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Abstract

Smartphone is the most popular device becoming ubiquitous and its usage has ex-

perienced significant growth in the recent years because of its rich set of features

and services. Due to its rapid evaluation in today’s era, it is improving exponen-

tially in terms of computation power and application complexity. It is evident that

with the advancement in smartphones features numerous innovative and complex

applications are appearing in smartphones day by day. Besides, many applica-

tions suffer from serious energy inefficiency problems due to which usually higher

amount of power is consumed than expected and battery is drained/ depleted in

a short time. Energy inefficiencies appear when applications access the device

resources inappropriately (i.e. not releasing Wi-Fi/GPS/Wakelocks).

We aim at energy inefficiencies in smartphones, namely energy bugs, caused by

smartphone applications. For the detection of energy bugs several approaches

were proposed which are based on static, dynamic and hybrid analysis. Static

approaches use the static analysis and can find energy bugs without executing

the code. Additionally, static approaches are cost effective but there is an issue

of generation of false positives due to not executing the application. On the

other hand, dynamic approaches use dynamic analysis therefore applications are

executed with several numbers of test cases. However, due to the execution of

large number of paths or test cases dynamic approaches become more costly and

more time consuming. Moreover, hybrid approaches use both static and dynamic

analysis therefore these approaches are also costly due to the execution of test

cases.

This study focuses on static analysis approaches to overcome the false positives.

Therefore, we proposed a technique to investigate the false positives to effectively

detect the energy bugs in Android applications. First of all, we have applied the

existing static analysis based approach and different bug prone paths are identified.

After that, all the identified bug prone paths are further analysed. Besides, by

using the symbolic execution path conditions are created for each buggy path that
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are further evaluated on the constraint solver to investigate that either identified

buggy paths are indicting real energy bugs or false positives.

We tested our approach towards a number of open-source real-world applications

and analyze to demonstrate the efficiency and accuracy of our approach by identi-

fying the infeasible paths. Our experimental results show that we identified most

of the real energy bugs as well as false positives. This study helps application

developers to identify where and how the abnormal battery drains issues have

occurred. Further, we discussed future work regarding this research.
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Chapter 1

Introduction

Smartphones are becoming popular devices in marketplace and their use is in-

creasing with the passage of time [1]. Faruki et al.[2] stated that due to cost

effectiveness, internet, games, location based services, messages and multimedia

services smartphone has become ubiquitous. In order to meet the customer’s

demands, many I/O components are added in modern smartphones [3]. These

components include GPS, Wi-Fi, camera and many more. Despite of converting

these smartphones in modernized form, issue of high energy consumption remains

a major factor [4]. On the other hand, mobile phones have limited battery timings

and limited battery power [5].

In short, mobile phones require frequent battery recharge. Hence, it can be said

that one of the most critical resources in smartphone is battery life and also the

battery development in mobile phones is slower as compared to the hardware ad-

vancements. Despite of all these factors, smartphone users like to spend most of

their time on using mobile phones [5]. With the passage of time, mobile phone

companies introduced new features along with improved processing power and

battery capacity but the increase in battery capacity was not that much as com-

pared to processing power. A study proved this fact by comparing Nokia 9000

Communicator and Samsung S3 [6]. These researchers further reported that from

1996 to 2012 processing power was increased from 24MHz to 1.4GHz. However,

the battery capacity was only improved from 800mAH to 2100mAH.

1
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It is evident that with the advancement of the smartphones specifications many

innovative and complex applications are appearing in smartphones on daily basis.

But the quality of these advanced applications and efficiency of new codes cannot

be guaranteed. The reason is that every developer has his/her own expertise and

has different level of skills that varies from novice to expert. Also, most of the

applications need more energy to perform their functions. These energy hungry

applications lead towards short battery time and more power consumption which

ultimately results in unsatisfied user [6]. Researchers stated that user’s satisfaction

can be increased by improving the energy efficiency of mobile applications [7].

1.1 Energy Bugs

Pathak et al. [8] talked about abnormal battery drain issues that are caused by

different reasons including hardware, software and external. These researchers

outlined battery drained issue and performed the first study to present the taxon-

omy of the energy bugs. They also reported the percentage of battery drain caused

by hardware and software i.e. 22.93% and 35.10% respectively. Xiao Ma et al. [9]

also observed that most of the drainage of battery caused by application-related

bugs. These bugs cause user frustration and the severity of these bugs can be

estimated by the reports that are present on the internet forums.

Banerjee et al. [6] stated about the energy inefficiencies in Android applications.

Energy-inefficiencies can be categorized into two types i.e. energy bugs and energy

hotspots. Serious energy issues arise in smartphones due to energy bugs. Energy

bug, as name suggests, causes an error to the energy of the system or reduce the

battery life in smartphone [8]. In case, when there is no user activity or when appli-

cations are not used (when applications are terminated or closed), there should be

low energy consumption. But in fact, these applications consume high power and

more energy even if there is no user activity and applications are terminated even

after it has completed execution. High power consumption indicates the existence

of an energy bug in an application [10]. While a scenario in which an application
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is executing on a smartphone and it starts consuming abnormally high amount

of battery power despite low hardware resource utilization execution is outlined

in the study as energy hotspots. Banerjee et al. [6] proposed the classification of

energy bugs that can be found in Android applications. This classification shows

the different natures of smartphone energy bugs. Table 1.1 represents the clas-

sification of the energy bugs that can be present in an Android application. As

Table 1.1: Classification of Energy Bugs

No. Category Energy Bugs
1. Hardware

Resource
Resource Leak: Existence of resource leak bug in-
dicates that before exiting the requested/acquired re-
sources (such as Wi-Fi) are not released.

2. Sleep-State
Transition
Heuristics

Wakelock Bug: If Wakelocks are used in an improper
way, it can result in high-power consumption even if ap-
plication has finished its execution [8].

3. Vacuous
Back-
ground
Services

Vacuous Background Services: When Applications
mishandles background services but doesn’t remove the
service explicitly before exiting, the service keeps on re-
porting data even though no application needs it. This
situation leads to high energy consumption.

4. Defective
Function-
ality

Immortality Bug: A situation where a buggy appli-
cation drains battery, upon being closed by the user,
respawns, enters the same buggy state and continues to
drain battery [8].

shown in Table 1.1, if resource leak bug exists, it indicates that before exiting,

the requested resources are not released. Sometimes, when there is need to awake

an application, a power management mechanism is used to keep it awake. For

that purpose, wakelocks are acquired. But if wakelocks are not properly used by

application then device will be stuck in high power state although application has

completed its execution. Wakelock bug was detected in many mobile applications

such as Gallery app, Google Calendar, email apps, weather apps. Vacuous back-

ground services like updates about location or sensors should be perfectly handled

by applications. But if these services are mishandled by application and service

is not removed explicitly before exiting then service will continue reporting data
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even though no application needs it. In such case, vacuous background services

bug occurs. This bug was observed in different applications such as GPS (Map

based Apps), location updates, sensor updates. Defective Functionality can be

defined as a scenario where user closes an application but still that application

drains battery power, re-spawns, and enters the same buggy state, an immortality

bug occurs. This bug was detected in different applications such as Media Server

and Google Maps.

1.2 Detection of Energy Bugs

Android is an open-source operating system (OS) designed for mobile devices such

as smartphones. We choose Android as our target platform primarily due to its

relevance in the real world. According to study [2] OS of Android smartphone has

captured more than 75% of the total market-share. Now, they are being used to

perform daily activities. However, some of the applications in smartphones are

energy hungry which results in short battery timing and high power consumption

[11]. This can also results in unsatisfied consumers [6]. It is also revealed that

smartphones have low battery power and they need frequent recharge. Even then,

users preferably use smartphones as long as possible [5]. High energy consumption

caused by an application is because of existence of energy bug. This energy is

consumed even if application does not work or it is stopped. The researchers

reported that energy bugs can be introduced due to the mistakes of the developers

during coding [12]. From these studies, it can be analyzed that developers of energy

inefficient applications face challenges of energy and receive many complaints from

the users.

Pathak et al. [13] studied major components of power consuming. These compo-

nents include I/O components like CPU, Wi-Fi, radio, Camera and GPS. In order

to access these components in an application, a set of system calls (APIs) provided

by the Android SDK framework is used. Similarly, [6] analyzed that except CPU,

other I/O components like Wi-Fi, radio, Camera and GPS can only be accessed
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via a set of system calls (APIs) provided by the Android SDK framework. Ad-

ditionally, a set of system calls (APIs) is also used to access background services

like updates about location or sensors, the power management functionality and

some other hardware sources.

According to Banerjee et al. [6], most of the energy bugs are exposed through

the invocation of system call(s). The basic reason of energy inefficiencies is when

the application accesses the device resources in an inappropriate manner (e.g. not

releasing Wi-Fi or GPS, Wakelocks or expensive sensor updates). This ultimately

results in short battery timings and battery life. Therefore, to build energy-efficient

applications, it is crucial for the developer to know these energy inefficiencies in

the application code.

For example, one of the most popular Android application “Osmdroid” contains

energy inefficiency problem i.e. Osmdroid Issue 53 [14]. This problem was also

reported by users of this particular application. This issue was raised by switching

between different activities, for example, switching from MapActivity to any other

activity with disabled location tracking, this keeps acquiring GPS data to extract

an invisible map due to an unreleased wakelock. Resultantly, useless location

sensing reduces battery energy.

The resource in an application can be acquired as: (i) local resource and (ii) global

resource. Local resource is declared in a function while global one is declared

outside the functions and within a class. Also, developer releases local resource

while function ends whereas global resource is released on all exit paths from its

request point [15].

Moreover, researchers reported that for program correctness it is vital to verify

that program is using the resources effectively or not [16]. Improper usage of the

resources cause short battery life (also known as energy leak problem) as it causes

the system to run out of resources. If the resources are unnecessarily opened or an

obtained resource is closed without any usage then it will result in shorter battery

life.
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Furthermore, actual flow of source code can be complex and there can be several

nodes and edges in the CFG of an application. Besides, for the purpose of en-

ergy bugs detection, we should focus on those paths of programs/source code on

which resources are acquired but never released or released without being used as

these paths contain energy bugs. Inappropriate resource usage leads to resource

starvation or too much short battery life. In other words, to overcome the battery

leakage we have to detect those paths on which energy bugs can arise or we have

to detect those paths which contain energy bugs. So, different graph coverage

criteria’s can be applied i.e. node coverage, edge coverage, edge-pair coverage or

loop coverage etc. We have applied the edge coverage criterion on the control flow

graph. As one resource can leads to different states from different paths, therefore,

it is necessary to cover all the edges of the graph. For this purpose we have used

edge coverage criterion and it was able to cover all the edges of the graph. How-

ever, more stronger coverage criteria’s than edge coverage criteria can be applied

but these criteria’s will increased the cost due to generation of more number of

paths as well as effectiveness will not be much increased. Moreover, in 2014, Li et

al. [17] reported that 75% of the application spends more than 89% of their net-

work energy in HTTP(Hypertext Transfer Protocol). This designates that some

resources are more energy hungry. Therefore, incorrect usage will lead to energy

leak problem i.e. HTTP requests making is the most energy consuming network

operation. The current study focuses on the energy bugs detection in Android

applications due to resource leakage. Table 1.2 signifies particular situations of

energy bugs that are deliberated in this study.

Table 1.2: Situations of Energy Bugs

No. Category Energy Bug
1. Open (O) O: A situation where the acquired resource is neither

used nor released.

2. Unclosed-ness
(O and U)

U: This situation can occur if the acquired resource is
used, but not closed.

3. Unused-ness
(O and C)

C: It happens when the resource is opened and closed
without any use.
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As shown in Table 1.2, the resource that is acquired must be used before closing

or should be released on time. Most of the energy bugs arise because of unclosed-

ness (i.e., O and U). The reason behind is that some of the programmers do not

remember to close the resource when they exit. Such as, if the resource named

“Wi-Fi” is acquired and used but not closed at the end then it will consume more

energy. Other reason is unused-ness (i.e., O and C). This situation occurs when

the programmer opened the resource in advance and closed at the last minute

without considering it is in need or not. In other words, we can explain it as the

resource is acquired and closed without examine that whether it is used or not.

Such as, if the resource named “Wi-Fi” is acquired and closed without performing

any task then it will consume more energy. Moreover, the situation of (O) can

occur if unnecessary resources are acquired by programmers.

1.3 State-of-the-Art Approaches

Several static, dynamic and hybrid analysis based approaches to detect the energy

bugs in Android applications exist in the literature but most of the studies focus

on the second situation of energy bugs named as ”unclosed-ness”.

1.3.1 Static Approaches

Static approaches perform static analysis of code to detect the energy bugs without

executing the code of the application and can find energy bugs. Additionally,

static analyses are valuable due to the ability of examining all program paths [18].

