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Abstract

This research aimed to establish some fixed points results via graph structure in the

setting of b-metric spaces. For this purpose, the work of Acar et al. is reviewed

and notions of rational-type multivaled G-contractions and F -contractions are

established in b-metric spaces endowed with graph structure. To strengthen the

validity of our results a supportive example is provided. Our results generalizes

several existing results in literature.
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Chapter 1

Introduction

1.1 Historical Background

Mathematics plays a pivotal role in various domains of life, serving as a funda-

mental branch of scientific knowledge. Within this vast discipline, mathematics

is further divided into numerous subfields. Among these, fixed point (FP) theory

stands out as a highly significant branch within pure mathematics. FP theory is a

fundamental and influential area of mathematics that has applications in various

fields. It focuses on the study of mathematical functions that possess at least

one point that remains unchanged when the function is applied. This point is

called a FP. FP theory has gained significant importance because it provides fun-

damental tools and concepts that are applicable to a wide range of mathematical

problems and scientific disciplines. It offers insights into the existence, uniqueness

and stability of solutions. It has practical applications in optimization, differential

equations, economics, computer science and more.

In the late 19th century, Poincare [1] emerged as a trailblazing mathematician,

making noteworthy advancements in the realm of FP theory. His influential work

laid the foundation for this field. Then metric space (MS) was introduced by

Frechet [2] in 1906. He defined a MS as a set of points equiped with a distance

function satisfying certain axioms. Later, in 1922 Banach [3] further expanded

1



Introduction 2

the contribution of Poincar by proving the existence of FP within a complete met-

ric space (CMS) for contraction mapping. The exploration of metric FP theory

thus became a prominent domain within the broader realm of FP theory. The

Banach FP theorem holds a vital position within metric FP theory, serving as a

fundamental outcome. According to this theorem, if (X, d) be a CMS then for a

contraction mapping Γ : X → X there is a unique FP. The mapping Γ is called a

contraction mapping if the following condition is satisfied,

d(Γψ,Γθ) ≤ α d(ψ, θ) forall ψ, θ ∈ X and α ∈ [0, 1). (1.1)

It is known as Banach Contraction Principle (BCP). FP theory has been evolved

particularly in two directions. Some authors applied different contraction and oth-

ers have changed the space under consideration.

Initially the generalization is done by Edelstein’s [4] by applying different contrac-

tion condition, in which condition (1.1) is eased by considering different points

from X and taking α = 1. Later, a new contraction condition was introduced by

Rakotch [5], where the constant α of (1.1) is substituted by a funtion α : [0,∞)→

[0, 1] that is decreasing monotonically. So,

d(Γψ, Γθ) ≤ α(t)d(ψ, θ)) for all ψ, θ ∈ X. (1.2)

Because every contraction is continuous. So it is questionable that if there are

contraction conditions which does not imply the continuity of the mappings. Then

in 1968 Kannan [6] provided the answer to such queries in which Kannan replaced

the contraction condition with,

d(Γψ,Γθ) ≤ α d(ψ, Γψ) + d(θ, Γθ) ∀ ψ, θ ∈ X, and α ∈ [0, 1/2). (1.3)

Further more generalizations of BCP were made by Mier and Keeler [8] by the

expansion of contraction conditions. Then in 1975 Dass and Gupta [9] made an

extension in BCP by introducing the rational contraction condition.

Then S.K.Chatterjea [7] proved a FP theorem for operators which satisfy the
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following condition

d(Γψ,Γθ) ≤ α d(ψ, Γθ) + d(θ, Γψ) ∀ ψ, θ ∈ X where α ∈ (0, 1). (1.4)

In the second category of generalization of BCP, the space structure is considered

on which the Γ is defined. In [10] Abbas and Jungck established the existence

of coincidence points and common fixed points for mappings satisfying certain

contraction conditions, without appealing to continuity, in a cone MS. In 1989

Bakhtin [11] introduced the concept of bMS by relaxing the triangular inequality

and then replace the MS for proving several FP results to generalize BCP.

Nadler [12] extends the structure of the spaces in which the mapping Γ is defined.

Specifically he extended the BCP from a single-valued contraction mapping to a

mutivalued (M.valued) contraction mapping. Later, Batul and Kamran [13] gen-

eralize the notion of C∗-valued contraction mapping by weakening the contraction

condition of Ma et al. [14] and established a FP theorem for such mapping.

According to BCP, Γ satisfies the contraction condition for every element of

X × X. Here question arises, whether it is possible to generalize BCP by imposing

appropriate condition on ordered pairs from X × X s.t (1.1) holds on a subset

of X × X and that the mapping still has a FP. The initiative in this direction is

taken by Ran and Reurings [15]. They showed that, assuming Γ is contractive for

the related pairs, the mapping Γ still has an FP subject to the completeness of the

partially ordered set X. Later on, many authors like Bashkar and lakshmikanthm

[16] and Neito and Roriguez [17] have made significant contribution in the FP

theory on partially ordered MS.

In 2006 Espinola and Kirk [18] applied FP results in graph theory. Jachymski [19]

developed this concept further by replacing the ordered structure with structure of

graph on MS. Using ordered pairs in terms of their vertices and edges of a graph,

he illustrated that Γ has a FP if contraction condition holds.

The concept of a graph can be traced back to the 18th century when the Swiss

mathematician Leonhard Euler [20] introduced the Seven Bridges of Konigsberg

problem in 1736. Euler’s solution to this problem laid the foundation for graph

theory. He represented the city of Konigsberg as a graph with land masses as
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vertices and bridges as edges. Euler demonstrated that it was impossible to find

a path that crossed each bridge exactly once, leading to the development of the

theory of graphs.

Acar et al. [21] obtain several FP theorems in MS via graph structure for multi-

valued mappings. In this paper the author introduced the new concept of rational

type G-contraction and F -contractions.

Influenced by the work of Acar et al. we bring to light some FP theorems in bMS

via graph structures. The new FP theorems generalize the work of Acar et al.

[21]. The remaining content can be summarized as follows

Chapter 2, gives the primary definitions of MS, bMS, Pompieu hausdroff MS, FP,

mutivalued contraction mapping, basics on graph and some associated examples.

Chapter 3, provides the review of the article [21]. In this some FP results on MS

endowed with graph structure are presented with new type of G-contraction and

multivalued F -contractions.

Chapter 4, is about the existence of FP results in bMS via graph structure. Some

FP results are proved by using G-contraction and multivalued F -contractions. In

the end, an example is presented to show the validity of our obtained results.

Chapter 5, provides the conclusion of the thesis.



Chapter 2

Preliminaries

In this chapter fundamental definitions and examples are given. Presenting the

fundamental findings, explanations and examples that will be utilized in the next

chapters is the chapter’s major goal.

2.1 Metric Space

MS introduced by Frechet [2] is a fundamental concept in mathematics that pro-

vides a framework for understanding distance and proximity between points.

Definition 2.1.1. “Let X be a non-empty set. A function d : X × X → R

is said to be a metric on X, if for all ψ, θ, z ∈ X, it satisfies the following

axioms:

M1) d(ψ, θ) ≥ 0; (Non-negativity)

M2) d(ψ, θ) = 0⇔ ψ = θ; (Reflexive property)

M3) d(ψ, θ) = d(θ, ψ); (Symmetric property)

M4) d(ψ, z) ≤ d(ψ, θ) + d(θ, z). (Triangle inequality)

The

pair (X, d) is called the MS. The set X is called the underlying set or the ground

set. The elements of X are called the points of the MS. Instead of (X, d), we may

write X for a MS.” [22]

Example 2.1.2. Consider the set R, the set of real numbers. The function

d : R × R → R, defined as d(ψ, θ) = |ψ − θ| ∀ ψ, θ ∈ R, satisfies the conditions

5
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of metric on R. As d(ψ, z) = |ψ − z| = |(ψ − θ) + (θ − z)| ≤ |ψ − θ| + |θ − z| =

d(ψ, θ) + d(θ, z).

Example 2.1.3. The set C[a, b] of all real-valued continuous functions on the

the interval [a, b] is a MS, where d is defined as

d(f, g) =

∫ b

a

|f(ψ)− g(ψ)|dψ,

2.1.1 Convergence, Cauchy Sequence and Completeness in

Metric Space

The significance of sequences of real numbers in calculus cannot be overstated, as

they serve as a fundamental tool for understanding the concept of convergence.

This understanding is made possible by the fact that sequences of real numbers

define a metric on R. In MS the situation is quite similar, that is we consider a se-

quence {ψq} of elements ψ1, ψ2, . . . of X and use the metric d to define convergence

in a fashion analogous to that in Calculus.

Definition 2.1.4. “Let (X, d) be a MS, then

(a) A sequence {ψq} in X is said to converge to ψ ∈ X, if for every ε > 0 there

exists N = N(ε) ∈ N s.t d (ψq, ψ) < ε, for all q ≥ N . Hence lim
q→∞

ψq = ψ.

(b) A sequence {ψq} in X is said to be Cauchy, if for every ε > 0 there exists

N = N(ε) ∈ N s.t d (ψp, ψq) < ε, for all p, q ≥ N .

(c) A MS (X, d) is said to be complete if every Cauchy sequence (CS) in X

converges.” [22]

2.1.2 Banach Contraction Principle

The FP of a function Γ refers to an element within the function’s domain that

the function maps to itself. FP theorems have widespread applications in various
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areas of pure mathematics. Several notable authors such as Banach [3], Bhaskar

[16] and Khamsi [23], provide explanations of FP theorems across the entire field

of mathematical sciences.

Definition 2.1.5. “Consider a MS (X, d). A mapping Γ : X → X is referred

to as a contraction on X if there exists a positive real number α < 1, s.t

d(Γψ,Γθ) ≤ αd(ψ, θ) ∀ψ, θ ∈ X.

This implies that for any given points ψ and θ, the images of ψ and θ under the

mapping Γ are closer to each other than the original points ψ and θ. To be precise,

the ratio d(Γψ,Γθ)
d(ψ,θ)

is always less than or equal to a constant α, where α is a positive

value strictly smaller than 1.” [22]

Example 2.1.6. Consider the function Γ : R→ R defined as follows:

Γ(ψ) = cos(cosψ)⇒ Γ′(ψ) = − sin(cosψ)[− sinψ] = sin(cosψ) sinψ.

Through the application of the Mean Value Theorem, we derive the following

result:

|Γ′(ψ)| = | sin(cosψ)|| sinψ| < 1.

This inequality holds because:

| sin(cosψ)| ≤ 1

| sinψ| ≤ 1

Both terms on the right-hand side are bounded by 1. It is impossible for both

terms to simultaneously equal to 1, which implies that Γ(ψ) is a contraction.

FP of a mapping is an element that maps to itself.

Definition 2.1.7. “A FP of a mapping Γ : X → X of a set Γ to itself, is an

element ψ ∈ X s.t,

Γψ = ψ,

the image Γψ coincides with ψ.” [22]
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Example 2.1.8. Consider a mapping Γ : R→ R defined by

Γ(ψ) =
ψ

4
+ 3, has a unique FP ψ = 4.

