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Abstract

The main objective of this dissertation is to focus on a numerical investigation

of magnetohydrodynamics (MHD) Casson nanofluid flow over a stretching sur-

face with convective boundary condition. Effects of inclined magnetic field, Soret

and Dufour have also been incorporated. A mathematical model which governs

the physical flow problem has been developed. Appropriate similarity transfor-

mations are used to convert the modeled partial differential equations (PDEs)

into a system of nonlinear ordinary differential equations (ODEs). The resulting

system of ordinary differential equations (ODEs) is solved numerically by using

a well known shooting method implemented the computational software package

MATLAB. Impact of various physical parameters on the dimensionless velocity,

temperature and concentration profiles are presented and analyzed in the form

of graphs. Numerical values of the skin friction coefficient, Nusselt number and

Sherwood number are also and discussed.
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Chapter 1

Introduction

Fluid is a phase of matter that deforms or flows under an applied external force.

Fluid exists in the form of liquids, gases or plasma [1]. It is a substance with

vanishing shear modulus or, in more simple words, substance which cannot resist

any applied shear force. Fluid is the basic need of every day life and because of

its importance in many natural processes, scientists in different part of world are

trying to explore various facts regarding the flow of fluid. Fluid dynamics is the

sub-branch of fluid mechanics in which we study the fluid flow, also by analyzing

the cause of flow. And how forces influence the fluid flow. It provides methods for

understanding the evolutions of stars, ocean, current, tectonics plate, as well as

the blood circulation [2]. Few important applications of fluid flows include wind

turbines, oil pipelines, rocket engine and air-conditioning systems [3]. Archimedes

was the first mathematician who formulated the Archimedes principle about the

static of fluid and is considered to be the basics of fluid mechanics. The proper

study of fluid mechanics start from early fifteen century. Fluid can be further

classified into Newtonian or non-Newtonian fluid, depending on the relationship

between two physical quantities i.e., stress and strain.

1
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1.1 Nanofluid

The mixture of nanoparticles with dimension less than 100nm and the conven-

tional low thermal conductivity fluid is known as nanofluid. The word nanofluid

was first introduced by Choi [4] that presented a new class of fluid. Nanofluids

are suspension of small sized (nano size) particles in a base fluid. Carbon nan-

otubes, carbides, metals, or oxides are the most commonly used nanoparticles in

nanofluids. These fluids are synthesized to obtain improved thermal conductivity

as compared with any base fluids. The thermal conductivity of nanofluid can be

increased by using nanoparticle of gold, copper, silver etc., into the base fluid.

The factor that lead to an increase in the thermal conductivity of nanofluids was

studied by Buongiorno [5]. He observed that, both thermophoresis effect and the

Brownian motion causes a change in thermal conductivity of the fluid. Nanofluid

can also be used as a coolant in information technology and heavy vehicle industry.

Overall, nanofluid acts as boon in many industrial, biomedicine and engineering

fields. The nanofluid flow over a horizontal sheet in the presence of an external

magnetic field using the Joul heating effect was investigated by Shahzad et al. [6].

Naramgari and Soluchana [7] analyzed the effect of thermal radiation on MHD

nanofluid over a stretching surface. Abolbashari et al. [8] investigated the transfer

of energy and heat in the steady laminar Casson nanofluid flow using both slip

velocity and surface boundary condition. Ghadikolaei et al. [9] investigated the

influence of different physical parameters such as chemical reaction, thermal ra-

diation, suction, Joule heating, heat generation and absorption in the MHD flow

of Casson nanofluid using a porous non-linear sheet. The unsteady nanofluid flow

in the existence of thermal radiation using a stretching surface was analyzed by

Kalidas et al. [10]. Ibrahim and Shankar [11] observed the boundary layer flow

of non-Newtonian nanofluid using slip boundary condition, thermal radiation and

magnetic field effect. The numerical analysis of Williamson nanofluid flow over a

permeable surface along with the effect of chemical parameter in the presence of

nanoparticles has been studied by Krishnamurthy et al. [12].
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1.2 Magnetohydrodynamics (MHD)

Magnetohydrodynamics is that branch of mechanics which we deals with the study

of conduction fluid flow in the presence of an external magnetic filed. Salt wa-

ter, plasma, liquid metals and electrolytes are the common example of magneto

fluid. It establishes a coupling between Maxwells equations of electromagnetism

and Navier-Stoke equation for fluid dynamics. Generally, external magnetic field

produces electric current in the conducting fluid as a result force is exerted on

the moving fluid, that in turns influence the magnetic field itself this is the main

concept behind MHD. Due to the importance of MHD, it plays a significant role

in many flow phenomenon. It has wide range of applications in various fields

of science such as, metallurgical science, mental working process, aerodynamics,

fluid dynamics, and many others engineering disciplines for example, ceramic and

biomedical engineering etc [13]. The boundary layer structure can be modified

through MHD which improve the flow of fluid in a specific direction. The applica-

tion of external magnetic field also plays a vital role in several industrial processes

like, material manufacturing, metal casting etc. The MHD flow as well as the

heat transfer through a channel by using a sheet which is permeable was analyzed

by Chauhan and Agrawal [14]. They observed that the cooling rate can be con-

trolled by two parameters such as magnetic number and suction parameter. The

heat transfer in 2D MHD fluid flow using a permeable surface with quick change in

slip velocity and temperature gradient was analyzed by [15]. they observed that,

the thermal boundary layer can be hiked by modifying the shrinking parameter of

the system. Attia [16] studied the heat transfer using MHD Couette flow in a spe-

cial type of fluid called dusty fluid by assuming different physical parameters and

found that the temperature of both dust particle and fluid changes significantly.

The 2D MHD flow of an incompressible Williamson nanofliud with mass and heat

transfer in a porous sheet was investigated by Shawky et al. [17]. Hayat et al. [18]

considerd another fluid called upper convected Maxwell fluid and investigated the

MHD flow of this fluid over a stretching sheet. Khashi’ie et al. [19] considerd a

shrinking sheet in a porous medium and applied an external magnetic field normal



Introduction 4

to the surface of the sheet and then examined the flow of mixed convection MHD

stagnation point. The 2D mixed convection MHD boundary layer stagnation point

flow in the existence of thermal radiation using a vertical plate which was filled

with nanofluid has been demonstrated by Eftekhari and Moradi [20]. Kumar et

al. [21] analyzed the impact of the transfer of heat in MHD Casson nanofluid us-

ing nonlinear surface. Aman et al. [22] investigated the flow of 2D incompressible

viscous fluid using a shrinking surface in the existence of an external magnetic

filed.

1.3 Stagnation Point

Stagnation point always exist on the flow field surface such that close to this point

the fluid come to at rest. Therefor, the Stagnation point can be defined as, the

point in the flow field where the fluid velocity become zero. The study of the flow

of nanofluid close to the stagnation point has many practical applications, some of

them are listed as, cooling of electronic devices by fan, solar receiver, the cooling

of nuclear reactor at the time of emergency shutdown, and several hydrodynamic

processes [23]. Due to these important applications of stagnation point flow has

attracted a great attention of scientific community. Hiemenz [24] was the first

mathematician who first time proposed the 2D stagnation point flow. Eckert [25]

got the accurate solution by extending Hiemenz problem by adding the energy

equation. Mahapatra and Gupta [27], In view of that Ishak et al. [26], and Hayat

et al. [28] investigated the impact of the transfer of heat on stagnation point over a

porous plate. Jafar et al. [29] scrutinized the laminar MHD stagnation point flow

of viscous fluid by applying magnetic field normal to the flow direction. Ashraf

and Kamal [30] analyzed the stagnation point flow of electrically conducting fluid

with heat transfer over a porous surface along with magnetic effect. The numerical

study of stagnation point flow using convective boundary condition over a stretch-

ing sheet has been analyzed by Mohamed et al. [31]. Seth et al. [32] considerd the

exponentially non-isothermal sheet with uniform source of heat and magnetic field

and studied the 2D stagnation point flow of incompressible, electrically conducting
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viscous fluid with viscous dissipation. Rizwan et al. [33] investigated the influence

of both radiation and MHD on the flow of stagnation point of nanofluid over a flat

sheet. Ibrahim [34] discussed the transfer of heat of boundary layer nanofluid flow

past a stretching surface along with the magnetic field, radiative heat transfer and

convective heating effects. Iqbal et al. [35] analyzed the flow of stagnation point

using fluid dissipation and thermal radiation in such a way that the flow direction

is induced by an exponentially stretching surface.

1.4 Casson Fluid

Non-Newtonian fluid has wide range of application such as oil recovery, filtration,

polymer engineering, ceramics production and petroleum production. It also per-

forms a significant function in the design of solid matrix, heat geothermal energy

production, nuclear waste disposal, petroleum reservoirs etc, [36]. Non-Newtonian

fluids are more complex due to nonlinear relation between stress and strain as

compared to Newtonian fluids. In order to study the non-Newtonian fluid, several

models have been developed, but still no single model exits which could explain

all the properties of this fluid. Theres exists a sub-class of non-Newtonian fluids

called Casson fluid. This fluid has large viscosity which tends to infinity at zero

rate of shear i.e., if the magnitude of shear stress is much weaker than the mag-

nitude of applied stress it behaves like a solid. On the other hand, if shear stress

become greater than the yield stress the fluid start flowing. Casson [37] first time

developed the Casson model for various suspension of cylindrical particles. Soup,

fruit juice, jelly, honey and tomatoes sauce are general example of Casson fluid.

Benazir et al. [38] have analyzed the unsteady MHD Casson fluid flow over a flat

plate and vertical cone over porous medium along with double dispersion effects.

The laminar convective boundary layer non-Newtonian Casson fluid flow thermally

fixed over a stretching sheet have been analyzed by Animasaun et al. [39] Afikuzza-

man et al. [40] have investigated the unsteady flow of MHD fluid with hall current

through parallel plates, and considering the magnetic field perpendicular to the

plates. The influence of different physical parameters such as thermal radiation,
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viscous dissipation and Joule heating on the flow of MHD Casson nanofluid has

been investigated by Ghadikolaei et al. [41]. Mustafa [42] numerically analyzed

the MHD flow of nanofluid using rotating disk. The heat transfer with MHD Cas-

son fluid flow towards a nonlinear stretching sheet with temperature distribution

over the sheet has been analyzed by Mustafa and Junaid [43]. Pramanik [44] has

studied the heat transfer in the Casson nanofluid flow by including the the thermal

radiation.

1.5 Soret and Dufour Effects

The Soret effect also known as thermal diffusion effect is a process in which various

sized particles behave differently to the temperature gradient. It was Charles Soret

who discovered this effect for the first time in 1879 [45]. He found that a tube

containing salt solution is arranged in such a way that the two ends of the tube

are at different temperature then the salt solution does not maintain its uniform

composition. Near the cold end of the tube, the concentration of salt is more as

compared to the hot end. In other words, heavy particles get separated from light

particles under a temperature gradient.

The Dufour effect also known as the diffusion thermo effect is the energy flux

caused by the concentration gradient. A change in temperature causes the con-

centration gradient. Both Soret and Dufour effect are mostly ignored in those

studies in which we analyze the transfer of mass and heat, because both these ef-

fects have weaker magnitude when compared with Ficks and Fouriers laws. On the

other hand, these two effects are assumed to be second order phenomena and their

applications are more significant in areas such as nuclear waste disposal, geother-

mal energy, petrology and hydrology etc. The Soret effect has been contribute in

the process of isotopes separation and mixture between lighter molecular weight

gasses such as H2 and He etc. and medium molecular weight gasses such as N2

and air etc. Recently the Dufour effect is observed to have considerable magnitude

due to which it cannot be neglected in any kind of study that deal with the energy

flux caused by the concentration gradient [46]. The Dufour and Soret effects were



Introduction 7

analyzed by Dursunkaya and Worek [47] in a natural steady convection using ver-

tical surface. The same effect was studied by Kafoussias and Villiams [48] using

transfer of mass and heat with temperature dependent viscosity using a flat sheet

in a uniform boundary layer flow. Abreu et al. [49] have analyzed both Dufour

and Soret effect using free and forced convection flow. The dependence of mass

and heat transfer on magnetic field from vertical surfaces by considering Dufour

and Soret effects have been addressed by Postelnicu [50]. The Dufour and Soret

effect with variable suction on mixed convection flow over a porous flat surface

have been addressed by Alam and Rahman [51]. Recently, Lakshmi Narayana

and Murthy [52] have investigated the Dufour and Soret effects on heat and mass

transfer in a porous sheet.

1.6 Thesis Contributions

In this thesis, we provide a detail review of Ibrahim et al. [53] work and the

study is extended by considering various others effects such as Soret effect, Dufour

effect and inclined magnetic field. In this work, we convert a system of PDEs

into nonlinear ODEs using similarity transformations. A well known shooting

technique with fourth order RK method is used to obtained the numerical results.

Implemented in Matlab software package. Using tables and graphs, the influence

of various suitable physical parameter hase been discussed.
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1.7 Layout of Thesis

This dissertation is further composed of four chapters as below:

Chapter 2 inludes basic definition, laws and concept which are useful in under-

standing upcoming work. The mathematical model and the shooting method are

also developed in the last page of this chapter.

Chapter 3 provides a detailed review work of Ibrahim et al. [53]. In this work,

an appropriate similarity transformation are used for the conversion of PDEs into

ODEs and obtained the numerical results by solving the system of ODEs with the

help of shooting method.

Chapter 4 extends the work of Ibrahim et al. [53] explained in Chapter 3 by

including the effect of inclined magnetic field, Soret and Dufour. The similarity

transformation has been utilized for the conversion of PDEs into ODEs. The

converted ODEs are then solved by using the most familiar shooting technique.

Chapter 5 summarizes the whole study and includes the conclusion arising from

the entire discussion.



Chapter 2

Fundamental Concepts and

Governing Laws

In this chapter, some basic definition governing laws and dimensionless quantities

are presented, which will be used in the next chapters. Dimensionless quantities

are also discussed which have been used in subsequent chapters. Furthermore, a

brief discussion has been done for the shooting method which has been used to

find the numerical results.

2.1 Some Basic Definition

Definition 2.1. (Fluid [1])

“You will recall from physics that a substance exists in three primary phases. solid,

liquid and gas. (At very high temperatures, it also exists as plasma) A substance

in the liquid or gas phase is referred to as a fluid. Distinction between a solid

and fluid is made on the basis of substances ability to resist an applied shear or

(tangential) stress that tends to change its shape.”

