
Technology & Engineering / Electronics

Understanding the Operating System That Runs

Raspberry Pi and Other Maker SBCs

Aaron Newcomb

Make:
Linux for
Makers

M
ake:

L
in

u
x

 fo
r M

a
k

e
rs

A
aro

n
 N

ew
co

m
b

Make: Linux for Makers
Some Makers shy away from using the Raspberry Pi or similar
boards because they think Linux is too foreign and difficult. The
good news is that the Linux operating system is really just another
tool in the Maker tool belt! Like all tools, it’s not challenging to use
once you know how to use it effectively.

It makes sense that Makers would develop a preference for using Linux
to help build their projects that run on single board computers, in much
the same way we use a screwdriver or hammer in woodworking. In
fact, Linux is so powerful, you may start to prefer it to other operating
systems and choose to use it on a daily basis!

This is the first book to explain the Linux operating system specifically
for Makers, providing a foundation in the basic principles you need for
further learning and exploration with your projects.

From loading the OS, to troubleshooting, to prepping projects, you’ll learn to:

» Install Raspian and other popular Linux distributions

» Code and write scripts that control real-world hardware

» Learn Linux commands, systems, and processes

» Control GPIO pins on your Raspberry Pi

» Set up an IFTTT applet and other cloud services

» Run a virtual Raspberry Pi on Windows, Mac, or Linux

Make:
makezine.com

US $24.99 CAN $32.99

ISBN: 978-1-6804-5183-2

Enjoy the freedom and endless possibilities Linux provides!

Technology & Engineering / Electronics

Understanding the Operating System That Runs

Raspberry Pi and Other Maker SBCs

Aaron Newcomb

Make:
Linux for
Makers

M
ake:

L
in

u
x

 fo
r M

a
k

e
rs

A
aro

n
 N

ew
co

m
b

Make: Linux for Makers
Some Makers shy away from using the Raspberry Pi or similar
boards because they think Linux is too foreign and difficult. The
good news is that the Linux operating system is really just another
tool in the Maker tool belt! Like all tools, it’s not challenging to use
once you know how to use it effectively.

It makes sense that Makers would develop a preference for using Linux
to help build their projects that run on single board computers, in much
the same way we use a screwdriver or hammer in woodworking. In
fact, Linux is so powerful, you may start to prefer it to other operating
systems and choose to use it on a daily basis!

This is the first book to explain the Linux operating system specifically
for Makers, providing a foundation in the basic principles you need for
further learning and exploration with your projects.

From loading the OS, to troubleshooting, to prepping projects, you’ll learn to:

» Install Raspian and other popular Linux distributions

» Code and write scripts that control real-world hardware

» Learn Linux commands, systems, and processes

» Control GPIO pins on your Raspberry Pi

» Set up an IFTTT applet and other cloud services

» Run a virtual Raspberry Pi on Windows, Mac, or Linux

Make:
makezine.com

US $24.99 CAN $32.99

ISBN: 978-1-6804-5183-2

Enjoy the freedom and endless possibilities Linux provides!

Linux for
Makers

Understanding the
Operating System That
Runs Raspberry Pi and
Other Maker SBCs

Aaron Newcomb

978-1-680-45183-2

[LSI]

Linux for Makers
by Aaron Newcomb

Copyright © 2017 Maker Media. All rights reserved.

Printed in the United States of America.

Published by Maker Media, Inc., 1160 Battery Street East, Suite 125, San Francisco,
CA 94111.

Maker Media books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://oreilly.com/safari).
For more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Patrick DiJusto
Production Editor: Kristen Brown
Copyeditor: Gillian McGarvey
Proofreader: Rachel Monaghan
Indexer: Angela Howard
Interior Designer: David Futato
Cover Designer: Brian Jepson
Illustrator: Rebecca Demarest

May 2017: First Edition

Revision History for the First Edition

2017-04-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781680451832 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, Inc.
The Maker Media logo is a trademark of Maker Media, Inc. Linux for Makers and
related trade dress are trademarks of Maker Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limita-
tion responsibility for damages resulting from the use of or reliance on this work. Use
of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to
ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781680451832

Contents

Preface. ix

1/Getting Started. 1

Choosing and Downloading a Disk Image. 2

Uncompressing the Disk Image. 3

Windows. 3

MacOS. 4

Linux. 5

Writing the Disk Image to the SD Card. 7

Windows. 7

MacOS. 8

Linux. 11

Booting the Raspberry Pi for the First Time. 13

Expanding the Filesystem. 14

Changing the Localization Options. 15

Changing the Default Password. 19

Why This Matters for Makers. 20

2/Linux Principles. 21

The Linux Desktop. 21

The Terminal or Console. 23

The Shell in a Nutshell. 25

Try It for Yourself. 26

Filesystems and Structures. 28

Try It for Yourself. 28

Users and Groups. 31

Permissions and sudo. 33

Try It for Yourself. 35

Try It for Yourself. 36

Services. 36

Try It for Yourself. 37

Processes. 38

Try It for Yourself. 39

iii

Why This Matters for Makers. 40

3/Using the Desktop. 41

When to Use the Desktop?. 41

When Not to Use the Desktop?. 42

Understanding the Layout. 43

Connecting to the Network. 44

Changing the Look and Feel. 45

Changing the Panel Location. 45

Changing the Background Image. 45

Changing the Shortcuts in the Application Launch Bar. 46

Creating a Desktop Shortcut. 47

Why This Matters for Makers. 49

4/Command-Line Basics. 51

Understanding the Prompt. 51

Try It for Yourself. 52

Orienting Yourself in the Filesystem. 53

Where Am I?: pwd. 53

Changing the Working Directory: cd. 54

Printing Out the Contents of a Directory: ls. 56

Creating New Files and Directories: mkdir and touch. 58

Moving and Deleting Files: cp, mv, and rm. 59

Try It for Yourself. 60

Get Help with a Command: help, man, and info. 62

Try It for Yourself. 69

Eliminate Some Typing. 69

Auto-Complete a Command: Tab. 70

Search for a Previous Command: Up, Ctrl-R. 71

Try It for Yourself. 72

Connecting to the Network via the Command Line. 73

The Interfaces File. 73

Wired Ethernet. 75

Static IP Address. 75

WiFi. 76

More Secure WiFi with Multiple Networks. 76

Installing Software: apt. 79

Using apt-get update. 80

Using apt-get upgrade. 81

Using apt-cache. 85

Using apt-get install. 86

apt-get remove. 87

iv Contents

apt-get dist-upgrade. 88

Fixing Conflicts. 89

Try It for Yourself. 89

Rebooting and Shutting Down. 90

Why This Matters for Makers. 91

5/Headless Operation. 93

Turning Off the Desktop. 93

Finding Your System on the Network. 95

Raspberry Pi. 96

Router. 97

Android/iPhone. 98

Command-Line Access: ssh. 99

Windows. 101

MacOS. 104

Linux. 106

Android/iPhone. 106

Remote Desktops: vnc. 108

Setting Up the Raspberry Pi. 108

Windows. 110

MacOS. 112

Linux. 114

Android/iPhone. 116

Transferring Files: scp, sftp. 117

Windows. 118

MacOS. 119

Linux. 122

From the Command Line: MacOS and Linux. 125

Why This Matters for Makers. 126

6/Tips and Tricks. 127

Changing Your Hostname. 127

Starting a Script on Bootup: rc.local. 131

Try It for Yourself. 132

Aliases. 133

Try It for Yourself. 135

Checking Disk and File Space Usage: df, du. 136

Performance Monitoring: top. 138

Try It for Yourself. 145

Killing a Process: Ctrl-C, ps, kill. 145

Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg. 148

Try It for Yourself. 150

Contents v

Finding USB Devices: lsusb. 151

Logging the Output of a Script: >, >>. 153

Searching the Output of a Command: grep. 155

Monitoring a Log File: tail. 157

Adding a User: adduser, addgroup. 158

Changing File Ownership and Permissions: chown, chmod. 159

Running More Than One Command at the Same Time: &&, ||. 162

Opening Another Console Session. 163

Dealing with Long Commands. 164

Scheduling Jobs: cron. 165

Why This Matters for Makers. 168

7/Controlling the Physical World. 169

GPIO. 169

I²C and SPI. 177

Talking to Arduino. 183

Why This Matters for Makers. 187

8/Using Multimedia. 189

Choosing HDMI or Analog. 189

Playing Audio and Video Files. 191

Controlling the Volume. 192

Playing Media from a Script. 193

Why This Matters for Makers. 194

9/Accessing Cloud Services. 195

Cloud Storage Services from the Command Line. 195

IFTTT. 199

Try It for Yourself. 208

Run a Dedicated Web Server. 208

Installation. 209

Configuration for Python. 209

Test It Out. 209

Roll Your Own. 211

Nimbus. 211

Tonido. 213

Why This Matters for Makers. 216

10/Virtual Raspberry Pi. 217

Requirements. 218

Installation. 218

vi Contents

Usage. 219

Why This Matters for Makers. 221

A/Linux Background. 223

Index. 239

Contents vii

Preface

When I started a Makerspace in my local community, I noticed
some particularly interesting learning trends. Some people were
reluctant to learn a new skill until someone shared some basic
techniques that helped get them started down the path of
understanding. Other users would jump right into learning a new
skill without any idea of what they were doing. This would lead
to slow progress until, again, someone provided some assis-
tance that would lead them in the right direction. In both cases,
just a little guidance in the beginning greatly accelerated the
learning process.

Learning how to use Linux for making and building projects is no
easy task. In many cases, Makers cut and paste from a website
tutorial into the Linux command line without understanding
what they are actually doing, only to be frustrated when they
want to modify or tweak something to suit their needs. Also,
many Makers shy away from using the Raspberry Pi or similar
boards because they feel Linux is too foreign and that using a
command line as indicated in many tutorials will be more diffi-
cult than using a GUI.

This book aims to overcome those fears and provide a founda-
tion for further learning and exploration when using the Linux
operating system for your projects. Linux is just another tool in
your Maker tool belt. It might be different from other operating
systems you’ve used in the past, but—like all tools—it’s no more
challenging to use once you know how to use it effectively. In
fact, Linux is so powerful, you may start to prefer it to other
operating systems and choose to use it on a daily basis.

Linux is a powerful open source operating system that has been
around for many years and is widely used for running servers
and websites. But most students and Makers encounter it for
the first time when they’re working on projects with their Rasp-
berry Pi or similar single-board computer (SBC), such as

ix

BeagleBone Black or Intel Galileo. Linux for Makers is the first
book that explains the Linux operating system specifically for
Makers as opposed to programmers and administrators. By
gaining a deeper understanding of Linux, Makers can add
another useful tool to their kit that will help them build projects
more easily.

Because this book was written with today’s Maker in mind, it will
focus mostly on the Raspbian distribution of Linux running on
the Raspberry Pi, as that platform is the most prolific in the eco-
system today. However, most of the topics covered will apply
broadly to other Linux distributions, and I will indicate when
they may differ. To that end, this book will focus on the basic
principles that a Maker needs to know, avoiding details that are
not particularly relevant to building projects. After loading the
operating system, I will cover the principles of how Linux works,
how to use the command line, how to control devices, and loads
of tips and tricks that can help you be more effective.

Throughout the book, you will find sections called “Try It for
Yourself” where you can get your hands dirty practicing what
you just learned and explore additional opportunities to try out
new concepts. I have also included illustrations and pictures
throughout the book that should help clarify what you can
expect to see as you use Linux on your Raspberry Pi.

I have also included a brief history of Linux in Appendix A for
those readers who might be wondering “How did all this get
started?” or “How did Linux end up getting put together the way
it did?”

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width
Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function

x Preface

names, databases, data types, environment variables, state-
ments, and keywords.

Constant width bold
Shows commands or other text that should be typed literally
by the user.

Constant width italic
Shows text that should be replaced with user-supplied val-
ues or by values determined by context.

This element signifies a tip, suggestion, or a general
note.

This element indicates a warning or caution.

O’Reilly Safari

Safari (formerly Safari Books Online) is a
membership-based training and reference
platform for enterprise, government, educa-
tors, and individuals.

Members have access to thousands of books, training videos,
Learning Paths, interactive tutorials, and curated playlists from
over 250 publishers, including O’Reilly Media, Harvard Business
Review, Prentice Hall Professional, Addison-Wesley Professional,
Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press,
Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning,
New Riders, McGraw-Hill, Jones & Bartlett, and Course Technol-
ogy, among others.

For more information, please visit http://oreilly.com/safari.

Preface xi

http://oreilly.com/safari
http://www.oreilly.com/safari

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

Make:
1160 Battery Street East, Suite 125
San Francisco, CA 94111
877-306-6253 (in the United States or Canada)
707-639-1355 (international or local)

We have a web page for this book, where we list errata, exam-
ples, and additional information. You can access this page at
http://bit.ly/linux_for_makers.

Make: unites, inspires, informs, and entertains a growing com-
munity of resourceful people who undertake amazing projects in
their backyards, basements, and garages. Make: celebrates your
right to tweak, hack, and bend any technology to your will. The
Make: audience continues to be a growing culture and commu-
nity that believes in bettering ourselves, our environment, our
educational system—our entire world. This is much more than
an audience; it’s a worldwide movement that Make is leading.
We call it the Maker Movement.

For more information about Make:, visit us online:

Make: magazine: http://makezine.com/magazine
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com
Maker Shed: http://makershed.com

To comment or ask technical questions about this book, send
email to bookquestions@oreilly.com.

Acknowledgments
I would like to thank my wife Jennifer and kids Stephen, Olivia,
and James for being so patient with me as I wrote this book.
Many nights and weekends were taken out of my already busy
schedule to work on it, and they were supportive through it all.

xii Preface

http://bit.ly/linux_for_makers
http://makezine.com/magazine
http://makerfaire.com
http://makezine.com
http://makershed.com
mailto:bookquestions@oreilly.com

Thanks to James who introduced my to Linux back in 1997.
Know someone who might like Linux or Raspberry Pi? Tell them
about it!

I am grateful to the support of my editor, Patrick, and all the
staff at Maker Media and O’Reilly Media who guided me through
the writing, editing, and reviewing process.

I also want to add a big shoutout to the people who gave up their
time to help review the book and offer so many great sugges-
tions—Robert Shaver, Christoph Zimmermann, Jim Kennon,
Rashed Harun, and Broedy Bowers.

Preface xiii

1/Getting Started

The Raspberry Pi is a single-board computer (SBC), which
means that—as the name suggests—it is a complete computer
system built on a single printed circuit board (PCB). Like most
SBCs, it doesn’t come out of the box ready to power up and use.
It has the same basic components built into the board as any
other computer has: a central processing unit (CPU), memory,
video processor, audio, and networking.

The one thing it doesn’t have out of the box is a storage device.
On a computer or laptop, most people use a hard drive that con-
tains the operating system and all their files. With a Raspberry
Pi, you use an SD card as the main storage device. So before we
can tackle the ins and outs of making things using Linux, we
need to load the operating system you want to use with the
Raspberry Pi on the SD card. For best results, you should use an
SD card that has at least 8 GB of available capacity.

What Is a Disk Image?
A disk image is a single file that represents a point-in-time copy
of an entire storage device. Just like a photograph is an image
that can contain different people or objects, a disk image can
contain lots of different partitions, directories, and files.

This process can be confusing for some people, so let’s break it
down into individual steps and take them one at a time. These
steps include downloading a compressed disk image from the
internet, uncompressing that image on your local computer,
writing that image to your SD card, and finally, booting up your
Raspberry Pi. You will find that these steps apply to other SBCs
as well, although the exact image file you use will change
because the operating system needs to be built specifically for
the board you’re using.

1

I will be mentioning some concepts in this chapter that may be
new to you, like filesystems, terminal emulators, and the com-
mand line. Don’t worry. We will cover these in depth in Chap-
ter 2. For now, we just need to get things running so you can use
your Raspberry Pi as you go through this book. In order to get
started, you will need access to a desktop or laptop computer
and a connection to the internet.

Choosing and Downloading a Disk
Image
The best place to find the most up-to-date disk images for the
Raspberry Pi is on the Raspberry Pi Foundation website at
http://raspberrypi.org/downloads. When you get to that site, you
will see that there are a number of disk images to choose from.
The two that have official support from the Raspberry Pi Foun-
dation are NOOBS and Raspbian. NOOBS is essentially an
installer for Raspbian as well as several other operating systems
that can be run on the Raspberry Pi. NOOBS automates several
of the tasks described in this chapter, but is not the actual oper-
ating system you will end up using. Instead, the operating sys-
tem is downloaded as part of the installation process. Raspbian,
on the other hand, contains the actual operating system, and
the installation method requires you to manually write the disk
image to an SD card.

I recommend choosing the Raspbian image for a number of rea-
sons. First, while installing NOOBS might seem less compli-
cated, once you learn the standard installation procedure,
Raspbian will actually be easier and faster than using NOOBS.
Second, learning the installation process for Raspbian will teach
you how to load any disk image you might want to try in the
future, and learning how to do things is what this book is all
about. Third, since loading Raspbian using this process results
in a more standard disk layout and structure on the SD card, it
makes it a little easier to back up your image for safekeeping.
This is something you definitely want to do to protect your work
and prevent data loss in case you break your SD card or damage
your Raspberry Pi.

2 Linux for Makers

http://raspberrypi.org/downloads

Click on the Raspian link and download the Raspbian Jessie file.
Later, if you decide you don’t want to use the desktop (see
Chapter 3) you can choose the Raspbian Jessie Lite file, which is
smaller in size but does not come prepackaged with a desktop
environment. Save the ZIP file in a place you can find easily later,
like the Downloads folder. At the time of this writing the filename
looks like this: 2017-01-11-raspbian-jessie.zip.

Uncompressing the Disk Image
Disk images are compressed to make them smaller for down-
loading. Compressing a file basically uses an algorithm to take
out all the empty spaces and duplicate existing information. For
example, imagine removing all the spaces between the words of
an essay or a text to a friend. It makes the finished product
much smaller, but also much more difficult to read. So in order
to make use of the disk image, you will first need to uncompress
it. You will need software in order to uncompress the disk image,
and in most cases that software is already available on your
desktop or laptop.

Windows
In recent versions of Windows, the decompression software you
need is already built into File Explorer. Simply open it up and
navigate to the folder where you saved the ZIP file. Double-click
on the ZIP file to open it. Clicking on the Extract button will save
the disk image to a place of your choosing that you can easily
find later. This could be the same folder where you saved the ZIP
file originally (see Figure 1-1 for an example of what this looks
like).

Getting Started 3

Figure 1-1. Extracting the disk image using Windows

MacOS
When you download the ZIP file with a recent version of Safari,
the ZIP file will be automatically uncompressed and saved in
your Downloads folder by default. If you are using an older ver-
sion, macOS has a built-in tool for uncompressing files called
Archive Utility. Just double-click on the ZIP file you downloaded,
and Archive Utility will uncompress the file for you (see
Figure 1-2).

When the process is complete. you will see the extracted .img
file appear on your desktop or wherever you saved your ZIP file.

4 Linux for Makers

Figure 1-2. The Archive Utility running on macOS

Linux
Most distributions of Linux also come with built-in programs to
extract compressed files. On the desktop, you can open the file
browser and double-click on the ZIP file you downloaded. This
will open up Archive Manager and allow you to extract the image
file (see Figure 1-3).

Getting Started 5

Figure 1-3. Extracting the disk image using Linux

You can also do this just as easily from the command line. Open
a terminal emulator and type:

cd Downloads
unzip 2017-01-11-raspbian-jessie.zip

This assumes that you saved the ZIP file to your default down-
load location and that the filename is correct. Be patient. This is
a big file and uncompressing it will take some time. See
Figure 1-4 to see what this looks like.

Command-Line Confusion
Not comfortable using the command line yet? That’s a big part
of what this book is about. You will learn more about that in the
next few chapters.

6 Linux for Makers

Figure 1-4. Extracting the disk image using the Linux command
line

Writing the Disk Image to the SD
Card
Be aware that after this step, any files you may have had on your
SD card will be deleted.

Windows
Windows is currently the easiest operating system to use when
writing a disk image to a card. However, unlike macOS and
Linux, it requires you to download some software first. Open
your browser and download the Win32 Disk Imager application.

Install the application by double-clicking on the file you down-
loaded. After it installs successfully, connect your SD card to
your computer and make note of the drive letter that Windows
assigns to it. Now, open the application. The first thing to check
is that the drive letter the application selects is actually the drive
letter that corresponds to your SD card. Win32 Disk Imager is
pretty good about only selecting SD cards, but always double-
check this because you are about to erase the drive, and you
definitely don’t want to erase your C: drive on Windows.

Now click on the blue folder icon to select the image file you
extracted in the previous step. See Figure 1-5 for an example of
what this should look like.

Getting Started 7

https://sourceforge.net/projects/win32diskimager/

Figure 1-5. The Win32 Disk Imager program interface

When you’ve selected the correct file, you can click the Write
button. This will overwrite all the data on the SD card. When the
process is completed, close the Win32 Disk Imager application.
Open File Explorer, right-click on the SD card drive letter, and
select Eject. Always do this before removing your SD card to
make sure the computer is done writing files in the background.

MacOS
Like Linux, macOS already has all the software you need to write
the image to an SD card. However, you will need to use the com-
mand line. Open Finder and select Applications→Utilities→Ter-
minal (see Figure 1-6).

Figure 1-6. Finding the Terminal program on macOS

8 Linux for Makers

Insert the SD card and wait a few moments for macOS to recog-
nize it. Use the diskutil list command in the terminal window
to print a list of all the disks attached to your Mac:

diskutil list

Identify the disk (not partition) representing your SD card (e.g.,
disk1, not disk1s1) as shown in Figure 1-7.

Figure 1-7. Example output of the diskutil list command

In this case, I have a 64 GB SD card and macOS recognizes it as
disk1.

Unmount your SD card by using the diskutil unmountDisk com-
mand and the disk name to prepare for copying data to it (see
Figure 1-8:

diskutil unmountDisk /dev/disk1

Getting Started 9

Figure 1-8. Using diskutil to unmount a disk

Now we need to copy the image file over to the SD card. We will
use the data duplicator, or dd command, for this. Be very careful
to get the right disk number so that you don’t overwrite your
system disk! You will also need to use SuperUserDO (sudo) for
this command. sudo is a secure way for a regular user to run a
command that normally requires administrator privileges:

sudo dd if=Desktop/2017-01-11-raspbian-jessie.img of=/dev/
rdisk1 bs=1m

You will be asked for your password, since you are using sudo.
This may result in an error if you have GNU coreutils installed:

dd: invalid number '1m'

Don’t worry about what that means just yet—all you need to do
is use a block size of 1m in the bs= section of the command, as
follows:

sudo dd if=Desktop/2017-01-11-raspbian-jessie.img of=/dev/
rdisk1 bs=1m

This will take quite a few minutes, depending on the image file
size. You can check the progress by pressing Ctrl-T to send a
SIGINFO signal (see Figure 1-9). If this command still fails, try
using the disk command instead of rdisk.

10 Linux for Makers

Figure 1-9. Using the dd utility on macOS

In this case, the dd command has transferred 549 1 MB blocks.
Once the process is complete, the terminal will bring you back
to a prompt. Finally, run one last command before you discon-
nect your SD card:

sync

This will make sure all the writes to the SD card that may be
occurring in the background have finished. You can now remove
your SD card.

Linux
Before you connect your SD card to your computer, run this
command:

sudo fdisk -l

This will show you all the physical drives connected to your sys-
tem. Note the size of the drive and the name of the disk. See
Figure 1-10.

Getting Started 11

Figure 1-10. Using fdisk to find your physical disks

Now connect your SD card to your computer and wait a few
moments for your Linux PC to recognize it. It may automatically
mount and display any existing partitions on the drive. Now run
the same command again. This time you should notice a new
drive. (See Figure 1-11.) Note the disk name and size. The disk
name will be important for the next step.

Figure 1-11. Using fdisk to find your physical disks (continued)

Now run the following commands to write the image file to your
SD card. Be very careful to use the SD card disk name and not
your system disk:

sudo umount /dev/YourSDCardName*

12 Linux for Makers

Replace /YourSDCardName with the disk name you identified as
your SD card with a * on the end:

cd ~/Downloads

sudo dd if=2017-01-11-raspbian-jessie.img of=/dev/sdb bs=4M

Of course, substitute your filename in the if = part of the dd
command and substitute the disk name of your SD card in the
of= part. This last command could take up to 10 minutes to
complete depending on the speed of your computer and SD
card. Once it is complete, the prompt will return (see
Figure 1-12).

Figure 1-12. Using the dd utility on Linux

Finally, run one last command before you disconnect your SD
card:

sync

This will make sure all the writes to the SD card that may be
occurring in the background have finished. You can now remove
your SD card.

Booting the Raspberry Pi for the
First Time
Now the magical time has come. You can insert your SD card
into the Raspberry Pi, but before you connect the power, be sure
your display is connected and that you’re using a power supply
that is at least 1 amp (usually displayed on the power supply as
1A) or larger. Two amps (2A) is actually better. Newer smart-
phone chargers should work, and connecting the Pi to a laptop
or PC via USB should also be adequate.

Getting Started 13

As your Raspberry Pi boots up, you will notice four Raspberry Pi
logos at the top of the screen and a bunch of scrolling text on a
black screen with a lot of green OK text on each line. Don’t be
alarmed. This is normal. Linux is just starting up the operating
system and launching some services (more about this in Chap-
ter 2).

When your Raspberry Pi finishes booting up, there are a few set-
tings you might want to adjust before you begin using it for the
rest of this book. Other SBCs may or may not require these
adjustments. Also, keep in mind that the developers of the
operating system are updating the system all the time. Later
versions of the Raspbian distribution might not need all of the
suggestions that follow here.

Expanding the Filesystem
When that image file you downloaded was created, the people
who made it were nice enough to shrink it down first to make
the download faster. When you first boot up your system, you
only have a total of 4 GB of space and only about 700 MB avail-
able to you even though your actual SD card is much bigger
than that. Now that you have the image loaded onto your SD
card, you probably want to expand the filesystem to get access
to all that extra space. In the latest version of Raspbian, this
happens automatically on your first boot. You will notice that on
the first boot, your system will reboot after a short time. This is
normal since the system has to reboot for it to recognize the
new size of the filesystem. For older versions of Raspbian, on
the Raspberry Pi desktop, click on the icon that looks like a dark
monitor. This will open up a terminal emulator, which we’ll use to
access the command line. In the window that pops up, run this
command:

sudo raspi-config

This will open up the Raspberry Pi configuration application as
shown in Figure 1-13.

14 Linux for Makers

Figure 1-13. The raspi-config screen

Press the Enter key to select the Expand Filesystem option.
After a few seconds, another screen will appear telling you that
the root filesystem has been resized.

Changing the Localization Options
By default, the Raspbian image comes set up for use in the Uni-
ted Kingdom, since that is where the Raspberry Pi Foundation is
located. If you live in another country, you will want to set up
your Pi to use your local time zone, keyboard layout, and lan-
guage settings. Believe me, it can be quite frustrating to type a
double-quote character on your keyboard and have the Rasp-
berry Pi interpret that as an @ symbol.

From the same program, use the down arrow on your keyboard
to select Localisation Options or press the corresponding num-
ber key. We will be configuring all three options on this menu,
but for now let’s start with Change Locale. Press the Enter key
on this option to continue. You should see a screen similar to
Figure 1-14.

Getting Started 15

Figure 1-14. The locales menu in raspi-config

It might be tempting just to select “All locales” from this screen,
but that would not be a good idea. Your Raspberry Pi would
spend a very long time configuring the settings for hundreds of
languages that you will probably never use. Instead, scroll
through the choices and pick the locale that matches the lan-
guage you speak most often. As the description suggests,
choose a selection that ends in UTF-8. For example, in the Uni-
ted States you would choose en_US.UTF-8 by pressing the
space bar when the selection indicator is next to your choice. I
won’t go over what all these codes mean in this book, but you
can find a list of language codes online.

Once you’ve selected your locale, press the Enter key to move to
the next screen, which will ask you what the default locale
should be. Use the arrow keys to select the locale you just chose
and press the Enter key again. Your Raspberry Pi will generate
the needed information and return you to the main Raspberry Pi
configuration screen.

Now it’s time to set your time zone. Select Localisation Options
again from the main screen and choose Change Timezone. This
will present a screen similar to Figure 1-15.

16 Linux for Makers

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Figure 1-15. Changing the time zone in raspi-config

Use the arrow keys and Enter key on your keyboard to navigate
this menu to select your time zone. If you’re in the United
States, you might find it easier to choose the America menu
item. You can then type the first letter of the city closest to you
to find the right time zone. Press the Enter key to confirm your
selection and set your time zone. You will then be returned to
the main Raspberry Pi configuration screen.

Last and probably most importantly, we need to set the key-
board layout. Select Localisation Options once again and select
Change Keyboard Layout. You should see a screen similar to
Figure 1-16.

Use the arrow keys to select the keyboard you are using. For
most users, this will either be the Generic 104-key PC if you are
in the US, or the Generic 105-key (Intl) PC if you are in Europe or
elsewhere. Press the Enter key to move to the next screen.

Getting Started 17

Figure 1-16. Changing the keyboard layout in raspi-config

The screen will list the English (UK) layouts that it was previ-
ously set up for. If you are not in the UK, you can find your key-
board layout by choosing Other from this menu and pressing
the Enter key (see Figure 1-17).

On the next screen, choose the country of origin of your key-
board and press the Enter key. Now you can choose your layout.
Use the arrow keys to move the cursor up to the top of the list,
where you will find a generic layout you can choose, and press
the Enter key to select it.

There are a few more screens to move through. Just select the
defaults on those screens by pressing the Enter key for each
one. You will then be returned to the main Raspberry Pi configu-
ration screen.

Press the Tab key or use the arrow keys to access the Finish but-
ton and press the Enter key. You will be asked if you want to
reboot now. Choose Yes and press Enter. Your Raspberry Pi will
reboot.

18 Linux for Makers

Figure 1-17. Changing the keyboard layout in raspi-config
(continued)

Changing the Default Password
One last thing you should always do before you forget is to
change the default password. You might think a small system
like the Raspberry Pi couldn’t be powerful enough to damage
other systems on your network or the internet. This is incorrect.
Even the smallest systems can be compromised to run and
spread malicious software. This is especially true when you
leave your password set to the default, as it will be the first thing
someone will attempt to use when trying to break into your
system.