Figure 2.1: Graph of Function Γ(ψ) = ψ
4 + 3.

Example 2.1.9. Consider a mapping Γ : R→ R defined as

Γ(ψ) = ψ + 3, has no FP.

Figure 2.2: Graph of Function Γ(ψ) = ψ + 3.
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Example 2.1.10. Consider a mapping Γ : R→ R defined as

Γ(ψ) = ψ2 − 3ψ + 3.

then ψ = 1, 3 are two FPs of Γ .

Figure 2.3: Graph of Function Γ(ψ) = ψ2 − 3ψ + 3.

Example 2.1.11. Consider a mapping Γ : R→ R defined as

Γ(ψ) = ψ + sinψ,

then Γ has infinite many FPs.

Theorem 2.1.12. “Assume (X, d) is a MS where X 6= φ. Suppose that X is

complete and let Γ : X → X be a contraction on X. Then Γ has precisely one

FP.” [22]

Example 2.1.13. Let (R, d) be a MS, where d(ψ, θ) = |ψ − θ|. Let’s define a

mapping Γ : R→ R as follows:

Γ(ψ) =
ψ

7
+ 2.

So Γ is a contraction with α = 1
7
. Then Γ has a only one FP i.e ψ = 7

3
.
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Figure 2.4: Graph of Function Γ(ψ) = ψ + sinψ.

2.2 Multivalued Mapping

multivalued mapping has many applications in real analysis, complex analysis,

optimal control issues and other areas of practical and pure mathematics. multi-

valued mapping has a considerable impact in these areas. As the years have gone

by, this theory’s significance has grown and as a result, several publications have

focused on multivalued mappings in the literature.

Definition 2.2.1. “Suppose A and B are non-empty sets. A multivalued

mapping from A to P (B) is denoted by Γ : A → 2B, where Γ is a function that

maps elements from A to subsets of B.” [24]

Example 2.2.2. Let

A = {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6}

B = {1, 1.5, 2, 2.5, . . . , 7}.

Define Γ : A→ P (B), by

Γ(ψ1) = {1, 1.5, 4.5} Γ(ψ2) = {2, 2.5, 3} Γ(ψ3) = {4}

Γ(ψ4) = {3} Γ(ψ5) = {5, 5.5, 6} Γ(ψ6) = {2.5, 6.5, 7},
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then Γ is a multivalued mapping.

Definition 2.2.3. “Let (X, d) be a MS. We denote the family of all non-

empty, closed and bounded subsets of X as CB(X). The Pompeiu-Hausdorff

metric H : CB(X)× CB(X)→ [0, ∞) is defined as follows:

H(A, B) = max

{
sup
α∈A

D(α, B), sup
β∈B

D(β, A)

}

where, A and B are elements of CB(X) and D(α, B) = infβ∈B d(α, β)”. [25]

Lemma 2.2.4. “Consider (X, d) a MS,. Let A, B ⊂ X and let q > 1 be a

constant. Then ∀ ψ ∈ A, ∃ θ ∈ B s.t the inequality

d(ψ, θ) ≤ qH(A, B),

where H is a Pompeiu-Hausdorff metric.”[26]

Definition 2.2.5. “Let (X, d) be a MS. A function Γ : X → CB(X) is defined

as a multivalued contraction if there exists a constant 0 ≤ λ < 1 s.t

H(Γψ,Γθ) ≤ λd(ψ, θ), for all ψ, θ ∈ X

In this context, CB(X) represents the collection of non-empty closed and bounded

subsets of X and H represents the Hausdorff distance.” [27]

2.3 b-Metric Space

Bakhtin [11] is the first to introduce the concept of a bMS and Czerwick [28] is

the next. Czerwick explicitly defined a bMS and proposed a condition that was

weaker than the third feature of MS. They developed the concept of bMS and then

applied the same concept to develop some FP findings for generalizing the BCP.

Definition 2.3.1. “Consider a non-empty set X and a function db : X×X →

[0,∞) that satisfies the following conditions:
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Mb1) db(ψ, θ) = 0⇔ ψ = θ;

Mb2) db(ψ, θ) = db(ψ, θ) ∀ ψ, θ ∈ X;

Mb3) db(ψ, z) ≤ s [db(ψ, θ) + db(θ, z)] ∀ ψ, θ, z ∈ X, where s ≥ 1.

The function db is referred to as a b-metric and the set (X, db) is denoted as a

bMS.” (Bakhtin [11], Czerwik [28])

Remark 2.3.2. The class of MS is smaller than of bMS. In the case of s = 1,

the notions of MS and bMS coincide.

Remark 2.3.3. The notion of Cauchyness, convergence and completeness in

bMS can be generalized naturally as in MS.

Example 2.3.4. The function db : R× R→ R defined by db(ψ, θ) = (ψ − θ)2

is a bMS on R with s = 2.

Example 2.3.5. Consider X = `r[0, 1] as the set comprising of real functions

f(ψ), where ψ ∈ [0, 1], satisfying the condition that

∫ 1

0

| f(ψ)|r <∞ with 0 < r < 1

Let db : X ×X → R+ be defined as follows:

db(f, g) =

(∫ 1

0

|f(ψ)− g(ψ)|rdψ
) 1

r

Then db is bMS with s = 2
1
r .

2.4 Graph

Graphs serve as mathematical structures employed to depict real-world scenarios

by establishing connections between elements within specific domains..

Definition 2.4.1. “A graph is a pair of two sets that are the following:

(a) The set of vertices represented as V (G), is a non-empty collection that in-

cludes all the vertices of the graph.
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(b) The set of edges, denoted as E(G), is a binary operation applied to the set

of vertices, V (G).

The primary method of representing a graph, denoted as G = (V (G),E(G)), is

through a diagram where vertices are depicted as points and edges are depicted

as line segments connecting the vertices.” [29]

Example 2.4.2. For the graph in the accompanying figure:

V (G) = {1, 2, 3, 4, 5, 6} and

E(G) = {(1, 2), (1, 4), (4, 2), (2, 5), (5, 4), (3, 5), (3, 6), (6, 6)}

Figure 2.5: A directed graph.

Figure 2.6: A reflexive graph with loops.

Definition 2.4.3. “Consider a non-empty set X and let ∆ represent the diago-

nal of the Cartesian product X×X. A directed graph or digraph G is characterized
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by a non-empty set V (G) and the set E(G) ⊂ V (G)× V (G) of its directed edges.

A digraph is reflexive if any vertex admits a loop.

For a given digraph G = (V,E),

(a) If whenever (ψ, θ) ∈ E(G) ⇒ (θ, ψ) /∈ E(G), then the digraph G is called

an oriented graph.

(b) A digraph G is transitive whenever (ψ, θ) ∈ E(G) and (θ, z) ∈ E(G) ⇒

(ψ, z) ∈ E(G), for any ψ, θ, z ∈ V (G).

Figure 2.7: A transitive graph.

Figure 2.8: A connected graph.

(c) A path of G is a sequence ψ0, ψ1, ψ2, . . . , ψn, . . . with (ψi, ψi+1) ∈ E(G)

for each i ∈ N.

(d) G is connected if there is a path between every two vertices, and it is weakly

connected if the corresponding undirected graph G̃ is connected, where G̃ is

obtained from G by ignoring the direction of edges.
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(e) G−1 be the graph obtained from G by reversing the direction of edges. Thus,

E (G−1) = {(ψ, θ) ∈ X ×X : (θ, ψ) ∈ E (G)} .

(f) (V ′, E′) is called subgraph of G if V ′ ⊂ V (G) and E′ ⊂ E(G) and for any

edge (ψ, θ) ∈ E′, ψ, θ ∈ V ′.”[19]

In 2012, Wardowski [30] introduced a new type of contraction called F-contraction

and proved a FP theorem concerning F-contraction.

Definition 2.4.4. “Let F : (0, ∞) → R be a function that satisfies the

following conditions, as stated in:

(F1) For any α, β ∈ (0, ∞) s.t α < β then F(α) < F(β).

(F2) For any positive real sequence {ψq},

lim
q→∞

ψq = 0 if and only if lim
q→∞
F (ψq) = −∞.

(F3) There exists a constant k ∈ (0, 1) s.t lim
α→0+

αkF(α) = 0.

(F4) For any subset A ⊂ (0, ∞) with inf A > 0, we possess F(inf A) = inf F(A).

Throughout the thesis J represents the collection of functions that satisfy con-

ditions (F1)-(F3) and J ∗ as the collection of functions F that satisfy conditions

(F1)-(F4).” [30]

In 2015, Definition (2.4.4) is extended by Cosentino et al. [31] for obtaining some

FP results in bMS.

“Let (X, db) be a bMS and for F : (0, ∞)→ R be a mapping and s ≥ 1 be a real

number.

If each sequence {ψq} q ∈ N of positive numbers s.t γ +F (sψq) ≤ F (ψq−1) for all

q ∈ N and some γ > 0, then

γ + F (sqψq) ≤ F
(
sq−1ψq−1

)
for all q ∈ N.” (2.1)
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Definition 2.4.5. “A function Φ : R+ → R+ is considered a comparison

function (CF) if it fulfills the following condition:

(a) Φ is strictly increasing.

(b) lim
n→∞

Φn(t) = 0 for every t ∈ R+.” [32]

In [33] Berinde has introduced the concept of c-comparison function (c)-CF by

adding one more condition to comparison function.

Definition 2.4.6. “A function Φ : R+ −→ R+ is considered a (c)-CF if it

satisfies the following conditions:

(a) Φ is monotonically increasing.

(b) lim
n→∞

Φn(t) = 0 for every t ∈ R+.

(c) The series
∞∑
n=0

Φn(t) is convergent for each t ≥ 0.” [33]



Chapter 3

Fixed Point Results in Metric

Spaces via Graph Structure

This chapter centers around a comprehensive analysis of the paper [21], empha-

sizing the examination of variant multivalued mappings through a graph struc-

ture. To do this, rational-type multivalued G-contraction and multivalued F -

contractions in Ms endowed with graph [34] are introduced.

3.1 On Multivalued G-Contractions

Two significant outcomes in FP Theory include the BCP and the Tarski fixed

point (TFP) theorem. Echenique [35] presented proof of the TFP theorem by

employing a combination of FP techniques and graph theory. Subsequently, in

[19], Jachymski introduced an alternative framework in the FP theory of MS by

replacing order structures with graph structures on MS. In order to illustrate the

relationship between ordered pairs of components in terms of their vertices and

directed edges, FP theory and graph theory create an intersection between the

theories of FP outcomes and graph.

Definition 3.1.1. [34] “Consider a MS (X, d) equipped with a graph G, where

the vertex set V (G) corresponds to X. Let Γ : X → CB(X) be a multivalued

17
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mapping. We say that Γ possesses the weakly graph-preserving (WGP) property

if for every ψ ∈ X and θ ∈ Γx s.t (ψ, θ) belongs to the set of directed edges E(G),

it follows that (θ, z) is an element of the set of directed edges E(G) for all z ∈ Γθ.”

