

Dave Taylor

Learning Unix for OS X

Learning Unix for OS X
by Dave Taylor

Copyright © 2012 Dave Taylor. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian Jepson and Meghan Blanchette
Production Editor: Kristen Borg
Copyeditor: Rachel Head
Proofreader: BIM Publishing Services

Indexer: BIM Publishing Services
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

October 2012: First Edition

Revision History for the First Edition:

2012-09-19: First release

2013-09-26: Second release

2013-11-18: Third release

See http://oreilly.com/catalog/errata.csp?isbn=9781449332310 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Learning Unix for OS X, the image of a mountain lion, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-33231-0

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449332310

Table of Contents

Preface. ix

1. Why Use Unix?. 1
The Power of Unix 1

Batch Renames and Extracting File Lists 4
Finding Hidden Files 5

Folders or Directories? 6
Thousands of Free Applications 7

Power Internet Connections 7
Commands Included with Unix 8

Displaying All Unix Commands 9
The 10 Most Common Unix Commands 9

A Simple Guided (Unix) Tour 10

2. Using the Terminal. 13
Launching the Terminal 13

Syntax of a Unix Command 14
Exercise: Entering a Few Commands 16
Types of Commands 17
Changing the Terminal’s Preferences 18
Features of the Terminal 22

Customizing Your Terminal Session 23
Setting the Terminal’s Title 23
Using AppleScript to Manipulate the Terminal 24
Working with .terminal Files 25

Working with the Terminal 25
The Shell Prompt 27
Entering a Command 27
Recalling Previous Commands 28

iii

Completing File and Directory Names 29
Running Multiple Commands on the Command Line 30
Correcting a Command 30
Ending Your Session 31
Problem Checklist 31

Customizing the Shell Environment 32
Picking a Login Shell 32
Changing the Command Prompt 33

Advanced Shell Customization 35
Shell Configuration Settings 35
Creating Aliases 38

The Unresponsive Terminal 39

3. Exploring the Filesystem. 41
The OS X Filesystem 41

Your Home Directory 42
Your Working Directory 42
The Directory Tree 43
Absolute Pathnames 44
Relative Pathnames 45
Changing Your Working Directory 47
Files in the Directory Tree 49

Listing Files and Directories 51
The All-Powerful ls Command 51
Trying Out the ls Command 52
Using the -l Option 55
File Permissions 56

Calculating File Size and Disk Space 59
Calculating Available Disk Space 62
Exercise: Exploring the Filesystem 63

Protecting and Sharing Files 64
File Access Permissions 66
Setting Permissions with chmod 67
Changing the Group and Owner 70

Changing Your Password 71
Superuser Privileges with sudo 72
Exploring External Volumes 74

4. File Management. 77
File and Directory Names 77
File and Directory Wildcards 80
Looking Inside Files 82

iv | Table of Contents

cat 82
less 83
grep 85

Creating and Editing Files 86
Text Editors and Word Processors 87
The vi Text Editor 89
vi Basics 90
A Simpler vi Alternative: Pico 96
The More Complex Option: Emacs 97

Managing Files 98
Creating Directories with mkdir 99
Copying Files 100
Renaming and Moving Files with mv 102
Removing Files and Directories 103
Working with Links 105
Compressing and Archiving Files 106
Files on Other Operating Systems 109

5. Finding Files and Information. 111
The Oddly Named grep Command 111

Useful grep Options 112
Working with Regular Expressions 114

Finding Files with locate 118
Using locate 118

Using find to Explore Your Filesystem 119
Matching by File Size 120
Exploring find Permission Strings 122
Using find to Identify Recently Changed Files 123
find’s Faithful Sidekick: xargs 124
Further Refinements to find 126

Shining a Light on Spotlight 127
Listing Spotlight Metadata with mdls 128
Finding Files with mdfind 131
Making Spotlight Useful 133

6. Redirecting I/O. 135
Standard Input and Standard Output 135

Putting Text in a File 137
Pipes and Filters 141

wc 142
tr 143
grep 144

Table of Contents | v

head and tail 145
sort 145
uniq 147
Piping Output to a Pager 147

Printing 149
The Unix Way 149

7. Multitasking. 153
Running a Command in the Background 154
Checking on a Process 155

ps 155
top 157

Canceling a Process 160
kill 160
killall 161

Launching GUI Applications 163
open 163
Useful Starting Options for Use with open 165
Making open More Useful 165

8. Taking Unix Online. 169
Remote Logins 169

Web Access 173
Remote Access to Other Unix Systems 173

Transferring Files 176
scp and rcp 176
FTP 177
Easy Shortcuts with New Remote Connection 182

9. Of Windows and X11. 185
X11 186

Using X11 188
Differences Between OS X and X11 190
Customizing X11 191

GIMP, the X11 Graphics Editor 193

10. Where to Go from Here. 195
Documentation 195

The man Command 195
Documentation on the Internet 199
Books 200

Customizing Your Unix Experience 200

vi | Table of Contents

Shell Aliases and Functions 200
Programming 201
Perl, Python, and Ruby 202
C and C++ 203

Index. 205

Table of Contents | vii

Preface

It’s been a long time since we went through the transition from Mac OS 9 to the more
complicated and graphically rich world of OS X. Many of you reading this have never
known a Mac interface that wasn’t actually OS X (pronounce that “oh-ess ten” to sound
cool). The biggest change when Apple switched operating systems was that every ma‐
chine then gained multitasking and multiuser capabilities.

What you might not have realized, however, is that it was the underlying operating
system itself that changed in the update to OS X, and that you have a tremendously
powerful OS that can run thousands of open source applications downloaded free from
the Net, along with a command-line interface that makes even the most complex tasks
a breeze.

If you want to learn the key phrases, beneath OS X lies an operating system called Unix
(pronounced “you-nicks”): specifically, UC Berkeley’s BSD Unix and the Mach kernel,
a multiuser, multitasking operating system. Being multiuser means OS X allows multiple
users to share the same system, each with their own settings, preferences, and separate
area in the filesystems, secured from other users’ prying eyes. Being multitasking means
OS X can easily run many different applications at the same time, and if one of those
applications crashes or hangs, the entire system doesn’t need to be rebooted. Instead,
you just force quit the application that’s causing the “Spinning Beach Ball of Death” (you
know, when the mouse pointer turns into a spinning color wheel that just won’t stop
rotating) and either relaunch it or proceed with your work in other apps.

ix

The fact that OS X has Unix under the hood doesn’t matter to users who simply want
to use its slick graphical interface to run their applications or manage their files. But it
opens up a world of possibilities for users who want to dig a little deeper. The Unix
command-line interface, which is accessible through the Terminal application (you can
find this app in /Applications/Utilities), provides an enormous amount of power for
intermediate and advanced users. What’s more, once you’ve learned to use Unix in OS
X, you’ll also be able to use the command line in other versions of Unix, such as FreeBSD
(from which OS X derives its Unix core) or even the hugely popular Linux.

This book is designed to teach Mac users the basics of Unix. You’ll learn how to use the
command line (which Unix users refer to as the shell) and the filesystem, as well as some
of Unix’s most useful commands. I’ll also give you a tour of some useful Unix commands
that Apple’s team have written and include with every Mac system—utilities that let you
really gain control over your system. Unix is a complex and powerful system, so I can
only scratch the surface, but I’ll also tell you how to deepen your Unix knowledge once
you’re ready for more.

Who This Book Is For
This book is for savvy Mac users who are comfortable in their current world (the Finder
and other GUI applications) but also want to learn more about the “Power of Unix”.
Here, you’ll learn all the basic commands you need to get started with Unix. Rather than
weighing you down with lots of details, I want to help you get comfortable in the Unix
environment as soon as possible. So, I cover each command’s most useful features in‐
stead of describing all its options in detail. And let me tell you, Unix has thousands of
commands with millions of options. It’s very powerful! But fortunately, it’s just as pow‐
erful and helpful even if you just focus on a core subset and gradually learn more as you
need additional power and capabilities.

Who This Book Isn’t For
If you’re seeking a book that talks about how to build Mac software applications, this
isn’t it (although it’s quite helpful for developers to have a firm grasp of Unix essentials,
because you never know when you’re going to need them). And if you’re a complete
beginner and are still stymied by where the second mouse button has gone, you might
be better off putting this book on the shelf until you’re more comfortable with your
Macintosh.

Finally, if you live and breathe Unix every day, this book is probably too basic for you.
I also don’t cover either Unix system administration or Mac system administration from
the command line. For example, if you already know what a PID is and how to kill a
program, this book is probably beneath your skill level. But if you don’t know what those
terms mean, or if you’re somewhere in between, you’ve found the right book!

x | Preface

A Brief History of Unix
The Macintosh started out with a single-tasking operating system that allowed simple
switching between applications through an application called the MultiFinder. More
recent versions of the Mac OS have supported multiple applications running simulta‐
neously, but it wasn’t until the landmark release of Mac OS X in 1999 that true multi‐
tasking arrived in the Macintosh world. With OS X, Macintosh applications run in
separate memory areas; the Mac is a true multiuser system that also includes proper
file-level security.

To accomplish these improvements, OS X made the jump from a proprietary underlying
operating environment to Unix. OS X is built on top of Darwin, a version of Unix based
on BSD 4.4 Lite, FreeBSD, NetBSD, and the Mach microkernel.

Unix itself was invented more than 40 years ago for scientific and professional users
who wanted a very powerful and flexible OS. It has evolved since then through a re‐
markably circuitous path, with stops at Bell Telephone Labs, UC Berkeley, and research
centers in Australia and Europe, and also received some funding from the US Depart‐
ment of Defense Advanced Research Projects Agency (DARPA). Because Unix was de‐
signed by experts for experts (or “geeks,” if you prefer), it can be a bit overwhelming at
first. But after you get the basics (from this book!), you’ll start to appreciate some of the
reasons to use Unix. For example:

• It comes with a huge number of powerful programs, and you can get many others
for free on the Internet. (The Fink project, available from SourceForge—http://
fink.sourceforge.net—brings many open source packages to OS X.) You can thus do
much more at a much lower cost.

• Unix is pretty much the same on the command line, regardless of whether you’re
using it on OS X, FreeBSD, or Linux, or even in tiny embedded systems or on a
giant supercomputer. After you read this book, you’ll not only know how to harness
the power of Unix, but you’ll also be ready to use many other kinds of Unix-based
computers without having to learn new commands for each one.

Versions of Unix
There are several versions of Unix. Some past and present commercial versions include
Solaris, AIX, and HP/UX. Freely available versions include Linux, NetBSD, OpenBSD,
and FreeBSD. Darwin, the free Unix version underneath OS X, was built by grafting an
advanced version called Mach onto BSD, with a light sprinkling of Apple magic for the
Aqua interface.

Although GUIs and advanced features differ among Unix systems, you should be able
to use much of what you learn from this introductory handbook on any system. Don’t

Preface | xi

http://fink.sourceforge.net
http://fink.sourceforge.net

worry too much about what’s from what version of Unix. Just as English borrows words
from French, German, Japanese, Italian, and even Hebrew, OS X’s Unix borrows com‐
mands from many different versions of Unix—and you can use them all without paying
attention to their origins.

From time to time, I explain features of Unix on other systems. Knowing the differences
can help you if you ever want to use another type of Unix system. When I write “Unix”
in this book, I mean “Unix and its versions,” unless I specifically mention a particular
version.

Interfaces to Unix
Unix can be used as it was originally designed: on typewriter-like terminals, from a
prompt on a command line. Most versions of Unix also work with window systems, or
graphical user interfaces (GUIs). These allow each user to have a single screen with
multiple windows—including “terminal” windows that act like the original Unix
interface.

OS X includes a simple terminal application for accessing the command-line level of
the system. That application is called the Terminal and is closely examined in Chapter 2.

While you can use your Mac quite efficiently without issuing commands in the Terminal,
that’s where we’ll spend all of our time in this book. Why?

• Every Macintosh has a command-line interface. If you know how to use the com‐
mand line, you’ll always be a power user.

• As you become a more advanced Unix user, you’ll find that the command line is
actually much more flexible than the graphical Mac interface. Unix programs are
designed to be used together from the command line—as “building blocks”—in an
almost infinite number of combinations, to do an infinite number of tasks. No
window system I’ve seen has this tremendous power.

• You can launch and close any Mac program from the command line.
• Once you learn to use the command line, you can use those same techniques to

write scripts. These little (or big!) programs automate jobs you’d have to do manually
and repetitively with a window system (unless you understand how to program a
window system, which is usually a much harder job). See Chapter 10 for a brief
introduction to scripting.

• In general, text-based interfaces are much easier than graphical computing envi‐
ronments for visually impaired users.

I’m not saying that the command-line interface is right for every situation. For instance,
using the Web—with its graphics and links—is usually easier with a GUI web browser
within OS X. But the command line is the fundamental way to use Unix. Understanding

xii | Preface

it will let you work on any Unix system, with or without windows. A great resource for
general OS X information (the GUI you’re probably used to) is OS X Mavericks: The
Missing Manual, by David Pogue (Pogue Press/O’Reilly).

How This Book Is Organized
This book will help you learn Unix on your Mac fast. It is organized in a way that gets
you started quickly and then expands your Unix horizons, chapter by chapter, until
you’re comfortable with the command line and with X11-based open source applica‐
tions and able to push further into the world of Unix. Specific commands, for example,
may be previewed in earlier chapters and then explained in detail in later chapters (with
cross references so you don’t get lost). Here’s how it’s all laid out:
Chapter 1, Why Use Unix?

Graphical interfaces are useful, but when it’s time to become a power user—really
forcing your Mac to do exactly what you want, when you want it—nothing beats
the power and capability of the Unix command line. You’ll see exactly why that’s
the case in this first chapter.

Chapter 2, Using the Terminal
It’s not the sexiest application included with OS X, but the Terminal, found in the /
Applications/Utilities folder, opens up the world of Unix on your Mac and lets you
peek inside the inner workings. This chapter explains how to best use it and cus‐
tomize it for your own requirements.

Chapter 3, Exploring the Filesystem
Once you start using Unix, you’ll be amazed at how many more files and directories
are on your Mac—information that’s hidden from the graphical interface user. This
chapter takes you on a journey through your Mac’s filesystem, showing you how to
list files, change directories, and explore the hidden nooks and crannies of Moun‐
tain Lion.

Chapter 4, File Management
Now that you can move around in your filesystem, it’s time to learn how to look
into individual files; copy or move files around; and even create, delete, and rename
directories. This is your first introduction to some of the most powerful Unix com‐
mands, too, including the text-based vi editor.

Chapter 5, Finding Files and Information
If you’ve ever looked for a file with the Finder or Spotlight, you know that some
types of searches are almost impossible. Looking for a file that you created exactly
30 days ago? Searching for that file with the Finder will prove to be an exercise in
futility. But that’s exactly the kind of search you can do with Unix’s find, locate, and
grep commands, as well as Spotlight’s command-line utilities.

Preface | xiii

http://shop.oreilly.com/product/0636920029069.do
http://shop.oreilly.com/product/0636920029069.do

Chapter 6, Redirecting I/O
One of the most powerful elements of the Unix command line is that you can easily
combine multiple commands to create new and unique “super-commands” that
perform exactly the task you seek. You’ll learn exactly how you can save a com‐
mand’s output to a file, use the content of files as the input to Unix commands, and
even hook multiple commands together so that the output of one is the input of the
next. You’ll see that Unix is phenomenally powerful, and easy, too!

Chapter 7, Multitasking
As mentioned earlier, Unix is a multitasking operating system that allows you to
have lots of applications running at the same time. In this chapter, you’ll see how
you can manage these multiple tasks, stop programs, restart them, and modify how
they work, all from the Unix command line.

Chapter 8, Taking Unix Online
Much of the foundation of the Internet was created on Unix systems, and it’s no
surprise that you can access remote servers, surf the Web, and interact with remote
filesystems, all directly from the command line. If you’ve always wanted more power
when interacting with remote sites, this chapter dramatically expands your hori‐
zons.

Chapter 9, Of Windows and X11
The graphical interface in OS X is the best in the industry. Elegant and intuitive, it’s
a pleasure to use. But it turns out that there’s another, Unix-based graphical interface
lurking in your Mac system, called the X Window System, or X11 for short. This
chapter shows you how to install X11 and gives you a quick tour of some of the very
best X11 applications available for free on the Internet.

Chapter 10, Where to Go from Here
With all its commands and command-line combinations, and the addition of thou‐
sands of open source utilities free for the downloading, you can spend years learning
how to best take advantage of the Unix environment. In this final chapter, I offer
you some directions for your further travels, including recommendations for fa‐
vorite books, websites, and similar resources.

Conventions Used in This Book
The following typographical conventions are used in this book:
Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Control).

xiv | Preface

Italic
Indicates new terms, URLs, email addresses, pathnames, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Menus/navigation
Menus and their options are referred to in the text as File→Open, Edit→Copy, etc.
Arrows are also used to signify a navigation path when using window options; for
example, System Preferences→Screen Effects→Activation means you would launch
System Preferences, click on the icon for the Screen Effects preferences panel, and
select the Activation pane within that panel.

Pathnames
Pathnames are used to show the location of a file or application in the filesystem.
Directories (or folders for Mac and Windows users) are separated by forward
slashes. For example, if you see something like “launch the Terminal application (/
Applications/Utilities)” in the text, that means the Terminal application can be
found in the Utilities subfolder of the Applications folder.

↲
A carriage return (↲) at the end of a line of code is used to denote an unnatural line
break; that is, you should not enter these as two lines of code, but as one continuous
line. Multiple lines are used in these cases due to printing constraints.

Menu symbols
When looking at the menus for any application, you will see some symbols associ‐
ated with keyboard shortcuts for a particular command. For example, to open a
document in Microsoft Word, you could go to the File menu and select Open
(File→Open), or you could issue the keyboard shortcut ⌘-O.

Figure P-1 shows the symbols used in the various menus to denote a keyboard
shortcut.

Rarely will you see the Control symbol used as a menu command option; it’s more
often used in association with mouse clicks to emulate a right-click on a two-button
mouse or for working with the bash shell.

Preface | xv

Figure P-1. Keyboard accelerators for issuing commands

$,#
The dollar sign ($) is used in some examples to show the user prompt for the bash
shell; the hash mark (#) is the prompt for the root user.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning Unix for OS X, by Dave Taylor.
Copyright 2012 Dave Taylor, 978-1-4493-3231-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

xvi | Preface

mailto:permissions@oreilly.com

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both book and
video form from the world’s leading authors in technology and busi‐
ness.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/learn-unix-mt-lion.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Preface | xvii

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/learn-unix-mt-lion
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

The Evolution of This Book
This book is loosely based on the popular O’Reilly title Learning the Unix Operating
System, by Jerry Peek, Grace Todino, and John Strang (currently in its fifth edition).
There are lots of differences in this book to meet the needs of OS X users, but the
fundamental layout and explanations are the same. The Mavericks edition is the fifth
OS X custom edition of this title. As OS X keeps getting better, so does this little book.

Acknowledgments
I’d like to acknowledge the work of Meghan Blanchette and Brian Jepson at O’Reilly.
Without their work constantly explaining the nuances of the version tracking system
we’ve used, I would have given up and made a really long YouTube video about the
command line instead. Thanks also to Christian Crumlish for his early back-room as‐
sistance, and to Tim O’Reilly for the opportunity to help revise the popular Learning
the Unix Operating System book for the exciting world of OS X, all those years ago.

xviii | Preface

http://www.youtube.com/oreillymedia
http://shop.oreilly.com/product/9780596002619.do
http://shop.oreilly.com/product/9780596002619.do

CHAPTER 1

Why Use Unix?

Why would any sane person want to type in a bunch of funny-looking Unix commands
when you can just use the trackpad? After all, OS X has one of—if not the—best looking
user interfaces out there, so what would compel you, a Mac user through and through,
to use the Unix command line? That’s a tough sell, but you can boil it down to just one
word: power.

Lying underneath the OS X interface is a powerful Unix system, ready to leap into action
at a moment’s notice. All you have to do is command Unix to take action. One of the
greatest pleasures of using Unix within OS X is that you get the benefit of a truly won‐
derful graphical environment and the underlying power of the Unix command line.
There’s no denying it’s a match made in heaven. Even Apple promotes OS X with the
tagline, “The world’s most advanced desktop operating system.”

This chapter sets the stage for the rest of the book, answering the question: “Why use
Unix when you have a perfectly good Mac graphical interface?” It’s an important ques‐
tion, but I think that if you give it a try, you’ll agree that joining the Unix world is really
like learning you have a completely separate, and even more powerful, operating system
lurking in your machine.

The Power of Unix
It’s quite reasonable to question why you should have to remember commands and type
them in. If you’re a long-time Mac user who is familiar and happy with the capabilities
and logic of the Aqua interface, you might need some convincing that Unix is your
friend. Here’s why: dipping into the primarily text-based Unix tools on your OS X system
gives you more power and control over both your computer and your computing en‐
vironment. There are other reasons too, including:

1

• There are thousands of open source and otherwise freely downloadable Unix-based
applications. Can’t afford Adobe Photoshop but still want a powerful graphics ed‐
itor? The GNU Image Manipulation Program (GIMP) offers a viable solution (see
Chapter 9).

• Want to search for files by when they were created, or by whom? Difficult in the
Finder or Spotlight, but it’s a breeze with Unix (see Chapter 5).

• How about managing your files and file archives in an automated fashion? Tricky
to set up with the GUI tools, but in Unix, you can set up a cron job to handle this
at night while you sleep.

Fundamentally, Unix is all about power and control. As an example, consider the dif‐
ference between using Force Quit from the Apple menu and the Unix programs ps and
kill. While Force Quit is more attractive, as shown in Figure 1-1, notice that it lists only
graphical applications.

Figure 1-1. Force Quit doesn’t show all running applications

By contrast, the ps (process status—say “pea-ess” to sound like a Unix guru) command
used from within the Terminal application (/Applications/Utilities/Terminal) shows a
complete and full list of every application, utility, and system process running on your
Mac, as shown here:

$ ps -acx
 PID TTY TIME CMD
 1 ?? 0:10.28 launchd
 11 ?? 0:01.41 UserEventAgent
 12 ?? 0:01.86 kextd
 14 ?? 0:01.15 notifyd
 15 ?? 0:02.83 securityd
 16 ?? 0:00.24 diskarbitrationd
 ...
 1526 ?? 0:51.39 iTunes

2 | Chapter 1: Why Use Unix?

 1573 ?? 0:00.07 taskgated
 1583 ?? 0:24.08 Google Chrome Helper
 1539 ttys000 0:00.04 login
 1540 ttys000 0:00.04 -bash
 1568 ttys000 0:00.21 vi
 1586 ttys001 0:00.03 login
 1587 ttys001 0:00.02 -bash

That’s more than the few applications Force Quit shows you. Of course, the next thing
that’s probably running through your head is “Sure, but what does all that output in the
Terminal mean to me, and what do I do with it?” This is the key reason to learn and
work with the Unix side of OS X: to really know what your Mac’s doing and be able to
make it match what you want and need your Mac to do.

Okay, now let’s go back and look at the output from running the ps -acx command. First
off, you’ll see that we added some options (or flags or switches) to the ps command; the
options are the -acx bit. Flags are spoken by letter, so this would be pronounced as “pea-
ess minus aye-sea-ex.” These options tell ps to display all of the programs and processes
being run by all of the users (including you and the system, itself) on the system. When
the Terminal displays the results of the ps -acx command, you’ll see that it adds a line
of “headers” to the output:

$ ps -acx
 PID TTY TIME CMD
 16 ?? 0:00.24 diskarbitrationd

Think of the headers the same way you would when looking at a Numbers spreadsheet
with a bunch of columns. Each column in that spreadsheet should have a column head
to help define what you see underneath. The same applies here. In the very first line of
the information returned, you’ll see the following headers:
PID

Lists the command’s process identification number (or PID, for short).

TTY

Tells you the terminal the process is running in. If you see two question marks (??),
that means the process isn’t associated with a specific Terminal window or display:
typically it’s a system-level command or utility, as is the disk arbitration program
listed above (diskarbitrationd—the final “d” stands for daemon, an always-running
system-level task).

TIME

Tells you the amount of time it took to run that particular process, or how long that
process has been running, in minutes and seconds. For example, the 0:00.24 you
see in the output above means that it took, roughly, a quarter of a second for the
diskarbitrationd process to start and run.

The Power of Unix | 3

CMD

Gives you the specific command that’s being run. You can also ask for the entire
pathname to the process that’s running, including any starting flags or options that
might have been invoked. For example, /sbin/diskarbitrationd tells you that the
process that’s running is diskarbitrationd, located in the /sbin directory.

Great! So now you know what all that means, but you still don’t know how this relates
to Force Quit, right? Well, be patient, we’re getting there.

Once you know a process’s PID number, you can then issue the Unix kill command to,
well, kill that process. For example, let’s say that Microsoft Word decides to lock up on
you and you’re stuck with the Spinning Beach Ball of Death (SBBoD). After you finish
tearing out your hair in frustration, you need to kill Microsoft Word, but in order to do
so, you first need its process number. For this, we’ll add the grep command, which is
basically a Unix search tool that you use to search for words or numbers in files, or in
this case, the output of a command:

$ ps -ax | grep Word
 1634 ?? 0:02.50 /Applications/Microsoft Office 2011/Microsoft
 Word.app/Contents/MacOS/Microsoft Word -psn_0_766139
 1645 ttys002 0:00.00 grep Word

This tells us that Microsoft Word’s PID is 1634, as noted by the first number in the
command output. Now all you need to do to kill Word is issue the following command:

$ kill 1634

After typing that and hitting the Return key (an activity known as “entering a com‐
mand”), Microsoft Word promptly quits, closing all its windows. It won’t save anything
you’ve done, since your last save, but since Word was locked in a deep freeze you wouldn’t
have been able to save your changes anyway, right? And if you had used the Force Quit
window, you wouldn’t have been able to save changes there, either.

Batch Renames and Extracting File Lists
Here’s another example. Suppose you just received a thumb drive from a client with
hundreds of files in a single folder. Now let’s say that you only need those files that have
the sequence -nt- or -dt- as part of their filenames, and that you want to copy them from
the thumb drive to your home directory. Within the Finder, you’d be doomed to going
through the list manually, a tedious and error-prone process. But on the Unix command
line, this becomes a breeze:

$ cd /Volumes/MyCDROM
$ cp *-dt-* *-nt-* ~

The first command, cd /Volumes/Thumb, takes you to the Volumes directory, which is
where the thumb drive (named Thumb) is actually mounted on your Mac’s filesystem.
The second command, cp *-dt-* *-nt-* ~, breaks down as follows:

4 | Chapter 1: Why Use Unix?

cp
This is Unix’s copy command.

-dt- *-nt-*
This tells the cp command to look for any items on the thumb drive that contain
either -dt- or -nt- in their filenames. Unix recognizes the asterisks (*) as wildcards
in the command string. By placing an asterisk before and after each item (*-dt-*
and *-nt-*), you’re telling Unix to find any file that has either -dt- or -nt- anywhere
in its filename.

~
The tilde character (or squiggle, in Unix-speak) simply refers to the current user’s
home folder (or directory).

By placing the tilde (~) at the end of the command line, you’re telling cp to locate any
file that has -dt- or -nt- in its filename, and copy those files to your home directory.

Fast, easy, and doable by any and all OS X users.

There are a million reasons why it’s helpful to know Unix as an OS X power user, and
you’ll see them demonstrated time and again throughout this book.

Finding Hidden Files
You might not realize it if you only work in the Finder, but your system has thousands
of additional files and directories that are hidden from view, but easily found on the
command line. Most of these hidden files are known in the Unix world as dot files,
because each file or directory has a period (.) as the first character of its name. For
example, in your home directory you probably have a file called .profile that contains
specific instructions on how you want your command shell set up when it’s launched.
But when you view your home folder in the Finder, this file is hidden, as shown in
Figure 1-2. Instead, all you see are the default set of folders (Desktop, Documents, Mov‐
ies, Music, Pictures, Public, and Sites) and a file called myopen.

To view the dot files in the Terminal, type the file listing command (ls), along with its
-a option (for list all, which shows the hidden dot files). Suddenly you’ll see that there
are lots more files in that directory:

$ ls -a
./ .dropbox/ .vuescanrc Pictures/
../ .dvdcss/ Desktop/ Presentations/
.CFUserTextEncoding .lesshst Documents/ Public/
.DS_Store .nchsoftware/ Downloads/ Sites/
.Trash/ .profile Dropbox/ bin/
.android/ .ssh/ Library/
.bash_history .subversion/ Movies/
.cups/ .viminfo Music/

The Power of Unix | 5

Figure 1-2. The Finder doesn’t show hidden files and folders that you can see in the
Terminal with standard Unix commands

Personally, though I don’t always need the power, I like knowing that I can get to, view,
and even edit every file on my computer if I need to. All I need to do is launch the
Terminal application (which I actually have permanently available on my Dock, so it’s
always just one click away), type in a few simple commands, and I’m on my way.

Folders or Directories?
If you’re new to the whole Unix thing, you’re going to need to learn Unix-speak. In the
graphical world, such as with OS X or Windows, you’re used to working with a graphical
user interface (GUI) that lets you see everything visually. When you create a new file, it
gets stored in a folder of some sort, even if you save the file to your Desktop (which is,
in its own right, a folder).

But in Unix, folders are referred to as directories. That’s right, folders and directories are
one and the same. It’s an odd sort of translation, but when Unix was first developed,
there was no GUI; all you had was a text-based terminal to type into, and you were darn
happy to have that, especially as you were walking 10 miles uphill in the snow to and
from school each day. But I digress!

Directories were set up as part of the hard drive’s filesystem, or the structure in which
directories and files are stored on the system. And the way you get to a folder (er, di‐
rectory) in Unix is to enter its file path, using forward slashes between the directory
names. For example, the file path to your home directory (again, think folder) is actually:

/Users/your_name

6 | Chapter 1: Why Use Unix?

where your_name would be replaced by your short username. Or use the power user
shortcut ~, as shown earlier!

At the very top of your Mac’s filesystem, you have the root directory, denoted with a
single forward slash (/). As noted in the example above, to specify a particular directory
or file all you need to do is place the path after this leading slash.

This takes a little getting used to, but once you get the hang of entering Unix file paths,
you’ll find that it’s actually a faster way to get around (particularly if you can type faster
than it takes you to move the cursor around in the graphical world).

Just remember: folders are directories, and when working on the Unix side of your Mac,
we’ll refer to folders as directories throughout the book.

Thousands of Free Applications
This should appeal to anyone who is a part of the Macintosh community: by warming
up to Unix and its command line, you are joining the much-lauded free software move‐
ment, since OS X is based on a free, open source Unix operating system called Dar‐
win. What’s excellent is that there are thousands of different applications available for
open source operating systems, including design, development, scientific, and business
applications that compare quite favorably to expensive commercial alternatives. And
don’t make the mistake of assuming that all open source applications are command-
line tools and utilities! Some of the very best applications, like the GIMP graphics editor
(http://www.gimp.org) and the NeoOffice suite (http://www.neooffice.org), are designed
to work either within the X Window System (also known as X11), a standard Unix
graphical interface that Apple includes with your OS X system, or directly in OS X’s
Aqua GUI environment.

Power Internet Connections
If you’re someone who uses the Internet daily, you already know that there are a bunch
of useful Mac OS X applications available to help you be more efficient. Unfortunately,
lots of them seem to have a price tag attached—even a simple FTP program like Fetch
(http://www.fetchsoftworks.com). But why spend $29 on an application when you can
use OS X’s built-in ftp command-line utility for free?

For example, if you wanted to download the cover image for this book from O’Reilly’s
website, you could use the following commands (as noted in bold type):

$ ftp ftp.oreilly.com
Connected to ftp.oreilly.com.
220 ProFTPD 1.3.1rc2 Server (ftp.oreilly.com) [208.201.239.51]
Name (ftp.oreilly.com:taylor): anonymous
331 Anonymous login ok, send your complete email address as your password
Password:

Thousands of Free Applications | 7

http://www.gimp.org
http://www.neooffice.org
http://www.fetchsoftworks.com

230-Welcome to the O'Reilly Media, Inc. FTP Archive.

 Local date and time: Mon Apr 23 23:04:14 2012

 --> Hello 71.237.2.63 <--
 --> There are 2 users out of 100 allowed in your usage class. <--

 Check us out on the web at http://oreilly.com
230 Anonymous access granted, restrictions apply
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd /pub/graphics/book-covers/low-res
250 CWD command successful
ftp> get 9781449332310.gif
local: 0596009151.gif remote: 0596009151.gif
229 Entering Extended Passive Mode (|||62244|)
150 Opening BINARY mode data connection for 0596009151.gif (267646 bytes)
100% |***| 261 KiB
 430.20 KiB/s 00:00 ETA
226 Transfer complete
267646 bytes received in 00:00 (389.56 KiB/s)
ftp> bye
221 Goodbye.

That downloads the image file for the cover of this book to your Mac, which is nice, but
what if you want to look at it? Sure, you could go to the Finder, find the file, and then
double-click on the file’s icon to open it in Preview, but that’s a lot of work. Instead, with
a little help from Unix, you can just type in the following command:

$ open 9781449332310.gif
$

The open command, which is special to OS X, examines the file it’s supposed to open
(9781449332310.gif), detects which application should open it by default (something
you can see in a file’s Get Info window), and then opens the file in Preview—all in a
fraction of a second! See how much time Unix just saved you (not to mention the $29!)?

From logging into your Mac from remote locations to transferring files from your sys‐
tem to a server using an encrypted connection, OS X’s Unix command line is quite
powerful. But don’t take my word for it—Chapter 8 takes you on a detailed tour of
Internet command-line utilities.

Commands Included with Unix
While this book covers only about 50 of the most basic Unix commands, there are over
a thousand Unix commands included with OS X—and you can’t see most of them
without accessing the command line. From sophisticated software development envi‐
ronments to web browsers, file transfer utilities to encryption and compression utilities,

8 | Chapter 1: Why Use Unix?

http://oreilly.com

almost everything you can do in the Aqua interface—and more—can be done with a
few carefully chosen Unix commands.

Displaying All Unix Commands
To quickly see all of the binary executables—Unix programs—on your system, open the
Terminal, hold down the Shift key, and press Esc-?, or press Control-X followed by
Shift-1 (using Shift-1 to get an exclamation mark).

Before the commands are displayed in the Terminal, however, you’ll first be prompted
(asked) to make a choice:

$
Display all 1663 possibilities? (y or n)

If you press the n key on your keyboard, you’ll be taken back to a command prompt
and nothing else will happen. However, if you press the y key, you’ll see a multicolumn
list of Unix commands stream past in the Terminal window. At the bottom of the screen,
you’ll see:

--More--

This lets you know that there’s more to display. If you hit the space bar, the next “page”
of commands scrolls into view. Keep pressing the space bar to view the entire list of
commands; or, if you’re getting tired of that, just hit “q” to quit the output and go back
to the command prompt.

If you’re a software developer or are just curious about programming, for example, you’ll
want to install the optional Xcode Tools, available as a free download from the Apple
Developer’s Site. The Xcode Tools give you a full, professional-grade software develop‐
ment environment that lets you develop new applications in Objective-C, C, or C++.
Pretty nice for something free from Apple, eh?

The 10 Most Common Unix Commands
If you want to just jump in and try things out, here are the 10 most common commands,
with a very short summary of what each does:
ls

Lists files or directories.

cp original_file copied_file
Copies the original_file (or files) from one location to another.

mv original_file new_file
Moves a file or files; the original is deleted once the operation is complete.

rm filename
Removes a file, set of files, or folder(s) full of files.

Commands Included with Unix | 9

http://developer.apple.com
http://developer.apple.com

Use the rm command with caution; there’s no “Trash” to which things
are moved. Once you’ve used rm to delete something, it’s gone forever.

pwd
Displays your present working directory; this is where you currently are in the
filesystem.

cd directory_name
Changes to the specified directory in the filesystem. Without any arguments, it’s a
shortcut for changing back to your home directory.

man command_name
Accesses OS X’s built-in documentation for the Unix commands. To read the man
page for the ls command, for example, type in man ls.

less filename
Displays a long text file, one screen at a time. Pressing the space bar gets the next
page when you’re ready, and pressing Q at any time quits the program and returns
you to the command prompt.

grep pattern filename(s)
Searches for the specified pattern across as many files as you desire—a fast way to
find that email message you sent to Uncle Linder, for example.

top
Shows you which applications and processes are running on your system, including
those that the Finder’s Force Quit window ordinarily hides.

A Simple Guided (Unix) Tour
Enough talking about what Unix can do; it’s time to flex your fingers, open up your Mac,
and try a few commands so you can get a sense of how it all works!

The first step is to launch the Terminal application, through which you’ll interact with
the command shell. Terminal is tucked into the Utilities folder within your Applica‐
tions folder.

Since you’ll be using the Terminal application throughout this book (and hopefully in
the future, as you grow more comfortable with Unix), you should drag the Terminal’s
icon to the Dock so it’s always at the ready. Or, if the Terminal’s already running, you
can Control-click on its icon in the Dock and select Options→Keep in Dock, as shown
in Figure 1-3.

10 | Chapter 1: Why Use Unix?

Figure 1-3. Control-click the Terminal’s Dock icon, and select “Keep in Dock” from the
Options menu so it will always be there when you need it

Throughout the following examples, type in the commands you see in bold, pressing
the Return key after each one (again, this is known as “entering a command” in Unix-
speak). Preceding each command, I’ve included some comments to let you know what
you’re about to do.

Without any arguments, the cd command moves you to your home directory:

$ cd

The pwd (present working directory) command shows you the path for the directory
you’re currently in:

$ pwd
/Users/taylor

Use the ls command to list the files in your home directory; compare this listing with
the picture of the Finder window shown in Figure 1-2. If you omit the -a option, all the
hidden dot files stay hidden in this directory:

$ ls
Desktop Dropbox Music Public
Documents Library Pictures Sites
Downloads Movies Presentations bin

Now let’s change directories to your Library folder:

$ cd Library

A Simple Guided (Unix) Tour | 11

Use the ls command again to see what’s inside (there’s very little here you’ll need to mess
with):

$ ls
Accounts FontCollections PreferencePanes
Address Book Plug-Ins Fonts Preferences
Application Support Fonts Disabled Printers
Assistants Frameworks PubSub
Audio Google Safari
Automator Icons Saved Application State
Autosave Information Input Methods Screen Savers
Breakpad Internet Plug-Ins Services
Caches Keyboard Layouts Snapz Pro X
Calendars Keychains Sounds
ColorPickers LaunchAgents Spelling
Colors Logs StickiesDatabase
Compositions Mail SyncedPreferences
Containers Mail Downloads Voices
Cookies Messages WebKit
Developer Metadata Widgets
FIPLAB Mobile Documents disclabel
Favorites PDF Services iMovie
FileSync Parallels iTunes

Now let’s go back a directory. For this, use the .. shortcut for moving up one directory
in the filesystem. In this case, since you were in your Library folder (e.g., /Users/taylor/
Library, or just ~/Library), the following command moves you back to your home di‐
rectory (as noted by the pwd command that follows):

$ cd ..
$ pwd
/Users/taylor

Finally, when it’s time to quit the Terminal, use the exit command rather than just quit‐
ting the application with ⌘-Q:

$ exit

Don’t worry if you aren’t sure exactly what each of those commands does: we’ll explore
each one in great detail as the book proceeds.

There’s a whole world of Unix inside your OS X system, and it’s time for you to jump
in and learn how to be more productive and more efficient, and gain remarkable power
as a Mac user. Ready? Let’s go!

12 | Chapter 1: Why Use Unix?

CHAPTER 2

Using the Terminal

With a typical Unix system, a staff person has to set up an account for you before you
can use it. With OS X, however, the operating system installation process automatically
creates a default user account. The account is identified by your username, which is
usually a single word or an abbreviation. Think of this account as your office—it’s your
personal place in the Unix environment.

When you log into your OS X system, you’re automatically logged into your Unix ac‐
count as well. In fact, your Desktop and other customized features of your OS X envi‐
ronment have corresponding features in the Unix environment. Your files and programs
can be accessed either through the Finder or through a variety of Unix command-line
utilities that you can use in OS X’s Terminal application.

In this chapter, you’ll not only learn about the Terminal and how to customize it for
your own needs, but you’ll also gain an understanding of the command-line nature of
OS X when accessed through the Terminal. If you’re used to moving your cursor around
and clicking on buttons, this might seem wonderfully—or awkwardly—retro, but as is
so often the case, the differences between the Finder and the Terminal are part of what
makes the Terminal, and Unix, so remarkably powerful.

Launching the Terminal
The way you use Unix on OS X is through an application known as the Terminal, or, to
Mac geeks, Terminal.app (pronounced “Terminal dot app”). Open a Finder window
and look in Utilities, as shown in Figure 2-1. Double-click on “Terminal” and it will start
up, presenting you with a dull, uninspiring white window with black text that says “Last
login:” and a shell prompt.

13

Figure 2-1. Finding Terminal in the Utilities folder

By default, the Terminal uses bash as its shell. If you’d like to config‐
ure it to use a different shell, you can do so by selecting Termi‐
nal→Preferences and specifying the shell to use. I talk about that in
“What Is a Shell?” on page 19, later in this chapter.

Most OS X applications you’ve run to this point probably have a pretty graphical inter‐
face and allow you to move the cursor around with your mouse or trackpad. Move it
over something you want to do, and you can simply click for the action to take place.
The Terminal is different, though: your mouse gets a rest for a while as you type in the
commands on your keyboard, ending each line with a Return.

Syntax of a Unix Command
Unix command lines can be simple, one-word entries, such as the date command. They
can also be more complex; you may need to type more than the command or program
name. The command can be the name of a Unix program (such as date), or it can be a
command that’s built into the shell (such as exit). You probably don’t need to worry
about this!

A Unix command can have arguments. An argument can be an option or a filename.
The general format for a Unix command line is:

14 | Chapter 2: Using the Terminal

 command option(s) filename(s)

There isn’t a single set of rules for writing Unix commands and arguments, but these
general rules work in most cases:

• Enter commands in lowercase. Unix is case-sensitive, so echo and ECHO are not
synonymous.

• Options modify the way in which a command works. Options are often single letters,
prefixed with a dash (-, also called a “hyphen” or “minus”) and set off by any number
of spaces or tabs. Multiple options in one command line can be set off individually
(such as -a -b). In most cases, you can combine them after a single dash (such as -
ab), but most commands’ documentation doesn’t tell you whether this will work;
you’ll have to try it.
Some commands also have options made from complete words or phrases and
starting with two dashes, such as --delete or --confirm-delete. When you enter a
command line, you can use this option style, the single-letter options (which each
start with a single dash), or both.

• The argument filename is the name of a file you want to use. Most Unix programs
also accept multiple filenames, separated by spaces or specified with wildcards (see
Chapter 4). If you don’t enter a filename correctly, you may get a response such as
“filename: no such file or directory” or “filename: cannot open.”
Some commands, such as who, have arguments that aren’t filenames.

• You must type spaces between commands, options, and filenames. You’ll need to
“quote” filenames that contain spaces. For more information, see Chapter 4.

• Options come before filenames.
• In a few cases, an option has another argument associated with it; type this special

argument just after its option. Most options don’t work this way, but you should
know about them. The sort command is an example of this feature: you can tell sort
to write the sorted text to a filename given after its -o option. In the following
example, sort reads the file sortme (given as an argument), and writes to the file
sorted (given after the -o option):

$ sort -o sorted -n sortme

I also used the -n option in that example, but -n is a more standard option; it has
nothing to do with the final argument (sortme) on that command line. So, I also
could have written the command line this way:

$ sort -n -o sorted sortme

Don’t be too concerned about these special cases, though. If a command needs an
option like this, its documentation will say so.

Launching the Terminal | 15

• Command lines can have other special characters, some of which you’ll see later in
this book. They can also include several separate commands. For instance, you can
write two or more commands on the same command line, each separated by a
semicolon (;). Commands entered this way are executed one after another by the
shell.

OS X has a lot of commands! Don’t try to memorize all of them. In fact, you’ll probably
need to know just a few commands and their options. As time goes on, you’ll learn these
commands and the best way to use them for your job.

Let’s look at a sample command. The ls program displays a list of files. You can use it
with or without options and arguments. If you enter:

$ ls

you’ll see a list of filenames. But if you enter:

$ ls -l

there will be an entire line of information for each file. The -l option (a dash and a
lowercase letter “L”) changes the normal ls output to a long format. You can also get
information about a particular file by using its name as the second argument. For ex‐
ample, to find out about a file called chap1, enter:

$ ls -l chap1

Many Unix commands have more than one option. For instance, ls has the -a (all) option
for listing hidden files. You can use multiple options in either of these ways:

$ ls -a -l
$ ls -al

You must type one space between the command name and the dash that introduces the
options. If you enter ls-al, the shell reports back with:

ls-al: command not found

Exercise: Entering a Few Commands
The best way to get used to the Terminal is to enter some commands. To run a command,
type the command and then press the Return key. Remember that almost all Unix com‐
mands are typed in lowercase. Try issuing the commands shown in Table 2-1 to see what
results are produced in the Terminal.

16 | Chapter 2: Using the Terminal

Table 2-1. Sample Unix commands to test out
Task Command

Get today’s date. date

List logged-in users. who

Obtain more information about users. who -u, finger, or w

Find out who is at your terminal. who am i

Enter two commands in the same line. who am i;date

Mistype a command. woh

In this session, you’ve tried several simple commands and seen the results on the screen.

Types of Commands
When you use a program, you’ll want to know how to control it. How can you tell it
what job you want done? Do you give instructions before the program starts, or after
it’s started? There are several general ways to run programs on an OS X system, and it’s
good to be aware of them:
Graphical programs

Some programs work only within the graphical window environment. On OS X,
you can run these programs using the open command. For instance, when you type
open -a Chess at a command prompt, the Chess application (/Applications)
launches and opens one or more windows on your screen. The program has its own
way to receive your input—through menus and buttons on its windows, for in‐
stance. Although you can’t interact with these programs using traditional Unix
utilities, OS X includes the osascript utility, which lets you run AppleScript com‐
mands from the Unix shell.

Noninteractive Unix programs
You can run many Unix programs (though we generally call them “commands”
when they’re being typed in) directly at a shell prompt. These programs work within
a specific command window and you control them from the Unix command line—
that is, by typing options and arguments at a shell prompt before you start the
program. After you start the program, wait for it to finish; you generally don’t
interact with it.

Interactive Unix programs
Some Unix programs that work in the Terminal window have commands of their
own. (If you’d like some examples, see Chapters 3 and 4.) These programs may
accept options and arguments on their command lines but, once you start a pro‐
gram, it prints its own prompt and/or menus, and it understands its own com‐
mands. It also takes instructions from your keyboard that weren’t given on its com‐
mand line.

