWS FETCH FIRST 10 ROWS ONLY

SELECT "Record ID" FROM Contact OFFSET 40 ROWS FETCH FIRST 10 ROWS ONLY

The first statement returns records 1 through 10, the second records 11 through 20,

the third records 21 through 30, and so on. Using this technique, interface elements can

allow a user to click back and forth through groups of results one “page” at a time.

 Accessing the Database Schema
The ExecuteSQL function has the ability to access two system tables which provide meta-

information about the database’s schema: FileMaker_Tables and FileMaker_Fields. These

tables can be used in a SELECT statement as if they were custom table occurrences to

access information about the tables and fields that make up the database structure.

ChapTer 16 InTroduCIng exeCuTeSQL

368

 Selecting FileMaker_Tables
The FileMaker_Tables table contains one virtual record for every table occurrence defined

in the relationship graph with the following fields of information:

• TableName – The name of the table occurrence

• TableID – An identification number for the table occurrence

• BaseTableName – The name of the base table for the table occurrence

• BaseFileName – The name of the file in which the occurrence’s base

table exists

• ModCount – The number of modifications made to the table

structure since its creation

To select all five fields for every table occurrence in the database, use the following

query formula in the ExecuteSQL function:

"SELECT * FROM FileMaker_Tables"

// Result =

 Company,1065101,Company,Learn FileMaker,20

 Company | Contact,1065105,Contact,Learn FileMaker,24

 Contact,1065102,Contact,Learn FileMaker,24

 Contact | Company,1065106,Company,Learn FileMaker,20

 Project,1065103,Project,Learn FileMaker,4

 Project | Company,1065107,Company,Learn FileMaker,20

 Sandbox,1065089,Sandbox,Learn FileMaker,134

This example specifies a result of only the TableName field:

"SELECT TableName FROM FileMaker_Tables"

// Result =

 Company

 Company | Contact

 Contact

 Contact | Company

 Project

 Project | Company

 Sandbox

ChapTer 16 InTroduCIng exeCuTeSQL

369

This example limits the results to the actual table names using SELECT DISTINCT and

the BaseTableName:

"SELECT DISTINCT BaseTableName FROM FileMaker_Tables"

//Result =

 Company

 Contact

 Project

 Sandbox

 Selecting FileMaker_Fields
The FileMaker_Fields table contains one virtual record for every field defined in the

database with the following meta-information available:

• TableName – The name of the field’s table occurrence

• FieldName – The name of the field

• FieldType – The SQL data type of the file

• FieldID – An identification number for the field

• FieldClass – The class of the field: Normal, Summary, or Calculated

• FieldReps – The number of maximum repetitions defined

• ModCount – The number of modifications made to the field since it

was created

This example returns all seven values for every field for every table in the database:

"SELECT * FROM FileMaker_Fields"

Since this system table contains fields based on table occurrences, the results will

include duplicates if there is more than one occurrence for a given base table. An iterative

process like a While function (Chapter 13), a recursive custom function (Chapter 15), or

a looping script (Chapter 25, “Iterating with Repeating Statements”) can get the name

of every base table and then step through these to retrieve the fields for each, thereby

avoiding any duplicates. The following example shows a simple While statement that

demonstrates how to do this:

ChapTer 16 InTroduCIng exeCuTeSQL

370

While (

[

 baseTables =

 ExecuteSQL ("SELECT DISTINCT BaseTableName FROM FileMaker_Tables" ;

"" ; "") ;

 result = ""

] ;

 baseTables ≠ "" ;
[

 current.table = GetValue (baseTables ; 1) ;

 baseTables = RightValues (baseTables ; ValueCount (baseTables) - 1) ;

 current.fields =

 ExecuteSQL (

 "SELECT * FROM FileMaker_Fields WHERE TableName='" & current.table

& "'" ; "" ; ""

) ;

 result = result & current.fields

] ;

 result

)

 Exploring Other SQL Features
FileMaker includes additional SQL functionality beyond the material covered in this

chapter. Numerous functions can be embedded into a SELECT statement to manipulate

the results, many providing functionality like FileMaker’s own functions. There are

commands available to manipulate dates, times, and strings. Numeric values can

be aggregated or used in mathematical computations. Conditional actions can be

embedded, and numerous operators can be used with field values and SQL functions

to manipulate results. The Execute SQL script step allows more robust manipulation of

external ODBC/JDBC data sources from external databases. Also, a FileMaker database

can be used as an ODBC/JDBC data source and supports SQL queries from external

databases. For more information about these topics, visit www.claris.com and search for

the FileMaker ODBC and JDBC Guide or FileMaker SQL Reference documents.

ChapTer 16 InTroduCIng exeCuTeSQL

http://www.claris.com

371

 Summary
This chapter introduced the basics of using the ExecuteSQL function and provided

examples of many features of the SELECT statement. In the next chapter, we begin to

explore layout design, giving users an interface access into your data structure.

ChapTer 16 InTroduCIng exeCuTeSQL

PART IV

Designing User Interfaces

An interface provides an access point for user and script interactions with the data stored

in the foundational table structure. It is the most prominent part of a database and

arguably one of the most important. These chapters explore the basics of layout design:

 17. Introducing Layouts

 18. Getting Started with Layouts

 19. Exploring Layout Panes

 20. Creating Layout Objects

 21. Manipulating Objects

 22. Using Themes and Styles

 23. Customizing Menus

375
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_17

CHAPTER 17

Introducing Layouts
A layout is a developer-designed graphical template that defines how records, fields, and

objects will be rendered to produce an interactive experience. Each database window

displays one layout at a time. The layout active at a given moment in time is referred to

literally as the current layout. When a database opens, this is a default layout selected

based on how the database is configured. It may be a selected layout in File Options

(Chapter 6), one opened by a Script Trigger (Chapter 27), or the last layout that was

open when the file was closed while running on a local computer. Unlike the convenient

predefined layouts in Claris starter solutions, a custom database begins with a single

empty layout from which a developer must design an interface. This chapter begins

exploring interface design by introducing layout basics, including

• Understanding contextual access

• Anatomizing a layout

• Planning layouts

• Using Layout mode

 Understanding Contextual Access
Each layout is assigned a table occurrence and acts as an interface context that corresponds

to the relational context of that assignment. This extends a specific relational perspective

from the back-end data to the front-end interface, rendering an intersecting context point

where users and scripts can create, delete, edit, find, print, and view records stored in the

underlying table. The occurrence assignment determines which records and fields are

accessible when the layout is current. Any field that is local to a layout’s occurrence or is in

an occurrence related to that occurrence can be placed on the layout, viewed by the user,

and used in calculations embedded into layout objects, scripts, and menus.

https://doi.org/10.1007/978-1-4842-6680-9_17#DOI

376

The illustration in Figure 17-1 shows a user viewing a Contacts – Entry layout that

displays records from the Contacts table through the context of the primary Contacts

table occurrence. Any field from the Contacts table placed on that layout will render the

value stored for the current record being viewed. Additionally, fields from the Company

table can be placed on the layout by way of the Contacts | Company occurrence. This

will automatically pull record(s) based on the relationship criteria between the two

occurrences and only display matching records (Chapter 9). The Contact – List layout is

assigned the same occurrence, so it displays records from the same relational context.

Switching between these two contact layouts within the same window will retain the

current record and current found set. By contrast, the Company – List layout shows

records from the Company table through the primary Company occurrence but can’t

include fields from Contacts since those two occurrences aren’t currently related.

 Anatomizing a Layout
A layout is a configurable space that contains a stack of one or more horizontal regions

that create a single screen or page. As discussed in forthcoming chapters, these layout

parts come in a variety of types, each with inherent and configurable properties that

determine their rendered appearance and behavior. Parts can be added, rearranged, and

Figure 17-1. An illustration of how tables, occurrences, layouts, and windows
interconnect to present an interface

Chapter 17 IntroduCIng Layouts

377

configured in various combinations depending on the functional needs of the layout.

Fields and other objects placed onto parts have their own inherent and configurable

properties. Together these elements define a layout. When rendered in Browse mode, a

layout can be viewed in different ways when a user or script chooses from the developer-

enabled content views or changes the window mode (Chapter 3). The illustration in

Figure 17-2 shows the general anatomy using the example of a simple layout and the

variety of viewing options that control how it is rendered for the user.

 Planning Layouts
Layouts will vary in complexity based on their purpose, the needs of a given workflow,

budgetary restrictions, and the skills of the developer-designer. A quickly constructed

spreadsheet-like table view can provide the ad hoc simplicity that adequately serves

Figure 17-2. An illustration of the anatomy of a layout

Chapter 17 IntroduCIng Layouts

378

a specific need. In a modern workplace, populated with sophisticated professional

users, a more elaborate design is usually more appropriate and may even be expected.

Poorly designed layouts become a cluttered, confusing, visual nightmare that frustrates

a user’s ability to work. Such “solutions” tend to cause more problems than they solve.

A well-designed layout can range from a modest but practical design up through an

artistically expressed, robustly featured, efficiently visualized, graphical masterpiece

that anticipates a user’s needs and extends powerful, time-saving tools for manipulating

and repurposing data in a convenient and intuitive way. Whatever the approach, layout

design and planning is important. The entire experience a user has with a database is

through a layout. The appearance and functionality of that layout design will greatly

influence their evaluation of the database and of you as its developer.

Caution When learning or building a proof of concept, design can be temporarily
less important. examples in this book are created plainly for demonstration and not
intended as examples of good design!

When designing an interface, start by making a list of the layouts you envision for

each table. Typically, every table requires at least one List and one Form layout to allow

users to perform basic functions, e.g., scrolling through a found set to locate a desired

record and then navigating to an expanded layout for viewing and data entry. Beyond

that, layouts will vary based on the nature of the information, the company workflow,

and other considerations. Some tables require layouts for printing envelopes, labels, or

financial reports. Others require layouts for special data entry tasks or for interactions

with the smaller screens of mobile devices. Layouts can be created to act as dialogs that

inform and guide users or to provide workspaces optimized for specific tasks. Additional

layouts can be added at any time during development and even after deployment, so it

isn’t necessary to plan every layout upfront. But a good starting plan is important.

After creating a list of desired layouts, connect them into a navigational flow chart to

help visualize how the user will move around the interface. Even a rough sketch can be

helpful, like the one shown in Figure 17-3. The diagram shows a rough representation of

the Learn FileMaker database with an added menu layout and various placeholders for

hypothetical future layouts. Remember, the navigational arrows are illustrating a general

interface connection between layouts. In the actual interface, navigation functions may

be much more complex depending on the number of tables, the relationships between

them, the style of the navigational controls you develop, and other factors. For now, the

Chapter 17 IntroduCIng Layouts

379

diagram simply gives you a “big picture” overview of the flow. Once you have at least a

rough plan prepared, enter Layout mode and begin exploring the environment used to

design interfaces.

Layout names can take whatever form you want. Ideally, they include the name of

the table they represent and something to describe their general function. Although

FileMaker allows layouts with the same name, keep the names unique to avoid

confusion. The Learn FileMaker demo files use the name of the primary table for the

main Form layout and the same plus a descriptor for other layouts, e.g., Invoice, Invoice

List, and Invoice Report.

 Using Layout Mode
Layout mode is an alternate window state in which the whole application environment

is transformed to accommodate layout design work. In this mode, the toolbar buttons

and menu items change to provide control over interface-related functions. Each side

of the window has optional layout panes that provide access to fields, objects, add-ons,

Figure 17-3. A rough sketch of a simple layout flow with expansion placeholders

Chapter 17 IntroduCIng Layouts

380

and configuration settings (Chapter 19). The entire content area becomes an editable

workspace where you can add, configure, and style objects to control how things will be

rendered in other modes (Chapters 20 and 21). Layout mode can be initiated selecting

the View ➤ Layout Mode menu or clicking the Edit Layout button in the toolbar.

 Status Toolbar (Layout Mode)
When a window is placed into Layout mode, the options available in the toolbar will

change dramatically. The Browse mode controls for managing records, and performing

data entry tasks will be replaced with tools for adding objects to the layout and

performing other design-related functions. The controls available will be either the

default Layout mode items or the user’s customized set.

 Default Status Toolbar Items (Layout Mode)

The default status toolbar for Layout mode is shown in Figure 17-4.

 1. Navigation controls

 2. New Layout/Report button

 3. Layout tools

 4. Developer menu and pane toggling

 5. Layout menu

 6. Layout Settings button

 7. Theme Selection

Figure 17-4. The status toolbar for Layout mode

Chapter 17 IntroduCIng Layouts

381

 8. Screen and Device Dimension menu

 9. Formatting Bar button

 10. Exit Layout button

Navigation Controls

At the top left of the toolbar are navigation controls that appear and function similar to

Browse mode (Chapter 3) except they refer to and control layouts rather than records.

The total refers to the total number of layouts that exist in the current file, and the

number in the text box indicates which layout is being viewed.

Caution although included here, recent versions of FileMaker exclude navigation
controls from the default Layout mode toolbar. Customize the toolbar to add these
essential tools.

New Layout/Report Button

The only function button present in the default toolbar is New Layout/Report which

starts the process of creating a new layout (Chapter 18). Other function buttons, such as

Delete Layout and Duplicate Layout, can be added by customizing the toolbar.

Layout Tools

The central row of icons are layout object tools, which are defined in Table 17-1. Most

are object-creation tools that are used to insert a new instance of an object (Chapter 20).

The majority of those are draw-mode activation tools that, once selected, allow object

creation by clicking and dragging within the layout creation area. Each of these is a

transitory selection which deactivates and reverts to the selection tool after an object is

created. Double-click one of these to lock it and allow rapid creation of multiple objects

of the same type one after another without having to reselect the tool. The tool will then

remain active until another tool is selected. Many tools have dual modes: click to create

a default object type or click-hold to reveal a menu of similar object types. Two of the

object-creation tools are drag-insertion tools which are click-dragged from the toolbar

onto the content area to initiate the creation of a field or layout part. Finally, two tools are

object manipulation tools which are used to select an object or apply formatting.

Chapter 17 IntroduCIng Layouts

382

Developer Menu and Pane Toggling

The Manage Database icon reveals a shortcut menu of developer options that are also

accessible through the File ➤ Manage menu (Chapter 2). The two Show/Hide Panes

buttons toggle a pane on each side of the window in Layout mode (Chapter 19).

Table 17-1. Each layout tool defined

Icon Tool Description

Selection tool – select objects on the layout to move or configure them.

Text tool – add or edit text on a layout or in object types like buttons, tabs, etc.

Line tool – draw a line on a layout. hold the shift key to lock for a straight horizontally or

vertically line. hold option to lock to a 45-degree angle.

Shape menu – Click to select the Rectangle shape tool or click-hold to choose from a

menu of Rectangle, Rounded Rectangle, or Oval. hold the shift or option key to maintain a

uniform height and width while dragging its boundaries.

Field menu – Click to select an Edit box mode or click-hold to choose a specific control

style. drag in the content area to create a field object and select a field assignment. once

created, the control style can be modified (Chapter 20, “Configuring Field Control style”).

Button menu – Click to select the Button tool or click-hold to choose from a menu of Button

or Popover Button.

Button Bar tool – draw a segmented bar that can contain multiple Buttons and/or Popover
Buttons.

Multi-panel Object menu – Click to select the Tab Control tool or click-hold to choose from

a menu of Tab Control or Slide Control.

Portal tool – draw a portal, for viewing a list of records from a related table.

Chart tool – draw a graphical chart object.

Web Viewer tool – draw a web viewer object.

Field tool – drag a new field down onto a layout.

Part tool – drag a new layout part onto a layout (Chapter 18).

Format Painter tool – select to copy and apply format settings from one object to another.

Chapter 17 IntroduCIng Layouts

383

Layout Menu

The lower, non-customizable level of the Layout mode toolbar starts with the Layout

menu. Similar to the same menu in Browse mode (Chapter 3), this menu always lists

every layout in the file and adds access to the Manage Layouts dialog (Chapter 18). It is

used to quickly switch to edit another layout the same as selecting a layout from the View

➤ Go To Layout submenu.

Layout Settings Button

Next to the Layout menu, a button opens the Layout Settings dialog where options and

behaviors can be set for the current layout (Chapter 18, “Configuring Layout Settings”).

Theme Selection

The Theme Selector displays the name of the theme assigned to the layout with a button

that will open a theme selection dialog. A layout theme is a collection of stylistic settings

that, once assigned to the layout, can be quickly applied to objects and allows changes to

be synchronized across the entire database (Chapter 22).

Screen and Device Dimension Menu

The Screen and Device Dimension menu allows a choice of dimensional guide overlays

that show an orange border in the layout design area visually denoting the boundaries

of specific screen sizes. Click the box portion of the icon to toggle the visibility of all the

overlay boxes for selected dimensions.

Formatting Bar Button

The Formatting Bar button will toggle the visibility of a text-formatting control bar

between the status toolbar and the design area of the window (Chapter 3, “Formatting

Bar”).

Exit Layout Button

The Exit Layout button will switch the window back to Browse mode with an optional

dialog asking if you want to save changes depending on preference settings (Chapter 2,

“Layout Settings”).

Chapter 17 IntroduCIng Layouts

384

 Customizing the Status Toolbar (Layout Mode)

The toolbar in Layout mode is customizable at the user-computer level exactly as it is

in Browse mode (Chapter 3, “Customizing the Status Toolbar”) except that the buttons

available are layout specific. To begin customizing, enter Layout mode and then select

the View ➤ Customize Toolbar menu to open the customization panel attached to

the window as shown in Figure 17-5. Once open, items can be added, removed, or

rearranged in the same manner as in Browse mode.

 Menu Changes (Layout Mode)
The menus in Layout mode are similar to Browse mode but with a few notable changes.

In addition to the Records menu being completely removed, the Edit, View, Insert, and

Format menus are changed, and Layouts and Arrange menus are added.

Figure 17-5. The toolbar customization panel for Layout mode (macOS)

Chapter 17 IntroduCIng Layouts

385

 Edit Menu

The Edit menu options change in Layout mode, as shown in Figure 17-6.

• Copy Object Style – Copies style information of a selected object.

• Paste Object Style – Applies previously copied style information to the

selected object.

• Revert Changes to Style – Reverts any formatting changes applied to

the selected object back to the style assigned (Chapter 22).

• Duplicate – Duplicates the selected layout object(s).

• Export Field Contents – This function is removed in Layout mode.

 View Menu

The View menu options change in Layout mode, as shown in Figure 17-7.

Figure 17-6. The Edit menu in Browse mode (left) and Layout mode (right)

Chapter 17 IntroduCIng Layouts

386

• Go to Layout – Like the Layout menu in the toolbar, this submenu

displays all layouts in Layout mode.

• View as – These three Browse mode functions are removed.

• Rulers – The menu, pluralized in Layout mode, toggles the visibility of

both horizontal and vertical rulers.

• Page Margins – Select to activate page border guides superimposed

on the layout background based on the current print settings.

• Page Breaks – Select to activate page breaks superimposed on the

layout background.

Figure 17-7. The View menu in Browse mode (left) and Layout mode (right)

Chapter 17 IntroduCIng Layouts

387

• Grid – A submenu of two choices: Show Grid toggles the visibility

of a grid of major and minor lines, reminiscent of graph paper

superimposed on the background, and Snap to Grid toggles the

magnetic attraction of objects to the grid.

• Guides – A submenu of two choices: Show Guides toggles the visibility

of manually placed blue guide lines, and Snap to Guides toggles the

magnetic attraction of objects to those.

• Dynamic Guides – Select to activate automatic guides that appear

around and between an object when it is dragged around a layout.

Note see further discussion of rulers, grids, guides, and dynamic guides in
Chapter 21,“Layout positioning helpers.”

• Show – A submenu listing special iconography and display options in

Layout mode, including

• Show Sample Data in place of field names.

• Show Text Boundaries and Field Boundaries will make an object’s

dimension visible regardless of styling.

• The remaining options toggle the visibility of a small icon called

an object badge superimposed over objects indicating key

features, each defined in Table 17-2.

• Objects – A submenu with an option to open an Objects pane tab:

Fields, Objects, and Add-ons.

• Inspectors – A submenu with options to toggle the visibility of the

Inspector pane and to create new floating Inspector windows.

Note see further discussion of objects and inspector panes in Chapter 19.

Chapter 17 IntroduCIng Layouts

388

 Insert Menu

The Insert menu opens change radically in Layout mode, as shown in Figure 17-8.

Table 17-2. A list of layout object badges

Icon Description

the object is formatted as a button.

the object has conditional formatting features applied.

the object will not be visible when printing.

the object has placeholder text applied.

the object is a popover button.

the object has a hide formula (Chapter 21).

the object is searchable with Quick Find (Chapter 4, “searching with Quick Find”).

the object is searchable with Quick Find but will be slower due to lack of indexing or other

considerations.

the object or layout responds to script triggers.

the object will slide left when printing.

the object will slide up when printing.

the object has a tooltip text assignment.

Chapter 17 IntroduCIng Layouts

389

The first two sections mirror the tools of the Layout mode toolbar, providing an

alternate method of inserting any type of layout objects. In the middle are functions for

inserting a Picture or placing static text of the Current Date, Current Time, and Current

Username. Below these are functions used to insert dynamic placeholder symbols,

specially formatted text that is automatically replaced with current values at the time a

layout is rendered in non-layout modes. These symbols include

• Date Symbol – The current date; {{CurrentDate}}

• Time Symbol – The current time; {{CurrentTime}}

Figure 17-8. The Insert menu in Browse mode (left) and Layout mode (right)

Chapter 17 IntroduCIng Layouts

390

• User Name Symbol – The user’s computer name; {{UserName}}

• Page Number Symbol – The current page number when a page is

printed or previewed; {{PageNumber}}

• Record Number Symbol – The current record’s number within the

found set; {{RecordNumber}}

• Other Symbol – Opens a dialog listing over a hundred symbols

Finally, two options at the bottom of the menu are used to insert merge values:

• Merge Field – Opens a Specify Field dialog and inserts a selected field

as a merge field; <<FieldName>>

• Merge Variable – Inserts a starter tag which can be edited to a specific

variable; <<$$>>

Note dynamic placeholder symbols, merge fields, and merge variables are also
discussed in Chapter 20, “Working with text.”

 Format Menu

The Format menu options change in Layout mode, as shown in Figure 17-9. Items are

enabled based on the current selection.

Chapter 17 IntroduCIng Layouts

391

• Orientation – A submenu with two options: Horizontal is the default

and Sideways (Asian text only).

• Setup Options – This section of the menu contains a list of Setup

menu items that are enabled based on the current object. Selecting

one of these will open the corresponding setup dialog as if double-

clicking on the object (Chapter 20).

Figure 17-9. The Format menu in Browse mode (left) and Layout mode (right)

Chapter 17 IntroduCIng Layouts

392

• Format Painter – Performs the same function as the Format Painter

tool in the toolbar, copying format settings from the current object

and applying them to the next object selected.

• Conditional – Opens the Conditional Formatting dialog (Chapter 21).

• Set Script Triggers – Opens the Set Script Triggers dialog (Chapter 27).

 Layouts Menu

The Layouts menu replaces the Browse mode Records menu and provides access

to functions related to managing, designing, and configuring layouts, as shown in

Figure 17-10.

Note see further discussion of managing layouts in Chapter 18.

The following functions are available in this menu:

• New Layout/Report – Starts the process of creating a new layout

• Duplicate Layout – Duplicates the current layout

• Delete Layout – Deletes the current layout after a warning

• Go To Layout – A submenu of options to go to another layout: Next,

Previous, or by number

Figure 17-10. The Layouts menu is unique to Layout mode

Chapter 17 IntroduCIng Layouts

393

• Change Theme – Opens the Change Theme dialog to assign a

different theme to the layout (Chapter 22)

• Layout Setup – Opens the Layout Setup dialog (Chapter 18)

• Part Setup – Opens the Part Setup dialog (Chapter 18)

• Set Tab Order – Opens a dialog to configure the Browse mode tabbing

order (Chapter 21)

• Save Layout – Saves any unsaved changes while remaining in Layout

mode

• Revert Layout – Discards any unsaved changes and reverts the layout

to its previously saved state while remaining in Layout mode

 Arrange Menu

The Arrange menu is unique to Layout mode and provides access to object arrangement

functions, as shown in Figure 17-11. This includes functions grouping, locking, stacking

order, rotation, alignment, distributions, and resizing and is described in Chapter 21.

Figure 17-11. The Arrange menu items

Chapter 17 IntroduCIng Layouts

394

 Summary
This chapter introduced Layout mode and identified changes to the window, toolbar,

and menu. In the next chapter, we define layout parts and get started creating layouts.

Chapter 17 IntroduCIng Layouts

395
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_18

CHAPTER 18

Getting Started
with Layouts
Continuing the introduction of layout basics, this chapter covers the following topics:

• Working with layout parts

• Adding layouts

• Deleting layouts

• Using the manage layouts dialog

• Optimizing layout performance

 Working with Layout Parts
A layout part is a horizontal slice of the layout design area that contains objects which

together are rendered into an interface. Every layout must have at least one part but

can be made up of several parts as necessary for your design. There are several part

types available, and these influence how components contained within will appear

and behave. Depending on how a layout is created and the options selected during

the process, each new layout usually has at least three default parts: Header, Body, and

Footer.

 Defining Layout Regions and Controls
There are several important regions and controls in layout mode, highlighted in

Figure 18-1.

https://doi.org/10.1007/978-1-4842-6680-9_18#DOI

396

A part label is a small box attached to the left side of each part. These contain the

part type name and are multipurpose buttons providing access to three functions. To

open a configuration dialog, double-click on a part label. A single click while holding

the Command (macOS) or Windows (Windows) key will toggle the label to a vertical or

horizontal orientation. When horizontal, dragging a label will resize the part with more

ease than clicking on the line between parts, although sometimes the Part Label can get in

the way of layout objects. When horizontal, the opposite is true, as shown in Figure 18-1.

A right-click on the label opens a contextual menu with options to open the part

configuration dialog, choose a fill color for the part, or apply a style to the part (Chapter 22).

The on-screen part design areas are delimited horizontal slices of the layout space

that runs from the left side of the window to the part boundary. This stack of parts makes

up the layout design area and represents what will become the content area of the

window when rendered non-Layout modes. New parts can be inserted below or between

existing parts, expanding the part stack further down into the off-screen part expansion

area below. Unused parts can be deleted from the layout as long as one remains.

The part boundary represents a vertical line that separates the visible part stack

on its left from the off-screen developer area on its right. When viewed in other modes,

everything on the left of this boundary will be rendered as the content area, while

everything to the right will remain hidden off-screen. The off-screen area on the right

can be used to store developer notes and other layout elements that are not accessible to

users.

Tip Fields configured for Quick Find (Chapter 4) placed in the off-screen area will
still produce results.

Figure 18-1. A typical layout highlighting various regions and controls

Chapter 18 GettinG Started with LayoutS

397

 Resizing a Part Area

Parts can be resized vertically and horizontally to any dimension that does not exceed

the maximum limit of 32,000 x 32,000 points. To vertically resize a part, position the

cursor at the line below the part area until the cursor changes into a short horizontal

black line with two arrows on either size, pointing up and down. Then click and drag

the cursor up or down to contract or expand the height of the part above the line. When

the part labels are viewed horizontally, you can grab the label and drag to resize the

part. To horizontally resize the entire part stack, position the cursor anywhere at the part

boundary line until it changes into a short vertical black line with two arrows, pointing

left and right. Then click and drag the cursor left or right to contract or expand the width

of the part stack as needed. Alternatively, select a part label and adjust the width and

height values in the Position settings of the Inspector pane (Chapter 19).

 Defining Part Types
There are ten different part types available, each with specific inherent properties. These

can be divided into two categories: standard parts and summary parts.

 Defining Standard Parts

A standard part displays objects without any summarization function. Each layout

is limited to a single instance of each standard part, and they must fall within an

automatically enforced stacking order. There are seven different standard part types (in

order):

• Top Navigation – Intended for on-screen navigation buttons and

other controls. This will not print, and it will not zoom in or out when

the window view settings are changed.

• Title Header – Appears at the top when printing, replacing a Header

on the first page. This is not displayed in Browse mode.

• Header – Appears at the top, except when printing the first page if a

Title Header is present.

• Body – Represents a single instance of a record. In List view, this part

and every object placed within it will be repeated once for every

Chapter 18 GettinG Started with LayoutS

398

record in the found set. In Form view, it renders once for the current

record only.

• Footer – Appears at the bottom, except when printing the last page if a

Title Footer is present.

• Title Footer – Appears at the bottom of the first page when printing,

replacing a Footer. This is not displayed in Browse mode.

• Bottom Navigation – Intended for on-screen navigation buttons and

other controls. This will not print.

 Defining Summary Parts

A summary part is used to insert summarization values for groups of records and is

especially useful when creating report layouts. A summary field placed in a summary

part will display a value based on a group of records specified by the part type and its

settings. There are two types of summary parts, each with a leading and trailing variety

indicating a position relative to the Body. These are

• Grand Summary – A summary field here will display a summarized

value for all records in the found set. It can be placed at the beginning

(Leading Grand Summary) or end (Trailing Grand Summary) of a

layout.

• Sub-summary When Sorted by – A summary field placed here will

display summarized values for one sorted sub-grouping of records

within the found set. It is used to calculate subtotals based on a

specified break field and separates records into sorted groups. One

or more sub-summary parts can be placed both above and below the

Body, and they will only appear if records are sorted by the specified

break field. A single sub-summary part will be repeated once for

every group of records that result from the break field sort.

 Managing Parts
In Layout mode, parts can be added, deleted, and reordered to create a custom layout.

Chapter 18 GettinG Started with LayoutS

399

 Adding a Part Using the Toolbar Button

The Part tool, shown in Figure 18-2, can be click-dragged down into the layout area to

add to the part stack. The cursor will turn into a clenched fist dragging a black horizontal

line. Move this line into a position above or below an existing part that approximates

the location within the stack to insert the new part and then release. The Part Definition

dialog will open and allow the selection and configuration of a new part. Once finished

and the dialog is closed, you can resize the part and begin adding objects.

Figure 18-2. The tool used to drag a new part into the layout part stack

Tip dragging a new part this way is imprecise and changes the size of an
existing part. to avoid this, use the Part Setup dialog described later in this chapter.

 Configuring a Part

Parts are defined using the Part Definition dialog, shown in Figure 18-3. When a new part

is created, this dialog automatically opens. Open it for an existing part by double-clicking

a part label, selecting the Layout ➤ Part Setup menu, or choosing Part Definition from

the part label’s contextual menu.

Chapter 18 GettinG Started with LayoutS

400

The Part Type options are automatically enabled or disabled based on the location

within the stack of the part being defined. For example, a Body part can’t change into a

Header if there is already one defined, nor can you change it to a Title Header if it is in a

stack below an existing Header.

The Summary Break Field on the right becomes enabled when defining a

Sub- summary part. The field selection here indicates that the sub-summary part should

be visible as a break between groups of records when those records are sorted by that

field. These are often used to insert subtotals in financial reports. See the example for

report layouts later in this chapter for more information about how sub-summaries work.

The first four option checkboxes control how the part will be handled when printing

or viewing in Preview mode. Select Page break before each occurrence to automatically

insert a page break before a Trailing Grand Summary, Body, or Sub-summary parts.

The Page break after every X occurrence will insert a page break after the part has been

displayed a specified number of times, limiting the number of times a Body or a Sub-

summary part can be repeated on a single page. Use Restart page numbers after each

occurrence to reset the page numbering after each instance of the part. Use this with a

Title Header to create a title page that is not included in the numbering sequence or with

a Sub-summary to restart numbering after each section. Finally, the Allow part to break

Figure 18-3. The dialog used to define a layout part

Chapter 18 GettinG Started with LayoutS

401

across page boundaries allows a part to be split by a page boundary. Without this option

selected, a part will not split between pages unless its contents won’t fit on a single page.

Instead, a blank space is left at the bottom of the current page, and the part begins on

the next page. Enable this option to override this default behavior, and split at a page

break to eliminate empty space. The adjacent Discard remainder of part before new page

checkbox will truncate any remaining content for the part instead of displaying it on the

next page, thereby clipping the content at the page break.

The two options at the bottom control the visual appearance of the part. The Use

alternate row state checkbox enables the Body to be alternatively styled to visually

delineate records. Enable Use active row state to have the Body visually indicate the

current record (on-screen only) with special styling.

Tip the appearance of the alternate and active row states can be edited by
selecting these in the Object State menu of the Inspector pane (Chapter 22).

 Deleting a Part

To delete a part and all the objects it contains, select the part label and type Delete.

 Using the Part Setup Dialog

Parts can be managed with greater precision using the Part Setup dialog, shown in

Figure 18-4. To open this dialog, select Part Setup from the Layouts menu or from the

contextual menu available by right-clicking anywhere on the layout. The list displays

every part defined on the current layout and is the only place where summary parts

can be reordered above and below the body. To add a part, click the Create button. This

inserts the part in the list and on the layout without resizing other parts as occurs when

dragging a new part from the toolbar. To edit a part, select it and click the Change button

to open the Part Definition dialog. Use the Delete button to delete the selected part.

There is no cancel or undo option available in this dialog, so, if a mistake is made, click

the Done button, and then select the Edit ➤ Undo menu to immediately reverse any

changes made.

Chapter 18 GettinG Started with LayoutS

402

 Adding Layouts
There are two ways to add layouts to a database file: creating a new layout and

duplicating an existing layout.

 Creating a New Layout
To create a new layout, select the New Layout/Report function from the Layout menu, or

click the toolbar icon of the same name. This opens the dialog, shown in Figure 18- 5,

which will step through additional screens based on the selected target device type and

function selected. The layout configuration can be modified afterward, and some find

it easier to choose Computer and click Finish to bypass the rest of this setup assistant

and then manually finish configuring. However, especially for initial configuration of

complex report layouts, this dialog can be an enormous time saver, especially for new

developers.

Figure 18-4. The dialog allows more precise control over the part stack

Chapter 18 GettinG Started with LayoutS

403

To begin, choose a table occurrence from the Show records from menu at the top,

and enter a Layout name for the new layout. Select a target device type by clicking on

one of three icons: Computer, Touch Device, or Printer. The Touch Device icon opens a

pop-up menu with three choices: iPad, iPhone, and Custom Device. While any layout

can be used on a combination of devices, these choices help determine default size and

configuration options for the new layout to save a little time later.

Next, select a primary function to further control default settings. These choices vary

depending on the target device selection. A form layout is generally used to view a single

record for data entry tasks or entering find criteria. They can also be used for creating

custom dialogs or print layouts. A list view is used to display a list of multiple records

in a found set. A table view is a low-design list view that displays records and fields in

a format resembling a spreadsheet. A report view is a type of list view that is optimized

for either viewing or printing summarized lists of data using sub-summaries and a

grand summary. A label view is a type of list view that is optimized for printing directly

onto labels. These can be created vertically or horizontally and can be sized based on

Figure 18-5. The dialog used to create a new layout

Chapter 18 GettinG Started with LayoutS

404

a preconfigured Avery or Dymo label template, or custom measurements. Finally, an

envelope view is a type of list view optimized for printing directly onto envelopes.

For Touch Device targets, an orientation option at the bottom of the dialog allows

selection of portrait or landscape. It also includes width and height dimension fields

when the touch device selection is a Custom Device.

With options selected, click the Finish button. For List or Form layouts, the process

ends with the new layout open and ready for customization. However, Label, Report, and

Table layouts have additional dialogs that open with further customization options.

Tip remember that any layout can be viewed as a Form, List, or table. these
choices here only influence default setup options which can be modified and
viewed differently later.

 Additional Options for New Report Layouts

A report layout is a type of List view that includes summaries and grand totals,

configured for printing or displaying organized information. For example, an Invoice

report can present records sorted by year and month to summarize data into subtotaled

groups as illustrated in Figure 18-6. Creating a report layout with the New Layout/Report

dialog involves a sequence of up to eight separate dialogs that step through options to

preconfigure parts, content, summarization, sorting, and more. Although a report layout

can be created manually starting from a plain List view, these dialogs offer an enormous

convenience by greatly reducing the laborious task of configuring the parts and settings

required to build a complex hierarchical display of information.

Chapter 18 GettinG Started with LayoutS

405

The preceding report is made up of six layout parts, starting with a Sub-summary

when sorted by Year (Leading). When records are sorted first by Invoice Year, this part

appears before each group of records whenever a new year is detected. Next, a Sub-

summary when sorted by Month (Leading) does the same when records are sorted

secondly by an Invoice Month field. Although the month name is displayed on the layout,

for the months to be arranged chronologically, the actual sort and layout part must

be based on a month number break field instead. The labels for column headings are

placed in this summary part so they will appear above each group of individual records

whenever a new month begins.

The Body part repeats once for every record in the found set. However, these are

arranged into sorted groups based on the surrounding Sub-summary parts. So, January

has one group of three records (shown), while other months like February will have their

own group of records repeating the Body part (not shown).

Two additional Sub-summaries trail the Body: one sorted by month and another by

year. These operate the same as the corresponding leading parts but appear after each

sorted group. In this example, these are used to display summary fields that calculate

subtotals of values for the records in the group above it. Finally, at the bottom is a Grand

Summary (Trailing) which will provide grand totals, summarizing fields for the entire

found set.

Figure 18-6. An illustration of an invoice report summarizing sales by year and
then by month

Chapter 18 GettinG Started with LayoutS

406

In every summary part, the same Invoice Total Summary field is used and will

automatically summarize the values for the records in the group they subsume. Although

not shown in the illustration, an Invoice Count Summary field could be added to a

summary part to display the number of records in each group.

Preparing for the Invoice Report Demonstration

To construct the layout illustrated in Figure 18-6, an Invoice table must first be defined

containing a variety of fields, as shown in Figure 18-7.

The first few fields are used for data entry to store the company ID, number, status,

amount, and date of an invoice. The three calculation fields convert the date into a

month number, month name, and year number. These will be used to sort records and

display values in summary parts. The two summary fields will be used to display the total

count and the total dollar amount of invoices in the various sub-summary and trailing

grand summary parts. Once these are configured, begin creating a new report layout by

opening the New Layout/Report dialog and following these steps to begin a multi-dialog

sequence of report configuration options:

 1. Select the Invoice table.

 2. Enter a Layout Name of “Invoice Report.”

 3. Click on the Printer icon.

Figure 18-7. The field definitions for an Invoice table required for the report

Chapter 18 GettinG Started with LayoutS

407

 4. Click on the Report icon.

 5. Click the Continue button.

Dialog 1: Include Subtotals and Grand Totals

The first report configuration dialog will appear with two options, shown in Figure 18- 8.

The checkboxes provide the option to Include subtotals and to Include grand totals.

Select both options to include these parts and to ensure that the Specify Subtotals and

Specify Grand Totals dialogs (Dialogs 6 and 7) are included in the configuration process.

Click Next to continue.

Dialog 2: Specify Fields

The second report creation dialog is used to specify which fields will be placed on the
report, as shown in Figure 18-9. While fields can be added after the layout is created,
selecting certain fields now makes them available for summarization options in
subsequent dialogs. Add fields from the list on the left to the right, by double-clicking
or using the Move buttons. Fields can be dragged within the available list to determine
their default order across the new layout. In our example, we include the number, date,
customer, amount, year, and month, all from the Invoice table. Fields from a related table
such as a Company Name could be included by selecting a different table occurrence in

the menu above the Available fields list.

Figure 18-8. The first of eight report configuration dialogs

Chapter 18 GettinG Started with LayoutS

408

Dialog 3: Organize Records by Category

The third report dialog is used to specify sort fields that organize records and act as

grouping criteria for the report’s sub-summaries, shown in Figure 18-10. The fields

added in the previous dialog are displayed in Report fields list (left) and can be added to

and enabled in the Report categories list (right). Each selected field will be included as a

summarizing category for groups of sorted records. Enable the checkbox to include the

field in both the sub-summary layout part and the body of the report. In our example, the

Invoice Year and Invoice Month fields are both added as categories and checked because

they will be used to summarize groups of records.

Figure 18-9. The second of eight report configuration dialogs

Chapter 18 GettinG Started with LayoutS

409

Dialog 4: Sort

The fourth report dialog is used to specify a sort order, as shown in Figure 18-11. This

dialog contains an interface similar to the standard Sort Records dialog (Chapter 4,

“Sorting Records in the Found Set”). Any fields added as Report categories in the

previous dialog will automatically appear locked at the top of the Sort order. Having been

selected to summarize groups, they are required in the sort order. Additional fields can

be added below these to further sort records in the body of the report.

Figure 18-10. The third of eight report configuration dialogs

Chapter 18 GettinG Started with LayoutS

410

Dialog 5: Specify Subtotals

The fifth report dialog, shown in Figure 18-12, will only appear if the Specify subtotals

checkbox was selected in the first dialog. This allows the addition of one or more

summary fields that will be displayed above or below groups of records on a sub-

summary part that groups by the selected field.

Select a Summary field for inclusion by clicking the Specify button. Next, a field

can be selected from the Category to summarize by pop-up menu, which lists all the

fields added as report categories in the third dialog. The Subtotal placement pop-up

menu specifies where the subtotal will appear in relation to the group of records that it

is summarizing: Above Record Group, Below Record Group, or Above and Below. Once

these choices are made, click Add Subtotal to insert the field into the list below, and then

repeat the process for additional fields. Multiple summaries can be added to create a

more robust summarized hierarchy.

Figure 18-11. The fourth of eight report configuration dialogs

Chapter 18 GettinG Started with LayoutS

411

For our ongoing invoice example, the Invoice Amount Summary fields are added as

subtotals that will appear below the record group, summarized twice for Invoice Month

and Invoice Year so that they appear in both sub-summary parts. Optionally, this can be

repeated to also include the Invoice Count Summary.

Dialog 6: Specify Grand Totals

The sixth report dialog, shown in Figure 18-13, will only appear if the Specify grand totals

checkbox was selected in the first dialog. This works like the previous dialog but uses

summary fields to display a grand total of all records on the report.

Figure 18-12. The fifth of eight report configuration dialogs

Chapter 18 GettinG Started with LayoutS

412

Select a Summary field for inclusion by clicking the Specify button. Then, choose an

option from the Grand total placement pop-up to specify a location for the grand total

relative to the entire report: Beginning of Report, End of Report, or Beginning and End

of Report. Finally, click Add Grand Total to insert the field into the list below, and then

repeat the process for additional fields.

In the invoice example, the Invoice Amount Summary fields are both added as grand

totals that should appear only at the end of the report. Optionally, this can be repeated to

also include the Invoice Count Summary.

Dialog 7: Header and Footer Information

The seventh report dialog, shown in Figure 18-14, allows insertion of optional

placeholders for standard information automatically placed in six different locations on

the layout. Each pop-up menu contains the same choices: Page Number, Current Date,

Layout Name, Large Custom Text, Small Custom Text, and Logo.

Figure 18-13. The sixth of eight report configuration dialogs

Chapter 18 GettinG Started with LayoutS

413

Dialog 8: Create a Script

The eighth and final dialog offers the option to automatically create a script for the new

report layout. Without a script, a user is required to manually perform a find, navigate to

the report layout, sort records, and print or preview the report. Scripts can be manually

created to perform these steps (Chapters 24–28). This last dialog, shown in Figure 18-15,

offers the convenience of an automatic head start.

Figure 18-14. The seventh step is used to select standard header and footer info

Chapter 18 GettinG Started with LayoutS

414

Click the Create a Script option, and optionally override the default Script name.

Select the Run script automatically checkbox to assign an OnLayoutEnter script trigger

(Chapter 27) that will run the script whenever a user navigates to the new layout. Then

click the Finish button to create the script and complete the creation of the new layout

and script.

The script created will include two or three steps, automatically configured

depending on other options in this process. It will always include steps to Enter Browse

Mode and Go to Layout. If sort fields were specified in the fourth dialog, it will include

a step to Sort Records by the field(s) selected. Once created, the script can be further

customized as needed. For example, as configured, it assumes the report should include

every record in the found set. However, a step can be added to find a set of records based

on the context of the current date, week, month, or year, or using any other criteria

including that solicited from a user.

Refining the Report Layout

Once a report layout is created, it will usually require clean up and customization. The

example in Figure 18-16 shows the layout based on the options selected in the preceding

example. The height of parts can be tightened to save space, and the formatting of

both backgrounds, labels, and fields is based on a theme and may not be appropriate,

Figure 18-15. The eighth and final report configuration dialog

Chapter 18 GettinG Started with LayoutS

415

especially for printed reports. If a logo was included, the size and position might require

adjustment. The field labels for the body fields automatically added at the top can be

moved into a sub-summary just above the body so they are repeated directly above each

group of fields. Also, the field labels automatically show the full name of the field and

may overlap and include naming prefixes and may require editing.

 Duplicating an Existing Layout
To save time and maintain uniformity between layouts, consider designing a template

for a typical List and Form view and then duplicating and customizing these for other

tables. The current layout can be duplicated by selecting the Layouts ➤ Duplicate

Layouts menu. Also, open the Manage Layouts dialog, and use the duplicate feature

there (see “Using the Manage Layouts Dialog” later in this chapter). The new layout will

have the same name as the original with the word “Copy” appended to it. Everything

else about the layout will be the same as the original including all parts, theme, objects,

formatting, settings, and the assigned table occurrence. Once duplicated, the new layout

can be renamed, assigned to a new table occurrence, and further customized as needed.

Figure 18-16. An automatically created report layout typically requires refinement

Chapter 18 GettinG Started with LayoutS

416

 Configuring Layout Settings
The Layout Setup dialog controls the behaviors, appearance, and functions of a layout.

To open this dialog, enter Layout mode, and select Layout Setup from the Layouts menu

or the toolbar. The dialog is divided into four tabs: General, Views, Printing, and Script

Triggers.

 General
The General tab of the Layout Setup dialog contains general settings, as shown in

Figure 18-17.

 1. Layout Name – Edit the layout’s name.

 2. Include in Layout Menus – Enable for the layout to be a navigable

option for users in the View menu and toolbar.

 3. Show Records from – Select an occurrence for the layout’s context.

Figure 18-17. The first tab contains general settings and options

Chapter 18 GettinG Started with LayoutS

417

 4. Save Record Changes Automatically – Control if field changes

are automatically saved when a user or script commits a record.

If unchecked, a save dialog will be presented after each commit

attempt.

 5. Show Field Frames When Record Is Active – Enable to show special

borders on every field when a record is active.

 6. Delineate Fields on Current Record Only — Enable to cause only

fields on the current record to have a border. Use this to avoid

distraction on List layouts.

 7. Show Current Record Indicator in List View – Enables a black

bar on the left of the current record in a List view. This vestigial

element should be disabled in favor of the Use active row state for

the Body of a layout which allows style-driven control of objects

for an active record (Chapter 22).

 8. Menu Set – Set custom menus for the layout (Chapter 23).

 9. Enable Quick Find – Enables the Quick Find feature (Chapter 4)

for the layout. The button is used to reset all fields to their default

Quick Find setting.

 Views
The Views tab of the Layout Setup dialog, shown in Figure 18-18, contains three

checkboxes controlling which content view types are available to a user (Chapter 3,

“Defining Content Views”). The Properties button opens the Table View Properties dialog

of settings that control how a layout appears in Browse mode when viewed in Table view.

Chapter 18 GettinG Started with LayoutS

418

 Printing
The Printing tab of the Layout Setup dialog, shown in Figure 18-19, controls columns

and page margins when printing the layout. Not to be confused with print and paper

size settings accessible through the Page Setup and Print options in the File menu, these

focus on spacing and columns of the layout, controlling the available printable area in

which to place objects.

Figure 18-18. The second tab controls view options

Chapter 18 GettinG Started with LayoutS

419

 Script Triggers
The Script Triggers tab of the Layout Setup dialog is used to connect layout events to

scripts (Chapter 27).

 Using the Manage Layouts Dialog
The Manage Layouts dialog, shown in Figure 18-20, is used to reorder layouts, add

separator lines, and group layouts into folders. It also integrates all management features

used to create, view, edit, duplicate, delete, and open layouts. Open this dialog using the

Manage Layouts option from the Layout pop-up menu in the toolbar or choosing the File

➤ Manage ➤ Layouts menu.

Figure 18-19. The third tab controls specific layout print options

Chapter 18 GettinG Started with LayoutS

420

Every layout in the file will be listed with columns for layout name, associated

table, and menu set. Layouts can be dragged to reorder or moved into folders, which

are created using the menu attached to the New button. The checkbox next to a layout

indicates if it will be a navigable option for users. Along the top, a pop-up menu quickly

filters the list to only those layouts contained within a specific folder. The default value

in the menu, and the only option when there are no folders defined, is Show All. The

adjacent Search field filters the list by keyword. The buttons along the bottom allow

creation of a layout, folder, or separator line as well as editing, duplicating, deleting, and

opening layouts.

Figure 18-20. The dialog used to manage layouts

Tip Folders can be nested hierarchically. the folder structure defined here forms
submenus in the Layout menus, making it easier for users to manually navigate a
complex database.

Chapter 18 GettinG Started with LayoutS

421

 Optimizing Layout Performance
Layouts can be designed as complexly as required for your project. Build simple,

streamlined views or graphically rich, complex interfaces. However, here are a few

principles to be mindful of to help ensure efficient performance:

• When multiple records are displayed at once, as in a List view or

portal, try to minimize the number of objects, especially those

involving complex functionality, e.g., lots of related fields or items

performing SQL queries will slow down large lists.

• On a Form layout, try to minimize the number of advanced controls

such as portals and panels.

• Divide complex layouts into multiple less complex layouts, and

provide navigation buttons to quickly toggle between them.

• Minimize the use of objects with shadows, semi-transparent colors,

gradients, large imported graphics, etc.

• Minimize the number of unstored calculations in fields, especially in

lists.

• Use script triggers (Chapter 27) sparingly, and avoid connecting

simple interface events with complex scripts that might create long

lag times that interfere with a user’s ability to work.

• Use themes and styles for object formatting (Chapter 22).

 Summary
This chapter introduced the basics of creating and configuring layouts. In the next

chapter, we will explore the controls used to construct and configure layout objects.

Chapter 18 GettinG Started with LayoutS

423
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_19

CHAPTER 19

Exploring Layout Panes
Configuration tools for fields and objects are available in two panes, one integrated on

either side of the window in Layout mode: an Objects pane and an Inspector pane. Both

of these are visible by default in Layout mode but can be hidden when not required. In

this chapter, we explore the controls available on these two panes:

• Objects pane

• Inspector pane

 Exploring the Objects Pane
The Objects pane is an integrated region on the left side of a window in Layout mode

that contains three tabs: Fields, Objects, and Add-ons. The visibility of this pane can be

toggled using either clicking the Show/Hide Pane button in the toolbar or selecting an

item from the View ➤ Objects menu.

 Defining the Fields Tab
The Fields tab of the Objects pane, shown in Figure 19-1, was added in version 17 and

replaced the previously detached Field Picker palette. This panel consolidates some

schema function shortcuts with some layout design functions. It provides access to

directly create fields, modify their data type, and access the field options dialog to edit a

field’s schema properties. Controls at the bottom allow pre-configuration settings that

are applied when adding a field to a layout.

https://doi.org/10.1007/978-1-4842-6680-9_19#DOI

424

 1. Toggle Button – Show and hide the pane.

 2. Table Occurrence – Choose a table occurrence to access a field

list other than the current layout’s assigned occurrence. Click the

adjacent search icon to reveal a hidden filter field.

 3. Fields – Lists fields in the selected occurrence. Drag one or more to

the layout to add an instance. Change the schema type or access

a contextual menu to delete, rename, or open the Field Options

dialog (Chapter 8).

 4. New Field – Create a field in the selected occurrence’s table.

 5. Drag Preferences – Controls how fields are configured when

dragged to the layout:

Figure 19-1. The Fields tab of the Objects pane

Chapter 19 exploring layout panes

425

• Field Placement – Stack new fields vertically or aligned

horizontally in a row.

• Labels – Include a label at a selected relative position .

• Control Style – Choose a data control style (Chapter 20) .

 Defining the Objects Tab
The Objects tab of the Objects pane, shown in Figure 19-2, was added in version 17 and

replaced the previously detached Layout Objects palette. This provides a hierarchical

view of every object currently on the layout, making it easy to locate and select items,

including those in groups or hidden behind other objects.

Figure 19-2. The Objects tab of the Objects pane

Chapter 19 exploring layout panes

426

Each object on the layout is listed here with a default name unless a custom name

has been assigned. The default name displayed will vary by object type. For example, a

label displays its text value, while a field shows its control style and field name.

There is a lot of functionality built into the object list. An object selected in the list

will cause the corresponding object on the layout to be selected and vice versa. Grouped

objects and multilayered objects like portals, tab controls, and slide controls show their

nested hierarchy which can be expanded or collapsed in the list. A togglable Hide

icon next to an item’s name can temporarily make an item invisible in Layout mode to

help declutter the design area for focused work. Finally, a contextual menu contains

additional functionality, shown in Figure 19-3.

The commands in this menu depend on the type of object selected:

• Hide All Other Objects – Hides every object on the layout except for

the selected object(s).

• Hide Objects in Front – Hides every object that is layered in front of

the selected object(s).

• Hide Objects in Front and Back – Hides every object that is layered in

front of and behind the selected object(s).

• Specify Object Name – Reveals a field for entering a custom name

(Chapter 21, “Naming Objects”). Names can also be set in the

Inspector pane.

• Conditional Formatting – Opens a dialog for defining conditionally

applied styles (Chapter 21).

• Set Script Triggers – Opens the dialog for connecting layout events to

scripts (Chapter 27).

Figure 19-3. The contextual menu for items listed in the Objects tab

Chapter 19 exploring layout panes

427

Note objects hidden using this function are only temporarily hidden in layout
mode but continue to render normally in other modes.