Definition 2.2. (Fluid Kinematics [54])

“The study of the fluids in motion, where pressure forces are not considered, is

called fluid kinematics.”

9
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Definition 2.3. (Fluid Mechanics [54])

“Fluid mechanics is that branch of science which deals with the behavior of the

fluids (liquids or gases) at rest as well as in motion. Thus this branch of science

deals with the static, kinematics and dynamic aspects of fluids.”

Definition 2.4. (Fluid Dynamics [55])

“It is the study of the motion of liquid, gases and plasma from one place to another.

Fluid dynamics has a wide range of applications like calculating force and moments

on aircraft, mass flow rate of petroleum passing through pipelines, prediction of

weather, etc.”

Definition 2.5. (Hydrodynamics [55])

“The study of the motion of fluids that are practically incompressible such as

liquids, especially water and gases at low speeds is usually referred to as hydrody-

namics.”

Definition 2.6. (Magnetohydrodynamics [56])

“Magnetohydrodynamics (MHD) is concerned with the flow of electrically conduct-

ing fluids in the presence of magnetic field, either externally applied or generated

within the fluid by inductive action.”

2.2 Physical Properties of the Fluid

There are certain physical property of fluid which is describe below

Definition 2.7. (Pressure [57])

“The pressure exert on or by a fluid denoted by p as defined as the magnitude of

force per unit area exerted in a direction normal to that area. If the normal force

F is uniformly distributed across the plane area A, then the pressure called the

average (or mean) pressure is simply the ratio of the normal force to the total area

that is” p=
F

A
.

Definition 2.8. (Stress [57])

“The stress or stress vector is defined as the force per unit area of the surface
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on which it acts. If the stress is uniformly distributed over the plane area A, the

stress called the average stress is defined as”

F

A
.

Definition 2.9. (Temperature [57])

“Temperature of a body is defined as a measure of the intensity of heat. Heat

always flows from a region of higher temperature to one of the lower temperature.

Physical state of a substance changes with temperature. For example, water at low

temperature is ice, at higher temperature is water and at still a higher temperature

is steam.”

Definition 2.10. (Density [57])

“The density of a fluid denoted by ρ is defined as the mass per unit volume. Thus

if m is the mass enclosed in a volume V , then

ρ =
m

V
,

if the density at each point of the fluid is the same, then the density is said to be

uniform.”

Definition 2.11. (Specific Weight [57])

“The specific weight of a fluid denoted by γ is defined as the weight per unit

volume. Thus if V is the volume of the fluid having weight w, then

γ =
W

V
=
mg

V
= ρg

where g is the acceleration due to gravity. In other words, the specific weight is

the force with which the earth attracts a unit volume.”

Definition 2.12. (Specific Volume [57])

“The specific volume denoted by Vs is defined as the volume occupied by a unit

mass of the fluid

Vs =
1

ρ
,

in other words, the specific volume is the reciprocal of the density.”
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Definition 2.13. (Compressibility [57])

“The compressibility of a fluid is a measure of the change of its volume ( and

thus the density ) under the action of external forces. If the volume (or the

density) of a fluid changes when the pressure or temperature change, it is said to

be compressible otherwise incompressibel.”

Definition 2.14. (Viscosity)

“Is a physical property of fluids associated with shearing deformation of fluid

particles subjected to the action of applied forces.”

Definition 2.15. (Kinematic Viscosity [57])

“The ratio of the absolute viscosity µ to the density ρ is called the kinematic

viscosity of the fluid and is denoted by ν and mathematically it can be written

as”

ν =
µ

ρ
.

Definition 2.16. (Dynamic Viscosity [57])

“The extent which measures the resistance of fluid tending to cause the fluid to

flow is called dynamic viscosity, also known as absolute viscosity. This resistance

arises from the attractive forces between the molecules of the fluid. Usually liquids

and gasses have non-zero viscosity. It is denoted by symbol µ and mathematically,

it can be written as

µ =
shear stress

shear strain
,

here µ is called the coefficient of viscosity. Unit of viscosity in SI system is kg
ms

or

Pascal-second.”

2.3 Types of Fluid Flow

Definition 2.17. (Compressible and Incompressible Flows [58])

“A fluid flow during which the density of the fluid remains nearly constant is called

compressible flow. A fluid whose density is practically independent of pressure

(such as a liquid) is called an incompressible fluid. The flow of compressible fluid
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(such as air) is not necessarily compressible since the density of a compressible

fluid may still remain constant during flow.”

Definition 2.18. (Steady versus Unsteady Flow [58])

“A process is said to be steady-flow if it involves no change with time anywhere

within the system or at the system boundaries otherwise unsteady-flow.”

Definition 2.19. (Laminar and Turbulent Flow [59])

“Fluid partical follows a smooth trajectory, the flow is then said to be laminar.

Further increases in speed may lead to instability that eventually produces a more

random type of flow that is called turbulent.”

Definition 2.20. (Viscous Fluid and Shear [58])

“Viscosity is the measure of the internal friction of fluid. This friction become

apparent when a layer of fluid is made to move in relation to another layer. The

greater the friction, the greater the amount of force required to cause this move-

ment, which is called shear.”

Definition 2.21. (Internal and External Flow [58])

“The flow of an unbounded fluid over a surface such as a plate, a wire, or a pipe is

external flow. The flow in a pipe or duct is internal flow if the fluid is completely

bounded by solid surfaces.”

Definition 2.22. (Natural and Force Flow [58])

“In forced flow, the fluids is forced to flow over a surface or in a tube by external

means such as a pump or a fan. In natural flow, any fluid motion is caused by

natural means such as the buoyancy effect manifests itself as the rise of the warmer

fluid and the fall of the cooler fluid. The flow caused by winds is natural flow for

the earth, but it is forced flow for bodies subjected to the winds since for the it

makes no difference whether the air motion is caused by a fan or by the wind.”
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2.4 Types of Fluid

Definition 2.23. (Ideal Fluid [54])

“A fluid, which is incompressible and is having no viscosity, is known as an ideal

fluid.”

Definition 2.24. (Real Fluid [54])

“A fluid, which possesses viscosity, is known as real fluid. All the fluids, in actual

practice, are real fluids.”

Definition 2.25. (Newtonian Fluid [54])

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid. ”

Definition 2.26. (Non-Newtonian Fluid [54])

“A real fluid, in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a non-Newtonian fluid”. Mathe-

matically it can be express as”:

τ = k

(
∂u

∂y

)n
.

Definition 2.27. Viscoplastic or Bingham Fluids

“These fluids show a linear relationship between shear stress and shear strain but

need a yield stress to flow.

Examples of Bingham fluids are tooth paste, granular materials and fresh con-

crete.”

Definition 2.28. Shear Thickening Fluids

“A small group of real liquids for which the velocity increases with the increasing

shear rate such fluids are called shear thickening fluids.

Shear thickening fluids are also called dilatant fluids. Examples are corn starch

and obleck.”

Definition 2.29. Nanofluids

“Nanofluids are engineered colloids made of a base fluid and nanoparticles (1 −
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100)nm. Nanofluids have higher thermal conductivity and single-phase heat trans-

fer coefficients than their base fluids Metals, oxides, carbides, or carbon nanotubes

are the typical nanoparticles which are used in nanofluids and oil, ethylene glycol

and water are the examples of common base fluids.”

2.5 Heat Transfer Mechanism and Properties

Definition 2.30. (Heat [60])

“In thermodynamics heat is defined as the form of energy that is transferred

across the boundary of a system at a given temperature to another system (or

the surroundings) at a lower temperature by virtue of the temperature difference

between the two system.”

Definition 2.31. (Heat Transfer [60])

“Heat transfer is that section of engineering science that studies the energy trans-

port between material bodies due to a temperature difference.”

Definition 2.32. (Mixed Convection [60])

“Mixed convection involves features from both Forced convection and Natural

convection.”

Definition 2.33. (Natural Convection [60])

“When fluid motion occurs because of a density variation caused by temperature

differences, the situation is said to be a free, or natural, convection.”

Definition 2.34. (Forced Convection [60])

“When fluid motion is caused by external force, such as pumping or blowing, the

state is defined as being one of forced convection.”

Definition 2.35. (Modes of Heat Transfer [60])

“There are three modes of heat transfer namely conduction, convection and radi-

ation”.

Definition 2.36. (Conduction [60])

“The conduction mode of heat transfer occurs either because of an exchange of
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energy from one molecule to another, without the actual motion of the molecules,

or because of the motion of the free electrons of they are present. This form of

heat transfer occurs in solids, liquid and gases.”

Definition 2.37. (Convection [60])

“Molecules present in liquids and gases have freedom of motion, and by moving

from hot to cold region, they carry energy with them. The transfer of heat from

one region to another, due to such macroscopic motion in a liquid and gas, added

to the energy transfer by conduction within the fluid, is called heat transfer by

convection.”

Definition 2.38. (Radiation [60])

“All bodies emit thermal radiation at all temperature. This is the only mode

in which both does not require a material medium for heat transfer to occure.

The nature of thermal radiation is such that a propagation of energy, carried

by electromagnetic waves, is emitted from the surface of the body. When these

electromagnetic waves strike other body surface, a part is reflected, a part is

transmitted and the remaining part absorbed.”

2.6 Some Important Definition

Definition 2.39. (Streamlines [61])

“A streamline is a line everywhere tangent to the velocity field. For two-dimensional

flows the slop of the streamline must be equal to the tangent of the angle that the

velocity angle makes with the x-axis. ”

Definition 2.40. (Stream Function [60, 61])

“Stream function is a very useful device in the study of fluid dynamics. Stream

function is often used to draw the streamlines in order to better understand the

flow pattern around a body. A stream function ψ is one which satisfies u=∂ψ
∂y

,

v=u=∂ψ
∂x

. ”

Definition 2.41. (Isothermal Process [54])

“If the change in density occurs at constant temperature, then the process is called



17

isothermal and relationship between pressure (P ) and density (ρ) is given by P
ρ

=

Constant.”

Definition 2.42. (Adiabatic Process [54])

“If the change in density occurs with no heat exchange to and from the gas, the

process is called adiabatic. And if no heat is generated within the gas due to

friction, the relationship between pressure and density is given by

p
ρk

= Constant

where k = Ratio of the specific heat of a gas at constant pressure and constant

volume.”

Definition 2.43. (Viscous Dissipation [1])

“Viscous dissipation represent the irreversible (in the thermodynamic sense) con-

version of kinetic energy of the flow into internal energy of the fluid.”

Definition 2.44. (Thermal Conductivity [1])

“Thermal conductivity k is a measure of the ability of a material to conduct heat.

Mathematically:

k =
q∇l
S∇T

where q is the heat passing through a surface area S and the effect of temperature

difference ∇T over a distance is ∇l. Here l, S and ∇T all are assumed to be of

unit measurement.”

Definition 2.45. (Joule Heating)

“Joule heating is the energy dissipation that occurs with an electric current flowing

through a resistor.”

Definition 2.46. (Thermal Diffusivity)

“It measures the ability of material to conduct thermal energy relative to its

ability to store energy means how fast or how easily heat can penetrate an object

or substance. Mathematically:

α =
k

ρCp
,
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where k is the thermal conductivity ρ is the density and Cp is the specific heat.”

Definition 2.47. (Newton’s Law of Viscosity)

“It states that the shear stress is proportional to the deformation rate of the fluid.

Mathematically it is written as

τyx = µ
du

dy
,

where the symbol τyx is the shear stress, x and y represents horizontal and ver-

tical coordinates, u is the horizontal components of velocity, µ is the constant of

proportionality termed as dynamic viscosity while du dy is the deformation rate.”

2.7 Boundary Layer

“Viscous effects are particularly important near the solid surfaces, where the strong

interaction of the molecules of the fluid with molecules of the solid causes the

relative velocity between the fluid and the solid to become almost exactly zero

for a stationary surface. Therefore, the fluid velocity in the region near the wall

must reduce to zero. This is called no slip condition. In that condition there is no

relative motion between the fluid and the solid surface at their point of contact.

It follows that the flow velocity varies with distance from the wall, from zero at

the wall to its full value some distance away, so that significant velocity gradients

are established close to the wall. In most cases this region is thin (compared to

the typical body dimension), and it is called a boundary layer.”
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2.8 Laws of Conservation and Basic Equation

“There are three laws of conservation which are used to model the problems of fluid

dynamics, and may be written in integral or differential form. Integral formulations

of these laws consider the change of mass, momentum or energy within the control

volume” [62].

2.9 Continuity Equation [62]

“The conservation of mass of fluid entering and leaving the control volume, the

resulting mass balance is called the equation of continuity. This equation reflects

the fact that mass is conserved. For any fluid, conservation of mass is expressed

by the scaler equation

∂ρ

∂t
+∇.(ρV) = 0. (2.1)

For the steady flow above Eq. (2.1) can be written as

∇.(ρV) = 0. (2.2)
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For incompressible flow, Eq. (2.2) becomes

∇.V = 0. (2.3)

For incompressible and irrotational flow, the Eq. (2.3) is transformed in terms of

velocity potential ψ, which is given by

∇2ψ = 0. (2.4)

Eq. (2.4) is known as Laplace equation.”

2.10 Momentum Equation [1, 62]

“The product of the mass and the velocity of a body is called the linear momen-

tum. Newton’s second law states that the acceleration of a body is proportional

to the net force acting on it and is inversely proportional to its mass, and that the

rate of change of the momentum of a body is equal to the net force acting on the

body. Therefore, the momentum of a system remains constant when the net force

acting on it is zero, and thus the momentum of such systems is conserved. This is

known as the conservation of momentum principal. For any fluid, the momentum

equation is

∂(ρV)

∂t
+∇.

(
(ρV)V

)
−∇.T− ρg = 0. (2.5)

Since T= −pI + τ , the momentum equation takes the form

ρ

(
∂V

∂t
+ V.∇V

)
= ∇.(−pI + τ) + ρg. (2.6)

Eq. (2.6) is a vector equation and can be decomposed further into three scalar

components by taking the scalar product with the basis vectors of an appropriate

orthogonal coordinate system. By setting g=−g∇z, where z is the distance from
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an arbitrary reference elevation in the direction of gravity, Eq. (2.6) can be also

expressed as

ρ

(
∂V

∂t
+ V.∇V

)
= ∇.(−pI + τ) +∇(−ρgz). (2.7)

The momentum equation then states that the acceleration of a particle following

the motion is the result of a net force, expressed by the gradient of pressure,viscous

and gravity forces.”