Changing the password for the “pi” user is easily done via the
command line. Open a terminal emulator window like you did
previously and run the following command:

passwd

This will prompt you to enter the existing default password,
which is “raspberry,” and then enter a new password twice to
make sure you have it correct (see Figure 1-18). Be sure to avoid
easily guessed passwords like “password” or “12345678.”

Getting Started 19

Figure 1-18. Changing the default password

You are now ready to begin using your Raspberry Pi!

Why This Matters for Makers
As you begin to use the Raspberry Pi and other SBCs more and
more for your projects, this process will become commonplace
for you. Remember, if things really go haywire, you can always
start from scratch by following this process to load a new disk
image onto your SD card. Many SBCs available today use a simi-
lar process to get an operating system loaded and ready to use,
so learning these steps helps you prepare for future exploration
of the many great boards out there.

20 Linux for Makers

2/Linux Principles

You are probably thinking “OK. Let’s go! I am ready to begin my
project.” However, there are a few principles of the Linux operat-
ing system that you need to know about first. Using Linux in
your project will be more complicated than using an Arduino.
Linux is a full operating system with users, services, filesystems,
and other resources that make it a very powerful and versatile
platform for Makers. (By comparison, Arduino is based on a
microcontroller with a limited set of instructions to execute.)

The Linux Desktop
A graphical user interface (GUI) is the way most people use their
computers. Whether they use Windows, macOS, Android, or iOS
(yes, mobile devices are just small computers), a GUI desktop is
the canvas people use to make things happen. Linux is no
exception here. Almost all Linux distributions come with a desk-
top environment to make interacting with programs easier and
more functional. If you want to actively browse the web, create a
document, or edit a photo, the desktop is the place to do it.

Command Line Browser
You can check out the Lynx browser to see what it’s
like to browse the internet from the command line.

Single-board computers (SBCs) like the Raspberry Pi that run
Linux are no exception. Figure 2-1 shows what the Raspberry
Pi’s desktop looks like at the time of this writing.

21

http://lynx.browser.org/

Figure 2-1. The Raspbian desktop

Just like Linux distributions (see Chapter 1), Linux desktops
come in many flavors. The one used by default on Raspbian is
called Lightweight X11 Desktop Environment (LXDE). Lightweight
means it requires fewer resources to run and therefore works
well on SBCs, which have less powerful CPUs and smaller mem-
ory footprints than modern desktops or laptops. Other popular
desktop environments that run on Linux include Xfce, Mate, Cin-
namon, and Ubuntu’s Unity. These all come with their own
unique capabilities and slightly different ways to interact within
a desktop environment. Most desktops have a taskbar with a
menu of available programs and a few shortcuts to frequently
used programs like the browser or terminal emulator. They also
usually contain some notification icons that allow the user to get
a quick glance at the status of certain functions like the net-
work, CPU utilization, or time of day. To open a program on the
desktop, simply click on the shortcut in the taskbar, or click on
the menu button and find the program you want to run.

22 Linux for Makers

The Terminal or Console
If all you want to do is browse the internet, you could stop read-
ing right here—you already have the information you need to
use your Raspberry Pi as a web browser. However, this book is
for Makers, and Makers like to build things. So you will need to
pull a lot more tools out of the Swiss Army knife that is Linux
than just the desktop. To do that, you will need to get comforta-
ble working in the terminal (which is also sometimes referred to
as the console), shown in Figure 2-2.

Figure 2-2. The Linux console on a Raspberry Pi

If you have ever followed a Raspberry Pi tutorial or how-to guide
on the internet (or if you set up your Pi in Chapter 1), you were
instructed to type some commands in the terminal or console.

Linux Principles 23

Terminal or Console? What’s the
Difference?

These terms are used interchangeably these days. Strictly
speaking, the terminal is a way to interface with the operating
system by issuing text commands. The console, on the other
hand, usually refers to a physical set of hardware (i.e., keyboard,
mouse, and monitor) that provides feedback from a given pro-
gram or user environment. In the early days of computing,
before the advent of the desktop and after the days of punch
cards, a console was the only way to interact with the computer.
So one way to think about this is by saying “You can access the
terminal from the console.” In any case, at this point they both
refer to a text-based way to interact with a computer in order to
run programs.

At first, using the terminal may seem like an archaic and labori-
ous way to get things done, but when you become proficient at
using the terminal for your projects you might decide to aban-
don the desktop altogether (more on this later). Because the
terminal was originally the only way to access a computer, and
because there was no cut and paste yet, programmers designed
many shortcuts in their programs that are still available today.
These shortcuts make using the terminal simpler than it seems.

On the desktop, you can open a terminal window by clicking on
the icon in the taskbar or by finding it in the menu under Acces-
sories or Applications (see Figure 2-3). Since you are on the
desktop, the program you open is actually emulating the con-
sole, so it’s known as a terminal emulator. If you are not running
the desktop, then once you boot up your Raspberry Pi or other
SBC with a monitor attached, the terminal is already staring you
in the face. For those not used to working on a Linux system,
don’t worry: you won’t feel this way forever.

24 Linux for Makers

Figure 2-3. The default Raspberry Pi terminal emulator

The Shell in a Nutshell
The shell is the part of Linux that runs the terminal. The shell
interprets what you type at the command prompt so the operat-
ing system knows what to do. For example, when you type the
command ls on the command line, the shell knows where that
program lives and how it should be invoked to run properly. The
shell is also the mechanism that dictates how the console inter-
face looks, and it provides a lot of the shortcuts I mentioned ear-
lier. Think of the shell as your own personal operating system
butler. I will be covering some of the most important of these
shortcuts for Makers in Chapter 4.

Linux Principles 25

1 https://en.wikipedia.org/wiki/Bash_(Unix_shell)

More Than One Version of the Shell
There are many different shell programs that run in Linux, but
the one that runs on most distributions, including Raspian, is
Bourne-Again shell (bash). bash was written by Brian Fox for
the GNU project to add features and functionality to the original
Bourne shell (sh) written by Steven Bourne.1 The reason bash is
so common is because it is so powerful. bash has features like
command-line completion and searchable command history
that make it easier to find what you are looking for and enter
repeatable commands. It also can be used by itself to interpret
a script that can be run as a program. In some cases, you might
not need anything else to get your project done.

In addition, you can create a script that the shell will run line by
line. As you might expect, this is called a shell script and is sim-
ply a text file with some commands that get executed from top
to bottom.

Try It for Yourself
At the console or terminal window, type:

echo Hello World!

Then press the Enter key and see what happens.

Now put this into a script that repeats this command 10 times
by simply typing:

nano hello.sh

This tells the computer to launch nano, a text editor, and to edit
the file hello.sh. If the file doesn’t exist, nano will create it.

26 Linux for Makers

https://en.wikipedia.org/wiki/Bash_(Unix_shell)

When nano launches, type:

#!/bin/bash

for i in `seq 1 10`;

do

echo Hello World!

sleep 1

done

Backticks
The ` characters around seq 1 10 are backticks and
not single quotes. In a bash script, backticks will exe-
cute the code inside them. On an English-US key-
board, you can find the backtick key in the top-left
corner next to the number 1 key. Figure 2-4 shows
what this should look like when you type it in the ter-
minal. Try typing seq 1 10 on the command line by
itself to see what it does.

Press Ctrl-X, then Y, and then press the Enter key to save the
script. Now type:

sh hello.sh

and press Enter. Congratulations! You just wrote your first shell
script.

Linux Principles 27

Figure 2-4. Example bash script

Filesystems and Structures
Something that sets Linux apart from other operating systems
is its approach to filesystems. A filesystem is a way to store and
organize files on a computer. As with all other Unix-based sys-
tems, almost everything you want to reference in Linux is a file.
Sometimes this is intuitive. For example, when you insert a USB
thumb drive into a Raspberry Pi, you can browse the files on
that drive either on the desktop or in the terminal. Other times,
it’s not as obvious. For example, if you plug a mouse or keyboard
into the Raspberry Pi, Linux creates a file to reference that
device. These are special files that Linux uses to “talk” to those
physical devices. Files are also used to access information about
the hardware components that make up the computer itself like
the CPU, memory, and other resources. If you want to find out
the CPU temperature, you can just read a file.

Try It for Yourself
At the console or terminal window, type:

more /sys/class/thermal/thermal_zone0/temp

28 Linux for Makers

and press the Enter key. The five-digit number that is returned
represents the temperature of the CPU in millidegrees centi-
grade. So if your result is:

38470

then your Raspberry Pi’s CPU is running at about 38 degrees
centigrade.

It is important for Makers to understand the way Linux handles
files if they want to use peripherals as part of their projects and
if they want to programmatically get information from the oper-
ating system about certain resources. It is also important
because some special files should be left alone and not deleted
or overwritten. Doing so could render your system inoperable,
and you might have to reinstall from scratch. Luckily, Linux has
users and permissions (see “Users and Groups” on page 31) to
keep you from doing too much damage by accident.

You can take a look at the files and folders of a Linux system by
opening the file manager program on the desktop or by typing:

ls /

in the terminal. The forward slash by itself represents the root
folder, which is the highest level in the filesystem hierarchy. On
Windows, this would be similar to the C: drive or C:\.

Slash Confusion
Windows uses the backslash (\) to separate folders
and filenames, while Linux uses the forward slash
(/).

Linux Filesystem Structure
The basic structure of the root filesystem on a Raspberry Pi is
listed here. The directories marked with a * contain sensitive
information or program data and should not be deleted or
changed unless you know what you are doing:

/
This is the root filesystem.

Linux Principles 29

/bin*
Essential command binaries or programs are found here.

/boot*
This is a place for files that help boot up the system.

/dev*
Files that represent system devices are found here.

/etc*
This is where many configuration files for the operating sys-
tem and other programs are located.

/home
Subdirectories are created here for users’ home directories.
If you are logged in as the default user “pi” on the Raspberry
Pi, you will start in the terminal at /home/pi.

/lib*
This is for libraries or supporting files necessary to run the
programs.

/media
Removable media usually gets its own directory here when
you insert it into the computer.

/mnt
This is a place to mount other filesystems. It is usually
empty at first.

/opt*
Optional software or programs sometimes get installed in
this directory.

/proc*
Files that represent process- or kernel-level information are
kept here.

/root*
The home directory for the “root” user. It is kept separately
from the other users for added security.

/run*
Current information about the running system is kept here.

30 Linux for Makers

/sbin*
Here you’ll find essential command binaries or programs
that are “secure” and need root access to run.

/srv*
Certain server-specific information sometimes goes here.
Usually empty at first, it is sometimes used by web servers
and FTP servers.

/sys*
Information about the devices connected to the system is
stored here.

/tmp
Temporary files are often created here and then deleted
with the system reboots.

/usr*
This directory stores additional binaries and programs that
are generally available to all users, although some of them
require root access to run.

/var
Variable files and data are kept here. Examples might be
buffers to store printer data before it is sent to a printer,
resource information, or logfiles.

Users and Groups
The ability to have multiple users with different profiles and set-
ting is a relatively new concept for some operating systems like
Windows, macOS, and Android. At the time of this writing, iOS
supports multiple users only for educational use. However, since
Linux is based on UNIX, and UNIX is a server operating system,
it has always had support for multiple users and groups. This
makes sense if you consider its roots in the time-sharing meth-
odology (see Chapter 1). Most SBCs you use will come with a
default user already set up. On Raspberry Pi, this user is called
“pi.” On C.H.I.P., this user is called “chip.” It is always a good idea
to use this default user for regular operations, but you can set
up other users if you need to. I will cover those procedures in
Chapter 6.

Linux Principles 31

The version of Linux that comes with most SCBs will automati-
cally log you in if you are running in desktop mode. You will need
to know the password to run any advanced commands or log in
when running in console mode. The default password for the
“pi” user on Raspberry Pi is “raspberry.” If you are using a differ-
ent SBC platform, you can usually find the default user and
password in the Getting Started documentation on their web-
site. If you install Linux on a desktop or laptop PC, you will be
prompted to set up a user and password during the installation
process.

Linux also can combine several users together in groups. Using
groups makes it easier to manage multiple users at the same
time. Permissions granted to a group automatically apply to all
users that are members of that group. Makers will most likely
not need to manage Linux groups except when it is necessary to
be part of a group to gain access to a device or program. I will
cover this process in Chapter 6.

In addition to names, Linux also assigns a number to represent
users and groups. This number is easier for the system to use
than an alphabetical representation and is referred to as the
user id (UID) and the group id (GID). However, what you see on
the console and in other programs is almost always represented
by the alphabetical name to make it easier for humans to
decipher.

Every version of Linux comes with a special administrator or
superuser called “root.” This user has permission to do almost
anything in Linux, so as you can imagine, it is not advised to log
in as this user on a normal basis. In fact, most versions of Linux
that run on the Raspberry Pi and similar SBCs have disabled the
“root” password by default. This can be still be enabled if you
really need root access, but it is not recommended. On several
occasions, I have been logged in as “root” and typed the wrong
command, which deleted important files or changed something
I did not intend to.

Sometimes as a Maker using SBCs, it is easy just to reimage
your storage and start over. However, if you have been working
long and hard on a project and make a mistake while logged in
as “root,” it can cost you hours and perhaps days of trying to get

32 Linux for Makers

things back to normal. This is especially true if you don’t have a
backup. Also, running as the “root” user on a daily basis usually
leads to weaker security since we all naturally tend to make
things easier for ourselves. Over time, you’re bound to add
backdoors and easy-to-guess passwords, making it easier for
someone else to gain root access and do serious damage to
your project or steal your data.

Security is usually not a big concern with most Maker projects,
but if your project will be connected to the internet or in a public
space, protecting its integrity is important. Several global inter-
net outages in the fall of 2016 were traced to insecure Internet
of Things (IoT) devices that had been taken over by hackers and
turned into a botnet. One way to prevent your project from
being used this way is to follow this basic golden rule of Linux:
don’t run as the “root” user unless you have to.

Permissions and sudo
You may be wondering how Linux makes decisions about what a
user can and can’t do and which files a user has access to. Per-
haps you have tried to run a command or program only to get a
message like “cannot remove file: permission denied.” This mes-
sage indicates that your user doesn’t have the necessary per-
mission level to delete a particular file. Since Linux treats most
things like files, and since permissions are set on each file, it
becomes important to understand what permissions do and
how to use them.

Permissions are set as an attribute on each file and directory,
and are arranged as a series of numbers. This series can be bro-
ken down into four groupings, which are then further broken
down into read (r), write (w), and execute (x) permissions for the
owner, group, and all other users, respectively. You can see an
example of what this looks like in the terminal in Figure 2-5.

Linux Principles 33

Figure 2-5. Example output of ls-l

In Figure 2-6, I have interpreted what all these numbers and let-
ters mean, using two of the lines from Figure 2-5.

Figure 2-6. Breakdown of permission listing on the command
line

Here are a few things we know based on this information:

1. The Downloads file is actually a directory, as indicated by its
special permission. Other options here might be l for link, s
to indicate the file should be run with owner permissions,
and t to indicate that only the owner can delete or rename
the file.

2. The owner of both of these files is the “pi” user.
3. The group that these files belong to is also called “pi.”

34 Linux for Makers

4. The “pi” user has read, write, and execute permissions to
the Downloads directory, but only read and write permis-
sions for the example.txt file.

5. Members of the “pi” group have only read permission for the
example.txt file.

6. All other users on the system (except “root”) also only have
read permission for the example.txt file.

Permissions can also be represented by a series of numbers. For
example, 777 is the same as rwx rwx rwx. Sometimes programs
will use numbers and sometimes letters to represent the per-
missions, so it’s useful to know how to map between the two.
You accomplish this by assigning a value to each of the three
possible choices and then adding them together to get the per-
mission. Here’s how that works:

r = 4
w = 2
x = 1

If you want to represent rxw, you simply add 4+1+2 and you get
7. So a file like example.txt, which has permissions of rw- r--
r--, could also be represented as 644. We will cover how to
change permissions and ownership in Chapter 6.

Try It for Yourself
In the console or terminal emulator, type:

ls -l

This will show you all the non-hidden files and directories in your
current location in the filesystem. Try to figure out what the per-
missions are for the user and group for each file listed.

Sometimes you need to run a program or access a file that your
user doesn’t normally have permissions to run. You could log in
as “root” to run the program, but I have already told you not to
log in as “root.” This presents a problem. Luckily, there is a sys-
tem built into Linux that handles these special cases. That sys-
tem is called sudo. sudo is short for super user do, and you can
use it to run programs that need root permissions without log-
ging in as “root.” Using sudo is as easy as putting sudo in front of

Linux Principles 35

the command you want to run. sudo acts as an additional layer
of security by:

• Requiring the user’s password even if they are already
logged in

• Expiring after a short period of time and requiring
reauthentication

• Configuring sudo ability on a user-by-user basis
• Logging all sudo commands
• Eliminating the need to share the “root” password
• Rendering useless any password-cracking utilities that try

to guess the “root” password if root access is disabled

Try It for Yourself
Now let’s try a command we should expect to fail. In the console
or terminal emulator, type:

apt-get update

Since you don’t have permission to run some of the programs
that apt-get uses, this command will fail and tell you:

E: Unable to lock the administration directory (/var/lib/
dpkg), are you root?

Now try again, but this time run the same command as “root”:

sudo apt-get update

This time the command should update its information about
available software packages if you are connected to the internet.
You will learn about using apt-get in Chapter 4.

Services
In Linux, there are some programs that run when the system
starts up and continue running in the background. The types of
programs, and the processes that run them, are called services.
They include things like web servers, network configuration, file
sharing, remote access programs, and essential system func-
tions. Services were developed to avoid users having to start a
program from the command line every time they wanted to use
it. When you boot up a Raspberry Pi, you can see a lot of text

36 Linux for Makers

scrolling up the screen. Much of this information relates to the
various services that are starting up as the system boots. You
can set up almost any program to run as a service, and I will
cover how to do this in Chapter 6.

Most of the time, you won’t have to worry about interacting with
services, and you probably shouldn’t experiment with them
unless you know what you are doing. For example, let’s say you
are running a Raspberry Pi without a monitor attached as part
of a robot you are building. While you are logged in remotely, you
decide to stop the networking service. Not only will your remote
session immediately end, but you will have to disassemble your
robot and physically connect to your Pi in order to start the ser-
vice again. In the worst case, you might have to kill the power to
your Pi in order to reboot it so you can connect to it again. That’s
never a good idea, as it could lead to data corruption on the SD
card.

There is a system for managing services, which varies some-
what between different versions of Linux. On Raspberry Pis run-
ning Raspian Jessie or later, that system is called systemd.
systemd (which stands for system daemon) controls not only
services, but many other Linux resources that need to be man-
aged, and it is the first thing that runs when the operating sys-
tem boots up. For each service, there is a script that is put in a
special directory when that program is installed. That script
defines what happens when the service starts or stops.

Try It for Yourself
In some cases, it is necessary to restart a service or check to
see if a service is actually running or not. If you want to see
which services are running, you can type systemctl (systemd
control) in the console or terminal emulator:

systemctl

Press the space bar to scroll down through the list one page at a
time and press the Q key to exit. You can also see how long the
operating system took to boot by typing:

systemd-analyze

You can see how long each service took to start by typing:

Linux Principles 37

systemd-analyze blame

There are also functions for controlling each service individually.
Just as a reference, I will list them here:

systemctl enable name . service

systemctl disable name . service

systemctl start name . service

systemctl stop name . service

systemctl restart name . service

systemctl status name . service

systemctl reload name . service

Processes
At any given point in time, there are multiple programs running
on a Linux system. In order for them all to run at the same time
without interfering with each other, there needs to be a way to
keep track of them and any other supporting programs that
might be needed by the original program. Linux does this with
processes. When a program is executed, Linux creates a process
to represent the work that is being done by that program. In
other words, a process represents a running program. Each pro-
cess receives access to system resources like the CPU, memory,
and shared libraries that are needed in order for the program to
work correctly. This also provides a way for the operating sys-
tem to track which program is doing what in order to keep
things organized and running smoothly. Processes are given a
process identification number (PID) so they can be referenced
more easily.

Processes have a family history. By this, I mean that there is
always some program that starts another program. For exam-
ple, since systemd (also known as the init process) is the first
program that runs when the operating system starts, it is given
the PID of 1. When systemd starts a service or runs a program,
that program will get its own PID, but the operating system will

38 Linux for Makers

note that its parent PID (PPID) is 1. This parent/child relation-
ship between processes can be helpful to track down problems
and issues to see where the root cause lies. I will show you how
to manage processes in Chapter 6.

Try It for Yourself
To see what processes your user has started for your current
console session, use the ps (process) command:

ps

Because you probably aren’t running that many programs at the
moment, this list will be quite small. To see a list of all the pro-
cesses that are currently running, type:

ps -ef

This will give you a list of not only the processes, but which user
ran them, what the PPID is, and when the process was started
(see Figure 2-7).

Figure 2-7. Example output of ps -ef

Linux Principles 39

Why This Matters for Makers
Let’s face it: Linux can be baffling at times, especially when you
haven’t used it before. Sometimes you might be able to follow a
tutorial to make something work, but you might not know why it
works or how to go about changing things when it doesn’t work.
If you’ve used Linux before, perhaps this chapter has answered
some questions you’ve had. Getting stuck in the middle of a
project because things aren’t working is never fun and can
cause days’ worth of delays as you search forums looking for
answers. Understanding these basic principles of Linux should
give you a clue about how to diagnose the problem, as well as a
good foundation for the next chapters, in which we dive into
more advanced topics.

40 Linux for Makers

3/Using the Desktop

Although you don’t need the desktop to build projects with
Linux on SBCs, I will cover it here, as it will most likely be the
first thing a new user will interact with when they boot up for the
first time. Some people will feel more comfortable using the
graphical user interface (GUI), so I will discuss some of the
things Linux can do that aren’t always obvious when you’re
coming from Windows or Mac.

When to Use the Desktop?
Using the Linux desktop in and of itself will probably not help
you build projects with SBCs unless you need to do something
graphically on the desktop, like make a game or create a GUI to
interact with your project. However, there are some reasons
makers might want to use the desktop anyway.

First, maybe you aren’t building a project at all and just want a
cheap desktop to use. I am assuming throughout this book that
you’re using your SBC as part of a project, like building a robot
or reading sensor data. But maybe you want to use a device like
the Raspberry Pi as a standalone computer to browse the web,
play a small game, or write a document.

Second, you might just feel more comfortable on the desktop
than you do on the command line, and there is certainly nothing
wrong with that. After all, the desktop gives you an easy way out
when something goes wrong. You can always reboot the system
from the menu or start a second instance of the terminal emula-
tor to poke around while your program is running in the first
one.

Third, the desktop gives you access to GUI tools like a web
browser, which you don’t have when you are running solely in
the console. This can be helpful if you don’t have access to a
secondary device like a laptop, desktop, or phone to look up
information about your project.

41

When Not to Use the Desktop?
SBCs are very powerful platforms for their size. When I was a
child, the idea that a fully functional desktop computer could fit
in the palm of my hand was the stuff of science fiction. That
being said, running anything graphical on an SBC like the Rasp-
berry Pi takes up a lot of CPU and memory resources. If you’ve
used a Raspberry Pi before, you may have noticed that using the
browser is not the snappy experience you’ve come to expect on
your desktop, laptop, or even on your phone. In fact, you can see
the impact running programs on the desktop has on your CPU
just by looking at the tiny graph in the right corner of the taskbar
(see Figure 3-1).

Figure 3-1. The CPU performance applet in the Raspberry Pi
taskbar

In this case, just launching the web browser on a Raspberry Pi
sends the CPU utilization up to 100% while the program loads. If
you were also running a script to control time-sensitive devices
or processes, this single act could impact your project. So the
first reason you may not want to run the desktop on an SBC is
to conserve resources.

Another thing to keep in mind is the KISS rule. This stands for
Keep It Simple, Stupid! The idea here is to avoid complexity
unless it’s absolutely required to make your program or process
work. The more “moving parts” you have in a system, the
greater the chance that something will go wrong. For example, if
you open the hood of my 1965 Chevy pickup truck, you will only
see a handful of parts. Most of the engine compartment is
empty. It’s easy to work on. If something goes wrong, it is easy
to diagnose and fix. My 2014 Honda Odyssey is a different story.
Every bit of space under the hood is taken up with some system,

42 Linux for Makers

and many of them depend on each other to make the car run.
Not only is it difficult to work on, but the complexity means that
many times you need an expert to decipher what is going on
when something isn’t working right. Similarly, the desktop
spawns processes and communication activity on the system
that add a level of complexity unnecessary for most projects.
You may not run into a problem by running the desktop, but why
tempt fate?

For these two reasons, it’s probably best to avoid using the
desktop on your SBC when you don’t have to. In fact, when
Linux systems are used in large corporations, the desktop is
almost always turned off by default to reduce the chance that
something will interfere with critical business processes.

Understanding the Layout
In most respects, the layout of the desktop environment on an
SBC is similar to Windows or macOS. There is usually a menu
button to access programs and features. There is also an area
that shows which applications are running, and a notification
area that displays information like the time and date or network
connectivity. The biggest difference may be that most Linux
systems put the panel (also known as the taskbar) at the top of
the desktop instead of the bottom. Sometimes the panel is hid-
den altogether and you need to right-click on the desktop to
bring up the menu. See Figure 3-2 for an example of what this
looks like on the Raspberry Pi.

Using the Desktop 43

Figure 3-2. Breakdown of the Raspberry Pi desktop

1. Menu button
2. Application launch bar shortcuts
3. Running applications
4. Panel applets
5. Desktop area

Connecting to the Network
Probably the first thing you will want to do if you’re using the
desktop is connect to the network to get internet access. If you
are using a wired Ethernet connection, this should be done
automatically for you. If you are using WiFi, you just need to
click on the network applet icon, choose your SSID, and supply
your password.

44 Linux for Makers

Changing the Look and Feel
There are many ways to customize the look and feel of a Linux
desktop. Let’s take a look at some of the more common things
people like to do to personalize their desktop. I will be referenc-
ing the Raspian desktop here, but these methods should apply
to other LXDEs as well.

Changing the Panel Location
To change the location of the panel from the top of the desktop
to the bottom or sides, simply right-click anywhere on the panel
and choose Panel Settings from the dialog box that pops up
(see Figure 3-3). Then select the edge where you would like the
panel to appear. You can also change the alignment, size, font,
opacity, and which panel applets are loaded.

Figure 3-3. The Panel Preferences dialog box

Changing the Background Image
Don’t care for the Raspberry Pi logo on your desktop? No prob-
lem. It is easy to change the background image to something
more visually appealing. Simply right-click anywhere on the

Using the Desktop 45

desktop and choose Desktop Preferences (see Figure 3-4). You
can also change the font properties for the text that goes under
the desktop shortcuts as well as some of the default icons that
appear on the desktop.

Figure 3-4. The Desktop Preferences dialog box

Changing the Shortcuts in the
Application Launch Bar
The shortcuts that appear in the panel are decided by the peo-
ple working on that version of the distribution and will change
over time as new and interesting programs are added or
removed. You can usually find shortcuts for the browser, termi-
nal emulator, and file manager, but it’s easy to change these
shortcuts in LXDE. Just right-click on the area where the icons
appear and choose Application Launch Bar Settings from the
pop-up dialog box that appears (see Figure 3-5). The box on the
left shows the shortcuts that are currently in the launch bar, and
the box on the right shows the shortcuts available to add. You
can add or remove application shortcuts by clicking on a short-
cut and using the Add and Remove buttons. You can also

46 Linux for Makers

change the order in which the shortcuts appear in the launch
bar using the Up and and Down buttons.

Figure 3-5. The Application Launch Bar dialog box

In other distributions, you can browse through the menu, right-
click on the application you want to add, and choose “Add to
panel,” or sometimes you can click and drag the icon to the
panel.

Creating a Desktop Shortcut
It is also very straightforward to add an LXDE desktop shortcut
to an application that is already in the menu. Just navigate
through the menu to the application in question, right-click on it,
and choose “Add to desktop.”

The process of creating a desktop shortcut to launch an applica-
tion that’s not in the menu or for a script that you wrote is a little
more cumbersome. Open the built-in text editor by choosing
Accessories→Text Editor. Then type in the following information
about the shortcut you want to create:

Using the Desktop 47

[Desktop Entry]
Name=Some Name
Comment=Click here to run this thing
Icon=/usr/share/pixmaps/openbox.xpm
Exec=/path/to/your/program
Type=Application
Encoding=UTF-8
Terminal=false
Categories=None;

When you’re done, it should look like Figure 3-6. If you are creat-
ing a shortcut for a script that normally runs in a terminal emu-
lator, be sure to change the Terminal value to true.

Save the file in the Desktop folder under your home directory.
Be sure to give the filename a .desktop suffix.

Figure 3-6. An example of a desktop shortcut configuration file

In other Linux desktop environments, you can right-click on the
desktop and select “Create launcher” or “Add shortcut.”

48 Linux for Makers

Try It for Yourself

Try to create a desktop shortcut that runs the hello.sh shell
script that you created in Chapter 2. See Figure 3-6 if you need
some hints on what the file should look like.

Why This Matters for Makers
Most Makers who are new to Linux will naturally start by using
the desktop. This is a safe and somewhat familiar place to try
things out and look around. Later, you may want to disable the
desktop and save precious resources on your SBC. We will cover
how to do that in Chapter 5.

Using the Desktop 49

4/Command-Line
Basics

In this chapter, I will show you some basic ways to use the com-
mand line that work whether you are running a terminal emula-
tor on the desktop or have a keyboard and monitor plugged
directly into your Raspberry Pi. Over the years, many tricks and
shortcuts have been built into the Linux operating system to
make using the command line quick and easy. Let’s take a look
at some of the first things every Maker should know how to do
when they land on the command line.

Understanding the Prompt
The prompt is the indicator on the command line that shows
where you are on the screen. In other words, the computer is
“prompting” you to type something at a specific place. The
prompt won’t appear until you are logged in to the system.
When you type something into the terminal, that something will
show up at the prompt. Figure 4-1 shows what the prompt looks
like by default on the Raspberry Pi.

Figure 4-1. The Linux bash prompt on Raspberry Pi

The default prompt on the Raspberry Pi and most other Linux
systems is configured to give us several pieces of useful infor-
mation at a glance. Let’s change to the Downloads directory and
break the prompt down into its component parts (see
Figure 4-2):

cd Downloads

51

Figure 4-2. Breakdown of the prompt

1. Your username.
2. The hostname of the Raspberry Pi.
3. Your current location in the filesystem.
4. The symbol that indicates this is the prompt. If you are

“root,” this changes to a #.
5. A cursor to show you where text will be placed as you type.