However, static analyses are not able to evaluate the conditions of source code and

there may be paths that are infeasible (invalid paths) which designate that these

paths will fail to execute [19]. Researches stated that static analysis may generate

false warnings or may miss important bugs while testing [20]. Consequently, these

approaches generate more number of false positives because code is not executed

and infeasible paths lead to results in false positive. Therefore, for better detection
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of energy bugs we need to reduce the number of false positives. In order to

overcome this issue this study aims to eliminate the false positives by deliberating

the path conditions which help to identify the false positives (FPs) reported from

the existing static approach proposed by Xu et al. [21].

1.3.2 Dynamic Approaches

With static analysis, code is not executed so it is not confirmed that bug will

actually arise or not. Whereas, dynamic analysis executes the code so possibilities

of bug detection are better than static analysis. In other words, for accurate

detection of energy bugs dynamic analysis approaches are more effective. However,

test cases are executed which makes dynamic analysis approaches more costly.

Additionally, due to the execution of large number of paths these approaches

become more costly.

1.3.3 Hybrid Approaches

Hybrid approaches are the combination of both static and dynamic analyses. Due

to providing the advantages of both static and dynamic analyses, hybrid ap-

proaches are valuable. As, these approaches are able to provide the advantages of

both static and dynamic analyses however, due to dynamic analysis its execution

time and cost can also be increased.

1.4 Problem Statement

The current state-of-the-art demarcates that the researchers have proposed various

techniques to detect the energy bugs where most of the studies are based on second

situation of energy bugs named “unclosed-ness” but very few studies are based on

open and unused-ness. Moreover, some studies are based on static analysis and

some of them are based on dynamic analysis. Dynamic analysis approaches are



Introduction 9

more costly due to the execution of test cases. Conversely, static analysis analyse

the code without execution. Therefore, existing static analysis approaches generate

more number of false positives. Besides, these approaches consider all the paths

for the detection of energy bugs including feasible and infeasible. If there is a bug

in infeasible path it will also be consider as bug from static analysis approaches

although it is not a bug but false positive.

1.5 Scope

Various approaches are used to detect different type of bugs and hotspots in An-

droid applications. Serious energy issues arise due to energy bugs. Therefore,

the scope of this study is to identify the energy bugs in Android applications and

to consider two types of energy bugs including resource leak bugs and wakelock

bugs. Other type of bugs in program such as logical bugs, performance bugs

and hotspots are not considered. Moreover, we focused on the static analysis ap-

proaches to eliminate the false positives (FPs). The reason for the selection of

static analysis approaches is that these approaches generate more number of false

positives.

1.6 Research Questions

Based on the objectives of the study, following research questions are designed:

RQ 1: What are the shortcomings of existing static energy bugs detec-

tion techniques?

Through in depth study of literature, static analysis based techniques implemented

in the field of energy bugs are investigated thoroughly, and their gaps are identified.

RQ 2: How to overcome the shortcomings of existing static energy bugs

detection techniques?
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False positives are generated due to the static analysis and for the identification

of FPs a static analysis based approach is proposed. Path conditions are created

for each erroneous path by using symbolic execution and constraint solver is used

to determine the infeasible paths or FPs.

RQ 3: Does the proposed approach overcome the false positives when

compared with existing techniques?

Several experiments are performed on different Android applications for deter-

mining the effectiveness of the proposed technique over existing static analysis

techniques.

Our research is carried out to answer the above mentioned research questions.

1.7 Research Methodology

1. First of all, we have done literature review to identify the most relevant

hybrid, dynamic and static energy bugs detection techniques. After studying

numerous techniques, we have reached the conclusion that due to static

analysis, static analysis approaches produce false positives.

2. To overcome the gap in existing static analysis techniques, we have proposed

a solution of adding the path conditions that helps to identify the infeasible

paths.

3. Implementation of our approach is performed in the following steps:

(a) In the initial phase, we collect the real world Android applications and

read their source codes for the exploration of energy bugs.

(b) In the next step, Control flow Graph is created from each source code

of application.

(c) We have applied the State taint analysis to detect the energy bugs.
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i. Control flow Graph, graph Coverage criteria is taken as input and

resource usage protocols (Automata) is used as a guide.

ii. CFG is traversed according to the Edge coverage criterion and test

paths are created.

iii. After that, it is checked that whether resource action obeys the

corresponding resource protocol (resource automata) or not; un-

til all the paths are checked. Those paths are considered as er-

roneous/buggy on which an action sequence does not satisfy the

resource protocol.

(d) After that, by using Symbolic execution path conditions are created for

each erroneous path.

(e) Paths conditions are evaluated by constraint solver ”MiniZinc” and

infeasible paths which lead to FPs are identified.

4. For comparison, false positives are used as the main parameter. We have

also compared our approach with existing approach [21] by using their data

set for the purpose of evaluation.

1.8 Research Contribution

1. In this research work, we have proposed the static approach for better energy

bugs detection in Android applications. The proposed technique is compre-

hensively evaluating control flow graph (CFG) and resource usage protocol

(automata). The graph coverage criterion named “Edge coverage criteria”

is applied on the CFG, and a resource usage protocol is used as a guide to

identify the buggy paths in a CFG. Paths which are indicating energy bugs

(buggy paths) are identified.

2. Symbolic execution is used for creation of path conditions only for identified

buggy paths to overcome the complexity of generated constraints.
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3. The main identified problem of static analysis approaches is that these ap-

proaches generate more number of false positives so we have used false pos-

itives as the main parameter to identify that either we are able to overcome

the limitations of existing studies or not. To overcome the false positives or

to identify the infeasible paths which leads to false positives, path conditions

are evaluated by using the constraint solver also known as query solver.

4. Although our approach is static approach but false positives that are gen-

erated due to static analysis are reduced. Therefore, our approach is more

scalable and helps in reducing the overall analysis time although with the

static analysis.

5. To evaluate the effectiveness of our approach, we performed experiments on

different 13 real world Android applications, which are downloaded from Git-

Hub and Google code. In out experimental results, our approach reported

the real energy bugs as well as removes the false positives in 5 of the tested

applications.

1.9 Thesis Organization

The rest of study is organized as follows:

Chapter 2 surveys the existing work on energy bugs detection. Chapter 3 discusses

the proposed approach and its details. Chapter 4 discusses the implementation

details. Chapter 5 presents the experimental results of proposed approach and

comparing it with existing techniques to evaluate the performance of our proposed

technique followed by Chapter 6 which finishes up the entire work and furthermore

gives some future research directions.



Chapter 2

Literature Review

Chapter 1 provides sufficient details on scenarios that guide us to define the prob-

lem statement. This chapter focuses on critical analysis of all the state-of-the-art

approaches, as every research study is dependent on the previous study, that have

already been performed in this field. The number of new ideas for detection of en-

ergy bugs in Android applications have been proposed as the numbers of Android

applications are increasing day by day and incorporating features like multiple

cores, GPS location tracking and large screens etc.

Energy inefficiencies in smartphone applications can be identified by a class of

bugs which is known as energy bugs. Pathak et al. [8] studies the class of bugs on

smartphones. The focus of their study was on the challenges that are associated

with the dealing the energy bugs. As per their definition the energy bug is an error

that results in unexpected high energy consumption in the system. The energy

consumption can be associated with OS, hardware, firmware or external. Resul-

tantly, the mobile device having an issue/error runs out of power. Furthermore,

according to their results, application related energy bugs were the most noticeable

type of energy bugs. They also identified the different reasons of battery drain

caused by hardware (22.93%) and software (35.10%).

To avoid energy bug issues such as short battery life and low energy power, modern

smartphones are designed by using different power levels so that battery can be

13
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used for longer time period. In case, if there is an application having energy bug

issue will result in inappropriate power state, i.e. even when there is no user

activity and power state is still in non-idle state. Most of the energy problems

arise when application is unable to access the system resources appropriately, such

as not releasing Wi-Fi, or not releasing wakelocks etc [6].

Pathak et al. [13] studied about power consuming components and identified the

primary sources of energy consumption in smartphones. These components include

I/O components such as Wi-Fi, CPU and GPS. In current smartphones Operating

Systems (OSs), power management functionality (e.g. Wakelocks) is used that all

the components including CPU will be in the idle state until the application itself

instructs the OS to keep it awake. Other types of energy bugs, such as sleep-state

transitions and background services can also be found in Android applications [6].

Furthermore, according to researchers, these types of bugs were found in different

real life Android applications i.e. Facebook, Location listener and apps that were

using GPS like Osmdroid, GPSLogger etc.

In this chapter, different existing energy bugs detection techniques are discussed.

2.1 Energy Bugs Detection Techniques

Energy impact of software is considered vital and cannot be ignored because of

higher demand of energy. Additionally, literature is rich about energy inefficien-

cies detection in the Android applications. Several static, dynamic and hybrid

approaches exist for the detection of energy bugs. Hybrid approaches are the

combination of both static and dynamic analyses. These approaches are useful

because it provides the advantages of both static and dynamic approaches. How-

ever, due to dynamic analyses its execution time can be increased and cost can

also be increased. Moreover, static approaches perform static analysis of the code

to check bugs without executing the code of application. Dynamic approaches

analyze the dynamic behavior of code by executing it. Although, due to the ex-

ecution of code, detection of energy bugs with dynamic analysis is more effective
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than static analysis. But there are large number of paths and all paths can never

be executed and if so these approaches become more costly. On the other hand, if

energy bugs are indicated in any path from static analysis but that path can never

be executed then identified energy bug can never arises and will be considered as

false positive. Therefore, main focus of this study is on static analysis approach

so that we can identify infeasible paths.

It is evident that energy bugs detection has been studied by number of studies

but there are few limitations. Following are the different energy bugs detection

techniques based on hybrid, dynamic and static analyses respectively.

2.1.1 Hybrid Energy Bugs Detection Techniques

Such as, in 2014, Banerjee et al. [6] presented the hybrid approach, an automatic

test generation framework for the detection of energy hotspots and energy bugs in

Android applications. The proposed framework consists of two major components,

i.e. guidance and hotspot or energy bug detection component. To reveal energy

hotspots or energy bugs, they explored the event traces in guidance component.

In addition, in hotspot or energy bug detection component, they executed an ap-

plication on a smartphone and a power meter was attached with it to measures the

power consumption of the application. But, still there are chances that portions

of code will be unanalysed due to incomplete test generation method. Therefore,

it can generate false negatives. Additionally, the exploration algorithm generates

events traces by walking through the EFG (Event Flow Graph). But for those UI

screen which need inputs through an input-container (such as text-fields) random

data were used. Resultantly, the exploration algorithm may not have been able to

explore all feasible paths inside an event-handler.

In 2018, Banerjee et al. [15] enhanced previous approach [6] and developed the

EnergyPatch, a framework that uses hybrid analysis (i.e. a combination of static

and dynamic analysis techniques) for the detection, validation and repair energy
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bugs in Android applications. In their prior approach [6], these researchers gen-

erated the EFG of user-generated events. Whereas, in enhanced approach, CFG

(Control Flow Graph) of the event-handlers along with each event of the EFG was

generated. Each event of an EFG was associated with CFG. Furthermore, Energy

bugs were detected by using abstract interpretation and after that for validation

repair expressions were attached. But still there are chances of incorrect results

due to incomplete EFG generation, different events such as context events were

not considered. Additionally, CFG was generated for EFG, but no graph cov-

erage criterion was applied so it was generating overestimated results, including

infeasible paths and false positives.

In 2020, Li et al. [22] considered previously unaddressed energy issues in [6]

due to unnecessary workload on hardware components i.e. extremely frequent

operations, CPU and GPS. Additionally, main root causes of energy related issues

were also revealed i.e. unnecessary workload and excessively frequent operations.

But limitation was that the source codes of apps were statically analysed and due

to which infeasible paths were generated that lead to false positives.

2.1.2 Dynamic Energy Bugs Detection Techniques

In 2012, Zhang et al. [23] developed a tool named “Automatic Detector of Energy

Leaks (ADEL)” for detecting energy leaks in network communication for mobile

applications such as Wi-Fi and 3G interfaces. This tool consists of dynamic taint-

tracking in which each data object is labeled with a tag and the network data is

also tracked from its origination to its use or until its deletion. Additionally, it

helps to identify energy leaks resulting due to network download or unnecessary

network communications. Main focus on network downloads is because of two

main reasons. First, network devices, for example, cellular devices are more energy

hungry. Almost 70% of energy is consumed due to downloads among the network

transmissions. Second, in network communication major amount of energy is

wasted. However, there were few limitations of this study. First of all, ADEL

ignores the control flow and tracks the data flow. Due to the negligence of control
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flow it was generating false negatives. Secondly, false positives were generated

during taint propagation i.e. in “Busmap” application, text information for one

bus stop was contained in each data units, and in the same packet 2 to 3 data

units were packed. Resultantly, information for unused bus stops will be identified

wrongly if any bus stop in the packet was used.