Launching the Terminal | 17

For instance, if you enter ftp at a shell prompt (refer back to the example in Chap‐
ter 1), you’ll see a new prompt from the ftp program. At this prompt, you can enter
certain FTP commands for transferring files to and from remote systems. When you
enter the special command quit to quit the ftp program (or you can use bye), ftp stops
prompting you for more input. Once you quit FTP, you’re returned to the standard Unix
shell prompt, where you can enter other Unix commands.

Changing the Terminal’s Preferences
To change the Terminal’s preferences, go to Terminal→Preferences; this opens the com‐
plicated Preferences window, as shown in Figure 2-2.

Figure 2-2. The Terminal Preferences window lets you configure the settings for your
Terminal windows

At the top of the window, there’s a pop-up list that lets you select which options to
configure: Startup, Settings, Window Groups, and Encodings. The names suggest what
each does, but let’s have a closer look anyway, particularly since some of these settings
definitely should be changed (in my view).

18 | Chapter 2: Using the Terminal

Startup
When you first open the Terminal Preferences, the Startup settings are displayed, as
shown in Figure 2-2. This lets you manage the overall behavior of a window, including
its color scheme (my default is “Ocean”), what shell you’d like to use, and even what
happens when you open a specific tab.

What Is a Shell?
A shell, at least in the Unix world, is the environment in which you work on the Unix
side of things. To put this into context, when you’re using the Aqua user interface for
OS X, you’re using OS X’s native “environment.” With Unix, however, everything is text-
based, and the shell offers you an interface in which to issue commands, and to configure
how your shell environment works and behaves.

Shells also offer their own scripting language, which allow you to write mini-programs
for mundane things, such as displaying a message to tell you to clean the cat box, or
much larger tasks, such as backing up your computer. With shell scripts, you’re basically
using the shell’s environment to run Unix commands—or other shell scripts—to auto‐
mate tasks and processes.

If you want to learn more about the bash shell and how to program shell scripts with it,
look to the venerable Learning the bash Shell by Cameron Newham and Bill Rosenblatt
(O’Reilly). Don’t let the age of this book fool you. And if you want to see what you can
do with shell scripts, I’d recommend picking up a copy of Wicked Cool Shell Scripts (No
Starch Press), authored by yours truly and still a timely and popular scripting reference.

The choice of shells in OS X are: /bin/bash, /bin/csh, /bin/ksh, /bin/tcsh, /bin/zsh, and /
bin/sh. Unix fans will no doubt find a shell to their liking, but if you’re just learning,
stick with bash (/bin/bash) and you’ll be able to follow every example in this book
without a hiccup.

Settings
The Settings pane (shown in Figure 2-3) shows lots of different appearance options,
including nice visual thumbnails of the many different predefined color schemes avail‐
able in the Terminal.

The left side of the Settings window shows the different color profiles, but the right side
is where the action is. It’s split into five sections: Text, Window, Shell, Keyboard, and
Advanced.

The text section is where you can specify what typeface you want to use: what size, what
color, etc. You can see all of the options in Figure 2-4.

Launching the Terminal | 19

http://shop.oreilly.com/product/9780596009656.do

Figure 2-3. Terminal Preferences Settings pane

If you use a predefined profile, of course, you don’t have to tweak any of the color settings,
but I know that some people can spend hours fiddling and tweaking to get it just so.

The most interesting section of the Settings pane of the Preferences window is the Win‐
dow section, shown in Figure 2-3. Here, you can add useful information to the Terminal
window, change the background of the Terminal window to a graphic or photo (though
I can’t imagine why you would!), and change the default window size. The standard size
is 25 lines by 80 characters, but that’s just a historical artifact from the early neolithic
era of computing. Setting the size to 100 characters wide by 40 or 50 lines makes it
considerably easier to work in the Terminal.

One really nice thing that the Terminal does is save the textual information that scrolls
off the top of the screen so you can scroll up and review what’s transpired earlier. In the
old days, once it was off the top, it was off, gone, kaput. Now you can go back and review
your command-line interaction from days or even weeks ago, depending on your avail‐
able memory. You can also configure the size of the scrollback buffer in the Window
section; by default, it is unlimited.

20 | Chapter 2: Using the Terminal

Figure 2-4. Terminal Preferences Settings: Text preferences

The Shell section is useful if you’re fine-tuning how your Terminal works. The most
important setting here is under “Prompt before closing”: There are three options that
let you choose whether or not the Terminal prompts you before closing its windows. If
there’s something still running in the window other than the programs defined on the
list, a dialog box pops up asking if you’re sure you want to quit. This feature is very
helpful if you are prone to accidentally clicking the wrong window element or pushing
the wrong key sequence.

Set “Prompt before closing” to “Always” if you’d like the Terminal to always ask before
closing the window, or set it to “Never” to prevent it from ever asking. You can also use
the “If there are processes other than” setting (the default) to ignore the programs shown
in the list (and you can add items to or remove items from this list).

The last two sections are Keyboard and Advanced; there’s nothing there that you’ll need
to change or modify to fully explore all the capabilities of Unix on your Mac system, so
we’ll skip them.

Launching the Terminal | 21

Features of the Terminal
There are quite a few nifty Terminal features worth mentioning before I move further
into the world of Unix.

Secure Keyboard Entry
While the vast majority of OS X users ignore this feature, the Terminal has a very nice
security feature called Secure Keyboard Entry (enable it with Terminal→Secure Key‐
board Entry). When enabled, Secure Keyboard Entry ensures that keyboard “sniffers”
(or other applications that monitor your keystrokes) cannot see what you type within
the Terminal. This means that the OS X utility that calculates whether your computer
is in use or ready to sleep won’t know you’re working, for example, but that could be a
small price to pay for the added security of circumventing possible spyware on your
system.

More cool Terminal features
In addition to using the Secure Keyboard Entry option from the Terminal menu, some
other features you’ll find quite useful include:
Shell→New Command...

If you need to run a Unix command but don’t want to launch a new Terminal
window or have its output appear in the current window (manpages are an excellent
example), you’ll appreciate knowing about the New Command option available on
the Shell menu, shown in Figure 2-5. Choose that (or use the keyboard shortcut
Shift-⌘-N) and enter the command you’d like to run, and its output will be displayed
in a new window that you can then easily close without affecting anything else.

Edit→Paste Escaped Text
One of the common challenges of working with Unix within the OS X environment
is that while the Finder has no problems with spaces embedded in filenames, Unix
can be rather testy about even a single space. When you’re copying and pasting
filenames, however, you don’t have to worry about remembering to escape each and
every space: just use Paste Escaped Text (^-⌘-V), and a filename like taylor/Desktop/
My Favorite Martian is automatically pasted as taylor/Desktop/My\ Favorite\
Martian.

Edit→Paste Selection
If you want to copy and paste just what you’ve selected from a window, rather than
everything visible in the Terminal window, use Paste Selection without a Copy, and
it’ll save you a step. The keyboard shortcut for this one is worth remembering, too:
Shift-⌘-V.

22 | Chapter 2: Using the Terminal

Figure 2-5. Shell menu options

Customizing Your Terminal Session
There are a number of different ways that you can customize your Terminal session
beyond what’s been shown so far in this chapter. These are more advanced techniques,
and you can safely flip past them if they seem too complex (though I’d still encourage
you to read through the material, just so you can see what capabilities are included
within the Terminal application).

Setting the Terminal’s Title
You can change the current Terminal title using the following cryptic sequence of
characters:

echo '^[]2;My-Window-Title^G'

To type the ̂ [characters in bash, use the key sequence Control-V Escape (press Control-
V and release, then press the Escape key). To type ^G, use Control-V Control-G. The vi
editor supports the same key sequences.

Such cryptic sequences of characters are called ANSI escape sequences . An ANSI escape
sequence is a special command that manipulates some characteristic of the Terminal,
such as its title. ^[is the ASCII ESC character (which begins the sequence), and ^G is
the ASCII BEL character. (The BEL character is used to ring the Terminal bell, but in
this context, it terminates the escape sequence.)

Customizing Your Terminal Session | 23

Using AppleScript to Manipulate the Terminal
AppleScript is a powerful programming language used to automate OS X applications.
The OS X Terminal is one such application. You can run AppleScript commands at the
shell prompt using the osascript utility. The \ character at the end of an input line tells
the shell that the command line will continue on the next input line (when you use this,
the shell will prompt you with a > character):

osascript -e \
'tell app "Terminal" to set option of first window to value'

For example, to minimize your current Terminal window:

$ osascript -e \
> 'tell app "Terminal" to set miniaturized of first window to true'
$

For a complete list of properties you can manipulate with AppleScript, open the Script
Editor (/Applications/Utilities/AppleScript Editor) and select File→Open Dictionary.
Open the Terminal dictionary and examine the properties available under window, as
shown in Figure 2-6. If a property is marked r/o, it is read-only, which means you can’t
modify it on the fly.

Figure 2-6. The Terminal’s AppleScript dictionary

24 | Chapter 2: Using the Terminal

Working with .terminal Files
One useful feature of the Terminal is the ability for you to customize the appearance
and behavior of a specific Terminal window, and then save that configuration as
a .terminal file. Later, you can simply double-click on the .terminal file and you’ll have
your Terminal window back and ready to go, exactly as you set it up previously. Even
better, you can set up multiple windows and have them all saved into a single .termi‐
nal file and then collectively relaunched when you restart the Terminal program.

As an example, suppose you set up the main Terminal window to display large, white
text on a blue background. To save this configuration as a .terminal file, choose
Shell→Export Settings, and you’ll be prompted for a filename.

More interesting is a slight variation on this command that saves all the windows you’ve
set up. To achieve this, choose Window→Save Windows as a Group. You’ll be prompted
for a filename, as shown in Figure 2-7.

Figure 2-7. Saving a Windows Group .terminal file

Perhaps the most interesting option is the checkbox “Use window group when Terminal
starts.” Set things up the way you want, and you could find a half dozen different-sized
and different-colored windows on your Desktop, all ready to go, every time you start
up the Terminal. You can even have some windows start up running specific commands.
A popular command to use is top or tail -f /var/log/system.log, to help you keep an eye
on how your system is performing.

Working with the Terminal
To get into the Unix environment, launch the Terminal application. Hopefully you’ve
already added it to your Dock, as explained earlier!

Once the Terminal is running, you’ll see a window like the one in Figure 2-8.

Working with the Terminal | 25

Figure 2-8. The Terminal window

You can have a number of different Terminal windows open, if that helps your workflow.
Simply use ⌘-N to open each one, and ⌘-~ to cycle between them without removing
your hands from the keyboard. Or you can have the different sessions neatly organized
in tabs. Use Cmd-T to open new tabs as needed.

Once you have a window open and you’re typing commands, it’s helpful to know that
regular OS X copy and paste commands work, so it’s simple to send an email message
to a colleague showing your latest Unix interaction, or to paste some text from a web
page into a file you’re editing with a Unix text editor such as vi.

If you have material in your scroll buffer that you want to find, use ⌘-F (or select
Find→Find from the Edit menu) and enter the specific text. ⌘-G (Edit→Find→Find Next)
lets you search down the scroll buffer for the next occurrence, and Shift-⌘-G (Ed‐
it→Find→Find Previous) lets you search up the scroll buffer for the previous occurrence.
You can also search for material by highlighting a passage and entering ⌘-E (Find→Use
Selection for Find), or jump to the selected material with ⌘-J (Find → Jump to Selection).
You can save an entire Terminal session as a text file with Shell→Export Text As, and
you can print the entire session with Shell→Print.

Study the menus in the Terminal too: there are symbols you might not have seen before
in your OS X exploration. For example, the upward-facing diagonal arrow for
View→Scroll To Top is the Top or Home key on your keyboard, and the downward-
facing diagonal arrow for View→Scroll To Bottom is the End key. You can move up a
page with View→Page Up (or ⌘-Page Up), and down a page with View→Page Down (or
⌘-Page Down). To move up or down lines, use ⌘-up arrow or ⌘-down arrow, as needed.

26 | Chapter 2: Using the Terminal

For a beginner, differences between shells are slight. If you plan to work with Unix a lot,
though, you should learn more about your shell and its special commands.

To find out which shell you’re using, run the command echo $SHELL.
The answer, which will be something like /bin/bash, is your shell’s path
and name.

The Shell Prompt
When the system is ready to run a command, the shell outputs a prompt to tell you that
you can enter a command.

The default prompt in bash is the computer name (which might be something auto‐
matically generated, such as dhcp-254-108, or a name you’ve given your system), the
current directory (which might be represented by ~, Unix’s shorthand for your home
directory), your login name, and a dollar sign. For example, the complete prompt might
look like this: Dave-Taylors-MacBook-Pro:~ taylor$. The prompt can be customized,
though, so your own shell prompt may be different. I’ll show you how to customize
your prompt later in this chapter.

A prompt that ends with a hash mark (#) usually means you’re logged in as the super‐
user. The superuser doesn’t have the protections for standard users that are built into
the Unix system. If you don’t know Unix well, you can inadvertently damage your system
software when you are logged in as the superuser. In this case, I highly recommend that
you stop work until you’ve found out how to access your personal Unix account.

The simplest solution is to open a new Terminal window (Shell→New Window) and
work in that window. If you’ve still got the superuser prompt, it means that either you
logged into OS X as the superuser or your shell prompt has been customized to end
with a #, even when you’re not the superuser. Try logging out of OS X completely (Apple
Menu→Log Out, or Shift-⌘-Q) and logging back in as yourself.

Entering a Command
Entering a command line at the shell prompt tells the computer what to do. Each com‐
mand line includes the name of a Unix program. When you press Return, the shell
interprets your command line and executes the program.

The first word that you type at a shell prompt is always a Unix command (or program
name). Like most things in Unix, program names are case-sensitive; if the program
name is lowercase (and most are), you must type it in lowercase. Some simple command
lines have just one word, which is the program name.

Working with the Terminal | 27

date
An example of a single-word command is date. Entering the command date displays
the current date and time:

$ date
Mon Nov 4 17:59:07 PST 2013
$

As you type a command line, the system simply collects your keyboard input. Pressing
the Return key tells the shell that you’ve finished entering text, and it can run the
program.

who
Another simple command is who. It displays a list of each logged-on user’s username,
terminal number, and login time. Try it now, if you’d like.

The who program can also tell you which account is currently using the Terminal ap‐
plication, in case you have multiple user accounts on your Mac. The command line for
this is who am i. This command line consists of the command (who, the program’s name)
and arguments (am i). (Arguments are explained in “Syntax of a Unix Command” on
page 14 earlier in this chapter.) For example:

$ who am i
taylor ttys002 May 1 18:38

The response shown in this example says that:

• taylor is the username. The username is the same as the Short Name you define
when you create a new user with System Preferences→Accounts→+.

• Virtual terminal ttys002 is in use. The cryptic ttys002 syntax is a holdover from
the early days of Unix. All you need to know as a Unix beginner is that each time
you open a new Terminal window, the number at the end of the name gets incre‐
mented by one. The first is ttys001, the second ttys002, and so on. The terminal
ID can also be included in the title bar of the Terminal window, if desired.

• A new Terminal window was opened at 18:38 (or 6:38 p.m.) on the evening of
May 1.

Recalling Previous Commands
Modern Unix shells remember commands you’ve typed previously. They can even re‐
member commands from previous login sessions. This handy feature can save you a lot
of retyping of common commands. As with many things in Unix, though, there are
several different ways to do this; I don’t have room to show and explain them all, but
you can get more information from the sources listed in Chapter 10.

28 | Chapter 2: Using the Terminal

After you’ve typed and executed several commands, try pressing the up arrow key on
your keyboard. You will see the previous command after your shell prompt, just as you
typed it. Pressing the up arrow key again recalls the command before that one, and so
on. Also, as you’d expect, the down arrow key will recall more recent commands.

To execute one of these remembered commands, just press the Return key. (Your cursor
doesn’t even have to be at the end of the command line.)

Once you’ve recalled a command, you can edit it as necessary. If you don’t want to
execute any remembered commands, cancel the command shown either with the Mac-
standard ⌘-. (Command-period) or with the Unix-standard Control-C.

Completing File and Directory Names
Most Unix shells can complete a partially typed file or directory name for you. If you’re
using the default shell in OS X (i.e., bash), just type the first few letters of the word, then
press Tab. (Different shells have different methods.) If the shell finds just one way to
complete the word, it will do so; your cursor moves to the end of the new word, where
you can continue typing or just press Return to run the command.

You can also edit or erase the completed name by hitting the Delete
key or moving the cursor back and forth with the left and right ar‐
row keys.

What happens if more than one file or directory name matches what you’ve typed so
far? In this case, the shell will beep at you to let you know that it couldn’t find a unique
match. To get a list of all possible completions, simply press the Tab key again and you
will see a list of all names starting with the characters you’ve typed so far (you won’t see
anything if there are no matches). Here’s an example from the bash shell:

$ cd /usr/bin
$ ma<Tab><Tab>
 macbinary macerror5.16 mailq make man
 macerror machine mailstat makeinfo manpath
 macerror5.12 mail mailx
 malloc_history
$ ma

At this point, you could type another character or two—an i, for example—and then
press Tab once more to list only the mail-related commands.

Working with the Terminal | 29

Running Multiple Commands on the Command Line
An extremely helpful facet of working with the Unix system is the ability to specify more
than one command on a single command line. Perhaps you want to run a command
and find out how long it took to complete. This can be done by calling date before and
after the command or using the time command, but let’s stick with date for this dem‐
onstration. If you hunt and peck out date each time, the timing is hardly going to be
accurate. Much better is to put all three commands on the same line:

$ cd ~; date ; du -s . ; date
Mon Nov 4 18:47:05 MDT 2013
729365640 .
Mon Nov 4 18:49:47 MDT 2013

This example shows four different commands all strung together on a single command
line, using the semicolon character (;) to separate each command. First, cd ~ moves
you into your home directory (as would cd by itself, as it happens), then date shows the
current date and time. Next, the du -s command figures out how much disk space is
used by the current directory, as denoted by the period (.). A second date command
then shows the time after the du command has run.

Now you know it takes exactly 2 minutes and 42 seconds to calculate the disk space used
by your home directory—much more useful than knowing it takes 25 seconds for you
to type the date command, for du to run, and for you to type date again.

Correcting a Command
What if you make a mistake in a command line? Suppose you type dare instead of date
and press the Return key before you realize your mistake. The shell displays the fol‐
lowing error message:

$ dare
-bash: dare: command not found
$

Don’t be too concerned about getting error messages. Sometimes you’ll get an error
even if it appears that you typed the command correctly. This can be caused by acci‐
dentally typing control characters that are invisible on the screen. Once the prompt
returns, simply reenter your command.

As mentioned earlier, you can recall previous commands and edit command lines. Use
the up arrow key to recall a previous command, then, to edit the command line, use the
left and right arrow keys to move your cursor to the point where you want to make a
change. You can use the Delete key to erase characters to the left of the cursor, and type
in changes as needed.

30 | Chapter 2: Using the Terminal

If you have logged into your Macintosh remotely from another system (see Chapter 8),
your keyboard may be different. The erase character differs between systems and ac‐
counts, and can be customized. The most common erase characters are:

• Delete or Del
• Control-H

Control-C (or ⌘-.) interrupts or cancels a command, and can be used in many (but not
all) cases when you want to quit what you’re doing.

Other common control characters are:
Control-U

Erases the whole input line; you can start over.

Control-S
Pauses output from a program that’s writing to the screen. This can be confusing,
so I don’t recommend using Control-S.

Control-Q
Restarts output after a Control-S pause.

Control-D
Signals the end of input for some programs (such as cat, explained in “Putting Text
in a File” in Chapter 6) and returns you to a shell prompt. If you type Control-D at
a shell prompt, it quits your shell. Depending on your preferences, your Terminal
window will either close or sit there, which is useless, until you manually close the
window.

Ending Your Session
To end a Unix session, you must exit the shell. You should not end a session just by
quitting the Terminal application or closing the Terminal window. It’s possible that you
might have started a process running in the background (see Chapter 7), and closing
the window could therefore interrupt the process so it won’t complete. Instead, type
exit at a shell prompt and hit Return. The window will either close or simply not display
any sort of prompt; you can then safely quit the Terminal application. If you’ve started
a background process, you’ll instead get one of the messages described in the next sec‐
tion.

Problem Checklist
The first few times you use OS X, you aren’t likely to have the following problems. But
you may encounter these problems later, as you do more advanced work:

Working with the Terminal | 31

You get another shell prompt, or the shell says “logout: not login shell.”
You’ve been using a subshell (a shell created by your original Terminal shell). To
end each subshell, type exit (or just type Control-D) until the Terminal window
closes.

The shell says “There are stopped jobs” or “There are running jobs.”
OS X and many other Unix systems have a feature called job control that lets you
suspend a program temporarily while it’s running or keep it running separately in
the “background.” One or more programs you ran during your session has not
ended but is stopped (paused) or in the background. Enter fg to bring each stopped
job into the foreground, then quit the program normally. (See Chapter 7 for more
information.)

The Terminal application refuses to quit, saying “Closing this window will terminate
the following processes inside it:” followed by a list of programs.

The Terminal tries to help by not quitting when you’re in the middle of running a
command. Cancel the dialog box and make sure you don’t have any commands
running that you’ve forgotten about. If need be, type jobs to see what’s running.

Customizing the Shell Environment
The Unix shell reads a number of configuration files when it starts up. These configu‐
ration files are really shell programs, so they are extraordinarily powerful. Shell
programming is beyond the scope of this book.

But let’s look at what you can customize without having to become a full-fledged Unix
geek, shall we?

Picking a Login Shell
The default login shell for OS X is the ever-popular bash shell, but many Unix fans prefer
to use the Korn shell (ksh) instead. As mentioned earlier, OS X offers a host of different
shells, including /bin/bash, /bin/csh, /bin/ksh, /bin/tcsh, /bin/zsh, and /bin/sh.

To change your login shell, you can either use the Unix chsh command (enter chsh on
the command line and you’ll be asked which shell you’d like, starting the next time you
log in), or just change the shell setting in the Terminal Preferences, as shown earlier, in
Figure 2-2.

32 | Chapter 2: Using the Terminal

Why Some Folks Love the Korn Shell
From the perspective of typing in commands and even working with command history
or aliases, almost all shells are alike. In an interview at the popular geek website, SlashDot
(http://www.slashdot.org), David Korn (author of the Korn shell) even says: “It is hard
to argue that ksh is any better for interaction…but the scripting features in ksh93 are far
more advanced than any other shell.”

If you spend a lot of time writing advanced shell scripts, ksh is an excellent choice,
because it offers some remarkably sophisticated capabilities—features that you’d only
expect in a highly advanced programming environment like Java or C++. The bash shell
also has many sophisticated programming features, but in some Unix circles, ksh is the
shell of choice.

For more information on the Korn shell, see Learning the Korn Shell, by Bill Rosenblatt
and Arnold Robbins (O’Reilly).

Changing the Command Prompt
The easiest customization you can make to the shell is to change your command
prompt. By default, bash on OS X has a shell prompt made up of your computer’s host‐
name, your current working directory, your account name, and a dollar sign. For
example:

Dave-Taylors-MacBook-Pro:~ taylor$

If you’d rather have something shorter, like just the dollar sign ($), enter the following
command:

Dave-Taylors-MacBook-Pro:~ taylor$ PS1="$ "
$

This command gives you a simple, sparse $ prompt, and nothing else. It isn’t necessary
to use the dollar sign as your prompt; you could use a colon (:), a greater-than sign (>),
or any character you like. Just remember to include a space after the character you’ve
chosen to use as the prompt, because that helps you differentiate between the command
prompt and the actual command you’re typing in.

If you want this change to take effect every time you start a shell, use
the vi editor to create a file called .profile in your home directory (/
Users/your-name), and then add the following to the end of the file:
export PS1="$ ". (You can read more about the vi editor in Chap‐
ter 4.)

Customizing the Shell Environment | 33

http://www.slashdot.org

Of course, if that were all you could do to your command prompt, it wouldn’t be very
interesting. There are a number of special character sequences that, when used to define
the prompt, cause the shell to print out various bits of useful data. Table 2-2 shows a
partial list of these special character sequences for fine-tuning your prompt.

Table 2-2. Favorite escape sequences for bash prompts
Value Meaning

\w The current working directory

\W The trailing element of the current working directory, with ~ substitution

\! The current command history number

\H The full hostname

\h The hostname up to the first dot

\@ The time of day in 12-hour (a.m./p.m.) format

\A The time of day in 24-hour format

\u The username

\$ A # if the effective user ID is zero (root), or a $ otherwise

Experiment and see what sorts of interesting Unix prompts you can create. For many
years, a popular Unix prompt was:

$ PS1="Yes, Master? "

It might be a bit obsequious, but on the other hand, how many people in your life call
you “Master”?

One prompt sequence that I like is:

$ PS1="\w \! \$ "

This prompt sequence shows the current working directory, followed by a space and
the current history number, and then a $ or # to remind the user that this is bash and
whether they’re currently running as root. (The # is for when you’re running as root,
the administrator account, and the $ is for when you aren’t root.) For example, the
prompt might read:

~ 55 $

This tells you immediately that ~ (in my case, /Users/taylor) is the current directory, and
that this will be the 55th command you’ll execute. Because you can use the up or down
arrow keys to scroll back or forward, respectively, through your previous commands,
as described in “Recalling Previous Commands” on page 28, this is not as important in
the Terminal as it is in other command-line environments, but there is a very powerful
command history syntax built into bash that allows you to recall a previous command
by number. If you’re familiar with this syntax, making the command history number
part of the prompt can be handy.

34 | Chapter 2: Using the Terminal

On multiuser systems, it’s not a bad idea to put the username into the prompt as well.
That way, you’ll always know who the system thinks you are. And if you routinely use
more than one computer system, you should also consider including the hostname in
the prompt so you’ll always know which system you’re logged into.

Advanced Shell Customization
There’s not much more you can do to customize the Terminal application than what’s
shown in this chapter, but there’s an infinite amount of customization possible with the
bash shell (or any other shell you might have picked). Here are a few directions to get
you started.

Shell Configuration Settings
Because Unix is a multiuser system, there are two possible locations for the configuration
files: one applies to all users of the system and another to each individual user.

The system-wide setup files that are read by bash, the default shell for OS X, are found
in /etc (profile and bashrc). You only have permission to change these system-wide files
if you use sudo (see “Superuser Privileges with sudo” on page 72, in Chapter 3). However,
you can create another file called .profile in your home directory that will add additional
commands to be executed whenever you start a new Terminal window. (If you configure
the Terminal to use another shell, such as the Bourne shell, the C shell, or the Z shell,
you’ll need to set up different configuration files. See the manpage for your selected shell
to learn the necessary details. To learn more about csh, for example, use the command
man csh.)

The system-wide setup files are read first, then the user-specific ones, so commands in
your .profile file can override those in the system-wide files. The system-wide bashrc
file is succinct:

$ cat /etc/bashrc
System-wide bashrc file for interactive bash(1) shells.
if [-z "$PS1"]; then
 return
fi

PS1='\h:\W \u\$ '
Make bash check its window size after a process completes
shopt -s checkwinsize
Tell the terminal about the working directory at each prompt.
if ["$TERM_PROGRAM" == "Apple_Terminal"] && [-z "$INSIDE_EMACS"]; then
 update_terminal_cwd() {
 # Identify the directory using a "file:" scheme URL,
 # including the host name to disambiguate local vs.
 # remote connections. Percent-escape spaces.
 local SEARCH=' '

Advanced Shell Customization | 35

 local REPLACE='%20'
 local PWD_URL="file://$HOSTNAME${PWD//$SEARCH/$REPLACE}"
 printf '\e]7;%s\a' "$PWD_URL"
 }
 PROMPT_COMMAND="update_terminal_cwd; $PROMPT_COMMAND"
fi
$

Your own profile file—prefaced with a . to hide it from the Finder—can contain any
shell command that you want to run automatically whenever you open a new Terminal
window. Some typical examples include changing the shell prompt, setting environment
variables (values that control the operation of other Unix utilities), setting aliases, or
adding to the search path (where the shell searches for programs to be run).
My .profile file looks like this:

PS1="\w (\!): "

export PATH=$HOME/bin:/opt/local/bin:/opt/local/sbin:$PATH

export SVN_EDITOR=/usr/bin/vi

alias scale=~/bin/scale.sh
alias ls="ls -F"
alias vps="ssh taylor@intuitive.com"

date

This example .profile file issues the following commands:

This line tells the shell to use a different prompt than the standard one. I
explained the details of prompt setting in “Changing the Command Prompt” on
page 33, earlier in this chapter. This particular sequence offers me a succinct
prompt that’s also informative: /bin (518):.
This line sets a shell variable that the shell itself uses as its search path for finding
commands that are typed in. Usually the default PATH is fine, but since I have
some local programs and scripts I’ve written, this lets me use them without
specifying their location in the filesystem each time.
Similarly, this line specifies what editor the SVN command should use by default
(vi). Not all commands recognize environment variables, but for those that do,
this type of environment variable setting saves you the trouble of typing the
options on every command line.

36 | Chapter 2: Using the Terminal

These three lines define new, custom commands that the shell will recognize just
as if they were built-in Unix commands. Aliases are a great way to save shorthand
names for long, complicated Unix command lines, or even to fix common
mistakes you might make when typing command lines. These particular aliases
create a command for launching my image-scaling shell script (scale.sh), add a
favorite flag to the ls command, and let me invoke the secure shell utility (ssh)
with the account information I need, as a shortcut. A brief tutorial on creating
aliases can be found in the next section.
This line simply runs the date command to print the time and date when a new
Terminal window is opened. You might not want to do this, but it’s good for you
to see that you can include any command that you could type at the shell prompt
and have it automatically be executed whenever a new shell starts up.

By default, the .profile file doesn’t yet exist in your home directory, and only the system-
wide configuration files are read each time a Terminal window is opened. But if you
create this file in your home directory, it will be read and its contents executed the next
time you start a shell. You can create or change this file with a text editor such as vi (see
Chapter 4).

Don’t use a word processor like Microsoft Word that breaks long lines
or puts special nontext codes into the file. TextEdit can work if you
really insist, but you need to ensure that you chose Format→Make Plain
Text (Shift-⌘-T) before you save the file to ensure that no additional
formatting information is added by the application.

Any changes you make to your shell setup files will take effect when you open a new
Terminal window. Unfortunately, it’s not always easy to know which shell setup file you
should change, and an editing mistake in your shell setup file can interfere with the
normal startup of the Terminal window itself. It is recommended that beginners get
help from experienced users before tweaking these files. Also, you shouldn’t make
changes to these files at all if you’re about to do some critical work with your account,
unless there’s some reason you have to make the changes immediately.

You can execute any customization command discussed here from the
command line as well. In this case, the changes remain in effect only
until you close that window or quit the Terminal.

For example, to change the default options for the less command so it clears the Terminal
window before showing each new page of text, you could add the -c option to the LESS
environment variable. The command looks something like this:

Advanced Shell Customization | 37

$ export LESS='eMqc'

If you don’t want some of the less options shown here, you could leave
those other options out.

Unix has many other configuration commands to learn about; the books and websites
listed in Chapter 10 can help you identify which modifications you can make and how
they can help you produce an optimal computing environment for yourself.

Just as you can execute the setup commands from the command line, you can specify
that any command that you can execute from the command line be executed automat‐
ically when you log in by placing it in your setup file. (Running interactive commands
such as vi or ftp from your setup file isn’t a good idea, though.)

Creating Aliases
The flexibility of Unix is simultaneously its greatest strength and greatest downfall; the
operating system can do just about anything you can imagine (the command-line in‐
terface is certainly far more flexible than the Finder!), but it’s very difficult to remember
every single option to every command. That’s where shell aliases can be a real boon. A
shell alias is a simple mechanism that lets you create your own command names that
act exactly as you desire.

For example, I like the -a and -F options to be included every time I list a directory with
ls, so I created the following alias:

$ alias ls="/bin/ls -aF"

Now every time I enter ls in the shell, the command is run and the -a and -F options are
specified automatically. To have this available in your next session, make sure you re‐
member to also add the alias to your .profile file.

You can also have aliases that let you jump quickly to common locations, a particularly
helpful trick in OS X:

$ alias desktop="cd ~/Desktop"

With that alias in place, all you need to do is enter desktop at the command prompt,
and you’re taken to your Desktop directory. The shell looks at its .profile file, sees that
desktop is an alias, and runs the commands found in the quotes (in this case,
cd ~/Desktop).

Another set of useful aliases are to automatically set the rm, cp, and mv commands into
interactive mode, using their -i option. (Chapter 4 describes the cp, mv, and rm com‐
mands, which copy, move, and remove files, respectively.) Each of these supports the

38 | Chapter 2: Using the Terminal

-i option, which prompts you before overwriting or deleting a file. You can use aliases
to always enable this option:

$ alias rm="rm -i"
$ alias cp="cp -i"
$ alias mv="mv -i"

You can list all active aliases by typing alias without any arguments:

$ alias
alias cp='cp -i'
alias desktop='cd ~/Desktop'
alias ls='/bin/ls -a'
alias m2u='tr '\''\015'\'' '\''\012'\'''
alias u2m='tr '\''\012'\'' '\''\015'\'''

Have an alias you want to get rid of? You can use the unalias command for that.
For example, unalias ls removes the -aF options added earlier. To remove them per‐
manently, however, you might need to delete that line from your .bashrc or .profile file.

The Unresponsive Terminal
During your Unix session, your terminal may not respond when you type a command,
or the display on your screen may stop at an unusual place. That’s called a “hung” or
“frozen” terminal or session. Note that most of the techniques in this section apply to a
Terminal window, but not to non-Terminal windows, such as a web browser.

A session can hang for several reasons. For instance, your computer can get too busy;
the Terminal application has to wait its turn. In that case, your session will resume after
a few moments. You should not try to “un-hang” the session by entering extra com‐
mands, because those commands will all take effect after the Terminal comes back to
life.

If your display becomes garbled, press Control-L. In the shell, this will
clear the screen and display the prompt. In a full-screen program, such
as a text editor, this keyboard shortcut redraws the screen.

If the system doesn’t respond for quite a while (how long that is depends on your indi‐
vidual situation; ask other users about their experiences), the following solutions usually
work. Try the following steps in the order shown until the system responds:
Press the Return key once

You may have typed text at a prompt (for example, a command line at a shell prompt)
but not yet pressed Return to say that you’re done typing and your text should be
interpreted.

The Unresponsive Terminal | 39

Try job control (see Chapter 7); type Control-Z
This control key sequence suspends a program that may be running and gives you
a shell prompt. Now you can enter the jobs command to find the program’s name,
then restart the program with fg or terminate it with kill.

Press Control-C or ⌘-.
This interrupts a program that may be running. (Unless the program is run in the
background; as described in Chapter 7, the shell waits for a background program
to finish before giving a new prompt. A long-running background program may
thus appear to hang the Terminal.) If this doesn’t work the first time, try it once
more; doing it more than twice usually won’t help.

Type Control-Q
If output has been stopped with Control-S, this restarts the previously paused pro‐
cess. Note that some systems automatically issue Control-S if they need to pause
output; this sequence may not have been typed from the keyboard.

Type Control-D once at the beginning of a new line
Some programs (such as mail) expect text from the user. A program may be waiting
for an end-of-input character from you to tell it that you’ve finished entering text.
Typing Control-D may cause you to log out, so you should try this only as a last
resort.

If all else fails, close your Terminal window (⌘-W) and open a new one.

40 | Chapter 2: Using the Terminal

CHAPTER 3

Exploring the Filesystem

Once you launch the Terminal, you can use the many facilities that OS X provides at
the command line, an environment that’s quite a bit more powerful than the graphical
interface you may be used to viewing. As a user, you have an account that gives you:

• A place in the filesystem where you can store your files
• A username that identifies you and lets you control access to files
• An environment you can customize

In this chapter, you’ll see how all the thousands of files on your Mac are organized, how
to learn more details about any given file, and how to move around through OS X’s
filesystem. You’ll see that the Finder has been hiding quite a lot of information from
you: there are entire directories with thousands of files that are invisible from the Finder
but easily found and explored within the Terminal.

The OS X Filesystem
A file is the unit of storage in OS X. A file can hold anything: text (a report you’re writing,
a to-do list), a program, digitally encoded pictures or sound, and so on. All of those are
just sequences of raw data until they’re interpreted by the right program.

Files are organized into directories (more commonly referred to as folders on the Aqua
side of the Mac). A directory is actually a special kind of file where the system stores
information about other files. You can think of a directory as a place, so that files are
said to be contained in directories, and you work inside a directory. It’s important that
you realize that everything is a file in Unix. Whether you’re working with a directory
(perhaps moving files around) or editing a document, Unix fundamentally looks at
everything as the same sort of container of information.

41

A filesystem includes all the files and directories on a mounted volume, such as your
system’s hard disk, DropBox, Google Drive, or your iCloud account (all of which you
mount on your system with a little help from WebDAV). This section introduces OS X’s
filesystem, showing you how all the files on your Mac are organized and how to use
Unix commands to explore your Mac’s filesystem. Later sections show how you can look
in files and protect them. Chapter 4 has more information.

Your Home Directory
When you launch the Terminal, you’re placed in a directory called your home directo‐
ry. This directory, which can also be viewed in the Finder by clicking the Home icon,
contains personal files, application preferences, and application data such as Safari’s
bookmarks. In your home directory, you can create your own files, create other sub‐
directories, and so on. Like folders in a file cabinet, directories offer a way for you to
organize your files.

You can find out where your home directory is at any time by typing the following
command:

$ echo $HOME
/Users/taylor
$

As you can see, this tells me that my home directory (taylor) is found within the Users
directory (/Users). In Unix, a forward slash (/) is used to separate directory names, with
just a single slash signifying the very top, or root level, of your Mac’s filesystem. For
example, to change directories to the root level of your hard drive, use the following
command:

$ cd /

For more information on the filesystem’s structure and the root directory, see “The
Directory Tree” on page 43.

Your Working Directory
Your working directory (also called your current directory) is the directory in which
you’re currently working. Every time you open a new Terminal window, your home
directory is your working directory. When you change to another directory, the direc‐
tory you move to becomes your working directory, and so on.

Unless you specify otherwise, all commands that you enter apply to the files in your
working directory. In the same way, when you create files, they’re created in your work‐
ing directory unless you specify another directory. For instance, if you type the
command vi report, the vi editor starts and a file named report is created in your working
directory once you’ve saved your changes. (Unless, of course, a report file already exists

42 | Chapter 3: Exploring the Filesystem

there, in which case that file will be opened in vi.) But if you enter the following
command:

$ vi /Users/john/Documents/report

a report file is created in your Documents directory—all without your having to change
from your current working directory. You’ll learn more about this when I cover path‐
names, later in this chapter.

If you have more than one Terminal window open, each shell has its own working
directory. Changing the working directory in one shell doesn’t affect other Terminal
windows.

You can find out your working directory at any time by entering the pwd command:

$ pwd
/Users/taylor
$

The Directory Tree
All directories in OS X are organized into a hierarchical structure that you can imagine
as a family tree. The parent directory of the tree (the directory that contains all other
directories) is known as the root directory and is written as a forward slash (/). The root
directory is what you see if you open a new Finder window, click the Computer icon,
and then open your hard disk.

The root directory contains several other directories. Figure 3-1 shows a visual repre‐
sentation of the top of OS X’s filesystem tree: the root directory and some directories
under the root.

Applications, Library, System, and Users are some of the subdirectories (child directories)
of the root directory. There are several other directories that are invisible in the Finder
but visible at the shell prompt (you can see them if you use the ls / command). These
subdirectories are standard Unix directories: bin, dev, etc, sbin, tmp, usr, and var; they
contain Unix system files. For instance, bin contains many Unix programs.

In the previous section, the parent directory of Users (one level above) is the root di‐
rectory. Users has two subdirectories (one level below), john and carol. On an OS X
system, each directory has only one parent directory, but it may have one or more
subdirectories. The root directory at the top of the tree is its own parent and is just
known as “slash.”

A subdirectory (such as carol) can have its own subdirectories (such as Documents and
Music).

The OS X Filesystem | 43

Figure 3-1. Example of a directory tree

To specify a file or directory location, write its pathname. A pathname is essentially the
address of the directory or file in the filesystem. For more on pathnames, see the up‐
coming sections “Absolute Pathnames” and “Relative Pathnames”.

On a basic OS X system, all files in the filesystem are stored on disks connected to your
computer. OS X also has a way to access files on other computers: a networked filesys‐
tem. Networked filesystems make a remote computer’s files appear as if they’re part of
your computer’s directory tree. You can also mount shared directories from other Macs,
Windows machines, or even Unix and Linux servers (from the Finder’s menu bar, select
Go→Connect to Server). These also appear in the /Volumes directory, as will other disks,
including any external drives plugged directly into your Mac and any removable media
(CDs, DVDs) you have available.

Absolute Pathnames
As you saw earlier, the Unix filesystem organizes its files and directories in an inverted
tree structure with the root directory at the top. An absolute pathname tells you the path
of directories through which you must travel to get from the root to the directory or file
you want. In a pathname, slashes (/) are used between the directory names.

For example, /Users/john is an absolute pathname. It identifies one (only one!) directory.
Here’s how:

• The root directory is the first slash (/).
• The directory Users (a subdirectory of the root directory) is second.
• The directory john (a subdirectory of Users) is last.

44 | Chapter 3: Exploring the Filesystem

Be sure that you do not type spaces anywhere in the pathname. If there
are spaces in one or more of the directory names, you need to either
quote the entire directory pathname, or preface each space with a
backslash (\) to ensure that the shell understands that the spaces are
part of the pathname itself. The backslash is known as an escape char‐
acter for just this reason.

In Figure 3-2, you’ll see that the directory john has a subdirectory named Documents.
Its absolute pathname is /Users/john/Documents.

Figure 3-2. Absolute path of directory john

The root directory is always indicated by the slash (/) at the start of the
pathname. In other words, an absolute pathname always starts with a
slash.

Relative Pathnames
You can also locate a file or directory with a relative pathname. A relative pathname
gives the location relative to your working directory.

Unless you use an absolute pathname (a path that starts with a slash), Unix assumes that
you’re using a relative pathname. Like absolute pathnames, relative pathnames can go
through more than one directory level by naming the directories along the path.

For example, if you’re currently in the /Users directory (see Figure 3-2), the relative
pathname to the carol directory is simply carol:

$ pwd
/Users
$ cd carol
$ pwd
/Users/carol

The OS X Filesystem | 45

If carol wanted to move from her home directory to the Music directory, the relative
pathname to the Music directory would be as follows:

$ cd Music
$ pwd
/Users/carol/Music

Or, she could just use the following command to get from /Users to carol/Music:

$ cd carol/Music
$ pwd
/Users/carol/Music

In these examples, notice that none of the pathnames we are specifying to the cd com‐
mand start with a slash. That’s what makes them relative pathnames! Relative pathnames
start at the working directory, not the root directory. Just remember, a relative pathname
never starts with a slash.

Relative pathnames up
You can go up the tree with the Unix shorthand .. (two periods, commonly referred to
in Unix lingo as “dot, dot”) for the parent directory. As you saw earlier, you can also go
down the tree by using subdirectory names. In either case (up or down), separate each
level by a forward slash (/).

Figure 3-3 shows part of Figure 3-1. If your working directory in the figure is Docu‐
ments, then there are two pathnames for the Music subdirectory of carol. You already
know how to write the absolute pathname, /Users/carol/Music. You can also go up one
level (with ..) to carol, then go down the tree to Music. Figure 3-1 illustrates this.

The relative pathname would be ../Music. It would be wrong to give the relative address
as carol/Music. Using carol/Music would say that carol is a subdirectory of your working
directory instead of what it is in this case: the parent directory.

Absolute and relative pathnames are interchangeable. Unix programs
simply follow whichever path you specify to wherever it leads. If you
use an absolute pathname, the path starts from the root. If you use a
relative pathname, the path starts from your current working directo‐
ry. Choose whichever is easier at the moment.

46 | Chapter 3: Exploring the Filesystem

Figure 3-3. Relative pathname from Documents to Music

Pathname Puzzle
Here’s a short but important question. The previous examples explain the relative path‐
name carol/Music. What do you think Unix would say about the pathname /carol/
Music? (Look again at Figure 3-1.)

Unix would say “No such file or directory.” Why? (Please think about that a little bit;
this is very important, and it’s one of the most common mistakes made by Unix newbies.)
Well, it’s because the path starts with a slash. The pathname /carol/Music is an absolute
pathname that starts from the root. It says to look in the root directory (/) for a subdir‐
ectory named carol. But since there is no subdirectory named carol, the pathname is
wrong. The only absolute pathname to the Music directory is /Users/carol/Music.

Changing Your Working Directory
Once you know the absolute or relative pathname of a directory where you’d like to
work, you can move up and down the OS X filesystem to reach it. The following sections
explain some helpful commands for navigating through a directory tree.

pwd
To find which directory you’re currently in, use pwd (print working directory), which
prints the absolute pathname of your working directory. The pwd command takes no
arguments:

$ pwd
/Users/john
$

cd
You can change from your present working directory to any directory (including an‐
other user’s directory, if you have permission) with the cd (change directory) command,
which has the form:

The OS X Filesystem | 47

cd pathname

The argument is an absolute or a relative pathname (whichever is easier) for the direc‐
tory you want to change to:

$ cd /Users/carol
$ pwd
/Users/carol
$ cd Documents
$ pwd
/Users/carol/Documents
$

The command cd, with no arguments, takes you to your home direc‐
tory from wherever you are in the filesystem. It’s identical to typing in
cd $HOME.

Note that you can only change to another directory that you have permission to access.
If you try to change to a directory that you’re otherwise shut out of, you’ll see an error:

$ cd /Users/john
-bash: cd: /Users/john: Permission denied
$

You also cannot cd to a filename. If you try, your shell (in this example, bash) gives you
an error message:

$ cd /etc/aliases
-bash: cd: /etc/aliases: Not a directory.
$

If you’re curious, /etc/aliases is a file that contains system-level email
aliases for your Mac system.

One neat trick worth mentioning is that you can quickly give the Terminal a file or
directory’s path by dragging a file or folder icon from the Finder onto the Terminal
window. This is particularly helpful for those times when you’d have to type in an extra-
long pathname. For example, if you wanted to change directories to a song in your
iTunes collection, you’d have to type in something like the following:

$ cd /Users/taylor/Music/iTunes/iTunes\ Media/Music/Maroon\ 5/Hands\ All\ Over

Sure, like you’re going to remember that pathname off the top of your head!

To make this easier, you could just type cd followed by a space in a Terminal window,
and then drag the folder in question from a Finder window onto the Terminal window,

48 | Chapter 3: Exploring the Filesystem

as shown in Figure 3-4. When you let go of the file or folder you’re dragging into the
Terminal window, the pathname gets added to the command prompt.

