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Abstract

Motivated by the idea of cone b-metric space and multivalued fractals operators,

the idea of multivalued fractals in the cone b-metric spaces has been introduced.

Some fixed point results on multivalued fractals by using single valued and mul-

tivalued mappings have been established which generalize the already existing re-

sults in the b-metric spaces. The multivalued fractals in the cone b-metric spaces

over the Banach algebra have been given the main focus.
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Chapter 1

Introduction

1.1 Background

Mathematics has an important role in scientific knowledge that is why it is called

mother of sciences. Mathematics has a lot of applications for humans in every

field of life. Mathematics is divided into many branches and each branch has its

significance. One of the important branches of mathematics is known as functional

analysis. In functional analysis, fixed point theory is a valuable and dominant the-

ory. Fixed point theory provides sufficient conditions for the existence of solution

of a problem. The concept of fixed point theory has a lot of applications in different

fields of science, such as in the area of numerical analysis, polynomial interpola-

tion, error estimation, optimization theory, mathematical economics, variational

inequalities, approximation theory and finite difference methods.

Poincare [1] was the first mathematician who studied the field of fixed point the-

ory in 1886 and substantiate various fixed point results. Later on Brouwer [2]

considered the equation T (η) = η and established the solution of this equation by

proving a fixed point theorem in 1910. He also worked to prove fixed point results

for the shapes like square and in a sphere etc. In 1922, a notable mathematician

Stephan Banach [3] demonstrated a significant fixed point result in the field of

functional analysis acknowledged as Banach contraction principle. This result is

1



Introduction 2

declared to be the most fundamental in the field of fixed point theory. The two

remarkable applications come from this principle. The first one is that it guar-

antees the existence and uniqueness of fixed point of contraction mapping. The

second and the very emotive one is that it developed an approach to determine

the fixed point of such a contractive mapping. This principle occupies a significant

part in the field of functional analysis. Afterwards, Banach contraction principle

has been extending and refining typically in various directions. Different mathe-

maticians used different approaches to extend this principle, by either replacing

the contraction condition or taking the different spaces [4–7]. Kannan [8] proved

Banach contraction principle. Nadler [9] also extended the Banach contraction

principle from single valued to multivalued contraction mappings. On the other

hand few authors used different spaces like pseudo metric space [10], metric like

space [11], partially ordered space [12]. The b-metric space is one of the interesting

generalization of the metric space which was initiated by Bakhtin [13], Czerwik

[14]. They established the idea of b-metric space and then used the same idea to

set up some fixed point theorems for generalizing the Banach contraction principle.

Thereafter, a plenty of papers have been published in b-metric spaces for single

valued functions and also on multivalued functions [14–16].

On the other hand, the notion of cone metric spaces has also gained too much im-

portance for the researchers. In 2007, Huang and Zhang [17] introduced the idea

of cone metric spaces. A comparable explanation of cone metric is also assumed

by Rzepecki [18]. Kutbi et al. [19] found out the multivalued fixed point theorems

in cone b-metric spaces over Banach algebra A.

Gottfried Leibniz [20] was the first person who introduced the mathematics be-

hind the fractals in the 17th century by considering recursive self-similarity. It

was not possible until 1872 that the graph of a function would ever be considered

as a fractal, when Karl Weierstrass [21] gave an example of a function of being

everywhere continuous. In 1904, Helg Von Koch [22] dissatisfied with Karl idea,

and gave a more geometric definition of similar functions named as Koch curves.

French and American Mathematician Benoit Mandelbrot [23] was one of the main

developers of fractals in 1975 by investigating a variety of self similar structure in
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nature, and used geometry to help to prove this theory of self-similarity.

Fractals and multivalud fractals have many application in graphics designing, dy-

namical system, astrophysics and geophysics etc. This thesis presents the detail

study of results of [24]. This study leads to extension of multivalued fractals in

cone b-metric spaces.

1.2 Thesis layout

1. Chapter 2:

Chapter 2 consists of brief literature review of metric in fixed point theory.

In Basic Tools, our focus is on basic notations, definitions and results regard-

ing metric spaces. In Banach Contraction Principle, fixed point, cotractive

mappings and related examples have been discussed. The Multivalued Map-

pings, contains some useful definitions and examples of different multivalued

mappings related to our work. In b-Metric Space, definitions, examples and

results of b-metric space have been collected. At the end of this chapter, the

cone b-metric space, introduced by Huang and Zhang [17] and Radenovic

[25] have been discussed.

2. Chapter 3:

This chapter is regarding the review work of Monica Boriceanu [24]. This

chapter also contains some useful definitions and examples which are used

to prove results of Monica Boriceanu [24].

3. Chapter 4:

In this chapter motivated with the idea of cone b-metric space and multi-

valued fractals operators, the idea of multivalued fractals in cone b-metric

spaces has been introduced. Some fixed point theorems on multivalued frac-

tals by using multivalued mappings have been established. These results

generalizes the already existing results in b-metric spaces [24].

4. Chapter 5:

The conclusion is given in this chapter.



Chapter 2

Preliminaries

Chapter 2 is about few basic definitions, results and examples which are used in

the subsequent chapters. The first section of this chapter covers some basics of

metric spaces with few examples. The second section deals with the multivalued

mappings. The third section deals with the b-metric spaces and related examples.

In section 4, Banach contraction principle (BCP) and fixed points in metric space

and few significant fixed point theorems in metric spaces will be discussed. The

end of this chapter deals with the basics of cone metric spaces and cone b-metric

spaces and related examples.

2.1 Basic Tools

2.1.1. Partially Ordered Set [26]

“A partially ordered set is a set M on which there is defined partial ordering, that

is, a binary relation which is written � and satisfies the conditions:

(PO1) a � a for every a ∈M. (Reflexivity)

(PO2) a � b and b � a, then a = b. (Antisymmetry)

(PO3) a � b and b � c, then a � c. (Transitivity)

Partially emphasizes that M may contain a and b for which neither a � b nor

b � a holds. Then a and b are called incomparable elements. In contrast, two

4



Preliminaries 5

elements a and b are called comparable elements if they satisfy a � b or b � a (or

both).”

Example 2.1.

Consider the relation.

S = {(s, t) | s, t ∈ Z,
s

t
∈ Z, s 6= 0}.

Then this relation is partial ordered set.

2.1.2. Totally Ordered Set [26]

“A totally ordered set or chain is a partially ordered set such that every two

elements of the set are comparable. In other words, a chain is a partially ordered

set that has no incomparable elements.”

Example 2.2.

Consider S having only real numbers and let s � t. Then S is totally ordered,

there are no maximal elements in S.

Remark 1. [26]

“Every totally ordered set is a partially ordered set but the converse is not true.”

The idea of metric space was first introduced by Frechet [27] in connection with

the study of function spaces. Metric space is the most important topic of pure as

well as applied mathematics. This section is regarding the basic definitions and

examples of metric spaces. Now a days topological spaces and metric spaces are

frequently used in scientific researches.

2.1.3. Metric Space [26]

“A metric space is a pair (X,d), where X is a set and d is a metric on X (or

distance function on X), that is a function defined on X × X such that for all

x, y, z ∈ X

we have:

(M1) d is real-valued, finite and non-negative.
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(M2) d(x, y) = 0 if and only if x = y.

(M3) d(x, y) = d(y, x) (Symmetry).

(M4) d(x, y) ≤ d(x, z) + d(z, y) (Triangular inequality).”

Example 2.3.

Let there be a function defined by d : R× R −→ R such that:

d(ζ, ξ) = |ζ − ξ|.

Then d is a metric on real number. Since first three conditions are obiviously true

now for the fourth property we proceed as follows:

d(ζ, ψ) = |ζ − ψ|,

d(ζ, ψ) = |ζ − ξ + ξ − ψ|,

d(ζ, ψ) ≤ |ζ − ξ|+ |ξ − ψ|,

d(ζ, ψ) = d(ζ, ξ) + d(ξ, ψ).

⇒ d is metric on R.

Example 2.4.

Let d : R×R→ R be a function defined by d(ζ, ψ) =
√
| ζ − ψ | , for all ζ, ψ ∈ R.

Then d is metric on R.

By the definition of d, it is clear that d(ζ, ψ) is the non-negative square root of the

modulus of the difference of the real numbers ζ and ψ, so (M1) is satisfied and

(M2), (M3) are obviously true.

for (M4) we proceed as follows.

(M4): Since

| s1 + s2 | ≤ (| s1 | + | s2 |) ≤ (| s1 | + | s2 | +2
√
| s1 |

√
| s2 |),

⇒ | s1 + s2 | ≤ (
√
| s1 |+

√
| s2 |)2,√

| s1 + s2 | ≤
√
| s1 |+

√
| s2 |.
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Putting s1 = ζ − ψ, s2 = ψ − φ in above we have,

√
| ζ − φ | ≤

√
| ζ − ψ |+

√
| ψ − φ |,

d(ζ, φ) ≤ d(ζ, ψ) + d(ψ, φ) for all ζ, ψ, φ ∈ R.

This shows that d is metric on R.

Example 2.5.

Let d : R2 × R2 → R be a function defined by

d(P1, P2) =| ζ1 − ψ1 | + | ζ2 − ψ2 |, for all P1, P2 ∈ R2

where P1 = (ζ1, ζ2), P2 = (ψ1, ψ2).

Then d is metric on R2.

To show that d is metric on R2, note that the (M1) , (M2) and (M3) are obviously

satisfied.

Now for (M4) let for all P1, P2, P3 ∈ R2 (where P3 = (φ1, φ2)).

d(P1, P3) =| ζ1 − φ1 | + | ζ2 − φ2 |,

=| ζ1 − ψ1 + ψ2 − φ1 | + | ζ2 − ψ2 + ψ2 − φ2 |,

≤| ζ1 − ψ1 | + | ψ1 − φ1 | + | ζ2 − ψ2 | + | ψ2 − φ2 |,

≤| ζ1 − ψ1 | + | ζ2 − ψ2 | + | ψ1 − φ1 | + | ψ2 − φ2 |,

d(P1, P3) ≤ d(P1, P2) + d(P1, P2).

This shows that d is metric on R2.

2.1.4. Convergence of Sequence [26]

“Let (X, d) be a metric space, a sequence {xn} in a metric space X = (X, d) is

said to converge or to be convergent if there is an x ∈ X such that

lim
n→∞

d(xn, x) = 0,

x is called the limit of {xn} and we write

lim
n→∞

xn = x,
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or simply

xn → x.