2.11 Energy Equation [1]

“The energy conservation of a system can be expressed in rate form as:

Rate of change of energy in system or control volume=(Rate of in flow of energy-

Rate of out flow of energy)+(Rate of heat addition due to conduction)+(Rate of

internal heat generation with in control volume)+(Rate of work done by the forces

acting on control volume).

Conservation of thermal energy is expressed by

ρ

[
∂V

∂t
+ v.∇V

]
= [τ : ∇v + p∇.v] +∇(k∇T)± Ĥr, (2.8)

where V is the internal energy per unit mass, and Hr is the heat of reaction. By

invoking the definition of the internal energy, dV=CvdT , Eq. (2.8) becomes

ρCν

(
∂T

∂t
+ v.∇T

)
= τ : ∇v + p∇.v +∇(k∇T)± Ĥr. (2.9)

For heat conduction in solids, i.e., when v = 0, ∇v=0 and Cv = C, the resulting

equation is”

ρC
∂T

∂t
= ∇(k∇T )± Ĥr. (2.10)
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2.12 Dimensionless Quantities

Definition 2.48. (Prandtl Number (Pr)) [63]

“This number expresses the ratio of the momentum diffusivity (viscosity) to the

thermal diffusivity. Mathematically it can be written as

Pr =
ν

α
,

where ν represent the kinematic viscosity and α denotes thermal diffusive heat

transfers.”

Definition 2.49. (Skin Friction Coefficient (Cf)) [63]

“Skin friction coefficient occurs between the fluid and the solid surface which leads

to slow down the motion of the fluid. The skin friction coefficient can be defined

as

Cf =
τω
ρU2

ω

,

where τω denotes the wall shear stress, ρ the density and Uω the stretching veloc-

ity.”

Definition 2.50. (Eckert Number (Ec)) [63]

“It expresses the ratio of kinetic energy to a thermal energy change. Mathemati-

cally

Ec =
w2
∞

Cp∆T
,

where Cp is the specific heat, w2
∞ velocity of fluid far from body, ∆T the temper-

ature difference.”

Definition 2.51. (Biot Number (Bi)) [63]

“We know that resistance of heat transfer is different inside of the material and

at the surface. Their ratio is called biot number. Mathematically it as defined as

Bi =
hL

k
,
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here h is convective heat transfer, L represents the characteristic length and k the

thermal conductivity fo the fluid.”

Definition 2.52. (Lewis Number (Le)) [63]

“The Lewis number can be defined as the ratio of thermal diffusivity with molecu-

lar diffusivity. It helps us to find the relationship between mass and heat transfer

coefficient. Mathematically

Le =
λ

ρDmCp
,

where λ is the convective heat transfer, Dm the mixture average diffusion coeffi-

cient, and cp the specific heat capacity at constant pressure.”

Definition 2.53. (Nusselt Number (Nu)) [63]

“It expresses the ratio of the total heat transfer in a system to the heat transfer by

conduction. It characterizes the heat transfer by convection between a fluid and the

environment close to it or, alternatively, the connection between the heat transfer

intensity and the temperature field in a flow boundary layer, Mathematically

Nu =
αH

λ
,

where H is the characteristic length, α is the heat transfer coefficient, and λ is

thermal conductivity.”

Definition 2.54. (Reynolds Number (Re)) [63]

“This number expressed the ratio of the fluid inertia force to that of molecular

friction (viscosity). It determines the character of the flow (laminar, turbulent and

transient flows). Mathematically it can be written as

Re =
u0H

ν
,

where H is characteristic length, u0 the flow velocity, and ν is density.”

Definition 2.55. (Schmidt Number (Sc)) [63]

“This number expresses the ratio of momentum diffusivity (viscosity) and mass
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diffusivity. It can be written as.

Sc =
ν

Dm

,

where ν is the kinematic viscosity and Dm is mass diffusivity.”

Definition 2.56. (Sherwood Number (Sh)) [63]

“The Sherwood number can be defined as the ratio of total rate of mass transfer

to the rate of diffusive mass transport. Mathematically

Sh =
βL

D
,

where β is the mass transfer coefficient, L denotes the characteristic length and D

stands for molecular diffusivity. It expresses the ratio of the heat transfer to the

molecular diffusion. It characterizes the mass transfer intensity at the interface of

phases.”

2.13 Solution Methodology [64]

“Shooting method is used to solve the higher order nonlinear ordinary differential

equations. To implement this technique, we first convert the higher order ODEs

to the system of first order ODEs. After that we assume the missing initial con-

ditions and the differential equations are then integrated numerically using the

Runge-Kutta method as an initial value problem. The accuracy of the assumed

missing initial condition is then checked by comparing the calculated values of

the dependent variables at the terminal point with their given value there. If the

boundary conditions are not fulfilled up to the required accuracy, with the new

set of initial conditions, then they are modified by Newtons method. The process

is repeated again until the required accuracy is achieved. To explain the shooting

method, we consider the following general second order boundary value problem:

y′′(x) = f(x, y, y′(x)) (2.11)
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along with the boundary conditions

y(0) = 0, y(L) = B. (2.12)

To have a system of first order ODEs, used the notations:

y = y1, y′ = y2. (2.13)

By using the notations (2.13) in (2.11) and (2.12) can be written as

y′1 = y2, y1(0) = 0,

y′2 = f(x, y1, y2), y1(L) = B.

 (2.14)

Choose the missing initial condition y2(0) = h we have the following IVP

y′1 = y2, y1(0) = 0,

y′2 = f(x, y1, y2), y2(0) = h.

 (2.15)

Now, the initial value problem satisfy the boundary condition y2(L) = B

y1(L, h)−B = φ(h) = 0. (2.16)

To find an approximate root of (2.16) by the Newton’s method, is written as

hn+1 = hn −
φ(hn)

φ′(hn)
, (2.17)

or

hn+1 = hn −
y1(L, hn)−B

∂
∂h

[y1(L, hn)−B]
. (2.18)
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To implement the Newton’s method, consider the following notations

∂y1
∂h

= y3,
∂y2
∂h

= y4. (2.19)

Differentiating Eq. (2.15) with respect to h we get the following four first order

ODEs along with the associated initial conditions

y′3 = y4, y3(0) = 0,

y′4 = y3
∂f

∂y1
+ y4

∂f

∂y2
, y4(0) = 1.

 (2.20)

Now, solving the IVP (2.20), we get y3 at L. This value is actually the derivative

of y1 with respect to h compute at L. Using the value of y3(L, h) in Eq. (2.18),

the modified value of h can be achieved. This new value of h is used to solve the

(2.20) and the process is repeated until the require accuracy.”



Chapter 3

Numerical Simulation of MHD

Nanofluid Flow Induced by

Stretching Surface

3.1 Introduction

The magnetohydrodynamics stagnation point nanofluid flow towards stretching

surface with velocity slip and convective boundary condition has been investigated

in this chapter. Using appropriate similarity transformation PDEs are converted

into ODEs and shooting technique has been used to obtain the numerical results.

Different physical parameters effects on concentration, velocity, and temperature

of nanofluid flow have been presented graphicaly and discussed in detail. This

chapter is a review of Ibrahim et al. [53].

3.2 Problem Formuation

We have considered a 2D steady incompressible MHD stagnation point flow of a

Casson nanofluid over a stretching sheet. The sheet is placed in the plane y = 0,

such that y-axis is normal to the sheet. The flow of nanofluid is constrained

27
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to the surface y > 0, the origin is kept fixed while the sheet is stretching with

velocity u= Uw = axn with n ≥ 0 and U∞=bxn is the free stream velocity where

a and b are two positive constants. The slip velocity at the surface is taken

as Uslip=
(
µB + Py√

2πc

)
∂u
∂y

. Whear πc is the critical value of this product based on

the non Newtonian model, µB is the plastic dynamic viscosity and py is the yield

stress. The magnetic field B(x)=B0x
n−1
2 is applied normal to the sheet where B0

is a constant. It is also assume that the magnetic Reynolds number is small and

the induced magnetic field is negligible. A convective heating process is used to

regulate the sheet temperature Tf . The nanoparticles concentration is Cw which is

assumed to be constant. For y goes to infinity, the concentration and temperature

of nanofluid is represented by T∞ and C∞ respectively.

Figure 3.1: Flow model geometry.
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The boundary layer equations in the light of above assumptions are

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
1 +

1

β

)
∂2u

∂y2
+ U∞

∂U∞
∂x

+
σB2(x)

ρf
(U∞ − u), (3.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

ν

Cp

(
1 +

1

β

)(
∂u

∂y

)2

+
1

(ρc)f

Q0

(T − T∞)

− 1

(ρc)f

∂qr
∂y

+
(ρc)p
(ρc)f

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]
, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
− k0(C − C∞). (3.4)

The corresponding boundary conditions are:

u = Uw + Uslip = axn +

(
µB +

Py√
2πc

)
∂u

∂y
,

v = vw, − k
∂T

∂y
= hf (Tf − T ), C = Cw,

 at y = 0,

u→ U∞ = bxn, v → 0, T → T∞, C → C∞ as y →∞.


(3.5)

In the above equations, ν stands for kinematic viscosity, ρf for fluid density, α

represent thermal diffusivity, Cp represents constant pressure at specific heat, k0

denotes chemical reaction coefficient and (ρc)f represents heat capacity, DB rep-

resents Brownian diffusion coefficient, Q0 shows volumetric heat generation, DT

thermophoresis diffusion coefficient, U∞ represents free stream velocity n indicates

nonlinear stretching parameter, σ shows the electrical conductivity, β represents

the Casson fluid parameter, sheet temperature can be represented by Tw and T

represents nanofluid temperature respectively.
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3.3 Similarity Transformation

The following transformation [53] has been used to get ODEs from PDEs

u = axnf ′(ξ), v = −
√
aν(n+ 1)

2
x
n−1
2

(
f(ξ) +

n− 1

n+ 1
ξf ′(ξ)

)
,

ξ = y

√
a(n+ 1)

2ν
x
n−1
2 , ψ =

√
2aν

(n+ 1)
x
n+1
2 f(ξ),

θ(ξ) =
T − T∞
Tf − T∞

, φ(ξ) =
C − C∞
Cw − C∞

.


(3.6)

The following assumptions are made for the calculation of velocity components

along x and y direction as

u =
∂ψ

∂y
and v = −∂ψ

∂x
.

u =
∂

∂y

(√
2aν

n+ 1
x
n+1
2 f(ξ)

)
,

=

√
2aν

n+ 1
x
n+1
2 f ′(ξ)

∂ξ

∂y
,

=

(√
2aν

n+ 1
x
n+1
2 f ′(ξ)

)(√
a(n+ 1)

2ν
x
n−1
2

)
,

= ax
n+1+n−1

2 f ′(ξ),

= axnf ′(ξ). (3.7)

Similarly we can find

v = −∂ψ
∂x

,

v = − ∂

∂x

[√
2aν

n+ 1
x
n+1
2 f(ξ)

]
,

= −
√

2aν

n+ 1
x
n+1
2 f ′(ξ)

∂

∂x

(
y

√
a(n+ 1)

2ν
x
n−1
2

)

+ f(ξ)

√
2aν

n+ 1

n+ 1

2
x
n−1
2 ,
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= −
√

2aν

n+ 1
x
n−1
2

[
f ′(ξ)y

√
a(n+ 1)

2ν

n− 1

2
x
n−1
2 + f(ξ)

n+ 1

2

]
. (3.8)

Now we multiply and divide the right hand side of Eq. (3.8) by 2(n + 1), then it

becomes

= −
√
aν(n+ 1)

2
x
n−1
2

[
f(ξ) +

n− 1

n+ 1
ξf ′(ξ)

]
.

From Eq. (3.1) we get

∂u

∂x
+
∂v

∂y
= 0

∂u

∂x
=

∂

∂x
[axnf ′(ξ)] ,

= naxn−1f ′(ξ) + axnf ′′(ξ)
∂ξ

∂x
,

= naxn−1f ′(ξ) + axn−1f ′′(ξ)ξ

(
n− 1

2

)
. (3.9)

∂v

∂y
= −

(√
aν(n+ 1)

2
x
n−1
2

)
f ′(ξ)−

(√
aν(n+ 1)

2
x
n−1
2

)
n− 1

n+ 1
f ′(ξ)

−
(√

aν(n+ 1)

2
x
n−1
2

)(√
a(n+ 1)

2ν
x
n−1
2

)
n− 1

n+ 1
ξf ′′(ξ),

= −a
(
n+ 1

2

)
xn−1

[
f ′(ξ) +

n− 1

n+ 1
f ′(ξ) +

n− 1

n+ 1
ξf ′′(ξ)

]
,

= −a
(
n+ 1

2

)
xn−1

[
2n

n+ 1
f ′(ξ) +

n− 1

n+ 1
ξf ′′(ξ)

]
,

= −axn−1nf ′(ξ)− xn−1a
(
n− 1

2

)
ξf ′′(ξ). (3.10)

Adding Eqs. (3.9) and (3.10) we get the follwing results

∂u

∂x
+
∂v

∂y
= naxn−1f ′(ξ) + axn−1f ′′(ξ)(ξ)

(
n− 1

2

)
,

− axn−1nf ′(ξ)− axn−1f ′′(ξ)(ξ)
(
n− 1

2

)
,

∂u

∂x
+
∂v

∂y
= 0.
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We will use the following procedure for the conversion of Eq. (3.2) into dimen-

sionless form

∂u

∂x
= axn−1

(
nf ′(ξ) +

n− 1

2
ξf ′′(ξ)

)
,

Now we find ∂u
∂y

:

∂u

∂y
=

∂

∂y

(
axnf ′(ξ)

)
,

=

(
axnf ′′(ξ)

∂ξ

∂y

)
,

= axn
√
a(n+ 1)

2ν
x
n−1
2 f ′′(ξ).

Differentiate again we have

∂2u

∂y2
= axn

√
a(n+ 1)

2ν
x
n−1
2 f ′′′(ξ)

∂

∂y

(
y

√
a(n+ 1)

2ν
x
n−1
2

)
,

= a2x(2n−1)
n+ 1

2ν
f ′′′(ξ).