You can move this around with the arrow keys to adjust its
position.

Notice that the prompt is green and blue. This is just to help dis-
tinguish between different parts of the prompt to avoid confu-
sion. When you press Enter, whatever you type and any output
of commands that you run will be scrolled up the screen, mov-
ing the prompt down to the next available line. If you are on the
desktop using a terminal emulator, you can scroll back and forth
using the mouse wheel or the scroll bar on the side of the win-
dow. If you are not on the desktop, you can scroll back and forth
by holding down the Shift key and pressing the Page Up or Page
Down keys. The Shift+Page Up/Down function works in almost
every version of Linux. Also, while typing a command, you can
use the arrow keys or the Home and End buttons to move your
cursor where you want it.

Try It for Yourself
Most Linux terminals only display 30 to 40 lines of text before
information starts scrolling off the top, depending on the size of
your screen or window. Inevitably, there will be some output that
you want to see that scrolls off the screen before you can get to
it. For example, let’s run a command that I know will generate a
lot of output. Display message (dmesg) is a command that prints
all the system messages that come from the Linux kernel, going

52 Linux for Makers

back to when the system was booted. Type the following on the
console or terminal emulator and press the Enter key:

dmesg

Looking at the output, there is no way to read all of the informa-
tion as it scrolls by so fast. Use the Shift+Page Up or Shift+Page
Down key combination to scroll up and down through the output
one page at a time.

Orienting Yourself in the
Filesystem
When using Linux, it’s important to know what directory you are
located in before you run a command. It’s also useful to know
how to maneuver from one location to another and get informa-
tion about the files you are working with. Before you do anything
else, you need to learn these basic techniques for working on
the Linux command line.

Where Am I?: pwd
Most of the time, you can figure out which directory you are in
just by looking at the prompt. But some systems don’t offer
such a detailed prompt, and other times you might just want to
make sure. You can find out where you are with the command
pwd, which stands for print working directory. This will print one
line that shows you exactly where you are in the directory struc-
ture (see Figure 4-3). Remember, the highest-level location in
the directory structure is /.

Figure 4-3. An example of the output of the pwd command

So, from Figure 4-3 we know that we are located in a directory
called pi, which is a subdirectory of home, which is a subdirec-
tory of /. This is the “pi” user’s home directory. By default, when
you log on to the system or open a terminal emulator, you start
in your home directory. Anything that you do on the command
line (create a file, delete a file, run a script or program) will be

Command-Line Basics 53

done based on where in the filesystem you are currently loca-
ted. You may be wondering why the prompt in Figure 4-3 isn’t
showing /home/pi as the current location; instead, it’s just
showing ~. That’s because ~ is an alias for the current user’s
home directory. You can find out more about aliases in Chap-
ter 6.

Changing the Working Directory: cd
You change location from one directory to another in Linux by
using the command cd, which stands for change directory. To
get to a different place in the directory structure, just type cd,
then a space followed by the path to your destination. Keep in
mind that everything in Linux is case-sensitive. For example,
typing:

cd /home/pi/Downloads

will move you from /home/pi into /home/pi/Downloads. You
can think of it as moving from room to room in a big house. Even
though the house is very large, you can move wherever you want
as long as you know the path to that room. In this case, your
front door or starting location is always /. You don’t always have
to operate linearly when you change to a new location. You can
jump wherever you want. For example, typing:

cd /var/log

will move you from wherever you are to /var/log/, the location
where logfiles are kept. In this way, the cd command also acts
like a teleporter, instantly moving you wherever you want to go
in the house. When you compare this to a graphical file manager
where you may have to double-click your way back and forth
through the directory structure, running a single command on
the command line is much quicker and easier, albeit not quite as
intuitive.

Typing in the full path to the directory you want to change to can
be cumbersome. This full path that starts with / and ends with
the desired destination (i.e., /home/pi/Downloads) is called an
absolute path. You can also use relative paths that will save you
some time. For example, previously when we wanted to move
from /home/pi into /home/pi/Downloads we typed:

54 Linux for Makers

cd /home/pi/Downloads

However, you can do the same thing by just typing:

cd Downloads

This works because Downloads is a subdirectory of /home/pi
and we are already located at /home/pi. Notice there is no lead-
ing / in front of Downloads. That’s because we don’t want to
move to a top-level subdirectory of /. Instead, we want to move
to a subdirectory that is relative to our current location.

Not only can you descend into subdirectories by using relative
paths, but you can change to the parent directory of your cur-
rent location as well by using the .. alias. In Linux, . usually refers
to your current location, whereas .. refers to the location one
level up from where you are. So if you are located at /home/pi/
Downloads and want to move up one level to the /home/pi
directory, you can simply type:

cd ..

If instead you wanted to move two levels up to the /home direc-
tory, you can type:

cd ../..

Remember I said that ~ is an alias or shortcut for a user’s home
directory. You can always get back to your home directory just
by typing:

cd ~

You can also get to your home directory just by typing cd with no
arguments:

cd

Want to get to your Downloads subdirectory in your home direc-
tory from anywhere in the system? Just type:

cd ~/Downloads

This is equivalent to typing:

cd /home/pi/Downloads

Just replace /home/pi with ~ whenever you want to refer to that
location.

Command-Line Basics 55

Printing Out the Contents of a
Directory: ls
When you get to the directory that’s your destination, you will
certainly want to look around. You can use the command ls,
which stands for list. This command prints out an alphabetically
sorted list of files and directories in your current location (see
Figure 4-4).

Figure 4-4. An example of running the ls command

Since we are using a prompt with colors enabled, we can tell the
difference between the directories and files just by looking at
the colors. In this case, the blue text represents directories and
the gray text represents files. However, we can get more
detailed information simply by adding the -l option to the end
of the command (see Figure 4-5).

Figure 4-5. An example of running the ls -l command

We covered what all this information means in Chapter 2. How-
ever, there are actually more files and directories in this location

56 Linux for Makers

than are listed here. This is because Linux sometimes hides files
to make them slightly more difficult to interact with or so they
don’t clutter things up when you’re trying to find something. In
Linux, hidden files and directories have a filename that starts
with a . character. You can display these hidden files by adding
the option -a to the ls command (see Figure 4-6).

Chain Options Together
Many times, you can chain options together on the command
line. For example, instead of typing ls -l -a, you can simply
type ls -la.

Figure 4-6. The output of ls -la

The output of ls -la gives us both detailed output as well as
showing all the hidden files and directories in our current loca-
tion. There are many other useful options for the ls command.
Here are some of them:

Command-Line Basics 57

-a
List all files including hidden files starting with “.”

-l
List with long format and show permissions

-lh
List long format with human-readable file sizes

-s
List with file size listed first

-r
List in reverse order

-R
List recursively directory tree

-S
Sort by file size

-t
Sort by time and date

-X
Sort by extension name

You may wonder what the “total 116” means in the first line
returned in Figure 4-6. That represents the total number of disk
blocks used by all the files listed by the ls -l command. Not
very useful, but now you know.

Creating New Files and Directories:
mkdir and touch
Sometimes you want to organize your files into directories other
than the ones that already exist. To make a new directory, you
can use the command mkdir, which stands for make directory.
To use the command, simply type:

mkdir mynewdirectory

To make a series of subdirectories under your new one, go into
that subdirectory with the cd command and then type:

58 Linux for Makers

mkdir subdirectory1
cd subdirectory1
mkdir subdirectory2
cd subdirectory2
mkdir subdirectory3

Or you could make them all at the same time by using the -p
option like this:

mkdir -p subdirectory1/subdirectory2/subdirectory3

You can also create files in your current location. This is done in
several ways. Most of the time, files are created by the applica-
tions you are using. In Chapter 2, when you created your first
shell script, you used the program nano to create the file
hello.sh. This file was created when you saved it before exiting
nano. However, you can also create empty files with the com-
mand touch. These files have no data associated with them
except for the filename itself, permissions, and ownership. To
create an empty file, just type touch and the name of the file you
want to create like this:

touch emptyfile

There are a couple of reasons why you might want to create an
empty file. First, you might want to double-check that you have
write permissions in your current location. If you can create a
file with touch, you know you have write permissions. Second,
you might want to create some placeholder files if you are set-
ting up a file structure for a complex project like a website or a
program that will use multiple config files and logfiles.

Moving and Deleting Files: cp, mv,
and rm
Quite often, you will find you need to move files from one loca-
tion to another or delete them altogether. You can make a copy
of a file by using the command cp, which stands for copy. Like-
wise, you can move a file using the command mv, which of
course stands for move. The copy and mv commands work in
similar ways. To copy a file, type cp followed by the file you want
to copy, followed by the destination path. For example:

cp /home/pi/hello.sh /home/pi/Downloads/

Command-Line Basics 59

This will copy the file hello.sh into the Downloads subdirectory of
your home directory. Of course, if you are already located in
your home directory, you could accomplish the same thing with
relative paths like this:

cp hello.sh Downloads

If instead you wanted to move the hello.sh file into the Docu-
ments folder, you would type:

mv hello.sh Documents

To delete a file, use the remove command (rm). Be careful with
this command! There is no recycle bin or trash can in Linux.
Once you delete a file using the command line, it’s gone for
good. Though there are utilities that can sometimes recover
files, they are for advanced users and don’t always work. If
you’re sure you want to delete a file, it’s simply a matter of typ-
ing rm followed by the filename:

rm hello.sh

If you want to delete a whole directory including all subdirecto-
ries, you can use the -R option like this:

rm -R directory

Again, this is a powerful but dangerous operation, so use it with
caution. Occasionally, online trolls will try to prank new Linux
users into running the command sudo rm -fR /. This is never a
good idea, as it will wipe out your whole filesystem.

Try It for Yourself
Practice navigating around the filesystem by using the com-
mand line. Let’s start in our home directory. To make sure you
are there, simply type:

cd

Now let’s create a subdirectory called Sub:

mkdir Sub

List the files in reverse time order to make sure that the direc-
tory was created:

ls -ltr

60 Linux for Makers

Now change into that subdirectory:

cd Sub

Make sure you are now located in that subdirectory:

pwd

Now create a test file:

touch testfile

Verify that the file is there:

ls -l

Make a copy of the file:

cp testfile testfile2

Verify that the copy was made:

ls -l

Now delete the original file:

rm testfile

Change back to your home directory:

cd ../

Now delete the whole subdirectory including the copy of the file
we made:

rm -R Sub

Verify that the subdirectory is gone:

ls -l

Figure 4-7 shows a visual example of what this should look like.

Command-Line Basics 61

Figure 4-7. Typical output of the previously listed commands

Get Help with a Command: help,
man, and info
There are tens of thousands of Linux commands and programs
that can be run from the command line, and most of them have
several options. There is no way we can cover them all in this
book. Luckily, there are easy resources that can help you figure
out how to use a command you aren’t familiar with yet. These
resources are available even if you are offline, because they are

62 Linux for Makers

either part of the program itself or automatically installed when
the program is installed.

You can usually access the first of these by simply running the
command itself with a help option added. This option can take
multiple forms depending on the person who wrote the pro-
gram, but usually it is one of these four:

• --help
• --h
• -help
• -h

Most programmers who write utilities like ls or mkdir include
some basic helpful information like usage and common options,
which print out when you use the help option. In fact, most utilit-
ies will even tell you what the help option is if you don’t use it
correctly the first time (see Figure 4-8).

Figure 4-8. Printing out the help information screen for mkdir

The second resource available in Linux to help you learn how to
use a command is man, which stands for manual. Yes, there is
actually a built-in manual that comes with every installation of
Linux. As new programs or commands are added and installed,
pages are added to the manual that explain how to use them.
Consider man to be your own offline encyclopedia of Linux com-

Command-Line Basics 63

mands and utilities. man started in the early days of Linux as a
way to document the operating system and associated pro-
grams. It has since become a standard for people writing Linux
utilities to include a section in the manual.

When you look up information about a specific command or
program using man, the content that is displayed is called that
program’s manpage. If a program comes as part of Linux or is
distributed as part of an official Linux repository, it probably has
a manpage. A manpage is typically more detailed than the out-
put of using a command’s help option. Accessing a manpage is
a very simple process. Simply type man followed by the com-
mand you want to learn about. For example, Figure 4-9 shows
the output of typing man mkdir.

Figure 4-9. The manpage for the mkdir command

Once you open the manpage, you can navigate through the
document to find the information you’re looking for. Using the
following commands will make that a little easier:

h
Help screen

64 Linux for Makers

Down arrow or Enter key
Move down one line

Up arrow
Move up one line

f, space bar, or Page Down key
Page down one screen at a time

b or Page Up key
Page up one screen at a time

G
Jump to the last line in the file

g
Jump to the first line in the file

/pattern
Search for pattern

q
Quit

Manpages have become standardized over the years and always
contain at least the following sections:

Name
The name of the command or function, followed by a one-
line description of what it does.

Synopsis
A formal description of how to run the command and what
command-line options it takes.

Description
A description of how the command functions.

Examples
Usage examples.

See Also
Related commands or functions.

Command-Line Basics 65

You will notice in Figure 4-9 that the title is MKDIR(1). The (1)
refers to which section of the manual this page is located in. In
this case, it is User Commands. Sometimes programs will have
information in more than one section. When they do, it will be
called out under SEE ALSO. Here is a breakdown of the sections
so you will understand what the numbers refer to:

1. User Commands
2. System Calls
3. C Library Functions
4. Devices and Special Files
5. File Formats and Conventions
6. Games et al.
7. Miscellanea
8. System Administration tools and Daemons

Distributions customize the manual section to their specific
needs and often include additional sections. If you notice that
the same command is included in a different section and you
would like to look at it, simply add the section number before
the command name:

man printf

This will give you information on how to use printf (a command
used to format text output) on the command line. However:

man 3 printf

will show you the manpage explaining how the printf command
can be used in a C program.

The third way to get information in Linux is the info utility. Simi-
lar to man, to look up information in an info file, simply type info
followed by the command you want to learn about. Figure 4-10
shows the output of typing info mkdir.

66 Linux for Makers

Figure 4-10. The info page for the mkdir command

From the top of the screen, you can tell that we are browsing the
file called coreutils.info and have jumped to the node (section)
on mkdir. You can also tell that the next node is about mkfifo
and the previous node is about ln. To navigate when browsing
an info file, you can use the following keys:

h
Access the help window.

x
Close the help window.

q
Quit info altogether.

H
Invoke the info tutorial.

Up
Move up one line.

Command-Line Basics 67

Down
Move down one line.

Delete
Scroll backward one screenful.

Space bar
Scroll forward one screenful.

Home
Go to the beginning of this node.

End
Go to the end of this node.

Tab
Skip to the next hypertext link.

Enter
Follow the hypertext link under the cursor.

l
Go back to the last node seen in this window.

[
Go to the previous node in the document.

]
Go to the next node in the document.

p
Go to the previous node on this level.

n
Go to the next node on this level.

u
Go up one level.

t
Go to the top node of this document.

d
Go to the main directory node.

s
Search forward for a specified string.

68 Linux for Makers

{
Search for previous occurrence.

}
Search for next occurrence.

i
Search for a specified string in the index, and select the
node referenced by the first entry found.

Those are three ways to get information about a command from
within Linux itself. Of course, your best resource these days out-
side of the operating system is just to search on the internet
using your favorite search engine. Also, once you are ready to do
a deep dive on something like running a web server or advanced
programming, you could buy a great book like this one.

Try It for Yourself
Let’s practice learning about commands using the command
line, starting with pwd:

man pwd

Scroll through the manpage using the various directional keys,
and when satisfied, press the Q key to quit. Now do the same for
the other commands we’ve learned in this chapter:

man cd

man ls

man mkdir

man touch

man cp

man mv

man rm

Eliminate Some Typing
If you’re like me, your spelling and typing abilities may be lack-
ing. Too many times, I have spent 20 or 30 seconds typing a
long command with lots of options only to find out after I hit the
Enter key that I had typed something wrong and needed to start
over from the beginning. Not only that, but it can be hard to

Command-Line Basics 69

remember the exact command you use to perform a certain
task from day to day. Luckily, the Linux shell has some tools
built in that can help with both of these problems.

Auto-Complete a Command: Tab
You can use the auto-complete feature of the shell by simply
pressing the Tab key on the keyboard. This will auto-complete a
command that has been partially typed. It will also auto-
complete a filename based on the context of what you are
typing.

For example, if you type tou and press the Tab key, the shell will
fill in the rest of the missing letters to make touch. If there are
multiple options that start with the letters you’ve entered, the
first time you press Tab, nothing will happen. If you press it
again, however, the shell will display a list of all possible com-
mands or filenames that start with the letters you entered. So if
you type mkd and press Tab twice, you will be presented with two
options for commands that start with mkd: mkdir and mkdosfs
(see Figure 4-11).

Figure 4-11. Using the Tab key for auto-completion of
commands

If you continue to add more characters and then press Tab, you
will eventually rule out all the other options and the shell will
complete the rest of the command or filename when there is
only one choice left. This auto-complete feature is a real time
saver with bigger commands and long filenames. It also elimi-
nates spelling errors when you haven’t used a command very
often.

70 Linux for Makers

To Tab or Not to Tab
When you’re using the default bash shell in Linux,
Tab does not know about the available options for a
command; it only knows the name of the command
and any associated filenames that might be used as
part of a command.

Search for a Previous Command: Up,
Ctrl-R
Linux keeps a history of all the things you type into the com-
mand line. A simple way to review the commands you’ve typed
is to use the up arrow key to scroll back through each command
starting with the most recent. When the command you’re look-
ing for is far back in your history, you can search for it by typing
Ctrl-R on the command line followed by some characters. For
example, if you wanted to search for the last time you used nano
to edit a file, you would type Ctrl-R followed by nano. It doesn’t
matter if there is already some information entered at the cur-
sor when you press Ctrl-R. That text won’t be used for the
search—only what you type after you press Ctrl-R. Notice that
the prompt changes to (reverse-i-search) followed by the let-
ters you entered when doing this type of search through your
command history. If you press one of the arrow keys, Home,
End, or Tab, you will finish the search and be able to edit the
command that you looked up. You can also continue to search
through your history by pressing Ctrl-R multiple times before
you exit out of the search (see Figure 4-12).

Figure 4-12. Using Ctrl-R to search the command history

Command-Line Basics 71

Try It for Yourself
Change to your home directory and create a file by typing:

cd

tou <Tab> file1

When you press Tab, it should complete the name of the touch
command. Now change to your Downloads directory by typing:

cd D <Tab> <Tab>

You should see something similar to Figure 4-13.

Figure 4-13. Using Tab to auto-complete a directory or filename

Add the letters ow and press Tab again to auto-complete the
path you want and press Enter.

Now let’s create our second file by using the command history.
Press Ctrl-R and then type tou (see Figure 4-14).

Figure 4-14. Using command history to look up a previous
command

Press the End key and change file1 to file2. Press Enter to com-
plete the task. Now you’ve created two files: one in your home
directory and one in the Downloads directory. You have also
saved a lot of typing in the process.

72 Linux for Makers

Connecting to the Network via the
Command Line
To be honest, configuring your device to connect to a wireless
network via the command line is pretty complicated, especially
when compared to the point-and-click ease of using the desk-
top. It is important to know the basics of how to do this, just in
case you ever have to. Many times I have taken my projects to a
Maker Faire or interview only to find that my network was still
configured to connect to my home router. If you’ll be taking your
network-connected projects on the road, you will need to know
how to configure the network so your project can work properly.

Easy Portability

When traveling, consider connecting your SBC’s
WiFi to your tethered phone or other portable hot-
spot device that creates its own WiFi network. This
way, your project will connect and have access to
the internet wherever you go, as long as you have
cellular service.

The Interfaces File
To configure the network from the command line, you use a con-
figuration file named interfaces. Its full path is /etc/network/
interfaces. This file is read when the system boots and whenever
a networking interface is enabled. You can use nano or another
text editor to make changes to this file. As of this writing, the
configuration of the interfaces file looks like Figure 4-15.

Command-Line Basics 73

Figure 4-15. The default interfaces file on Raspberry Pi

Let’s break this down a bit to better understand what’s going on
here before we start changing things around.

• Lines that start with the # symbol are comments and are
ignored.

• source-directory refers to a location where other configu-
ration files might be stored. By default, this directory is
empty and exists just in case you make changes later.

• lo, eth0, wlan0, and wlan1 refer to network interfaces on the
SBC. These interfaces either exist currently or might exist
at some point in the future. For example, wlan0 or wlan1
might be created when you plug a WiFi adapter into a USB
port.

• iface starts the configuration section for a particular inter-
face. All the lines underneath the iface line relate to the
configuration of this interface.

• inet specifies that we will be configuring this interface for
TCP/IP communication.

• loopback, manual, dhcp, static, and a few others refer to the
way configuration data will be assigned to this interface.

• allow-hotplug will automatically attempt to configure the
interface when the system detects that it has been
connected.

• wpa-conf refers to the location of a separate, securely
stored WiFi configuration file.

74 Linux for Makers

Wired Ethernet
By default, if your local network is set up to automatically assign
an IP address with dhcp, there is nothing more you should have
to do to the configuration file to get a wired Ethernet connection
working. When you plug in an Ethernet cable to your Raspberry
Pi, it should connect to the network, grab the appropriate con-
figuration information, and be ready to browse the internet in
just a few seconds.

Static IP Address
Sometimes you may want to manually assign your own IP
address and other configuration information. Figure 4-16 shows
how you would change the interfaces configuration file to assign
static IP address information.

Figure 4-16. The interfaces file with eth0 setup for a static IP
address

Notice the changes that were made to the eth0 section. Instead
of deleting the old iface line, you can just use a # symbol to
comment it out so that it is easier to reverse your changes if
something goes wrong. The type of configuration has been
changed from manual to static. Added under the iface line are
the required parameters for a static IP address: an address, a

Command-Line Basics 75

network mask, a network gateway address, and DNS server
addresses.

WiFi
In order to use WiFi, we just need to make a few changes to the
wlan0 section (see Figure 4-17).

Figure 4-17. The interfaces file with wlan0 setup for simple WiFi
access

Here, I’ve commented out the line for wpa-conf and added a line
to configure the SSID of my wireless access point as well as the
password. This is by far the simplest way to get quick access to
WiFi. If you wanted a static IP on this interface, you could make
the same changes that we made for the eth0 interface in addi-
tion to the SSID and password configuration.

More Secure WiFi with Multiple
Networks
Sometimes you need more control over your WiFi interfaces. For
example, you might want to automatically switch between home
and work access points without changing the configuration
each time. You might have a hidden SSID that you need to con-

76 Linux for Makers

nect to or an enterprise password encryption scheme you need
to use. When things get more complex, it’s best to use the
wpa_supplicant.conf file in addition to the interfaces file.

WPA stands for WiFi Protected Access. WPA adds more security
protocols to make WiFi more secure and harder to break into.
Let’s start by reverting our interfaces file to the default to make
use of the wpa_supplicant.conf file (see Figure 4-18).

Figure 4-18. The interfaces file with wlan0 changes removed

Uncommenting the wpa-conf line and deleting the wpa-ssid and
wpa-psk lines means the wlan0 interface will now refer to the
wpa_supplicant.conf file for its configuration. Figure 4-19 shows
what that file looks like by default on the Raspberry Pi.

Figure 4-19. The default wpa_supplicant.conf file

The country setting should be changed automatically if you set
up your internationalization settings in Chapter 1. If not, you can
find your country code by searching the ISO website.

Updating this file with one or more network sections will allow
your WiFi interface to connect to the network. In Figure 4-20, I

Command-Line Basics 77

https://www.iso.org/obp/ui/search

have updated the file with the necessary information for most
situations.

Figure 4-20. The wpa_supplicant file with an added network
section

The ssid and psk options represent the SSID name and pass-
word. The scan_ssid=0 line lets the systems know that this is not
a hidden network. If it were a hidden network, you would need to
change the value from 0 to 1. The key_mgmt=WPA-PSK line repre-
sents the password encryption your access point is using. WPA-
PSK should work for most home users. If you are working in an
office environment, you may need to change this to something
else. You can find out about all the encryption types that wpa_sup
plicant supports by referencing the manpage for wpa_suppli-
cant.conf.

You can add further network sections to be able to connect to
different networks depending on your location (see Figure 4-21).
wpa_supplicant will automatically detect the best network
based on availability and signal strength.

Figure 4-21. The wpa_supplicant file with two network sections

78 Linux for Makers

When you’re done configuring your network, the easiest way to
implement your changes is simply to reboot your Raspberry Pi.

Installing Software: apt
Adding software to Linux is different from other operating sys-
tems. Since much of the software you run on Linux is open
source and free, public repositories of software packages are
maintained for the various distributions of Linux that exist. A
software package manager is used to download a package,
install or remove a package, manage any dependencies on other
software that may exist, and keep packages up-to-date.

Open Source Software
Open source software is different than proprietary or closed
sourced software in many ways. First and foremost, as the word
open implies, the source code for the software is available for
anyone to look at and inspect. Second, because the code is
available, this naturally invites contributions from the commu-
nity. If there’s a problem with the software, you can correct it
yourself by submitting a bug report or a patch that fixes the
issue. Third, you can share and distribute open source software
to others without breaking the law or violating some sort of
license agreement. In fact, this sharing behavior is generally
encouraged. This is in stark contrast to what you may typically
think of when it comes to sharing content (see Appendix A for
more information on the history of open source software).

Because the Rasbian distribution used most often on the Rasp-
berry Pi is based on Debian Linux, it uses the Debian package
manager software called apt, which stands for Advanced Pack-
age Tool. apt contains a set of tools that can be used to perform
various tasks related to software package management. The
most frequently used tool is called apt-get, and it handles
almost all the functionality you will need when it comes to instal-
ling software with the exception of searching, which is done with
apt-cache.

Command-Line Basics 79

Since apt can significantly alter your system, you are required to
run some of the apt tools using sudo.

Using apt-get update
There are thousands of software packages for Linux and they
are updated frequently. In fact, if you checked on the software
updates for your Raspberry Pi, you would find that there are
several updates a day. Now, that’s not to say that you need to
update your software every day. Most updates are enhance-
ments or minor bug fixes, and not having them won’t mess any-
thing up for you. But sometimes there are updates that are
related to system security, and those can be important. A good
rule of thumb is to check for software updates once a month or
so. You also want to check for updates right before you install
any software to make sure the software database on your Rasp-
berry Pi is current.

To check for software updates, type the following on the
console:

sudo apt-get update

This will download the list of software from the repositories that
have been preconfigured in the system. The list will then be read
and the software database will be updated to include informa-
tion about new and updated software packages (see
Figure 4-22).

80 Linux for Makers

Figure 4-22. Typical output of the apt-get update command

Using apt-get upgrade
Once you’ve updated your software database, you’re ready to
either upgrade the software you have installed or install new
software. Upgrade actually installs new versions of your soft-
ware, whereas update only updates the software database.
Upgrade your software by typing the following command:

sudo apt-get upgrade

The first thing that happens during an upgrade is that apt-get
will read the package list and check for dependencies. Because
software in Linux is open source, it can be built in a modular
fashion. If someone else has already built a program that does a
certain function, other programs can simply use it instead of
rebuilding the functionality from scratch every time. In this way,
one program becomes dependent on another program to func-
tion correctly, and it is important to manage these dependen-
cies so that everything works properly.

After checking for dependencies, apt-get will calculate which
packages need to be updated and output a list of those pack-
ages. It will also show the total size of the download and the

Command-Line Basics 81

amount of total disk space the updates will occupy after they’re
installed (see Figure 4-23).

Figure 4-23. Example of a rather large upgrade using apt-get
upgrade

As you can see, it’s been a while since I have upgraded the soft-
ware on this particular Raspberry Pi. If you have any concerns
about the update, you can press N to exit. Otherwise, type Y or
just press Enter to continue.

82 Linux for Makers

Accepting the Default Choice
Linux text-based configuration utilities often present multiple
choices to the user. Usually, the default is the safest choice and
is displayed in caps. You can either type in your choice or just
press the Enter key to select the default.

Be aware that when you continue from this point, apt-get will
begin downloading the software packages and then start to
install them. It could take quite a long time (we’re talking many
minutes to a few hours) if you have a lot of updates, are using a
slower Raspberry Pi like the Raspberry Pi 1 or Zero, or have a
slow network connection (see Figure 4-24).

Figure 4-24. Example of a rather large upgrade using apt-get
upgrade (continued)

If your console screen isn’t wide enough, the text will wrap
around as the packages are downloaded. The percentage on the
far left of the screen shows the overall download progress. Once
all the packages are downloaded, apt-get will begin unpacking,

Command-Line Basics 83

processing, and setting them up one by one. When the process
is complete, you will be returned to the prompt (see
Figure 4-25).

Figure 4-25. Example of a rather large upgrade using apt-get
upgrade (continued)

This particular upgrade took about 40 minutes to complete on
an older Raspberry Pi with a slower-than-average network con-
nection. More frequent upgrades on the order of once a month
will prevent the upgrade process from taking so long. Although
not technically required, it’s a good idea to reboot your system
after upgrading it, especially when the upgrade is a large one.

84 Linux for Makers

Using apt-cache
With so many software packages available for Linux, it can be
difficult to remember their names. There is a way to search
through the database to find the package you’re looking for. The
tool apt-cache can be used to search through the software pack-
age database and even show useful information about individual
packages. To search for a package, type:

apt-cache search pattern

apt-cache will search through the database and return any pack-
age name and description that contains the pattern you sup-
plied (see Figure 4-26).

Figure 4-26. Example output of the apt-cache search command

Once you find the package name you’re looking for, it can be
helpful to get more information about it. You can use apt-cache
to display more detailed information by using the show function:

apt-cache show pigpio

You can see who wrote the software, the current version, how
much disk space it takes up, what the website for the software
package is, a detailed description, and more (see Figure 4-27).

Command-Line Basics 85

Figure 4-27. Example output of the apt-cache show command

Using apt-get install
Installing new software is handled with the apt-get install
command. You can install multiple packages at one time and
apt-get will manage installing any required dependencies for
you. To install software on your Raspberry Pi, just type:

sudo apt-get update

sudo apt-get install packagename packagename packagename

apt-get will let you know how much data will be downloaded and
how much disk space will be used after the install is complete. If
there is only one package to be installed, apt-get will not ask
you to continue and will install the package without prompting
(see Figure 4-28).

Skip the Confirmation Message
You can avoid being prompted to confirm whether
you want to install the software packages by using
the -y option flag (i.e., sudo apt-get -y install pack
agename packagename packagename).