In 2013, to handle the misuse of wakelocks Kim et.al [24] presented a technique

“wakescope”. Wakelock acquisition and release behaviour was tracked with the

help of wakescope. It was able to detect the improper handling of a wakelock to

avoid the energy waste in a smartphone device and it was also able to notify the

misuse of a wakelock handling. Inadequacy in this study was that wakescope was

not able to detect the problem at the source-level due to which this work was

not able to identify the cause of the problem in detail so false negatives can be

generated.

In 2015, Abbasi et al. [10] studied and investigated about operational definition

of energy bugs. To detect the presence of energy bugs, operational definition can

be easily translated into a procedure. Moreover, these researchers investigated

the existence of energy bugs when different applications are updated. Proposed

definition was validated with measurements and realistic energy bug examples.

However, this study also includes few drawbacks. It can be said that framework

was not fully implemented for detecting the targeted types of energy bugs is a

limitation of this particular study. Furthermore, executed test cases did not have

features or functionalities that can be added to upgraded application which will

leads to results in false negatives.

In 2015, Ferrari et al. [25] presented the design and implementation of a Portable

Open Source Energy Monitor (POEM) to permit the developers to automatically

test and measure the energy consumption of the call graph, the basic blocks, and

the Android API calls. Furthermore, the developers were able to locate energy

leaks with high accuracy. But, the runtime and energy consumption were increased

because when method is run for logging purpose POEM needs to access the file

system, which will results in a deterministic logging cost. Additionally, it was
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unable to capture those events which can take place so it will results in false

negatives.

In 2018, Abbasi et al. [26] discussed about the concept of Application Tail Energy

Bugs (ATEBs), its formal definition and identified root causes of tail energy bugs.

The researchers also developed the tool ATEBs detector for the detecting the

presence of ATEBs. However, there were no information identified that how to

release the wakelocks automatically when they have been acquired but not released

at the end even when they were not needed. Moreover, the tool was not fully

implemented to support other types of application components i.e. listeners, audio,

and wireless services. Therefore, false negatives can be generated due to neglecting

other types of application components.

In 2013, an automated approach was presented by Liu et al. [14] and their main

focus was on an application’s sensory data utilization at different states. Addi-

tionally, energy inefficiency problems were reported and their root causes were

identified. Moreover, Android specifications were used to derive the application

execution model (AEM) to describe the relation between the event handlers for

locating the misuse of sensor listeners i.e. which sensor listeners have forgot to

unregister at the end of execution. Furthermore, researchers implemented the

GreenDroid tool. But, some limitations of this study were still there. For example,

all the event handlers were not able to schedule by one state machine. Because of

this, it was difficult to manage. Real world Android applications contain hundreds

of event handlers but calling relationships between event handlers were manually

specifying by the researchers which was not practical. Likewise, complex user in-

puts (i.e. password) were unable to be generated because of randomly generation

of mock sensory data. Due to randomly generation false negatives were produced.

Moreover, unknown type of energy waste i.e. wakelock was not diagnosed which

causes severe energy waste. As well as, many new features of newer versions of

Android were not supported because it was concerning Android 2.3.

In 2014, Liu et al. [27] enhanced previous approach [14] by checking the behaviour

of activation and deactivation of both wakelocks and sensors. To identify whether
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the application was using sensory data in an appropriate manner or not, the sen-

sory data tracking was done. However, high code coverage was not possible due to

complex inputs i.e. user gestures or video inputs were unable to generate, which

was results in false negatives. Moreover, event handlers were unable to schedule in

the same way as real executions did, due to not considering dynamic GUI updates

at the time of implementation of GreenDroid. Additionally, GreenDroid generates

sensory data in random manner and feeds them to a running app for sensory data

utilization analysis. But some states that were only reachable by some specific

sensory data inputs were not reachable by GreenDroid. It was also considered in

GreenDroid that an app transfers to a new state after it has finished handling

an event i.e. click button, without considering that which program path is exe-

cuted during this event handling. However, different execution paths can lead to

different app states, which were not handled in GreenDroid.

In 2016, Original GreenDroid [14] was further extended by Wang et al. [28] and

they re-implemented the GreenDroid on the newest version of Java Path finder

(JPF) which gave the ability to supports new features of Android. Another fea-

ture was also added by researchers that E-GreenDroid was able to form one state

machine to schedule all the event handlers. Furthermore, it was providing a state

machine based on AEM, which was reusable for any Android app analysis. How-

ever, in this study, AEM was vague so simulation of runtime behaviours of services

was killed, due to which false negatives were generated. Further, they were imme-

diately checking for sensor listeners misuse even when activities have not finished

their lifecycles yet, which was causing false positives. Moreover, some patterns

of wakelock misuses i.e. multiple wakelocks acquisition were neglected therefore,

false negatives can be generated.

In 2017, Li et al. [29] implemented the enhanced approach of GreenDroid [27] as

a tool CyanDroid. The approach was generating sensory data using multidimen-

sional white-box sampling to explore different app states, tracking their propa-

gation and analyzing their utilization. Additionally, a feature of considering the

execution of program paths during event handling was also added by researchers

that were not entertained in previous work done by Liu et al. [27]. The drawback
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was that only location-aware Android applications were concerned. Moreover,

complicated user events (i.e. screen unlock event, valid user name and password)

were not simulated when text inputs was needed by Android application, random

strings were generated, so some application states were not reachable therefore

generating false negatives.

In 2017, another extension was done by Liu et al. [30] and NavyDroid was de-

veloped. More energy inefficiency bugs in Android application were discovered

than existing work E-GreenDroid did. Along with the GreenDroid previous ver-

sion functionalities this work was also focusing on multiple patterns of wakelock

misuses. Therefore, more complex energy bugs were detected that were caused

due to wakelock misuses. Inadequacy in this study was that tool was implemented

on Java path finder (JPF) instead of Android virtual machine (AVM) but it may

not be consistent with real world Android applications due to only simulate the

execution of Android apps.

In 2019, ZHU et al. [31] discussed about the technique that models the power

consumption by using system call and seven machine learning models were trained

for energy bugs detection. Furthermore, energy bug is not identified in the code,

but this procedure identifies commit that introduces energy bugs in the revision

history so that developers could find the buggy commit efficiently. But limitation

was that training data was not including all the data patterns of test data so, bias

and variance will exist.

2.1.3 Static Energy Bugs Detection Techniques

In 2012, Pathak et al. [32] presented a study of energy bugs in Android applications

(i.e. no-sleep energy bugs and wakelock bugs). For the purpose of wakelock

bugs detection a solution was used which was based on dataflow analysis. To

automatically achieve possible no-sleep bugs in an Android application, no-sleep

bug detector was developed. Additionally, major causes of no-sleep bugs were

also revealed. Inadequacy in this study is that an edge was placed from each run
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time exception but that was not handled within routine to EXIT node for that

routine. It was creating a path for a lock acquiring definition to reach exit and

was generating false positives. Moreover, there was no mechanism to automatically

prune out FPs.

In 2013, Guo et al. [33] presented a precise and lightweight static analysis tool

Relda that was checking for resource leaks in event handlers. It was able to auto-

matically analyze an application’s resource operations and to detect the missing

release operations. It was constructing Function Call Graph (FCG) of an applica-

tion and resource leak summary and report was generated. However, the proposed

approach was not context sensitive. For instance, if resource leak is considered and

there exist only one releasing resource path, no resource leak report will be given,

causing false negatives. Or in other words, due to not considering control flow

information to several resource leaks were missed, causing FNs. Other limitation

still exist in this study that application can release wakelocks at numerous program

points but this was not handled in proposed approach due to the assumption that

if wakelocks once acquired should be released at pre-defined set of event handlers

but application can release wakelocks at various program points. Therefore, false

positives were generated due to vague assumption.

In 2016, Wu et al. [34] further extended Relda presented by Guo et al.[33] and

named it as Relda2. It was used to identify resource leak problems in Android

application due to different types of resources such as exclusive resources (Cam-

era), memory consuming resources (Media Player) and energy consuming resources

(Sensors); it can analyze resource operation of applications and locate the resource

leak. Moreover, byte code can be easily modifiable by attackers to change the be-

haviour of application so the target was byte-code instead of source code. But the

study was not free from limitation. One of the major limitations of this study was

that false positives were generated due to static analysis.

In 2016, Liu et al. [35] designed a static analysis technique named “Elite” to iden-

tify wakelock leakage. Moreover, it makes no assumption on wakelock acquiring

or releasing points, but it automatically reasons about need of using wakelocks
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at different program points via dataflow analysis. Additionally, eight common

patterns of wakelock misuses were identified. However, only two patterns of wake-

lock misuses were considered. Furthermore, vague call graphs results in incorrect

findings and false positives.

In 2016, Wu et al. [36] presented an approach to statically detect energy related

defects in Android applications. The aim was to detect the behaviour of missing

deactivation in the user interface thread of the Android application. Therefore, two

different patterns related to run time energy drain were defined in which location

listeners were leaking. However, due to some limitations of static analysis false

positives were caused.

In 2016, Kim et al. [37] proposed and evaluated static analysis technique to detect

GPU related energy bugs. Three specific types of energy bugs were identified

in graphics-intensive applications. Furthermore, they also focused on eliminating

drawing commands for producing energy efficient applications and evaluated a

method for enhancing energy efficiency of graphics-intensive apps, which focuses

on GPU operations. However, two out of three analyses were producing FPs that

must be manually eliminated by user.

In 2016, Xu et al. [16] proposed a state-taint analysis for the detection of resource

leaks issues. Proposed analysis was implemented as a prototype tool named “stat-

edroid”. Furthermore, the researchers taken the open but not used resources

problem i.e. if HTTP (Hypertext Transfer Protocol) connection is established it

must be used before closing. Additionally, according to the API documentation

of resources, appropriate usages of resources were specified as resource protocols

for the guidance of resource bug detection. Moreover, the analysis was general

because it was able to work with different resource usage protocols. Resource

usage protocol was also proposed and it was enhanced with those inappropriate

behaviours which may cause energy leaks. The enhanced protocol was used to

guide the analysis for energy leak detection in smartphone applications. However,

some limitations were still there due to not checking null pointer exception false

positives were generated.
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In 2017, Jiang et al. [38] developed a technique named Static Application Anal-

ysis Detector (SAAD) that can automatically detect energy bugs and analyzed

resource leak at background programs. When the application does not release its

acquired resources, the resource leak bug occurs. To address this resource leak is-

sue, researchers performed a components call relationship analysis. Furthermore,

effective paths were also analysed, those paths in which resource acquisition and

release were made considered as effective paths. Additionally,APK (Android Pack-

age) file was taken as input and report of resource leaks were generated as output

in the proposed framework. However, this approach was producing false positives

due to updates to program data i.e. timer and scores, and those false positives

must be eliminated by user.

In 2017, Xu et al. [21], extended their prior work [16] in 2017, the researchers used

the refined protocols to guide the analysis for energy leak detection. Moreover,

more experiments were done on several real Android applications and datasets

were also taken from Relda [33] and GreenDroid [27]. However, it was generating

false positives and different nodes of control flow graphs can lead to different paths

for the same resources, but path conditions were not considered and hence results

in false positives.

In 2018, Hall et al. [39] presented an approach for detecting no-sleep bugs using

reference counters in consideration of race conditions based on the reaching defi-

nitions (RD) dataflow analysis in Pathak et al.’s work [8]. But the problem of this

study was that approach was demonstrated without implementation.

In 2019, [39] was further extended by Hall et al. [40] for the detection of no-

sleep energy bugs using a reference count which keeps track of acquiring and

releasing wakelocks. As a wakelock is acquired, the count is increased and counter

is decreased when wakelock is released. However, one more case can exits where

a wakelock is released before being acquired. In such case, count still results in

a zero value, but no-sleep bug exists as the acquired wakelock is never released.

Therefore, researchers used sequential reference count for keeping the track of not

only acquiring and releasing wakelocks, but also their sequences. Inadequacy in
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this study was that false positives were generated due to not considering program’s

control flow.

In 2019, Song et al. [41] proposed a static analysis technique for the identifica-

tion of service usage inefficiency in Android applications. As, services cause the

unnecessary resource occupation and/or energy consumption in Android applica-

tions. The proposed approach was implemented in an open-source tool ”Serv-

Droid” which is based on the static analysis based tool named ”Soot”. But the

inadequacy in this study was that false positives were generated due to the static

analysis.

2.2 Analysis and Comparison

The main focus of this study is to identify the energy bugs that are detected by

existing static analysis based approaches, but those can be false positives (FPs).