Lemma 3.1.2. Let (X, d) be a MS and Γ : X → P (X) be an upper semi-

continuous (USC) mapping s.t for every r ∈ X, the set Γr is closed. If rq →

r0, tq → t0 and tq ∈ Γrq, then t0 ∈ Γr0. [34]

Next the notion of Multivalued G-contraction of type-I used by Acar et al. is

defined then a FP theorem is proved.

Definition 3.1.3. Let (X, d) be a CMS equipped with directed graph. Then

g : X → CB(X) is called rational multivalued G-contraction of type-I if

H(gψ, gθ) ≤ Φ(N(ψ, θ)), ∀ (ψ, θ) ∈ E(G), (3.1)

where Φ is (c)-CF and,

N(ψ, θ) = max

{
d(ψ, θ),

D(ψ, gψ) +D(θ, gθ)

2
,
D(ψ, gθ) +D(θ, gψ)

2

D(ψ, gψ)D(θ, gθ)

d(ψ, θ)
,
D(θ, gθ)[1 +D(ψ, gψ)]

1 + d(ψ, θ)

}
.

Theorem 3.1.4. Let (X, d) be a CMS and g : X → CB(X) is USC and a

weakly graph-preserving mapping satisfying the following conditions:

(a) g is rational multivalued G-contraction of type-I;

(b) Ng = {ψ ∈ X : (ψ, v) ∈ E(G) for v ∈ gψ} is non-empty,

then g has a FP.

Proof. Consider ψ0 ∈ Ng, then ∃ ψ1 ∈ gψ0 s.t (ψ0, ψ1) ∈ E(G).

As g satisfies condition (a), therefore by (3.1.3)

D (ψ1, gψ1) ≤ H (gψ0, gψ1)

≤ Φ (N (ψ0, ψ1))
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= Φ

(
max

{
d (ψ0, ψ1) ,

D (ψ0, gψ0) +D (ψ1, gψ1)

2
,

D (ψ0, gψ1) +D (ψ1, gψ0)

2
,
D (ψ0, gψ0)D (ψ1, gψ1)

d (ψ0, ψ1)
,

D (ψ0, gψ1) [1 +D (ψ0, gψ0)]

1 + d (ψ0, ψ1)

})
≤ Φ

(
max

{
d (ψ0, ψ1) ,

d (ψ0, ψ1) + d (ψ1, ψ2)

2
,

d (ψ0, ψ2) + d (ψ1, ψ1)

2
,
d (ψ0, ψ1) · d (ψ1, ψ2)

d (ψ0, ψ1)
,

d (ψ1, ψ2) [1 + d (ψ0, ψ1)]

1 + d (ψ0, ψ1)

})
≤ Φ

(
max

{
d (ψ0, ψ1) ,

d (ψ0, ψ1) + d (ψ1, ψ2)

2
, d (ψ1, ψ2)

})
≤ Φ (max {d (ψ0, ψ1) , d (ψ1, ψ2)})

≤ Φ (d (ψ0, ψ1))

⇒ D (ψ1, gψ1) ≤ H (gψ0, gψ1) ≤ Φ (d (ψ0, ψ1)) .

Let % > 1 be an arbitrary constant so from Lemma (2.2.4) ∃ ψ2 ∈ gψ1 s.t,

d (ψ1, ψ2) ≤ √%H (gψ0, gψ1) . (3.2)

So (3.2) can be written as

d (ψ1, ψ2) ≤ √%Φ (d (ψ0, ψ1)) < %Φ (d (ψ0, ψ1)) .

Given that Φ is strictly increasing, it follows that

0 < Φ (d (ψ1, ψ2)) < Φ (%Φ (d (ψ0, ψ1))) .

Consider %1 =
Φ (%Φ (d (ψ0, ψ1)))

Φ (d (ψ1, ψ2))
.

Now %1 > 1, applying the same procedure as above an iterative sequence can be

obtained. Since ψ2 ∈ gψ1, then by using WGP property, (ψ1, ψ2) ∈ E(G) so,

D (ψ2, gψ2) ≤ H (gψ1, gψ2)

≤ Φ (N (ψ1, ψ2))
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= Φ

(
max

{
d (ψ1, ψ2) ,

D (ψ1, gψ1) +D (ψ2, gψ2)

2
,

D (ψ1, gψ2) +D (ψ2, gψ1)

2
,
D (ψ1, gψ1)D (ψ2, gψ2)

d (ψ1, ψ2)
,

D (ψ2, gψ2) [1 +D (ψ1, gψ1)]

1 + d (ψ1, ψ2)

})
≤ Φ

(
max

{
d (ψ1, ψ2) ,

d (ψ1, ψ2) + d (ψ2, ψ3)

2
,
d (ψ1, ψ3) + d (ψ2, ψ2)

2
,

d (ψ1, ψ2) d (ψ2, ψ3)

d (ψ1, ψ2)
,
d (ψ2, ψ3) [1 + d (ψ1, ψ2)]

1 + d (ψ1, ψ2)

})
= Φ

(
max

{
d (ψ1, ψ2) ,

d (ψ1, ψ2) + d (ψ2, ψ3)

2
, d (ψ2, ψ3)

})
= Φ (max {d (ψ1, ψ2) , d (ψ2, ψ3)})

≤ Φ (d (ψ1, ψ2))

<
√
%1Φ (d (ψ1, ψ2)) .

As, %1 > 1 , so by Lemma (2.2.4), ∃ ψ3 ∈ gψ2 s.t

d (ψ2, ψ3) ≤ √%1H (gψ1, gψ2) < %1Φ (d (ψ2, ψ1)) = Φ (%Φ (d (ψ0, ψ1))) .

Due to the strictly increasing property of Φ,

0 < Φ (d (ψ2, ψ3)) < Φ2 (%Φ (d (ψ0, ψ1))) .

Let

%2 =
Φ2 (%Φ (d (ψ0, ψ1)))

Φ (d (ψ2, ψ3))
> 1.

Continuing in the same way, a sequence {ψq} ∈ X can be constructed so that

ψq+1 ∈ gψq s.t (ψq, ψq+1) ∈ E(G) and

d (ψq, ψq+1) ≤ Φq (%Φ (d (ψ0, ψ1))) .

To prove that {ψq} is a CS, take p, q ∈ N with p > q.

d (ψq, ψp) ≤
p−1∑
i=q

d (ψi, ψi+1) ≤
p−1∑
i=q

Φi (%Φ (d (ψ0, ψ1))) .
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The R.H.S must be convergent because Φ is a (c)-CF therefore when q, p → ∞

then

d (ψq, ψp)→ 0.

Since (X, d) is a complete MS, therefore,

lim
q→∞

ψq = µ ∈ X.

As g is USC, so by using Lemma (3.1.2) µ ∈ gµ. Thus g has a FP.

Consider the following property:

The (P)-property can be stated as follows: For any sequence {ψq} in X, if ψq

converges to ψ and (ψq, ψq+1) ∈ E(G), then there exists a subsequence {ψqk}

s.t (ψqk , ψ) ∈ E(G).

Definition 3.1.5. Let (X, d) be a CMS equipped with directed graph G and

Φ be a(c)-CF. Then g : X → CB(X) is called rational multivalued G-contraction

of type-II if

H(gψ, gθ) ≤ Φ(N(ψ, θ)), ∀ (ψ, θ) ∈ E(G), (3.3)

N(ψ, θ) = max

{
d(ψ, θ),

D(ψ, gψ) +D(θ, gθ)

2
,
D(ψ, gθ) +D(θ, gψ)

2
,

D(ψ, gψ)D(θ, gθ)

1 +H(gψ, gθ)

}

Theorem 3.1.6. Let (X, d) be a CMS and g : X → CB(X) be a multivalued

mapping satisfying the following conditions:

(a) g is rational multivalued G-contraction of type-II;

(b) Ng = {ψ ∈ X : (ψ, v) ∈ E(G) for v ∈ gψ} is non-empty;

(c) g satisfies the (P)-property;

(d) g is a weakly graph-preserving mapping.
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Then g has a FP.

Proof. Consider ψ0 ∈ Ng, there exists ψ1 ∈ gψ0 s.t (ψ0, ψ1) ∈ E(G). According

to given condition(a), for ψ0 and ψ1

D (ψ1, gψ1) ≤ H (gψ0, gψ1)

≤ Φ (M (ψ0, ψ1))

= Φ

(
max

{
d (ψ0, ψ1) ,

D (ψ0, gψ0) +D (ψ1, gψ1)

2
,

D (ψ0, gψ1) +D (ψ1, gψ0)

2
,
D (ψ0, gψ0)D (ψ1, gψ1)

1 +H (gψ0, gψ1)

})
≤ Φ

(
max

{
d (ψ0, ψ1) ,

d (ψ0, ψ1) + d (ψ1, ψ2)

2
,

d (ψ0, ψ2) + d (ψ1, ψ1)

2
,
d (ψ0, ψ1) d (ψ1, ψ2)

D (ψ1, gψ1)

})
≤ Φ

(
max

{
d (ψ0, ψ1) ,

d (ψ0, ψ1) + d (ψ1, ψ2)

2
,

d (ψ0, ψ2)

2
,
d (ψ0, ψ1) d (ψ1, ψ2)

d (ψ1, ψ2)

})
≤ Φ

(
max

{
d (ψ0, ψ1) ,

d (ψ0, ψ1) + d (ψ1, ψ2)

2
, d (ψ1, ψ2)

})
≤ Φ (max {d (ψ0, ψ1) , d (ψ1, ψ2)})

≤ Φ (d (ψ0, ψ1))

D (ψ1, gψ1) ≤ H (gψ0, gψ1) ≤ Φ (d (ψ0, ψ1)) .

Suppose % > 1 be an arbitrary constant so from Lemma (2.2.4) ∃ ψ2 ∈ gψ1 s.t

d (ψ1, ψ2) ≤ √%H (gψ1, gψ2) < %Φ (d (ψ0, ψ1)) .

As Φ is strictly increasing, so

0 < Φ(d(ψ1, ψ2)) < Φ(%Φ(d(ψ0, ψ1))).

Take %1 =
Φ (%Φ (d (ψ0, ψ1)))

Φ (d (ψ1, ψ2))
> 1.

In view of (ψ0, ψ1) ∈ E(G), ψ1 ∈ gψ0, ψ2 ∈ gψ1 and by using WGP, (ψ1, ψ2) ∈
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E(G). Therefore,

D (ψ2, gψ2) ≤ H (gψ1, gψ2)

≤ Φ (N (ψ1, ψ2))

= Φ

(
max

{
d (ψ1, ψ2) ,

D (ψ1, gψ1) +D (ψ2, gψ2)

2
,

D (ψ1, gψ2) +D (ψ2, gψ1)

2
,
D (ψ1, gψ1)D (ψ2, gψ2)

1 +H (gψ1, gψ2)

})
≤ Φ

(
max

{
d (ψ1, ψ2) ,

d (ψ1, ψ2) + d (ψ2, ψ3)

2
,

d (ψ1, ψ3) + d (ψ2, ψ2)

2
,
d (ψ1, ψ2) d (ψ2, ψ3)

D (ψ2, gψ2)

})
= Φ

(
max

{
d (ψ1, ψ2) ,

d (ψ1, ψ2) + d (ψ2, ψ3)

2
, d (ψ2, ψ3)

})
= Φ (max {d (ψ1, ψ2) , d (ψ2, ψ3)})

≤ Φ (d (ψ1, ψ2))

<
√
%1Φ (d (ψ1, ψ2)) .