We say that xn converges to x or has the limit x. If xn is not convergent, it is said

to be divergent.”

2.1.5. Cauchy Sequence [26]

“Let (X, d) be a metric space, a sequence {xn} in a metric space (X, d) is said to

be a Cauchy sequence if for each ε > 0 there exist N ∈ N(ε) such that

d(xn, xm) < ε ∀ m,n > N.” (2.1)

2.1.6. Completeness [26]

“Let (X, d) be a metric space, if every Cauchy sequence in a metric space (X, d)

converges to a point x ∈ X, then X is called a complete metric space.”

Example 2.6.

Let us consider a closed interval [0, 1] ∈ R. Then by using d(ζ, ξ) = |ζ − ξ| above

interval define a complete metric space.

2.1.7. Bounded set [26]

“A subset M of a metric space (X, d) is said to be bounded set if its diameter

δ(M) = sup
x,y∈M

d(x, y),

is finite.”

2.1.8. Open set [26]

“A subset M of a metric space (X, d) is said to be open if it contains a ball about

each of its points.”

2.1.9. Closed set [26]

“A subset K of a metric space (X, d) is said to be closed if its complement (in X)

is open, that is Kc = X −K is open.”

Example 2.7.

The closed interval [1,2] of real numbers R is closed.
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Example 2.8.

Let us consider (W,d) be a metric space then each single set {w} is a closed subset

of S.

2.1.10. Continuous mapping [26]

“Let X = (X, d) and Y = (Y, d) be metric spaces. A mapping T : X → Y is said

to be continuous at a point x0 ∈ X if for every ε > 0 there is a δ > 0 such that

d(Tx, Tx0) ≤ ε for all x satisfying d(x, x0) ≤ δ.

T is said to be continuous if it is continuous at every point of X.”

Example 2.9.

Consider a mapping S : M →M defined on a usual metric space (M,d) as follows:

T (ρ) = ρ5 where ρ ∈ M,

is a continuous mapping.

2.1.11. Hausdorff Distance [29]

“Let X be a non-empty set and d be a metric on X. Let CB(X) be the collection

of non-empty closed and bounded subsets of X.

Define the map H : CB(X)× CB(X) −→ R as follows:

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)},

for each A,B ∈ CB(X). Then H is a metric on CB(X). Where

d(a,B) = inf{d(a, b) : b ∈ B}.

This is called Hausdorff metric on CB(X). This is also known as the Hausdorff

distance between the sets in CB(X) generated by the metric d on X. The pair

(CB(X), H) is called Hausdorff metric space.”

Example 2.10.

Let X = R
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Find the value of H(P,Q) where P = [3, 5] and Q = [4, 8]

Let s = 4 and t = 2

Q ⊂ N(s, P ) = N(4, P ) = [3− 4, 5 + 4] = [−1, 9],

P ⊂ N(t, Q) = N(1, Q) = [4− 2, 8 + 2] = [2, 10],

as we know that

TPQ = {ε > 0;P ⊆ N(ε, Q), Q ⊆ N(ε, P )},

then

TPQ = [3,∞),

H(P,Q) = inf[3,∞),

H(P,Q) = 3.

2.2 Contractive Mappings

2.2.1. Contraction [26]

“Let X = (X, d) be a metric space. A mapping T : X −→ X is called a contraction

on X if there is a positive real number α < 1 such that for all x, y ∈ X

d(Tx, Ty) ≤ αd(x, y) (α < 1).

Geometrically this means that any points x and y have images that are closer

together than those points x and y, more precisely, the ratio
d(Tx, Ty)

d(x, y)
does not

exceed a constant α which is strictly less than 1.”

Example 2.11.

Let (M,d) be a metric space and d(φ, ψ) =| φ− ψ |.

Then define a mapping S : M →M by

S(φ) =
φ

5
+ 3
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d(Sφ, Sψ) = | (φ
5

+ 3)− (
ψ

5
+ 3) |,

d(Sφ, Sψ) = | φ
5
− ψ

5
|,

d(Sφ, Sψ) =
1

5
| φ− ψ |,

⇒ α =
1

5
< 1 .

Then S is a contraction with α =
1

5
< 1 .

Example 2.12.

Let M = [0, 1] be a metric space and d(φ, ψ) =| φ− ψ |.

Then define a mapping S : M →M by

S(φ) =
1

φ+ 7
.

d(Sφ, Sψ) = | ( 1

φ+ 7
)− (

1

ψ + 7
) |,

d(Sφ, Sψ) ≤ | ψ + 7− φ− 7

(φ+ 7)(ψ + 7)
|,

≤ | ψ − φ
(φ+ 7)(ψ + 7)

|,

≤ | −(φ− ψ)

(φ+ 7)(ψ + 7)
|,

≤ | φ− ψ
(φ+ 7)(ψ + 7)

|,

≤ | φ− ψ
(φ+ 7)(ψ + 7)

|,

≤ | φ− ψ
(7)(7)

|,

≤ 1

49
| φ− ψ |,

≤ 1

49
d(φ, ψ),

then S is a contraction with α =
1

49
< 1 .

2.2.2. Contraction by Derivative [30]

“If X is a Banach space and P maps a convex closed subset M of X into itself
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and if P has a derivative at every point of M , then

sup
x∈M
||P ′(x)|| = α < 1

implies that P is a contraction on M .”

Example 2.13.

The function S : R −→ R define by

S(η) = sin(sin η),

is a contraction.

As

S(η) = sin(sin η),

S ′(η) = cos(sin η)(cos η),

|S ′(η)| = | cos(sin η)(cos η) |≤ 1,

since

| cos(sin η) |≤ 1, | cos η |≤ 1.

Simultaneously both can not be equal to 1.

⇒ S(η) is a contraction.

2.2.3. Contractive mapping [31]

“A self map T : X → X on a metric space is a contractive mapping if

d(Tx, Ty) < d(x, y), ∀ x, y ∈ X, x 6= y.”

Remark 2.

Every contraction is contractive mapping but converse of statement is not true in

general.

The above remark illustrate the following example.
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Example 2.14.

Consider a metric space (M,d) defined on R. Let S be the self-mapping on M

defined by

T (ζ) = ζ +
1

ζ
, ∀ ζ ∈M. (2.2)

Then T is contractive but not a contraction.

2.2.4. Multivalued Contraction [9]

“Let (X, d) be a metric space. A map T : X −→ CB(X) is said to be multivalued

contraction if there exist 0 ≤ λ < 1 such that

H(Tx, Ty) ≤λd(x, y), ∀ x, y ∈ X

where CB(X) denotes the family of nonempty closed subsets of X and H is the

Hausdorff distance.”

2.3 Banach Contraction Principle (BCP)

Stefan Banach proved Banach contraction principle in 1922. BCP is known to

be the basic outcomes in the field of function analysis. The Banach contraction

principle (BCP) provides us with an unique fixed point. Fixed point theorems

play an important role in both pure and applied mathematics.

2.3.1. Fixed Point [32]

“Let T : X → X be a mapping on a set X. A point x ∈ X is said to be a fixed

point of T if

Tx = x, (2.3)

that is, a point is mapped onto itself.

Geometrically,

if y = f(x) is a real valued function on R, then the fixed point of this function
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lies where the graph of the function f coincides with the real line y = x. Thus a

function may or may not have fixed point. Furthermore, fixed point may or may

not be unique.”

y=
x

y=f(x)

Figure 2.1: Three fixed points

The above graph represents a function having three fixed points.

Example 2.15.

Consider X = R and S : X → X be a mapping defined as

S(t) =
t

4
+ 3.

S has a unique fixed point t = 4.

Figure 2.2: One fixed point

Example 2.16.

Consider X = R and S : X → X be a mapping defined as
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S(t) = t+ 3.

S has no fixed point.

Figure 2.3: No fixed point

2.3.2. Banach Contraction Principle [26]

“Consider a metric space X = (X, d), where X 6= ∅. Suppose that X is a complete

and let T : X → X be a contraction on X. Then T has precisely one fixed point.”

2.3.3. Compact Metric Space [26]

“A metric space X is said to be compact if every sequence in X has a convergent

subsequence. A subset M of X is said to be compact if M is compact considered

as a subspace of X, that is, if every sequence in M has a convergent subsequence

whose limit is an element of M .”

Banach [33] established the following fixed point result, popularly named as Ba-

nach contraction principle.

Theorem 2.3.4 [33]

“Let (X, d) be a compact metric space, and let T be a mapping on X. Assume

d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. Then T has a unique fixed point.”

2.4 Multivalued Mappings

Multivalued mapping contributes much in pure mathematics as well as in applied

mathematics. In pure mathematics its important role in real and complex analysis
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can not be denied. In applied mathematics such as in optimal control system it

plays an important role.

2.4.1. Multivalued Mappings [35]

“Let X and Y be nonempty sets. T is said to be multivalued mapping from X

to Y if T is a function from X to the power set of Y . We denote the multivalued

mapping by T : X −→ 2Y .”

Example 2.17.

Consider S = [0, 1] and T (S) = {P ⊂ S : P 6= ∅}.

Dene G : S −→ T (S) and L : S −→ T (S) by:

Gs = [0, s]

Ls =


[0, 1] if s 6= 1

2
,[1

2
, 1
]

if s =
1

2
.

Both G and L are multivalued mappings.

Example 2.18.

Suppose s, t ∈ R satisfying the condition that t > s.

Dene L : [s, t] −→ [s, t], by

L =

[v, t] if s < v < t,

[s, t] if v ∈ {s, t}.

Then L is a multivalued mapp.

2.5 b-Metric Spaces

Bakhtin [13] was the first person who introduced the concept of b metric spaces

in 1989, which has been used to established a generalization of Banach contrac-

tion principle [36] in such spaces. Czerwick [14] introduced a condition which was

weaker than the third property of metric space and formally defined a b-metric
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space and established a fixed point result for such space. Then this result was used

to prove common fixed point satisfying φ contraction [37] in b metric spaces for

single and multivalued mappings. Also some authors [24, 38, 39] established some

fixed point theorems by using contractive mappings in ordered complete b-metric

spaces.

2.5.1. b-Metric Space [39]

“Let X be a non-empty set and (b ≥ 1) be a real number. A function db : X×X →

[0,∞) is called b-metric if it satisfies the following properties for each x, y, z ∈ X,

(b1) db(x, y) = 0 ⇔ x = y,

(b2) db(x, y) = db(y, x), (symmetry),

(b3) db(x, y) ≤ b[db(x, z) + db(z, y)], (triangular property),

the pair (X, db) is called a b-metric space.”