86 Linux for Makers

Figure 4-28. Example output of the apt-get install command

Notice how man was updated with a new page about this pro-
gram on the next-to-last line.

apt-get remove
Similar to installing software, removing packages is a straight-
forward process. To remove packages, simply type:

sudo apt-get remove packagename packagename packagename

apt-get will remove the packages and the associated manpage
entries (see Figure 4-29).

Figure 4-29. Example output of the apt-get remove command

Linux will not remove all the dependencies, however. You will
notice that after you install or upgrade software, apt-get might
mention that there are packages that are no longer required.
You can uninstall these by using the following command:

sudo apt-get autoremove

Command-Line Basics 87

apt-get will show you how much disk space will be freed up and
prompt you to confirm. It will then remove all the programs that
are no longer required by any other software packages (see
Figure 4-30).

Figure 4-30. Example output of the apt-get autoremove
command

apt-get dist-upgrade
There is a special type of upgrade you can perform that will
upgrade your whole distribution to the latest and greatest ver-
sion. You perform this with the command apt-get dist-
upgrade. Like an install or upgrade operation, you need to
update the software database with apt-get update before you
run this. The process is very similar to doing a regular upgrade,
but could take quite a bit longer since more packages will need
to be downloaded and installed. The benefit of upgrading to the
latest distribution is that it would allow you to take advantage of
new features that aren’t available in your version. All your per-
sonal files and configuration should remain intact.

However, don’t feel like you have to upgrade your distribution
just because a new version is available. If everything is working
fine, be content to stay where you are. Updating your distribu-
tion is not like updating the software version on your smart-
phone. Very rarely is there a must-have feature that you really
need to make your project work. Your version of Linux should
work fine and be supported with security updates for at least a
few years. To make sure you have those security updates, you

88 Linux for Makers

can simply use apt-get update instead of apt-get dist-
upgrade.

One thing to note is that upgrading your distribution this way
may not install software packages that aren’t strictly required. In
some cases, it might be easier to start from scratch with the lat-
est released image file as we did in Chapter 1. Just be sure to
back up your files first.

Fixing Conflicts
Occasionally, you will get an error that mentions “missing
dependencies” or “broken packages” when apt-get is trying to
install software. This usually means that you haven’t updated in
a while. To fix this, you should first try running:

sudo apt-get update
sudo apt-get upgrade

This will update your software repository and upgrade your
installed packages to make sure everything is up-to-date. You
can then try to install your software again.

Try It for Yourself
Install the pigpio main library and the associated python pigpio
library. In order to do this, you will need to find out the names of
the software packages and confirm they are the right ones by
reading the description. The first step is to update the package
database and then look up the names of the packages:

sudo apt-get update

apt-cache search pigpio

You should get a search result that shows all the packages with
pigpio in the title or description (see Figure 4-31).

Figure 4-31. Using apt-cache search to find a software package

Command-Line Basics 89

Next, install both packages at the same time without being
prompted. Let’s assume we will be using Python 2 to write some
programs and not Python 3 for now. Use the apt-get command
to install the software (see Figure 4-32):

sudo apt-get -y pigpio python-pigpio

Figure 4-32. Installing pigpio with apt-get

Rebooting and Shutting Down
The first time I ran Linux without a desktop, I ran into a problem.
Everything was going fine until I needed to shut down the sys-
tem. I was still very new to Linux at the time and I didn’t know
how to start the desktop up again (see Chapter 5 for how to do
this). Eventually, I ended up shutting off the power to the sys-
tem. This is a very bad idea on any computer, but especially bad
on the Raspberry Pi.

As I mentioned in Chapter 2, everything in Linux is represented
by a file, including the state of the operating system. Linux is
constantly writing to these files as updates occur on the system.
If you kill power to your Raspberry Pi while the system is in the
middle of updating a file, you will end up with a corrupt file that
can’t be read when the system is powered on again. Depending
on what file is corrupted, you might lose some of the project

90 Linux for Makers

files you were working on, or worse, you might end up being
unable to boot up your Raspberry Pi again. This problem is com-
pounded by the fact that the Raspberry Pi uses an SD card for
storage and, compared to other storage devices, the write
speed of SD cards is still pretty slow.

So it is important that you know how to reboot and shut down
your system properly from the command line. The command
you use to do either of these is shutdown. The shutdown com-
mand should work on almost all Linux and Unix systems. To
reboot a Linux system from the command line, type:

sudo shutdown -r now

To shut down a Linux system, type:

sudo shutdown -h now

Notice that the only difference between the two commands is
using -r to reboot or -h to halt the system and shut it down
entirely. If you are shutting down your system, you will know
when the shutdown is complete when the LED on the board
blinks on and off 10 times. After that, it is safe to unplug your
Raspberry Pi.

Why This Matters for Makers
Knowing the basics of using the command line make it easier to
navigate around in Linux, get connected to the internet, and
install software. These operations are the bare minimum that a
Maker should know before venturing out on their own beyond an
online tutorial to start building their own really cool projects. You
can go further and impress your family and friends by becoming
a command-line wizard with the tips and tricks I will show you in
Chapter 6.

Command-Line Basics 91

5/Headless Operation

In this chapter I will explain how to connect to a Raspberry Pi
running Linux over a network without a keyboard, mouse, or
monitor attached to it (aka headless). The ability to operate and
interact with a project remotely is important for any Maker, and
opens up new possibilities that would not be available if you
always needed a keyboard, mouse, and monitor to be directly
attached to an SBC running Linux. This is perfect for projects
that you want to be mobile or that are just meant to run quietly
in the corner collecting or serving data.

Turning Off the Desktop
Most of the time, a Raspberry Pi running headless doesn’t need
the desktop running. Turning off the desktop is a relatively easy
process and is configured through the raspi-config utility. On
the console, run this command:

sudo raspi-config

This will open up the Raspberry Pi configuration application, as
shown in Figure 5-1. Use the arrow keys to move the selection
cursor down to Boot Options and press Enter.

93

Figure 5-1. The raspi-config main menu

Choose Desktop/CLI and press Enter (see Figure 5-2).

Figure 5-2. The raspi-config Boot Options menu

Now choose Console if you want to be forced to log in when the
system boots up, or Console Autologin, which will automatically
log in the user “pi” for you. Pressing Enter on your selection will
return you to the main raspi-config menu (see Figure 5-3).

94 Linux for Makers

Figure 5-3. The raspi-config Desktop/CLI menu

Press Tab to move the selection cursor to Finish and press the
Enter key to exit. You will be asked if you want to reboot.
Whether you reboot now or later, the next time you do, you will
be brought right to the console instead of the desktop.

If you ever want to get back into the desktop for any reason, you
can run the following on the command line:

startx

If you ever want to change back to automatically boot into the
desktop, just go through these steps again and choose one of
the desktop options in the raspi-config boot options menu.

Finding Your System on the
Network
In order to connect to your Raspberry Pi, you need to know its IP
address. An IP address is a unique identifier assigned to every
computer on your network. You can find your IP address on the
Pi itself, from the router on your network, or from an app on
your phone.

Headless Operation 95

Raspberry Pi
The easiest way to find the IP address of your Raspberry Pi is by
looking it up before you disconnect your monitor, keyboard, and
mouse. This can be done from the command line or desktop.

When the Raspberry Pi boots up, it should show you the IP
address just before you get to the prompt (see Figure 5-4).

Figure 5-4. Finding the Raspberry Pi IP address when it boots up

If you’ve been using your Raspberry Pi and can’t see this infor-
mation anymore, you can find the IP address by running the
command ip addr show (see Figure 5-5).

Figure 5-5. Finding the Raspberry Pi IP address with ip addr
show

96 Linux for Makers

Use the address listed under the eth0 section if your system is
connected to the network via a wired Ethernet cable. If your sys-
tem is connected via WiFi, use the address listed under wlan0. In
the preceding example, we would use 10.0.2.16 without any trail-
ing slashes or other numbers.

Router
Most modern routers will show you the connected devices on
your network either in list form or as a network map. Connect to
your router’s built-in website and find the configuration page to
view this information. In my case, the router shows a network
map (see Figure 5-6).

Figure 5-6. Network map from a home router

By clicking on the device labeled raspberrypi, I can see its IP
address (see Figure 5-7). In this case, it’s 192.168.0.209.

Headless Operation 97

Figure 5-7. Device details from home router

Android/iPhone
There are many apps for Android and iPhone that can scan your
network and find devices and IP addresses. The one I currently
use is called “Fing - Network Tools.” You can find it in the Google
Play Store and the Apple App Store. Once the app is installed on
your phone, simply open it and click on the refresh button to
find your Raspberry Pi (see Figure 5-8).

98 Linux for Makers

Figure 5-8. Fing app showing Raspberry Pi IP address

Command-Line Access: ssh
Just because your project is running without a keyboard and
mouse doesn’t mean that you don’t need access to it. You will
need to upload files, change the configuration, and most impor-
tantly, be able to shut down the system gracefully from time to
time. The best way to access the command line remotely is with
a tool called SSH.

SSH stands for secure shell. As you can guess by the name, it
provides secure access to the shell on a remote system. SSH is
different than its predecessor telnet, which was the standard for
many years. Unfortunately, telnet traffic was sent completely “in
the clear”—usernames and passwords were easily readable by
any computer the data passed through. SSH is secure because
the communication to the remote system is encrypted so that it
can’t be read by other systems on the network.

Headless Operation 99

For SSH to work, there needs to be two components: an SSH cli-
ent on your local computer and an SSH server on the remote
system. The Raspberry Pi already has an SSH server installed
on it as part of the Raspbian distribution of Linux. However, for
security, the server is not running by default. You can turn it on
by using the raspi-config tool (see Figure 5-9):

sudo raspi-config

Figure 5-9. The raspi-config main menu

Use the arrow keys to move the red selection cursor down to
Interfacing Options and press Enter. In the Interfacing Options
menu, use the arrow keys to move the red selection cursor
down to SSH and press Enter (see Figure 5-10).

100 Linux for Makers

Figure 5-10. The raspi-config Interfacing Options menu

The next screen will ask you if you would like to enable the SSH
server. Choose Yes. Once the SSH server is enabled, select OK
to return to the main raspi-config tool screen. Press the Tab
key to move the selection cursor to Finish and press the Enter
key to exit.

Now you need to install an SSH client on your computer so that
you can connect to the SSH server on the Raspberry Pi. In the
following sections, I will recommend how to connect to a Rasp-
berry Pi from Windows, macOS, Linux, and Android. Although I
won’t cover software installation, I will give examples of how to
connect and what to expect on each platform.

Windows
Windows does not have a built-in SSH client, so you need to
install one. One of the most widely used SSH clients is PuTTY.
You can download the latest version of PuTTY online. Once
you’ve installed PuTTY, you can open it from the Windows start
menu (see Figure 5-11).

Headless Operation 101

http://bit.ly/ukputty

Which PuTTY Do I Use?
The default installation of PuTTY comes with several
programs. The one you want is simply called PuTTY.

Figure 5-11. Launching the PuTTY application from Windows

What Is TTY?
TTY comes from the word TeleTYpe and refers to a way of com-
municating with a computer. Back in the early days of comput-
ing, you needed to use a teletypewriter or teleprinter machine
to type out the information that you wanted to feed into the
computer. You can still see the remnants of this technology in
Linux and in other remote communications programs like
PuTTY.

Once you’ve opened PuTTY, type the IP address of your Rasp-
berry Pi in the box labeled “Host Name (or IP address)” (see
Figure 5-12). Click the Open button to launch your SSH session.

102 Linux for Makers

Figure 5-12. The PuTTY configuration screen

The first time you connect to your remote system, you will be
asked to verify the SSH server’s encryption key (see
Figure 5-13). Click Yes.

Figure 5-13. PuTTY security warning

Headless Operation 103

PuTTY will then open a black terminal window and connect to
your remote system. Once connected, it will prompt you for
your username and password (see Figure 5-14). Remember: the
default username for Rasbian is “pi,” and the default password is
“raspberry.” See Chapter 2 for instructions on how to change
the default password.

Figure 5-14. The login prompt to connect with PuTTY

If you get an error screen that says “Network error: Connection
timed out,” that means your Raspberry Pi is not reachable on
your network. Close the console window, check your IP address,
check the connections to your Pi, and try again.

Once you’re connected, you’ll be at the prompt and ready to
start entering commands.

MacOS
Because macOS is based on UNIX, it makes sense that there is
already an SSH client installed and ready to use. To get to it, in
Finder, open the Terminal application under Utilities (see
Figure 5-15).

104 Linux for Makers

Figure 5-15. Using Finder to locate the Terminal application

Once open, simply type ssh user@ip-address to connect to your
Raspberry Pi (see Figure 5-16).

Figure 5-16. Using ssh to connect to a Raspberry Pi from
macOS

If this is the first time you’ve connected to this remote system,
you’ll be prompted to accept the SSH server’s encryption key.
Type yes and press the Enter key to continue. Once you’re con-

Headless Operation 105

nected, you will be at the prompt and ready to start entering
commands.

Linux
There is already an SSH client installed in Linux. All you need to
do is type ssh user@ip-address from the console or a terminal
emulator (see Figure 5-17). Since the Raspberry Pi is running
Linux, you can even use a Raspberry Pi to ssh into another
Raspberry Pi!

ssh pi@192.168.0.209

Figure 5-17. Connecting to a Raspberry Pi using ssh on Linux

As on the Macintosh, if this is the first time you’ve connected to
this remote system, you’ll be prompted to accept the SSH serv-
er’s encryption key. Type yes and press the Enter key to con-
tinue. Once you’re connected, you’ll be at the prompt and ready
to start entering commands.

Android/iPhone
There are many SSH client apps available for smartphones. For
Android, I recommend ConnectBot, which is a free app that
allows for multiple saved connections (see Figure 5-18). You can
download ConnectBot from the Google Play Store.

106 Linux for Makers

Figure 5-18. Using ConnectBot on Android to connect to a
Raspberry Pi

For iPhone, I recommend Cathode, which costs $4.99 and emu-
lates the look and feel of classic hardware terminals (see
Figure 5-19). You can download Cathode from the Apple App
Store.

Headless Operation 107

Figure 5-19. Cathode running on an Apple iPhone

Remote Desktops: vnc
So, you want to connect to your Raspberry Pi to use the desktop
rather than using the command line? No problem. You can do
this by using Virtual Network Computing (VNC) tools. Again, this
requires two components: a VNC viewer on your local computer
and a VNC server on the remote system. The latest version of
Raspbian comes with the VNC server and viewer software
installed. I won’t cover installation, but will show you how to con-
figure the server and client software necessary to view your
Linux desktop remotely.

Setting Up the Raspberry Pi
In order to view the desktop remotely, you must first set up the
VNC server on the Raspberry Pi itself. You can do this from the
console or terminal emulator locally, or even via ssh remotely.
All you need to do is enable it and then start it up.

108 Linux for Makers

Enable the VNC Server software by running the following
command:

sudo systemctl enable vncserver-x11-serviced.service

Then start the VNC Server by running the following command
(see Figure 5-20):

sudo systemctl start vncserver-x11-serviced.service

The VNC Server will now start automatically every time you
boot up your Raspberry Pi.

Figure 5-20. Enabling and starting the VNC server on the Rasp-
berry Pi

The Raspberry Pi auto-senses the display it’s connected to.
When you don’t have a display connected anymore, it will
default to the lowest resolution possible, which is very small
indeed. So in order to use VNC without a monitor attached, you
will need to edit some configuration settings to tell your Rasp-
berry Pi to default to a bigger screen size. Connect to your Rasp-
berry Pi and edit the /boot/config.txt file on the command line
by typing:

sudo nano /boot/config.txt

Scroll down to the bottom of the file and add the following lines
(see Figure 5-21):

hdmi_force_hotplug=1
hdmi_ignore_edid=0xa5000080
hdmi_group=2
hdmi_mode=16

Headless Operation 109

Figure 5-21. Editing the config.txt file on the Raspberry Pi

The hdmi_force_hotplug setting tells your Pi that an HDMI dis-
play is attached, and the hdmi_mode setting forces a resolution of
1024×768 at 60Hz.

This should give you a workable desktop area even when no
monitor is attached. Press Ctrl-X, then Y, then Enter to save your
file and quit nano. You will need to reboot your Raspberry Pi for
the changes to take effect.

Windows
Download and install the RealVNC software. If you installed VNC
Server, you will also need to register for a free personal use
license as part of the install process. You can choose during
install whether or not you want to install the server and viewer
or just the viewer. We will only be using the viewer to connect to
the Raspberry Pi. Once it’s installed, launch the viewer from the
Windows start menu (see Figure 5-22).

110 Linux for Makers

http://www.realvnc.com

Figure 5-22. Launching the VNC Viewer application on Windows

When the VNC Viewer application starts, it will ask for the
address of the remote system. Enter the IP address of your
Raspberry Pi and click Connect (see Figure 5-23).

Figure 5-23. Entering the IP address to connect to in VNC
Viewer

If this is the first time you’ve connected, you will be shown the
server’s unique signature and asked if you want to proceed.
After you accept, you’ll be asked for your Raspberry Pi user-
name and password (see Figure 5-24).

Headless Operation 111

Figure 5-24. Entering your Raspberry Pi username and pass-
word in VNC Viewer

After you click OK, you should be presented with a window
showing your Raspberry Pi desktop.

MacOS
Download and install the RealVNC software. If you installed VNC
Server, you’ll also need to register for a free personal use license
as part of the install process. You can choose during install
whether or not you want to install the server and viewer or just
the viewer. We will only be using the viewer to connect to the
Raspberry Pi. Once it’s installed, launch the viewer by opening
Finder and navigating to Applications→RealVNC→VNC
Viewer (see Figure 5-25).

112 Linux for Makers

https://www.realvnc.com

Figure 5-25. Launching the VNC Viewer application on macOS

When the VNC Viewer application starts, it will ask for the
address of the remote system. Enter the IP address of your
Raspberry Pi and click Connect (see Figure 5-26).

Figure 5-26. Entering the IP address to connect to in VNC
Viewer

If this is the first time you’ve connected, you will be shown the
server’s unique signature and asked if you want to proceed.
After you accept, you will be asked for your Raspberry Pi user-
name and password (see Figure 5-27).

Headless Operation 113

Figure 5-27. Entering your Raspberry Pi username and pass-
word in VNC Viewer

After you click OK, you should be presented with a window
showing your Raspberry Pi desktop.

Linux
Download and install the RealVNC software. RealVNC has many
packages available for Linux depending on which distribution
you are running. If you are running a Debian- or RedHat-based
system, there are preconfigured packages available. Otherwise,
you can install a general Linux installation package.

If you installed VNC Server, you’ll also need to register for a free
personal use license as part of the install process. You can
choose during install whether or not you want to install the
server and viewer or just the viewer. We will only be using the
viewer to connect to the Raspberry Pi. Once it’s installed, launch
the viewer from the menu in the taskbar (see Figure 5-28).

114 Linux for Makers

https://www.realvnc.com/download/vnc/

Figure 5-28. Launching the VNC Viewer application on Linux
Mint

You can also launch the VNC Viewer from the command line:

vncviewer

Once you launch VNC Viewer, you will need to accept the EULA
before you can continue. The process from here is similar to
Windows and macOS. Enter the IP address of your Raspberry Pi
and click Connect (see Figure 5-29).

Headless Operation 115

Figure 5-29. Entering the IP address to connect to in VNC
Viewer

If this is the first time you’ve connected, you’ll be shown the
server’s unique signature and asked if you want to proceed.
After you accept, you will be asked for your Raspberry Pi user-
name and password (see Figure 5-30).

Figure 5-30. Entering your Raspberry Pi username and pass-
word in VNC Viewer

After you click OK, you should be presented with a window
showing your Raspberry Pi desktop.

Android/iPhone
You can also access your Raspberry Pi desktop from your
smartphone or tablet. There are versions of VNC Viewer for
Android on the Google Play Store or for iPhone on the Apple
App Store. The method for connecting is very similar to the
desktop versions of VNC Viewer. Depending on the size of your
display, however, you may find it frustrating to use on a small
screen (see Figure 5-31).

116 Linux for Makers

Figure 5-31. Connecting to the Raspberry Pi with the mobile
VNC Viewer app

Transferring Files: scp, sftp
There are many ways to get files to and from an SBC running
Linux. However, putting files onto the SD card directly is not
easy from Windows and macOS. Since the SD card uses a Linux-
based filesystem for primary storage, that part of the card won’t
be visible when you plug it into either of those systems. You
could mount a network drive or use a USB pen drive to transfer
the files, but these processes are cumbersome and time-
consuming. This process is made more difficult when you’re
running headless since you can’t see the desktop or have direct
access to the console.

Luckily, there are easy tools built into Linux that help when you
are transferring a few files over a network. Secure Copy (SCP)
and Secure File Transfer Protocol (SFTP) use SSH to transfer
files to a remote machine securely. scp is best used to transfer a
single item like a file or an entire directory, while sftp can be
used like regular FTP to create new directories and move a
select group of files. This is one time that a graphical client is
probably easier to use than the command line, but I will show
you both ways where applicable.

Headless Operation 117

Tranferring Files with VNC
You can also copy files with the VNC Viewer software from
RealVNC if you are running the desktop on your Raspberry Pi. If
not, SCP and SFTP should always work, so it’s good to know
how to use them.

Windows
In Windows, you will will need a program to help you use SCP or
SFTP. WinSCP is a great program that does both, and has a very
nice drag-and-drop interface. As a bonus, it can start a PuTTY
session for you if you already have PuTTY installed. You can
download WinSCP from its website.

Once you have WinSCP installed, open it and choose an inter-
face style. Personally, I like the Commander style, as it makes it
easy to drag files back and forth between your computer and
Raspberry Pi. Next, you will be presented with the login screen
(see Figure 5-32).

Figure 5-32. Connecting to the Raspberry Pi with WinSCP

118 Linux for Makers

https://winscp.net/eng/download.php

Leave the “File protocol” set to SFTP (SFTP and SCP will work
the same way with this program) and enter your Raspberry Pi’s
IP address in the “Host name” box. Next, fill in the “User name”
and “Password” boxes with the username and password for
your Raspberry Pi. Click the Login button to connect to your
remote system. If this is the first time you’ve connected with
WinSCP, you will be asked to verify the server’s encryption key.
WinSCP will then connect automatically using the credentials
you supplied, and you will see the interface you picked (see
Figure 5-33).

Figure 5-33. The file browser window in WinSCP

You can now transfer files back and forth between your com-
puter and your Raspberry Pi.

MacOS
There are many clients available on macOS for SCP and SFTP
file transfer. However, some of them include advanced function-
ality and can be quite expensive. You can find free tools in the
Apple App Store if all you want to do is transfer files to your
Raspberry Pi or other SBC. One such tool is Commander One.
The free version of Commander One offers a Commander-style
view of your files and will connect easily to other computers

Headless Operation 119

using many protocols. You can download Commander One from
the developer’s website or in the Apple App Store.

Once you have Commander One installed, open it to find the
default view of your local files. To open an SFTP session to your
Raspberry Pi, click on the Connections Manager icon (see
Figure 5-34).

Figure 5-34. Default file manager view in Commander One

The Connections Manager window will allow you to use various
methods to connect to remote systems. Click on the SFTP but-
ton to create a new SFTP connection (see Figure 5-35).

In the New Connection screen that appears, give this connec-
tion a name. Then, fill in the Raspberry Pi’s IP address, your
username, and password. Then click the Connect button (see
Figure 5-36).

120 Linux for Makers

http://mac.eltima.com/file-manager.html

Figure 5-35. Choosing a protocol in the Connections Manger
screen of Commander One

Figure 5-36. Connection settings in Commander One

Headless Operation 121

Commander One will replace one pane of the program with the
filesystem of your Raspberry Pi. It will also add a link to this con-
nection to the top of each pane. Now you can drag files back and
forth between your Mac and your Raspberry Pi. You can also
change the permissions on a file or folder by right-clicking on it
and choosing “Get info” or by selecting it and pressing
Command-I (see Figure 5-37).

Figure 5-37. Changing file permissions in Commander One

Linux
The ability to transfer files to remote systems is built into most
Linux file managers. Since there are so many distributions of
Linux, I will be using Linux Mint, one of the most popular distri-
butions, to demonstrate.

Open up the built-in file browser (in Linux Mint, the default file
browser is Nemo), and click File, then “Connect to Server” (see
Figure 5-38).

122 Linux for Makers

Figure 5-38. Adding a new connection to a server in the Linux
Mint file browser

In the Type drop-down box, select SSH. Fill in the Raspberry Pi’s
IP address, username, and password and click the Connect but-
ton (see Figure 5-39).

If this is the first time you’ve connected to your Raspberry Pi,
you’ll be asked to verify that you want to make the connection.
Click on Log In Anyway to continue. The file browser will open a
new window displaying the filesystem of your Raspberry Pi. It
will also add an icon under your network connections that repre-
sents this connection so you can easily get back to it at any
time. If you want to end the connection, you can click the eject
icon next to the name of the connection (see Figure 5-40).

Headless Operation 123

Figure 5-39. Entering the connection details for a new connec-
tion to the Raspberry Pi

Figure 5-40. A new window showing the files on the Raspberry
Pi

124 Linux for Makers

From the Command Line: MacOS and
Linux
Both macOS and Linux have built-in command-line tools that let
you use SCP and/or SFTP. Using SCP on the command line is an
easy way to transfer a single file or directory to your Raspberry
Pi. Using SFTP is a little more complex in that you will need to
know how FTP commands work. Since command-line SFTP is
probably not going to be used that often, I will only cover SCP in
this section.

Open up the Terminal program in macOS or a terminal session
on Linux. The scp command syntax is similar to ssh. To transfer
a file to your home directory on your Raspberry Pi, just use the
scp command by typing:

scp myfile username@IPaddress:/home/pi

where:

• myfile is the name of the file you want to transfer
• username is the username on your remote system
• IPaddress is your remote system’s IP address

Be sure to include a space between your filename and the user-
name of your remote system. After you enter your password,
you will see a progress indication while the file is transferred
(see Figure 5-41).

Headless Operation 125

Figure 5-41. Tranferring a file using scp on the Linux command
line

Why This Matters for Makers
More often than not, I find that Makers want to use the Rasp-
berry Pi or some other SBC in a project where leaving a monitor
and keyboard connected at all times is not a practical solution.
Robots, security cameras, and LED light displays are all fun
projects, but they are best when run headless. Knowing how to
communicate with and control your Raspberry Pi remotely will
open up a whole new world of possibilities for you to discover.

126 Linux for Makers

6/Tips and Tricks

Now that you can use the command line effectively from any-
where, I’ll explain some of the functionality an efficient Maker
should know when putting their programs to work for them.
These are the topics that come up again and again in forums
and in conversations with new Linux users that a system admin-
istrator would know to do like the back of their hand. This is by
no means an exhaustive list, but by learning these tips and
tricks, you can save a lot of time when building your projects
and impress your friends by demonstrating your mad Linux
command-line skillz.

Changing Your Hostname
By default, the hostname of a Raspberry Pi running Rasbian is
raspberrypi. If you have more than one Raspberry Pi on your
network, it can be confusing to know one from the other. So it is
very helpful to have different hostnames for each Raspberry Pi
on your network. You can change the hostname to be whatever
you want in just a few simple steps.

Don’t Be Afraid of Change
Changing the hostname will not affect your Rasp-
berry Pi’s IP address. The only thing that changes is
the name that shows up in network discovery tools
like Fing or your router configuration website.

First, verify your existing hostname by running the hostname
command:

hostname

This command without any options will only display the host-
name and will not change anything (see Figure 6-1).

127

Figure 6-1. Running the hostname command to check the
hostname

Second, you will need to edit your hosts file. This special file is
like a personal map that Linux uses to relate hostnames to IP
addresses, and it supersedes information that might come from
other devices on the network. Open the file for editing with sudo
and replace all occurrences of raspberrypi with whatever you
want your new hostname to be (see Figure 6-2):

sudo nano /etc/hosts

You can see in Figures 6-2 and 6-3 that I have replaced raspber
rypi with virtualpi.

Figure 6-2. Editing the hosts file

128 Linux for Makers

Figure 6-3. Host file with new hostname

The last step is to edit the hostname file. This file only contains
the name of your system. Open the file for editing with sudo and
replace raspberrypi with the same name you just used in the
hosts file (see Figure 6-4):

sudo nano /etc/hostname

Tips and Tricks 129

Figure 6-4. Editing the hostname file

Once these steps are complete, reboot your Raspberry Pi to
make sure all the programs that use the hostname are using the
new one. Now your Raspberry Pi should show up in network dis-
covery tools with the new hostname. You will also see the new
hostname at the prompt (see Figure 6-5). You can run the host
name command again to verify your hostname at any time.

Make Sure They Match
If the names in the hosts file and the hostname file
do not match, you may end up having trouble con-
necting to your system over the network. If this hap-
pens, you will have to connect to the Raspberry Pi
directly in order to fix it.

130 Linux for Makers

Figure 6-5. The hostname command displaying the new
hostname

Then check your network discovery tools to see the new host-
name on your network.

Starting a Script on Bootup: rc.local
Inevitably, you will want to run a script or program automatically
when your Raspberry Pi boots up. This is especially important
when you are running in headless mode and want your project
to come alive all by itself when it’s plugged in. The easiest way to
do this is to add the script or program to a file called rc.local,
which is located in the /etc directory. All you need to do is edit
that file using sudo and insert a line that runs your script or pro-
gram. You should add your program just before the exit 0 state-
ment (see Figure 6-6):

sudo nano /etc/rc.local

Figure 6-6. Changing the rc.local file

Tips and Tricks 131

No Need for sudo
The rc.local script is run as “root,” so you don’t need
to use sudo to run commands the way you normally
might when you are logged in as the “pi” user. How-
ever, you will need to use the full path to your script
or program.

Try It for Yourself
Add the hello.sh script to rc.local so it will run automatically
when the Raspberry Pi boots up. Start by editing the rc.local file:

sudo nano /etc/rc.local

Now add the command we used in Chapter 2 to run the script,
but use the full path to the file (see Figure 6-7).

Figure 6-7. Using the rc.local file to run a script or program at
boot time

Save the file and exit by pressing Ctrl-X, then Y, then Enter. Now
reboot your system with the command:

132 Linux for Makers

sudo shutdown -r now

When you system reboots, look for the “Hello World” print state-
ments near the end of the boot process (see Figure 6-8).