Thus, to effectively detect the energy bugs this study considers the static analysis

approaches. Several energy issues are discussed in the existing studies related to

resource leakage (i.e. missing deactivaton of Wi-Fi, GPS and Http) and wakelock

bugs (missing deactivation of sensors/wakelocks).

Table 2.1 lists the comparison of static analysis techniques proposed in the litera-

ture where publication year, objective of the study, limitations and strengths are

mentioned. Moreover, it is also mentioned in the evaluation column that existing

studies evaluated their approach or not, if so then how many applications were

collected for the evaluation.

Table 2.2 lists the analysis of existing static analysis based techniques with different

aspects (i.e. types of energy bugs, false positives, false negatives and human

involvement). Reason for selecting these parameters for analysis is also mentioned

in the discussion below. Several energy problems related to resource leaks are

discussed in literature.
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Table 2.1: Comparison of Static Techniques

No. Pub.

Year

Objectives Strengths Weaknesses Evaluation Ref.

1. 2012 Detection of

no-sleep en-

ergy bugs

• Possible no-sleep bugs

in an application were au-

tomatically achieved.

• No false negatives.

• There was no mechanism to auto-

matically prune out false positives.

• Expected invocation orders of event

handlers need to specify by devel-

oper, which is impractical and lead

to limited coverage of possible behav-

iors.

• No-sleep bug detec-

tor was evaluated on

86 apps.

• FPs were generated

in 13 out of 55 appli-

cations.

[32]

2. 2013 Detection

of resource

leaks in

event han-

dlers

• A tool Relda was de-

veloped and it can auto-

matically analyze an ap-

plication’s resource oper-

ations and locate the re-

source leaks.

• Resource leak summary

and report was generated.

• Due to not considering control flow

false negatives were caused.

• Imprecise assumption of wakelock

releasing points causes false posi-

tives.

• 55 real apps were

selected and analysis

precision was 88.0%,

and recall was about

91.0%.

[33]
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No. Pub.

Year

Objectives Strengths Weaknesses Evaluation Ref.

3. 2016 Detection of

resource leak

problems

• Target was byte-code

instead of source code be-

cause it can be easily

modifiable by attackers to

change behaviour of app.

• Multi-thread technique

was used to reduce the

analysis time.

• False positives were generated due

to static analysis.

• Elimination of FPs was not eas-

ier. It can be easier by imple-

menting more accurate analysis tech-

niques e.g. symbolic or dynamic ex-

ecution.

• Approach was eval-

uated with 103 real-

world Android apps

and 67 real resource

leaks were found, that

are confirmed manu-

ally.

[34]

4. 2016 Identification

of wakelock

leakage

• 8 patterns of wakelock

misuses were identified.

• Instead of making as-

sumptions Elite automat-

ically reasons about need

of using wakelocks at dif-

ferent program points via

dataflow analysis.

• 8 patterns of WL misuses were

identified but only two patterns were

considered.

• Call graphs were statically con-

structed by using soot, these graph

were imprecise. Therefore, certain

wakelock misuses were missed and

FPs or FNs were caused.

• Evaluated Elite on

12 versions of real-

world subjects.

• 6 of 12 versions

were containing wake-

lock leakage issues.

[35]
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No. Pub.

Year

Objectives Strengths Weaknesses Evaluation Ref.

5. 2016 Identification

of energy

bugs due

to missing

deactivation

of listener

events

• Static detection algo-

rithm was proposed fo-

cusing on energy-related

listener leaks pattern.

• Cost of the analysis was

low.

• Analysis is not general to repre-

sent multiple threads running con-

currently with main UI thread.

• Static detection has its own limita-

tions, so false positives were caused.

• 17 known and new

bugs were detected in

applications.

[36]

6. 2016 Identification

of energy-

inefficiencies

in graphic

applications

• A method was eval-

uated for enhancing

energy efficiency of

graphics-intensive apps.

• False positives were generated due

to static analysis that must be man-

ually eliminated by user.

• Call-back methods were excluded

by using SPARK analysis. There-

fore, it was not fully automatic and

need to improve precision of static

analysis.

• Evaluation was done

by using three open

source Android apps

named, Freegemas,

Zxzx and Wari.

[37]
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7. 2016 Detection

of resource

leaks

• Open but not used

problem is taken into con-

siderations.

• Protocol was enriched

with inappropriate be-

haviors that may cause

energy leaks.

• Different paths to a node of CFG

can obtain different states for the

same resource but for simplicity path

conditions were not considered so an

infeasible path leads to false positive

(FPs).

• Experiments were

conducted on 100 real

apps collected from

F-Droid and Git-hub,

and find that 18 ap-

plications have energy

leaks.

[16]

8. 2017 Identification

of resource

leaks

• Static Application

Analysis Detector anal-

ysed resource leak at

background programs.

• Analysed the effective

paths that decrease

number of paths to

be analyzed made the

analysis more efficient.

• This framework only analysed some

common functions of call-back and

event response functions. i.e. onCre-

ate, onStart

• False positives were generated due

to static analysis that must be man-

ually eliminated by user.

• 64 real practical

Android apps were

used for evaluating

approach Static Ap-

plication Analysis

Detector (SAAD).

[38]
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9. 2017 Detection

of resource

leaks

• Protocol was enriched

with inappropriate be-

haviours that may cause

energy leaks.

• Different paths to a node of CFG

can obtain different states for the

same resource but for simplicity path

conditions were not considered so an

infeasible path leads to FPs.

• Experiments were

conducted on 100 apps

from F-Droid, and test

datasets from Relda

and GreenDroid.

[21]

10. 2018 Detection of

no-sleep en-

ergy bugs

• Reference counts were

used for keeping track

of acquiring and releasing

wakelocks.

• The approach was not implemented

just idea was proposed.

• False positives were generated

• A study is demon-

strated with case ex-

ample.

[39]

11. 2019 Detection of

no-sleep en-

ergy bugs

• The approach was im-

plemented with case ex-

ample by using sequential

reference count to keep

track of acquiring and

releasing wakelocks and

their sequences.

• False positives were generated due

to not considering program’s control

flow.

• Refined banking

application is used

to demonstrate this

study.

[40]
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12. 2019 Detection of

service leak-

age

• Static analysis tech-

nique, ServDroid was pre-

sented to effectively de-

tect service usage ineffi-

ciency bugs.

• In-depth study of An-

droid services was con-

ducted.

• Services can keep run-

ning even when the de-

vice screen is shut down.

Therefore, a technique

was presented to auto-

matically and effectively

detect the service leakage.

• The approach was implemented in

an open-source tool ServDroid based

on Soot.

• False positives were generated due

to static analysis.

• Analysis was con-

ducted on 1,000 apps

downloaded from

Google Play.

• Results indicate

that 825 (82.5%) apps

involve at least one

type of service usage

inefficiency bugs.

[41]
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Table 2.2: Analysis of Static Techniques with different aspects

No. GPU No-sleep
bugs/
Wake-
locks

Resource
leak

Human
Involve-
ment

False
Positives

False
Negatives

Ref.

1. X X X [32]

2. X X X [33]

3. X X X [34]

4. X X X [35]

5. X X [36]

6. X X X [37]

7. X X [38]

8. X X X [16]

9. X X [21]

10. X X [39]

11. X X [40]

12. X X [41]

After the critical analysis of the detection of energy bugs in Android application,

it is observed that mobile phones lead to short battery due to not closing the

resource after its acquisition. Another reason is unclosed-ness where acquired

resource is used but not closed. One more situation of energy bugs is observed

that is unused-ness where the acquired resource is closed without any use. The

current state of-the-art depict that most of the existing studies have focused on

unclosed-ness situation but very few studies focused on unused-ness. In other

words, due to energy bugs in Android applications the mobile battery depleted in

a short time. Energy bugs arise due to Android applications developers as they

could get difficulty while writing the code and may acquire the resources and forget

to release which lead to severe battery drain.

Several approaches exist in literature for the detection of energy bugs in Android

applications. After studying the existing techniques, we conclude that all existing

studies are using different techniques for the detection of energy bugs in Android
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applications. Some studies are based on static and dynamic analysis while other

studies are based on hybrid analysis for energy bugs detection in Android appli-

cations. Existing dynamic and hybrid techniques generate the false positives and

some of them generate the false negatives due to different reasons. Dynamic ap-

proaches are execution based. Due to the execution of code dynamic approaches

are able to detect energy bugs accurately. However, due to the execution of test

cases these techniques are more costly. Moreover, hybrid techniques are the com-

bination of static and dynamic analysis and therefore provide the advantages of

both static and dynamic analysis. In contrast, static approaches are non-execution

based. These approaches consider the static analysis of source code for detecting

the energy bugs in Android applications. Static analysis is able to examine all

the program paths which make it valuable. However, it is not able to evaluate

the conditions of source code and there may be paths that are infeasible or in-

valid. Therefore, due to not executing the applications source code static analysis

based techniques generate more number of false positives. It can be said that false

positives consequences are frequently obtained because sometimes those paths are

also analysed by static analysis that are considered infeasible or in other words,

paths that fail to execute under any input or test cases. Besides, it is concluded

that from static approaches some of the paths are identified as bug prone that are

not indicating the real energy bugs (i.e. infeasible paths). Infeasible paths lead

to false positives. So, it is clear that infeasible paths lower the accuracy of the

results, especially the ones that are assumed to have energy bugs. That’s why, in

static analysis approaches, false positives problem is a major issue that must be

addressed. As Marashdih et al. [42] stated that for the enhancement of results

of static analysis, there is a need to remove the infeasible paths from the entire

paths of control flow graph (CFG). Any path within the CFG that fails to execute

under any input value or test case is considered as infeasible path [43]. Researchers

stated that presence of infeasible paths is a challenging problem, as there is no

input for these paths to be executed [44].

Most of the static analysis based studies focus on different types of energy bugs

i.e. resource leaks, wakelock bugs. Moreover, in existing state-of-the-art, due to
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false positives the quality of results is reduced. Additionally, the main parameter

that is used for evaluation in exiting static studies is false positives as due to the

limitation of static analysis generation of false positives is obvious. Different ex-

isting static studies including [16],[21],[32],[33],[34],[35],[36],[37],[38] evaluate there

techniques by using the parameter of false positives. Some studies identified the

number of false positives through manual validation [16],[21]. Human involvement

is impractical in some context. As Pathak et al. [32] stated that human involve-

ment lead to limited coverage. On the other hand, some studies [33],[35] include

the parameter of false negatives as from their approach false negatives are also

generated due to different reasons. Therefore, different parameters for evaluating

the existing studies i.e. false positives, false negatives and human involvement are

considered. Further, we argue that there is a need to improve the quality of results

by eliminating the number of false positives.



Chapter 3

Proposed Approach

The primary observations from literature review that motivated and signify our

proposed approach are as follows:

1) Static approaches generate more number of false positives (FPs).

2) Dynamic approaches are more costly due to the execution of test cases as there

can be large number of paths that need to be analysed.

3) Hybrid approaches can results in extra execution time due to dynamic analysis.

We proposed a static analysis based approach to address the issues of existing

static analysis approaches i.e. infeasible paths lower the accuracy of the results.

The proposed approach performs the identification of energy bugs and further

evaluation of infeasible paths by using the constraint solver.

In this chapter, the proposed approach is described for better detection of energy

bugs in Android applications. Flowchart of our proposed approach is shown in

Figure 3.1. Moreover, main processes of proposed approach are explained in the

following sections. Whereas, working of the proposed approach is demonstrated

with an example application. The example application is based on the URL check-

ing by using the ”Wi-Fi” resource where Google homepage will be open if URL

will be valid. Otherwise, it will show that URL is invalid.

34
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Figure 3.1: FlowChart of Proposed Approach
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3.1 Control Flow Graph Generation

For comprehensive evaluation of our proposed approach, the generation of control

flow graph is a very crucial step. As the researchers stated that control flow graph

(CFG) is the standard method of representing the flow of program [45].

Model of the program’s flow is represented by a graph known as Control Flow

Graph (CFG) of a program [19]. CFG is the combination of nodes and edges.

Every sentence of a program is represented using a node and to represent a pro-

gram’s data flow nodes are linked together by edges [42]. The process starts with

the starting node, program flow starts and each node (statement of program) is

represented until the program ends. For the identification of energy bugs we have

read the applications source codes and the CFG’s are generated from application

source code.

The following example is used to define the concepts of our proposed energy bugs

detection technique. Figure 3.2 elucidates the Android application source code

and Figure 3.3 illustrates the CFG for that example.

Figure 3.2: An example code
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Figure 3.3: CFG of example code

Figure 3.2 and 3.3 shows that static analysis instigates by analysing the application

source code and creating the CFG of the source code. Therefore, program’s flow

can be determined.