Remark 3. [24]

“The class of b-metric space is larger than the class of metric space. When b = 1

then the concept of b-metric space coincides with concept of metric space.”

Example 2.19.

Let there be a mapping db : S × S → S (where S = R) defined by

db(ζ, ψ) = (φ− ψ)2 for all ζ, ψ ∈ R.

Since (b1), (b2) are obiviously true now for the third property of b-metric we pro-

ceed as follows:

db(φ, ξ) = (φ− ξ)2

= (ζ − ψ + ψ − ξ)2,

= [(ζ − ψ) + (ψ − ξ)]2,

= (ζ − ψ)2 + (ψ − ξ)2 + 2(ζ − ψ)(ψ − ξ),

= (ζ − ψ)2 + (ψ − ξ)2 + 2(ζ − ψ)(ψ − ξ) +

(ζ − ψ)2 + (ψ − ξ)2 − (ζ − ψ)2 − (ψ − ξ)2,

= 2(ζ − ψ)2 + 2(ψ − ξ)2 + 2(ζ − ψ)(ψ − ξ)−

(ζ − ψ)2 − (ψ − ξ)2,

= 2[(ζ − ψ)2 + 2(ψ − ξ)2]− [(ζ − ψ)2 + (ψ − ξ)2 −

2(ζ − ψ)(ψ − ξ)],
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= 2[(ζ − ψ)2 + (ψ − ξ)2]− [(ζ − ψ) + (ψ − ξ)]2,

≤ 2[(ζ − ψ)2 + (ψ − ξ)2],

⇒ db(ζ, ξ) ≤ 2[db(ζ, ψ) + db(ψ − ξ)].

It is a b-metric with b = 2.

Example 2.20.

Consider lp(R) with 0 < p < 1, also

lp(R) = [{φv} ⊆ R |
∞∑
v=1

| φv |p<∞]

with the mapping d : lp(R)× lp(R)→ R+ defined by

d(φ, ψ) = 〈
∞∑
v=1

| φv − ψv |p〉

1

p

for each φ = {φv}, ψ = {ψv} ∈ lp(R), is a b- metric space with coefficient

b = 2
1
p
−1.

We will only prove the third condition of b-metric space.

Consider φ = {φv}, η = {ηv}, ψ = {ψv} ∈ lp(R), we shall show that,

〈
∞∑
v=1

| φv − ηv |p〉

1

p
≤ 2

1
p
−1

{
〈
∞∑
v=1

| φv − ψv |p〉

1

p
+ 〈

∞∑
v=1

| ψv − ηv |p〉

1

p
}
. (2.4)

Consider tv = φv − ψv, sv = ψv − ηv and sn + tn = φv − ηv.

〈
∞∑
v=1

| sv + tv |p〉

1

p
≤ 2

1
p
−1

{
〈
∞∑
v=1

| s |p〉

1

p
+ 〈

∞∑
v=1

| t |p〉

1

p
}
. (2.5)

To prove (2.6), consider following inequality:

(s+ t)p ≤ sp + tp (s, t ≥ 0, 0 < p ≤ 1),

(s+ t)p ≤ 2p−1(sp + tp) (s, t ≥ 0, p ≥ 1),
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⇒ 〈
∞∑
v=1

| sv + tv |p〉

1

p
≤

{
〈
∞∑
v=1

(| sv | + | tv |)p〉

1

p
}
,

≤

{
〈
∞∑
v=1

| sv |p + | tv |p〉

1

p
}
,

=

{
〈
∞∑
v=1

| sv |p +
∞∑
v=1

| tv |p〉

1

p
}
,

≤ 2
1
p
−1

{
〈
∞∑
v=1

| s |p〉

1

p
+ 〈

∞∑
v=1

| t |p〉

1

p
}
.

It is a b-metric with b = 2
1
p
−1.

Remark 4. [38]

“Let (X, db) be a b-metric space. Then in general b-metric is not continuous.”

Above example illustrates the above remark.

Example 2.21. [38]

Consider M = N ∪ {∞}. A function db : M ×M → R defined by:

db(m,n) =



0 if m = n,

| 1
m
− 1

n
| if oneof m,n is even and or = ∞,

5 if one of m,n is odd m 6= n or ∞,

2 if otherwise.

This shows that for m,n, t ∈M , we have

db(m, p) ≤
5

2
(db(m,n) + db(n, t)).

⇒ (M,db) is a b-metric space (with b = 5
2
). Let xn = 2n ∀ n ∈ N,

as n → ∞, db(2n,∞) =
1

2n
→ 0

we have {xn} → ∞, since d(xn, 1) = 2 6= 5 = d(∞, 1) as n→∞.
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2.5.2. Closure [24]

“Let (X, d) be a b-metric space. If Y is a nonempty subset of X, then the closure

Y of Y is the set of limits of all convergent sequences of points in Y , that is,

Y = {x ∈ X : there exists a sequence (xn)n∈N such that lim
n−→∞

xn = x}.”

2.5.3. Closed set [24]

“Let (X, d) be a b-metric space. If Y is a nonempty subset of X, is called closed

if and only if for each sequence (xn)n∈N ∈ Y which converges to an element x, we

have x ∈ Y (that is Y = Y ).”

2.5.4. Compact Set [24]

“Let (X, d) be a b-metric space. If Y is a nonempty subset of X, is compact if

and only if for every sequence of elements of Y there exists a subsequence that

converges to an element of Y .”

2.5.5. Bounded Set [24]

“Let (X, d) be a b-metric space. If Y is a nonempty subset of X, is called bounded

if and only if,

δ(Y ) = sup{d(a, b)| a, b ∈ Y } <∞.”

2.5.6. Convergent, Cauchy and Completeness [38]

“Let (X, d) be a b-metric space.

(i) A sequence {xn} in X is called b-convergent if and only if there exist x ∈ X

such that d(xn, x)→ 0 as n→ 0.

(ii) A sequence {xn} in X is called b-Cauchy if and only if d(xn, xm) → 0 as

m,n→∞.

(iii) The b-metric space (X, d) is said to be b-complete if every b-Cauchy sequence

in X is b-convergent.”

Remark 5. [24]

“Let (X, d) be a b-metric space. Then a convergent sequence has a unique limit.”

Following proof illustrate the above remark.

Proof.
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Suppose a sequence (φn)n∈N in X

Let φn → s as n→∞

⇒ d(φn, s)→ 0

Also consider φn → t as n→∞

⇒ d(φn, t)→ 0

Then we have to prove that limit is unique or s = t.

Here we use the third property of b-metric space.

0 ≤ d(s, t) ≤ s{d(s, φn) + d(φn, t)},

0 ≤ d(s, t) ≤ s{0 + 0},

0 ≤ d(s, t),

⇒ s = t.

Remark 6. [24]

“Let (X, d) be a b-metric space. Then each convergent sequence is Cauchy.”

Following proof illustrate the above remark.

Proof.

Let there be a sequence (φn)n∈N in X which converges to t ∈ R.

Choose a natural number N and ε > 0 so that if n > N then

(φn)n∈N ∈ X,

φn → a ∀ n→∞,

φm → a ∀ m→∞.

Here we use the third property of b-metric space.

0 ≤ d(φn, φm) ≤ s{d(φn, a) + d(a, φm)},

0 ≤ d(φn, φm) ≤ s{0 + 0},
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0 ≤ d(φn, φm),

⇒ d(φn, φm) −→ 0.

2.6 Cone Metric Spaces

This section will describe the idea of cone metric space. The idea of cone metric

spaces was first introduced by Haung and Zhang [17]. Also Rzepecki [18] produced

a comparable explanation of cone metric space.

2.6.1. A Real Banach Algebra Space [19]

“Let A be the real Banach Algebra, that is A is a real Banach Algebra space in

which an operation of multiplication is defined subjected to following properties:

for all x, y, z ∈ A and a ∈ R.

(i) x(yz) = (xy)z;

(ii) x(y + z) = xy + xz and (x+ y)z = xz + yz;

(iii) a(xy) = (ax)y = x(ay);

(iv) ||xy|| ≤ ||x||||y||.”

2.6.2. Cone [19]

“A subset K of A is called a cone if and only if

(i) {e, θ} ⊂ K;

(ii) K2 = KK ⊂ K, K ∩ (−K) = {θ};

(iii) a, b ∈ R, a, b ≥ 0, ⇒ aK + bK ⊂ K.

For a given cone K ⊂ A, we define the partial ordering � with respect to K by

η � φ if and only if φ−η ∈ K, η ≺ φ will stand for η � φ and η 6= φ, while η � φ

stand for φ− η ∈ intK, where intK denotes the interior of K. If intK 6= ∅, then
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K is called a solid cone. Write ||.|| as the norm of A. A cone K is called a normal

cone if there exist a number M > 0 such that for all η, φ ∈ A, we have

θ � η � φ =⇒ ||η|| ≤M ||φ||.

The least positive number satisfying above is called the normal constant of ν. Note

that, for any normal cone K we have M ≥ 1.”

Remark 7. [19]

“We always suppose that A is real Banach algebra with the unit e, K is a solid

cone and � is the partial ordering with respect to K.”

2.6.3. Cone Metric Space [17]

“Let X be a nonempty set and A be a Banach algebra. A function d : X×X → A

is said to be cone metric, if the following conditions hold:

(C1) θ � d(η, φ) for all η, φ ∈ X and d(η, φ) = θ if and only if η = φ;

(C2) d(η, φ) = d(φ, η) for all η, φ ∈ X;

(C3) d(η, ψ) � d(η, φ) + d(φ, ψ) for all ψ, η, φ ∈ X.”

Example 2.22.

Let A = R2, K = {(ψ, ξ) ∈ A| ψ, ξ ≥ 0} ⊂ A, M = R and d : M ×M −→ A

such that,

d(ψ, ξ) = (|ψ − ξ|, v|ψ − ξ|) where v ≥ 0 is a constant.

The pair (M,d) is called a cone metric over Banach algebra A.

2.6.4. Convergence, Cauchy and Completeness [19]

“Let (X, d) be a cone metric space over Banach algebra A, η ∈ X,

(i) let ηn be a sequence in X. Then ηn converges to η whenever for every c ∈ A

with θ � c there is a natural number n0 such that d(ηn, η)� c for all n ≥ n0
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We denote this by

lim
n−→∞

ηn = η.

(ii) let ηn be a sequence in X. Then ηn is a Cauchy whenever for every c ∈ A

with θ � c there is a natural number n0 such that

d(ηm, ηn)� c for all m,n ≥ n0.