Figure 6-8. The hello.sh script running at boot time

Aliases
An alias in Linux is a way to tell the shell, “When I type this thing,
I want you to actually do this other thing.” For example, when
you type ls on your Raspberry Pi, the shell is actually executing
ls --color=auto. This is because most terminals support color,
but by default the ls command does not turn the color option
on. Typing --color=auto every time would be a huge inconven-
ience, so there is an alias to handle that for you.

Aliases in Linux are handled mostly by running a script
called .bashrc when you log into the system. Each user has their
own .bashrc file located in their home directory. So to set up a
custom command or to change the default way an existing com-
mand works, you need to edit this file to set up your own aliases.
From the console or terminal emulator, edit the .bashrc file by
typing:

nano .bashrc

Tips and Tricks 133

Be careful editing this file, as it is full of a lot of settings and con-
figuration information for your shell. Scroll down until you see a
section that defines the aliases for your session (see
Figure 6-9).

Figure 6-9. Editing the .bashrc file

A good place to add your aliases is after the fi statement in this
section, as it keeps them all together, but technically it doesn’t
matter. Another good place to add statements to a file like this
is at the end of the file so that they are easy to find. Syntax is
important here, so be sure to make the name of your new alias
all one word with no spaces (i.e., “runthis” and not “run this”).
Also, make sure there are no spaces before or after the = sign.

Log Out to Apply Changes
The .bashrc file is only read by the system when you
log in, so in order to apply any changes you make to
that file you need to log out and log in again by using
the exit command.

134 Linux for Makers

Try It for Yourself
Open the .bashrc file for editing:

nano .bashrc

Add an alias called lsbydate that will sort the output of the ls
command by last modified date in ascending order like so (see
Figure 6-10):

alias lsbydate='ls -ltr'

Figure 6-10. Adding the lsbydate alias to the .bashrc file

Save the file and exit by pressing Ctrl-X, then Y, then Enter. Now
exit out of your session by typing:

exit

Log back in as the same user and try running your command.
You should see the files and directories in your current location
sorted by date (see Figure 6-11).

Tips and Tricks 135

Figure 6-11. Using the new lsbydate alias

Checking Disk and File Space Usage:
df, du
Although you can add extra storage via the USB connections on
your Raspberry Pi, your primary storage is your SD card. Since
SD card storage is rather limited in size, you will most likely want
to know how much of your storage has been used and how
much is still available. You can easily see how much space you
have on your SD card (or any other mounted filesystem) by
using the df utility, which stands for disk filesystem.

The df utility shows you a list of all the mounted filesystem devi-
ces, their total size, how much space is used, how much is avail-
able, the percentage of space used, and where the filesystem is
mounted. The important filesystems to keep track of are the
ones mounted on / and /boot because they represent your pri-
mary storage and your boot partition, respectively.

By default, the output of df is formatted to display kibibytes
(1,024 bytes), but you can change this to display more human-
readable output by using the -h option (see Figure 6-12).

136 Linux for Makers

Figure 6-12. The output of the df command

You might also want to know how much space a particular file or
directory is occupying on your filesystem. You could use the ls
command to get a list of all the files in your current directory
and add them all up, but it is easier to use the du tool, which
stands for disk usage. By default, the du tool shows the size of
every file and directory starting from your current location and
proceeding recursively through the filesystem until there is
nothing more to show.

Like df, du will display the sizes in kibibytes unless you use the
-h option to show human-readable sizes. You can also specify
the number of subdirectories from your current location about
which you want to display detailed information with the -d
option. For example, to show only the summary of your current
directory, you would use the option -d 0. If you want to also see
the summary for just your directory and all immediate subdirec-
tories, you would use the option -d 1 (see Figure 6-13).

Tips and Tricks 137

Figure 6-13. The output of the du command

In Figure 6-12, you can see that the total amount of disk space
my current location (/home/pi) is taking up is 172 MB, whereas
my Documents subdirectory is taking up 3.9 MB.

Performance Monitoring: top
There are whole books dedicated to the topic of Linux perfor-
mance. Instead of covering everything possible, I will just touch
on the basics here that a Maker should know. Once you’ve dis-
covered all the project possibilities that can happen with an SBC
like the Raspberry Pi, you might be tempted to do a lot of differ-
ent things with it at the same time. Indeed, that is one of the
benefits of an SBC over a microcontroller platform like Arduino
—the Pi can read sensors and drive motors and send tweets,
almost simultaneously.

However, you can push things too far and start running out of
resources. Your project may slow to a crawl, or even crash com-
pletely. It is important to be able to monitor the performance of
your system so you can shut down unimportant functions if
things start slowing down. You can monitor CPU utilization right

138 Linux for Makers

from the desktop, as there is a CPU percentage indicator applet
right in the taskbar that shows total CPU usage at that particu-
lar point in time (see Figure 6-14).

Figure 6-14. The CPU performance applet on the Raspberry Pi
desktop

Unfortunately, this applet doesn’t show memory or storage I/O
utilization and, of course, it is only visible when you are running
the desktop. So when you want more detailed information, it is
good to use the top tool. top stands for table of processes, and
as the name suggests, it lists running processes in table form
sorted by their resource utilization. By default, the displayed
information is refreshed every three seconds and is sorted by
CPU utilization. top displays a large amount of information at
one time, so let’s take a look at a breakdown of what it all means
so you can use it to monitor or debug your project (see
Figure 6-15).

Figure 6-15. Running the top command

Tips and Tricks 139

Let’s start with the topmost line (see Figure 6-16).

Figure 6-16. Breakdown of the top command

1. Current time
2. Uptime in days, hours, and minutes
3. Number of users logged in (if you are running the desktop,

this will normally be 2)
4. Average CPU load over the last 1 minute, 5 minutes, and 15

minutes

Uptime
You can also get this single line of information by
running the command uptime.

Now let’s look at the Tasks line (see Figure 6-17).

Figure 6-17. Breakdown of the top command (continued)

1. Total number of processes
2. Number of processes currently running
3. Number of processes currently idle
4. Number of processes that have received a stop signal (more

on this later)
5. Number of processes that have exited but are waiting for

another process to finish

Remember that in Chapter 2 you learned about parent and child
processes. Zombie processes are usually child processes that

140 Linux for Makers

have finished what they are doing but are required to wait for
their parent process to exit before they can be cleared from the
process list. Now let’s examine the %CPU(s) line (see
Figure 6-18).

Figure 6-18. Breakdown of the top command (continued)

1. Percentage of time the total number of CPUs have spent
running normal user processes. This is the key indicator of
how busy the system is.

2. Percentage of time spent on running system kernel
processes.

3. Percentage of time spent on running prioritized or de-
prioritized processes. In Linux, this is referred to as niceness,
but it isn’t often used in small systems like the Raspberry Pi.

4. Percentage of time not doing anything, aka idle.
5. Percentage of time waiting for I/O to complete. This can be

an indicator of using up all the memory or slow storage.
6. Percentage of time servicing hardware interrupts. This can

happen when external devices need to send information to
the CPUs right away.

7. Percentage of time servicing software interrupts. This is a
less important kind of CPU signal than a hardware interrupt.

8. This only applies to virtualized systems and indicates the
percentage of time stolen from the system because the host
system was busy doing something else.

If you are having poor performance on your Raspberry Pi, it will
normally show up as high percentage numbers in the user, sys-
tem, or wait columns. Remember that the numbers in the
%Cpu(s) row should add up to 100%. Now let’s look at the KiB
Mem and Kib Swap lines (see Figure 6-19).

Tips and Tricks 141

Figure 6-19. Breakdown of the top command (continued)

1. Total amount of available memory and swap space in
kibibytes

2. Amount of memory or swap space used
3. Amount of memory or swap space available
4. Amount of buffers and cached memory used

These two lines refer to different types of memory. Mem refers
to physical memory and should be close to the amount of mem-
ory installed on the system. In this case, my Raspberry Pi 3 has
1 GB of RAM so the number shown in the total column should be
close to that. Swap refers to space on a disk (in this case, the SD
card) that is used as virtual memory just in case the system
runs out of physical memory. Since the SD card is so much
slower than physical memory, using swap will affect the perfor-
mance of your Raspberry Pi.

Buffers refers to the memory used when the system mounts or
accesses the filesystems connected to the system itself. The
system keeps some of the information about the files and devi-
ces in memory to speed up repeated access. Cached memory
refers to the actual data from the files and programs. As the
data is read, it is loaded into memory and kept there for a period
of time to make it faster to access. The system will move data in
and out of memory automatically.

The key thing to be on the lookout for here is the amount of
memory used. If you’re constantly running out of memory, you
should try and find what is causing it and close memory-hungry
applications to free up some space. Now let’s look at the last
section of the screen that can help us do just that (see
Figure 6-20).

142 Linux for Makers

Figure 6-20. Breakdown of the top command (continued)

PID
The process ID.

USER
The owner of the process. Usually the user that launched it.

PR
The current priority of the process.

NI
The nice value or user-defined priority of the process.

VIRT
The total amount of memory needed by the process.

RES
The amount of memory actually used by the process.

SHR
The amount of shared memory available to a process.

S
The current status of the process, which may be one of the
following letters:

• D = uninterruptible sleep
• R = running
• S = sleeping
• T = traced or stopped
• Z = zombie

Tips and Tricks 143

%CPU
The percentage of a single CPU that is being used by a
process.

%MEM
The percentage of total memory that this process is using.

TIME
The amount of time that the CPUs have spent running this
process, in hundredths of a second.

COMMAND
The command used to launch the process. A + sign at the
end of a command means that the command was too long
to fit in this column.

The important things to keep track of in this part of the display
are the processes that use a lot of CPU and memory. You can do
this by watching the %CPU and %MEM columns. Usually any
troublesome processes will quickly appear at the top of this list.
Running processes will show up with all the columns highlighted
for that line. You can also manipulate this list by using case-
sensitive command keys.

x
Highlight the current sort field.

P
Sort by %CPU (default).

M
Sort by %MEM.

N
Sort by PID.

T
Sort by TIME.

and
Toggle sort by one column at a time left or right.

Arrow keys, PgUp, PgDown
Scroll left, right, up, down.

144 Linux for Makers

k
Kill a process.

h
Help.

q
Quit.

There are many other options with top. You can find out more by
referencing the help screen or by reading the manpage.

Try It for Yourself
Find out how much resources a given app uses when it’s started
and after it’s up and running. For now, this is most easily done
from the desktop. Later, I will show you how to run a process in
the background so you can do this from the command line.
Open a terminal emulator window and launch top:

top

Then start another application and watch the output of the top
command to see how much resources are used in the first 30
seconds or so after the application is started (the web browser
might be a good choice for this). Continue to watch to see what
happens as the application finishes loading and is running
without any activity. Start using the application (i.e., load a web
page, open a file, etc.) to see what happens to CPU and memory
while your application performs those functions.

Killing a Process: Ctrl-C, ps, kill
All operating systems have programs that get out of control in
one way or another. Sometimes programs become unrespon-
sive or there just isn’t access to them to quit them through nor-
mal means. This could be because of a flaw in the program or
operating system. In any case, you should know how to stop the
program from running in order to prevent it from consuming too
many resources and causing usability issues. In Linux, this is
known as killing a program or process and is used to forcibly exit
and terminate the program. For many programs, killing them
doesn’t cause any harm. However, in more complex programs,

Tips and Tricks 145

this could lead to program errors, as the program may not have
a chance to clean up open files or network connections before it
exits. If your program has an exit function built in (like a close
button or an exit key), you should always try using that first
before you resort to killing it.

By pressing Ctrl-C, you will send an interrupt signal to the pro-
gram that’s currently running in the terminal. In most cases, this
will exit the program abruptly and return you to the prompt. In
the case of a simple script, this can be the quickest way to exit
and get on with the next task at hand.

In the case of jobs or programs that were started automatically
or in another user session, you will first need to find out the PID
of the process you want to kill. To do this, you can use the ps
command, which stands for process status. When run without
any options, the ps command will only show processes that your
current user is running. To get a list of all processes, you can use
the options -ef to get a complete list with more details (see
Figure 6-21).

Figure 6-21. The output of the ps command

Try this for yourself and you’ll soon realize that hundreds of pro-
cesses can be listed in the output of this command. To find the
process you’re looking for, you can use grep to limit the results
(see Figure 6-22). The grep command, when added to another

146 Linux for Makers

command, prints out only the lines that match a given search
string (more on grep later in this chapter):

ps -ef | grep search term

Figure 6-22. Using grep with the ps command

In this case, you can see that I searched for lighttpd, which rep-
resents the web server process I’m running. However, there is
an extra result, which represents the grep search for lighttpd
itself. You can ignore this result. The one we want is the top
result, which in this instance has PID 674.

Let’s suppose for a moment that my Lighttpd web server was
locked up for some reason. Since it’s a service, I’ve already tried
to stop it with the proper command (sudo service lighttpd
stop), but it didn’t respond. In order to kill a process, you can
use the kill command. The kill command sends a shutdown
signal to the process and thus can stop a process abruptly.
There are several options you can use with kill depending on
how you want to end the process:

kill PID
Send a normal terminate signal to the process.

kill -1 PID
Send a restart signal to the process.

kill -2 PID
Send an interrupt signal to the process. This is the same as
pressing Ctrl-C.

kill -9 PID
Send the kill signal and shut down the process immediately.

In this case, I want to end Lighttpd normally with a regular ter-
minate signal. Because my current user didn’t start that pro-
cess, I will need to use sudo (see Figure 6-23).

Tips and Tricks 147

Figure 6-23. Using the kill command

After you send a kill command to a process, it’s a good idea to
run ps again to make sure it isn’t running anymore. If a process
does not respond to the kill command or a kill command with
the -2 option, you can use the -9 option as a last resort. As you
can see in Figure 6-23, after I tried to kill the lighttpd process
and checked again, the only result I got back was the grep
search itself, so the process was killed.

Stop, Background, and Foreground
Jobs: Ctrl-Z, &, fg
Sometimes it can be helpful to pause a process, go do some-
thing, and then come back and continue where you left off.
Other times, it might be nice to run a program in the back-
ground from the very beginning if you don’t need to watch it the
whole time. Linux has commands that can help you stop a job
temporarily and run jobs in the background so they aren’t in
your way while you’re working on the command line.

If you want to pause your program and come back to it later, you
can use the Ctrl-Z keyboard shortcut. In Linux, this is known as
stopping the program and will send your program to the back-
ground and return you to the prompt. The program will not
process any more instructions until you bring it back to the fore-
ground (see Figure 6-24).

148 Linux for Makers

Figure 6-24. Using Ctrl-Z to stop a process

When you are ready to unpause the program, you can use the fg
command. This will bring the program back to the screen and
continue it from where it was stopped (see Figure 6-25).

Figure 6-25. Using fg to bring the process back to the
foreground

If you want to start a program running in the background when
you launch it, you can add the & character to the end of the com-
mand. This will start the program and tell you its PID in case you
need to reference it later, then return you to the prompt to do
other tasks. However, if you have output coming from the

Tips and Tricks 149

program, it will still be printed on the screen, as you can see in
Figure 6-26. Later, I will show you how to send this output some-
where else. To pull the program to the foreground, you can use
the same fg command.

Figure 6-26. Using & to run a program in the background

Try It for Yourself
Create a looping script and practice running it in the back-
ground and bringing to the foreground. Find the PID with the ps
command. Once you’ve found the PID, you can kill it with the
kill command.

Open a new file called loop.py:

nano loop.py

Now, copy the following text into the file:

#!/usr/bin/python

import time

while True:

 print "I am still running :)"

 time.sleep(10)

150 Linux for Makers

Save the file by pressing Ctrl-X, then Y, then Enter. Run the pro-
gram with the following command:

python loop.py

This script will print "I am still running :)" every 10 seconds.
Stop it by pressing Ctrl-Z. You should be returned to the prompt,
where you can enter some other commands. Bring the script
back to the foreground by typing:

fg

Kill the script by using Ctrl-C. Run the script again, but start it in
the background:

python loop.py &

This time, look up the PID of the script by searching for it with ps
and grep.

ps -ef | grep loop

Kill the script process by using the associated PID.

kill PID

This should kill the process and stop it from printing those
annoying messages. :)

Finding USB Devices: lsusb
Since most SBCs like the Raspberry Pi have Universal Serial Bus
(USB) ports built in, using USB devices is an easy way to add
functionality that your project requires. Keyboards, mice, audio
devices, Bluetooth adapters, and WiFi adapters can all be con-
nected via USB. Most Linux distributions support many current
and legacy USB devices without requiring you to install any driv-
ers. This is because the Linux kernel has the drivers already built
in, thanks to the hard work of the many programmers who have
contributed their code over the years.

However, typically you won’t get a nicely formatted pop-up mes-
sage telling you that your device has been recognized by the
system, as you do with Windows. To get a list of USB devices
currently recognized by your system, you can use the command
lsusb. Similar to ls, this command lists your USB devices along
with their hexadecimal device ID. It’s a good idea to run this

Tips and Tricks 151

command once before you plug in your device and then again
after you plug it in, as it’s not always easy to tell one device from
another (see Figure 6-27).

Figure 6-27. The output of the lsusb command

As you can see, before I plugged in any physical devices to my
Raspberry Pi, I still had some USB devices listed when I ran
lsusb. This is because some of the built-in devices like the Ether-
net adapter are connected to the USB bus internally. Once I
plugged in a USB microphone and ran lsusb again, I could see
that my device showed up as “C-Media Electronics, Inc. CM108
Audio Controller.” This information might be helpful to you if you
need to look up information about your device on the internet.
Also, some programs that you create may require you to refer-
ence the hexadecimal ID of the device in order to work properly.

Remember
Every device you plug into the USB ports on your Raspberry Pi
will draw additional power. Drawing more power than is avail-
able will cause your system to crash, especially when you first
boot it up. Be sure your power supply has enough current to
supply both your Raspberry Pi and all the devices you plug into
it.

152 Linux for Makers

Logging the Output of a Script:
>, >>
There are several situations in which you might want to capture
the output of a script. If you have a project that’s collecting data
over a long period of time, you will want to be able to capture
that data so you can analyze it later. In some cases, you may be
getting intermittent errors printing to the screen but don’t have
time to see them before they scroll off. If you’re running a script
at startup with rc.local, it will run as “root” and you won’t see the
output at all when you log in.

In all of these cases, you can capture the output of a script in a
logfile that you can reference later to see what’s going on. The
way to do that in Linux is to modify the command that launches
the script using the greater-than symbols. This will redirect the
output.

>
Send the output to a new file.

>>
Append the output to an existing file.

&>, &>>
Create or append file including errors.

For example, if I wanted to send the output of the loop.py script
we created earlier to a new file called loop.log, I could do it with
the following command:

python loop.py > loop.log

While this script is running, all normal output (like print state-
ments) will be written to the loop.log file. Once the script has
exited, you can examine the logfile to see the output with a text
editor or simply by using the more command (see Figure 6-28).

Tips and Tricks 153

Figure 6-28. Using > to send output to a new file

If you want to append to this same logfile without overwriting it,
you need to use two greater-than symbols like this (see
Figure 6-29):

python loop2.py >> loop.log

Figure 6-29. Using >> to append output to an existing file

You can see that the output from the first script was added to by
the output from the second script. However, the traceback error
I caused when I exited the script with Ctrl-C did not get sent to
the file. In order to capture errors as well as normal output, you
will need to use the &> symbols to overwrite or &>> symbols to
append to a file and include error messages (see Figure 6-30):

154 Linux for Makers

python loop.py &>> loop.log

Figure 6-30. Using &>> to append standard output and errors to
an existing file

Searching the Output of a
Command: grep
As you saw earlier, you can use the grep command to find a
given search string in the output of the ps command. You can
also use grep with almost any other command to search
through the output it provides. The origins of the grep command
are a bit more esoteric than other Linux commands. grep stands
for globally search a regular expression and print. To use grep,
type your command followed by a | symbol, then follow that
with grep and with your search term. For example, if you have a
logfile, you could search through it by using the more command
to print the contents of the file, combined with the grep com-
mand to display only the lines that contain your search term
(see Figure 6-31).

more loop.log | grep again

Tips and Tricks 155

Figure 6-31. Using grep to only print lines that have “again” in
them

There are many useful options you can use with grep as well.
Here are a few of my favorites:

-e
Search for multiple terms at the same time.

-i
Run a case-insensitive search.

-c
Count how many lines contain the search term.

When you combine these options, grep becomes a very power-
ful tool (see Figure 6-32). There are even more useful options,
which you can find in the manpage.

Figure 6-32. Using grep to search for multiple patterns

156 Linux for Makers

In Figure 6-32, I had grep search and print all lines in a logfile
that contained either a lowercase a OR an upper- or lowercase i.
I then did the same search, but instead of printing the matching
lines, I printed the total number of lines that matched that
search. You can also combine multiple grep statements to ach-
ieve an AND operation (see Figure 6-33).

Figure 6-33. Using grep to search for multiple patterns
(continued)

Monitoring a Log File: tail
Sometimes it can be helpful to search the last few lines of a log-
file to see what happened just before a script or program
crashed or caused an error. You can do this easily on the com-
mand line with the tail utility. As the name suggests, tail
without any options prints out the last 10 lines of a file (see
Figure 6-34).

Figure 6-34. Using tail to print the last few lines of a file

There are two very useful options with tail. One is the -n num
ber option, which lets you print any number of lines instead of
just 10. The other is the -f option, which will print the last 10
lines but also keep adding lines as they are written to the file.
This gives you a way to monitor a logfile as your script or

Tips and Tricks 157

program is running so you can see the information while it is
happening.

Adding a User: adduser, addgroup
At some point, you may want to add another user to your Rasp-
berry Pi. For example, you might want to give someone else
access to the system without sharing the “pi” user’s password,
files, and settings. Or you might want to give your project its
own identity on the computer. Linux was built as a multiuser
operating system, so adding a new user is a very straightfor-
ward process. Simply run the adduser utility using sudo with the
command:

sudo adduser username

Then follow the prompts (see Figure 6-35).

Figure 6-35. Using adduser to add a new user in Linux

When finished, you will have a new user account with its own
home directory in /home and a corresponding group with the
same name. Likewise, if you only want to add a new group to the
system, you can do that with the addgroup command (see
Figure 6-36).

Figure 6-36. Using addgroup to add a new group in Linux

158 Linux for Makers

You can then add users to this new group by using the adduser
command again. This time, follow the command with the user-
name and then the group name (see Figure 6-37):

sudo adduser username groupname

Figure 6-37. Using adduser to add a user to a group

Changing File Ownership and
Permissions: chown, chmod
In Chapter 2, I explained how permissions work in Linux. Now
let’s take a look at how to change them. You might need to do
this if you’re getting an error like “Permission denied” when you
try to run a script or command that is trying to access a file
owned by another user. Some programs want to run as a sepa-
rate user for security reasons, and you might need to change
ownership of files so the program can access them. Also, if
you’re creating your own programs or scripts, you’ll need to give
them execute permission before they can be run.

Warning
Changing ownership or permissions for a system file that is nor-
mally only accessed by the “root” user could compromise the
security of your system or lead to instability. You should use
sudo to run those commands instead.

To change the ownership of a file (for a user and/or group), use
the command chown. If you don’t already have write permissions
for the file, you will need to use sudo to change ownership
because “root” can always perform these actions. You can
change user and group ownership at the same time like this:

Tips and Tricks 159

sudo chown <user>:<group> filename

If you only want to change the user-level ownership for a file,
simply leave off the colon and the group name. It also can be
convenient to change ownership for all the files in a given direc-
tory. You can do that by using the -R option before the user
name:

sudo chown -R user directory

Keep in mind that, in Linux, each user also has a group automat-
ically created for them with the same name as their username.
This can be a bit confusing, but it does work nicely when you
need to assign ownership to multiple users (see Figure 6-38).

Figure 6-38. Examples of using the chown command

As you can see in Figure 6-38, I first changed user and group
ownership for the file loop.py to the “user” user and the “user”
group. Then I realized I wanted the “pi” user to keep ownership
of the file, so I changed the user-level ownership to the “pi” user.
Now, “pi” and “user” can both read and execute the loop.py file,
but only “pi” can write to the file.

When you create a new file, it will be assigned the permissions
644 or rw-r--r--. This means that the owner can read and write
to it, and everyone else can just read it. Notice that, by default,
no one can execute the file. This is a problem if this is a script
that you want to run as part of your project. So you will need to
change the permissions by using chmod, which stands for change
file mode. Similar to chown, you may need to use sudo to change
a file’s permissions.

You can use chmod to change permissions in two ways. One way
is by specifying the numeric representation of the permissions
you want to assign:

sudo chmod XXX filename

160 Linux for Makers

Here, XXX is the numeric permissions (i.e., 644). You can also
add/remove a permission to all levels of ownership at the same
time by using the + and - signs followed by the letters x, r,
and/or w. So to add execute permissions for all users for a given
file, you can type:

sudo chmod +x filename

Figure 6-39. Using chmod to change file permissions

As with chown, you can also change the permissions for entire
directories by using the -r option. Be careful, though, since giv-
ing the wrong permissions to a file can lead to big security prob-
lems for your system.

Try It for Yourself

Create a new file and practice changing ownership and
permissions.

Create a new file with touch:

touch program.py

Use ls to show the permissions and ownership:

ls -l program.py

Give the “root” group ownership of the file:

sudo chown pi:root program.py

Give all users execute permissions:

sudo chmod +x program.py

Use ls to verify your changes:

ls -l program.py

Tips and Tricks 161

Running More Than One Command
at the Same Time: &&, ||
Sometimes when you have a long-running program on the com-
mand line, it can feel like you’re babysitting it. You are just star-
ing at the screen waiting for the program or command to finish
so you can run the next one based on whether the first one ran
successfully or not. In these cases, it can be helpful to run both
commands at the same time, so you can walk away and get a
cup of coffee or get back to writing your book. The Linux shell
has two built-in operators to help you do this. The first is repre-
sented by && and essentially means a logical AND. The other is
represented by || and is like a logical OR.

The way this works on the command line is that if I have two
commands separated by &&, the shell will run the command on
the left side first to see if it ran successfully or not. If it did, the
shell will run the command on the right side. If it didn’t run suc-
cessfully, the shell will not run the command on the right side.
Just the opposite will happen if I separate two commands with
||. In this case, the command on the right will only run if the
command on the left fails for some reason. You can also chain
these together to get actions based on the results of a previous
command (see Figure 6-40).

Figure 6-40. Using && to run multiple commands sequentially

You will see these operators used in startup scripts and other
shell scripts, so it’s good to know what they do even if you don’t
use them very often. An example of where a typical Maker might
use this is when they want to update the software on their Rasp-
berry Pi. As you know from Chapter 4, when you update your
software, you should always run two commands (sudo apt-get
update and sudo apt-get upgrade). Using these operators, we
can chain these commands together to save some time like this:

162 Linux for Makers

sudo apt-get update && sudo apt-get -y upgrade

If you simply want to run two or more commands consecutively
and you don’t care about the outcome of the individual com-
mands, you can separate each command with a semicolon (;).
However, this is not recommended, as it can lead to all sorts of
problems—most of the time when a command fails, it’s a good
idea to stop and figure out what went wrong.

Opening Another Console Session
Whether you’re using the desktop or the command line, occa-
sionally a program will misbehave and lock up, preventing you
from using the keyboard and mouse in your current session. At
that point, it can be difficult to determine whether your whole
system is locked up or just the session you happen to be using
at that moment. Instead of pulling out the power cord (which
can potentially corrupt important system files), you can use a
keyboard shortcut to switch to a different session and trouble-
shoot the problem from there.

When most distributions of Linux boot up, they actually start
multiple virtual console sessions in the background. These are
referred to in Linux as TTY1, TTY2, and so on. To display a differ-
ent console session, press Ctrl-Alt-Func key on your keyboard
(the Func key represents the F1 through F7 keys). When you do
this, Linux will switch you to the corresponding console session
TTY1 through TTY7. If you’re running the desktop, it will be run-
ning in TTY7. If you are running without the desktop, you will be
using TTY1. TTY2 through TTY6 are used for additional
command-line console sessions.

So if you are on the desktop and it’s locked up, press Ctrl-Alt-F1
to switch to the TTY1 console session. To go back to the desk-
top, press Ctrl-Alt-F7. Likewise, if you boot to the command
prompt, then you’re already using TTY1, so you can switch to
another console session by pressing Ctrl-Alt-F2.

Tips and Tricks 163

Direct Connect Only
In order for this to work, you need to be connected
directly to the system. These commands won’t work
if you’re connected remotely via SSH or VNC. They
also won’t work if your system has completely
crashed and is blocking all keyboard input.

Dealing with Long Commands
As you can tell by now, some commands and programs have
many, many options. Though this can be very powerful, it can
also make for some very long commands that you have to type
at the command prompt. Occasionally, these commands will
wrap around your terminal window and make it hard to tell if you
have a typo.

The Linux shell has a way to help you deal with this problem. By
typing the escape character and pressing the Enter key, you can
space out your command so that it doesn’t wrap around the
screen or just to make it easier to read. The escape character is
the backslash (\) character on your keyboard. Just type it any-
where you want to break a line and press the Enter key. Then
just keep typing until you’re done with your command. You can
do this as many times as you need to in order to keep your com-
mand neat and tidy (see Figure 6-41).

Figure 6-41. Using the \ key to allow your commands to wrap to
the next line

164 Linux for Makers

My \ and Enter Keys Are Right Next to
Each Other!
If you hit the escape character by accident and press
Enter (like I do sometimes) but are at the end of the
command, you can tell the shell the command is
done by typing a semicolon (;) and pressing Enter
again.

The escape character was created so that you could tell the
shell to escape its interpretation of what you were typing and
treat the next character in a different or more literal way. For
example, you would typically use the double-quote (") character
to enclose the text you want to print to the screen when using
the echo command. However, if you want to actually print a
double-quote character, you need to use the escape character
first (see Figure 6-42).

Figure 6-42. Using the \ key as an escape character

There are lots of other great examples of how to use the escape
character on the internet. Keep in mind that the escape charac-
ter might behave differently depending on the environment you
are using it in. So something that works in the Linux shell might
work differently in a programming language like Python or Java.

Scheduling Jobs: cron
Running scripts from the command line is all well and good, but
for some projects you will need to run a script at a set interval.
Common uses for this would be to back up your project or files
on a regular basis for safekeeping. Or perhaps you want to run a
script every 10 minutes that gets a reading from a temperature
sensor. For running scripts based on time, you can use a Linux
utility called cron.