Figure 3-4. Dragging a folder from the Finder to a Terminal window saves you from
having to type in long and complex paths

Files in the Directory Tree
A directory can hold subdirectories. And, of course, a directory can hold files. Figure 3-5
is a close-up of the filesystem around john’s home directory. There are six directories
shown, along with the mac-rocks file created by using the touch command, as explained
in the sidebar “Two Ways to Explore Your Filesystem” on page 50.

Pathnames to files are constructed the same way as pathnames to directories. As with
directories, files’ pathnames can be absolute (starting from the root directory) or relative
(starting from the working directory). For example, if your working directory
is /Users, the relative pathname to the Documents directory below would be john/Docu‐
ments. The relative pathname to the mac-rocks file would be john/mac-rocks.

The OS X Filesystem | 49

Figure 3-5. Files in the directory tree

Unix filesystems can also hold things that aren’t directories or files, such as symbolic
links (similar to aliases in OS X), devices (the /dev directory contains entries for devices
attached to the system), and sockets (network communication channels). You may see
some of them as you explore the filesystem. These advanced topics aren’t covered in this
little book, however, because they’re more complex, and overloading you with advanced
stuff right now just wouldn’t be fair.

Two Ways to Explore Your Filesystem
Every file and folder that you view from the Finder is also accessible from the Unix shell.
Changes made in one environment are reflected (almost) immediately in the other. For
example, the Desktop folder is also the Unix directory /Users/your-name/Desktop.

Just for fun, open a Finder window, move to your home folder, and keep it visible while
you type these commands at the shell prompt:

$ cd
$ touch mac-rocks

Switch back to the Finder (you can click on the Desktop) and watch a file called mac-
rocks appear magically. (The touch command creates an empty file with the name you
specify, unless it already exists, in which case it updates the last modified time.)

Now type:

$ rm mac-rocks

Return to the Finder, and watch the file disappear. The rm command removes the file.

50 | Chapter 3: Exploring the Filesystem

Listing Files and Directories
To use the cd command, you must know which entries in a directory are subdirectories
and which are files. The ls command lists entries in the directory tree and can also show
you which are which.

The All-Powerful ls Command
When you enter the ls command, you get a list of the files and subdirectories contained
in your working directory. The syntax is:

ls options directory-and-filenames

If you’ve just moved into an empty directory, entering ls without any arguments may
seem to do nothing. This isn’t surprising; if you have no files, nothing is displayed.
Instead, you’ll simply get a new shell prompt:

$ ls
$

But if you’re in your home directory, ls displays the names of the files and directories in
that directory. The output depends on what’s in your directory. The screen should look
something like what I see in my own home directory:

$ ls
Desktop Dropbox Movies Presentations bin
Documents Google Drive Music Public
Downloads Library Pictures Sites
$

Sometimes ls might display filenames in a single column. If yours does, you can make
a multicolumn display with the -C option (multicolumn, sorted down) or the -x option
(multicolumn, sorted across). ls has a lot of options that change the information and
display format.

The -a (all) option is guaranteed to show you some more files, as in the following
example:

$ ls -a
. .lesshst Dropbox
.. .nchsoftware Google Drive
.CFUserTextEncoding .profile Library
.DS_Store .ssh Movies
.Trash .subversion Music
.android .viminfo Pictures
.bash_history .vuescanrc Presentations
.cups Desktop Public
.dropbox Documents Sites
.dvdcss Downloads bin
$

Listing Files and Directories | 51

When you use ls -a, you’ll always see at least two entries named . (dot) and .. (dot, dot).
As mentioned earlier, .. is always the relative pathname to the parent directory. A sin‐
gle . always represents the current directory; believe it or not, this is useful with com‐
mands such as cp (see Chapter 4). There may also be other files, such as .bashrc
or .Trash. Any entry whose name begins with a dot is hidden—it’s listed only if you add
the -a flag to the ls command.

Trying Out the ls Command
Since the ls command is such an important part of the Terminal, let’s practice using
some of the different options.

Open the Terminal application, and then type along to see what your system shows you:

$ ls
Desktop Dropbox Movies Presentations bin
Documents Google Drive Music Public
Downloads Library Pictures Sites
$ ls -1
Desktop
Documents
Downloads
Dropbox
Google Drive
Library
Movies
Music
Pictures
Presentations
Public
Sites
bin

The -1 option (that’s the number one, not a lowercase “L”) causes ls to output the list of
files in one-file-per-line format, which can be useful if you’re going to paste the list into
a Word document or other material.

One problem with ls is that, unlike the Finder with its helpful icons, the output from ls
doesn’t let you differentiate between files and directories. That’s where the helpful -F
option comes in handy:

$ ls -F
Desktop/ Dropbox/ Movies/ Presentations/ bin/
Documents/ Google Drive/ Music/ Public/
Downloads/ Library/ Pictures/ Sites/

The -F option shows you which entries are directories by appending a forward slash (/)
to the end of their names. If there were any executable programs or scripts in this
directory, -F would append an asterisk (*) after their filenames; an at symbol (@) denotes
symbolic links in this output.

52 | Chapter 3: Exploring the Filesystem

The -s option indicates the size of each file, in units of 512 bytes. Why 512 bytes? Well,
that’s what the original Unix filesystem used as its block size all those years ago, and
since then that’s just what the ls -s command uses. If you really want to use -s but aren’t
interested in 512-byte blocks, you can set the environment variable BLOCKSIZE to 1024
to make the resultant listings use the more logical 1 kilobyte size:

$ ls -s
total 0
0 Desktop 0 Dropbox 0 Movies 0 Presentations 0 bin
0 Documents 0 Google Drive 0 Music 0 Public 0 mac-rocks
0 Downloads 0 Library 0 Pictures 0 Sites

Directories and empty files are always shown as having zero blocks used (you need to
use the du— disk usage—command, as discussed a bit later in this chapter, to find out
the size of a directory), and the mac-rocks file is empty because I created it with the touch
command.

A directory that has files that aren’t empty is Library/Preferences:
$ ls -sF Library/Preferences/
total 9032
 8 3cisabcamomer.sys
 8 4988844037823656117.2912
 8 AOSMigrateAgent.plist
 0 AOSMigrateAgent.plist.lockfile*
 8 AddressBookMe.plist
 0 Backup Tickets/
 0 ByHost/
 200 CD Info.cidb
 0 Macromedia/
 0 Microsoft/
 8 MobileMeAccounts.plist
...
 8 pbs.plist
 0 pbs.plist.lockfile*
 8 taylor.rn
 8 vuescan.ini
 568 vuescan.lk1
 328 vuescan.log

This is much more useful. You can see that the directories Backup Tickets, _ByHost, etc.
are all zero size, as expected, but notice that some of the preference files, notably for CD
Info and vuescan, are bigger than the other files. The difference? Some applications have
quite a bit of information that they store as preferences, while others save only preference
settings that are different from the default configuration.

A more interesting place to look is your logfile directory, /var/log:

$ ls -s /var/log
total 28224
 8 CDIS.custom

Listing Files and Directories | 53

 0 DiagnosticMessages
 0 apache2
 0 asl
 0 com.apple.launchd
 0 cups
 48 daily.out
 0 emond
 0 fax
 136 fsck_hfs.log
 1272 install.log
 200 install.log.0.bz2
...

Notice that the first line of output with the -s option is always a sum of the size of all
files in the specified directory. This shows that there are 28,224 512-byte blocks, which
you can easily divide by two to get kilobytes (14,112 KB). The largest file in this directory
is install.log, which was created after you installed OS X.

Now let’s see if there’s a directory called Library in the current working directory:

$ ls Library
Accounts Contextual Menu Items Keyboard Layouts Saved Application State
Address Book Plug-Ins Cookies Keychains Saved Searches
Application Scripts Dictionaries LaunchAgents Screen Savers
Application Support Favorites Logs Services
Assistant FontCollections Mail Snapz Pro X
Assistants Fonts Messages Sounds
Audio Fonts Disabled Metadata Spelling
Autosave Information Frameworks Mobile Documents StickiesDatabase
Breakpad GameKit MobileDevice SyncedPreferences
Caches Google PDF Services Twitter
Calendars Group Containers PreferencePanes VirtualBox
ColorPickers Icons Preferences Voices
Colors IdentityServices Printers WebKit
Compositions Input Methods PubSub iMovie
Containers Internet Plug-Ins Safari iTunes

This is a classic conundrum with the ls command; you want to see a folder, but you don’t
actually want to see what’s inside the folder, just whether it exists or not. To accomplish
this, you can’t just specify the name of the folder because, as shown, you end up seeing
what’s inside. Instead, use the -d option to indicate that it’s the directory information
you want, not its contents:

$ ls -d Library
Library
$ ls -d
.

That second example is interesting because it confirms that the current directory is
indeed the period (.) shorthand, as explained earlier.

54 | Chapter 3: Exploring the Filesystem

Using the -l Option
To get more information about each item that ls lists, add the -l option (that’s a lowercase
“L” for “long”). This option can be used alone, or in combination with -a, as shown in
Figure 3-6.

Figure 3-6. Output from ls -al

The long format provides the following information about each item:
Total n

States the amount of storage space (n) used by everything in this directory. This is
measured in blocks. On OS X, blocks are 1,024 bytes in size. If you want to know
the total size of everything in a directory, however, the du command is more
accurate.

Type
Tells whether the item is a directory (d) or a plain file (-). (There are other less
common types as well.)

Access modes
Specifies whether or not the file owner, any members of the group associated with
the file, and all users are allowed to read (r), write (w), or execute (x) your files or
directories. We’ll talk more about access modes in the next section.

Listing Files and Directories | 55

Links
Lists the number of files or directories linked to this directory. (This isn’t the same
as a web page link, as you’ll see in “Working with Links” on page 105 in Chapter 4.)

Owner
States the user who owns this file or directory.

Group
Lists the group that owns the file or directory (usually the group that the file/direc‐
tory owner belongs to, but group ownership can be changed as needed).

Size (in bytes)
States the size of the file or directory. (A directory is actually a special type of file.
Here, the “size” of a directory is that of the directory file itself, not the total of all
the files in that directory.)

Modification date
States the date when the file was last modified or when the directory contents last
changed (when something in the directory was added, renamed, or removed). If
an entry was modified more than six months ago, ls shows the year instead of the
time.

Name
Tells the name of the file or directory.

File Permissions
Notice especially the columns that list the owner and group of the files, and the access
modes (also called permissions). Unless changed afterwards, the person who creates a
file is its owner; if you’ve created any files, this column should show your short username.
You also belong to a group. Files you create are marked either with the name of your
group or, in some cases, the group that owns the directory.

The file mode indicates what type of file the item is (such as a directory or a regular file),
as well as who can read, write, or execute the file or directory. The file mode has 10
characters, as shown in Figure 3-7. The first character shows the file type (d for directory
or - for a plain file). The other characters come in sets of three.

56 | Chapter 3: Exploring the Filesystem

Figure 3-7. A detailed look at file permissions

The first set, characters 2 through 4, shows the permissions for the file’s owner (which
is you, if you created the file). The second set, characters 5 through 7, shows permissions
for other members of the group that is associated with the file, such as all people in the
marketing team or everyone on Project Alpha in your firm. The third set, characters 8
through 10, shows permissions for all other users on the system.

The Finder shows directory permissions in the Get Info dialog box. Figure 3-8 shows
the Get Info permissions information for the Documents directory. Compare this to the
ls -l output shown in Figure 3-7.

For example, the permissions for .DS_Store in Figure 3-6 are -rw-r—r--. The first hy‐
phen, -, indicates that it’s a plain file. The next three characters, rw-, mean that the
owner, taylor, has both read (r) and write (w) permissions, but cannot execute the file,
as noted by the hyphen following the rw. The next two sets of permissions are both
r--, which means that other users who belong to the file’s group, taylor, as well as all
other users of the system, can only read the file; they don’t have write or execute per‐
missions, which means they can’t make changes to the file, and if it’s a program (such
as a shell script), they can’t execute it either.

In the case of directories, x means the permission to access the directory—for example,
to run a command that reads a file there or to access a subdirectory. Notice that the first
directory shown in Figure 3-6, Desktop, is executable (accessible) by taylor, but com‐
pletely closed off to everyone else on the system. A directory with write (w) permission
allows deleting, renaming, or adding files within the directory. Read (r) permission
allows listing the directory with ls.

Listing Files and Directories | 57

Figure 3-8. The Finder’s Get Info window shows directory permissions much differently
than how they appear in the Terminal

You can use the chmod command to change the permissions of
your files and directories (see “Protecting and Sharing Files” on
page 64 later in this chapter).

If you need to know only which files are directories and which are executable files, you
can use the -F option with ls. If you give the pathname to a directory, ls lists the directory
but does not change your working directory. The pwd command, shown here, illustrates
this:

$ cd /Applications
$ ls -F ~
Conferencing/ Downloads/ Library/ Pictures/ VirtualBox VMs/
Desktop/ Dropbox/ Movies/ Presentations/ bin/
Documents/ Google Drive/ Music/ Public/
$ pwd
/Applications
$

58 | Chapter 3: Exploring the Filesystem

As noted earlier, the ls -F command places a slash (/) at the end of each directory name
displayed in the output. (The directory name doesn’t really have a slash in it; that’s just
the shorthand ls -F uses to identify a directory.) In this example, every entry other than
the mac-rocks file and the hidden “dot” files is a directory. You can verify this by using
ls -l and noting the d in the first field of the output. Files with an execute status (x), such
as programs, are marked with an asterisk (*).

The ls -R (recursive) command lists a directory and all its subdirectories. This gives you
a very long list, especially when you list a directory near the root! (Piping the output of
ls to a pager program—such as more or less—solves this problem. There’s an example
in Chapter 6.) You can combine other options with -R; for instance, ls -RF marks each
directory and file type, while recursively listing files and directories.

Calculating File Size and Disk Space
You can find the size of a file with the du (disk usage) command:

$ du Documents/Outline.doc
300 Documents/Outline.doc

The size is reported in 512-byte blocks, so Outline.doc is 150KB in size.

If you give du the name of a directory, it calculates the sizes of everything inside that
directory, including any subdirectories and their contents:

$ du Library
136 Library/Accounts
64 Library/Address Book Plug-Ins/SkypeABDialer.bundle/Contents/MacOS
8 Library/Address Book Plug-Ins/SkypeABDialer.bundle/Contents/Resources/bg.lproj
8 Library/Address Book Plug-Ins/SkypeABDialer.bundle/Contents/Resources/da.lproj
8 Library/Address Book Plug-Ins/SkypeABDialer.bundle/Contents/Resources/de.lproj
16 Library/Address Book Plug-Ins/SkypeABDialer.bundle/Contents/Resources/en.lproj
...

This means that it’s not a great idea to type du /, unless you want to
see a lot of information stream past your screen at a lightning pace!

If you want the total for the directory, use -s (summarize):

$ du -s Library
41075320 Library

Calculating File Size and Disk Space | 59

If you’d like separate totals for all directories and files, including hidden ones, use a
wildcard pattern that ignores the current (.) and parent (..) directories, as discussed
earlier in this chapter:

$ du -s * .[^.]*
86696 Desktop
73427240 Documents
13330568 Downloads
5508072 Dropbox
269120 Google Drive
41078120 Library
...
8 .nchsoftware
8 .profile
8 .ssh
64 .subversion
48 .viminfo
8 .vuescanrc

To gain information about the size of the standard user applications in OS X, use the
pattern /Applications/*.app:

$ du -s /Applications/*.app
1784120 /Applications/Aperture.app
3760 /Applications/App Store.app
20872 /Applications/Automator.app
8880 /Applications/Calculator.app
52832 /Applications/Calendar.app
11888 /Applications/Chess.app
23296 /Applications/Contacts.app
...
17864 /Applications/TextEdit.app
656 /Applications/Time Machine.app
1169280 /Applications/VMware Fusion.app
37952 /Applications/VueScan.app
3574832 /Applications/Xcode.app
855160 /Applications/iMovie.app
382416 /Applications/iPhoto.app
153200 /Applications/iTunes.app

Notice that the output is in alphabetical order, but all the uppercase filenames are sorted
before the lowercase filenames (that is, TextEdit appears before iMovie in a case-
sensitive sort).

60 | Chapter 3: Exploring the Filesystem

One option that’s worth keeping in mind when using du -s is -h, which produces more
human-readable output:

$ du -sh /Library/*
3.1G /Library/Application Support
1001M /Library/Audio
 24M /Library/Automator
1.6M /Library/Caches
 0B /Library/ColorPickers
 92K /Library/ColorSync
 0B /Library/Components
 0B /Library/Compositions
512K /Library/Contextual Menu Items
127M /Library/Desktop Pictures
...
 0B /Library/Speech
 0B /Library/Spelling
1.9M /Library/Spotlight
 0B /Library/StartupItems
 0B /Library/SystemProfiler
668K /Library/Updates
 21M /Library/User Pictures
 0B /Library/Video
3.3M /Library/WebServer
8.5M /Library/Widgets
 16K /Library/iTunes

While this is a bit more readable, the enormous /Library/Application Support, at 3.1 GB,
doesn’t jump out as it would if the -h flag weren’t used and the output of 6507128 blocks
were shown instead. It’s probably best to include the -h flag, but remember to scan the
suffix letters to see if anything jumps out as being ridiculously large.

You can also sort the largest directories to the top of the results with a
command sequence like du -s /Library/* | sort -rn, or, better, only view
the top 10 results with du -s /Library/* | sort -rn | head. I’ll explain
command pipes and the tremendously useful sort command a bit later.

Calculating File Size and Disk Space | 61

Calculating Available Disk Space
You can calculate your system’s free disk space with df -h (the -h produces more user-
friendly output):

$ df -h
Filesystem Size Used Avail Capacity Mounted on
/dev/disk0s2 465Gi 387Gi 77Gi 84% /
devfs 182Ki 182Ki 0Bi 100% /dev
map -hosts 0Bi 0Bi 0Bi 100% /net
map auto_home 0Bi 0Bi 0Bi 100% /home
localhost:/F_S7P7m8KJ6Yohz2Qm0HM2 465Gi 465Gi 0Bi 100% /Volumes/...

Here’s the breakdown for the output from the command:

• The first column (Filesystem) shows the Unix device name for the volume.
• The second column (Size) shows the total disk size, and it’s followed by the amount

of disk space used up (Used) and the amount that’s available (Avail).
• The Capacity column shows the percentage of disk space used. Many devices are

shown at 100% because they’re not regular disks, but special Unix devices. All you
really need to pay attention to is your main hard drive (mine is /dev/disk0s2).

• The Mounted on column displays the paths for the volumes mounted on your com‐
puter. The / is the root of your filesystem (a volume that is named Macintosh HD
by default). /dev contains files that correspond to hardware devices, and /.vol ex‐
poses some internals of the OS X filesystem called HFS+ file ID.

Notice that I have one hard disk on my system, /dev/disk0s2 (which is 465 GB in size,
of which 387 GB are used and 77 GB are still available).

The df command has a second, more friendly output that uses the more common
divide-by-10 rule for calculating sizes, rather than the more mathematically precise
divide-by-2 rule of the -h flag:

$ df -H
Filesystem Size Used Avail Capacity Mounted on
/dev/disk0s2 499G 416G 83G 84% /
devfs 186k 186k 0B 100% /dev
map -hosts 0B 0B 0B 100% /net
map auto_home 0B 0B 0B 100% /home
localhost:/F_S7P7m8KJ6Yohz2Qm0HM2 499G 499G 0B 100% /Volumes/...

62 | Chapter 3: Exploring the Filesystem

These figures make more sense because I know that the hard disk mounted at /dev/
disk0s2 is actually 500 GB in size (though why it shows up as 499GB instead of 500GB
is anyone’s guess!). You might prefer the more accurate -h output, but many people
prefer -H since disk sizes are shown consistent with expectations.

Yet another way to look at the data is to use the -m flag to have df show you 1 MB blocks,
which rounds down all the tiny OS partitions like devfs and .vol to zero:

$ df -m
Filesystem 1M-blocks Used Available Capacity Mounted on
/dev/disk0s2 476120 396514 79355 84% /
devfs 0 0 0 100% /dev
map -hosts 0 0 0 100% /net
map auto_home 0 0 0 100% /home
localhost:/F_S7P7m8KJ6Yohz2Qm0HM2 476120 476120 0 100% /Volumes/...

Finally, in addition to raw disk space, another factor to keep track of with your OS X
system is the number of inodes available. Inodes are the fundamental disk blocks that
are grafted together to make space for all the different-sized files in your filesystem. A
given disk in Unix has a finite number of files and directories that can be created, and
even if there’s additional disk space available, running out of inodes effectively stops the
disk from being used. This unusual event can happen if you have lots and lots (I’m
talking millions and millions) of tiny files.

The -i flag to df shows how you’re doing with inodes, providing details on how many
inodes are allocated and available on each filesystem.

Generally disks have plenty of unused inodes, so there’s nothing to worry about. For
example, as you can see here, disk 0s2 has 20,315,203 available inodes:

$ df -i
Filesystem 512-blocks Used Available Capacity iused ifree %iused ...
/dev/disk0s2 975093952 812060328 162521624 84% 101571539 20315203 83% ...
devfs 363 363 0 100% 629 0 100% ...
map -hosts 0 0 0 100% 0 0 100% ...
map auto_home 0 0 0 100% 0 0 100% ...

Exercise: Exploring the Filesystem
Now that you’re equipped with some basic commands, it’s time to explore the filesystem
with cd, ls, and pwd. Take a tour of the directory system, detailed in Table 3-1, hopping
one or many levels at a time, with a mixture of cd and pwd commands.

Calculating File Size and Disk Space | 63

Table 3-1. Take this guided tour of your filesystem; read each task (left column) and
then enter the Unix command (right column) to see where you go

Task Command

Go to your home directory. cd

Find your working directory. pwd

Change to a new working directory with its absolute pathname. cd /bin

List files in new working directory. ls

Change directory to root and list it in one step. (Use the command separator:
a semicolon.)

cd /; ls

Find your working directory. pwd

Change to a subdirectory; use its relative pathname. cd usr

Find your working directory. pwd

Change to a subdirectory. cd lib

Find your working directory. pwd

Give a wrong pathname. cd xqk

List files in another directory. ls /bin

Find your working directory (notice that ls didn’t change it). pwd

Return to your home directory. cd

Protecting and Sharing Files
OS X makes it easy for users on the same system to share files and directories. For
instance, all users in a group can read documents stored in one of their manager’s di‐
rectories without needing to make their own copies (if the manager has allowed such
access). The advantage of this is that you don’t need to send files via email as attachments.
Instead, if the files and directories have open permissions, anyone can access them with
a little help from the Unix filesystem.

Here’s a brief introduction to file security and sharing. If you have critical security needs,
or you just want more information, talk to your system staff, or see an up-to-date book
on Unix security such as Practical Unix and Internet Security, by Simson Garfinkel,
Gene Spafford, and Alan Schwartz (O’Reilly).

Any user with admin privileges can use the sudo command (see “Su‐
peruser Privileges with sudo” on page 72, later in this chapter) to do
anything to any file at any time—regardless of what its permissions
are. Access permissions won’t keep your private information safe from
everyone, although let’s hope that you can trust the other folks who
share your Macintosh! This is one reason that you’ll want to be
thoughtful about those directory access permissions.

64 | Chapter 3: Exploring the Filesystem

http://shop.oreilly.com/product/9780596003234.do

A directory’s access permissions help to control access to the files and subdirectories in
that directory:

• A user who has read permission (r) for a directory can run ls to see what’s in the
directory and use wildcards to match files in it.

• A user who has write permission (w) for a directory can add, rename, and delete
files in the directory.

• To access a directory (that is, to read or write the files in the directory or to run the
files if they’re programs), a user needs execute permission (x) for that directory.
The user must also have execute permission for all of the directory’s parent
directories—all the way up to the root.

OS X includes a shared directory for all users: /Users/Shared. Any user
can create files in this directory and modify files they put there. How‐
ever, you cannot modify a file that’s owned by another user. Instead,
you’ll have to copy that file from /Users/Shared to another directory
in which you have write permissions (such as your Documents direc‐
tory).

In practice, there are three directory permissions you’ll see in Unix:

• --- means that the user cannot access the directory.
• r-x means that the user can access the directory with read-only permission, but

cannot add or delete files, or modify the directory.
• rwx means that the user has read, write, and access permission.

For example, here are the default permissions for a home directory, courtesy of ls -l:
$ ls -ld $HOME
drwxr-xr-x 66 taylor staff 2244 27 Dec 11:07 /Users/taylor/
$

This shows that the owner, taylor, has read, write, and access permission for this direc‐
tory, while the group, staff, and everyone else on the system are restricted to read-only
access.

In contrast, the following example shows that user taylor has complete access, but ev‐
eryone else is shut out from browsing the Documents directory:

$ ls -ld $HOME/Documents
drwx------ 51 taylor staff 1734 13 Dec 14:46 /Users/taylor/Documents/
$

Protecting and Sharing Files | 65

The Finder shows directory permissions in the Get Info dialog box. Figure 3-9 shows
the Get Info permissions information for both $HOME and $HOME/Documents.

Figure 3-9. The Finder’s Get Info window shows directory permissions differently

File Access Permissions
The access permissions on a file control what can be done to the file’s contents. Likewise,
the access permissions on the directory where the file is kept control whether the file
can be renamed or removed. If this seems confusing, think of it this way: the directory
is actually a list of files. Adding, renaming, or removing a file changes the contents of
the directory. If the directory isn’t writable, you can’t change that list.

Read permission controls whether you can read a file’s contents. Write permission lets
you change a file’s contents. A file shouldn’t have execute permission unless it’s a program
or a script.

Let’s have a look at a few file permissions on your system. This permission allows user
taylor to read from the file or write to the file, but everyone else is prevented from
touching its contents:

$ cd ~
$ ls -l .viminfo

66 | Chapter 3: Exploring the Filesystem

-rw------- 1 taylor staff 2159 27 Dec 11:07 .viminfo
$

This file, a part of the operating system core (known in Unix-geek circles as the
kernel), is owned by root, who has read-write permissions. Everyone else has only read
permission:

$ ls -l /mach_kernel
-rwxr-xr-x@ 1 root wheel 8393256 Sep 29 16:43 /mach_kernel

Typically, this type of permission denotes an important system file that shouldn’t be
touched in any way. See that “@” at the end of the permissions? That indicates that
mach_kernel has extended attributes that cannot be shown with ls. If you’re curious, use
xattr -l /mach_kernel to see the details.

Finally, consider this security database file that belongs to the operating system. The
owner, root, has read-only permission, as does anyone in the wheel group, but the file
is off-limits to anyone else on the computer:

$ ls -l /etc/sudoers
-r--r----- 1 root wheel 16541 2 Dec /etc/sudoers

Setting Permissions with chmod
Once you know what permissions a file or directory needs, provided you’re the owner
(listed in the third column of ls -l output), you can change the permissions with the
chmod program. If you select a file or folder in the Finder and then choose File→Get
Info (⌘-I), you can also change the permissions using the Sharing & Permissions section
of the Get Info dialog (see Figure 3-9). One reason to use the Finder method is because
changing the permissions of files and directories inside the directory is easy to accom‐
plish by clicking the “Apply to Enclosed Items…” button (this can be done on the com‐
mand line using the find command, but it’s beyond the scope of this book).

There are two ways to change permissions: by specifying the permissions to add or
delete, or by specifying the exact permissions to apply. For instance, if a directory’s
permissions are almost correct, but you also need to make it writable by its group, tell
chmod to add group-write permission. But if you need to make more than one change
to the permissions—for instance, if you want to add read and execute permission but
delete write permission—it’s easier to set all permissions explicitly instead of changing
them one by one. The syntax is:

chmod permissions directory_or_filename(s)

Protecting and Sharing Files | 67

Let’s start with the rules, followed by some examples a little later. The permissions
argument has three parts, which you must give in order with no spaces in between:

1. The category of permissions you want to change. There are three: the owner’s per‐
missions (which chmod calls “user,” abbreviated u), the group’s permissions (g), or
others’ permissions (o). To change more than one category, string the letters to‐
gether, such as go for “group and others,” or simply use a to mean “all” (same as ugo).

2. Whether you want to add (+) the permission, delete (-) it, or specify it exactly (=).
3. What permissions you want to affect: read (r), write (w), or execute (x). To change

more than one permission, string the letters together—for example, rw for “read
and write.”

Some examples should make this clearer. In the following command lines, you can
replace dirname or filename with the pathname (absolute or relative) of the directory
or file. An easy way to change permissions on the working directory is by using its
relative pathname, . (dot), as in chmod o-w .

You can combine two permission changes in the same chmod command by separating
them with a comma (,), as shown in the final example below:

• To protect a file from accidental editing, delete everyone’s write permission with
the command:

chmod a-w filename

• On the other hand, if you own an unwritable file that you want to edit, but you don’t
want to change other peoples’ write permissions, you can add “user” (owner) write
permission with:

chmod u+w filename

• To keep yourself from accidentally removing files (or adding or renaming files) in
an important directory of yours, delete your own write permission with the com‐
mand:

chmod u-w dirname

68 | Chapter 3: Exploring the Filesystem

• If other users have that permission, too, you could delete everyone’s write permis‐
sion with:

chmod a-w dirname

• If you want you and your group to be able to read and write all the files in your
working directory—but those files have various permissions now, so adding and
deleting the permissions individually would be a pain—this is a good place to use
the = operator to set the exact permissions you want. Use the filename wildcard *,
which means “everything in this directory” (explained in “File and Directory Wild‐
cards” on page 80 in Chapter 4) and type:

chmod ug=rw *

• If your working directory has any subdirectories, though, that command would be
wrong; it would take away execute permission from the subdirectories, so they can’t
be accessed anymore. In that case, you could try a more specific wildcard, or simply
list the filenames whose permissions you want to change, separated by spaces,
as in:

chmod ug=rw filename1 filename2 filename3

• To protect the files in a directory and all its subdirectories from everyone else on
your system, but still keep the access permissions you have there, you could use:

chmod go-rwx dirname

to delete all “group” and “others” permissions to read, write, and execute. A simpler
way is to use the command:

chmod go= dirname

to set “group” and “others” permissions to nothing.

• Finally, suppose you want full access to a directory. Other people on the system
should be able to see what’s in the directory (and read or edit the files if the file
permissions allow it) but not rename, remove, or add files. To do that, give yourself
all permissions, but give “group” and “others” only read and execute permissions.
Use the command:

chmod u=rwx,go=rx dirname

After you change permissions, it’s a good idea to check your work with ls -l filename,
ls -ld dirname (without the -d option, ls lists the contents of the directory instead of its
permissions and other information), or by using the Finder’s Get Info window.

Protecting and Sharing Files | 69

Problem checklist
Here are some problems you might encounter while working with chmod, along with
some solutions:
I get the message “chmod: Not owner.”

Only the owner of a file or directory (or the superuser) can set its permissions. Use
ls -l to find the owner, or use superuser privileges (see “Superuser Privileges with
sudo” on page 72, later in this chapter).

A file is writable, but my program says it can’t be written.
First, check the file permissions with ls -l and be sure you’re in the category (user,
group, or others) that has write permission.

The problem may also be in the permissions of the file’s directory. Some programs need
permission to write more files into the same directory (for example, temporary files) or
to rename files (for instance, making a file into a backup) while editing. If it’s safe to add
write permission to the directory (if other files in the directory don’t need protection
from removal or renaming), try that. Otherwise, copy the file to a writable directory
(with cp), edit it there, and then copy it back to the original directory.

Changing the Group and Owner
Group ownership lets a certain group of users have access to a file or directory. But
sometimes you’ll need to let a different group have access. The chgrp program sets the
group owner of a file or directory. You can set the group to any of the groups to which
you belong. Because you’re likely to be administering your system, you can control the
list of groups you’re in. (If this isn’t the case, the system administrator will control
the list of groups you’re in.) The groups program lists your groups.

For example, if you’re a designer creating a directory named images for several illus‐
trators, the directory’s original group owner might be admin. Suppose you’d like the
illustrators, all of whom are in the group named staff, to be able to access the directory,
but members of other groups should have no access. To achieve this, you can use com‐
mands such as the following:

$ groups
gareth admin
$ mkdir images
$ ls -ld images
drwxr-xr-x 2 gareth admin 68 Nov 6 09:53 images
$ chgrp staff images
$ chmod o= images
$ ls -ld images
drwxr-x--- 2 gareth staff 68 Nov 6 09:53 images

70 | Chapter 3: Exploring the Filesystem

OS X also lets you set a directory’s group ownership so that any files
you later create in that directory will be owned by the same group that
owns the directory. Try the command chmod g+s dirname. The per‐
missions listing from ls -ld should now show an s in place of the second
x, as in drwxr-s---.

The chown program changes the owner of a file or directory. Only the superuser can
use chown (see “Superuser Privileges with sudo” on page 72, later in this chapter):

$ chown eric images
chown: changing
 ownership of `images': Operation not permitted
$ sudo chown eric images
Password:
$

If you have permission to read another user’s file, however, you can make a copy of it
(with cp; see “Copying Files” on page 100 in Chapter 4), and you’ll own the copy.

Changing Your Password
The ownership and permissions system described in this chapter depends on the secu‐
rity of your username and password. If others get hold of your username and password,
they can log into your account and do anything you can, and if you have admin privi‐
leges, that could be anything—including deleting all your files. They’ll be able to read
private information, corrupt or delete important files, send email messages as if they
came from you, and more. If your computer is connected to a network—whether to the
Internet or a local network inside your organization—intruders may also be able to log
in without sitting at your keyboard! See “Remote Logins” on page 169 in Chapter 8 for
one way this can be done.

Anyone may be able to get your username—it’s usually part of your email address, for
instance, and it will show up for any files you own in a long directory listing. Your
password is what keeps others from logging in as you. Don’t leave a written record of
your password anywhere around your computer. Don’t give your password to anyone
who asks you for it, unless you’re sure he’ll preserve your account security. Also, don’t
send your password by email; it can be stored, unprotected, on other systems and on
backup tapes, where other people may find it and then break into your account.

If you think that someone knows your password, you should probably change it right
away—although if you suspect that a computer “cracker” (or “hacker”) is using your
account to break into your system, you should ask your system administrator for advice
first, if possible. You should also change your password periodically. Every few months
is recommended.

Changing Your Password | 71

A password should be easy for you to remember but hard for other people (or password-
guessing programs) to guess. Here are some guidelines. A password should be between
six and eight characters long. It should not be a word in any language, a proper name,
your phone number, your address, or anything anyone else might know or guess that
you’d use as a password. It’s best to mix upper- and lowercase letters, punctuation, and
numbers. A good way to come up with a unique but memorable password is to think
of a phrase that has personal significance to you, and use the first letters of each word
(and punctuation) to create the password. For example, consider the password MlwsiF!
(“My laptop was stolen in Florence!”).

To change your password, you can use Apple Menu→System Preferences→Accounts,
but you can also change it from the command line using the passwd command. After
you enter the command, you’re prompted to enter your old password. If the password
is correct, you’re asked to enter a new password—twice, to be sure there is no typing
mistake:

$ passwd
Changing password for taylor.
Old password:
New password:
Retype new password:

For security, neither the old nor the new passwords appear as you type them.

Superuser Privileges with sudo
Most OS X user accounts run with restricted privileges; there are parts of the filesystem
to which you don’t have access, and there are certain activities that are prohibited until
you supply a password. For example, when you run the Software Update utility from
System Preferences, OS X may ask you for your password before it proceeds. This extra
authentication step allows Software Update to run installers with superuser privileges.

You can invoke these same privileges at the command line by prefixing a command with
sudo (short for “superuser do”), a utility that prompts you for your password and exe‐
cutes the command as the superuser. You must be an administrative (or admin, for
short) user to use sudo. The user you created when you first set up your Mac is an admin
user . You can add new admin users or grant admin status to a user in System Prefer‐
ences→Accounts, as shown in Figure 3-10.

72 | Chapter 3: Exploring the Filesystem

Figure 3-10. When checked, the “Allow user to administer this computer” option in the
Accounts preference panel gives a user administrative privileges and allows use of the
sudo command

You may need to use sudo when you install certain Unix utilities, or if you want to modify
a file you don’t own. Suppose you accidentally created a file in the /Users directory while
you were doing something else as the superuser. You won’t be able to modify it with
your normal privileges, so you’ll need to use sudo:

$ ls -l logfile.out
-rw-r--r-- 1 root wheel 1784064 Nov 6 11:25 logfile.out
$ rm logfile.out
override rw-r--r-- root/wheel for logfile.out? y
rm: logfile.out: Permission denied
$ sudo rm logfile.out
Password:
$ ls -l logfile.out
ls: logfile.out: No such file or directory

If you use sudo again within five minutes, it won’t ask for your password. Be careful
using sudo, since it gives you the ability to modify protected files, all of which are pro‐
tected to ensure the system runs properly.

Superuser Privileges with sudo | 73

I commonly find myself using sudo when I want to search across the entire filesystem
without worrying about disk permissions. For example, suppose makewhatis was once
in /usr/sbin, but looking in that directory reveals it has moved somewhere else. To find
it, I can search the entire filesystem using the find command (as discussed in Chap‐
ter 5) with sudo:

$ sudo find / -name makewhatis -print
Password:
/usr/libexec/makewhatis

Without the use of sudo, I would see hundreds of error messages as the command tried
to peek into directories that, I as a regular user, don’t have permission to visit.

Exploring External Volumes
Earlier I mentioned that additional hard disks on your system and any network-based
disks are all mounted onto the filesystem in the /Volumes directory. Let’s take a closer
look to see how this works:

$ ls /Volumes
110GB Extra 30 Macintosh HD X
$ ls -l /Volumes
total 8
drwxrwxrwx 29 taylor staff 986 12 Jun 16:37 110GB
drwxrwxrwx 11 taylor unknown 374 4 Jun 23:28 Extra 30
lrwxr-xr-x 1 root admin 1 13 Jun 12:30 Macintosh HD -> /
drwxrwxr-t 61 root admin 2074 12 Jun 16:51 X

There are four disks available, one of which is actually the root (or boot) disk: Macintosh
HD. Notice that the entry for Macintosh HD is different from the others, with the first
character shown as a l rather than a d. This means it’s a link (see “Working with
Links” on page 105 in Chapter 4), which is confirmed by the fact that it’s shown as Mac‐
intosh HD in the regular ls output, while the value of the alias is shown in the long listing
(you can see that Macintosh HD actually points to /).

If you insert a CD or DVD into the system, it also shows up in /Volumes:
$ ls -l /Volumes
total 12
drwxrwxrwx 29 taylor staff 986 22 Sep 16:37 110GB
dr-xr-xr-x 4 unknown nogroup 136 17 Aug 2001 CITIZEN_KANE
drwxrwxrwx 11 taylor unknown 374 4 Sep 23:28 Extra 30
lrwxr-xr-x 1 root admin 1 23 Sep 12:30 Macintosh HD -> /
drwxrwxr-t 61 root admin 2074 22 Sep 16:51 X

Plugging in an iPod and a digital camera produces the following results:

$ ls -l /Volumes
total 44
drwxrwxrwx 29 taylor staff 986 22 Sep 16:37 110GB
dr-xr-xr-x 4 unknown nogroup 136 17 Aug 2001 CITIZEN_KANE

74 | Chapter 3: Exploring the Filesystem

drwxrwxrwx 11 taylor unknown 374 4 Sep 23:28 Extra 30
drwxrwxrwx 1 taylor admin 16384 19 Aug 20:54 NIKON D100
lrwxr-xr-x 1 root admin 1 23 Sep 12:30 Macintosh HD -> /
drwxrwxr-t 61 root admin 2074 22 Sep 16:51 X
drwxr-xr-x 15 taylor unknown 510 27 Apr 09:37 Zephyr

Here, Zephyr is the name of the iPod, and NIKON D100 is the camera.

Now, for a neat trick, let’s use Unix commands to look at the files on the iPod Zephyr:

$ ls -F Zephyr
Calendars/ Icon? Norton FS Volume
Desktop DB Norton FS Data Norton FS Volume 2
Desktop DF Norton FS Index iPod_Control/

These are the files and directories on the iPod. Where’s the music? Let’s have a peek in
iPod_Control:

$ cd Zephyr/iPod_Control/
$ ls -F
Device/ Music/ iPodPrefs* iTunes/
$ ls -F iTunes
DeviceInfo* iTunes Temp 3* iTunesControl* iTunesPrefs*
iTunes Temp* iTunes Temp 4* iTunesDB*
iTunes Temp 1* iTunes Temp 5* iTunesEQPresets*
iTunes Temp 2* iTunes Temp 6* iTunesPlaylists*
$ ls -F Music
F00/ F02/ F04/ F06/ F08/ F10/ F12/ F14/ F16/ F18/
F01/ F03/ F05/ F07/ F09/ F11/ F13/ F15/ F17/ F19/
$ ls -F Music/F00
A Thousand Years.mp3* Moody_s Mood For Love.mp3*
African Ripples.mp3* My One And Only.mp3*
All The Pretty Little Ponie.mp3* My Thanksgiving.mp3*
Apollo.mp3* Nucleus.mp3*
Arrival.mp3* Oh_ Yes_ Take Another Guess.mp3*
...

So, you can see the disk structure the iPod uses, and it’s completely Unix-friendly: music
is stored in the iPod_Control/Music directory and split into directories called F00
through F19. Surprisingly, this disk structure is identical across iPods, regardless of size.
It’s a compromise between the slow seeks of a single directory for all data and the needless
complexity of each album (or artist) having its own subdirectory.

Within each directory is a set of audio files (MP3, AIFF, AAC, etc.). You can even copy
them using the commands we’ll discuss in the next chapter. The iPod maintains a
difficult-to-manipulate index of the audio files, so you can’t add music to your iPod as
easily. However, you can make directories in other areas of your iPod and copy files into
them, using your iPod as a portable hard drive.

Exploring External Volumes | 75

CHAPTER 4

File Management

The previous chapter introduced the Unix filesystem, including an extensive discussion
of the directory structure, the ls command for seeing what files are on your system,
and how to move around using cd and pwd. This chapter focuses on Unix filenaming
schemes—which aren’t the same as those used in the Finder, as you’ll see—and how to
view, edit, rename, copy, and move files.

File and Directory Names
As Chapter 3 explained, both files and directories are identified by their names. A di‐
rectory is really just a special kind of file, so the rules for naming directories are the
same as the rules for naming files.

Unix filenames may contain almost any character except /, which is reserved as the
separator between files and directories in a pathname. Filenames are usually made up
of upper- and lowercase letters, numbers, dots (.), and underscores (_). Other characters
(including spaces) are legal in a filename, but they can be hard to use because the shell
gives them special meanings or otherwise forces you to constantly be changing how you
work with these filenames on the command line.

Spaces are a standard part of Macintosh file and folder names, so while I recommend
using only letters, numbers, dots, and underscores in filenames, the reality is that you
will probably have to work with spaces in file and directory names, because Mac people
are used to including them. That is, rather than naming a file myFile.txt, as a Unix person
would, most Mac folks would call it my file.txt. Also be aware that the Finder dislikes
colons (which older versions of OS X used as a directory separator, just as Unix uses the
forward slash). If you display a file called test:me in the Finder, the name is shown as
test/me instead. (The reverse is also true: if you create a file in the Finder whose name
contains a slash, it will appear as a colon in the Terminal.)

77

Though it may be tempting to include spaces in filenames as you do
in the Finder, if you’re planning on doing any substantial amount of
work on the Unix side, get used to using dashes or underscores in place
of spaces in your filenames. It’s 99 percent as legible, and considera‐
bly easier to work with.
Further, in the interest of having files correctly identified in both the
Finder and Unix, you’d be wise to get into the habit of using the ap‐
propriate file extensions (i.e., .doc for Microsoft Word documents, .txt
for text files, .xls for Excel spreadsheets, and so on). As an added bonus,
this makes life easier for your less-fortunate (Windows-using) friends
when you send them files.

If you have a file with a space in its name, that space confuses the shell if you enter it as
part of the filename. That’s because the shell breaks commands into separate words with
spaces as delimiters, just as we do in English. To tell the shell not to break an argument
at spaces, you can either put quotation marks around a filename that includes spaces
(for example, “my file.txt”), or escape the spaces by prefacing each one with a backslash
(\).

For example, the rm program, covered later in this chapter, removes Unix files. To re‐
move a file named a confusing name, the first rm command in the following snippet
doesn’t work, but the second does. The third example illustrates how to avoid the shell
incorrectly interpreting the filename another odd name by escaping the spaces with
backslashes:

$ ls -l
total 2
-rw-r--r-- 1 taylor staff 324 Feb 4 23:07 a confusing name
-rw-r--r-- 1 taylor staff 64 Feb 4 23:07 another odd name
$ rm a confusing name
rm: a: no such file or directory
rm: confusing: no such file or directory
rm: name: no such file or directory
$ rm "a confusing name"
$ rm another\ odd\ name
$

You also need to escape any of the following characters with a backslash, because they
have special meaning to the shell:

* # ` " ' \ $ | & ? ; ~ () < > ! ^

My recommendation is to simply avoid using any of the above characters in your file‐
names—along with spaces—to make your life easier. Indeed, that’s why most Unix fil‐
enames and directory names are composed exclusively of lowercase letters, dashes, and
underscores.

78 | Chapter 4: File Management

Open a Terminal window and change directories to your Library directory. You’ll see
files that contain spaces, though the other punctuation characters are more unusual
components of filenames:

$ cd Library
$ ls
Accounts FontCollections PreferencePanes
Address Book Plug-Ins Fonts Preferences
Application Support Fonts Disabled Printers
Assistants Frameworks PubSub
Audio Google Safari
Automator Icons Saved Application State
Autosave Information Input Methods Screen Savers
Breakpad Internet Plug-Ins Services
Caches Keyboard Layouts Snapz Pro X
Calendars Keychains Sounds
ColorPickers LaunchAgents Spelling
Colors Logs StickiesDatabase
Compositions Mail SyncedPreferences
Containers Mail Downloads Voices
Cookies Messages WebKit
Developer Metadata Widgets
FIPLAB Mobile Documents disclabel
Favorites PDF Services iMovie
FileSync Parallels iTunes
$ cd App<TAB>
$ cd Application\ Support/
$

The last example shows a useful trick: hitting the Tab key after entering a few characters
of the filename invokes the shell’s filename completion feature. When you hit the Tab
key, the shell automatically includes the backslashes required to escape any spaces in
file or directory names.

One place where you can find all sorts of peculiar filenames is within your iTunes library,
because iTunes uses the song titles as the filenames for the corresponding MP3- or AAC-
encoded files. Here are a few examples of filenames from my own library that would be
incredibly difficult to work with on the command line:

The Beatles/Sgt. Pepper's /Being For The Benefit of Mr. Kite!.mp3
The Art of Noise/In No Sense? Nonsense!/How Rapid?.mp3
Joe Jackson/Look Sharp!/(Do The) Instant Mash.mp3

True Unix diehards are undoubtedly cringing at those filenames, which include specific
wildcard characters and other elements that are important to the shell, all of which
would have to be escaped. Those filenames are ugly enough now, but just imagine them
like this:

The\ Beatles/Sgt\.\ Pepper\'s\ /Being\ For\ The\ Benefit\ of\ Mr\.\ Kite\!\.mp3
The\ Art\ of\ Noise/In\ No\ Sense\?\ Nonsense\!/How\ Rapid\?\.mp3
Joe\ Jackson/Look\ Sharp\!/\(Do\ The\)\ Instant\ Mash\.mp3

File and Directory Names | 79

Not pretty.