The Android application source code first check the condition specified in line 57,

if condition is true it means Wi-Fi is enabled and the statement in line 58 will

be implemented. It then ends at line 59 and next condition at line 60 will be

checked that URL is valid or not. Likewise, if condition at line 60 is true then

next statements (60, 62) will be implemented and Google homepage will be open.

And if condition is false, line 64 will be implemented. At the end, condition at
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line 66 will be checked, if it is true next 2 lines will be instigated and Wi-Fi will

be turned off. Otherwise, program will be exited. However, if condition at line 57

is false, it will indicate that Wi-Fi is not enabled and line 70 will be implemented.

3.2 State Taint Analysis

For the detection of energy bugs in Android applications, we have applied the

state-taint analysis. A static analysis named “State-taint analysis” was proposed

by Xu el al. [16], in which control flow graph of a program was taken as input

and guided by the resource protocols to track the resource actions among CFG.

The idea of taint-analysis [46] was followed in current study. This analysis was

capable to check the resource actions that either resource actions confirm to the

corresponding resource protocols (i.e. automata) or not. A resource protocol

specifies how a resource should be used or which action sequence is appropriate

according to their usage protocol. Resource protocols can be represented as finite

state automata (FSA). There are three possible states that are acceptable for the

open but not used problem, named as i/c (i.e. the initial or closed/released state

of resource), o (i.e. the open or acquired state of resource), and use (i.e. the

resource is used).

For the general resource protocol an abstract automaton with energy leaks is given

in the Figure 3.4. In Figure, O, U and C represent the actions designating the

relevant APIs of resources opening or acquiring, using, and closing or releasing. An

action which is according to the resource protocol will be considered appropriate.

Conversely, any action which is not satisfying the resource protocol will lead to

resource bug or energy bug i.e. resource is open but not closed, or resource is

open, closed but not used. In other words, one use action (i.e. resource must

be used before closing) between the open and close actions is necessary for being

appropriate action. Moreover, there is no use action for the Wakelock. Wakelock

have only open and close actions as shown in Figure 3.5. Furthermore, energy leak

(el) indicates that the resultant action can cause an energy leak. Moreover, if a
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resource is opened it should not be opened again, until the previous one is not used

and if it is still remains open after use then it will consume energy. Consequently,

a resource should be used after opening and before closing. Otherwise, opening

unnecessary resource, or if a resource remains open after using could cause energy

leaks.

Figure 3.4: Abstract FSA for General Resources

Figure 3.5: Specific FSA for Wakelock

Among many characteristics, there were also some limitations of this analysis i.e.

the analysis was not able to completely detect all the paths of the control flow

graph, as they were covering all the nodes of graph. Consequently, some code

coverage was missed in the analysis due to incomplete coverage. As one resource

can leads to different states from different paths, therefore, it is necessary to cover

all the edges of the graph. Different graph coverage criteria’s can be applied on

control flow graph i.e. node coverage, edge coverage, edge pair coverage, loop

coverage etc. We have applied graph coverage criterion named “Edge Coverage

Criteria” to cover all the edges of the control flow graph.
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Moreover, the enhanced analysis takes the control flow graph (CFG), and graph

coverage criterion as input, and guided by the resource protocols for tracking

the resource actions among control flow graph. According to the graph coverage

criteria (Edge coverage criterion) control flow graph will be traversed and test

paths will be generated. A path is a finite sequence of nodes connected with the

edges of the control flow graph. Every path that starts from the starting node

and goes until the exit node is known as test path in the program. The states

of resources have been checked among the control flow graph, and our analysis

checks for the resources actions whether they are according to the corresponding

resource protocol or not (i.e. automata). In other words, our analysis verifies that

whether all the resource actions follow the resource protocols or not.

Furthermore, some paths contain energy bugs such as if resources are acquired but

not released, or released without being used on some paths then those paths will

be consider as buggy or erroneous. Therefore, to observe the paths different graph

coverage criteria’s can be applied on the control flow graph. The test requirement

for any coverage criteria is that it should cover all the requirements. We have

applied the edge coverage criterion which means it should cover all the edges of

the graph.

To define the concepts of enhanced state-taint analysis the “Edge coverage crite-

rion” is applied on the CFG (shown in Figure 3.3). The Table 3.1 listed below

shows the difference between edge and node coverage criterion. Moreover, states

of resources have been checked, such as, the resource Wi-Fi example code shown

in the Figure 3.2. CFG of example code is generated and according to CFG, Wi-Fi

is acquired at edges (57, 58), used at (60, 61) and closed at (66, 67).

Furthermore, according to the edge coverage criterion, formed test paths, identified

buggy paths and details of Wi-Fi resource (by taking automata shown in Figure

3.4 as a guide) are shown in the Table 3.2. Moreover, T and F show the true and

false values of the conditions, if any conditions in source code will be true and

false it will be considered as T and F respectively.
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Table 3.1: Graph Coverage Criteria’s

Graph
Coverage
Criteria’s

Node Coverage Edge Coverage

Test
Require-
ments

{57,58,59,60,61,62,63,64,
65,66,67,68,70,71}

{(57,58), (57,70), (70,71), (58,59),
(59,60), (60,61), (60,64), (61,62),
(62,63), (63,64), (63 ,65), (65 ,66),
(66,67), (66,71), (67,68) }

Test
Paths

[57,58,59,60,61,62,63,65,66,
67,68] //TTT
[57,58,59,60,64,65,66,67,
68] //TFT
[57,70,71] //F

[57,58,59,60,64,65,66,71] //TFF
[57,58,59,60,61,62,63,65,66,67,68]
//TTT
[57,70,71] //F
[57,58,59,60,61,62,63,65,66,71]
//TTF
[57,58,59,60,64,65,66,67,68] //TFT

Table 3.2: Test paths, Buggy paths and Resource details

No. Test Paths Resource (Wi-Fi) details Buggy
paths

1. [57,58,59,60,64,65,66,71] Wi-Fi is opened, not used not
closed. (TFF)

X

2. [57,58,59,60,61,62,63,65,
66,67,68]

Wi-Fi is opened, used and
closed. (TTT)

3. [57,70,71] Wi-Fi is not opened. (F)

4. [57,58,59,60,61,62,63,65,
65,66,71]

Wi-Fi is opened, used but not
closed. (TTF)

X

5. [57,58,59,60,64,65,66,67,68] Wi-Fi is opened, not used but
closed. (TFT)

X

3.3 Symbolic Execution

Static approaches perform static analysis of code to detect the energy bugs without

executing the source code of applications. Static analysis is appreciated because

of the aptitude to examine all possible paths of program. As the Marashdih et al.

[18] stated that to analyse the source codes, static analysis has been commonly

used.
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Conversely, there are more possibilities of false positives because code is not exe-

cuted and infeasible paths lead to results in false positives. In the static analysis,

false positives consequences are frequently obtained because sometimes those paths

are also analysed by static analyses that are considered infeasible. Infeasible paths

can exist due to several reasons, one of which is the existence of dead code, other

one is conflicting clauses that are contained within certain paths. That’s why, in

static analyses, false positives results problem is a major issue that must need to

be addressed. So, to overcome the problem of false positives generation, we need

to check the identified bugs that either they were false positives or actual bugs.

For this purpose we have used the symbolic execution. Symbolic execution is a

well-known program analysis technique for the identification of infeasible paths

within the source code.

As researchers stated that symbolic execution was first introduced in the 1970s

and it is one of the gradually popular program analysis technique [47]. Cadar

et al. [48] stated that in the recent years, symbolic execution has gain interest

due to the constraint solving technology and availability of computational power.

Moreover, it is a program analysis technique which executes the program with the

symbolic inputs rather than concrete inputs and represents the values of program

variables as symbolic expressions.

Furthermore, it maintains the path condition that is updated whenever branch

instruction is executed, to encode the constraints on the inputs that reach that

program point. Moreover, for every analyzed program path it checks that whether

all possible executions of the path are not violating the specification of the program

by generating a condition (logical formula) for all possible executions. If the

formula is falsifiable, specification can be violated. Besides, Symbolic execution

can be tremendously expensive due to lots of possible program paths and to decide

which path is feasible or infeasible need to query solver a lot [48]. There can be

complexity issues due to constraints that are generated. On the other hand, there

are scalability issues due to enormous number of paths that need to be analyzed.

Figure 3.6 shows the path conditions for the identification of false positives in

Android application source code (shown in Figure 3.2).
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Figure 3.6: Path Conditions for example code
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3.4 Constraint Solver

For program analysis, symbolic execution has recently become practical due to

advances in constraint solvers [49]. Due to static analysis, FPs can be obtained

because sometimes the paths that are not executable (also called infeasible paths)

can be considered. Infeasible paths lead to false positives, which is a major issue in

static analyses that needs to be addressed. The paths that identify the existence of

energy bugs from static analysis can be FPs. To identify FPs we have added path

conditions for each erroneous path to check whether these paths are identifying

real energy bugs or FPs.

Furthermore, one program path is analysed at a time and then possible bugs in

that path are checked. Symbolic execution checks for each analysed program path

whether all possible execution of the program are according to the specifications

of program or not. This can be done by generating constraint or condition for

all possible executions. If the constraint is falsifiable it means specifications are

violated. Constraint solver is also known as query solver for the evaluation of the

path conditions and generating the accurate results. By using the constraint solver

those paths can be identified which contains real energy bugs as well as FPs can

also be identified which are generated from static analysis approach. Moreover,

after applying the path conditions and generating a condition (logical formula or

constraint), infeasible paths can be identified. If there is at least one input for the

execution of program path, then that path will be feasible. In other words, the

path will be feasible if the logical formula is satisfiable that represent the program

path, otherwise it will be infeasible [50]. Infeasible paths are not able to execute

under any input [44].

Besides, as shown in Table 3.2 three paths are identified as bug prone. Further,

we have used the symbolic execution to validate that these paths are indicating

real energy bugs or these are false positives. Moreover, it is identified that static

analyses were not able to accurately detect energy bugs because code was not

executed. Therefore, if there is any path indicating the existing of bug from static

analysis; but that path are not executed at all then bug will not actually arise
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and will be considered as FPs. In other words, when program is executed, there

is possibility that some conditions will never be executed or if executed they may

indicate those paths were not bug prone. Such that, if condition at (Line 57) is true

then condition at (Line 60) will never be false because if Wifi is enabled on device

and correct URL is mentioned at (Line 59) then URL will never be incorrect. So,

path 1 and 5 that were indicating bug from static analysis will be considered as

FPs. Also, if both conditions at node 57 (57, 58) and at node 60 (60, 61) are

executed then condition at node 66 (66, 67) must be executed because there is

OR operator that will show that if one condition is satisfied, Wifi will be closed.

So, path 4 that was indicating bug from static analysis will also be considered as

FPs. Therefore, we focused on static analysis for detecting the infeasible paths

that leads to FPs. Symbolic execution is used for each buggy path, and path

conditions are created to identify the FPs.

Constraint solver evaluates the path conditions which are shown in Table 3.3 and

results show that all the buggy paths revealed in Table 3.2 are FPs. Whereas, T

and F are the values of conditions where T shows the true values and F shows the

false values.

Table 3.3: Path conditions and Results of buggy paths

No. Buggy
paths

Path Conditions Results

1. TFF (isChecked /\ ¬isValidurl) /\ ¬ ( (isChecked /\
urlstartsWithhttp) \/ urlstartsWithhttps)

False
positive

2. TTF (isChecked /\ isValidurl) /\ ¬ ( (isChecked /\
urlstartsWithhttp) \/ urlstartsWithhttps)

False
positive

3. TFT (isChecked /\ ¬isValidurl) /\ ( (isChecked /\ url-
startsWithhttp) \/ urlstartsWithhttps)

False
positive
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Implementation

In the previous chapter, we have explained the details of the proposed methodol-

ogy. This chapter presents the details about the implementation of our proposed

approach. We have implemented our approach in java language using eclipse

Mars.2 software. Furthermore, control flow graphs are generated using Eclipse

plugin “CFG factory. Likewise, symbolic execution is used and for the evaluation

of path conditions a constraint solver named “MiniZinc” is used.

In this chapter, different steps of implementation are discussed as follows.

4.1 Control Flow Graph Generation

Control flow graph is the graph, whose nodes represent a statement of the program

and the edges represent the flow in which these statements are executed. As many

innovative Android applications are developed by developers due to the Android’s

popularity among users. Moreover, Google Play official Android app market hosts

more than three million apps with large number of downloads each day. Therefore,

we have chosen Android.

First of all, we have downloaded the source codes of different real world Android

applications from well-known repositories i.e. Git-hub and Google code. After

46
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that, we have read the applications source codes and generated the control flow

graph of each application. We have used eclipse plugin named as “CFG factory

plugin” for the control flow graph generation. A program which generates the

control flow graphs from java byte code is known as CFG factory [51]. Generated

graphs can be further modified as well as exported to DOT, XML and several

raster image formats.