Tips and Tricks 165

cron traces its roots back to the earliest days of Unix and is
derived from the Greek word for time, chronos. cron runs in the
background on Linux and is constantly keeping track of whether
it’s time to run a given script or command. Each user can con-
figure cron individually by using a special text file called a cron-
tab. This file cannot be edited with a normal text editor. Instead,
a user edits their crontab by typing:

crontab -e

If this is the first time you’ve edited your crontab, the system will
ask which editor you’d like to use (see Figure 6-43).

Figure 6-43. Choosing an editor for a crontab

I will be using nano in this description of how a crontab works.
Once you choose your editor, your crontab file will be loaded.
The default file has a bit of text that’s commented out as well as
an example, but it can be a bit confusing to figure out what is
going on. In a single line of text, cron looks for the minute, hour,
day, month, and day of the week when the script or command
should run. It’s actually quite a flexible system once you know
how to configure it. I will break down how this single line is for-
matted to schedule a task in Figure 6-44.

Figure 6-44. Breakdown of the format of lines in the crontab file

166 Linux for Makers

If I wanted to run the script hello.sh every Sunday in January at
exactly 11:30 p.m., I would add this single line in my crontab (see
Figure 6-45):

30 23 * 1 0 /home/pi/hello.sh

Figure 6-45. Using cron to schedule a job

Notice that I used an asterisk in the day-of-the-month position.
An asterisk means “any.” In this case, I didn’t care which day of
the month my script ran on. If I wanted to limit my script further
to only run on Sundays that fall on the fifth day of the month, I
would have put a 5 instead of the asterisk. You can also divide a
particular position into increments by using the / character, or
specify multiple values for the same position by using a comma.
It is always a good idea to use the full path to your script. Here
are some other examples of how to configure a line in your cron-
tab (see Figure 6-46).

Tips and Tricks 167

Figure 6-46. More examples of using cron

Don’t Forget to Save
After you’re done making changes, be sure to save
your file. This will automatically update cron so it
knows to check this file and run any scheduled jobs
that are listed.

Why This Matters for Makers
As you build projects with Linux, you will eventually want to
know how to monitor the performance of your system, add
users and groups, change the permissions and ownership of
files, and schedule jobs to run automatically. You might use
some of them multiple times on every project, whereas others
you might use rarely. In any case, knowing how to complete
these tasks will help you solve problems as they come up. It will
also speed up the time it takes to complete your project so you
can enjoy your creation instead of troubleshooting it.

168 Linux for Makers

7/Controlling the
Physical World

Most Makers will want to build a project that can manipulate
and interact with the physical world by controlling sensors,
motors, components, and devices. Controlling the devices and
modules is mostly accomplished with programming, but there
are some prerequisites to fulfill in Linux before you can jump
into controlling them. In this chapter, I will explain how to control
the general-purpose input/output (GPIO) pins, the inter-
integrated circuit (I²C) protocol, and the serial peripheral inter-
face (SPI) protocol and even how to interact with an Arduino.
Though I won’t be able to go into details about how the pro-
gramming works, I will provide some examples in Python that
illustrate the fundamentals of using these interfaces.

GPIO
One of the ways to control an external device is by using the
GPIO pins that are built into the Raspberry Pi and many other
SBCs and microcontrollers. A 40-pin header on one side of the
Raspberry Pi provides an easy way to access the GPIO pins.
However, of those 40 pins, only 26 are general-purpose input/
output pins. The rest are voltage pins, ground pins, and pins that
are only used by add-on boards. In addition, you can configure
many of the pins to allow alternative functions like I²C and SPI
(more on this in “I²C and SPI” on page 177) instead of GPIO. The
physical pin numbers are not the same as the GPIO numbers, so
it’s important to have a reference when connecting devices to
your Raspberry Pi (see Figure 7-1).

169

Figure 7-1. Raspberry Pi B+ pinout

As you can see in Figure 7-1, GPIO 2 is actually located on physi-
cal pin 3. If you tried to connect a device to physical pin 2, you
would be connecting it to five volts of electricity, which might
damage your device. You can also see where the alternative
functions are located on the 40-pin header. So if you enable I²C
functionality, you would use physical pins 3 and 5 to connect to
your device, but you would lose GPIO 2 and 3 in the process.

There are several programming modules or libraries you can use
to control the GPIO pins on a Raspberry Pi. One of the more
popular is the Python module called RPi.GPIO. It is a nice, sim-
ple library used in many programming examples on the internet.
However, I prefer another module called pigpio because it runs

170 Linux for Makers

as a service on your system, and can be called from Python or
C, or even from another Raspberry Pi across a network.

If you installed pigpio using apt-get in Chapter 4, you can skip
this step. To install pigpio, you must download the latest version
from the internet by using wget. wget stands for “web get” and
can be used to download files from the internet on the com-
mand line as long as you know the complete URL for the file:

wget abyz.co.uk/rpi/pigpio/pigpio.zip

Now uncompress the file with unzip:

unzip pigpio.zip

Change directory into the folder you just unzipped:

cd PIGPIO

Then compile the software and install it:

make -j4
sudo make install

If you’ve never compiled software, you may be surprised at the
strange output that’s printed on the screen (see Figure 7-2).
However, this is the normal output of many commands run in
sequential order to build software.

Figure 7-2. Using the make command to build the pigpio
program

Controlling the Physical World 171

Now that pigpio is installed, you can run the service in the back-
ground like this:

sudo pigpiod &

If you want to run it every time your Raspberry Pi boots up, you
can add the previously given line to your rc.local file as shown in
Chapter 6. However, there is no need to use sudo if you are run-
ning it from rc.local, because rc.local runs as “root” already.

There are many coding examples available on the pigpio website
for C, C++, and Python. One useful example is a small Python
script that tells you the status of each GPIO pin. This will also
ensure that the pigpiod service is running correctly. To use this
script, open a new file with nano:

sudo nano gpio_status.py

Then type or copy the following code:

#!/usr/bin/python

import time
import curses
import atexit
import pigpio

GPIOS=32
MODES=["INPUT", "OUTPUT", "ALT5", "ALT4", "ALT0", "ALT1",
"ALT2",
"ALT3"]

def cleanup():
 curses.nocbreak()
 curses.echo()
 curses.endwin()
 pi.stop()

pi = pigpio.pi()
stdscr = curses.initscr()
curses.noecho()
curses.cbreak()
atexit.register(cleanup)
cb = []

for g in range(GPIOS):
 cb.append(pi.callback(g, pigpio.EITHER_EDGE))

172 Linux for Makers

http://bit.ly/2nAbESb

disable gpio 28 as the PCM clock is swamping the system

cb[28].cancel()
stdscr.nodelay(1)
stdscr.addstr(0, 23, "Status of gpios 0-31", curses.A_REVERSE)

while True:
 for g in range(GPIOS):
 tally = cb[g].tally()
 mode = pi.get_mode(g)
 col = (g / 11) * 25
 row = (g % 11) + 2
 stdscr.addstr(row, col, "{:2}".format(g), curses.A_BOLD)
 stdscr.addstr("={} {:>6}: {:<10}".format(pi.read(g),
 MODES[mode], tally))
 stdscr.refresh()
 time.sleep(0.1)
 c = stdscr.getch()
 if c != curses.ERR:
 break

Save and close the file by pressing Ctrl-X, then Y, then Enter.
Now give the file execute permissions, as you learned in Chap-
ter 6:

chmod 755 gpio_status.py

Now you can run the command and check the output (see
Figure 7-3):

./gpio_status.py

Figure 7-3. The output of gpio_status.py

Controlling the Physical World 173

You can see the status of all the GPIO pins and not just the 26
that are located on the 40-pin header. As you can see in
Figure 7-3, most of the GPIO pins are registering as inputs. GPIO
14 and 15 are set to their ALT0 function, which in this case is set-
ting them to be transmit-and-receive serial communication pins
(TXD and RXD).

Now let’s put all this information to good use and make some-
thing happen. With a short Python script, you can make an LED
blink or turn a relay on and off. Connect the positive pin of an
LED to GPIO pin 18 (physical pin 12) and the negative pin to
ground (see Figure 7-4).

Figure 7-4. Raspberry Pi with LED on GPIO 18

174 Linux for Makers

Do I Need a Resistor?
The Raspberry Pi uses 3.3V on its GPIO pins. Some blue and
white LEDs’ forward voltage requirement is 3.3V, whereas other
colors like yellow, red, and green run at lower voltages around
2V. If your LED requires less than 3.3V, you’ll need to put a resis-
tor between the positive pin of the LED and the GPIO pin on the
Raspberry Pi. Always check the specifications of your LED to
find the forward voltage. Although the LED will probably work
without a resistor, it might not last very long. There are many
good calculators online, like the one at http://led.linear1.org/
1led.wiz, that can help you determine an adequate resistor
value.

Now open a new file with nano for the Python script:

nano gpio_blink.py

Type or copy the following code:

#!/usr/bin/python

import pigpio
import time

pi = pigpio.pi()
Set the GPIO mode as output
pi.set_mode(18, pigpio.OUTPUT)
For relays, you want to set the initial mode to off
Sometimes this means the pin is high or low depending on the
relay
pi.write(18, 1)

Now alternate on and off with half a second pause in between
while True:
 time.sleep(.5)
 pi.write(18, 0)
 time.sleep(.5)
 pi.write(18, 1)

Save and close the file by pressing Ctrl-X, then Y, then Enter.
Now give the file execute permissions, as you learned in Chap-
ter 6:

Controlling the Physical World 175

http://led.linear1.org/1led.wiz
http://led.linear1.org/1led.wiz

chmod 755 gpio_blink.py

Now you can run the command and check the output:

./gpio_blink.py

If everything is hooked up correctly, your LED should blink on for
half a second and then off for half a second and then repeat.

You could also use this script to connect your Raspberry Pi to a
5V relay module that turns on and off. Simply connect your
relay module input to the same GPIO pin and connect the 5V pin
on the relay module to the 5V pin on the Raspberry Pi (see
Figure 7-5).

Figure 7-5. Raspberry Pi with attached relay module

176 Linux for Makers

A relay module, when completely connected, is a simple switch.
A signal from the Raspberry Pi activates a small 5V switch,
which in turn completes a circuit to control 120V mains power
from a wall outlet, which turns on like a floor lamp or string of
lights.

CAUTION
Be extremely careful when using mains power! Be
sure to turn off the power before you start working
on the connections.

I²C and SPI
I²C and SPI are both serial communications protocols used to
transmit data back and forth from one board to another. You can
find all sorts of premade modules for your Raspberry Pi that use
one of these protocols to communicate. I²C isn’t as fast as SPI,
but it has the benefit of requiring only two wires to connect mul-
tiple devices since each device has its own unique address. SPI,
on the other hand, is much faster but requires four wires or
more if you want to connect multiple SPI devices to the same
board. In practice, I’ve never had to connect more than one
device at a time, and the speed of communication isn’t really an
issue for most projects. So if I can find a module that supports
I²C, I usually prefer it over SPI. However, it is good to know how
to connect both types of devices.

In order to start using either of these protocols, you need to
enable them on your Raspberry Pi. Remember how I mentioned
alternative functions of the GPIO pins? Now we will change
some of them to support I²C, SPI, or both at the same time.
Note that once you do this, you won’t be able to use those pins
as normal GPIO until you change them back.

To enable I²C or SPI, start by running raspi-config in the con-
sole or terminal emulator (see Figure 7-6):

sudo raspi-config

Controlling the Physical World 177

Figure 7-6. The main raspi-config screen

Use the arrow keys to move the cursor down to Interfacing
Options and press the Enter key. Now move the cursor down to
the SPI or I2C option, depending on which one you want to
enable, and press Enter (see Figure 7-7).

Figure 7-7. The Interfacing Options menu in the raspi-config tool

The raspi-config tool will ask if you want to enable the SPI or
I²C interface. When you choose Yes, the raspi-config tool will
make the necessary changes and let you know that the interface

178 Linux for Makers

has been enabled. Press Enter to return to the main menu and
use the arrow keys to select Finish to exit raspi-config.

If you’re using I²C with an older version of the Raspbian distribu-
tion or a different Linux distribution, you might need to install
some tools that may be required by the programming libraries
you’ll use to control your device. You can install these by
running:

sudo apt-get update
sudo apt-get install i2c-tools

The last step is to add your user to a number of groups just to
make sure you have the correct permissions to various files and
software needed to communicate with your device:

sudo usermod -a -G i2c pi
sudo usermod -a -G spi pi
sudo usermod -a -G gpio pi

You need to reboot at this point to make sure the SPI or I²C
interface is enabled and ready for use:

sudo shutdown -r now

Now that the interfaces are enabled, you can begin to use them.

Know Your Device
Getting the Raspberry Pi ready to communicate to a
device using I²C or SPI is one thing. Knowing what to
say is quite another. Each device will require differ-
ent instructions to perform the actions the device
provides. Finding a programming library written with
your device in mind will make this job much easier,
especially for beginners.

Since there are so many different devices and modules you can
use with the Raspberry Pi, there’s no way for me to cover them
all. So let’s take a look at just one example to give you an idea of
what is required and how using these protocols works. For this
example, I will be connecting a small 128×64-pixel OLED display
module to my Raspberry Pi using the I²C protocol. This display
could be used in a small project to show minimal information

Controlling the Physical World 179

like the weather or the status of a program you’re running. I’ll be
using Python to display a simple message on the screen when
my program is run.

This particular display uses a display driver called SSD1306, so I
need to find a Python module that supports this particular
driver. Luckily, there are two good Python modules you can use
for these displays. One of them is from Adafruit. It was written
to go along with the SSD1306 display modules they sell. The
other module was written by Richard Hull. It supports a number
of similar display drivers as well as the SSD1306. For this exam-
ple, I will use the second one, as Hull has included a number of
fun demo programs on GitHub that show how to use the display.

First, install the supporting software and make sure it’s up-to-
date:

sudo apt-get update
sudo apt-get install python-dev python-pip libfreetype6-dev
libjpeg8-dev libsdl2-dev
sudo pip install --upgrade luma.oled

Now we can use the information on the Python module’s web-
site to create a small test program. Open a new file with nano for
the Python script:

nano ssd1306_example.py

Type or copy the following code:

#!/usr/bin/python

from luma.oled.serial import i2c
from luma.oled.device import ssd1306, ssd1331, sh1106
from luma.oled.render import canvas

rev.1 users set port=0
substitute spi(device=0, port=0) below if using that
interface
serial = i2c(port=1, address=0x3C)

substitute ssd1331(...) or sh1106(...) below if using
that device

device = ssd1306(serial)
while True:
 with canvas(device) as draw:

180 Linux for Makers

http://bit.ly/2nkmlJ3
http://bit.ly/2nhYfOe
http://bit.ly/2nhYfOe
http://bit.ly/2nBlVAI
http://bit.ly/2nhYfOe
http://bit.ly/2nhYfOe

 draw.rectangle(device.bounding_box, outline="white",
 fill="black")
 draw.text((30, 40), "Hello World", fill="white")

Save and close the file by pressing Ctrl-X, then Y, then Enter.
Give the file execute permissions, as you learned in Chapter 6:

chmod 755 ssd1306_example.py

Now connect the SSD1306 display to the Raspberry Pi as shown
in Figure 7-8.

Figure 7-8. Raspberry Pi with attached SSD1306 OLED display

Controlling the Physical World 181

Now you can run the command and check the output:

./ssd1306_example.py

The OLED display should now show a rectangle with the words
“Hello World” inside (see Figure 7-9).

Figure 7-9. An SSD1306 I²C module running the example code

I mentioned before that the author of this software package,
Richard Hull, has some example scripts you can run with this
type of display. If you’re setting up a similar display and want to
try them, you must first download the source code for the
Python module. You can do this with wget:

wget https://github.com/rm-hull/luma.examples/archive/
master.zip

182 Linux for Makers

Then unzip the archive:

unzip master.zip

Change directory into the newly created luma.examples-
master/examples directory:

cd luma.examples-master/examples

Then run one of the example programs to see what it looks like
(see Figure 7-10):

./demo.py

Figure 7-10. Running the example scripts demo.py, bounce.py,
and invaders.py on an SSD1306 display

Try It for Yourself

Find a module that uses I²C or SPI and try getting it working
with the Raspberry Pi. You could try a display, a temperature
sensor, an accelerometer, or many others. Be sure to note if the
device uses a particular driver or chipset and use that informa-
tion to search the internet for a programming library or module
that you can use to make your device work.

Talking to Arduino
Sometimes you need to connect a Raspberry Pi to an Arduino,
either to improve reliability or processing speed. Or perhaps you
are just more comfortable using an Arduino to control sensors,
motors, and so on. You can still benefit from the flexibility of a
Raspberry Pi and use an Arduino at the same time by setting up
the Raspberry Pi to communicate with the Arduino using the I²C
protocol.

Controlling the Physical World 183

Double-Check Your Connections
Arduino pin signals generally run at 5V, while the
Raspberry Pi’s run at 3.3V. If you’re running the I²C
bus with the Raspberry Pi as the master, as shown in
the following example, everything should be fine.
However, connecting a 5V signal to the wrong pin
could damage your Raspberry Pi. Double-check your
connections to make sure everything is wired up
correctly. In general, if you want to connect 5V sig-
nals to 3.3V pins, you should use a logic-level voltage
converter in between.

For this exercise, I will show you how to run the Raspberry Pi as
the I²C master requesting information and an Arduino as the I²C
slave that will be sending the information. Let’s start by pro-
gramming the Arduino. Using the Arduino IDE, create a new
sketch using the following code and upload it into an Arduino:

#include <Wire.h>

void setup()
{
 Wire.begin(8); // join i2c bus with address #8
 Wire.onRequest(requestEvent); // register event
}

char str[17];
int x = 0;

void requestEvent() {
 sprintf(str, "Message %7d\n", x);
 if (++x > 9999999) x=0;
 Wire.write(str); // sends 16 bytes
}

void loop() {
 delay(50);
}

This sketch will tell the Arduino to act as a slave on the I²C bus
and respond to requests with the word “Message” along with a
number that increments every time a request is made. This

184 Linux for Makers

simulates data that would otherwise be coming from a sensor
or other device connected to the Arduino.

Now open a file on the Raspberry Pi for the Python code that will
make the requests to the Arduino:

nano i2c_master.py

Type or copy the following code:

#!/usr/bin/python

import time
import pigpio

BUS=1
I2C_ADDR=8

pi = pigpio.pi()
Open the connection to slave
h = pi.i2c_open(BUS, I2C_ADDR)

while True:
 # Make a generic request without registers
 (c, d) = pi.i2c_read_device(h,16)
 if c >= 0:
 print d
 else:
 print "No data ..."
 time.sleep(.5)

pi.i2c_close(h)
pi.stop()

Save and close the file by pressing Ctrl-X, then Y, then Enter.
Now give the file execute permissions, as you learned in Chap-
ter 6:

chmod 755 i2c_master.py

If you haven’t done so already, start the pigpiod service like so:

sudo pigpiod &

Make the connections between your Raspberry Pi and Arduino
using Figure 7-11.

Controlling the Physical World 185

Figure 7-11. Connections for Raspberry Pi I²C master to Ardu-
ino slave

Now you can run the command and check the output:

./i2c_master.py

The Python script uses the pigpio program we installed earlier
to make continuous requests to the Arduino and print the
response that it receives (see Figure 7-12). If this were actual
data, you could then use this in the rest of your program. If the
script doesn’t receive a response, it prints “No data...”.

186 Linux for Makers

Figure 7-12. The Raspberry Pi receiving messages from an
Arduino

Why This Matters for Makers
Many projects that Makers build include interacting with devices
in an attempt to bring the project to life. Knowing how to use the
GPIO pins to control and communicate with other devices while
navigating the Linux command line will help you finish your
project more quickly and open up many new possibilities to be
creative. Because protocols like I²C and SPI are standards, you
can learn to communicate with thousands of different modules
that provide functionality not natively available on the Rasp-
berry Pi.

Controlling the Physical World 187

8/Using Multimedia

A great way to add life to a project is to add sound and video.
Recently, I was working on a laser maze exhibit that some col-
leagues and I take to various Maker Faires and other events
around the region. This massive 10×20-foot enclosure is full of
laser beams, smoke, and buttons. This is all very cool in and of
itself, but we found that by adding a start sound, stop sound,
and a little spy-themed music, we could make the exhibit much
more engaging.

No matter what you’re making, from a simple doorbell to a com-
plex video kiosk, you will need to know how to incorporate
media into your project. There are multiple ways to interact with
multimedia on Linux. In this chapter, I will discuss some of the
pitfalls and things to watch out for as well as the most effective
ways for Makers to use multimedia in their projects.

Choosing HDMI or Analog
The first thing you need to decide when using audio in your
project is where you want the audio to go. By default, on a Rasp-
berry Pi the audio will try to play through your HDMI connection.
While this is nice if you’re using an HDMI-capable display in your
project, many times you won’t have a monitor attached at all or
your monitor might not have speakers. In this case, you will
need to tell your Raspberry Pi to use the analog audio jack to
output sound.

To do this, run the Raspberry Pi configuration script from the
command line:

sudo raspi-config

This opens the Raspberry Pi configuration tool (see Figure 8-1).

189

Figure 8-1. The raspi-config main menu

Use the arrow keys to move the cursor down to Advanced
Options and press the Enter key. Now move the cursor down to
Audio and press Enter again (see Figure 8-2).

Figure 8-2. The raspi-config Advanced Options menu

Select the “Force 3.5mm ('headphone') jack” option and press
Enter (see Figure 8-3).

190 Linux for Makers

Figure 8-3. The raspi-config Audio menu

This will make the analog jack the default for sound that you
play. You can still override this on an individual basis if you need
to (see the next section). You’ll need to reboot your system in
order for the changes to take effect.

Playing Audio and Video Files
Linux has many utilities to play audio and video files. For Rasp-
berry Pi, it’s a good idea to use omxplayer, which comes installed
with the Raspbian distribution. The first reason for this is that
omxplayer has the ability to make use of the graphics processing
unit (GPU), which will make playing HD-quality videos much less
taxing on the system. Second, omxplayer has the ability to
decode many digital formats like MP3 and MP4, which saves
time by not having to deal with multiple utilities to play different
file formats.

I often get asked whether people should install mplayer or vlc to
play video files on the Raspberry Pi. The short answer is no. The
reason is because, as of this writing, those utilities cannot use
the GPU so they must decode the video file in software mode,
which uses up a lot of CPU time and can cause other programs
to become unresponsive.

Using Multimedia 191

To play a media file with omxplayer, use the following command:

omxplayer -o [local | hdmi] filename

Here, you would use local if you want the audio to play out of
the analog audio port or hdmi to play it out of the HDMI-
connected display. omxplayer doesn’t always obey the default
you chose in raspi-config, so it’s a good idea to always specify
this. Also, you could use this to override your default setting for
audio output on a case-by-case basis.

After you run the command, the audio or video will display some
encoding information about the file and it will play. When the file
is done playing, you will be returned to the command prompt. If
you want to stop playing the file before it’s finished, press the Q
key (see Figure 8-4).

Figure 8-4. Using omxplayer to play audio and video files

No Video?
If you’re connected via SSH or VNC, you won’t see
any video because the video is sent to the HDMI or
analog video port.

Controlling the Volume
There are two ways to control the volume on a Raspberry Pi
from the command line. To change the volume of the entire sys-
tem, you can use the alsamixer utility. When you run this com-
mand, you will see a graphical representation of the volume level
of the sound device that is built into the Raspberry Pi (see
Figure 8-5).

192 Linux for Makers

Figure 8-5. Using alsamixer on the Raspberry Pi

You can use the up and down arrows to raise or lower the vol-
ume or press the M key to mute the volume. When you are done,
press the Esc key to exit.

Another way to control the volume is to use omxplayer to change
the volume of a file as it’s being played. This can be helpful if
most of your media is playing at the right volume but you have
one file that needs to be played a little louder or quieter. Just
use omxplayer as before, but add the --vol option:

omxplayer -o [local | hdmi] --vol <millibels> filename

In this case, millibels represents a number between 500 (loud)
and –4,000 (very quiet) with 0 being normal. If you use num-
bers outside of this range, your audio is likely to sound
distorted.

Playing Media from a Script
Whether you like to program in Python, Perl, Java, Go, or Ruby,
there are many ways to play media from a script. Most program-
ming languages have a way to send commands to the underly-
ing operating system. This may not always be the best choice,
but for small projects running on an SBC, it can be the easiest
way to get predictable results. Given what you’ve just learned,

Using Multimedia 193

you can now use those commands to play media on your Rasp-
berry Pi from a script. Here is an example in Python:

#!/usr/bin/python

import os

os.system("omxplayer -o local filename.mp3")

In this case, the os.system method simply runs the command
inside the quotation marks on the local operating system, which
plays the MP3 file.

Why This Matters for Makers
As you build projects, it is important to think about the aesthet-
ics of what you’re building. Many times, that can include audio
or video elements. Knowing how to use the command line to
play audio and video can help bring your projects to life for
those who are using them.

194 Linux for Makers

9/Accessing Cloud
Services

In the age of the Internet of Things (IoT), interacting with cloud
services or even creating your own cloud with Linux is becoming
an important component of many projects. Perhaps you’d like to
sync local files on your Raspberry Pi to a cloud storage service,
or set up your own file storage service for your home that the
whole family can use. Maybe you’d like to use a Raspberry Pi to
turn on your sprinkler system from anywhere in the world, or
send you a text message when the lights at home have been on
too long. In this chapter, I’ll get you started down the road of
accessing and using cloud services with Linux.

Cloud Storage Services from the
Command Line
If you’ve been writing your own programs for a while like I have,
you’ve probably already started storing them both on your local
machine and somewhere in the cloud for safekeeping. Some-
times I want to work on a program from home and then later put
that program on my Raspberry Pi to test it out. If my program is
in the cloud, I can access it using software that syncs that
remote file with a local one.

The confusing wonder of it is that there are numerous services
out there that store your files in the cloud. I use Google Drive,
but perhaps you prefer Dropbox or some other service. As of
this writing, Google Drive still hasn’t released a native client for
Linux. Dropbox has a GUI client, but there’s no way to interact
with it programmatically. This is a problem if you want to write a
backup script using cron but can’t interact with the service you
want to use. So even though there are multiple software pack-
ages for all the various storage services that exist out there, I’m

195

going to show you one tool you can use to interact with files on
many different services.

rclone is a command-line program written in the Go language
that can interact with a variety of cloud storage services to copy
files or sync entire directories. It can also mount cloud locations
locally and sync between two different cloud storage services
(i.e., Google Drive to Dropbox). rclone currently supports the
following services:

• Amazon Drive
• Amazon S3
• Backblaze B2
• Dropbox
• Google Cloud Storage
• Google Drive
• Hubic
• The local filesystem
• Microsoft One Drive
• Openstack Swift/Rackspace cloud files/Memset Memstore
• Yandex Disk

To install rclone, first download the latest version by using wget.
As mentioned earlier, wget stands for “web get” and can be used
to download files from the internet on the command line as long
as you know the complete URL for the file:

wget http://downloads.rclone.org/rclone-current-linux-arm.zip

Uncompress the downloaded file with the unzip utility. This will
extract the files inside a new directory in your current location:

unzip rclone-current-linux-arm.zip

Now change your location to the new directory that was just cre-
ated. The version number might be different than the following
one, so use ls or autocomplete to help you get the right name of
the directory:

cd rclone-v1.34-linux-arm

rclone will need to be configured before you can begin using it.
To start the configuration, run rclone with the config option.
Figure 9-1 shows an example of what this looks like for Google

196 Linux for Makers

Drive; you can find individual setup guides for the other storage
services on the rclone website:

./rclone config

Figure 9-1. rclone configuration example for Google Drive

When the configuration script starts, press the N key to set up a
new remote service, then give it a descriptive name. Choose the
service you want to set up. In this case, I chose Google Drive. At
this point, the type of information needed will vary from service
to service. You may need to supply an API key or username/
password in order to connect to the storage service you want to
set up. For Google Drive, you can simply press Enter when the
configuration script asks for client_id and client_secret.

Accessing Cloud Services 197

http://rclone.org

When the script asks for “auto config,” you can press the N key,
but if you’re on the desktop it will try to open a browser window
to complete this step anyway. Next, you will be presented with a
URL to put in a browser to get the authorization code you need
in order to proceed (see Figure 9-2).

Figure 9-2. rclone configuration example for Google Drive
(continued)

This URL will take you to your Google Drive account where you
will need to sign in and grant access to rclone for remote
access. You will be given the verification code to enter on the
next line. In Figure 9-2, I have hidden the sensitive parts of the
configuration, but your screen should look similar. Confirm your
settings by pressing the Y key and then quit the configuration
script.

Now you can use rclone to transfer files to and from your stor-
age service. rclone will compare the files and transfer only the
ones that have changed. The syntax for rclone is similar to cp.
Here are some useful commands to use with rclone.

198 Linux for Makers

List files:

rclone ls <remote name>:
rclone ls <remote name>:<directory>

List only directories:

rclone lsd <remote name>:
rclone lsd <remote name>:<directory>

Copy files from one location to another:

rclone copy <remote name>:<directory> <local directory>
rclone copy <local directory> <remote name>:<directory>

In this case, I want to transfer some sound files from Google
Drive to my Raspberry Pi. So I create a subdirectory on my
Raspberry Pi and copy the files to it (see Figure 9-3).

Figure 9-3. Using rclone to copy files

IFTTT
IFTTT (aka If This, Then That) is a web-based service that allows
you to connect IoT devices through the cloud and trigger certain
activities based on given criteria. For example, when a tempera-
ture sensor connected to a Raspberry Pi reaches a certain level,
you could send yourself an email letting you know the time and
date that level was first reached. Or you could tell a digital assis-
tant (Amazon Alexa, Google Home) to open the garage door,
and IFTTT would send a signal to your Raspberry Pi to trigger a
relay to open the door. It’s possible to do these things without
IFTTT, but using IFTTT makes it a lot easier since it already
interacts with so many different services and devices.

To enable your system to work with IFTTT, you need to set up
either incoming or outgoing communication, or both. To do so,

Accessing Cloud Services 199

you can use a simple command-line tool called curl to send
commands to IFTTT. curl stands for command-line URL and is
fine for testing purposes. For more advanced usage, you can run
a Python-based web server that responds to incoming com-
mands and sends outgoing messages to IFTTT.

Before you can use your Raspberry Pi with IFTTT, you need to
set up an account and subscribe to the Maker service. There are
many guides on the internet to help you with these tasks. After
you subscribe to the Maker service, go to the settings for the
service and make note of your URL (see Figure 9-4).