One more thing: a filename must be unique inside its directory, but other directories
can have files with the same name. For example, you may have files called chap1.doc
and chap2.doc in the directory /Users/carol/Documents and also have different files with
the same names in /Users/carol/Desktop.

This often causes great confusion for people who are used to just having all their files
on their Desktop or in the topmost level of the Documents directory. In that situation,
an attempt to save a file as chap1.doc would just generate a warning that the file already
exists, but if you create different directories for different projects, it’s quite feasible that
you’ll end up with a dozen or more files with the exact same name.

File and Directory Wildcards
When you have a number of files named in series (for example, chap1.doc to
chap12.doc) or filenames with common characters (such as aegis, aeon, and aerie), you
can use wildcards to save yourself lots of typing and match multiple files at the same
time. These special characters are the asterisk (*), question mark (?), and square brackets
([]). When used in a file or directory name given as an argument on a command line,
the characteristics detailed in Table 4-1 are true.

Table 4-1. Shell wildcards
Notation Definition

* An asterisk stands for any number of characters in a filename. For example, ae* matches any filename that begins
with “ae” (such as aegis, aerie, aeon, etc.) if those files are in the same directory. You can use this to save typing for
a single filename (for example, al* for alphabet.txt) or to choose many files at once (as in ae*). A * by itself matches
all file and subdirectory names in a directory, with the exception of any starting with a period. To match all your dot
files, try .* as your pattern.

? A question mark stands for any single character (so h?p matches hop and hip, but not hp or help).

[] Square brackets can surround a choice of single characters (i.e., one digit or one letter) you’d like to match. For
example, [Cc]hapter would match either Chapter or chapter, but chap[12] would match chap1 or chap2. Use a hyphen
(-) to separate a range of consecutive characters. For example, chap[1-3] matches chap1, chap2, or chap3.

{,} Curly brackets are used to provide a list of two or more subpatterns, separated by commas, that are matched as
alternatives. The pattern a{b,c,d}e would match abe, ace, and ade, but not aee because the middle e isn’t inside the
curly braces. This is most commonly used to reference multiple files within a subdirectory, as in Mail/{drafts,inbox},
which is functionally identical to typing both Mail/drafts and Mail/inbox.

The following examples show how to use wildcards. The first command lists all the
(non-hidden) entries in a directory, and the rest use wildcards to list just some of the
entries. The second-to-last one is a little tricky; it matches files whose names contain
two (or more) a’s:

80 | Chapter 4: File Management

$ ls
chap0.txt chap2.txt chap5.txt cold.txt
chap1a.old.txt chap3.old.txt chap6.txt haha.txt
chap1b.txt chap4.txt chap7.txt oldjunk
$ ls chap?.txt
chap0.txt chap4.txt chap6.txt
chap2.txt chap5.txt chap7.txt
$ ls chap[3-7]*
chat3.old.txt chap4.txt chap5.txt chap6.txt chap7.txt
$ ls chap??.txt
chap1b.txt
$ ls *old*
chap1a.old.txt chap3.old.txt cold.txt oldjunk
$ ls *a*a*
chap1a.old.txt haha.txt
$ ls chap{3,6}.txt
chap3.txt chap6.txt
$

Wildcards are useful for more than listing files. Most Unix programs accept more than
one filename, and you can use wildcards to name multiple files on the command line.
For example, both the cat and less programs display files on the screen. cat streams a
file’s contents until end of file, while less shows the contents one screen at a time. (By
screen, I’m referring to what the less command actually shows inside the Terminal win‐
dow—this term stems from the early days of Unix when you didn’t have any windows
and had only one screen.) Let’s say you want to display the files chap3.old.txt and
chap1a.old.txt. Instead of specifying these files individually, you could enter the com‐
mand as:

$ less *.old.txt

Which is equivalent to:

$ less chap1a.old.txt chap3.old.txt

Wildcards match directory names, too. You can use them anywhere in a pathname—
absolute or relative—though you still need to remember to separate directory levels with
forward slashes (/). For example, let’s say you have subdirectories named Jan, Feb,
Mar, and so on. Each has a file named summary. You could read all the summary files
by typing less */summary. That’s almost equivalent to less Jan/summary Feb/summary
Mar/summary…. However, there’s one important difference when you use less */
summary: the names will be alphabetized, so Apr/summary will be first in the list, not
your January summary.

Using wildcards can also be useful if you have lots of files to match. A classic example
of where the shell is way more powerful than the Finder is when it comes to moving a
subset of files in a directory that match a specific pattern. For instance, if all the JPEG
image files in a directory should be moved to a new subdirectory called JPEG Images,

File and Directory Wildcards | 81

while the TIFF and PNG image files should remain in the current directory, the fast
command-line solution is:

$ mv *.{jpg,JPG} JPEG\ Images

Compare this to a tedious one-by-one selection process in the Finder!

Looking Inside Files
By now, you’re probably tired of looking at files from the outside. It’s like visiting a
bookstore and never getting to open a book and read what’s inside. Fortunately, it doesn’t
have to be this way. In this section, we’ll look at three different programs for looking
inside text files.

Why “text files” rather than “all files”? Since Unix treats everything as
a file, it’ll let you “look at” image data, executable programs, and even
the actual bits of the directory structure itself. It’s not really useful to
look at any of these, though, and while there is a program called strings
that helps you snoop around in these datafiles, it’s not at all common‐
ly used in the world of OS X and Terminal.

cat
The most rudimentary of the programs that let you look inside a file is called cat, not
for any sort of feline, but because that’s short for concatenate, a fancy word for “put a
bunch of stuff together.” The cat command is useful for peeking at short files, but because
it doesn’t care how long the file is or how big your Terminal window is, using cat to view
a long file results in the top lines scrolling right off the screen before you can even read
them.

In its most basic form, you list one or more files, and cat displays their contents on the
screen:

$ cd /etc
$ cat notify.conf
#
Notification Center configuration file
#

reserve com.apple.system. 0 0 rwr-r-
monitor com.apple.system.timezone /etc/localtime
monitor com.apple.system.info:/etc/hosts /etc/hosts
monitor com.apple.system.info:/etc/services /etc/services
$

In this case, I’ve moved to the /etc administrative directory and used cat to display the
contents of the notify.conf configuration file.

82 | Chapter 4: File Management

Using a wildcard pattern (shown earlier), I can look at a couple of different configuration
files with a single invocation of cat:

$ cat {syslog,nfs,ftpd}.conf
Note that flat file logs are now configured in /etc/asl.conf

install.* @127.0.0.1:32376
#
nfs.conf: the NFS configuration file
#
match umask from OS X Server ftpd
umask all 022
$

One serious drawback of using cat to view more than one file in this manner should be
obvious: there’s no indication of where one file ends and the next begins. The listing
above is actually three different files, all just dumped to the screen.

There are a couple of useful options for the cat command: most notably, -n to add line
numbers and -v, which ensures that everything displayed is printable (though not nec‐
essarily readable).

The split between files is more obvious when the -n option adds line numbers to the
output. For example:

$ cat -n {syslog,nfs,ftpd}.conf
 1 # Note that flat file logs are now configured in /etc/asl.conf
 2
 3 install.* @127.0.0.1:32376
 1 #
 2 # nfs.conf: the NFS configuration file
 3 #
 1 # match umask from OS X Server ftpd
 2 umask all 022

Here, you can see that the line numbers for each file are printed to the left of the file’s
contents. So, to find out where a file begins, just look for the number 1, as that’s the first
line of a file. This output shows us that syslog.conf is three lines long, nfs.conf has three
lines, and ftpd.conf is just two lines long.

less
If you want to “read” a long plain-text file in a Terminal window, you can use the less
command to display one “page” (a Terminal window filled from top to bottom) of text
at a time.

Or, if you don’t like less, you can use a program named more. In fact, the name less is a
play on the name of more, which came first (but less has more features than more). Here’s
a OS X secret, though: more is less. Really. The more utility is actually the very same

Looking Inside Files | 83

program, just with a different name and slightly different default behavior. The ls com‐
mand shows the truth:

$ ls -l /usr/bin/more /usr/bin/less
-rwxr-xr-x 2 root wheel 121216 Aug 8 23:30 /usr/bin/less
-rwxr-xr-x 2 root wheel 121216 Aug 8 23:30 /usr/bin/more

To avoid confusion, I’ll just stick with less. The syntax for less is:

less options files

less lets you move forward or backward in the files that you’re viewing by any number
of pages or lines; you can also move back and forth between two or more files specified
on the command line. When you invoke less, the first “page” of the file appears, and a
prompt appears at the bottom of the Terminal window, as in the following example:

$ less ch03
A file is the unit of storage in Unix, as in most other systems.
A file can hold anything: text (a report you're writing,
 .
 .
 .
:

The basic less prompt is a colon (:), although for the first screen, less displays the file’s
name as a prompt. The cursor sits to the right of this prompt as a signal for you to enter
a less command to tell less what to do. To quit, type q.

Like almost everything about less, the prompt can be customized. For example, using
the -M starting flag on the less command line makes the prompt show the filename and
your position in the file (as a percentage) at the end of each page.

If you want this to happen every time you use less, you can set the LESS
environment variable to M (without a dash) in your shell setup file. See
Chapter 2 for details.

You can set or unset most options temporarily from the less prompt. For instance, if you
have the short less prompt (a colon), you can enter -M while less is running. less responds
Long prompt (press Return), and for the rest of the session less prompts with the
filename, line number, and percentage of the file viewed.

To display the less commands and options available on your system, press h (for “help”)
while less is running. Table 4-2 lists some simple (but quite useful) commands.

Table 4-2. Useful less commands
Command Description

Space bar Display next page

84 | Chapter 4: File Management

Command Description

v Start the vi editor

Return Display next line

Control-L Redisplay current page

n f Move forward n lines

h Help

b Move backward one page

:n Go to next file on command line

n b Move backward n lines

:p Go back to previous file on command line

/word Search forward for word

q Quit less

?word Search backward for word

I quite commonly use the /word search notation, for instance, when using the man
command, which uses less behind the scenes to display information one page at a time.
For example, instead of flipping through bash’s manpage for information on file com‐
pletion, typing /file completion at the colon prompt while reading the bash manpage
lets you skip straight to what you seek. Gone too far? Use b to go back to the previous
page.

grep
Instead of having the entire contents of the file dumped to your screen or having to step
through a file one line at a time, you will undoubtedly find it useful to be able to search
for specific patterns within a file or set of files. This is done with the oddly named grep
command.

grep gains its name from an old line-editor command, global/regular
expression/print, which was used to list only the lines in the file be‐
ing edited that matched a specified pattern. With the name g/re/p, it
wasn’t much of a stretch to end up with grep, and the programmer who
created the command actually imagined it’d be mnemonic for his user
community. Imagine!

grep uses a different pattern language than the filename patterns shown earlier in this
chapter: a more sophisticated pattern language called regular expressions. Regular ex‐
pressions are discussed in the next chapter; for now, let’s just look at how to use grep to
find word fragments or specific words in a set of files.

Looking Inside Files | 85

Since we’re already in the /etc directory, let’s look to see if there’s any mention of firewalls
by using grep:

$ grep firewall *conf
asl.conf:# Facility com.apple.alf.logging gets saved in appfirewall.log
asl.conf:? [= Facility com.apple.alf.logging] file appfirewall.log file_max=5M all_max=50M

Within the set of configuration files, there were two matches, as shown. In the output,
the matching filename is shown, followed by a colon, followed by the actual matching
line in the file.

You can search a lot more than just the configuration files, by changing the filename
pattern. If you broaden this search, though, you’ll inevitably get error messages about
grep trying to search directory entries rather than files, “operation not permitted” errors,
along with “permission denied” errors for files that you don’t have permission to search
in the first place (remember sudo from the last chapter?). To sidestep the “operation not
permitted” problem, grep’s -s option causes it to be quieter in its operation:

$ grep firewall *
grep: AFP.conf: Permission denied
asl.conf:# Facility com.apple.alf.logging gets saved in appfirewall.log
asl.conf:? [= Facility com.apple.alf.logging] file appfirewall.log file_max=5M all_max=50M
$ grep -s firewall *
asl.conf:# Facility com.apple.alf.logging gets saved in appfirewall.log
asl.conf:? [= Facility com.apple.alf.logging] file appfirewall.log file_max=5M all_max=50M
pf.os:# the case that X is a NAT firewall. While nmap is talking to the
pf.os:# device itself, p0f is fingerprinting the guy behind the firewall
pf.os:# caused by a commonly used software (personal firewalls, security
pf.os:# KEEP IN MIND: Some packet firewalls configured to normalize outgoing
pf.os:# system (and probably not quite to the firewall either).
services:csccfirewall 40843/udp # CSCCFIREWALL
services:csccfirewall 40843/tcp # CSCCFIREWALL

We’ll look at grep in much greater detail in Chapter 5.

Creating and Editing Files
There are lots of ways to create and edit files when you’re working on a Macintosh. You
can use TextEdit, BBEdit, Microsoft Word, and any number of other applications within
the Aqua graphical environment. Or, if you’d like to stick to the command line, it turns
out that there are a bunch of text-only, Terminal-friendly editors included with OS X.

Chief among these options is an editor called vi that can be a bit tricky to learn but is
powerful, fast, and available on a wide range of Unix and Linux systems, too. Because
vi is so powerful, that’s what we’ll focus on in this section; however, we’ll take a quick
look at a few alternatives too.

86 | Chapter 4: File Management

Text Editors and Word Processors
A text editor lets you add, change, and rearrange text easily. Three popular Unix editors
included with OS X are vi (pronounced “vee-eye”), Pico, (“pea-co”), and Emacs (“e-
max”; no relation to Apple’s eMac). By contrast, a word processor has all sorts of fancy
layout and presentation capabilities, typically built around a “what you see is what you
get” (WYSIWYG, or “wizzy-wig”) model similar to Microsoft Word. They work great
for lots of things but are useless for creating files within the Terminal.

You should choose an editor you’re comfortable with. vi is probably the best choice,
because all Unix systems have it, but Emacs is also widely available and is preferred by
many developers because of the features it offers. If you’ll be doing simple editing, you
should also consider Pico: although it’s much less powerful than vi or Emacs, it’s a lot
easier to learn. I’ll focus on the rudiments of vi here, since it’s the most widely available
Unix editor, and there’s a terrific version included with OS X called vim.

None of these plain-text editors has the same features as popular word-processing soft‐
ware, but vi and Emacs are sophisticated, extremely flexible editors for all kinds of plain-
text files: programs, email messages, and so on. By “plain text,” I mean a file with only
letters, numbers, and punctuation characters, and no formatting such as point size, bold
and italics, or embedded images. Unix systems use plain-text files in many places: in
the redirected input and output of Unix programs (see Chapter 6), as shell setup files
(see Chapter 2), for shell scripts, for system configuration, and more.

Of course, you can opt to use a graphical text editor such as BBEdit
(http://www.barebones.com) or TextEdit (/Applications) with good re‐
sults, too, if you’d rather just sidestep editing while within the Termi‐
nal application. If you do, try using the open command within the
Terminal to launch TextEdit with the proper file already loaded. For
example, the following command opens the specified file in TextEdit:

open -e myfile.txt

It’s critical that you select Format→Make Plain Text (Shift-⌘-T) with‐
in TextEdit to ensure that no extraneous formatting characters or in‐
formation is included in the text file when you save your changes.

Text editors edit these plain-text files without a hitch. When you use a word processor,
though, while on the screen it may look as if the file is only plain text, it will inevitably
have some hidden codes in it, too. That’s often true even if you tell the word processor
to “Save as plain text.”

Creating and Editing Files | 87

http://www.barebones.com

One easy way to check for nontext characters in a file is by reading the
file with less; look for characters in reversed colors, codes such as <36>,
and so on.

Fixing Those Pesky Carriage Returns
Switching between Finder applications and Unix tools for editing can be a hassle, be‐
cause you might end up having to translate file formats along the way. Fortunately, this
is easy with the Unix command line.

One of the more awkward things about Apple putting a Mac graphical environment on
top of a Unix core is that the two systems use different end-of-line sequences. If you
ever open up a file in a Finder application and see lots of little boxes at the end of each
line, or if you try to edit a file within Unix and find that it’s littered with ^M sequences,
you’ve hit the end-of-line problem.

To fix it, create the following command aliases:

alias m2u="tr '\015' '\012' "
alias u2m="tr '\012' '\015' "

Now, whenever you’re working with Unix editing tools and you need to fix a Mac-format
file, simply use m2u (Mac to Unix), as in:

$ m2u < mac-format-file > unix-friendly-file

And if you find yourself in the opposite situation, where you’re editing a Unix file in a
Mac tool and it has some carriage-return weirdness, use the reverse (Unix to Mac) within
the Terminal before opening the file for editing:

$ u2m < unix-friendly-file > mac-format-file

You can add these aliases to your future login sessions by copying the two alias definition
lines into your profile file.

Also worthy of note is the helpful tr command, which makes it easy to translate all
occurrences of one character to another. Use man tr to learn more about this powerful
utility.

If you need to do word processing—making documents, address labels, and so on—
your best bet is to work with a program designed for that purpose. While TextEdit is
surprisingly powerful (it can read and write Word files), you might want to opt for
something more powerful, such as Pages (which comes with Apple’s iWork, http://
www.apple.com/iwork); Microsoft Office; or NeoOffice (http://www.neooffice.org), an
open source suite of applications similar to Microsoft Office.

88 | Chapter 4: File Management

http://www.apple.com/iwork
http://www.apple.com/iwork
http://www.neooffice.org

The vi Text Editor
The vi editor, originally written by Bill Joy at the University of California, Berkeley, is
easy to use once you master the fundamental concept of a modal editor. OS X actually
includes a version of vi called vim that has many useful new features. We’ll focus on
vi’s basic commands here, but if you become a vi master you’ll enjoy vim’s powerful
extensions.

To learn more about vi, I’d recommend picking up a copy of Learn‐
ing the vi and Vim Editors, by Linda Lamb and Arnold Robbins
(O’Reilly), or the vi and Vim Editors Pocket Reference, by Arnold Rob‐
bins (O’Reilly). These books are packed with useful information about
vi, and the Learning book includes a handy quick-reference card of
commands you can use with vi. Though focused on vi, they offer
extensive information about vim as well, and will get you up to speed
in no time. Or, if you have a Safari account (http://safari.oreilly.com),
you can read the books online.

Before we start looking at what you can do with vi, however, let’s talk about modality.
Modes can be best explained by analogy to your car stereo. When you have a CD in, the
“1” button does one task, but if you are listening to the radio, the very same button does
something else (perhaps jumping to preprogrammed station number 1). The vi editor
is exactly the same: in Command mode, pressing the i key on the keyboard switches
you into Insert mode, but in Insert mode, the very same keystroke inserts an “i” into the
text itself. The handiest key on your keyboard while you’re learning vi is unquestionably
the Escape key (Esc), located at the upper-left corner of your keyboard. If you’re in Insert
mode, Esc switches you back to Command mode, and if you’re in Command mode, it’ll
beep to let you know that all is well. Use Esc often, until you’re completely comfortable
keeping track of what mode you’re in.

Jump-start your learning by using OS X’s included vimtutor: just type
in vimtutor on the command line for a guided tour of the vi editor.

Creating and Editing Files | 89

http://shop.oreilly.com/product/9780596529833.do
http://shop.oreilly.com/product/9780596529833.do
http://shop.oreilly.com/product/0636920010913.do
http://safari.oreilly.com

Start vi by typing its name; the argument is the filename you want to create or edit. For
instance, to edit your shell’s .profile setup file, you would cd to your home directory and
enter:

$ vi .profile

The Terminal fills with a copy of the file (and, because the file is short, some empty lines,
too, as denoted by the ~ at the beginning of these lines), as shown in Figure 4-1.

Figure 4-1. vi display while editing

At the bottom of the window is the status line, which indicates what file you’re editing:
".profile" 14L, 210C. This indicates that the file has 14 lines (14L) with a total of 210
characters (210C). Quit the program by typing :q and pressing Return while in Com‐
mand mode.

vi Basics
Let’s take a tour through vi. In this example, you’ll create a new text file. You can call the
file anything you want, but it’s best to use only letters and numbers in the filename. For
instance, to make a file named sample, enter the following command:

$ vi sample

Now, let’s start the tour…

90 | Chapter 4: File Management

Your screen should look something like Figure 4-1, but the cursor should be on the top
line and the rest of the lines will have the tilde character (~) at the start to denote that
they are blank. The bottom status line indicates the following:

"sample" [New File]

To start entering text in the file, press i to switch from Command mode to Insert mode.
Now type something. Make some lines too short (press Return before the line gets to
the right margin). Make others too long; watch how vi wraps long lines. If you have
another Terminal window open with some text in it, or if you have an application like
Word or TextEdit open, you can use your mouse to copy text from another window and
paste it into the Terminal window where you’re working with vi. (Always make sure
you’re in Insert mode before you do this, however, or you could irrevocably mess up
your file since the text will be interpreted as a sequence of relatively random commands.)
To get a lot of text quickly, paste the same text more than once.

Figure 4-2 shows how the sample file looks after I copied and pasted the previous para‐
graph into vi’s buffer.

Figure 4-2. vi with some text pasted into the buffer

To move the cursor around in the file, you’ll need to leave Insert mode by pressing Esc
once. Press it again and you’ll hear a beep, reminding you that you are already in Com‐
mand mode.

Creating and Editing Files | 91

In Command mode, press Control-G to produce a useful status line
that shows the filename, the number of lines in the file, and where the
cursor is relative to the file buffer, as shown at the very bottom of
Figure 4-2.

You can use the arrow keys on your keyboard to move around the file, but most vi users
have taught themselves to move around with the h, j, k, and l motion keys (left, down,
up, and right, respectively). They may seem unintuitive, but not having to move your
hand off the main keyboard area can produce a dramatic increase in editing speed as
you get more used to them.

Unless you have enabled “Option click to position cursor” in the Ter‐
minal’s preferences (see Chapter 2), vi ignores your mouse if you try
to use it to move the cursor.

If you’ve entered a lot of text, you can experiment with some additional movement
commands: H to jump to the first line on the screen, and G to jump to the very last line
of the file. You should also try the w and b commands, to move forward and backward
one word at a time (for example, to move forward three words, press the w key three
times), and 0 (zero) to jump to the beginning of the line and $ to jump to the end.

Searching in vi
While vi is proving to be a worthy text editor, you’re probably thinking that it’s lacking
one feature that many graphical text editors have: the ability to use ⌘-F to search through
the file for some text. Actually, you can search for text strings in vi; it’s just a little
different. vi’s search command is accessed by typing a forward slash (/) while in Com‐
mand mode, followed by the pattern you want to search for. It’s handy even in a short
file, where it can be quicker to type / and a word than it is to use the cursor-moving
commands. For example, if you wanted to search through a text file for the word “cheese,”
you would first press the Esc key twice (just to make sure you’re out of Insert mode and
in Command mode) and then type:

/cheese

You’ll see this string appear at the bottom of your Terminal window. When you hit
Return, vi searches through the file, starting at the current cursor location, for the word
“cheese.” If it finds it, vi places the cursor at the beginning of the word. You can press
the n key again to repeat the search; if vi finds another occurrence of that word, it moves
the cursor to that word.

92 | Chapter 4: File Management

Invoking external Unix commands
One fabulous feature of vi is that it’s easy to invoke Unix commands and have their
output included in the file you’re editing. That said, vi also makes it easy to send some
of the text in its buffer to a Unix command, ultimately replacing that text with the output
of the command. Sound confusing? It’s really not so bad.

For example, to include the current date in your file, type o in Command mode to open
up a blank line immediately below the line that the cursor is sitting on, hit the Esc key
to get out of Insert mode, and then enter !!date. As you type this, the cursor drops to
the bottom of the screen and shows :.!date there. Press Return, and the blank line is
replaced by the output from the date command.

What if you want to justify a paragraph of text? You can do this by feeding it to the
external Unix fmt command. Make sure you’re in Command mode (hit Esc just to be
safe), then use the arrow keys to move the cursor to the beginning of the paragraph and
type !}fmt. (vi’s status line won’t change until you press the } character.) Now the para‐
graph’s lines should flow and fit neatly between the margins. Figure 4-3 shows what
happened when I moved to the top of the file (using the H command) then typed
in !}fmt to reflow the text in the document.

Figure 4-3. Reformatted text using the Unix fmt command

Creating and Editing Files | 93

More powerful capabilities

You can delete text in a file by using x to delete the character that’s under the cursor, or
the powerful d command:
dd

Deletes lines

dw

Deletes individual words

d$

Deletes to the end of the line

d0

Deletes to the beginning of the line

dG

Deletes to the end of the file (if you’re seeing a pattern and thinking that it’s d +
motion key, you’re absolutely correct)

To undo the deletion, press u. You can also paste the deleted text with the p command.

The first step to copying text is to position your cursor at the beginning of the word or
line (or series of lines) you want to copy. In vi, you don’t copy, you “yank” the text. The
yw command copies (“yanks”) one word, yy yanks the line, yyn yanks n lines (for ex‐
ample, yy5 yanks five lines), y1 yanks a single character, and ynw yanks n words (y5w
yanks five words, for example). Move the cursor to the line you want to copy and press
yy. After repositioning your cursor to the line below which you’d like the text copied,
press p to paste the text.

Yanking does not cut the text, it only copies it to vi’s paste buffer. If
you want to move the text, you’ll have to go back to the lines you’ve
yanked (copied) and delete them.

As with any text editor, it’s a good idea to save your work from vi every 5 or 10 minutes.
That way, if something goes wrong on the computer or network, you’ll be able to recover
the edited buffer from the last time you saved it.

If the editor, the Terminal, or the computer does crash, you can recover the saved tem‐
porary edit buffer by using the -r option when you next launch the program. If there is
a file that can be recovered, vi shows specific information about it:

$ vi -r
Swap files found:
 In current directory:
1. .sample.swp

94 | Chapter 4: File Management

 owned by: taylor dated: Mon May 7 23:06:23 201r
 file name: ~taylor/sample
 modified: YES
 user name: taylor host name: Dave-Taylors-MacBook-Pro.local
 process ID: 8085
 In directory ~/tmp:
 -- none --
 In directory /var/tmp:
 -- none --
 In directory /tmp:
 -- none --
$

To recover this file, just type vi -r sample and you’ll move into the vi editor with the
recovered version of the file.

In vi, to save your work to disk, you use the write command by typing :w followed by
Return. The bottom of the display shows the filename saved and the number of lines
and characters in the file.

For some reason, saving the edited file sometimes confuses vi beginners. It’s really very
simple: if you want to save the file with the same name it had when you started, just
press :w and Return. That’s all! If you’d rather use a different filename, type :w followed
by the new filename (for example, :w new.sample). Press Return, and it’s saved.

Finally, if you try to exit vi when you have unsaved changes with the usual :q command,
the program will beep, warning you that the modified file has not been saved. If you
want to override the warning and discard the changes that you’ve made since the last
time the file was saved, type :q!. If you want to save the changes and don’t need to
rename the output file, you can use a shortcut: :wq writes out your changes and quits
vi. In fact, there’s a shortcut for that shortcut, too. Type ZZ (uppercase, and no : needed)
and you’ll write and quit if the file’s been modified, or just quit without disturbing the
file if it hasn’t been changed. That’s it!

Of course, there’s a lot more to learn about vi. In Table 4-3, you’ll find a handy listing
of some of the most common vi commands and their descriptions.

Table 4-3. Common vi editing commands
Command Meaning

/ pattern Search forward for specified pattern. Repeat search with n.

:q Quit the edit session.

:q! Quit, discarding any changes.

:w Write (save) any changes out to the file.

:wq or ZZ Write out any changes, then quit (shortcut).

a Move into Append mode (like Insert mode, but you enter information after the cursor, not before).

b Move backward one word.

Creating and Editing Files | 95

Command Meaning

w Move forward one word.

d1G Delete from the current point back to the beginning of the file.

dd Delete the current line.

dG Delete through end of file.

dw Delete the following word.

Esc Move into Command mode.

h Move backward one character.

l Move forward one character.

i Switch to Insert mode (Esc switches you back to Command mode).

j Move down one line.

k Move up one line.

O Open up a line above the current line and switch to Insert mode.

o Open up a line below the current line and switch to Insert mode.

P Put (paste) deleted text before the cursor.

p Put (paste) deleted text after the cursor.

X Delete the character to the left of the cursor.

x Delete the character under the cursor.

yw Yank (copy) from the cursor to the end of the current word. You can then paste it with p or P.

yy Yank (copy) the current line. You can then paste it with p or P.

A Simpler vi Alternative: Pico
If the section on vi has left you longing for the safety and logic of the graphical world,
you might want to explore the simple editing alternative of Pico. Originally written as
part of a text-based email system called Pine (which itself was based on an email program
called Elm that I wrote in the mid-1980s), Pico has taken on a life of its own and is
included in many Unix distributions, including OS X. Figure 4-4 shows the sample file
from the earlier example as opened in Pico.

Pico offers a menu-based approach to editing, with onscreen help. It’s a lot friendlier
than vi, whose primary way to tell you that you’ve done something wrong is to beep.
Pico offers a comfortable middle ground between text editors such as TextEdit and
hardcore Unix text editors such as vi. It’s a friendly editor that you can launch from the
command line and never have to take your hands off the keyboard to use. To learn more
about Pico, type Control-G while within the editor, or use man pico to read the manpage.

96 | Chapter 4: File Management

The GNU nano editor is actually included with OS X as a fully func‐
tional free software version of Pico. You can type nano instead of pi
co if you’d like.

Figure 4-4. Pico, a simpler alternative to vi

The More Complex Option: Emacs
If Pico is the simpler alternative to vi, then Emacs is the more complex alternative.
Originally written as part of an artificial intelligence environment and including its own
powerful programming language built atop LISP, Emacs is one of the most powerful
editors available on any computer system. Indeed, hardcore Emacs users never leave
the editor, and there are Emacs extensions for browsing the Web (albeit in text-only
mode), reading and responding to email, chatting via an instant messaging system, and
more. Figure 4-5 shows Emacs with the sample file in the edit buffer.

But with great power comes great complexity, and Emacs is not only built upon a com‐
pletely different paradigm—it’s a nonmodal editor—but requires you to memorize doz‐
ens of different Control, Meta, and Option key sequences.

Creating and Editing Files | 97

Figure 4-5. Emacs is the Ferrari of Unix text editors

If you are interested in trying out the Emacs editor, it’s now includ‐
ed with OS X, so you can launch it by typing emacs on the com‐
mand line. It’s not easy to figure out, however, so I’d recommend
you consider picking up the book Learning GNU Emacs by Debra
Cameron, James Elliott, and Marc Loy (O’Reilly).

Managing Files
The tree structure of the Unix filesystem makes it easy to organize your files. After you
create and edit some files, you may want to copy or move files from one directory to
another, or rename files to distinguish different versions. You may even want to create
new directories each time you start a different project. To save typing, it’s worth knowing
that if you copy a file into a directory, the program’s smart enough to use the same
filename for the new file.

In addition to its efficiency, the command line is much more precise, offering greater
control than the Finder’s drag-and-drop interface. For example, if you want to create a
new folder in the Finder, you need to mouse up to the File menu and choose New Folder
or use a non-mnemonic keystroke combination. On the command line, it’s just mkdir
to create a new directory. Even more to the point, if you have a folder full of hundreds
of files and want to move just those that have temp in their filenames into the Trash,

98 | Chapter 4: File Management

http://shop.oreilly.com/product/9780596006488.do

that’s a tedious and error-prone Finder task, while the command-line equivalent is the
simple rm *temp*.

A directory tree can get cluttered with old files you don’t need. If you don’t need a file
or a directory, delete it to free storage space on the disk. The following sections explain
how to make and remove directories and files.

Creating Directories with mkdir
It’s handy to group related files in the same directory. If you were writing a spy novel
and reviewing restaurants for a local newspaper, for example, you probably wouldn’t
want your intriguing files mixed with restaurant listings. You could create two directo‐
ries: one for all the chapters in your novel (spy, for example) and another for restaurants
(boston.dine).

To create a new directory, use the mkdir program. The syntax is:

mkdir dirname(s)

where dirname is the name of the new directory. To make several directories, put a space
between each directory name. To continue this example, you would enter:

$ mkdir spy boston.dine

This means that if you want to create a directory with a space in the name, you’ll need
to escape the space just as you had to earlier when you referenced filenames with spaces
in them. To create the directory My Favorite Music, you’d use:

$ mkdir "My Favorite Music"

Another trick is that you can create a new directory and include a bunch of subdirec‐
tories within that directory, all from one single command. For example, your spy novel
most likely has a few chapters in it, and let’s say that you need separate directories for
each chapter to hold the chapter file itself, any illustrations you want to add, research
notes, whatever. You could use the following command to create the spy novel’s main
directory and individual subdirectories for the various chapters:

$ mkdir -p spy/ch{01,02,03,04,05,intro,toc,index,bio}

The curly braces ({ }) are used to specify the names of the subdirectories: in this case,
each name will consist of the string ch, with one of the values in the comma-delimited
list in the enclosed set of curly braces appended to it. Run the following command to
see the list of directories and subdirectories you’ve created:

$ ls -F spy
ch01/ ch03/ ch05/ chindex/ chtoc/
ch02/ ch04/ chbio/ chintro/

Managing Files | 99

Try doing that in the Finder! You’d have to first create a folder named spy, open that,
and then create and rename all those subfolders. Talk about time-consuming! But here,
the power of Unix goes into action and saves the day.

Copying Files
If you’re about to edit a file, you may want to save a copy of it first. That makes it easy
to get back the original version should the edit go haywire. To copy files, use the cp
program.

The cp program can put a copy of a file into the same directory or into another directory.
cp doesn’t affect the original file, so it’s a good way to keep an identical backup of a file.

To copy a file, use the command:

cp old new

Here, old is the pathname to the original file and new is the pathname you want for the
copy. For example, to copy the /etc/passwd file into a file called password in your home
directory, you would enter:

$ cp /etc/passwd ~/password
$

You can also use the form:

cp old olddir

This puts a copy of the original file old into an existing directory, olddir. The copy has
the same filename as the original.

If there’s already a file with the same name as the copy, cp replaces the old file with your
new copy. This is handy when you want to replace an old copy of a file with a newer
version, but it can cause trouble if you accidentally overwrite a copy you wanted to keep.
To be safe, use ls to list the directory before you make a copy there.

Also, cp has an -i (interactive) option that asks you before overwriting an existing file.
It works like this:

$ cp -i master existing-file.txt
overwrite existing-file.txt? no
$

(You have to either type yes or no to respond to the question; you can also just type y
or n and hit Return.)

You can copy more than one file at a time to a single directory by listing the pathnames
of each file you want copied, with the destination directory at the end of the command
line. You can use relative or absolute pathnames (see the sections “Absolute Path‐
names” and “Relative Pathnames” in Chapter 3), as well as simple filenames. For ex‐
ample, let’s say your working directory is /Users/carol (from the filesystem diagram in

100 | Chapter 4: File Management

Figure 3-3). To copy three files called ch1.doc, ch2.doc, and ch3.doc from /Users/john to
a subdirectory called Documents (that’s /Users/carol/Documents), assuming you have
the appropriate access permissions, enter:

$ cp ../john/ch1.doc ../john/ch2.doc ../john/ch3.doc Documents

Or you could use wildcards and let the shell find all the appropriate files. This time, let’s
add the -i option for safety:

$ cp -i ../john/ch[1-3].doc Documents
cp: overwrite ../john/ch2.doc ? n

This tells you that there is already a file named ch2.doc in the Documents directory.
When cp asks, answer n to prevent copying ch2.doc. Answering y overwrites the old
ch2doc. As you saw in Chapter 3, the shorthand form . (a single dot or period) refers to
the working directory, and .. (dot, dot) refers to the parent directory. For example, the
following puts the copies into the working directory:

$ cp ../john/ch[1-3].doc .

One more possibility: when you’re working with home directories, you can use the
convenient shorthand ~account to represent John’s and Carol’s home directories (and
~ by itself to represent your own). So here’s yet another way to copy those three files:

$ cp ~john/ch[1-3].doc Documents

cp can also copy entire directory trees with the help of the -R (recursive) option. There
are two arguments after the option: the pathname of the top-level directory from which
you want to copy and the pathname of the place where you want the top level of the
copy to be.

As an example, let’s say that a new employee, Asha, has joined John and Carol. She needs
a copy of John’s Documents/work directory in her own home directory. (See the filesys‐
tem diagram in Figure 3-3.) Her home directory is /Users/asha. If Asha’s own work
directory doesn’t exist yet (this is important!), she could type the following commands:

$ cd /Users
$ cp -R john/Documents/work asha/work

Or, from her home directory, she could use:

$ cp -R ~john/Documents/work work

Either way, Asha now has a new subdirectory, /Users/asha/work, that contains copies of
all the files and subdirectories in /Users/john/Documents/work.

If you give cp -R the wrong pathnames, it could end copying a direc‐
tory tree into itself, and running forever until your filesystem fills up!

Managing Files | 101

When cp copies a file, the new copy has its ownership changed to the user running the
cp command, too, so not only does Asha have the new files, but they’re also owned by
her. Here’s an example of how that works:

$ ls -l /etc/shells
-rw-r--r-- 1 root wheel 179 Apr 19 07:42 /etc/shells
$ cp /etc/shells ~
$ ls -l ~/shells
-rw-r--r-- 1 taylor taylor 179 May 7 07:59 /Users/taylor/shells
$

Notice that the ~ shortcut for the home directory can also be used as a target directory
with a cp command. Very helpful!

Problem checklist
The following tips should help you diagnose any error messages cp throws your way:
The system says something like “cp: cannot copy file to itself.”

If the copy is in the same directory as the original, the filenames must be different.

The system says something like “cp: filename: no such file or directory.”
The system can’t find the file you want to copy. Check for a typing mistake. If a file
isn’t in the working directory, be sure to use its pathname.

The system says something like “cp: permission denied.”
You may not have permission to copy a file created by someone else or to copy it
into a directory that does not belong to you. Use ls -l to find the owner and the
permissions for the file, or use ls -ld to check the destination directory. If you feel
that you should be able to copy a file, ask the file’s owner or use sudo (see “Superuser
Privileges with sudo” on page 72 in Chapter 3) to change its access modes.

Renaming and Moving Files with mv
To rename a file, use mv (move). The mv program can also move a file from one directory
to another.

The mv command has the same syntax as the cp command:

mv old new

Here, old is the old name of the file and new is the new name. mv writes over existing
files, which is handy for updating old versions of a file.

If you don’t want to overwrite an old file, be sure that the new name is unique. Like cp,
mv also has an -i option for moving and renaming files interactively, which can help
you avoid accidentally overwriting files that you want to keep:

$ mv chap1.doc intro.doc
$ mv -i chap2.doc intro.doc

102 | Chapter 4: File Management

mv: overwrite `intro.doc'? n
$

The previous example changed the name of the file chap1.doc to intro.doc, and then
tried to do the same with chap2.doc (answering n cancelled the last operation). If you
list your files with ls, you’ll see that the filename chap1.doc has disappeared, but
chap2.doc and intro.doc are intact.

The mv command can also move a file from one directory to another. As with the cp
command, if you want to keep the same filename, you need only give mv the name of
the destination directory. For example, to move the intro.doc file from its present di‐
rectory to your Desktop, use the following command:

$ mv intro.doc ~/Desktop

Or, to move the file to your Desktop and rename it at the same time, use a command
like this:

$ mv intro.doc ~/Desktop/preface.doc

Removing Files and Directories
You may finish work on a file or directory and see no need to keep it, or the contents
may become obsolete. Periodically removing unwanted files and directories frees stor‐
age space and saves you from getting confused when there are too many versions of files
on your disk.

rm
The rm program removes files. One important thing to point out here, though, is that
rm permanently removes the file from the filesystem. It doesn’t move the file to the
Trash, from which it can be recovered (at least until you select “Empty Trash” from the
Finder menu). Once you hit Return, that file is gone, so make darn sure that the file
you’re deleting with rm is something you really want to get rid of. Let me say that again:
rm does not offer a way to recover deleted files.

The syntax is simple:

rm filename(s)

rm removes the named files, as the following example shows:

$ ls
chap10 chap2 chap5 cold
chap1a.old chap3.old chap6 haha
chap1b chap4 chap7 oldjunk
$ rm *.old chap10
$ ls
chap1b chap4 chap6 cold oldjunk
chap2 chap5 chap7 haha
$ rm c*

Managing Files | 103

$ ls
haha oldjunk
$

When you use wildcards with rm, be sure you’re deleting the right files! If you acciden‐
tally remove a file you need, you can’t recover it unless you have a copy in another
directory or in your backups.

Do not enter rm * carelessly. It deletes all the files in your working
directory.
Here’s another easy mistake to make: you want to enter a command
such as rm c* (remove all filenames starting with “c”), but instead enter
rm c * (remove the file named c and all the other files in the current
directory!).
It’s good practice to list the files with ls before you remove them. Or,
if you use rm’s -i (interactive) option, rm asks you whether you want
to remove each file.

If you’re security-conscious, rm’s -P option might appeal to you: it causes files to be
overwritten three times, with zeros, ones, and then zeros again, before they’re removed.
This makes it just about impossible for the data to be recovered, even by the most earnest
malicious user. The flag doesn’t produce any additional output or confirm that it’s done
a safe delete, however:

$ ls
haha oldjunk
$ rm -P haha
$

rmdir
Just as you can create new directories with mkdir, you can remove them with the rmdir
program. As a precaution, rmdir won’t let you delete directories that contain any files
or subdirectories; the directory must first be empty. (The rm -r command removes a
directory and everything in it, but use the -r flag with caution: it can be dangerous.)

The syntax is:

rmdir dirname(s)

If you try to remove a directory that contains files, you’ll get the following message:

rmdir: dirname not empty

To delete a directory that contains files or subdirectories:

1. Enter cd dirname to get into the directory you want to delete.
2. Enter rm * to remove all files in that directory.

104 | Chapter 4: File Management

3. Enter cd .. to go to the parent directory.
4. Enter rmdir dirname to remove the unwanted directory.

One error you might encounter when using rmdir is that you might still get the dir
name not empty message, even after you’ve deleted all the files inside. If this happens,
use ls -a to check that there are no hidden files (names that start with a period) other
than . and .. (the working directory and its parent). The following command is good for
cleaning up hidden files (which aren’t matched by a simple wildcard such as *). It matches
all hidden files except for . (the current directory) and .. (the parent directory):

$ rm -i .[^.]*

Working with Links
If you’ve used the Mac for a while, you’ll be familiar with aliases, which are empty files
that point to other files on the system. A common use of aliases is to have a copy of an
application on the Desktop, or to have a shortcut in your home directory. Within the
graphical environment, you make aliases by Control-clicking on an item (a file, folder,
application, whatever), and then choosing “Make Alias” from the context menu. This
creates a file with a similar name in the same directory. The only difference is that the
alias has the word alias at the end of its filename. For example, if you were to look at
this in Unix, you’d see the following:

$ ls -l *3*
-rw-r--r-- 1 taylor taylor 1546099 7 May 20:58 fig0403.pdf
-rw-r--r-- 1 taylor taylor 0 7 May 08:34 fig0403.pdf alias

In this case, the file fig0403.pdf alias is an alias pointing to the actual file fig0403.pdf in
the same directory. Opening this file will display the same contents as the original file,
but you wouldn’t know it, because it appears to be an empty file: the size is shown as
zero bytes.

If you have a tendency to delete the alias part of a filename, as I do,
one quick technique for identifying whether a file is an alias or not is
to check out its file size: if it’s size 0 but there’s actually content when
you look at it with less, it’s an alias. Failing that, check out its directo‐
ry in the Finder—use open . as a shortcut—and look for the telltale
arrow on the icon.

Unix works with aliases differently; on the Unix side, we talk about links, not aliases.
There are two types of links possible in Unix, hard links and symbolic links, and both
are created with the ln command.

Managing Files | 105

The syntax is:

ln [-s] source target

The -s option indicates that you’re creating a symbolic link, so to create a second file
that links to the file fig0403.pdf, the command would be:

$ ln -s fig0403.pdf neato-pic.pdf

and the results would be:

$ ls -l *pdf
-rw-r--r-- 1 taylor taylor 1532749 7 May 20:47 fig0401.pdf
-rw-r--r-- 1 taylor taylor 1539493 7 May 20:52 fig0402.pdf
-rw-r--r-- 1 taylor taylor 1546099 7 May 20:58 fig0403.pdf
lrwxr-xr-x 1 taylor taylor 18 8 May 08:40 neato-pic.pdf ->
 fig0403.pdf

One way to think about symbolic links is that they’re akin to a note saying “the info you
want isn’t here, it’s in file X.” This also implies a peculiar behavior of symbolic links (and
Aqua aliases): move, rename, or remove the item being pointed to, and you have an
orphan link. The system doesn’t automatically remove or update symbolic links.

The other type of link is a hard link, which essentially creates a second name for the
exact same contents. That is, if you create a hard link to fig0403.pdf, you can then delete
the original file using rm, and its contents will remain accessible through the second
filename. Essentially, they’re different doors into the same room (as opposed to a note
taped on a door telling you to go to the second door, as would be the case with a symbolic
link). Hard links are also created with the ln command, except you omit the -s option:

$ ln mypic.pdf copy2.pdf
$ ls -l mypic.pdf copy2.pdf
-rw-r--r-- 2 taylor taylor 1546099 8 May 08:45 copy2.pdf
-rw-r--r-- 2 taylor taylor 1546099 8 May 08:45 mypic.pdf
$ rm mypic.pdf
$ ls -l copy2.pdf
-rw-r--r-- 1 taylor taylor 1546099 8 May 08:45 copy2.pdf

Notice that both files are exactly the same size when the hard link is created. This makes
sense because they’re both names pointing to the same underlying set of data, so they
should be identical. Then, when the original is deleted, the data survives with the second
name now as its only name. The only difference is that the second field in the above
output, the link count, shows 2 when there are two filenames pointing to the same data,
but when the original is deleted, the link count of the second entry, copy2.pdf, goes back
to 1.

Compressing and Archiving Files
Aqua users commonly use the ZIP archive capability of OS X itself (Control-click and
choose Compress “filename” from the context menu, and your Mac promptly creates

106 | Chapter 4: File Management

a .zip archive), but Unix users have many other options worth exploring when it comes
to compressing and archiving files and directories.