From Lemma(2.2.4), ∃ ψ3 ∈ gψ2 s.t

d (ψ2, ψ3) ≤ √%1H (gψ1, gψ2) < %1Φ (d (ψ2, ψ1))

= Φ (%Φ (d (ψ0, ψ1))) .

=⇒ d (ψ2, ψ3) ≤ Φ (%Φ (d (ψ0, ψ1))) .

AS Φ is strictly increasing, so

0 < Φ (d (ψ2, ψ3)) < Φ2 (%Φ (d (ψ0, ψ1))) .

Consider

%2 =
Φ2 (%Φ (d (ψ0, ψ1)))

Φ (d (ψ2, ψ3))
> 1.

Continuing similarly, we construct a sequence {ψq} ∈ X s.t ψq+1 ∈ gψq and

(ψq, ψq+1) ∈ E(G),

d (ψq, ψq+1) ≤ Φq (%Φ (d (ψ0, ψ1))) .
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Next, our goal is to show that {ψq} is a CS. Consider p and q as natural numbers

with p > q. By triangular inequality,

d (ψq, ψp) ≤
p−1∑
i=q

d (ψi, ψi+1) ≤
p−1∑
i=q

Φi (%Φ (d (ψ0, ψ1))) .

The R.H.S must be convergent because Φ is a (c)-CF therefore when q, p → ∞

then d (ψq, ψp)→ 0. Hence {ψq} is a CS in the MS, which is complete. Therefore,

lim
q→∞

ψq = µ. As (P )-property is satisfied, so ∃ a subsequence {ψqk} of {ψq} s.t

(ψqk , µ) ∈ E(G) for each k ∈ N. Suppose D(µ, gµ) > 0, so that

lim
q→∞

D
(
ψqk , ψqk+1

)
= 0,

lim
q→∞

D (ψqk , µ) = 0.

D
(
ψqk , ψqk+1

)
<

1

3
D(µ, gµ), (3.4)

for q0 ∈ N s.t qk > q0. Furthermore, there exists q1 ∈ N s.t for any qk > q1

D (ψq, µ) <
1

3
D(µ, gµ). (3.5)

Consider qk > max {q0, q1 }, so that

D
(
ψqk+1

, gµ
)
≤ H (gψqk , gµ)

≤ Φ(N (ψqk , µ))

≤ Φ

(
max

{
d (ψqk , µ) ,

D (ψqk , gψqk) +D(µ, gµ)

2
,

D (ψqk , gµ) +D (µ, gψqk)

2
,
D (ψqk , gψqkD(µ, gµ)

1 +H (gψnk , gµ)

})

≤ Φ

max

1

3
D(µ, gµ),

1

3
D(µ, gµ) +D(µ, gµ)

2
,

D (ψqk , gµ) +D (µ, gψqk)

2
,

1

3
D(µ, gµ)D(µ, gµ)

D
(
ψqk+1

, gµ
)






FP Results in MS via Graph Structure 25

Now, take k → ∞, then D (µ, gµ) ≤ Φ (D (µ, gµ)) < D (µ, gµ), which is a

contradiction. So D(µ, gµ) = 0 and since gµ is closed, so µ ∈ gµ. Hence g admits

a FP.

Theorem 3.1.7. Suppose (X, d) is a CMS with a directed graph G and a

multivalued mapping g : X → K(X). Suppose g be a USC and a weakly graph-

preserving mapping. Assume that

(a) There is a (c)-CF Φ s.t

H(gψ, gθ) ≤ Φ(N(ψ, θ)) ∀ (ψ, θ) ∈ E(G).

where N(ψ, θ) is same as in Theorem (3.1.6)

(b) Ng is non-empty.

So that, g has a FP.

Proof. Suppose that ψ0 ∈ Ng, ψ1 ∈ gψ0 s.t (ψ0, ψ1) ∈ E(G). So, by condition (a)

D (ψ1, gψ1) ≤ H (gψ0, gψ1)

≤ Φ (N (ψ0, ψ1))

= Φ

(
max

{
d (ψ0, ψ1) ,

D (ψ0, gψ0) +D (ψ1, gψ1)

2
,

D (ψ0, gψ1) + d (ψ1, gψ0)

2
,
D (ψ0, gψ0)D (ψ1, gψ1)

1 +H (gψ0, gψ1)

})
≤ Φ

(
max

{
d (ψ0, ψ1) ,

d (ψ0, ψ1) + d (ψ1, ψ2)

2
,

d (ψ0, ψ2) + d (ψ1, ψ1)

2
,
d (ψ0, ψ1) d (ψ1, ψ2)

D (ψ1, gψ1)

})
≤ Φ

(
max

{
d (ψ0, ψ1) ,

d (ψ0, ψ1) + d (ψ1, ψ2)

2
, d (ψ1;ψ2)

})
≤ Φ (d (ψ0, ψ1)) .

since gψ1 is compact then ∃ ψ2 ∈ gψ1 and d (ψ1, ψ2) = D (ψ1, gψ1) so

d (ψ1, ψ2) ≤ Φ (d (ψ0, ψ1)) .
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Since (ψ0, ψ1) ∈ E (G) , ψ1 ∈ gψ0 and ψ2 ∈ gψ1, using weakly graph-preserving

property, (ψ1, ψ2) ∈ E (G). Then

D (ψ2, gψ2) ≤ H (gψ1, gψ2)

≤ Φ (N (ψ1, ψ2))

≤ Φ (d (ψ1, ψ2)) .

Again by the compactness of gψ2, ∃ ψ3 ∈ gψ2 s.t d (ψ2, ψ3) = D (ψ2, gψ2).

Therefore

d (ψ2, ψ3) ≤ Φ (d (ψ1, ψ2)) .

So a sequence {ψq} in X can be constructed s.t ψq+1 ∈ gψq, (ψq, ψq+1) ∈ E(G),

and

d (ψq, ψq+1) ≤ Φ (d (ψq−1, ψq))

≤ Φ2 (d (ψq−2, ψq−1))

...

≤ Φq (d (ψ0, ψ1)) .

Thus

d (ψq, ψq+1) ≤ Φq (d (ψ0, ψ1)) .

To show that {ψq} is a CS. Let p, q ∈ N and p > q. Then by triangular inequality,

d (ψq, ψp) ≤
p−1∑
i=q

d (ψi, ψi+1)

≤
p−1∑
i=q

Φq (d (ψ0, ψ1)) .

The R.H.S must be convergent because Φ is a (c)-CF. Therefore, d (ψq, ψm)→ 0

as q, p→∞.

So {ψq} is a CS in (X, d) which is a CMS. Therefore, lim
q→∞

ψq = µ ∈ X.

As g is USC, so by using Lemma (3.1.2), it follows that µ ∈ gµ. In other words,

g admits a FP.
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3.2 On F-Contractions

In this section FP theorems are examined and elaborated for F -contractions. For

this, some sets are defined here.

Let (X, d) be a MS and G be a directed graph on X and a mapping Γ : X →

CB(X). Define

ΓG ≡ {(ψ, θ) ∈ E(G) : H (Γψ, Γθ) > 0} ,

XΓ = {ψ ∈ X : (ψ, θ) ∈ E(G) for some θ ∈ Γψ} ,

and

L (ψ, θ) = max


d (ψ, θ) , D (ψ, Γψ) , D (θ, Γθ) ,

D (ψ, Γψ)D (ψ, Γθ) +D (θ, Γθ)D (θ, Γψ)

max {D (ψ, Γθ) , D (θ, Γψ)}

 ,

with max {D (ψ,Γθ) , D (θ,Γψ)} 6= 0.

Now here is the definition of F -contraction.

Definition 3.2.1. [36] “Consider (X, d) be a MS and a mapping Γ : X →

CB(X). Then Γ is called a multivalued F -contraction if there exist F ∈ J and

γ > 0 s.t

γ + F (H (Γψ, Γθ)) ≤ F (L (ψ, θ)) (3.6)

for all ψ, θ ∈ X with (ψ, θ) ∈ ΓG.”

Theorem 3.2.2. Consider a multivalued F -contraction Γ : X → K(X) on

(X, d) which is a complete MS with a directed graph G. If XΓ is non-empty then

Γ admits a FP.

Proof. To prove that Γ has a FP, we on contrary assume that Γ has no FP then,

D(ψ, Γψ) > 0 ∀ ψ ∈ X. Consider ψ0 ∈ XΓ, then (ψ0, ψ1) ∈ E(G) for any

ψ1 ∈ Γψ0, and

0 < D (ψ1, Γψ1) ≤ H (Γψ0, Γψ1) .
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So (ψ0, ψ1) ∈ ΓG. By using (3.6) for ψ0 and ψ1

F (D (ψ1, Γψ1)) ≤ F (H (Γψ0, Γψ1))

≤ F (L (ψ0, ψ1))− γ

= F (max {d (ψ0, ψ1) , D (ψ0, Γψ0) , D (ψ1, Γψ1) ,

D (ψ0, Γψ0)D (ψ0, Γψ1) +D (ψ1, Γψ1)D (ψ1, Γψ0)

max {D (ψ0, Γψ1) , D (ψ1, Γψ0)}

})
− γ

≤ F (max {d (ψ0, ψ1) , d (ψ1, ψ2) ,

d (ψ0, ψ1) d (ψ0, ψ2) + d (ψ1, ψ2) d (ψ1, ψ1)

max {d (ψ0, ψ2) , d (ψ1, ψ1)}

})
− γ

≤ F (max {d (ψ0, ψ1) , d (ψ1, ψ2)})− γ

≤ F (d (ψ0, ψ1))− γ.

By Compactness of Γψ1, there is, ψ2 ∈ Γψ1 s.t d (ψ1, ψ2) = D (ψ1, Γψ1). Then

F (d (ψ1, ψ2)) ≤ F (d (ψ0, ψ1))− γ.

Since (ψ0, ψ1) ∈ E(G), ψ1 ∈ Γψ0 and ψ2 ∈ Γψ1, by using the property of

weakly graph-preserving, (ψ1, ψ2) ∈ E(G), and (ψ1, ψ2) ∈ ΓG. Now, proceeding

similarly,

0 < D (ψ2, Γψ2) ≤ H (Γψ1, Γψ2) ,

F (D (ψ2, Γψ2)) ≤ F (H (Γψ1, Γψ2))

≤ F (L (ψ1, ψ2))− γ

= F (max {d (ψ1, ψ2) , D (ψ1, Γψ1) , D (ψ2, Γψ2) ,

D (ψ1, Γψ1)D (ψ1, Γψ2) +D (ψ2, Γψ2)D (ψ2, Γψ1)

max {D (ψ1, Γψ2) , D (ψ2, Γψ1)}

})
− γ

≤ F (max {d (ψ1, ψ2) , d (ψ2, ψ3)

d (ψ1, ψ2) d (ψ1, ψ3) + d (ψ2, ψ3) d (ψ2, ψ2)

max {d (ψ1, ψ3) , d (ψ2, ψ2)}

})
− γ

≤ F (max {d (ψ1, ψ2) , d (ψ2, ψ3)})− γ

≤ F (d (ψ1, ψ2))− γ.
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The compactness of Γψ2 implies that ψ3 ∈ Γψ2 s.t d (ψ2, ψ3) = D (ψ2, Γψ2) so

F (d (ψ2, ψ3)) ≤ F (d (ψ1, ψ2))− γ. (3.7)

So a sequence {ψq} ∈ X can be constructed s.t ψq+1 ∈ Γψq, (ψq, ψq+1) ∈ ΓG and

F (d (ψq, ψq+1)) ≤ F (d (ψq−1, ψq))− γ ∀ q ∈ N. (3.8)

Let us assume that τq = d (ψq, ψq+1), where ψq and ψq+1 are elements of a metric

space. So τq > 0 and {τq} is a decreasing sequence of real numbers, there exists

ω > 0 s.t lim
q→∞

τq = ω.