(iii) Let (X, d) be a cone metric space over Banach algebra A, η ∈ X, let ηn

be a sequence in X. Then (X, d) is complete cone metric if every Cauchy

sequence in X is convergent.”

Lemma 1. [19]

“If E is a real Banach space with a cone K and if a � λa with a ∈ K and

0 ≤ λ < 1, then a = θ.”

Lemma 2. [19]

“If E is a real Banach space with a solid cone K and if ||xn|| → 0 as n −→ ∞,

then for any θ � c, there exists n0 ∈ N such that, ||xn|| � c for all n < n0.”

2.7 Cone b-Metric Spaces

Afterwards Huang and Zhang [17] and Radenovic [25] extended the concept of cone

metric space over Banach algebra into cone b-metric space over Banach algebra in

the following way.

2.7.1. Cone b-Metric Space [25]

“Let X be a nonempty set and (b ≥ 1) be a constant and A be a Banach algebra.

A function d : X ×X → A is said to be cone b-metric, if the following conditions

are hold:

(C1) θ � d(η, φ) for all η, φ ∈ X and d(η, φ) = θ if and only if η = φ;

(C2) d(η, φ) = d(φ, η) for all η, φ ∈ X;



Preliminaries 25

(C3) d(η, ψ) � b{d(η, φ) + d(φ, ψ)} for all ψ, η, φ ∈ X.

The pair (X, d) is then called a cone b-metric over Banach algebra A.”

Remark 8. [19]

“The class of cone b-metric space over Banach algebra A is larger than the class

of cone metric space over Banach algebra since the latter must be the former, but

the converse is not true.”

Example 2.23.

Let A = C[s, t] be the set of continuous functions on the interval [s, t] with the

supremum norm having multiplication in the usual way. Then A is a Banach

algebra with a unit 1.

Set K = {ξ ∈ A : ξ(v) ≥ 0, v ∈ [s, t]} and M = R. Consider a mapping

d : M ×M → A by d(ξ, ψ) = |ξ − ψ|pev for all ξ, ψ ∈ M , where p > 1 is a

constant.

⇒ (M,d) into a cone b-metric space over Banach algebra A with the coefficient

b = 2p−1.

2.7.2. Convergence, Cauchy and Completeness [41]

“Let (X, d) be a cone b-metric space over Banach algebra A,

(i) we say that ηn is a convergent sequence if for every c sequence. It means that

ηn converges to η in E with θ � c, there is an N such that for all n > N

, d(ηn, η) � c for some fixed η ∈ X. A cone b-metric space X is said to be

complete if every Cauchy sequence in X is convergent in X.

(ii) we say that ηn is a Cauchy sequence if for every c ∈ E with θ � c, there is

an N such that for all n,m ≥ N , d(ηn, ηm)� c.

(iii) Let (X, d) be a cone b-metric space over Banach algebraA, we say that (X, d)

is a complete cone b-metric space, if every Cauchy sequence is convergent.”

2.7.3. Interior Point [41]

“Let (W,d) be a cone b-metric space and B ⊆ W . Let t ∈ B is called an interior
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point of B whenever there is 0� p such that B0(t, p) ⊆ B, where

B0(t, p) = {y ∈ W : d(y, t)� p}.”

2.7.4. Open Set [41]

“Let (W, d) be a cone b-metric space and B ⊆ W . A subset A ⊆ W is called open

whenever each element of A is an interior point of A, that is, for any a ∈ A, there

exists c ∈ intP such that the open ball B0(a, c) ⊆ A.”

2.7.5. Closed Set [41]

“Let (W,d) be a cone b-metric space and B ⊆ W . For each θ � c and w ∈ W ,

the set B(w, c) = {y ∈ W : d(w, y) � c} is closed.”

2.7.6. Compact Set [41]

“Let (W,d) be a cone b-metric space and B ⊆ W . A subset B ⊆ W is called

compact whenever every open cover of B has a finite sub-cover.”

2.7.7. Bounded Set [41]

“Let (W,d) be a cone b-metric space and B ⊆ W is called bounded whenever there

exist θ � c and w0 ∈ W such that d(t, w0)� c for all t ∈ B.”



Chapter 3

Multivalued Fractals in b-Metric

Spaces

3.1 Introduction

Fractals and multivalued fractals have many application in graphics designing,

dynamical system, astronomy, astrophysics and geophysics etc. Moreover, iterated

function system has important consequence in applied science. A lot of examples

of fractals and multivalued fractals are come from fixed point theory for single

and multivalued operators. The most common study of fractals is in the case of

complete and compact metric spaces.

3.2 Fractals

Fractals are define as any structure which is self similar. This means that if you

view it at one scale it look very similar if you view it at much closer scale. For

example equilateral triangle and take the mid point of all of sides of the triangle

and connect them then we see a repeated process as shown in figure.

27
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Figure 3.1: Fractals 1

Figure 3.2: Fractals 2

Figure 3.3: Fractals in nature

3.3 Comparison Functions

3.3.1. Comparison Function [37]

“A mapping φ : R+ −→ R+ is said to be a comparison function, if the following
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axioms are fulfilled

(i) φ is increasing;

(ii) lim
n−→∞

φn(t) −→ 0, for all t > 0.

Clearly, if φ is a comparison function, then φ(t) < t for each t > 0, φ(0) = 0, and

φ is continuous at 0.”

The following examples illustrate the above definition.

Example 3.1.

Consider a mapping φ : [0,∞) −→ [0,∞). Then the function

φ(t) = ut (u ∈ (0, 1)),

is a comparison function. It is also a b-comparison function. It is clear that

φ(t) = at < t for u ∈ (0, 1). Also φ(0) = 0 and φ is continuous at 0 because

lim
t−→0

φ(t) = 0.

Example 3.2.

Consider a mapping φ : [0,∞) −→ [0,∞). Then the function

φ(t) =
t

1 + 2t
,

is a comparison function. It is clear that φ(t) <
t

1 + 2t
< t. Also φ(0) = 0,

φ(0) =
0

1 + 2(0)
= 0.

φ is continuous at 0,

lim
t−→0

φ(t) = 0.
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Example 3.3.

Consider a mapping φ : [0,∞) −→ [0,∞). Then the function

φ(t) = ln(1 + 2t),

is a comparison function. Consider t = 1, then clearly φ(t) < t. Also φ(0) = 0,

φ(0) = ln(1 + 2(0)) = 0.

φ is continuous at 0,

lim
t−→0

φ(t) = 0.

3.3.2. b-Comparison Function [24]

“A function φ : R+ −→ R+ is called b-comparison function with (b ≥ 1). If φ is

increasing and there exist s0 ∈ N, a ∈ (0, 1) and a convergent series of non-negative

terms
∞∑
s=1

vs such that

bs+1φs+1(t) � absφs(t) + vs for each t ∈ R+, and each s ≥ s0.

As consequence, if φ : R+ −→ R+ is a b-comparison function, then the series
∞∑
s=1

bsφs(t) converges for each t ∈ R+, and the function eb : R+ −→ R+ defined by,

eb(t) =
∞∑
s=1

bsφs(t), t ∈ R+,

is increasing and continuous at 0.”

3.3.3. φ-Contractions in b-Metric Space [24]

“Let (X, d), (Y, ρ) be b-metric spaces. An operator T : X −→ Y is said to be a

φ-contraction if φ : R+ −→ R+ and ρ(T (x), T (y)) ≤ φ(d(x, y)), for all x, y ∈ X.”

3.3.4. Generalized φ-Contraction in b-Metric Spaces [42]

“Let (W,d) be a complete b-metric space. An operator η : W −→ W is said to be
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generalized φ-contraction if φ : R+ −→ R+ such that

d(η(w1), η(w2)) ≤ φ(d(w1, w2)), for all w1, w2 ∈ W.”

3.4 Family of Subsets in b-Metric Spaces

3.4.1. Subsets in b-Metric Spaces [24]

“We know consider the following families of subset of a b-metric space (X, d):

(i) P (X) = {Y | Y ⊂ X};P (X) = Y ∈ P (X)| Y 6= ∅;

(ii) Pb(X) = {Y ∈ P (X)| Y is bounded };

Pcp(X) = {Y ∈ P (X)| Y is compact };

(iii) Pcl(X) = {Y ∈ P (X)| Y is closed }; Pb,cl(X) = Pb(X) ∩ Pcl(X).”

Now we introduce the following generalized functions on b-metric space (X, db).

3.4.2. The Gap Functional [24]

“Let D : P (X)× P (X) −→ R+ ∪ {+∞} then

D(A,B) =


inf{db(a, b)| a ∈ A, b ∈ B} if A 6= ∅ 6= B;

0 if A = ∅ = B;

+∞ otherwise.

In particular, if x0 ∈ X then D(x0, B) = D({x0}, B).”

3.4.3. The Excess Generalized Functional [24]

“Let ρ : P (X)× P (X) −→ R+ ∪ {+∞} then

ρ(A,B) =


sup{D(a,B)| a ∈ A} if A 6= ∅ 6= B;

0 if A = ∅;

+∞ if B = ∅ 6= A.
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Then this functional is called the excess generalized functional.”

3.4.4. Pompeiu-Hausdorff Generalized Functional [24]

“Let H : P (X)× P (X) −→ R+ ∪ {+∞} then

H(A,B) =


max{ρ(A,B), ρ(B,A)} if A 6= ∅ 6= B,

0 if A = ∅ = B,

+∞ otherwise.

Then this functional is called Pompeiu-Hausdorff generalized functional. Then

(Pcp(X), H) is a complete b-metric space provided (X, db) is a complete b-metric

space.”

Lemma 3. [24]

“Let (X, d) be a b-metric space and A,B ∈ Pcp(X). We assume that there exist a

µ > 0 such that

(i) for each a ∈ A and b ∈ B such that db(a, b) ≤ µ;

(ii) for each b ∈ B and a ∈ A such that db(a, b) ≤ µ.

Then H(A,B) ≤ µ.”

Lemma 4. [24]

“Let (X, d) be a b-metric space then

D(x,A) ≤ b[D(x,B) +H(A,B)], ∀ x ∈ X and A,B ∈ P (X).”

Lemma 5. [24]

“Let (X, d) be a b-metric space. Then for all A,B,C ∈ P (X)

H(A,C) ≤ b[H(A,B) +H(B,C)].”

3.4.5. L-space [43]

“Let (X,−→) be an L-space. An operator f : X −→ X is, by definition, a Picard

operator if
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(i) Fixf = x∗;

(ii) fn → x∗, as n −→∞, for all x ∈ X.”