Figure 9-4. Maker service settings on IFTTT

Now you need to create an applet that you can trigger from your
Raspberry Pi. Click on your username and choose New Applet
to start the Applet Maker. Click on the blue “this” and choose
the Maker service (see Figure 9-5).

200 Linux for Makers

Figure 9-5. The initial Applet Maker page

After you select the Maker service, there will be only one trigger
to choose (see Figure 9-6).

Figure 9-6. Choosing the trigger for the Maker service

Accessing Cloud Services 201

Click on this trigger, and you will be asked to give it a name. I am
going to call mine button_pressed. Now click the Create Trigger
button, and you will be asked to choose an action to perform by
clicking on the blue “that” on the page (see Figure 9-7).

Figure 9-7. Choosing the action on IFTTT

This time, you can choose a service to perform an action when
the Raspberry Pi triggers the web request. I decided to send
myself an email. There is only one trigger for this service, so
click on it and fill out the details of the email you will send to
yourself (see Figure 9-8).

After you’ve set up things the way you want, click the “Create
action” button. Then you can review your applet and click Finish.

202 Linux for Makers

Figure 9-8. The options for the email service

To use this new applet from the command line, first enter the
URL that you looked up before (from the settings of your Maker
service) in a browser. You will see your key listed on the top. This
page will also show you how to use the applet from a browser,
and even gives you an example using curl (see Figure 9-9).

Accessing Cloud Services 203

Figure 9-9. Maker service URL output with instructions for use

So, for a one-off situation, you can just run this curl command
on the command line, replacing {event} with the name of your
event. If everything is configured correctly, you should get an
email letting you know your event has been triggered (see
Figure 9-10).

Figure 9-10. Triggering IFTTT with curl

While this is fine for outbound triggers from your Raspberry Pi,
it doesn’t handle inbound requests, so you can trigger things
locally from external requests. For that, let’s set up a simple web
server that can both send a request when a button is pressed
and receive a trigger to turn on an LED. You could do this with
more complex web servers with lots of features, such as Apache
or even Lighttpd, but that’s probably overkill for what most peo-
ple need here. Instead, we will be using Flask, which is a Python
web framework library for processing web requests. Because

204 Linux for Makers

it’s all written in Python, there are very few requirements and we
can do everything we need to in a single script.

Flask should be already installed if you’re running a recent
release of Raspbian. If not, you can install Flask by first installing
pip, the Python package management tool, like this:

sudo apt-get install python-pip

Then you can use pip to install the Flask library like this:

sudo pip install flask

We will also be using the requests library (which should be
installed), and the pigpio library (which I showed you how to
install in Chapter 7). To start, save the following Python script to
a file on your Raspberry Pi. This script will start a web server
and listen for a request to call the /light_switch page. When that
happens, it will turn an LED on or off. At the same time, it will
wait for a button to be pressed and then send an outbound
request to IFTTT to trigger the email event we set up earlier:

#!/usr/bin/python

Import libraries
from flask import Flask
import requests
import pigpio
import time

Define variables
app = Flask(__name__)
event = "button_pressed" #Event name from IFTTT
key = "your key here" # Key from IFTTT Maker service
GPIO pins to use for the LED and button
led = 18
button = 24
pi = pigpio.pi()
Setup the LED initially off
pi.set_mode(led, pigpio.OUTPUT)
pi.write(led, 0)
Setup the button
pi.set_mode(button, pigpio.INPUT)
pi.set_pull_up_down(button, pigpio.PUD_UP)
Debounce the button
pi.set_glitch_filter(button, 100000)

Accessing Cloud Services 205

This function will be called when the button is pressed
def button_callback(gpio, level, tick):
 url = "https://maker.ifttt.com/trigger/%s/with/key/%s"
 r = requests.post(url % (event,key))
 print str(r.status_code) + ":" + r.text
 print "Event %s triggered." % event

This detects when the button is pressed and
calls button_callback()
b_detect = pi.callback(button, pigpio.FALLING_EDGE, button_call
back)

Set URL used to trigger hello()
@app.route("/")
def hello():
 return "Hello World! Waiting for input."

Set URL used to trigger light_switch()
@app.route("/light_switch")
def light_switch():
 if pi.read(led) == 0:
 pi.write(led, 1)
 else:
 pi.write(led, 0)
 return "Light was been switched."

Start the web server
if __name__ == "__main__":
 app.run(host='0.0.0.0', port=80)

Be sure to change the event variable to match the event name of
your email applet from IFTTT. Also, change the key variable to
match your IFTTT key that you found before. Don’t forget to give
the file executable permissions (chmod 755 filename) so you can
run it as a script. Now connect the positive pin of an LED to
GPIO pin 18 and the negative pin to ground. Connect a momen-
tary switch between GPIO pin 24 and ground (see Figure 9-11).

206 Linux for Makers

Figure 9-11. Connecting an LED and switch to the Raspberry Pi

Now run the script as sudo. From another computer on your net-
work, you should be able to enter the IP address of your Rasp-
berry Pi and get a basic web page that says “waiting for input.” If
you browse to the /light_switch page (i.e., http://
xxx.xxx.xxx.xxx/light_switch) your LED should turn on or off. If
you press the button, it should send you an email.

Accessing Cloud Services 207

Try It for Yourself
Try setting up an IFTTT applet that will request the /light_switch
page on your Raspberry Pi and turn the LED on or off. Perhaps
you can use the Twitter service to request the page every time
someone mentions you in a tweet. You could also use the Face-
book service to request the page every time you’re tagged in a
photo.

Use whatever service you want for the “this” part of the applet
and use the Maker service for the “that” part.

Accessing Raspberry Pi from IFTTT
Make sure IFTTT can get to your Raspberry Pi from
the internet. You might need to use port forwarding
on your router to direct incoming traffic on port 80
to your Raspberry Pi’s IP address. You might also
need to use a different port number if you’re already
running another web server. You can search the
internet for instructions on setting up port forward-
ing on your router model.

Run a Dedicated Web Server
Using Flask to run a simple web server is certainly convenient,
but sometimes you need a more full-featured solution. Small
dedicated web servers allow for better integration with other
software, and better reliability and security than a standalone
Python script. Also, many times, a web server can make it easier
to integrate with cloud services like IFTTT, as we just demon-
strated. Larger web servers like Apache can be run on the Rasp-
berry Pi, but require more resources and may slow things down.
Apache can also be quite complicated to configure and manage.
Instead, I recommend using Lighttpd, which is easy to install
and configure for most projects that will run on the Raspberry
Pi.

208 Linux for Makers

Installation
You can install Lighttpd using apt-get:

sudo apt-get install lighttpd

Configuration for Python
If you want to run Python Common Gateway Interface (CGI)
scripts on your web server, you will need to make a few changes.
First, open the configuration file in nano:

sudo nano /etc/lighttpd/lighttpd.conf

Now add the following lines to the end of the file:

$HTTP["url"] =~ "^/" {
 cgi.assign = (".py" => "/usr/bin/python")
}

Save and close the file by pressing Ctrl-X, then Y, then Enter.
Now you must enable the CGI module for Lighttpd by running
the following command:

sudo lighttpd-enable-mod cgi

Then restart the Lighttpd server:

sudo service lighttpd restart

Test It Out
If you’re running in a desktop environment, you can open a
browser and point it to http://localhost. However, I find it’s
always best to test a web server from another host on the net-
work to make sure everything is working. On another computer,
use your Raspberry Pi’s IP address instead of localhost (see
Figure 9-12).

Accessing Cloud Services 209

Figure 9-12. Default Lighttpd web page

You can now start developing your own web pages or use
Python scripts to bring your projects to life across the internet.
You can edit the lighttpd.conf configuration file to accept a
Python file as the default page (i.e., index.py), or you can edit the
index.html file and point to the location of the Python script you
want to run, like this:

<html>
<head>
 <meta http-equiv="refresh"
 content="0; url=/cgi-bin/index.py" />
</head>
</html>

Just change the url= part to point to the relative location of your
script. For more information on how to program Python scripts

210 Linux for Makers

to work with web servers, take a look at the CGI module. Keep in
mind that /var/www/html is the default directory that the web
server looks in for files. So in the preceding example, the loca-
tion of index.py is /var/www/html/cgi-bin/index.py. Also, the
web server runs as the user “www-data.” Thus it’s a good idea to
assign ownership of any new files you want to use to that user.
To do that, you can use what you learned in Chapter 6.

Roll Your Own
Instead of accessing cloud services on the internet, you can set
up your own to run on your Raspberry Pi. This means you can
store and share files inside your own network without using any
external bandwidth, keeping your data private. There are many
cloud storage software options that will run on the Raspberry Pi.
OwnCloud and NextCloud are popular options, but are fairly dif-
ficult for new users to install. Instead, I will tell you about two
other cloud storage services on your Raspberry Pi that are
much easier to install and require fewer resources to run.

Nimbus
Nimbus is simple cloud storage software designed to run on the
Raspberry Pi. As of this writing, it is still in beta, but it is quite
capable and ready for home use. It also has a client for Windows
that will sync your files for you. First you need to create a direc-
tory for the Nimbus files:

mkdir /home/pi/nimbus
cd /home/pi/nimbus

Now you can download the software to your system by using
wget:

wget http://cloudnimbus.org/dist/0.6.2-BETA/nimbus-0.6.2-
BETA.tar.gz

This file will have to be extracted before you can use it. You can
do that with the tar command:

tar -zxvf nimbus-0.6.2-BETA.tar.gz

Nimbus comes with a script to install all the necessary software
that may not already be installed on your Raspberry Pi. Run that
script from the command line as sudo:

Accessing Cloud Services 211

https://docs.python.org/2/library/cgi.html
https://cloudnimbus.org/

sudo ./install_helper_programs.sh

Now start Nimbus by running the nimbus.sh script:

./nimbus.sh start

By default, Nimbus uses port 8080, so if you’re running in the
desktop environment, you can open a browser and point it to
http://localhost:8080 to access Nimbus. If you’re not running
the desktop, from another computer you can browse to the IP
address of your Raspberry Pi and add :8080 at the end (see
Figure 9-13).

Figure 9-13. The Nimbus first-run welcome page

The first time you access your Nimbus home page, it will ask
you to create an account. Once you do this, you can log in to the
service and begin loading and sharing files (see Figure 9-14).

If you’re happy with the way things are working, and you want to
run Nimbus every time your Raspberry Pi boots up, you can run
the included script to set up Nimbus as a service on your
system:

sudo ./add_to_startup_programs.sh

212 Linux for Makers

You can also add an external USB hard drive to expand the
amount of storage available. For details on how to do this, check
out the Nimbus website.

Figure 9-14. The Nimbus home screen

Tonido
Tonido is another cloud storage service that you can run on your
Raspberry Pi. It was designed to run on SBCs and has been
around for quite a while, so the software is mature. With Tonido,
you can store, share, and stream files, and there are clients
available for PC, Android, and iOS. Even though the public
Tonido site does not store your password or any files, it does
relay you to your private server when you’re not connected to
your network. Tonido is a single-user system, but you can create
guest accounts to give other people access to specific files. The
installation is very similar to the way Nimbus is installed. First
you need to create a directory for the Tonido files:

mkdir /home/pi/tonido
cd /home/pi/tonido

Accessing Cloud Services 213

https://cloudnimbus.org/

Now you can download the software to your system by using
wget:

wget http://patch.codelathe.com/tonido/live/installer/armv6l-
rpi/tonido.tar.gz

This file will have to be extracted before you can use it. You can
do that with the tar command:

tar -zxvf tonido.tar.gz

Now start Tonido by running the nimbus.sh script:

./tonido.sh start

By default, Nimbus uses port 10001, so if you’re running in the
desktop environment, you can open a browser and point it to
http://localhost:10001 to access Tonido. If you’re not running
the desktop, from another computer you can browse to the IP
address of your Raspberry Pi and add :10001 at the end (see
Figure 9-15).

Figure 9-15. The Tonido first-run welcome page

Follow the prompts to create your account. This will also create
a public web address that you can use to make it easier to

214 Linux for Makers

access your Tonido file-sharing server. Once you’re logged in,
you can start uploading and sharing files (see Figure 9-16).

Figure 9-16. Tonido user home page

Notice that some of the built-in applications that allow things
like searching and connecting from mobile applications may be
in a suspended state at first. To fix this, click on the warning that
appears on the user’s home page. You can see it highlighted
with the blue box in Figure 9-16. Then click individually on each
application and select Resume. In my case, clicking the Resume
All Applications button did nothing.

You can start Tonido automatically when your Raspberry Pi
boots up by adding the start command to your rc.local file, as
shown in Chapter 6.

Accessing Cloud Services 215

Why This Matters for Makers
Knowing how to set up and use cloud services can open up a
whole new world of possibilities for a Maker. Not only does it
allow you to transfer and store files, but it also allows you to add
internet control of your project. As the popularity of cloud-
connected systems grows, you will be able to build your own IoT
devices using the Raspberry Pi.

216 Linux for Makers

10/Virtual
Raspberry Pi

Makers are busy people and don’t always have a Raspberry Pi
sitting in front of them to experiment with, or perhaps they
aren’t sure if they will be able to get over the “Linux hump” and
become proficient enough to justify buying a Raspberry Pi or
other SBC. For these cases, I created a Virtual Raspberry Pi that
runs in Oracle VirtualBox, which you can use to explore Linux
and test things out. In fact, many of the images and exercises in
this book were made using my Virtual Raspberry Pi. This chap-
ter explains how to run a full Raspberry Pi environment on top of
Windows, macOS, or Linux for those times when you don’t have
the physical system on hand.

Before you get started, there are a few things to understand
about the virtual environment. First, since this is not a physical
system, there are no physical GPIO pins to interact with. There
is no way to hook up any real-world components to the virtual
environment. So if you thought you might use this to test code
that interfaces with I²C or SPI devices, be aware that there really
is no way to do that. Second, the current emulation environ-
ment is limited to 256 MB of memory, so the system will not be
very speedy. Third, the Virtual Raspberry Pi image is actually vir-
tualized twice. There is a main guest image running stock
Debian Linux, and then I use QEMU to virtualize an ARM envi-
ronment for the Raspbian disk image inside of Debian. This
doesn’t seem to have any ill effects except that it made routing
access to the internet a little more cumbersome. Luckily, I have
taken care of all of this for you.

217

Requirements
• A computer running a recent version of Windows, macOS,

or Linux
• 15 GB of free disk space

Installation
Download and install Oracle VirtualBox from virtualbox.org.

Download the Virtual Raspberry Pi image file from Google Drive
and save it somewhere you will remember. This is a 5 GB file, so
it could take quite a while to download.

Open VirtualBox and click on File→Import Appliance (see
Figure 10-1).

Figure 10-1. Importing a preconfigured VirtualBox image

In the file search window, find and select the image file you
downloaded from Google Drive. This will import and configure
the Virtual RPi system inside of VirtualBox for you.

218 Linux for Makers

http://virtualbox.org
http://bit.ly/2o98Dg1

Usage
To launch the Virtual RPi machine, select it from the list on the
left and click the Start button. VirtualBox will then run the sys-
tem in a separate window. You will notice that the Linux bootup
messages appear twice in a row. This is due to the fact that the
Raspberry Pi is being virtualized inside of a virtual Debian instal-
lation, as I mentioned earlier. Once everything is finished boot-
ing, you will be at the Raspberry Pi command prompt (see
Figure 10-2).

Figure 10-2. The console of the Raspberry Pi image after it has
booted up

The desktop does not run by default, but you can start it by typ-
ing startx on the command line.

To shut down the Virtual RPi machine, you must first shut down
the Virtual Raspberry Pi by rebooting it. Then shut down the

Virtual Raspberry Pi 219

Debian environment. To shut down the Virtual Raspberry Pi,
type:

sudo shutdown -r now

The Virtual Raspberry Pi will not reboot. Instead, you will be left
on the Debian desktop. To shut down the Debian environment,
simply click on the menu icon in the bottom-left corner, choose
Logout, and then select Shutdown (see Figure 10-3).

Don’t Shut Down
Using shutdown -h is not recommended on this vir-
tual system because it will not return you to the
Debian desktop. If this happens, you can press Ctrl-
Alt-F to exit full-screen mode and close the emulator
window.

Figure 10-3. The Debian desktop after the Raspberry Pi image
has been rebooted

220 Linux for Makers

If you’re stuck in the Raspberry Pi image and would like to get
access to the Debian desktop, you can press Ctrl-Alt-F to exit
full-screen mode. To toggle the mouse capture mode, press
Ctrl-Alt when you’re not in full-screen mode.

Why This Matters for Makers
Because you can! Sometimes it’s fun just to try things out to see
how they work. While the lack of memory and physical GPIO
pins might not make this the preferred way to learn about the
Raspberry Pi, it can still be fun to poke around and see how
things work on the system. You can use this virtual installation
of the Raspbian distribution as a reference to test the syntax of
a program, verify where software resources are located, and get
material for documenting an instructional blog post when you
don’t have a physical system in front of you. You can also learn a
little about virtual computing in the process, or even use this vir-
tual Raspberry Pi to write a book!

Virtual Raspberry Pi 221

A/Linux Background

This appendix will cover the history of the Linux operating sys-
tem, as well as some general questions that often come up
when Makers start considering using Linux in their projects.
Linux is used all over the world on many different platforms. For
businesses, it’s the most preferred operating system for running
complex transactions in their data centers. It is also used as the
base operating system in all Android phones, making it the most
used operating system in the world today. In addition, Linux is
used in embedded devices like network routers, point-of-sale
terminals, medical devices, set-top boxes, and digital TVs. Of
course, Makers use it all the time as the operating system for
SBCs like Raspberry Pi, BeagleBone Black, C.H.I.P., Pine 64, and
Onion platforms. And because there are so many versions avail-
able, you can easily bring old hardware back to life by installing
Linux on it.

Brief History of the Original Maker
Operating System
I think it’s fair to say that Linux started as (and still is) the ulti-
mate Maker project. Before Linux, the easiest and most
accepted way to run a Unix-type operating system was to pay
for one of the commercial products available in the market-
place. Unix was created by Ken Thompson and Dennis Ritchie
while they were working at Bell Labs (now known as AT&T) and
was first released in 1970. At that time, operating systems were
designed to run on specific hardware platforms. General-
purpose computing was still in its infancy; you couldn’t take the
software from one hardware platform and run it on a different
one. As Unix became more popular, similar operating systems
were created, including Berkeley Software Distribution (BSD)
and SunOS.

223

For the next 20 years, the way companies acquired and ran Unix
in their data centers was to buy a license from AT&T, HP, IBM,
Sun Microsystems, or another vendor that sold a version of
Unix. For the most part, these companies developed their oper-
ating systems in a vacuum. As you can imagine, they wanted to
protect their investments and research from getting into the
hands of their competitors. Even though they made improve-
ments and fixes to the code over time, the end user was at the
whim of the vendor in terms of which fixes got implemented
first and which improvements bubbled up to the top of the list of
features for the next release of the software.

Where did this leave the Maker? Pretty much out in the cold.
Even though the Unix operating system was very powerful and
became more versatile over time, the software licenses were too
expensive for most individuals to afford. The computer hard-
ware needed to run Unix was also very expensive, so even if an
individual did want to run Unix for a project, they had to rent
time on a server from a company that had these systems
installed. Imagine if a Raspberry Pi that costs $35 today instead
cost $35,000, and Raspian was only available if you first paid
$10,000 just for the privilege of running it. Or imagine if the
Raspberry Pi Foundation wanted to charge you $50/hour just to
use a Raspberry Pi for a little while.

The concept of sharing access to computers and renting that
time out to others became known as time sharing. It was a more
efficient use of an expensive piece of equipment and allowed
companies to recoup some of their investment. However, if you
were lucky enough to be a student at a university that had
access to these time-sharing systems, you could use them for
free. This got a couple of people thinking.

224 Appendix A

Figure A-1. Time sharing ad from 1970 (image from HP Com-
puter Museum)

When Richard Stallman started the GNU’s Not Unix (GNU)
Project in 1983, he was working for the Massachusetts Institute
of Technology (MIT) as a research assistant in their Artificial
Intelligence Laboratory. He was frustrated by the restricted
computer access imposed by the lab, as well as the increasing
trend toward developing proprietary software that couldn’t be
modified or distributed to others. In one case, he had modified
the software for a laser printer to be able to notify the owner
when the print job was complete. However, when a new printer
was installed with proprietary software, he was restricted from
making the same changes, which meant people had to walk up
and down stairs multiple times to check on their print jobs or
wait by the printer until they were done.

The GNU Project’s goal was (and is) to allow people access to
software that could be freely used, shared, and distributed in a
collaborative way. That meant that if you wanted to improve the
software in some way or fix something that wasn’t working, you
could just do it without having to ask permission or hack the
code. You could also pass on your changes to others so that

Appendix A 225

http://www.hpmuseum.net/
http://www.hpmuseum.net/

they could learn from them and use them in their own software.
The GNU Project made their own versions of utilities commonly
found on Unix systems that were necessary for the development
of software, like a text editor (Emacs), code compiler (GCC), and
code debugger (GNU debugger), as well as common tools like
ls, grep, and make. In many respects, Stallman and the others
who worked on the GNU Project were Makers in their own rights.
Just like modern-day Makers, they believed people should hack,
make, and share their projects with other people who have simi-
lar interests.

In an effort to codify these beliefs and make them applicable to
the software he and others were developing, Stallman came up
with the GNU Public License (GPL). You may have seen this
when you installed some software on your computer or phone.
Large parts of the Android operating system, WordPress, GIMP,
VLC Media Player, and even the Linux kernel itself (we’ll get to
that in a minute) use the GPL as their software license. The GPL
states that you may modify, copy, and redistribute the software,
but if you do, you must keep the GPL license in the new or
copied software. This ensures that all users of the software get
the same rights no matter how many times the software
changes.

This license and several other software licenses created around
the same time led to what we now know as open source soft-
ware. While proprietary, or closed source, software usually
imposes restrictions on how the software can be used to protect
the company or author, open source software aims to protect
the author while providing rights and protections to the user as
well. Even though there are many different open source licenses
in existence today, the GPL is still the most popular. And this
belief that software should be free to be modified and improved
eventually spilled over into hardware development as well. Some
of the most popular platforms Makers use for building projects
like Arduino—including the RepRap project, Lulzbot, Beagle-
Bone Black, and most of the Raspberry Pi—are considered open
source hardware. This means their specifications are published
publicly and people are free to modify their designs.

226 Appendix A

Try It for Yourself
Although not strictly required to be offered at no charge, many
free software programs use an open source license. Try opening
some of your favorite programs and look in the About section
under the Help menu and see what license your software uses.
You can also search the internet for this information. You might
be surprised how much software uses or is based on open
source licenses. It represents quite a change from the early days
of computing.

Linus Torvalds
Even though work was progressing nicely on the GNU Project’s
programs, tools, and utilities, they were still lacking a decent
Unix kernel. In 1991, a computer science student at the Univer-
sity of Helsinki named Linus Torvalds had just ordered a new
computer and a copy of another Unix clone called Minix. The
source code for Minix was available, but it was not allowed to be
modified and redistributed. Like all good Makers, Torvalds took
this as a problem to be solved. He believed there should be a
freely available Unix-like operating system that ran on the still-
new x86 computer platform. Here is his note to the Minix com-
munity announcing his new operating system.

Hello everybody out there using minix -

I’m doing a (free) operating system (just a
hobby, won’t be big and professional like gnu)
for 386(486) AT clones. This has been brewing
since april, and is starting to get ready. I’d like
any feedback on things people like/dislike in
minix, as my OS resembles it somewhat (same
physical layout of the file-system (due to practi-
cal reasons) among other things).

I’ve currently ported bash(1.08) and gcc(1.40),
and things seem to work. This implies that I’ll
get something practical within a few months,
and I’d like to know what features most people
would want. Any suggestions are welcome, but I
won’t promise I’ll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

Appendix A 227

1 Linus Torvalds. “What Would You Like to See Most in Minix?” Usenet
group comp.os.minix, August 25, 1991.

PS. Yes - it’s free of any minix code, and it has a
multi-threaded fs. It is NOT portable (uses 386
task switching etc), and it probably never will
support anything other than AT-harddisks, as
that’s all I have :-(.

— Linus Torvalds1

This new operating system would later become known as Linux,
which is pronounced ([ˈliːnɵks]). The name is a combination of
“Linus” and “Unix.” It is interesting to note that, at the time, it
was just a fun project to work on. Torvalds didn’t think it would
be “big and professional,” or portable, or support a wide variety
of peripherals. My, how things have changed. Today, Red Hat
and others have built enormous companies around offering pro-
fessional software to businesses based on Linux. It is also one of
the most portable operating systems in existence today, run-
ning on almost every computer architecture available. Not to
mention, Linux supports tens of thousands of devices, both new
and old. Many times, they are supported with open source driv-
ers that are already in the system so you don’t have to install
software.

Linux became popular quickly because it didn’t cost anything to
run, was easy to obtain, and was easily modified and improved.
You could make a comparison to the Arduino ecosystem that
exists in the Maker community today. Arduinos are very inex-
pensive and easy to order online, and if you don’t like the way
your Arduino Uno is laid out, you can build your own from
scratch to suit your needs. As Linux grew in popularity, it also
developed a multitude of communities thanks to the “open”
nature of the development model. Torvalds not only received
requests for changes to the code, but he also got actual code
samples from programmers who were trying out the operating
system. Since the code was openly available for people to read
and study, the development cycle for new features and bug fixes
was much quicker than with the previous proprietary Unix sys-
tems. With the amount of changes being submitted, it quickly
became necessary to organize things so that changes could be
reviewed before they were included in new versions of Linux.

228 Appendix A

Linux is still maintained and improved in much the same way
today. Torvalds and a handful of others called “Linux kernel
maintainers” still govern this process, and it is still open to any-
one who wants to improve the code or add new functionality.
Don’t have a driver for that new WiFi module? You can write one
yourself. Discover a bug in the way the operating system boots
up? You can submit a patch to fix it. It truly is the original Maker
operating system.

The Linux Kernel
I’ve mentioned the Linux kernel a few times now, and as you
learn about using Linux for your projects, you will see it refer-
enced online in tutorials and forums. Similar to a seed at the
center of a nut or fruit, the kernel is the core program that man-
ages the functions of the operating system. It is usually the first
program that is run when the system starts up. It sits between
the applications and the hardware components and governs
how and when those components can be accessed. Without the
kernel, applications wouldn’t be able to run because they
wouldn’t know how to access the CPU, memory, storage, and
other hardware that makes up the computer. The kernel also
acts like a traffic cop, preventing applications from “running
into” each other as they request the same resources. Modern
operating systems have thousands of programs running simul-
taneously. If you didn’t have a kernel, you could really only run
one program at a time without causing problems. As you can
tell, the Linux kernel is the most important part of the operating
system. Because it’s so important, it is loaded into a secure part
of system memory so that it’s protected from tampering and
changes.

There are many versions of the Linux kernel. It’s updated fre-
quently by the kernel maintainers and can be customized to
include all or just some parts depending on the needs of the
system. If your system doesn’t have much memory, for exam-
ple, a developer could take out all the parts they didn’t need in
an effort to make the kernel smaller. If your system isn’t very
fast, a developer might want to take out the parts that don’t
need to run all the time in order to make the kernel more effi-
cient. Some individual users even go so far as to make custom

Appendix A 229

versions of the kernel by changing the included components or
modifying certain parameters in an effort to make the system
work the way they need it to. This process of compiling your own
Linux kernel is mostly unnecessary for the Maker, as this work is
already done by those who make and distribute the devices we
use, like the Raspberry Pi.

Because the Linux kernel is so configurable, it often includes all
the software you need to make your components visible to the
operating system. This software is also called a driver and,
depending on the manufacturer, might be proprietary or open
source. If it’s open source, it can be included in the kernel and
that makes adding components to your Linux system a lot eas-
ier. For example, when you connect almost any generic mouse
or keyboard to your Linux-based system, it will be automatically
detected and configured. With other operating systems, like
Microsoft Windows, the driver software has to be installed from
the internet or from local storage before the device can be used.
Sometimes the drivers for older devices can be hard to find or
become unsupported. This is less likely to happen with an open
source driver in the Linux kernel because once it’s written, it can
always be referenced again whenever it’s needed. This is one
reason open source software should be important to Makers,
and I will talk more about this a little later.

Distributions
I mentioned in the introduction that I would focus mainly on the
Raspian distribution of Linux. But what is a distribution anyway?
At face value, the word distribution makes it sound like someone
is sharing their stuff with a lot of other people. That is not very
far off the mark. Anyone can customize an operating system
based on Linux by adding and changing the various programs
that make it useful. It can then be packaged up in an easy-to-
install format that ensures that every installation will be exactly
the same. This collection of preconfigured software is called a
distribution. A distribution of Linux can be critical for deploy-
ment when you are installing more than one system at a time.
For example, let’s say you wanted to install Linux on 100 servers
at work. Without using a distribution you would have to compile
your kernel, choose what desktop you wanted to use, install all

230 Appendix A

your software, and configure all your services for each server
one by one. By using a distribution, you can greatly simplify this
process by installing a preconfigured set of software on each
server, ensuring that each server’s installation will be exactly the
same as the one before.

Distributions also allow individuals and companies to publish
their particular flavor of Linux to the world. Once all the software
is in place, an installer program is added to make installation
easy and less time-consuming. Then, all the files that make up
the operating system are packaged up into a single file to make
it easier to download. Like the Linux kernel itself, distributions
are maintained by a group of people and updated on a regular
basis to make sure the software stays current, fix bugs, and add
new features.

This idea of creating your own distribution of an operating sys-
tem is fairly unique to Linux. In order to get a customized ver-
sion of other operating systems like Windows or macOS, you
would need to convince Microsoft or Apple to make them for
you. Because Linux is based on open source software, you can
just make your own choices about what software you need for
the task you’re trying to accomplish. Just as you would choose a
set of tools in your workshop for a given task, you can choose a
Linux distribution that best meets the needs of your project.

Examples of popular Linux distributions include Linux Mint,
Debian, Ubuntu, OpenSUSE, and Arch. Some companies, like
Red Hat, release a commercial distribution and a community
distribution (Fedora). Some distributions are derived from
another distribution. For example, Ubuntu and Raspbian are
derived from Debian, whereas Linux Mint is derived from
Ubuntu. This means that they start with one distribution as a
base and then make changes to the software or look-and-feel
and redistribute as a standalone system. There are also many
distributions that are specialized for a given task or system
type. Ubuntu Studio is built to appeal to audio, video, and graph-
ical designers. Tiny Core Linux is a full desktop operating sys-
tem that occupies as little as 16 MB, runs entirely in memory,
and loads from a USB thumb drive or CD. GParted Live is
another distribution that runs from external storage. It helps
diagnose problems and make changes to storage hardware.