 Defining the Add-ons Tab
The Add-ons tab of the Objects pane, shown in Figure 19-4, is a new feature in version 19

that allows drag and drop insertion of preconfigured resource components. An add-on

module is a collection of xml, json, and graphic elements that automate the insertion of

specialty resources into a FileMaker database.

Click the add (+) icon to open a panel containing a library of available modules.

Select one and click Choose to add it to your file. The module will appear as an icon in

the pane and, depending on the selection, may add some combination of tables, fields,

relationships, scripts, and value lists to the database. Once added, drag the icon to any

layout to instantly create a set of functional objects, pre-wired into the schema. The

resources can be further customized to adjust to the formatting and functional needs of

Figure 19-4. The Fields tab of the Objects pane with some add-ons added

Chapter 19 exploring layout panes

428

the database. To remove, right-click on an add-on icon, and choose the Uninstall Add-on

option. A warning dialog includes a checkbox option that can also automatically delete

all the resources that were added to the database.

Caution some add-ons require a detectable primary key field in the current
layout’s table and will refuse to work if one can’t be found.

 Exploring the Inspector Pane
The Inspector pane is an integrated region on the right of a window in Layout mode. The

visibility of this pane can be toggled by either clicking the Show/Hide Inspector Pane

button in the toolbar or selecting an item from the View ➤ Inspector menu. Unlike the

Objects pane, the Inspector can also be opened into one or more floating palettes using

the View ➤ New Inspector menu, reminiscent of past versions. This pane is loaded with

controls used to edit the format and behavior settings for a selected layout part or object.

The controls are organized into four icon-labeled tabs: Position, Style, Appearance, and

Data. Each of these has controls grouped into several collapsible regions.

 Inspecting the Position Tab
The Position tab is the first in the Inspector and is divided into five collapsible regions:

Position, Autosizing, Arrange & Align, Sliding & Visibility, and Grid.

 Position

The Position group, shown in Figure 19-5, contains options for object naming, tooltip,

and position.

Chapter 19 exploring layout panes

429

 1. Name – Add an optional object name (Chapter 21, “Naming

Objects”).

 2. Tooltip – Add an optional string to be displayed as a floating

tooltip when the user holds the cursor over the object in Browse

mode. The icon opens a Specify Calculation dialog for formula-

driven tips.

 3. Position – Control positioning of a selected object within the

design area precisely instead of dragging. These are proportionally

locked, so changing one will automatically adjust the opposing

value to maintain the Width or Height.

 4. Size – Set an object’s Width and Height.

Note the unit of measurement for the position and size will match the current
ruler’s settings but can be changed by clicking the labels, which cycle through the
options centimeters, points, and inches.

Figure 19-5. The first group of settings on the Position tab of the Inspector pane

Chapter 19 exploring layout panes

430

 Autosizing

The Autosizing group, shown in Figure 19-6, contains anchoring control over how an

object moves or grows when a window is resized. Objects can be anchored to the Left,

Top, Right, or Bottom by toggling the lock icon on or off at the respective side of the box.

A lock on any side means that the current distance between that side of the object and

the corresponding edge of the layout/window will remain fixed as the window is resized

in non-Layout modes.

Using these locks in different combinations can create many different positioning

and sizing effects. Lock the Top and Left to cause an object to retain its size and remain

stationary as the window is resized. To stick to the bottom right of the layout, anchor only

the Bottom and Right sides. Objects will expand their size when two opposing anchors

are active. For example, to expand an object’s width as a window is resized, activate the

Left and Right anchors. An object with no anchoring will float in the center of the window.

 Arrange & Align

The Arrange & Align group, shown in Figure 19-7, contains six groups of buttons

arranged in three rows that are used to adjust object alignment, distributed space,

relative size, group status, arrangement, and locked status. Unlike other settings in the

Inspector pane, these are not object properties but are tools used to arrange selected

objects neatly to tighten an interface design.

Figure 19-6. The Autosizing settings on the Position tab of the Inspector pane

Chapter 19 exploring layout panes

431

• Align – Align objects by side: Left, Center, Right, Top, Middle, or

Bottom.

• Space – Evenly distribute groups of objects Horizontally or Vertically.

• Resize – Sync the height and/or width of a group of objects based on

the smallest or largest among them.

• Group – Convert individual objects into a single group or ungroup

them.

• Arrange – Change the stack position of selected objects using Bring to

Front, Bring Forward, Send Backward, and Send to Back.

• Lock – Change the locked status of objects. Locking protects from

accidental modification.

 Sliding & Visibility

The Sliding & Visibility group, shown in Figure 19-8, controls how objects behave when

printing, saving as a PDF file, or viewing in preview mode. There are three primary

options: Sliding left, Sliding up based on, and Hide when printing.

Figure 19-7. The Arrangement controls on the Position tab of the Inspector pane

Chapter 19 exploring layout panes

432

The Sliding left option causes an object to shrink its width to the minimum required

to display its content and to slide left as far as possible based on the other objects within

the same horizontal plane.

The Sliding up based on option causes an object to shrink its height to the minimum

required to display its content and to slide up as far as possible based on the other

objects in the same vertical plane. When this object is selected, other options below

will become enabled. Select the All objects above option to cause objects in a common

horizontal plane to slide up together relative to objects resizing above them. Select the

Only objects directly above option to cause objects in a common horizontal plane to slide

up independent of each other relative to resizing objects directly above them. Select the

Also resize enclosing part checkbox to cause the layout part enclosing the object to shrink

vertically relative to the lowest object after all resizing is complete. For example, a notes

field can be expanded on a large layout part to accommodate the potential for lengthy

content will end up shrinking to only the space necessary to display the actual content.

The Hide when printing causes an object to be invisible when printing.

Figure 19-8. The Sliding & Visibility controls on the Position tab of the Inspector
pane

Chapter 19 exploring layout panes

433

 Grid

The layout grid is a sequence of evenly spaced horizontal and vertical lines overlaid on a

layout background to form a regular grid of minor and major areas, shown in Figure 19- 9.

The grid is only visible in Layout mode to assist with precision manual placement and

spacing of objects.

The Grid group in the Inspector pane, shown in Figure 19-10, contains settings that

control the layout grid, universally on every layout in the current file. The Show grid

checkbox enables the grid in Layout view. Selecting Snap to grid forces objects to fall on

grid lines when manually dragged to a new position. The major and minor grid spacing

can be customized in the two fields.

Figure 19-9. The grid visible on the background of a layout

Figure 19-10. The Grid controls on the Position tab of the Inspector pane

Chapter 19 exploring layout panes

434

 Inspecting the Style Settings
The Style settings located on the second tab of the Inspector pane display and control the

theme and style assigned to the layout and selected object (Chapter 22).

 Inspecting the Appearance Settings
The Appearance settings located on the third tab of the Inspector pane are divided into

six regions: Theme and Style, Graphic, Advanced Graphic, Text, Paragraph, and Tabs. All

but the first of these can be collapsed or expanded.

 Theme and Style

The Theme and Style group is a non-collapsible section of the panel that displays the

theme and style assigned to the layout with adjacent icon menus for updating these

when changes are made. The pop-up menus below these allow selection of an object

part type and object part state, and each combination of these has a different set of

format settings in the rest of the Appearance panel (Chapter 22, “Editing an Object’s Style

Settings”).

 Graphic

The Graphic group, shown in Figure 19-11, controls graphic settings of the chosen part

type and state of selected objects.

The Fill menu contains four choices that conditionally change the options available

below it: None, Solid Color, Gradient, or Image. The default option is None and means

that the object will be transparent. Select Solid Color to have the option to choose a fill

color or Gradient to access more advanced fill settings, both using familiar controls. The

Image option allows selection of an image file that will be displayed as a background. A

pop-up menu allows selection of how the image is handled with the following options:

Original Size, Scale to Fit, Scale to Fill, Slice, and Tile.

Chapter 19 exploring layout panes

435

The Line options include the selection of the object’s border type: None, Solid,

Dashed, and Dotted. A number of thickness and a color can be specified. The border

icons allow selection of which dimensions of an object have a border: All, Left, Top,

Right, Bottom, and Between repetitions in repeating fields. Finally, a Corner Radius is a

number indicating the rounding points (pixels) for border corners that will be applied to

the corners selected in the adjacent clickable quadrant selector.

 Advanced Graphic

The Advanced Graphic group, shown in Figure 19-12, controls advanced graphical

settings of the chosen part and state of the selected object.

Figure 19-11. The Graphic subgroup of the Appearance panel of the Inspector

Chapter 19 exploring layout panes

436

The Effects checkboxes enable an outer and inner shadow on the object using the

adjacent icon button to open a panel with specific settings for Color, Offsets, Opacity,

Blur, and Spread.

The Padding numbers control the amount of distance between the border of the

object and its content. These settings may compete with the Paragraph group’s settings

for indentation and spacing, causing confusion if used simultaneously.

Figure 19-12. The Advanced Graphic subgroup of the Appearance panel of the
Inspector

Chapter 19 exploring layout panes

437

 Text

The Text group controls standard text and style settings for the chosen part and state of

the selected object. These include a selection of font family, style, and size, text settings

for color and style, as well as baseline settings for type, thickness, color, and offset.

 Paragraph

The Paragraph group, shown in Figure 19-13, controls paragraph alignment and spacing

settings of a chosen part and state of the selected object.

The Alignment icons control the horizontal and vertical alignment of text within

the object, e.g., a field’s content, button’s name, etc. The Line spacing options adjust the

spacing of paragraphs, height, space above, and space below, based on a selected unit of

measure. The Indents settings insert space for text on the first line of a paragraph and the

entire left and right indent, all based on a selected unit of measure.

Figure 19-13. The Paragraph subgroup of the Appearance panel of the Inspector

Chapter 19 exploring layout panes

438

Caution some of these settings may compete with the padding settings and may
cause confusion if used simultaneously.

 Tabs

The Tabs group, shown in Figure 19-14, controls tabbed indentation spacing of the text in

the selected object. Click the buttons to add or remove Tab positions in the list. Click on a

position to edit the measurement, and choose an Alignment and Leader character.

 Inspecting the Data Settings
The Data settings are located on the fourth panel of the Inspector and are divided into

three collapsible regions: Field, Behavior, and Data Formatting.

Figure 19-14. The Tab subgroup of the Appearance panel of the Inspector

Chapter 19 exploring layout panes

439

 Field

The Field group, shown in Figure 19-15, controls settings of a selected field.

 1. Display Data from – Choose a field to assign to the selected field

object on the layout by clicking the adjacent button to open a

Specify Field dialog (Chapter 20, “Exploring the Specify Field

Dialog”).

 2. Placeholder Text – Enter text or click the icon to define a formula

that will be displayed in a field when it is empty (Chapter 20,

“Using Field Placeholders”).

 3. Control Style – Select an input style for the field. The settings

in the shaded area below will vary depending on the selection

(Chapter 20, “Configuring a Field’s Control Style”).

Figure 19-15. The Field subgroup of the Data panel of the Inspector

Chapter 19 exploring layout panes

440

 4. Show Repetitions – Controls which repetitions of a field are

displayed on the layout and their vertical or horizontal orientation

(Chapter 8, “Field Options: Storage”).

 Behavior

The Behavior group, shown in Figure 19-16, controls various object behaviors.

 1. Hide Object When – Control when any object should be hidden.

Enter a formula directly into the field, or open a dialog with the

adjacent button. The checkbox enables hiding in Find mode.

 2. Field Entry – Enable a field for user entry in Browse or Find modes.

The checkbox below causes the entire contents of the field to be

selected when a field acquires focus.

Figure 19-16. The Behavior subgroup of the Data panel of the Inspector

Chapter 19 exploring layout panes

441

 3. Go to Next Object Using – Select which key(s) jump to the next

field/object. By default, FileMaker uses a Tab to jump fields and

Enter to commit a record. Enabling Return here prevents the user

from typing a return character in the field.

 4. Quick Find and Spell-Checking – Control if a field is included in

a Quick Find (Chapter 4, “Searching with Quick Find”) and will

visually highlight spelling errors.

 5. Select Input Method – Choose a language for a field input.

 6. Touch Keyboard Type – Choose a keyboard type for an iOS device:

ASCII, URL, Email, Numeric, Phone, etc.

 Data Formatting

The Data Formatting controls can be used to apply a transformation in how raw field

content is rendered on-screen. Four icon buttons, shown in Figure 19-17, indicate the

data type of the selected field: number, date, time, or container. These are conditionally

enabled depending on the data type of the selected field. The Format pop-up menu

contains options that vary by the data type selection, while the area beneath the menu

varies based on the selection made within this menu.

Figure 19-17. The Data Formatting subgroup of the Data panel of the Inspector

Chapter 19 exploring layout panes

442

Data Formatting Options for Numbers

The Format menu options for numbers are

• General – Displays a numeric value as entered with no special

formatting but may round or express it in scientific notation to fit

within the boundaries of the field.

• As Entered – Displays a numeric value exactly as it was entered with

no changes for any reason, displaying a question mark if the number

extends beyond the boundaries of the field.

• Boolean – Transforms zero and non-zero values into a Boolean

format. The default is Yes and No, but these can be replaced with

other words or symbols.

• Decimal – Includes options for number of decimal places, notation,

negative value formatting, choice of separators, and more, e.g.,

1003.7568 can be displayed as 1,003.75 or #1003.

• Currency – Includes options for displaying monetary formats, e.g.,

5.7534 can be displayed as $5.75, $5, etc.

• Percent – Includes option for displaying percentages, e.g., .62 can be

displayed as 62% or 62.00%.

Data Formatting Options for Dates

The Format menu options for dates include a variety of preconfigured date formatting

options with an option for defining a custom format in a detailed interface, shown in

Figure 19-18. This allows granular control, selecting any date component, in any order,

with any delimiter and with leading zero options for day and month numbers. Using

these controls, a date entered in a field as “1/15/2017” can be displayed in any number of

different combinations including

• January 15, 2017

• 01.15.2017

• 01.15.17

Chapter 19 exploring layout panes

443

• 15 Jan 2017

• Sunday Jan 15, 2017

• Thursday 01/15/2017

Data Formatting Options for Times

The Format menu options for times are similar to those available for date formatting.

Choose from a variety of preconfigured time formats, enter a custom format, and choose

military vs. civilian time, leading zeros for hours and minutes, and more.

Data Formatting Options for Containers

The Format menu options for containers control how an image should resize, relative

to the field object: Crop to frame, Reduce image to fit, Enlarge image to fit, or Reduce or

enlarge image to fit. Several additional settings are available below the menu. There is an

Figure 19-18. The Custom options for formatting dates

Chapter 19 exploring layout panes

444

option to Maintain original proportions, which keeps the image’s aspect ratio fixed when

it is reduced or enlarged to fit in a field. The Alignment controls provide positioning

within the field. Other options control image optimization or enable interactive control

over PDF, audio, and video files embedded in a field.

 Summary
This chapter introduced the Object and Inspector panes. We explored the various tools

and settings they make available. In the next chapter, we begin creating objects.

Chapter 19 exploring layout panes

445
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_20

CHAPTER 20

Creating Layout Objects
A layout object is an interface element used to display information, accept data entry,

and/or initiate a scripted process. An object can be one of eight types: field, text, button,

panel, portal, web viewer, chart, or shape. This chapter introduces every type of layout

object, covering the following topics:

• Inserting an object onto a layout

• Working with field objects

• Working with text

• Working with button controls

• Working with panel controls

• Working with portals

• Working with web viewers

• Working with charts

 Inserting an Object onto a Layout
A new instance of any object can be inserted onto a layout, using the following methods:

• Select the toolbar icon shown in Figure 20-1. Then, click and drag on

the design area to define the dimensions of the object.

• Select object type from the Insert menu to quickly place a new

instance at a default size and position on the layout.

• Duplicate an existing object to a new instance by selecting it and

choosing the Edit ➤ Duplicate menu.

• Select an existing object and use the Copy and Paste functions or

option-drag to create a new copy of an existing object.

https://doi.org/10.1007/978-1-4842-6680-9_20#DOI

446

Note A couple of objects have different insertion methods that are noted
throughout this chapter.

When an object is first added to a layout, it will be in a raw state and ready to be

configured. Depending on the type, an object can be configured using different methods.

Double-clicking on most object types will open a type-specific configuration dialog,

usually focused on data configuration options rather than formatting or other behavioral

control. A selected object can be manipulated using options in the Formatting Bar

(Chapter 3), menus such as Format and Arrange, and the options in the Inspector pane.

Caution The actual appearance of any object on a layout will vary depending on
the object state, custom format settings, conditional format settings (Chapter 21),
and the theme assigned to the layout (Chapter 22).

 Working with Field Objects
In FileMaker, the meaning of the term field will vary greatly depending on the context of

discussion. Take a moment to acknowledge the difference between four things that are

usually blurred together under this single term, as illustrated in Figure 20-2:

• A field definition in a table’s schema, its underlying data structure

• A field cell instance for a record of data

• A field object on a layout being designed

• A field display rendered on a layout in Browse mode

Figure 20-1. The toolbar icons for adding objects to layouts

ChApTer 20 CreATing LAyouT objeCTs

447

There is no inherent problem with referring to each of these as a “field,” and one

shouldn’t feel obligated to use the formal terms shown. In fact, even this book will

sometimes refer to these all by that term. However, take a moment to acknowledge the

differences to avoid confusion.

A table’s field definition is an individual unit of storage potential that establishes the

data type and settings in the database schema. These are replicated as a field cell, one for

each record created in the table’s data content, making an actual unit of storage that will

contain information. This is the spreadsheet metaphor: a field definition is like a column,

a record is a row, and each instance of the field for a record is a cell. In FileMaker, since a

user interacts with the data structure through a layout, the metaphorical spreadsheet is

hidden from view, and the distinction is less important to them.

When designing a layout, a field object is a graphical element that defines the

position, behavior, and appearance of where and how a field cell should be displayed.

In Layout mode, the field object is assigned a field reference which is a pointer to a field

definition. When viewed in Browse mode, that layout object is rendered as a field display

showing information stored in the field cell for the record currently viewed; formatted,

and behaving in accordance with the settings of both the table’s field definition and the

layout’s field object.

Figure 20-2. An illustration of the various uses of the term “field”

ChApTer 20 CreATing LAyouT objeCTs

448

 Adding Fields to a Layout
A field can be added to a layout by one of numerous methods. Some of these will place

the field object and then ask you to specify a field reference. Others require a reference to

be specified prior to creating the object. One method works either way depending on the

circumstances. Let’s briefly look at all of the ways to add a field to a layout.

 Specifying the Field Reference After Adding

All of the following methods will first add an undefined field object to the layout and then

immediately present a Specify Field dialog (described in the next section) asking for the

selection of a field reference:

• Drag the Field tool from the toolbar down onto the layout.

• Select the Field/Control toolbar menu to set the cursor into a field

drawing mode, and then click and drag to create the field object.

Click once to auto-select the default Edit box control type. Click and

hold to select a control type from the menu.

• Select the Insert ➤ Field menu.

• Duplicate a selected field using the Edit ➤ Duplicate menu.

 Specifying the Field Reference While Adding

All of these methods add a field with a reference already specified as part of the process:

• Drag one or more fields from the Fields tab of the Objects pane

(Chapter 19).

• Copy and paste an existing field.

• Add fields in a dialog when creating a new layout (Chapter 18,

“Creating a New Layout”).

• Duplicate multiple fields using the Edit ➤ Duplicate menu, and their

current assigned field will remain.

• Drag and drop an existing field while holding Option (macOS) or

Windows (Windows) to create a new duplicate of the field object.

This works within a single layout or between layouts in two windows.

ChApTer 20 CreATing LAyouT objeCTs

449

When drag-duplicating fields between windows from two different files, the field

assignment varies. If the receiving file has a field defined with the same name as the field

being dragged in a table with the same name, it will be placed referencing that field. If

the receiving file does not have matching field but does have a matching table name, the

field will be placed with a <Field Missing> reference. If the receiving file does not have

a matching field or table name, the field will be placed as a blank field object.

 Exploring the Specify Field Dialog
Adding a field using any method that requires the selection of a reference will tentatively

place a blank field object and open a Specify Field dialog, shown in Figure 20-3. At the

top, select a table occurrence from the menu. The current layout’s table occurrence will

always be at the top with every other occurrence in the file included in one of two lists;

related and unrelated. Any field can be added, but only those from the current table or a

related table will work as expected. Once a field is located and selected, check the box to

optionally create a label automatically, and click OK to add the field to the layout.

Figure 20-3. The dialog used to select a field reference

ChApTer 20 CreATing LAyouT objeCTs

450

 Editing the Reference of an Existing Field
To reassign the reference for an existing field object, open the Specify Field dialog by

double-clicking on the field, choosing Specify Field from its contextual menu, or clicking

the pencil icon next to the Display data from settings in the Field group of the Data panel

in the Inspector pane.

 Working with Field Labels
A field label is a text object placed adjacent to a field to help users identify its content.

A label can be created manually by inserting a text object or automatically using the

Create label option in the Specify Field dialog. Once created, these can be edited, moved,

formatted, and manipulated like any other text object. Labels created automatically

remain dynamically linked to the field name as long as they haven’t been manually

edited. In this case, if the field’s defined name is modified in the schema, the label

automatically updates to reflect the new name. A label for an existing field can be added

later by double-clicking the field to reopen the Specify Field dialog and selecting Create

label box and clicking OK. The label will reappear as a dynamically linked value next to

the existing field object.

 Configuring a Field’s Control Style
A control style is a layout setting that modifies the appearance and entry options for a

field to streamline data entry. A field can be assigned one of seven types available in the

Control style menu in the Field group on the Data tab of the Inspector pane, shown in

Figure 20-4.

ChApTer 20 CreATing LAyouT objeCTs

451

 Edit Box

An Edit box is the default control style that renders a field as a box into which the user

can perform freeform data entry tasks. These can vary in size from a single line of text to

multiple paragraphs and can include a scroll bar to allow entries longer than the size of

the field’s frame, all shown in Figure 20-5. All container fields are automatically locked to

an Edit Box control style.

Figure 20-4. The menu of available field control styles

Figure 20-5. Edit boxes; single line (top), multiline (bottom left), and with a scroll
option (bottom right)

ChApTer 20 CreATing LAyouT objeCTs

452

Once this control style is selected, settings for adding a vertical scroll bar and auto-

complete suggestions based on past entries are enabled, as shown in Figure 20-6.

 Pop-up Menu

The pop-up menu control style renders a field as a menu of choices based on a defined

value list (Chapter 11), as shown in Figure 20-7.

The settings for pop-up menus include the selection of a value list and a few optional

features, as shown in Figure 20-8. The first checkbox causes an arrow to be drawn on

the field to visually indicate that it will open a menu. The next two allow any user to

override the list with other entries or to directly edit the value list (without accessing the

full developer dialogs). The last option changes the value displayed in the field after a

selection is made. When enabled, it displays the value list’s second value instead of the

Figure 20-6. Examples of various edit style boxes

Figure 20-7. A pop-up menu at rest (left) and open (right)

ChApTer 20 CreATing LAyouT objeCTs

453

value actually entered in the field. For example, if a list shows a Record ID and Company

Name, the former is always entered in the field; with this option enabled, the latter is

displayed as if it were the entry.

 Drop-Down List

A drop-down list control style renders a field as a combination edit box with an attached

menu of value list items, as shown in Figure 20-9. This allows a user a choice of either

typing a custom value or choosing a preexisting value from a list.

The settings for drop-down lists include the selection of a value list and a few

optional features, as shown in Figure 20-10. The first checkbox enables an arrow icon

that opens the list. Without this, the list springs open whenever the field gains focus.

Figure 20-8. The pop-up menu control options

Figure 20-9. A drop-down menu at rest without optional arrow (left), at rest with
optional arrow (middle), and open (right)

ChApTer 20 CreATing LAyouT objeCTs

454

Other options allow users to directly edit the values in the list or to auto-complete

suggestions based on past entries in the field that start with the text a user is typing.

 Checkbox Set

A checkbox set control style renders a field as a set of check boxes, each with a text label,

as shown in Figure 20-11. These allow a user to select one or more individual options

from the assigned list. Checkbox sets are intended to facilitate the entry of multiple

values into a single field. As the user checks boxes, the corresponding values are inserted

into the field as a list of carriage return-delimited values, e.g., if “Banking” and “Retail”

are checked, the actual value in the field will be Banking¶Retail.

The settings for a checkbox set include the selection of a value list, as shown in

Figure 20-12. There is also an option to allow users to override the list with custom

entries and a choice of icon that denotes a selected checkbox.

Figure 20-10. The drop-down list control options

Figure 20-11. A checkbox set control style

ChApTer 20 CreATing LAyouT objeCTs

455

 Radio Button Set

A radio button set control style renders a field as a set of selection circles, each with a text

label, as shown in Figure 20-13. These controls encourage a user to select a single option

from the list. When a selection is made, the corresponding value replaces the previous

value in the field maintaining only a single selection. The radio button format doesn’t

provide an intuitive method for removing a selection and leaving the field empty. To

clear the selection, a user can click the current selection while holding the Shift key or

click anywhere in the field and typing Delete.

The settings for a radio button set includes a selection of a value list and option to

allow users to enter custom values, as shown in Figure 20-14.

Figure 20-12. The checkbox set control options

Figure 20-13. A radio button set

Figure 20-14. The radio button set control options

ChApTer 20 CreATing LAyouT objeCTs

456

Note The number of columns in checkboxes and radio button is automatically set
by the width and height of the field on the layout.

 Drop-Down Calendar

A drop-down calendar control style renders a field as a combination edit box with an

optional calendar widget that opens attached to the bottom of the field, as shown in

Figure 20-15.

The calendar panel includes several controls that assist in quickly navigating to a

specific date, including a few subtly hidden. Click on the month and year at the top to

reveal a hidden pop-up menu that allows quick navigation to any month. The up/down

arrow to the right moves back or forward 1 year for the selected month. The left/right

arrows move back and forward 1 month for the selected year. Click a date in the calendar

to select it, or click on Today in the footer to select the current date. Once a selection is

made, the date is inserted into the field.

The settings for a calendar include a selection of a value list and option to include an

icon to show and hide the calendar, as shown in Figure 20-16.

Figure 20-15. A drop-down calendar at rest without optional icon (left), at rest
with icon (middle), and open with active focus (right)

ChApTer 20 CreATing LAyouT objeCTs

457

Tip The calendar control style can be used with non-date fields. The selection
will be entered into text fields as a text string and into timestamp fields as the date
selected with the current time.

 Concealed Edit Box

A concealed edit box control style renders the field as an edit box with each character

displayed as a bullet, as shown in Figure 20-17. When the field has focus, it displays one

bullet for every character entered but reverts to displaying eight bullets once focus shifts

to another field or the record is committed.

Caution Concealed edit boxes are intended to provide minimal security only.
The data stored in the field is not encrypted. it is obscured from view on layouts
where the control style is applied but continues to be accessible to scripts and
calculations, which can access and manipulate the data as they would any other
field.

Figure 20-16. The options for a drop-down calendar

Figure 20-17. A concealed edit box without focus (left) and with focus (right)

ChApTer 20 CreATing LAyouT objeCTs

458

 Using Pop-up Menus for Two-Field Value List
The pop-up menu control style has a unique feature that reduces the need for extra resources

when used with a dual-field value list. By configuring the assigned value list to show only the

second field (Chapter 11, “Using Values from a Field”) and setting the field’s control style as a

pop-up menu with the Override data formatting with value list option enabled, the user only

sees the second field even though the first will be entered into the field.

To illustrate this, add a value list for Company records to a Contact Company ID field

in a Contact table that will insert a company Record ID and form a relationship between

the contact and a company. To begin, set up a value list named Company List, as shown

in Figure 20-18, which generates a list of the Record ID of every company record with the

Company Name as the second field.

Figure 20-18. An example of a dual-field value list sorting by the second field

ChApTer 20 CreATing LAyouT objeCTs

459

Next, apply the value list to the Contact Company ID field as a drop-down list, as

shown in Figure 20-19.

By including the second field in the value list definition, the user can see and select

a company by name. However, once selected and committed, the menu disappears

leaving only the id visible. Traditionally, this problem would be solved by adding a

relationship between the Contact Company ID field and the Company table’s Record ID

and then pulling the Company Name field through that relationship to display it nearby

on the layout, as shown in Figure 20-20.

Figure 20-19. The value list assigned to a field (left), configured as a drop-down
list (right)

Figure 20-20. The company name field (right) is pulled from the related
occurrence (top, right)

ChApTer 20 CreATing LAyouT objeCTs

460

While this works to solve the problem, it has some drawbacks. It clutters the layout

showing both the id and the name. It also makes the entry feel a little unnatural when you

click on the id field, select by name, and the id goes into the field, while the name appears

off to the side. Since ids are often not something a user needs to see, one might use a

creative overlapping of the two fields so that the user only sees the company name field

on top of the id field hidden behind it. By configuring the name field on top to not allow

entry, a click would pass through it and activate the id field behind which then opens the

menu. When a selection was made, the id field will be hidden by the name field. Making

the value list only show the second field causes the id to almost completely disappear

from view, except when the menu is open. While this approach works, the combination

of a dedicated relationship and a clunky overlay of fields makes it less than ideal.

Instead, eliminate the whole mess and use a pop-up menu control style that overrides

data formatting. Start by expanding the Contact Company ID field’s width. Then, confirm

that the value list is set to only show the second field (as shown previously). Finally,

configure the field to display as a pop-up menu, and select the Override data formatting

with value list option, as shown in Figure 20-21. Now the list will only show company

names, and the field, while still containing an id, will override that with layout formatting

to display the selected value from the value list, the company name. This works without

overlapping fields or requiring extra table occurrences and relationships.

 Bypassing Value List Entry Restrictions
All four of the control styles that use value lists implicitly encourage compliance with

certain data entry restrictions, either entering a single value or restricting entry to value

list items only, as shown in Table 20-1. It is worth mentioning that these are not strictly

Figure 20-21. The field shown with focus (left, top) and without (left, bottom),
configured as a pop-up menu with override (right)

ChApTer 20 CreATing LAyouT objeCTs

461

enforced rules and they can be bypassed by crafty users. By the nature of their mechanism,

both pop-up menus and radio buttons loosely exclude the possibility of a user entering

multiple items or a value not present in the assigned list. Similarly, a checkbox set

(without the setting to allow other values) appears to exclude choosing values not on

the list. However, all of these “restrictions” can be overridden. In situations where it

is important to restrict entry to options made available with a control style, it may be

necessary to take explicit steps to make it impossible for users to bypassing the value list.

 Halting Entry of Custom Values

The entry of values not present on a field’s assigned value list can be done several ways.

For example, when the field has focus, text in the clipboard can be pasted into the field.

Also, any of the text-entering functions from the Insert menu can be used to insert

predefined values. Users can drag a text selection from another field or even another

application and drop it into the field. Importing records can bypass the interface as can

many script steps. There are several ways to tighten up data entry, making it impossible

to bypass the assigned value list.

Using Field Validation

One method to stop users from bypassing the assigned value list is to use validation

at the field definition level (Chapter 8). This will apply to every use of the field on any

layout (including those where a value list control style is not used) and will warn the user

about the error. This is a good option for situations where universal coverage is desired.

Table 20-1. The implied restrictions for entry into value list

driven control styles

Control style Single Item Value List Items Only

Pop-up menu yes yes

Drop-down list yes –

Checkbox set – yes

Radio button yes yes

ChApTer 20 CreATing LAyouT objeCTs

462

Filtering Bad Values with a Calculation

Alternatively, an auto-enter calculation at the field definition level can automatically

preprocesses data input to confirm that any entries made are appropriate and filter

out those that are not. This provides greater flexibility since a custom formula can

dynamically change behavior based on various conditions, e.g., make the field

operate differently on different layouts or depending on various factors. Since the

technique removes the erroneous entry silently without an error dialog, it is great for a

nondisruptive correction and won’t slow down a user’s data entry. However, in some

cases, it can be confusing, appearing like a bug to an inexperienced user who would have

no idea what error they committed or that their entry was modified.

The following formula assumes a single value being entered and will automatically

filter out any value entered that is not in the list. It uses a Let statement and the

ValueListItems function to pull a list of all the items in a value list named “Company –

Industry” into a variable named itemsAllowed. Then, the FilterValues function removes

every item entered that isn’t found in the list of items allowed. This formula could

be expanded with a While statement to loop and reject one or more entries in a field

containing multiple values, as one might with the checkbox control set.

Let (

 itemsAllowed = ValueListItems (Get (FileName) ; "Company - Industry"

)

;

 FilterValues (itemsAllowed ; Self)

)

Using a Script Trigger

Finally, the OnObjectValidate script trigger (Chapter 27) can be used to run a script that

validates the user’s entry and takes corrective action, automatically cleaning up and/

or informing the user about their error. It can even abort the validation process and

force them to correct it before continuing. This is a good option for a layout-specific

intervention that can auto-correct with a custom notification or inform and require a

user change.

ChApTer 20 CreATing LAyouT objeCTs

463

 Halting Entry of Multiple Values

A checkbox set is the only value list–driven control style that intuitively allows the

selection of multiple items from a value list. Other control styles always replace the

existing value when a new value is selected and appears to restrict entry to a single

selection. However, it is possible to select more than one item from pop-up menus, drop-

down menus, and even radio buttons, using any of the following methods:

• Hold the Shift key while clicking on additional options.

• Use the Paste command to enter a return-delimited list.

• Drag a return-delimited list from another field or application.

• When the Allow entry of other values option is enabled on the field, a

user can manually enter multiple values.

• Use a script step such as Set Field, Insert Text, Replace Field Contents,

Import Records, and more.

Restricting Multiple Value Bypass

To forbid multiple values being entered in a field, use an auto-enter calculation or script

trigger to bypass user entries.

Using Auto-Enter to Limit Field to a Single Value

An auto-enter calculation can automatically remove all values entered except for one.

In the following example, only the last value entered will be retained. The first example

in the following uses the GetValue and ValueCount function to also restrict the entry to

the last value entered. The second example will always return the first value entered.

All other values would disappear when this formula executes.

GetValue (Self ; ValueCount (Self))

GetValue (Self ; 1)

Using a Script Trigger to Limit Field to a Single Value

Use an OnObjectValidate Script Trigger that runs a script to detect the presence of

multiple values and either automatically removes excess values or warns the user and

halts the validation process until they correct the problem.

ChApTer 20 CreATing LAyouT objeCTs

464

 Using Field Placeholders
A field placeholder is a text value that will be displayed in the field when empty. This can

be used in lieu of a field label or to provide users a short instructional call to action. Since

the placeholder is applied to the field as a layout object and not to the field definition,

each instance on a new layout must be configured separately. To avoid confusion, the

placeholder value has its own part style state (Chapter 22) which allows formatting to

change so users can distinguish a placeholder from actual field content. The example in

Figure 20-22 shows three instances of the same Company Name field. The first shows the

default state of a new field added to a layout without a placeholder. The second shows

an example of a placeholder used instead of a label, displaying the field name. While this

technique saves space, once actual data is entered into the field, the placeholder text

vanishes, and no label will be shown. That may be confusing in cases where the content

isn’t easily identifiable. The third example shows the field with a permanent label and a

descriptive prompt as a placeholder.

Note A field formatted as checkbox or radio button can’t have a placeholder text
value.

 Entering Placeholder Text

To define a placeholder, select a field and open the Field group on the Data tab of the

Inspector pane. A static value can be typed directly into the Placeholder text box, shown

in Figure 20-23.

Figure 20-22. An example without placeholder (top), with field name as
placeholder (middle), and with a placeholder prompt (bottom)

ChApTer 20 CreATing LAyouT objeCTs

465

Alternatively, click the pencil icon to enter a formula that generates the placeholder

value. The placeholder text will be displayed when the window is in Browse mode.

Enable the Show placeholder in Find mode checkbox to also show it in Find mode. When

enabled in Find mode, a formula can vary the value displayed based on a Case formula

that checks the WindowMode, as shown in this example:

Case (

 Get (WindowMode) = 0 ; "Enter a Company name" ;

 "Search for a Company name"

)

 Replacing Display Calculation Fields with Placeholders

In the distant past, it was common for developers to use calculation fields to create

variable field labels or to display conditional information about a record on layouts. For

example, a field that concatenates meta-information about the record or shows dynamic

error warnings would have been done by adding a calculation field in the table and used

as a layout display mechanism. In the modern age, it is no longer necessary to clutter

up the table’s schema with calculation fields in order to display this type of read-only

information through the interface. One method of doing this is with a single, non-

editable global field placed in a central System table that can be replicated in numerous

layout instances, each with a unique calculation-driven placeholder text value.

Tip A transparently styled button bar’s name calculation can be used as a read-
only display mechanism. using these as field labels allows the label to easily be
switched into a button or popover panel.

Figure 20-23. The controls for defining a field’s placeholder text

ChApTer 20 CreATing LAyouT objeCTs

466

 Showing Field Repetitions
Fields defined to be repeating (Chapter 8) can be displayed on a layout with some or all

defined repetitions, oriented vertically or horizontally, as shown in Figure 20-24.

When a field is added to a layout, it will automatically be configured to show a single

repetition. To change this, select the field and use the Show Repetitions settings on the

Field group of the Data tab of the Inspector pane, shown in Figure 20-25. The number of

defined repetitions available for the field is displayed in parentheses. Enter the starting

and ending repetition in the two fields to control which and how many repetitions are

visible on the layout. The adjacent buttons toggle the orientation.

Using these settings, each repetition of a field can be displayed individually as a

separate field object or in groups in a single field object. To illustrate the various possible

configurations, Figure 20-26 shows a total of seven field objects on a layout, five showing

a different single repetition each, one showing repetitions 1–3, and another showing

repetitions 3–5.

Figure 20-25. The controls for defining how many repetitions appear on a layout

Figure 20-24. A five-repetition text field displayed vertically (left) and horizontally
(right)

ChApTer 20 CreATing LAyouT objeCTs

467

 Working with Text
A text object can be added to a layout in one of four types: static text, dynamic symbols,

merge fields, and merge variables.

 Creating Static Text
On a layout, static text is an object that contains an unchanging string of characters

used for labeling or conveying a message to users. A static text object can contain rich

formatting and multiple paragraphs. In Layout mode, create a static text object by

choosing the Text tool in the toolbar and then click-dragging in the layout design area to

define the object boundaries. When you release the cursor, begin typing. Once created,

text can be edited and formatted by selecting the tool and clicking on the object or by

double-clicking it.

 Creating Dynamic Placeholder Symbols
A dynamic placeholder symbol is a special string in a text object that is automatically

replaced with a predetermined value type whose content varies over time, e.g., a date

or time. There are dozens of symbols available, each corresponding to a Get function

(Chapter 13, “Introducing Get Functions”). These can be manually typed or added to

a layout by selecting one from the Insert menu. The menu adds the symbol into the

current text object with edit focus or as a new object. Symbols are made up of a keyword

enclosed in double braces. For example, to have the current date rendered on a layout,

create a text object with the value shown here:

{{CurrentDate}}

Figure 20-26. Repeating fields configured individually (left) or in groups (right)

ChApTer 20 CreATing LAyouT objeCTs

468

A placeholder symbol can be combined with other symbols and static text to create

compound strings. The following example can be placed in the footer of a print layout

and will automatically update to display the date, time, and user account at the time the

report was printed:

Report printed on {{CurrentDate}} at {{CurrentTime}} by {{AccountName}}

 Creating Merge Fields
Similar to dynamic function placeholders, a merge field is a symbolic tagging format that

allows a field’s content to appear on a layout within a non-editable text object. Use the

Insert ➤ Merge Field menu to add one into the current text object with edit focus or as a

new object. Merge fields are made up of a field name enclosed in two left-shift and two

right-shift symbols and can also be typed manually.

<<FieldName>>

<<TableName::FieldName>>

When referencing a field local to the current layout’s table, only the field name is

required. A related field must include the name of the table occurrence to provide a

contextual reference. The following example assumes placement on a Contact layout and

will display the full name of a contact and the name of the related Company assigned to

them:

Contact <<Contact Name First>> <<Contact Name Last>> at <<Contact |

Company::Company Name>>

// Result = Contact Karen Smith at Atlas Shoulder Pads LLC.

Caution empty fields used in a compound merge field string will show up blank
in a string with other static text surrounding it to form a sentence that doesn’t
make sense!

ChApTer 20 CreATing LAyouT objeCTs

469

 Creating Merge Variables
A merge variable is a symbolic tagging format that allows a global variable (Chapter 12,

“Variables”) to be rendered as a text object on a layout. Like merge fields and dynamic

symbols, merge variables can be used in any combination with other merge variables,

text, symbols, and merge fields. Use the Insert ➤ Merge Variable menu to add one into

the current text object with edit focus or as a new object. Merge variables are made up

of a variable name enclosed in two left-shift and two right-shift symbols, following the

pattern shown here:

<<$$VariableName>>

 Working with Button Controls
A button is a layout object that embeds an action control into an object. Buttons work

in Browse and Find mode and, depending on the type and configuration, can run a

script, perform a single script step, or open a popover interface element. Buttons allow a

developer to embed active controls into the interface for navigation, creating, deleting, or

performing any number of other functions. These provide shortcuts for users and relieve

them of the burden of manually repeating complex tasks. FileMaker has four options for

buttons: three native button types – buttons, popover buttons, and button bars – and the

ability to format any object as a button.

 Working with Buttons
A button is a layout object in the form of a traditional graphical push button, like those

shown in Figure 20-27. Buttons can be added to a layout using the toolbar icon or

selecting the Insert ➤ Button menu. When a button is created, a Button Setup dialog

opens which allows configuration of a label and action. The dialog can be opened for an

existing button by double-clicking it or selecting the Button Setup command from the

Format menu or the button’s contextual menu.

Figure 20-27. Examples of buttons

ChApTer 20 CreATing LAyouT objeCTs

470

 Configuring a Button’s Label

A button label is the identifying text and/or icon displayed within the boundary of

the button that communicates to users what functionality it will perform. The label is

defined in the top portion of the Button Setup dialog. A button can have a text label, icon

label, or a combination of the two.

Using a Text Label

To define a button with a text label, choose the label option and enter the text for the

label, as shown in Figure 20-28:

Tip A button label can include a merge field typed into the text area to create
dynamic names. For more dynamic naming formulas, use a single segment button
bar instead of a button.

Figure 20-28. A button configuration (dialog) rendering a named button (right)

ChApTer 20 CreATing LAyouT objeCTs

471

Using an Icon Label

When defining a button with an icon label, the Button Setup dialog controls transform to

allow selection and configuration of an image, as shown in Figure 20-29. Select an icon

from the list of standard icons. The list can be expanded by clicking the plus icon below

and choosing a PNG or SVG image. New images added here will be available anywhere

within the current database file. Use the slider below the icon list to shrink or enlarge the

size of the icon within the bounds of the button object.

Note unlike other controls, the size setting here will always be displayed in
points regardless of units currently selected for the ruler

Figure 20-29. A button configuration (dialog) rendering an icon button (right)

ChApTer 20 CreATing LAyouT objeCTs

472

 Configuring a Button’s Action

The bottom portion of the Button Setup dialog controls the button function.

Performing a Single Step

To configure a button to run a script step command, change the Action pop-up menu to

Single Step. This will immediately open the Button Action dialog, shown in Figure 20-30.

This is a limited version of the Script Workspace dialog (Chapter 24). Double-click a step

from the list on the right to add it as the action assigned on the left, replacing an existing

selection. Then configure as needed and click OK.

Once a script step has been assigned and configured, the Action area at the bottom of

the setup dialog will display the command selected, as shown in Figure 20-31. To change

the command assigned, click on it. Enable the checkbox at the bottom to cause the

cursor to change when over the button, providing a visual indication to the user that it is

an active button.

Figure 20-30. The dialog used to select and configure a script step for a button

ChApTer 20 CreATing LAyouT objeCTs

473

When using the Single Step option, only one command can be assigned to the button.

To attach more complex functionality to a button, choose Perform Script instead of Single

Step, or click the Convert to Script button in the Button Action dialog to quickly create a

new script with any existing step configurations retained.

Performing a Script

To configure a button to run a script, change the button’s action to Perform a Script. This

will immediately open the Specify Script dialog (Chapter 24, “Exploring the Specify Script

Dialog”), allowing the selection of a script and entry of an optional parameter. After

choosing the script, the Action area at the bottom of the Button Setup dialog will display

the script selected, parameter, and options, as shown in Figure 20-32. The assigned

script can be clicked to open and directly edit the script steps. Click the adjacent script

icon to choose a different script for the button. Click the script parameter button to open

a Specify Calculation dialog and enter a formula for data that will be sent to the script as

a parameter (Chapter 24, “Sending Parameters”).

Figure 20-31. The dialog configured to run a single step

ChApTer 20 CreATing LAyouT objeCTs

474

The Options area includes a checkbox to change the cursor. Also, a menu allows the

selection of one of the four options for how to handle a currently paused script after the

button’s script runs, with the following choices:

• Halt Current Script – All running scripts will be halted.

• Exit Current Script – The paused script will stop and control reverts to

any other scripts in the stack which will resume execution.

• Resume Current Script – The paused script will resume running.

• Pause Current Script – The script will remain paused.

 Popover Button
A popover button is a type of button that a user clicks to open a floating panel that

contains additional layout objects. This reduces visual clutter by storing groups of

controls out of view until needed. Popovers can be used for a variety of different

purposes such as expanding field inputs, documentation tips, or a menu of actions like

the simple example shown in Figure 20-33.

Figure 20-32. The dialog configured to run a script

ChApTer 20 CreATing LAyouT objeCTs

475

To create a popover, choose the Insert ➤ Popover Button menu, or click-hold the

Button toolbar icon, and choose Popover Button from the menu, shown in Figure 20-34.

Then click and drag in the content area to draw the boundaries for the object.

 Defining the Basic Popover Interface

Once it is created, a new popover appears as a button with a popover interface open, as

shown in Figure 20-35.

Figure 20-33. A popover button containing an array of action buttons

Figure 20-34. Selecting the popover button tool from the toolbar

Figure 20-35. A new popover button ready for editing

ChApTer 20 CreATing LAyouT objeCTs

476

The following elements make up the popover button interface:

 1. Button – The button remains on the layout when the popover is

closed. Like a standard button, this will be blank until you specify

a label and/or icon.

 2. Interface/Design Area – This area pops open when the user clicks

the button. In Layout mode, this is a resizable design area where

you can add layout elements as needed.

 3. Close Button – This button, only visible when editing the popover

in Layout mode, will close the popover interface.

 4. Title – An optional title for the popover.

Tip Click on the popover design area to show a gradient control bar and resize
handles.

 Exploring the Popover Button Setup Options

A popover’s label and behavior settings are configured using the Popover Button Setup

dialog, which automatically opens when it is created. This dialog, shown in Figure 20-36,

can be opened later by double-clicking on a button or the popover interface design area or

by selecting Popover Button Setup from the Format menu or the button’s contextual menu.

Figure 20-36. The dialog used to configure a popover’s label and behavior settings

ChApTer 20 CreATing LAyouT objeCTs

477

The top portion of the setup dialog is identical to regular Button Setup, allowing

control over the button’s label and/or icon. The bottom portion contains settings

specifically for the popover interface panel:

 1. Directional Control – Choose a preferred open direction for the

popover interface relative to the button icon. FileMaker will

override this choice if needed to ensure that the popover interface

never goes off-screen.

 2. Title – Enter a title for the popover or click the adjacent pencil icon

to generate one with a formula. Click the checkbox to have the title

display for the user at the top of the panel when open.

 3. Script Triggers – Click to open a dialog to configure script triggers

(Chapter 27) for the popover interface.

 Button Bar
A button bar is a layout object that defines a group of interconnected button segments,

as shown in Figure 20-37. Create a bar by choosing the Insert ➤ Button Bar menu or

using the corresponding tool in the toolbar. Each segment of the bar can be defined

independently as a push button or a popover button. Clicking on a segment performs its

defined action and then leaves that segment actively selected until another is selected,

making them an odd combination of a button and mode indicator. This selection

behavior can be overridden by configuring the default segment to 0 and refreshing the

window after the script action has been performed.

 Exploring the Button Bar Setup Options

Button bars are configured using the Button Bar Setup dialog, shown in Figure 20-38.

This dialog automatically opens when a new bar is created and can be opened later

by double-clicking on a button segment. It can also be opened by selecting Button Bar

Figure 20-37. An example of a three-segment button bar with the second segment
active

ChApTer 20 CreATing LAyouT objeCTs

478

Setup from the Format menu or the button’s contextual menu. This dialog is a hybrid of

the setting for a button and a popover button with a few controls specific to button bars.

The top portion contains controls for the overall bar, including

 1. Bar Orientation Control – Select the direction segments should

run: horizontally or vertically.

 2. Button Labeling Options – Select a labeling option for all the

segments (similar to buttons and popovers).

 3. Active Segment – Specify which segment will be “active” by default.

The menu allows selection of a segment by name and includes a

Specify option for a formula-driven choice.

 4. Segment Control – Add or remove segments from the bar.

 5. Segment Navigation – Select a specific segment whose settings will

be displayed for configuration below.

Figure 20-38. The dialog used to configure a button bar

ChApTer 20 CreATing LAyouT objeCTs

479

The bottom portion of the dialog applies to the currently selected segment:

 6. Button Labeling Specification – Identical to buttons, enter a name

and/or select an icon for the button segment’s label depending on

the labeling option selected previously.

 7. Segment Type – Select a type for the current segment: Button or

Popover Button.

 8. Action Menu and Specification – This area provides action controls

depending on the type selected previously with options identical

to a button or popover.

 Making Any Object a Button
In addition to formal buttons and button bar objects, any object or group of objects can

be converted into a simple push button. Select the object, and click the Format ➤ Button

Setup menu or the contextual menu option of the same name to open a simplified

Button Setup dialog, as shown in Figure 20-39. Because the object is not a native button,

the only configuration choices are an action selection and the option to change the

cursor. Once converted into a button, the objects will no longer be receptive to input

native to their type, e.g., fields will no longer accept data entry.

Figure 20-39. The dialog used to assign an action to an object button

ChApTer 20 CreATing LAyouT objeCTs

480

 Working with Panel Controls
A panel control is a layout object that contains multiple object groups, organized in

separate panels, which can be alternately displayed within the area of the object. Panels

save space by allowing part of a layout to be used for multiple purposes, one at a time as

selected by a user. FileMaker has two such object types: tab controls and slide controls.

 Tab Control
A tab control is a multi-panel layout object with labeled “tabs” reminiscent of file

folders, as shown in Figure 20-40. When a user clicks on one of the available tabs, the

corresponding panel becomes active and renders the other tabs inactive. Each panel can

be designed with any number and different layout objects. A tab panel can even include

other tab controls, making a hierarchical tab structure.

To create a new tab control, select the Insert ➤ Tab Control menu item, or click on

the toolbar icon, and choose Tab Control from the menu, as shown in Figure 20-41.

Figure 20-40. An example of a tab control with four tabbed panels

ChApTer 20 CreATing LAyouT objeCTs

481

 Exploring the Tab Control Setup Dialog

Tabs are configured using the Tab Control Setup dialog, which automatically opens when

a new tab control is created. This dialog, shown in Figure 20-42, can be accessed later

by double-clicking anywhere on a panel of a tab control or by selecting the Tab Control

Setup item from the Format menu or the tab control’s contextual menu.

The controls available on the dialog are

 1. Tabs – Lists each tab defined for the object. Drag to reorder.

 2. Tab Name – Type a name when creating a new panel or edit the

name of the selected tab. Click Specify to define a formula-driven

name.

Figure 20-41. Selecting the tab control tool from the toolbar

Figure 20-42. The dialog used to define a tab control

ChApTer 20 CreATing LAyouT objeCTs

482

 3. Create – Click to create a new tab based on the preceding name.

 4. Rename – Click to save the selected tab’s modified name.

 5. Delete – Delete the selected tab(s).

 6. Default Front Tab – Select a default tab selection when the window

is refreshed.

 7. Tab Justification – Select the justification of the tab’s labels.

 8. Tab Width – Select the width of the tabs:

• Label Width – The width varies based on each label name.

• Label Width + a Margin of – The width varies based on each label

name plus the specified margin in pixels.

• Width of Widest Label – Use uniform widths based on the longest

label name.

• Minimum of – The width based on each label name above the

specified minimum.

• Fixed Width of – Use uniform widths based on a specified width.

 9. Tabs Share Single Style – Maintain design uniformity between tabs

with a single theme style (Chapter 22).

 Slide Control
A slide control is a multi-panel layout object where panels are accessed by swiping

left or right on an iOS device or by clicking a navigation dot, as shown in Figure 20-43.

Functionally, they are similar to tab controls but without the tab labels. Create a new

slide control by choosing the Insert ➤ Slide Control menu or clicking on the toolbar icon

and choose Slide Control.

ChApTer 20 CreATing LAyouT objeCTs

483

 Exploring the Slide Control Setup Dialog

Slide controls are configured using the Slide Control Setup dialog, which automatically

opens when a new control is created. This dialog, shown in Figure 20-44, can be opened

later by double-clicking on the background of a slide control or choosing Slide Control

Setup from the Format menu or the slide control contextual menu.

The setup dialog has panel controls used to add, remove, or navigate to a specific

panel using the buttons. The checkboxes control iOS swipe gestures and the visibility

of navigation dots so users on a macOS or Windows computer can click to other panels

when swiping isn’t an option.

Tip panels can also be reordered in Layout mode by dragging the navigation
dots.