Even though OS X is far superior to Windows 8, we unfortunately live in a Windows
world, which means you’re going to occasionally send email attachments to and receive
them from Windows users. It’s also not uncommon to download shareware from a web
or FTP site that’s been zipped (a file with a .zip extension). OS X gives you many ways
to create your own ZIP archives (and to unzip the ones you receive, too). And if you’re
interacting with other Unix users (such as Linux, FreeBSD, or even OS X users), OS X
offers a suite of command-line utilities for batching and unbatching files.

There are three compression programs included with OS X, though the most popular
is gzip (the others are compress and bzip2; read their manpages to learn more about how
they differ). There’s also a very common Unix archive format called tar that I’ll cover
briefly.

gzip
Though it may initially confuse you into thinking that it’s part of the ZIP archive toolset,
gzip has nothing to do with the ZIP archive files created by OS X’s Make Archive capa‐
bility. Instead, gzip is actually a compression program that does a very good job of
shrinking down individual files for storage and transmission. If you’re sending a file to
someone with a dial-up connection, for example, running the file through gzip can
significantly reduce its size and make it much more portable. Just as importantly, it can
help save space on your disk by letting you compress files you want to keep but aren’t
using currently. gzip works particularly well with tar, too, as you’ll see.

The syntax is:

gzip [-v] file(s)

The -v flag offers verbose output, letting the program indicate how much space it saved
by compressing the file. Very useful information, as you may expect! Here’s an example:

$ ls -l ch06.doc
-rwxr-xr-x 1 taylor taylor 138240 8 May 08:52 ch06.doc
$ gzip -v ch06.doc
ch06.doc: 75.2% -- replaced with ch06.doc.gz
$ ls -l ch06.doc.gz
-rwxr-xr-x 1 taylor taylor 34206 24 8 May 08:52 ch06.doc.gz

You can see that gzip did a great job compressing the file, reducing its size by over 75
percent. Notice that it’s automatically appended a .gz filename suffix to indicate that the
file is now compressed. To uncompress the file, just use gunzip:

$ gunzip ch06.doc.gz
$ ls -l ch06.doc
-rwxr-xr-x 1 taylor taylor 138240 8 May 08:52 ch06.doc

Managing Files | 107

The amount of space saved by compression varies significantly based on the format of
the original data in the file. Some file formats lend themselves to compression, but with
others the compressed version ends up being just as big as the original file:

$ ls -l 10*.m4a
-rw-r--r-- 1 taylor taylor 4645048 May 8 21:29 10 Serpentine Lane.m4a
$ gzip -v 10*.m4a
10 Serpentine Lane.m4a: 0.9% -- replaced with 10 Serpentine Lane.m4a.gz
$ ls -l 10*
-rw-r--r-- 1 taylor taylor 4603044 May 8 21:29 10 Serpentine Lane.m4a.gz
$

This example resulted in a space savings of less than 1 percent of the file size.

tar
In the old days, Unix system backups were done to streaming tape devices (today you
can only see these units in cheesy 1960s sci-fi films, the huge round tape units that
randomly spin as data is accessed). The tool of choice for creating backups from Unix
systems onto these streaming tape devices was tar, the tape archiver. Fast-forward to
OS X, and tar continues its long tradition as a useful utility, but now it’s used to create
files that contain directories and other files within them, as an archive. It’s similar to the
ZIP format, but tar differs from gzip because its job is to create a file that contains
multiple files and directories. gzip, by contrast, makes an existing file shrink as much as
possible through compression.

The tar program is particularly helpful when combined with gzip, actually, because it
makes creating archive copies of directories simple and effective. Even better, if you use
the -z flag to tar, it automatically invokes gzip to compress its output without any further
work. Here’s a fun bit of jargon, too: compressed tar archives are known in the Unix
community as tarballs.

The syntax is:

tar [c|t|x] [flags] files_and_directories_to_archive

The tar program is too complex to fully explain here (as always, man tar produces lots
more information about tar’s options), but in a nutshell, tar -c creates archives, tar -t
shows what’s in an existing archive, and tar -x extracts files and directories from an
archive. The -f file flag is used to specify the archive name, and the -v flag offers verbose
output to let you see what’s going on:

$ du -s Masters\ Thesis
6704 Masters Thesis
$ tar -czvf masters.thesis.tgz "Masters Thesis"
Masters Thesis/
Masters Thesis/.DS_Store
Masters Thesis/analysis.doc
...
Masters Thesis/Web Survey Results.doc

108 | Chapter 4: File Management

Masters Thesis/web usage by section.doc
$ ls -l masters.thesis.tgz
-rw-r--r-- 1 taylor staff 853574 8 May 09:20 masters.thesis.tgz

Notice that we gave tar the directory name, rather than a list of files.
This ensures that when the directory is unpacked, the files are placed
in a new directory (Masters Thesis), rather than filling the current
directory. This is a good habit for people who make lots of archives.

In this example, the directory Masters Thesis is 6.7 MB in size, and hasn’t been accessed
in quite a while. This makes it a perfect candidate for a compressed tar archive. This is
done by combining the following options: -c (create), -z (compress with gzip), -v (ver‐
bose), and -f file (output filename; notice that we added the .tgz suffix to avoid later
confusion about the file type). In under 10 seconds, a new archive file is created that is
less than 1 MB in size, yet contains all the files and directories in the original archive.
To unpack the archive, use the following command:

$ tar -xvzf masters.thesis.tgz

Files on Other Operating Systems
Chapter 8 explains ways to transfer files across a network—possibly to non-Unix op‐
erating systems. OS X has the capability of connecting to a variety of different filesystems
remotely, including Microsoft Windows, other Unix systems, and even web-based
filesystems.

If the Windows-format filesystem is mounted with your other filesystems, you’ll be able
to use its files by typing a Unix-like pathname. If you’ve mounted a remote Windows
system’s C: drive over a share named winc, you can access the Windows file C:\WORD
\REPORT.DOC through the pathname /Volumes/winc/word/report.doc. Indeed, most
external volumes are automatically mounted within the /Volumes directory.

Managing Files | 109

CHAPTER 5

Finding Files and Information

One of the fundamental challenges with modern computers is finding files and infor‐
mation. Whether you’re highly organized and use wonderfully mnemonic names for
every file or directory you create, or whether you have lots of letter1, letter2, and work
directories scattered around your filesystem, there will undoubtedly come a time when
you need to find something on your computer based on its contents, filename, or some
other attribute.

It turns out that there are four different ways in Unix to search for—and hopefully find—
what you seek. To look inside files, you need to use the grep command, introduced briefly
in the previous chapter. To find files by filename, the fastest solution is the locate com‐
mand. A more sophisticated filename and attribute search can be done with the Unix
power user’s find command. And finally, OS X includes a search system called Spot‐
light that has a powerful command-line component that’s worth exploring.

The Oddly Named grep Command
The grep program searches the contents of files for lines that match the specified pattern.
The syntax is:

grep pattern [file(s)]

The simplest use of grep is to search for files that contain a particular word by feeding
grep a pattern and a list of files in which to search. For example, let’s search all the files
in the working directory (using the wildcard *) for the word “Unix”:

$ grep "Unix" *
ch01:Unix is a flexible and powerful operating system
ch01:When the Unix designers started work, little did
ch05:What can we do with Unix?
$

111

Note that grep understands plain text—and that’s all. Feeding it nontext files can produce
puzzling and peculiar results. For example, Word files (and those created by other
WYSIWYG editors) contain characters that, when sent to the Terminal, mess up your
display in strange and interesting ways.

One way to search such files from the command line is to extract only
the printable characters using the strings program (see man strings for
details).

grep can be used in a pipe, which enables grep to scan the output of a different command.
This makes it so only those lines of the input files containing a given string are sent to
the standard output. Pipes are denoted with the | symbol (which can be found above
the \ on a standard Apple keyboard layout) and are a method of joining the output of
one command to the input of another (in the following example, the output of the ls
command to the input of the grep command), flowing data between them just as a plastic
pipe transports water from a water main to a sprinkler head in your garden.

When grep searches multiple files, it shows the name of the file where it finds each
matching line of text. Alternatively, if you don’t give grep a filename to read, it reads its
standard input; that’s the way all filter programs work (standard input and output are
discussed in Chapter 6):

$ ls -l | grep "Aug"
drwxr-xr-x+ 5 taylor staff 170 Aug 11 2011 Public/
drwxr-xr-x+ 5 taylor staff 170 Aug 11 2011 Sites/
$

First, this example runs ls -l to list your working directory. The standard output of ls -
l is piped to grep, which outputs only lines that contain the string "Aug" (that is, files or
directories that were last modified in August and any other lines that contain the pattern
“Aug”). Because the standard output of grep isn’t redirected, those lines go to the Ter‐
minal’s screen.

Useful grep Options
Table 5-1 lists some of grep’s options, which you can use to modify your searches.

Table 5-1. Some grep options
Option Description

-A n Show n lines after the matching line.

-B n Show n lines before the matching line.

-C n Show n lines before and after the matching line.

-v Print only lines that do not match the pattern.

112 | Chapter 5: Finding Files and Information

Option Description

-n Print the matched line and its line number.

-l Print only the names of files with matching lines (this is the lowercase letter “L”).

-c Print only the count of matching lines.

-i Match either upper- or lowercase.

In the previous search, a file named jan-finances.xls wouldn’t have matched, because by
default grep is case-sensitive. That means your searches for “aug” wouldn’t match “Aug”,
either. To make the search case-insensitive, add grep’s -i option.

Though it may seem odd, being able to invert the search logic with the -v flag and show
lines that don’t match the given pattern can be quite useful. You can also make it so the
grep command outputs only matching filenames (rather than the lines in those files that
contain the search pattern) by adding the -l option. To find all the files in the current
directory that don’t mention Jane, for example, the command would be:

 $ grep -lv Jane *
 sample
 diary.txt
 myprogram.c
 $

This has the same potential case-sensitivity issues, though, so an even better set of com‐
mand flags would be -lvi, which would also match “jane” and therefore filter out even
more files.

Matching context
When searching for specific lines in a file, you may actually want to also see a line or
two above or below the matching line, rather than just the matching line itself. This can
be accomplished in three ways, depending on whether you want lines above, lines below,
or both, by using -A, -B, and -C, respectively.

For example, to show one additional line above and below the matching line (and add
line numbers too, by using the -n option):

$ grep -n -C1 Aqua sample
3-watch how vi wraps long lines. If you have another Terminal window
4:open with some text in it, or if you have an Aqua application open,
5-you can also use your mouse to copy text from another window and

Notice that the line that has a match has a colon after the line number, while the other
context lines are preceded with a dash. Very subtle, but knowing what to look for helps
you find your match instantly!

The Oddly Named grep Command | 113

Matches in color
One great feature of OS X’s grep command is that it automatically highlights the match‐
ing passage in each line if you use the verbose --color=always option. Here’s how it looks:

$ grep --color=always text sample
Enter some lines of text. Make some lines too short (press Return
open with some text in it, or if you have an Aqua application open,
you can also use your mouse to copy text from another window and
your file.) To get a lot of text quickly, paste the same text more
$

In the above command, you’re searching for the word “text” within the sample file.
Because you’ve added the --color=always option, any instances of the word “text” are
highlighted in bold red text in the output. (Sorry, you can’t see the true results here, but
I think you get the picture.) To take permanent advantage of this feature, you can create
a new grep alias that includes the --color=always option, or set an environment variable
in your .profile or .login file, depending on your shell. For example, if you use bash, you
could add the following to your .profile file:

GREP_OPTIONS="--color=always";export GREP_OPTIONS

Now whenever you use grep, your results will come back in blazing color.

Counting matches rather than showing matching lines
When you’re going through a large file and have a lot of matches, it’s often quite useful
to just get a report of how many lines matched rather than having all the output stream
past on your screen. This is accomplished with the -c option:

$ grep -c "kernel" /var/log/system.log
160

You can also accomplish this result by piping the output to the wc command, as shown
in Chapter 6, but this is considerably faster!

Working with Regular Expressions
You can use simple patterns with the grep program—patterns like “Jane” or “hot key”—
but grep actually has the ability to match incredibly complex and sophisticated patterns
because it uses regular expressions, an entire language for specifying patterns. Let’s
spend some time talking about regular expressions so you can see how powerful they
are.

114 | Chapter 5: Finding Files and Information

A word of warning, though: regular expressions are not the same as
file-matching patterns in the shell, and some patterns are interpreted
quite differently in regular expressions than they are at the com‐
mand line. This can be confusing when you have a command like grep
regexp filematchpattern, with two different styles of pattern on the
same line.

The fundamental building blocks of regular expressions are those that match a specific
character. Fortunately, almost all characters automatically match themselves, so the
pattern Jane is a regular expression that matches J, a, n, and e. Any single character is
matched by . (a period). To specify a range of characters, use brackets: [Jj]ane matches
both Jane and jane, for example. You can also do ranges within brackets, so J[aeiou]ne
and j[a-z]ne are both valid expressions; the first matches Jane, Jene, Jine, Jone, and
June, and the second matches any occurrence of j followed by a lowercase letter, fol‐
lowed by ne.

Many classes of characters are already predefined, so [:alnum:], which is Unix short‐
hand for “alphanumeric,” is equivalent to [a-zA-Z0-9] in English, [:digit:] is the
same as [0-9], [:upper:] is the same as [A-Z], and so on. The important difference is
that by using the named value, you ensure that your expression can work in other
languages in addition to English. Specifically, [a-z] won’t include ñ, for example, but
[:lower:] will, if the locale is set to Spanish. Table 5-2 lists the most important named
character ranges.

Table 5-2. Named character ranges in regular expressions
Option Matches

[:alnum:] Upper- and lowercase letters and numeric digit values (0-9)

[:alpha:] Upper- and lowercase letters

[:digit:] Numeric digit values (0-9)

[:lower:] Lowercase letters

[:print:] Printable (visible) characters

[:punct:] Punctuation characters

[:space:] The set of characters that can serve as a space, including the space, tab, and carriage return

[:upper:] Uppercase letters

[:xdigit:] Hexadecimal digit values (0-9, plus a-f and A-F)

Named character ranges are considered an element in a range expression, so the earlier
pattern j[a-z]ne is correctly written as j[[:lower:]]ne. You can also negate the value
of a range by prefacing it with the caret symbol (^), which you get with Shift-6. So,
j[^aeiou]ne matches everything that has a j followed by any letter that isn’t a vowel,
followed by ne.

The Oddly Named grep Command | 115

The period matches any single character, and the \w expression is almost synonymous
with :alnum: (it also matches underscores). When not used in a character range, the ^
matches the beginning of the line, and the $ matches the end of the line. If you want to
find blank lines that have no contents, the pattern ^$ does the trick. Lines that begin
with a digit? Use ^[[:digit:]].

Each expression can be followed by what’s called a repetition operator, which indicates
how often the pattern can or should occur for a match to be found. For example:

• ? means that the preceding is optional and may be matched at most one time.
• * matches zero or more times.
• + matches one or more times.
• {n} matches exactly n times.
• {n,m} matches between n and m times.

To put these to the test, here’s a pattern that matches exactly five digits followed by the
letter M:

[[:digit:]]{5}M

And here’s a pattern that matches J, followed by any number of lowercase letters (in‐
cluding none at all), followed by a period:

J[[:lower:]]*\.

Notice you need to escape the period (.) so it’s not seen as a request to match any single
character.

The pattern jpe?g matches both jpeg and jpg, while jpe*g matches both of those words,
also matching things like jpeeeg and jpeeeeeeeeeg.

You can list multiple patterns in an OR configuration by separating them with a pipe (|).
This is almost always done by grouping the expression in parentheses. For example,
(cat|dog)house matches both cathouse and doghouse, and [[:digit:]]+(am|pm)
matches any one-or-more-digit value followed by am or pm.

Quite a complex language, isn’t it?

Let’s use a few regular expressions to see how they work in practice. This one tells grep
to find lines containing root, followed by zero or more other characters (abbreviated
in a regular expression as .*), followed by Aug:

$ ls -l | grep "root.*Aug"
drwxr-xr-x@ 3 root admin 102 Aug 1 2011 opt/
$

116 | Chapter 5: Finding Files and Information

Next, let’s look at the logfile for my tech Q&A website, http://www.AskDaveTay
lor.com. Visitors who enter data and submit questions on the site invoke what’s called
an HTTP POST action, which is differentiated from the GET of most page retrieval trans‐
actions. Finding all the POST transactions is simple:

$ grep POST access_log
178.73.212.114 - - [06/May/2013...] "POST /how_do_i_get..." "...Firefox/3.0.14"
78.47.115.26 - - [06/May/2013...] "POST /tag/latino.tra..." "...Firefox/3.0.1"
78.47.115.26 - - [06/May/2013...] "POST /tag/latino.zim..." "...Firefox/3.0.1"
62.212.85.36 - - [06/May/2013...] "POST /RPC2 HTTP/1.1"..." "...Safari/535.11"

If you look closely at that output, you’ll see that an identification string from the actual
browser that the visitor is using is included near the end of each line. The first match is
Firefox running on Windows, the second and third are Firefox running on a Linux
system, and the last is Safari.

By using grep with a regular expression, we can identify those queries originating from
Firefox or Apple’s Safari (use the -E flag, as shown):

$ grep -E "POST.*(Safari|Firefox)" access_log
178.73.212.114 - - [06/May/2013...] "POST /how_do_i_get..." "...Firefox/3.0.14"
178.73.212.114 - - [06/May/2013...] "POST /whats_a_goog..." "...Firefox/3.0.14"
178.73.212.114 - - [06/May/2013:...] "POST /how_can_i_a..." "...Firefox/3.0.14"
78.47.115.26 - - [06/May/2013...] "POST /tag/latino.tra..." "...Firefox/3.0.1"

What’s more, it’s possible to figure out how many forms were submitted and then break
them down into MSIE (Internet Explorer) and non-MSIE with just a few grep queries,
coupled with a simple pipe and the wc word count program (both of which are discussed
in more detail in Chapter 6):

$ grep -E POST access_log | wc -l
 272
$ grep -E "POST.*MSIE" access_log | wc -l
 3
$ grep -E "POST.*(Firefox)" access_log | wc -l
 9
$ grep -E "POST.*(Safari)" access_log | wc -l
 258

This shows that of the 272 submissions, 3 were done with MSIE, 9 were done with
Firefox, and 258 were done with Safari.

Of course, while having to enter all of those commands separately is fine if you’re only
doing this occasionally, if you’re going to need this sort of information more often you
should consider pulling them together in a shell script. That way, all you’ll need to do
is execute the shell script, and it will run the commands separately and provide you with
output that shows the results.

The Oddly Named grep Command | 117

http://www.AskDaveTaylor.com
http://www.AskDaveTaylor.com

There’s a lot more to regular expressions than I can fit into a page or
two in this book. If you really want to become a regular expression
maven, I suggest that you read the book Mastering Regular Expres‐
sions, by Jeffrey E. F. Friedl (O’Reilly).
If you’d like to learn more about shell scripts, start with my own book
Wicked Cool Shell Scripts (No Starch).

Finding Files with locate
Sometimes, you’ll create a file, save it someplace, and then forget about it. Then, when
you need that file two months later, you’ll find that you can’t remember where you saved
it. For situations like this, OS X includes the locate program to help you find files quickly.
You can use locate to search part or all of a filesystem for a file with a certain name.
locate doesn’t actually search the filesystem, though; rather it searches through a prebuilt
listing of every single file and directory on the system. This is a good thing, because the
command doesn’t have to traverse each and every directory in your filesystem. This
makes locate very fast. However, it’s also a potential problem because the locate database
can get old and out of sync with the actual files on your system. The first step, therefore,
is to build the locate database.

Using locate
Once you have updated the database, you can search it with the locate command. For
instance, if you’re looking for a file named alpha-test, alphatest, or something like that,
try this:

$ locate alpha
/Users/alan/Desktop/alpha3
/usr/local/projects/mega/alphatest
/usr/share/man/man3/alphasort.3
/usr/share/man/man3/isalpha.3
/usr/share/man/man3/iswalpha.3
/Volumes/Hello/Applications/Cool Stuff/Mail.app/Contents/Resources/alphaPixel.tiff
/Volumes/Hello/sw/fink/10.1/unstable/main/finkinfo/editors/emacs-alpha-21.1-3.info
/Volumes/Hello/sw/share/doc/tar/README-alpha
/Volumes/Hello/usr/share/man/man3/alphasort.3
/Volumes/Hello/usr/share/man/man3/isalpha.3
/Volumes/Hello/usr/share/man/man3/iswalpha.3

You’ll get the absolute pathnames of any files and directories with alpha in their names.
(If you get a lot of output, add a pipe to less. See “Pipes and Filters” on page 141 in
Chapter 6.) locate may or may not list protected, private files.

Unfortunately, you can’t specify regular expressions with locate. For example, the fol‐
lowing command doesn’t return any results:

118 | Chapter 5: Finding Files and Information

http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/9780596528126.do

$ locate "/man/.*alpha"
$

You instead need to use a series of grep commands to pick through the locate output.
To accomplish the task of identifying which matches to the pattern alpha are from
the /man/ directory, do this:

$ locate alpha | grep "/man/"
/usr/share/file/magic/alpha
/usr/share/man/man3/alphasort.3
/usr/share/man/man3/isalpha.3
/usr/share/man/man3/isalpha_l.3
/usr/share/man/man3/iswalpha.3
/usr/share/man/man3/iswalpha_l.3

This ability to combine commands is at the heart of Unix’s great power. You aren’t
constrained to just the specific commands that others have written; you can combine
them with pipes to create exactly the function or capability you seek. We’ll spend a lot
more time on this later in the book, so stay tuned!

Using find to Explore Your Filesystem
Reading about the limitations of the locate command undoubtedly caused you to won‐
der if there was a more powerful option: a command that could let you search through
the actual, live filesystem to find what you seek. The find command lets you search for
files not only by filename patterns, but by a remarkable number of additional criteria,
too—though since it’s not using a previously saved filename database, as locate does, it
is definitely going to be slower.

find has a completely different syntax than any of the Unix commands we’ve examined
to this point in the book, so the best place to start is with the find command syntax itself:

find flags pathname expression

Expressions are where the complexity shows up, because a typical expression is a “pri‐
mary” followed by a relevant value, and there are dozens of different primaries that can
be combined in thousands of different ways. For example, to match files that end
with .html, you would use something like:

find -name "*.html"

To search for all HTML files on an OS X system, here’s how the command would look:

$ find . -name "*.html" -print
./Documents/Books/Learning OSX Unix/lumch04A.html
./Library/Mail Downloads/Aéropostale - Checkout.html
./Library/Mail Downloads/Mail Attachment.html
./Library/PreferencePanes/MusicManager.prefPane/Contents/Resources/thirdparty.html
./Library/Widgets/Local Weather.wdgt/index.html
./Sites/index.html
$

Using find to Explore Your Filesystem | 119

Notice that the pathname specified is the current working directory (.), so find only
searches that directory and anything within it, not the entire filesystem. Change this to
your home directory ($HOME), and the find command traverses everything within that
directory looking for matches. Rather than listing all the matches, however, I’m going
to feed the output of the command to the ever-helpful wc (word count) program to just
get a count of matching entries:

$ find $HOME -name "*.html" -print | wc -l
 1291

As you can see, I have a lot of web content in my home directory—there are over a
thousand files that match the filename pattern *.html. That’s a lot of web pages!

Matching by File Size
Another primary that can be tested is the file size, using -size. This is a typically complex
find primary in that the default unit for specifying size is 512-byte blocks, so -size 10
matches files that are 10*512 bytes, or 5,120 bytes, in size. To match a specific number
of bytes, append a c; for example, -size 10c matches files that are exactly 10 bytes in size.
That’s not particularly useful, but it turns out you can specify “more than” or “less than”
by prefacing the number with a + or -, respectively. Now that is useful! For example, to
match only files that are greater than 5 KB in size, you can use either -size +10 or -size
+5120c, and to find files that are less than 100 bytes, you can use -size -100c.

Let’s look at the executable commands in /bin to see which are greater than 30 KB in
size:

$ find /bin -size +60 -print
/bin/bash
/bin/csh
/bin/ed
/bin/ksh
/bin/launchctl
/bin/ls
/bin/pax
/bin/ps
/bin/sh
/bin/stty
/bin/sync
/bin/tcsh
/bin/zsh
$

This is just the tip of the iceberg with find primaries, however, so let’s have a closer look.
The most useful primaries are listed in Table 5-3. This isn’t an exhaustive list: if you want
to know about every single possible primary, check the manpage for find.

120 | Chapter 5: Finding Files and Information

Table 5-3. The most useful find primaries
Option Description

-cmin time True if the file has been modified within the last time minutes.

-ctime time Same as -cmin, but for units of hours, not minutes.

-group name True if the file is owned by group name (which can be specified as a group name or group ID).

-iname pattern Identical to -name except tests are case-insensitive.

-iregex regex Identical to -regex, but the regular expression is evaluated as case-insensitive.

-ls Produces ls -l output for matching files.

-name pattern True if the filename matches the specified pattern.

-newer file True if the file is newer than the specified reference file.

-nouser True if the file belongs to an unknown user (that is, a user ID that doesn’t appear in either /etc/passwd or
NetInfo).

-perm mode True if the file matches the specified permission. This complex primary is explained later in this chapter.

-print Prints the full pathname of the current file.

-print0 Special version of -print that compensates for spaces and other nonstandard characters in filenames. An
important addition for OS X find usage.

-regex regex Same as -name, but allows full regular expressions rather than just simple filename pattern matches.

-size n True if the file’s size matches the specified size. Default unit is 512-byte blocks; append c for bytes, and
prepend + for “more than” or - for “less than” tests.

-type t True if the file is of the specified type. Common types are d for directories, and f for regular files.

-user name True if the file is owned by the specified user. name can be a username or user ID number.

One of the more useful options listed in Table 5-3 that most Unix users ignore is -ls.
Here’s a more complex find command that uses this very primary, along with a test to
ensure that the matching files are regular files, not symbolic links, etc:

$ find /bin -size +60 -type f -ls
23195108 2400 -r-xr-xr-x 1 root wheel 1228240 Aug 8 23:29 /bin/bash
23099747 360 -rwxr-xr-x 2 root wheel 357984 Aug 8 23:29 /bin/csh
23099753 56 -rwxr-xr-x 1 root wheel 49984 Aug 8 23:29 /bin/ed
23195110 2576 -r-xr-xr-x 1 root wheel 1315248 Aug 8 23:29 /bin/ksh
24999570 72 -r-xr-xr-x 1 root wheel 73600 Sep 4 07:28 /bin/launchctl
23099762 32 -rwxr-xr-x 1 root wheel 34736 Aug 8 23:29 /bin/ls
23099765 104 -rwxr-xr-x 1 root wheel 107024 Aug 8 23:29 /bin/pax
23099766 40 -rwsr-xr-x 1 root wheel 46784 Aug 8 23:29 /bin/ps
23195161 2400 -r-xr-xr-x 1 root wheel 1228304 Aug 8 23:29 /bin/sh
23099773 24 -rwxr-xr-x 1 root wheel 32272 Aug 8 23:29 /bin/stty
23974147 16 -rwxr-xr-x 1 root wheel 34304 Aug 21 18:05 /bin/sync
23099747 360 -rwxr-xr-x 2 root wheel 357984 Aug 8 23:29 /bin/tcsh
23195113 1040 -rwxr-xr-x 1 root wheel 530320 Aug 8 23:29 /bin/zsh
$

This output is slightly different from a regular ls -l listing, but it does show the file
permissions, owner and group information, file size, and last modification date.

Using find to Explore Your Filesystem | 121

Exploring find Permission Strings
find lets you search for files that match specific permission settings, but this is one of
the most confusing primaries for neophyte Unix folk. To try to keep you from sinking
into the mire, let’s just consider the symbolic permission notation that’s shared with the
chmod command (as discussed in Chapter 3).

In this model, permissions are specified as a sequence of:

who op perm

where who can be any of a (all), u (user), g (group), or o (other, that is, everyone who
isn’t the user or in the user’s group). The op value for find permission strings can only
be =, but in the chmod command itself there are other op possibilities. The possible
values for perm are shown in Table 5-4.

Table 5-4. Symbolic permission values for perm
Option Description

r Read permission

w Write permission

x Execute permission

s Special set-user-ID-on-execution or set-group-ID-on-execution permission

Let’s experiment with the -perm primary to get a better sense of how these different
permission strings can be specified. To find all files in the /usr/bin directory that start
with the letter z, and that you have write permission for, use the following:

$ find /usr/bin -name "z*" -type f -perm +u=w -print
/usr/bin/zcat
/usr/bin/zcmp
/usr/bin/zdiff
/usr/bin/zegrep
/usr/bin/zfgrep
/usr/bin/zforce
/usr/bin/zgrep
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipdetails
/usr/bin/zipdetails5.16
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit
/usr/bin/zless
/usr/bin/zmore
/usr/bin/znew
/usr/bin/zprint
$

122 | Chapter 5: Finding Files and Information

What’s going on here? We don’t have write permission on any of these files:

$ ls -l /usr/bin/zcat
-rwxr-xr-x 4 root wheel 43200 Aug 8 23:30 /usr/bin/zcat
$

The problem is that find takes the test literally: it looks for files that have write permission
for their owner. When I said “that you have write permission for,” I was misstating the
test, in a way that’s quite common for Unix folk. To tighten this find search to files for
which you actually have write permission, you need to add a -user predicate. To make
this as general as possible, you can use the $USER variable:

$ find /usr -type f -user $USER -perm +u=w
$

Try this on your system. If you see any results, you have a problem with the permissions
on the files and directories in the /usr tree and you need to fix it. Fortunately, that’s rather
easy: run the Disk Utility program(/Applications/Utilities) and choose Repair Disk Per‐
missions. Making sure your disk permissions are correct keeps applications from telling
you that you don’t have permission to save a file, when you know darn well you do, and
keeps security problems and obscure application behavior from cropping up too.

Using find to Identify Recently Changed Files
One of the most common uses of find is to identify files that have been changed within
a certain amount of time. This is obviously quite useful for doing system backups, but
it can also help ensure that files shared across multiple machines stay in sync, and it’s
just generally helpful to be able to list which of your files have been updated recently.

Just like the permissions test, the time tests in find behave quite differently depending
on whether you specify an exact value, a value prefaced with a -, or a value prefaced with
a +. Let’s have a look:

$ find . -cmin 60 -print
$ find . -cmin -60 -print -type f
./Desktop/LearnUnixOSX
./Desktop/LearnUnixOSX/.ch05.asc.swp
./Desktop/LearnUnixOSX/ch05.asc
./Library/Application Support/AddressBook
./Library/Application Support/AddressBook/.database.lockN

These first two tests are for files that have been changed exactly 60 minutes ago (no
surprise, there aren’t any) and files that have changed within the last 60 minutes (speci‐
fied by adding the - to the time), of which there are five. (Depending on how many files
you’ve worked on in the last hour and your current directory, your output from this
command will differ.) One of the matches is the directory ./Library/Application Support/
AddressBook. You can easily remove that file from the list by using -type f as another
primary if all you seek in your results is actual files (perhaps for backing up to a DVD).

Using find to Explore Your Filesystem | 123

What do you think will happen if you specify -cmin +60? If you’re thinking that this
command will give your Mac some level of clairvoyance and tell you which files you’re
going to work on in the next hour, think again. It’ll list out all the files that have not been
changed in the last 60 minutes, which is, well, quite a few files:

$ find . -cmin +60 -print | wc -l
 333115

To narrow that down to just plain files that haven’t been changed, again I’ll just add the
-type f primary:

$ find . -cmin +60 -type f -print | wc -l
 265687

The difference in these two values indicates that there are over 67,000 directories on my
system that are being matched in the first test. Quite a few!

This sort of time test can also be cast across the entire filesystem to see what’s been
changing. The following command identifies all the files owned by root that have been
changed in the last 10 minutes:

$ sudo find / -cmin -10 -type f -user root -print
.fseventsd/00000000005169e5
/.MobileBackups/Computer/2013-05-06-075950/Volume/Users/taylor/Library/
 Containers/com.fiplab.facetabpro/Data/Library/Preferences/
 com.fiplab.facetabpro.plist
/.MobileBackups/Computer/2013-05-06-075950/Volume/Users/taylor/Library/
 Mail/V2/Mailboxes/Deleted Messages (Intuitive.com (IMAP))
 .mbox/965F1F99-FAB0-4EFE-9635-E04F1D6A4D84/Data/3/9/2/Messages/293416.emlx
/.MobileBackups/Computer/2013-05-06-075950/Volume/Users/taylor/Library/
 Preferences/com.zeobit.MacKeeper.Helper.plist
/.MobileBackups/Computer/2013-05-06-085722/Volume/private/
 var/db/.TimeMachine.Results.plist

...
/private/var/log/asl/StoreData
/private/var/log/DiagnosticMessages/2013.05.06.asl
/private/var/log/DiagnosticMessages/StoreData
/private/var/log/system.log
/private/var/run/.autoBackup
/private/var/run/utmpx
$

If you’d rather work with time units of hours rather than minutes, just use -ctime instead
of -cmin.

find’s Faithful Sidekick: xargs
One primary that you might have immediately noticed is missing is a -grep or other
primary that lets you look inside the files to find which have specific text within. It’s

124 | Chapter 5: Finding Files and Information

missing because find doesn’t know how to actually open any files: it can only test
attributes.

If grep were smart enough to accept a list of filenames from standard input, the solution
to searching the contents of a set of files matched by find would be ridiculously easy:
find | grep. Unfortunately, though, that’s not one of grep’s many skills. So, you’re presented
with a dilemma: you can generate a list of files to search, but there’s no easy way to
actually give that list to grep in a way that the program can understand.

The solution is to use xargs, a partner program to find. xargs is a program that turns a
stream of filenames into iterative calls to whatever program is specified, with a subset
of the filenames listed on the command line itself. This is confusing, so let me step you
through a very simple example.

Let’s say that the output of find is a list of four files, one, two, three, and four. Using
xargs, these files could be given to grep two at a time by using:

find | xargs grep pattern

grep sees this as the following two invocations:

grep pattern one two
grep pattern three four

Make sense? Let’s try it out so you can see how this tremendously powerful find partner
program helps you become a real power command-line user!

$ find /var/log -not -name "*.gz" -type f -size +0 -print
/var/log/asl/2013.05.05.G80.asl
/var/log/asl/2013.05.05.U0.asl
/var/log/asl/2013.05.05.U0.G80.asl
/var/log/asl/2013.05.05.U501.asl
/var/log/asl/2013.05.05.U502.asl
/var/log/asl/2013.05.05.U503.asl
...
/var/log/opendirectoryd.log
/var/log/opendirectoryd.log.0
/var/log/performance/StoreData
/var/log/system.log
/var/log/system.log.0.bz2
/var/log/weekly.out
/var/log/wifi.log
/var/log/wifi.log.0.bz2
/var/log/zzz.log

This is a delightfully complex find command, but we can step through it together, so
I’m sure it’ll make sense to you. First off, a sneak preview: you can reverse the logic of
any find test by prefacing it with the -not primary, so the first test is to find all files whose
names do not match the pattern *.gz. That ensures we don’t search in compressed (gzip’d)
files.

Using find to Explore Your Filesystem | 125

Next, -type f matches just plain files, and -size +0 matches files that aren’t zero bytes in
size. The end result can be summed up as “show me a list of all plain files in this directory
that don’t have a .gz file extension and are greater than zero bytes in size.”

If you wanted to scan through all these files for any possible security warnings, your
first attempt might be:

$ find /var/log -not -name "*gz" -type f -size +0 -print | grep -i warning
$

But that won’t work, of course, because it’s scanning the filename list itself for the pattern,
and none of the filenames themselves contain the word “warning.” To look inside the
files, use xargs instead, and since you’re going to be looking inside these files, add a sudo
invocation, too:

$ find /var/log -not -name "*gz" -type f -size +0 -print |
 sudo xargs grep -i warning
/var/log/com.apple.launchd/launchd-shutdown.system.log:19014 com.apple.launchd
 1 com.apple.AppleGraphicsWarning 0 Removed
/var/log/install.log:May 5 21:35:24 Macintosh installd[515]:
 kextcache: Warning: Error 12 rebuilding /System/Library/Caches/
 com.apple.corestorage/EFILoginLocalizations
/var/log/install.log:May 5 21:36:31 Macintosh installd[515]:
 PackageKit: Touched bundle System/Library/CoreServices/
 AppleGraphicsWarning.app
/var/log/system.log:May 6 09:10:41 Daves-MBP sudo[1581]:
 taylor : TTY=ttys001 ; PWD=/Users/taylor ; USER=root ;
 COMMAND=/usr/bin/xargs grep -i warning
$

That’s the general pattern that you’ll use for searching inside lots of files matched by the
find command, which might include shell scripts, plain-text files, email message ar‐
chives, and more.

Because Mac OS users often add spaces to filenames, there are times
when the find | xargs grep command will fail with all sorts of scary “file
not found” error messages. Not to worry, just switch from -print to -
print0 and then add a -0 (zero) flag to xargs:

$ find $HOME -name "html" -print0 | xargs -0 grep -i intuitive.com

This finds all HTML files in my home directory, and searches through
them all for references to the intuitive.com domain. Better yet, it’s smart
enough to handle spaces in the filenames too.

Further Refinements to find
You’ve already seen the -not primary that lets you switch the logic of a find primary, but
there are a few more refinements that can help you create highly sophisticated filtering

126 | Chapter 5: Finding Files and Information

patterns. If you don’t mind escaping the character, you can use ! as a substitute for -
not, but if you don’t use it as \! the shell inevitably interprets it and generates some screwy
error messages.

You can also group one or more tests with parentheses, which is useful given that you
can also specify an -or to allow logical OR tests, rather than the default AND test between
each primary. This is particularly useful with filename matches. For example, you can
find all files that end with either .txt or .htm with this find test:

$ find . -type f \(-name "*.txt" -or -name ".htm" \) -print

Notice that you must escape the elements of the expression so the shell doesn’t try to
interpret them and end up messing up your command completely. The easy way? Always
quote expressions that include the asterisk, and backslash-escape the parens.

Shining a Light on Spotlight
A key feature included in OS X since Mac OS X Tiger is Spotlight, which indexes and
stores metadata for all of the files on your system. This means that if you’re looking for
a file by name, you can use locate or find, but if you’re looking for all images taken with
a Nikon camera, or all PDF files that are more than 10 pages long, then Spotlight and
its command-line tools are for you.

Spotlight builds what Apple calls a metadata database that has a lot of information about
the files on the system, in addition to their filenames. Whenever you conduct a Spotlight
search—either through the graphical interface or on the command line—this metadata
is searched to reveal information about the files on your system and offer up results.
The two Spotlight commands that are analogous to the regular Unix commands ls and
find are logically called mdls and mdfind.

Let’s start with the mdls command—you’re going to be quite impressed!

What’s Metadata?
If you’ve been using computers for even a short time, you’re used to certain data being
associated with each file you create. The filename, file size, date of creation—that’s all
file-related data that’s familiar to you. But many files have additional, supplemental
information.

For example, Microsoft Word records the name and address of the file creator; Adobe
Photoshop remembers what version of Photoshop you last used to edit an image file;
and even digital cameras write out additional information for each image saved, in‐
cluding the camera name, the date and time the shot was taken, and often the film speed
and lens focal length, all in EXIF format. This supplemental information is what OS X
refers to as metadata, and it’s at the heart of Spotlight.

Shining a Light on Spotlight | 127

Listing Spotlight Metadata with mdls
Some of the most interesting types of files to explore with mdls are the pictures you take
with a digital camera. Here’s what the ls command has to say about the JPEG file
IMG_1912.jpg:

$ ls -l IMG_1912.JPG
-rw------- 1 taylor staff 8600047 May 7 12:17 IMG_1912.JPG

Not particularly useful in terms of what’s actually inside the file. By comparison, here’s
what the mdls command reports:

$ mdls IMG_1912.JPG
kMDItemAcquisitionMake = "Canon"
kMDItemAcquisitionModel = "Canon EOS 50D"
kMDItemAperture = 7
kMDItemAuthors = (
 "
)
kMDItemBitsPerSample = 32
kMDItemColorSpace = "RGB"
kMDItemContentCreationDate = 2012-05-07 18:17:06 +0000
kMDItemContentModificationDate = 2012-05-07 18:17:06 +0000
kMDItemContentType = "public.jpeg"
kMDItemContentTypeTree = (
 "public.jpeg",
 "public.image",
 "public.data",
 "public.item",
 "public.content"
)
kMDItemCopyright = "
kMDItemDateAdded = 2012-05-07 18:17:06 +0000
kMDItemDisplayName = "IMG_1912.JPG"
kMDItemEXIFVersion = "2.2.1"
kMDItemExposureMode = 0
kMDItemExposureProgram = 4
kMDItemExposureTimeSeconds = 0.005555555555555556
kMDItemFlashOnOff = 0
kMDItemFNumber = 11
kMDItemFocalLength = 110
kMDItemFSContentChangeDate = 2012-05-07 18:17:06 +0000
kMDItemFSCreationDate = 2012-05-07 18:17:06 +0000
kMDItemFSCreatorCode = "
kMDItemFSFinderFlags = 0
kMDItemFSHasCustomIcon = 0
kMDItemFSInvisible = 0
kMDItemFSIsExtensionHidden = 0
kMDItemFSIsStationery = 0
kMDItemFSLabel = 0
kMDItemFSName = "IMG_1912.JPG"
kMDItemFSNodeCount = 8600047

128 | Chapter 5: Finding Files and Information

kMDItemFSOwnerGroupID = 20
kMDItemFSOwnerUserID = 501
kMDItemFSSize = 8600047
kMDItemFSTypeCode = "
kMDItemHasAlphaChannel = 0
kMDItemISOSpeed = 400
kMDItemKind = "JPEG document"
kMDItemLogicalSize = 8600047
kMDItemOrientation = 1
kMDItemPhysicalSize = 8601600
kMDItemPixelCount = 15054336
kMDItemPixelHeight = 4752
kMDItemPixelWidth = 3168
kMDItemProfileName = "sRGB IEC61966-2.1"
kMDItemRedEyeOnOff = 0
kMDItemResolutionHeightDPI = 72
kMDItemResolutionWidthDPI = 72
kMDItemWhiteBalance = 1

Quite a bit more useful information, thanks to Spotlight and its smart file parsing mod‐
ules! Note that mdls offers the following details:

• The camera used (Canon EOS 50D), as noted by kMDItemAcquisitionModel
• The dimensions of the image (3168 x 4752), as noted by the kMDItem-
PixelWidth and kMDItemPixelHeight items, respectively

• The resolution of the image (72 DPI), as noted by kMDItemResolutionHeightDPI
and kMDItemResolutionWidthDPI

• Various other digital photo data, including exposure time (kMDItemExposureTime
Seconds), focal length of the lens (kMDItemFocalLength), etc.

Here’s another example of mdls output, this time with a PDF file:

$ mdls ADT\ Writers\ Guide.pdf
kMDItemAlternateNames = (
 "ADT Writers Guide.pdf"
)
kMDItemAuthors = (
 "Dave Taylor"
)
kMDItemContentCreationDate = 2010-03-11 23:36:28 +0000
kMDItemContentModificationDate = 2010-03-22 21:55:54 +0000
kMDItemContentType = "com.adobe.pdf"
kMDItemContentTypeTree = (
 "com.adobe.pdf",
 "public.data",
 "public.item",
 "public.composite-content",
 "public.content"
)

Shining a Light on Spotlight | 129

kMDItemCreator = "Pages"
kMDItemDateAdded = 2011-08-11 23:32:26 +0000
kMDItemDisplayName = "ADT Writers Guide"
kMDItemEncodingApplications = (
 "Mac OS X 10.6.2 Quartz PDFContext"
)
kMDItemFSContentChangeDate = 2010-03-22 21:55:54 +0000
kMDItemFSCreationDate = 2010-03-11 23:36:28 +0000
kMDItemFSCreatorCode = "
kMDItemFSFinderFlags = 16
kMDItemFSHasCustomIcon = 0
kMDItemFSInvisible = 0
kMDItemFSIsExtensionHidden = 1
kMDItemFSIsStationery = 0
kMDItemFSLabel = 0
kMDItemFSName = "ADT Writers Guide.pdf"
kMDItemFSNodeCount = 212658
kMDItemFSOwnerGroupID = 20
kMDItemFSOwnerUserID = 501
kMDItemFSSize = 212658
kMDItemFSTypeCode = "
kMDItemKind = "Portable Document Format (PDF)"
kMDItemLogicalSize = 212658
kMDItemNumberOfPages = 5
kMDItemPageHeight = 792
kMDItemPageWidth = 612
kMDItemPhysicalSize = 212992
kMDItemSecurityMethod = "None"
kMDItemTitle = "ADT Writers Guide"
kMDItemVersion = "1.4"

On a PDF document, the information includes the number of pages (as noted with
kMDItemNumberOfPages; this document has 5), the application used to encode the PDF
(Mac OS X 10.6.2 Quartz PDFContext, as noted by kMDItemEncodingApplications),
and the date and time that the PDF file was created (March 11, 2010 at 23:36:28, as noted
by kMDItemFSCreationDate).

Let’s peek at one more file type before we explore what you can actually do with the
Spotlight data, shall we? This time, it’s an MP3 file from my iTunes library:

$ mdls 06\ Elise\ affair.mp3
kMDItemAlbum = "Lebanese Blonde"
kMDItemAudioBitRate = 160000
kMDItemAudioChannelCount = 2
kMDItemAudioSampleRate = 44100
kMDItemAudioTrackNumber = 6
kMDItemAuthors = (
 "Thievery Corporation"
)
kMDItemContentCreationDate = 2010-10-05 05:22:24 +0000
kMDItemContentModificationDate = 2011-12-19 00:04:16 +0000
kMDItemContentType = "public.mp3"

130 | Chapter 5: Finding Files and Information

kMDItemContentTypeTree = (
 "public.mp3",
 "public.audio",
 "public.audiovisual-content",
 "public.data",
 "public.item",
 "public.content"
)
kMDItemDateAdded = 2011-08-12 01:24:05 +0000
kMDItemDisplayName = "06 Elise affair_.mp3"
kMDItemDurationSeconds = 280.9774
kMDItemFSContentChangeDate = 2011-12-19 00:04:16 +0000
kMDItemFSCreationDate = 2010-10-05 05:22:24 +0000
kMDItemFSCreatorCode = "
kMDItemFSFinderFlags = 64
kMDItemFSHasCustomIcon = 0
kMDItemFSInvisible = 0
kMDItemFSIsExtensionHidden = 0
kMDItemFSIsStationery = 0
kMDItemFSLabel = 0
kMDItemFSName = "06 Elise affair_.mp3"
kMDItemFSNodeCount = 5723052
kMDItemFSOwnerGroupID = 20
kMDItemFSOwnerUserID = 501
kMDItemFSSize = 5723052
kMDItemFSTypeCode = "
kMDItemKind = "MP3 audio"
kMDItemLogicalSize = 5723052
kMDItemMediaTypes = (
 Sound
)
kMDItemMusicalGenre = "Electronic"
kMDItemPhysicalSize = 5726208
kMDItemRecordingYear = 1998
kMDItemTitle = "Elise affair"
kMDItemTotalBitRate = 160000

Encoded in each audio file is the artist (kMDItemAuthors), album (kMDItemAlbum), song
name (kMDItemTitle), genre (kMDItemMusicalGenre), length of track (kMDItemDura
tionSeconds), and much more, all accessible thanks to Spotlight and mdls.