Taking left hand side of Eq. (3.2), we get the following form

u
∂u

∂x
+ v

∂u

∂y
= axnf ′axn−1

(
nf ′ +

n− 1

2
ξf ′′
)

−
√
aν(n+ 1)

2
x
n−1
2

(
f +

n− 1

n+ 1
ξf ′
)
axn
√
a(n+ 1)

2ν
x
n−1
2 f ′′,

= axnf ′axn−1
(
nf ′ +

n− 1

2
ξf ′′
)

− a(n+ 1)

2
xn−1f ′′

(
f +

n− 1

n+ 1
ξf ′
)
axn,

= a2x2n−1f ′
(
nf ′ +

n− 1

2
ξf ′′
)

− a2x2n−1n+ 1

2
f ′′
(
f +

n− 1

n+ 1
ξf ′
)
,

= a2x2n−1
(
nf ′2 − n+ 1

2
ff ′′

)
.
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Now taking the right hand side of Eq. (3.2), we have

ν

(
1 +

1

β

)
∂2u

∂y2
= ν

(
1 +

1

β

)
a2x2n−1

(
n+ 1

2ν

)
f ′′′,

ν

(
1 +

1

β

)
∂2u

∂y2
=

(
1 +

1

β

)
a2x2n−1

(
n+ 1

2

)
f ′′′,

U∞
∂U∞
∂x

= bxn
∂

∂x
(bxn),

U∞
∂U∞
∂x

= b2nx2n−1.

Using this values in Eq. (3.2), we have

u
∂u

∂y
+ v

∂u

∂y
= ν

(
1 +

1

β

)
∂2u

∂y2
+ U∞

∂U∞
∂x

+
σB2

0(x)

ρf
(U∞ − u),

a2x2n−1
(
nf ′2 − n+ 1

2
ff ′′

)
= a2x2n−1

(
1 +

1

β

)
n+ 1

2
f ′′′

+ bxnnbxn−1 +
σB2

0x
n−1

ρf
(bxn − axnf ′). (3.11)

Dividing each term of Eq. (3.11) by (a2x2n−1) then it becomes

(
nf ′2 − n+ 1

2
ff ′′

)
=

(
1 +

1

β

)
n+ 1

2
f ′′′ +

nb2x2n−1

a2x2n−1

+
σB2

0x
n−1

ρf

(
bxn − axnf ′

a2x2n−1

)
,

− n+ 1

2
ff ′′ =

(
1 +

1

β

)
n+ 1

2
f ′′′ − nf ′2 + n

(
b

a

)2

+
σB2

0x
n−1

ρf

(
bxn − axnf ′

a2x2n−1

)
. (3.12)

Multiplying each term of Eq. (3.12) by ( 2
n+1

), then we get

− ff ′′ =
(

1 +
1

β

)
f ′′′ − 2n

n+ 1
f ′2 +

2n

n+ 1

(
b

a

)2

+
2σB2

0x
n−1

aρf (n+ 1)

(
bxn − axnf ′

ax2n−1

)
,
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(
1 +

1

β

)
f ′′′ + ff ′′ − 2n

n+ 1

(
f ′2 − A2

)
+

2σB2
0x

n−1

aρf (n+ 1)

(
bx2n−1 − ax2n−1f ′

ax2n−1

)
= 0,(

1 +
1

β

)
f ′′′ + ff ′′ − 2n

n+ 1

(
f ′2 − A2

)
+M

(
A− f ′

)
= 0. (3.13)

Next we use the following detailed procedure to convert Eq. (3.3) into the dimen-

sionless form

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

ν

Cp

(
1 +

1

β

)(
∂u

∂y

)2

+
1

(ρc)f

Q0

(T − T∞)

− 1

(ρc)f

∂qr
∂y

+
(ρc)p
(ρc)f

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]
.

Here qr represents the Rosseland radiative heat flux which can be define as

qr =
−4σ∗∂T 4

3k∗∂y
.

In the above expression k∗ is the absorption coefficient, σ∗ is the Boltzmann con-

stant. T 4 can be expanded about T∞ by using Taylor series if temperature constant

is very small. By ignoring the higher order terms, the reduced Taylor series gets

the form

T 4 = 4T 3
∞T − 3T 4

∞,

T = T∞ + (Tf − T∞)θ.

C = C∞ + (Cw − C∞)φ.

∂T

∂x
= (Tf − T∞)θ′y

√
a(n+ 1)

2ν

(
n− 1

2

)
x
n−1
2 x−1,

= (Tf − T∞)θ′
(
n− 1

2x

)
ξ.

∂C

∂y
= (Cw − C∞)φ′

√
a(n+ 1)

2ν
x
n−1
2 ,

∂2C

∂y2
= (Cw − C∞)φ′′

a(n+ 1)

2ν
xn−1.
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∂T

∂y
= (Tf − T∞)θ′

√
a(n+ 1)

2ν
x
n−1
2 ,

∂2T

∂y2
= (Tf − T∞)θ′′

√
a(n+ 1)

2ν
x
n−1
2

√
a(n+ 1)

2ν
x
n−1
2 ,

= (Tf − T∞)θ′′
a(n+ 1)

2ν
xn−1.

qr =
−4σ∗∂T 4

3k∗∂y
,

T = T∞ + (Tf − T∞)θ,

∂qr
∂y

=
−4σ∗

3k∗
∂2

∂y2

(
4TT 3

∞ − 3T 3
∞

)
,

=
−16σ∗

3k∗
T 3
∞

(
Tf − T∞

)
a(n+ 1)

2ν
xn−1θ′′.

Taking the left hand side of Eq. (3.3)

u
∂T

∂x
= axnf ′(Tf − T∞)θ′

(
n− 1

2x

)
ξ,

= a(Tf − T∞)

(
n− 1

2

)
ξxn−1f ′θ′. (3.14)

v
∂T

∂y
=

(
−
√
aν(n+ 1)

2
x
n−1
2 f −

√
aν(n+ 1)

2
x
n−1
2
n− 1

n+ 1
ξf ′
)

(
(Tf − T∞)θ′

√
a(n+ 1)

2ν
x
n−1
2

)
,

= −a(n+ 1)

2

(
fθ′ +

n− 1

n+ 1
ξf ′θ

)
(Tf − T∞)xn−1. (3.15)

Adding Eqs. (3.14) and (3.15) we get the following form

u
∂T

∂x
+ v

∂T

∂y
= a(Tf − T∞)

(
n− 1

2

)
ξxn−1f ′θ′

− a(n+ 1)

2

(
fθ′ +

n− 1

n+ 1
ξf ′θ

)
(Tf − T∞)xn−1,

=
−a(n+ 1)

2
(Tf − T∞)xn−1fθ′.

Using the procedure discussed above, Eq. (3.3) can be written as

α
∂2T

∂y2
= α(Tf − T∞)θ′′

a(n+ 1)

2ν
xn−1.
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∂C

∂y

∂T

∂y
= (Tf − T∞)(Cw − C∞)φ′θ′

a(n+ 1)

2ν
xn−1.

(ρc)p
(ρc)f

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]

=
DT

T∞
(Tw − T∞)2

a(n+ 1)

2ν
xn−1θ′2

+
(ρc)p
(ρc)f

DB(Cw − C∞)(Tw − T∞)φ′θ′
a(n+ 1)

2ν
xn−1,

ν

Cp

(
1 +

1

β

)(
∂u

∂y

)2

=
ν

Cp

(
1 +

1

β

)
a2x3n−1f ′′2

a(n+ 1)

2ν
,

=
1

Cp

(
1 +

1

β

)
a2x3n−1f ′′2

a(n+ 1)

2
,

=
1

Cp

(
1 +

1

β

)
a2x2nf ′′2

a(n+ 1)

2
xn−1,

1

(ρc)f

∂qr
∂y

=
1

(ρc)f

−16σ∗

3k∗
T 3
∞

(
Tw − T∞

)
a(n+ 1)

2ν
xn−1θ′′.

Putting all of the above values in Eq. (3.3) we get

−a(n+ 1)

2
(Tf − T∞)xn−1fθ′ = α(Tf − T∞)θ′′

a(n+ 1)

2ν
xn−1

+
(ρc)p
(ρc)f

[
DB(Cw − C∞)(Tf − T∞)φ′θ′

a(n+ 1)

2ν
xn−1

]
+

(ρc)p
(ρc)f

[
DT

T∞
(Tf − T∞)2

a(n+ 1)

2ν
xn−1θ′2

]
+

1

Cp

(
1 +

1

β

)
a2x2nf ′′2

a(n+ 1)

2
xn−1 +

1

(ρc)f
Q0(Tw − T∞)θ

− 1

(ρc)f

16σ∗

3k∗
T 3
∞

(
Tf − T∞

)
a(n+ 1)

2ν
xn−1θ′′. (3.16)

Dividing both side of Eq. (3.16) by (Tf − T∞) 2
a(n+1)

we have

1

Pr
θ′′ +

4

3
R

1

Pr
θ′′ +Nbφ′θ′ +Ntθ′2 + fθ′ +

2

n+ 1
Qθ

+
U2
w

Cp(Tw − T∞)

(
1 +

1

β

)
f ′′2 = 0.

The dimensional form of Eq. (3.3) is given below

(
1 +

4

3
R

)
θ′′ + Prfθ′ + PrNbφ′θ′ + PrNtθ′2

+

(
1 +

1

β

)
PrEcf ′′2 + PrQθ = 0. (3.17)
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Now we use the following procedure to convert Eq. (3.4) into the dimensionless

form:

∂C

∂x
=

(
Cw − C∞

)
φ′(ξ)

∂ξ

∂x
,

=

(
Cw − C∞

)
φ′(ξ)y

√
a(n+ 1)

2ν

(
n− 1

2

)
x
n−1
2 x−1,

= φ′(ξ)

(
Cw − C∞

)
ξ

x

(
n− 1

2

)
.

∂C

∂y
=

(
Cw − C∞

)
φ′(ξ)

∂ξ

∂y
,

= φ′(ξ)

(
Cw − C∞

)√
a(n+ 1)

2ν
x
n−1
2 . (3.18)

Differentiate again Eq. (3.18) then it becomes

∂2C

∂y2
= φ′′(ξ)

(
Cw − C∞

)√
a(n+ 1)

2ν
x
n−1
2

√
a(n+ 1)

2ν
x
n−1
2 ,

= φ′′(ξ)

(
Cw − C∞

)
a(n+ 1)

2ν
xn−1,

u
∂C

∂x
= axn−1

(
Cw − C∞

)(
n− 1

2

)
ξf ′(ξ)φ′(ξ). (3.19)

v
∂C

∂y
= −

√
aν(n+ 1)

2
xn−1

[
f(ξ) +

n− 1

n+ 1
ξf ′(ξ)

]
(
Cw − C∞

)
φ′(ξ)

√
a(n+ 1)

2ν
x
n−1
2 ,

v
∂C

∂y
= −a(n+ 1)

2
xn−1

(
Cw − C∞

)
φ′(ξ)

[
f(ξ) +

n− 1

n+ 1
ξf ′(ξ)

]
. (3.20)

Adding Eqs. (3.19) and (3.20), we have

u
∂C

∂x
+ v

∂C

∂y
= axn−1

(
Cw − C∞

)(
n− 1

2

)
ξf ′(ξ)φ′(ξ)

− a(n+ 1)

2
xn−1

(
Cw − C∞

)
φ′(ξ)

[
f(ξ) +

n− 1

n+ 1
ξf ′(ξ)

]
,

u
∂C

∂x
+ v

∂C

∂y
= −a(n+ 1)

2
xn−1

(
Cw − C∞

)
f(ξ)φ′(ξ).
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Similarly Eq. (3.4) can be expressed as

DT

T∞

∂2T

∂y2
=
DT

T∞

[(
Tw − T∞

)
θ′′(ξ)

a(n+ 1)

2ν
xn−1

]
.

Putting all of the above values in Eq. (3.4)

−a(n+ 1)

2
xn−1

(
Cw − C∞

)
f(ξ)φ′(ξ) = DB

(
Cw − C∞

)
a(n+ 1)

2ν
xn−1φ′′(ξ)

+
DT

T∞

a(n+ 1)

2ν

(
Tw − T∞

)
xn−1θ′′(ξ)−K0

(
Cw − C∞

)
. (3.21)

Dividing both sides of Eq. (3.21) by 2
a(n+1)

xn−1(Cw − C∞)

−ν
DB

fφ′ =

[
(ρc)p
(ρc)f

DT

T(∞)

(Tw − T∞)θ′′ − ν

DB

2K0νx

(n+ 1)(axn)
φ

]
,

− Lefφ′ =
[
φ′′ +

Nt

Nb

θ′′ − Leγφ
]
,

φ′′ + Lefφ′ +
Nt

Nb

θ′′ − Leγφ = 0. (3.22)

Consider the boundary conditions

• V (x, y) = Vw at y = 0,

⇒ −
√
aν(n+ 1)

2
x
n−1
2

(
f(ξ) +

n− 1

n+ 1
ξf ′(ξ)

)
= Vw at ξ = 0,

⇒ f(0) = S,

(
∵ S = − Vw√

aν(n+1)
2

x
n−1
2

)

⇒ f(0) = − Vw√
aν(n+1)

2
x
n−1
2

,

(
∵ Vw = −

√
aν(n+ 1)

2
x
n−1
2 S

)

⇒ f(0) = −
−
√

aν(n+1)
2

x
n−1
2 S√

aν(n+1)
2

x
n−1
2

,

⇒ f(0) = S.

• u(x, y) = Uw + Uslip = axn +

(
µB +

Py√
2πc

)
∂u

∂y
at y = 0,

⇒ axn +

(
µB +

Py√
2πc

)
∂

∂y

(
axnf ′(ξ)

)
,

(
∵ u = Uw = axn

)
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⇒ axn +

(
µB +

Py√
2πc

)
axnf ′′(ξ)

∂ξ

∂y
,

⇒ axn +

(
µB +

Py√
2πc

)
axn
√
a(n+ 1)

2ν
x
n−1
2 f ′′(ξ) at ξ = 0,

⇒ f ′(0) = 1 +

(
µB +

Py√
2πc

)√
a(n+ 1)

2ν
x
n−1
2 f ′′(0),

⇒ f ′(0) = 1 +

(
1 +

Py
µB
√

2πc

)
µB

√
a(n+ 1)

2ν
x
n−1
2 f ′′(0),

⇒ f ′(0) = 1 +

(
µB +

Py√
2πc

)√
a(n+ 1)

2ν
x
n−1
2 f ′′(0),

⇒ f ′(0) = 1 +

(
1 +

Py
µB
√

2πc

)
µB

√
a(n+ 1)

2ν
x
n−1
2 f ′′(0),

⇒ f ′(0) = 1 +

(
1 +

1
µB
√
2πc

Py

)
δf ′′(0),

⇒ f ′(0) = 1 +

(
1 +

1

β

)
δf ′′(0).