Figure 20-43. An example of a three-panel slide control

Figure 20-44. The dialog used to configure a slide control

ChApTer 20 CreATing LAyouT objeCTs

484

 Working with Portals
A portal is a layout object that displays a list of records from a table occurrence related

to the current layout’s occurrence. Portals resemble a List view but are embedded as

an object on a layout to display a group of records with an optional scroll bar. A portal

row represents one related record and can include fields and other layout objects.

Figure 20-45 shows an example of a Contact portal as it would appear on a Company

layout. Depending on the portal setup, users can add, delete, edit, view, or click a button

to navigate to a specific contact record. Portals have many styling options similar to

List views, allowing an active row to be styled differently and alternating styles to help

visually separate inactive rows.

 Exploring the Portal Setup Dialog
To create a new portal, choose the Insert ➤ Portal menu or select the tool in the toolbar.

Portals are configured using the Portal Setup dialog, which automatically opens when a

new portal is created. This dialog, shown in Figure 20-46, can be opened later by double-

clicking anywhere on the background of a portal or selecting Portal Setup from the

Format menu or the portal’s contextual menu.

Figure 20-45. An example of a portal showing contact records

ChApTer 20 CreATing LAyouT objeCTs

485

The table occurrence selected from the Show records from pop-up menu acts as

the data source for the portal. The four checkboxes and adjacent controls are used to

configure sorting, filtering, and other functions available to the user in the portal. The

Allow deletion of portal records checkbox allows users to delete a selected portal row

with the Delete key. For a more intuitive experience and to avoid accidental deletions,

disable this and create a custom Delete button in the portal row. Allow scrolling when the

number of records exceeds the number of visible rows, optionally showing the scrollbar

always or only when a user is scrolling. The Reset scroll bar when exiting record option

will automatically scroll back to the first row when the record is committed instead of

retaining the user’s current scroll position.

The Format settings at the bottom allow control over which related records appear

in the portal and which style options apply. The Initial row accepts a number indicating

the first row that should be displayed with any related records preceding that being

omitted from view. The Number of rows indicates how many related records to include

in the portal at its minimum size. Any related records after the first will still be included

Figure 20-46. The dialog used to configure a portal

ChApTer 20 CreATing LAyouT objeCTs

486

in the portal but are only accessible by scrolling if enabled or if the portal is configured

to expand in size when the window dimensions change. The alternate and active row

states will apply style settings (Chapter 22) to differently format every other row and the

currently selected row to provide visual clarity.

 Adding Objects to Portal Rows
In Layout mode, a portal’s first row is a design area where fields, buttons, and other

objects can be added to define the template for how each row will be rendered in Browse

mode, as shown in Figure 20-47.

Objects placed in the portal are rendered from the context of the current layout’s

occurrence and the relationship to the portal’s data source occurrence. This is important

to remember when choosing what objects to place inside a portal and how to configure

them. Any fields added into the portal must be either from the portal’s assigned

occurrence or occurrences that are related to it in a direct line away from the layout’s

occurrence. Fields from tables beyond the portal’s table will only display a value from

the first matching record through the relationship conduit from the context of the record

for each portal row. So, a Contact portal can include a field that hops across multiple

relationships to show a field from an invoice line item from an invoice related to the

Figure 20-47. Showing a portal in Layout mode (top) and Browse mode (bottom)

ChApTer 20 CreATing LAyouT objeCTs

487

contact, but it will only show the value from the first line item for the first invoice for the

contact based on the relational connections along that chain. Any object in a portal must

be thought of in the context of the portal’s occurrence. When writing formulas for hide,

tooltips, conditional formatting, script parameters, etc., the formula must be restrained

to include fields based on the portal’s context.

 Creating Records in a Portal Directly
In Browse mode, portals automatically update anytime new matching records are

created in the related source table. If one user is viewing a Company record on a layout

with a Contact portal, any new contact record that is linked to that company will appear

in the portal viewed by anyone. If the user viewing the company record wants to create a

new related contact record from the Company layout, they would have to switch layouts,

create the record, link it to the company, and then return to the original layout to see

it in the portal – or run a script that performs those steps in sequence. Alternatively, a

portal can be configured with a shortcut that allows users to create a new record directly

in the portal by typing into an empty portal row at the bottom. This ability is configured

at the relationship level instead of on the layout object. Open the Manage Database

dialog and enable the Allow creation of records checkbox in the Edit Relationship dialog

(Chapter 9) on the side of the relationship used as the portal’s data source, in this case,

Company | Contact. Once done, any portal assigned that occurrence will display one

blank row, as shown in Figure 20-48. The blank row only exists in the interface and will

be programmatically ignored with no effect on functions that summarize related records

such as Count, List, Max, Min, Sum, etc.

Figure 20-48. The setting (left) that enables a blank portal row for creating new
records (right)

ChApTer 20 CreATing LAyouT objeCTs

488

When the user types into any editable field in that blank row and then moves focus to

another field or commits the record, a new record will be instantly created in the remote

table. The new record will automatically populate each match field with the appropriate

value required to relate it to the currently viewed parent record. Although the new record

remains in the portal, it may sort to a new position based on the values in any sort field

defined at the relationship level and/or specified in the portal’s settings. Once finished, a

new blank row will appear for the creation of additional new records.

Caution This feature may confuse users since the empty row appears like an
actual record with no field values. users may try to delete it. buttons can be hidden
(Chapter 21) to make it less conspicuous, but some developers disable this and
use a custom script to perform the sequence required to create related records.

 Deleting Portal Rows
Portal rows are a representation of records from another table, and they will disappear

from the portal whenever the related record is deleted. A portal can be configured to

allow users to delete a record directly within the portal. Open the Portal Setup dialog,

and select the Allow deletion of portal records option. Once enabled, a user can select a

portal row and type the Delete key to delete the related record and remove it from the

portal display. FileMaker will present a confirmation dialog asking if the user wants

to continue with the deletion. If they confirm, the related record will be permanently

deleted.

Caution The delete portal row confirmation dialog is vague and may be
confusing to the users who may not realize which row they have selected and
accidentally delete the wrong record. instead, add a button in the portal that
handles the process with more precision and optionally run a script with a more
informative custom dialog.

ChApTer 20 CreATing LAyouT objeCTs

489

 Filtering Portal Records
The relationship between the layout’s occurrence and portal’s occurrence automatically

provides a baseline filter controlling the records displayed in a portal. Only records

with a relational match of the current record’s occurrence will be included. By contrast,

the portal filtering option in the Portal Setup dialog allows a formula to further control

which of the related records will actually be displayed in the portal. The filter formula is

evaluated once for each available related record, and they are only displayed if the result

is true.

The filter formula can be as simple or as complex as needed to determine if a record

should be included. It can include field comparisons and can be based on a user’s entry

in fields exclusively for soliciting filtering preferences. For example, a field positioned

near the portal can allow users to type any criteria that can be used to determine a

subset of related records that will be displayed. In the example shown in Figure 20-49,

a Company layout includes a Contact portal showing related people. The relationship

limits the portal list to only people related to the current company. The value in the

filtering field can be compared to the related State field in order to narrow the related to

only contacts whose address matches the value entered by a user.

Caution Filtering only affects the display of related records and does not
affect the actual relationship. Any calculation that accesses records through the
relationship will continue to see all related records even when the portal displays a
filtered set!

Figure 20-49. An example of a portal filtering field

ChApTer 20 CreATing LAyouT objeCTs

490

 Setting Up Portal Filtering

To set up the filtering example, start with these steps:

 1. In the Company table, create a text field named “Company

Contact Portal Filter.” Optionally make this field use global storage

to avoid conflicts between users and preserve a user’s entry across

all records.

 2. Place that field on the layout above the portal with a label that

makes clear its function, like “Contacts Filter.” Alternatively, use a

placeholder calculation as a prompt.

 3. Open the Portal Setup dialog.

 4. Click the Specify button next to Filter portal records.

 5. Enter a formula that indicates when a related record in the

Contacts table should appear in the portal based on what the user

has typed into the filter field (see following examples).

 6. Then save the formula and close the Portal Setup dialog.

 Writing a Basic Portal Filter Formula

A portal filter formula is made up of one or more conditional statements that evaluate

to a combined result of true (1) or false (0). Each related record is evaluated individually

using this formula and will only appear in the portal if the result is true. Since the

formula operates within the list of related records, it already assumes the record matching

criteria of the relationship itself. As a result, the filter formula does not need to re-specify

that criteria nor can it work to extend the results beyond that criteria to include non-

related records. For example, when a portal’s data source matches contact records

assigned to the current company record, we can filter by contact address, but we can’t

make the formula include contacts assigned to other companies.

When writing a formula for filtering, the formula should include a condition to

display all records for situations when no criteria is entered. So, start the formula with

the following code that provides a true result when the filter field is empty:

Company::Company Contact Portal Filter = ""

ChApTer 20 CreATing LAyouT objeCTs

491

Next, add a second condition after an or operator that uses the PatternCount

function, to specify a partial or full match between the related Contact Address State

field and the text the user enters in the filter field. The following example formula allows

a record to appear if no filter value is entered or if the value entered is found within the

state field:

Company::Company Contact Portal Filter = "" or

PatternCount (

 Company | Contact::Contact Address State ;

 Company::Company Contact Portal Filter

) > 0

Save the formula and close the setup dialog to test the function. Start with a company

record with a lot of contacts in the portal. When a state abbreviation is typed into the

filter field, the record committed, and the window refreshed, the portal rows should only

include those records matching the text entered. To have the portal update automatically

as a user is typing into the filter field, use the ObjectModify script trigger (Chapter 27) to

run a script that commits, refreshes, and re-enters the filter field constantly.

 Expanding the Formula for Multiple Match Fields

The previous example assumed the user’s filtering criteria would be a state. However, the

filter formula can be expanded to detect matches across multiple fields. The following

example adds conditions to find matches in first name, last name, city, or state:

Company::Company Contact Portal Filter = "" or

PatternCount (

 Company | Contact::Contact Name First ;

 Company::Company Contact Portal Filter

) > 0 or

PatternCount (

 Company | Contact::Contact Name Last ;

 Company::Company Contact Portal Filter

) > 0 or

PatternCount (

 Company | Contact::Contact Address City ;

 Company::Company Contact Portal Filter

) > 0 or

ChApTer 20 CreATing LAyouT objeCTs

492

PatternCount (

 Company | Contact::Contact Address State ;

 Company::Company Contact Portal Filter

) > 0

 Enhancing the Search Field

Once the filter field is operational, apply some formatting changes like those shown

in Figure 20-50. The search field has its left corners rounded using the Corner radius

settings of the Appearance tab of the Inspector pane. The label was removed in favor of a

Placeholder text value of “Search by.” Finally, a button has been added to the right of the

field with opposing rounded corners, an icon assigned, and an Action defined to run a

script that deletes the contents of the filter field and commits the record.

 Working with Web Viewers
A web viewer is a layout object that displays a web page directly on a layout. This can be

configured with or without user interaction, and the content can be generated by any of

the following:

• A web address hard-coded to point to a specific website

• A web address pulled from a database field or dynamically generated

from a formula

• A Claris-provided address formula such as Google web search,

Google maps, FedEx, or Wikipedia

• Custom HTML code from a field or formula, which can include hard-

code elements, field data, and even images in fields

• A web address or custom HTML code provided by a script

Caution Custom web addresses must begin with the correct urL scheme such
as http://, https://, ftp://, or file://.

Figure 20-50. A visually improved portal filter field

ChApTer 20 CreATing LAyouT objeCTs

493

 Exploring the Web Viewer Setup Dialog
To add a web page to a layout, select the Insert ➤ Web Viewer menu, or use the tool in

the toolbar. The Web Viewer Setup dialog will appear, shown in Figure 20-51. This can be

opened later by double-clicking on a web viewer or selecting the Web Viewer Setup from

the Format menu or the viewer’s contextual menu.

The Choose a Website list on the top left specifies the source data. Choose from a list

of data-driven templates or select Custom Web Address to write your own URL or HTML

formula. When using a template, the component fields on the right accept values that

will be inserted into the URL. The Web Address area allows entry of a URL, HTML code,

or a formula to generating either. The templates will insert a ready-made calculation

with links to parameter fields on the top right. Enter addresses or formulas into the text

area, or click the Specify button to enter a formula.

The checkbox options at the bottom control various viewer features. You can enable

user interaction with the rendered web page, control display in Find mode, include a

progress bar when loading, and include a status message. The Automatically encode

URL option will percent-encode special characters in the address. For example, spaces

are converted to %20 if this box is checked. Alternatively, the GetAsURLEncoded function

can be used in a formula to handle encoding. The Allow JavaScript to perform FileMaker

scripts option was added in version 19 to enable the HTML code to directly call native

FileMaker scripts using a FileMaker.PerformScript JavaScript function (described later in

this section).

ChApTer 20 CreATing LAyouT objeCTs

494

With the Allow interaction with web viewer content option enabled, users can
interact with a web page as with any standard browser. They can click links to navigate
to other pages and interact with rich content such as movies. Although very capable,
viewers aren’t intended to act as a full-featured web browser, and there may be some
limitations. The Open Link in New Window function in the viewer’s contextual menu
in Browse mode will redirect the page out of FileMaker to the user’s default browser

application and allow a fuller web experience.

Figure 20-51. The dialog used to configure a web viewer

ChApTer 20 CreATing LAyouT objeCTs

495

 Building a Web Page Using Data from Fields
As an alternative to displaying a page based on a web address, a viewer can display
HTML code to generate a custom page. FileMaker uses the data universal resource
identifier (URI) scheme, which is a standard method of including data within the code of
a web page instead of accessing external resources. The data URI is expressed with the
following formula, with square brackets indicating optional elements:

data:[<media type>][;base64],<data>

This formula contains the following elements:

• data – This required prefix indicates the scheme being used, followed
by a semicolon.

• <media type> – Optionally indicates the type of material contained in
the data. A web page would use text/html, while an image would use
image/<type>, for example, image/png. If no media type is specified,
the data will be assumed to be text/plain.

• base64 – This optional extension, delimited from the media type with
a semicolon, is used to indicate that the data content is binary data,
which is encoded in ASCII format using the Base64 binary-to-text
encoding scheme.

• <data> – Preceded with a comma, this placeholder would be
replaced with a sequence of characters containing the content being
described, HTML code or Base64 image data.

Note since version 15, the data and media type have been optional. The text
can begin with <html> or <!DOCTYPE html> and render as expected in a web
viewer.

 Creating a Hello World Web Page
This code defines a simple Hello, World example web page formula for a web viewer:

"data:text/html,
<html>
<head>
</head>

ChApTer 20 CreATing LAyouT objeCTs

496

<body>

<h1>Hello, World</h1>

</body>"

Add a <style> tag to control text formatting with Cascading Style Sheets (CSS). This

example modifies the color of the h1 style to display the text in green:

"data:text/html,

<html>

<head>

<style>

h1 {

color: green;

}

</style>

</head>

<body>

<h1>Hello, World</h1>

</body>"

Add a <script> tag to include JavaScript functions as demonstrated by the following

example that opens an alert dialog when the page loads:

"data:text/html,

<html>

<head>

</head>

<body>

<script>

alert('Hello, World!')

</script>

<h1>Hello, World</h1>

</body>"

Caution When calculating content for a web viewer in a formula, all text must be
enclosed in quotation marks. Any quotes within that text must be escaped with a
preceding backslash.

ChApTer 20 CreATing LAyouT objeCTs

497

 Including Text Fields in a Web Page

Using a formula-driven web page, inserting fields is done the same as in any formula

(Chapter 12). Simply insert a field reference into the formula outside of the quoted text.

"data:text/html,

<html>

<head>

</head>

<body>

<h1>" & Company::Company Name & "</h1>

</body>"

 Including a Container Field Image in a Web Page

Images from the Web can be included by inserting the URL in an <image> tag. However,

to include an image stored in a field, use the Base64Decode function to convert the image

into text.

"data:text/html,

<html>

<head>

</head>

<body>

<h1>" & Company::Company Name & "</h1>

<img src='data:image/imagemac;base64," & Base64Encode (Company::Company

Logo) & "'>

</body>"

 Calling a FileMaker Script with JavaScript
In version 19, FileMaker added the ability for JavaScript in a web viewer to call a native

FileMaker script. As long as the option in the Web Viewer Setup dialog is enabled,

buttons and URLs in HTML code can call a FileMaker.PerformScript function with two

parameters: script name and parameter. The following simple example assumes a script

named “Test Script” exists that will generate a dialog using the Show Custom Dialog

script step that displays the script parameter (Chapters 24 and 25). The code renders a

ChApTer 20 CreATing LAyouT objeCTs

498

button that calls a JavaScript function named runScript() that runs the FileMaker script.

If configured correctly, clicking the button should cause FileMaker to open a dialog with

a message of “Hello, World!”

"data:text/html,

<html>

<head>

</head>

<body>

<h1>Test FMP Script</h1>

<button onclick=\"runScript()\">Test FMP Script</button>

<script>

 function runScript() {

 FileMaker.PerformScript (\"Test Script\", \"Hello, World!\");

 }

</script>

</body>

</html>"

Caution This javascript function only works on web pages rendered in a
FileMaker web viewer. To enable hTML click access from outside the database, use
the FileMaker urL (Chapter 29).

 Working with Charts
A chart is a layout object that draws a graphical representation of data in one of several

popular charting formats: column, stacked column, positive negative column, bar, stacked

bar, pie, line, area, scatter, or bubble. These can be created using data from the current found

set, a group of related records, or from calculated data. Charts are configured in a Chart Setup

dialog that opens whenever a new chart object is inserted onto a layout. This dialog can

be re-opened for an existing chart object by double-clicking on it or selecting Chart Setup

from the Format menu or its contextual menu. The dialog is divided into two main sections:

a chart preview area continuously updates a drawing of the chart as it is configured and a

settings sidebar of togglable sections for various settings – Chart, Styles, and Data Source.

ChApTer 20 CreATing LAyouT objeCTs

499

 Creating a Chart Using Calculated Data
Using calculated data to generate a chart will pull information from either hard-coded

calculated values or fields from the current record. To create a pie chart using hard-

coded values, insert a chart object onto a layout, and then configure the settings as

shown in Figure 20-52.

The following settings are required to generate a pie chart with three sections, as

shown in Figure 20-53:

 1. Type – Select Pie as the type and optionally enter a title.

 2. Category Labels – Enter a return-delimited list of categories for the

chart, e.g., Category A¶Category B¶Category C.

 3. Slice Data – Enter a return-delimited list of numbers for each

category slice of the pie, e.g., 1000¶250¶650.

Figure 20-52. The settings for a simple pie chart based on calculated data

ChApTer 20 CreATing LAyouT objeCTs

500

 4. Options – Choose various optional settings for label format.

 5. Chart Data – From the Data Source settings group, select Current

Record (delimited data) to instruct the chart engine to use data

from the context of the current record only.

Note optionally, the labels and data for the preceding chart could be generated
using field values by clicking the icon with three dots to open the Specify Formula
dialog.

 Creating a Chart Using the Found Set
Using the records in the found set as the data source, create a bar chart that displays the

number of Contact records by state. To get started, insert a chart onto a layout, and then

configure the settings as shown in Figure 20-54.

Figure 20-53. The chart generated by the example data

ChApTer 20 CreATing LAyouT objeCTs

501

Caution Creating charts from found sets can be a little confusing. it is like
creating a report with a sub-summary part since only records in the found set
will be included and the current sort order controls how a summary field counts
records into subgroups.

The following settings will create a chart as shown in Figure 20-55:

 1. Type – Select Column as the type.

 2. X-Axis Data – Select a field containing text that will act as the

labels for the bars. To avoid duplicate values, FileMaker will

automatically summarize these if the found set is sorted by the

field specified. In our example, we sort by and point to the Contact

Address State field.

Figure 20-54. Configuring a bar chart using data from the found set

ChApTer 20 CreATing LAyouT objeCTs

502

 3. Y-Axis Data – Select a summary field containing the numeric

values for the bar height. In our example, a new Contact State

Count Summary field is used, which performs a Count of the

Record ID field.

 4. Chart Data – On the Data Source section of the controls, select

Current Found Set to instruct the chart engine to summarize data

from across all the records.

Remember, for this chart to summarize correctly, the records must be sorted by the

x-axis, and the y-axis must be a summary field.

 Summary
This chapter explored the various objects that are used when designing layouts. In the

next chapter, we learn how to manipulate, arrange, and configure objects.

Figure 20-55. A column chart of the number of contact records for each state

ChApTer 20 CreATing LAyouT objeCTs

503
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_21

CHAPTER 21

Manipulating Objects
After adding an object to a layout, it can be manipulated and configured in a variety of

ways. This chapter introduces the many basic methods, covering these topics:

• Selecting objects

• Resizing objects

• Moving objects

• Arranging and aligning objects

• Hiding objects

• Conditional formatting

• Understanding tab order

• Naming objects

 Selecting Objects
To select an object, click on it with the cursor or click on the layout near the object and

drag the cursor over or around it. The object will become highlighted with an outline

that includes eight sizing handles, as shown in Figure 21-1.

Figure 21-1. An object at rest (left) vs. a selected object (right)

https://doi.org/10.1007/978-1-4842-6680-9_21#DOI

504

To select more than one object at a time, either click on them one by one while

holding down the Shift key or click on the background and drag the cursor so that

the focal rectangle touches all the desired objects. Hold the Command (macOS) or

Windows (Windows) key while dragging to require that an item be completely within the

boundaries of the focal rectangle before it will be selected. When multiple objects are

selected, they share one set of sizing handles, outlining the overall space of the group, as

shown in Figure 21-2. Objects can be de-selected by clicking on the layout background

or by selecting another object. To de-select one of a group of selected objects, click on

the object while holding the Shift key.

Caution Shape objects with no fill can only be selected by clicking the border.
Clicking in the center of an object will click through the object onto objects behind
it or the background of the layout.

 Resizing Objects
Objects can be resized by dragging one of the eight sizing in or out from the center of the

object. Use the settings on the Position tab of the Inspector pane controls for precision

resizing of objects, entering a new Width or Height and typing Tab or Enter to register

the change. To uniformly resize groups of objects, use the Resize To functions, described

later in this chapter.

Figure 21-2. Objects selected together will share sizing handles

Chapter 21 Manipulating ObjeCtS

505

 Moving Objects
When one or more objects are selected, they can be moved to a new location by clicking

and dragging them around the layout or using one of three other methods. The arrow

keys will nudge a selection one pixel at a time in one directional plane. The settings on

the Position tab of the Inspector pane allow objects to be precisely placed by entering a

new measurement for Left, Right, Top, or Bottom. To move groups of objects relative to

each other, use the Arrange and Align functions, described later in this chapter.

 Layout Positioning Helpers
There are four features that are helpful when positioning objects manually: the ruler,

grid, guides, and dynamic guides. These can be used individually or together to guide an

object to a new location.

 Ruler

The ruler is a horizontal and vertical strip running along the entire left and top of a

window’s content area that displays incremental markings based on a chosen unit of

measurement: inch, centimeter, or point. The full ruler, as shown in Figure 21-3, is only

visible in Layout mode when the View ➤ Rulers menu is active.

Figure 21-3. The Layout mode ruler assists for precise positioning

Chapter 21 Manipulating ObjeCtS

506

The ruler has several non-obvious features. At the corner where the horizontal and

vertical rulers intersect, a button displays the current unit of measure. Click this to cycle

through the available units for the ruler. The selected unit can also be changed from

the ruler’s contextual menu. The cursor’s current position is marked in each ruler with

a dotted line, and, when dragging an object, the rulers denote the boundaries of object

with a white highlight.

When editing the content of a text object, the top ruler transforms into a gray bar with

a text ruler overlay that spans only the width of text object, as shown in Figure 21- 4. This

ruler controls indentation, margins, and tabs within the text object in a similar manner to

the text ruler accessible in Browse mode when editing a field.

 Grid

The layout grid is a sequence of evenly spaced horizontal and vertical lines overlaid on

a layout background that denotes minor and major areas. These lines, resembling graph

paper, are only visible in Layout mode when the View ➤ Grid ➤ Show Grid menu item

is active or the corresponding check box in the Inspector pane is enabled. When visible,

the lines can visually assist in uniform alignment of objects. Activating the View ➤ Grid

➤ Snap to Grid menu setting in the Inspector will cause an object being dragged to be

drawn to the next grid line in the direction of travel (Chapter 19, “Grid”).

 Guides

A layout guide is a movable blue line used to align objects and define regions of a layout.

Multiple guides can be placed horizontally or vertically on the layout, as shown in

Figure 21-5. Guides don’t print and are only visible in Layout mode when the View ➤

Figure 21-4. The top ruler transforms when editing layout text

Chapter 21 Manipulating ObjeCtS

507

Guides ➤ Show Guides menu is active. Click anywhere on the left or top ruler and then

drag right or down, respectively, and release a new guide at the desired position on the

content area. Guides can be repositioned by dragging them to a new position or removed

completely by dragging them back to the ruler. When visible, guides can visually assist in

uniform alignment of objects. Activating the View ➤ Guides ➤ Snap to Guides menu will

cause an object being dragged to be drawn to the next available guide in the direction of

travel.

 Dynamic Guides

As an object is moved around a layout, blue lines called dynamic guides automatically

appear and disappear on or around nearby objects showing alignment and spacing

patterns that would result if the object were dropped in its current location. By showing

these spatial relationships of stationary objects relative to the position of the moving

object, dynamic guides help to encourage a neat design when repositioning an object.

Like the grid and guides, objects will be magnetically drawn to dynamic guides. Dynamic

guides can be activated or deactivated with the View ➤ Dynamic Guides menu.

When first moving an object, no guides will appear when the current position does

not align to any other objects on the layout, as shown in Figure 21-6.

Figure 21-5. A layout with several guides defining regions

Chapter 21 Manipulating ObjeCtS

508

As the object is dragged or nudged with arrow keys and begins to align with other

objects, one or more dynamic guides will appear, as shown in Figure 21-7. Alignments

are shown for left, right, horizontal center, top, bottom, and vertical center, connecting to

one or more other objects.

Figure 21-6. No dynamic guides appear when an object does not align with other
objects

Figure 21-7. As an object aligns with one or more objects, a guide will appear

Chapter 21 Manipulating ObjeCtS

509

When the object is dragged into a position that creates a consistent spacing pattern,

those are highlighted as well, as shown in Figure 21-8. These appear for horizontal and

vertical distribution and are displayed simultaneously with alignment guides.

Note examples in this chapter are shown with uniform square shapes for
illustrative purposes only. Dynamic guides and all other features work the same
with any combination of different object types, in non-uniform arrangements, and
of varying sizes.

 Arranging and Aligning Objects
When working on complex layouts with dozens or hundreds of items, moving, sizing,

and spacing groups of objects can be a tediously repetitive manual chore. FileMaker has

functions that assist in the task of aligning, distributing, resizing, rotating, grouping, and

locking objects. These are all accessible from the Layout mode in the Arrange menu in

the menu bar, a submenu of an object’s contextual menu, and in the Arrange & Align

group of tools on the Position tab of the Inspector pane. With the exception of Rotate,

these functions all work with any combination of object type.

Figure 21-8. Multiple guides can show alignment and distribution spacing

Chapter 21 Manipulating ObjeCtS

510

 Align
The Align functions automatically align groups of selected objects horizontally or

vertically. For example, with several misaligned objects selected, choose the Arrange

➤ Align ➤ Left menu item to instantly align them along their left border, as shown in

Figure 21-9.

 Resize To
The Resize To functions automatically resizes a group of selected objects to Smallest

Width, Smallest Height, Smallest Width and Height, Largest Width, Largest Height,

or Largest Width and Height. For example, with several non-uniformly sized objects

selected, choose the Arrange ➤ Resize To ➤ Smallest Width and Height menu item to

instantly resize every object to a uniform size and height based on the object with the

smallest of each, as shown in Figure 21-10.

Figure 21-9. Transforming misaligned objects (before) to aligned (after)

Chapter 21 Manipulating ObjeCtS

511

 Distribute
The Distribute commands will reposition a group of objects so that they are uniformly

spaced horizontally or vertically using the outside measurements of the group along the

respective axis. For example, with several non-uniformly spaced objects selected, choose

the Arrange ➤ Distribute ➤ Vertical menu to instantly reposition every object uniformly

spaced, as shown in Figure 21-11.

Figure 21-10. Transforming non-uniform objects (before) to a uniform size (after)

Chapter 21 Manipulating ObjeCtS

512

 Rotate
Many objects can be rotated in a clockwise direction in 90-degree increments by

selecting the Arrange ➤ Rotate menu item, as shown in Figure 21-12. The exceptions are

button bars, charts, popovers, portals, slide controls, tab controls, and web viewers.

 Group
A set of selected objects can be transformed into a single group object by selecting the

Arrange ➤ Group menu. Once joined together, the grouped objects can be moved or

resized as a single unit but still manipulated individually within the group by clicking

once on the group and a second time on an item within it. Objects such as buttons,

Figure 21-11. Transforming non-uniform spacing (before) to an even vertical
distribution (after)

Figure 21-12. A text object (left) after two 90-degree rotations (right)

Chapter 21 Manipulating ObjeCtS

513

button bars, charts, fields, web viewers, and more can be functionally edited while

grouped by double-clicking directly on them. To ungroup formerly grouped objects,

select the Arrange ➤ Ungroup menu.

 Lock
Locking an object causes it to become non-editable in Layout mode. This helps avoid

accidental deletion or movement of objects on complex layouts. A locked object can’t

be moved, resized, reassigned, reconfigured, or changed in any way until it is unlocked.

Lock a selected object or group of objects by selecting the Arrange ➤ Lock menu. Once

locked, the item will not respond to any editing attempts. Attempting to change some

settings through the Inspector will produce a dialog stating that the change can’t be

made because of the object’s locked status. However, in many cases, the command will

just be silently ignored. An object can be unlocked with the Arrange ➤ Unlock menu.

When selected, locked objects display an “x” icon in place of each sizing handle, as

shown in Figure 21-13.

 Object Stacking
Objects exist within a front to back stacking order. When two objects are moved together,

the one created more recently will appear on top of the first, obscuring it from view.

There are four commands that change an object’s position within the stack, as illustrated

in Figure 21-14: Bring to Front, Bring Forward, Send Backward, and Send to Back.

Note the object stacking order is reflected in the Objects tab of the Objects
pane, where objects on top of the list are in front of those below.

Figure 21-13. A locked object indicated by its sizing handles

Chapter 21 Manipulating ObjeCtS

514

 Hiding Objects
Objects can be assigned a formula that determines when they should be rendered and

when they should be hidden. Select the object and enter a Hide objects when formula in

the Behavior section of the Data tab of the Inspector pane. When that formula returns

a true result, the object will be hidden in non-Layout modes. The formula entered can

be based on various criteria: the values in fields, conditions of the window, or details

about the user’s environment. A button can be hidden until data is entered in specific

fields, e.g., hide a Print button until fields required for the report have a value, or hide an

Approve button until key status fields have a value. Hide a field configured as a pop-up

menu if the value list is currently empty. Hide data entry–specific buttons and objects

when the window is in Find mode. A chart can be hidden until enough information has

been entered into fields to actually draw something useful. A set of portals can be toggled

depending on the type of record, showing a purchase order portal for vendor contacts

and switching to a project portal for customer contacts. Use the feature to obscure

information depending on a user’s access privilege (Chapter 30) so they don’t see

blocked out fields saying “no access” and can’t click buttons that produce access denied

errors. A multi-segment button bar can toggle so only one segment shows at a time as a

technique to toggle a button’s icon and function.

Figure 21-14. An illustration of commands that affect an object’s stack position

Chapter 21 Manipulating ObjeCtS

515

 Using Hide to Toggle a Button Bar
A two-segment button bar with a different Hide formula on each segment can create

an active label, a button that changes icon and functionality depending on the

corresponding field’s value. For example, consider the label of a Contact Company

ID field configured with a pop-up menu for assigning a company to a contact. If the

desired company record exists, the user can simply select it in the field. However, if the

company doesn’t exist yet, a button can be created to create a new record and link it

to the contact. Similarly, once a company has been assigned, it is customary to have a

button that allows the user to navigate to the related company record assigned to the

contact. A hide function can toggle which buttons are visible at a given time, but you still

have three objects to contend with: a field label, a navigation button, and a create new

button. Alternatively, all of these could be replaced with a single object: a two-segment

button bar used as an active label that toggles between one or the other segment to allow

creation of a new company (if one hasn’t been selected) or navigation to the related

record (if one has been selected).

The example illustrated in Figure 21-15 shows a two-segment button bar with no

border used as a field label for a Contact Company ID field. The first button segment has

a plus icon assigned and is configured to hide when the id field is not empty. This would

run a script that creates a new related company record and assigns its id to the current

contact record. The second segment has a navigation icon assigned and is configured

to hide when the id field is empty. This would run a script that navigates to the selected

Company record. Since the two hide formulas are binary opposites, only one label will

be visible at any given moment in Browse mode.

Figure 21-15. A two-segment bar as a field label that always hides one segment.

Chapter 21 Manipulating ObjeCtS

516

Caution a third segment could be added with no icon and no script as an
inactive label in Find mode. the hide formulas would check the window mode and
adjust the hide action accordingly.

Based on the preceding configuration, the label with a plus icon will only appear

when no company is selected, and the label with the navigation icon will only appear

when one is selected, both shown in Figure 21-16.

Tip use hide to embed text objects with developer notes with a formula that
always returns true (1) so they are only visible in layout mode.

 Conditional Formatting
Any layout object can be formatted using the tools in the Inspector pane. Fields can

be formatted as an object, and the content they contain can be styled. Conditional

formatting is a feature that overrides static formatting applied to objects or content using

conditions defined by custom formulas or a selection of one of twenty predetermined

content values. The custom rules are defined in the Conditional Formatting dialog,

shown in Figure 21-17. To open this dialog, select the target object(s), and choose the

Format ➤ Conditional menu, or choose the Conditional Formatting option from the

object’s contextual menu. The dialog includes the following controls:

 1. Condition List – List of the defined conditions that trigger

formatting. These will be evaluated in order from top to bottom.

The checkbox indicates an active condition.

Figure 21-16. The label button when a company is empty (top) or selected
(bottom)

Chapter 21 Manipulating ObjeCtS

517

 2. Condition – Define the criteria for the selected condition to

determine when formatting will be applied.

 3. Format – Select the formatting settings to apply when the selected

condition evaluates true.

 Condition Formula Options
A contextual formatting condition defines the circumstances under which a set of format

settings will be applied to an object. The condition can be a selection of a predefined

value-based condition or a custom formula-based condition.

Figure 21-17. The dialog used to define format overrides based on conditional
criteria

Chapter 21 Manipulating ObjeCtS

518

 Using Value-Based Conditions

A value-based condition determines when formatting should be applied by comparing

the value of the object to static criteria using a selected operator, as shown in Figure 21- 18.

In the Condition section of the Conditional Formatting dialog, select Value Is in the first

menu, and then select an operator from the second menu. Depending on your choice,

one or more text boxes will appear to the right into which static values can be inserted to

form the conditional criteria. For example, if the value of a Status field is equal to “Urgent”

or if a Total Price field is less than zero, the field text can be colored red and made bold.

 Using Formula-Based Conditions

A formula-based condition determines when formatting should be applied by evaluating

a custom formula and applying the styling if the result is true. In the Condition section

of the Conditional Formatting dialog, select Formula Is in the first menu, as shown in

Figure 21-19. Then, enter a formula directly into the field or click the Specify button to

open the Specify Calculation dialog (Chapter 12). The formula can use any combination

of built-in functions, custom functions, and fields to define the conditions under which

formatting will be applied.

Figure 21-18. The options for a value-driven condition

Chapter 21 Manipulating ObjeCtS

519

 Conditionally Formatting a Project Status Field
To illustrate a use of conditional formatting, consider an example of a Status field value

controlling the formatting of itself and other fields in a list, like the example shown in

Figure 21-20. By defining two conditions for each field, they are conditionally formatted

bold when the status is “Active” or gray when it is “Hold.” Records with a status of

“Pending” are left unchanged with default layout formatting. The result is three format

tiers that visually emphasize the urgency of records. Remember, these format changes

are imposed on top of the default formatting for the fields set through the Inspector pane.

Figure 21-19. The interface for a formula-driven condition

Figure 21-20. An example of conditionally formatted fields in a list based on
record status

Chapter 21 Manipulating ObjeCtS

520

In this example, the Project Status field is assigned a value list with three values:

Active, Pending, and Hold. Because this field will be conditionally formatted based on its

own value, it can be configured with two value-based conditions, shown in Figure 21-21.

When the value is equal to “Active,” it applies bold formatting, and when it equals “Hold,”

it colors the text a light gray.

The other two fields in the list view need to each be configured with formula-based

conditions because they need to look at another field value (the status field) to determine

their formatting. The format settings are the same, but the specific condition formula is

different, as shown for the Company Name field in Figure 21-22. Here the formula looks

for “Active” or “Hold” in the Project Status field and then applies formatting.

Figure 21-22. The formula-driven conditions for other fields in the list view

Figure 21-21. The defined status field uses value-based conditions

Chapter 21 Manipulating ObjeCtS

521

 Understanding Tab Order
A layout’s tab order defines the focus precedence when stepping from one object to

another as the user types the Tab or other field-exiting keys defined for objects (Chapter 19,

“Behavior”). This allows a user to “tab” through from field to field to object to field, etc.,

using only the keyboard. The default order is left to right and top to bottom through every

object that can accept focus. However, as objects are moved around on a layout or are

added at a later time, the tab order will need to be reset to avoid bouncing focus back and

forth haphazardly. When setting a custom order, objects that don’t require data entry, like

calculation fields or buttons, can be excluded.

 Changing the Tab Order
In Layout mode, select the Layout ➤ Set Tab Order menu to place the layout into a tab-

order editing mode, shown in Figure 21-23. Each object capable of receiving focus will

have an arrow icon attached to one side. These contain the object’s current tab order

number and are editable text boxes. Delete an object’s number to remove it from the tab

order. Click inside a blank arrow to automatically assign the next available number in the

tab order, and/or edit the number by typing over it. FileMaker enforces a unique number

sequence by automatically changing object’s value when its assigned number is typed

elsewhere.

Chapter 21 Manipulating ObjeCtS

522

 Using Functions of the Set Tab Order Dialog
The Set Tab Order dialog shown in Figure 21-24 opens automatically when a layout is

placed into tab-editing mode. This dialog is used to perform batch tab-order functions

and to exit back to regular Layout mode.

Figure 21-24. The dialog used to control batch tab-ordering functions

Figure 21-23. A window in tab-editing mode has customizable order arrow
fields

Chapter 21 Manipulating ObjeCtS

523

 1. Add Remaining – Add a default order to unassigned objects by

selecting an option in the menu: Objects, Fields only, and Buttons

only. Then click the Add button.

 2. Remove – Remove objects from the tab order by selecting an

option in the menu: All fields or All buttons. Then click the Remove

button.

 3. Clear All – Delete the tab order from every object on the layout,

providing a clean slate for reassignment.

Tip after moving any object on a layout, always return to browse mode, and click
through the fields to confirm a desirable tab order.

 Naming Objects
The object name property is an optional static text identifier that can be manually

assigned to a layout object or group of objects in layout mode. While these are somewhat

of a formality, they are helpful when viewing elements in the Objects pane and necessary

to allow certain functions and script steps to refer to non-field objects: portals, tab

control, slide control, and web viewers. For example, the GetLayoutObjectAttribute

and Get (ActiveLayoutObjectName) functions can only refer to an object by the name

property. Similarly, scripts steps like Go To Object, Refresh Portal, and Set Web Viewer

require an object name as a target reference.

An object name should not be confused with a field name as they are two separate

things. Where a field name is a universal definition of a specific data container common

to the field anywhere it is placed, an object name is a property unique to each layout

instance of an object, including fields. An instance of a field can be assigned an object

name different from its defined name, and each instance of the same field on any layout

can have a different object name.

To assign an object name, enter Layout mode and select an object. In the Position

group of the Position tab of the Inspector pane, click into the Name text area and type a

name for the object. Names are not case sensitive, and they must be unique.

Chapter 21 Manipulating ObjeCtS

524

Tip Objects pasted from other layouts with shared object names will be renamed
to ensure unique naming between all objects. always delete older objects prior to
pasting new, and/or review any important names after pasting.

 Summary
This chapter explored various options for manipulating layout objects, including

selecting, resizing, moving, arranging, aligning, hiding, conditionally formatting,

tabbing, and naming. In the next chapter, we will explore the themes and styles feature.

Chapter 21 Manipulating ObjeCtS

525
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_22

CHAPTER 22

Using Themes and Styles
Object formatting can be applied directly to objects using the functions of the Format

menu or in the Appearance tab of the Inspector pane. However, like many popular print

and design applications, FileMaker allows you to save object style definitions and group

them into a theme to create a more efficient design workflow. This makes it easier to

maintain consistency in similar objects across multiple layouts and allows formatting

changes to be instantly applied throughout. Using styles is also recommended as a

best practice for improved system performance. This chapter covers the basics of using

themes and styles, including

• Anatomizing styles

• Using themes

• Using styles

• Designing a custom theme

 Anatomizing Styles
A style is a collection of appearance settings for a specific object type that can be applied

to a new object with a single action. One or more styles can be defined for each object

type, creating a library of design options. The applicable settings vary based on the

type of object and only include properties pertaining to appearance rather than data,

position, and other non-format related properties. Styles can include settings for fill,

border, corner radius, font, size, style, indents, line height, and tabs.

In many ways, styles in FileMaker are similar to those found in word processing,

desktop publishing applications, and cascading style sheets (CSS) since they enable the

rapid application of formatting to new objects and facilitating global style updates to

existing objects. However, they are also different in a couple important ways. First, they are

a layout design mechanism used by developers to facilitate efficient layout design and are

https://doi.org/10.1007/978-1-4842-6680-9_22#DOI

526

not available to users when editing the text contents of a field in Browse mode. FileMaker

has no user accessible, content applicable styles. Users can apply individual formatting

changes to text inside of fields but there is no way to apply these in batches. Unlike CSS

and desktop publishing, styles in FileMaker are discretely non-hierarchical and cannot

inherit attributes from other styles. Further, because styles are applied to dynamic objects

in an interactive interface, they have more dimension than those found in text-based

applications. A style stores one group of every format setting for each possible object state

for every object part forming a complex internal hierarchy, as illustrated in Figure 22-1.

An object part is a component of an object (or the object itself) which can be

separately styled. A button is made up of two parts: a button and an icon. A portal is also

composed of two parts: a portal and a portal row. A button bar has four parts: a button

bar, divider, segment, and icon. Each part has one set of format settings for every possible

object state all defined as a single style.

An object state is the status of an object relative to a user. Most objects have at least

four states. A Normal state means the object is visible but not actively engaged. An Active

state indicates the object has active focus, e.g., a field in focus or the active segment of a

button bar. The other two common states indicate the cursor’s interaction with the object:

Hover and Pressed. Some objects have additional states available based on their nature,

e.g., fields have a Placeholder Text state, and a button bar segment has an Inactive state.

Figure 22-1. An illustration of the hierarchy of an object style

Chapter 22 Using themes and styles

527

Each part-state combination can be assigned a group of format settings different

from others. This enables a dynamic interface design where the overall appearance of

an object changes based on the user’s action. For example, when the user moves their

cursor over a button, its border, shading, or text color can change to indicate that it is an

active element that accepts a mouse click. Similarly, when the user clicks the button, it

can deepen in color to visually indicate the pushing activity. The combination of parts

and states creates an exponential number of format settings that can be defined for a

given object. For example, a button has eight different groups of format settings, one

for each of the four states for the two parts, as illustrated in Figure 22-2. Remember, this

illustrates a single style definition that can be saved and then applied to any number of

additional buttons with a single action.

Styles are created and modified through objects. Each object type starts with one

Default style. When an object’s format is modified, the changes are applied to the object

but do not affect the assigned style. Instead, they are held as unsaved object changes. To

properly use styles, these changes must be explicitly saved back to the assigned style or

saved as a new style. When saved to the existing style, the changes will be automatically

applied to all other objects assigned that style on the current layout, as illustrated in

Figure 22-3.

Figure 22-2. Visualizing the number of format setting groups available for a
button

Chapter 22 Using themes and styles

528

A theme is a collection of styles for every object type that can be applied to layouts.

FileMaker ships with dozens of built-in themes, some rather simple and others

showcasing advanced styling features. Any of these can be used without modification,

customized to meet your needs, or ignored in favor of a totally custom theme. A custom

theme with a larger and more practical selection of styles can be custom-tailored to your

design sensibilities and technical requirements.

Each layout can be assigned one theme, and all of its styles become available for

assignment to objects. Within a file, any number of different themes can be used.

However, to easily synchronize style changes across an entire solution, a single theme

used on every layout is recommended. In the same way that formatting changes made

to an object must be saved back to a style in order to apply to other objects on a layout,

changes to a style must be saved back to the layout’s theme in order to apply to objects

on other layouts. If not saved, the copy of the theme for that layout accumulates unsaved

style changes, making it an individualized collection, mismatched with styles on other

layouts using the same theme. To update the theme, any changes must be explicitly

saved back to the theme, as illustrated in Figure 22-4.

Caution since style and theme updates must be explicitly saved, get into the
habit of doing so immediately after making any format change to layout objects.

Figure 22-3. Format changes must be saved to the style to update other objects

Figure 22-4. Style changes must be saved to the theme to update other layouts

Chapter 22 Using themes and styles

529

 Using Themes
FileMaker automatically assigns a theme to every new layout based on a determination

of the best option for the new layout type following a few basic rules. The default layout

of a new database will always be assigned the Enlightened theme. A new Computer

layout will always be assigned the same theme as the layout one is viewing when starting

the layout creation process. New Touch Device layouts will be assigned the Enlightened

Touch theme unless the built-in theme of the layout one is viewing has a built-in touch

variant. For example, if viewing a layout assigned the Luminous theme, the new touch

layout will be assigned the Luminous Touch theme. However, if viewing a layout assigned

the Cosmos theme, the new touch layout will be assigned the Enlightened Touch theme

since there is no available touch theme for it. Any new Printer layouts will be assigned

the Enlightened Print theme. Once the new layout is created, you can assign another

theme to the layout.

Caution Filemaker does not look at custom theme names when determining the
best default assignment for a new layout. although you can create custom themes
with a suffix of Touch and Print, they will not be automatically selected in the
manner described previously.

 Changing a Layout’s Theme
After a layout is created, the theme assignment can be changed using the Change

Theme dialog, shown in Figure 22-5. This dialog can be opened while in Layout mode

by clicking the icon next to the Theme name listed in the second row of the toolbar and

selecting Change Theme in the Layout menu, or the contextual menu on the layout’s

background.

Chapter 22 Using themes and styles

530

This dialog categorizes a list of the available themes with the theme assigned to the

current layout selected. Nothing is directly editable in the dialog. You can only select a

theme or import themes for selection. When a different theme is selected and assigned,

every object on the layout will be affected, depending on the styles available in the new

theme compared to those assigned to objects from the old. If the new theme has a style

with the same name as the one assigned an object, the object will retain that assignment

and change the format settings for the style from the new theme. Style names are not

case sensitive, so any name match will work. An object assigned a style name not found

in the new theme will be assigned the Default style for the object’s type from the new

theme.

Most unsaved formatting changes will be lost during the theme transition. Some

unsaved text formatting changes will be retained when the theme is changed, e.g., text

size. To retain unsaved formatting changes, FileMaker has a rather clever two-stage undo

process after a theme is changed. Immediately after assigning a new theme to a layout,

Figure 22-5. The dialog used to select a theme assignment for the current layout

Chapter 22 Using themes and styles

531

the first use of the Undo command will retain the new theme assignment but restore

any object attributes that were lost due to being unsaved in the old theme. A second use

of Undo will fully restore the layout to the previous theme. This allows you to assign a

new theme on a trial basis, go back a half step, and have an opportunity either to save

previously unsaved changes into new or existing styles within the newly assigned theme

or to revert completely to the old theme.

Tip For the best experience, avoid changing themes after designing layout
elements. Choose a theme and use it consistently throughout your database,
constantly updating style changes.

 Managing Themes
Themes are managed from the Manage Themes dialog, shown in Figure 22-6, which can

be opened by selecting the File ➤ Manage ➤ Themes menu item. As you assign themes

to layouts, they are added to this dialog.

The dialog lists every theme that has been used on a layout within the database

file, even if it is no longer in use. These remain until explicitly deleted. Built-in theme

names will always be contained within square brackets. The Import button begins the

process of copy custom themes from another database file. The Rename button allows

the assignment of a new name to a custom theme. Built-in themes can’t be renamed, but

they can be duplicated to create a new custom named theme. Themes can be deleted as

long as they aren’t in use in the file.

Figure 22-6. The dialog used to manage themes

Chapter 22 Using themes and styles

532

 Using Styles
Each object added to a layout is automatically assigned the type-appropriate Default

style from the layout’s theme. Default styles can’t be renamed or deleted, but they can

be updated with modified settings, and new completely custom styles can be added. A

style can be assigned to a selected object by choosing it from the Object Style menu in the

object’s contextual menu or selecting a style from the Styles pane of the Inspector pane,

both shown in Figure 22-7.

 Editing an Object’s Style Settings
To modify an object’s formatting and save it to the style and theme, follow the steps

shown in Figure 22-8. First, select an object and then click on the Appearance tab of the

Inspector pane. Then follow these steps: select a part, select a state, edit any of the settings,

save to a style, and save to the layout’s theme.

Let’s walk through an example in more detail. Begin by selecting an object part from

the pop-up menu just below the Theme and Style. This automatically displays the object

type as the whole “part,” and for objects composed of a hierarchy of components, it

lists all available component parts. For example, when a portal is selected, the list will

include Portal and Portal: Row, since each of these can have different formatting. In the

example shown, a field formatted with a pop-up menu control style is selected, so there

are three parts available: Pop-up Menu, Pop-up Menu: Button, and Pop-up Menu: Icon.

Figure 22-7. Select a style from the object contextual menu (left) or the Inspector
(right)

Chapter 22 Using themes and styles

533

Next, choose an object state. The default selection will always be Normal

representing the object’s part at rest. When you select a different state, the object’s

appearance on the layout changes to preview how it will appear in that state based on

the current settings. Once you have selected the object part and state, begin modifying

settings for the object using the formatting controls in the Inspector. Make any changes

required to as many different settings for any state of any part until you have the object

behaving as desired.

Tip the eyedropper icons next to the object part and state menus allow format
settings to be copy and pasted to save time.

When finished modifying the object format, the menu icon adjacent to the Style will

turn red to indicate the presence of unsaved object changes. To consistently keep themes

and styles in sync between objects and layouts, it is important to save these changes back

to a style. Click the red icon to reveal the menu of action options. The Revert Changes to

Style option will eliminate all unsaved changes and restore the object to previously saved

settings. The Save as New Style option saves the object’s current format settings as a new

style which is then assigned to the object, leaving the previously assigned style unchanged.

Figure 22-8. The process for modifying an object’s formatting and saving to a style

Chapter 22 Using themes and styles

534

Finally, the Save Changes to Current Style option will update the object’s current style

based on all the unsaved format settings and then automatically update the format settings

of all objects on the layout that share the same style. The menu also includes options to

rename the current style and to delete it, reverting the object back to Default.

After style changes are saved, the menu icon next to the Theme will turn red to

indicate the presence of unsaved style changes. Click this to reveal a menu of similar

saving options. The Revert Changes to Theme option eliminates all unsaved changes

made to any style on the current layout, restoring every style for every object to those last

saved to the theme. The Save as New Theme option saves a copy of all styles into a new

theme. Finally, the Save Changes to Theme updates the current theme with all the style

updates made and updates the format settings of all objects on every layout that shares

the same theme.

 Designing a Custom Theme
Your personal approach to custom theme design will be influenced by many factors. Two

big ones are specific experience with FileMaker and a general knowledge of principles

of interface design. Those familiar with both can leverage that experience to focus on

innovation when designing their vision for an interface. Those with less experience will

need to draw inspiration from others or experiment more speculatively. Other factors

include the type of solution one plans to build, the target deployment platforms, a

client’s expectations, and budgetary constraints. There is no single approach that will

work for every developer in every situation, and it can be challenging to plan a theme

outside the context of a specific project. Without implying a one-size-fits-all approach,

there are some specific things to think about when getting started.

Consider separating your theme design planning from any specific project, past or

present, by creating an abstract design sandbox. This allows you to focus on creating

a cleanly designed, original theme without any distracting baggage clogging up the

file. You should still look back at as many different real-world examples as possible for

inspiration to ground your choices in actual projects without being bound to any one

of them. Select the best practices from many examples, compare, contrast, and then

reinvent them into something new.

Chapter 22 Using themes and styles

535

The sandbox file should contain one or two semi-realistic simple tables that can be

used in the process, e.g., Contacts and Company, or Invoices and Line Items. Use one

table as your design focus, and build a List and Form View layout for it, while the other

can serve as a related table for portal design. Make additional layouts for dialogs, reports,

iOS devices, etc. only as needed to define the styles necessary for a standard project.

Remember to keep the fields and layouts limited to a minimum for now since you aren’t

designing an actual solution, just a style prototype. Stay focused on that goal at first.

Begin adding objects and experimenting with different formatting options. Focus

on the unique formatting required on different layouts or when used for different

functions. For example, a field on a List view may not be editable and can have a

transparent fill and border, while one on a Form view that is editable may benefit from

a visual indication that it is a field and accepts input, perhaps with a different fill color.

Similarly, a separate style will be required for a text object used as a layout heading,

field label, informational tips, prompts, report page numbers, and more. Think about all

the different types of buttons you might use, such as a standard button, icon-only, text

with icon, and more. Some may have borders and fill, others maybe only an icon with a

transparent background, each requiring a separate style. Be sure to think about all the

different control types for fields; each will require one or more defined styles since there

is no general Field style category, only Edit Box, Pop-up Menu, Calendar, etc.