Firstly, we have read the application source code and then explored the energy

bugs (i.e. resources that are acquired, used but not closed, or acquired, closed but

never used). After exploration of energy bugs we have created control flow graph

for that particular function in which we have found the energy bugs. Besides,

control flow graphs are exported to XML format and Graph coverage criterion

(Edge coverage) is applied on control flow graph. Moreover, for visualization the

graph we have used GraphViz after exporting the graph in DOT format.

As an example, Figure 4.1 elucidates the Android application source code and

Figure 4.2 illustrates the control flow graph for that example.

XML and DOT of the control flow graph (shown in Figure 4.2) are shown in

Appendix.

Figure 4.1: An example code
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Figure 4.2: CFG of example code

Figure 4.1 and 4.2 shows that static analysis instigates by analysing the application

source code and creating the CFG of the source code. Therefore, program’s flow

can be determined.

The Android application source code first check the condition specified in line 81,

if condition is true it means GPS is enabled and the statement in line 82 will be

implemented. Then, next condition at line 83 will be checked that location is null

or not. At the end, condition at line 86 will be checked, if it is true next 3 lines

will be instigated implemented and GPS will be closed for particular application.

Otherwise, program will be exited. However, if condition at line 81 is false, it will

indicate that GPS is not enabled and line 90 will be implemented.
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4.2 State Taint Analysis

State taint analysis is applied for the purpose of energy bugs detection in Android

applications. CFG of application source code and edge coverage criterion have

been taken as input by taking general automata of resources (shown in Figure

3.4) as a guide to create the bug prone test paths as output. CFG is generated

by using the eclipse Plugin “CFG factory”. After that CFG is exported to XML

(shown in Appendix). Moreover, graph coverage criterion is applied by taking the

XML format of CFG and test paths are generated. Afterwards, general automata

of resources (shown in Figure 3.4) is taken into consideration and an action that

does not satisfy its corresponding protocol (i.e. if action sequence is not according

to resource automata) is considered as a resource usage bug i.e. resource is open

but not closed or in other situation where resource is open, closed but not used.

Control flow graph of example code and resource automaton are shown in Figure

4.2 and Figure 4.3 respectively. The “Edge Coverage Criterion” is applied on

the control flow graph (shown in Figure 4.2). Table 4.1 listed below shows the

difference between edge and node coverage criterion.

Table 4.1: Graph Coverage Criteria’s

Graph
Coverage
Criteria’s

Node Coverage Edge Coverage

Test Re-
quire-
ments

{76,77,78,79,80,81,82,83,
84,85,86,87,88,89,90,91}

{(76,77), (77,78), (78,79), (79,80),
(80,81), (81,82), (81,90), (82,83),
(83,84), (83,86), (84,85), (85,86),
(86,87), (86,91), (87,88), (88,89) }

Test Paths [76,77,78,79,80,81,82,83,
84,85,86,87,88,89] //TTT
[76,77,78,79,80,81,90,91]
//F
[76,77,78,79,80,81,82,83,
84,85,86,91] //TTF

[76,77,78,79,80,81,82,83,84,85,86,
87,88,89] //TTT
[76,77,78,79,80,81,82,83,84,85,86,91]
//TTF
[76,77,78,79,80,81,82,83,86,87,88,89]
//TFT
[76,77,78,79,80,81,82,83,86,91]
//TFF
[76,77,78,79,80,81,90,91] //F
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Moreover, the test requirement for any coverage criteria is that it should cover all

the requirements. By applying node coverage, it will cover all the nodes of the

graph but it does not provide complete coverage because it does not cover all edges

of the graph. Therefore, we have applied the edge coverage and it is able to cover

all the edges of the graph. As Table 4.1 shows that, from applying node coverage

on the control flow graph, there is possibility that some edges may be missed such

as (83, 86). Furthermore, edge coverage is able to completely detect all the edges

of the control flow graph, which represents the program’s flow. In addition, states

of resources have been checked, such as, the resource GPS example code shown

in Figure 4.1. Control flow graph of example code is generated and according to

control flow graph, GPS is acquired at edges (81, 82), used at (83, 84) and closed

at (86, 87). Furthermore, according to the edge coverage criterion, formed test

paths, identified buggy paths and details of GPS resource (by taking automata

shown in Figure 3.2 as a guide) are shown in Table 4.2.

Table 4.2: Test paths, Buggy paths and Resource details

No. Test Paths Resource (GPS) details Buggy
paths

1. [76,77,78,79,80,81,82,83,
84,85,86,87,88,89]

GPS is opened, used and
closed. (TTT)

2. [76,77,78,79,80,81,82,83,
84,85,86,91]

GPS is opened, used but not
closed. (TTF)

X

3. [76,77,78,79,80,81,82,83,
86,87,88,89]

GPS is opened, not used but
closed. (TFT)

X

4. [76,77,78,79,80,81,82,83,
86,91]

GPS is opened, not used, not
closed. (TFF)

X

5. [76,77,78,79,80,81,90,91] GPS is not opened. (F)

By taking the resource usage protocol (resource automata) as guide, test paths

are identified as buggy or bug free. As we can see that three paths are identified

as bug prone. Further, we have used the symbolic execution to validate that these

paths are indicating real energy bugs or these are false positives.
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4.3 Symbolic Execution

Symbolic execution is gradually popular program analysis technique [47]. The

program is explored systematically by analysing one program path at a time and

then possible bugs in that path are checked. Besides, after applying the state taint

analysis, different paths are identified. Some of them are having energy bugs and

some of them are appropriate paths (i.e. bug free paths) or paths that are not

indicating energy bugs.

According to researchers [48], due to the enormous number of paths that need to

be analyzed there are scalability issues faced by symbolic execution. Addition-

ally, another issue is the complexity of the generated constraints. Therefore, to

overcome this issue, the proposed approach performs symbolic execution only on

erroneous paths (i.e. paths that are indicating energy bugs from state taint anal-

ysis) not on all the identified test paths. The paths which are having energy bugs,

for example bug prone paths, are chosen. Moreover, path conditions are applied

on each bug prone path to find that identified paths are real energy bugs or false

positives.

As shown in Table 4.3, we have considered only the buggy paths revealed in

Table.4.2, and added the path conditions for the identification of infeasible paths

that lead to false positives.

Table 4.3: Path Conditions for buggy paths

No. Buggy
paths

Path Conditions

1. TTF (isGPSEnabled /\ (Location!= null)) /\ (¬ (Location
!=null \/ isGPSEnabled))

2. TFT (isGPSEnabled /\ ¬ (Location != null)) /\ (Location !=null
\/ isGPSEnabled)

3. TFF (isGPSEnabled /\ ¬ (Location != null)) /\ (¬ (Location
!=null \/ isGPSEnabled))
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4.4 Constraint Solver

The static analyses have major issue of infeasible paths which leads to false pos-

itives. To identify false positives we have added the path conditions for each

bug prone path to check whether these paths are identifying actual energy bugs or

false positives. Furthermore, symbolic execution checks for each analysed program

path, whether all possible executions of the path are not violating the specifica-

tions of the program by generating a condition (logical formula or constraint) for

all possible executions.

To reduce the complexity of constraint, we have chosen only those paths that are

indicated as energy bugs after applying the enhanced state taint analysis. Further,

by using symbolic execution path conditions are created only for identified buggy

paths. After that, these conditions are evaluated by using the constraint solver

named “MiniZinc”. It is also known as query solver to identify the infeasible paths.

Moreover, it is used for solving Boolean expressions.

Following figures (Figure 4.3, Figure 4.4 and Figure 4.5) show the Constraint

solver (MiniZinc) code and output of the MiniZinc for the path conditions that

are created for buggy paths (shown above in Table 4.3).

Figure 4.3: MiniZinc code and Output of buggy path (TTF)
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Figure 4.4: MiniZinc code and Output of buggy path (TFT)

Figure 4.5: MiniZinc code and Output of buggy path (TFF)

As shown an example code in Figure 4.1, the statement presented in line 86 is an

infeasible statement because if above conditions at node 81 (81, 82) and at node

83 (83, 84) are executed then there will be no possibility for the given condition in

line 86 to be false at all. There is OR operator that will show that if one condition

is satisfied, GPS will be closed for this particular application. Thus, every path

that has the line 86 false implementation will be considered an infeasible path.

So, it is identified that 3 paths were detected as buggy paths and 2 of them are

infeasible paths as detected by our approach.



Chapter 5

Results and Discussion

In the previous chapters, we have explained the in-depth details of the proposed

methodology and its implementation. This chapter presents the details about the

results that have been obtained by applying the proposed methodology and also

these results are discussed in detail.

We have collected the real world Android applications and explored the energy

bugs in each application. Moreover, we have generated a CFG by using Eclipse

plugin named “CFG factory”, and edge coverage criterion was applied on CFG’s

as discussed in previous chapter.

To test and address about the precision of our technique, we have conducted a

series of experiments on 20 real Android applications to detect energy leaks, where

the applications are collected from well-known open source Android application

repositories i.e. Git-hub and Google code. Moreover, a test dataset of Statedroid

[21] and some other applications are also considered for evaluation. All the ex-

periments have been conducted on Eclipse mars.2 and MiniZinc, core I3 CPU and

4GB RAM, running Windows 8.1.

Besides, we have performed state-taint analysis on the source codes of those ap-

plications where energy bugs are reported. Further, energy leaks in each applica-

tion were detected, by taking resource protocols as a guide for HTTP connection

(Fig.3.4), WakeLock (Fig.3.5) and Media Player (Fig.3.4) respectively. Likewise,

54
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bug prone paths are identified from state-taint analysis and path conditions are

added for those paths. Our analysis verifies that whether all the resource actions

follow the resource protocols or not and identify those bugs that were FPs.

5.1 Android Applications

To test our approach, we have applied the proposed approach on different Android

applications source codes. We have identified the buggy paths after performing the

state-taint analysis and path conditions are created for buggy paths. Thorough

results of some of the Android applications are presented below.

First of all, an application named ”Adbwireless” source code (Figure 5.1), CFG

(Figure 5.2), test paths (Table 5.1) and path conditions (Table 5.2) are presented

below. Moreover, the MiniZinc code and output for the path conditions of buggy

paths are presented in Figure 5.3 and Figure 5.4 respectively. The resource kind

is Wakelock (WL). Wakelock is acquired at line 19, after that further conditions

will be checked. If condition at line 30 is true then next statement at line 31 will

be executed and WL will be released. If it is false, WL will not be released and it

will indicate the existence of energy bug.

Figure 5.1: Source code of Adbwireless Application
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Figure 5.2: CFG of Adbwireless Application

Table 5.1: Test paths, Buggy paths and Resource details

No. Test Paths Resource (Wakelock)
details

Buggy
paths

1. [Start,18,19,23,26,27,28,29,
30,32,33,34, Exit]

Wakelock is open but not
closed. (FTFT)

X

2. [Start,18,19,23,24,25,26,27,
28,30,31,32,34,Exit]

Wakelock is opened and
closed. (TFTF)

3. [Start,18,19,23,26,27,28,30,
31,32,34,Exit]

Wakelock is opened and
closed. (FFTF)

4. [Start,18,19,23,26,27,28,30,
32,34,Exit]

Wakelock is opened but
not closed. (FFFF)

X
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Table 5.2: Path Conditions for buggy paths

No. Buggy
paths

Path Conditions

1. FTFT ¬(adbWirelessstate) /\ (prefsAutoCon) /\
¬(mWakeLock != null) /\ (mNotificationManager
!= null)

2. FFFF ¬(adbWirelessstate) /\ ¬(prefsAutoCon) /\
¬(mWakeLock != null) /\ ¬ (mNotificationMan-
ager != null)

Figure 5.3: MiniZinc code and Output of buggy path (FTFT)

Figure 5.4: MiniZinc code and Output of buggy path (FFFF)
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As shown in the Figure 5.1, the statement presented in line 30 is an infeasible

statement as if once wakelock is acquired at line 19 then there will be no possibility

for the given condition at line 30 to be false at all. Thus, every path that has

the false implementation of line 35 will be considered an infeasible path. So, it

is identified that two paths were detected as buggy paths and all of them are

infeasible paths as detected by our approach.

Another application named ”Smspopup” source code (Figure 5.5), CFG (Figure

5.6), test paths (Table 5.3) and path conditions (Table 5.4) are presented below.

Moreover, the MiniZinc code and output for the path conditions of buggy paths

are presented in Figure 5.7, Figure 5.8 and Figure 5.9 respectively. The resource

kind is media player (MP) that is acquired at line 29, used at line 33 and released

at line 36. If the conditions at line 28 will be true then next statement at line

29 will be executed and media player will be acquired otherwise it will skip the

next statement and check for the next condition at line 32. If it is true next line

will be started and media player will be started for particular application. At the

end, condition at line 35 will be checked, if it is true media player will be released

eventually.