Finding Files with mdfind
Knowing that there’s so much valuable and interesting information available through
Spotlight, how do you actually do something useful with it? The answer is by using the
mdfind command. However, while find has weird syntax, mdfind’s is even weirder and
more unfriendly.

The mdfind command matches files in the filesystem that meet a specific criterion or
set of criteria, specified as:

Shining a Light on Spotlight | 131

"metadata_field_name == 'pattern'"

For example, to find all photographs taken with a Nikon camera, you’d use the following:

$ mdfind "kMDItemAcquisitionModel == 'NIKON*'"
/Users/taylor/Library/Mail/V2/Mailboxes/Film.mbox/
 965F1F99-FAB0-4EFE-9635-E04F1D6A4D84/Data/2/9/2/
 Attachments/292738/2/DLO_0887.jpg
/Users/taylor/Dropbox/Photos/Lily in New Jersey/DSC_0006.jpg
/Users/taylor/Dropbox/Photos/Lily in New Jersey/DSC_0008.jpg
/Users/taylor/Dropbox/Photos/Lily in New Jersey/DSC_0001.jpg
/Users/taylor/Dropbox/Photos/Lily in New Jersey/DSC_0010.jpg
/Users/taylor/Dropbox/Photos/Lily in New Jersey/DSC_0013.jpg

Want to constrain the search to a specific subdirectory? You might be tempted to specify
this directly as you would in find, but that’s not how it’s done. Instead, you need to use
a flag called -onlyin, followed by a directory name. To find all the songs in your Jazz
collection, use:

$ mdfind -onlyin ~/Music "kMDItemMusicalGenre == 'Jazz'"

You can also specify that you want a specific word anywhere in the metadata info by
specifying just that word:

$ mdfind -onlyin ~ Jazz
/Users/taylor/Library/Safari/ReadingListArchives/
 381D47A1-2B73-4D2D-A388-6CAE189C92B4/Page.webarchive
/Users/taylor/Desktop/LearnUnixOSX/ch05.asc
/Users/taylor/Library/Calendars/74F70952-82D1-4222-BD5A-D4F03A465D55.caldav/
 015FBACF-C1E6-42AF-A3B0-37328DBC10A9.calendar/Events/
 M2CD-3-1-F2BEC546-28D9-4671-8E3D-F1E5114615E8.ics
/Users/taylor/Music/iTunes/iTunes Media/Music/Various Artists/Boardwalk Empire/
 20 Harlem Strut (Bonus Track).mp3
/Users/taylor/Music/iTunes/iTunes Media/Music/Various Artists/Boardwalk Empire/
 19 Alice Blue Gown (Bonus Track).mp3
/Users/taylor/Music/iTunes/iTunes Media/Music/Various Artists/Boardwalk Empire/
 18 Maple Leaf Rag (Bonus Track).mp3
...
/Users/taylor/Documents/Books/Cool Web Sites/As Submitted/Ch04.doc
/Users/taylor/Documents/Books/Cool Web Sites/As Submitted/Ch01.doc
/Users/taylor/Documents/Books/Cool Web Sites/As Submitted/app-a.doc
/Users/taylor/Documents/BlogWorld Expo/jazz-performances.doc
/Users/taylor/Documents/Blog Backups/Nov-1-2007/art_dolls.txt

This output is quite interesting because it matches not only files where the word “Jazz”
is part of the Spotlight metadata (as in the iTunes files), but also files that have “Jazz” in
their name (the BlogWorld Expo document jazz-performances.doc), and even a plain-
text file where the word “Jazz” appears in the text itself (art_dolls.txt). Pretty nifty, eh?

132 | Chapter 5: Finding Files and Information

Making Spotlight Useful
Before leaving Spotlight, and certainly before we give up and assume that it’s only useful
on the command line, let’s have a look at a couple of simple Unix commands that can
extract useful information from the mdls information stream.

Curious about the size in pixels of your JPEG files? You can quickly ascertain their height
and width by using grep:

$ mdls IMG_1912.JPG | grep -E '(PixelHeight|PixelWidth)'
kMDItemPixelHeight = 4752
kMDItemPixelWidth = 3168

You can identify the duration of an audio file without loading it into iTunes or any other
audio player by using:

$ mdls "06 Elise affair.mp3" | grep Duration
kMDItemDurationSeconds = 280.9774

You can also use find and xargs to identify files by name and then extract specific char‐
acteristics:

$ find . -name "*jpg" -print0 | xargs -0 mdls | grep FocalLength

Or, you can actually use mdfind in the same manner (it does have a -0 option that makes
it possible to match filenames that have spaces without things breaking):

$ mdfind -0 "kMDItemFocalLength == '35'" | xargs -0 mdls |
 grep -E '(PixelHeight|PixelWidth|DisplayName)'
kMDItemDisplayName = "Little-Hand.jpg"
kMDItemPixelHeight = 532
kMDItemPixelWidth = 800
kMDItemDisplayName = "Peanut.jpg"
kMDItemPixelHeight = 531
kMDItemPixelWidth = 800

This last search matches all pictures on the entire system with a focal length of 35
(meaning, they were taken with a 35mm lens), and then displays the name, height, and
width of each of the images it finds.

These commands really beg for a simple shell script or two, where you could actually
parse the output and reformat it as desired. We’ll talk about writing shell scripts a bit
later in the book, but here’s a sneak preview of what such a script could do:

$ photosize Peanut.jpg
800x531 at 300DPI

The Spotlight commands accessible from the command line still haven’t been refined
quite yet. You can get started with the information shown here, but don’t be surprised
if a revision or two down the road turns the Spotlight commands into really powerful
tools you can use for all sorts of tasks.

Shining a Light on Spotlight | 133

CHAPTER 6

Redirecting I/O

Many Unix programs read input (such as from a file) and write output in a standard
way that lets them work with one another. This exchange of information is commonly
known in Unix circles as I/O (pronounced “eye-oh,” which is short for input/output).
In this chapter, we discuss some of these tools and learn how to connect programs and
files in new and powerful ways.

This chapter generally doesn’t apply to programs, such as the vi editor, that take control
of your entire Terminal window. (less does work in this way, however.) It also doesn’t
apply to graphical programs that open their own windows on your screen, such as iTunes
or Safari. On the other hand, the vast majority of Unix commands that you use on the
command line are line-oriented, and they’re exactly why I/O redirection is included in
OS X’s Unix.

The difference between “screen-oriented” and “line-oriented” is a bit tricky to figure
out when you’re just starting. Think of it this way: if you can use arrow keys to move
up and down lines, it’s a screen-oriented program. The vi editor is the classic example
of a screen-oriented program. If the input or output is all shown line by line, as in the
ls command’s output, then it’s a line-oriented command. Almost all Unix commands
are line oriented, as you’ll see in this chapter.

Standard Input and Standard Output
What happens if you don’t give a filename argument on a command line? Most programs
take their input from your keyboard instead (after you press Return to start the program
running, that is). The keyboard you use to type commands into the Terminal is what’s
called the program’s standard input. As soon as you hit that Return key, you’re providing
the shell with input.

As a program runs, the results are usually displayed on your Terminal screen. What you
see displayed in the Terminal is the program’s standard output. So, by default, each of

135

these programs takes its information from the standard input and sends the results to
the standard output. It turns out that where programs read their information from and
where their output goes to can both be changed, depending on what you type on the
command line. In Unix terminology, this is called I/O redirection.

If a program writes to its standard output, which is normally the screen, you can make
it write to a file instead by using the greater-than symbol (>) operator followed by the
name of the file to which the output should be saved. If you’d prefer connecting the
output of one program to the input of another, as you saw in Chapter 5 when the output
of find was given to the wc (word count) program to count the total number of output
lines rather than just listing them all, you can build a pipe. Command pipes are specified
by using a pipe operator (|), which connects the standard output of one program to the
standard input of the next program in the pipeline. We’ll look at this in more detail
shortly.

If a program doesn’t normally read from files, but reads from its standard input, you
can direct it to read from a file instead by using the less-than symbol (<) operator fol‐
lowed by the name of the file.

Input/output redirection is one of the most powerful and flexible Unix
features.

The tr (character translator) program allows us to demonstrate input redirection, be‐
cause it expects its input to be from standard input, the keyboard. Here’s how to use the
input redirection operator to convert all vowels to x’s in the todo file:

$ cat todo
1. Wake up
2. Look in mirror
3. Sigh
4. Go back to bed.
$ tr '[aeiou]' '[xxxxx]' < todo
1. Wxkx xp
2. Lxxk xn mxrrxr
3. Sxgh
4. Gx bxck tx bxd.
$

Can you see what’s happened here? The tr command has replaced every vowel in the
input file (todo, which replaced standard input because of the < notation) with the cor‐
responding character in the second set (all x’s), displaying the output on standard output
(the Terminal window).

136 | Chapter 6: Redirecting I/O

Putting Text in a File
Instead of always letting a program’s output come to the screen, you can redirect output
to a file. This is useful when you’d like to save program output or when you put files
together to make a bigger file.

cat
cat, which is short for “concatenate,” reads files and outputs their contents one after
another, without stopping. To display files on the standard output (your screen), use:

cat file(s)

For example, let’s display the contents of the file /etc/bashrc. This system file is the global
login file for the bash shell:

$ cat /etc/bashrc
System-wide bashrc file for interactive bash(1) shells.
if [-z "$PS1"]; then
 return
fi

PS1='\h:\W \u\$ '
Make bash check its window size after a process completes
shopt -s checkwinsize
Tell the terminal about the working directory at each prompt.
if ["$TERM_PROGRAM" == "Apple_Terminal"] && [-z "$INSIDE_EMACS"]; then
 update_terminal_cwd() {
 # Identify the directory using a "file:" scheme URL,
 # including the host name to disambiguate local vs.
 # remote connections. Percent-escape spaces.
 local SEARCH=' '
 local REPLACE='%20'
 local PWD_URL="file://$HOSTNAME${PWD//$SEARCH/$REPLACE}"
 printf '\e]7;%s\a' "$PWD_URL"
 }
 PROMPT_COMMAND="update_terminal_cwd; $PROMPT_COMMAND"
fi
$

With cat, you cannot go back to view the previous screens, as you can when you use a
pager program such as less (unless you’re using a Terminal window with a sufficient
scrollback buffer, that is). Because of this, cat is mainly used with redirection, as we’ll
see in a moment.

If you enter cat without a filename, you might be wondering what’s happening. Nothing’s
broken, however: cat simply reads from the keyboard (as we mentioned earlier) until
the end-of-file character is sent. You can get out by pressing Control-D, which ends the
input file for the program.

Standard Input and Standard Output | 137

When you add > filename to the end of a command line, the program’s output is diverted
from the standard output to a file. The > symbol is called the output redirection operator.

For example, let’s use cat with the output redirection operator. The file contents that
you’d normally see on the screen (from the standard output) are diverted into another
file, which we’ll then read by using cat again, this time without any redirection:

$ cat /etc/bashrc > mybashrc
$ cat mybashrc
System-wide bashrc file for interactive bash(1) shells.
if [-z "$PS1"]; then
 return
fi

PS1='\h:\W \u\$ '
Make bash check its window size after a process completes
shopt -s checkwinsize
Tell the terminal about the working directory at each prompt.
if ["$TERM_PROGRAM" == "Apple_Terminal"] && [-z "$INSIDE_EMACS"]; then
 update_terminal_cwd() {
 # Identify the directory using a "file:" scheme URL,
 # including the host name to disambiguate local vs.
 # remote connections. Percent-escape spaces.
 local SEARCH=' '
 local REPLACE='%20'
 local PWD_URL="file://$HOSTNAME${PWD//$SEARCH/$REPLACE}"
 printf '\e]7;%s\a' "$PWD_URL"
 }
 PROMPT_COMMAND="update_terminal_cwd; $PROMPT_COMMAND"
fi
$

Don’t Step on Your Files!
When you use the > operator, be careful not to accidentally overwrite a file’s contents.
Your system may let you redirect output to an existing file. If so, the old file’s contents
will be lost forever (or, in Unix lingo, “clobbered”). Be careful not to overwrite a much-
needed file!

Many shells can protect you from this risk. In bash (the default shell for OS X), use the
command set noclobber. Enter the command at a shell prompt, or put it in your shell’s
~/.profile file. After that, the shell won’t allow you to redirect onto an existing file and
overwrite its contents.

Note that this doesn’t protect against overwriting by Unix programs such as cp; it works
only with the > redirection operator. For more protection, you can set Unix file access
permissions (see Chapter 3).

138 | Chapter 6: Redirecting I/O

An earlier example showed how cat /etc/bashrc displays the file /etc/bashrc onscreen.
The example here adds the > operator, so the output of cat goes to a file called my‐
bashrc in the working directory. Displaying the mybashrc file shows that its contents are
the same as the file /etc/bashrc (in this simple case, the effect is the same as using the
copy command cp /etc/bashrc mybashrc).

You can use the > redirection operator with any program that sends text to its standard
output—not just with cat. For example:

$ who > users
$ date > today
$ ls
mylogin today users ...

Here, we’ve sent the output of who to a file called users and the output of date to the file
named today. Listing the directory shows the two new files. Let’s look at the output from
the who and date programs by reading these two files with cat:

$ cat users
taylor console Nov 3 22:01
taylor ttys000 Nov 4 18:53
$ cat today
Mon Nov 4 19:52:18 PST 2013
$

You can also use the cat program and the > operator to make a small text file. I told you
earlier to type Control-D if you accidentally enter cat without a filename, because in
this case the cat program takes whatever you type on the keyboard as input.

That means the following command takes input from the keyboard and redirects it to
a file:

cat > filename

Try the following example:

$ cat > new-todo
Finish report by noon
Lunch with Xian
Swim at 5:30
^D
$

cat takes the text that you typed as input (in this example, the three lines that begin with
Finish, Lunch, and Swim), and the > operator redirects it to a file called new-todo. Type
Control-D once, on a new line by itself, to signal the end of the text. You should get a
shell prompt.

You can also create a bigger file from smaller files with the cat command and the >
operator. This form creates a file newfile, consisting of file1 followed by file2:

cat file1 file2 > newfile

Standard Input and Standard Output | 139

This highlights that the name cat comes from concatenate, meaning, “put a bunch of
things together.” Here’s what I mean:

$ cat today todo > diary
$ cat diary
Mon Nov 4 19:52:18 PST 2013
1. Wake up
2. Look in mirror
3. Sigh
4. Go back to bed.
$

You shouldn’t use redirection to add a file to itself. For example, you
might hope that the following command would merge today’s to-do
list with tomorrow’s, but this example isn’t going to give you what you
expect:

$ cat todo todo.tomorrow > todo.tomorrow

It works, but it will run for all eternity because it keeps copying the file
over itself. If you cancel it with Control-C and use ls to examine the
file, you’ll see that it’s gotten quite large:

^C
$ ls -sk todo*
 4 todo
 61436 todo.tomorrow

ls -sk shows the size in kilobytes, so it’s grown to about 61 mega‐
bytes! The right way to do this is either to use a temporary file (as you’ll
see in a later example) or simply to use a text editor program.

You can add more text to the end of an existing file, instead of replacing its contents, by
using the >> (append redirection) operator. Use it as you would the > (output redirec‐
tion) operator. So, the following appends the contents of file2 to the end of file1:

cat file2 >> file1

This doesn’t affect the contents of file2 since it is being read from, not written to.

For an example, let’s append the contents of the file users and the current date and time
to the file diary. Here’s what it looks like:

$ cat users >> diary
$ date >> diary
$ cat diary
Mon Nov 4 19:52:18 PST 2013
1. Wake up
2. Look in mirror
3. Sigh
4. Go back to bed.
taylor console Nov 3 22:01

140 | Chapter 6: Redirecting I/O

taylor ttys000 Nov 4 18:53
Mon Nov 4 19:52:18 PST 2013
$

Unix doesn’t have a redirection operator that adds text to the beginning of a file, but
you can accomplish the same thing by renaming the old file, then rebuilding the contents
of the file as needed. For example, maybe you’d like each day’s entry to go at the beginning
of your diary file. To achieve this, simply rename diary to something like older.diary,
make a new diary file with today’s entries, then append older.diary (with its old contents)
to the new diary. For example:

$ mv diary older.diary
$ date > diary
$ cat users >> diary
$ cat older.diary >> diary
$ rm older.diary

This example could be shortened by combining the two cat commands into one, giving
both filenames as arguments to a single cat command. That wouldn’t work, though, if
you were making a real diary with a command other than cat users.

Pipes and Filters
We’ve seen how to redirect input from a file and output to a file. You can also connect
two programs together so the output from one program becomes the input of the next,
without ever being written to disk. Two or more programs connected in this way form
a pipe. To make a pipe, place a vertical bar (|) on the command line between the two
commands.

When a pipe is set up between two commands, the standard output of the command
to the left of the pipe symbol becomes the standard input of the command to the right
of the pipe symbol. Any two commands can form a pipe, as long as the first program
writes to standard output and the second program reads from standard input. For ex‐
ample:

$ ls -l $HOME | colrm 1 30
 714 Jul 29 23:16 Desktop
1020 Jul 19 23:39 Documents
 238 Jul 30 07:22 Downloads
 408 Jul 28 07:14 Dropbox
 714 Jul 24 08:47 Google Drive
1768 Jul 29 23:00 Library
 340 Jul 26 14:54 Movies
 204 Jul 19 22:53 Music
 408 Jul 24 11:59 Pictures
1938 Jul 9 16:52 Presentations
 170 Jul 19 10:04 Public
 408 Jul 20 07:20 bin

Pipes and Filters | 141

This example combines ls -l with the colrm (column remove) command to give you a
listing that just includes file size, modification date, and name.

You could take this example one step further and redirect its output to
a file; for example:

$ $ ls -l $HOME | colrm 1 30 > homedirlist.txt

That command line starts by listing the files, uses colrm to strip out
the extraneous information that ls -l returns, and then redirects the
remaining information into a new file, named homedirlist.txt.
You just can’t do that in the Finder.

When a program takes its input from another program, performs some operation on
that input, and writes the result to the standard output (or pipes it to yet another pro‐
gram), it is referred to as a filter. A common use of filters is to modify output. Just as a
common filter culls unwanted items, Unix filters can restructure output so you get just
what you need.

Most Unix programs can be used to form pipes. Some programs that are commonly
used as filters are described in the next sections. (Note that these programs aren’t used
only as filters or parts of pipes, though; they’re also useful in their own right.)

wc
The wc program is one of the most useful pipe programs, believe it or not. By default,
the program counts characters, words, and lines in the input file or standard input, but
you can constrain the output to just characters (-c), words (-w), or lines (-l). Counting
lines turns out to be wonderfully useful.

A classic example is identifying how many “core” files are in the filesystem.

Core files are identified with the suffix .core; they’re crashed program
debugging datafiles and can be deleted to free up disk space as needed.

This is done with a call to find with the output piped to wc:

$ sudo find / -name "*.core" -print | wc -l
13
$

sudo helps sidestep any permissions problems here.

142 | Chapter 6: Redirecting I/O

A more common use of find and wc together is to count larger output streams. For
example, wondering how many directories you have within your Documents directory?
You might be surprised:

$ find ~/Documents -type d -print | wc -l
 1064

You can see how having a single number displayed is far superior to having all 1,064
directory names stream past!

tr
Another simple and helpful program for command pipes is tr, the translator utility. The
most common use for this command is to replace all occurrences of one character with
another character. Here’s how you would replace all occurrences of x with y:

tr "x" "y"

More usefully, tr can also work with sets of characters (you can either list them all in a
range or specify a named range like lower or alpha), so it’s an easy way to turn all
lowercase text into uppercase:

tr "[:lower:]" "[:upper:]" < file1

For example:

$ tr "[:lower:]" "[:upper:]" < todo
1. WAKE UP
2. LOOK IN MIRROR
3. SIGH
4. GO BACK TO BED.
$

The tr command has a number of different options for power users, including -c to
invert the specified pattern (that is, if you specify tr -c “abc”, the program matches
anything other than a, b, or c), and -d deletes any characters from the first pattern
specified.

To remove all vowels from the input, you could use:

$ tr -d "[aeiou]" < todo
1. Wk p
2. Lk n mrrr
3. Sgh
4. G bck t bd.

The tr command can be quite useful in other situations, too. Wondering how many
words appear in a large text file? tr can figure this out with a little help from the -s flag,
which tells it to output only one occurrence of a character if more than one is found:

$ tr -cs "[:alpha:]" "\n" < alice.txt | wc -l
29061

Pipes and Filters | 143

Here, we can see that Lewis Carroll’s Alice’s Adventures in Wonderland contains just
over 29,000 words.

You can download this text for yourself at http://intuitive.com/wicked/
scripts/alice.txt.gz.

As with the wc command, tr may not seem too useful by itself, but when you start
building up more complex pipes you’ll be surprised by how frequently it’s useful to
translate case and fix similar problems.

grep
As you learned in the previous chapter, grep searches the contents of files for lines that
contain a certain pattern. The syntax is:

grep "pattern" file(s)

Most of the earlier discussion, however, focused on how grep can help you search
through files to find lines that match a specified pattern. In fact, grep is a tremendously
useful command for pipes, too, because it can help you easily weed out the few lines you
care about from hundreds or thousands of lines of information.

As an example, let’s use the mdfind command to identify files on the system that refer‐
ence the word “ipod” (mdfind, a part of Spotlight, is discussed in Chapter 5). The default
command reveals that there are 1,030 matches, by using wc:

$ mdfind ipod | wc -l
 1030

It turns out that many of these are actually related to the scripting Automator utility and
other library files. They’re easily identified by their Library directory location, however,
so grep, with its useful -v option (which returns everything but lines that match this
pattern) helps us identify how many files aren’t in the Library subdirectory:

$ mdfind ipod | grep -v "Library" | wc -l
 150

Of those 150, how many are within my home directory?

$ mdfind ipod | grep -v "Library" | grep "/taylor/" | wc -l
 82

Notice here that you can build pipes that are 2, 3, 4, or even 10 or 20 commands long.
Unix has no limit on how complex your pipes can be, and I commonly work with pipes
that are six or seven commands long.

144 | Chapter 6: Redirecting I/O

http://intuitive.com/wicked/scripts/alice.txt.gz
http://intuitive.com/wicked/scripts/alice.txt.gz

head and tail
When you have output of hundreds or thousands of lines, being able to peek in and see
the first few or last few lines is critically important. Those two tasks are enabled by the
helpful head and tail commands. With both commands, the default action is to show
10 lines (the first 10 for head, and the last 10 for tail). You can change this by specifying
n, where n is the desired number of lines. To see just the first three lines, use head -3,
and to see the last 15, use tail -15.

For example, we can see that the last 15 words of Alice’s Adventures in Wonderland are:

$ tr -cs "[:alpha:]" "\n" < alice.txt | tail -15
in
all
their
simple
joys
remembering
her
own
child
life
and
the
happy
summer
days
$

In addition to using head and tail to view the beginning or end of files, with a little bit
of fancy footwork, you can use them to view any range of lines in a file. Want to see lines
131−134? You could use:

$ head -134 alice.txt | tail -4
Alice opened the door and found that it led into a small passage,
not much larger than a rat-hole: she knelt down and looked along
the passage into the loveliest garden you ever saw. How she longed
to get out of that dark hall, and wander about among those beds of
$

This could also be accomplished by using other Unix commands, and that’s part of the
power of Unix: there’s usually more than one way to solve a problem at the command
line.

sort
The sort program arranges lines of text alphabetically or numerically. The following
example alphabetically sorts the lines in the food file. sort doesn’t modify the file itself;
it just reads the file and displays the result on standard output (in this case, the Terminal):

Pipes and Filters | 145

$ sort food
Afghani Cuisine
Bangkok Wok
Big Apple Deli
Isle of Java
Mandalay
Sushi and Sashimi
Sweet Tooth
Tio Pepe's Peppers

By default, sort arranges lines of text alphabetically. Many options control the sorting,
and Table 6-1 lists some of them.

Table 6-1. Some sort options
Option Description

-n Sort numerically (for example, 10 sorts after 2); ignore blanks and tabs.

-r Reverse the sorting order.

-f Sort upper- and lowercase together.

-k x Start key at position x.

Don’t forget that more than two commands may be linked together with a pipe. Taking
a previous pipe example using grep, you can further sort the files modified in January
by order of size. The following pipe uses the commands ls, grep, and sort:

$ ls -l | grep "Jan" | sort -n -k 5
drwx------ 2 taylor taylor 264 Jan 13 10:02 Music/
drwx------ 4 taylor taylor 264 Jan 29 22:33 Movies/
drwxr-xr-x 3 taylor taylor 264 Jan 24 21:24 Public/
drwx------ 95 taylor taylor 3186 Jan 29 22:44 Pictures/
$

Both grep and sort are used here as filters to modify the output of the ls -l command.
This pipe sorts all files in your working directory modified in January by order of size,
and prints them to the Terminal screen. The sort option -n forces a numeric (rather than
alphabetic) sort, and -k 5 uses the fifth field as the sort key. So, the output of ls, filtered
by grep, is sorted by the file size (this is the fifth column, starting with 264).

sort is also a powerful tool for identifying the extremes of a list. A common use is to
identify the largest files on the system, which can be done by using find and xargs to
generate a list of all files, one per line, including their size in 512-byte blocks, then feeding
that to sort -rn (reverse, numeric) and looking at the top few:

$ find . -type f -print0 | xargs -0 ls -s1 | sort -rn | head
14082048 ./Documents/Parallels/Ubuntu Linux 11.04 Desktop.pvm/
 ubuntu-linux-11.04-desktop-amd64-0.hdd/ubuntu-linux-11.04-desktop-amd...
9474040 ./Music/iTunes/iTunes Media/Movies/Lawrence of Arabia/Lawrence of Ara...
6316920 ./Music/iTunes/iTunes Media/Movies/Who Framed Roger Rabbit/Who Framed...
6129352 ./Music/iTunes/iTunes Media/Movies/Dial 'M' For Murder/Dial 'M' For M...
5774616 ./Music/iTunes/iTunes Media/Movies/Casablanca/Casablanca.mp4

146 | Chapter 6: Redirecting I/O

5766976 ./Music/iTunes/iTunes Media/Movies/Tomb Raider - The Cradle of Life/T...
5764848 ./Music/iTunes/iTunes Media/Movies/In The Shadow of the Moon/In The S...
5559592 ./Documents/Entourage Mail Data/Database
5559592 ./Documents/Microsoft User Data/Office 2008 Identities/
 Main Identity/Database
5409584 ./Music/iTunes/iTunes Media/Movies/Tomb Raider/Tomb Raider.mp4

Coupled with the power of find, you should be able to see how you can identify not only
the largest files, but also the largest files owned by a particular user (hint: use find -
user XX to match all files owned by that user).

uniq
Another command that’s quite useful in pipes is the oddly named uniq (which would
be easier to remember if it were spelled correctly: unique). Give uniq a stream of input,
and it silently eliminates duplicate lines. Add the -c flag, and uniq not only removes
duplicate lines but lists a count of how frequently each line occurs.

If you’re thinking that sort and uniq are a good pair, you’re absolutely correct! For ex‐
ample, figuring out how many unique words occur in the book Alice’s Adventures in
Wonderland is a simple task:

$ tr -cs "[:alpha:]" "\n" < alice.txt | uniq | wc -l
 27313

Or is it? That’s not correct, because in this situation, uniq needs to have the input sorted.
Add that step and the number changes dramatically:

$ tr -cs "[:alpha:]" "\n" < alice.txt | sort | uniq | wc -l
 2868

Further, we should also ensure that all the letters are lowercase, so that “Hello” and
“hello,” for example, are counted as one word, not two. This can be done by using the
-f (ignore case) flag to sort:

$ tr -cs "[:alpha:]" "\n" < alice.txt | sort -f | uniq | wc -l
 2577

So now you know—the entire novel is written using only 2,577 different words.

Piping Output to a Pager
The less program, which you saw in Chapter 4, can also be used as a filter. A long output
normally zips by you on the screen, but if you run text through less, the display stops
after each page or screen of text (that’s why such programs are called pagers: they let you
see the output page by page).

Let’s assume that you have a long directory listing. (If you want to try this example and
need a directory with lots of files, use cd first to change to a system directory such

Pipes and Filters | 147

as /bin or /usr/bin.) To make it easier to read the sorted listing, pipe the output through
less:

$ cd /bin
$ ls -l | sort -nk 5 | less
total 5976
-rwxr-xr-x 1 root wheel 13984 May 5 18:54 sleep
-rwxr-xr-x 1 root wheel 14048 May 5 18:54 echo
-r-xr-xr-x 1 root wheel 14064 May 5 21:18 wait4path
-rwxr-xr-x 1 root wheel 14096 May 5 21:18 rmdir
-r-xr-xr-x 1 root wheel 14192 May 5 18:54 domainname
-rwxr-xr-x 1 root wheel 14192 May 5 18:54 pwd
...
-rwxr-xr-x 1 root wheel 566144 May 5 18:54 zsh
-r-xr-xr-x 1 root wheel 1333792 May 5 21:18 bash
-r-xr-xr-x 1 root wheel 1333872 May 5 21:18 sh
-r-xr-xr-x 1 root wheel 1380176 May 5 21:18 ksh

less reads a screen of text from the pipe (consisting of lines sorted by order of file size),
then prints a colon (:) prompt. At the prompt, you can type a less command to move
through the sorted text. less reads more text from the pipe, shows it to you, and saves a
copy of what it has read, so you can go backward to reread previous text if you want.
When you’re done viewing the sorted text, type the q command at the colon prompt to
quit less. Table 6-2 contains a list of useful commands to use along with less.

Table 6-2. Useful less commands to remember
Command Meaning

d Scroll down (forward) one half of the screen size.

u Scroll up (backward) one half the screen size.

b Scroll back one screen.

f Scroll forward one screen.

/pat Scroll forward until a line containing the specified pattern is found.

?pat Scroll back until a line containing the specified pattern is found.

n Repeat previous search.

:n Move to the next file in the file list (if more than one file was specified).

v Open up the file in the vi editor.

q Quit.

148 | Chapter 6: Redirecting I/O

Printing
Sometimes there’s no substitute for hardcopy, for information that’s sent to your printer
and printed on a piece of paper. You know, like this book. You can generate printouts
from within the Terminal itself, of course, though it prints everything in the buffer, not
just the text that’s visible in the Terminal window itself. You can also select a portion of
text, choose Shell→Export Selected Text As, then open that file in TextEdit and print it,
but that’s rather a hassle.

Instead, it turns out that you can print files directly from the Unix command line in OS
X, and there are two ways to do this. If you want the pure Unix solution, use the lp
command series, but if you have a Bonjour network and one or more printers accessible
through Bonjour, you can queue up printouts from the command line, too.

The Unix Way
The command used for sending information to the printer is lp, and there are a set of
lp-related commands that you’ll need to become familiar with if you want to actually
print something. To start, you need to ensure that you have at least one printer config‐
ured in OS X. If you haven’t done so yet, set up your printer by going to Apple
Menu→System Preferences→Print & Scan, then clicking on the “+” button to add a
printer to your system. Once you have at least one printer configured, you can identify
it by name with the lpstat command.

lpstat
With the -a flag, lpstat shows everything about the known printers:

$ lpstat -a
Brother_HL_2070N_series accepting requests since Mon Aug 22 17:59:19 2013
EPSON_Artisan_837 accepting requests since Sat Mar 31 09:06:42 2013
Samsung_ML_1740___MiniMe accepting requests since Sun May 13 09:36:44 2013

In this case, you can see that I have three printers, all online and accepting print jobs.
To see which of your possible printers is the default, use the -d option:

$ lpstat -d
system default destination: Samsung_ML_1740___MiniMe

If you have printers hooked up through Bonjour, lpstat will see them
too, which is particularly helpful!

Printing | 149

If you really want to learn a lot about your printers, print queues, and more, use the -t
option:

$ lpstat -t
scheduler is running
system default destination: Samsung_ML_1740___MiniMe
device for Brother_HL_2070N_series:
 dnssd://Brother%20HL-2070N%20series._printer._tcp.local./
device for EPSON_Artisan_837:
 dnssd://EPSON%20Artisan%20837._ipp._tcp.local./
device for Samsung_ML_1740___MiniMe:
 dnssd://Samsung%20ML-1740%20%40%20MiniMe._ipp._tcp.local./
Brother_HL_2070N_series accepting requests since Mon Aug 22 17:59:19 2013
EPSON_Artisan_837 accepting requests since Sat Mar 31 09:06:42 2013
Samsung_ML_1740___MiniMe accepting requests since Sun May 13 09:36:44 2013
printer Brother_HL_2070N_series is idle. enabled since Mon Aug 22 17:59:19 2013
printer EPSON_Artisan_837 is idle. enabled since Sat Mar 31 09:06:42 2013
printer Samsung_ML_1740___MiniMe is idle. enabled since Sun May 13 09:36:44 2013

Everything looks good!

lp
You actually add a job to the printer queue by using the lp command. Printing the output
of an ls -l command is easy:

$ ls -l | lp
request id is Samsung_ML_1740___MiniMe-7 (0 file(s))

The request ID is rather ugly, but unless you need to remove a job because you’ve
changed your mind, you shouldn’t need to pay attention to anything more than that the
print job has been accepted.

A few seconds later, your printout should emerge from the printer.

The first time you print out more than a single page of content, you’ll realize that lp is
a crude printing tool without any capability to paginate, add any sort of header or footer,
etc.

pr
The pr program does minor formatting of files on the Terminal or for a printer. For
example, if you have a long list of names in a file, you can format it onscreen into two
or more columns.

The syntax is:

pr option(s) filename(s)

pr changes the format of the file only on the screen or on the printed copy; it doesn’t
modify the original file. Table 6-3 lists some pr options.

150 | Chapter 6: Redirecting I/O

Table 6-3. Some pr options
Option Description

-n Produces n columns of output

-d Double-spaces the output

-h header Prints header at top of each page

-t Eliminates printing of header and top/bottom margins

Other options allow you to specify the width of columns, set the page length, etc. For a
complete list of options, see the manpage, man pr.

Before we get into using pr, here are the contents of a sample file named food:

$ cat food
Sweet Tooth
Bangkok Wok
Mandalay
Afghani Cuisine
Isle of Java
Big Apple Deli
Sushi and Sashimi
Tio Pepe's Peppers
$

Let’s use some pr options to make a two-column report with the header “Restaurants”:

$ pr -2 -h "Restaurants" food

May 14 12:02 2012 Restaurants Page 1

Sweet Tooth Isle of Java
Bangkok Wok Big Apple Deli
Mandalay Sushi and Sashimi
Afghani Cuisine Tio Pepe's Peppers
.
.
$

The text is output in two-column pages. The top of each page has the date and time, the
header (if none is specified, the name of the file is used as the header), and page number.
To send this output to the default OS X printer instead of to the Terminal screen, create
a pipe to the lpr printer program:

$ pr -2 -h "Restaurants" food | lpr

Printing | 151

CHAPTER 7

Multitasking

OS X can do many jobs at once, dividing the processor’s time between running appli‐
cations and system processes so quickly that it looks as if everything is running at the
same time. This is called multitasking. As new applications are launched, processes are
started, and others go idle or shut down entirely, the system monitors each of these tasks
and doles out memory and CPU resources on the fly to make sure everything runs
smoothly.

Most users think of multitasking in terms of the way OS X handles applications like
Adobe Photoshop, Microsoft Word, Mail, iChat, Safari, etc.—allowing you to have
multiple applications open, each with its own windows. But on the Unix side, OS X
allows you to run multiple Unix programs and/or processes at the same time as well.
These processes can all be run and monitored through one single Terminal window,
with a little help from something called job control. Even if you’re using a window system,
you may want to use job control to do several things inside the same Terminal window.
For instance, you may prefer to do most of your work from one Terminal window,
instead of having multiple Terminal windows open when you really don’t need to.

Why else would you want job control? Suppose you’re running a Unix program that
takes a long time to run. On a single-task operating system, you would enter the com‐
mand and wait for the job to finish, returning you to the command prompt (which is
your indication that you’re free to enter a new command). In OS X, however, you can
enter new commands in the “foreground” while one or more programs are running in
the “background.”

When you enter a command as a background process, the shell prompt reappears im‐
mediately so that you can enter a new command. The original program still runs in the
background, but you can use the same Terminal window to do other things during that
time. Depending on your system and your shell, you may even be able to close the
Terminal window or even completely log off from OS X while the background process
runs to completion.

153

Running a Command in the Background
Running a program as a background process is most often done to free a Terminal when
you know the program is going to take a long time to run. It’s also done whenever you
want to launch a new application from an existing Terminal window, so you can keep
working in the existing Terminal, as well as within the new application.

To run a program in the background, all you need to do is add the & character at the
end of the command line before pressing the Return key. The shell then assigns and
displays a process ID number for the program:

$ sort bigfile > bigfile.sort &
[1] 372
$

Sorting is a good example, because it can take a while to sort huge files.

The process ID (or PID) for this program is 372. The PID is useful when you want to
check the status of a background process, or if you need to cancel it. To check on the
status of the process, use the ps command with the following two options: -f to have
expanded output, and -p because you’re specifying a process ID. The full command for
this example is:

$ ps -fp 372
 UID PID PPID C STIME TTY TIME CMD
 501 372 16901 0 10:12AM ttys001 0:00.00 sort

To cancel a process, use the kill command, followed by the PID of the process you want
to cancel. In this instance, the command would look like:

$ kill 372
$

Fortunately, you don’t need to remember the PID every time, because there are Unix
commands (explained in the next section) to check on the processes you have running.
Also, bash writes a status line to your screen when the background process finishes.

In bash, you can put an entire sequence of commands separated by semicolons (;) into
the background by putting an ampersand (&) at the end of the entire command line. In
other shells, enclose the command sequence in parentheses before adding the
ampersand:

(command1; command2) &

OS X’s Unix shells also have a feature (mentioned earlier) called job control that allows
you to use the suspend character (usually Control-Z) to suspend a program running in
the foreground. The program pauses, and you get a new shell prompt. You can then do
anything else you like, including putting the suspended program into the background
using the bg command. The fg command brings a suspended or background process to
the foreground.

154 | Chapter 7: Multitasking

For example, you might start sort running on a big file, then decide you want to edit
another file. You can stop sort with Control-Z, and then put it in the background with
the bg command. The shell then gives you another shell prompt, at which you can start
using vi while sort runs merrily in the background:

$ sort hugefile1 hugefile2 > sorted
...time goes by...
CTRL-Z
Stopped
$ bg
[1] sort hugefile1 hugefile2 > sorted &
$ vi test.txt

Checking on a Process
If a background process seems to be taking forever to run, or if you change your mind
and want to stop a process, you can check the status of the process and even cancel it.

ps
When you enter the ps command you get a variety of useful information about the
processes that are running, including how long a process has been running and the
Terminal from which it was run. The tty program shows the name of the Terminal where
you’re logged in; this is especially helpful when you’re logged into multiple machines,
as the following code shows:

$ ps
 PID TTY TIME CMD
 409 ttys000 0:00.04 -bash
 813 ttys001 0:00.02 -bash
$ tty
/dev/ttys000

In the above output, s000 corresponds to the Terminal window for ttys000 (which is
the current window, as the tty command shows), and s001 denotes a second Terminal
window. In its basic form, ps lists the following:
Process ID (PID)

A unique number assigned by Unix to the process

Terminal name (TTY)
The Unix name for the terminal from which the process was started

Runtime (TIME)
The amount of CPU time (in minutes and seconds) that the process has used

COMMAND

The name of the process

Checking on a Process | 155

In Unix, each Terminal window has its own name. The previous example shows pro‐
cesses running on two windows: s000 and s001. If you want to see the processes that a
certain user is running, use the following construct:

ps -U username

where username is the username of someone logged into the system.

To see all processes running on the system, use ps -ax. The -a option shows processes
from all users, and the -x option shows processes that are not connected with a Terminal
session; many of these processes are a core part of OS X, while others may be graphical
programs you are running, such as Safari. The head -20 in the following command line
limits the output to the first 20 lines:

$ ps -ax | head -20
 PID TTY TIME CMD
 1 ?? 0:35.49 /sbin/launchd
 11 ?? 0:04.69 /usr/libexec/UserEventAgent (System)
 12 ?? 0:01.96 /usr/libexec/kextd
 13 ?? 0:02.74 /usr/libexec/taskgated -s
 14 ?? 0:07.55 /usr/sbin/securityd -i
 15 ?? 0:06.79 /usr/sbin/notifyd
 16 ?? 0:05.60 /usr/libexec/diskarbitrationd
 17 ?? 0:04.27 /System/Library/CoreServices/powerd.bundle/powerd
 18 ?? 0:20.57 /usr/libexec/configd
 19 ?? 0:04.20 /usr/sbin/syslogd
 20 ?? 0:03.90 /usr/sbin/distnoted daemon
 21 ?? 0:22.68 /usr/libexec/opendirectoryd
 24 ?? 0:05.52 /usr/sbin/cfprefsd daemon
 25 ?? 0:01.04 /usr/libexec/xpcd
 36 ?? 0:02.99 com.apple.authd
 40 ?? 0:09.39 /System/Library/CoreServices/coreservicesd
 50 ?? 0:00.13 /usr/libexec/wdhelper
 51 ?? 0:00.31 /usr/libexec/warmd
 52 ?? 0:17.70 /System/Library/PrivateFrameworks/MobileDevice.framework/
 Versions/A/Resources/usbmuxd -launchd

The output of ps -ax can be baffling, since almost all of what you get are the low-level
system tasks that are required for OS X and Aqua to run happily on your system.

In the above list, notice the OS kernel extensions module kextd, the
configuration management daemon configd, the audio utility coreau‐
diod, the low-level disk management program diskarbitrationd, the
coreservices, dynamic_pager, etc. These are processes that a regular user
shouldn’t have to worry about. Just beware before you try killing one
of these processes; doing so could cause your system to crash.

You can find out what processes are being run as root by using -U root:

156 | Chapter 7: Multitasking

$ ps -ax -U root | head
 PID TTY TIME CMD
 1 ?? 0:35.61 /sbin/launchd
 11 ?? 0:04.70 /usr/libexec/UserEventAgent (System)
 12 ?? 0:01.96 /usr/libexec/kextd
 13 ?? 0:02.74 /usr/libexec/taskgated -s
 14 ?? 0:07.55 /usr/sbin/securityd -i
 15 ?? 0:06.80 /usr/sbin/notifyd
 16 ?? 0:05.60 /usr/libexec/diskarbitrationd
 17 ?? 0:04.28 /System/Library/CoreServices/powerd.bundle/powerd
 18 ?? 0:20.58 /usr/libexec/configd

You can also change the output, of course, by specifying yourself as the account with
the $LOGNAME environment variable (ps -ax -U $LOGNAME | head), though the results
will probably look identical until you get to the last few processes on the list.

When you’re just learning how to interpret the oft-confusing output of the ps command,
you might find it quite helpful to simultaneously run the Activity Monitor (/Applica‐
tions/Utilities), shown in Figure 7-1.

It’s useful to change the filter at the top of the Activity Monitor from the default of “My
Processes” to “All Processes” from the View menu in the program. This gives you a much
better sense of what’s happening on your computer, and if you do have a runaway ap‐
plication or one that’s locked, it often doesn’t show up in the My Processes view anyway.

top
A better way to see what applications are running and which are taking up the most
resources is to use the helpful top command. Figure 7-2 shows top in action.

If you’re curious what commands consume the most system resources, leave top running
in a Terminal window while you work. However, do be aware that top itself consumes
some system resources, so if you’re not paying attention to its output, you can quit top
by typing q. You can always start it up again if things seem to be oddly slow on your
computer.

top packs a lot of information into its display—considerably more than we have space
to explain here. However, look at the first few lines and you’ll get some quick insight
into how well your system configuration matches the needs of the processes you’re
running. You can grab a snapshot of the first seven lines of output with this command
(the flag used is a lowercase “L” followed by the digit one):

Checking on a Process | 157

Figure 7-1. The Activity Monitor also shows running processes

Figure 7-2. The top command shows processes running, sorted by CPU usage

158 | Chapter 7: Multitasking

$ top -l 1 | head -7
Processes: 205 total, 3 running, 9 stuck, 193 sleeping, 1063 threads
2013/11/04 20:04:35
Load Avg: 1.81, 1.56, 1.43
CPU usage: 3.17% user, 11.11% sys, 85.71% idle
SharedLibs: 114M resident, 0B data, 23M linkedit.
MemRegions: 38601 total, 3361M resident, 126M private, 1343M shared.
PhysMem: 9899M used (1798M wired), 6196M unused.

What you should look for here is high CPU usage (anything over about 25 percent is
usually considered high, unless you’re running something like Photoshop or some other
CPU-intensive task), too little free memory (I have 6196M free—end of line 6—out of
a 16GB RAM configuration, which is plenty of space), or too many virtual memory
pageouts (I have 0 pageouts, which is great).

Swapping is based on the idea that the memory needed for an appli‐
cation can be broken into pages, as many as needed for the app at that
particular moment. As multiple processes compete for the system
memory, memory pages that haven’t been accessed for a while are
temporarily copied to a special place on the hard disk, and those pa‐
ges are given to applications that need them now. The process of
swapping an older page for a newer one is called a pageout.

To display processes sorted by CPU usage (rather than process ID), use:

$ top -o cpu

If you find this view to be more useful than top’s traditional view, you can add this as
an alias to your .profile file:

alias top='/usr/bin/top -s 5 -o cpu'

This updates top’s display every five seconds rather than the default of every second,
and sorts the results by highest CPU usage to lowest. For more information on top, visit
its manpage (man top).

If you see a process in top that seems to be a resource hog, you can give its PID value to
ps to find out more about that specific job. If you know that Apple Mail is running as
process 317, for example, ps -p 317 will give you more process-related information.