Since any format difference requires a separate style, fields and labels may need

several variations depending on the type of solution you will build. For example, you

might need one for each alignment (left, right, center) and another for each visual

appearance (clear, bordered, filled). Take time to think about different object states and

Window modes. Most styles will need to adapt to interactions, look good in appearance,

inform correctly in different modes, etc. Try to find a reasonable balance between these

objectives. On one hand, keep the list short to avoid being overwhelming. On the other

hand, provide an adequate number of options that create a practical palette of design

options to avoid any temptation to cheat and apply small formatting changes to objects

without updating or creating another style.

When naming styles, choose a balance between a clear description of purpose and a

concise easily readable string. Names must be unique across the entire theme regardless

of object type, so it’s a good idea to include the object type as a name prefix, e.g., avoid

a conflict between a button and field style named “Bordered Right” by naming them

“Button Bordered Right” and “Field Bordered Right.” The Default style can’t be renamed,

so keep this as your most commonly used style choice for each object type or ignore it.

Chapter 22 Using themes and styles

536

Once your style sandbox has enough styles that you feel adequately provides a solid

foundation, move the theme to a live file and begin using it for real development. As

you discover unanticipated style requirements, add or enhance the theme. If you do this

purposefully and without haste, the result should be a well-designed, practical theme

that can be imported and reused in other files.

Although this process may sound like a tedious overbearing chore, remember

that the benefits of a solid theme will ultimately provide a good return on the time

investment.

 Summary
This chapter introduced the basics of using themes and styles to improve the efficiency

of interface design. In the next chapter, we will explore customizing the application

menus to create a unique user experience.

Chapter 22 Using themes and styles

537
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_23

CHAPTER 23

Customizing Menus
A database can override FileMaker’s default menu bar with custom menus. The level of

customization can vary based on your needs, ranging from changes to intercept a few

functions to building a completely unique desktop experience. You can build one set of

custom menus that dynamically change based on various conditions or create multiple

sets that are installed contextually based on the layout. Customizing menus elevates a

solution from a mere database document to a custom application. This chapter explores

the basics of custom menus, covering the following topics:

• Getting started with custom menu basics

• Exploring the Manage Custom Menus dialog

• Creating a custom menu set

• Customizing menu items

• Installing a menu set

• Exploring the link between commands and menus

• Creating status-based custom menu

 Getting Started with Custom Menus Basics
The menu bar in FileMaker is similar to any modern application: a horizontal

strip running along the top of the screen (macOS) or the top of a database window

(Windows). A database always displays the active menu set, which defaults to a non-

modifiable set called [Standard FileMaker Menus]. Developers can create one or more

additional menu sets that can be installed in place of the standard set under a variety of

circumstances. Before delving into customization, review the objects and terminology of

menus, as overviewed in Figure 23-1.

https://doi.org/10.1007/978-1-4842-6680-9_23#DOI

538

A menu set is a named collection of menus that can be installed into the menu bar,

thereby becoming the active menu set. A menu contains a collection of various items of

different types, as illustrated in Figure 23-2.

Figure 23-1. The terminological overview of menu components

Figure 23-2. The hierarchical structure of a menu

Chapter 23 Customizing menus

539

Once defined, a custom menu can be added to one or more sets. Each menu can be

created as one of the following four types:

• A totally custom menu created and built from scratch.

• Any of three non-customizable standard FileMaker menus with all

their standard menu items: Format, Scripts, and Window.

• Any of eight standard FileMaker menus that can be duplicated and

customized as needed (with a few exceptions): FileMaker Pro, File,

Edit, View, Insert, Records, Request, and Help.

• A choice of about two dozen standard submenus that can be attached

to the menu set as a stand-alone menu or as a submenu attached to

a custom menu item. These include submenus such as Open Recent,

Import Records, Go to Layout, Manage, Sharing, Show Window, and

more.

A menu item is one of three types of objects added to a menu: command, separator,

or submenu.

A command item triggers a function, either a standard FileMaker command or a

custom script. Items can be completely customized with a unique name and script

function, or they can inherit some or all properties of a standard FileMaker command

(name, function, and key command).

A separator is a nonfunctional horizontal line used to separate groups of menu items

to create a more visually pleasing organization of items.

A submenu is an item that springs opens a secondary menu of options subsumed

under it. Submenus can cascade in a nested hierarchy, i.e., a menu item can open a

submenu with an item that opens another submenu, etc. Each submenu is first defined

as a separate menu which is then connected to the menu item that will open it.

Up to four standard menus can never be completely removed from the application.

Even with a completely empty custom menu set installed, these four menus will persist.

On a macOS computer, the Apple menu contains standard operating system functions

and is completely unaffected by the custom menu set and can’t be modified in any

way. A FileMaker Pro application menu and a Help menu are always at opposite sides

of the menu bar regardless of their presence in a custom menu set. The Tools menu is

visible when Advanced Tools are enabled in preferences (Chapter 2), and these can’t be

modified at all.

Chapter 23 Customizing menus

540

 Exploring the Manage Custom Menus Dialog
Custom menus are defined in the Manage Custom Menus dialog which can be opened by

selecting the Manage Custom Menus option available in three places: the File ➤ Manage

menu, the Tools ➤ Custom Menus menu, and the Menu Set pop-up menu in the General

tab of the Layout Setup dialog. The dialog has two tabs, as shown in Figure 23-3: Custom

Menu Sets and Custom Menus.

The Custom Menu Sets tab lists all the menu sets defined in the file. The default

standard set is included by default and can’t be removed. New sets can be created,

edited, duplicated, and deleted in this dialog.

The Custom Menus tab presents a list of every defined custom menu with similar

modification buttons. This list is empty until you begin creating menus. Any custom

menus defined are available for connection to a custom set.

There is a confusing intersection of features between these two dialogs that can be

intimidating and may discourage a novice developer. However, given the benefits of a

totally custom menu system for advanced databases, it is worth the effort to grasp how it

works, as illustrated in Figure 23-4. Although confusing at first, this presents an overview

of dialogs and functions that will be described later in this chapter.

Figure 23-3. The dialog used to define custom menus

Chapter 23 Customizing menus

541

From the Custom Menu Sets tab, when you create or edit a set, the Edit Custom Menu

Set dialog opens listing the menus that have been assigned to it. A menu there can be

selected and edited, opening the Edit Custom Menu dialog, or a new menu can be added

here by clicking the Add button which opens a Select Menu dialog. This dialog lists all

the standard FileMaker submenus and any custom menus that have been created. Select

one to add it to the menu set, or click the plus button to open the Create Custom Menu

dialog to create a new menu which will be added.

From the Custom Menus tab, clicking Create opens the Create Custom Menu dialog

which offers a choice of creating a new menu based on a standard menu or starting with

an empty one. Once that choice is made, the Edit Custom Menu dialog opens.

Figure 23-4. The somewhat confusing intersection of dialogs for custom menus

Chapter 23 Customizing menus

542

 Creating a Custom Menu Set
Start a new menu set by opening the Manage Custom Menus dialog and clicking on the

Custom Menu Sets tab. Click the Create button to open a new empty menu set in an Edit

Custom Menu Set dialog, shown in Figure 23-5. Enter a name for the menu set and an

optional developer comment.

 Adding Copies of Standard FileMaker Menus
Add a copy of each standard FileMaker menu into the Learn FileMaker Menus set. To

begin, click the Add button to open the Select Menu dialog, shown in Figure 23-6.

Figure 23-5. The dialog used to create a new custom menu set

Chapter 23 Customizing menus

543

This dialog lists all available menus that can be added to a custom set. Until

custom menus are created, this dialog will only list standard submenus. Hold down the

Command (macOS) or Windows (Windows) key to allow for multiple selections, and

then click on the three standard menus in the list: [Format], [Scripts], and [Window].

Once selected, click the Select button to add the three selected menus to the custom set.

To add the remaining standard menus to the set, create a copy of each menu by once

again clicking the Add button on the Edit Custom Menu Set dialog and then clicking the

+ button on the preceding Select Menu dialog. This will open the Create Custom Menu

dialog, shown in Figure 23-7.

Figure 23-6. The dialog used to select available standard and custom menus

Chapter 23 Customizing menus

544

This dialog offers the choice of two options for the menus we are adding: Start with

an empty menu creates a new unnamed menu with no menu items, and Start with a

standard FileMaker menu creates a copy of a selected standard FileMaker menu, which

can later be customized. For now, add each of the eight standard menus listed, one at

a time, by selecting them and clicking OK. Each copy will be created and opened in the

Edit Custom Menu dialog. For now, just click OK in that dialog to save the new menu

copy in its default state. Once finished, the Select Menu dialog should contain a list of all

eight copies of the standard menus, shown in Figure 23-8.

Figure 23-7. The Create Custom Menu dialog is used to create a new menu

Chapter 23 Customizing menus

545

These copies have now been added to the database as custom menus but still

need to be added to the custom menu set. Hold the Command (macOS) or Windows

(Windows) key, select all eight of the standard menu copies, and then click the Select

button. This will return to the Edit Custom Menu Set dialog, showing a list of all 11 menus

we have added, shown in Figure 23-9.

Figure 23-8. The dialog after creating a copy of every standard FileMaker menu

Chapter 23 Customizing menus

546

Menus can be drag-arranged in the list with two exceptions: the FileMaker Pro menu

will remain locked as the first in the list, and the Help menu will remain locked as the last

menu in the list. Once the menus are in the desired order, click OK to save the changes,

and close the Edit Custom Menu Set dialog. Then click OK to close the Manage Custom

Menus dialog. Now you can manually install the custom menu set for the current layout

by selecting it from the Tools ➤ Custom Menus menu (see more on installing later in this

chapter). When the custom menu set has a check mark next to its name in this menu, it

is installed. Since the custom set we created is simply a copy of the standard FileMaker

menu set, you should notice no differences between the current menus compared to the

standard FileMaker menus. Next, we can begin customizing the new menu set.

Figure 23-9. The new custom menu set

Chapter 23 Customizing menus

547

 Customizing Menu Items
Whether editing standard menu items or configuring new empty menu items, the

process of customizing a menu is essentially the same; open it in the Edit Custom Menu

dialog, then modify settings, edit menu items, or add new items.

 Exploring the Edit Custom Menu Dialog
Configuring menus and defining the items they contain are done from the Edit Custom

Menu dialog, shown in Figure 23-10. This dialog is opened automatically when creating

a new custom menu and can be opened from either tab of the Manage Custom Menus

dialog. From the Custom Menus tab, select a menu, and click the Edit button or double-

click directly on the menu. From the Custom Menu Sets tab, select a menu set and click

the Edit button or double-click directly on the menu set. Then select a menu and click

Edit button or double-click directly on the menu. The top of the dialog includes menu

configuration controls, while the bottom section includes a list of the menu’s items.

From here, items can be created, duplicated, deleted, or have their properties and

behavior customized.

Figure 23-10. The dialog used to configure a menu and define its items

Chapter 23 Customizing menus

548

 Configuring Menu Settings

The Menu Name accepts a custom name for the menu up to 100 characters. This name

is only visible within the programming interface and is not necessarily the title that will

appear in the menu bar. If following along, take a moment to rename the custom menus,

removing the “Copy” suffix that was added when we copied the standard menus into our

custom set.

The Comment field is used to store a description of the menu for developers, up to

30,000 characters.

The Menu Title controls the name of the menu when it appears in the menu bar. If

the menu is a copy of a standard FileMaker menu, a Default option will be available,

using the standard name. To override this or to enter a name for a custom menu, the

Override Title option includes a field and a Specify button allowing entry of a static name

or a formula to calculate a name. Custom menu names can be up to 30,000 characters

in length; however, due to the dimensional limitation of screens as well as the nature of

human perception, it is best to limit each menu name to a single word.

Control when a menu is installed in the menu bar using one of two sets of controls

that work in concert. The Install when setting allows a formula to control when a menu is

installed by returning a Boolean value, with a static default entry of true (1). The Include

in mode checkboxes apply that formula based on the Window mode. For example,

uncheck Find to hide the menu in Find mode.

 Exploring Menu Item Settings

The settings to the right of the menu items list will vary depending on the type of menu

item selected: command, submenu, and separator. Each of these have one common

setting: an Install when text area that works the same as described earlier for the menu,

allowing a formula to control the conditions under which the menu item will appear

within the menu. For separators, this is the only option available.

Defining Settings for Commands

The settings available for a Command menu item are shown in Figure 23-11.

Chapter 23 Customizing menus

549

The Based on existing command can be enabled if the item’s function will be an

existing FileMaker command (with or without overrides). A Specify FileMaker Command

dialog will open the first time the checkbox is enabled but can be opened later using the

Specify button. This dialog presents a list of all available commands that can be selected

to assign it to the menu item. For information about the benefits of basing an item on

a command even when the menu item will perform a custom script, see “Exploring

the Link Between Commands and Menus” section later in this chapter. The three

checkboxes below this provide override controls for default behavior when based on a

menu or custom settings when not.

First, enable the Item Name checkbox to override the default command name or to

enter a name for a custom item. Names should be short action-oriented statements that

clearly describe the function performed. For example, “Print Sales Report” and “Send

Proposal Request” may be good names, while “Send to Accounting” doesn’t make clear

what is being sent, and “Get Approval” doesn’t make clear the action being taken.

The Keyboard shortcut checkbox will override a default keyboard shortcut for

a standard menu item or establish one for a custom item. A Specify Shortcut dialog

appears the first time this box is checked or when the adjacent Specify button is clicked.

While this dialog is open, any key combination typed will be captured as the shortcut

for the menu item. Be sure to avoid any keyboard combinations that are reserved for

operating system functions or standard FileMaker menus that will remain in use.

Finally, the Action checkbox allows a custom script or single script step to be

assigned as the menu item’s function.

Figure 23-11. The settings for defining a command menu item

Chapter 23 Customizing menus

550

Defining Settings for Submenus

The settings available for a Submenu item are shown in Figure 23-12. The Specify button

opens a Select Menu dialog allowing the assignment of any standard submenu or custom

menu as the submenu for the menu item being edited. The Item Name checkbox and

field allow entry of a custom name for the submenu, overriding the name of the selected

menu above.

 Modifying a Standard Menu Item
Let’s work through a few examples of customizing standard menu items: renaming,

overriding functionality, and conditional removal. This section assumes a custom menu

set was created with copies of all the standard FileMaker menus, as previously described.

 Renaming a Menu Item

A standard menu item is named generically to be descriptive of function without

specifying context. Regardless of the layout a user is viewing, a menu item is always

named New Record, Delete Record, or Duplicate Record. This can become confusing

when users are moving between different layouts, especially with multiple windows

open. When they select New Record, it may result in a record created in a different table

than the one they intended. With custom menus, the name can be set with a formula

Figure 23-12. The settings for defining a submenu

Chapter 23 Customizing menus

551

that looks at the current layout context to include the table name in the menu item, e.g.,

“New Contact Record” or “New Project Record.”

To begin, Open the Manage Custom Menus dialog and click on the Custom Menus

tab. Double-click on the Records menu to open the Edit Custom Menu dialog. Select

the New Record menu item in the list and enable the Item Name checkbox to override

the default name. Click Specify to open the Specify Calculation dialog if it didn’t

automatically open. Then enter a formula for the name. The exact formula may vary

depending on your tables. If they are named clearly like the examples we have used

previously – Contact, Company, and Project – then the following formula should produce

the conditional menu items shown in Figure 23-13. This process can be repeated for

many items in the Records menu, although having the first item in the menu specify

the table provides a good contextual orientation for the remaining items and may be

sufficient.

"New " & Get (LayoutTableName) & " Record"

 Overriding a Menu Item Function

A custom script can be attached to a menu item to override to the function of a standard

menu or provide a function for a custom item. For the former, consider the fact that the

Delete Record and Delete All Record functions both present rather vague, generic dialog

messages. Both dialogs ask the user to confirm the deletion process, but neither makes

it clear exactly what will be deleted. The Delete Record process asks “Permanently delete

this ENTIRE record?” with the assumption that the user is explicitly aware of which

record they are about to delete. However, in a list view or when using multiple windows,

it is possible that the user might become disoriented and accidentally delete the wrong

record. Renaming the menu item as discussed in the last section can avoid this, but using

a custom script with a more articulate dialog provides additional protection. A script

using a Show Custom Dialog step (Chapter 25) can present a more specific confirmation

prompt. For example, a message can include the table name and the contents of a field

Figure 23-13. Examples of a conditionally named New Record menu

Chapter 23 Customizing menus

552

representing the record (e.g., a contact or project name), and/or a notification of related

material will also be automatically deleted. Once you have established the desired

message formula, create a script that performs the steps to ask the user, evaluate their

response, and take the appropriate action or not. The following example script presents

a dialog with whatever message formula you insert. The button the user clicks is placed

into a $button variable which is used in an If statement to Exit Script if they click Cancel.

If they didn’t cancel, the script continues, performing a Delete Record/Request step

without a default dialog.

Show Custom Dialog ["Confirm Deletion Request" ; "<message formula>"]

Set Variable [$button ; Get (LastMessageChoice)]

If [$button = 1] // Cancel Button

 Exit Script

End If

Delete Record/Request [with dialog:Off]

Once written and tested, override the Delete Record menu item’s Action to point to

the custom script. The default message should now be replaced with the custom script

dialog, as shown in Figure 23-14.

 Removing a Menu Item Conditionally

A menu can be conditionally hidden under specific conditions. For example, the Delete

All Records menu item is useful for developers and knowledgeable users but potentially

dangerous for certain other users. There is a real possibility that a user thinks they are

deleting a small found set of records and inadvertently delete every record in the table.

To avoid this, hide the menu by modifying the formula controlling when that item is

installed. Click the Specify button next to the Install when setting for the menu item.

Then enter a formula that evaluates to 1 (true) for any users, privilege sets, or extended

Figure 23-14. The default delete dialog (left) and a custom example (right)

Chapter 23 Customizing menus

553

privilege who are allowed to use the function and 0 (false) for everyone else. For

example, the following formula will install the menu item only for developer users with

full access privileges to the file (Chapter 30):

Case (

 Get (AcccountPrivilegeSetName) = "[Full Access]" ; 1 ;

 0

)

Hiding custom menus is a good idea when conditions would make a menu’s function

cause an error or be otherwise confusing for the user. For example, certain custom items

shouldn’t be accessible in Find mode, when viewing an empty found set or when a card-

style window is open (Chapter 25).

 Adding a Custom Menu
Adding a completely new menu can provide users with convenient access to custom

scripts without cluttering a layout with dozens of buttons or clogging up standard menus

with dozens of items.

A database with dozens of scripts that find groups of records in different tables by

status or other criteria could be placed under the Records menu. Similarly, report scripts

for invoices and other tables could be placed under the File menu near the Print item.

This would integrate custom features into existing menus and may be desirable in these

or other similar cases. However, when adding numerous such items, this adds clutter to

already crowded menus and requires a user to know all the various locations in which

to access these custom scripts. Instead, consider making custom menu items more

conveniently located.

The Scripts menu (Chapter 24) can be used for this purpose since it allows scripts

to be selectively included in a hierarchical folder-based arrangement of submenus.

However, sometimes, it is beneficial or desirable to create one or more fully custom

menus to provide a more professionally branded interface. This is especially important

when the menu needs any kind of programmatic variability, since the default Scripts

menu items can’t dynamically change names, have custom key commands, or be

conditionally hidden.

Chapter 23 Customizing menus

554

Adding one or more completely new menus solves these problems and satisfies

a truly custom application experience. The setup will vary based on the number and

variety of functions requiring a presence in the menu. Using the previous example, when

faced with a large quantity of search and report scripts, a developer may add two menus:

Searches and Reports. However, if the number of items in each is sparse or these are two

among dozens of required custom menus, one might consider adding a single menu

called Actions and having each category be a submenu. Alternatively, a single custom

menu with a client’s name is a great way to adding a personalized collection of custom

actions.

 Creating an Actions Menu

To create a new Actions menu, open the Manage Custom Menus dialog, click on the

Custom Menus tab, and click the Create button. Then follow these steps:

 1. Select Start with an empty menu and click OK.

 2. In the Edit Custom Menu dialog, enter a custom name (e.g.,

“Actions”), an override title of the same name, and only include

the menu in Browse mode. Then click OK.

 3. Click the Custom Menu Sets tab of the Manage Custom Menus

dialog.

 4. Select the Learn FileMaker menu set and click Edit.

 5. In the Edit Custom Menu Set dialog, click Add.

 6. In the Select Menu dialog that opens, scroll to the bottom and

select the Actions menu, and then click the Select button.

 7. In the Edit Custom Menu Set dialog, drag the Actions menu to the

desired location within the list of menus.

 8. Click OK to close the Edit Custom Menu Set dialog and then OK to

close the Manage Custom Menus dialog. If the custom menu set is

active, the menu bar should have a new Actions menu, as shown

in Figure 23-15.

Chapter 23 Customizing menus

555

 Adding Items to the Actions Menu

With the new Actions menu added to the menu set, add menu items as needed.

Adding a Command Menu Item

To add a command item, return to the Custom Menus tab of the Manage Custom Menus

dialog, and open the custom Actions menu. Then click the Create button to add a new

menu item. To get started with a simple example, make an “About This Menu” item that

displays a dialog by following these steps:

 1. Enable the Item Name checkbox and enter a name of “About This

Menu” into the adjacent text area.

 2. Enable the Action checkbox.

 3. In the Specify Script Step dialog, select the Show Custom Dialog

step (Chapter 25), and configure it to display a message describing

the menu’s purpose and function.

 4. Click OK to save back through all the dialogs.

Now the Actions menu should have a single menu item that displays a dialog

describing its function, as shown in Figure 23-16.

Figure 23-16. The custom menu item and resulting dialog

Figure 23-15. The new menu appearing in the menu bar

Chapter 23 Customizing menus

556

Adding a Submenu Item

As menus become too crowded, organize groups of items. Using separators can help

divide a long list of items into separate groups. For more complex situations, use

submenus to organize items into subcategories and make it easier for users to locate

a specific function. For example, a Searches submenu can list all the available search

functions, while a Reports submenu can list all the reports, moving both of these groups

of items from the main list of an Actions menu.

Tip Consider using the “rule of seven” to determine when to divide menu items
into groups using separators or submenus. as a group approaches or exceeds
seven items, consider separating them from other groups.

First, create a new custom menu with some items. This will not be added directly to

the menu set as a menu but will be attached as a submenu to an item of another menu.

For example, create new custom menu called Reports Submenu, and add one menu item

placeholder for each report script you envision creating, e.g., Revenue This Year to Date,

Revenue This Year, and Revenue Last Year. For now, these won’t actually run a script but

will be used to illustrate setting up a submenu. Once they are created, return to editing

the Actions menu and create a new item named “Reports” and configure it as a submenu

pointing to the Reports Submenu, as shown in Figure 23-17.

Chapter 23 Customizing menus

557

After saving your way back out of the dialogs, the Actions menu should now display a

Reports submenu, as shown in Figure 23-18.

Figure 23-18. An example of the submenu as it appears to users

Figure 23-17. An example of a submenu attached to an item in the Actions
menu

Chapter 23 Customizing menus

558

 Installing a Menu Set
There are several different ways to install a custom menu set. To assign a set as the

default for the entire file, choose it in the pop-up menu at the bottom of the Manage

Custom Menus dialog. Doing that will assign the set to every layout set to use the file’s

default set (Chapter 18, “Exploring the Layout Setup Dialog”). When a solution has

multiple custom menu sets defined, these can be activated for specific layouts in the

Layout Setup dialog. Scripts can also use the Install Menu Set step to activate a set. Also,

users with full access privileges (Chapter 30) can manually change the menu set at any

time using the Tools ➤ Custom Menus submenu.

 Exploring the Link Between Commands and Menus
Certain elements built into the FileMaker Pro application interface provide user access

to standard commands but offer no direct customization options for developers. For

example, the New Record command is present in numerous locations: the toolbar icons,

record contextual menu items, and some controls embedded into Table view. While

the menu can be customized, the toolbar and other contextual menus aren’t directly

modifiable. However, FileMaker handles this by linking those elements to commands

through the active menu set, as illustrated in Figure 23-19. These static interface elements

pull their name, tooltip, and enabled status from a command-linked menu item and route

a click through the menu item to the command. This setup allows indirect customization

of these standard interface elements when using custom menus.

Chapter 23 Customizing menus

559

A good example of this is the New Record command, which is present in the Records

menu and in all of the other locations mentioned. The core New Record command is

enabled or disabled by a user’s account privileges (Chapter 30), although these can be

bypassed by a custom script running with full privileges (Chapter 24). The default menu

item is linked to the command and is automatically enabled or disabled depending

on the user’s credentials. Other access points like the toolbar icon look to the menu for

an item based on the New Record command to determine name, tooltip, and enabled

status. A click on any of those interface elements is the equivalent of selecting the menu

item directly. So, a command-linked menu item acts as the hub for the command, and

this makes it possible to replace the default menu set with a custom one and still have

control over these non-customizable interface elements. If the menu item’s name is

customized, the toolbar icon for that command is updated, as shown in Figure 23-20. If

a custom script is assigned to the menu item, the toolbar icon runs that instead of the

default command. Unlike these elements, buttons on a layout aren’t linked through the

command-menu structure and can only run commands through scripts.

Figure 23-19. The integration of a command with interface elements

Chapter 23 Customizing menus

560

When a standard New Record command-linked menu item is removed from the

active menu set, these other interface elements will be disabled. A new menu item

can be named and run a script action for creating records but will not automatically

represent the command until it is linked to the command using the Based on existing

command settings in the Edit Custom Menu dialog, as shown in Figure 23-21.

A menu item’s relationship to a standard command can take one of three forms.

If the item is linked to a standard command only, without a name or script override, it

will appear and perform the normal functionality associated with the command and

influence other interface elements normally. If the item is not linked to a standard

command and assigned a custom name and a script, it will perform the custom script

as its function but any other command-related interface elements will be disabled or

invisible. When these two are combined and an item is linked to a standard command

with a name or script override, it will appear with a custom name, perform the assigned

custom script, continue to be automatically enabled based on permissions, and extend

these capabilities to standard interface elements.

Figure 23-20. The modified icon (left) and contextual menu (right)

Figure 23-21. A menu item’s command link allows permission enabling and
customization of standard interface elements

Chapter 23 Customizing menus

561

 Creating a Status-Based Custom Menu
Some standard menu items are status based, meaning they indicate the status of some

mode of operation. The View menu has several examples, as shown in Figure 23-22.

Some status-based menus are a single menu item that toggles an on-off setting. For

example, the Status Toolbar menu item displays a check mark when the toolbar is visible

and no check mark when it is not visible. The single menu item can be selected to toggle

this choice back and forth. Other examples combine groups of menus to allow multiple

choice status menus, where there are more than two options. One of the four available

modes at the top of the View menu will always have a check mark next to it indicating it

as the active window mode. Similarly, one of the three View as options will be marked

indicating the current Content view selected for the active window.

When menu items are based on commands, they will continue to function this way.

Beyond that, there is no built-in option to make one or a set of custom menu items

status based, and there is no way to include a check mark in the proper position to

Figure 23-22. Status-based menus are denoted with a check mark when
active

Chapter 23 Customizing menus

562

simulate such a state. However, since an item’s name can be the result of a calculation,

it is possible to have a single menu item’s name changed to indicate a current state and

create a similar toggle effect each time a user selects the item. For example, a menu item

can be configured to alternate between two names, e.g., “Enable Tooltips” and “Disable

Tooltips.” This can be accomplished by creating a global variable that stores a current

status value and use that to generate the menu item’s name. The custom script assigned

as the menu’s action looks at the variable’s current value to determine how to toggle to

the opposite state, which then changes the menu item’s name.

To illustrate this method, let’s create a custom menu item under the Actions menu

that will have a Name formula shown in the following example. First, it uses a Let

statement to initialize a $$Mode_Tooltips variable if it doesn’t yet contain a value. This

is done with a Case statement that checks the variable for an empty string and sets it

to 0 or uses the current value if one is found. Then, it uses another Case statement to

create a menu name that reflects the action that will be taken depending on the current

value. If the variable has a value of 0 indicating tooltips are off, the name will be “Enable

Tooltips”; if the global variable has a value of 1 indicating tooltips are on, its name will be

“Disable Tooltips.”

Let ([

 $$Mode_Tooltips = Case ($$Mode_Tooltips = "" ; 0 ; $$Mode_Tooltips)

] ;

 Case ($$Mode_Tooltips = 1 ; "Disable Tooltips" ; "Enable Tooltips")

)

The menu item’s Action should be configured to run a script that uses the Set

Variable script step (Chapter 25, “Setting Variables”) to toggle the value in the variable

using the following Case statement. To refresh the menu name for the current layout, the

script will also need to perform the Install Menu Set step to reset the custom set.

Case ($$Mode_Tooltips = 1 ; 0 ; 1)

Once the menu is in place, every layout object that will be assigned a tooltip in the

Position tab of the Inspector pane can use the following formula to determine if a tooltip

should be displayed:

Case ($$Mode_Tooltips = 1 ; "<tooltip text>" ; "")

Chapter 23 Customizing menus

563

Now, when the user selects Enable Tooltips, the global variable is assigned a value

of 1, tooltips begin appearing when the cursor hovers on objects, and the custom menu

item’s name changes to Disable Tooltips which will hide the appearance of tooltips.

 Summary
This chapter introduced the options for creating custom menus for total control of the

application interface. In the next chapters, we begin creating scripts that can be assigned

to menus, buttons, and event triggers to automatically perform a sequence of actions.

Chapter 23 Customizing menus

PART V

Automating Tasks
with Scripts

Scripts that automate repetitive actions can be assigned to buttons, menus, and interface

events to improve data entry efficiency and reduce human errors. These chapters

explore the basics of creating and debugging scripts:

 24. Introduction to Scripting

 25. Common Scripting Tasks

 26. Debugging Scripts

 27. Using Script Triggers

 28. Extending Features with Plug-ins

567
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_24

CHAPTER 24

Introduction to Scripting
A script, sometimes called a macro, is a developer-defined action sequence stored for

later execution. Once created, scripts can be connected to interface objects (Chapter 20),

menu items (Chapter 23), and interface event triggers (Chapter 27). They can also be

run by other scripts, external scripting languages like AppleScript (macOS) or ActiveX

(Windows). There are options to run a script with a URL (Chapter 20), from JavaScript

code in a web viewer’s HTML (Chapter 20) or based on a FileMaker Server schedule.

By performing complex tasks with a click, scripts can save users an enormous amount

of time while improving consistency, reducing errors, and increasing productivity.

Scripting transforms a database from a fancy spreadsheet to a fully functional custom

application. It liberates users from having to manually perform mundane data entry

chores and allows them to focus more attention on creative endeavors and customer

engagement. FileMaker comes with numerous ready to configure script steps that can

navigate, search, sort, print, export, communicate, and more (Chapter 25). Plug-ins can

add new functions to the library of available steps (Chapter 28). This chapter introduces

scripting, covering the following topics:

• Introducing the script workspace

• Writing scripts

• Performing other scripts

• Emphasizing the importance of context

• Managing script errors

https://doi.org/10.1007/978-1-4842-6680-9_24#DOI

568

 Introducing the Script Workspace
Scripts are viewed, written, and managed within the Script Workspace window, shown in

Figure 24-1. This window can be opened by selecting the File ➤ Manage ➤ Scripts menu

item or the Scripts ➤ Script Workspace menu item. The workspace is divided into four

sections: toolbar, scripts pane, script content area, and steps pane.

Caution The workspace in a new database will hide elements until the first script
is created. Click the + button to get started.

 Exploring the Workspace Toolbar
The toolbar of the Script Workspace window, shown in Figure 24-2, is a static toolbar of

controls focused on script design and troubleshooting.

Figure 24-1. The workspace for defining scripts

Figure 24-2. The workspace toolbar contains several static buttons

ChapTer 24 InTroduCTIon To SCrIpTIng

569

The following function buttons are available in the toolbar:

 1. Create Script – Creates a new script, open for editing

 2. Run Script – Runs the selected script directly from the Script

Workspace using the context of the frontmost window behind it

 3. Script Debugger – Opens the Script Debugger window and runs the

selected script (Chapter 26)

 4. Compatibility – Diminishes steps in the Steps pane and the

content area based on compatibility with the selected device and

software platforms

 5. Scripts Pane – Toggles the visibility of the Scripts pane on the left

side of the window

 6. Steps Pane – Toggle the visibility of the Steps pane on the right side

of the window

 Exploring the Scripts Pane
The scripts pane on the left side of the window displays a list of every script defined in

the file. The pane’s visibility can be toggled by clicking the toolbar button. Scripts are

displayed with an icon and name, as shown in Figure 24-3. In the pane, each script is an

interactive region that hides an assortment of functionality.

Figure 24-3. The scripts pane on the left side of the workspace window

ChapTer 24 InTroduCTIon To SCrIpTIng

570

• A single click on a script name will select and open it in the content

area where it can be viewed and edited. When unmodified, it

automatically closes when another is selected.

• A second single click on a selected script will cause the name to

become editable directly in the list. Edit the name and type Enter.

• A double-click will open the script in a locked tab where it remains

open until explicitly closed.

• A right-click opens a contextual menu containing functions also

present in the Scripts menu.

A script folder can be used to organize groups of scripts. Click the middle + icon at

the top of the script pane to create a new folder, and then enter a name and type Enter.

Once created, scripts can be dragged from the list into a folder. Folders can be dragged

into other folders to create a nested hierarchy which can be collapsed or expanded to

hide or show each folder’s content. Similar to scripts, two successive single clicks on a

folder make its name editable.

A separator line can be inserted anywhere in the list to create visual space between

long lists of folders or scripts. Just click the line icon on the right at the top of the pane.

The checkbox makes a script, folder, or separator appear in the Scripts menu visible

by default when viewing regular windows. If the checkbox is not visible, click the first

icon at the top. Folders included in the menu form submenus, and scripts become menu

items that can be selected by users to run a script.

Scripts, separators, and folders in the list can be deleted, duplicated, and more using

the commands in the contextual menu and in the Scripts menu visible only when the

Script Workspace is open.

 Exploring the Script Content Area
The script content area at the center of the Script Workspace window displays open

scripts and is used to view or edit the action steps that define the current selection. As

shown in Figure 24-4, scripts are automatically opened into tabs, making it easy to jump

back and forth between multiple open scripts. They can also be moved into separate

windows using the contextual menu on the tabs or a function in the Scripts menu.

ChapTer 24 InTroduCTIon To SCrIpTIng

571

 1. Script Tabs – Hover the cursor over a tab to reveal and click a close

icon. Right-click to open a contextual menu of functions. Drag

horizontally to rearrange the tabs.

 2. Script Steps – A numbered list of interactive lines, each

representing one step in the scripted process.

 3. Unsaved Change Indicator – This asterisk icon indicates the script

has been modified since opening.

 4. Preview Mode Indicator – Indicates the script is open in a

temporary state with no changes.

 Steps Pane
The steps pane on the right of the Script Workspace window contains a list of every

available action step, as shown in Figure 24-5. This include built-in steps and steps

from installed plug-ins. The pane’s visibility requires a selected script and can also be

toggled open or closed by clicking the toolbar button. The list can be toggled between an

alphabetic or categorical arrangement using the icon at the top shown in the figure.

Figure 24-4. The script content area of the workspace window

ChapTer 24 InTroduCTIon To SCrIpTIng

572

A script step can be inserted into the active open script by double-clicking on it or

by right-clicking and choosing Insert Into Script from the contextual menu. That menu

includes options to add or remove the step from the Favorites category (only available

when steps are viewed in a categorical hierarchy) or to open the step in the online help

guide. The description pane at the bottom provides a brief description of the selected

step, and the help icon button opens the online documentation.

 Menu Changes (Script Workspace)
The menu bar is radically transformed when working in the Script Workspace. Any active

menu set (standard or custom) is replaced by a set specifically designed for working

with scripts. Many inapplicable standard menus are removed completely, while the Edit,

View, and Scripts menus are radically transformed.

Figure 24-5. The pane of steps can be alphabetical (left) or hierarchical (right)

ChapTer 24 InTroduCTIon To SCrIpTIng

573

 Edit Menu

The Edit menu of the workspace contains a modified set of functions, as shown in

Figure 24-6. Below standard functions such as Cut, Copy, and Paste, new items have been

added for Duplicate Step and a toggling item to Disable/Enable selected script steps.

 View Menu

The View menu of the workspace contains a completely unique set of functions, as

shown in Figure 24-7. This menu provides basic workspace functions for toggling pane

visibility, managing tabs, and other functions, including many accessible through

various buttons and contextual menus within the workspace.

Figure 24-6. The Edit menu when working in the Script Workspace

ChapTer 24 InTroduCTIon To SCrIpTIng

574

 Scripts Menu

The Scripts menu when working in the Script Workspace is completely transformed, as

shown in Figure 24-8. It contains functions for creating, importing, opening, renaming,

duplicating, deleting, saving, reverting, and running scripts, many also available in the

toolbar or contextual menus. One notable function, Grant/Revoke Full Access Privileges,

configures a selected script to run with full access privileges even when the current user

does not have full access (Chapter 30). When a script has been granted full access, a

small icon of a person appears next to its name in the list.

Figure 24-7. The View menu when working in the Script Workspace

ChapTer 24 InTroduCTIon To SCrIpTIng

575

Caution The Scripts menu is macoS only. In Windows, these functions can be
found in a modified File and edit menus.

 Writing Scripts
To create a script, click the + button in the toolbar or select the Scripts ➤ New Script

menu item. The new script will appear in the scripts pane and open as a tab with editing

focus on the label awaiting entry of a custom name. Enter a name and type Enter or click

away from the tab to commit it.

Figure 24-8. The Scripts menu when working in the Script Workspace

ChapTer 24 InTroduCTIon To SCrIpTIng

576

 Exploring Script Step Basics
A script step is a command instruction inserted into a script workflow that defines a

specific action executed as part of an overall sequence of events. Although steps can be

inserted into the workflow by typing, they are really object-based not text-based. Once

inserted, steps can be selected, dragged, duplicated, copied, pasted, or deleted but are

no longer editable by typing as found in a command-line based scripting environments.

Some have active regions that allow typing a formula or selecting menu options directly

in line. However, most configurable options are modified by clicking to open a pane or

dialog.

 Inserting Script Steps

Steps can be added to a script using auto-complete while typing directly or using the

steps pane.

Inserting Steps Using Auto-Complete

A new script will have one blank row. Click into the row and begin typing a step name

to activate an auto-complete suggestion interface. A list of available steps appears and

is filtered as you type, as shown in Figure 24-9. To select a step, either click directly on a

step, use the keyboard arrows, or keep typing until the desired step is at the top of the list.

Once a step is selected, insert it by typing Enter or double-clicking on it. Once inserted,

the step transforms from editable text into an interactive object.

ChapTer 24 InTroduCTIon To SCrIpTIng

577

Inserting Steps from the Steps Pane

To insert using the Steps pane, locate the desired step in the list by scrolling, using the

arrow keys, typing a few characters of the desired step or using the Search field to filter

the list. Once selected, insert the step into the script workflow by typing the Enter key,

double-clicking on it or right-clicking on it and selecting the Insert into Script function

from the contextual menu.

 Configuring Script Steps

Script steps can be divided into two fundamental categories. Steps without configurable

options will perform a predetermined function without any variability. These appear

in the script workflow by name only, without any interactive options, and include

commands like a New Record/Request, Go to Next Field, Show All Records, Beep, and

more. They can be dragged around to position them in the workflow but offer no

Figure 24-9. The suggestions available for auto-complete

ChapTer 24 InTroduCTIon To SCrIpTIng

578

functional variation. By contrast, steps with configurable options appear in the workflow

with square brackets after the command name. These may contain default settings,

value labels, or nothing between the bracket, as shown in the following examples. Once

configured, they will display all or some of the selected settings. Configuring step options

varies by step, but can be roughly divided into two groups: those configurable directly

inline and those configured with an options dialog. Some steps combine both of these.

Allow User Abort [Off]

Enter Browse Mode [Pause: Off]

Set Variable []

Perform Script [<unknown>]

Configuring Settings Directly Inline

A step with inline direct editing of options has one or more interface components that

are accessible and editable directly between the bracketed area of the step statement

without opening a separate panel or window. There are three different types of inline

editing control you will encounter: formula text, toggle buttons, and menus.

Inline Editing with Formula Text

Many steps allow inline formula editing where a formula can be typed directly into the

script step. These include steps like If, Exit Loop If, and Exit Script. When inline editing is

available, a red box appears between the square brackets. With the cursor over this, the

box deepens in color and gains a red outline. Click it to reveal an expanded formula text

area, as shown in Figure 24-10.

ChapTer 24 InTroduCTIon To SCrIpTIng

579

Note Inline formula editing is a convenience for entering a short formula but
is impractical for longer formulas. Click the fx icon to open a full-sized Specify
Calculation dialog.

The inline formula editor is fully featured like the Specify Calculation dialog

(Chapter 12, “Exploring the Specify Calculation Dialog”). It includes auto-complete

suggestions and allows for multiline formula entry and editing, both shown in Figure 24-11.

After typing a formula, compile and save by clicking outside of the formula area or by

typing either the Return or Enter key. If a syntax error is detected in the formula, the

full Specify Calculation dialog will automatically open with an error notification dialog,

forcing you to remedy the problem before saving.

Figure 24-10. A formula step at rest (top), with hover (middle), and with active
focus (bottom)

ChapTer 24 InTroduCTIon To SCrIpTIng

580

Tip To insert a carriage return in an inline formula, type return while holding
down the option key (macoS) or alt key (Windows).

Inline Editing with a Toggle Button

A step with an inline editable toggle button allows a choice between two possible options.

These can be identified by a labeled value between the brackets that is logically binary

and the appearance of a blue border outlining the current value when the cursor hovers

over it, as shown in Figure 24-12. To toggle the current value, click it or press the space

bar with the step selected.

Figure 24-12. A toggle button at rest (top), with hover (middle), and after click
(bottom)

Figure 24-11. An inline multiline formula showing the auto-complete interface

ChapTer 24 InTroduCTIon To SCrIpTIng

581

Tip When available in combination with a dialog or popover of configuration
options, the toggle setting is generally only accessible inline and not included on a
dialog with other options.

Inline Editing with Pop-up Menu

A step with an inline pop-up menu allows a choice between several possible options.

These can be identified by a value between the square brackets and the appearance of

a blue border outlining the current value when the cursor hovers over it. Click on it to

reveal a pop-up menu of other values. Each of these states is shown in Figure 24-13.

Configuring Steps with an Options Dialog

A step uses a dialog or panel when the available configuration options are too numerous

or in some way not conducive to inline editing. While many are unique to the step, some

open standard dialogs, e.g., Specify Field and Specify Calculation. Some dialogs present

a few simple options, while others summarize settings alongside buttons that open

additional dialogs. Some open an independent dialog window, others open a popover

panel that remains connected to the step. The method of opening an options interface

also varies between steps. A step that has a configuration dialog will display a gear icon

to the right of its statement when the cursor hovers over it. Clicking this icon will open

the options interface, like the Set Variable dialog shown in Figure 24-14.

Figure 24-13. A pop-up menu at rest (top), with hover (middle), and with active
focus (bottom)

ChapTer 24 InTroduCTIon To SCrIpTIng

582

In the preceding example, the Set Variable step will initialize a variable with a

specified value. A Name can be typed directly into the first field which establishes the

variable whose value will change. The Value to be placed in the variable can be typed

directly into the field or entered in a full Specify Formula dialog accessed by clicking

the adjacent Specify button. The same is true of the Repetition option. See Chapter 25,

“Setting Variables” for more specifics about this step.

Instead of a full dialog, some steps open a popover panel of options, as shown in

Figure 24-15. Like dialogs, panels may include directly editable settings and buttons that

open other dialogs. In this example, the Enter Find Mode step opens a simple panel that

contains a button which opens the standard Find Request dialog (Chapter 4, “Editing a

Find Request”). Unlike dialogs, which typically have OK and Cancel buttons, changes

made in these panels are saved immediately. A popover can be closed by clicking on the

script workspace outside of the panel’s boundaries or typing the Return or Enter key.

Figure 24-14. A step without the cursor over it (left, top), with the cursor over it
(left, bottom), and the options dialog opened by clicking it (right)

Figure 24-15. A popover streamlines the selection of options for some steps

Tip Many steps have multiple active regions that combine configuration styles.

ChapTer 24 InTroduCTIon To SCrIpTIng

583

Specifying Targets

Many script steps require you to specify a target using dialogs. Some steps require a

variable and present a version of the Set Variable Options dialog, described previously.

A handful require a field selection using the Specify Field dialog (Chapter 20, “Exploring

the Specify Field Dialog”). Many present a Specify Path dialog (described later in this

chapter). In addition to these, many steps use the Specify Target dialog, shown in

Figure 24-16, allowing specification of a field or variable. In recent versions, this dialog

has replaced the Specify Field option for a lot of script steps. For example, most of

the available Insert steps have been converted to this dialog, and many of the newer

Data File steps us it as well. This dialog allows the selection of either a field or entry

of a variable name, while the script step that opens it also provides access to a Specify

Calculation dialog that determines the value to be inserted into that target.

Figure 24-16. Specifying a target field (left) and variable (right)

ChapTer 24 InTroduCTIon To SCrIpTIng

584

 Script Comments

A script comment is a text note placed into a script as a nonfunctional step. Comments

appear as a line of text with a preceding pound or hash symbol. These are used to

provide inline documentation, describing the function of a script or of a group of steps.

When combined with empty comments, they help to separate sections of a script and

avoid visual clutter, as shown in Figure 24-17. When a comment is added to a script

without any content, it becomes a blank line.

Tip Multiline comment can be created by typing return while holding down the
option key (macoS) or alt key (Windows).

Figure 24-17. A script with several comments that document and steps

ChapTer 24 InTroduCTIon To SCrIpTIng

585

 Specifying File Paths
There are many instances in the development interface where file paths must be

specified. This can be found when managing data sources (Chapter 9) and script steps

such as Import Records, Export Records, Save Records as Excel, Save Records as PDF, New

File, Open File, Read from Data File, and more (Chapter 25). Paths are entered into a

Specify File dialog, shown in Figure 24-18. The File Path List text area of this dialog can

contain one or more return-delimited paths. If more than one is entered, FileMaker will

check each one, in the order entered, until it finds a valid path pointing to an existing file.

Figure 24-18. The dialog for specifying a file path

ChapTer 24 InTroduCTIon To SCrIpTIng

586

 Formatting Paths
As indicated by the examples displayed on the dialog, paths can be entered using various

formats to point to a file in a local directory, server folder directory, or at a FileMaker Server

network address. Properly formatting a path can be tricky, especially when addressing files

in a local directory relative to the database location. There are various prefixes that can

be mixed and matched with different path format types. If a path is incorrectly entered or

the target file is moved after a path has been defined, a file missing error will occur when

FileMaker attempts to access it. To avoid mistyping a complex path, use the Add Files

button and subsequent Open File dialog to select a file and allow FileMaker to formulate

the best path option automatically. You can always edit them later if necessary.

 Path Prefixes

A path prefix indicates a specific file type and/or operating system:

• file, image, or movie – A generic, cross-platform file path.

• filemac, imagemac, moviemac – A path to an item on a macOS

computer.

• filewin, imagewin, moviewin – A path to an item on a Windows

computer.

• filenet – A path to a database hosted on a FileMaker Server, regardless

of the host’s platform. If both the source and the target database are

located on the same server, the file prefix will suffice, regardless of the

folder structure on the server.

 Path Types

FileMaker paths can be created as a relative path, full path, network path (Windows),

and network address path (FileMaker Server).

Relative Path

A relative path specifies a target file from the context of the current database location.

This format assumes the source and target database are both not hosted and have a

portion of their directory location in common. In other words, they are running locally

from a folder on the same hard drive. Although sometimes confusing, these paths have

ChapTer 24 InTroduCTIon To SCrIpTIng

587

the benefit of allowing the location of the files to move with a parent folder structure

as long as the relative location between the two remains the same. The formula for a

relative path is

file:[pathDifferential]fileName

The prefix and fileName are required with the pathDifferential included when there

is a difference between the two folders containing them. The following examples assume

two files: a current database named “Test Source” that is targeting a database named

“Test Target.” If these two files are sitting in the same directory folder, there is no need to

include any information about the difference between their locations, so the path will be

simply be the prefix and the name of the target file.

file:Test Target

If the source file is moved to the macOS Desktop and the target to the user’s

Documents folder, the two files will have only part of their path in common:

Macintosh HD/Users/john_doe/Desktop/Test Source

Macintosh HD/Users/john_doe/Documents/Test Target

In this case, for the source file to point to the target file, it would need a differential of

two periods and a forward slash indicating that we must move up the directory hierarchy

one folder and then down into the Documents folder to locate the file as shown in the

following path:

file:../Documents/Test Target

Leaving the source file on the Desktop, if the target was moved into a subfolder

within the Documents, subfolder named “Target Subfolder,” the file path would change

to include the additional subfolder.

file:../Documents/Target Subfolder/Test Target

When the source is placed into a folder on the Desktop named “Source Subfolder,” the

differential must change to indicate the need to move up the two levels before navigating

downward into the target file’s folder. For example, assume the two files are in the

following folders:

Macintosh HD/Users/john_doe/Desktop/Source Subfolder/Test Source

Macintosh HD/Users/john_doe/Documents/Target Subfolder/Test Target

ChapTer 24 InTroduCTIon To SCrIpTIng

588

So, the file path would require two sets of double-period, forward slash hierarchy

indicators to point up two levels to reach the common parent folder before heading back

down into the folder structure to find the target, as shown in the following path:

file:../../Documents/Target Subfolder/Test Target

Full Path

A full path is a path to a target database in a folder that is specified from the context of

the disk volume containing it. This establishes an absolute path that doesn’t change.

As long as the target remains in place, the path will work regardless of where the source

database is located. Full paths can be used for macOS directories on the local startup

hard drive, an external disk and for Windows local directories. The formula of an

absolute path varies slightly depending on the operating system of the user computer.

filemac:/volume/directoryName/fileName

filewin:/driveLetter:/directoryName/fileName

For example, if the file is in the user’s Documents folder on a macOS computer, the

path would be formatted as shown here:

filemac:/Macintosh HD/Users/alex_smith/Documents/Test Target

The generic file prefix will also work for full paths and be completely cross-

platform.

file:/Macintosh HD/Users/alex_smith/Documents/Test Target

Network Path (Windows Shared Directory Only)

A network path is a path to a target database file stored in a server directory in a

Windows environment. The formula of a network path is

filewin:/computerName/shareName/directoryName/fileName

For example, a path might be

filewin:/Company_Server/Databases/Sales/Test_Target

ChapTer 24 InTroduCTIon To SCrIpTIng

589

FileMaker Server Network Path

A FileMaker network path is a path to a target database file hosted on a FileMaker Server

computer (not any form of file sharing). The formula of a network path is

fmnet:/addressOrName/fileName

For example

fmnet:/192.100.50.10/Test Target

fmnet:/FileMaker-Server.local/Test Target

If the source database is hosted on the same server as the target, a simple relative

path can be used as shown in the following. Using this method will “future-proof” a

database as it will continue to work even if the server address changes.

file:/Test Target

 Building Dynamic Paths
Unlike literal paths typed as text, a dynamic path can automatically change from one

user’s computer to the next. There are a few techniques that can help keep paths

dynamic: using variables, using functions, and excluding file extensions.

 Using Variables in Paths

Paths entered in the Specify File dialog can include variables that specify an entire path

or a portion of a path. For example, a script using the Set Variable step (Chapter 25) can

store a network address and file name for a commonly used target file in global variables

and use them when constructing a path. Alternatively, an entire path can be placed into

a single variable. Script steps requiring a path can use paths stored in local variables as

well. These examples show how paths can use variables for part or all of the path:

fmnet:/$$ServerAddress/$$FileName

file:$$PathToExport

$PathToImportFile

When a script step is provided an invalid path, it usually errors with a rather cryptic

message. Building paths in variables makes it possible to troubleshoot these problems

since the value is accessible prior to being embedded in the script step. This is especially

ChapTer 24 InTroduCTIon To SCrIpTIng

590

important when a path is being constructed dynamically across several script steps

and may not adhere to proper formatting requirements in a non-obvious way. A Show

Dialog step can display the variable for examination prior to the step that requires it. As

a variable, it can also be monitored in the Data Viewer (Chapter 26, “Exploring the Data

Viewer”). More often than not, simply looking at the path instantly reveals the cause of

the error.

 Using Functions to Generate Contextual Paths

Several of FileMaker’s built-in functions automatically generate paths to standard folders

on the user’s computer. These can be used in formulas to construct dynamic paths that

work regardless of the context of the startup disk or home directory name.

Get (SystemDrive) // result = /Macintosh HD/

Get (DesktopPath) // result = /Macintosh HD/Users/karen_camacho/

Desktop/

Get (DocumentsPath) // result = /Macintosh HD/Users/karen_camacho/

Documents/

Get (PreferencesPath) // result = /Macintosh HD/Users/karen_camacho/

Library/Preferences/

These functions return the path to the FileMaker application or current database file.

Get (FileMakerPath)

// result = /Macintosh HD/Applications/

Get (FilePath)

// result = file:/Macintosh HD/Users/karen_camacho /Desktop/Learn

FileMaker.fmp12

A temporary folder is an automatically generated hidden folder that only exists until

the user signs out or the computer is restarted. Since these are not stored in an obviously

accessible directory, they are ideal for use as a staging location when exporting files prior

to sending an email or storing transitory data files.