3.4.6. φ-Contraction [37]

“Let (X, d) be a complete metric space and f : X −→ X is a φ-contraction, that

is φ : R+ −→ R+ is a comparison function and d(f(x), f(y)) ≤ φ(d(x, y)), for all

x, y ∈ X.”

Theorem 3.4.7 [37]

“Let (X, d) be a complete metric space and f : X −→ X is a φ-contraction, that

is φ : R+ −→ R+ is a comparison function and d(f(x), f(y)) ≤ φ(d(x, y)), for all

x, y ∈ X. Then the operator f is Picard.”

3.5 Fractals in b-metric spaces

3.5.1. Multivalued Fractals [43]

“Let (X, d) be a metric space and F1, ..., Fm : X −→ P (X) be multivalued op-

erators. The system F = (F1, ..., Fm) is called an iterated multifunction sys-

tem(briefly IMS). If F = (F1, ..., Fm) is an iterated multifunction system such that

Fi : X −→ Pcp(X) is upper semi continuous, for i ∈ {1, ...,m}, then the operator

TF : Pcp(X) −→ Pcp(X),

TF (Y ) =
m⋃
i=1

Fi(Y ),

is said to multi-fractal operator generated by the iterated multifunction system.

A fixed point of TF is, by definition, a multivalued fractal.”

3.5.2. Fixed Point of a Multivalued Fractals [43]

“If (X, d) is a complete metric space and Fi : X −→ Pcp(X) are multivalued

αi-contractions (for i ∈ {1, ...,m}), then the multi-fractal operator TF is a single-

valued α-contractions (where α = max
1≤i≤m

αi) and hence it is a Picard operator.

The unique fixed point V ∗F ∈ Pcp(X) of TF is a multivalued fractal. Moreover,
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because for each V0 ∈ Pcp(X) we have T nF (V0) −→ V ∗F , as n −→ ∞, the set V ∗F is

an attractor of the iterated multifunction system.”

3.6 Results in b-Metric Spaces

The following results are proved by [24] in b-metric spaces

Theorem 3.6.1 [24]

“Let (W,db) be a complete b-metric space such that the b-metric is a continuous

functional on W ×W . Also φ : R+ −→ R+ a b-comparison function and

η : W −→ W is a φ-contraction. Then η is Picard operator with unique fixed

point w∗”

Proof .

Let w0 ∈ W and wn = η(wn−1), n ≥ 1. For n ≥ 1 we have,

db(wn, wn+1) = db(η(wn−1), η(wn))

≤ φ(db(wn−1, wn))

...
...

...

≤ φndb(w0, w1).

Since (W,db) is cone b-metric space hence for n ≥ 0, on the other hand for each

m > n, we have;

db(wn, wm) ≤ b[db(wn, wn+1) + db(wn+1, wm)],

≤ bdb(wn, wn+1) + b[b(db(wn+1, wn+2) + db(wn+2, wm)))],

= bdb(wn, wn+1) + b2(db(wn+1, wn+2) + b2db(wn+2, wm)),

≤ bdb(wn, wn+1) + b2(db(wn+1, wn+2) + b2[b((db(wn+2, wn+3)

+ db(wn+3, wm)))],
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= bdb(wn, wn+1) + b2(db(wn+1, wn+2) + b3db(wn+2, wn+3)

+ b3db(wn+3, wm),

≤ bdb(wn, wn+1) + b2(db(wn+1, wn+2) + b3(db(wn+2, wn+3)

+ b3db(wn+3, wn+4)) + · · ·+ bm(db(wm−1, wm)).

Now by applying φ contraction on each term of above expression,

db(wn, wm) ≤ b(φn)db(w0, w1) + b2(φn+1)db(w0, w1)

+ b3(φn+2)(db(wn+2, wn+3) + b3(φn+3)db(w0, w1) + · · ·

+ bm(φm−1)db(w0, w1).

Hence we obtain,

db(wn, wm) ≤ b
m−1∑
s=1

bsφsdb(w0, w1)

Replace db(w0, w1) = t in above, we must have,

⇒ db(wn, wm) ≤ b
m−1∑
s=1

bsφs(t)

Since,

db(wn, wm) ≤ b

m−1∑
s=1

bsφs(t) ≤ b

∞∑
s=1

bsφs(t). (3.1)

Since φ : R+ −→ R+ be a b-comparison function for which there exist a convergent

series of positive terms
∞∑
s=1

vs and there exist s0 ∈ N a ∈ (0, 1).

bs+1φs+1(t) ≤ absφs(t) + vs for each t ∈ R+, and each s ≥ s0 (3.2)

Using generalized ratio test then the series in (3.1) converges for each t ∈ R+ and

its sum is monotone increasing and continuous at zero.

Thus for m > n, letting n −→∞ we conclude that {wn} is a Cauchy sequence in
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a complete b-metric space (W,db). So there is a w∗ ∈ W such that

lim
m−→∞

wn = w∗.

To prove that η is a Picard operator we will show that w∗ is a unique fixed point

of η.

For n ≥ 0

db(wn+1, η(w∗)) =db(η(wn), η(w∗))

≤φ(db(wn, w
∗)).

But d is continuous and by the definition of φ it is also continuous at 0.

Letting n −→∞ we obtain that,

db(w
∗, η(w∗)) = 0.

that is w∗ is the fixed point.

To prove uniqueness, let v∗ is another fixed point then,

db(w
∗, v∗) = db(η(w∗), η(v∗)) ≤ φ(db(w

∗, v∗)) ≤ db(w
∗, v∗).

Hence η is a Picard operator.

Theorem 3.6.2 Abstract College Theorem [24]

“Let (W,d) be a complete b-metric space with (b ≥ 1) such that the b-metric is

continuous functional on W ×W . Let φ : R+ −→ R+ be a b-comparison function

and η : W −→ W is a φ contraction.

If the function τ : R+ −→ R+, defined by

τ(s) = s− bφ(s)

is strictly increasing and onto, then

d(w,w∗) ≤ τ−1(bd(w, η(w))), for each w ∈ W.”
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Proof .

By Theorem 3.6.1 we know that η is a Picard operator.

Let w ∈ W be an arbitrary then by using the triangular property of b-metric

spaces,

d(w, η(w)) ≤ b{d(w,w∗) + d(w∗, η(w))}. (3.3)

By using the symmetry of b-metric spaces that is d(w∗, η(w)) = d(η(w), w∗) in

(3.3) we must have,

⇒ d(w, η(w)) ≤ b{d(w,w∗) + d(η(w), w∗)}. (3.4)

Since η is a φ contraction and w∗ is a unique fixed point.

⇒ d(η(w), w∗) ≤ φ(d(w,w∗)), as we know that η(w∗) = w∗.

Therefore (3.4) becomes

⇒ d(w, η(w)) ≤ b{d(w,w∗) + φ(d(w,w∗))},

Now as given that,

τ(s) = s− bφ(s) (3.5)

is strictly increasing and onto, then replace s = d(w,w∗) in (3.5) we obtain,

τ(d(w,w∗)) = d(w,w∗)− bφ(d(w,w∗)). (3.6)

Now by using the triangular inequality of b-metric space on d(w,w∗) in (3.6) we

have,

τ(d(w,w∗)) ≤ b{d(w, η(w)) + d(η(w), w∗)} − bφ(d(w,w∗)),

⇒ τ(d(w,w∗)) ≤ bd(w, η(w)) + bd(η(w), w∗)− bφ(d(w,w∗)).
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As d(η(w), w∗) ≤ φ(d(w,w∗)), therefore,

τ(d(w,w∗)) ≤ {bd(w, η(w)) + bd(η(w), w∗)− bd(η(w), w∗)},

⇒ τ(d(w,w∗)) ≤ {bd(w, η(w))},

⇒ (d(w,w∗)) ≤ 1

τ
{bd(w, η(w))},

⇒ d(w,w∗) ≤ τ−1(bd(w, η(w))).

Theorem 3.6.3 Abstract Anti College Theorem [24]

“Let (W,d) be a complete b-metric space with (b ≥ 1) such that the b-metric is

continuous functional on W ×W . Let φ : R+ −→ R+ be a b-comparison function

and η : W −→ W is a φ contraction. If the function ζ : R+ −→ R+, defined by

ζ(s) = s+ φ(s)

is strictly increasing and onto, then:

d(w,w∗) ≥ ζ−1(
1

b
d(w, η(w))), for each w ∈ W.”

Proof .

By Theorem 3.6.1 we know that η is a Picard operator.

Let w ∈ W be an arbitrary then by using the triangular property of b-metric

spaces,

d(w, η(w)) ≤ b{d(w,w∗) + d(w∗, η(w))}. (3.7)

By using the symmetry of b-metric spaces that is d(w∗, η(w)) = d(η(w), w∗) in

(3.7) we must have

⇒ d(w, η(w)) ≤ b{d(w,w∗) + d(η(w), w∗)}. (3.8)

Since η is a φ contraction and w∗ is a unique fixed point.

d(η(w), w∗) ≤ φ(d(w,w∗)), as we know that η(w∗) = w∗.
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Therefore (3.8) becomes,

⇒ d(w, η(w)) ≤ b{d(w,w∗) + φ(d(w,w∗))}, (3.9)

Now as given that,

ζ(s) = s+ φ(s) (3.10)

is strictly increasing and onto, then. Replace s = d(w,w∗) in (3.10) we have,

⇒ ζ(d(w,w∗)) = d(w,w∗) + φ(d(w,w∗)),

⇒ φ(d(w,w∗)) = ζ(d(w,w∗))− d(w,w∗). (3.11)

using the value of φ(d(w,w∗)) from equation (3.11) and replace in (3.9) we have,

d(w, η(w)) ≤ b{d(w,w∗) + ζ(d(w,w∗))− d(w,w∗)},

⇒ d(w, η(w)) ≤ b{ζ(d(w,w∗))}.

Since ζ is strictly increasing and bijection.

bζ(d(w,w∗)) ≥ d(w, η(w)),

⇒ ζ(d(w,w∗)) ≥ 1

b
d(w, η(w)),

⇒ (d(w,w∗)) ≥ ζ−1
1

b
d(w, η(w)).

Lemma 6. [24]

“Let (W,d) be a complete b-metric space with (b ≥ 1) and Fi : W −→ Pcp(W )

be a multivalued φ-contractive operator. Then for any V ∈ Pcp(W ) we have that

F (V ) ∈ Pcp(W ).”

Proof .