Figure 5.5: Source code of Smspopup Application
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Figure 5.6: CFG of Smspopup Application
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Table 5.3: Test paths, Buggy paths and Resource details

No. Test Paths Resource (Media player) de-
tails

Buggy
paths

1. [Start,25,28,29,32,33,
35,36,37, Exit]

Media player is open, used and
closed. (TTT)

2. [Start,25,28,29,32,33,
35,37, Exit]

Media player is open, used but not
closed. (TTF)

X

3. [Star,25,28,29,32,35,
36,37, Exit]

Media player is open, not used and
closed. (TFT)

X

4. [Start,25,28,29,32,35,
37, Exit]

Media player is open, not used and
not closed. (TFF)

X

5. [Start,25,28,32,35,37,
Exit]

Media player is not open, not used,
not closed. (FFF)

Table 5.4: Path Conditions for buggy paths

No. Buggy
paths

Path Conditions

1. TTF ( mPlayer == null) /\ (mPlayer != null) /\ not (mPlayer
!= null)

2. TFT ( mPlayer == null) /\ not (mPlayer != null) /\ (mPlayer
!= null)

3. TFF ( mPlayer == null) /\ not (mPlayer != null) /\ not
(mPlayer != null)

Figure 5.7: MiniZinc code and Output of buggy path (TTF)
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Figure 5.8: MiniZinc code and Output of buggy path (TFT)

Figure 5.9: MiniZinc code and Output of buggy path (TFF)

As shown in the Figure 5.5, the statement presented in line 35 is an infeasible

statement as if above conditions at node 28 (28, 29) and at node 32 (32, 33) are

executed then there will be no possibility for the given condition at line 35 to be

false at all. Thus, every path that has the false implementation of line 35 will be

considered an infeasible path. Furthermore, if condition at line 28 is true, media

player (MP) will be created, then next condition 32 (32, 33) will be true because

it will indicate that media player is not null after being created, therefore if that
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condition (i.e. condition at node 32) is false it will also indicate that every path

that has the line 32 false implementation will be considered an infeasible path. So,

it is identified that three paths were detected as buggy paths and all of them are

infeasible paths as detected by our approach.

Another application named ”Fbreader” source code (Figure 5.10), CFG (Figure

5.11), test paths (Table 5.5) and path conditions (Table 5.6) are presented below.

Moreover, the MiniZinc code and output for the path conditions of buggy paths are

presented in Figure 5.12, Figure 5.13 and Figure 5.14 respectively. The resource

kind is Wakelock (WL) that is acquired at line 15 and released at line 25. If

the conditions at line 13 will be true then next statements will be executed and

wakelock will be acquired otherwise it will skip the next statements and check for

the next conditions. If condition at line 21 is true it will indicate that wakelock is

null, and if last condition at line 24 is true wakelock will be released.

Moreover, if wakelocks are not used properly this will lead to high consumption

of energy.

Figure 5.10: Source code of Fbreader Application
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Figure 5.11: CFG of Fbreader Application
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Table 5.5: Test paths, Buggy paths and Resource details

No. Test Paths Resource (WakeLock)
details

Buggy
paths

1. [Start,13,14,15,16,17,18,19,
21,22,27, Exit]

WakeLock is opened but not
closed. (TTT)

X

2. [Start,13,14,15,16,19,21,22,
27, Exit]

WakeLock is opened but not
closed. (TFT)

X

3. [Start,13,14,15,16,17,18,19,
21,24,27, Exit]

WakeLock is opened but not
closed. (TTFF)

X

4. [Start,13,14,15,16,19,21,24,
25,26,27, Exit]

WakeLock is opened and
closed. (TFFT)

5. [Start,13,16,17,18,19,21,22,
27, Exit]

WakeLock is neither opened
nor closed. (FTT)

6. [Start,13,14,15,16,19,21,24,
25,26,27, Exit]

WakeLock is opened and
closed. (TTFT)

Table 5.6: Path Conditions for buggy paths

No. Buggy
paths

Path Conditions

1. TTT ( myWakeLock) /\ (statemyStartTimer) /\ (myWake-
Lock== null)

2. TFT ( myWakeLock) /\ ¬ (statemyStartTimer) /\ (my-
WakeLock == null)

3. TTFF ( myWakeLock) /\ (statemyStartTimer) /\
¬(myWakeLock == null) /\ ¬(myWakeLock !=
null)

Figure 5.12: MiniZinc code and Output of buggy path (TTT)
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Figure 5.13: MiniZinc code and Output of buggy path (TFT)

Figure 5.14: MiniZinc code and Output of buggy path (TTFF)

As shown in the Figure 5.10, the statement presented at line 21 is an infeasible

statement as if above conditions at node 13 (13, 14) is executed then there will be

no possibility for the given condition at line 21 to be true at all. Meanwhile, the

wakelock is acquired at line 15, and wakelock is being checked that it is null or not

at line 21. If wakelock is acquired it cannot be null. Thus, every path that has

the true implementation of line 35 will be considered an infeasible path if above

condition at node 13 (13, 14) having true implementation. So, it is identified that
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three paths were detected as buggy paths and all of them are infeasible paths as

detected by our approach.

Furthermore, Table 5.7 summarizes our findings of all selected Android applica-

tions (for evaluation of our approach), where O, U, C are the three situations of

energy bugs (specified in Table 1.2), where O denotes that an opened resource

which is neither used nor closed, U denotes an opened resource which is used but

not closed at the end and C denotes that acquired resource is closed eventually

without being used.

All the three situations of energy bugs due to the resource leakage are considered

in this study. However, there are only open and unclosed-ness (close) behaviours

but no use (unused-ness) behaviour for WakeLock. Therefore, for the detection of

energy bugs in those application where WL is used only open and close behaviours

are considered.

T denotes the total reported energy bugs, FP denotes the false positives that are

generated from the proposed approach, R denotes the resource kind that causes

the energy leakage due to different type of bugs (i.e. resource leakage and wakelock

bugs), and HC, WL, MP represent HTTP connection, WakeLock and Media Player

for short respectively. LOC represents the line of codes in each application and

numbers of classes in each application are also listed. Besides, description of each

application is also mentioned that define the purpose of each application.

Furthermore, several real world Android applications are selected, proposed ap-

proach is applied on each application and results are generated. For the purpose

of evaluation of proposed approach real world Android applications are selected

from the data set of previous approach [21] and some other applications are also

selected. Moreover, all there situations of energy bugs are considered for the iden-

tification of energy bugs in Android applications.

Results that are generated from the proposed approach and comparison of both

approaches (previous [21] and proposed approach) are conferred in the following

sections.



R
esu

lts
an

d
D

iscu
ssion

67

Table 5.7: Results for Selected Applications

Apps Applications

Description

O U C T FP R LOC No.

of

classes

Adbwireless An application to connect an

Android phone over wifi and

even if the phone is not rooted

it works.

- - - - - WL 781 7

Smarterwifi An application that manages de-

vice Wi-Fi connection. Wi-Fi

is only enabled on that location

where you previously used Wi-

Fi, increasing battery life, secu-

rity and privacy.

- - - - - WL 893 4

Fbreader An application ”favorite book

reader” for eBook reading.

Where main ebook formats

include RTF, doc, HTML etc.

- - - - - WL 53,730 69
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Apps Applications

Description

O U C T FP R LOC No.

of

classes

BabyMonitor An application to monitor the

baby by allowing two Android

devices to act as baby monitor.

0 1 0 1 1 MP 731 4

Smspopup An application that interrupts

incoming messages and displays

them in a popup.

- - - - - MP 8697 40

Tether App to read any text, pdf, web-

sites. It changes the accent on

voice and has ability to have

playback info of browser.

- - - - - HC 9570 12

Ttrssreader Voice converter application and

provides easy typing and speak

options.

1 - - 1 0 WL 2718 7

BabbleSink An application that helps to lo-

cate the lost phones.

1 - - 1 0 WL 389 7



R
esu

lts
an

d
D

iscu
ssion

69

Apps Applications

Description

O U C T FP R LOC No.

of

classes

Hydromemo An application which tries to

help drink enough water.

1 0 0 1 0 MP 657 11

Betterwifi Control wifi state and optimizes

batter life.

1 - - 1 0 WL 426 5

Coolreader An application for reading books

in different formats such as fb2,

txt, doc, rtf, html, pdf and pml.

2 1 - 3 0 HC 5326 48

AppAlarm An application to turn any app

into an Alarm Clock. To sched-

ule any app for anytime.

1 - - 1 0 WL 925 10

Pedometer An application for recoding

walking steps / Step Counter

app.

1 - - 1 0 WL 1801 17

Total - 8 2 - 10 1 - 86644 241
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The results show that among these 13 applications, our proposed approach reports

that five applications have energy leaks caused by WakeLock; and two applications

have energy leaks caused by Media Player and one for HTTP connection. More-

over, the main reason of bugs is that programmers are prone to forget to close/

release the resource for every exit. Different conditions for bugs such as unclosed-

ness (i.e. O and U) and unused-ness (i.e. O and C) which are mentioned earlier

in Table 1.2.

So, from the results, we can also see that lots of bugs are due to the unclosed-

ness (i.e., O and U). Such as, the application Hydromemo creates a MP but does

not release it finally, while the application Betterwifionoff creates two WakeLocks

(i.e., one for wifi and the other for screen) but only releases the one for screen.

Another application BabbleSink creates a WL but does not released it finally,

while application Ttrssreader, AppAlarm and Pedometer creates a WL but does

not release it finally.

Moreover, there are also some bugs due to the (O). This is mainly because pro-

grammers are likely to open the unnecessary resource without considering it is

in need or not and doesn’t close the resource at the end. Such as, the applica-

tion coolreader open the Http connection (HC) but does not release it, while in

other case HC was opened, and used but not released finally (Resource leak bug).

Moreover, in the application BabyMonitor, Media player (MP) is created but the

callback function onCompletion, which will release the Media Player( MP), is in-

voked when the media player finishes the playing. Our approach is not able to

identify this callback relation because it is unable to handle a procedure or func-

tion in a program that waits for an event to occur termed event listener, therefore

false positives are generated.

Furthermore, the graphical representation of results is listed below in Figure 5.15,

which shows the different situations of energy bugs (Open, unclosed-ness, unused-

ness) and FPs at x-axis and no. of identified bugs according to every application

is plotted at y-axis.
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Figure 5.15: Results of Selected Applications

The proposed approach results shows that eight bugs are due to (O) which means

resource is opened but neither used nor closed, and two of them are indicating

bugs due to (U) which means resource is opened, used but not closed. One bug

that is generated due to the (U) is FP.

5.2 Comparison

We have compared our proposed technique with the existing technique proposed

by Xu et al. [21]. Furthermore, we have implemented the existing technique and

generated the path conditions for better identification of energy bugs as well as

false positives. Moreover, we have used same dataset that are used by [21] for

comparison.

Furthermore, Table 5.8 represents comparison of all the selected Android applica-

tions, where results of the previous approach [21] are compared with the proposed

approach.
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Table 5.8: Comparison of Selected Applications

Results of Previous
Approach[21]

Results of Proposed Approach

Apps O U C T R Apps O U C T FP R
Adbwireless 1 - - 1 WL Adbwireless - - - - - WL

Smarterwifi 1 - - 1 WL Smarterwifi - - - - - WL

Fbreader 1 - - 1 WL Fbreader - - - - - WL

BabyMonitor 0 1 0 1 MP BabyMonitor 0 1 0 1 1 MP

Smspopup 1 0 0 1 MP Smspopup - - - - - MP

Tether 1 1 0 2 HC Tether - - - - - HC

Ttrssreader 1 - - 1 WL Ttrssreader 1 - - 1 0 WL

BabbleSink 1 - - 1 WL BabbleSink 1 - - 1 0 WL

Hydromemo 1 0 0 1 MP Hydromemo 1 0 0 1 0 MP

Betterwifi 1 - - 1 WL Betterwifi 1 - - 1 0 WL

Coolreader 2 1 - 3 HC Coolreader 2 1 - 3 0 HC

Total 11 3 - 14 - Total 6 2 - 8 1 -
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From the above table, it is concluded that for all the applications, the rate of false

positives from our proposed approach is lower than the existing approach [21]. The

reason is that our technique uses path conditions to identify those bugs that were

identified as real energy bugs. Previous approach [21] identified the energy bugs

without evaluating the paths that either identified buggy paths are indicating real

energy bugs or not. Static analysis generates the false positives because sometimes

those paths are also analysed that can never be executed. If situation of energy

bugs exist in any path that can never be executed (i.e. infeasible paths), that path

is also considered as energy bugs from static analysis. However, after identifica-

tion of buggy path we have created path conditions by using symbolic execution.