F (τq) ≤ F (τq−1)− γ

≤ F (τq−2)− 2γ

...

≤ F (τ0)− qγ

F (τq) ≤ F (τ0)− qγ. (3.9)

Now lim
q→+∞

F (τq) = −∞, therefore

ω = lim
q→∞

τq = 0.

Due to (F3), there is a constant k ∈ (0, 1) s.t, lim
q→∞

τ kq F (τq) = 0. Then by (3.9)

τ kq F (τq)− τ kq F (τ0) ≤ −τ kq qγ ≤ 0. (3.10)

Which is true ∀ q ∈ N. Suppose q → ∞, then limq→∞ qτ
k
q = 0. From (3.10),

suppose there is a q1 ∈ N then qτ kq ≤ 1 ∀ q > q1. Thus

τq ≤
1

q1/k
∀ q > q1. (3.11)



FP Results in MS via Graph Structure 30

To show {ψq} is a CS, suppose that p, q ∈ N and p > q > q1. Then,

d (ψq, ψp) ≤ d (ψq, ψq+1) + d (ψq+1, ψq+2) + · · ·+ d (ψp−1, ψp)

= τq + τq+1 + τq+2 + · · ·+ τp−1

=

p−1∑
i=q

τi

≤
∞∑
i=q

τi

≤
∞∑
i=q

(
1

i1/k

)

=⇒ d (ψq, ψp) ≤
∞∑
i=q

(
1

i1/k

)
.

As k ∈ (0, 1), then
∞∑
i=1

1

i1/k
is convergent. So d (ψq, ψp) → 0 as q, p → ∞, this

implies that {ψq} is a CS in the MS, which is complete. So it converges to some

µ ∈ X. Using the USC of Γ and from Lemma (2.2.4), it follows that µ ∈ Γµ.

However, this contradicts our initial assumption. Hence, Γ has a FP.

Theorem 3.2.3. Consider (X, d) a complete MS, with a digraph G. Let

Γ : X → K(X) be a multivalued F -contraction, where F ∈ J∗. If the set XΓ is

non-empty, then Γ has a FP.

Proof. Let Γ does not have a FP, then D(ψ, Γψ) > 0, for every ψ ∈ X. Let ψ0 be

an element in XΓ. Consequently, there exists (ψ0, ψ1) ∈ E(G) for some ψ1 ∈ Γψ0.

Thus

0 < D (ψ1, Γψ1) ≤ H (Γψ0, Γψ1) .

Hence, (ψ0, ψ1) ∈ ΓG. By F -contraction condition (3.6)

F (D (ψ1, Γψ1)) ≤ F (H (Γψ0, Γψ1, ))

≤ F (L (ψ0, ψ1))− γ

2

= F (max {d (ψ0, ψ1) , D (ψ0, Γψ0) , D (ψ1, Γψ1)}
D (ψ0, Γψ0)D (ψ0, Γψ1) +D (ψ1, Γψ1)D (ψ1, Γψ0)

max {D (ψ0, Γψ1) , D (ψ1, Γψ0)}

})
− γ

2
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≤ F (max {d (ψ0, ψ1) , d (ψ1, ψ2) ,

d (ψ0, ψ1) d (ψ0, ψ2) + d (ψ1, ψ2) d (ψ1, ψ1)

max {d (ψ0, ψ1) , d (ψ1, ψ1)}

})
− γ

2

≤ F (max {d (ψ0, ψ1) , d (ψ1, ψ2)})− γ

2

≤ F (d (ψ0, ψ1))− γ

2
.

In view of (F4),

F (D (ψ1, Γψ1)) =F (inf {d (ψ1, v) : v ∈ Γψ1})

= inf {F (d (ψ1, v) : v ∈ Γψ1)} ≤ F (d (ψ0, ψ1))− γ

2
.

Due to the compactness of Γψ1, there is ψ2 ∈ Γψ1 s.t d (ψ1, ψ2) = D (ψ1, Γψ1).

So

F (d (ψ1, ψ2)) ≤ F (d (ψ0, ψ1))− γ

2
. (3.12)

Since (ψ0, ψ1) ∈ E(G), ψ1 ∈ Γψ0 and ψ2 ∈ Γψ1. By WGP property (ψ1, ψ2) ∈

E(G), and 0 < D (ψ2, Γψ2) ≤ H (Γψ1, Γψ2) . So (ψ1, ψ2) belongs to ΓG, then

F (D (ψ2, Γψ2)) ≤ F (H (Γψ1, Γψ2))

≤ F (L (ψ1, ψ2))− γ

2

= F (max {d (ψ1, ψ2) , D (ψ1, Γψ1) , D (ψ2, Γψ2) ,

D (ψ1, Γψ1)D (ψ1, Γψ2) +D (ψ2, Γψ2)D (ψ2, ψ1)

max {D (ψ1, Γψ2) , D (ψ2, Γψ1)}

})
− γ

2

≤ F (max {d (ψ1, ψ2) , d (ψ2, ψ3) ,

d (ψ1, ψ2) d (ψ1, ψ3) + d (ψ2, ψ3) d (ψ2, ψ2)

max {d (ψ1, ψ3) , d (ψ2, ψ2)

})
− γ

2

≤ F (max {d (ψ1, ψ2) , d (ψ2, ψ3)})− γ

2
.

In view of (F4)

F (D (ψ2, Γψ2)) =F (inf {(ψ2, ν) : ν ∈ Γψ2})

= inf {F (d (ψ2, v) : ν ∈ Γψ2)} ≤ F (d (ψ1, ψ2))− γ

2
.
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Due to the Compactness of Γψ2, there is ψ3 ∈ Γψ2, s.t d (ψ2, ψ3) = D (ψ2, Γψ2)

so

F (d (ψ2, ψ3)) ≤ F (d (ψ1, ψ2))− γ

2
. (3.13)

By following a similar approach, construct a sequence {ψq} in X s.t ψq+1 ∈ Γψq

and (ψq, ψq+1) ∈ ΓG, and

F (d (ψq, ψq+1)) ≤ F (d (ψq−1, ψq))−
γ

2
, ∀ q ∈ N (3.14)

Let τq = d (ψq, ψq+1), then τq > 0 and from (3.14), {τq} is a decreasing sequence

of real numbers, there exists a non-negative value ω > 0 s.t lim
q→∞

τq = ω. Now

F (τq) ≤ F (τq−1)− γ

2
≤ F (τq−2)− 2

(γ
2

)
· · · ≤ F (τ0)− q

(γ
2

)

=⇒ F (τq) ≤ F (τ0)− q
(γ

2

)
. (3.15)

The R.H.S of (3.15) goes to−∞ when q → +∞. By utilizing (F2), ω = lim
q→∞

τq = 0.

As a consequence of (F3), there is k ∈ (0, 1) s.t lim
q→∞

τ kq F (τq) = 0. By the inequal-

ity (3.15)

τ kq F (τq)− τ kq F (a0) ≤ −τ kq q
(γ

2

)
≤ 0 q ∈ N (3.16)

This condition holds for all q ∈ N. Equation (3.16) implies, lim
q→∞

qτ kq = 0. So there

is q1 ∈ N s.t qτ kq ≤ 1 for all q > q1. Thus τq ≤
1

q1/k
, ∀ q > q1. Now claim that

{τq} is CS. For this, take p, q ∈ N with p > q ≥ q1. Hence,

d (ψq, ψp) ≤
p−1∑
i=q

d (ψi, ψi+1) =

p−1∑
i=q

τi ≤
∞∑
i=q

τi ≤
∞∑
i=q

(
1

i1/k

)
.

As k belongs to the interval (0, 1), the series
∞∑
i=1

(
1

i1/k

)
converges. Consequently,

as q and p approach infinity then d (ψq, ψm) → 0. In other words, the sequence
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{ψq} is a CS in (X, d) which is a CMS. Therefore, {ψq} converges to some µ ∈ X.

USC of Γ and the Lemma (3.1.2) implies µ ∈ Γµ. So it contradicts our assumption.

Thus Γ must admits a FP.

Theorem 3.2.4. Consider a CMS (X, d) equipped with a directed graph G

that satisfies the following property:

For any {ψq} in X, if ψq converges to ψ and (ψq, ψq+1) ∈ E(G),

then there exists a subsequence {ψqk} with (ψqk , ψ) ∈ E(G).

Consider a multivalued mapping Γ : X → K(X), where Γ is also a F -contraction.

Suppose Γ is WGP mapping and the set XΓ is non-empty. If F is a continuous

function, then Γ must have a FP.

Proof. Assume that Γ has no FP then, D(ψ, Γψ) > 0 ∀ ψ ∈ X. Consider ψ0 ∈ XΓ.

So (ψ0, ψ1) ∈ ΓG. By using (3.6) for ψ0 and ψ1, (ψ0, ψ1) ∈ E(G) for any ψ1 ∈ Γψ0,

0 < D (ψ1, Γψ1) ≤ H (Γψ0, Γψ1) .

F (D (ψ1, Γψ1)) ≤ F (H (Γψ0, Γψ1))

≤ F (L (ψ0, ψ1))− γ

= F (max {d (ψ0, ψ1) , D (ψ0, Γψ0) , D (ψ1, Γψ1) ,

D (ψ0, Γψ0)D (ψ0, Γψ1) +D (ψ1, Γψ1)D (ψ1, Γψ0)

max {D (ψ0, Γψ1) , D (ψ1, Γψ0)}

})
− γ

≤ F (max {d (ψ0, ψ1) , d (ψ1, ψ2) ,

d (ψ0, ψ1) d (ψ0, ψ2) + d (ψ1, ψ2) d (ψ1, ψ1)

max {d (ψ0, ψ2) , d (ψ1, ψ1)}

})
− γ

≤ F (max {d (ψ0, ψ1) , d (ψ1, ψ2)})− γ

≤ F (d (ψ0, ψ1))− γ.

So

F (D (ψ1, Γψ1)) ≤ F (d (ψ0, ψ1))− γ. (3.17)
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By Compactness of Γψ1, there is, ψ2 ∈ Γψ1 s.t d (ψ1, ψ2) = D (ψ1, Γψ1). Then

F (d (ψ1, ψ2)) ≤ F (d (ψ0, ψ1))− γ.