Watching System Processes
The ps -ax command tells you which system processes are running, but if you want to
see what they are up to, you’ll need to look in the system log. To view the system log, use
the command tail. If you use the -f option, tail follows the file as it grows. So, if you open

Checking on a Process | 159

up a new Terminal window and issue the following command, you can monitor the
informational messages that come out of system utilities:

$ tail -f /var/log/system.log
May 14 12:21:38 Daves-MBP usbmuxd[22]: _AMDeviceConnectByAddressAndPort (thr...
May 14 12:21:52 Daves-MBP sudo[971]: taylor : TTY=ttys000 ; PWD=/Users/tay...
May 14 12:21:53 Daves-MBP com.apple.usbmuxd[22]: _SendDetachNotification (th...
 10:40:f3:bd:ab:fd@fe80::1240:f3ff:febd:abfd._apple-mobdev._tcp.local.: _Bro...
May 14 12:21:55 Daves-MBP com.apple.usbmuxd[22]: _SendAttachNotification (th...
May 14 12:21:55 Daves-MBP usbmuxd[22]: _AMDeviceConnectByAddressAndPort (thr...
May 14 12:22:02 Daves-MBP com.apple.usbmuxd[22]: _SendDetachNotification (th...
May 14 12:23:29 Daves-MBP sandboxd[975] ([175]): Mail(175) deny file-read-da...
May 14 12:23:29 Daves-MBP kernel[0]: Sandbox: sandboxd(975) deny file-write-...
May 14 12:23:29 Daves-MBP kernel[0]: Sandbox: sandboxd(975) deny file-write-...
May 14 12:23:29 Daves-MBP sandboxd[975] ([175]): Mail(175) deny file-read-da...

When you’re done, use Control-C to quit tail’s monitoring and get a new command
prompt. You can also see some system messages by running the Console application
(/Applications/Utilities). Launch the Console, then click on the Show Logs List icon in
the toolbar. You’ll see that there’s a nice list of all logfiles on your Mac, and if you click
on one, you can read through it for critical errors or just monitor what’s been written
to the logfile, exactly as you can with the tail -f command.

Canceling a Process
You may decide that you shouldn’t have put a process in the background, or that the
process is taking too long to execute. You can cancel a background process if you know
its PID.

kill
The kill command terminates a process. This has the same basic result as using the
Finder’s Force Quit option, though it can be more graceful, as you’ll see. To kill a process,
use the following format:

kill PID(s)

OS X includes a very helpful utility called Force Quit, accessible from
the Apple menu (Apple Menu→Force Quit, or Option-⌘-Esc), which
can be quite useful when applications are stuck or nonresponsive.
However, commands entered into the Terminal window can only be
canceled from the command line—they don’t show up in the Force
Quit window. Additionally, Force Quit doesn’t show you administra‐
tive processes. To stop Unix programs and administrative processes,
you must use either the command line or the Activity Monitor (/
Applications/Utilities).

160 | Chapter 7: Multitasking

kill terminates the designated PIDs (shown under the PID heading in the ps listing). If
you do not know the PID of the process you want to kill, you should first run ps to
display the status of your processes.

The following example illustrates how to enter two commands—sleep and who—on the
same line, and designate those to run as a background process. The sleep n command
simply causes a process to “go to sleep” for n seconds:

$ (sleep 60;who) &
[1] 981
$ ps
 PID TTY TIME CMD
 409 ttys000 0:00.09 -bash
 981 ttys000 0:00.00 -bash
 982 ttys000 0:00.00 sleep 60
 813 ttys001 0:00.02 -bash
 912 ttys001 0:00.58 vi ch07.asc
$ kill 981
[1]+ Terminated: 15 (sleep 60; who)
$

Here, I decide that 60 seconds was too long to wait for the output of who. The ps listing
showed that sleep had the PID number 982, so I used this PID to kill the sleep process.
You should see a message like “Terminated” or “Killed”; if you don’t, use another ps
command to make sure the process has been killed (or that you killed the right process).

Now who executes immediately—as it’s no longer waiting on sleep—and displays a list
of users logged into the system.

killall
If you’d rather not worry about finding the PID for a particular process, you can always
use the killall command, which lets you kill processes by name instead. Since it’s possible
to inadvertently kill a different process with the same name (like your Terminal appli‐
cation or your shell), I strongly recommend that you always start by using the -s option
so killall shows you what it’ll do without actually killing anything:

$ (sleep 60;who) &
[2] 990
$ killall -s make
No matching processes belonging to you were found
$ killall -s who
No matching processes belonging to you were found
$ killall -s sleep
kill -TERM 991
kill -TERM 986

Did it surprise you that there’s no match to killall -s who even though sleep;who is run‐
ning in the background? The reason it didn’t match is because the who command itself

Canceling a Process | 161

isn’t yet running, but the sleep command is; you can see that it’s matched by the third
instance of killall.

If you have eagle eyes, you’ll notice that the sleep command’s PID isn’t the same as the
PID given by the shell when the sleep;who command was dropped into the background.
That’s because when a job is put into the background, the shell copies itself and then the
copy shell (Unix folk call that the subshell) manages the commands. It’s the subshell that
has PID 990, and sleep is a subprocess of that shell, so it gets a different PID: 991. When
sleep finishes and the who command runs, that’ll have yet another PID (most likely 992).

To kill the sleep process, simply remove the -s flag from the killall command, or, if you’re
curious, replace it with -v so you can see what the program does:

$ killall sleep
-bash: line 52: 995 Terminated: 15 sleep 60
taylor console May 14 10:50
taylor ttys000 May 14 11:39
taylor ttys001 May 14 11:56
$ killall -v sleep
No matching processes belonging to you were found
[1]+ Done (sleep 60; who)
$

Notice that the first killall killed the sleep process, which immediately caused who to be
run. When I tried to use killall again with the -v flag, it was too late and there was no
longer a sleep command running.

The Process Didn’t Die When I Told It To
Some processes can be hard to kill. If a normal kill is not working, try entering:

kill -9 PID

Or, if you’re using killall, try:

killall -9 name

This is a sure kill, and can destroy almost anything, including the shell itself. Most Unix
folk refer to the -9 option as “terminate with extreme prejudice,” a nod to the popular
James Bond movie series.

Also, if you’ve run an interpreted program (such as a shell script), you may not be able
to kill all dependent processes by killing the interpreter process that got it all started.
You may need to kill them individually; however, killing a process that is feeding data
into a pipe generally kills any processes receiving that data.

162 | Chapter 7: Multitasking

Launching GUI Applications
One great feature of OS X’s Unix command line is that you can interact with the graphical
applications in Aqua. For example:

• Drag a file or folder from the Finder onto a Terminal window and watch as its full
pathname gets dropped in after the command prompt.

• Want to use vi to edit a text file that’s on your Desktop? Just type vi on the command
line, followed by a space, and then drag the file onto the Terminal window.

• When viewing a file in the Finder, you’ll see what’s known as a proxy icon in the
Finder’s title bar that shows you what directory you’re in. Type cd followed by a
space, then drag the proxy icon into the Terminal window and hit Return; you’ll be
taken to that same exact location, just in the Terminal.

If you can have the Finder interact with the Terminal, it should be no surprise to you
that you can also have the Terminal interact with other graphical applications on the
Mac. For this, OS X offers the open command.

open
By default, the open command works identically to double-clicking an icon in the Finder.
To open up a picture file in your default picture editor, use:

$ open peanut.jpg
$

If you don’t have a graphics-editing application like Photoshop installed, the image
opens in Preview (/Applications). If Preview is already running, the peanut.jpg image
file opens in a new window.

The open command also lets you work at the command line with file matching, since it
accepts more than one filename at a time. For example, if you need to open up a bunch
of Microsoft Word files in a directory, just use:

$ open *.doc
$

You can, however, get things a bit confused, because sometimes the system doesn’t know
what to do with certain files. For example, try issuing the following command:

$ open .profile
$

The default application that’s used when there’s no specific binding is TextEdit, which
works in this instance, but look what happens when you try to open something it can’t
recognize:

Launching GUI Applications | 163

$ open .sample.swp
No application knows how to open /Users/taylor/Desktop/.sample.swp.

In this case, open just couldn’t figure out what to do with this temporary scratch file
from the vi editor. That’s because open uses a file’s creator and/or type code to determine
which application should be used to open a particular file. And since vi’s scratch files
don’t have a creator or type code, the command gets confused and ends up doing
nothing.

What Are Creator and Type Codes?
Unlike in other operating systems, whenever you create and save a file with an applica‐
tion on the Mac, the application you use assigns its creator and type codes to the file.
These codes are four characters in length and can contain upper- and lowercase letters,
numbers, and even spaces. OS X uses these codes to figure out which icon gets assigned
to certain files and, more importantly, to determine the default application for opening
that file.

For example, in the Terminal, you can create a blank file on your Desktop with the
following command:

$ touch ~/Desktop/myFile.txt

As you can see from the file extension (.txt), this is a plain-text file. If you were to double-
click on this file, and if you didn’t have another graphical text editor on your system,
the file would open in TextEdit.

However, if you rename that file and give it a .doc extension:

$ mv myFile.txt myFile.doc

you can trick the system into thinking that it’s a Word file. Don’t believe me? Just try
double-clicking the file and see which application opens it!

If you’ve installed the Xcode Tools on your Mac (https://developer.apple.com/technolo
gies/tools/), you can use a couple of special command-line utilities to peek inside a file
to see its creator and type codes. For example, the following displays the output of the
GetFileInfo command (located in /usr/bin) when used on a Word file:

$ GetFileInfo lmut_ch07.doc
file: "/Users/taylor/Documents/Linux Journal/Column.42.docx"
type: "WXBN"
creator: "MSWD"
attributes: avbstclinmedz
created: 03/02/2013 20:45:22
modified: 03/02/2013 20:45:22
$

Here you can see that the creator code is MSWD, short for Microsoft Word.

164 | Chapter 7: Multitasking

https://developer.apple.com/technologies/tools/
https://developer.apple.com/technologies/tools/

Useful Starting Options for Use with open
The open command has a lot of power accessible through command options. For ex‐
ample, if you want to stream a bunch of input into a text file then open it in an Aqua
file, you can do so by using the -f option:

$ mdfind NIKON | open -f
$

This quick call to Spotlight generates a list of all filenames that reference or include
NIKON. It would be easy to generate a printout with TextEdit, too.

The most useful option for use with open is -a, which is used to specify an application
to open. For example, you can launch Messages with the generic open command, but
you need to know where it’s located on your system:

$ open messages
The file /Users/taylor/Desktop/messages does not exist.

Add the -a option, though, and open knows that you’re talking about an application, so
it’ll search in the /Applications directory to find and launch it:

$ open -a messages

Notice that open is smart enough to ignore case: the actual application is called Messages.
You can also use the open -a command to open applications that are in a subdirectory
of /Applications. Want to launch the Console (located in /Applications/Utilities)? Use
open -a console. Ready to compare the output of Activity Monitor to the ps command,
as discussed earlier in this chapter? Launch Activity Monitor with open -a “activity
monitor”.

If you want to open a file with TextEdit, there’s another option to open that’s worth
knowing: use open -e, and whatever you specify will be opened with the TextEdit pro‐
gram, regardless of its type. For example, if you wanted to open an HTML file in TextEdit
instead of with BBEdit, you could use the following:

$ open -e ~/Sites/someFile.html

The open command will then look in your Sites folder for the file someFile.html and
open it in TextEdit.

Making open More Useful
open makes it a breeze to launch your favorite applications, but because it requires that
you type in the full application name, a few aliases are in order:

alias word="open -a Microsoft\ Word"
alias excel="open -a Microsoft\ Excel"
alias gc="open -a GraphicConverter"

Launching GUI Applications | 165

With these added to your .profile, you can easily launch Graphic Converter by just
entering gc, and launch Microsoft Excel with excel.

A more sophisticated approach would be to use a shell script wrapper that would give
its arguments to open and, if they failed, try to figure out what application you were
talking about. It’s an advanced topic, but here’s how that script might look:

#!/bin/sh

open2 - a smart wrapper for the cool OS X 'open' command
to make it even more useful. By default, open launches the
appropriate application for a specified file or directory
based on the Aqua bindings, and has a limited ability to
launch applications if they're in the /Applications dir.

first off, whatever argument we're given, try it directly:

open=/usr/bin/open

if ! $open "$@" >/dev/null 2>&1 ; then
 if ! $open -a "$@" >/dev/null 2>&1 ; then

 # More than one arg? Don't know how to deal with it: quit
 if [$# -gt 1] ; then
 echo "open: Can't figure out how to open or launch $@" >&2
 exit 1
 else
 case $(echo $1 | tr '[:upper:]' '[:lower:]') in
 acrobat) app="Acrobat Reader" ;;
 address*) app="Contacts" ;;
 chat) app="Messages" ;;
 cpu) app="Activity Monitor" ;;
 dvd) app="DVD Player" ;;
 word) app="Microsoft Word" ;;
 excel) app="Microsoft Excel" ;;
 prefs) app="System Preferences" ;;
 qt|quicktime) app="QuickTime Player" ;;
 *) echo "open: Don't know what to do with $1" >&2
 exit 1
 esac
 echo "You asked for $1 but I think you mean $app." >&2
 $open -a "$app"
 fi
 fi
fi

exit 0

This script has a simple table of nicknames for common applications, allowing you to
type open2 qt to launch QuickTime Player, for example.

166 | Chapter 7: Multitasking

This script is based on one in my book, Wicked Cool Shell Scripts (No
Starch Press), which explains 101 powerful and interesting shell scripts.
You can learn about the book, and download the above script for
yourself, at http://intuitive.com/wicked/.

Launching GUI Applications | 167

http://intuitive.com/wicked/

CHAPTER 8

Taking Unix Online

A network lets computers communicate with each other, share files, send email, and
much more. Unix systems have been networked for more than 25 years, and OS X has
had networking as an integral part of the system design from day one. In fact, AppleTalk
was the first computer network that let computers connect directly together without
needing a server in the middle.

This chapter introduces Unix networking: remotely accessing your Mac from other
computers and copying files between computers. It also shows you how the Terminal’s
“New Remote Connection” feature can make common connections a breeze once you’ve
set them up initially.

Remote Logins
There may be times when you need to access your Mac, but you can’t get to the desk it’s
sitting on. If you’re working on a different computer, you may not have the time or
inclination to stop what you’re doing, walk to your Mac, and log in (laziness may not
be the only reason for this: perhaps someone else is using your Mac when you need to
get on it, or perhaps your Mac is miles away). OS X’s File Sharing (System Preferen‐
ces→Sharing→File Sharing) lets you access your files, but there may also be times you
want to use the computer interactively, perhaps to move files around, search for a par‐
ticular file, or perform a system maintenance task.

If you enable Remote Login (System Preferences→Sharing→Remote Login), as shown
in Figure 8-1, you can access your Mac’s Unix shell from any networked computer that
can run the Secure Shell (SSH).

169

Figure 8-1. Enabling Remote Login in the Sharing preferences panel

The ssh client program is included with OS X (access it from within the Terminal) and
all Unix and Linux systems. And just in case you need to access your Mac from a Win‐
dows system, there are a number of different ssh applications available, including:

• SSH (http://www.ssh.com)
• OpenSSH (http://www.openssh.org)
• PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/putty/)

Figure 8-2 shows how remote login programs such as ssh work. In a local login, you
interact directly with the shell with the Terminal application. In a remote login, you run
a remote-access program (such as SSH) on your local system, and that program lets you
interact with a shell program on the remote system. When you enable Remote Login,
the Sharing panel displays instructions for logging into your Mac from another com‐
puter. This message is shown in Figure 8-1, roughly in the middle of the window:

To log in to this computer remotely, type "ssh taylor@192.168.1.6".

170 | Chapter 8: Taking Unix Online

http://www.ssh.com
http://www.openssh.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Figure 8-2. Local login, remote login

To log into your Mac from a remote Unix system, use the command displayed in the
Sharing panel, as shown in the following sample session. Here, a user on a Red Hat Linux
system is connecting to an OS X computer (the first time you connect, you’ll be asked
to vouch for your Mac’s authenticity):

$ ssh taylor@192.168.1.6
The authenticity of host '192.168.1.6 (192.168.1.6)' can't be established.
RSA key fingerprint is 93:09:58:52:45:96:64:2a:e0:22:9c:a1:3e:35:bc:a1.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.1.6' (RSA) to the list of known hosts.
Password:
Last login: Tue May 29 16:10:16 2012
$

If you have a firewall running, you need to open up a network port to
allow remote connections. You can learn more about how to do this
by starting with Apple’s Help system. In the Finder, use Command-?
to launch Help Viewer, then search for “firewall.”

To log into your Mac from a Windows machine using PuTTY, launch the PuTTY ap‐
plication, specify SSH (the default is to use the Telnet protocol), and type in your OS X
system’s IP address, as shown in the Mac’s Sharing panel. PuTTY prompts you for your
OS X username and password. Figure 8-3 shows a sample PuTTY session.

For the most part, being connected via ssh is identical to using the Terminal application
itself. You can even use the open command (discussed in Chapter 7) to launch applica‐
tions on the Macintosh system, which can surprise the heck out of anyone who might
be watching the screen! Of course, you won’t be able to use the applications if you’re
remote.

Remote Logins | 171

Figure 8-3. Connecting to OS X with PuTTY

To run OS X applications remotely from another Mac, enable Screen
Sharing in System Preferences→Sharing. In the Screen Sharing de‐
scription, you can also click Computer Settings to enable access from
non-Mac computers using Virtual Network Computing (VNC) soft‐
ware. Once you’ve enabled Screen Sharing, open the Finder on an‐
other Mac on the same network, and find your Mac in the list. You’ll
see an option to connect to the screen. If you’ve got “Back to My Mac”
enabled under iCloud, you don’t even need to be on the same net‐
work to connect from one Mac to another!

One of the very few differences is that the system records the Internet address of the
system from which you’re connected remotely, as shown in this who output:

$ who
taylor console May 13 16:56
taylor ttyp1 May 13 17:00
taylor ttyp2 May 13 17:10 (192.168.1.100)

The third entry is a remote connection by a user on a different computer.

172 | Chapter 8: Taking Unix Online

Web Access
Unlike previous editions of OS X, Mavericks does not include an option for starting the
web server. You can either install OS X Server ($19.99) from the Mac App Store, or you
can start the web server manually from the Terminal, with this command:

$ sudo apachectl start

Use this command to make sure that the web server starts each time you boot the
computer:

$ sudo defaults write /System/Library/LaunchDaemons/org.apache.httpd \
 Disabled -bool false

Remote Access and the Outside World
If your Macintosh has an IP address that was assigned by an AirPort Base Station, then
it’s probable that your machine is inaccessible to the outside world. Because of this, you
will be able to connect to your Mac only from machines on your local network. You can
allow remote users to connect by using the AirPort Utility and following these steps:

1. Select your Base Station and click Edit.
2. Click the Network button in the toolbar.
3. Under Port Settings, click the Add (+) button to add a public TCP port that you

want to map to a private IP address and TCP port on your local network.

In older versions of the AirPort Utility, or in configuration utilities for other access
points, the configuration steps will be similar.

For Remote Login via ssh, you must map port 22 to your Macintosh; use port 80 for
Personal Web Sharing. Other SoHo (Small Office/Home Office) gateways may support
this feature as well.

If you use this technique, the IP address shown in the Sharing preferences panel will be
incorrect. You should use your AirPort Base Station’s WAN address when you connect
from a computer outside your local network.

Remote Access to Other Unix Systems
You can also connect to other systems from OS X. To do so, launch the Terminal ap‐
plication, and then start a program that connects to the remote computer. In addition
to ssh, some typical programs for connecting over a computer network include telnet,
rsh (remote shell), and rlogin (remote login). All of these are supported by and included
with OS X. In any case, when you log off the remote computer, the remote login program
quits and you get another shell prompt from your Mac in the Terminal window.

Remote Logins | 173

My websites are running on a remote NetBSD system, and I use ssh from the Terminal
window on my Mac so often that I have an alias to make it easy to pop on and tweak
things:

alias vps=ssh dtaylor@intuitive.com

While you can use ssh, telnet, rsh, or rlogin to connect to a remote
system, security experts highly discourage the use of anything other
than ssh, because none of the others are encrypted or secure. This
means that when you type in your username and password informa‐
tion they’re sent “in the clear” over the Internet to the remote sys‐
tem, exposing you to possible “sniffers” who will then be able to log in
as if they were you. Better safe than sorry: insist that the remote sys‐
tem support ssh and use it exclusively.

The syntax for ssh is:

ssh remote-user@remote-hostname

For example, when Dr. Nelson wants to connect to the remote computer named
biolab.medu.edu, her first step is to launch the Terminal. Next, she’ll need to use the ssh
program to reach the remote computer. Her session would look something like this:

Welcome to Darwin!

$ ssh nelson@biolab.medu.edu
nelson@biolab.medu.edu's password:

biolab$
.
.
.
biolab$ exit
Connection to biolab.medu.edu closed.
$

As you can see, the shell prompt from her account on the biolab server includes the
hostname. This is helpful, because it reminds her when she’s logged in remotely, and
after exiting the remote system, she’ll also know when she’s back in her own territory.
If you use more than one system but don’t have the hostname in your prompt, see
“Changing the Command Prompt” on page 33 in Chapter 2 to find out how to add it.

When you’re logged on to a remote system, keep in mind that the commands you type
take effect on the remote system, not on your local one! For instance, if you use lpr to
print a file (see the section on printing in Chapter 6), the printer it comes out from won’t
be the one sitting under your desk, but one that might be hundreds or thousands of
miles away.

174 | Chapter 8: Taking Unix Online

The programs rsh (also called rlogin) and ssh generally don’t give you a login: prompt.
These programs assume that your remote username is the same as your local username.
If they’re different, you’ll need to provide your remote username on the command line
of the remote login program, as shown earlier for ssh.

You may be able to log in without typing your remote password or passphrase. In ssh,
you can run an agent program, such as ssh-agent, that asks for your passphrase once,
then handles authentication every time you run ssh or scp afterward. Otherwise, you’ll
be prompted after entering the remove login command line.

Following are four sample ssh and rsh command lines. The first pair shows how to log
into the remote system, biolab.medu.edu, when your username is the same on both the
local and remote systems. The second pair shows how to log in if your remote username
is different (in this case, jdnelson); note that the OS X versions of ssh and rsh may support
both syntaxes shown, depending on how the remote host is configured:

$ ssh biolab.medu.edu
$ rsh biolab.medu.edu
$ ssh jdnelson@biolab.medu.edu
$ rsh -l jdnelson biolab.medu.edu

About Security
Today’s Internet and other public networks have users who try to break into computers
and snoop on other network users. While the popular media calls these people hack‐
ers, the correct term to use is crackers. (Most hackers are self-respecting programmers
who enjoy pushing the envelope of technology, but never cause trouble on remote sys‐
tems.)

Most remote login programs (and file transfer programs, which we cover later in this
chapter) were designed 20 years ago or more, when networks were friendly places with
cooperative users. Those programs (many versions of telnet and rsh, for instance) make
a cracker’s job easy. They transmit your data, including your password, across the net‐
work in a way that allows even the most inexperienced cracker to read it. Worse, some
of these utilities can be configured to allow access without passwords.

SSH is different; it was designed with security in mind. It sends your password (and
everything else transmitted or received during your SSH session) in a secure way. For
more details on SSH, start with the ssh manpage; then, if you want to know (lots) more,
I recommend the book SSH, The Secure Shell: The Definitive Guide, by Daniel J. Barrett
and Richard Silverman (O’Reilly).

Remote Logins | 175

http://shop.oreilly.com/product/9780596008956.do

Transferring Files
You may need to copy files between computers. For instance, you can put a backup copy
of an important file you’re editing onto a computer in another building or another city,
or copy a file from your local computer onto a central computer, where your colleagues
can access it. Or you might want to download 20 files from an FTP server, but don’t
want to go through the tedious process of clicking on them one by one in a web browser.

If you need to do this sort of thing often, you may be able to set up a networked filesystem
connection; then you’ll be able to use the Finder or local programs such as cp and mv
to help you move files around on your own network. But Unix systems also have
command-line tools such as scp and rcp for transferring files between computers. These
often work more quickly than most graphical applications, and believe it or not, they’re
pretty easy to use, as we’ll explore in this section.

scp and rcp
OS X includes both scp (secure copy) and rcp (remote copy) programs for copying files
between two computers. In general, you must have accounts on both computers to use
these commands. The syntax of both scp and rcp is similar to that of cp, but they also
let you add the remote hostname to the start of a file or directory pathname. The syntax
of each argument is:

hostname:pathname

hostname is needed only for remote files. You can copy from a remote computer to the
local computer, from the local computer to a remote computer, or between two remote
computers (aka “third-party copy”).

The scp program is much more secure than rcp, so I suggest using scp to transfer private
files over insecure networks such as the Internet. For privacy, scp encrypts the file and
your passphrase during the transfer of the data.

The general syntax for scp is:

scp [[user@]host1:]FromFile [[user@]host2:]ToFile

For both the From and To files, if either is on a remote host, you need to specify the
hostname. And if any remote host involves a different username than what you are
currently using locally, you must specify that as well.

For example, let’s copy the files report.may and report.june from your home directory
on the computer named w2.intuitive.com and put the copies into your working directory
(.) on the machine you’re presently logged into. If you haven’t set up an SSH agent that
lets you use scp without typing your passphrase, scp asks you for it:

176 | Chapter 8: Taking Unix Online

$ scp w2.intuitive.com:report.may w2.intuitive.com:report.june .
Enter passphrase for RSA key 'taylor@mac':

To use wildcards in the remote filenames, put quotation marks ("name") around each
remote name. Quotes tell the local shell not to interpret special characters, such as
wildcards, in the filename. The wildcards are passed, unquoted, to the remote shell,
which interprets them there.

You can use absolute or relative pathnames; if you use relative pathnames, they start
from your home directory on the remote system. For example, to copy all files from
your food/lunch subdirectory on your w2 account into your working directory (.) on
the local account, enter:

$ scp "w2.intuitive.com:food/lunch/*" .

Unlike cp, the OS X versions of scp and rcp don’t have an -i safety option. If the files
you’re copying already exist on the destination system (in the previous example, that’s
your local machine), those files are overwritten. To be safe, always use ls to check what’s
in the destination directory before you copy files.

Two useful command options for use with scp are -p, which preserves the creation and
modification dates of the file in the copy, and -r, which lets you recursively copy folders
and their contents to the remote system. For example, to copy everything in my Pic‐
tures directory to the w2 server, I would use:

$ scp -r ~/Pictures w2.intuitive.com:.
$

If your system has rcp, your system administrator may not want you to use it for system
security reasons. Another program, ftp, is more flexible and secure than rcp (but much
less secure than scp).

FTP
The File Transfer Protocol, or FTP, is a standard way to transfer files between two com‐
puters. Many users of earlier Mac OS versions are familiar with Fetch (http://www.fetch
softworks.com), a shareware graphical FTP client that runs on all versions of OS X. There
are also a number of graphical FTP programs available from the Mac App Store (search
for “ssh” or “ftp”). While Fetch offers an easy-to-use interface, it also comes with a price
tag, which begs the question: why spend your hard-earned cash on Fetch when you get
FTP services for free with Unix?

The Unix ftp program does FTP transfers from the command line. Since it’s fast, easy,
and portable, I’ll cover the standard ftp program here.

To start ftp, identify yourself to the remote computer by giving the username and pass‐
word for your account on that remote system.

Transferring Files | 177

http://www.fetchsoftworks.com
http://www.fetchsoftworks.com

Sending your username and password over a public network with ftp
means that snoopers might see them, and then use them to log into
your account on that system. Instead, you should use sftp, because it
uses SSH for an encrypted, secure FTP connection.

A special kind of FTP, anonymous FTP, happens if you log into the remote server with
the username anonymous. The password is your email address, such as taylor@intu
itive.com. (The password isn’t usually required; it’s a courtesy to the remote server.)
Anonymous FTP lets anyone log into a remote system and download publicly accessible
files to their local systems.

Command-line ftp
To start the standard Unix ftp program, provide the remote computer’s hostname:

ftp hostname

ftp prompts for your username and password on the remote computer. This is some‐
thing like a remote login (see “Remote Logins” on page 169, earlier in this chapter), but
ftp doesn’t start your usual shell. Instead, ftp has its own prompt and uses a special set
of commands for transferring files. Table 8-1 lists the most important ftp commands.

Table 8-1. Some ftp commands
Command Description

put filename Copies the file filename from your local computer to the remote computer. If you give a second argument,
the remote copy will have that name.

mput file
names

Copies the named files (you can use wildcards) from the local computer to the remote computer.

get filename Copies the file filename from the remote computer to your local computer. If you give a second argument,
the local copy will have that name.

mget file
names

Copies the named files (you can use wildcards) from the remote computer to the local computer.

prompt A “toggle” command that turns prompting on or off during transfers with the mget and mput commands.
By default, mget and mput will prompt you with mget filename ? or mput filename ? before transferring each
file; you answer y or n each time. Typing prompt once, from an ftp> prompt, stops the prompting; all
files will be transferred without question until the end of the ftp session. Or, if prompting is off, typing
prompt at an ftp> prompt resumes prompting.

hash Displays progress marks on file uploads and downloads so you can gauge progress. Particularly helpful with
large transfers.

cd pathname Changes the working directory on the remote machine to pathname (ftp typically starts at your home
directory on the remote machine).

lcd pathname Changes ftp’s working directory on the local machine to pathname. (ftp’s first local working directory is
the working directory from which you started the program.) Note that ftp’s lcd command changes only ftp’s
working directory. After you quit ftp, your shell’s working directory will not have changed.

dir Lists the remote directory (like ls -l).

178 | Chapter 8: Taking Unix Online

mailto:taylor@intuitive.com
mailto:taylor@intuitive.com

Command Description

binary Tells ftp to copy the file(s) that follow it without translation. This preserves pictures, sound, or other data.

ascii Transfers plain-text files, translating data if needed. For instance, during transfers between a Microsoft
Windows system (which adds Control-M to the end of each line of text) and a Unix system (which doesn’t),
an ASCII-mode transfer removes or adds those characters as needed.

passive Toggles the setting of passive mode. This may help ftp to run correctly if you are behind a firewall. If you
put the command export FTPMODE=passive in your .profile file, all your ftp sessions will use passive
mode.

quit or bye Ends the ftp session and takes you back to a shell prompt.

! cmd Gives the specified command to a shell, displays its output, then returns to the ftp program.

Here’s an example. Kiana moves into the local directory she wants to use as a starting
point (a good idea whether you’re uploading or downloading). She then lists the files in
her current directory to see what’s there, and then uses ftp to connect to an FTP server
located at rhino.zoo.edu. After using her username and password to log on, Kiana
changes remote directories to the work subdirectory, then gets the todo file and down‐
loads that to her local machine. After receiving the “Transfer complete” message, Kiana
uses the !ls command to make sure that the file she transferred is on her local machine.
Then with the knowledge that the file is there, she quits the FTP session:

$ cd downloads
$ ls
afile ch2 somefile
$ ftp rhino.zoo.edu
Connected to rhino.zoo.edu.
Name (rhino:kiana): ktaylor
Password:
ftp> cd work
ftp> dir
total 3
-rw-r--r-- 1 csmith mgmt 47 Feb 5 2001 for.ed
-rw-r--r-- 1 csmith mgmt 264 Oct 11 12:18 message
-rw-r--r-- 1 csmith mgmt 724 Nov 20 14:53 todo
ftp> get todo
local: todo remote: todo
227 Entering Passive Mode (17,254,16,11,224,18).
150 Opening BINARY mode data connection for todo (724 bytes)
226 Transfer complete.
724 bytes received in 00:00 (94.06 KB/s)
ftp> !ls
afile ch2 somefile todo
ftp> quit
$ ls
afile ch2 somefile todo

We’ve explored the most basic ftp commands here. Entering help at an ftp> prompt
gives a list of all available commands; entering help followed by an ftp command name
gives a one-line summary of that command.

Transferring Files | 179

sftp: ftp to secure sites
If you can only use ssh to connect to a remote site, chances are it won’t support regular
ftp transactions either, due to higher security requirements. Fortunately, OS X also in‐
cludes a version of ftp that’s part of the ssh package and works similarly to regular ftp.
To run the program, type sftp at the command line. Here’s an example:

$ cd downloads
$ sftp taylor@intuitive.com
Connecting to intuitive.com...
The authenticity of host 'intuitive.com (140.174.98.26)' can't be
established.
RSA key fingerprint is d0:db:8b:cb:73:c8:37:e4:9a:71:fc:7a:e2:d6:40:81.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'intuitive.com,140.174.98.26' (RSA) to the list
of known hosts.
taylor@intuitive.com's password:
sftp> cd mybin
sftp> dir -l
drwxr-xr-x 0 24810 100 1024 Jun 26 20:18 .
drwxr-xr-x 0 24810 100 1536 Sep 16 18:59 ..
-rw-r--r-- 0 24810 100 140 Jan 17 2003 .library.account.info
-rwxr-xr-x 0 24810 100 3312 Jan 27 2003 addvirtual
-rw-r--r-- 0 24810 100 406 Jan 24 2003 trimmailbox.sh
-rwxr-xr-x 0 24810 100 1841 Jan 24 2003 unpacker
-rwxr-xr-x 0 24810 100 946 Jan 22 2003 webspell
sftp> get webspell
webspell 100% 946 4.7KB/s 00:00
sftp> quit
$ ls -l webspell
-rwxr-xr-x 1 taylor taylor 946 25 Sep 11:28 webspell

The sftp program also has a very useful option that you can specify when you’re copying
files. The -P option causes the program to preserve the original file’s creation and mod‐
ification date and time information:

sftp> get -P webspell

Additional helpful commands include lcd, lls, and lmkdir, to change your location in
the local filesystem, list the files in the current local working directory, and make a new
local directory, respectively. You can also use the ! escape to access any Unix command
from within sftp. Like the ftp program, sftp also has built-in help, which you can access
by typing help at the prompt.

FTP with a web browser
If you need a file from a remote site, and you don’t need all the control that you get with
the ftp program, you can use a web browser to download files using anonymous FTP.
To do that, enter a URL (location) with this syntax:

ftp://hostname/pathname

180 | Chapter 8: Taking Unix Online

For instance, ftp://somecorp.za/pub/reports/2001.pdf downloads the file 2001.pdf from
the directory /pub/reports on the host somecorp.za. In most cases, you can start with
just the first part of the URL—such as ftp://somecorp.za—and browse your way through
the FTP directory tree to find what you want. If your web browser doesn’t prompt you
to save a file, use its Save menu command.

If you are using the Safari browser, it will open ftp: directories by
mounting them in the Finder as if you specified the ftp URL in the
Finder itself, as explained later in this chapter.

FTP with curl
A faster way to download a file is with the curl (copy from URL) command. For example,
to save a copy of the 2001.pdf report in the current directory, enter:

$ curl -O ftp://somecorp.za/pub/reports/2001.pdf

Without the -O option (that’s a capital letter O, not a zero), curl dumps the file to the
standard output (your screen). If you want to read a text file from an Internet server,
you can combine curl and less:

$ curl ftp://ftp.oreilly.com/pub/README.ftp | less

You can also use curl with web pages, but this brings the page up in HTML source view:

$ curl http://www.oreilly.com | less

One strategy you could use, though it isn’t necessarily optimal, is to save HTML pages
locally, then open them in Safari:

$ curl http://www.oreilly.com > oreilly.home.page.html
$ open oreilly.home.page.html

or Google Chrome:

$ curl http://www.oreilly.com > oreilly.home.page.html
$ open -a "Google Chrome" oreilly.home.page.html

There are better ways to work with HTML pages on the command line, but they’re
beyond the scope of this book.

FTP from the Finder
You can also mount remote FTP directories using the Finder, and then access them with
standard Unix commands in the Terminal. In the Finder choose Go→Connect to Server,
then type in ftp:// followed by the name of the server that you want to access (such as
ftp.oreilly.com). Figure 8-4 shows how this appears in the Finder.

Transferring Files | 181

Figure 8-4. Connecting to an FTP server in the Finder

If a password is required, another window pops up, asking you to authenticate with a
valid username and password. Enter those correctly—or, depending on the remote
settings, select “Guest”—and the new FTP disk appears on your Desktop. It is now
accessible in the /Volumes directory, as shown here:

$ ls -l /Volumes/
total 9
lrwxr-xr-x 1 root admin 1 May 28 13:29 Macintosh HD@ -> /
drwxrwxrwx 0 root wheel 0 May 29 16:52 MobileBackups/
drwxrwxrwx+ 3 root admin 102 Feb 6 08:34 Time Machine Backups/
dr-xr-xr-x 1 taylor staff 512 May 29 16:52 ftp.oreilly.com/

When you’re done with the FTP server, you can use the umount command to disconnect:

$ umount /Volumes/ftp.oreilly.com

It’s considerably easier than using the ftp program!

Other FTP solutions
One of the pleasures of working with Unix within the OS X environment is that there
are a wealth of great Aqua applications. In the world of FTP-based file transfer, the
choices are uniformly excellent, starting with Fetch, NetFinder, Transmit, Cyberduck,
Rbrowser, and Interarchy, and encompassing many other possibilities. To see what op‐
tions you have, just open the Mac App Store and search for “ftp.”

Easy Shortcuts with New Remote Connection
The Terminal application has a very helpful feature that can make connecting to remote
systems via telnet, ssh, ftp, or sftp a breeze, once it’s set up. New Remote Connection is
available via the Shell menu and is shown in Figure 8-5.

182 | Chapter 8: Taking Unix Online

Figure 8-5. New Remote Connection offers simple shortcuts

To add a service, click on the + icon on the left side of the window. More commonly,
you’ll add servers, which you can do by clicking on the + icon on the right side of the
window. This produces a window that asks for the hostname or host IP address, which
is easily entered, as shown in Figure 8-6.

Once added in one area, the new server is available for all services, so to connect to my
web server using SSH I can simply choose ssh, then the new server name, and then enter
test into the User box, as shown in Figure 8-7.

Finally, the connection to my server is a breeze: specify the server, specify the user, and
click Connect. Easy enough!

Figure 8-6. Adding a new server to New Remote Connection

Transferring Files | 183

Figure 8-7. intuitive.com

184 | Chapter 8: Taking Unix Online

CHAPTER 9

Of Windows and X11

OS X comes with great applications, and a trip to Apple’s App Store can bag you quite
a few more, but a flood of applications are available to you solely because of OS X’s Unix
core. Many of these are applications that have been around for a long time, and many
are flowing in from other members of the Unix family, including Linux and FreeBSD.

What’s different about these applications is that they’re not commercial apps like Mi‐
crosoft Office or Adobe Photoshop, they’re not shareware like Graphic Converter and
Fetch, and they’re not free, public domain applications either. Most of the programs
now available to the Mac community from Unix are part of the open source movement.
These applications are free to download—including source code, if you want it—but
there are constraints on what you can do with the programs, and if you’re a programmer
and make any modifications to the source, you have an obligation to share those changes
with the rest of the open source community. It’s a very different distribution model for
software, but don’t let the lack of a price tag fool you: open source applications are often
just as good (and sometimes better) than their commercial equivalents; and having
distributed teams of programmers building the apps means that if you do find a bug
and report it, the fix often shows up sometime the same day—a level of responsiveness
that Apple and Microsoft certainly can’t match.

Much of this open source software comes from university research, too. This chapter
talks about one of these wonderful open source applications: the X Window System,
Version 11. X11, as it’s called, is a graphical interface for Unix that’s been around a long,
long, time. Although OS X’s shiny interface is fantastic, there are many powerful Unix
programs that require X11. In previous versions of OS X, Apple included X11, but the
latest release marks the company redirecting you to an open source X11 project called
XQuartz. You can go there directly by hopping over to http://xquartz.macosforge.org/,
or you can simply double-click on the “X11” icon in /Applications/Utilities.

In the latter instance, you’ll be shown a message like that in Figure 9-1.

185

http://xquartz.macosforge.org/

Figure 9-1. Time to install X11 from XQuartz

One warning before we start: while typical Mac applications—free‐
ware, shareware, or commercial—are a breeze to install thanks to OS
X’s Installer. Unix applications don’t have the same easy interface. This
means that different programs have different installation methods
(sometimes requiring you to type in a sequence of commands in the
Terminal, for example). To address this problem, a team of dedicated
programmers have created a powerful software distribution and in‐
stallation system called Homebrew (http://mxcl.github.com/home
brew/). There are a couple of alternatives, too: MacPorts (http://
www.macports.org) and Fink (http://www.finkproject.org).

X11
The X Window System (commonly called X11) is the standard graphical user interface
for Unix systems. Built upon a Unix core, OS X is a significant exception to this rule
because its default graphical interface is Aqua, and it’s not directly X11-compatible. On
OS X, a combination of components called the Quartz Compositor (sometimes just
referred to as Quartz), OpenGL, and the CoreGraphics library are responsible for
drawing what appears on your screen.

In an X11-based system, an application called an X server creates what you see on the
screen. The programs that run under X11, such as office applications, web browsers,
and terminal windows, are known as X clients. X servers and clients talk to each other
using standard Unix networking protocols: if an X11 word processor needs to pop up
a dialog asking whether you want to save a document, it makes a network connection
to the X server and asks it to draw that window. Because X11 is networked in this way,
you can run an X client on a Unix system in another office or across the planet, and
have it display on your computer’s X server.

X servers are typically full-screen applications, which means they completely take over
your display. Figure 9-2 shows a full-screen X server running on a Linux computer.
Three applications are running: an xterm (which is similar to OS X’s Terminal), a

186 | Chapter 9: Of Windows and X11

http://mxcl.github.com/homebrew/
http://mxcl.github.com/homebrew/
http://www.macports.org
http://www.macports.org
http://www.finkproject.org

manpage viewer, and a rudimentary app that shows the X logo. In addition, a menu is
visible. This belongs to the window manager, an X11 program that takes care of putting
frames and window controls (such as close, resize, and zoom) around application win‐
dows. The window manager provides the overall look and feel, and also lets you launch
applications and log out of X11. X11 users have many window managers to choose from;
the one shown in Figure 9-2 is lxde.

Figure 9-2. An X server running on Linux

When X11 was included with OS X, Apple shipped what’s called a rootless X server. Now
the path to X11 is through XQuartz, the open source version of X11 that’s compatible
with Quartz and, of course, OS X Mavericks and previous versions of the operating
system. It too is rootless. What’s that mean? Simple: it’s an X server that won’t take over
your entire screen. XQuartz’s X11 implementation, which includes the X server, many
common X clients, and a software development kit for writing X11 applications, is
derived from an implementation of X11 called X.Org (http://www.x.org). This is the
X11 release used on Linux, FreeBSD, NetBSD, OpenBSD, and many other Unix oper‐
ating systems.

Apple also created an X11 window manager, quartz-wm, which draws X11 windows
that look and behave much like Quartz windows. As you can see, X11’s xterm and OS
X’s Terminal look remarkably similar.

X11 | 187

http://www.x.org

Using X11
You can most easily launch X11 by double-clicking on the X11 icon, located in /Appli‐
cations/Utilities. After a few seconds, an xterm window appears. You can launch a new
xterm window by selecting the Terminal item from its Applications menu (or using ⌘-
N). Don’t confuse this with OS X’s Terminal application! Under X11, the program you
use to type in Unix commands is also a terminal, except it’s an X11-based terminal
window, thus the name xterm. When you select the Applications menu, you’ll see a list
of shortcuts to other X11-based applications. By default, there are options for:

• Terminal, which starts a new xterm
• xman, which lets you browse Unix manpages
• xlogo, which pops up a window displaying the X logo

Figure 9-3 shows X11 running along with these three applications.

Figure 9-3. X11 running on the Mac

X11 includes many other applications as well. To see a list, examine the X11 application
directory with the following command:

$ ls /opt/X11/bin/

188 | Chapter 9: Of Windows and X11

If you’re going to be working with X11 applications often, you’ll need
to put /usr/X11/bin or /opt/X11/bin in your PATH by editing your .pro‐
file file (if you’re using bash) or your .login file (if you’re using tcsh).
For bash users, add this line:

PATH=${PATH}:/usr/X11/bin ; export PATH

tcsh users should add this line:
setenv PATH ${PATH}:/usr/X11/bin

The next time you launch a Terminal or xterm window, you’ll be able
to type in all the X11 application names at the command line without
specifying where they’re located.
Before you add this to your PATH, open a Terminal and type echo
$PATH. The XQuartz installer may have already done this for you.

Here are a few of the most interesting utilities included with OS X:
bitmap

An X11 bitmap (.xbm) editor.

glxgears
An OpenGL 3D graphics demonstration. OpenGL applications running under Ap‐
ple’s X11 implementation have the benefit of full 3D hardware acceleration.

glxinfo
Displays information about OpenGL capabilities.

oclock
An X11-based clock application.

xcalc
A calculator program that runs under X11.

xeyes
A pair of eyeballs that follow the mouse cursor around the screen.

xhost
Gives another computer permission to open windows on your display.

xkill
Changes your cursor to the “cursor of doom.” Any X11 window you click in will be
shut down. If you change your mind and don’t want to kill an app, press Control-C.
This won’t kill any Aqua applications; it works only on X11 applications.

xload
Displays the CPU load.

X11 | 189

xwud
Image display program for X11.

None of these X11 applications included with OS X’s X11 package are very interesting,
and their interfaces are retro-1980s in complexity and use of color, as you’ll quickly
realize, but bear with me, there are a wealth of great X applications available online.

Differences Between OS X and X11
There are some significant differences between X11 and the OS X interface that you
need to watch out for. Although Apple’s X11 does a great job of minimizing these dif‐
ferences, there are still some quirks that may throw you off:
Mouse focus

OS X’s Aqua interface doesn’t care where your mouse is located: the application in
front of the other apps is the one that sees your keystrokes. X11 doesn’t work that
way (depending on your X11 settings), and you might find that it uses something
called mouse focus to decide where your keyboard input should be sent. Even having
your mouse on the scrollbar or just slightly off the edge of the application window
leaves you in limbo. Don’t be surprised if this happens: just move your cursor into
the middle of the target application window and you’ll be fine.

Cutting and pasting
If you press ⌘-C (copy) while you have something selected in an X11 window, you
can paste it into another OS X application. But that’s where the similarity ends: to
paste something into an X11 window, you can’t use ⌘-V. Instead, use Option-click
(you must enable three-button emulation in X11’s preferences first). If you have a
three-button mouse, press the middle button to paste into an X11 window.

X11 application menus
The menu at the top of the screen always belongs to X11 itself. Individual X11
applications may have their own menus near the top of their main windows.
Figure 9-4 shows two different types of X11 application menus: a classic X11 menu
from xmh (an X11 mail reader) and a more modern X11 menu from InkScape (a
vector drawing application).

Be careful with ⌘-Q
If you press ⌘-Q (quit) while running an X11 application, this shuts down all of
X11 and any X applications you’re running. Because of this, you’ll get a warning if
you try to do this when there are X11 clients running. Look for a quit option on the
X11 application’s own menu, or click the close button on its window.

Scrolling in the xterm
By default, the xterm doesn’t have scrollbars. However, as in the Terminal, you can
use a keystroke to scroll up and down. Unfortunately it’s not the same keystroke:
the Terminal uses ⌘-Page Up and ⌘-Page Down (or, if you’re using a MacBook or

190 | Chapter 9: Of Windows and X11

MacBook Pro, Shift-Fn-up arrow or Shift-Fn-down arrow), while the xterm expects
Shift-Page Up and Shift-Page Down.