Assume a sequence {vn} in F (V ). Since {vn} ⊂ F (V ) there exist a sequence

{zn} ⊂ V such that vn ∈ F (zn), n ∈ N.
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We may suppose that,

{zn} −→ z, and zn 6= z, for each n ∈ N.

Then by using Lemma 3., for vn ∈ F (zn) there exist qn ∈ F (z) such that the,

db(vn, q) ≤ bH(F (zn), F (z)) ≤ bdb(zn, z) −→ 0 as n −→ +∞.

Hence we have,

db(vn, qn) −→ 0 as n −→ +∞.

As F (z) is a compact set, we obtain a sub-sequence by {qn} which converges to

an element q ∈ F (z). We denote this sub-sequence {qn} by itself. Then we have,

db(vn, q) ≤ b[db(vn, qn) + db(qn, q)] −→ 0 as n −→ +∞.

Thus {vn} −→ q ∈ F (z) ⊂ F (V ).

This complete the proof.

Theorem 3.6.4 [24]

“Let (W,d) be a complete b-metric space with (b ≥ 1) such that the cone b-metric

is continuous functional on W×W . Let φ : R+ −→ R+ is a b-comparison function.

Also Fi : W −→ Pcp(W ) b a multivalued φ contractions. Then:

(1) TF : (Pcp(W ), Hdb) −→ (Pcp(W ), Hdb);

(2) TF is φ-contraction;

(3) TF is a Picard operator having a unique fixed point V ∗ ∈ Pcp(W ) which is a

multi-valued fractal and an attractor of IMSF = (F1, F2, ...Fm).”

Proof .

1) Let φ : R+ −→ R+ being a b-comparison function, also a comparison function.
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So by using Lemma 3., we must have

H(Fi(w1), Fi(w2)) ≤ φdb(w1, w2) ≤ db(w1, w2) for all w1, w2 ∈ W, φ(t) < t for t > 0,

therefore by Lemma 6., we get that,

TF : (Pcp(W ), Hdb) −→ (Pcp(W ), Hdb)

2) We show that,

H(TF (V1), TF (V2)) ≤ φH(V1, V2) for all V1, V2 ∈ Pcp(W ).

In order to prove above, consider V1, V2 ∈ Pcp(W ) and let u1 ∈ TF (V1). Then there

exist i ∈ {1, 2, ...m} such that u1 ∈ Fi(V1). Moreover, there exist a1 ∈ V1 such

that u1 ∈ Fi(V1). Since V1, V2 are compact for a1 ∈ V1, there exist b1 ∈ V2 such

that

db(a1, b1) ≤ H(V1, V2). (3.12)

So for u1 ∈ Fi(V1), by Lemma 3.3.1, there exist v1 ∈ Fi(b1) such that

db(u1, v1) ≤ H(Fi(a1), Fi(b1)). (3.13)

Thus by (3.12) and (3.13) we get for each u1 ∈ TF (V1) there exist v1 ∈ TF (V2)

such that

db(u1, v1) ≤ H(Fi(a1), Fi(b1)) ≤ φdb(a1, b1) ≤ φH(V1, V2). (3.14)

By similar procedure we obtain for each v1 ∈ TF (V2) there exist u1 ∈ TF (V1) such

that

db(u1, v1) ≤ φH(V1, V2). (3.15)
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By by Lemma 3.3.1, equation (3.14), (3.15), together imply

H(TF (V1), TF (V2)) ≤ φH(V1, V2). (3.16)

Thus we obtain that TF is a self φ contraction on a complete metric space (Pcp(W ), Hdb).

Now (3) can be obtain from Theorem 3.1.1.

Theorem 3.6.5 College Theorem [24]

“Let (W,d) be a complete b-metric space with (b ≥ 1) such that the b-metric is

continuous functional on W ×W . Let φ : R+ −→ R+ be a b-comparison function

and Fi : W −→ Pcp(W ) is a multivalued φ contraction.

If the function τ : R+ −→ R+, defined by,

τ(s) = s− bφ(s)

is strictly increasing and onto, then:

H(V, V ∗F ) ≤ τ−1(bH(V, TF (V ))), for each V ∈ Pcp(W ).”

Proof .

By Theorem 3.6.1 we know that TF is a Picard operator.

Let V ∈ Pcp(W ) be an arbitrary then by using the triangular property of b-metric

spaces,

H(V, V ∗F ) ≤ b{H(V, TF (V )) +H(TF (V ), V ∗F )}. (3.17)

Since TF is a φ contraction and V ∗F is a unique fixed point,

H(TF (V ), V ∗F ) ≤ φ(H(V, V ∗F )), also TF (V ∗) = V ∗F .

Therefore (3.17) becomes,

⇒ H(V, V ∗F ) ≤ b{H(V, TF (V )) + φ(H(V, V ∗F ))}.
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Now as given that,

τ(s) = s− bφ(s) (3.18)

is strictly increasing and onto, replacing s = H(V, V ∗F ) in (3.18) we must have

⇒ τ(H(V, V ∗F )) = H(V, V ∗F )− bφ(H(V, V ∗F )), (3.19)

Now by using the triangular property of b-metric space on H(V, V ∗F ) in (3.19)

τ(H(V, V ∗F )) ≤ b{H(V, TF (V )) +H(TF (V ), V ∗F )} − bφ(H(V, V ∗F )),

⇒ τ(H(V, V ∗F )) ≤ bH(V, TF (V )) + bH(TF (V ), V ∗F )− bφ(H(V, V ∗F )).

Now replace H(TF (V ), V ∗F ) ≤ φ(H(V, V ∗F )).

τ(H(V, V ∗F )) ≤ {bH(V, TF (V )) + bH(TF (V ), V ∗F )− bH(TF (V ), V ∗F )},

⇒ τ(H(V, V ∗F )) ≤ {bH(V, TF (V ))},

⇒ (H(V, V ∗F )) ≤ 1

τ
{bH(V, TF (V ))},

⇒ (H(V, V ∗F )) ≤ τ−1(bH(V, TF (V ))).

Theorem 3.6.6 Anti-College Theorem [24]

“Let (W,d) be a complete b-metric space with (b ≥ 1) such that the b-metric is

continuous functional on W ×W . Let φ : R+ −→ R+ be a b-comparison function

and Fi : W −→ Pcp(W ) is a multivalued φ contraction.

If the function ζ : R+ −→ R+,

ζ(s) = s+ φ(s)

is onto, then

H(V, V ∗F ) ≤ ζ−1(
1

b
H(V, TF (V ))), for each V ∈ Pcp(W ).”

Proof.
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By Theorem 3.6.1 we know that TF is a Picard operator.

Let V ∈ Pcp(W ) be an arbitrary then by using the triangular property of b-metric

spaces,

H(V, V ∗F ) ≤ b{H(V, TF (V )) +H(TF (V ), V ∗F )}. (3.20)

Since TF is a φ contraction and V ∗F is a unique fixed point,

H(TF (V ), V ∗F ) ≤ φ(H(V, V ∗F )), also TF (V ∗) = V ∗F .

Therefore (3.20) becomes,

⇒ H(V, V ∗F ) ≤ b{H(V, TF (V )) + φ(H(V, V ∗F ))}.

Now as given that,

ζ(s) = s+ φ(s) (3.21)

is strictly increasing and onto, then replacing s = H(V, V ∗F ), in (3.21) we have,

ζ(H(V, V ∗F )) = (H(V, V ∗F )) + φ(H(V, V ∗F )),

⇒ φ(H(V, V ∗F )) = ζ(H(V, V ∗F ))− (H(V, V ∗F )).

Now putting the value of φ(H(V, V ∗F )) from above into (3.20) we get

⇒ H(V, TF (V )) ≤ b{(H(V, V ∗F )) + ζ(H(V, V ∗F ))− (H(V, V ∗F ))},

⇒ H(V, TF (V )) ≤ b{ζ(H(V, V ∗F ))}.

As ζ is strictly increasing and bijection so we have,

bζ(H(V, V ∗F )) ≥ H(V, TF (V )),

⇒ ζ(H(V, V ∗F )) ≥ 1

b
H(V, TF (V )),

⇒ (H(V, V ∗F )) ≥ ζ−1
1

b
H(V, TF (V )).



Chapter 4

Multivalued Fractals in Cone

b-Metric Spaces

This chapter is the extention of the results presented in [24] in the setting of cone

b-metric spaces over the Banach algebra A. In the start of this chapter some

definitions has been introduced which will be used in the main result.

4.1 Basic Tools

4.1.1. φ-Contractions in Cone b-Metric Spaces

Consider Banach algebra A with the solid cone K and (V, d), (S, ρ) be the two

cone b-metric spaces. An operator T : V −→ S is said to be cone b φ-contraction

if φ : A+ −→ A+ satisfies,

ρ(T (t), T (s)) � φ(d(t, s)), for all t, s ∈ V.

4.1.2. Generalized φ-Contractions in Cone b-Metric Spaces

Consider Banach algebra A with the solid cone K and (W,d) be the cone b-metric

space. An operator η : W −→ W is said to be generalized cone b φ-contraction if

45
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φ : A+ −→ A+ satisfies,

d(η(w1), η(w2)) � φ(d(w1, w2)), for all w1, w2 ∈ W.

4.1.3. Cone b-Comparison Function

Consider a solid cone K over Banach algebra A. A mapping φ : A+ −→ A+

is called cone b-comparison function over cone b-metric space (b ≥ 1), if φ is

increasing and there exist s0 ∈ N, a ∈ (0, 1) and a convergent series of non-

negative terms
∞∑
s=1

vs satisfies,

bs+1φs+1(t) � absφs(t) + vs for each t ∈ A+, and each s ≥ s0.

As consequence, if φ : A+ −→ A+ is a b-comparison function, then the series
∞∑
s=1

bsφs(t) converges for each t ∈ A+, and the function cb : A+ −→ A+ defined by,

cb(t) =
∞∑
s=1

bsφs(t), t ∈ A+,

is increasing and continuous at θ.

Example 4.1.

Consider a mapping φ : A −→ A. Then the function

φ(t) = νt (ν ∈ (0, 1)),

is a comparison function. It is also a cone b-comparison function. It is clear that

φ(t) = at � t for ν ∈ (0, 1). Also φ(θ) = θ (because θ is the zero element of

space) and φ is continuous at θ because

lim
t−→θ

φ(t) = θ.
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4.2 Results in Cone b-Metric Spaces

Theorem 4.2.1 Let (W,db) be a complete cone b-metric space over the Banach

algebra A with K be the solid cone. Also φ : A+ −→ A+ be a cone b-comparison

function and η : W −→ W is a cone b φ-contraction. Then η is Picard operator

with unique fixed point w∗.