Since (ψ0, ψ1) ∈ E(G), ψ1 ∈ Γψ0 and ψ2 ∈ Γψ1, by using the property of weakly

graph-preserving, (ψ1, ψ2) ∈ E(G), and

0 < D (ψ2, Γψ2) ≤ H (Γψ1, Γψ2) ,

so (ψ1, ψ2) ∈ ΓG. Then apply the same procedure as above it can be shown that

F (D (ψ2, Γψ2)) ≤ F (H (Γψ1, Γψ2)) ≤ F (L (ψ1, ψ2))− γ. (3.18)

So

F (D (ψ2, Γψ2)) = F (max {d (ψ1, ψ2) , D (ψ1, Γψ1) , D (ψ2, Γψ2) ,

D (ψ1, Γψ1)D (ψ1, Γψ2) +D (ψ2, Γψ2)D (ψ2, Γψ1)

max {D (ψ1, Γψ2) , D (ψ2, Γψ1)}

})
− γ

≤ F (max {d (ψ1, ψ2) , d (ψ2, ψ3)

d (ψ1, ψ2) d (ψ1, ψ3) + d (ψ2, ψ3) d (ψ2, ψ2)

max {d (ψ1, ψ3) , d (ψ2, ψ2)}

})
− γ

≤ F (max {d (ψ1, ψ2) , d (ψ2, ψ3)})− γ

≤ F (d (ψ1, ψ2))− γ.

The compactness of Γψ2 implies that ψ3 ∈ Γψ2 s.t d (ψ2, ψ3) = D (ψ2, Γψ2) so

F (d (ψ2, ψ3)) ≤ F (d (ψ1, ψ2))− γ. (3.19)

So a sequence {ψq} ∈ X can be constructed s.t ψq+1 ∈ Γψq, (ψq, ψq+1) ∈ ΓG and

F (d (ψq, ψq+1)) ≤ F (d (ψq−1, ψq))− γ ∀ q ∈ N. (3.20)
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Let us assume that τq = d (ψq, ψq+1), where ψq and ψq+1 are elements of a metric

space. In this case, we can conclude that τq > 0. Since {τq} is a decreasing

sequence of real numbers, there exists a non-negative value ω > 0 s.t lim
q→∞

τq = ω.

F (τq) ≤ F (τq−1)− γ

≤ F (τq−2)− 2γ

...

≤ F (τ0)− qγ

⇒ F (τq) ≤ F (τ0)− qγ. (3.21)

Now lim
q→+∞

F (τq) = −∞, therefore

ω = lim
q→∞

τq = 0.

Due to (F3) there is a constant k ∈ (0, 1)

lim
q→∞

ψkqF (ψq) = 0.

Then by (3.21)

τ kq F (τq)− τ kq F (τ0) ≤ −τ kq qγ ≤ 0. (3.22)

Which is true ∀ q ∈ N. Suppose q →∞ then

lim
q→∞

qτ kq = 0. (3.23)

From (3.10), suppose there is a q1 ∈ N then qψkq ≤ 1 ∀ q > q1. Thus τq ≤
1

q1/k

∀ q > q1.By claiming {τq} is CS, suppose that p, q ∈ N and p > q > q1. Then,

d (ψq, ψp) ≤
p−1∑
i=q

d (ψi, ψi+1) =

p−1∑
i=q

τi ≤
∞∑
i=q

τi ≤
∞∑
i=q

(
1

i1/k

)
.
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As k ∈ (ψ0, 1), the series
∞∑
i=1

1

i1/k
converges, so d (ψq, ψp)→ 0 as q, p→∞, then

this implies that {ψq} is a CS in the MS, which is complete. So it converges to some

µ ∈ X. By the given property, there exists a subsequence {ψqk} of {ψq} s.t (ψqk , µ)

is an element of E(G) for every k ∈ N. Since lim
q→0

ψqk = µ and D(µ, Γµ) > 0, there

is no natural number q0 s.t D(ψqk+1
, Γµ) = 0 for all qk ≥ q0. Thus, for all qk > q0,

H (Γψqk , Γµ) > 0.

Thus (ψqk , µ) ∈ ΓG for all qk > q0. Therefore, by F -contraction condition and

(F1). for allqk ≥ q0.

F (D (ψqk+1, Γµ)) ≤ F (H (Γψq, Γµ))− γ

≤ F (L (ψqk , µ))− γ

≤ F
(
max

{
d (ψqk , µ) , D

(
ψqq , Γψqk

)
, D(µ, Γµ)

D (ψqk , Γψqk)D (ψqk , Γµ) +D(µ, Γµ)D (µ, Γψqk)

max {D (ψqk , Γµ) , D (µ, Γψqk)}

})
− γ

≤ F
(
max

{
d (ψqk , µ) , d

(
ψqk , ψqk+1

)
, D(µ, Γµ),

d
(
ψqk , ψqk+1

)
D (ψqk , Γµ) +D(µ, Γµ)d

(
µ, ψqk+1

)
max {D (ψqk , Γµ) , D (µ, Γψqk)}

})
− γ.

Taking k → ∞ and by the continuity of F this leads to a contradiction, so

γ + F(D(µ, Γµ)) ≤ F(D(µ, Γµ)).

⇒ Γ has a FP.

Now, the following corollaries are presented by changing the some conditions with

WGP property. Then an example is elaborated by using the theorems results and

how the main results will not hold if set of edges E(G) is not considered.

Corollary 3.2.5. Suppose (X, d) is a CMS with a digraph G and a mapping

Γ : X → K(X). Suppose for F ∈ J and γ > 0 s.t

γ + F(H(Γv, Γψ)) ≤ F(d(v, ψ))
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∀ v, ψ ∈ X with (v, ψ) ∈ ΓG. If Γ is both USC and a WGP mapping and the set

XΓ is non-empty, then Γ has a FP.

Corollary 3.2.6. Let (X, d) be a CMS endowed with a directed graph G,

and Γ : X → CB(X) be a mapping. Let F ∈ J∗ and γ a positive constant s.t

γ + F(H(Γv, Γψ)) ≤ F(d(v, ψ))

for v, ψ ∈ X, with (v, ψ) ∈ ΓG Assuming that Γ is USC and a WGP and the set

ψΓ is non-empty, it can be concluded that Γ possesses a FP.

Example 3.2.7. Let X =

{
ωκ =

κ(κ+ 1)

2
;κ ≥ 1, κ is an integer

}
∪{0} and

the d(ρ, σ) = |ρ− σ|. Then (X, d) is a CMS.

Now, define a mapping Γ : X → CB(X) by:

Γ(ρ) =


{0} , if ρ = 0

{ω1} , if ρ = ω1

{ω1, ω2, . . . , ωκ−1} , if ρ = ωκ, κ ≥ 2

and a graph on X by V (G) = X and

E(G) = {(ρ, σ) | ρ = σ or ρ = ωκ, σ = ωp, p < κ} .

Then Γ is USC and a WGP mapping. To show that Γ is a multivalued F -

contraction, where F(ρ) = ρ + ln ρ and γ = 1. Let (ρ, σ) ∈ E(G) be s.t

Γ(ρ) 6= Γ(κ). We will consider two cases:

Case-1. If ρ = ωκ, κ ≥ 2 and σ = ω1, then

As Γω1 = ω1, so

H(Γ(ρ), Γ(σ)) = max{D(ρ,Γσ), D(σ,Γσ)} = max{D(ωκ,Γω1), D(ω1,Γω1)}.

⇒ H(Γ(ρ), Γ(σ)) = |ωκ−1 − ω1|.

Also N(ρ, σ) = d(ωκ, ω1) = |ωκ − ω1|

H (Γ(ρ), Γ(σ))

N(ρ, σ)
eH(Γ(ρ), Γ(σ))−N(ρ, σ) =

ωκ−1 − 1

ωκ − 1
eωκ−1−ωκ < e−1.
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Case-2. If ρ = ωκ, σ = ωp, κ > p > 1, then

H(Γ(ρ), Γ(σ)) = max{D(ρ,Γσ), D(σ,Γσ)} = max{D(ωκ,Γωp), D(ωp,Γωp)}.

⇒ H(Γ(ρ), Γ(σ)) = κ+ p− 1.

Also N(ρ, σ) = d(ωκ, ωp) = κ+ p+ 1

H (Γ(ρ), Γ(σ))

N(ρ, σ)
eH(Γ(ρ), Γ(σ))−N(ρ, σ) =

κ+ p− 1

κ+ p+ 1
e−κ+p < e−1.

So all assumptions in Theorem (3.2.2) and Theorem (3.2.3) are satisfied. There-

fore, Γ has a FP. It is important to note that without considering the graph on

X, the contraction condition is not satisfied. In fact, by taking ρ = 0 and σ = ω1,

H (Γ(ρ), Γ(σ)) = 1 and d(ρ, σ) = 1, we get

γ + F(H(Γ(ρ), Γ(σ))) > F(d(ρ, σ)) ∀ F ∈ J and γ > 0.



Chapter 4

Fixed Point Results in b-metric

Spaces via Graph Structure

In this chapter several FP results in bMS endowed with graph G are presented.

These results are generalization of the work of Acar et al. [21]. Some notions

used by Acar et al. are defined in the setting of bMS then some FP results are

established in the new framework.

4.1 On Multivalued G-Contraction

In this section FP results via graph structure will be proved in bMS. First we will

define some terms that will be useful in bMS.

Definition 4.1.1. [37] “A function φ : R+ → R+ is called a b-comparison

function (bCF) (with s > 1 ) if Φ is monotonically increasing and there exist

k0 ∈ N, α ∈ (0, 1) and a convergent series of non-negative terms
∞∑
k=1

vk s.t

sk+1φk+1(t) ≤ αksφ
k(t) + vk for k > k0 and any t ∈ R.”

Remark 4.1.2. It is evident that when s = 1, the notion of a bCF simplifies

to that of a (c)-CF.

39
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Lemma 4.1.3. If Φ : R+ → R+ is a bCF as stated in [38], then the following

conditions hold:

(a) A series
∞∑
k=0

skΦk(r) is converges to any r ∈ R+.

(b) The function pb : R+ → R+ is defined as pb(t) =
∞∑
k=0

bkΦk(t) for t ∈ R+,

is increasing and continuous at 0.

Definition 4.1.4. Let (X, db) be a complete bMS equipped with digraph G.

Then g : X → CB(X) is called rational multivalued G-contraction of type-I if

sH(gψ, gθ) ≤ Φ(N(ψ, θ)), ∀ (ψ, θ) ∈ E(G), (4.1)

where Φ is (b)-CF and,

N(ψ, θ) = max

{
db(ψ, θ),

D(ψ, gψ) +D(θ, gθ)

2
,
D(ψ, gθ) +D(θ, gψ)

2s

D(ψ, gψ)D(θ, gθ)

db(ψ, θ)
,
D(θ, gθ)[1 +D(ψ, gψ)]

1 + db(ψ, θ)

}
.