Figure 9-4. Comparing X11 menu styles

Launching applications from the xterm
When you type the name of an X11 program in the xterm, it launches, but the xterm
window appears to hang because it is waiting for the program to exit. To avoid this
problem, you can append the & character after the program name to put it in the
background. Another option is to press Control-Z after the program starts, and
type bg to put the program in the background. (See Chapter 7 for a refresher on
how to place Unix processes in the foreground or background.)

X11, .bashrc, and .profile
If you’ve customized your Unix shell by editing ~/.profile, applications that run
under X11, including the xterm, won’t respect the settings in that file. To correct
this problem, put any essential settings in your ~/.bashrc file, which X11 does read.

Customizing X11
One of the big differences between X11 and OS X is that X applications expect that you
have a three-button mouse. Meanwhile, Apple still assumes that you have a single-
button mouse and you don’t mind occasionally holding down the Control key to emulate
right-mouse-button actions. X11 is built on a three-button mouse, so as an X user, you
need to know how to get to all of those buttons. That’s one of the key preferences ac‐
cessible from the X11→Preferences menu, as shown in Figure 9-5.

You should leave the other configuration options set to their default values, unless you’re
an absolute wizard at working with X and know how to tweak it to match the Apple
hardware configuration. Set these wrong and you can throw the proverbial spanner in
the works, causing X11 to not work or to display everything unreadably.

X11 | 191

Figure 9-5. Configuring X11 Input preferences

The Output tab offers additional preferences: most notably, you can switch out of so-
called rootless mode, which allows X11 to take over your entire screen. If you do this,
make sure that you write down that Option-⌘-A lets you leave full-screen mode, or you
might end up having to reboot to figure out how to get back to the familiar world of
Aqua and OS X.

Customizing X11’s Applications menu
You can customize X11’s Applications menu by selecting Applications→Customize.
Click the Add Item button to add an X11 application to the menu. Specify the menu
title in the Menu Name column, and use the Command column for the command to
execute. You can also add any necessary parameters or switches here. For example, to
change the Terminal/xterm menu item so it uses white text on a dark blue background,
rather than the boring default of black text on a white background, add the switches
-bg darkblue -fg white (see Figure 9-6).

Although the Application menu item for xterm is named Termi‐
nal, it’s not the same as OS X’s Terminal application. To avoid
confusion, many people rename it “xterm” in the menu.

192 | Chapter 9: Of Windows and X11

Figure 9-6. Configuring the xterm to launch with different colors

You can also specify a shortcut in the Shortcut column. The shortcut key must be used
with the Command (⌘) key, so the n in the Terminal/xterm entry specifies the ⌘-N
keystroke.

X11 and the Internet
Since the X Window System is built on a network model, it should be no surprise that
you can launch X applications on your computer and have them actually display on an
X11 system somewhere else on the network. What’s cool is that you can also do the
opposite and have remote computer systems run applications that actually display and
work on your own computer. It’s a bit tricky to set things up properly, however, so I’ll
recommend you check out some of the many Internet resources on the subject, starting
with: http://dyhr.com/2009/09/05/how-to-enable-x11-forwarding-with-ssh-on-mac-os-
x-leopard/.

GIMP, the X11 Graphics Editor
Before we leave the topic of X11, I’d like to showcase one of the very slick apps that are
available. The freeware application GIMP is a graphics and photo editor that competes
with expensive commercial programs like Photoshop. Yes, it’s an awkward name, but
look beyond that, as it’s surprisingly powerful and user-friendly.

You can learn more about GIMP on OS X at http://www.gimp.org/, or you can go straight
to the download page on SourceForge: http://sourceforge.net/projects/gimponosx/.

Once you’ve downloaded GIMP, you can launch it with a simple double-click, as with
any other Mac application. It works within the X11 world, though it doesn’t look too
different from an Aqua application. In Figure 9-7, I’ve loaded in a wonderful shot of

GIMP, the X11 Graphics Editor | 193

http://dyhr.com/2009/09/05/how-to-enable-x11-forwarding-with-ssh-on-mac-os-x-leopard/
http://dyhr.com/2009/09/05/how-to-enable-x11-forwarding-with-ssh-on-mac-os-x-leopard/
http://www.gimp.org/
http://sourceforge.net/projects/gimponosx/

Earth from NASA’s archive (taken from Apollo 8 as it orbited the moon, if you’re
curious).

Figure 9-7. GIMP has a zillion graphics and photo editing options, making it compara‐
ble to Adobe Photoshop

As you can also see in Figure 9-7, there are a lot of different options, filters, tools, and
utilities for photo creation and editing built into the GIMP framework. If you can do it
in Photoshop, odds are pretty good you can figure out a way to do it in GIMP too, just
without the huge price tag.

To learn more about how to work with GIMP, go here: http://docs.gimp.org/2.8/en/.

194 | Chapter 9: Of Windows and X11

http://docs.gimp.org/2.8/en/

CHAPTER 10

Where to Go from Here

Now that you’re almost at the end of this guide, let’s look at some ways to continue
learning about the Unix side of OS X. Documentation is an obvious choice, but it isn’t
always in obvious places. I’ll give you a few pointers on where to look. You can also learn
how to save time by taking advantage of other shell features—aliases, functions, and
scripts—that let you shorten a repetitive job and “let the computer do the dirty work.”

Documentation
You might want to know more about the options to the programs I’ve introduced here,
and get more information about them and the many other Unix programs out there.
You’re now ready to consult your system’s documentation and other resources.

The man Command
Different versions of Unix have adapted Unix documentation in different ways. Almost
all Unix systems have documentation derived from a manual, originally called the Unix
Programmer’s Manual. The manual has numbered sections; each section is a collection
of manual pages, often called manpages; each program has its own manpage. Section 1
has manpages for general Unix programs such as who and ls.

OS X has individual manpages stored on the computer, and you can also read them
online. If you want to know the correct syntax for entering a command or the particular
features of a program, enter the command man, followed by the name of the command
about which you need information.

195

For example, if you want to find information about the program vi, which allows you
to edit text files, enter:

$ man vi
.
.
$

The output of man is filtered through the less pager in OS X, as mentioned in Chapter 4.

Manpages are displayed using a program that doesn’t write the dis‐
played text to the Terminal’s scroll buffer. This can be quite annoy‐
ing, because if you need to scroll back, you can’t. Fortunately, there’s
an easy fix: just specify TERM="ansi" on the command line, or add the
line export TERM="ansi" to your ~/.profile file, and the manpages will
remain in the Terminal’s scroll buffer.

After you enter the command, the screen fills with text. Press the space bar or Return
to read more, and press q to quit.

OS X also includes a command called apropos (actually an alias for man -k) to help you
locate a command if you have an idea of what it does but aren’t quite sure of its correct
name. Enter apropos followed by a descriptive word, and you’ll get a list of commands
that might help. To get this working, however, you need to first build the apropos
database. This is done when OS X runs its weekly maintenance job, which you can also
run manually with the following command:

$ sudo periodic weekly
Password:
$

Don’t be surprised if it takes 10 minutes or more for the periodic command to complete;
it’s doing quite a lot of work.

If you don’t want to wait for periodic to finish up, don’t forget that you
can append an & and have the job run in the background (as dis‐
cussed in Chapter 7)—but don’t expect the apropos command to work
properly until you’ve finished building the database in the background.

Once you’ve rebuilt your apropos database, you can use apropos (or its easier-to-
remember cousin, man -k) to find all commands related to zip, for example, with:

$ man -k zip
bzcmp(1), bzdiff(1) - compare bzip2 compressed files
bzip2(1), bunzip2(1) - a block-sorting file compressor, v1.0.6 bzcat -
 decompresses files to stdout bzip2recover -

196 | Chapter 10: Where to Go from Here

 recovers data from damaged bzip2 files
bzmore(1), bzless(1) - file perusal filter for crt viewing of bzip2
 compressed text
funzip(1) - filter for extracting from a ZIP archive in a pipe
gzip(1) - compression/decompression tool using Lempel-Ziv
 coding (LZ77)
unzip(1) - list, test and extract compressed files in a ZIP
 archive
unzipsfx(1) - self-extracting stub for prepending to ZIP archives
zforce(1) - force gzip files to have a.gz suffix
zip(1) - package and compress (archive) files
zip(n) - Data compression "zip"
zipcloak(1) - encrypt entries in a zipfile
zipdetails(1) - display the internal structure of zip files
zipgrep(1) - search files in a ZIP archive for lines matching
 a pattern
zipinfo(1) - list detailed information about a ZIP archive
zipnote(1) - write the comments in zipfile to stdout, edit comments
 and rename files in zipfile
zipsplit(1) - split a zipfile into smaller zipfiles
znew(1) - convert compressed files to gzipped files

If you use man -k and get tons of output, don’t forget that you can use a standard Unix
pipe to trim the results. Only interested in regular user commands, for example? Add
grep “(1” and it’ll eliminate all the uninteresting matches by constraining the results to
just those that are from section 1 of the manpage database (similarly, “(2” would limit
it to section 2, and so on):

$ man -k postscript | grep "(1"
font2c(1) - Write PostScript Type 0 or Type 1 font as C code
gs(1) - Ghostscript (PostScript and PDF language interpreter
 and previewer)
gsnd(1) - Run ghostscript (PostScript and PDF engine) without
 display
icc2ps(1) - little cms PostScript converter
pdf2dsc(1) - generate a PostScript page list of a PDF document
...
wftopfa(1) - Convert a Wadalab base font to Postscript .PFA
 (or .PFB) format using ghostscript
cupstestdsc(1) - test conformance of postscript files
grops(1) - PostScript driver for groff
pfbtops(1) - translate a PostScript font in .pfb format to ASCII

Problem Checklist: man Says There’s No Manual Entry
for the Command

Some commands aren’t separate Unix programs; they’re part of the shell. On OS X, you’ll
find the documentation for those commands in the manual page for bash or in the busy
manpage for builtin.

Documentation | 197

If the program isn’t a standard part of your Unix system—that is, if you or your system
staff added the program to your system—there may not be a manual page, or you may
have to configure the man program to find the local manpage files.

The third possibility is that you don’t have all the manpage directories in your MAN
PATH variable. If so, add the following to your .profile file (see the sidebar “Fixing Those
Pesky Carriage Returns” on page 88 in Chapter 4), then open a new Terminal window
for the settings to take effect:

export MANPATH=${MANPATH}:/opt/X11/share/man:/opt/local/share/man

198 | Chapter 10: Where to Go from Here

Documentation on the Internet
The Internet changes so quickly that any list of online Unix documentation I gave you
would soon be out of date. Still, the Internet is a great place to find out about Unix
systems. Remember that there are many different versions of Unix, so some documen‐
tation you find may not be completely right for you. Also, some information you’ll find
may be far too technical for your needs (many computer professionals use and discuss
Unix). But don’t be discouraged! Once you’ve found a site with the general kind of
information you want, you can probably come back later for more.

The premier place to start your exploration of online documentation for OS X Unix is
the Apple website. But don’t start on their home page—start either on their OS X page
(http://www.apple.com/osx) or their Darwin project home page (http://develop
er.apple.com/opensource).

Many Unix command names are plain English words, which can make searching hard.
If you’re looking for collections of Unix information, try searching for the Unix program
named grep. One especially Unix-friendly search engine is Google (http://
www.google.com).

Here are some other places to try:
Magazines

Some print and online magazines have Unix tutorials and links to more informa‐
tion. Macintosh magazines include MacTech (http://www.mactech.com) and Mac‐
world (http://www.macworld.com). I also write a monthly shell scripting and Unix
command line column for Linux Journal (http://www.linuxjournal.com) that you
will likely find enjoyable reading.

Publishers
Publishers such as O’Reilly Media, Inc. (http://www.oreilly.com) have areas of their
websites that feature Unix and host articles written by their books’ authors. They
may also have books online (such as the O’Reilly Safari service, http://www.safari
booksonline.com) available for a small monthly fee. Subscribing to such a service is
a good way to learn a lot quickly without needing to buy a paper copy of a huge
book, most of which you might not need.

Universities
Many schools use Unix-like systems and will have online documentation. You’ll
probably have better luck at the Computer Services division (which services the
whole campus) than at the Computer Science department (which may be more
technical).

Documentation | 199

http://www.apple.com/osx
http://developer.apple.com/opensource
http://developer.apple.com/opensource
http://www.google.com
http://www.google.com
http://www.mactech.com
http://www.macworld.com
http://www.linuxjournal.com
http://www.oreilly.com
http://www.safaribooksonline.com
http://www.safaribooksonline.com

OS X−related websites
Many OS X websites are worthy of note, though they’re run by third parties and
may change by the time you read this. Mac OS Apps (http://www.macos
xapps.com) offers a wide variety of Aqua applications. Information on Darwin can
be found at Pure Darwin (http://www.puredarwin.org), and Mac OS X Hints (http://
www.macosxhints.com) offers valuable information and hints. I also have a popular
Q&A site that addresses many Unix and OS X questions, and I invite you to visit
with your questions: Ask Dave Taylor (http://www.AskDaveTaylor.com). One more
site well worth a bookmark is O’Reilly’s MacDevCenter (http://www.macdevcen
ter.com). Oh, and a few more, if you like Mac rumors and discussion about the
world of Apple products: Mac Rumors (http://www.macrumors.com), MacFixIt
(http://www.macfixit.com), and MacInTouch (http://www.macintouch.com).

Books
Bookstores, both traditional and online, are full of computer books. The books are
written for a wide variety of needs and backgrounds. Unfortunately, many books are
rushed to press, written by authors with minimal Unix experience, and are full of errors.
Before you buy a book, read through parts of it. Does the style (brief or lots of detail,
chatty and friendly, or organized as a reference) fit your needs? Search the Internet for
reviews; online bookstores may have readers’ comments on file.

Customizing Your Unix Experience
One of the great values of Unix is that it’s flexible, and what’s the point of all this flexibility
if you can’t bend it to meet your own needs? Let’s finish up this book with a brief tour
of the different ways you can reshape your OS X Unix world.

Shell Aliases and Functions
If you find yourself typing command names that are hard for you to remember, or
command lines that seem too long, you’ll want to learn about shell aliases and shell
functions. These shell features let you abbreviate commands, command lines, and long
series of commands. In most cases, you can replace them with a single word or a word
and a few arguments. For example, a long pipeline (see Chapter 6) could be replaced by
an alias or function. I also use aliases to ensure that certain commands always have the
options I prefer, without me needing to type them. An example:

alias grep='grep --color=always'

Making an alias or function is almost as simple as typing in the command line or lines
that you want to run. References earlier in this chapter have more information; for more
on aliases, see Chapter 2.

200 | Chapter 10: Where to Go from Here

http://www.macosxapps.com
http://www.macosxapps.com
http://www.puredarwin.org
http://www.macosxhints.com
http://www.macosxhints.com
http://www.AskDaveTaylor.com
http://www.macdevcenter.com
http://www.macdevcenter.com
http://www.macrumors.com
http://www.macfixit.com
http://www.macintouch.com

Programming
Shell aliases and functions are actually a simple case of shell programming. There are a
number of different ways that you can delve into the world of programming, ranging
from the lightweight interpreted shell script to full C++, PHP or Ruby development.
They’re all supported within the OS X environment.

Shell scripts
I mentioned earlier that the shell is the system’s command interpreter. It reads each
command line you enter at your terminal and performs the operation that you call for.
Your shell is chosen when your account is set up.

The shell is just an ordinary program that can be called by a Unix command. However,
it contains some features (such as variables, control structures, and so on) that make it
similar to a programming language. You can save a series of shell commands in a file,
called a shell script, to accomplish specialized functions.

Programming the shell should be attempted only when you are reasonably confident
in your ability to use Unix commands. Unix is quite a powerful tool, and its capabilities
become more apparent when you try your hand at shell programming.

Take time to learn the basics. Then, when you’re faced with a new task, take time to
browse through references to find programs or options that will help you get the job
done more easily. Once you’ve done that, learn how to build shell scripts so that you
never have to type a complicated command sequence more than once.

Let’s take a closer look at a shell script to give you some flavor of what can be done. The
following script reads lines out of a file called tweets.txt and prints those that are too
long to be sent to Twitter (more than 130 characters):

#!/bin/sh

while read tweet
do
 length="$(echo $tweet | wc -c)"
 if [$length -ge 130] ; then
 echo $length -- $(echo $tweet | cut -c1-30)...
 fi
done < tweets.txt

exit 0

You can try this script by entering the above few lines into vi, Pico, or another Unix text
editor of your choice. (See Chapter 4 for additional information on editing files.)

After typing in this script, save the file and name it something like tweetcheck, since
that’s what the program does. (Giving a script a descriptive name helps you quickly
identify it later, when you need to use it.) The first line indicates what program should
run the script; like most scripts, this is written for the Bourne shell, /bin/sh. The while

Customizing Your Unix Experience | 201

loop reads lines from the file (specified at the end of the loop), and the $() notation
sends whatever’s inside to a subshell for separate execution, replacing it all with the
result of the command (in this case, the number of characters in the line). An if test
checks to see if it’s over 130 characters, and echo is used to output those lines that match.

To make a shell script act as if it’s a new program rather than just a text file, you use
chmod +x to make it executable. Then you can run it by typing in its name if it’s in your
current PATH (see Chapter 2 for more information on setting and customizing your
PATH), or with the ./ prefix to indicate that it’s in the current directory.

This is really the tip of the iceberg with shell scripts. For more information, see my book
Wicked Cool Shell Scripts (No Starch Press), look at Unix in a Nutshell (O’Reilly), by
Arnold Robbins, or see Unix Power Tools (O’Reilly), by Jerry Peek, Shelley Powers, et
al.

Turning shell scripts into AppleScript droplets
A very cool trick with OS X is to turn a shell script into a droplet, an application that
can have files dropped onto it from the Finder. To accomplish this feat, you’ll need to
download and launch a copy of Fred Sanchez’s DropScript utility (http://www.mit.edu/
people/wsanchez/software/darwin/DropScript-0.5.dmg).

At its simplest, a droplet script accepts one or more files, given as command-line argu‐
ments, which are then processed in some manner. As a simple example, here’s a droplet
script that prints whatever files you give it:

#!/bin/sh
pr "$@" | lpr

This can be turned into a droplet by dragging the shell script icon over the DropScript
application in the Finder. It creates a new version called dropfilename that’s fully drag-
and-drop-enabled. For example, if this script were called print-text, the droplet would
be called dropprint-text.

Perl, Python, and Ruby
If shell script programming seems too limiting, you might want to try learning Perl,
Ruby, or Python. These languages are also interpreted from source files full of com‐
mands have a steeper learning curve than the shell. Also, because you’ve already learned
a fair amount about the shell and Unix commands by reading this book, you’re almost
ready to start writing shell scripts now; on the other hand, a programming language
takes longer to learn. But if you have sophisticated needs, learning one of these languages
is another way to use even more of the power of your OS X system.

Don’t underestimate what you can do with shell scripting, though. It’s very powerful,
and we’ve only touched on its features here!

202 | Chapter 10: Where to Go from Here

http://shop.oreilly.com/product/9780596100292.do
http://shop.oreilly.com/product/9780596003302.do
http://www.mit.edu/people/wsanchez/software/darwin/DropScript-0.5.dmg
http://www.mit.edu/people/wsanchez/software/darwin/DropScript-0.5.dmg

C and C++
In addition to Perl, Python, and Ruby, OS X also ships with compiled programming
languages, where there’s an intermediate step between writing a program and having it
ready to run on your system. These are how Mac applications themselves are written,
including both Unix commands and the graphical Aqua utilities that make the Mac such
a great environment. A few variants that you might have heard of are Objective-C (a
variant of the C programming language that’s popular with Mac developers) and Cocoa
(an OS X−only development environment). These are also quite complex and can take
years to fully master, but if you want to begin learning, you’ll be glad to know that a full
development environment is included with your OS X system.

Customizing Your Unix Experience | 203

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
! character, 127, 180
(hash), xvi, 27, 34
$ (dollar sign), xvi, 33, 34, 92, 116
$LOGNAME environment variable, 157
& character, 154, 191, 196
() (parentheses), 127
* (asterisk), 5, 52, 80, 116
+ operator, 116
- (dash), 15, 57
. (dot), 36, 52, 54
.. shortcut, 12, 52
/ (forward slash), 7, 42, 62, 77
; (semicolon), 154
< operator, 136
= operator, 69
> operator, 24, 136–140
>> operator, 140
? (question mark), 80, 116
@ (ampersand), 52, 67
[] (brackets), 80
\ (backslash), 24, 45
^ character, 116
{} (braces), 80
| (pipe) operator, 112, 116, 136
~ (tilde), 5, 7, 27, 34, 101–102

A
absolute pathnames, 44–45
access modes (see permissions)
Activity Monitor, 157
admin users, 72
Adobe Photoshop, 127
AirPort Utility, 173
aliases, 37, 48, 105, 105

and shell functions, 200
in .profile file, 38

ampersand (@), 52, 67
anonymous FTP (file transfer protocol), 178
ANSI escape sequences, 23
Apple Developer’s Site, 9
AppleScript

manipulating Terminal with, 24
running from shell, 17, 24
turning shell scripts into droplets, 202

Applications folder, 10
applications, free, 7–8
apropos command, 196
Aqua interface, xi, 1, 190
archiving files, 106–109

with gzip program, 107–108
with tar program, 108–109

arguments, 14
asterisk (*), 5, 52, 80, 116
attributions, xvi

205

B
background processes, 154–155
backslash (\), 24, 45
Barrett, Daniel, 175
bash shell, xvi, 14, 19, 27–35, 138, 154, 189, 197
.bashrc file, 35, 39, 191
BBEdit, 87
BEL character, 23
bg command, 154
bin directory, 43
blocks, 55
BLOCKSIZE environment variable, 53
bold text, xv
braces ({}), 80
brackets ([]), 80
bzip2, 107

C
C language, 203
C++ language, 203
Cameron, Debra, 98
case sensitivity, 15
cat command, 31, 81

adding text to file, 137–141
looking inside files with, 82–83

cd command, 10, 11, 30, 47–49, 163, 178
character classes

in regular expressions, 115
with tr command, 143

chgrp command, 70
chmod command, 67–70, 122
chown command, 71
chsh command, 32
CMD header, 3
Cocoa, 203
colons in filenames, 77
colors

in Terminal, 19
matches in, 114

colrm command, 142
Command mode, vi editor, 89
command prompt, 33–35
commands

displaying all, 9
recalling previous, 28–29
syntax for, 14–16
types of, 17–18
why use, 1

compressing files, 106–109
with bzip2, 107
with gzip program, 107–108
with tar program, 108–109

concatenate, 140
configd process, 156
constant width text, xv
context matches, 113
control characters, 31, 40
Control symbol, xv
copy shell, 162
.core files, 142
coreaudiod process, 156
CoreGraphics library, 186
coreservices process, 156
correcting commands, 30–31
cp command, 4, 5, 9, 38, 52, 71, 100–102, 138,

176–177
crackers, 175
csh shell, 19, 32, 35
curl command, 181
cutting and pasting in X11, 190
CWD command, 8
Cyberduck, 182

D
daemon, 3
DARPA (Defense Advanced Research Projects

Agency), xi
Darwin, xi, 7
dash (-), 15, 57
databases

for metadata, 127
date command, 14, 17, 28, 30, 37, 93, 139
date command (mistyped), 30
dev directory, 50, 62
devfs partition, 63
df command, 62, 63
directories

completing names of, 29
defined, 6
files in, 49–50

and wildcards, 80–82
names of, 77–80
removing, 103–105

home directory, 42
listing files in, 11, 51–59

ls command, 51–54
permissions for, 56–59

206 | Index

mkdir command, 99–100
overview, 41
relative pathnames for, 46–47
structure of, 43–44
vs. folders, 6–7
working directory, 42–43, 47–49

cd command, 47–49
pwd command, 47

disk space, 59–64
Disk Utility program, 123
diskarbitrationd process, 3, 4, 156
displaying all commands, 9
.doc extension, 78, 164
documentation, 195–200

books, 200
Internet, 199–200
man command, 195–198

dollar sign ($), xvi, 33–34, 92, 116
dot (.), 36, 52, 54
dot files, 5
dragging and dropping file onto Terminal win‐

dow, 48
DropBox, 42
droplets

defined, 202
turning shell scripts into, 202

du command, 30, 55, 59
dynamic_pager process, 156

E
echo command, 27, 202
Elliott, James, 98
Emacs editor, 87, 97–98
erase character, 31
error messages, 30
ESC character, 23
escape character, 45
Escape key, 89
escaping in bash shell, 23
EXIF format, 127
exit command, 12
external volumes, 74–75
extracting files selectively, 4–5

F
Fetch, 182
fg command, 40, 154

filenames
colons in, 77
spaces in, 78
special characters in, 77
wildcards in remote, 177

files
adding text to, 137–141
and directories, 49–59

ls command, 51–54
mkdir command, 99–100
permissions for, 56–59

and wildcards, 80–82
archiving, 106–109

with gzip program, 107–108
with tar program, 108–109

completing names of, 29
compressing, 106–109

with gzip program, 107–108
with tar program, 108–109

copying, 100–102
editing with text editors, 86–98
extracting selectively, 4–5
finding

by size, 120–121
with mdfind command, 131–132

group ownership of, 70–71
hidden, 5–6
linking to, 105–106
looking inside, 82–86

with cat command, 82–83
with grep command, 85–86
with less command, 83–85

moving, 102–103
names of, 77–80
on non-Unix operating systems, 109
overview, 41
overwriting

with mv command, 102
without possibility of recovery, 104

ownership of, 70–71
paths for, 6
permissions for, 56–59
protecting, 64–71

ownership of, 70–71
permissions for, 66–70

recently changed, 123–124
removing, 103–105
renaming, 102–103

Index | 207

sharing
ownership for, 70–71
permissions for, 66–70

size of, 59–64
transferring, 176–183

with FTP, 177–182
with rcp command, 176–177
with Remote Connection, 182–183
with scp command, 176–177

filesystem, 41–50
defined, 6, 42
directories

home directory, 42
listing files in, 51–59
structure of, 43–50
working directory, 42–49

external volumes in, 74–75
files

protecting, 64–71
size of, 59–64

networking, 44
pathnames in

absolute, 44–45
relative, 45–47

root level of, 42
superuser privileges for, 72–74

filters
defined, 142
piping output to pager, 147–148
with grep command, 144
with head command, 145
with sort command, 145–147
with tail command, 145
with tr command, 143–144
with uniq command, 147
with wc command, 142–143

find command, 67, 74, 119–127
and xargs command, 124–126
by file size, 120–121, 146
by permissions, 122–123
options for, 121–121
recently changed files, 123–124

Finder
FTP from, 181
invisible files in, 41

finger command, 17
Fink, 186
flags, 3
fmt command, 93

folders
defined, 41
vs. directories, 6–7

Force Quit, 2
forward slash (/), 7, 42, 62, 77
free applications, 7–8
frozen terminals, 39
FTP (File Transfer Protocol), 177–182

anonymous, 178
from Finder, 181
ftp command, 18, 178–182
options for, 178–179, 182
prompt for, 18
sftp command, 180
with curl command, 181
with web browser, 180

G
Garfinkel, Simson, 64
GetFileInfo command, 164
GIMP (GNU Image Manipulation Program), 2,

193–194
Google Drive, 42
grep command, 4, 10, 85–86, 125, 125, 144, 146

looking inside files with, 85–86
options for, 112–114
regular expressions with, 114–118

group ownership of files, 70–71
GUIs (graphical user interfaces), xii, 163–167
gunzip command, 107
.gz files, 107, 109, 126
gzip command, 107–108

H
hackers, 175
hard links, 105
hash (#), xvi, 27, 34
head command, 145
hidden files, 5–6
home directory, 42, 64
Homebrew, 186
.html files, 119

I
I/O (input/output), 135

piping of, 141–148
to pager, 147–148

208 | Index

with grep command, 144
with head command, 145
with sort command, 145–147
with tail command, 145
with tr command, 143–144
with uniq command, 147
with wc command, 142–143

printing, 149–151
with lp command, 150
with lpstat command, 149–150
with pr command, 150–151

redirecting, 135
standard input/output, 135–141

iCloud, 42
if statement, 202
InkScape application, 190
inodes, 63
input/output (see I/O (input/output))
Insert mode, vi editor, 89
install.log file, 54
interactive programs, 17
Interarchy, 182
Internet

accessing from command line, 7–8
resources from, 199–200

Internet Explorer (MSIE), 117
invisible files in Finder, 41
italic text, xiv

J
job control, 32, 39, 153, 154
jobs command, 32, 40
Joy, Bill, 89
JPEG files, 128

K
kextd, 156
kill command, 4, 40, 160–161
killall command, 161–162
kMDItem-PixelWidth property, 129
kMDItemAcquisitionModel property, 129
kMDItemAlbum property, 131
kMDItemAuthors property, 131
kMDItemDurationSeconds property, 131
kMDItemEncodingApplications property, 130
kMDItemExposureTimeSeconds property, 129
kMDItemFocalLength property, 129
kMDItemFSCreationDate property, 130

kMDItemMusicalGenre property, 131
kMDItemNumberOfPages property, 130
kMDItemPixelHeight property, 129
kMDItemResolutionHeightDPI property, 129
kMDItemResolutionWidthDPI property, 129
kMDItemTitle property, 131
Korn, David, 33
ksh shell, 19, 32, 33

L
Lamb, Linda, 89
large files, finding, 146
lcd command, 178, 180
Learning GNU Emacs (Cameron, et al.), 98
Learning the bash Shell (Newham, Rosenblatt),

19
Learning the Korn Shell (Rosenblatt, Robbins),

33
Learning the Unix Operating System (Peek, et

al.), xviii
Learning the vi Editor (Lamb, Robbins), 89
less command, 10, 37, 137, 148, 196

commands for, 84
looking inside files with, 83–85
options for, 148

LESS environment variable, 37, 84
line oriented applications, 135
links, 105–106
Linux Journal, 199
lls command, 180
ln command, 105
locate command, 118–119, 127
logging in remotely, 169–175

to other Unix systems, 173–175
web access for, 173

.login file, 114, 189
login shell, 32–33
Loy, Marc, 98
lp command, 149, 150
lpr command, 151, 174
lpstat command, 149–150
ls command, 5, 9, 16, 38, 51–54, 84, 112, 128,

135, 146, 177, 195
lxde window manager, 187

M
Mac-format files, 88
mach_kernel, 67

Index | 209

MacPorts, 186
MacTech, 199
Macworld, 199
man command, 10, 85, 195–198
manpages, 195
MANPATH environment variable, 198
matches

by file size, 120–121
color for, 114
counting, 114
in context, 113

mdfind command, 131–132, 144
mdls command, 128–133
metadata

and mdfind command, 131–132
and mdls command, 128–131
database for, 127
defined, 127
listing, 128–131

mget command, 178
Microsoft Office, 88
Microsoft Word, 127
mkdir command, 98–180
modality, 89
more command, 83
mounting volumes, 42
mouse focus in X11, 190
mput command, 178
MSIE (Internet Explorer), 117
multiple commands, running, 30
multitasking

and processes
canceling, 160–162
checking status of, 155–160
running in background, 154–155

defined, ix, xiv, 153
with open command, 163–167

multiuser, ix
mv command, 9, 38, 102–103, 176

in .profile file, 38
overwriting files with, 102

N
nano editor, 97
NeoOffice, 88
NetFinder, 182
networking

filesystem for, 44

remote login, 169–175
to other Unix systems, 173–175
web access, 173

transferring files, 176–183
with FTP, 177–182
with rcp command, 176–177
with Remote Connection, 182
with scp command, 176–177

Newham, Cameron, 19
noclobber command, 138
noninteractive programs, 17
nonmodal editors, 97

O
Objective-C, 203
Office, Microsoft, 88
open command, 8, 17, 87, 163–167, 171
open source, 185
OpenGL, 186
OpenSSH application, 170
options

for commands, 3
for find command, 121–121
for ftp command, 178–179, 182
for grep command, 112–114
for less command, 148
for pr command, 151
for sort command, 146

OS X Mountain Lion: The Missing Manual (Po‐
gue), xii

OS X Server, 173
osascript command, 17, 24
output

piping to pager, 147–148
redirecting, 138
standard, 135–141

overwriting files
with mv command, 102
without possibility of recovery, 104

ownership of files, 70–71

P
pageout, 159
pagers, piping output to, 147–148
Pages application, 88
pages, memory, 159
parentheses (), 127
passwd command, 72

210 | Index

passwords
changing, 71–72
choosing, 72

PATH environment variable, 36, 189, 202
pathnames

absolute, 44–45
defined, 44
overview, xv
quoting, 45
relative, 45–47
spaces in, 45

PDF files, 127, 130
Peek, Jerry, xviii, 202
periodic command, 196
Perl language, 202–202
permissions

defined, 56
for files, 56–59, 66–67
setting, 67–70
symbolic values for, 122–123

Photoshop, 127
Pico editor, 87, 96–97
PIDs (process IDs), 3, 154
Pine, 96
pipe (|) operator, 112, 116, 136
piping commands, 112, 119, 141–148

to pager, 147–148
with grep command, 144
with head command, 145
with sort command, 145–147
with tail command, 145
with tr command, 143–144
with uniq command, 147
with wc command, 142–143

Pogue, David, xii
power of Unix command line, 1
Powers, Shelley, 202
pr command, 150–151
Practical Unix and Internet Security, 64
printing, 149–151

with lp command, 150
with lpstat command, 149–150
with pr command, 150–151

privileges, superuser, 72–74
process IDs (PIDs), 3, 154
processes

canceling, 160–162
with kill command, 160–161
with killall command, 161–162

checking status of, 155–160
with ps command, 155–157
with top command, 157–159

running in background, 154–155
.profile file, 5, 33–39, 114, 159, 166, 179, 189,

196–198
and X11, 191
for xterm, 191
noclobber command in, 138

prompts, 27
command, 33–35
escape sequences for, 34
shell, 27–27

proxy icons, 162
ps command, 2, 3, 155–161, 165
put command, 178
PuTTY, 170
pwd command, 10, 11, 12, 43, 47, 58, 63, 64
pwd commands, 63
Python language, 202–202

Q
Quartz Compositor, 186
quartz-wm window manager, 187
question mark (?), 80, 116
quit command, 179
quoting pathnames, 45

R
r/o property, 24
Rbrowser, 182
rcp command, 176–177
recalling commands, 28–29
regular expressions

character classes in, 115
with grep command, 114–118

relative pathnames, 45–47
remote filenames, 177
Remote Login, 169–175

enabling, 169
to other Unix systems, 173–175
web access, 173

resources, 195–200
books, 200
Internet, 199–200
man command, 195–198

Return key, 39
rlogin command, 173, 174

Index | 211

rm command, 9, 10, 38, 50, 103–104
rmdir command, 104
Robbins, Arnold, 33, 89, 202
root directory, 7, 42, 43
root user, xvi, 67, 156
rootless mode, 192
rootless X server, 187
Rosenblatt, Bill, 19, 33
rsh command, 174–175
Ruby language, 202–202

S
Schwartz, Alan, 64
scp command, 176–177
screen oriented applications, 135
Screen Sharing, 172
scripts, 201–202

defined, xii
turning into AppleScript droplets, 202

scrolling in xterm, 190
searching

in vi editor, 92
metadata, 127–133

with mdfind command, 131–132
with mdls command, 128–131

with find command, 119–127
and xargs command, 124–126
by file size, 120–121
by permissions, 122–123
recently changed files, 123–124

with grep command, 111–118
options for, 112–114
regular expressions with, 114–118

with locate command, 118–119
Secure Keyboard Entry feature, 22
security of network connections, 174
semicolon (;), 154
sessions

customizing, 23–25
title for, 23
with .terminal files, 25
with AppleScript, 24

ending, 31
unresponsive, 39

sftp command, 180
sh shell, 19, 32, 201
sharing files

ownership for, 70–71
permissions for, 66–70

shells
aliases for, 200
command prompt for, 27
configuring, 35–38
customizing, 32–39

command prompt, 33–35
login shell, 32–33
shell aliases, 38–39

defined, 19
exiting, 31
functions for, 200
scripts for, 201–202

Silverman, Richard, 175
SlashDot, 33
sleep command, 161–162
sniffers, 174
sockets, 50
sort command, 15, 145–147, 155
spaces

in filenames, 78
in pathnames, 45

Spafford, Gene, 64
special characters in filenames, 77
SSH (Secure Shell), 169–183

security of, 174
ssh-agent, 175

SSH, The Secure Shell: The Definitive Guide
(Barrett, Silverman), 175

standard input, 135–141
standard output, 135–141
Startup settings for Terminal application, 19
Strang, John, xviii
strings command, 82, 112
subdirectories, 43
subshells, 32, 162
sudo command, 35, 72–74, 86, 102, 126, 142
superusers, 27
suspend character, 154
SVN command, 36
swapping, 159
switches, 3
symbolic links, 50, 105
syntax for commands, 14–16

T
tail command, 145, 159
tape devices, 108
tar command, 108–109
tarballs, 108

212 | Index

tcsh shell, 19, 32, 189
telnet command, 173–175, 182
Terminal application

command prompt in, 27
commands in, 27–28

correcting, 30–31
recalling previous, 28–29
running multiple, 30
syntax for, 14–18

completing names in, 29
dragging and dropping file onto window of,

48
features of, 22
overview, xii
preferences for, 18–21
sessions

customizing, 23–25
ending, 31

troubleshooting, 31–32
.terminal file, 25
text editors, 87–98

Emacs, 97–98
Pico, 96–97
vi editor, 89–96

TextEdit, 87
third-party copy, 176
tilde (~), 5, 7, 27, 34, 101, 102
time command, 30
TIME header, 3
titles, session, 23
Todino, Grace, xviii
top command, 10, 25, 157–159
touch command, 50, 53
tr command, 88, 143–144
Transmit, 182
troubleshooting

chmod command, 70
copying files, 102
Terminal application, 31–32

tty command, 155
TTY header, 3
.txt extension, 78

U
umount command, 182
unalias command, 39
uniq command, 147
Unix in a Nutshell (Robbins), 202
Unix Power Tools (Peek, et al.), 202

Unix Programmer’s Manual, 195
Unix, history of, xi–xiii
unresponsive Terminal application, 39
up arrow, 29
usernames, 13
Utilities folder, 10, 13

V
versions, Unix, xi–xii
vi editor, 26, 89–96

accessing by dragging file into Terminal win‐
dow, 163

capabilities of, 94–96
Command mode in, 89
commands for, 93–96
Escape key in, 89
external Unix commands with, 93
Insert mode in, 89
is screen-oriented program, 135
searching in, 92
with less command, 148

vi Editor Pocket Reference (Robbins), 89
vim editor, 87, 89
vimtutor command, 89
VNC (Virtual Network Computing), 172
.vol directory, 62, 63
volumes

external, 74–75
mounting, 42

W
wc command, 114, 117, 120, 142–144
websites for OS X related information, 200
while loop, 201
who command, 17, 28, 139, 161, 172, 195
Wicked Cool Shell Scripts (Taylor), 19, 167, 202
wildcards, 4, 80–82

* (asterisk) as, 80
? (question mark) as, 80
in remote filenames, 177
[] (brackets) as, 80
{} (braces) as, 80

window manager, 186, 187
word processors, 87–98

and shell configuration files, 37
defined, 87
Emacs, 97–98
Pico, 96–97

Index | 213

vi editor, 89–96
Word, Microsoft, 127
working directory, 42–43

and cd command, 47–49
and pwd command, 47

WYSIWYG (What You See Is What You Get),
87

X
X11 (X Window System, Version 11), 186–193

and .bashrc file, 191
customizing, 191–193
cutting and pasting in, 190
GIMP graphics editor, 193–194
mouse focus in, 190

and .profile file, 191
utilities for, 189–190
vs. OS X, 190–191

xargs command, 124–126, 146
Xcode Tools, 9, 164
.xls extension, 78
xmh application, 190
XQuartz, 185, 187
xterm application, 188

launching applications from, 191
scrolling in, 190

Z
.zip files, 107
zsh shell, 19, 32

214 | Index

About the Author
Dave Taylor has a master’s degree in education and an MBA, and has written twenty
business and technical books, including Learning Unix for Mac OS X (O’Reilly), Solaris
for Dummies (Hungry Minds), and Teach Yourself UNIX in 24 Hours (SAMS). He was
a contributor to BSD 4.4 UNIX and his software is included in many major UNIX
distributions. He is also a columnist for Linux Journal, runs a popular tech Q&A site
called AskDaveTaylor.com, and lives in Boulder, Colorado with his three wonderful
children. You can find Dave on all the big social networks by starting at DaveTaylor‐
Online.com.

Colophon
The animal on the cover of Learning Unix for OS X is the mountain lion (Felis concol‐
or), also known as a cougar, puma, mountain cat, catamount, or panther, depending on
the region. This large, solitary cat has the greatest range of any large wild terrestrial
mammal in the Western Hemisphere, extending from the Yukon in Canada to the
southern Andes of South America. Although large, the mountain lion is more geneti‐
cally similar to the domestic cat than to true lions. Like smaller felines, the mountain
lion is nocturnal.

Adult mountain lions generally are a solid red or brown color. This permits them great
camouflage while stalking their prey in the desert, mountainous regions, and forests.
Full-grown male mountain lions can weigh upwards of 150 pounds and be 8 feet long,
including the tail. Females are smaller and weigh around 80 pounds. They live for ap‐
proximately 8–10 years in the wild and up to 20 years in captivity, although only 1 in
every 6 kittens survives to reach adulthood. They are extremely agile creatures, as their
long hind limbs allow them to cover a distance of 40 feet in a single leap.

There is a difference in the structure of their voice box from other large cats. Due to
this, mountain lions cannot roar; instead, they produce a high-pitched scream. This
shrill scream has earned them a place in American folklore. To the Apache and Walapai
of Arizona, the wail of the mountain lion was a harbinger of death. The Algonquins and
Ojibwas believed that the mountain lion lived in the underworld and was wicked,
whereas it was a sacred animal to the Cherokee.

The mountain lion holds the Guinness record as the animal with the most names, pre‐
sumably due to its wide distribution across North and South America. It has over 40
names in English alone. The first recorded English use of “puma” was in 1777—it had
come from the Spanish, who in turn borrowed it from the Peruvian Quechua language
in the 16th century, where it means “powerful.”

The cover image is from Shaw’s Zoology. The cover font is Adobe ITC Garamond. The
text font is Minion Pro by Robert Slimbach; the heading font is Myriad Pro by Robert
Slimbach and Carol Twombly; and the code font is UbuntuMono by Dalton Maag.

http://www.askdavetaylor.com/
http://www.davetayloronline.com/
http://www.davetayloronline.com/

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Isn’t For
	A Brief History of Unix
	Versions of Unix
	Interfaces to Unix

	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	The Evolution of This Book
	Acknowledgments

	Chapter 1. Why Use Unix?
	The Power of Unix
	Batch Renames and Extracting File Lists
	Finding Hidden Files

	Folders or Directories?
	Thousands of Free Applications
	Power Internet Connections

	Commands Included with Unix
	Displaying All Unix Commands
	The 10 Most Common Unix Commands

	A Simple Guided (Unix) Tour

	Chapter 2. Using the Terminal
	Launching the Terminal
	Syntax of a Unix Command
	Exercise: Entering a Few Commands
	Types of Commands
	Changing the Terminal’s Preferences
	Features of the Terminal

	Customizing Your Terminal Session
	Setting the Terminal’s Title
	Using AppleScript to Manipulate the Terminal
	Working with .terminal Files

	Working with the Terminal
	The Shell Prompt
	Entering a Command
	Recalling Previous Commands
	Completing File and Directory Names
	Running Multiple Commands on the Command Line
	Correcting a Command
	Ending Your Session
	Problem Checklist

	Customizing the Shell Environment
	Picking a Login Shell
	Changing the Command Prompt

	Advanced Shell Customization
	Shell Configuration Settings
	Creating Aliases

	The Unresponsive Terminal

	Chapter 3. Exploring the Filesystem
	The OS X Filesystem
	Your Home Directory
	Your Working Directory
	The Directory Tree
	Absolute Pathnames
	Relative Pathnames
	Changing Your Working Directory
	Files in the Directory Tree

	Listing Files and Directories
	The All-Powerful ls Command
	Trying Out the ls Command
	Using the -l Option
	File Permissions

	Calculating File Size and Disk Space
	Calculating Available Disk Space
	Exercise: Exploring the Filesystem

	Protecting and Sharing Files
	File Access Permissions
	Setting Permissions with chmod
	Changing the Group and Owner

	Changing Your Password
	Superuser Privileges with sudo
	Exploring External Volumes

	Chapter 4. File Management
	File and Directory Names
	File and Directory Wildcards
	Looking Inside Files
	cat
	less
	grep

	Creating and Editing Files
	Text Editors and Word Processors
	The vi Text Editor
	vi Basics
	A Simpler vi Alternative: Pico
	The More Complex Option: Emacs

	Managing Files
	Creating Directories with mkdir
	Copying Files
	Renaming and Moving Files with mv
	Removing Files and Directories
	Working with Links
	Compressing and Archiving Files
	Files on Other Operating Systems

	Chapter 5. Finding Files and Information
	The Oddly Named grep Command
	Useful grep Options
	Working with Regular Expressions

	Finding Files with locate
	Using locate

	Using find to Explore Your Filesystem
	Matching by File Size
	Exploring find Permission Strings
	Using find to Identify Recently Changed Files
	find’s Faithful Sidekick: xargs
	Further Refinements to find

	Shining a Light on Spotlight
	Listing Spotlight Metadata with mdls
	Finding Files with mdfind
	Making Spotlight Useful

	Chapter 6. Redirecting I/O
	Standard Input and Standard Output
	Putting Text in a File

	Pipes and Filters
	wc
	tr
	grep
	head and tail
	sort
	uniq
	Piping Output to a Pager

	Printing
	The Unix Way

	Chapter 7. Multitasking
	Running a Command in the Background
	Checking on a Process
	ps
	top

	Canceling a Process
	kill
	killall

	Launching GUI Applications
	open
	Useful Starting Options for Use with open
	Making open More Useful

	Chapter 8. Taking Unix Online
	Remote Logins
	Web Access
	Remote Access to Other Unix Systems

	Transferring Files
	scp and rcp
	FTP
	Easy Shortcuts with New Remote Connection

	Chapter 9. Of Windows and X11
	X11
	Using X11
	Differences Between OS X and X11
	Customizing X11

	GIMP, the X11 Graphics Editor

	Chapter 10. Where to Go from Here
	Documentation
	The man Command
	Documentation on the Internet
	Books

	Customizing Your Unix Experience
	Shell Aliases and Functions
	Programming
	Perl, Python, and Ruby
	C and C++

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