Proof

Let w0 ∈ W and wn = η(wn−1), n ≥ 1. For n ≥ 1 we have,

db(wn, wn+1) = db(η(wn−1), η(wn))

� φ(db(wn−1, wn))

...
...

...

� φndb(w0, w1).

Since (W,db) is cone b-metric space hence for n ≥ 0, on the other hand for each

m > n, we have,

db(wn, wm) � b[db(wn, wn+1) + db(wn+1, wm)],

� bdb(wn, wn+1) + b[b(db(wn+1, wn+2) + db(wn+2, wm)))],

= bdb(wn, wn+1) + b2(db(wn+1, wn+2) + b2db(wn+2, wm)),

� bdb(wn, wn+1) + b2(db(wn+1, wn+2) + b2[b((db(wn+2, wn+3)

+ db(wn+3, wm)))],

= bdb(wn, wn+1) + b2(db(wn+1, wn+2) + b3db(wn+2, wn+3)

+ b3db(wn+3, wm),

� bdb(wn, wn+1) + b2(db(wn+1, wn+2) + b3(db(wn+2, wn+3)

+ b3db(wn+3, wn+4)) + · · ·+ bm(db(wm−1, wm)).
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Now by applying φ contraction on each term of above expression,

db(wn, wm) � b(φn)db(w0, w1) + b2(φn+1)db(w0, w1)

+ b3(φn+2)(db(wn+2, wn+3) + b3(φn+3)db(w0, w1) + · · ·

+ bm(φm−1)db(w0, w1).

Hence we obtain,

db(wn, wm) � b

m−1∑
s=1

bsφsdb(w0, w1)

Replace db(w0, w1) = t in above, we must have,

⇒ db(wn, wm) � b
m−1∑
s=1

bsφs(t)

Since,

db(wn, wm) � b
m−1∑
s=1

bsφs(t) � b
∞∑
s=1

bsφs(t). (4.1)

Since φ : A+ −→ A+ be a cone b-comparison function for which there exist a

convergent series of positive terms
∞∑
s=1

vs and a real number a ∈ (0, 1).

bs+1φs+1(t) � absφs(t) + vs for each t ∈ A+, and each s ≥ N (4.2)

By using generalized ratio test the series in (4.1) converges for each t ∈ A+ and

its sum is monotone increasing and continuous at zero.

Thus for m > n, letting n −→∞ we conclude that {wn} is a Cauchy sequence in

a complete cone b-metric space (W,db). So there is a w∗ ∈ W such that

lim
m−→∞

wn = w∗.

To prove that η is a Picard operator we will show that w∗ is a unique fixed point

of η.



Multivalued Fractals in Cone b-Metric Spaces 49

For n ≥ 0

db(wn+1, η(w∗)) = db(η(wn), η(w∗))

� φ(db(wn, w
∗)).

But d is continuous and by the definition of φ it is also continuous at θ.

Letting n −→∞ we obtain that,

db(w
∗, η(w∗)) = θ.

that is w∗ is the fixed point.

To prove uniqueness, let v∗ is another fixed point then,

db(w
∗, v∗) = db(η(w∗), η(v∗)) � φ(db(w

∗, v∗)) � db(w
∗, v∗).

Hence η is a Picard operator.

Theorem 4.2.2 Abstract College Theorem

Consider Banach algebra A with K be the solid cone. Let (W,d) be a complete

cone b-metric space with the base (b ≥ 1) such that the cone b-metric is continuous

functional on W ×W . Let φ : A+ −→ A+ be a cone b-comparison function and

η : W −→ W is a cone b φ-contraction.

If the function τ : A+ −→ A+, defined by,

τ(s) = s− bφ(s)

is strictly increasing and onto, then:

d(w,w∗) � τ−1(bd(w, η(w))), for each w ∈ W.

Proof.

By Theorem 4.2.1 we know that η is a Picard operator.

Let w ∈ W be an arbitrary then by using the triangular property of cone b-metric
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spaces, we have

d(w, η(w)) � b{d(w,w∗) + d(w∗, η(w))}. (4.3)

By using the symmetry of cone b-metric spaces that is d(w∗, η(w)) = d(η(w), w∗)

in (4.3) we must have,

⇒ d(w, η(w)) � b{d(w,w∗) + d(η(w), w∗)}. (4.4)

Since η is a φ contractions and w∗ is a unique fixed point.

⇒ d(η(w), w∗) � φ(d(w,w∗)), as we know that η(w∗) = w∗.

Therefore (4.4) becomes

⇒ d(w, η(w)) � b{d(w,w∗) + φ(d(w,w∗))},

Now as given that,

τ(s) = s− bφ(s) (4.5)

is strictly increasing and onto, replace s = d(w,w∗) in (4.5) we obtain,

τ(d(w,w∗)) = d(w,w∗)− bφ(d(w,w∗)). (4.6)

Now by using the triangular inequality of cone b-metric space on d(w,w∗) in (4.6)

we have,

τ(d(w,w∗)) � b{d(w, η(w)) + d(η(w), w∗)} − bφ(d(w,w∗)),

τ(d(w,w∗)) � bd(w, η(w)) + bd(η(w), w∗)− bφ(d(w,w∗)).
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As d(η(w), w∗) � φ(d(w,w∗)), therefore,

τ(d(w,w∗)) � {bd(w, η(w)) + bd(η(w), w∗)− bd(η(w), w∗)},

⇒ τ(d(w,w∗)) � {bd(w, η(w))},

⇒ (d(w,w∗)) � 1

τ
{bd(w, η(w))},

⇒ d(w,w∗) � τ−1(bd(w, η(w))).

Theorem 4.2.3 Abstract Anti College Theorem

Consider Banach algebra A with K be the solid cone. Let (W,d) be a complete

cone b-metric space with the base (b ≥ 1) such that the cone b-metric is continuous

functional on W ×W . Let φ : A+ −→ A+ be a cone b-comparison function and

η : W −→ W is a cone b φ-contraction.

If the function ζ : A+ −→ A+, defined by,

ζ(s) = s+ φ(s)

is strictly increasing and onto, then:

d(w,w∗) � ζ−1(
1

b
d(w, η(w))), for each w ∈ W.

Proof.

By using Theorem 4.2.1 we must have η is a Picard operator.

Let w ∈ W an arbitrary then by using the triangular property of cone b-metric

spaces,

d(w, η(w)) � b{d(w,w∗) + d(w∗, η(w))}. (4.7)

By using the symmetry of cone b-metric spaces that is d(w∗, η(w)) = d(η(w), w∗)

in (4.7) we must have

⇒ d(w, η(w)) � b{d(w,w∗) + d(η(w), w∗)}. (4.8)
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Since η is a φ contractions and w∗ is a unique fixed point.

d(η(w), w∗) � φ(d(w,w∗)), as we know that η(w∗) = w∗.

Therefore we get,

⇒ d(w, η(w)) � b{d(w,w∗) + φ(d(w,w∗))}, (4.9)

Now as given that,

ζ(s) = s+ φ(s) (4.10)

is strictly increasing and onto, replace s = d(w,w∗) in (4.10) we have,

⇒ ζ(d(w,w∗)) = d(w,w∗) + φ(d(w,w∗)),

⇒ φ(d(w,w∗)) = ζ(d(w,w∗))− d(w,w∗). (4.11)

using the value of φ(d(w,w∗)) from equation (4.11) and replace in (4.9) we have,

d(w, η(w)) � b{d(w,w∗) + ζ(d(w,w∗))− d(w,w∗)},

⇒ d(w, η(w)) � b{ζ(d(w,w∗))}.

Since ζ is strictly increasing and bijection, therefore

bζ(d(w,w∗)) � d(w, η(w)),

⇒ ζ(d(w,w∗)) � 1

b
d(w, η(w)),

⇒ (d(w,w∗)) � ζ−1
1

b
d(w, η(w)).

Remark 9. Let (W,d) be a complete cone b-metric space with(b ≥ 1) over the

Banach algebra A. Let K be the solid cone.
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By taking A = R and K = [0,∞), the cone b-metric space (W,d) becomes com-

plete b-metric space (W,d) and the results of Boriceanu et al. [24] becomes special

case of the above Theorems.

4.3 Cone b-Metric Spaces and Multi-Fractal Op-

erators

4.3.1. Multivalued Fractal

Consider (W,db) be the cone b-metric space over Banach algebra A with solid

cone K. Let F1, ..., Fp : W −→ P (W ) be multivalued operators. The system

F = (F1, ..., Fm) is called an iterated multifunction system. If F = (F1, ..., Fp)

is an iterated multifunction system such that Fi : W −→ Pcp(W ) is upper semi

continuous, for i ∈ {1, ..., p}, then the operator

TF (Y ) =

p⋃
i=1

Fi(Y ), for each Y ∈ Pcp(W )

is said to multi-fractal operator generated by the iterated multifunction system.

A fixed point of TF is, by definition, a multivalued fractal.

4.3.2. Fixed Point of a Multivalued Fractals

Let a mapping TF : Pcp(W ) −→ Pcp(W ). A nonempty compact subset V ∗ of W

is said to be multivalued fractal with respect to an iterated multifunction system

F = (F1, ..., Fp) if and only if it is a fixed point of multi-fractal operator. In

particular, if Fi = ηi are continuous single valued then its fixed point is given by

Tη : Pcp(W ) −→ Pcp(W ),

Tη(Y ) =

p⋃
i=1

Fi(Y ),

generated by iterated function system η = (η1, ...ηp) is said to be a fractal.
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4.3.3. Family of Subsets

Let (W, db) be a cone b-metric space and S ⊆ W we have the following subsets.

(i) P (W ) = {S| S ⊂ W};

(ii) Pb(W ) = {S ∈ P (W )| S is bounded };

Pcp(W ) = {S ∈ P (W )| S is compact };

(iii) Pcl(W ) = {S ∈ P (W )| S is closed }; Pb,cl(W ) = Pb(W ) ∩ Pcl(W ).

Now introduce the following generalized functions on cone b-metric space (W,db).

4.3.4. The Gap Functional in Cone b-Metric Spaces

Let D : P (W )× P (W ) −→ A+ ∪ {+∞} then

D(V, S) =


inf{db(u, s)| u ∈ V, s ∈ S} if V 6= ∅ 6= S;

θ if V = ∅ = S;

+∞ otherwise.

In particular, if w0 ∈ W then D(w0, S) = D({w0}, S).