• −K∂T

∂y
= hf (Tf − T ) at y = 0,

⇒ −K(Tf − T∞)θ′(ξ)

√
a(n+ 1)

2ν
x
n−1
2 = hf

(
(Tf − T∞)− (Tf − T∞)θ(ξ)

)
at ξ = 0,

⇒ −K
√
a(n+ 1)

2ν
x
n−1
2 θ′(0) = hf (1− θ(0)),

⇒ θ′(0) = − hf

K
√

a(n+1)
2ν

x
n−1
2

(1− θ(0)),

⇒ θ′(0) = −Bi(1− θ(0)).

• C(x, y) = Cw at y = 0,

⇒ C∞ + (Cw − C∞)φ(ξ) = Cw at ξ = 0,

⇒ φ(0) = 1.

• u(x, y)→ U∞ = bxn as y →∞,

⇒ axnf ′(ξ)→ bxn as ξ →∞,
(

∵ u = U∞ = axn
)

⇒ f ′(ξ)→ b

a
as ξ →∞,

⇒ f ′(ξ)→ A as ξ →∞.
(

∵ A =
b

a

)
• V (x, y)→ 0 as y →∞,

⇒ −
√
aν(n+ 1)

2
x
n−1
2

(
f(ξ) +

n− 1

n+ 1
ξf ′(ξ)

)
→ 0 as ξ →∞,
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• T (x, y)→ T∞ as y →∞,

⇒ T∞ + (Tf − T∞)θ(ξ)→ T∞ as ξ →∞,

⇒ θ(ξ)→ 0 as ξ →∞.

• C(x, y)→ C∞ as y →∞,

⇒ C∞ + (Cw − C∞)φ(ξ)→ as ξ →∞,

⇒ φ(ξ)→ 0 as ξ →∞.

The dimensional form of the Eqs. (3.13), (3.17) and (3.22) are:

(
1 +

1

β

)
f ′′′ + ff ′′ − 2n

n+ 1

(
f ′2 − A2

)
+M

(
A− f ′

)
= 0, (3.23)(

1 +
4

3
R

)
θ′′ + Prfθ′ + PrNbφ′θ′ + PrNtθ′2

+

(
1 +

1

β

)
PrEcf ′′2 + PrQθ = 0, (3.24)

φ′′ + Lefφ′ +
Nt

Nb

θ′′ − Leγφ = 0. (3.25)

The corresponding boundary condition becomes

f(0) = S, f ′(0) = 1 + δ

(
1 +

1

β

)
f ′′(0),

θ′(0) = −Bi(1− θ(0)), φ(0) = 1,

 at ξ = 0,

f ′(∞)→ A, θ(∞)→ 0, φ(∞)→ 0, as ξ →∞.


(3.26)

In the above Eqs. (3.23)-(3.26) R represents the radiation parameter, Pr stands

for Prandtl number, Bi the Biot number, Ec for Eckert number, Nb represents

Brownian motion parameter, Nt the thermophoresis parameter, Q represents the

heat generation, Le stands for the Lewis number, A denotes velocity ratio number

and S is the suction parameter, these parameter are formulated as:

A =
b

a
, M =

2σB2
0

aρf (n+ 1)
, Nb =

(ρc)pDB(Cw − C∞)

ν(ρc)f
, R =

4σ∗T 3
∞

k∗k
, Le =

ν

DB

,

Q =
2xQ0

(ρc)f (n+ 1)Uw
, Ec =

U2
w

Cp(Tf − T∞)
, Nt =

(ρc)pDT (Tf − T∞)

ν(ρc)fT∞
,

P r =
ν

α
, Bi =

hf
k

√
2ν

a(n+ 1)

1

x
n−1
2

.
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3.4 Physical Quantities of Interest

Mathematical form of skin coefficient friction is

Cf =
τw
ρU2

w

. (3.27)

Mathematical form of Nusselt number is

Nux =
xqw

k(Tf − T∞)
. (3.28)

And the Sherwood number is

Shx =
xqm

DB(Cw − C∞)
. (3.29)

In the above equations qw represents the heat flux, Tw the shear stress, and qm

denotes the mass flux which are defined as

τw = µ

(
1 +

1

β

)(
∂u

∂y

)
y=0,

qw =

(
−
(
k +

16σ∗T 3
∞

3k∗

)(
∂T

∂y

))
y=0

,

qm = −DB

(
∂C

∂y

)
y=0

.

 (3.30)

Use the following procedure to convert the above formulae into dimensional form

• τw == µ

(
1 +

1

β

)
axna

1
2

√
n+ 1

2ν
x
n−1
2 f ′′(0). (3.31)

• qw =

(
−
(
k +

16σ∗T 3
∞

3k∗

)(
Tf − T∞

)√
a(n+ 1)

2ν
x
n−1
2 θ′(0)

)
,

=

(
−
(
k +

4

3

4σ∗T 3
∞

k∗

)(
Tf − T∞

)
a

1
2

√
n+ 1

2ν
x
n−1
2 θ′(0)

)
. (3.32)

• qm = −DB

(
Cw − C∞

)
x
n−1
2

√
a(n+ 1)

2ν
φ′(0),

= −DB

(
Cw − C∞

)
x
n−1
2 a

1
2

√
n+ 1

2ν
φ′(0). (3.33)
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We obtained the following dimensionless form for Nusselt number sherwood num-

ber and skin friction coefficient by inserting Eqs. (3.31)-(3.33) in Eq. (3.30),

• Cf =
τw
ρU2

w

,

=

µ

(
1 + 1

β

)
axna

1
2

√
n+1
2ν
x
n−1
2 f ′′(0)

ρa2x2n
, (∵ Uw = axn)

=
µ

ρ

(
1 +

1

β

)
axna

1
2

√
n+ 1

2ν
x
n−1
2 a−2x−2nf ′′(0),

= ν

(
1 +

1

β

)
a
−1
2

√
n+ 1

2ν
x
−n−1

2 f ′′(0), (∵
µ

ρ
= ν)

= ν

(
1 +

1

β

)√
n+ 1

2

1√
ν
a
−1
2 x

−n
2 x

−1
2 f ′′(0),

=
√
ν
√
ν

(
1 +

1

β

)√
n+ 1

2

1√
ν
a
−1
2 x

−n
2 x

−1
2 f ′′(0),

=

(
1 + 1

β

)√
n+1
2

1√
ν
a
−1
2 x

−n
2 x

−1
2 f ′′(0)

ν
−1
2

,

=

(
axnx

ν

)−1
2
(

1 +
1

β

)√
n+ 1

2
f ′′(0),

= Re
−1
2
x

(
1 +

1

β

)√
n+ 1

2
f ′′(0), (∵ Rex =

axn

ν
)

⇒ Re
1
2
xCf

√
2

n+ 1
=

(
1 +

1

β

)
f ′′(0). (3.34)

• Nux =
xqw

K(Tf − T∞)
,

=

x

(
−
(
k + 4

3
4σ∗T 3

∞
k∗

)(
Tf − T∞

)
a

1
2

√
n+1
2ν
x
n−1
2 θ′(0)

)
k(Tf − T∞)

,

=

−k
(

1 + 4
3
4σ∗T 3

∞
k∗k

)(
Tf − T∞

)
a

1
2

√
n+1
2ν
x
n−1
2 xθ′(0)

k(Tf − T∞)
,

= −
(

1 +
4

3
R

)
a

1
2

√
n+ 1

2ν
x
n+1
2 θ′(0), (∵

4σ∗T 3
∞

k∗k
= R)

= −
(

1 +
4

3
R

)
a

1
2x

n
2 x

1
2

√
n+ 1

2

1√
ν
θ′(0),

= −
(

1 +
4

3
R

)(
axnx)

ν

) 1
2

√
n+ 1

2
θ′(0),

Nux = −
(

1 +
4

3
R

)
Re

1
2
x

√
n+ 1

2
θ′(0),
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⇒ Re
−1
2
x Nux

√
2

n+ 1
= −

(
1 +

4

3
R

)
θ′(0). (3.35)

• Shx =
xqm

DB(Cw − C∞)
,

=

−xDB

(
Cw − C∞

)
x
n−1
2 a

1
2

√
n+1
2ν
φ′(0)

DB(Cw − C∞)
,

= −x
n+1
2 a

1
2

√
n+ 1

2

1√
ν
φ′(0),

= −x
n
2 x

1
2a

1
2

√
n+ 1

2

1√
ν
φ′(0),

=
−xn2 x 1

2a
1
2

√
n+1
2
φ′(0)

ν
1
2

,

=

(
−axnx
ν

) 1
2

√
n+ 1

2
φ′(0),

=

(
Uwx

ν

) 1
2

√
n+ 1

2
φ′(0) (∵ Uwx = axn),

= Re
−1
2
x

√
n+ 1

2
φ′(0),

⇒ Re
−1
2
x Shx

√
n+ 1

2
= −φ′(0). (3.36)

The Reynolds number can be defined as Rex = Uwx
ν

.

3.5 Solution Methodology

The system of nonlinear ODEs (3.23)-(3.25) along with boundary condition (3.26)

are converted into first order ODEs. The first order system of ODEs with appro-

priate boundary condition are solved by using shooting method. We adopt the

following procedure:

f ′′′ =
−ff ′′ + 2n

n+1
(f ′2 − A2)−M(A− f ′)

(1 + 1
β
)

, (3.37)

θ′′ =
−Pr[fθ′ +Nbθ′φ′ +Ntθ′2 + (1 + 1

β
)Ecf ′′2 +Qθ]

(1 + 4
3
R)

, (3.38)

φ′′ = −Lefφ′ − Nt

Nb
θ′′ + Leγφ. (3.39)

(3.40)
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The suitable boundary conditions are

f(0) = S, f ′(0) = 1 + δ(1 +
1

β
)f ′′(0),

θ′(0) = −Bi(1− θ(0)), φ(0) = 1,

 at ξ = 0,

f ′ → A, θ → 0, φ→ 0, as ξ →∞.


(3.41)

Since Eq. (3.37) is a function of f and its derivatives, which can be solved indi-

vidually by shooting method. The solution of Eq. (3.37) can be used in Eq. (3.38)

and Eq. (3.39) as a recognize input. We have notice two initial conditions given at

ξ=0 in the above third order ODE, Eq. (3.37) give the unknown condition f ′′(0)

which is represented by P . We have introduced the following symbols for further

simplification.

f = y1, f
′ = y2, f

′′ = y3,
∂f

∂P
= y4,

∂f ′

∂P
= y5,

∂f ′′

∂P
= y6.

The above system of ODEs and the corresponding initial condition can be written

as

y′1 = y2, y1(0) = S,

y′2 = y3, y2(0) = 1 + δ

(
1 +

1

β

)
P,

y′3 =
1

(1 + 1
β
)
[−y1y2 +

2n

n+ 1
(y22 − A2)−M(A− y2)], y3(0) = P,

y′4 = y5, y4(0) = 0,

y′5 = y6, y5(0) = δ

(
1 +

1

β

)
,

y′6 =
1

(1 + 1
β
)
[−y1y6 − y4y3 +

2n

n+ 1
(2y2y5) +My5], y6(0) = 1.


(3.42)

For the solution of above initial value problem we use Runge Kutta method of

order four. For finding the initial condition we take P=P (0). For calculating the
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root we used Newton method which is given by the following iteration

P (n+1) = P (n) −
(
y2(ξ∞, P

(n))− A
y5(ξ∞, P (n))

)
. (3.43)

The approximate solution of Eq. (3.37) can be obtained by converting the un-

bounded domain [0, ∞] into bounded domain [0, ξmax], where ξmax is chosen such

that no considrable changes are obtained going beyond. In order to apply numer-

ical method for the solution of Eqs. (3.38) and Eq. (3.39), we denote the missing

initial condition θ(0) and φ(0) by q and r, respectively and different notations have

been used which are given below

θ = Y1, θ
′ = Y2, φ = Y3, φ

′ = Y4,
∂θ

∂q
= Y5,

∂θ′

∂q
= Y6,

∂φ

∂q
= Y7,

∂φ′

∂q
= Y8,

∂θ

∂r
= Y9,

∂θ′

∂r
= Y10,

∂φ

∂r
= Y11,

∂φ′

∂r
= Y12.

 (3.44)

Using these notations, we get a system of first order ODEs which are given below

Y ′1 = Y2, Y1(0) = q,

Y ′2 =
−Pr

(1 + 4
3
R)

[
y1Y2 +NbY2Y4 +

(
1 +

1

β

)
Ecy23 +NtY 2

2 +QY1

]
, Y2(0) = −Bi(1− q),

Y ′3 = Y4, Y3(0) = 1,

Y ′4 = −Ley1Y4 +
3NtPr

Nb(3 + 4R)

[
y1Y2 +NbY2Y4 +NtY 2

2

+ (1 +
1

β
)Ecy23 +QY1

]
+ LeγY3, Y4(0) = r,

Y ′5 = Y6, Y5(0) = 1,

Y ′6 =
−3Pr

(3 + 4R)

[
y1Y6 +Nb(Y6Y4 + Y2Y8)

+ 2NtY2Y6 +QY5

]
, Y6(0) = Bi,

Y ′7 = Y8, Y7(0) = 0,
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Y ′8 = −Ley1Y8 +
3NtPr

Nb(3 + 4R)

[
y1Y6 +Nb(Y6Y4 + Y2Y8)

+ 2NtY2Y6 +QY5

]
+ LeγY7, Y8(0) = 0,

Y ′9 = Y10, Y9(0) = 0,

Y ′10 =
−3Pr

(3 + 4R)

[
y1Y10 +Nb(Y10Y4 + Y2Y12)

+ 2NtY2Y10 +QY9

]
, Y10(0) = 0,

Y ′11 = Y12, Y11(0) = 0,

Y ′12 = −Ley1Y12+
3NtPr

Nb(3 + 4R)

[
y1Y10 +Nb(Y10Y4 + Y2Y12)

+ 2NtY2Y10 +QY9

]
+ LeγY11, Y12(0) = 1.