Appendix A 231

There are many distribution of Linux that run on the Raspberry
Pi as well. Raspbian is specifically designed to run on the Rasp-
berry Pi and is the most popular choice of users today. It’s also
officially supported by the Raspberry Pi Foundation. Other
Raspberry Pi distributions include:

Ubuntu Mate
A version of Ubuntu Mate optimized to run on Raspberry Pi
2 and Raspberry Pi 3. It’s great if you want to use Raspberry
Pi as a desktop or are already familiar with Ubuntu.

OpenElec
An embedded operating system built around Kodi, the open
source entertainment media hub. This is for users who want
to use the Raspberry Pi as a media center only.

Open Source Media Center
Another media center software distribution that is based
solely on open source software.

PiNet
A distribution that runs in a network topology to make it eas-
ier for educators to use Raspberry Pi in the classroom.

Try It for Yourself
There are thousands of distributions of Linux available for down-
load. You can see some of the most popular ones by taking a
look at the DistroWatch website. They track the popularity of
Linux distributions as well as the latest updates both for the dis-
tributions and popular open source software packages. Click on
some of the distributions listed to see what they do and how
they are different.

How Open Source Software Works
I’ve talked a little about open source software and how it was
critical to the development of Linux, but it is important for Mak-
ers to understand how open source software actually works in
order to appreciate how it could benefit a project and how to
avoid potential problems.

232 Appendix A

https://ubuntu-mate.org/raspberry-pi/
http://libreelec.tv/
https://osmc.tv/download/
http://pinet.org.uk/
http://distrowatch.com

Open source software is different than proprietary or closed
source software in many ways. First and foremost, as the word
open implies, the source code for the software is available for
anyone to look at and inspect. For example, you might be won-
dering why a program does x when you do y, but not when you
do z. Perhaps you want to know because the software is working
incorrectly, or perhaps you are a programmer and would like to
implement a similar algorithm, function, or programming tech-
nique in your software. With proprietary software there is no way
to know for sure. You would need to ask the company that wrote
the software to file a bug report that may or may not get
addressed. With open source software, however, if you know a
bit of programming, you can actually look at the code and see
what is going on. You may or may not be able to understand all
the code or know how to fix the issue, but at least you aren’t
operating behind a wall of secrecy and uncertainty.

Because the code is publicly available, some people wrongly
assume that this is an enormous security risk. They think that it
would be easy for bad actors to take the code and do something
malicious with it like insert a virus or malware that could harm
people’s computers and devices. While it’s true that the “open-
ness” of open source software might make it an inviting target,
it’s also the very thing that keeps this from becoming a real
problem. Because the code is open, it is constantly under
inspection. The release and acceptance of new code can be
reviewed and governed by a team of experts from around the
world, and more people can run tests and nightly builds to see
how the software is working. Bugs and security risks can be
identified and corrected much more quickly than with propriet-
ary software.

Second, because the code is available, this naturally invites con-
tributions from the community. If there’s a problem with the
software, you can correct it yourself by submitting a bug report
or patch that fixes the issue. If programming is not your thing,
there are other great ways to get involved as well. Open source
projects are always looking for people to help with non-
programming tasks like documentation, translation, marketing,
website development, and community relations. Getting
involved in an open source project is a great way for people who

Appendix A 233

are thinking of a career in software development, marketing, or
developer relations to get some experience.

Third, open source software can be shared and distributed to
others that need it without breaking the law or violating some
sort of license agreement. In fact, this behavior is generally
encouraged. This is in stark contrast to what you may typically
think of when it comes to sharing content. Media organizations
like the RIAA or MPAA spend vast amounts of time and money
discouraging people from sharing their constituents’ legally pro-
tected content, but open source projects don’t have those
restrictions and post their content on sites that encourage col-
laboration and sharing, like GitHub and SourceForge. File shar-
ing software like BitTorrent can be used to make downloading
easier because there are no legal issues to contend with.

Open source software really benefits the Maker community
because ideas and projects can be implemented, shared, and
improved more easily when software is readily modified and
readily available. However, there are a few things to look out for
when using open source software in your project. Just like all
software, open source software can exist in various stages of
development. An open source project might run out of steam
and not be under active development. The risk here is that new
features and functionality that you need for your project might
never be implemented. Open source software is also more likely
to be released early in the development cycle so it can be tested
and improved. The risk here is that there may be more bugs in
the code and that the software might change in functionality
more quickly than with stable code. Imagine you’re using some
brand new software that is in the early stages of development
and it solves a problem in one of your projects. You get every-
thing working just the way you want it, but the next time you
update your software, things go haywire. As it turns out, the
code you were using was modified in a way that broke the way
you were using it and you need to spend time figuring out how
to change things to make it work again. Luckily, with open
source software, these types of problems are easy to fix, but it is
good to be aware of the maturity of the software you are using
to minimize the impact to your project.

234 Appendix A

Fourth, it is good to be aware of what kind of open source
license your software uses. I have already mentioned the widely
used GPL, but there are hundreds of other open source licenses
as well. Some of them are very permissive and others come with
many restrictions. Most of them allow for commercial use, pri-
vate use, modification, and distribution. They also almost
always protect the developer from liability if the software is mis-
used or fails to work. Some of them (like the GPL) require that
changes to the code be made available as open source software,
and some (like the BSD) do not. If you have ever used macOS on
an Apple product, you may have noticed that when you use the
command line for anything it feels like Linux. That is because
macOS is based in part on a UNIX variant called FreeBSD, which
(as you might expect) uses the BSD license. Because the BSD
license doesn’t require changes to be made available as open
source, Apple is free to take the code and use it, change it, and
improve it without sharing back to the community. While they
are certainly within their right to do this, wouldn’t it be nice to
have those changes benefit the community that started them in
the first place? There may come a time when you might want to
fork a project or make changes to some code that is under an
open source license. It’s important to be aware that you may be
required to keep your code under the same license or contribute
the code back to the community. You can find out more about
the different open source licenses at opensource.org.

Single-Board Computers Versus
Microcontrollers
Although it is not strictly related to the history of Linux, this is
probably a good place to talk a little about the similarities and
differences between single-board computers (SBCs) and micro-
controllers. You hear both of these terms quite often in the
Maker community, but it can be difficult to determine when and
why to use one or the other.

Microcontrollers are chips called integrated circuits (ICs) that
contain a processor, a small amount of memory, and some abil-
ity to connect to things via input and output connections. These
chips are often built into a platform that breaks out the various
connections into pins to make it easier to communicate with

Appendix A 235

http://opensource.org

other devices and modules. Sometimes these platforms include
a USB port and controller so that users can connect directly to a
computer and upload the firmware that runs on the chips.
Examples of microcontroller platforms include Arduino, Teensy,
ESP8266, and the Ti MSP430 LaunchPad.

SBCs are, as the name suggests, complete computer architec-
tures that just happen to be built into a single PCB board. They
typically include discrete components on the board like mem-
ory, a storage controller, USB connections, video and audio
capabilities, and networking. They also usually run a complete
operating system like Linux. Examples of SBC platforms include
Raspberry Pi, BeagleBone, Odroid, and C.H.I.P. See Figure A-2
for an example of a Raspberry Pi and an Arduino.

Figure A-2. The Raspberry Pi 3 (left) and the Arduino Genuino
Uno (right)

Both SBCs and microcontrollers are very powerful platforms for
building things because both can be used to connect to and
control the physical world. In recent times, they have both
become quite small in size, which makes them useful in small
projects where you need to hide them away inside a project box
or inside an existing enclosure. Another similarity is that they
can be modular in that you can add functionality by plugging in a
device or board. Raspberry Pi calls these hats, while Arduino
calls them shields.

Microcontrollers are great when you need to do a simple spe-
cific task (or set of tasks) repeatedly and reliably. Compared to
SBCs, microcontrollers don’t have a lot of memory, so the num-
ber of instructions and program size they can process at one
time are limited. However, microcontrollers usually don’t have a

236 Appendix A

lot of peripherals and other programs competing for resources,
so this makes them very fast at doing what they do. Since the
firmware for a microcontroller is stored in memory and always
runs when they boot up, they will always behave the same way
every time you turn them on. Microcontrollers are great at run-
ning strips of LED lights or continually polling sensors to gather
data. They are also good at sending instructions repeatedly in
the case of motors for a CNC machine or 3D printer.

SBCs can be used more like a regular computer. Because they
have more memory and dedicated storage devices, and run a
complete operating system, they can be used to do multiple
tasks at once. However, since there is more going on at the
same time, you might have to deal with resource contention.
Also, since the operating system is stored on storage and not
entirely in memory all the time, you need to take care not to
power off the system abruptly or you could end up with a cor-
rupted filesystem, leaving your SBC unable to boot up or
severely unstable. Instead of having to upload the firmware
every time you want to make changes to the system, you can
use SBCs in a normal desktop environment or run them from a
console that allows you to make changes to programs and fea-
tures while the system is running. Another advantage of SBCs
running Linux is that you can write programs in many different
programming and scripting languages very easily. Although
Python is widely used for building projects with the Raspberry
Pi, you could just as easily use Perl, Java, Go, or C.

Why This Matters for Makers
Makers can benefit from powerful, versatile environments for
their projects. The freedom to be able to choose from many dif-
ferent types of software and programing tools means that they
can pick the one that is right for them. Makers also need access
to software on the fly as their projects change and develop, and
many projects are developed on a shoestring budget. Linux, a
community Maker project in its own right, gives Makers the free-
dom to work on their projects using the latest technologies
without additional cost and simultaneously provides a custom-
izable set of software packages that are just right for their
requirements. Many open source projects started because

Appendix A 237

someone had an itch they wanted to scratch. In much the same
way that a Maker’s project can start out as an individual effort
and grow into a big business, open source software often starts
as a pet project and develops into something that thousands of
people use on a daily basis, sometimes without even realizing it.
Open source software is at the heart of Linux, and it makes
sense that Makers would develop a preference for using these
tools similar to how they use a screwdriver, hammer, or 3D
printer. Using Linux as part of your project may seem like a
daunting task at first, but with just a few hints and tips, I think
you will come to enjoy the freedom and endless possibilities it
provides.

238 Appendix A

Index

Symbols
& (ampersand), running in back-

ground, 149-151
&> or &>> (ampersand, angle

brackets), capturing output,
153-155

&& (ampersands), running multiple
commands, 162-163

> or >> (angle brackets), capturing
output, 153-155

\ (backslash), escape character,
164-165

` ` (backticks), 27
$ (dollar sign) prompt, 52
/ (forward slash), 29, 29
(hash tag) prompt, 52
; (semicolon)

ending a command, 165
running multiple commands,

163
|| (vertical bars), running multiple

commands, 162-163

A
absolute paths, 54
Adafruit module, 180
addgroup command, 158
adduser command, 158-159
aliases, 133-136
ampersand (&), running in back-

ground, 149-151
ampersand, angle brackets (&> or

&>>), capturing output, 153-155
ampersands (&&), running multiple

commands, 162-163
analog audio jack, enabling,

189-191
Android

determining IP address from,
98-99

SSH client for, 106
VNC client for, 116

angle brackets (> or >>), capturing
output, 153-155

application launch bar, 46
apt tools, 79-90

apt-cache, 85-86
apt-get dist-upgrade, 88
apt-get install, 86
apt-get remove, 87
apt-get update, 80
apt-get upgrade, 81-84

Arduino, communicating with,
183-186

audio files, playing (see multime-
dia)

auto-complete for commands, 70

B
background image for desktop, 45
background processes, 149-151
backslash (\), escape character,

164-165
backticks (` `), 27
bash (Bourne-Again shell), 26
.bashrc file, 133-136
/bin directory, 30
/boot directory, 30
booting Raspberry Pi

first time for, 13
starting scripts or programs

when, 131-133
Bourne shell (sh), 26
Bourne-Again shell (bash), 26
browser, 21
button trigger example, 204-207

239

C
Cathode app, 107
cd command, 54-55
CGI scripts, 209, 210
chaining options on command line,

57
chmod command, 160-161
chown command, 159-160
cloud services, 195-199

(see also web server)
command line access to,

195-199
creating with Nimbus, 211-213
creating with Tonido, 213-215
transferring files to and from,

198-199
code examples

button trigger example,
204-207

email trigger example, 199-204
LED light example, 174-176
pin status example, 172-174
program status example,

179-183
relay module example, 176-177

command line, 51-53
(see also shell; terminal; specific

commands)
auto-complete feature for, 70
chaining options on, 57
cloud services, accessing,

195-199
desktop, starting, 95
filesystem commands, 53-62
help for, 62-69
info pages for, 66-69
installing software, 79-90
long commands, wrapping,

164-165
manpages for, 63-66
multiple commands, running,

162-163
network, connecting to, 73-79
previous commands, finding,

71-72
prompt on, 51-53

rebooting and shutting down,
90-91

remote access to, 99-107
scrolling through terminal, 52
searching output from, 155-158

Commander One, 119-122
ConnectBot app, 106
console, 24

(see also terminal)
processes running in, 39
switching sessions, 163

contact information for this book,
xii

conventions used in this book, x
cp command, 59
CPU utilization, 42, 138
cron utility, 165-168
crontab file, 166-168
Ctrl-Alt-Func keystrokes, switching

between sessions, 163
Ctrl-C keystroke, killing processes,

146
Ctrl-R key, for previous commands,

71-72
Ctrl-Z keystroke, pausing pro-

cesses, 148-149
curl command, 199, 203-204

D
dd command, 10, 13
desktop, 21-22, 41-49

background image, changing,
45

connecting to network, 44
panel, changing location of, 45
remote, 108-117
shortcuts in panel, changing, 46
shortcuts on, creating, 47
starting from command line, 95
turning off, 93-95
when not to use, 42-43
when to use, 41

/dev directory, 30
df command, 136-137
directories (see filesystem)
disk image, 1, 2

240 Index

downloading, 2
uncompressing, 3-6
writing to SD card, 7-13

disk usage, 136-138
diskutil list command, 9
diskutil unmountDisk command, 9
distributions of Linux, x, 230-232
DistroWatch website, 232
dollar sign ($) prompt, 52
du command, 137-138

E
echo command, 26
email trigger example, 199-204
escape character (\), 164-165
/etc directory, 30
examples (see code examples)
exit command, 135

F
fdisk command, 11
fg command, 149
filesystem, 28-31, 59

absolute paths for, 54
commands for, 53-62
directories, creating, 58-59
directory contents, printing,

56-58
directory location, changing,

54-55
directory location, determining,

53
expanding, 14
files, creating, 59
files, deleting, 60
files, moving, 59
files, ownership of, 159-160
files, transferring, 117-126,

198-199
permissions for, 33-36, 160-161
relative paths for, 54
space used by, checking,

136-138
Fing - Network Tools app, 98-99
Flask library, 204-205
folders (see filesystem)

forward slash (/), 29, 29

G
general-purpose input/output pins

(see GPIO pins)
GID (group id), 32
GNU Project, 225-226
GNU Public License (GPL), 226
GPIO (general-purpose input/

output) pins, 169-187
communicating with Arduino,

183-186
I²C protocol with, 177-186
LED light example, 174-176
mapping physical pins to GPIO

numbers, 169-170
pigpio module controlling,

170-177
program status example,

179-183
relay module example, 176-177
resistors, when needed with, 175
RPi.GPIO module controlling,

170
SPI protocol with, 177-179
status of pins, checking, 172-174

GPL (GNU Public License), 226
grep command, 146, 155-158
groups, 32-33

adding, 158
id for (GID), 32
permissions for, 33-36, 160-161

H
hash tag (#) prompt, 52
headless operation, 93-126

connecting to Raspberry Pi,
95-99

desktop, turning off, 93-95
remote command-line access,

99-107
remote desktops, 108-117
transferring files, 117-126

help command, 62-63
/home directory, 30
hostname, changing, 127-131

Index 241

hostname command, 127
hostname file, 129
hosts file, 128

I
I²C protocol, 177-186

communicating with Arduino,
183-186

enabling, 177-179
program status example,

179-183
IFTTT (If This, Then That), 199-208
info command, 66-69
init process (see systemd (system

daemon))
installing software, 79-90

(see also Raspbian disk image)
interfaces file, 73-75
Internet of Things (IoT) devices

security of, 33
triggering events from, 199-208

ip addr show command, 96
IP address, determining, 95-99
iPhone

determining IP address from,
98-99

SSH client for, 107
VNC client for, 116

J
jobs, scheduling, 165-168

K
keyboard layout, 17-18
kill command, 147-148

L
LED light example, 204-208
/lib directory, 30
Lighttpd web server, 208-211
Lightweight X11 Desktop Environ-

ment (LXDE), 22
Linux

desktop (see desktop)
distributions, x, 230-232

downloading to SD card, 2-13
filesystem (see filesystem)
groups (see groups)
history of, 223-229
kernel, 229-230
permissions, 33-36, 160-161
processes (see processes)
services, 36-38
shell, 25-27
SSH client for, 106
terminal (see terminal)
uncompressing disk image, 5
users (see users)
VNC client for, 114-116
writing disk image to SD card,

11-13
localization options, 15-18
ls -l command, 33, 35
ls command, 29, 56-58
lsusb command, 151-152
LXDE (Lightweight X11 Desktop

Environment), 22
Lynx Browser, 21

M
macOS

SSH client for, 104-106
transferring files, 119-122,

125-126
uncompressing disk image, 4
VNC client for, 112-114
writing disk image to SD card,

8-11
Maker service, 200
man command, 63-66
/media directory, 30
memory usage, 141-145
microcontrollers, compared to

SBCs, 138, 235-237
Minix, 227
mkdir command, 58-59
/mnt directory, 30
mplayer utility, 191
multimedia, 189-194

analog audio jack, enabling,
189-191

242 Index

playing media from omxplayer
utility, 191-192

playing media from scripts,
193-194

volume, controlling, 192-193
mv command, 60

N
nano editor, 26-27
network

connecting to, from command
line, 73-79

connecting to, from desktop, 44
interfaces file for, 73-75
static IP address, setting, 75
transferring files over, 117-126
WiFi, connecting to, 73, 76-79
wired Ethernet, connecting to,

75
Nimbus, 211-213
NOOBS disk image, 2

O
omxplayer utility, 191-192
online resources

country codes, 77
DistroWatch, 232
for this book, xii
language codes, 16
Make:, xii
Nimbus, 213
pigpio module, 172
Python module, 180
Raspberry Pi Foundation, 2
rclone utility, 196

Open Source Media Center distri-
bution, 232

open source software, 79, 226,
232-235

OpenElec distribution, 232
operating system (see Linux) (see

macOS) (see Windows)
/opt directory, 30
Oracle VirtualBox, 217-221
ownership of files, 159-160

P
panel, 43

application launch bar in, 46
location of, changing, 45

parent PID (PPID), 38
passwd command, 19
password, for pi user, 19, 32
PCB (printed circuit board), 1
performance

CPU utilization, 42, 138
monitoring, 138-145

permissions, 33-36, 160-161
pi user, 19, 31
PID (process id), 38, 146-147
pigpio module, 170-177

installing, 171-172
LED light example, 174-176
pin status example, 172-174
relay module example, 176-177
running, 172

pin status example, 172-174
PiNet distribution, 232
pip package management tool, 205
PPID (parent PID), 38
printed circuit board (PCB), 1
printing directory contents, 56-58
/proc directory, 30
processes, 38-40

continuing after pausing, 149
currently running, listing, 39
id for (PID), 38, 146-147
killing, 145-148
monitoring, 139-145
parent PID for (PPID), 38
pausing, 148-149
running in background, 149-151
status of, 146-147

program status example, 179-183
prompt on command line, 51-53
ps command, 39, 146-147
PuTTY, 101-104, 118
pwd command, 53
Python CGI scripts, 209, 210

Index 243

R
Raspberry Pi, 1

booting, 13
cloud services, accessing (see

cloud services)
expanding filesystem on, 14
GPIO pins in (see GPIO pins)
hostname for, changing, 127-131
IP address for, determining,

95-99
localization options for, 15-18
multimedia, playing (see multi-

media)
password for pi user, 19, 32
performance, monitoring,

138-145
power supply for, 13
SSH server for, 99-101
virtual, 217-221
VNC server for, 108-110

Raspbian disk image, 2, 230-232
downloading, 2
uncompressing, 3-6
writing to SD card, 7-13

raspi-config tool, 14, 93-95, 100
rc.local file, 131-133
rclone utility, 196-199
RealVNC, 110-116
rebooting, 90-91
regular expressions (see grep com-

mand)
relative paths, 54
relay module example, 176-177
remote command-line access,

99-107
remote desktops, 108-117

client for, on Linux, 114-116
client for, on macOS, 112-114
client for, on Windows, 110-112
server for, on Raspberry Pi,

108-110
resistors, when needed, 175
rm command, 60
root directory, 29, 29
/root directory, 30
root user, 32, 52

router, determining IP address
from, 97-98

RPi.GPIO module, 170
/run directory, 30

S
SBC (single-board computer), 1,

235-237
(see also Raspberry Pi)

/sbin directory, 31
scheduling jobs, 165-168
SCP (Secure Copy), 117-126
scripts (see CGI scripts) (see shell

scripts)
SD card

downloading operating system
to, 2-13

requirements for, 1
Secure Copy (SCP), 117-126
Secure File Transfer Protocol

(SFTP), 117-126
secure shell (see SSH client) (see

SSH server)
security

password for pi user, 19, 32
root user, limiting use of, 33
sudo command, 35
WPA (WiFi Protected Access),

77-79
semicolon (;)

ending a command, 165
running multiple commands,

163
services, 36-38
SFTP (Secure File Transfer Proto-

col), 117-126
sh (Bourne shell), 26
sh command, 27
shell, 25-27

(see also command line; termi-
nal)

shell scripts, 26-27
output from, capturing, 153-155
playing media files from,

193-194
starting on bootup, 131-133

244 Index

shortcuts
creating on desktop, 47
in panel, changing, 46

shutdown command, 90-91, 220
single-board computer (see SBC)
smartphones (see Android) (see

iPhone)
software

installation conflicts, resolving,
89

installing, 79-90
(see also Raspbian disk

image)
open source, 79
removing, 87
searching for packages, 85-86
updates, getting, 80
upgrades, getting, 81-84, 88

SPI protocol, 177-179
/srv directory, 31
SSD1306 display driver, 180
SSH client

for Android, 106
for iPhone, 107
for Linux, 106
for macOS, 104-106
for smartphone, 106-107
for Windows, 101-104

SSH server, 99-101
ssh tool, 106
startx command, 95
static IP address, 75
storage device (see SD card)
sudo command, 14, 35-36
super user (see root user)
SuperUserDo command (see sudo

command)
sync command, 11, 13
/sys directory, 31
systemctl command, 37, 109
systemd (system daemon), 37, 38
systemd-analyze command, 37

T
Tab key, for auto-complete, 70
tail command, 157-158

taskbar (see panel)
TeleTYpe (TTY), 102
terminal, 23-25

(see also command line; shell)
compared to console, 24
exiting, 135
opening, 24
processes running in, 39
scrolling, 52
switching sessions, 163

Terminal application, 104-106
terminal emulator, 24
time sharing, 224
/tmp directory, 31
Tonido, 213-215
top tool, 139-145
Torvalds, Linus, 227-229
touch command, 59
transferring files

over a network, 117-126
to and from cloud services,

198-199
TTY (TeleTYpe), 102

U
Ubuntu Mate distribution, 232
UID (user id), 32
umount command, 12
unzip utility, 6, 196
up arrow key, for previous com-

mands, 71
uptime command, 140
USB devices

connected, determining, 151-152
power used by, 152

users, 31-33
adding, 158-159
default user, pi, 31
id for (UID), 32
permissions for, 33-36, 160-161
root user, 32

/usr directory, 31

V
/var directory, 31

Index 245

vertical bars (||), running multiple
commands, 162-163

video files, playing (see multime-
dia)

Virtual Network Computing (see
VNC)

virtual Raspberry Pi, 217-221
vlc utility, 191
VNC (Virtual Network Computing),

108-117
client for, on Android or iPhone,

116
client for, on Linux, 114-116
client for, on macOS, 112-114
client for, on Windows, 110-112
server for, on Raspberry Pi,

108-110
transferring files, 118

volume, controlling, 192-193

W
web server

dedicated, with Lighttpd,
208-211

simple, with Flask, 204-205
website resources (see online

resources)
wget command, 171, 182, 196
WiFi, connecting to, 73, 76-79
WiFi Protected Access (WPA),

77-79
Windows

SSH client for, 101-104
transferring files, 118-119
uncompressing disk image, 3
VNC client for, 110-112
writing disk image to SD card, 7

WinSCP, 118-119
wired Ethernet, connecting to, 75
WPA (WiFi Protected Access),

77-79
wpa_supplicant.conf file, 77-79

Z
ZIP files, uncompressing, 3-6

246 Index

About the Author

Aaron Newcomb has been a Maker since he was old enough to
hold a screwdriver and has been using Linux since 1997. He has
worked in the IT industry for companies like New Relic, NetApp,
Oracle, Sun Microsystems, and Hewlett Packard. He cohosts
several shows about technology for TWiT LLC, including FLOSS
Weekly, All About Android, This Week in Google, and The New
Screen Savers. In 2012, he founded the nonprofit organization
Benicia Makerspace, where he currently serves as president and
executive director when he is not busy at work.

Colophon

The image on the cover of Linux for Makers is Tux, the Linux
penguin, lovingly cradling the Raspberry Pi logo, symbolizing
the synergy between the hardware and software sides of the
Maker movement.

The cover image is by Brian Jepson. The cover and body font is
Benton Sans; the heading font is Benton Sans; and the code
font is TheSansMonoCd.

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started
	Choosing and Downloading a Disk Image
	Uncompressing the Disk Image
	Windows
	MacOS
	Linux

	Writing the Disk Image to the SD Card
	Windows
	MacOS
	Linux

	Booting the Raspberry Pi for the First Time
	Expanding the Filesystem
	Changing the Localization Options
	Changing the Default Password

	Why This Matters for Makers

	Chapter 2. Linux Principles
	The Linux Desktop
	The Terminal or Console
	The Shell in a Nutshell
	Try It for Yourself

	Filesystems and Structures
	Try It for Yourself

	Users and Groups
	Permissions and sudo
	Try It for Yourself
	Try It for Yourself

	Services
	Try It for Yourself

	Processes
	Try It for Yourself

	Why This Matters for Makers

	Chapter 3. Using the Desktop
	When to Use the Desktop?
	When Not to Use the Desktop?
	Understanding the Layout
	Connecting to the Network
	Changing the Look and Feel
	Changing the Panel Location
	Changing the Background Image
	Changing the Shortcuts in the Application Launch Bar
	Creating a Desktop Shortcut

	Why This Matters for Makers

	Chapter 4. Command-Line Basics
	Understanding the Prompt
	Try It for Yourself

	Orienting Yourself in the Filesystem
	Where Am I?: pwd
	Changing the Working Directory: cd
	Printing Out the Contents of a Directory: ls
	Creating New Files and Directories: mkdir and touch
	Moving and Deleting Files: cp, mv, and rm
	Try It for Yourself

	Get Help with a Command: help, man, and info
	Try It for Yourself

	Eliminate Some Typing
	Auto-Complete a Command: Tab
	Search for a Previous Command: Up, Ctrl-R
	Try It for Yourself

	Connecting to the Network via the Command Line
	The Interfaces File
	Wired Ethernet
	Static IP Address
	WiFi
	More Secure WiFi with Multiple Networks

	Installing Software: apt
	Using apt-get update
	Using apt-get upgrade
	Using apt-cache
	Using apt-get install
	apt-get remove
	apt-get dist-upgrade
	Fixing Conflicts
	Try It for Yourself

	Rebooting and Shutting Down
	Why This Matters for Makers

	Chapter 5. Headless Operation
	Turning Off the Desktop
	Finding Your System on the Network
	Raspberry Pi
	Router
	Android/iPhone

	Command-Line Access: ssh
	Windows
	MacOS
	Linux
	Android/iPhone

	Remote Desktops: vnc
	Setting Up the Raspberry Pi
	Windows
	MacOS
	Linux
	Android/iPhone

	Transferring Files: scp, sftp
	Windows
	MacOS
	Linux
	From the Command Line: MacOS and Linux

	Why This Matters for Makers

	Chapter 6. Tips and Tricks
	Changing Your Hostname
	Starting a Script on Bootup: rc.local
	Try It for Yourself

	Aliases
	Try It for Yourself
	Checking Disk and File Space Usage: df, du

	Performance Monitoring: top
	Try It for Yourself

	Killing a Process: Ctrl-C, ps, kill
	Stop, Background, and Foreground Jobs: Ctrl-Z, &, fg
	Try It for Yourself

	Finding USB Devices: lsusb
	Logging the Output of a Script: >, >>
	Searching the Output of a Command: grep
	Monitoring a Log File: tail

	Adding a User: adduser, addgroup
	Changing File Ownership and Permissions: chown, chmod

	Running More Than One Command at the Same Time: &&, ||
	Opening Another Console Session
	Dealing with Long Commands
	Scheduling Jobs: cron
	Why This Matters for Makers

	Chapter 7. Controlling the Physical World
	GPIO
	I²C and SPI
	Talking to Arduino

	Why This Matters for Makers

	Chapter 8. Using Multimedia
	Choosing HDMI or Analog
	Playing Audio and Video Files
	Controlling the Volume
	Playing Media from a Script
	Why This Matters for Makers

	Chapter 9. Accessing Cloud Services
	Cloud Storage Services from the Command Line
	IFTTT
	Try It for Yourself

	Run a Dedicated Web Server
	Installation
	Configuration for Python
	Test It Out

	Roll Your Own
	Nimbus
	Tonido

	Why This Matters for Makers

	Chapter 10. Virtual Raspberry Pi
	Requirements
	Installation
	Usage
	Why This Matters for Makers

	Appendix A. Linux Background
	Brief History of the Original Maker Operating System
	Try It for Yourself

	Linus Torvalds
	The Linux Kernel
	Distributions
	Try It for Yourself

	How Open Source Software Works
	Single-Board Computers Versus Microcontrollers
	Why This Matters for Makers

	Index
	About the Author