Get (TemporaryPath)

// result = /Macintosh HD/var/folders/rt/n62fc5vd0hn7js2v4098ydkw0000gp/T/

S10/

ChapTer 24 InTroduCTIon To SCrIpTIng

591

 Excluding File Extensions

When targeting a FileMaker database, the file extension is completely optional. Since the

FileMaker file extension may change in the future, consider omitting extensions in paths

(or store them in a global variable), so the database can be easily updated later without

having to find and edit every path. For example, all of these paths will locate the same file

(with the last one assuming that the $$Extension variable contains “.fmp12”).

filemac:/Macintosh HD/Users/john_smith/Documents/Test Target

filemac:/Macintosh HD/Users/john_smith/Documents/Test Target.fmp12

filemac:/Macintosh HD/Users/john_smith/Documents/Test Target$$Extension

 Converting Paths

In version 19, two new functions make it easier to convert between an operating system

path format and a FileMaker path. This eliminates the chore of programmatically parsing

formulas to convert paths to a different format. Both functions accept two parameters: a

path and a format. The format parameter for either can be one of three values indicating

the respective source or target path format: PosixPath, URLPath, or WinPath.

ConvertToFileMakerPath ("/Users/mmunro/Desktop/" ; PosixPath)

// result (macOS) = file:/Macintosh HD/Users/mmunro/Desktop/

// result (Windows) = file:/C:/Users/mmunro/Desktop/

ConvertFromFileMakerPath ("file:/Macintosh HD/Users/mmunro/Desktop/" ;

PosixPath)

// result = /Users/mmunro/Desktop/

 Performing Other Scripts
The Perform Script step allows a script to run another script. This makes it possible to

build modular scripts that perform discrete tasks and then have higher-level scripts

run them in a sequence. Scripts can call scripts that call other scripts, creating complex

hierarchical call stacks. Scripts can even call themselves creating a recursive call stack.

After adding the step to a script, it will appear with an unknown script specification,

as shown in Figure 24-19. The step has two active regions. First, the Specified value

indicates what type of reference to a script will be defined, a formula-driven text value

ChapTer 24 InTroduCTIon To SCrIpTIng

592

indicating the name of the script or a dynamic reference selected from a list of available

scripts. Depending on that selection, clicking on the script name region of the call opens

the appropriate specification dialog, either the Specify Formula or Specify Script dialog.

Tip hold the Command (macoS) or Windows (Windows) key when clicking on a
Perform Script step’s target script to automatically open the assigned script in a
new tab.

 Exploring the Specify Script Dialog
The Specify Script dialog is used to select a reference to a script that will be targeted as

the action for a button, an interface event trigger (Chapter 27) or the Perform Script step

mentioned previously. The dialog, shown in Figure 24-20, allows selection of a script

from the current file or any FileMaker data source defined in the database (Chapter 9).

An Optional script parameter can be defined to accompany the call to the selected script.

When assigning a script to a button or as an event trigger, this dialog includes the three

buttons that allow adding, deleting, editing, or duplicating a script directly from the

dialog.

Figure 24-19. The Perform Script step’s options

ChapTer 24 InTroduCTIon To SCrIpTIng

593

The ability of a script to run other scripts allows for a more modular script design.

Instead of building one monolithic script that performs dozens or hundreds of steps in a

long complex sequence, a process can be broken into separate scripts, each focused on

a certain task. This makes it possible to set up a hierarchy where some scripts perform

open-ended, fundamental tasks that can be shared by many other scripts regardless

of context. However, when creating a delimited mesh of shared script functions, be

sure to manage the naming, organizations, and usage rules in a way to avoid confusing

zigzagging cross talk back and forth.

 Exchanging Data Between Scripts
A script call can include a parameter and receive a result, as illustrated in Figure 24-21

where Script 1 calls Script 2 with a parameter and then receives a result from that script’s

Exit Script step.

Figure 24-20. Selecting a script for a button, script trigger, or script step

ChapTer 24 InTroduCTIon To SCrIpTIng

594

Caution decades ago, global fields and variables were used to “park” data
prior to script calls to facilitate an archaic data exchange. Before that, some used
the clipboard for this purpose. however, parameters are now preferred for data
exchange between scripts.

 Sending Parameters

A script parameter is a text string sent to a script by a triggering object. Parameters are

used to transmit any information that a script can use for any number of reasons. Instead

of hard-coding field references or other values inside a script, parameters allow the

triggering object to push information to the script that can vary from one call to the next.

Parameters can be a single word, a sentence, a value list, a field name, a field value, or a

JSON object containing a complex array of key-value pairs. They can be typed as literal

values or constructed with a formula. To illustrate the use of parameters, create a script

that displays an incoming parameter in a dialog using the Show Custom Dialog script

step configured with this formula:

Get (ScriptParameter)

Next create a button or a second script that uses the Perform Script function with a

short message typed into the Optional script parameter field. When the button is clicked

or script run, the targeted script should present a dialog displaying the message that was

sent as a parameter.

Figure 24-21. Illustrating data exchange between two scripts

ChapTer 24 InTroduCTIon To SCrIpTIng

595

 Parsing a Parameter

A script parameter is a singular value. However, it can be arranged in a way to contain

multiple values using a return-delimited value list, a reference to a repeating field,

or a JSON object. When receiving structured information representing multiple

components, a script will need to parse the values in order to deal with them separately.

To accommodate this, use one or more Set Variable or Insert Calculated Result steps to

parse and park the data into separate variables. This can be done with a Let statement

and the GetValue, GetRepetition, or various JSON functions. The following example

demonstrates how to parse a value list containing three values into separate variables:

Let ([

 input = Get (ScriptParameter) ;

 $id = GetValue (input ; 1) ;

 $name = GetValue (input ; 2) ;

 $status = GetValue (input ; 3)

] ;

 ""

)

This example will parse values from a script parameter containing a reference to a

field that is defined with four repetitions, using the GetRepetition function.

Let ([

 field = Get (ScriptParameter) ;

 $id = GetRepetition (field ; 1) ;

 $name = GetRepetition (field; 2) ;

 $status = GetRepetition (field; 3) ;

 $task = GetRepetition (field; 4)

] ;

 ""

)

While those two examples parse a fixed number of values in the parameter, it is

possible to create more dynamic parsing functionality. If the number of values or field

repetitions varies, a While function (Chapter 13) statement or Loop script step

(Chapter 25) might be necessary to cycle through them. Also, a recursive custom

function can step through each value, initializing it into a variable.

ChapTer 24 InTroduCTIon To SCrIpTIng

596

 Exploring Script Results

A script run by another script can send back a result value using the Exit Script step. This

step has a single parameter: a calculation formula that generates a text value. Like an

input parameter, a result can be a single value or complex data structure. This example

shows a simple result returning the word “Success” to indicate to the calling script that

the target script reached the end of its steps without failure.

Exit Script [Text Result: "Success"]

A script can have multiple exit points, each returning a different value. In the

following example, after a Perform Find step, a conditional If statement can exit the

script if no records are found with a result that informs the calling script of this fact.

When records are found, the script continues functioning until the end and returns the

success indicator instead.

Perform Find []

If [Get (FoundCount) = 0]

 Exit Script [Text Result: "No records found"]

End If

Loop

 <steps to process records>

End Loop

Exit Script [Text Result: "Success"]

 Perform Script on Server
When a database is hosted on a FileMaker Server (Chapter 29), scripts can be run locally

on the current user’s computer using the Perform Script step or can be offloaded to run

on the server using the Perform Script on Server step. Running a complex script on the

server tends to be faster since the client and server don’t need to exchange as much

information across the network. In instances where the local script doesn’t require a

response or any interface manipulation, the task can be fully handed off to the server,

instantly freeing the user’s computer to perform other script functions or manual work.

However, before using this feature, it is important to realize that the context of the local

computer’s database window will not be known or accessible to the server when running

the script. Therefore, any contextual information about the current table, layout, record,

ChapTer 24 InTroduCTIon To SCrIpTIng

597

found set, sort order, or window required by the script being called must be included in

a script parameter so the server can replicate the context before running. New scripts

can be designed specifically to address this issue. When converting an existing script to

run on the server, it may be necessary to split it into two: one script that loads the context

information into a script parameter and another that will receive that information, reset

the context on the server, and then perform the other script functions.

A script can be configured to run locally or on the server depending on certain

conditions. For example, when the database is taken offline for maintenance, any scripts

critical to the database at launch time must be able to run locally. For these, include a

condition that allows the script to be run on the server when hosted and locally when

not. The following example demonstrates a simple If step, choosing between running the

script locally and on the server with the help of the Get (HostApplicationVersion) and

LeftWords functions. If the host version starts with the word “Server,” it indicates a hosted

file, and the call will be performed using the Perform Script on Server step instead.

If [LeftWords (Get (HostApplicationVersion) ; 1) = "Server"]

 Perform Script On Server [<script name>]

Else

 Perform Script [<script name>]

End If

 Emphasizing the Importance of Context
Like calculations, scripts are contextual, and it is important to be cognizant of this fact

as you develop your database. When a script step executes, it runs within the context

of the table occurrence of the front window’s current layout. This starts as the current

layout when the script is triggered but may change when scripts begins changing layouts,

performing finds or creating windows. A complex database may have scripts running

scripts that run other scripts, and any of them might change the current context. If

a script tries to access fields from a non-current context, it will cause errors and be

confusing to users and possibly be destructive. If a script creates, deletes, or duplicates

records while in the wrong context, it can be a disaster. Given this, it should be obvious

that keeping track of context is a major imperative when designing scripts. When

designing a script, keep focus on its intended context based on the steps it contains. Be

aware of the expectation of different steps. While all script steps operate contextually,

ChapTer 24 InTroduCTIon To SCrIpTIng

598

they don’t all have the same type of dependency. Some steps are layout-table dependent

and access table values directly regardless of what is visible on the layout. Others are

layout-object dependent and require direct interaction with something on the layout. In

the next chapter, we will see examples such as Set Field, which doesn’t require a field

present on the layout, and Insert Text which does. Also, when calling other scripts in a

complex mesh of interconnected workflows, try to design a naming and organization

standard that helps you manage context by implementing rules for which scripts can call

others and which can’t.

 Managing Scripting Errors
When an error occurs, a script may open a dialog informing the user of the problem.

The message may or may not make sense to a user, depending on their knowledge and

the type of error that occurred. A common example is a failure when the Set Field step

tries to set a value for a field from a table not accessible from the current context. For

example, if browsing a Company record, setting a field in the Contact table directly (not

through a relationship) will result in the error message stating, “This operation could

not be completed because the target is not part of the related table.” Since this is a

programming error, a user would have no idea what this means or what to do to reach a

resolution. So, it is a good idea to design your scripts to capture errors and present more

informative dialogs that notify users in a productive way.

To suppress error displays, use the Set Error Capture step with a parameter of On.

This will cause the script to completely ignore any errors it encounters and continue

processing. In many cases, this isn’t ideal because an error at one step may cause major

problems further in the workflow. So, it may be necessary to detect and handle specific

errors with custom messaging or other steps. The Get (LastError) function can be used

at various points in the script to determine if an error has occurred when the previous

step(s) executed. The function will return a numeric value indicating either no error (0)

or the number representing the error. An If statement can take conditional action in the

event an error is detected.

To illustrate this technique, the following simple example attempts to set the

Contact::Name Last field. If this script is run from the Contact table, there will be no error

generated and no dialog presented. However, running it in a different table will generate

ChapTer 24 InTroduCTIon To SCrIpTIng

599

an error and present that fact in a custom dialog. Depending on the error, its location,

and other functions of the script, the If statement can include other steps to email a

developer, perform alternative steps, halt completely, etc.

Set Error Capture [On]

Set Field ["Contact::Name Last; "Smith"]

If [Get (LastError) = 103]

 Show Custom Dialog ["Error 103: Set Field context error"]

End If

Tip For a complete list of errors, search for “FileMaker pro error code reference
guide” on Claris.com.

 Summary
This chapter introduced scripting basics, working in script workspace, and various step

configuration interface options. We explored various formats for specifying file paths and

discussed scripts running other scripts, passing parameters, receiving results, contextual

awareness, and managing script errors. In the next chapter, we begin creating examples

that perform common scripting tasks.

ChapTer 24 InTroduCTIon To SCrIpTIng

601
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_25

CHAPTER 25

Common Scripting Tasks
FileMaker ships with over 180 built-in script steps that can perform just about any

database task you can imagine. In this chapter, we work through a handful of real-world

examples to provide a basic foundation upon which to base your own exploration of the

remaining script steps, covering the following topics:

• Scripting basic functions

• Interacting with fields

• Accessing folders and files

• Working with records

• Using conditional statements

• Showing custom dialogs

• Searching and dealing with found sets

• Iterating with repeating statements

• Scripting portal functions

• Managing windows

• Using Insert from URL

 Scripting Basic Functions
Let’s begin by exploring a few basic script steps that perform common functions:

controlling the ability of users to abort a script, setting variables, and navigational

context changes.

https://doi.org/10.1007/978-1-4842-6680-9_25#DOI

602

 Allowing User Abort
Any running script can be manually halted at any time by typing Esc (Windows) or a

Period while holding the Command key (macOS). While this may not be a concern

for scripts that perform a couple quick steps that finish before a user can attempt this,

it introduces a danger with more complex scripts and may cause various problems. A

partially completed process may not be so easy to start again without programming

intervention. The user may become stranded on a staging layout not designed as an

interface or have hidden windows left open but accessible through the Windows menu.

A set of records may be half imported but not yet processed, and repeating the script

could cause duplicates the second time around. The Allow User Abort script step can

avoid these and countless other catastrophes by denying a user’s ability to abort a script.

The step has one setting with a default value of On to allow interruption of the script and

an option to turn it Off to disable that ability.

The step can be placed at the beginning of a script or anywhere in the workflow. It

can be turned on and off as needed at different points in the workflow to only protect

sensitive steps that must be completed. Once configured, all subsequent script steps

in the current script and any subscripts in the execution stack will inherit that setting

unless reversed. If a parent script turns it off, all subsequent subscripts called by the

parent will inherent that setting unless or until they explicitly change it. Similarly, if a

subscript changes the setting, the parent script will inherit that setting when control is

relinquished back to it.

A formula can check the status of the abort state using a Get function, which returns

0 (false) if abort is disallowed and 1 (true) if it is allowed. The following two examples

show a script step turning the abort state Off and On with a formula below it checking

the current state after each change:

Allow User Abort [Off]

Get (AllowAbortState) // result = 0

Allow User Abort [On]

Get (AllowAbortState) // result = 1

Caution It is a good idea to always allow user abort when testing to avoid being
locked into an endless loop or other situations that require a force quit to escape a
programming error!

Chapter 25 Common SCrIptIng taSkS

603

 Setting Variables
The Set Variable step sets the value of a local or global variable (Chapter 12, “Variables”)

at a specific point in a script’s workflow. Variables can be used within a script to “park”

values at one step for use by another. They can store a value for later use, assemble

data from multiple contexts, track iterations that control scripting behavior, and more.

Remember that local variables are limited within the context of the running script. They

are also not inherited by other scripts in the active execution stack, so subscripts called

by a script or parent scripts calling it do not have access to local variables set within it.

Insert the step into a script, and then open the Set Variable Options dialog, shown in

Figure 25-1, by either double-clicking on the step or clicking the gear icon next to it.

The Name field is used to specify the name of the target variable. This can be a new

variable or an existing one. The name is how the variable will be used in subsequent

formulas, so choose something clear and descriptive. A single dollar sign prefix denotes

a local variable, and a double dollar sign prefix denotes a global variable. If no prefix is

entered, a single sign will be added automatically.

In the Value field, type the information to be stored in the variable when the step

executes, either a static value, a field reference or a formula entered using the adjacent

Specify button.

The Repetition field specifies which repetition of the named variable should receive

the specified value. This allows a single variable to contain multiple separate values,

similar to a repeating field (Chapter 8). The default is always one.

Figure 25-1. The dialog used to set a variable

Chapter 25 Common SCrIptIng taSkS

604

Tip Since you can create numerous variables with different names, the
repetition feature should be reserved for managing an expandable number of
programmatically determined values.

The following example could be used by a script assigned to a Record ➤ Delete

Record custom menu item (Chapter 22) or a delete button. It provides a warning prior

to deleting a company record although it could be expanded to work with any table. It

uses the Set Variable step four times. It starts by setting a $name variable to the Company

Name field of the current Company record and a $count variable to the number of

Contact records related to it. Next, it uses these values to place a custom warning value

into a $message variable for use in a Show Custom Dialog step. Finally, it places the user’s

button choice into a $button variable. The If step at the end limits the Delete Record/

Request step to only execute when the button clicked in the message dialog indicates the

user’s approval.

Set Variable [$name ; Value: Company::Company Name]

Set Variable [$count ; Value: Count (Company | Contact::Record ID)]

Set Variable [$message ; Value:

 "Are you sure you want to delete the company record for " &

 Quote ($name) &

 "? " & $count & " contact record(s) are connected to it!"]

Show Custom Dialog ["Confirm Delete Company" ; $message]

Set Variable [$button ; Value: Get (LastMessageChoice)]

If [$button = 2]

 Delete Record/Request [with dialog: Off]

End if

Tip Since the Let and While functions can also set a local or global variable, you
can set variables with any script step that includes a formula component.

Chapter 25 Common SCrIptIng taSkS

605

 Creating Navigation Scripts
Scripts can change a window’s context by navigating to a different layout, record, or

related record.

 Go to Layout

The Go to Layout script step, shown in Figure 25-2, will switch the layout displayed in the

current window. The step has two active regions.

The unlabeled layout specifier opens a menu of choices for how to identify the

target layout. The default selection will be Original layout which instructs the script to

navigate back to the layout that was active when the script started running. This saves

development time when a script can be triggered from multiple locations in a database,

automatically tracking and restoring the user’s starting layout. Choose the Layout option

to open a Specify Layout dialog, and choose a reference to a specific target layout. The

Layout Name by calculation and Layout Number by calculation options open the Specify

Calculation dialog allowing a formula to determine the name or number of the target

layout.

The Animation region of the step is used in FileMaker Go to specify how the layout

switch should be animated. This setting will be ignored when running the script on other

platforms.

Figure 25-2. The configuration options for Go to Layout

Chapter 25 Common SCrIptIng taSkS

606

 Go to Record/Request/Page

The Go to Record/Request/Page step, shown in Figure 25-3, is used to navigate through

the content of a window, depending on the mode. It will navigate to a specified item by

mode; record (Browse), find request (Find), or page (Preview). The step has one or two

active regions depending on the option selected on the first setting.

The unlabeled target specifier opens a menu of positional target options. These allow

the step to jump to the First or Last item or to move one step to the Previous or Next

item. The By Calculation option at the bottom allows a formula to determine a number

indicating which record, request, or page is the target. When the target is Previous or

Next, an additional Exit after last option appears, which can be toggled On or Off. When

on, the step will automatically exit a Loop statement after reaching the last available

record in the direction indicated by the first parameter. When on, Previous will exit after

reaching the first record/request/page, while Next will exit after reaching the last.

 Go to Related Record

The Go to Related Record step performs multiple functions as a single step. It finds

and navigates to a set of related records on another layout and can optionally open the

result in a new window. To illustrate, imagine a user is viewing a Contact record and

wants to view the record for that contact’s related parent Company in a new window.

Instead of manually creating a new window, changing layouts, and performing a find,

a button or script can use the Go to Related Record step to quickly carry out the task

with a single click. In this example, Contact is the starting source table, and Company

is the destination target table, each being on one side of a relationship between table

occurrences (Chapter 9). The same relationship used to display a related company name

Figure 25-3. The configuration options for Go to Record/Request/Page

Chapter 25 Common SCrIptIng taSkS

607

on a contact layout will be used by this step as the conduit through which we navigate.

By traveling “through” the relationship, the match fields used to form the relationship act

like the search criteria for the record(s) that will be displayed in the target table.

Once the step is added to the script or assigned to a button, double-click it, or click

the gear icon to open the Go to Related Record Options dialog, shown in Figure 25-4.

The Get related record from pop-up menu lists every table occurrence defined in the

current database file’s relationship graph. Select any occurrence related to the starting

layout’s table. In our example, we will start on a layout for the Contact table. To reach

a layout for the Company table, we must pick an occurrence of that table that is also

related to the Contact table. So, we select the Contact | Company relationship to travel

from a Contact record to its related Company using that relationship’s criteria.

The Show record using layout option specifies the target layout that will be the

destination used to display the related record(s). This setting opens a menu with four

options that are similar to the Go to Layout step. The Current Layout option will leave

the user on the current layout. This is useful for targeting a self-join relationship, where

the target records are in the same table as the source record. The Layout option opens a

Specify Layout dialog for selection of a reference to a specific layout. The Layout Name

Figure 25-4. The dialog used to configure going to a related record

Chapter 25 Common SCrIptIng taSkS

608

by calculation and Layout Number by calculation options open the Specify Calculation

dialog allowing a formula to determine the number or name of the target layout. The

Specify Layout dialog will only display layouts for the target table from the current

database file. If the target table is from an external data source, select the Use external

table’s layouts checkbox to instead show a list of layouts for the table from that external

file.

The Show in new window checkbox and adjacent Specify button enable displaying

the results in a new window instead of the starting window. These settings are identical

to the New Window script step described later in this chapter.

The Show only related records option controls which records are included in the

found set displayed in the target layout/window. When disabled, the step will attempt to

preserve the found set already present in the target table. If the related record is present

in that set, it will retain the set and drop the user on that record. If not, the step will find

all records and take the user to the target record. When enabled, a different found set will

be established in the target table depending on the radio button option selected. The

Match current record only selection will result in a target found set of only the record(s)

matching the related criteria for the starting record. This is like a one-to-one or one-to-

many search, where the current starting record is used to find matching records in the

target table. The Match all records in the current found set option will result in a found set

of every record in the target table that has a match to any record in the starting found set.

This is the equivalent of a many-to-many search, where the current found set is used to

find matching records in the target table.

When this step is executed as the result of a click on a button in a portal, the settings

control the target found set, but the record the user clicked determines which of those

will be come the currently active record in that set.

 Interacting with Fields
Several steps allow various interactions with fields. These include moving focus into

a field, changing the contents of a field, and resetting the field’s defined serialization

settings.

Chapter 25 Common SCrIptIng taSkS

609

 Go to Field
Three script steps allow focus navigation to a field on the current layout: Go to Next Field,

Go to Previous Field, and Go to Field. The first two of these have no parameter options;

they will simply move active focus to the next or previous field on the current layout

based on the field tab order (Chapter 21). If the current record is not open and no field

has focus, these steps will open the record and place focus respectively in the first or last

field in the tab order. The Go to Field step, shown in Figure 25-5, moves focus to a specific

field. After inserting into the script, double-click anywhere on the step to open a Specify

Field dialog and select a target field. The gear icon opens a panel with two options.

Enable the Select/perform box to automatically select field contents, and/or open

interface elements such as drop-down lists or calendars when entering the field. The Go

to target field is an alternate way to specify the target field.

Note the selected field must be present on the current layout, and the user must
have access to enter it. If no target field is selected in the script or the field is not
accessible, the step will exit every field and commit the record.

 Set Field
The Set Field step will replace the current value of a specified field for the current record

with a new value. Click on the gear icon to open a configuration panel, as shown in

Figure 25-6. The Specify target field option will open a Specify Field dialog and allow

selection of a target field reference. The selected field doesn’t need to be present on the

layout. If no field is specified, the step will insert a value into a field if one on the layout

Figure 25-5. The step used to move focus to a specific field

Chapter 25 Common SCrIptIng taSkS

610

has active focus. Click the Specify button to define a Calculated result which provides the

value that will be placed into the field.

 Set Field by Name
The Set Field by Name step will change the value of a field specified by name for the

current record displayed in the window. Unlike the Set Field step where a target must be

a selected dynamic field reference, this step uses a formula to establish a text-based field

reference which can vary as needed (Chapter 12, “Field References”). The options look

exactly the same, except when you click to specify a target field, a Specify Calculation

dialog opens and requires a formula that results in the target field name. The result

must include a table occurrence to provide the necessary context to locate the field. This

example targets the Contact Address State field for the current Contact record.

Set Field By Name ["Contact::Contact Address State" ; "NY"]

Since the field reference is text-based and created by a formula, it can be constructed

with conditional variations. This example dynamically builds a reference to a standard

Record Notes field for the table of the current layout, which would work in any layout

where the assigned table contains a field of that name.

Set Field By Name [Get (LayoutTableName) & "::Record Notes" ; "Hello

World"]

Figure 25-6. The options for setting a field value

Chapter 25 Common SCrIptIng taSkS

611

 Set Selection
The Set Selection step, shown in Figure 25-7, will select a portion of text within a field

visible on the current layout. The step will target the field with active focus unless

another target field is specified. Click to Specify selection to open a Set Selection dialog

and enter two numeric values for Start Position and End Position. These can each be

either static numbers or a dynamic calculation that analyzes the field’s content and

makes a selection based on custom criteria.

Tip to select the entire contents of the current field, use the Select All step
instead.

 Set Next Serial Value
The Set Next Serial Value step will update the next serial number value in a field’s Auto

Enter definitions (Chapter 8). Since the auto-enter settings automatically increment

the Next Value setting each time a new record is created, this step is used infrequently.

However, when importing records as part of a data migration or when resetting a new

test copy of a database for live use, serial number fields may need an update to ensure

that the next value assigned is uniquely one above the highest value assigned to date. If

the field settings are out of sync with the record data, it might result in duplicate serial

numbers. Using the script step to automate this process can save time when migrating a

large solution with dozens of tables. The change is made to the field definition directly,

so the specified field does not have to be visible on the current layout. In fact, when

resetting this to a static number without the need to look at existing records, this step can

be run for any table from any context.

Figure 25-7. The options for selecting text within a field

Chapter 25 Common SCrIptIng taSkS

612

The configuration options are similar to other steps that change field values. Click on

the gear icon to open the panel, and then select a target field and enter a formula for the

result which will become the next serial number for new records. After a migration script

imports records into a table, add these steps to ensure that the primary key’s next serial

number is one greater than the current highest value.

Show All Records

Unsort Records

Go to Record [Last]

Set Next Serial Value [Record ID ; Contact::Record ID + 1]

The preceding example executes the Show All Records to ensure that we don’t miss

the highest value. Next, it runs the Unsort Records step, assuming that the primary keys

are low to high when ordered chronologically as entered. If the last record in an unsorted

list is not always the highest value, consider using a Sort Records step instead to sort the

records by the serial field. The Go to Record step jumps to the last record which should

now have the highest current value. Finally, the Set Next Serial Value targets the Record

ID field with the current value in that field for the current record plus one.

If the targeted key field is a text field with leading zeros, adding one will convert the

result into a number without leading characters. To maintain a consistent number of

characters in the field, the formula will need to add a calculated number of zeros to the

result. If the field uses leading zeros to maintain six digits, the following formula ensures

the appropriate result by adding six zeros to the left of the incremented id and then

extracting six digits from the right.

Right ("000000" & (Contact::Record ID + 1) ; 6)

// result = 000015

 Accessing Folders and Files
In recent versions, FileMaker has added and improved various script steps that can

access folders and files.

Chapter 25 Common SCrIptIng taSkS

613

 Get Folder Path
The Get Folder Path step, formerly named Get Directory, presents the user with a Choose

Folder dialog. This allows a user to select a folder which can then be used by other steps

that import, export, and save various resources. The step includes several configurable

options, shown in Figure 25-8.

The Allow Folder Creation checkbox enables the New Folder button in the Choose

Folder dialog, making it possible for the user to create and select a new folder. The

Variable button opens a limited Set Variable Options dialog that specifies the name of

the variable into which the selected folder path will be placed. The buttons by Dialog

title and Default location both open a Specify Calculation dialog to control the dialog’s

title prompt and default starting folder path.

When a script executes this step, the dialog opens and waits for user input. Once they

choose a folder and click to dismiss the dialog, the path to that folder is placed into the

variable specified. The path may need to be converted to a FileMaker format (Chapter 24,

“Converting Paths”) or have a prefix added in order to work with other script steps.

The following example uses Set Error Capture to suppress a warning dialog if the

user clicks Cancel in the dialog. A default path is set to the user computer’s documents

path. After the Get Folder Path step, the If statement checks for a LastError. If the user

cancels the dialog, the If statement uses the Exit Script step to stop the script. Otherwise,

the user’s folder selection in the $pathToFolder variable can be used later as the script

continues.

Set Error Capture [On]

Set Variable [$pathToDefault ; Value: Get (DocumentsPath)]

Figure 25-8. The options for selecting a directory

Chapter 25 Common SCrIptIng taSkS

614

Get Folder Path [$pathToFolder ; $pathToDefault]

If [Get (LastError) = 1]

 Exit Script [Text Result: "User Cancelled"]

End if

Caution the dialog’s appearance depends on the operating system. For example,
macoS doesn’t display the Dialog title.

 Manipulating Data Files
A new group of steps was added in version 18 that can manipulate data files. These can

be used to create, close, delete, detect, open, read, rename, and write data files on the

user’s computer.

 Creating a Data File

The Create Data File step will create a new empty file that automatically replaces any

preexisting file with the same name at the specified FileMaker path. It accepts a file path

parameter and has an option to automatically create folders to ensure the entire path

exists. Once created, a script can open the file and write to it.

Set Variable [$filePath ; Value: "file:/Macintosh HD/Users/mmunro/Desktop/

Hello.txt"]

Create Data File ["$filePath" ; Create folders: Off]

 Opening and Closing a Data File

The Open Data File step will open a data file and assign it a numeric File ID that will

persist until the file is explicitly closed. This number acts as a reference pointer to the

file and is required by other data file steps instead of a path, e.g., the Close Data File

step accepts only a File ID that points to the file that should be closed. In the following

example, the script assumes the file path created in the previous example is in a variable

named $filePath. Using this path, it opens the file, places the id into a target variable

named $fileID, and then immediately uses that id to close the file.

Chapter 25 Common SCrIptIng taSkS

615

Open Data File ["$filePath" ; Target: $fileID]

Close Data File [File ID: $fileID]

 Reading a Data File

The Read from Data File step will read data from an open data file and place the content

into a Target variable or field. It accepts four parameters. The File ID requires a numeric

file reference, typically the targeted result of the Open Data File step. The Target allows

the selection of a field or entry of a variable into which the file’s contents will be placed.

A Read as inline menu allows the choice of character encoding, and an Amount option

allows a formula to determine the number of bytes to read (leave blank for all). Building

on the last example, this script has a step added between opening and closing the file,

where it reads the contents as UTF-8 and places it into a variable named $fileContents. At

the end, a Show Custom Dialog displays the text.

Open Data File ["$filePath" ; Target: $fileID]

Read from Data File [File ID: $fileID ; Target: $fileContents ; Read as:

UTF-8]

Close Data File [File ID: $fileID]

Show Custom Dialog [$fileContents]

 Confirming a Data File’s Existence

When a referenced file does not exist, an error will be generated if a script attempts to

open it. To avoid this, the Get File Exists step can first confirm the existence of a file and

take an alternate course of action if it isn’t found. The step accepts a Source file path and

places a true (1) or false (0) value into a Target field or variable. This example will check

for the file and, if it doesn’t exist, will present a dialog and exit the script.

Set Variable [$filePath ; Value: "file:/Macintosh HD/Users/mmunro/Desktop/

Hello.txt"]

Get File Exists ["$filePath" ; Target: $fileExists]

If [$fileExists = 0]

 Show Custom Dialog ["Unable to locate the Hello.txt file!"]

 Exit Script

End If

Chapter 25 Common SCrIptIng taSkS

616

 Writing to a Data File

The Write to Data File step will write data to an open data file. It requires the similar

parameters as the read step but reverses the labelling of the target to a Data source and

the character encoding to Write as. An additional optional checkbox to Append line feed

adds a line feed character after writing data. This example will replace the previous file

data with the words “Hello, World.”

Set Variable [$filePath ; Value: "file:/Macintosh HD/Users/mmunro/Desktop/

Hello.txt"]

Set Variable [$fileContents ; Value: "Hello, World"]

Open Data File ["$filePath" ; Target: $fileID]

Write to Data File [File ID: $fileID ; Data source: $fileContents ; Write

as: UTF-8]

Close Data File [File ID: $fileID]

To begin writing at the end of the existing data, use the Get File Size and Set Data File

Position steps to determine the number of bytes in the file and to begin after that point.

The first accepts a file path instead of a file id so the file doesn’t have to be open for that

step.

Set Variable [$filePath ; Value: "file:/Macintosh HD/Users/mmunro/Desktop/

Hello.txt"]

Set Variable [$fileContents ; Value: "Hello, World"]

Get File Size ["$filePath" ; Target: $fileSize]

Open Data File ["$filePath" ; Target: $fileID]

Set Data File Position [File ID: $fileID ; New position: $fileSize]

Write to Data File [File ID: $fileID ; Data source: $fileContents ; Write

as: UTF-8]

Close Data File [File ID: $fileID]

Alternatively, reading from the file prior to writing will automatically begin writing

after all existing data.

Set Variable [$filePath ; Value: "file:/Macintosh HD/Users/mmunro/Desktop/

Hello.txt"]

Set Variable [$fileContents ; Value: "Hello, World"]

Open Data File ["$filePath" ; Target: $fileID]

Chapter 25 Common SCrIptIng taSkS

617

Read from Data File [File ID: $fileID ; Target: $fileContents ; Read as:

UTF-8]

Write to Data File [File ID: $fileID ; Data source: $fileContents ; Write

as: UTF-8]

Close Data File [File ID: $fileID]

 Working with Records
Numerous script steps perform interactions with records. The New Record/Request step

will create a new record in the current window, while the Duplicate Record/Request step

will create a duplicate of the current record. These have no configurable options. The

Delete Record/Request step will automatically delete the current record in the front window

after presenting an optional confirmation dialog. Similarly, the Delete All Records step will

delete every record in the found set after presenting an optional dialog. There are steps

available to perform many of the record actions users can perform through the interface

from the Records menu and toolbar options. Scripts can open, commit, copy, and revert

records. There are steps for Save Records as Excel, Save Records as PDF, and Save Records

as Snapshot Link. The Truncate Table step deletes all records in a specified table, regardless

of the current found set or the current layout context. In addition, there are two steps used

to move records in and out of a table: Import Records and Export Records.

 Import Records
The Import Records step, shown in Figure 25-9, is used to import records into a table with

or without human interaction, depending on the configuration settings.

Figure 25-9. The configuration options for automatically importing records

Chapter 25 Common SCrIptIng taSkS

618

The With dialog option can be turned Off to suppress dialogs when the step is

performed, allowing a truly autonomous operation. However, if a data source or import

order is not defined, this setting will be ignored, and the dialogs will appear, requesting

the missing information. The Specify data source accepts a path for the file to import, and

the Specify import order button opens the dialog of the same name used to map import

data to fields (Chapter 5). Enable the Verify SSL Certificates when importing XML data

from a server specified with a HTTP request.

 Export Records
The Export Record step, shown in Figure 25-10, allows a script to automatically export

records with or without human interaction, depending on the configuration settings.

The Specify output file and Specify export order both open dialogs that respectively allow

specification of a file path and field order. Two additional toggle options are accessible

directly in the step line. The With dialog can suppress dialogs for autonomous operation

as long as both panel options are configured. The Create folders option automatically

creates folders to ensure the entire directory path exists.

 Using Conditional Statements
A conditional statement is made up of one or more script steps that are only executed if

certain conditions are true. These are known as if-then statements because they include

criteria that can be thought of as the equivalent of if this formula is true then run these

steps. FileMaker has four script steps used to build if-then script statements:

• If – Required at the start of a statement to define a formula that

controls when the steps following it will be executed

Figure 25-10. The configuration options for automatically exporting records

Chapter 25 Common SCrIptIng taSkS

619

• Else If – Optionally placed between an If and End If step to start a new

group of conditional steps based on a new formula

• Else – Optionally placed somewhere prior to an End If to denote a

separate group of conditional steps that are performed only if all

preceding conditions were false

• End If – Required to terminate the conditional statement started by

the If step

As an example, assume an Invoice Status field has several possible values: Unsent,

Sent, Due, Past Due, Delinquent, and Paid. A script created to email an invoice wouldn’t

apply to those already sent, and sending a reminder about an overdue status wouldn’t

apply to every invoice record. Further, some haven’t been sent yet, some that have been

aren’t yet overdue, etc. A simple If statement can be set up to only send a reminder if an

invoice has a past due status as shown in the following example:

If [Invoice::Status = "Past Due"]

 Perform Script ["Email Invoice Past Due"]

End If

This can be expanded into a compound conditional statement that includes several

conditions that each call a different script. If the invoice hasn’t been sent, it runs a

script to send it. If the status is past due or delinquent, it sends a reminder or a warning,

respectively. Other statuses not included in the statement would send nothing.

If [Invoice::Status = "Unsent"]

 Perform Script ["Email Invoice"]

Else If [Invoice::Status = "Past Due"]

 Perform Script ["Email Invoice Past Due"]

Else If [Invoice::Status = "Delinquent"]

 Perform Script ["Email Invoice Collection Warning"]

End If

A conditional statement can be placed inside of another conditional statement

creating a nested statement. The statement hierarchy can be as complex as necessary to

achieve the necessary objective. In this example, the first outer statement contains and

controls which of the two inner compound statements get executed based on the status

field.

Chapter 25 Common SCrIptIng taSkS

620

If [Invoice::Status = "Past Due"]

 If [Invoice::Days Past > 15]

 Perform Script ["Email First Warning"]

 Else If [Invoice::Days Past > 30]

 Perform Script ["Email Second Warning"]

 Else If [Invoice::Days Past > 45]

 Perform Script ["Email Final Warning"]

 End If

Else If [Invoice::Status = "Delinquent"]

 If [Invoice::Days Delinquent > 15]

 Perform Script ["Email Collections Warning"]

 Else If [Invoice::Days Delinquent > 30]

 Perform Script ["Email Collections Notification"]

 End If

End If

Tip avoid situations where excessive nesting makes it too difficult to follow how
a script will execute when scrolling pages of steps.

 Showing Custom Dialogs
The Show Custom Dialog step is used to present a message to the user and can

also request input into three fields or variables. Dialogs can present an informative

notification, warn the user about a problem, confirm a certain action, present a choice

of action, request input, provide instruction, etc. With the step added to a script, the gear

icon opens a Show Custom Dialog Options dialog, which has two tabs: General and Input

Fields.

Chapter 25 Common SCrIptIng taSkS

621

 Configuring Dialog Properties
The General tab of the Show Custom Dialog Options dialog, shown in Figure 25-11, is

used to configure the messaging properties of a custom dialog. The Title and Message

fields can each receive static text typed directly or from a formula entered by clicking the

corresponding Specify buttons. These produce the values that appear in the title bar and

body of the dialog and should clearly convey a message or request an action.

Up to three button names can be defined for the custom dialog. These will appear

in the dialog from right to left with the Default Button being highlighted as the default

button which is responsive to the user typing the Enter key. If the current record

has uncommitted changes at the time the dialog is presented, any buttons with the

corresponding Commit Data checkbox enabled will cause the record to commit when

a user clicks in the dialog. This is useful when the dialog requests information that is

placed into fields.

Caution Dialogs do not automatically resize, so lengthy messages may
be obscured. although users can resize, keep messages concise to avoid
miscommunication.

Figure 25-11. The tab for configuring dialog properties (left) and an example
dialog (right)

Chapter 25 Common SCrIptIng taSkS

622

 Configuring Dialog Input Fields
A dialog can include up to three editable fields which are each linked to a target field or

variable. This allows a dialog to present a request for input from the users and can be

useful in numerous ways. A script can perform guided searches for specific fields, assist

during record creation by prompting required input, require a key phrase to confirm a

deletion action, and more. The Input Fields tab contains three sets of identical controls

for this purpose, shown in Figure 25-12.

To include a field in the dialog, enable the corresponding checkbox. Then click

Specify to select a target field or variable. The target acts as both the source and

destination of the text for that text area in the dialog. When the dialog opens, any value

in the target will be displayed in the input field as a default value which the user can

customize. Their entry in the dialog updates the target’s value which remains in place

after the user dismisses the dialog.

The Use password character checkbox will render the field in the dialog as an

obscured value, with each character appearing as a bullet point. Like the similar layout

setting for fields (Chapter 20, “Concealed Edit Box”), this is a display feature only and

does not alter or encrypt the text entered into the field. The value may still be visible on

layouts unless the field is also configured to display as bullets. In any case, the script can

access and manipulate the value like any other text string.

Figure 25-12. The tab for configuring input fields on a dialog

Chapter 25 Common SCrIptIng taSkS

623

The Label field allows a field label to appear above the field in the dialog. By default,

the field will be present on the dialog without a label. Type a static text label or click

Specify to generate a label with a formula.

Tip When a dialog requires more than three button or field options, or needs
other controls like pop-up menus or checkboxes, use the New Window step to
generate a dialog window from a custom layout.

 Capturing a Dialog Button Click
A dialog naturally pauses a script until a user clicks a button. Once a dialog is dismissed,

the script can access the index position of the button that was clicked using the Get (

LastMessageChoice) function. The number corresponds to the button’s configuration

order, which will display from right to left on the dialog. This value can be used

immediately or stored in a variable and used later in the workflow as shown in the

example here:

Show Custom Dialog ["Choose" ; "Please choose a function"]

Set Variable [$button ; Get (LastMessageChoice)

If there are three buttons defined – OK, Cancel, and Help – and the user clicks OK,

the $button variable will be set to a value of 1. The following example shows a formula

that can be used in the preceding Set Variable step to convert the numeric value into the

button name using the Choose function.

Let (

 number = Get (LastMessageChoice)

;

 Choose (number ; "" ; "OK" ; "Cancel" ; "Help")

)

 Creating a Related Record Using a Dialog
As a practical example of dialog with input options, create a script that starts from a

Contact record and walks through the creation of a Company record which is then

assigned to the contact. The script will automatically carry out a sequence that would

Chapter 25 Common SCrIptIng taSkS

624

be burdensome for a user: switch layouts, create a new company record, enter company

info, capture the id of the new record, return to the original layout, and enter the new

id into the contact’s foreign key field for a company relationship. The exact order will

change slightly for the scripted version. Instead of creating a record and entering data, a

dialog will request the name for the new company in a variable and, if the user doesn’t

cancel, continue with the record creation and assignment steps.

Show Custom Dialog ["Create a New Company" ; "Enter a name for the new

company:" ; $name]

If [Get (LastMessageChoice) = 2]

 Exit Script

End If

Freeze Window

Go to Layout ["Company" (Company) ; Animation: None]

New Record/Request

Set Field [Company::Company Name ; $name]

Set Variable [$id ; Value: Company::Record ID]

Go to Layout [original layout ; Animation: None]

Set Field [Contact::Contact Company ID ; $id]

Commit Records/Requests [With Dialog: Off]

Alternatively, if Allow creation of records (Chapter 9) is enabled for the Company side

of the relationship, a single step dialog can request a name and push it into the related

field, automatically creating the connection between the two.

Show Custom Dialog ["New Company" ; "Enter a name:" ; Contact |

Company::Company Name]

 Confirming a Dialog Field Value
To avoid an empty field in the dialog, use a Loop statement to confirm a value before

allowing the script to continue. When a user dismisses a dialog with a missing a value,

the script loops back, presenting the dialog again until the user either enters a value or

clicks Cancel. The following example places the dialog’s prompt into a $message variable

so it can change to a warning if subsequent loops are necessary. The Show Custom

Dialog step is placed inside the Loop statement with an Exit Loop If step jumping out of

the loop if the user cancels or if a name has been entered. If the $name variable is empty,

Chapter 25 Common SCrIptIng taSkS

625

the $message is modified to a more sternly phrased request before the loop repeats

again. Once the user enters a name, then the script can continue to perform any other

steps placed below these steps.

Set Variable [$message ; Value: "Enter a name for the new company:"]

Loop

 Show Custom Dialog ["Create a New Company" ; $message ; $name]

 If [Get (LastMessageChoice) = 2]

 Exit Script

 End If

 Exit Loop If [$name ≠ ""]
 Beep

 Set Variable [$message ; Value: "You MUST enter a name for the new

company:"]

End Loop

 Searching and Dealing with Found Sets
There are several different steps available to perform searches. These can be used

separately or used with steps that perform navigation, sorts, compilations, and other

functions. The Perform Quick Find step uses the text result of a formula as the criteria

to perform a search within any field on the current layout that has Quick Find enabled

(Chapter 19).

The Enter Find Mode step places the window into Find mode, giving the user or

script steps an opportunity to enter find criteria in fields before searching. It can Specify

find requests, establishing a default starting criteria, and optionally Pause to wait for the

user. Since the step does not actually perform a find itself, that must be initiated by the

user or another script step.

The Perform Find step can be used in Find mode to execute the criteria entered by a

user or script steps. Alternatively, it can be used in Browse mode as a stand-alone instant

find step when using its optional Specify Find Request dialog to define search criteria

(Chapter 4, “Working with Saved Finds”).

A find script can take many forms. It may perform a find based on static unchanging

criteria, build the criteria based on variables, solicit user criteria, or some combination

of these. The following example uses one hard-coded criterion and one user entered.

Chapter 25 Common SCrIptIng taSkS

626

After entering Find mode, it sets the Invoice Status field to “Paid” and then presents a

dialog allowing the user to enter a date range into an Invoice Date field. When the dialog

is closed, the search will resume, performing the find and showing a found set of all paid

invoices whose date falls within the range specified.

Go to Layout ["Invoice List"]

Enter Find Mode [Pause: Off]

Set Field [Invoice::Invoice Status ; "Paid"]

Show Custom Dialog [

 "Search Paid Invoices" ;

 "Enter a date range (m/d/yyyy...m/d/yyyy):" ;

 Invoice::Invoice Date]

Perform Find

Tip help users enter date ranges by inserting a default range into the target field
or variable prior to the Show Custom Dialog step.

 Iterating with Repeating Statements
A repeating statement is made up of one or more steps that are executed repeatedly

until a step exits the loop. FileMaker has three steps that are used to construct repeating

statements:

• Loop – Required to begin repeating subsequent steps until a

terminating step is executed

• Exit Loop If – Immediately terminates a loop when a formula entered

is true, skipping to the step after the next End Loop

• End Loop – Required to mark the bottom of the repeating statement

where control returns back to the start for the next iteration through

the steps

Certain steps inside the statement can also terminate the loop. For example, both

Exit Script and Halt Script will stop an entire script, including any active looping. Use the

Exit after last option of the Next or Previous option of a Go to Record/Request/Page or the

Chapter 25 Common SCrIptIng taSkS

627

Go to Portal Row steps to exit after the final record in the direction indicated is reached.

A user can also halt a script by typing Esc (Windows) or Period with the Command key

down (macOS) as long as Allow User Abort is On.

Caution If no step causes the loop to terminate, the statement will run endlessly
until a force quit which may cause file damage.

 Looping Through a Found Set of Records
A script can step through a found set and perform actions to each record. The following

example starts by navigating to the first record in a found set of invoices and then

initiates a Loop. For each record in the set, it calls another script named “Send Invoice

Email” that sends an invoice to the customer. Then, a Set Field step changes the Invoice

Status field from “Open” to “Sent.” Finally, it goes to the next record and repeats these

steps until it reaches the end of the found set and exits the loop.

Go to Record/Request/Page [First]

Loop

 Perform Script [Specified: From list ; "Send Invoice Email" ;

Parameter:]

 Set Field [Invoice::Invoice Status ; "Sent"]

 Go to Record/Request/Page [Next ; Exit after last: On]

End Loop

Another example in the following loops through a found set of open invoices and

collects the value of several fields for each record. It extracts the id, date, company,

amount, and a new Invoice Status Overdue field that calculates the overdue value

for each invoice record with a status of “Sent” by looking at the number of 30-day

increments that have passed since from the Invoice Date. These values are arranged as a

columnar list stored in a variable named $Body which can later be used to create a report

email or saved into a data file.

Go to Record/Request/Page [First]

Loop

 Set Variable [$Body ; $Body &

 Invoice::Record ID & " " &

Chapter 25 Common SCrIptIng taSkS

628

 Invoice::Invoice Date & " " &

 Invoice::Invoice Company Name & " " &

 Invoice::Invoice Amount & " " &

 Invoice::Invoice Status Overdue & "¶"]

 Go to Record/Request/Page [Next ; Exit after last: On]

End Loop

// result =

 1001 04/15/2021 Fantastic Client 1000 Over 60 Days

 1001 04/15/2021 Fantastic Client 1000 Over 60 Days

 1002 05/19/2021 Creative Company 3000 Over 30 Days

 1003 06/1/2021 Fantastic Client 4500 Open

 1003 06/15/2021 Fantastic Client 958 Open

When the result of the preceding example is used as the body of an email message,

the data can be formatted differently to make it more readable. The following example

returns a similar report that is refined with overdue status as a heading above groups of

invoices rather than being repeated for each invoice. Starting with the same found set of

open invoices sorted by Invoice Status Overdue, the script uses a variable named $Last.

Status to track the status value from the record in the last iteration. Anytime it encounters

a new status value in the current record, it performs a conditional step to insert that into

to the $Body variable with some extra paragraph returns. Then it puts the current status

into the $Last.Status variable so it will be ignored on each subsequent iteration until a

different value is detected.

Set Variable [$Last.Group ; ""]

Go to Record/Request/Page [First]

Loop

 Set Variable [$Group ; Invoice::Invoice Status Overdue]

 If [$Group ≠ $Last.Group]
 # Add header row

 Set Variable [$Body ; $Body & Case ($Body ≠ "" ; "¶") & $Group &
"¶"]

 Set Variable [$Last.Group ; $Group]

 End If

 # Add body row

 Set Variable [$Body ; $ Body &

Chapter 25 Common SCrIptIng taSkS

629

 Invoice::Record ID & " " &

 Invoice::Invoice Date & " " &

 Invoice::Invoice Company Name & " " &

 Invoice::Invoice Amount & "¶"]

 Go to Record/Request/Page [Next ; Exit after last: On]

End Loop

Result =

 Open

 1003 06/1/2021 Fantastic Client 4500

 1003 06/15/2021 Fantastic Client 958

 Over 30 Days

 1002 05/19/2021 Creative Company 3000

 Over 60 Days

 1001 04/15/2021 Fantastic Client 1000

 1001 04/15/2021 Fantastic Client 1000

 Looping Through Data
A Loop can also be used to step through data stored in a variable. Each loop can perform

operations on a paragraph of a return-delimited list of values or a key of a JSON Object,

working through them one by one until complete. There are different ways of controlling

the process. One method involves setting up a couple of control variables, one to store

a count of values and another to keep track of the number of the current value which is

incremented on each loop.

For example, assume a list of state abbreviations placed into a variable named

$States. Each state listed will be used to build one find criteria request for a search of

Contact records. If the entire list of states is entered into a single find request, there will

be no resulting matches since that would instruct FileMaker to look for records with

a mailing address that includes all those states. To get a result, multiple find requests

need to be created, one for each state in the list. The following script assumes a variable

named $State contains a list of abbreviated states, e.g., OH¶PA¶NY. It counts these using

the ValueCount function and places that number into a variable named $Count which

will control how many loops we perform. Then, it initializes another variable named

$Current to indicate a start on the first state in the list. Next, it does the Enter Find

Mode step and begins the Loop through the list of states, creating one find request for

Chapter 25 Common SCrIptIng taSkS

630

each state in the variable. With each loop, the $Current variable is increased by one

until it exceeds $Count and the loop is exited. After the loop has terminated, the find is

performed.

Set Variable [$States ; "OH¶PA¶NY"]

Set Variable [$Count ; ValueCount ($States)]

Set Variable [$Current ; 1]

Enter Find Mode [Pause : Off]

Loop

 Set Field [Contact::Contact Address State ; GetValue ($States ;

$Current)]

 Set Variable [$Current ; $Current + 1]

 Exit Loop If [$Current > $Count]

 New Record/Request

End Loop

Perform Find []

Another method of doing the same is to use the first value from the list on each loop

but remove it from the list, repeating until the list is empty. This eliminates the need

to have control variables to store the number of values and the current value. In the

following example, GetValue is used to insert the first state into the current request. Next,

the $States variable uses the ValueCount and RightValues functions to remove the first

value, leaving the remaining values for future iterations. When the $States variable is

empty, the Exit Loop If step terminates the loop and the find is performed.

Set Variable [$States ; "OH¶PA¶NY"]

Enter Find Mode [Pause : Off]

Loop

 Set Field [Contact::Contact Address State ; GetValue ($States ; 1)]

 Set Variable [$States ; RightValues ($States ; ValueCount

($States) - 1)]

 Exit Loop If [$States = ""]

 New Record/Request

End Loop

Perform Find []

Chapter 25 Common SCrIptIng taSkS

631

 Managing Windows
There are numerous script steps that allow for the manipulation and management of

windows. The Adjust Window step changes the visibility or size of a window based on

a selection from one of five options. The Resize to Fit setting will adjust the dimensions

of the window to the minimum size possible while continuing to display the entire

content area within the confines of the maximum size allowed by the current monitor

dimensions. Choosing Maximize will cause the step to resize the window to the full size

of the computer screen, while Minimize will shrink the window down to an icon stored

in the Dock (macOS) or taskbar (Windows). To return a window to the size and position

it was when the script started, choose Restore. Finally, the Hide option will hide the

window from view, placing it into the Window ➤ Show Window menu from where it can

be reopened. The Arrange all Windows step can arrange every open window one of four

ways: Tile Horizontally, Tile Vertically, Cascade, or Bring All To Front. Other steps can

Close, Refresh, or Scroll Window. The Select Window step will bring a specific window to

the front, making it the currently active context. With Move/Resize Window, a script can

adjust the Height, Width, Distance from Top, and Distance from Left dimensions for a

specified window. Change the name of a window using the Set Window Title step.