Theorem 4.1.5. Let (X, db) be a complete bMS and g : X → CB(X) is USC

and a WGP mapping. Then g has a FP, if it satisfies the following conditions:

(a) g is rational multivalued G-contraction of type-I;

(b) Ng = {ψ ∈ X : (ψ, v) ∈ E(G) for v ∈ gψ} is non-empty.

Then g has a FP.

Proof. Let ψ0 ∈ Ng, where Ng 6= φ. So, there is ψ1 ∈ g(ψ0) s.t (ψ0, ψ1) ∈ E(G).

Now, by condition (a) for ψ0 and ψ1,

N (ψ0, ψ1) = max

{
db (ψ0, ψ1) ,

D (ψ0, gψ0) +D (ψ1, gψ1)

2
,

D (ψ0, gψ1) +D (ψ1, gψ0)

2s
,
D (ψ0, gψ0) , D (ψ1, gψ1)

db (ψ0, ψ1)
,

D (ψ1, gψ1) (1 +D (ψ0, gψ0))

(1 + db (ψ0, ψ1))

}
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≤max

{
db (ψ0, ψ1) ,

db (ψ0, ψ1) + db (ψ1, ψ2)

2
,
db (ψ0, ψ2)

2s
, db (ψ1, ψ2)

}
≤max

{
db (ψ0, ψ1) ,

db (ψ0, ψ1) + db (ψ1, ψ2)

2
, db (ψ1, ψ2)

}
≤max {db (ψ0, ψ1) , db (ψ1, ψ2)}

Also by condition (a)

sD (ψ1, gψ1) ≤ sH (gψ0, gψ1) ≤ Φ (N (ψ0, ψ1)) ,

Therefore,

sD (ψ1, , gψ1) ≤ Φ (max {db (ψ0, ψ1) , db (ψ1, ψ2)}) ≤ Φ (db (ψ0, ψ1)) .

Let % > 1 be an arbitrary constant. So by Lemma (4.1.3) there exist ψ2 ∈ gψ1, s.t

db (ψ1, ψ2) ≤ √%H (gψ0, gψ1) .

As sH (gψ0, gψ1) ≤ Φ (db (ψ0, ψ1)) so,

sdb (ψ1, ψ2) ≤ √%sH (gψ0, gψ1) ≤ %Φ (db (ψ0, ψ1)) .

Due to the strictly increasing nature of the function Φ, we can conclude that

0 < Φ (sdb (ψ1, ψ2)) < Φ (%Φ (db (ψ0, ψ1))) .

Set %1 = Φ(%(db(ψ0, ψ1)))
Φ(sdb(ψ1, ψ2))

> 1.

Since (ψ0, ψ1) ∈ E(G), ψ1 ∈ gψ0 and ψ2 ∈ gψ1, using WGP property, (ψ1, ψ2) ∈

E(G) then,

N (ψ1, ψ2) = max

{
db (ψ1, ψ2) ,

D (ψ1, gψ1) +D (ψ2, gψ2)

2
,

D (ψ1, gψ2) +D (ψ2, gψ1)

2s
,
D (ψ1, gψ1)D (ψ2, gψ2)

db (ψ1, ψ2)
,

D (ψ2, gψ2) (1 +D (ψ1, gψ1))

(1 + db (ψ1, ψ2))

}
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≤max

{
db (ψ1, ψ2) ,

db (ψ1, ψ2) + db (ψ2, ψ3)

2
,
db (ψ1, ψ3)

2s
, db (ψ2, ψ3)

}
≤max

{
db (ψ1, ψ2) ,

db (ψ1, ψ2) + db (ψ2, ψ3)

2
, db (ψ2, ψ3)

}
≤max {db (ψ1, ψ2) , db (ψ2, ψ3)} .

As by definition of Type-I contraction,

sD (ψ2, gψ2) ≤ sH (gψ1, gψ2) ≤ Φ (N (ψ1, ψ2)) . (4.2)

So, from (4.2)

sD (ψ2, gψ2) ≤ Φ (max {db (ψ1, ψ2) , db (ψ2, ψ3)}) ≤ Φ (db (ψ1, ψ2)) .

As %1 > 1, so there exist ψ3 ∈ gψ2, s.t

sdb (ψ2, ψ3) ≤ √%1 sH (gψ1, gψ2) ≤ %1Φ (db (ψ1, ψ2)) = Φ (%Φ (db (ψ0, ψ1))) .

Since Φ is strictly increasing. set %2 =
Φ2 (%Φ (db (ψ1, ψ1))

Φ (sdb (ψ2, ψ3))
> 1. Next, proceeding

similarly to generate a sequence {ψq} in X s.t ψq+1 ∈ gψq and (ψq, ψq+1) ∈ E(G),

and

sdb (ψq, ψq+1) ≤ Φq (%Φ (db (ψ0, ψ1))) .

To prove {ψq} is a CS, take p, q ∈ N with p > 1,

db (ψq, ψp) ≤
m−1∑
j=q

sj+1−q db (ψj, ψj+1)

≤
∞∑
j=0

sj−qΦj (%Φ (db (ψ0, ψ1)))

≤
∞∑
j=0

sqsj−qΦj (%Φ (db (ψ0, ψ1)))

≤
∞∑
j=0

sjΦj (%Φ (db (ψ0, ψ1))) .

As Φ is a bCF, the series on the R.H.S converges. Hence, as q and p tend to
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infinity, the distance db(ψq, ψp) approaches zero. In other words, the sequence

{ψq} is a CS in (X, db) which is a complete bMS. Consequently, {ψq} converges to

some element µ ∈ X. As g is USC so by Lemma (3.1.2) µ ∈ gµ. So g possesses a

FP.

Definition 4.1.6. Let (X, db) be a complete bMS with digraph G. Then

g : X → CB(X) is called rational multivalued G-contraction of type-II if

sH(gψ, gθ) ≤ Φ(N(ψ, θ)), ∀ (ψ, θ) ∈ E(G), (4.3)

where Φ is (b)-CF and,

N(ψ, θ) = max

{
db(ψ, θ),

D(ψ, gψ) +D(θ, gθ)

2
,

D(ψ, gθ) +D(θ, gψ)

2s
,
D(ψ, gψ) D(θ, gθ)

1 +H(gψ, gθ)

}
.

Theorem 4.1.7. Consider a complete bMS denoted as (X, db), G be the di-

graph defined on (X, db). Consider the multivalued mapping g : X → CB(X)

satisfying the following conditions:

(a) g is a rational multivalued G-contraction of type-II;

(b) Ng = {ψ ∈ X; (ψ, u) ∈ E(G) for u ∈ gψ} is non-empty;

(c) The (P )-property is satisfied;

(d) g is WGP mapping.

Then g has a FP.

Proof. Take ψ0 ∈ Ng. There is an element ψ ∈ gψ0 s.t (ψ0, ψ1) ∈ E(G).

As a result condition (a) can be used both for ψ0 and ψ1. Then by definition of

Type-II,

sD (ψ1, gψ1) ≤ sH (gψ0, gψ1) ≤ Φ (N (ψ0, ψ1)) . (4.4)
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Now

N (ψ0, ψ1) = max

{
db (ψ0, ψ1) ,

D (ψ0, gψ0) +D (ψ1, gψ1)

2
,

D (ψ0, gψ1) +D (ψ1, gψ0)

2s
,
D (ψ0, gψ0) D (ψ1, gψ1)

1 +H (gψ0, gψ1)

}
≤ max

{
db (ψ0, ψ1) ,

db (ψ0, ψ1) +D (ψ1, gψ1)

2
,

D (ψ0, gψ0) D (ψ1, gψ1)

1 +D (ψ1, gψ1)

}
≤ max

{
db (ψ0, ψ1) ,

db (ψ0, ψ1) +D (ψ1, gψ1)

2
, D (ψ1, gψ1)

}
≤ max {db (ψ0, ψ1) , D (ψ1, gψ1})

So , Let % > 1, is an arbitrary constant. Therefore, there exists ψ2 ∈ gψ1 s.t

sD (ψ1, gψ1) ≤ Φ (max {db (ψ0, ψ1) , D (ψ1, gψ1)) ≤ Φ (db (ψ0, ψ1)) .

sdb (ψ1, ψ2) ≤ s
√
%H (gψ0, gψ1) ≤ %Φ (db (ψi, ψ1)) .

Due to the strictly increasing nature of Φ, it follows that

0 < Φ (sdb (ψ1, ψ2)) < Φ (%Φ (db (ψ0, ψ1))) .

Take %1 =
Φ (%Φ (db (ψ0, ψ1)))

Φ (sdb (ψ1, ψ2))
> 1. In view of (ψ0, ψ1) ∈ E (G) , ψ1 ∈ gψ0, ψ2 ∈

gψ1, and using WGP property (ψ1, ψ2) ∈ E(G), then

N (ψ1, ψ2) = max

{
db (ψ1, ψ2) ,

D (ψ1, gψ1) +D (ψ2, gψ2)

2
,

D (ψ1, gψ2) +D (ψ2, gψ1)

2s
,
D (ψ1, gψ1) D (ψ2, gψ2)

1 +H (gψ1, gψ2)

}
≤ max

{
db (ψ1, ψ2) ,

db (ψ1, ψ2) +D (ψ2, gψ2)

2
,

D (ψ1, gψ1) D (ψ2, gψ2)

D (ψ2, gψ2)

}
≤ max

{
db (ψ1, ψ2) ,

db (ψ1, ψ2) +D (ψ2, gψ2)

2
, D (ψ2, gψ2)

}
≤ max {db (ψ1, ψ2) , D (ψ2, gψ2)} .
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Also by condition (a)

sD (ψ2, gψ2) ≤ sH (gψ1, gψ2) ≤ Φ (N (ψ1, ψ2)) , (4.5)

Now,

sD (ψ2, gψ2) ≤ sH (gψ1, gψ2)

≤ Φ (max {db (ψ1, ψ2) , D (ψ2, gψ2)})

≤ Φ (db (ψ1, ψ2)) .

There exist ψ3 ∈ gψ2, s.t

sdb (ψ2, ψ3) ≤ √%1sH (gψ1, gψ2) < %1Φ (db (ψ1, ψ2)) = Φ (%Φ (db (ψ0, ψ1))) ,

since Φ is strictly increasing

⇒ 0 < Φ (sdb (ψ2, ψ3)) < Φ2 (%Φ (db (ψ0, ψ1))) .

Set %2 =
Φ2 (%Φ (db (ψ0, ψ1)))

Φ (db (ψ2, ψ3))
> 1.

Now a sequence {ψq} in X s.t ψq+1 ∈ gψq and (ψq, ψq+1) ∈ E(G) can be con-

structed and

sdb (ψq, ψq+1) ≤ Φq (%Φ (db (ψ0, ψ1))) .

To show that {ψq} is a CS, let p, q ∈ N with p > q, by using generalized form of

triangular inequality in bMS,

db (ψq, ψp) ≤
p−1∑
j=q

sj+1−q db (ψj, ψj+1)

≤
p−1∑
j=q

sj+1−qΦj (%Φ (db (ψ0, ψ1)))

≤
p−1∑
j=q

sq−1sj+1−qΦj (%Φ (db (ψ0, ψ1)))

≤
∞∑
j=0

sjΦj (%Φ (db (ψ0, ψ1))) .
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Given that Φ is a bCF, the series on the R.H.S converges, so db(ψq, ψp) → 0 as

both p and q tend to infinity. This implies that the sequence {ψq} is a CS in

(X, db), which is a complete space. Therefore, {ψq} converges to µ ∈ X, that is

lim
q→∞

ψq = µ.