Further, infeasible paths or real energy bugs are identified due to evaluation of

path conditions by constraint solver. Therefore, we have overcome the number of

false positives. Secondly, stronger graph coverage criterion named Edge coverage

criteria is used to cover all the paths effectively. Moreover, graphical representa-

tion of the comparison is presented in the Figure 5.16, where at x-axis the true

positives (TPs) and false positives that were identified from previous approach

[21] and from proposed approach. Likewise, at y-axis, total no. of energy bugs

including false positives and TPs were 14 and 7 of them were false positives and 7

of them were TPs from previous approach and from our approach 7 TPs and one

energy bugs is turn into FPs.

Figure 5.16: Comparison of Total Energy Bugs
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Furthermore, overall results (as shown in Table.5.7) show that among 13 applica-

tions we have identified the false positives as well as real energy bugs. The existing

approach was detecting energy bugs in different resources. But there is an issue of

generation of false positives from their approach. To overcome this problem, we

have enhanced their approach by adding stronger graph coverage criterion. More-

over, the path conditions were not considered, we have also considered the path

conditions to identify that whether the bugs that were identified by them were

real energy bugs or false positives.

Researchers [21] discussed that they found some false positives through the manual

analysis on the source codes of those applications where energy bugs were reported.

Different reasons of false positives were also discussed and the main reason was that

they have not considered the path conditions and one path may lead to different

states for the same resource, hence false positives can be generated.

From the above discussion, it is concluded that the proposed energy bugs detection

technique is performing better than the existing energy bugs detection techniques.

Likewise, some of the existing static analysis studies show that from their approach

false positives were generated. Such as, study of Pathak et al. [32] show that 55

no-sleep bugs with 13 false positives were found in 86 Apks. Another study of

Guo et al. [33] revealed, eleven false positives from their results. Jiang et al. [38]

conducted experiments on 64 real APK files and detected that 52 of them have

resource leaks, 8 of them were false positives.

Besides, the previous technique [21] has some energy bugs that are false positives,

our proposed technique is detecting those bugs that are false positives and it is

also minimizing false positives to much extent. In addition, proposed approach is

more useful and it is quite less costly due to not considering all the test paths for

the path conditions but just the buggy paths.

In the following section mapping study is presented.
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5.3 Mapping Study

Table 5.9: Mapping Study

No. Objectives Fulfillment of Objectives

1. Eliminate the false positives
to overcome the existing ap-
proaches limitations.

Experimental results show that pro-
posed approach is able to overcome the
number of FPs. The FPs are reduced
but not eliminated.
FPs are generated in some cases be-
cause the proposed approach is not
able to catch the call back relation at
the current stage.

2. All three situations of en-
ergy bugs (i.e. open,
unclosed-ness and unused-
ness) are considered for the
detection of energy bugs.

Proposed approach is able to cover all
the situations of energy bugs for en-
ergy bugs detection. In short, we have
achieved this objective completely.

As shown in Table 5.9, main objective of this study is to eliminate the false pos-

itives because existing static analysis approaches generate more number of false

positives. As we know that false positives reduce the quality of results. Researchers

[42] stated that generation of false positives is the main problem of static analysis

that must need to be considered. Moreover, Zhang et al. [50] stated that some

paths are infeasible that is well-known problem with static analysis. Therefore, to

decide the feasibility of paths, we need to solve a set of constraints. So, to detect

the infeasible paths and to eliminate the false positives we have proposed the static

analysis based approach. Proposed approach includes the symbolic execution for

creation of path conditions that are evaluated on constraint solver. Resultantly,

we identified all the infeasible paths or false positives.

However, due to major limitation of static analysis (false positives generation) our

approach is not eliminating the false positives but we have overcome the number

of false positives. In other words, false positives that are generated due to static

analysis are reduced and we have almost achieved our objective as the proposed
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approach minimizes the false positives in much context but not eliminating all the

false positives.

Existing static energy bugs detection techniques consider only the second situation

of energy bugs named “unclosed-ness”. Due to not considering all the situations

of energy bugs (i.e. open, unclosed-ness and unused-ness) there is a possibility

to miss some energy bugs. Therefore, the proposed approach considers all the

situations of energy bugs for the detection of energy bugs.



Chapter 6

Conclusion and Future Work

In this dissertation, we have discussed how to effectively detect the energy bugs in

Android applications. In particular, we have focused on one of the main causes of

high battery consumption i.e. energy bugs. Smartphone emergence has increased

from the past few years. It has surpassed the desktop machines and became the

most popular and useful due to its multiple features such as large screen, GPS

and camera. The faster growth in specifications of Android phones allows the

developers to release the loads of applications every day. However, Android battery

consumption is still high due to complex applications. Moreover, to overcome

the battery issues a lot of approaches have been proposed for the energy bugs

detection in Android applications. After critical analysis of literature, we have

observed that these approaches have three categories that are 1) Static analysis

approaches, 2) Dynamic analysis approaches and 3) Hybrid approaches. Static

approaches generate more number of false positives (FPs) due to not executing

the code. Therefore, they are not able to completely detect all the energy bugs.

However, dynamic and hybrid approaches are more costly due to execution of test

cases and high execution time respectively.

We argue that for better detection of energy bugs FPs needs to be overcome. In

existing state-of-the art, researchers have picked different methods of detecting

the energy bugs but still static approaches generate more number of FPs. The

objective of this study is to consider all the possible situations of energy bugs (i.e.

77
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open, unclosed-ness and unused-ness) and to overcome the FPs by identification

of infeasible paths that leads to FPs.

In this study, we have enhanced the state-taint analysis, guided by resource usage

protocols, for better detection of energy bugs. Furthermore, path conditions are

created for the bug prone paths and constraint solver is used to identify the real

energy bugs. To demonstrate the viability of the approach, several experiments

on real Android applications are done to detect the energy bugs, where the appli-

cations are collected from well-known repositories i.e. Git-hub and Google code.

Using our approach, we were able to uncover real energy bugs and FPs in real-

world applications. We have compared our results with state-of-the-art approach

presented by Xu et al. [21]. Our study resulted in real energy bugs and infeasible

paths which results in FPs and experimental results show that our approach is

helpful and suitable in practice to detect and overcome the FPs. In addition, this

work aims to detect the energy bugs in Android applications with lower number

of false positives.

The overall findings of this study are, 1) better detection of energy bugs 2) detect

the FPs and the last one 3) the proposed approach reduces the FPs rate in the

static analysis approaches.

Moreover, following are the answers of our research questions portrayed in Chap-

ter 1, which we have identified after doing literature review, investigation and

experimentation.

RQ 1: What are the shortcomings of existing static energy bugs de-

tection techniques?

The critical analysis of already proposed static approaches in the field of energy

bugs are investigated thoroughly and some gaps are identified. These approaches

consider only the second situation of the energy bugs named “unclosed-ness”.

Moreover, these approaches generate more number of false positives. The reason

behind generation of false positives is that static approaches perform without

executing the code. It cannot evaluate the conditions so some of the paths can be
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added as buggy paths which are not real energy bugs. Therefore, false positives

can be generated due to static analysis.

RQ 2: How to overcome the shortcomings of existing static energy

bugs detection techniques?

Static approaches perform without execution of code. Therefore, these approaches

generate more number of false positives. To overcome this limitation, our tech-

nique identifies the buggy paths, and by using the symbolic execution creates path

conditions for buggy paths. Moreover, constraint solver is used for evaluating the

path conditions to determine the infeasible paths or false positives. This helps in

detect and overcome the false positives in static approaches. Besides, the proposed

approach considers three situations of energy bugs including open, unclosed-ness

and unused-ness.

RQ 3: Does the proposed approach overcome the false positives when

compared with existing techniques?

We have proposed energy bugs detection technique which detect the energy bugs

in Android apps and overcome the false positives in static analysis. Proposed

technique identifies the buggy paths and after that path conditions are created for

the identification of real energy bugs. We have performed experiments to detect

the energy bugs on different real world Android applications for determining the

effectiveness of the proposed technique over existing static analysis techniques.

We have enhanced the existing state-taint analysis by adding the stronger graph

coverage criteria and path conditions are added that are further evaluated for the

identification of infeasible paths that leads to false positives. Previous approaches

generate more number of false positives and after experiments results show that

our technique overcomes this limitation by using stronger graph coverage criterion

and path conditions that are evaluated for the identification of false positives.

For comparison, previous approach [21] is compared with proposed approach and

final results show that our technique performs better than the existing techniques.

Moreover, proposed technique is able to effectively detect the real energy bugs and

false positives.
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6.1 Future Work

We have identified some of probable directions for future research in this area. In

the future, our approach can be extended by considering the callback relation and

exceptions as different bugs can arise due to exceptions. In this study, we have

conducted experiments on several real Android applications and test datasets from

state-taint analysis. In future, some additional case studies for comparison and

evaluation can be used. Furthermore, with more investigation, this study can

provide guidelines to the developers in order to help testing their applications and

make sure they are free of energy bugs.
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Appendix

CFG is created for example code shown in Figure 4.1. After that, CFGs is exported

to the XML format which is shown below. Moreover, CFG is exported the graph

in DOT format for the visualization of graph in GraphViz.

XML of the CFG (shown in Figure 4.2)

<GraphXML>

<graph version=”1.0” vendor=”www.drgarbage.com”

id=”IncomingSms.findMyLocation.src.graph”>

<node name=”2”>

<label>76</label>

</node>

<node name=”3”>

<label>77</label>

</node>

<node name=”4”>

<label>78</label>

</node>

88
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<node name=”5”>

<label>79</label>

</node>

<node name=”6”>

<label>80</label>

</node>

<node name=”7”>

<label>81</label>

</node>

<node name=”8”>

<label>82</label>

</node>

<node name=”9”>

<label>83</label>

</node>

<node name=”10”>

<label>84</label>

</node>

<node name=”11”>

<label>85</label>
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</node>

<node name=”12”>

<label>86</label>

</node>

<node name=”13”>

<label>87</label>

</node>

<node name=”14”>

<label>88</label>

</node>

<node name=”15”>

<label>89</label>

</node>

<node name=”16”>

<label>90</label>

</node>

<node name=”17”>

<label>91</label>

</node>

<node name=”18”>
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<label>START</label>

</node>

<node name=”19”>

<label>EXIT</label>

</node>

<edge source=”18” target=”2”>

<label/>

</edge>

<edge source=”2” target=”3”>

<label/>

</edge>

<edge source=”3” target=”4”>

<label/>

</edge>

<edge source=”4” target=”5”>

<label/>

</edge>

<edge source=”5” target=”6”>

<label/>

</edge>
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<edge source=”6” target=”7”>

<label/>

</edge>

<edge source=”7” target=”8”>

<label>true</label>

</edge>

<edge source=”8” target=”9”>

<label/>

</edge>

<edge source=”9” target=”10”>

<label>true</label>

</edge>

<edge source=”10” target=”11”>

<label/>

</edge>

<edge source=”9” target=”12”>

<label>false</label>

</edge>

<edge source=”11” target=”12”>

<label/>
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</edge>

<edge source=”12” target=”13”>

<label>true, false</label>

</edge>

<edge source=”13” target=”14”>

<label/>

</edge>

<edge source=”14” target=”15”>

<label/>

</edge>

<edge source=”7” target=”16”>

<label>false</label>

</edge>

<edge source=”12” target=”17”>

<label>false</label>

</edge>

<edge source=”16” target=”17”>

<label/>

</edge>

<edge source=”15” target=”19”>
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<label/>

</edge>

<edge source=”17” target=”19”>

<label/>

</edge>

</graph>

</GraphXML>

CFG is exported the graph in DOT format for the visualization of graph in

GraphViz. Dot format for the CFG of example code shown in Figure 4.1, is

shown below.

Dot format of the CFG (shown in Figure 4.2)

<!– –> digraph ”IncomingSms.findMyLocation.src.graph” {

graph [label=”IncomingSms.findMyLocation.src.graph”];

2 [label=”76” ]

3 [label=”77” ]

4 [label=”78” ]

5 [label=”79” ]

6 [label=”80” ]

7 [label=”81” ]

8 [label=”82” ]

9 [label=”83” ]

10 [label=”84” ]

11 [label=”85” ]

12 [label=”86” ]
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13 [label=”87” ]

14 [label=”88” ]

15 [label=”89” ]

16 [label=”90” ]

17 [label=”91” ]

18 [label=”START” ]

19 [label=”EXIT” ]

18 − > 2 [label=”” ]

2 − > 3 [label=”” ]

3 − > 4 [label=”” ]

4 − > 5 [label=”” ]

5 − > 6 [label=”” ]

6 − > 7 [label=”” ]

7 − > 8 [label=”true” ]

8 − > 9 [label=”” ]

9 − > 10 [label=”true” ]

10 − > 11 [label=”” ]
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