 Creating a New Window
The New Window step will create a new window based on the current window’s type,

layout, size, positions, and other properties, unless these are specifically modified in the

configuration dialog shown in Figure 25-13.

Chapter 25 Common SCrIptIng taSkS

632

The Window Style controls the type of window that will be created. The default

option is a Document which is a standard non-modal FileMaker window. Other options

are a Floating Document (a non-modal window that remains in front of other windows),

a Dialog (a window that is modal to the application), or a Card (a window modal to and

attached as an overlay to the parent window).

Note a window is modal when it forces user interaction and/or dismissal before
resuming other work in the affected context.

The central settings are all optional. If these are not specified, the new window

will default to the settings of the window active when the step is executed. A Window

Name can be entered in the text area or by clicking the fx button to generate one with

Figure 25-13. The configuration options for creating a new window with a script

Chapter 25 Common SCrIptIng taSkS

633

a formula. If no name is specified, the new window will be named the same as the

current window with a numeric suffix. Select a Layout that should be displayed in the

new window. The Size and Position dimensions control window dimensions, each with

the option to directly enter a value or a formula. The From Top and From Left positions

can specify positions based on the current user’s screen size. A formula can be used for

precise centering or other alignments (Chapter 13, “Getting Window Dimensions”).

Tip Developers often create “staging” windows with large negative value for the
From Left and From Top properties to “hide” them off-screen when performing a
complex sequence of steps that would be visually distracting to a user if done in
full view.

The Window Options checkboxes control the properties of the new window. The

Close, Minimize, Maximize, and Resize options enable the ability of a user to modify

the window. The Menubar visibility can be visible or hidden (Windows only) as can the

Toolbars. For Card windows, the Dim Parent Window option will obscure the window

behind the attached card window to help highlight its dimensions.

Caution opening a modal window without access to the close function and
without a button or script to close the window will trap the user and may require a
force quit of the application to escape.

 Building a Custom Dialog Window
One way to overcome the limitations of the Show Custom Dialog step is using the New

Window step to open a custom layout designed as a dialog. Since the dialog is really a

layout, it can contain any number of any type of object formatted in any way required to

accomplish the intended task. It can include lengthy instructions, any number of input

fields configured with any control style, and way more than three buttons. A script can

present the dialog in a new window and pause for the user action before continuing. In

this section, we create a simple dialog layout and script that opens it in a new window,

enters Find mode, and pauses for the user to make a selection of a state in a pop-up

menu. Four buttons are included to continue the process: a choice of three types of

marketing emails that would be sent to the found set and an option to cancel.

Chapter 25 Common SCrIptIng taSkS

634

 Creating a Dialog Layout

Create a new layout named “Contact – Dialog Find” and assign it to the Contact table.

Remove other parts and shrink the Body part down to a desired dialog size, as shown

in Figure 25-14. Add a text object for a heading and action prompt. Place the Contact

Address State field formatted as pop-up menu assigned a value list of state abbreviations.

Distribute four buttons along the bottom, and configure their Autosize settings in the

Position tab of the Inspector pane to lock to the bottom right, so the window size can vary

slightly without adversely affecting the appearance. Then, save the layout by returning to

Browse mode and create a script.

 Creating a Dialog Layout Script

A dialog script can be configured in a variety of different ways, and your choice will vary

based on the functions required. In some cases, a script can open the dialog, pause,

and then continue when a button is clicked. In other cases, a group of separate scripts

can be created: one to present the dialog and one for each button option. The following

example uses parameters to package all the operations as separate functional sections

of a single script. Start by creating a script named “Contact - Marketing Email,” as shown

in Figure 25-15. The script starts with a Set Error Capture step and then places the

Figure 25-14. An example of a layout designed for use as a dialog

Chapter 25 Common SCrIptIng taSkS

635

script parameter into a $function variable. It accepts one of five parameters to guide the

workflow through different conditional statements: Start (default when no parameter

provided), Cancel, Introduction, Services, and Offers.

A Start parameter will begin the process, being triggered when the user runs

the script from the Scripts menu, a custom menu, a button, or some other triggering

methods. The first portion of the conditional If statement allows for either a parameter

of “Start” or no parameter, which opens a new window showing the dialog layout,

assigns a name, and centers itself on-screen both horizontally and vertically. Then it

enters Find mode and relinquishes control to the user, allowing them to select a state

from the pop-up menu and make a button selection. The other four parameters will be

used to perform different conditional steps depending on which of the four buttons is

clicked. So, each button calls the same script but passes in a different parameter which

activates a different portion of the conditional statement. When the script detects the

Cancel parameter, it will enter Browse mode and close the dialog, returning the user to

the window they had open previously. Each of the three report buttons will be handled

after the first Else step which has a nested conditional statement. There, the Perform

Find step executes the search and, if records are found, steps through the resulting found

set. Inside the Loop statement is a nested condition for each of the three parameters,

but with specifics omitted for simplicity. The three comments indicate where additional

steps would be placed to create and send an email, or perform whatever action is

required.

Chapter 25 Common SCrIptIng taSkS

636

Notice that the script doesn’t close the dialog until after it is finished running
whichever conditional section is activated by the parameter. The new window for the
dialog is being used as a temporary context which is separate from other windows the
user had open when the script ran. Since the find is performed in the dialog window,
the results will only exist there, and so the other steps must be performed in that context
before closing the window. Alternatively, a script could gather the find criteria entered
in the dialog and the name of the button clicked, store them in variables and close the
window, and then reconstruct and perform the find in the original window.

Once the script is written and saved, make sure to check the box to include the script
in the Scripts menu or provide some other interface access point where the users can
start the process.

Caution Be sure to connect the layout buttons to the script to avoid opening a
window that can’t be closed!

Figure 25-15. The dialog script has conditions for each of five parameter values

Chapter 25 Common SCrIptIng taSkS

637

 Connecting the Dialog Buttons to the Script

Each button should call the script with a parameter, as shown in Figure 25-16.

 Introducing the Card Window
A Card is a modal window that appears as an overlay connected on top of the current

window’s active layout, as shown in Figure 25-17. The parent window’s content

becomes inactive and inaccessible while the card is open. However, depending on the

size of the card, the content behind may still be visible in an optionally diminished

light. Unlike a Dialog window, which is modal to the application, a card only locks up a

single window.

Figure 25-16. Each button calls the script with a parameter and set to exit the
current script

Chapter 25 Common SCrIptIng taSkS

638

Cards are similar in appearance and behavior to modal windows found in other

environments. For example, a macOS dialog can open as a sheet, attached to the top of a

window. Also, web pages often display various objects like advertisements or images in

a similar lightbox format. In FileMaker, Card windows are great for presenting navigation

menus, custom toolbars, dialogs, wizards, custom help guides, and more. Since the

layout displayed has its own context, it can be based on a table occurrence other

than that of the parent window’s active layout. This allows a card to provide universal

interface “services” that work anywhere in your solution which can reduce technical

redundancy and facilitate resource sharing.

Figure 25-17. An example of a card window

Tip When configuring a Card in the New Window Options dialog, leave the Size
and Position values empty to have the layout centered in the parent window at
full size. Set the top position to 0 to simulate attachment to the top of the parent
window.

Chapter 25 Common SCrIptIng taSkS

639

 Using Insert from URL
The Insert from URL step enters data from a URL into a target field or variable. The

command supports the http, https, ftp, ftps, and file protocols and includes cURL options.

The step’s panel includes options to specify various settings, as shown in Figure 25-18.

 Downloading a PDF File
Start with a simple example by downloading a PDF file from a website. First, click to

specify a target container field as the destination for the file, e.g., the Example Container

field in the Sandbox table. Then, click to Specify URL and enter the address of a PDF file,

as shown in Figure 25-19. Run the script and the file should appear in the container field.

Figure 25-18. The Insert from URL step’s configuration panel

Figure 25-19. The Insert from URL step’s configuration panel

Chapter 25 Common SCrIptIng taSkS

640

 Accessing Zip Code Information
The Insert from URL step can be used to access APIs such as the zip code lookup service

from Datasheer, L.L.C. (https://www.zip-codes.com/zip-code-api.asp). The site

allows a URL to request a JSON object of information about any U.S. Zip Code. You

can register at the site for a free account (limited to 250 lookups/month) or purchase

a variety of tiers up to 2 million lookups per month. The example below uses a limited

demo API key and can be run from a Contact layout after a zip code is entered into a

field. The script starts by placing site’s API address and the current record’s Contact

Address Zip field value into a $URL variable. Next, the Insert from URL step targets a

$Data variable and uses the $URL variable as it’s URL. The two Set Field steps places the

city and state values parsed from the $Data result into the corresponding fields.

Set Variable [$URL ; Value: "https://api.zip-codes.com/ZipCodesAPI.

svc/1.0/QuickGetZipCodeDetails/" &

Contact::Contact Address Zip & "?key=DEMOAPIKEY"]

Insert from URL [With dialog: Off ; Target: $Data ; $URL]

Set Field [Contact::Contact Address City ; JSONGetElement ($Data ; "City")]

Set Field [Contact::Contact Address State ; JSONGetElement ($Data ; "State")]

Tip For the smoothest experience, use an OnObjectValidate script trigger
(Chapter 27) to run this script after the user types into the Contact Address Zip field.

 Using cURL Options
Client URL (cURL) is an open-source, command-line tool for data transfer between

different systems using the URL syntax. The technology greatly expands the functionality

possible with website requests, using structured data accompanying the URL but

separated from it. This offers a more secure method of data transfer with far greater

structural flexibility. FileMaker’s Insert from URL script step includes a button to Specify

cURL Options when sending a request to a website that requires a cURL format instead of

embedding it directly in a URL. After entering the URL, click the Specify button and enter

options, structured as required by the target website. For example, if a website requires

authentication, the options might be formatted as shown in the following example. This

Chapter 25 Common SCrIptIng taSkS

https://www.zip-codes.com/zip-code-api.asp

641

example places a URL into one variable and cURL options in another and then uses

these in the Insert from URL step which targets a $Data variable for the result.

Set Variable [$URL ; Value: "https://www.example.com/"]

Set Variable [$Options ; Value: "--user name:password]

Insert from URL [With dialog: Off ; Target: $Data ; $URL ; cURL Options:

$Options]

cURL can be used to push data to a web form as shown in the following example. A

first name and last name are structured with field labels and included as the content of a

data option which is then sent to a website’s contact form.

Set Variable [$URL ; Value: "https://www.example.com/contact.cgi"]

Set Variable [$Options ; Value: "--data \"firstname=Mark&lastname=Munro\""]

Insert from URL [With dialog: Off ; Target: $Data ; $URL ; cURL Options:

$Options]

 Summary
This chapter presented many examples of scripting tasks that can be used to automate

activity within a database. In the next chapter, we will look at the built-in script

debugging capabilities provided as part of FileMaker’s advanced tools.

Chapter 25 Common SCrIptIng taSkS

643
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_26

CHAPTER 26

Debugging Scripts
When a simple script encounters an error, it is relatively easy to troubleshoot. As a

database grows more complex, troubleshooting rapidly becomes more challenging.

Script calls initiated by users, event triggers, other scripts, and external systems form

complex interwoven hierarchical execution stacks. Scripts can change found sets, switch

layouts, and open new windows, creating a complex web of interconnected interface

contexts. When something breaks, it is often difficult to even know which script caused

the error, not to mention knowing where, why, and under what contextual conditions

the problem occurred. To ease this burden, modern development environments like

FileMaker include a debugger. In this chapter, we introduce script debugging and cover

the following topics:

• Introducing debugging

• Exploring the debugging interface

• Using custom breakpoints

 Introducing Debugging
A script debugger is an interactive tool used by developers to visually step through a

scripted process and troubleshoot or analyze performance. FileMaker’s debugger makes

it easy to step through scripts, monitor variables, set breakpoints, and discover errors

while directly observing the corresponding actions performed in the database interface

in real time. It includes an option to temporarily disable all script triggers to avoid a

malfunctioning startup script or other situations. The debugger can be activated by

selecting Script Debugger from the Tools menu or in the header of the Script Workspace

(Chapter 24). Also, a Pause on error option can be enabled to automatically open the

debugger and pause action anytime a script generates an error while working in Browse

mode as a user.

https://doi.org/10.1007/978-1-4842-6680-9_26#DOI

644

When running a script in the debugger, FileMaker pauses at the start of each script in

the stack and at any step that encounters an error. You can define arbitrary breakpoints

at any step to force the script to pause for further investigation. Once paused, there is a

choice to Continue executing the script to the next breakpoint, Halt to abort the script, or

Step forward using one of four options:

• Step Over – Continues executing the current script, performing any

subscripts without debugging

• Step Into – Continues executing the script step by step, performing

any subscripts with debugging

• Step Out – Executes the remaining steps in the current subscript and

then returns control up to the stack to the parent script, pausing on

the line after the subscript call

• Set Next Step – Skips ahead to a selected step in the current script

without performing the interim steps

 Exploring the Debugging Interface
The debugging interface includes debugging options under the Tools menu, a Script

Debugger window, and a Data Viewer window.

 Debugging Options Under the Tools Menu
The Tools menu, shown in Figure 26-1, contains the three items at the top for debugging.

The Script Debugger menu item will toggle the visibility of the debugging window. The

Debugging Controls submenu contains various debugging functions for controlling the

movement through an active script. Most of these are also available in the debugging

window toolbar. Finally, the Data Viewer menu item toggles the visibility of a window

used to browse variables and dynamically monitor formula results based on the current

context.

Chapter 26 Debugging SCriptS

645

 Exploring the Script Debugger Window
The Script Debugger window, shown in Figure 26-2, is always open when debugging

is active. The non-editable toolbar contains buttons for controlling the debugging

process. The steps of the active script are listed in the middle with a green arrow label

on the number of the paused step. Any steps with a breakpoint are similarly highlighted

with a blue arrow. The Pause on error checkbox below opens the debugger and pauses

on any steps that generate an error during regular use, including those automatically

suppressed with the Set Error Capture script step. At the bottom is the call stack, a

hierarchy of nested script calls that are listed up in execution order, from the current

script back to the first script that started the currently active workflow.

Figure 26-1. The Script Debugger menu showing the Debugging Controls
submenu

Chapter 26 Debugging SCriptS

646

In the example shown in Figure 26-2, a script named “Report Start” was run, and

it called the active script named “Prepare Report Records” which is displayed. Sensing

a new script starting, the debugger automatically paused on the first step, freezing the

interface in its current state. The fourth step has a breakpoint which adds an additional

forced pause. The developer now has time to observe the state of the interface, review

the current script steps, and decide the next option: continue running normally,

stepping through the script line by line, or completely halting the entire script stack to

make any required development changes.

 Status Toolbar Items (Debugger Window)

The non-customizable status toolbar for the Script Debugger window, shown in

Figure 26-3, provides control over the debugging process.

Figure 26-3. The toolbar of the Script Debugger window

Figure 26-2. The window used to debug scripts

Chapter 26 Debugging SCriptS

647

 1. Edit Script – Open the paused script in the Script Workspace.

 2. Continue – Continue running the paused script using default

stepping/pausing options.

 3. Halt Script – Stop all scripts in the entire stack.

 4. Step Over – Continue the current script without debugging

subscripts.

 5. Step Into – Continue the current script step by step with debugging

subscripts.

 6. Step Out – Continue the current subscript without debugging until

control is returned to the parent script, and then pause.

 7. Set Next Step – Jump ahead to the script step that is selected in the

window, skipping over the interim steps.

 8. Disable Script Triggers – Toggle the enabled status of script triggers

globally in the database file.

 9. Open Data Viewer – Open the Data Viewer dialog.

 Exploring the Data Viewer
The Data Viewer is a dialog that displays a list of variables and their current value, as

shown in Figure 26-4. This can be opened at any time to view global variables or to test

a formula. When used in conjunction with the debugging feature or any time a script

is paused, it displays the value of all variables at the moment the pause occurred. The

dialog has two tabs: Current and Watch.

Figure 26-4. The dialog used to monitor the value of variables

Chapter 26 Debugging SCriptS

648

The Current tab lists every variable currently defined. Global variables are always

present, while local variables are only present when a script is running or paused.

Double-click to open a variable into a dialog for an expanded view of its content.

Observing variables at key moments during a script’s execution has many uses. For

example, when an Export or Save as script step fails and you suspect it might be a faulty

path construction, add a breakpoint just prior to that step, and then confirm that the

value in the variable contains a valid path when the debugger pauses.

The Watch tab is used to monitor values in a manually compiled list of variables,

fields, or expressions. This can be used during debugging or to test new formulas before

integrating them into a field, layout object, or custom function. An expression on this tab

can optionally continuously evaluate a result based on the current window’s context so it

provides the ability to confirm a formula with real-time values.

 Setting Custom Breakpoints
A custom breakpoint is a developer marked point in a script that pauses the debugger

and is used to troubleshoot script problems. Breakpoints allow you to stop a script at

any arbitrary position and provides an opportunity to see the current layout context and

review current values in key variables at a frozen moment in time. Breakpoints allow you

to quickly run a script up to a specific line without having to manually step through it. To

add a breakpoint, open a script and click a step number. A breakpoint is indicated when

the number is illuminated in a blue arrow, as shown in Figure 26-5. Breakpoints can be

removed individually by clicking on the arrow icon or selecting the Remove Breakpoints

option from the Tools ➤ Debugger Controls submenu to remove all breakpoints from the

current script paused in the debugger.

Chapter 26 Debugging SCriptS

649

 Summary
This chapter introduced the debugging capabilities of FileMaker. These provide an

invaluable tool for troubleshooting databases with complex scripting. In the next

chapter, we will learn how to trigger scripts in response to interface events.

Figure 26-5. A script with two breakpoints

Chapter 26 Debugging SCriptS

651
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_27

CHAPTER 27

Using Script Triggers
A script connected to a button or menu requires a user to perform a manual action to

initiate the process. While this is fine for tasks that are optional or require a conscious

choice, critical business functions can be forgotten. In some cases, it may be inefficient

and non-intuitive to require a user to perform extra clicks to initiate mandatory actions

in the interface. FileMaker allows you to design dynamically responsive interfaces that

connect user events to custom scripts. A script trigger is a developer-defined connection

between an interface event and a script process. Whenever the event occurs, the script

runs automatically. FileMaker has over two dozen triggers for a variety of file, layout, and

object events. Some events run the assigned script prior to the completion of the user

action, allowing the script to execute custom steps and determine if the event should

be performed to completion. Others run after the event, allowing the script to perform

follow-up tasks. This chapter introduces script triggers, covering the following topics:

• Defining available triggers

• Understanding event precedence

• Accessing targets before event completion

• Avoiding trigger exceptions

Tip Objects assigned a script trigger will optionally display a badge icon in
Layout mode (Chapter 17, “View Menu”).

https://doi.org/10.1007/978-1-4842-6680-9_27#DOI

652

 Defining Available Triggers
There are three categories of script triggers: file, layout, and object.

 File Triggers
A file trigger runs a script in response to a file event. These triggers are configured in

the Script Triggers tab of the File Options dialog (Chapter 6), shown in Figure 27-1. This

dialog can be accessed by selecting the File ➤ File Options menu. At the top of the dialog

is a list of all the file events available. The checkbox indicates an active event that will

trigger the script displayed. The bottom half displays details for the selected event. Click

Select to specify the script that will be connected to that event.

Figure 27-1. The options dialog tab used to define triggers for the file

Chapter 27 Using sCript triggers

653

 OnFirstWindowOpen

The OnFirstWindowOpen event occurs after the first window appears when a database

file opens, providing an opportunity to automatically perform setup functions prior to a

user beginning work. The triggered script can initialize global variables, automatically

open other windows, or perform default finds and sorts. This event only occurs when

a database is opened by a user or by the Open File script step run from another file. It

does not occur if the file opens as a hidden window behind another database to display

resources through a relationship.

Tip navigation to a starting layout and hiding toolbars on file opens can be set on
the Open tab of the File Options dialog without a trigger.

 OnLastWindowClose

The OnLastWindowClose file event occurs as a file begins to close the last interface

window. This provides an opportunity for a script to perform last-minute maintenance

tasks. If necessary, the script can halt the closure by returning a false (0) value. For

example, a script can use the Show Custom Dialog step can confirm that the user actually

intended to close the file and give them an option to cancel. In the following example,

the dialog step is configured so the first (default) button is named “Cancel,” and the

second is named “Close.” It uses the Get (LastMessageChoice) function to detect which

button was clicked. If the user clicks the first button to cancel, it returns a zero result

which causes the triggering event to halt, thereby leaving the window and file open.

Show Custom Dialog ["Really close the database?"]

If [Get (LastMessageChoice) = 1]

 Exit Script [Text Result: 0]

End If

 OnWindowOpen

The OnWindowOpen file event occurs after any new window is created by a user

selecting the Window ➤ New Window menu or a script running the New Window step. It

is also triggered when a file previously opened hidden because of a relational connection

is brought forward for the first time. This provides an opportunity to perform any

Chapter 27 Using sCript triggers

654

configuration or setup routines for the window. For example, this can be used to position

the window precisely on screen, perform a default find, sort, set up control variables, or

otherwise prepare the window for use.

 OnWindowClose

The OnWindowClose file event occurs immediately before any window is about to

close. This provides an opportunity to perform last-minute validation functions or

maintenance routines to the record(s) viewed within the window. Like other events that

precede an action, if the script returns a false (0) value, the process will be halted and the

window will remain open.

Note Both window open events are triggered when a file is first opened, and
both window close events are triggered when closing the last window.

 OnFileAVPlayerChange

The OnFileAVPlayerChange file event occurs after the playback state of a media file

playing in a container field or URL is changed. For example, the event triggers when

paused, played, or stopped or when the media stops upon reaching the end. This event

is only supported in FileMaker Go on iOS devices.

 Layout Triggers
A layout trigger runs a script in response to a layout event. These triggers are configured

in the Script Triggers tab of the Layout Setup dialog (Chapter 18), shown in Figure 27-2.

The dialog is similar to the File Options dialog with the addition of checkboxes to control

which Window mode(s) the event is enabled.

Chapter 27 Using sCript triggers

655

 OnRecordLoad

The OnRecordLoad layout event occurs after a record becomes current. This provides an

opportunity to set up default field values with values too complex for auto-enter settings,

create related records, or perform other custom record tasks. Any activity that causes a

window to activate a record will trigger this event. This includes the following:

• Navigating to a new record within a found set

• Navigating to a different layout

• Creating a new record

• Deleting a record in a found set of more than one record

• Creating a new window showing a table with one or more records

• Displaying search results

Figure 27-2. The dialog used to configure layout script triggers

Chapter 27 Using sCript triggers

656

 OnRecordCommit

The OnRecordCommit layout event occurs before committing a modified record. This

provides an opportunity to halt the commit action if necessary. If the script result is true

(1), the original event proceeds normally. If the result is false (0), the event is canceled.

Any activity that causes the current record to commit will trigger this event, including

• A user explicitly committing a record by typing the Enter key or

clicking outside of fields on the active record

• Navigating to a different record

• Creating, deleting, duplicating, or omitting records

• A script performing the Commit Records/Requests step

• Opening the Manage Database dialog or other developer dialogs

• Closing the file

 OnRecordRevert

The OnRecordRevert layout event occurs before reverting a modified record to its

previously committed state. This event is triggered when a user selects the Records

➤ Revert Record menu or a script runs the Revert Record/Request step. It provides an

opportunity to open a custom dialog confirming the action, perform other resetting

actions, or halt the reversion action if necessary.

 OnLayoutKeystroke

The OnLayoutKeystroke layout event occurs when any character is typed on the keyboard

except those handled as functions by the operating system or FileMaker’s active menu

set. The event triggers even when no field has active focus and occurs before the keystroke

event is sent to FileMaker. This provides an opportunity for a script to override the

default error dialog with a custom message when the user begins typing before entering

a field. This can also be used to run a script in response to a key combination that isn’t

associated with a menu or to refresh a view when typing into a portal filter (Chapter 20,

“Filtering Portal Records”). Using two trigger-centric Get functions, the following example

gets the key(s) typed and runs a script when the user types “1” while holding down the

macOS Control key. The script runs the Perform Script step (shown undefined) and

Chapter 27 Using sCript triggers

657

then uses the Exit Script with a result of 0 to halt the keystrokes. Any other keys typed are

ignored by the script and continue into the active field.

If [Get (TriggerModifierKeys) = 4 and Get (TriggerKeystroke) = "1"]

 Perform Script []

 Exit Script [Text Result: 0]

End if

 OnLayoutEnter

The OnLayoutEnter layout event occurs after a when a window switches to a different

layout in Browse mode. This provides an opportunity to perform similar setup

functionality as the triggers when opening a window or activating a record.

 OnLayoutExit

The OnLayoutExit layout event occurs before navigating away from the current layout.

This provides an opportunity to validate and halt the navigation change if necessary.

 OnLayoutSizeChange

The OnLayoutSizeChange layout event occurs after the window has changed size. This

happens when opening a window, resizing a window, hiding/showing the toolbar or

formatting bar, and toggling an iOS device between portrait and landscape. This provides an

opportunity to perform activity such as enforcing a minimum window size or repositioning

a window to keep it centered perfectly within the bounds of the screen dimensions. The

following formula can be used in a Set Variable step to establish variables for $Height and

$Width using either the current window dimensions or switching to a default minimum

when those values are too low. Those variables can then be used in the Move/Resize

Window script step to enforce a minimum window size, in this case 800 x 1000.

Let ([

 Height = Get (WindowHeight) ;

 $Height = Case (Height < 800 ; 800 ; Height) ;

 Width = Get (WindowWidth) ;

 $Width = Case (Width < 1000 ; 1000 ; Width)

] ;

 ""

)

Chapter 27 Using sCript triggers

658

 OnModeEnter

The OnModeEnter layout event occurs after a change to Browse, Find, or Preview mode.

This provides an opportunity to prepare a window for specific activity like setting up

default find criteria, initializing variables, or adjusting print setup.

 OnModeExit

The OnModeExit layout event occurs before changing the window’s mode. This provides

an opportunity for a script to validate and halt the mode change if necessary.

 OnViewChange

The OnViewChange layout event occurs after a change between Form, List, and Table

view.

 OnGestureTap

The OnGestureTap layout event occurs when a tap gesture is performed on a layout.

This provides an opportunity for a script to use the Get (TriggerGestureInfo) function

to determine details about the event and perform custom actions or halt the gesture if

necessary. The event is triggered under the following conditions:

• FileMaker Go and Windows only (except Windows 7).

• Browse and Find modes only.

• Tap is not made in active web viewers or active edit boxes.

• Single tap is one, two, or three fingers (iOS).

• Double tap with one finger (iOS), which will trigger the event twice.

• Tap is with two fingers (Windows).

 OnExternalCommandReceived

The OnExternalCommandReceived layout event occurs when a user presses a button to

control playback functions on an iOS device lock screen or on an external device, e.g.,

play, pause, stop, next, and previous. The triggered script runs before the event occurs,

and it can use the Get (TriggerGestureInfo) function to gain information about the

external event.

Chapter 27 Using sCript triggers

659

 Object Triggers
An object trigger runs a script in response to an event performed to or within a layout

object. These can be configured in the dialog shown in Figure 27-3, which is accessed by

selecting an object and choosing the Set Script Triggers function from the Format menu

or an object’s contextual menu. Also, the Popover Panel Setup dialog has a button to

open this dialog (Chapter 20, “Exploring the Popover Button Setup Options”).

 OnObjectEnter

The OnObjectEnter event occurs after a layout object receives active focus when a user

clicks on the object or tabs into the object or when a script runs a step such as Go to

Object or Go to Next Field.

Figure 27-3. The dialog used to configure object script triggers

Chapter 27 Using sCript triggers

660

 OnObjectKeystroke

The OnObjectKeystroke event occurs when any character is typed into an object with

focus but before the event is completed. Similar to a layout keystroke trigger, this will

ignore those keystrokes handled by the operating system or the FileMaker application,

and it can be halted by exiting the script with a false (0) value.

 OnObjectModify

The OnObjectModify event occurs after the value of an object has changed. The event

only occurs in response to interface-related actions. It does not occur when a window

updates values that are modified in an external data source, when a field is updated by

an auto-enter formula, or when the Set Field script step is used to update the value of a

field. The following will trigger this event:

• Typing keystrokes into the object

• Selecting a new value in a value list formatted field

• Using Cut, Paste, or Clear functions

• Dragging and dropping content into it

• Changing the value of the object with an interface-related script step

such as Insert Text

• Selecting a new tab control panel

 OnObjectValidate

The OnObjectValidate event occurs when the value of a modified field is ready for

validation just prior to being saved when focus is about to move to another field or a

record is in the process of being committed. This provides an opportunity to validate

the change to the object, perform any preliminary actions, and/or halt the movement to

another object if necessary.

 OnObjectSave

The OnObjectSave event occurs after a modified field has been validated but before

being exited, providing another opportunity to halt the exit process.

Chapter 27 Using sCript triggers

661

 OnObjectExit

The OnObjectExit event occurs anytime an object is about to lose active focus regardless

of any modifications. This happens when moving to another object, portal row, or field

repetition. It also occurs when any action that causes a record to commit occurs. The

script is triggered before exiting the object allowing it to halt the process if necessary.

 OnPanelSwitch

The OnPanelSwitch event occurs before the current view of a panel control is about

to change and can be halted by exiting the script with a false (0) value. Built-in Get

functions can determine the layout name of the object and the number of the current

and target panels allowing a script to take specific actions pertinent to the change. The

following formula can be placed into a Show Custom Dialog step of the target script or

in the Data Viewer (Chapter 26) to illustrate these values, in the form of a sentence. Use

them in an If statement to conditionally perform different sets of steps depending on

which was the starting and ending panel.

Let ([

 currentPanel = GetValue (Get (TriggerCurrentPanel) ; 1) ;

 targetPanel = GetValue (Get (TriggerTargetPanel) ; 1)

] ;

 "Changing from panel " & currentPanel & " to panel " & targetPanel & "."

)

 OnObjectAVPlayerChange

The OnObjectAVPlayerChange event occurs after media in an object changes state. For

example, the event will trigger a script when a user pauses, plays, or stops a video in a

field or when the video stops upon reaching the end. This event is only supported in

FileMaker Go on iOS devices.

 Understanding Event Precedence
Many user actions will trigger multiple events, and FileMaker will execute the script

triggers in a specific order of precedence. The choice of where your script intercepts the

action depends on the kind of action intended and whether or not the option to cancel

the event is important.

Chapter 27 Using sCript triggers

662

 Opening a Database File
When opening a database file, the following events will be triggered in order:

 1. OnFirstWindowOpen

 2. OnWindowOpen

 3. OnLayoutEnter

 4. OnModeEnter

 5. OnRecordLoad

Caution While not a script trigger, the file’s option to Switch to layout when the
file is opened occurs prior to all script triggers (Chapter 6, “File Options: Open”).

 Committing a Record with Unsaved Changes
When committing a record with unsaved changes, the following events will be triggered

in order:

 1. OnObjectValidate

 2. OnObjectSave

 3. OnObjectExit

 4. OnRecordCommit

 5. OnRecordLoad

 6. OnObjectEnter

 Opening a New Window
When opening a new window, the following events will be triggered in order:

 1. OnWindowOpen

 2. OnLayoutEnter

 3. OnModeEnter

Chapter 27 Using sCript triggers

663

 4. OnRecordLoad

 5. OnLayoutSizeChange

 Changing Layouts
When changing layouts, the following events will be triggered in this order:

 1. OnLayoutExit

 2. OnLayoutEnter

 3. OnRecordLoad

Note When changing layouts in a window displaying a record with unsaved
changes, the record commit sequence will be performed first followed by the
changing layout sequence.

 Accessing Targets Before Event Completion
As noted previously, many events trigger scripts before the event is completed, providing

the option to halt the effects of the event before they are implemented. However, this

means that the results of the action have not yet been realized and aren’t discernable

to the script from the interface by normal means. For example, the OnObjectKeystroke

event is triggered when a user types a character into the field. However, the script runs

before the character is entered into the field, so pulling the field value into a formula

in a script step will not include the most recent keystroke which triggered the script.

Similarly, the OnPanelSwitch event happens before the target panel is activated. Since

there is no corresponding event that occurs after the switch, ascertaining the target panel

may be required in order for a script to take a particular course of action.

FileMaker provides a set of built-in Get functions specifically designed to provide

information about events so that information can be accessed and used by the triggered

script. For example, the Get (TriggerCurrentPanel) and Get (TriggerTargetPanel) each

return the number and name of the current and target panel as two return-delimited

lists. The Get (TriggerKeystroke) will return the last key typed not yet in the field on

a OnObjectKeystroke event, and the Get (TriggerModifierKeys) returns a number

Chapter 27 Using sCript triggers

664

indicating any modifier key(s) the user is holding down when they typed. For example,

if the user is holding the Shift key, this will return a “1,” while holding the Option key

will return “8.” When key combinations are held, the result is the sum of the numbers

representing those keys, e.g., holding Shift and Option returns “9.”

For events that don’t have access to target information, switch from a pre-event

trigger to a post-event trigger. For example, there is no function available to determine

the next target object in a script triggered by OnObjectExit, so try switching to

OnObjectEnter since it happens after the change has occurred.

Caution these target-determining functions will only work within the target
script, not as a parameter sent to the script from the object.

 Avoiding Trigger Exceptions
Some object changes will not trigger events. For example, most of the built-in Spelling

and Find/Replace functions, especially when performed across found sets, will not

trigger events such as OnObjectModify, OnObjectValidate, and OnObjectSave. Also,

since functions like Import Records, Replace Field Contents, and Relookup Field Contents

modify table data directly, they won’t trigger interface events. Similarly, script steps like

Set Field, Set Field by Name, and Set Web Viewer are not triggering events. Be sure to

consider all possible actions that users or scripts may perform and, where necessary, lock

out functions or use alternative steps in your scripts to ensure that critical functionality is

triggered. For example, use the Insert Text or Insert Calculated Result script steps instead

of Set Field if the field in question has critical triggers assigned on the layout. When

non-triggering steps can’t be avoided, add steps to programmatically trigger the relevant

target scripts, or add steps to explicitly perform the desired functionality. Alternatively,

don’t use script triggers excessively, especially in situations where they aren’t absolutely

required and may create unnecessary complexities when excluded by these exceptions.

 Summary
This chapter continued the discussion of scripting, focusing on how interface events can

trigger scripts. In the next chapter, we will explore how plug-ins can extend the built-in

functions and script steps available.

Chapter 27 Using sCript triggers

665
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_28

CHAPTER 28

Extending Features
with Plug-ins
A plug-in is a software extension package developed that extends the capabilities

of FileMaker by adding new functions and script steps. They can also modify the

development interface with new options. Plug-ins for FileMaker are available from third-

party vendors, which means they involve an added expense and logistical considerations

for installing and maintaining them over time. However, a good plug-in can be worth the

effort since the features they provide would be difficult or impossible to achieve using

only built-in tools. This chapter covers basic plug-in concepts including

• Finding plug-ins

• Installing plug-ins

• Accessing plug-ins

 Finding Plug-ins
Plug-ins for FileMaker can be found from a variety of different vendors. Start by

searching the Claris Marketplace (marketplace.claris.com), and take a look at some

other prominent offerings directly available from the developer website.

 MonkeyBread Software
The MBS plug-in from Monkey Bread Software (www.monkeybreadsoftware.com) boasts

over 6,000 functions. The impressive feature list includes enhancements to the Script

Workspace, connectivity features, OS integration, and content editing. Some highlights

include

https://doi.org/10.1007/978-1-4842-6680-9_28#DOI
http://www.monkeybreadsoftware.com

666

• Syntax coloring

• Search in scripts, lists, or relationships

• CURL for up/downloads, send/receive e-mail

• Accessing scanners

• Access to Address book, Calendars, and Reminders

• Window management functions

• Send user notifications

• Control printers

• Convert images, draw, and annotate

• Create, edit, or merge PDF documents

• Generate and recognize barcodes

• Read and write Excel files

• Fill Word files

 Productive Computing
The Productive Computing plug-in offerings (www.productivecomputing.com) include

• Address Book Manipulator – Enables bidirectional data flow between

a database and the macOS Contacts application

• iCal Manipulator – Enables bidirectional data flow between a

database and the macOS Calendar application

• Biometric Fingerprint Reader – Adds the ability to incorporate

fingerprint security and script control options to a database

 Prometheus Systems Consulting
Prometheus Systems Consulting sells dozens of plug-ins (360works.com), including

• 360Works Email – Send and receive email messages within a

database. Supports SMTP, POP, and IMAP.

Chapter 28 extending Features with plug-ins

http://www.productivecomputing.com

667

• 360Works Plastic – Enables credit card processing within a database.

Supports both Authorize.net and Verisign/PayPal Payflow.

• 360Works Web Services Manager – Publishes your custom FileMaker

scripts as XML Web Services that can be accessed by SOAP (Simple

Object Access Protocol)–compatible software.

 Troi Automatisering
Troi Automatisering offers several plug-ins (www.troi.com), including

• Troi Dialog – Create dynamic, feature-rich dialogs

• Troi Encryptor – Generate passwords and save them in the keychain

• Troi File – Access files and folders outside FileMaker, zip and unzip

files and folders, search directories, and more

 Installing Plug-ins
Each computer accessing a database with plug-in functions must have the plug-in

installed locally. However, installation resources can be embedded in and installed

from a database file, either in a separate installer database or directly within a database

solution. Some plug-in venders deliver plug-ins embedded inside of an installer

database.

To prepare a custom database to install a plug-in, create a container field for each

plug-in installer. This may require more than one if the database is used in a cross-

platform workflow of different operating systems. Create a script that uses the Install

Plug-in File step like the following example which uses Set Variable to put a list of

installed plug-ins into a variable named $installed and then uses the PatternCount

function to determine if the Troi File Plug-in needs to be installed or updated. If so, it uses

Get (SystemPlatform) to determine if it should install the macOS or Windows plug- in.

Set Variable [$installed ; Value : Get (InstalledFMPlugins)]

If [PatternCount ($installed ; "Troi File Plug-in;8.0.2") = ""]

 If [Get (SystemPlatform) = 1]

 Install Plug-in File [Resources::Troi_File.fmplugin]

Chapter 28 extending Features with plug-ins

http://www.troi.com

668

 Else

 Install Plug-in File [Resources::Troi_File.fmx]

 End if

End if

The script can run automatically as part of a startup script triggered by an

OnFirstWindowOpen event (Chapter 29) to ensure that each user’s computer has a

proper installation. The script can be expanded to check for errors to confirm that

the installation process was successful and warn the user to contact a database

administrator if a problem was detected. For example, the script will fail if the

Application preference to Allow Solutions to Install Files is not enabled. The Plug-ins tab

of the Application preferences dialog, shown in Figure 28-1, lists every installed plug-in.

From here, you can confirm installation, enable, disable, and configure a plug-in.

 Accessing Plug-in Functions
Once installed, a plug-in’s functions will appear as a new category in either Functions

pane of Specify Calculation dialogs or the Steps pane of the Script Workspace. Some plug-

ins appear in both lists, as shown in Figure 28-2. From here, plug-in functions can be

easily inserted into formulas (Chapter 12) and scripts (Chapter 24) like functions or steps.

Figure 28-1. The preference tab showing installed plug-ins must allow installation

Chapter 28 extending Features with plug-ins

669

 Summary
This chapter presented the basic process for finding, installing, and accessing plug-ins.

In the next chapter, we begin an introduction to network sharing.

Figure 28-2. Plug-ins appear in the Steps pane of the Script Workspace (back)
and/or in the Functions pane of the Specify Calculation window (front)

Chapter 28 extending Features with plug-ins

PART VI

Deploying, Securing,
and Analyzing Files

These final chapters cover the basics of deploying, network sharing, security, and some

advanced tools:

 29. Deploying and Accessing Databases

 30. Defining Accounts and Permissions

 31. Analyzing and Modifying Files

673
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_29

CHAPTER 29

Deploying and Accessing
Databases
When finished developing, it is time to deploy your database into the target workflow.

There are three primary choices for deployment: in a folder directory, on an iOS device,

or on a host server. Each option has different benefits, and the choice affects who can

access the file, how, and from where. Each product in the FileMaker family has different

capabilities for deployment and access (see Chapter 1, “Reviewing the Product Line”).

In this chapter, we explore these options, introducing specific topics related to deploying

and accessing a solution, including

• Deploying to a folder directory

• Deploying to an iOS device

• Sharing databases on a network

• Hosting with FileMaker Server

• Hosting with FileMaker Cloud

• Accessing solutions externally

 Deploying to a Folder Directory
The easiest deployment method is to store a database in a folder directory. With access

to the folder, the FileMaker Pro desktop application can open and use the database.

This provides a lot of convenience, since the database can be moved between folders

or duplicated for reuse as simply as a word processing or excel document. While this is

an easy and useful option for a single user, opportunities for sharing are limited. The

database can be shared by sending a copy to coworkers, but each person will have their

https://doi.org/10.1007/978-1-4842-6680-9_29#DOI

674

own isolated copy of the file without the benefits of collaborative, simultaneous use. It

can be placed in a folder on a networked file server; however, this is not recommended

because each copy the desktop application reading and writing to the same file at the

same time will cause file corruption that may be catastrophic (Chapter 6, “Avoiding File

Damage”). Similarly, services like Dropbox or Google Drive may corrupt files when

syncing even with a single user. The FileMaker Pro desktop app can safely share a file

opened from a local folder by acting as a proper host with peer-to-peer sharing (described

later in this chapter). However, that is limited to five simultaneous connections by other

users with access limited to FileMaker products. However, if sharing isn’t an important

consideration, using a database from a local folder is a suitable option. Just make sure

the file is closed before moving it to another folder and keep it in a folder that other users

can’t access.

 Deploying to an iOS Device
A database can be deployed directly onto an iPhone or iPad, accessed with the

free FileMaker Go iOS application. Since the file is physically stored on the device,

this provides the benefit of portability. The user can access the database anywhere

they have their device, even when not connected to a cellular or Wi-Fi network. A

deployment to an iOS device is limited to data entry related tasks only, with no option to

structurally alter the file. Also, there is no option to share a database from the device for

simultaneous workgroup access, so each device has an isolated copy of the file. However,

this option is perfect for convenient single-user access to a database designed for smaller

screens.

To install, start by downloading the Claris FileMaker Go 19 app onto the device.

Then, connect the device to a computer and copy the database from a folder into the

FileMaker Go 19 folder in the device’s Files. On macOS Catalina (10.15), this is done by

following these steps, as shown in Figure 29-1:

 1. Open a new Finder window and make the sidebar visible.

 2. Select the target iOS device under the Locations sidebar group.

 3. Select the Files tab. Then drag the database file into the FileMaker

Go 19 folder.

Chapter 29 Deploying anD aCCessing Databases

675

Note Four Claris sample files will be automatically installed and appear in the
folder with your file. these can be deleted if desired.

Once the database is installed on the device, launch the FileMaker Go app. Click the

My Apps tab at the bottom, and then click On My iPhone under the Locations headings,

as shown in Figure 29-2. The next screen will display a list of databases installed on the

device. Click to open the desired database.

Figure 29-1. The macOS Catalina (10.15) window for configuring an iPhone

Chapter 29 Deploying anD aCCessing Databases

676

 Sharing Databases on a Network
Sharing a database on a network is not the same as sharing a document file in a shared

server folder. As mentioned previously, a database file can be placed in a shared

directory on a file server where multiple people can see and access it. However, if

multiple users open the file at the same time, each copy of FileMaker will begin reading

and writing to the file continuously as data entry tasks are performed. This will result in

file corruption and data loss! If this happens, the file must be run through the Recovery

process and may be damaged beyond repair (Chapter 6, “Avoiding File Damage”).

The proper method of sharing a database across a network is through a share-

enabled version of FileMaker software acting as a host service. This can be done using

peer-to-peer sharing with the FileMaker Pro desktop app or using a dedicated server

running FileMaker Server or FileMaker Cloud. The databases are stored in a folder

hidden safely behind the host software which manages connections and coordinates

conflict-free read/write processes, as illustrated in Figure 29-3.

Figure 29-2. The FileMaker Go app’s access to databases installed on an iPhone

Chapter 29 Deploying anD aCCessing Databases

677

Once the host is actively serving up a database, users can access it through their

client software. In the FileMaker Pro desktop application, select the File ➤ Hosts ➤ Show

Hosts menu, or click Hosts in an Open File dialog to see a dialog listing favorite and local

hosts. The Hosts tab in the FileMaker Go iOS app lists the same. When databases are

configured for WebDirect, users can also access the database from the hose through a

URL in a web browser, e.g., http://127.0.0.1/fmi/webd. When hosting with FileMaker

Server or FileMaker Cloud, it is also possible to enable incoming connections using

ODBC/JBDC and Representational State Transfer (REST) with the FileMaker API. For

more on those methods of connection, visit Claris’ documentation website.

 Understanding Collaborative Limitations
There are several limitations automatically enforced to avoid conflicts between multiple

users when working in the same hosted file. The sections are each limited to a single

user at a time. The first three can be undertaken at the same time if the users are each

modifying a different record, layout, or script. The remaining development actions are

limited to a single user at a time within the respective developer dialog, i.e., one user

can edit value lists at the same time another is editing schema since they are done in

different dialogs.

• Editing the same record

• Modifying the same layout

Figure 29-3. A database with client access managed by host software

Chapter 29 Deploying anD aCCessing Databases

http://127.0.0.1/fmi/webd

678

• Modifying the same script

• Modifying any database schema: tables, fields, and relationships

• Modifying any value list

• Modifying any data source

• Modifying any security access privileges

 Configuring Network Settings
The FileMaker Network Settings dialog serves a dual purpose. It is used to enable network

sharing capabilities of the FileMaker Pro desktop application and to configure network

access settings for individual open databases. The dialog, shown in Figure 29- 4, can be

opened by selecting the Share with FileMaker Clients option from the File ➤ Sharing

submenu or the toolbar’s Share menu.

Caution FileMaker will not host a database lacking adequate account credentials
(Chapter 30).

Chapter 29 Deploying anD aCCessing Databases

679

 Enabling Peer-to-Peer Sharing

The peer-to-peer sharing option allows a user to open up to 125 databases with the

FileMaker Pro desktop application and act as a host for up to five concurrent remote

client connections. Since the peer host is running a client version of the software, both

the host and other connected users can perform data entry and development tasks

in the files, depending on their access privileges. The top half of FileMaker Network

Settings dialog is used to enable peer sharing for the client’s local application. A warning

is posted here that peer sharing is not a secure network protocol since only FileMaker

Server and FileMaker Cloud have options for Secure Socket Layer (SSL) certification to

enable secure transfer across a network. While not adequate for large workgroups or

where security is important, this method can be workable for sharing a database with a

small group of colleagues.

Figure 29-4. The dialog used to configure peer-to-peer network sharing

Chapter 29 Deploying anD aCCessing Databases

680

 Configuring Database Network Access Settings

The bottom half of the FileMaker Network Settings dialog includes a list of files open

locally and allows network access settings to be configured in the adjacent panel. These

settings control client access when the database is hosted by FileMaker Server, FileMaker

Cloud, or a peer-enabled copy of the FileMaker Pro desktop application. With a file

selected, choose which users can connect to the selected file from another workstation.

Select All Users to allow any user who enters valid credentials to access the selected file.

Select Specify users by privilege set to limit access to specific privilege sets you select. The

default selection for a new file is No users which will deny all access to the file, i.e., you

can open it but it will not be shared. The Don't display in Launch Center checkbox will

hide the file from remote users in the Hosts dialog. A user must manually enter the name

and address of the file in order to open it directly. This setting can be used to increase

security or exclude from the list of available files any background data files that open

automatically when another database using its tables opens.

Note similar dialogs accessed from the File ➤ Sharing menu are used to
configure the database’s oDbC/JDbC and WebDirect settings.

 Opening a Hosted Database
To open a hosted file with the FileMaker Pro desktop application, select the File ➤ Hosts

➤ Show Hosts menu, or click the Hosts button on the Open File dialog. This opens a Hosts

dialog listing files available from hosts instead of folder directories, shown in Figure 29-5.

The sidebar contains three collapsible groups. Click Claris ID to access databases hosted

on a FileMaker Cloud account. Cloud hosted files can also be opened from the My Apps

section of the Launch Center. Access a local peer or FileMaker Server host by clicking on

the Local group and selecting a database. Files from any host can be assigned a favorite

status by selecting Add to Favorites from the contextual menu when right-clicking on a

file in the list. These will appear in a list under the Favorites tab.

Chapter 29 Deploying anD aCCessing Databases

681

 Hosting with FileMaker Server
FileMaker Server is a fast, reliable, and scalable server software package that securely

shares database files across a network. The server has powerful features and benefits

including

• Reliable, full-time serving of databases to users of any of the

FileMaker product line running on macOS, Windows, or iOS.

• Multiple, flexible licensing options that can be mixed and matched to

suit the needs of your individual team members.

• Share databases on the Web without web programming using

FileMaker WebDirect, or use Custom Web Publishing to create data-

driven websites with PHP or XML.

• Use Open Database Connectivity (ODBC) and Java Database

Connectivity (JDBC) to share hosted databases remote systems.

• Monitor and manage the server locally or remotely using either the

Admin Console web interface or the fmsadmin command line.

• Automate administration tasks with automatic database backups and

scheduled scripts.

• Scripts can be offloaded from the client’s software to run on the

server using the Perform Script On Server step.

Figure 29-5. The dialog used to open a hosted database

Chapter 29 Deploying anD aCCessing Databases

682

Note For more information beyond the hosting basics described in this section,
consult the FileMaker server product support section located at https://www.
claris.com/resources/documentation/.

 Preparing a Host Computer
There are many important considerations when choosing a computer for use as a server

host. The computer should have a fast processor, plenty of RAM, and a solid-state hard

drive. Connect it to a network using a wired, high-speed, dedicated network connection,

and ideally assign it a static IP address. To allow for priority use of the processor, hard

disk, and network capacity, dedicate the computer exclusively for hosting databases.

To avoid corruption, the folder containing hosted databases should not be backed up

directly. Instead, use FileMaker Server’s built-in scheduled backup feature, and then

make additional copies of those backups to other drives. Also, disable screen savers and

energy-saving hibernation features in favor of monitor diming. Turn off indexing services

such as the macOS Spotlight feature, and don’t use antivirus software scans.

Tip always check the Claris website for the minimum hardware requirements for
a server and other server recommendations.

 Defining Installed Resources

FileMaker Server isn’t a traditional application and will not appear in the computer’s

Applications folder. Instead, the following resources will be installed:

• Database Server – Hosts the databases, sharing them with FileMaker

Pro and FileMaker Go clients.

• Web Publishing Engine – Handles the WebDirect services, managing

traffic between a Web Server and the Database Server.

• Web Server – macOS uses its own copy of the Apache web server.

On Windows, the Internet Information Services is enabled during

installation and used as the web server.

Chapter 29 Deploying anD aCCessing Databases

https://www.claris.com/resources/documentation/
https://www.claris.com/resources/documentation/

683

• PHP Engine – Used to route calls for the FileMaker API to the Web

Publishing Engine.

• Admin Console – Accessed through a web browser on the server or a

client computer, this is used to configure and administer the server.

• Command-Line Interface Executable – The fmsadmin commands are

used to administer the server through a command-line interface.

• User Account – Specifies an account under which the server will run.

The default choice on macOS is a new fmserver user created by the

installer, and on Windows, the Local System. A custom account can

be specified instead, if desired.

• User Group – A new user group called fmsadmin is created and must

be assigned to hosted database files.

 Accessing the Admin Console
The Admin Console is used to administer the server and is accessible through a web

browser. After installation of the server, a bookmark to the local host will be found on the

server computer’s desktop. The console can also be accessed by opening a web browser

and entering

http://localhost:16001/admin-console

To access it from another computer, replace the localhost with the following server

address:

https://10.0.1.20:16000/admin-console

https://10.0.1.20/admin-console

When the console page opens and requests authentication, enter the administrator

name and password you defined during installation. Server administration controls are

organized across six tabbed pages:

• Dashboard – Summarizes server information and status

• Databases – Lists all installed databases and actively connected

clients, with controls to manage databases and communicate with or

disconnect clients

Chapter 29 Deploying anD aCCessing Databases

684

• Backups – Used to schedule and view backups

• Configuration – Contains general settings, clients, folders, scheduled

scripts, notifications, certificates, and logging

• Connectors – Contains settings for Web Publishing, FileMaker Data

API, Plug-ins, and ODBC/JDBC connections

• Administration – Contains license, admin password, and external

authentication settings

 Uploading Files to a FileMaker Server
Database files can be added to the server by manually moving them into the Databases

folder or uploading them from a client computer through the FileMaker Pro desktop

application.

 Moving the File into the Databases Folder

The server stores hosted files in a Databases subfolder of the FileMaker Server folder. If

installed into the default location, this folder will be in one of two locations depending

on the operating system, in the Library folder on macOS or in the Program Files folder on

Windows, both shown in the following. To manually install files, simply drag them into

the Databases folder. However, when adding files this way, you must manually assign

them to the fmserver user and fmsadmin group.

/Library/FileMaker Server/Data/Databases

[drive]:\Program Files\FileMaker\FileMaker Server\Data\Databases\

Caution if databases are actively hosted by the server, removing, replacing, or
directly opening them with FileMaker Pro desktop application will cause major
corruption. Confirm files are not actively hosted before performing any of these
functions.