4.3.5. The Excess Generalized Functional in Cone b-Metric Spaces

Let ρ : P (W )× P (W ) −→ A+ ∪ {+∞} then

%(V, S) =


sup{D(u, S)| u ∈ V } if V 6= ∅ 6= S;

θ if V = ∅;

+∞ if S = ∅ 6= V.

.

4.3.6. Pompeiu-Hausdorff Generalized Functional in Cone b-Metric Spaces

Let H : P (W )× P (W ) −→ A+ ∪ {+∞} then

H(V, S) =


max{%(V, S), %(S, V )} if V 6= ∅ 6= S,

θ if V = ∅ = S,

+∞ otherwise.
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Then (Pcp(W ), H) is a complete cone b-metric space provided (W,db) is a complete

cone b-metric space.

Lemma 7.

Let (W,d) be a cone b-metric space and V1, V2 ∈ Pcp(W ). We assume that there

exist a µ > 0 such that

(i) for each u1 ∈ V1 and v1 ∈ V2 such that db(u1, v1) � µ;

(ii) for each v1 ∈ V2 and u1 ∈ V1 such that db(u1, v1) � µ.

Then H(V1, V2) � µ.

Lemma 8. Consider Banach algebra A with K be the solid cone. Let (W,d) be

a complete cone b-metric space with the base (b ≥ 1) and Fi : W −→ Pcp(W ) be

a multivalued φ contractive operators. Then for any V ∈ Pcp(W ) we have that

F (V ) ∈ Pcp(W ).

Proof.

Assume a sequence {vn} in F (V ). Since {vn} ⊂ F (V ) there exist a sequence

{zn} ⊂ V so that vn ∈ F (zn), n ∈ N.

We may suppose that,

{zn} −→ z, and zn 6= z, for each n ∈ N.

Then by using above Lemma 7., for vn ∈ F (zn) there exist qn ∈ F (z) such that

the,

db(vn, q) � bH(F (zn), F (z)) � bdb(zn, z) −→ θ as n −→ +∞.

Hence we have,

db(vn, qn) −→ θ as n −→ +∞.
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As F (z) is a compact set, we get a sub-sequence by {qn} which converges to a

element q ∈ F (z). We denote this sub-sequence by {qn} by itself. Then we have:

db(vn, q) � b[db(vn, qn) + db(qn, q)] −→ θ as n −→ +∞.

Thus {vn} −→ q ∈ F (z) ⊂ F (V ).

This complete the proof.

Proceed to prove the results of [24] in the setting of H cone b-metric spaces.

Theorem 4.3.7 Consider Banach algebra A with K be the solid cone. Let

(W,d) be a complete cone b-metric space with (b ≥ 1) such that the cone b-metric

is continuous functional on W ×W . Let φ : A+ −→ A+ be a cone b-comparison

function. Also Fi : W −→ Pcp(W ) b a multivalued φ-contractions.

(1) TF : (Pcp(W ), Hdb) −→ (Pcp(W ), Hdb);

(2) TF is φ-contraction;

(3) TF is a Picard operator with a unique fixed point V ∗ ∈ Pcp(W ) which is a

multi-valued fractal and an attractor of IMSF = (F1, F2, ...Fm);

Proof .

1)Let φ : A+ −→ A+ is a cone b-comparison function, the also a comparison

function. So by using Lemma 7., we must have

H(Fi(w1), Fi(w2)) � φ(db(w1, w2))� db(w1, w2) for all w1, w2 ∈ W, φ(t)� t for t > 0,

therefore by Lemma 8., we get that,

TF : (Pcp(W ), Hdb) −→ (Pcp(W ), Hdb)

2) We show that

H(TF (V1), TF (V2)) � φH(V1, V2) for all V1, V2 ∈ Pcp(W ).
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In order to prove above, consider V1, V2 ∈ Pcp(W ) and let u1 ∈ TF (V1). Then

there exist i ∈ {1, 2, ...m} such that u1 ∈ Fi(V1). Also we have a1 ∈ V1 such that

u1 ∈ Fi(V1). Since V1, V2 are compact for a1 ∈ V1, there exist b1 ∈ V2 such that

db(a1, b1) � H(V1, V2). (4.12)

So for u1 ∈ Fi(V1), by Lemma 7., there exist v1 ∈ Fi(b1) such that

db(u1, v1) � H(Fi(a1), Fi(b1)). (4.13)

Thus by (4.12) and (4.13) we get for each u1 ∈ TF (V1) there exist v1 ∈ TF (V2)

such that

db(u1, v1) � H(Fi(a1), Fi(b1)) � φ(db(a1, b1)) � φ(H(V1, V2)). (4.14)

By similar procedure we obtain for each v1 ∈ TF (V2) there exist u1 ∈ TF (V1) such

that

db(u1, v1) � φH(V1, V2). (4.15)

By by Lemma 4.2.1, (4.14), (4.15), together imply

H(TF (V1), TF (V2)) � φH(V1, V2). (4.16)

Thus we obtain that TF is a self φ contraction on a complete metric space (Pcp(W ), Hdb).

Now (3) to (5) can be obtained immediately from Theorem 4.2.1.

Theorem 4.3.8 College Theorem

Consider Banach algebra A with K be the solid cone. Let (W,d) be a com-

plete cone b-metric space with (b ≥ 1) such that the cone b-metric is continu-

ous functional on W × W . Let φ : A+ −→ A+ be a cone b-comparison func-

tion. Also Fi : W −→ Pcp(W ) be a multivalued φ contractions. If the function
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τ : A+ −→ A+, defined by,

τ(s) = s− bφ(s)

a strictly increasing and onto, then:

H(V, V ∗F ) � τ−1(bH(V, TF (V )))

for each V ∈ Pcp(W ).

Proof .

By Theorem 4.2.1 we know that TF is a Picard operator.

Let V ∈ Pcp(W ) be an arbitrary then by using the triangular property of cone

b-metric spaces,

H(V, V ∗F ) � b{H(V, TF (V )) +H(TF (V ), V ∗F )}. (4.17)

Since TF is a φ contractions and V ∗F is a unique fixed point,

H(TF (V ), V ∗F ) � φ(H(V, V ∗F )), also TF (V ∗) = V ∗F .

Therefore (4.17) becomes,

⇒ H(V, V ∗F ) � b{H(V, TF (V )) + φ(H(V, V ∗F ))}.

Now as given that,

τ(s) = s− bφ(s) (4.18)

is strictly increasing and onto, replacing s = H(V, V ∗F ) in (4.18) we must have

⇒ τ(H(V, V ∗F )) = H(V, V ∗F )− bφ(H(V, V ∗F )), (4.19)
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Now by using the triangular property of cone b-metric space on H(V, V ∗F ) in (4.19)

⇒ τ(H(V, V ∗F )) � b{H(V, TF (V )) +H(TF (V ), V ∗F )} − bφ(H(V, V ∗F )),

⇒ τ(H(V, V ∗F )) � bH(V, TF (V )) + bH(TF (V ), V ∗F )− bφ(H(V, V ∗F )).

Now replace H(TF (V ), V ∗F ) � φ(H(V, V ∗F )).

τ(H(V, V ∗F )) � {bH(V, TF (V )) + bH(TF (V ), V ∗F )− bH(TF (V ), V ∗F )},

⇒ τ(H(V, V ∗F )) � {bH(V, TF (V ))},

⇒ (H(V, V ∗F )) � 1

τ
{bH(V, TF (V ))},

⇒ (H(V, V ∗F )) � τ−1(bH(V, TF (V ))).

Theorem 4.3.9 Anti-College Theorem

Consider Banach algebra A with K be the solid cone. Let (W,d) be a com-

plete cone b-metric space with (b ≥ 1) such that the cone b-metric is continu-

ous functional on W × W . Let φ : A+ −→ A+ be a cone b-comparison func-

tion. Also Fi : W −→ Pcp(W ) be a multivalued φ contractions. If the function

ζ : A+ −→ A+, defined by

ζ(s) = s+ φ(s)

is onto, then

H(V, V ∗F ) � ζ−1(
1

b
H(V, TF (V ))), for each V ∈ Pcp(W ).

P roof .

By Theorem 4.2.1 we know that TF is a Picard operator.

Let V ∈ Pcp(W ) be an arbitrary then proceeding same as in Theorem 4.2.5, we

must have

⇒ H(V, V ∗F ) � b{H(V, TF (V )) + φ(H(V, V ∗F ))}. (4.20)
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Now as given that,

ζ(s) = s+ φ(s) (4.21)

is strictly increasing and onto, replacing s = H(V, V ∗F ), in (4.21) we have,

⇒ ζ(H(V, V ∗F )) = (H(V, V ∗F )) + φ(H(V, V ∗F )),

⇒ φ(H(V, V ∗F )) = ζ(H(V, V ∗F ))− (H(V, V ∗F )).

Now putting the value of φ(H(V, V ∗F )) in (4.20)

⇒ H(V, TF (V )) � b{(H(V, V ∗F )) + ζ(H(V, V ∗F ))− (H(V, V ∗F ))},

⇒ H(V, TF (V )) � b{ζ(H(V, V ∗F ))}.

As ζ is strictly increasing and bijection so we have

bζ(H(V, V ∗F )) � H(V, TF (V )),

⇒ ζ(H(V, V ∗F )) � 1

b
H(V, TF (V )),

⇒ (H(V, V ∗F )) � ζ−1
1

b
H(V, TF (V )).

Remark 10. Let (W,Hdb) be a complete cone b-metric space with(b ≥ 1) over the

Banach algebra A with K be the solid cone. By taking A = R and K = [0,∞),

the cone b-metric space (W,Hdb) becomes a complete b-metric space (W,Hdb) and

the results of Monica Boriceanu [24] becomes special case of the above Theorems.



Chapter 5

Conclusion and Future Work

The work of Boriceanu et al. [24] “Multivalued fractals in b-metric spaces” is in-

vestigated in this thesis with detailed description. The idea of multivalued fractals

in the sense of metric spaces, b-metric spaces under specific contraction mappings

is demonstrated by many researchers. In this dissertation, we have proved some

results in the setting of cone b-metric spaces. These results are the extensions of

the results presented by Boriceanu et al. [24].

The definitions of cone b-comparison function and cone b-φ contraction have been

established in this thesis. A result regarding Picard operator is also proved in the

setting of cone b-metric spaces. Then the definition of multivalued fractals in the

setting cone b-metric spaces is also presented. By using the definition of multi-

vauled mappings and multivalued fractals, some results in the setting of H-cone

b-metric space are also proved.
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