In order to solve the above initial value problem, we used RK4 method and the

missing conditions are chosen such that

(Z1(q, r))ξ=ξ∞ = 0, (Z3(q, r))ξ=ξ∞ = 0. (3.45)

The above set of equations can be solved by using Newtons method with following

iterative formula:

q(n+1)

r(n+1)

 =

q(n)
r(n)

 -

∂Y1(q,r)∂q
∂Y1(q,r)
∂r

∂Y3(q,r)
∂q

∂Y3(q,r)
∂r

−1 Y1
Y3


(q(n),r(n),ξ∞)

⇒

q(n+1)

r(n+1)

 =

q(n)
r(n)

 -

Y5 Y9

Y7 Y11

−1 Y1
Y3


(q(n),r(n),ξ∞)

.

The stopping criteria for the shooting method is set as:

max{|(Y1(ξ∞)|, |Y3(ξ∞))|} < ε,
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where ε is a small positive number. From now onward ε has been taken as 10−8

whereas ξ∞ is set as 7.

3.6 Results and Discussion

The numerical results of the equations in the previous sections are discussed in

this section by using the graphs and tables. The numerical computations are done

for the influence of different important parameters such as, thermal radiation

R, nonlinear parameter n, Casson fluid parameter β, thermophoresis parameter

Nt, magnetic paramter M , velocity parameter, skin friction coefficient, Brownian

parameter, Sherwood and Nusselt number. These physical parameters have a

direct effect on concentration, temperature and velocity distribution.

Skin-Friction Coefficient, Nusselt Number and Sherood Num-

bers

δ R Nb Nt Ec Q Bi γ -

(
1 + 1

β

)
f ′′(0) −

(
1 + 4

3
R

)
θ′(0) −φ′(0)

0.1 0.1 0.2 0.2 0.1 0.1 0.5 0.2 1.61508 0.31881 0.78212

0.5 0.86635 0.31584 0.73225

1.0 0.55611 0.29743 0.69361

0.5 0.80773 0.47534 0.85635

0.7 0.80773 0.54226 0.86696

0.5 0.80773 0.52735 0.91883

0.1 0.80773 0.30714 0.75428

0.3 0.80773 0.49898 0.93392

0.5 0.80773 0.31618 0.75528

0.5 0.80773 0.37008 0.82365

1.0 0.80773 0.47926 0.94256

-0.2 0.80773 0.51145 0.92416

0.0 0.80773 0.35468 0.83659

0.1 0.80773 0.15916 0.94445

2.0 0.80773 0.52619 0.82931

0.0 0.80773 0.52985 0.72444

0.5 0.80773 0.52180 0.96569

Table 3.1: Computed numerical data of skin friction coefficient, Nusselt and
Sherwood number for M = 0.5, β = 1.0, S = 1.0, A = 0.2, n = 2.0.
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Table 3.1 describes the computed numerical results of Nusselts number, sherwood

number and skin friction coefficient using different physical parameters given in

the table. The skin friction coefficient is −(1 + 1/β)f ′′(0), the Nusselt number

is −(1 + 4
3
R)θ′(0) and the Sherwood number is −φ′(0). The values of skin fric-

tion coefficient, Nusselt number and Sherwood number changes by changing the

physical parameters. As given in the table, the skin friction coefficient gradually

depressed by taking large values of slip parameter, Brownian parameter, chemical

reaction parameter, thermophoresis parameter and Biot number, however for ther-

mal radiation and Ekert number no change has been observed in the skin friction

coefficient. The table clearly shows gradual decrease in Nusselt and Sherwood

number by enhancing the numerical values of various physical parameters.

δ R Nb Nt Ec Q Bi γ If Iθ Iφ

0.1 0.1 0.2 0.2 0.1 0.1 0.5 0.2 [-0.9, 0.2] [0, 3] [1, 3]

0.5 [-0.5, 0.1] [1, 2] [1, 2]

1.0 [-0.3, 0] [0, 2] [1, 2]

0.5 [-0.3, 0.2] [1, 3] [1, 3]

0.7 [-0.3, 0.2] [1, 3] [0, 3]

0.5 [-0.3, 0.2] [1, 3] [1, 3]

0.1 [-0.3, 0.2] [0, 4] [0, 4]

0.3 [-0.3, 0.2] [1, 6] [1, 6]

0.5 [-0.3, 0.2] [1, 5] [1, 5]

0.5 [-0.3, 0.2] [1, 4] [1, 6]

1.0 [-0.3, 0.2] [1, 7] [1, 7]

-0.2 [-0.3, 0.2] [1, 7] [1, 7]

0.0 [-0.3, 0.2] [1, 8] [1, 8]

0.1 [-0.3, 0.2] [1, 8] [1, 8]

2.0 [-0.3, 0.2] [1, 5] [1, 4]

0.0 [-0.3, 0.2] [1, 9] [1, 8]

0.5 [-0.3, 0.2] [0, 6] [1, 8]

Table 3.2: The intervals for the initial guesses for the missing initial conditions
when M = 0.5, β = 1.0, S = 1.0, A = 0.2, n = 2.0.

Table 3.2 shows the interval If , Iθ and Iφ by choosing the missing initial condi-

tions as f ′′(0), θ′(0) and φ′(0) respectively. The interval mentioned above offer a

considerable flexibility for the choice of initial guesses.
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Effect of Casson Parameter β

Figure 3.2 analyzes the impact of β on dimensional velocity profile. The velocity

of the fluid decreases by increasing the numerical value of β. Physically, this

means that fluid viscosity increases due to accelerating values of β which in turn

decelerate the nanofluid velocity profile. Furthermore, the present phenomena

convert to Newtonian fluid as β approaches to inifinity. Figure 3.3 illustrates

the relationship between energy profile and β. It is seen that the temperature

distribution of the fluid increases by gradually increasing the value of β. Actually,

by increasing value of β the thermal boundary thickness increase due to which the

surface temperature increases. Figure 3.4 demonstrates the behavior of β on the

concentration field. The nanoparticle volume fraction is observed to be increased

for the higher estimation of β.

Effect of Magnetic Number M

Figure 3.5 shows the relationship between M on dimensionless velocity profile

f ′(ξ), we see that the velocity profile of the fluid depressed continuously by accel-

erating the value of magnetic field. Generally, the increasing value of M creates

the Lorentz force and the collision between the conducting molecules increase in

the presence of this force due to which the temperature of the fluid increases and

the velocity decreases at the boundary layer. Figure 3.6 illustrates the dependence

of energy profile on magnetic parameter M . From the graph, we see that gradually

enhancement of M causes an increase in the temperature. Physically, the greater

magnetic number induces an opposing force normally known as the Lorentz force

which significantly increase both boundary layer thickness and temperature profile

of the nanofluid. Figure 3.7 analyzes the behavior of concentration distribution for

ascending values of M . The graph shows that the fluid concentration distribution

is enhanced with mounting values of M .
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Effect of Eckert Number Ec

Figure 3.23 illustrates the impact of Ec on temperature profile of the fluid. The

graph clearly shows that the temperature distribution is enhanced by mounting

values of Ec. Actually, Ec can be written as a ratio of kinetic energy of the fluid

particle and thermal energy. The increasing value of Ec means, we have increased

the kinetic energy of the fluid particle, as a result the thermal boundary layer

thickness is enhanced.

Effect of Thermophoresis Parameter Nt

Figure 3.26 investigates the dependence of temperature distribution on Nt. The

plot shows that the temperature profile of the fluid is escalating with boosting

values of Nt. Actualy, reason of this behavior is that the nanoparticle at the hot

boundary side have been moved towards the cold boundary side and the thermal

boundary layer become thicker in the existence of Nt. Figure 3.27 depicts the

visualization of Nt on the concentration distribution. It is noticed that by gradu-

ally increasing Nt the concentration distribution also increases. Generally, in the

presence of Nt exert forces on each other, as a result particles move from hotter to

colder region of the fluid and has been noticed an increment in the concentration

distribution.

Effect of Biot Number Bi

Figures 3.28 and 3.29 are drawn to analyze the impact of Bi on both energy and

concentration distribution of the fluid respectively. Physically, Bi can be written

as a ratio of convection to conduction. The convection is taking place on the

surface while the conduction is taking place inside the surface. Thus the boosting

value of Bi accelerates both temperature and concentration profile.



Study of MHD flow ... 51

Effect of Velocity Slip Parameter δ

Figure 3.17 shows the relationship between slip parameter and dimensionless ve-

locity distribution. The velocity is observed to be a reducing function of δ. It

can be generalized as the fractional resistance between fluid particles and the flow

surface increases as a result the velocity profile of the fluid decreases. Figure 3.18

shows that the energy profile is accelerated by gradually uprising the value of δ.

Effect of Radiation Parameter R

Figure 3.20 analyzes the impact of R on energy distribution. The gradually rising

value of R enhances the energy distribution of the fluid. Actually, the heat en-

ergy exhausted from the fluid due to large value of R and as a result the energy

distribution increased.

Effect of Prandtl Number Pr

Figure 3.21 explores the impact of Pr on energy distribution. Since, the Pr can

be written as a ratio of kinematic diffusivity to heat diffusivity. The gradually

increasing value of Pr increase the fluid density and decreasing thermal diffusivity

and as a result the energy distribution is enhanced.

Effect of Heat Generation/Absorption Coefficient Q

Figure 3.22 illustrates the relationship between Q and temperature profile of the

fluid. The plot clearly shows a reduction in temperature distribution of the fluid

for negative value of Q. In the same way heat generation occurs for the positive

value of Q. Due to these behaviors the temperature of the fluid gradually increases.
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Effect of Brownian Motion Parameter Nb

Figure 3.24 is drawn to illustrate the relationship between Nb and temperature

distribution. The temperature distribution is enhanced with rising value of Nb.

Physically, Nb is associated with movement of the fluid nanoparticles. The kinetic

energy of the fluid particles increases with boosting values of Nb, due to which the

temperature distribution of the fluid increases. Figure 3.25 is drawn to analyze

the effect of Nb on concentration profile, which shows that the increasing value of

Nb produce a reduction in concentration distribution.

Effect of Suction Parameter S

Figures 3.11-3.13 show the relationship between S and velocity, S and temperature

and S and concentration profile respectively. From the graphs it is observed that

increasing the numerical value of S a decrement in the velocity, temperature and

concentration profile of the fluid occur.

Effect of Lewis Number Le

Figure 3.30 analyzed the relation between the Lewis number Le and concentration

distribution. Concentration profile decreased for high value of Le and thus we have

get a small molecular diffusivity. Generally concentration profile is a decreasing

function of Lewis number.
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Chapter 4

MHD Casson Nanofluid Flow

with Dufour and Soret Effect

4.1 Introduction

The flow model of Ibrahim et al. [53] has been extended in this chapter by in-

cluding additional effect of inclined magnetic field, Soret and Dufour. The MHD

stagnation point flow using both slip velocity and convective boundary condition

has been investigated. Furthermore, by using similarity variable a set of ODEs

is obtained by converting the nonlinear PDEs of concentration, momentum and

temperature. We will also use the well known shooting technique for the calcu-

lation of the numerical solution of these model ODEs. The influence of different

parameters of the modeled equations on velocity, temperature, concentration, skin

friction coefficient, Nusselt and Sherwood number will be discussed in detail in the

result and discussion section.

4.2 Problem Formuation

The problem is formulated in the following way. We consider a 2D steady and

incompressible flow of MHD stagnation point using a stretching sheet. The sheet

68
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is displaced (in the plane y = 0) in such a way that the flow is constrained in

the plane y > 0. The sheet is also stretched with velocity u=Uw=axn, with

free stream velocity U∞=bxn, where a and b are two positive constants and the

stretching parameter n ≥ 0. The slip velocity is given by Uslip=
(
µB + Py√

2πc

)
∂u
∂y

which is along x-axis where B(x)=B0x
n−1
2 and B0 is constant. The inclined

magnetic field is applied to the sheet with an acute angle ω,

(
0 ≤ ω ≤ π

2

)
. The

induced magnetic field is neglected by assuming a small magnetic number. The

nanoparticle concentration is consdier to be constant and the wall temperature

can be regularized by a convective heating process. For extremely large value of y

(i.e. y →∞) the nanoparticle concentration and temperature will be represented

by C∞ and T∞ respectively.

Figure 4.1: Geometry of physical model.
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Under the light of above constraint the related governing equations are as follows:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
1 +

1

β

)
∂2u

∂y2
− σB2

0(x)

ρ
u sin2 ω, (4.2)

u
∂T

∂x
+ v

∂T

∂y
=

Dm

CpCs
KT

∂2C

∂y2
+

ν

Cp

(
1 +

1

β

)(
∂u

∂y

)2

+
σB2

0

ρ
u2 sin2 ω

+
(ρc)p
(ρc)f

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]
− 1

(ρc)f

∂qr
∂y

+ α
∂2T

∂y2
, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DmKT

Tm

∂2T

∂y2
−K0(C − C∞). (4.4)

And the boundary conditions are [53]:

U = axn, v = vw, − k
∂T

∂y
= hf (Tf − T ), C = Cw

}
at y = 0,

u→ U∞, v → 0, T → T∞, C → C∞ as y →∞.

 (4.5)

In the above equations ω represents the inclination angle, the mass diffusivity is

denoted by Dm , Cs stands for concentration susceptibility, Cp represents specific

heat, KT denotes the thermal-diffusion ratio, Tm stands for mean fluid tempera-

ture, etc.

4.3 Similarity Transformation

We adopt the below similarity variable for the conversion of PDEs and its related

boundary condition into the ordinary differential equation [53]:

u = axnf ′(ξ), v = −
√
aν(n+ 1)

2
x
n−1
2

(
f(ξ) +

n− 1

n+ 1
ξf ′(ξ)

)
,

ξ = y

√
a(n+ 1)

2ν
x
n−1
2 , ψ =

√
2aν

(n+ 1)
x
n+1
2 f(ξ),

θ(ξ) =
T − T∞
Tf − T∞

, φ(ξ) =
C − C∞
Cw − C∞

.


(4.6)
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Velocity components intems of streem function are define as

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

Detailed procedure for the confirmation of continuity Eq. (4.1) has been discussed

in Chapter 3. We used the same procedure to convert Eq. (4.2) into the dimen-

sionless form, differentiating u w.r.t x, we have

∂u

∂x
= axn−1

(
nf ′(ξ) +

n− 1

2
ξf ′′(ξ)

)
.

Now differentiating u w.r.t y, we get

∂u

∂y
= axn

√
a(n+ 1)

2ν
x
n−1
2 f ′′(ξ),

∂2u

∂y2
= a2x2n−1

n+ 1

2ν
f ′′′(ξ).