Chapter 29 Deploying anD aCCessing Databases

685

 Uploading a File from a Client Computer

A database file created on a client computer can be uploaded directly to a server through

the FileMaker Pro desktop application. For FileMaker Cloud, this is the only method

available for uploading a file to the server. Open the Upload to Host dialog by selecting

the Upload to Host option from the Sharing submenu or the Sharing icon menu in the

toolbar. The dialog is similar to the Hosts dialog with a sidebar for selecting a host, as

shown in Figure 29-6. Once selected, sign into the host to begin adding databases.

After entering admin credentials for the selected host, the main panel changes to a

list of database uploads, as shown in Figure 29-7. Drag database files into the list or click

the Browse button to select them through a dialog.

Figure 29-6. The sign-in dialog is used to upload to a host

Figure 29-7. The dialog showing database file(s) to be uploaded

Chapter 29 Deploying anD aCCessing Databases

686

As databases are added, FileMaker runs a consistency check to determine the health

of the file and checks to see if it has security adequate for hosting. In the preceding

example, the first has a password-protected Admin account, while the second file has no

password and has been rejected. Enable the checkbox next to a file to include it in the

upload. The checkbox at the bottom of the dialog will cause files to automatically open

on the server after the upload is complete.

 Managing Database Files
To manage hosted databases, log into the Admin Console and click on the Databases tab.

A drop-down menu next to each database in the list contains the following management

commands:

• Open – Opens the database for network access. This will require entry

of a password if the file is encrypted.

• Close – Close and cease hosting the database.

• Download – Download a copy of a closed database to the local hard

drive. In macOS, this feature will not work if pop-up windows are

blocked by the browser preferences!

• Remove – Remove a closed database from the list by placing it into a

special folder in the Databases folder that is not available for hosting.

• Verify – Close, verify, and reopen a database.

• Clear the Encryption Passwords – Remove the encryption password

from the selected database file(s).

Tip a similar menu at the top of the database list mirrors these options but with
commands that affect all databases.

Chapter 29 Deploying anD aCCessing Databases

687

 Restarting a Server Computer
When the server is actively hosting files, it may be communicating with clients, holding

recent changes in cache, or be in the middle of writing those changes to disk. A file

might become corrupt if the server process is force quit or hardware is abruptly forced

to shut down. To avoid damage, it is important to avoid certain risks and properly close

databases. Always use an adequate uninterruptible power supply (UPS) device, and

close all databases in the Admin Console prior to shutting down a computer. Never force

quit the application or perform a hard reboot of the computer without first closing files

unless absolutely necessary due to a major crash or malfunction.

 Using the Command-Line Interface
The fmsadmin command-line tool allows administration of the server using the

Terminal app (macOS) or the command prompt (Windows). These commands are

automatically installed with the server in the following platform-specific folder(s):

macOS = /Library/FileMaker Server/Database Server/bin/fmsadmin

macOS (symbolic link) = /usr/bin/fmsadmin

Windows = [drive]:\Program Files\FileMaker\FileMaker Server\Database

Server\fmsadmin.exe

 Formatting a fmsadmin Command

The formula for a command is: fmsadmin <command> <options>. For example, to get

a list of all hosted databases, type the following command into the Terminal and type

Enter.

fmsadmin list files

Certain functions require authentication and will prompt you to enter the server

administrator username and password. Optionally, you can include credential

information with the command to avoid the secondary prompt. Simply add them as

shown in the pattern and example here:

fmsadmin <command> -u <user> -p <password>

fmsadmin list files –u Admin –p J56TF3

Chapter 29 Deploying anD aCCessing Databases

688

 Available fmsadmin Commands

The fmsadmin tool contains the following commands, each with various options

available:

• autorestart – Get or set the auto-restart feature of the server

• backup – Back up one database or every database in a folder

• clearkey – Remove saved database encryption passwords

• close – Close one or more databases

• certificate – Manage SSL certificates

• disable – Disable schedules or statistics logging

• disconnect – Disconnect one or more clients

• enable – Enable schedules or statistics logging

• help – Get help with available commands

• list – List clients, databases, plug-ins, or schedules

• open – Start hosting databases

• pause – Temporarily stop the database server

• remove – Move files out of the Databases folder

• resetpw – Reset the admin user password

• restart – Restart the server, adminserver, FMSE, WPE, or XDBC process

• resume – End a temporary pause of the database server

• run – Run a schedule

• send – Send a message to connected users

• standby – Manage standby server connections, roles, and updates

• start – Start the server, adminserver, FMSE, WPE, or XDBC process

• status – Get the status of clients or databases

• stop – Stop the server, adminserver, FMSE, WPE, or XDBC process

• verify – Check the consistency of databases

Chapter 29 Deploying anD aCCessing Databases

689

 Getting Detailed Command Help

To get more information about a command, type “help” followed by the name of the

command. For example, type “fmsadmin help close” to return a help page for the close

command, as shown in Figure 29-8.

 Hosting with FileMaker Cloud
FileMaker Cloud is a service by Claris that provides reliable access to cloud-hosted

databases. While the use and configuration interface are nearly identical as those

described earlier for FileMaker Server, there are some important differences with Cloud.

The hardware is managed by Claris so you don’t need to be concerned with hardware

or energy costs. There is no way to access the folder structure directly, so interactions

with the server and databases can only be performed through the Admin Console. To

protect your information, all databases must be encrypted when uploaded to the cloud.

Various maintenance tasks such as daily backups, software upgrades, automatic restarts

during non-business hours, and other maintenance tasks are or can be performed

automatically. Another benefit is that Claris provides round the clock support options.

Figure 29-8. An example of the command help request

Chapter 29 Deploying anD aCCessing Databases

690

Note For more information about Claris hosting your database solution, visit
www.claris.com/filemaker/cloud/.

 Controlling FileMaker with Links, URLs,
and AppleScript
There are several ways to open and perform actions within a database from outside

FileMaker: Snapshot Links, FileMaker URL, and AppleScript.

 Sharing Bookmarks with Snapshot Links
A snapshot link is an XML file that stores information about a record or a found set of

records that can be used to re-create a previously existing found set. They act like a

bookmark but reference a specific found set of records within a database. Opening a

snapshot file will automatically open the database, navigate to the layout, and restore

the found set of records, thereby re-creating the same context a user was viewing at the

time they saved the snapshot. These files can be stored in folders and sent to coworkers,

allowing users to exchange lists of records with other users. For example, each client

folder on a company file server can include a snapshot link that instantly opens a list

view of contacts for the company.

To generate a snapshot link, select the File ➤ Save/Send Records As ➤ Snapshot

Link menu. This will open a Save Records dialog with snapshot configuration options,

shown in Figure 29-9. Enter a name and choose a save location for the link. Select a Save

option of Current record or Records being browsed to control which records are saved.

The optional checkbox can be used to create an email with the snapshot attached. A

Send Records as Snapshot Link script step uses the same dialog to configure a script that

automates snapshot link generation.

Chapter 29 Deploying anD aCCessing Databases

http://www.claris.com/filemaker/cloud/

691

 Using the FileMaker URL
The FileMaker URL is an internet protocol registered with the FileMaker Pro client

application installation that can open a database and run a script using a URL. If a

user account’s privilege set is explicitly granted permission to the fmurlscript extended

privilege (Chapter 30), the following URL options become possible:

• Typed in a Web Browser – Type or pasted a URL into a web browser

and the command will be routed to FileMaker.

• Embedded in a Web Page — Use a href tag to create a link in a

web page in a browser or a web viewer on a layout in a database.

Alternatively, the new FileMaker.PerformScript JavaScript function

is a better option for web viewers (Chapter 20, “Calling a FileMaker

Script with JavaScript”).

• Used in a Script – Use the Open URL script step to trigger other

scripts. However, the Perform Script step has a better option to run a

script by a calculated name.

• Used in External Applications and Scripts – Programming languages

such as AppleScript can instruct the FileMaker application to

run the URL.

Figure 29-9. The dialog used to configure and save a snapshot link

Chapter 29 Deploying anD aCCessing Databases

692

 Formatting a Basic FMP URL

The address must include a prefix, address, and file name. The inclusion of an extension

is optional. Starting with version 18, the prefix can include a version number to specify

one of multiple installed versions. Without a version specified, the URL should be routed

to the last installed version. An address is required to open a database. To reference a file

that is already open, use a dollar symbol as the address. For example, to refer to an open

Contacts database, the address would be formatted as shown in the following examples:

<prefix>://<address>/<file>

fmp://$/Contacts.fmp12

fmp18://$/Contacts.fmp12

fmp19://$/Contacts.fmp12

If the database is stored in the user’s Documents folder, use a tilde as the address as

shown in the following example which will automatically open the database:

 fmp19://~/Contacts.fmp12

All URLs must be percent encoded except when using the Open URL script step

within FileMaker. For example, a database named “Learn FileMaker” would require the

space changed to “%20” as shown in the following example:

fmp://$/Learn%20FileMaker.fmp12

Tip When building a Url in a FileMaker calculation, use the GetAsURLEncoded
function to automatically handle encoding.

 Addressing a Hosted Database

To access a database hosted on a network server, include the address to a host computer.

For example, if a Contacts database was hosted, the FMP URL can be formatted with an

IPv4 address, IPv6 address, or a DNS name as shown in these three examples:

FMP://10.1.0.10/Contacts.fmp12

FMP://[2001:0db8:0a0b:12f0:0000:0000:0000:0001]/Contacts.fmp12

FMP://filemaker-server.local/Contacts.fmp12

Chapter 29 Deploying anD aCCessing Databases

693

 Including Access Credentials

To avoid a dialog requesting account credentials and achieve a seamless operation,

an account and password can be specified in the URL. These can be added as colon-

delimited values ahead of the address separated by an “@” sign. For example, a database

with an account named “admin” that has a password of “58Jt234” can be opened without

a password dialog using the address shown in the following example:

FMP://admin:58Jt234@10.1.0.10/Contacts.fmp12

 Including a Script Name

The URL can also instruct FileMaker to run a script in the database. Add a question mark

after the database name “script=” and include a URL encoded script name. For example,

the following example will confirm a Contacts database is open from the specified host

computer and then run a script named “Find”:

FMP://10.1.0.10/Contacts.fmp12?script=Find

The account credentials are excluded in this and other examples for brevity.

However, these can be included to ensure the database opens without a dialog

requesting that information. When the script runs, it will be executed with the privileges

and limitations of the user account used to sign into the database.

Adding a Script Parameter

When targeting a script that accepts parameters, the URL can include a param value by

appending it after the script name and an ampersand. For example, instead of always

searching for the same criteria, the Find script from the previous example can be

modified to accept a parameter and use that value to determine which type of search to

perform. The parameter used in an If script step can allow the script to search a Status

field based on a value provided by the URL. Now to find records that are “Active” or

“Hold,” add an ampersand and param component to the URL, as shown in the following

examples:

FMP://10.1.0.10/Contacts.fmp12?script=Find¶m=Active

FMP://10.1.0.10/Contacts.fmp12?script=Find¶m=Hold

Chapter 29 Deploying anD aCCessing Databases

694

Adding Script Variables

The URL can go even farther and initialize local variables within the script by adding an

ampersand, the name, and value of the variables, following the pattern shown here:

FMP://<address>/<database>?<script>¶m=<Parameter>&<$variable>=<value>

This example initializes a variable specifying a state name for the find script:

FMP://10.1.0.10/Contacts.fmp12?script=Find¶m=Active&$State=Pennsylvania

 Using AppleScript to Automate FileMaker
AppleScript is an Open Scripting Architecture (OSA) compliant command language that

can communicate with and control macOS applications (https://goo.gl/i70lnx).

Back in 1994 when the language was first introduced as a part of the Macintosh System 7.5,

FileMaker was one of the first scriptable applications. Since then, support for the

language has steadily evolved and continues to provide a great option for automating

FileMaker functionality from external scripts and integrating it with data from other

applications. If a user account’s privilege set is explicitly granted permission to the

fmextscriptaccess extended privilege (Chapter 30), an AppleScript will be able to control

application and database actions.

 Defining the Tell FileMaker Statement

AppleScripts are written using the Script Editor application located in the Utilities

subfolder of the Applications folder. Event instructions are sent to an application using

a tell statement that points to the application and encloses the object references and

commands.

tell application "FileMaker Pro"

 <commands>

end tell

Chapter 29 Deploying anD aCCessing Databases

https://goo.gl/i70lnx

695

 Opening FileMaker’s Script Dictionary

Every macOS scriptable application has a script dictionary which can be opened by

dropping the application onto the Script Editor application or by launching the editor

and selecting the File ➤ Open Directory menu. This opens a window exposing the

dictionary of objects and commands available for controlling the application, as shown

in Figure 29-10.

Figure 29-10. The FileMaker Pro Advanced AppleScript dictionary window

Caution FileMaker’s script commands use three different words to describe a
database window: database, document, and window. each of these can be used
interchangeably but may have a slightly different effect.

Chapter 29 Deploying anD aCCessing Databases

696

 Scripting Basic Tasks

As a brief introduction to automating FileMaker with scripts, this section presents a few

simple examples of opening a database, activating an open database, changing layouts,

performing a find, and counting records. These can be expanded with other functions to

create complex scripted workflows that perform vastly more complex actions. They can

also be woven with script commands sent to other applications to create powerful inter-

application data transfer solutions.

Note FileMaker also includes a script step called “perform applescript” that
allows applescript commands to be embedded in a database script that targets
commands in other applications.

Opening a Database

AppleScript can open a database from any folder using the open file command. This

example sets the value of three variables to the path to a database, an account name, and

password. These are used to instruct FileMaker to open the file:

set pathToDatabase to "Macintosh HD:Users:shannonmiller:Learn FileMaker.

fmp12"

set textAccount to "Admin"

set textPassword to "58Jt234"

tell application "FileMaker Pro"

 open file pathToDatabase with passwords textPassword for Accounts

textAccount

end tell

To open a hosted database, the getURL command will accept a FileMaker URL

described earlier in this chapter.

tell application "FileMaker Pro"

 getURL "fmp19://Admin:58Jt-234@10.0.1.20/Learn%20FileMaker.fmp12”

end tell

Chapter 29 Deploying anD aCCessing Databases

697

Activating an Open Database

To bring an open database to the front of the document window stack, this example

checks if the document exists and then uses the show command to activate the database:

set nameDatabase to "Learn FileMaker"

tell application "FileMaker Pro"

 if (document nameDatabase exists) = true then

 show document nameDatabase

 end if

end tell

Changing Layouts

This example activates a layout named “Contact” using the show command:

tell application "FileMaker Pro"

 tell document "Learn FileMaker"

 show layout "Contact"

 end tell

end tell

Finding All Records

To perform the equivalent of a Find All command, use the show command with a

reference of every record.

tell application "FileMaker Pro"

 tell database "Learn FileMaker"

 tell table "Contact"

 show every record

 end tell

 end tell

end tell

Chapter 29 Deploying anD aCCessing Databases

698

Finding Records Based on a Field Value

This example appends a whose clause to the show command to search based on a

specific value within one field.

set nameTable to "Contact"

set nameField to "Contact Address State"

set textToFind to "NY"

tell application "FileMaker Pro"

 tell database "Learn FileMaker"

 tell table nameTable

 show every record whose cell nameField of table nameTable contains

textToFind

 end tell

 end tell

end tell

The whose clause can use various operators for matching data in the field, including

contains, does not contain, is equal to, and is not equal to. Further, clauses can be

grouped with others to form compound search criteria, as shown in this example:

show every record

 whose cell nameField1 of table nameTable contains value1 or

 whose cell nameField1 of table nameTable is equal to value2 and

 whose cell nameField2 of table nameTable is not equal to value3

Counting Records in the Found Set

To count the records in the found set of the current window, a tell window statement is

required to refer to the context displayed, regardless of the layout or table.

tell application "FileMaker Pro"

 tell window "Learn FileMaker"

 return the number of every record

 end tell

end tell

Chapter 29 Deploying anD aCCessing Databases

699

Counting Every Record in a Table

To count the total records in the table regardless of the current window’s layout, use a tell

database statement.

tell application "FileMaker Pro"

 tell database "Learn FileMaker"

 return the number of every record of table "Contact"

 end tell

end tell

 Summary
This chapter introduced the methods of solution deployment and various ways to access

databases. In the next chapter, we explore credentialing to restrict access to a database.

Chapter 29 Deploying anD aCCessing Databases

701
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_30

CHAPTER 30

Defining Accounts
and Permissions
In this modern age of global network connectivity, the need to secure a database

should be glaringly obvious. News stories about data breaches, leaked information, and

malicious exploitation by hackers provide us a sobering warning about the dangers of

unsecured data. As important as it is to stop unauthorized access by outsiders, security

permission is a far more complex subject. Even authorized users require restrictions

on their activity inside the database. Limitations on the content they can create, view,

modify, and use are important to consider. Also, restricting access to the structural design

of a database can help stop careless or malicious alternations to the schema, interface,

and script functions. Even a minor accidental change to a formula or script can be

catastrophic to a company’s workflow and may result in severe financial consequences.

Only users with adequate technical skills and knowledge of business logistics should

be authorized to act as a developer. This chapter explores the available credentialing

features, covering the following topics:

• Defining default security

• Defining user accounts

• Exploring privilege sets

• Using credentials in formulas

• Leveraging custom extended privileges

• Controlling file access

https://doi.org/10.1007/978-1-4842-6680-9_30#DOI

702

 Defining Default Security
Account credentials define who can open a file and what privileges they are granted.

Every FileMaker database begins with default credential settings configured to be

unobtrusive and allow anyone instant access to the full content and structure of the file.

Anyone who can see the file stored in a directory or shared by another client can open it

and will have full access to everything. The file will appear to be unlocked and will open

without a login prompt. This configuration may be acceptable for situations involving

personal use of a database as a document file on a local computer or in small teams

where security isn’t a concern. However, in most cases, credentialing is recommended to

protect both sensitive content and structural programming. It is required when hosting a

database with FileMaker Server or FileMaker Cloud.

FileMaker requires every database to have at least two default accounts setting: one

active account that allows full development access and another account that provides

guests read-only access. Every new database is created with both. An account named

“[Guest]” allows a user to open the file without entering a username or password but

with severely limited privileges. This account cannot be deleted but is disabled by

default. When enabled, a Sign-in As Guest button is added to the login dialog. A second

account named “Admin” is automatically enabled but has no password entered. Since

the Log in using setting of the File Options dialog (Chapter 6, “Database File Options”) is

automatically configured to enter this account when a file is opened, it creates the illusion

that new files have no access settings. In fact, new files are simply bypassing the login

screen and signing in as this default full access account without a password.

Caution When a file is configured to auto-enter a Full Access account or if no
password is assigned it, FileMaker Server and FileMaker Cloud will refuse to host it.

 Defining User Accounts
Accounts are defined in the Manage Security dialog, shown in Figure 30-1. This dialog

is opened by selecting the Manage ➤ Security under the File menu. It lists the accounts

defined in the file and is used to create, configure, edit, duplicate, and delete accounts. It

also has a button used to access another dialog of Advanced Settings (discussed later in

this chapter).

Chapter 30 DeFining aCCountS anD perMiSSionS

703

While the two default accounts are stored fully inside the database file, accounts

can also be defined that authenticate a user using an external authorization system. The

Authenticate via pop-up menu toggles the account list by the selected authentication

method.

The default FileMaker File or External Server authentication option combines two

accounts types into a single list. A FileMaker File account is defined with an account

name and password that is fully stored inside the database file. An External Server

account is defined in the file with only a name that references a user account group

created externally on the host computer or on a centrally managed authentication

server, such as Apple Open Directory or Windows Active Directory. This allows

individual user credentials to be stored and managed at the computer level by the IT

department, so personnel changes don’t require modifications inside the database. One

or more external user accounts can be attached to a group by the operating system or

authentication server. The database account grants permissions to any user assigned

to the group, allowing them to sign in using their external credentials. This is especially

useful when a database solution is composed of many separate files and managing user

changes across them all would be too labor intensive. External authentication only works

when a database is hosted by a FileMaker Server.

The Claris ID option appears at the top of the authentication menu when the

developer’s local application is signed into a FileMaker Cloud account. Sign into an

account by selecting the My Apps section of the Launch Center window. Then, return to

the security dialog and define which cloud users will have access to this file when it is

hosted on that FileMaker Cloud.

Figure 30-1. The dialog used to manage file access credentials

Chapter 30 DeFining aCCountS anD perMiSSionS

704

FileMaker also includes support for Open Authorization (OAuth), the open-standard

authorization framework that allows a third-party system to authenticate a user on

behalf of another system without directly sharing credentials. Databases hosted on

a FileMaker Server can be configured to authenticate using credentials from a user’s

Amazon, Google, and Microsoft Azure AD account.

 Adding a Password to the Default Account
To begin exploring the configuration options for accounts, start by adding a password

to the default Admin account. Select the account in the list to open the details panel on

the right, shown in Figure 30-2. Click the pencil icon to open a Set Password dialog and

enter a new password. If desired, you can also optionally modify the Account Name to

something more descriptive or more personal, e.g., “Developer” or your name.

When closing the Manage Security dialog after entering a password, FileMaker will

present a Verify Access dialog to ensure that you know an Account Name and Password

that has full access privileges. This helps to ensure that you don’t lose access to the file.

Be sure to write down the password you enter so that you don’t forget it!

Figure 30-2. The panel for a selected account, showing the change password
button

Chapter 30 DeFining aCCountS anD perMiSSionS

705

The next time the database file is opened, a sign-in dialog will ask for an Account

Name and Password. The Account Name will default to the computer’s name and doesn’t

necessarily indicate an acceptable account for access. Enter your credentials and click

Sign In to regain access.

Note passwords can be any length and may include any characters. however, to
ensure compatibility with WebDirect, they should be limited to aSCii characters that
don’t contain accented or non-roman characters. they are case-sensitive, so be
aware of Shift-lock.

 Creating a FileMaker File Account
A FileMaker File account defines sign-in credentials and privileges for a user that will be

stored internally and can be used to access the file even when not hosted on a server. To

begin, open the Manage Security dialog and follow the steps shown in Figure 30-3.

 1. Click the New button to add a new account to the list. The account

will be Active by default and selected, ready to configure.

 2. Confirm that the authentication option is FileMaker File.

 3. Enter an account name, e.g., “John Smith.”

 4. Click the pencil icon to enter a password. To force a user to change

their password to something private, check the Require password

change on next sign-in box.

 5. Select a Privilege Set to determine the permissions granted to the

user (discussed later in this chapter).

Chapter 30 DeFining aCCountS anD perMiSSionS

706

 Creating an External Server Account
An External Server account defines permissions for a user group. The actual user

account(s) and user group are created in the operating system of the host FileMaker

Server computer. The account inside the database identifies the group name that a user

must be a member of externally in order to gain the selected level of access defined.

This allows one or more users to log into the database using their externally defined

credentials and gain access to specific database features based on membership in an

externally defined user group. To create a new External Server account, open the Manage

Security dialog, and follow the steps shown in Figure 30-4.

 1. Click the New button to add a new account to the list.

 2. Select External Server as the authentication method.

 3. Enter a Group Name that is defined on the external server,

remembering that these are case-sensitive.

 4. Select a Privilege Set to determine the permissions granted to any

user who signs in as a member of that group.

Figure 30-3. The process for configuring an internal account

Chapter 30 DeFining aCCountS anD perMiSSionS

707

Tip on macoS, the externally defined users can be Sharing Only accounts to
avoid creating unnecessary directories and resources.

 Enabling FileMaker Server External Authentication

Users can only log in using an external account when the database is hosted on a

FileMaker Server or that is configured to explicitly allow authentication from external

accounts. To confirm this for FileMaker Server version 19, follow these steps:

 1. Open and sign into the Admin Console (Chapter 29).

 2. Click the Administration tab along the top.

 3. Click on External Authentication in the sidebar.

 4. Under the Database Sign In heading, enable External Server

Accounts.

Figure 30-4. The process for configuring an external account

Chapter 30 DeFining aCCountS anD perMiSSionS

708

 Exploring Privilege Sets
A privilege set is a collection of permissions defining a level of access to data, layout,

and other features. Once defined, a privilege set can be assigned to one or more user

accounts to establish their abilities within the database. To view, create, and edit

privilege sets, open the Manage Security dialog and click the Advanced Settings button.

This will open an Advanced Security Settings dialog, shown in Figure 30-5. Click the

Privilege Sets tab to view the list of defined sets.

 Default Privilege Sets
Every database will have three default privilege sets. Each of these has a square bracket

around their names and are non-editable except for the ability to enable and disable

extended privileges.

• Full Access – Allows unrestricted access to every available feature and

all content. This should be reserved for developers only. FileMaker

requires at least one account that allows full access.

• Data Entry Only – Provides limited access to only data entry work.

Users assigned this set can create, edit, and delete records in every

table. They can use but not structurally alter layouts, scripts, and

Figure 30-5. The dialog used to define sets of access privileges for user
accounts

Chapter 30 DeFining aCCountS anD perMiSSionS

709

value lists. They can print and export. They are automatically

disconnected from a server when idle, and they can change their own

account password.

• Read-Only Access – Similar to the preceding one but more with no

access to modify content or structure in any way.

 Creating Custom Privilege Sets
To create a new privilege set, open the Advanced Security Settings dialog, click on

Privilege Sets tab, and click the New button. This will open a new empty set in the Edit

Privilege Set dialog, shown in Figure 30-6. By default, a new set allows almost no access.

Enter a name, optional description, and then begin enabling the desired permissions

which are grouped into three categories:

• Data Access and Design Privileges – Allow access by resource type:

Records, Layouts, Value List, and Scripts

• Other Privilege – A mixture of miscellaneous features

• Extended Privileges – Enables specific capabilities, ten default options

that can be expanded

Caution a custom privilege set cannot grant developer access to modify the
structural schema (table, fields, and relationships). only the default, unalterable Full
Access privilege set allows editing these.

Chapter 30 DeFining aCCountS anD perMiSSionS

710

 Configuring Data Access and Design Settings

The first set of privilege settings define data access and design permissions. These control

the actions users can perform by resource type: Records, Layouts, Value Lists, and Scripts.

Each has a menu of several options that control access to all entities within its class and

an option to assign custom privileges to individual objects instead.

Controlling Record Access

The Records pop-up menu of the Edit Privilege Set dialog offers five options that control

what users can do with records:

• Create, edit, and delete in all tables

• Create and edit in all tables

• View only in all tables

• All no access

• Custom privileges

Figure 30-6. The dialog used to edit permissions for a privilege set

Chapter 30 DeFining aCCountS anD perMiSSionS

711

The first four are self-descriptive and apply to records in every table. Select the

Custom Privileges option to open the Custom Record Privileges dialog, shown in

Figure 30-7. Every table in the database is listed with an extra row at the bottom that

defines default privilege settings for any new table that is created in the future. Below the

list are five pop-up menus for specifying the View, Edit, Create, Delete, and Field Access

permissions for the selected table(s) in the list above.

The settings available across all five pop-up menus are similar with only a few minor

differences. The first four have a yes and no option that do exactly the same thing: enable

or disable the function for the selected table. For example, to allow creation of records

in the selected table(s), select yes under the Create menu. Three of these four also have

a limited option that opens a Specify Calculation dialog so a formula can provide more

finely tuned control over access to the function. For example, a formula can allow

deletion of a record only when a specific field has a certain value, on a certain day of the

week, only when a certain layout is current or any other criteria included in the formula.

The Edit menu is disabled when the View option is set to not allow access, i.e., you can’t

grant permission to edit something that the user can’t view.

The Field Access menu options are slightly different than the other four. Although

they perform similar functionality, they are named to relate to fields instead of function.

Choose all to allow editing access to all fields and none to restrict access. Select limited to

Figure 30-7. The dialog used to control permissions for record access per table

Chapter 30 DeFining aCCountS anD perMiSSionS

712

open a Custom Field Privileges dialog, shown in Figure 30-8. This dialog allows each field

to have a setting of either modifiable, view only, or no access. It also includes an option

that defines default settings for any new fields added to the table in the future.

Figure 30-8. The dialog used to control the privileges of individual fields for a
table

Chapter 30 DeFining aCCountS anD perMiSSionS

713

Controlling Layout Access

The Layouts pop-up menu of the Edit Privilege Set dialog offers four options that control

what a user can do with layouts:

• All modifiable

• All view only

• All no access

• Custom privileges

Caution if a user can’t access a layout, neither can a script that runs during their
session, unless it is configured to run with full access.

When you choose the Custom Privileges option from the Layouts menu, it opens the

Custom Layout Privileges dialog, shown in Figure 30-9. Enable the Allow creation of new

layouts checkbox at the top corner to allow users to create new layouts. Every layout

in the database is listed with an extra option at the bottom that defines the default

privilege settings for any new layout that is created in the future. Below the list are two

sets of privilege options for the selected layout(s). The Layout options offer three levels

of permission: modifiable, view only, or providing no access. The Records via this layout

radio buttons control the permission for record interactions when a layout is viewable

or modifiable with similarly named options, allowing you to grant layout-by-layout

control over field interactions beyond the previously discussed Record settings for the

entire table.

Chapter 30 DeFining aCCountS anD perMiSSionS

714

Controlling Value List Access

The Value List pop-up menu of the Edit Privilege Set dialog offers four options that

control what users can do with value lists.

• All modifiable

• All view only

• All no access

• Custom privileges

Figure 30-9. The dialog used to control permissions by layout

Chapter 30 DeFining aCCountS anD perMiSSionS

715

Controlling Script Access

The Scripts pop-up menu of the Edit Privilege Set dialog offers four options that control

what users can do with scripts.

• All modifiable

• All executable only

• All no access

• Custom privileges

 Assigning Other Privilege Settings

On the right side of the Edit Privilege Set dialog are Other Privileges, seen previously in

Figure 30-6. The functionality enabled by most of these features should be fairly obvious

by their phrasing. However, a few are worth mentioning.

The Allow exporting option enables a variety of data output functions including

exporting records, saving records as an Excel file, copying all records in the found set,

and saving a copy of records. But it also enables the ability of external scripts to access

and extract record information, e.g., AppleScript on macOS.

When the Allow user to override data validation warnings option is enabled, users

assigned the privilege set can override any field validation warning dialog, including

those that are not explicitly defined to allow it (Chapter 8, “Validation Control”).

Enable the Allow user to modify their own password to let users change their

password by selecting the File ➤ Change Password menu item. Two adjacent checkboxes

allow you to schedule a forced password change at regular intervals and control a

minimum length for any new passwords they select.

The selection from the Available menu commands pop-up menu controls the menus

available. While access to menus can be influenced by other permissions granted to the

privilege set and by the presence of custom menus (Chapter 23), this option specifies a

blanket category of commands they can access. Choose All to grant access to the entire

active menu bar. Limit them to basic editing functions by choosing Editing Only. Select

Minimum to severely restrict them to menus for only the most basic functions such as

open, close, and create database files, window functions, perform scripts, preferences,

and help.

Chapter 30 DeFining aCCountS anD perMiSSionS

716

Caution the menu setting for new privilege sets defaults to minimal which
provides almost no enabled functions. Be sure to change this when creating new
accounts.

 Assigning Extended Privileges

The Extended Privileges section of the Edit Privilege Set dialog seen previously in

Figure 30-6 includes a list of additional privileges that can be enabled. An extended

privilege is a keyword-based permission setting that can be assigned to one or more

privilege sets. These enable access to one specific type of functionality. FileMaker

includes several extended privileges that are fixed to specific functions, mostly various

types of inbound networking and scripting access.

Some extended privileges grant the ability of users to sign in via specific methods.

For example, fmwebdirect enables access to a server-hosted database from a web

browser, while fmapp allows access to the file from the FileMaker Pro and FileMaker Go

apps.

Others provide protocol-specific access to a server-hosted database by external

systems: fmxdbc allows incoming access with ODBC/JDBC, fmxml allows XML access,

fmphp allows PHP, and fmrest allows access from a Representational State Transfer

(RESTful) web service via the FileMaker Data API.

Two others provide scripted access: fmextscriptaccess allows access with AppleScript

(macOS) and ActiveX (Windows), while fmurlscript allows triggering a database script

from a URL (Chapter 29, “Using the FileMaker URL”).

While all of the default extended privileges are hardwired to simply turn on or off

a built-in FileMaker capability, new extended privileges can be defined that control

custom features in your database (discussed later in this chapter).

 Using Credentials in Formulas
Credentialing with accounts and privilege sets does a great job limiting access to the

file, built-in capabilities, and custom structural elements. Although the credentialing

interface exerts an impressive level of control over custom resources, its reach is

somewhat limited. A privilege set can control a layout’s viewability but has no options

Chapter 30 DeFining aCCountS anD perMiSSionS

717

to limit access to individual objects. It can make a script executable but has no option to

control individual steps within the script. It can’t exert any control over the accessibility

or behavior of custom menus or custom functions, and it can’t reach inside of formulas.

These limitations are simply due to the nature of a custom solution. At a certain point,

the built-in credentialing interface simply can’t reach outward far enough to control

permissions for every object, script step, and custom configuration. Beyond that point,

the custom resources must instead use formulas to look inward at the user’s credentials

and determine what limits should be imposed and which variations performed. To

accommodate this, there are three Get functions that can be used in formulas to impose

credentials-based conditions. Using these, a formula can identify the name of the user’s

account, privilege set, and, when using an external authentication method, group. These

examples show hypothetical results of each.

Get (AccountName) // result = Jim Smith

Get (AccountPrivilegeSetName) // result = [Full Access]

Get (AccountGroupName) // result = dbmarketing

A script can use an If step to limit execution of a group of individual steps for a

specific user. For example, an invoice report script may be run by many users but have

a section of steps that generates a sensitive financial report that should only execute

when the script is run by the Chief Financial Officer. The account name can be used to

determine if the steps should execute or not.

If [Get (AccountName) = "Rashida Fields"]

 Go to Layout ["Invoice – Special Report" ; Animation: None]

 Sort Records [Restore ; With dialog: Off]

 Print [With dialog: On]

 Go to Layout [Original Layout ; Animation: None]

End if

Another script may navigate to a department-specific menu layout based on the

user’s privilege set. This example script uses a sequence of If and Else If script steps with

separate steps, each targeting a single layout.

Set Variable [$set ; Value: Get (AccountPrivilegeSet)]

If [$set = "human resources"]

 Go to Layout ["Home HR" ; Animation: None]

Else If [[$set = "sales"]

Chapter 30 DeFining aCCountS anD perMiSSionS

718

 Go to Layout ["Home Sales" ; Animation: None]

Else If [[$set = "production"]

 Go to Layout ["Home Production" ; Animation: None]

End if

These functions can be used to create credential-specific behavior anywhere that a

formula is an option. Hide layout objects or custom menus, change button or tab names,

personalize a tooltip, produce different results in calculation fields, and more. However,

using this technique should be done with some hesitation.

 Understanding the Risks of Credential Embedding
Embedding credentials in formulas to create conditional functionality should be used

with caution. Each change to the company workforce may require changes to employee

names used in dozens, hundreds, or thousands of different formulas. Even something

as simple as a coworker marrying and changing their last name can require a lot of work

in a complex database. While the name of an existing account can be changed for a

new employee, all the uses of the former name in formulas don’t automatically update

because they are literal text and not dynamic references. In a large organization with

high turnover, locating and changing these could become a full-time job.

This problem can be somewhat abated by using titles for account names instead

of employee’s actual name. For example, Jim Smith might sign into the database as

“Account Supervisor” with a unique password. Then, if a new person fills that position,

they carry on with the same account name and a new password. Since the actual account

name didn’t change, any formulas using it wouldn’t need to change either. However, this

approach is problematic since it depersonalizes the user identity and can be confusing

when looking at a historical list of records seeing they were all modified by the “Account

Supervisor,” but they span a period where three different people held that position.

Ideally, users sign into the database with a personal identifier.

Conditional features can be made slightly more impervious to team changes when

formulas use privilege sets instead of account names. Individual user accounts can be

removed and created as needed, while the assigned privilege set continues to control

the interface and behavioral conditions in formulas. Although this is a better approach,

there are still elements of risk. Unless privilege sets are meticulously designed with near

omniscience, it is almost inevitable that certain features will need major changes as

Chapter 30 DeFining aCCountS anD perMiSSionS

719

roles and responsibilities shift within a company workflow. Also, since each user can be

assigned only a single privilege set, features may require numerous compound clauses,

to grant permission for a group of different privilege sets.

Using credentials in formulas does extend the ability of security settings beyond

the Manage Security dialog, but in a potentially labor-intensive way. What may begin as

a simple, ad hoc exception for one user or group can quickly become a bad habit that

paralyzes developers who must constantly try to remember thousands of credential

exceptions lost and forgotten in the dark corners of a crowded interface design.

Fortunately, FileMaker has an amazing alternative that solves this problem by allowing

custom feature exceptions to be easily wired directly into the security interface: custom

extended privileges.

 Leveraging Custom Extended Privileges
A custom extended privilege is a developer-defined, keyword-based permission that can be

safely used in formulas to create conditional features. These can be easily linked to one or

more privilege sets, making them adaptable to future changes to a company’s personnel.

Instead of connecting directly to changing accounts and privilege sets, conditional

formulas are connected to an unchanging custom extended privilege by keyword. As

individual user accounts are created and deleted, as privilege sets are modified and

reassigned, conditional access and behavior granted by the extended privilege can be

easily enabled or disabled directly in the Manage Security dialog. Instead of inserting

credential naming into formulas, extended privileges allow you to name a custom feature

of your database and insert it as a new setting in the credentialing interface.

To create a custom extended privilege, start by identifying a set of conditional

features and the objects/formulas involved. For the sake of illustration, let’s use a simple

example: the ability to approve an Invoice record by clicking a button on a layout. The

button will need to be conditionally hidden so unauthorized users can’t see or click it.

To begin, choose a name for the new privilege. The name should be a short keyword

made up of two or more words that is unique and clearly indicates the function(s) it will

control. For this example, a name like “InvoiceApproval” will describe the capability we

are defining in our example.

Chapter 30 DeFining aCCountS anD perMiSSionS

720

Caution Choose extended privilege names carefully before using them in many
object formulas to avoid having to change it numerous times, the very problem we
are trying to avoid!

Open the Manage Security dialog, click the Advanced Settings button and select the

Extended Privileges tab. This lists all built-in and custom extended privileges defined

in the file. Click the New button to open a new, extended privilege in an Edit Extended

Privilege dialog, shown in Figure 30-10.

Type the name of the privilege in the Keyword text box and enter a short Description.

The Access list shows privilege sets with a checkbox indicating those with permission to

access this custom privilege. After closing the preceding dialog, view any privilege set to

see the new extended privilege listed as an option, as shown in Figure 30-11.

Figure 30-10. The dialog used to create and edit custom extended privileges

Chapter 30 DeFining aCCountS anD perMiSSionS

721

The InvoiceApproval privilege is now defined but doesn’t actually control anything

until it is used in a behavior conditioning formula somewhere in the database. For our

invoice approval example, add a button to an Invoice layout, and enter the Hide object

when formula (Chapter 21) shown in the following example to hide the object for any

users who do not have the extended privilege enabled on their account’s privilege

set. The formula uses the Get (AccountExtendedPrivileges) function to get a list of the

names of all enabled extended privileges for the user’s privilege set and then checks for

InvoiceApproval using the FilterValues function (Chapter 13, “Manipulating Values”).

FilterValues (Get (AccountExtendedPrivileges) ; "InvoiceApproval") = ""

 Controlling File Access
The File Access tab of the Advanced Security Settings dialog lists which other FileMaker

databases can access the current database. Individual databases can be Authorized or

Deauthorized. A Reset All will reset the ID of all the files listed and require them to be

reauthorized. Use this to ensure unique identifiers if a duplicate or clone of a file should

be granted access along with the original.

 Summary
This chapter explored the credential options for securing a database. In the next chapter,

we will explore some additional advanced tools for analyzing and modifying files.

Figure 30-11. The new extended privilege enabled on a privilege set

Chapter 30 DeFining aCCountS anD perMiSSionS

723
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9_31

CHAPTER 31

Analyzing and Modifying
Files
The Tools menu contains a few additional features below the Script Debugging options

(Chapter 26) and Custom Menus submenu (Chapter 23). These additional tools include

• Save a Copy as XML

• Database design report

• Developer utilities

• Tools Marketplace

 Save a Copy as XML
The Save a Copy as XML option saves a copy of the current database file as an XML file.

The file includes raw structural details about the file but does not include any record

content. This can be used to store and compare structural changes over time.

 Generating a Database Design Report
A database design report is a detailed report of a database file structure, listing every

table in the database with optional information about other resources. These reports can

be saved as a HTML or XML file and can be used to perform the following development

tasks:

• Troubleshoot structural problems by locating missing references,

broken relationships, and more.

https://doi.org/10.1007/978-1-4842-6680-9_31#DOI

724

• Find obsolete elements to help maintain a clean structure.

• Locate interface elements still pointing to an old script or custom

functions.

• Glimpse statistics about component counts and usage.

• Save a structural snapshot of a database at a certain point in time,

which can be compared to a later structure to identify changes.

 Generating a Design Report
To generate a report, open a database and select the Tools ➤ Database Design Report

menu. This will open the Database Design Report dialog, shown in Figure 31-1. The

Available Files area allows a selection of the currently open database files that should

be included in the report. Select a file to have the option to exclude individual tables

from the adjacent list. Choose from the Include in report checkboxes to determine

what resources are included in the analysis. This scrolling list includes everything from

Accounts to Value Lists. The Report Format option at the bottom controls which style of

report will be generated.

Chapter 31 analyzing and Modifying files

725

 Exploring a HTML Design Report
An HTML design report will produce collection of pages, as shown in Figure 31-2. The

Summary.html contains a navigable overview of each included database showing a

columnar summary of its objects. The Styles.css files contain style information, one for

the summary and one for pages inside of each database folder. Each database included

in the report will be represented by a folder, in this case only a single folder for the

Learn FileMaker database. Inside each database folder, an Index.html page contains

a complex table structure with navigable sidebar detailing every object and lots of

Figure 31-1. The dialog used to create a database design report

Chapter 31 analyzing and Modifying files

726

detailed information about them. This can be opened directly or through the summary

page. The other two html files contain sidebar navigation and body panels that are

displayed in the index file.

 Exploring an XML Design Report
When a design report is saved as XML, the folder will contain two or more files: a

Summary.xml file which contains a summary of the included files and a detail file for

each database included.

 Introducing Professional DDR Tools
Several companies offer products that import an XML design report and present the

material in a more polished interface than the HTML pages provided by FileMaker.

Developers who build complex databases that require a lot of analysis will appreciate the

improved viewing experience of these products.

 BaseElements

BaseElements is a great analysis tool for traversing the structure of a database sold by a

company of the same name. The solution is available as a FileMaker file or a stand-alone

application for macOS and Windows. The product has full layout access, so you can link

Figure 31-2. The results of a design report saved as HTML

Chapter 31 analyzing and Modifying files

727

to BaseElements Data Tables from your database’s relationship graph and access the

information in scripts. The product includes an open source BaseElements plug-in with

many useful functions. For more information visit www.baseelements.com.

 FMPerception

FMPerception is a utility for searching, analyzing, and maintaining databases sold by

Geist Interactive. The product uses a progressive analysis technique to quickly provide

current and accurate information about a database’s structure. Some features include

• A high-level overview and a “Database Report Card” that summarizes

the complexity of a database and lists any potential problems that

were detected.

• A fast DDR import process that is nearly instantaneous.

• A graphical “call chain visualization” illustrates the flow of script

calls from buttons to scripts to subscripts, helping trace the flow of

complex functionality.

• Identifies layout objects that might slow down performance.

• Performs a security audit to identify vulnerabilities such as missing

passwords or scripts that run with full access.

For more information visit www.geistinteractive.com.

 InspectorPro

InspectorPro is an advanced diagnostics, analysis, and visualization tool sold by Beezwax

DataTools. The product boasts over 115 different areas where it normalizes analysis

information and can automatically detect problems with a database structure. For more

information visit www.beezwax.net.

 Exploring Developer Utilities
The Developer Utilities dialog, shown in Figure 31-3, is accessed from the Tools menu.

Once the dialog is open, click the Add button to place one or more files into the Solution

Files list. These will be batch-manipulated by the various features and options initiated

in the dialog. Within the list, a red arrow designates one file as the primary which is used

Chapter 31 analyzing and Modifying files

http://www.baseelements.com
http://www.geistinteractive.com
http://www.beezwax.net

728

by the Kiosk option to denote the database containing the starting “home” interface.

Below the list are controls for renaming files, selecting an output folder where modified

files will be saved.

 Renaming Files
To rename a file, select it in the list, enter a new name without the extension into the

Rename File text field, and click the Change button. This is the recommended method for

renaming database files in a multi-file solution since it will not only rename the selected

file but also update all external file references to it within all other files in the list. Any

new names specified will be queued into the New Name column of the file list. These will

not take effect until a Project Folder is specified and the Create button is clicked.

Figure 31-3. The dialog containing various developer utility functions

Chapter 31 analyzing and Modifying files

729

 Specifying a Project Folder
Before you can rename files or perform solution options, choose a Project Folder by

clicking the Specify button. Since the utility dialog creates new versions of files, this

setting indicates where these should be saved. Check the box below to automatically

overwrite any files with the same name that exist in the selected folder.

 Specifying Solution Options
This Developer Utilities dialog contains several utility functions that can alter the

structure of the Solution Files. To enable one or more of these options, click the Specify

button under the Solution Options header which opens a Specify Solution Options dialog.

Then enable checkboxes to any of the following utility functions:

• Remove admin access from files permanently.

• Enable kiosk mode for non-admin accounts.

• Databases must have a FileMaker file extension.

• Create error log for any processing errors.

• Enable database encryption (or re-encrypt files).

• Remove database encryption.

 Removing Admin Access from Files

Enable the Remove admin access from files permanently checkbox to save copies of

the files with all admin access removed from every user account and most design and

structural elements rendered read-only. This essentially prevents anyone from acting as

a developer within the file while allowing normal data entry and other uses to continue

unabated. While this can be a useful method to secure a file for sale as a product

or distribution as a demo, it should be used with caution and while retaining a safe

unmodified backup file.

Chapter 31 analyzing and Modifying files

730

 Enabling Kiosk Mode

The Enable Kiosk mode for non-admin accounts option saves copies of the file with full

screen mode and no menu bar enforced for all non-admin access. This is a great option

for creating touch kiosks where you don’t want to allow users access to anything except

the interface controls you make accessible on layouts. The database must have at least

one non-admin user account defined, which must be used to open in kiosk mode.

Once in kiosk mode, a user’s ability to navigate within the file or to close the file will be

through the controls you provide on layouts. There will be no menu bar, and even access

to operating system functions such as force quit or toggle applications will be completely

disabled. When adding a button to quit the database intended to be a public kiosk,

be sure to include some sort of authentication process to exclude regular users from

quitting the solution and accessing the underlying operating system.

Caution if you don’t provide a button on the layout that will quit the application
or close the database, the only option will be to perform a hard restart of the
computer that may lead to file damage.

 Requiring a FileMaker File Extension

The Databases must have a FileMaker file extension option will confirm each Solution

File has a file extension and will add it to the new copies if missing.

 Creating an Error Log of Errors

The Create Error log for any processing errors option will generate a log file in a Project

Folder containing any errors that occur while processing other utility functions. This

option can optionally be selected with any other utility function but is required when

enabling encryption and will be selected by default for both encryption options. Once

selected, an extra option below allows customization of the name and location of the

log file by clicking the Specify button. The default is a file named “Logfile.txt” that will be

saved in the Project Folder.

Chapter 31 analyzing and Modifying files

731

 Exploring Encryption Features

FileMaker includes several encryption features that can be employed to protect data.

Container fields using managed external storage (Chapter 11) can be configured to

automatically encrypt stored files. Various built-in functions provide Base64 and Crypt

options for encoding/decoding and encrypting/decrypting data that is stored in fields

or exchanged with other systems. SSL Encryption certificates installed protect data

when in transit between client and server; these are encouraged by FileMaker Server

and required by FileMaker Cloud. Additionally, two Solution Options available through

the Developer Utilities dialog provide Encryption at Rest protection of an entire database

file which adds a layer of protection beyond the standard credentialing for normal

access (Chapter 30). An encrypted database is structurally modified to protect it from

unauthorized access, tampering, or analysis while stored on disk, e.g., if someone

acquires a stolen backup or archive of the database. The password you define during

the encryption process must be entered to open a file on the desktop or to host it with

FileMaker Server. FileMaker Cloud requires this and will automatically encrypt files

uploaded. Once hosted, only standard credentials are required for a user access.

Caution Be sure to keep encryption keys safely stored since there is no
possibility of recovery.

Enabling Database Encryption (or Re-encrypt Files)

The Enable Database Encryption (or Re-encrypt files) option will create a copy of the

Solution Files that are structurally altered with an encryption password you define. This

key will require a decryption password to be entered to open the files directly or to host

them on FileMaker Server. To encrypt the selected file(s), select the option in the Specify

Solution Options dialog, and configure the settings below, shown in Figure 31-4.

Chapter 31 analyzing and Modifying files

732

The Shared ID text field contains a case-sensitive string of up to 32 characters and is

used to link all the database files in a multi-file solution. When one file is opened with

the encryption password, that file can then access any other file that has been saved

with the same Shared ID and encryption password, without prompting the user for the

encryption password repeatedly.

Figure 31-4. The settings required when enabling encryption

Chapter 31 analyzing and Modifying files

733

Click the Specify button to enter credentials for a FileMaker Account that has full

access to the file(s) being encrypted. This is required to prove that you are an authorized

full-access user of the file before modifying the structure of the files.

Next, click the Specify button to enter an Encryption Password. This password will

be used during encryption and will be required prior to opening a file or hosting it on a

server.

The Keep Open Storage checkbox can be selected to maintain externally stored

container files in an unencrypted state if desired. Leave this unchecked to automatically

encrypt all container field content.

Once finished, close the Specify Solution Options dialog to return to the Developer

Utilities dialog. Then, click Create to run the utility and create encrypted copies of the

files in the specified Project Folder.

Now, two dialogs will appear when opening the encrypted file(s) on the desktop.

First an Open Encrypted Database prompt requires entry of the encryption password

and then the standard login prompt for user account credentials. When opening an

encrypted file for hosting on a server, only the first of these will appear and users

continue to see only the prompt for account credentials.

Tip When encrypting a multi-file solution, be sure to use the same developer
account and encryption password for every database.

Removing Database Encryption

The Remove Database Encryption option will save a copy of the files in an unencrypted

state, restoring normal operating behavior and access methods. Select the option in the

Specify Solution Options dialog, and enter the required settings, shown in Figure 31-5.

Type the Encryption Password for the file(s) to prove that you have access to modify the

files. Then, click the Specify button to enter a FileMaker Account with full access. Both

of these should be common to all the selected files. Close the Specify Solution Options

dialog to return to the Developer Utilities dialog. Then, click Create to run the utility. The

decrypted files will appear in the specified Project Folder.

Chapter 31 analyzing and Modifying files

734

 Tools Marketplace
The last item under the Tools menu is the Tools Marketplace which opens the Claris

Marketplace web page. The site contains a collection of developer tools and products

created by Claris Partners. This growing site includes pages of templates, tools, and plug-

ins, some free and some paid, including

• Templates from DB Services that help integrate Square and Stripe into

a FileMaker solution

Figure 31-5. The settings required to remove file encryption

Chapter 31 analyzing and Modifying files

735

• A tool for writing and troubleshooting SQL queries from Soliant

Consulting

• Various paid products from Productive Computing that allow a

database to manipulate or link to various external applications such

as the Calendar, Address Book, and QuickBooks

• Various Database Design Report tools mentioned earlier in this

chapter

• Various plug-ins, including some mentioned in Chapter 28

 Summary
This chapter discussed advanced features accessible through the FileMaker Pro

application’s Tools menu.