We can also write the left hand side of Eq. (4.2) as

u
∂u

∂x
+ v

∂u

∂y
= a2x2n−1

[
nf ′2 − n+ 1

2
ff ′′

]
.

In order to convert the right hand side of Eq. (4.2) into dimensionaless form we

used the same procedure i.e.,

ν

(
1 +

1

β

)
∂2u

∂y2
=

(
1 +

1

β

)
a2x2n−1

(
n+ 1

2

)
f ′′′, (4.7)

σB2
0(x)

ρ
u sin2 ω =

σB2
0x

n−1

ρ
axnf ′ sin2 ω. (4.8)

Putting Eqs. (4.7)-(4.8) in Eq. (4.2) we get the following dimensionless form

(
1 +

1

β

)
f ′′′ + ff ′′ − 2n

n+ 1
f ′2 −Mf ′ sin2 ω = 0.
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The same procedure is be used to convert Eq. (4.3) into the dimensionless form

• T = T∞ + (Tf − T∞)θ,

• C = C∞ + (Cw − C∞)φ.

• ∂T

∂x
= (Tf − T∞)θ′

(
n− 1

2x

)
ξ,

• ∂2T

∂y2
= (Tf − T∞)θ′′

a(n+ 1)

2ν
xn−1.

• ∂2C

∂y2
= (Cw − C∞)φ′′

a(n+ 1)

2ν
xn−1.

Taking the left hand side of Eq. (4.3)

u
∂T

∂x
= a(Tf − T∞)

(
n− 1

2

)
ξxn−1f ′θ′. (4.9)

v
∂T

∂y
= −a(n+ 1)

2

(
fθ′ +

n− 1

n+ 1
ξf ′θ

)
(Tf − T∞)xn−1. (4.10)

Adding Eqs. (4.9)-(4.10) we get the left hand side of Eq. (4.3)

u
∂T

∂x
+ v

∂T

∂y
=
−a(n+ 1)

2
(Tf − T∞)xn−1fθ′. (4.11)

Similarly, we have used the same proces to convert the right hand side of Eq. (4.3)

into dimensional form

α
∂2T

∂y2
= α(Tw − T∞)θ′′

a(n+ 1)

2ν
xn−1, (4.12)

ν

Cp

(
1 +

1

β

)(
∂u

∂y

)2

=
1

Cp

(
1 +

1

β

)
a2x2nf ′′2

a(n+ 1)

2
xn−1,

1

(ρc)f

∂qr
∂y

=
1

(ρc)f

−16σ∗

3k∗
T 3
∞

(
Tw − T∞

)
a(n+ 1)

2ν
xn−1θ′′,

σB2
0(x)

ρ
u2 sin2 ω =

σB2
0(x)a2x2nf ′2 sin2 ω

ρ
,

DmKT

CpCs

∂2C

∂y2
=
DmKT

CpCs
(Cw − C∞)

a(n+ 1)

2ν
xn−1θ′′. (4.13)
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Using Eqs. (4.11)-(4.14) in (4.3) the following form is obtained

−a(n+ 1)

2
(Tf − T∞)xn−1fθ′ = α(Tf − T∞)θ′′

a(n+ 1)

2ν
xn−1

+
(ρc)p
(ρc)f

[
DB(Cw − C∞)(Tw − T∞)φ′θ′

a(n+ 1)

2ν
xn−1

]
+

(ρc)p
(ρc)f

[
DT

T∞
(Tw − T∞)2

a(n+ 1)

2ν
xn−1θ′2

]
+

1

Cp

(
1 +

1

β

)
a2x2nf ′′2

a(n+ 1)

2
xn−1 +

σB2
0(x)a2x2nf ′2 sin2 ω

ρ

− 1

(ρc)f

16σ∗

3k∗
T 3
∞

(
Tf − T∞

)
a(n+ 1)

2ν
xn−1θ′′

+
DmKT

CpCs
(Cw − C∞)

a(n+ 1)

2ν
xn−1θ′′. (4.14)

Dividing each terms of Eq. (4.14) by 2
a(n+1)xn−1(Tf−T∞)

, we get

1

Pr
θ′′ +

4

3
R

1

Pr
θ′′ +Nbφ′θ′ +Ntθ′2 + fθ′

+

(
1 +

1

β

)
Ecf ′′2MEcf ′2 sin2 ω +Duφ

′′ = 0. (4.15)

Multiplying each terms of Eq. (4.15) by Pr, we get

(
1 +

4

3
R

)
θ′′ + Prfθ′ + PrNbφ′θ′ + PrNtθ′2

+

(
1 +

1

β

)
PrEcf ′′2 +MPrEcf ′2 sin2 ω + PrDuφ′′ = 0. (4.16)

Eq. (4.4) can also be converted into dimensionless form as:

• ∂C

∂x
= φ′(ξ)

(
Cw − C∞

)
ξ

x

(
n− 1

2

)
,

• ∂2C

∂y2
= φ′′(ξ)

(
Cw − C∞

)
a(n+ 1)

2ν
xn−1.

In the same way we can find ∂T
∂y

, as

• ∂T

∂y
=

(
Tw − T∞

)
θ′(ξ)

√
a(n+ 1)

2ν
x
n−1
2 ,
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u
∂C

∂x
= axn−1

(
Cw − C∞

)(
n− 1

2

)
ξf ′(ξ)φ′(ξ). (4.17)

v
∂C

∂y
= −a(n+ 1)

2
xn−1

(
Cw − C∞

)
φ′(ξ)

[
f(ξ) +

n− 1

n+ 1
ξf ′(ξ)

]
. (4.18)

Similarly Eq. (4.4) takes the form

u
∂C

∂x
+ v

∂C

∂y
= −a(n+ 1)

2
xn−1

(
Cw − C∞

)
fφ′.

The following procedure can be used to convert the right hand side of Eq. (4.4)

into dimensionless form

DB
∂2C

∂y2
= DB

[(
Cw − C∞

)
φ′′(ξ)

a(n+ 1)

2ν
xn−1

]
,

DmKT

Tm

∂2T

∂y2
=
DmKT

Tm

[(
Tf − T∞

)
θ′′(ξ)

a(n+ 1)

2ν
xn−1

]
,

K0(C − C∞)φ = K0(Cw − C∞)φ.

Using all of the above values in Eq. (4.4), it becomes

−a(n+ 1)

2
xn−1

(
Cw − C∞

)
f(ξ)φ′(ξ) = DB

(
Cw − C∞

)
a(n+ 1)

2ν
xn−1φ′′(ξ)

+
DmKT

Tm

a(n+ 1)

2ν

(
Tf − T∞

)
xn−1θ′′(ξ)−K0

(
Cw − C∞

)
. (4.19)

Dividing each terms of Eq. (4.19) by 2
a(n+1)xn−1(Cw−C∞)

, we get

− fθ′ = 1

Sc
φ′′ + Srθ′′ − γφ. (4.20)

Multiplying each terms of Eq. (4.20) by Sc, we get the dimensional form

− Scfφ′ = φ′′ + ScSrθ′′ − Scγφ,

φ′′ + scfφ′ + ScSrθ′′ − Scγφ = 0. (4.21)



MHD Casson nanofluid 75

Ultimatelly, the ODEs explaning the proposed flow problem are given by

(
1 +

1

β

)
f ′′′ + ff ′′ − 2n

n+ 1
f ′2 −Mf ′ sin2 ω = 0, (4.22)(

1 +
4

3
R

)
θ′′ + Prfθ′ + PrNbφ′θ′ + PrNtθ′2

+

(
1 +

1

β

)
PrEcf ′′2 +MPrEcf ′2 sin2 ω + PrDuφ′′ = 0, (4.23)

φ′′ + scfφ′ + ScSrθ′′ − Scγφ = 0. (4.24)

The transformed boundary conditions are given below

f(0) = S, f ′(0) = 1,

θ′(0) = −Bi(1− θ(0)), φ(0) = 1,

 at ξ = 0,

f ′ → A, θ → 0, φ→ 0, as ξ →∞.

 (4.25)

4.4 Numerical Treatment

We solve Eqs. (4.22)-(4.24) using the boundary condition (4.25) with the help

of shooting technique. Firstly, Eq. (4.22) is numerically solved, and then the

obtained result of f , f ′ and f ′′ are used in Eqs. (4.23)-(4.24) for numerical usage

of Eq. (4.22) The initial missing condition at f ′′(0) which has been indicated by

h with following notation.

f = g1, f
′ = g2, f

′′ = g3,
∂f

∂h
= g4,

∂f ′

∂h
= g5,

∂f ′′

∂h
= g6. (4.26)

Eq. (4.22) can be converted into a system of there first order ODEs by using

the above symbols. The three first order ODEs belong to Eq. (4.22), while the

remaining three first order ODEs can be obtained by differentiating w.r.t h

g′1 = g2, g1(0) = S,

g′2 = g3, g2(0) = 1,

g′3 =
β

(1 + β)
[−g1g3 +

2n

n+ 1
g22 +Mg2 sin2 ω], g3(0) = h,
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g′4 = g5, g4(0) = 0,

g′5 = g6, g5(0) = 0,

g′6 =
β

(1 + β)
[−g1g6 − g4g3 +

4n

n+ 1
g2g5 +Mg5 sin2 ω], g6(0) = 1.

The above IVP can be solve by applying RK4 method. The missing condition of

above equations can be taken at h = h(0), and Newtons method can be used for

finding the roots. The Newtons method is given by the following iterative scheme

h(n+1) = h(n) − (g2(ξ∞))h=h(n) − A(
∂g2(ξ∞)
∂h

)
h=h(n)

,

h(n+1) = h(n) − (g2(ξ∞))h=h(n) − A
(g2(ξ∞))h=h(n)

. (4.27)

The approximate numerical solution of Eq. (4.22) can be obtained by considering

the domain of the problem i.e [0, ξ∞], where ξ∞ is chosen such that no considrable

changes are obtaned going beyond. For the shooting method, the stopping criteria

is defined as follows

|(g2(ξ∞))h=h(n) − A| < ε, (4.28)

where ε is a small positive real number. Since Eqs. (4.23)-(4.24) are coupled

system, therefore we can solve it numerically. The initial missing condition at θ(0)

and φ(0) can be represented by p and q respectively, the following notation are

considered

θ = Z1, θ
′ = Z2, φ = Z3, φ

′ = Z4,
∂θ

∂p
= Z5,

∂θ′

∂p
= Z6,

∂φ

∂p
= Z7,

∂φ′

∂p
= Z8,

∂θ

∂q
= Z9,

∂θ′

∂q
= Z10,

∂φ

∂q
= Z11,

∂φ′

∂q
= Z12.

 (4.29)
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Using the above notations, the resulting system of first order ODEs is given below

Z ′1 = Z2, Z1(0) = p,

−3Pr

(3 + 4R)− PrDuScSr

[
g1Z2 +NbZ2Z4 +

(
1 +

1

β

)
Ecg23 +NtZ2

2

+MEcg22 sin2 ω −DuScg1Z4 +DuScγZ3

]
, Z2(0) = −Bi(1− p),

Z ′3 = Z4, Z3(0) = 1,

Z ′4 =
−3Sc

(3 + 4R)− ScSrPrDu

[
g1Z4

(
1 +

4

3
R

)
− SrPrNtZ2

2

− SrPrg1Z2 − SrPrNbZ2Z4 − γZ3

(
1 +

4

3
R

)
− Sr

(
1 +

1

β

)
PrEcg23 − SrMPrEcg22 sin2 ω

]
, Z4(0) = q,

Z ′5 = Z6, Z5(0) = 1,

Z ′6 =
−3Pr

(3 + 4R)− PrDuScSr

[
g1Z6 +Nb(Z6Z4 + Z2Z8)

+ 2NtZ2Z6 − (DuScg1Z8) +DuScγZ7

]
, Z6(0) = Bi,

Z ′7 = Z8, Z7(0) = 0,

Z ′8 =
−3Sc

(3 + 4R)− ScSrPrDu

[
g1Z8

(
1 +

4

3
R

)
− γZ7

(
1 +

4

3
R

)
− SrPrg1Z6 − SrPrNb(Z6Z4 + Z2Z8)− 2SrPrNtZ2Z6

]
, Z8(0) = 0,

Z ′9 = Z10, Z9(0) = 0,

Z ′10 =
−3Pr

(3 + 4R)− PrDuScSr

[
g1Z10 +Nb(Z10Z4 + Z2Z12)

+ 2NtZ2Z10 −DuScg1Z12 +DuScγZ11

]
, Z10(0) = 0,

Z ′11 = Z12, Z11(0) = 0,

Z ′12 =
−3Sc

(3 + 4R)− ScSrPrDu

[
g1Z12

(
1 +

4

3
R

)
− γZ11

(
1 +

4

3
R

)
− SrPrg1Z10 − SrPrNb(Z2Z12 + Z4Z10)− 2SrPrNtZ2Z10

]
, Z12(0) = 1.
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The above initial value problem is solved by using RK4 method, and the missing

condition can be taken as

(Z1(p, q))ξ=ξ∞ = 0, (Z3(p, q))ξ=ξ∞ = 0. (4.30)

We have to solve the above Eq. (4.27) by apply the Newtons iteration scheme

which is given as

p(n+1)

q(n+1)

 =

p(n)
q(n)

 -

∂Z1(p,q)
∂p

∂Z1(p,q)
∂q

∂Z3(p,q)
∂p

∂Z3(p,q)
∂q

−1 Z1

Z3


(p(n),q(n),ξ∞)

,

⇒

p(n+1)

q(n+1)

 =

p(n)
q(n)

 -

Z1 Z9

Z7 Z11

−1 Z1

Z3


(p(n),q(n),ξ∞)

.

The above iterative process is repeated until the following stopping criteria is met

max{|Z1(ξ∞)|, |Z3(ξ∞)|} < ε,

where ε = 10−8 is set for the numerical calculation.

4.5 Results and Discussion

In this section, numerical results of velocity, temperature, concentration, skin fric-

tion coefficient Nusselt number and Sherwood number have been studied in detail

with the help of graphs and tables by considering various physical parameters.
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Skin-Friction Coefficient, Nusselt and Sherwood Numbers

Table 4.1 shows the computed numerical data for skin coefficient for different

values of physical parameters such as n, M , β, S, A and ω. For raising values of

n, M , and S the skin friction gradually increases while the skin friction depressed

by enhancing the values of A, β and ω in both directions.

n M β S A ω −(1 + 1
β
)f ′′(0) If

0.2 0.1 0.2 1 0.2 π
3

2.337123 [-1.5, 9.2]

0.6 2.711615 [-0.7, 3.5]

1.0 2.913409 [-0.7, 6.6]

0.4 3.191963 [-0.7, 6.3]

0.6 3.464128 [-0.8, 6.4]

0.3 2.957716 [-0.8, 4.5]

0.5 2.572221 [-1.0, 3.1]

1.5 2.863085 [-1.1, 3.6]

1.9 3.108925 [-1.3, 4.4]

0.5 2.940977 [-1.3, 4.4]

0.7 2.843137 [-1.3, 4.5]

π
4

2.663075 [-1.2, 4.6]

π
6

2.465694 [-1.2, 4.9]

Table 4.1: Computed results of skin friction coefficient −(1 + 1
β )f ′′(0).

Table 4.1 portray the interval If where from the missing initial condition f ′′(0)

can be chosen. It is noteworthy that the interval mentioned offer a considerable

flexibility for the choice of initial guess.
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Pr Sc Nb Nt β Ec Sr Du ω Bi γ R M −P1θ′(0) −φ′(0)

4 0.2 0.1 0.1 0.2 0.1 0.2 0.3 π
3

1 0.4 0.5 0.1 1.287968 0.479813

4.4 1.327190 0.478839

5 1.361308 0.477962

0.6 1.144816 1.021156

0.7 1.092316 1.145211

0.2 1.051265 1.148343

0.5 0.916251 1.158577

0.2 0.888380 1.160649

0.3 0.858901 1.162830

0.4 0.865538 1.153484

0.6 0.866650 1.147477

0.2 0.700094 1.155134

0.3 0.531320 1.162944

0.4 0.536205 1.144024

0.6 0.541944 1.120584

0.4 0.350612 1.156127

0.5 0.131489 1.1961034

π
4

0.610360 1.211267

π
5

0.178357 1.220928

1.2 0.201251 1.217480

1.4 0.221553 1.214424

0.6 0.066776 1.343398

0.8 0.078029 1.462533

1.4 0.0758084 1.433549

1.9 0.242720 1.411537

0.3 0.118069 1.400869

0.9 0.223836 1.374641

Table 4.2: The computed result of Sherwood and Nusselt numbers for A = 0.2,
n = 0.2, S = 1, where P1 = −(1 + 4

3R),

Table 4.2 describes the impact of various physical parameters on Nusselt and

Sherwood number. For the gradually mounting values of Pr, β, Sr, R and Bi, the

Nusselt number gradually grows on the other hand Sherwood number is reduced.

Furthermore for ascending values of Sc, Nb, Nt, Ec, Du, ω, γ and M Nusselt

number depresses while its oppose Sherwood number increasing.
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Pr Sc Nb Nt β Ec Sr Du ω Bi γ R M Iθ Iφ

4 0.2 0.1 0.1 0.2 0.1 0.2 0.3 π
3

1 0.4 0.5 0.1 [–4.5, 150] [-150, 150]

4.4 [-4.2, 150] [-150, 150]

5 [-4.1, 150] [-150, 150]

0.6 [-4.2, 150] [-150, 150]

0.7 [-4.1, 150] [-150, 150]

0.2 [-0.9, 150] [-150, 150]

0.5 [-9.8, 150] [-25, 150]

0.2 [-10.5, 150] [-20, 150]

0.3 [ -9.8, 25 ] [-22, 150]

0.4 [-12.5, 40] [-15, 150]

0.6 [-15.4, 41] [-12, 150]

0.2 [-8.9, 44] [-15, 150]

0.3 [-10.2 45] [-15, 150]

0.4 [-15, 150] [-150, 150]

0.6 [-15, 150] [-150, 150]

0.4 [-16, 150] [-150, 150]

0.5 [-16, 150] [-150, 140]

π
4

[16.5, 150] [-150, 140]

π
5

[-16.4, 150] [-150, 140]

1.2 [-13.2, 150] [-150, 150]

1.4 [-11.3, 110] [-150, 110]

0.6 [-11.2, 110] [-150, 65]

0.8 [-11.4, 30] [-60, 23]

1.4 [-10.2, 70] [-50, 35]

1.9 [-11.1, 80] [-100, 50]

0.3 [-11.1, 70] [-100, 45]

0.9 [-11.1, 80] [-80, 35]

Table 4.3: The intervals for the initial guesses for the initial missing conditions
when A = 0.2, n = 0.2, S = 1.

Table 4.3 portray the intervals Iθ and Iφ where from the missing initial conditions

θ′(0) and φ′(0) respectively can be chosen. It is noteworthy that the intervals

mentioned offer a considerable flexibility for the choice of initial guesses.

Impact of Casson Fluid Parameter β

Figure 4.2 depicts the impact of β on velocity profile. The graph reveals that ve-

locity profile decreases by enhancing the values of β. Generally, the fluid viscosity

is enhanced gradually by increasing the numerical values of β due to which high
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resistance is induced in the fluid as a result, a decline in velocity profile of the

fluid is observed. Figure 4.3 shows the effect of β on dimensionless temperature

distribution θ(ξ). The plot shows a deceleration in temperature distribution for

accelerating values of β. This decelerating behavior comes from the fact that the

uprising values of β depresses the velocity of the fluid by depressing yield stress.

Figure 4.4 shows the impact of different values of β on concentration distribu-

tion, the rising values of β decreases the concentration profile gradually. Actually,

increasing values of β accelerates the flow velocity and as a result the viscous

domination decrease the concentration profile.

Impact of Magnetic Parameter M

Figure 4.5 is drawn to analyze the influence of different values of M on velocity

distribution of the nanofluid. The graph reveals that the velocity profile of the

fluid is declined by small variation in M . Physically, the parameter M induces

a resistive force in the conduction fluid. This induced resistive force declines the

fluid velocity, that is why a decline in velocity is observed. Figure 4.6 analyzes

the influence of M on the dimensional temperature distribution. Due to small

increment in the magnetic parameter the temperature distribution is enhanced.

Physically a resistive force is generated in the flow direction of the fluid which

becomes the cause in the enhancement of temperature. Figure 4.7 investigates

the influence of M on dimensionless concentration distribution φ(ξ). It is visible

from the curve that the mounting values of M results an increase in the concentra-

tion distribution. Generally, fluid concentration and its corresponding boundary

thickness are uprised by boosting values of M .

Impact of Prandtl Number Pr

Figure 4.8 shows the relationship between Pr and temperature profile. Since Pr

can be written as a ratio of density to thermal diffusivity, when we increases the

values of Pr it means that we are increasing the density of the fluid and decreasing
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the thermal diffusivity, which causes a decrease in the temperature. Figure 4.9

illustrates the outcome of Pr on concentration distribution, which clearly shows

an increment in the concentration profile of the nanofluid by enhancing values of

Pr.

Impact of Brownian Motion Parameter Nb

Figure 4.10 illustrates a relationship between Nb and temperature profile. The

temperature profile decreases by gradually enhancing the values of Nb. Generally

the enhancement of Nb significantly increases the movement of fluid particles,

which enhances the kinetic energy of the fluid particle as a result the temperature

distribution also increases. Figure 4.11 illustrates the influence of Nb on the

concentration distribution. The concentration distribution increases due to the

growing values of Nb.

Impact of Inclination Angle ω

Figure4.13 reflects the influence of inclination angle ω on the velocity field. It is

noticed that, as we increase the inclination angle ω the velocity profile also in-

creases. Generally, an increment in inclination angle means we are reducing the

resistance against the flow direction of the fluid as due to which the fluid velocity

increases. Figure 4.14 shows the relationship between ω and temperature distribu-

tion of the fluid. As reflected from the plot that the temperature profile decreases

by increasing ω. Physically, the enhancing values of ω reduce the friction force

due to which the temperature distribution decreases. Figure 4.14 shows the re-

lationship between inclination angle and concentration profile. The concentration

profile decelerates due to increasing values of inclination angle.
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Impact of Eckert number Ec

Figure 4.15 illustrates the impact of Ec on the temperature distribution. It is

noticed that by growing values of Ec the temperature distribution increases. Ac-

tually, the dissipation increases by growing values of Ec due to this increase in

dissipation the fluid internal energy also increases. This modification in internal

energy also increases the temperature distribution of the fluid. Figure 4.16 is

sketched to analyze the effect of Ec on the concentration distribution. It is obvi-

ous that the concentration distribution increases due to an increase in Ec, this is

because of the growing values of Ec becomes a cause in increase of the thermal

energy of the fluid.

Impact of Dufour Number Du

Figure 4.17 shows the influence ofDu on temperature distribution. From the graph

it is clear that the temperature profile is an increasing function of Du. Physically,

the growing values of Du reflects an uprising in the thermal diffusibility which

correspondingly increases the heat transfer. Figure 4.18 shows the relationship

between Du on concentration distribution. Higher values of Du increase the con-

centration profile of the fluid. Generally, an increase in Du means increase in mass

transfer, therefore, the concentration increases.

Impact of Chemical Reaction Parameter γ

Figures 4.19-4.20 illustrate the impact of γ on temperature and concentration pro-

file, respectively. As can be seen from the graph that the increasing values of γ

accelerate the temperature distribution while the concentration profile declines

with boosting values of γ. Physically, the growing values of γ causes a decre-

ment in the molecular diffusion as a result the concentration decreases and the

corresponding boundary layer thickness reduces.
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Impact of Velocity Ratio Parameter A

Figure 4.21 analyzes the impact of A on dimensional velocity distribution. The

plot depicts that for boosting values of A the velocity profile accelerate. physically,

when the stretching velocity is less than the free stream velocity then if we divide

the free stream velocity by the stretching velocity then the ratio obtained will be

greater than 1. then as a result the retarding force decreased and the flow velocity

increased.

Impact of Radiation Parameter R

Figure 4.22 illustrates the impact of R on temperature distribution. From the

curve we observe that the temperature profile increases with boosting values of

R. Generally, more heat is transfer to the fluid due to increasing values of R,

which in response increases both the temperature distribution as well the thermal

boundary layer thickness.

Impact of Thermophoresis Parameter Nt

Figure4.23 shows the relation between Nt and temperature distribution of the

fluid. It is shown that the temperature profile increases by the boosting numerical

values of Nt. Physically, the increasing values of Nt drawn the nanoparticles

from hotter to less hotter region as a result the overall temperature profile of the

nanofluid increases.

Impact of Schmidt Number Sc

Figure 4.25 shows the relationship between Sc on concentration distribution, for

expanding values of Sc the graph of dimensionless concentration distribution is

decreased. Physically, it describes an inverse relation between the mass diffusivity
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and Sc. The large numerical values of Sc produce less mass diffusion therefore,

the nonoparticle concentration is dropped.

Impact of Soret Number Sr

The impact of Sr on the temperature distribution, is portraited in Figure 4.26. It

is seen that when we enhance Sr the temperature profile accelerates. Figure 4.27

reflects the effect of Sr on concentration profile, of the nanofluid. The concen-

tration distribution of the nanofluid is observed to be increasing for higher values

of Sr. Physically, an increse in Sr represents the mass transfer from low to high

regions which is caused by the temperature difference.

Impact of Suction Parameter S

Figure 4.28 illustrates the influence of S on dimensionless velocity, we observe that

for boosting values of S the velocity distribution decreases. Actually, the higher

values of S increase a density difference in the flow region. The density has a large

values on the top region and small values on the bottom region. This change in

density causes a decrease in the flow of fluid between the top and bottom region

and hence a decline in velocity of the fluid is observed.

Impact of Nonlinear Stretching Parameter n

Figure 4.29 depicts the influence of n on dimensionless velocity distribution. It is

seen from the curve that velocity distribution decreases for boosting values of n.

Actually, the mounting values of n induces more pressure on the flow as a result,

the dimensional velocity distribution reduces.
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Figure 4.2: Effect of β on f ′(ξ).
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Figure 4.3: Effect of β on θ(ξ).
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Figure 4.4: Effect of β on φ(ξ).
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Figure 4.5: Effect of M on f ′(ξ).
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Figure 4.6: Effect of M on θ(ξ).
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Figure 4.7: Effect of M on φ(ξ).
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Figure 4.8: Effect of Pr on θ(ξ).

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr = 4, 7, 9

Figure 4.9: Effect of Pr on φ(ξ).



MHD Casson nanofluid 91

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nb = 0.0, 0.7, 1.2
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Figure 4.12: Effect of ω on f ′(ξ).
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Figure 4.14: Effect of ω on φ(ξ).
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Chapter 5

Conclusion

In this thesis, we have examined the numerical investigation of the MHD stagna-

tion point flow of Casson nanofluid by including additional effect of Soret, Dufour

and inclined magnetic field. The 2D Casson nanofluid has been investigated for

different physical parameter i.e., magnetic field, Eckert number, Casson fluid pa-

rameter, Soret number, Dufour and inclined magnetic field. We get a set of ODEs

by converting nonlinear PDEs of concentration, momentum and temperature by

utilizing the similarity transformation. The Shooting technique has been used for

calculation of numerical results in the presence model together with RK4. The

impact of different suitable physical parameters on the velocity, energy and con-

centration distribution has been discussed in detail by using graphs and tables.

Conclusion Remarks

The overall conclusion drawn from the present work is summarized below.

• Decreasing behavior due to increasing the Casson fluid parameter and same

behavior is noticed in the velocity distribution enhancing the numerical value

of suction parameter.
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• For the large value of magnetic parameter the velocity field reduce but op-

posite trend is observed in the graph of temperature and concentration dis-

tribution.

• The temperature distribution decelerate and the concentration distribution

accelerate due to boosting value of Prandtl number.

• Temperature profile rises by increasing radiation parameter and same behav-

ior is observed in the temperature field due to the effect of thermophoresis

parameter.

• For uprising values of inclined magnetic field, velocity profile increased while

temperature and concentration distribution decreases.

• Uprising of temperature field is observed for the increasing value of Eckert

number.

• By increasing the Soret number both temperature and concentration profile

accelerate.

• By uprising value of Dufour number both the temperature and concentration

profile increases.

• Enlarging the velocity ratio parameter the velocity distribution is observed

to be increase.

Future Work

The problem can also be extended by considering the different fluid models like

Williamson, Burger, Jeffery and Tangent hyperbolic nanofluid. The problem can

be analyzed by including various other effect like nth-order chemical reaction,

inclination magnetic field, viscous dissipation, by taking dust particles. We can

also solve the given problem by using different geometries like wedge, channel,

cone and cylinder etc.
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