Chapter 31 analyzing and Modifying files

737
© Mark Conway Munro 2021
M. C. Munro, Learn FileMaker Pro 19, https://doi.org/10.1007/978-1-4842-6680-9

Index

A
Access folders and files

Get Folder Path, 613
manipulating data files

confirm, 615
create, 614
open/close, 614
reading, 615
writing, 616, 617

Accessing fields
active, 293
contents, 294
field reference, 293
selected text, 295

Account credentials, 702
Admin Console, 683
Aggregate functions, 296

Average function, 297
local fields, 297
related fields, 298

Count function, 299
local fields, 299
related fields, 300

List function, 301
local fields, 301
related fields, 302

Sum function, 303
local fields, 303
related fields, 304

alias, 359
Align functions, 510
American National Standards Institute

(ANSI), 349
AppleScript

script dictionary, 695
scripting tasks, 696

activate database, 697
field value, 698, 699
find records, 697
layouts, 697
open database, 696

tell statement, 694
Application preferences

General, 15, 16
layout, 17
memory, 18
permitted hosts, 19
platform-specific menu, 14
plug-ins, 19

Application programming
interface (API), 131

Average function, 297
local fields, 297
related fields, 298

B
BaseElements, 726
Browse mode, 30

https://doi.org/10.1007/978-1-4842-6680-9#DOI

738

Browse mode menu bar
default, 19
Edit menu, 22
FileMaker Pro menu, 20
File menu, 20, 21
Format menu, 24
Help menu, 26
Insert menu, 24
Manage submenu, 22
Record menu, 24
Script menu, 25
Tools menu, 25
View menu, 23
Windows menu, 25

Buttons
button action

Perform a Script, 473
single step, 472, 473

button bar
definition, 477
segments, 477
setup options, 477, 479

button label
definition, 470
icon, 471
text, 470

convert objects, 479
definition, 469
popover

creation, 475
example, 474
interface, 475, 476
setup options, 476, 477

C
Calculation-driven conditional

value list, 228, 229

Call stack, 343
Card window, 637, 638
Cascading declaration, 309
Cascading style sheets (CSS), 281, 525
Case function, 305
Charts

chart preview, 498
chart setup, 498
column, 501, 502
creation

calculated data, 499, 500
found set, 500–502

definition, 498
pie chart, 499, 500

Choose function, 307
Client URL (cURL), 6, 640
Cloud hosted files, 680
command item triggers, 539
Comments

definition, 236
end-of-line comments, 236
multiline comments, 236, 237

Comparison operators, 199
definition, 241
equal to, 241, 242
greater than, 242
greater than or equal to, 243
less than, 243
less than or equal to, 244
not equal to, 242

Compound conditional statement, 619
Conditional formatting

controls, 517
definition, 516
formula options, 517, 518
status field, 519, 520

Conditional statement, 618, 619
Conditioning function, 345

Index

739

Constants, 237
Constrain Found Set command, 53
Containers

definition, 205
external storage (see Database-

managed external storage)
extracting files, 207
inserting files

copying/pasting, 207
dragging/dropping, 207
insert menu, 206

storing files, 208
storing references

container field file reference, 208
container image reference, 208
custom-managed references, 209
database-managed references, 210

Contextual formatting condition, 517
Contextual menus

calculation formulas, 27
definition, 26
fields, 26
record content area, 27
web viewers, 27
window components, 27

Coordinated Universal Time (UTC), 272
Correct Word command, 64
Count function, 299

local fields, 299
related fields, 300

Custom extended privilege, 719, 720
Custom function

adding parameters
day requested, 338
default date option, 339
input date, 337, 338
testing, 340, 342

creating, 334, 335

definition, 331
dialog, 332, 333

Custom menus
creating menu set, 542
exploring link, 558–560
FileMaker menu, 542, 543, 546
installing set, 558
items

add, 553–557
menu dialog, 547–550
standard menu, 550–552

Manage Custom Menus dialog,
540, 541

menu bar, 537, 538
status based, 561, 562
types, 539

D
Database design report

DDR tools, 726, 727
definition, 723, 724
exploring HTML, 725, 726
generating, 724, 725
XML, 726

Database files
creation

blank template, 91
conversion, existing file, 92
default table name, 93, 94
Sandbox table, 93
starter solution, 90

definition, 89
designing/maintaining (see Designing/

maintaining, database file)
File options

icon tab, 106
open tab, 105

Index

740

script triggers tab, 108
spelling tab, 106, 107
text tab, 107, 108

Database-managed external storage
basic directory, 210
external storage directory

field container settings, 216
storage options, 214, 215

manage containers dialog, 211
storage tab, 211–213
thumbnails tab, 213, 214

Databases tab, 686
Database window

content area, 29
content views, 31
definition, 29
header, 32
mode, 30
multiple Windows, using, 37, 38

Data separation model, 8, 113
Data Viewer, 647
Date function, 272, 273
DateRange function, 345
Dates

creation, 272, 273
get functions, 272
parsing, 273, 274

DayOfWeek function, 334
dayRequested, 338
Designing/maintaining, database file

design/training deficiencies
commit a record, 110
deleting records, 110, 111
found set, 111
overwriting existing records, 109, 110

file damage
close properly, 115

hardware/software, 115, 116
share properly, 114
symptoms, 114

file size
fragmentation, 113
indexed fields, 112
inefficient design, 112, 113

functions
consistency check, 117, 118
Recover, 118
recovery options, 119, 120
Save a Copy, 116, 117

troubleshooting
database structure, 121
determination, 122
locating damage, 120
record data, 122
transferring records, 122, 123

Developer utilities
functions, 728
Project Folder, 729
renaming files, 728
solution options

Create Error log, 730
Enable Kiosk mode, 730
encryption features, 731–733
FileMaker file extension, 730
Remove admin access from files, 729

Tools menu, 727
tools marketplace, 734

Distribute commands, 511
Dynamic placeholder symbol, 467

E
Enter Find Mode, 625
Event precedence

changing layouts, 663

Database files (cont.)

Index

741

opening database file, 662
opening new window, 662
unsaved changes, 662

ExecuteSQL function
definition, 350
FileMaker_Fields,

selecting, 368, 369
limits, 351
parameters, 350
SQL features, 370
sqlQuery, creating, 351

Exporting records
adding fields, 83
current table, 83
data formatting, 84
data source menu, 83
FileMaker specific options, 82
Group by feature, 84, 85
menu, 82
Output file character set, 84
removing fields, 83
Specify Field Order, 83

Extended Privileges, 716
Extend Found Set command, 53
External Server account, 706, 707

F
FETCH FIRST clause, 367
Field, 126

adding fields, 165
company fields, 165
contact fields, 166
project fields, 166
renaming/modifying, 167

data types (see Field data types)
default fields, 147
definition, 141

Manage Database dialog, 145, 146
managing

creation, 150
deletion, 151
duplication, 150
field’s name/comment, 150
field’s type, 150

naming, 147
standard fields

creation, 148
grouping, 148, 149

Field data types
display fields, 145

calculation fields, 145
summary fields, 145

entry fields, 141
container fields, 144
date fields, 142, 143
number fields, 142
text fields, 142
time fields, 144
timestamp fields, 144

Field objects
adding fields, 448, 449
control style

checkbox set, 454
concealed edit box, 457
definition, 450
drop-down calendar, 456
drop-down list, 453, 454
edit box, 451, 452
menu, 450, 451
pop-up menu, 452, 453
radio button set, 455

dual-field value list, 458
Company Name, 459
Contact Company ID, 459
drawbacks, 460

Index

742

example, 458
Override data formatting with value

list, 458, 460
editing reference, 450
field, 446, 447
field cell, 446, 447
field definition, 446, 447
field display, 446, 447
field labels, 450
field object, 446, 447
field placeholders

calculation fields, 465
definition, 464
instances, 464
part style state, 464
placeholder text, 464, 465

field repetitions, 466
Specify Field dialog, 449
value list entry restrictions, 460, 461

custom values, 461, 462
multiple values, 463

Field options
auto-enter, 152, 153

controls, 154
lookup field, 153, 154
modification, 155

display fields
calculation, 163
controls, 164, 165
summary, 163, 164

furigana, 162
storage, 158

container, 162
global, 159
indexing, 161, 162
repeating, 160, 161

validation, 155

alternatives, 158
control, 156
display custom message, 157
requirements, 156, 157

Field reference
Case function, 239
complex situations, 239
definition, 238
dynamic, 239
local field, 238
related field, 238

File Access tab, 721
FileMaker

database, 3, 4
fullstack, integrated, 7, 8
Nutshell

claris, 5–7
Nashoba, 5

product line
creating, FileMaker Pro, 9
server and cloud, 10
summary, 9
WebDirect, 11

FileMaker URL
credentials, 693
database hosted, 692
script name, 693

add parameter, 693
add variables, 694

FileMaker Cloud, 680, 689
FileMaker database file, 89
FileMaker File account, 705, 706
FileMaker network path, 589
FileMaker Network Settings, 678
FileMaker.PerformScript

function, 497
FileMaker Pro, 3
FileMaker Pro desktop application, 684

Field objects (cont.)

Index

743

FileMaker Server, 10, 114, 115, 681, 689, 707
FileMaker Server folder

upload from cloud, 685, 686
FileMaker URL, 691

format, 692
File trigger

OnFileAVPlayerChange, 654
OnFirstWindowOpen, 653
OnLastWindowClose, 653
OnWindowClose, 654
OnWindowOpen, 653
Select, 652

Filter function, 282
FilterValues function, 287, 462
Find mode

definition, 46
entering criteria and

performing, 50, 51
function buttons, 48
managing multiple find

requests, 54
manipulating, 53
matching record option, 54–57
Status toolbar, 47–50

Find/Replace function, 63
FMPerception, 727
fmsadmin command-line tool, 687

available options, 688
detailed command, 689
formatting, 687

Folder directory, 673, 674
Formula-based condition, 518
Formulas

address label, 266, 267
calculation interface, 253, 254
company contact count, 266
contact full name, 266, 267
definition, 233, 234

uses, 233
working, 234, 235

Form view, 31
Found set

changing records, 58
definition, 58
managing field values, 61–64
sort, 59, 60

Full path, 588
Functions

function call, 240
function parameters, 240
nesting, 241
optional parameters, 240, 241

G
GetAsTimestamp function, 280
GetAsBoolean function, 277, 280
GetAsCSS function, 281
GetAsDate function, 278
GetAsNumber function, 278, 279
GetAsSVG function, 281
GetAsText function, 279
GetAsURLEncoded function, 280
GetDay custom function, 346
GetField function, 294
GetFieldName function, 293
Get functions, 289

credentials/user information, 289
layouts, 290
OS/computer/app, 289
records, 290
window

dimensions, 291, 292
properties, 291

GetMonday function, 337
GetNthRecord function, 294

Index

744

GetValue function, 286, 463
Greenwich Mean Time (GMT), 272
GROUP BY clause, 365

H
HAVING and GROUP BY clause, 365
Hosting databases, 682
Hub-and-spoke monolithic relationship

model, 179

I
Importing records

automatic recurring
import, 81, 82

choose file, 72
field-mapping, 73
FileMaker Server, 72
import.log, 78
import options, 77, 78
import types, 78

replacing records, 80
updating records, 79, 80

mapping fields, 75–77
source data, 74
specify import order, 73
target table, 74, 75

Inline direct editing, 578
Inline editable toggle button, 580
Inline formula editing, 578–580
Inline pop-up menu, 581
Insert from URL step

cURL, 640
PDF file, 639

Insert Operators menu, 49
Inspector pane

appearance setting, 434

advanced graphic group, 435, 436
graphic group, 434, 435
paragraph group, 437
style group, 434
tabs group, 438
text group, 437
theme group, 434

data formatting, 441
containers, 443, 444
dates, 442, 443
numbers, 442
times, 443

data setting, 438
behavior group, 440, 441
field group, 439, 440

position tab, 428
align group, 430, 431
arrange group, 430, 431
autosizing group, 430
grid group, 433
position group, 428, 429
sliding group, 431, 432
visibility group, 431, 432

style setting, 434
InspectorPro, 727
Installed resources, 682
Interactions with fields

Go to Field, 609
Set Field, 609, 610
Set Field by Name, 610
Set Next Serial Value, 611, 612
Set Selection, 611

International Organization for
Standardization (ISO), 349

Int function, 270
InvoiceApproval privilege, 721
iOS device, 674

Index

745

J
Java database connectivity (JDBC), 8, 131
JavaScript Object Notation (JSON), 6

creating/manipulating,
JSONSetElement

category element, 326
data type, 327
multiple values, 327
setting array, 328, 329
setting value, by path, 328

definition, 319
FileMaker, 322
format, 319–321
JSONGetElement function, 323, 324
JSONListKeys, 324
JSONListValues, 325

JOIN clause, 364
JSONDeleteElement function, 329
JSONFormatElements function, 330
JSONGetElement function, 323
JSONListKeys function, 324
JSONListValues function, 325
JSON object, 319

K
keyOrIndexOrPath parameter, 323, 325

L
Launch Center Window, 13, 14
Layout mode, 31

definition, 379
initialization, 380
menus

arrange menu, 393
edit menu, 385
format menu, 390, 391

insert menu, 388, 390
layout menu, 392, 393
view menu, 385–388

status toolbar, 380, 381
customization, 384
developer menu, 382
device dimension menu, 383
exit layout, 383
formatting bar, 383
menu, 383
navigation controls, 381
new layout/report button, 381
pane toggling, 382
screen menu, 383
setting, 383
theme selection, 383
tools, 381, 382

Layout-object dependent, 598
Layout objects

button controls (see Button)
definition, 445
field objects (see Field objects)
insertion, 445, 446
panel controls

definition, 480
slide control, 482, 483
tab control, 480–482

portals (see Portals)
text

dynamic placeholder symbol, 467
merge fields, 468
merge variables, 469
static, 467

web viewer (see Web viewer)
Layout panes

inspector pane (see Inspector pane)
objects pane

add-ons tab, 427

Index

746

definition, 423
fields tab, 423–425
objects tab, 425, 426

Layout parts
definition, 395
managing

addition, 399
configuration, 399–401
deletion, 401
part setup, 401, 402
part tool, 399

regions/controls, 395, 396
on-screen part design areas, 396
part boundary, 396
part label, 396
part stack, 396
resizing, 397

types
standard part, 397, 398
summary part, 398

Layouts
adding, database file, 403, 404
anatomization, 376, 377
contextual access, 375, 376
definition, 375
duplicating, existing, 415
manage layouts, 419, 420
modes (see Layout mode)
parts (see Layout parts)
performance, 421
planning, 377–379
report layout

create script, 413, 414
definition, 404
header/footer, 412, 413
invoice demonstration, 406, 407
invoice report, 404, 405

organize records, 408, 409
parts, 405, 406
refining, 414, 415
sorting, 409, 410
specify fields, 407, 408
specify grand totals, 411, 412
specify subtotals, 410, 411
subtotals/grand totals, 407

setting
general tab, 416, 417
printing tab, 418, 419
script triggers tab, 419
views tab, 417, 418

Layout-table dependent, 598
Layout trigger

dialog, 654
OnExternalCommandReceived, 658
OnGestureTap, 658
OnLayoutEnter, 657
OnLayoutExit, 657
OnLayoutKeystroke, 656
OnLayoutSizeChange, 657
OnModeEnter, 658
OnModeExit, 658
OnRecordCommit, 656
OnRecordLoad, 655
OnRecordRevert, 656
OnViewChange, 658

Left function, 284
LeftValues function, 285
LeftWords function, 284
Length function, 276
Let function, 307–309
Let statement, 359
List function, 301, 312

local fields, 301
related fields, 302

List view, 31

Layout panes (cont.)

Index

747

Logical functions
Case function, 305
Choose function, 307–309
While function, 310

double spaces, 310, 311
local records, 312
related records, 311

Logical operators
AND, 245
definition, 244
NOT, 245
OR, 245
XOR, 245

Looping script, 343

M
macOS Catalina (10.15), 674, 675
Management of windows, 631

build, 633
connect dialog buttons, 637
create, 631–633
create layout, 634
create layout script, 634–636

Managing tables
adding tables

creation, 130
duplicating, 130
importing, 130, 131

ODBC (see Open database
connectivity (ODBC))

renaming/deleting, 139
Mathematical operators

addition, 246
definition, 246
division, 246
multiplication, 246
power, 247

precedence, 247
subtraction, 246

Middle function, 284
MiddleValues function, 286
MiddleWords function, 285
Mod function, 271
Modify Last Find function, 53
Monkey Bread Software (MBS), 665

N
Navigation controls, 48
Near Field Communication (NFC), 7
Nested statement, 619
Nesting functions

converting number, 316, 317
creating sentence, 314, 315
record count string, 314
record metadata

string, 313
Network path, 588
Number functions

int, 270
mod, 271
random, 270
round, 270
SetPrecision, 271
Truncate, 271

O
Object modeling, 125, 126
object name property, 523
Objects

arranging/aligning
align, 510
Distribute commands, 511, 512
group, 512

Index

748

lock, 513
Resize To, 510, 511
rotate, 512
stacking order, 513, 514

hiding, 514–516
moving

layout, 505–507, 509
resizing, 504
selecting, 503, 504

Object trigger
dialog, 659
OnObjectAVPlayerChange, 661
OnObjectEnter, 659
OnObjectExit, 661
OnObjectKeystroke, 660
OnObjectModify, 660
OnObjectSave, 660
OnObjectValidate, 660
OnPanelSwitch, 661

Occurrence group method, 184
OFFSET and FETCH FIRST

clauses, 366, 367
OnFirstWindowOpen event, 653
Open Database Connectivity (ODBC), 8

FileMaker database, 131
external data sources, 134–136
relationship graph, 136, 137

preparing computer
configure driver, 133, 134
installing driver, 132, 133
installing Manager

application, 132
shadow table, 137, 138
SQL data sources, 131
three-step process, 131

open-ended function, 336
Open Scripting Architecture (OSA), 694

Operators
comparison, 241–244
definition, 241
logical, 244, 245
mathematical, 246, 247
precedence, 249
text, 247, 248

ORDER BY clause, 363

P, Q
Parsing functions, 273–275
PatternCount function, 276, 491, 667
Peer-to-peer network sharing, 676, 679
Perform Find step, 625
Perform Script step, 591

context, 597
errors, 598
exchange data, 593

explore results, 596
parsing parameter, 595
perform script on server, 596, 597
script parameter, 594

Specify Script dialog, 592, 593
Placeholder fields

calculation fields, 96
data entry fields, 94, 95
Sandbox fields, 97, 98
summary fields, 97

Placeholder layouts
adding fields, 100, 101
default, 99
list layout, 101–104

Plug-ins
accessing functions, 668, 669
definition, 665
installing, 667, 668
MBS, 665

Objects (cont.)

Index

749

Productive Computing, 666
Prometheus Systems Consulting, 666
Troi Automatisering, 667

Portals
adding objects, 486
contact records, 484
creating records, 487, 488
definition, 484
deleting rows, 488
portal filtering

multiple match fields, 491
portal filter formula, 490, 491
records, 489
search field, 492
setting, 490

Portal Setup, 484, 485
Position function, 277
Preview mode, 31
Printing

Page Setup, 68
Preview mode, 41, 65–67
Print Dialog options, 68, 69

Privilege set, 708
credentials, 716, 717

risk, 718, 719
custom, 709, 710
data access/design permissions

layout, 714
records, 711, 712

data access/design permissions, 710
layout, 713
list, 714
records, 710
scripts, 715

default, 708
edit privilege, 715
extended privilege, 716

R
Random function, 270
Record, 126

create/delete/duplicate, 44
definition, 41
entering data, 42, 43
export, 618
import, 617
searching

Find matching, 45, 46
Quick Find, 45

Recover function, 118
Recursive function

building simple function, 344, 345
call stack, 343
controlling limits, 345
definition, 342
embedding test code, 346, 348

Relational database, 169
Relationship

building
adding notes, graph, 194, 195, 201
implementing relational model, 202
manipulating, 196, 198–200

data sources, 184, 185
definition, 169, 170
FileMaker relational object model, 184
formulas, 170
Manage Database dialog, 187
table occurrences, 177–181, 183
visualizing

indexing match fields, 176
key field, 171, 172
many-to-many relationship, 174
multi-key field, 175, 176
one-to-many relationship, 173
one-to-one relationship, 172

Index

750

Relationship-driven conditional value list,
225–228

Relative path, 586–588
Relookup Field Contents command, 62
Remove Database Encryption option, 733
Repeating statement, 626

looping through data, 629, 630
looping through set, 627–629

Replace Field Contents command, 61
Representational State Transfer (REST),

319, 677
Reserved word, 250
Resize To functions, 510
Right function, 284
RightstWords function, 284
RightValues function, 286
Round function, 270
runScript() function, 498

S
Save a Copy as XML option, 723
Scalable Vector Graphics (SVG), 281
Script comment, 584
Script content area, 570, 571
Script debugger

custom breakpoint, 648, 649
Data Viewer, 647
definition, 643
FileMaker, 644
status toolbar items, 646, 647
Tools menu, 644
window, 645, 646

Scripting functions
abort, 602
navigation

layout, 605
Record/Request/Page, 606

Related Record, 606–608
set variable, 603, 604

Script step
comments, 584
configuration, 577

dialog/panel, 582
inline formula editing, 578–580
inline editable toggle button, 580
inline formula editing, 578
inline pop-up menu, 581

insert
auto-complete, 576, 577
steps pane, 577

targets, 583
Script trigger

definition, 651
file, 652

Script Workspace window, 568
function buttons, 569
menu bar, 572

edit, 573
scripts, 574, 575
view, 573

script content area, 570, 571
scripts pane, 569, 570
steps pane, 571, 572

Search operator, 51
Secure Socket Layer (SSL), 679
SELECT DISTINCT command, 357
Separator, 539
SetPrecision function, 271
Sharing database, network, 676
Show Custom Dialog

button click, 623
create record, 623, 624
field value, 624, 625
input fields, 622
properties, 621

Index

751

Snapshot link, 690, 691
SortValues function, 287, 288
Specify File dialog, 585

dynamic path, 589
convert, 591
file extension, 591
functions, 590
variables, 589

format path, 586
FileMaker network, 589
full, 588
network, 588
prefix, 586
relative, 586–588
types, 586

sqlQuery
concatenation, 361
literal text, field list, 360, 361
results, 366, 367
SELECT statement

alias, 359, 360
clause, 353
entire table, 354
formatting requirements, 353
individual fields, 355, 356
pattern, 352
references dynamics, 356
reformatting, 358
SELECT DISTINCT, 357

Starters, 91
Static text, 467
Status Toolbar, 32
Steps pane, 571, 572
Structured Query Language (SQL), 6, 349
Style

buttons, 527
CSS, 525, 526

definition, 525
normal state, 526
object state, 526

Substitute function, 282, 283
Sum function, 303, 365

local fields, 303
related fields, 304

Supported file types, 71

T
Table occurrence

adding, 193
arranging/resizing, 190
definition, 187
deleting, 194
editing, 192
formatting tool, 191
interaction, 189
printing, 194
selecting table, 188
view options, 191

Table occurrence group relationship
model, 180

Tables
basic anatomy, 125, 126
complex systems, 126
definition, 125
Learn FileMaker database, 139
Manage Database dialog, 127
managing (see Managing tables)
naming

list of names, 129
rules, 128
suggestions, 128, 129

Object/data model, 125, 126
spreadsheet

Index

752

cell, 126
field, 126
record, 126

Table view, 32
Tab order

definition, 521
changing, 521
Set Tab Order dialog, 522, 523

Text
data types

GetAsTimestamp, 280
GetAsBoolean, 277, 280
GetAsDate, 278
GetAsNumber, 278, 279
GetAsText, 279

encoding
CSS, 281
SVG, 281
URLs, 280

length, 276
modifications

changing case, 282
filter, 282
substitute, 282, 283

parsing
characters, 284
words, 284

PatternCount, 276
position, 277

TextFormatRemove function, 309
Text operators

backslash, 248
concatenate text, 247
definition, 247
paragraph return, 248
quotation marks, 247
reserved name, 249

Theme
changing layout, 529, 530
definition, 528
designing custom, 534, 535
FileMaker, 529
layout, 528
managing, 531
object style setting, 532–534

Time function, 274
Times

creation, 274
get functions, 272
parsing, 275
UTC, 272

Timestamps, 274
calculation, 275
creation, 274

Trigger scripts
avoid exception, 664
event completion, 663, 664

Truncate function, 271

U
Uniform Resource Locator (URL), 280
Uninterruptible power supply (UPS), 687
UNION clause, 366
UniqueValues function, 288
Universal resource identifier (URI), 495
User accounts, 703

adding passwords, 704, 705
FileMaker File account, 705, 706

V
Value-based condition, 518
ValueCount and RightValues functions, 345
ValueCount function, 285, 463

Tables (cont.)

Index

753

Value-driven condition, 518
Value list

custom values, 221
definition, 219
dialogs, 219, 220
file, 221, 222
values, from field

conditional value list, 225–227
context, 223
records, 224
specify field dialog, 223, 224

ValueListItems function, 462
Values

counting/parsing
GetValue, 286
LeftValues, 285
MiddleValues, 286
RightValues, 286
ValueCount, 285

definition, 285
manipulating

FilterValues, 287
SortValues, 287, 288
UniqueValues, 288

Variables
definition, 250
global variable, 252
local variable, 251
statement variable, 250, 251
types, 250

Virtual model, 125

W, X, Y, Z
Web viewer

configuration, 492

definition, 492
setup dialog, 493, 494
web page

container field image, 497
data URI, 495
FileMaker script, 497
Hello World, 495, 496
JavaScript, 497
text fields, 497

WeekOfYearFiscal function, 274
WHERE clause, 362, 363
While function, 342
Window Header

Formatting bar, 36
horizontal ruler, 36, 37
Status Toolbar, 32–36

Window mode, 30
Writing formulas

components
auto-complete, 258, 259
field selection panel, 259–261

constant-only formula, 255
intentional errors, 255, 256
repeating calculation fields

Get (ActiveRepetitionNumber)
function, 263

Get (CalculationRepetitionNumber)
function, 263

GetRepetition function, 263
non-repeating fields, 262, 263
repeating fields, 262

spaces
adding, 264
character limits, 265
complex statements, 264, 265

storage options, 256–258

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Foreword
	Introduction
	Part I: Using FileMaker
	Chapter 1: Introducing FileMaker
	A Brief Introduction to Databases
	The History of FileMaker in a Nutshell
	Nashoba Systems
	Claris International
	FileMaker
	Claris International Reborn

	Adapting to the Integrated Full Stack
	Reviewing the Product Line
	Creating with FileMaker Pro
	Sharing with FileMaker Server and Cloud
	Accessing with FileMaker Go and WebDirect

	Summary

	Chapter 2: Exploring the Application
	Introducing the Launch Center Window
	Configuring Application Preferences
	Preferences: General
	General: User Interface Options
	General: Username
	General: Application

	Preferences: Layout
	Preferences: Memory
	Preferences: Plug-Ins
	Preferences: Permitted Hosts

	Exploring Menus (Browse Mode)
	FileMaker Pro Menu
	File Menu
	File: Manage Submenu

	Edit Menu
	View Menu
	Insert Menu
	Format Menu
	Records Menu
	Scripts Menu
	Tools Menu
	Window Menu
	Help Menu

	Accessing Contextual Menus
	Contextual Menus for Fields
	Contextual Menus for Record Content Area
	Contextual Menus for Web Viewers
	Contextual Menus for Window Components
	Contextual Menus for Calculation Formulas

	Summary

	Chapter 3: Exploring a Database Window
	Identifying Window Regions and Modes
	Defining Window Modes
	Defining Content Views

	Exploring the Window Header
	Status Toolbar (Browse Mode)
	Default Toolbar Items (Browse Mode)
	Record Navigation Controls
	Function Buttons
	Quick Find Search Field
	Layout Menu
	Content View Buttons
	Preview Button
	Formatting Bar Button
	Edit Layout Button

	Customizing the Toolbar (Browse Mode)
	Adding, Removing, and Rearranging Toolbar Items
	Restoring the Default Toolbar Set

	Formatting Bar
	Horizontal Ruler

	Using Multiple Windows
	Creating a New Window
	Selecting a Window from the Menu
	Hiding and Showing Windows

	Summary

	Chapter 4: Working with Records
	Entering Data
	Opening a Record
	Understanding Field Focus
	Modifying Field Contents
	Closing a Record

	Creating, Deleting, and Duplicating Records
	Searching Records
	Performing Fast Searches
	Searching with Quick Find
	Searching with Find Matching

	Using Find Mode
	Status Toolbar (Find Mode)
	Default Toolbar Items (Find Mode)
	Navigation Controls
	Function Buttons
	Saved Finds Menu
	Layout Menu
	Content View Buttons
	Matching Records Options
	Insert Operators Menu

	Customizing the Toolbar (Find Mode)

	Entering Criteria and Performing the Find
	Using Search Operators

	Manipulating a Previously Executed Find
	Modifying the Last Find
	Extending the Last Find
	Constraining the Last Find

	Managing Multiple Find Requests
	Specifying a Matching Record Option
	Working with Saved Finds
	Managing a Find Request
	Editing a Find Request Criteria

	Working with Found Sets
	Changing the Records in the Found Set
	Sorting Records in the Found Set
	Modifying Field Values in a Found Set
	Replace Field Contents
	Relookup Field Contents
	Find and Replace
	Spell-checking
	Exploring the Spelling Menu
	Contextual Spelling Features

	Printing
	Using Preview Mode
	Status Toolbar (Preview Mode)
	Default Status Toolbar Items (Preview Mode)
	Navigation Controls
	Function Buttons
	Exit Preview Button

	Customizing the Status Toolbar (Preview Mode)

	Page Setup
	Print Dialog Options

	Summary

	Chapter 5: Transferring Records
	Supported File Types
	Importing Records
	Performing an Import
	Browsing the Source Data
	Selecting a Target Table
	Mapping Fields from Source to Target
	Setting Import Options
	Finishing the Import

	Changing the Import Type
	Updating Matching Records in Found Set
	Replacing Records in Found Set

	Setting Up an Automatic Recurring Import

	Exporting Records
	Specifying Export Fields
	Summarizing Output into Groups

	Summary

	Part II: Defining Data Structures
	Chapter 6: Working with Database Files
	Creating a New Database File
	Creating a Database from a Starter Solution
	Creating a Database from a Blank Template
	Converting an Existing File into a Database
	Configuring a Sandbox Table
	Changing the Default Table Name
	Adding Placeholder Fields
	Creating Data Entry Fields
	Creating a Calculation Field
	Creating a Summary Field
	Reviewing the Sandbox Fields

	Setting Up Placeholder Layouts
	Renaming the Default Layout as a Form View
	Adding Fields to a Layout
	Creating a List Layout

	Configuring File Options
	File Options: Open
	File Options: Icon
	File Options: Spelling
	File Options: Text
	File Options: Script Triggers

	Designing and Maintaining Healthy Files
	Avoiding Design and Training Deficiencies
	Overwriting an Existing Record
	Forgetting to Commit a Record
	Deleting Records Carelessly
	Misidentifying a Found Set

	Restraining File Size
	Designing Efficiently
	Avoiding Fragmentation

	Avoiding File Damage
	Share Properly
	Close Files Properly
	Maintain Hardware and Software

	Exploring Maintenance Functions
	Saving a Copy As
	Performing a Consistency Check
	Recovering a File
	Advanced Recovery Options

	Troubleshooting a Damaged File
	Locating Damage
	Checking the Database Structure
	Checking the Record Data

	Determining the Best Course of Action
	Transferring Records into a Good Structure

	Summary

	Chapter 7: Working with Tables
	Introducing Object Modeling
	Introducing the Manage Database Dialog (Tables)
	Planning Table Names
	Managing Tables
	Adding Tables
	Creating a New Table
	Duplicating an Existing Table
	Importing a Table
	Adding a Table from an ODBC Data Source (macOS)
	Preparing a Computer for an ODBC Connection
	Installing the ODBC Manager Application
	Installing the ODBC Driver
	Configuring Driver

	Connecting a FileMaker Database to the ODBC Client Driver
	Setting Up External Data Source
	Adding to Relationship Graph

	Defining an ODBC “Shadow Table” in FileMaker

	Renaming and Deleting Tables

	Adding Tables to the Example Database
	Summary

	Chapter 8: Defining Fields
	Defining Field Data Types
	Entry Fields
	Text Fields
	Number Fields
	Date Fields
	Two-Digit Date Conversion

	Time Fields
	Timestamp Fields
	Container Fields

	Display Fields
	Calculation Fields
	Summary Fields

	Introducing the Manage Database Dialog (Fields)
	Planning Field Names
	Defining Default Fields
	Creating Your Own Standard Fields
	Grouping Standard Fields

	Managing Fields
	Creating a New Field
	Duplicating an Existing Field
	Modifying a Field Name or Comment
	Modifying a Field’s Type
	Deleting Fields

	Setting Field Options
	Options for Entry Fields
	Field Options: Auto-Enter
	Automatically Enter the Following Data into This Field
	Lookup for Field Dialog
	Prohibit Modification of Value During Data Entry

	Field Options: Validation
	Validation Control
	Validation Requirements
	Display Custom Message if Validation Fails
	Exploring Validation Alternatives

	Field Options: Storage
	Global Storage
	Repeating
	Indexing
	Container Storage Options

	Field Options: Furigana

	Options for Display Fields
	Options for Summary Field Dialog

	Adding Fields to the Example Database
	Defining Company Fields
	Defining Contact Fields
	Defining Project Fields
	Renaming and Modifying Default Fields

	Summary

	Chapter 9: Forming Relationships
	Introducing Relationships
	Visualizing Relationships
	One-to-One Relationship
	One-to-Many Relationship
	Many-to-Many Relationship
	FileMaker’s Unique Multi-key Option

	Indexing Match Fields
	Using Table Occurrences
	Avoiding Hub-and-Spoke Monoliths
	Embracing Table Occurrence Groups

	Planning a Learn FileMaker Relational Object Model

	Managing Data Sources
	Introducing the Manage External Data Sources Dialog
	Exploring the Edit Data Source Dialog

	Introducing the Manage Database Dialog (Relationships)
	Working with Table Occurrences
	Selecting Table Occurrences
	Interacting with Table Occurrences
	Arranging and Resizing Occurrences
	Viewing Options
	Formatting Table Occurrences
	Editing Table Occurrences
	Introducing the Specify Table Dialog

	Adding Table Occurrences
	Creating a New Occurrence
	Duplicating an Existing Occurrence

	Deleting Occurrences
	Printing the Relationship Graph

	Building Relationships
	Adding Relationships
	Dragging a Connection Between Occurrences
	Using the Add Relationship Button

	Manipulating Relationships
	Introducing the Edit Relationship Dialog
	Selecting a Comparative Operator
	Relationship Options
	Allowing Creation of Related Records
	Automatically Delete Related Records
	Sorting Related Records

	Adding Notes to the Graph
	Implementing a Simple Relational Model
	Summary

	Chapter 10: Managing Containers
	Inserting Files into Containers
	Using the Insert Menu
	Dragging and Dropping
	Copying and Pasting

	Extracting Files from Containers
	Explaining Container Storage Options
	Storing Files Internally
	Storing a Reference to an External File
	Using Custom-Managed References in Any Directory
	Using Database-Managed References in a Central Directory

	Using Managed External Storage
	Defining Base Directories
	Exploring the Manage Containers Dialog
	Exploring the Storage Tab
	Creating a New Base Directory
	Editing a Base Directory
	Deleting a Base Directory

	Exploring the Thumbnails Tab

	Defining a Field’s External Storage Directory
	Changing a Field Container Settings

	Summary

	Chapter 11: Defining Value Lists
	Introducing the Value Lists Dialogs
	Using Custom Values
	Using a List from Another File
	Using Values from a Field
	Introducing the Specify Fields Dialog
	Creating a List of All Records in a Table
	Creating Conditional Value Lists
	Using a Dedicated Relationship
	Using a Calculation Field

	Summary

	Part III: Writing Formulas and Using Functions
	Chapter 12: Writing Formulas
	Introducing Formulas
	How Formulas Work

	Defining Formula Components
	Comments
	Creating End-of-Line Comments
	Creating Multiline Comments

	Constants
	Field References
	Keeping Field References Dynamic

	Functions
	Calling a Function from a Formula
	Calling a Function with Parameters
	Optional Parameters
	Nesting Function Calls

	Operators
	Comparison Operators
	Equal To
	Not Equal To
	Greater Than
	Greater Than or Equal To
	Less Than
	Less Than or Equal To

	Logical Operators
	AND
	OR
	XOR
	NOT

	Mathematical Operators
	Addition
	Subtraction
	Multiplication
	Division
	Raising to a Power
	Precedence

	Text Operators
	Quoting Text
	Concatenate Text
	Paragraph Return
	Backslash
	Reserved Name

	Understanding Operator Precedence

	Reserved Words
	Variables
	Types of Variables
	Statement Variables
	Local Variables
	Global Variable

	Exploring the Calculation Interface
	Exploring the Specify Calculation Dialog

	Writing Formulas
	Constant-Only Formula
	Creating Intentional Errors
	Experimenting with Storage Options
	Inserting Formula Components
	Using Auto-complete
	Using the Field Selection Pane
	Using the Function Selection Pane

	Creating Repeating Calculation Fields
	Using Repeating Fields in a Repeating Calculation
	Using Non-repeating Fields in a Repeating Calculation
	Other Repetition Functions

	Including Space for Visual Formatting
	Adding a Space Between Items
	Expanding Complex Statements
	Managing Character Limits

	Adding Simple Calculations to the Example File
	Company Contact Count
	Contact Full Name and Address Label

	Summary

	Chapter 13: Exploring Built-in Functions
	Working with Numbers, Dates, and Times
	Using Number Functions
	Int
	Random
	Round
	Mod
	SetPrecision
	Truncate

	Working with Dates and Times
	Getting Current Information
	Getting Coordinated Universal Time (UTC)

	Creating Dates
	Parsing Dates
	Creating Times
	Creating Timestamps
	Parsing Times
	Calculating Time Elapsed

	Working with Text
	Analyzing Text
	Length
	PatternCount
	Position

	Changing Data Types
	GetAsBoolean
	GetAsDate
	GetAsNumber
	GetAsText
	GetAsTime
	GetAsTimestamp

	Converting Text Encoding
	Encoding Text for URLs
	Converting to CSS
	Converting Text to SVG

	Modifying Text
	Changing Case
	Filter
	Substitute

	Parsing Text
	Extracting Characters
	Extracting Words

	Working with Values
	Counting and Parsing Values
	ValueCount
	LeftValues
	RightValues
	MiddleValues
	GetValue

	Manipulating Values
	FilterValues
	SortValues
	UniqueValues

	Introducing Get Functions
	Credentials and User Information
	OS, Computer, and App
	Records
	Layouts
	Window
	Getting Window Properties
	Getting Window Dimensions

	Accessing Fields
	Discovering Active
	Converting a Field Reference to Text
	Getting Field Content
	GetField
	GetNthRecord

	Getting Selected Text

	Aggregating Data
	Average
	Using the Average Function with Local Fields
	Using the Average Function with Related Fields

	Count
	Using the Count Function with Local Fields
	Using the Count Function with Related Fields

	List
	Using the List Function with Local Fields
	Using the List Function with Related Fields

	Sum
	Using the Sum Function with Local Fields
	Using the Sum Function with Related Fields

	Using Logical Functions
	Case
	Choose
	Let
	While
	Removing Double Spaces with a While Statement
	Compiling a List of Related Records Using While
	Compiling a List of Local Records Using While

	Nesting Functions into Complex Statements
	Creating a Record Metadata String
	Creating a Record Count String
	Creating Sentence from Time Elapsed
	Converting a Number to a Sentence

	Summary

	Chapter 14: Using JSON
	Defining the JSON Format
	Parsing JSON
	Using JSONGetElement
	Referring to an Element by Key
	Referring to an Element by Array Index
	Referring to an Element by Path

	Using JSONListKeys
	Using JSONListValues

	Creating and Manipulating JSON
	Using JSONSetElement
	Specifying a Data Type
	Setting Multiple Values at Once
	Setting a Value by Path
	Setting Array Values

	Using JSONDeleteElement
	Using JSONFormatElements

	Summary

	Chapter 15: Creating Custom Functions
	Introducing the Custom Function Dialogs
	Creating a Custom Function
	Adding Parameters to a Custom Function
	Adding an Input Date Parameter
	Adding a Day Requested Parameter
	Adding a Default Date Option
	Stressing the Importance of Thorough Testing

	Building Recursive Functions
	Building Simple Recursive Functions
	Controlling Recursion Limits with setRecursion
	Embedding Test Code Inside a Function

	Summary

	Chapter 16: Introducing ExecuteSQL
	Defining the ExecuteSQL Function
	Understanding the Limits of ExecuteSQL

	Creating SQL Queries
	Defining SELECT Statements
	Formatting Requirements

	Using the SELECT Statement
	Selecting an Entire Table
	Selecting Individual Fields
	Specifying a Single Field
	Specifying Multiple Fields

	Keeping References Dynamic
	Getting Unique Values with SELECT DISTINCT
	Reformatting SELECT Statements for Clarity
	Adding Extra Space with Tabs and Paragraph Returns
	Using a LET Statement

	Exploring the Benefits of Aliases

	Inserting Literal Text in the Field List
	Concatenating Results
	Using the WHERE Clause
	Creating a WHERE Clause with a Single Expression
	Creating a WHERE Clause with Multiple Expressions

	Using the ORDER BY Clause
	Using the JOIN Clause
	Using the GROUP BY Clause
	Adding a HAVING Clause

	Using the UNION Clause
	Limiting the Results of a Query
	Using the OFFSET Clause
	Using the FETCH FIRST Clause
	Combining the OFFSET and FETCH FIRST Clauses

	Accessing the Database Schema
	Selecting FileMaker_Tables
	Selecting FileMaker_Fields

	Exploring Other SQL Features
	Summary

	Part IV: Designing User Interfaces
	Chapter 17: Introducing Layouts
	Understanding Contextual Access
	Anatomizing a Layout
	Planning Layouts
	Using Layout Mode
	Status Toolbar (Layout Mode)
	Default Status Toolbar Items (Layout Mode)
	Navigation Controls
	New Layout/Report Button
	Layout Tools
	Developer Menu and Pane Toggling
	Layout Menu
	Layout Settings Button
	Theme Selection
	Screen and Device Dimension Menu
	Formatting Bar Button
	Exit Layout Button

	Customizing the Status Toolbar (Layout Mode)

	Menu Changes (Layout Mode)
	Edit Menu
	View Menu
	Insert Menu
	Format Menu
	Layouts Menu
	Arrange Menu

	Summary

	Chapter 18: Getting Started with Layouts
	Working with Layout Parts
	Defining Layout Regions and Controls
	Resizing a Part Area

	Defining Part Types
	Defining Standard Parts
	Defining Summary Parts

	Managing Parts
	Adding a Part Using the Toolbar Button
	Configuring a Part
	Deleting a Part
	Using the Part Setup Dialog

	Adding Layouts
	Creating a New Layout
	Additional Options for New Report Layouts
	Preparing for the Invoice Report Demonstration
	Dialog 1: Include Subtotals and Grand Totals
	Dialog 2: Specify Fields
	Dialog 3: Organize Records by Category
	Dialog 4: Sort
	Dialog 5: Specify Subtotals
	Dialog 6: Specify Grand Totals
	Dialog 7: Header and Footer Information
	Dialog 8: Create a Script
	Refining the Report Layout

	Duplicating an Existing Layout

	Configuring Layout Settings
	General
	Views
	Printing
	Script Triggers

	Using the Manage Layouts Dialog
	Optimizing Layout Performance
	Summary

	Chapter 19: Exploring Layout Panes
	Exploring the Objects Pane
	Defining the Fields Tab
	Defining the Objects Tab
	Defining the Add-ons Tab

	Exploring the Inspector Pane
	Inspecting the Position Tab
	Position
	Autosizing
	Arrange & Align
	Sliding & Visibility
	Grid

	Inspecting the Style Settings
	Inspecting the Appearance Settings
	Theme and Style
	Graphic
	Advanced Graphic
	Text
	Paragraph
	Tabs

	Inspecting the Data Settings
	Field
	Behavior
	Data Formatting
	Data Formatting Options for Numbers
	Data Formatting Options for Dates
	Data Formatting Options for Times
	Data Formatting Options for Containers

	Summary

	Chapter 20: Creating Layout Objects
	Inserting an Object onto a Layout
	Working with Field Objects
	Adding Fields to a Layout
	Specifying the Field Reference After Adding
	Specifying the Field Reference While Adding

	Exploring the Specify Field Dialog
	Editing the Reference of an Existing Field
	Working with Field Labels
	Configuring a Field’s Control Style
	Edit Box
	Pop-up Menu
	Drop-Down List
	Checkbox Set
	Radio Button Set
	Drop-Down Calendar
	Concealed Edit Box

	Using Pop-up Menus for Two-Field Value List
	Bypassing Value List Entry Restrictions
	Halting Entry of Custom Values
	Using Field Validation
	Filtering Bad Values with a Calculation
	Using a Script Trigger

	Halting Entry of Multiple Values
	Restricting Multiple Value Bypass
	Using Auto-Enter to Limit Field to a Single Value
	Using a Script Trigger to Limit Field to a Single Value

	Using Field Placeholders
	Entering Placeholder Text
	Replacing Display Calculation Fields with Placeholders

	Showing Field Repetitions

	Working with Text
	Creating Static Text
	Creating Dynamic Placeholder Symbols
	Creating Merge Fields
	Creating Merge Variables

	Working with Button Controls
	Working with Buttons
	Configuring a Button’s Label
	Using a Text Label
	Using an Icon Label

	Configuring a Button’s Action
	Performing a Single Step
	Performing a Script

	Popover Button
	Defining the Basic Popover Interface
	Exploring the Popover Button Setup Options

	Button Bar
	Exploring the Button Bar Setup Options

	Making Any Object a Button

	Working with Panel Controls
	Tab Control
	Exploring the Tab Control Setup Dialog

	Slide Control
	Exploring the Slide Control Setup Dialog

	Working with Portals
	Exploring the Portal Setup Dialog
	Adding Objects to Portal Rows
	Creating Records in a Portal Directly
	Deleting Portal Rows
	Filtering Portal Records
	Setting Up Portal Filtering
	Writing a Basic Portal Filter Formula
	Expanding the Formula for Multiple Match Fields
	Enhancing the Search Field

	Working with Web Viewers
	Exploring the Web Viewer Setup Dialog
	Building a Web Page Using Data from Fields
	Creating a Hello World Web Page
	Including Text Fields in a Web Page
	Including a Container Field Image in a Web Page

	Calling a FileMaker Script with JavaScript

	Working with Charts
	Creating a Chart Using Calculated Data
	Creating a Chart Using the Found Set

	Summary

	Chapter 21: Manipulating Objects
	Selecting Objects
	Resizing Objects
	Moving Objects
	Layout Positioning Helpers
	Ruler
	Grid
	Guides
	Dynamic Guides

	Arranging and Aligning Objects
	Align
	Resize To
	Distribute
	Rotate
	Group
	Lock
	Object Stacking

	Hiding Objects
	Using Hide to Toggle a Button Bar

	Conditional Formatting
	Condition Formula Options
	Using Value-Based Conditions
	Using Formula-Based Conditions

	Conditionally Formatting a Project Status Field

	Understanding Tab Order
	Changing the Tab Order
	Using Functions of the Set Tab Order Dialog

	Naming Objects
	Summary

	Chapter 22: Using Themes and Styles
	Anatomizing Styles
	Using Themes
	Changing a Layout’s Theme
	Managing Themes

	Using Styles
	Editing an Object’s Style Settings

	Designing a Custom Theme
	Summary

	Chapter 23: Customizing Menus
	Getting Started with Custom Menus Basics
	Exploring the Manage Custom Menus Dialog
	Creating a Custom Menu Set
	Adding Copies of Standard FileMaker Menus

	Customizing Menu Items
	Exploring the Edit Custom Menu Dialog
	Configuring Menu Settings
	Exploring Menu Item Settings
	Defining Settings for Commands
	Defining Settings for Submenus

	Modifying a Standard Menu Item
	Renaming a Menu Item
	Overriding a Menu Item Function
	Removing a Menu Item Conditionally

	Adding a Custom Menu
	Creating an Actions Menu
	Adding Items to the Actions Menu
	Adding a Command Menu Item
	Adding a Submenu Item

	Installing a Menu Set
	Exploring the Link Between Commands and Menus
	Creating a Status-Based Custom Menu
	Summary

	Part V: Automating Tasks with Scripts
	Chapter 24: Introduction to Scripting
	Introducing the Script Workspace
	Exploring the Workspace Toolbar
	Exploring the Scripts Pane
	Exploring the Script Content Area
	Steps Pane
	Menu Changes (Script Workspace)
	Edit Menu
	View Menu
	Scripts Menu

	Writing Scripts
	Exploring Script Step Basics
	Inserting Script Steps
	Inserting Steps Using Auto-Complete
	Inserting Steps from the Steps Pane

	Configuring Script Steps
	Configuring Settings Directly Inline
	Inline Editing with Formula Text
	Inline Editing with a Toggle Button
	Inline Editing with Pop-up Menu

	Configuring Steps with an Options Dialog
	Specifying Targets

	Script Comments

	Specifying File Paths
	Formatting Paths
	Path Prefixes
	Path Types
	Relative Path
	Full Path
	Network Path (Windows Shared Directory Only)
	FileMaker Server Network Path

	Building Dynamic Paths
	Using Variables in Paths
	Using Functions to Generate Contextual Paths
	Excluding File Extensions
	Converting Paths

	Performing Other Scripts
	Exploring the Specify Script Dialog
	Exchanging Data Between Scripts
	Sending Parameters
	Parsing a Parameter
	Exploring Script Results

	Perform Script on Server

	Emphasizing the Importance of Context
	Managing Scripting Errors
	Summary

	Chapter 25: Common Scripting Tasks
	Scripting Basic Functions
	Allowing User Abort
	Setting Variables
	Creating Navigation Scripts
	Go to Layout
	Go to Record/Request/Page
	Go to Related Record

	Interacting with Fields
	Go to Field
	Set Field
	Set Field by Name
	Set Selection
	Set Next Serial Value

	Accessing Folders and Files
	Get Folder Path
	Manipulating Data Files
	Creating a Data File
	Opening and Closing a Data File
	Reading a Data File
	Confirming a Data File’s Existence
	Writing to a Data File

	Working with Records
	Import Records
	Export Records

	Using Conditional Statements
	Showing Custom Dialogs
	Configuring Dialog Properties
	Configuring Dialog Input Fields
	Capturing a Dialog Button Click
	Creating a Related Record Using a Dialog
	Confirming a Dialog Field Value

	Searching and Dealing with Found Sets
	Iterating with Repeating Statements
	Looping Through a Found Set of Records
	Looping Through Data

	Managing Windows
	Creating a New Window
	Building a Custom Dialog Window
	Creating a Dialog Layout
	Creating a Dialog Layout Script
	Connecting the Dialog Buttons to the Script

	Introducing the Card Window

	Using Insert from URL
	Downloading a PDF File
	Accessing Zip Code Information
	Using cURL Options

	Summary

	Chapter 26: Debugging Scripts
	Introducing Debugging
	Exploring the Debugging Interface
	Debugging Options Under the Tools Menu
	Exploring the Script Debugger Window
	Status Toolbar Items (Debugger Window)

	Exploring the Data Viewer

	Setting Custom Breakpoints
	Summary

	Chapter 27: Using Script Triggers
	Defining Available Triggers
	File Triggers
	OnFirstWindowOpen
	OnLastWindowClose
	OnWindowOpen
	OnWindowClose
	OnFileAVPlayerChange

	Layout Triggers
	OnRecordLoad
	OnRecordCommit
	OnRecordRevert
	OnLayoutKeystroke
	OnLayoutEnter
	OnLayoutExit
	OnLayoutSizeChange
	OnModeEnter
	OnModeExit
	OnViewChange
	OnGestureTap
	OnExternalCommandReceived

	Object Triggers
	OnObjectEnter
	OnObjectKeystroke
	OnObjectModify
	OnObjectValidate
	OnObjectSave
	OnObjectExit
	OnPanelSwitch
	OnObjectAVPlayerChange

	Understanding Event Precedence
	Opening a Database File
	Committing a Record with Unsaved Changes
	Opening a New Window
	Changing Layouts

	Accessing Targets Before Event Completion
	Avoiding Trigger Exceptions
	Summary

	Chapter 28: Extending Features with Plug-ins
	Finding Plug-ins
	MonkeyBread Software
	Productive Computing
	Prometheus Systems Consulting
	Troi Automatisering

	Installing Plug-ins
	Accessing Plug-in Functions
	Summary

	Part VI: Deploying, Securing, and Analyzing Files
	Chapter 29: Deploying and Accessing Databases
	Deploying to a Folder Directory
	Deploying to an iOS Device
	Sharing Databases on a Network
	Understanding Collaborative Limitations
	Configuring Network Settings
	Enabling Peer-to-Peer Sharing
	Configuring Database Network Access Settings

	Opening a Hosted Database

	Hosting with FileMaker Server
	Preparing a Host Computer
	Defining Installed Resources

	Accessing the Admin Console
	Uploading Files to a FileMaker Server
	Moving the File into the Databases Folder
	Uploading a File from a Client Computer

	Managing Database Files
	Restarting a Server Computer
	Using the Command-Line Interface
	Formatting a fmsadmin Command
	Available fmsadmin Commands
	Getting Detailed Command Help

	Hosting with FileMaker Cloud
	Controlling FileMaker with Links, URLs, and AppleScript
	Sharing Bookmarks with Snapshot Links
	Using the FileMaker URL
	Formatting a Basic FMP URL
	Addressing a Hosted Database
	Including Access Credentials
	Including a Script Name
	Adding a Script Parameter
	Adding Script Variables

	Using AppleScript to Automate FileMaker
	Defining the Tell FileMaker Statement
	Opening FileMaker’s Script Dictionary
	Scripting Basic Tasks
	Opening a Database
	Activating an Open Database
	Changing Layouts
	Finding All Records
	Finding Records Based on a Field Value
	Counting Records in the Found Set
	Counting Every Record in a Table

	Summary

	Chapter 30: Defining Accounts and Permissions
	Defining Default Security
	Defining User Accounts
	Adding a Password to the Default Account
	Creating a FileMaker File Account
	Creating an External Server Account
	Enabling FileMaker Server External Authentication

	Exploring Privilege Sets
	Default Privilege Sets
	Creating Custom Privilege Sets
	Configuring Data Access and Design Settings
	Controlling Record Access
	Controlling Layout Access
	Controlling Value List Access
	Controlling Script Access

	Assigning Other Privilege Settings
	Assigning Extended Privileges

	Using Credentials in Formulas
	Understanding the Risks of Credential Embedding

	Leveraging Custom Extended Privileges
	Controlling File Access
	Summary

	Chapter 31: Analyzing and Modifying Files
	Save a Copy as XML
	Generating a Database Design Report
	Generating a Design Report
	Exploring a HTML Design Report
	Exploring an XML Design Report
	Introducing Professional DDR Tools
	BaseElements
	FMPerception
	InspectorPro

	Exploring Developer Utilities
	Renaming Files
	Specifying a Project Folder
	Specifying Solution Options
	Removing Admin Access from Files
	Enabling Kiosk Mode
	Requiring a FileMaker File Extension
	Creating an Error Log of Errors
	Exploring Encryption Features
	Enabling Database Encryption (or Re-encrypt Files)
	Removing Database Encryption

	Tools Marketplace
	Summary

	Index