Using the (P )-property there is a subsequence {ψqk} of {ψq} in which (ψqk , µ) ∈

E(G) for every k ∈ N. Let’s assume that D(µ, gµ) > 0. As lim
q→∞

D
(
ψqk, ψqk+1

)
= 0

and lim
q→∞

D (ψqk , µ) = 0, ∃ q0 ∈ N s.t for qk > q0,

D
(
ψqk , ψqk+1

)
<

1

3
D(µ, gµ) (4.6)

and there exists a natural number q1 s.t qk > q1,

D (ψqk , µ) <
1

3
D(µ, gµ). (4.7)

If we take qk > max {q0, q1}, then by (4.6) and (4.7)

sD
(
ψqk+1

, gµ
)
≤ sH (gψqk , gµ)

≤ Φ (N (ψqk , µ))

≤ Φ

(
max

{
db (ψqk , µ) ,

D (ψqk , gψqk) +D(µ, gµ)

2
,

D (ψqk , gµ) +D (µ, gψqk)

2s
,
D (ψqkgψq1) D(µ, gµ)

1 +H (g (ψqk , gµ)

}
≤ Φ

(
max

{
D(µ, gµ)

3
,
D(µ, gµ) +D(µ, gµ)

3
,

D (ψqk , gµ) +D (µ, gψqk)

2s
,

1

3
D(µ, gµ) D(µ, gµ)

D (ψqk+1, gµ)


 .

Let k →∞, then sD(µ, gµ) ≤ Φ(D(µ, gµ)) < D(µ, gµ), which is a contradiction.

So D(µ, g(µ) = 0 and since gµ is closed, then µ ∈ gµ. Hence, g has a FP.

Theorem 4.1.8. Suppose (X, db) be a complete bMS, additionally, there is a

digraph G defined on X. Let g : X → K(X) be a multivalued mapping. Assume
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that g is USC and WGP mapping. Suppose that the following conditions are

satisfied

(a) there is a bCF Φ s.t

sH(gψ, gθ) ≤ Φ(N(ψ, θ)), ∀ (ψ, θ) ∈ E(G),

where N(ψ, θ) is same as in Theorem (4.1.7).

(b) Ng is non-empty.

Then, g admits a FP.

Proof. Choose ψ0 ∈ Ng. There is ψ1 ∈ gψ0 s.t (ψ0, ψ1) ∈ E(G). Consequently,

by usnig condition (a) for ψ0 and ψ1. Then,

sD (ψ1, gψ1) ≤ sH (gψ0, gψ1)

≤ Φ (N (ψ0, ψ1))

= Φ

(
max

{
db (ψ0, ψ1) ,

D (ψ0, gψ0) +D (ψ1, gψ1)

2
,

D (ψ0, gψ1) +D (ψ1, gψ0)

2s
,
D (ψ0, gψ0)D (ψ1, gψ1)

1 +H (gψ0, gψ1)

}
≤ Φ

(
max

{
db (ψ0, ψ1) ,

db (ψ0, ψ1) + db (ψ1ψ2)

2

db (ψ0, ψ2)

2s
,
db (ψ0, ψ1) D (ψ1, gψ1)

D (ψ1, gψ1)

}
≤ Φ

(
max

{
db (ψ0, ψ1) ,

db (ψ0, ψ1) + db (ψ1, ψ2)

2
, db (ψ1, ψ2)

})
≤ Φ (max {db (ψ0, ψ1)}) .

Given the compactness of gψ1, there is an element ψ2 in gψ1 s.t db (ψ1, ψ2) =

D (ψ1, gψ1), so

sdb (ψ1, ψ2) ≤ Φ (db (ψ0, ψ1)) ,

since (ψ0, ψ1) ∈ E(G), ψ1 ∈ gψ0 and ψ2 ∈ gψ1, using the WGP property, we get

(ψ1, ψ2) ∈ E(G). Then similarly applying the same procedure as above it can be
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written as

sD (ψ2, gψ2) ≤ sH (gψ1, gψ2)

≤ Φ (N (ψ1, ψ2))

≤ Φ (db (ψ1, ψ2)) ,

since gψ2 is compact, again ∃ ψ3 ∈ gψ2 s.t db (ψ2, ψ3) = D (ψ2, gψ2). Therefore,

sdb (ψ2, ψ3) ≤ Φ (db (ψ1, ψ2)) .

By repeatedly applying this procedure, we generate a sequence {ψq} in X

s.t ψq+1 belongs to gψq and (ψq, ψq+1) is an element of E(G)

sdb (ψq, ψq+1) ≤ Φ (db (ψq−1, ψq))

≤ Φ2 (db (ψq−2, ψq−1))

...

≤ Φq (db (ψ0, ψ1)) .

Now we will show that {ψq} is a CS. Let p, q ∈ N with p > q.

Consider

db (ψq, ψp) ≤
p−1∑
j=q

sj+1−q db (ψj, ψj−1)

≤
p−1∑
j=q

sj−qΦj (db (ψ0, ψ1))

≤
p−1∑
j=q

sq sj−qΦj (db (ψ0, ψ1))

=

p−1∑
j=q

sjΦj (db (ψ0, ψ1))

≤
∞∑
j=0

sjΦj (db (ψ0, ψ1)) .



FP Results in bMS via Graph Structure 49

Given that Φ is a bCF, then series on the R.H.S converges. As a result, db(ψq, ψp)→

0 as q, p → ∞. In other words, the sequence {ψq} is a CS in the complete bMS.

Therefore, {ψq} converges to a certain point µ ∈ X. As g is USC and by the

Lemma (3.1.2), we can conclude that µ ∈ gµ. This implies that g has a FP.

4.2 F-Contraction

Let G be a diagraph on a MS X and Γ : X → CB(X) be a mapping. Define

ΓG ≡ {(ψ, θ) ∈ E(G) : H (Γψ, Γθ) > 0} ,

XΓ = {ψ ∈ X : (ψ, θ) ∈ E(G) for some θ ∈ Γψ} ,

and

L (ψ, θ) = max


db (ψ, θ) , D (ψ, Γψ) , D (θ, Γθ) ,

D (ψ, Γψ)D (ψ, Γθ) +D (θ, Γθ)D (θ, Γψ)

max {D (ψ, Γθ) , D (θ, Γψ)}
,

 .

Now, Γ is a multivalued F -contraction if ∃ F ∈ J and γ > 0 s.t

∀ max {D (ψ,Γθ) , D (θ,Γψ)} 6= 0,

γ + F (sH (Γψ, Γθ)) ≤ F (L (ψ, θ)) .

for ψ, θ ∈ X with (ψ, θ) ∈ ΓG.

Theorem 4.2.1. If we have a complete bMS (X, db) with a digraph G and a

multivalued F -contraction Γ : X → K(X), then if the set XΓ is not empty, we

can conclude that Γ has a FP.

Proof. If every ψ ∈ X satisfies D(ψ,Γψ) > 0 and ψ0 belongs to XΓ, then there

exists ψ1 ∈ Γψ0 s.t (ψ0, ψ1) is an element of E(G)

0 < D (ψ1, Γψ1) ≤ H (Γψ0, Γψ1) .
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By the F−contractive condition, it can be written as

F (sD (ψ1, Γψ1)) ≤ F (sH (Γψ0, Γψ1))

≤ F (L (ψ0, ψ1))− γ

= F (max {db (ψ0, ψ1) , D (ψ0, Γψ0) , D (ψ1, Γψ1) ,

D (ψ0, Γψ0)D (ψ0, ψ1) +D (ψ1, Γψ1) , D (ψ1, Γψ0, )

max {D (ψ0, Γψ1) , D (ψ1, Γψ0)}

})
− γ

≤ F (max {db (ψ0, ψ1) , db (ψ1, ψ2)} − γ.

Because Γψ1 is compact, ∃ ψ2 ∈ Γψ1 s.t db (ψ1, ψ2) = D (ψ1, Γψ1) , so we have,

F (sdb (ψ1, ψ2)) ≤ F (db (ψ0, ψ1))− γ. (4.8)

Since (ψ0, ψ1) ∈ E(G), ψ1 ∈ Γψ0 and ψ2 ∈ Γψ1, by the WGP property (ψ1, ψ2) ∈

E(G) Considering 0 < D (ψ2, Γψ2) ≤ H (Γψ1, Γψ2) , we get (ψ1, ψ2) ∈ Γψ2, then

F (sD (ψ2, Γψ2)) ≤ F (sH (Γψ1, Γψ2)) < F (db (ψ1, ψ2))− γ

Due to Compactness of Γψ2 there is ψ3 ∈ Γψ2, s.t db (ψ2, ψ3) = D (ψ2, Γψ2), so

we have

F (sdb (ψ2, ψ3)) ≤ F (db (ψ1, ψ2))− γ. (4.9)

Similarly

F (sdb (ψ3, ψ4)) ≤ F (db (ψ2, ψ3))− γ. (4.10)

A sequence is generated by continuation of the above procedure {ψq} within X,

F (sdb (ψq, ψq+1)) ≤ F (db (ψq−1, ψq))− γ ∀ q ∈ N, (4.11)

where ψq+1 ∈ Γψq, (ψq, ψq+1) ∈ ΓG. Let db (ψq, ψq+1) is denoted by τq. It
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follows that τq is greater than zero and the sequence {τq} exhibits a monotonically

decreasing pattern of real numbers. Consequently, there exists a non-negative

number ω s.t lim
p→∞

τq = ω. Now, (4.11) can be written as

F (sτq) ≤ F (τq−1)− γ ∀ q ∈ N

and some γ > 0. Then by (2.1)

γ + F (sqτq) ≤ F
(
sq−1τq−1

)
, ∀ q ∈ N.

Hence by induction

F (sqτq) ≤ F
(
sq−1τq−1

)
− γ ≤ · · · ≤ F (τ0)− qγ. (4.12)

As q approaches infinity, we obtain lim
q→∞
F (sqτq) = −∞. By F3, there exists a

value k within the range of (0, 1) s.t the expression lim
n→∞

sqτq = 0 holds. Then

lim
q→∞

(sqτq)F (sqτq) = 0. Multiplication of (4.12) by (sqτq)
k yields

0 ≤ (sqτq)F (squq) + qγ (sqτq)
k ≤ (sqτq)

k F (τ0) . (4.13)

lim
q→∞

q (sqτq)
k = 0. (4.14)

There exists a natural no q s.t q (xqτq)
k ≤ 1 ∀ q > q1. Then sqτq ≤

1

n1/k
∀ q > q1.

db (ψq, ψp) ≤
p−1∑
j=q

sj+1−qdb (ψj, ψj+1)

=

p−1∑
j=q

sq−1sj+1−qτj

=
∞∑
j=q

sjτj

≤
∞∑
j=1

(
1

j1/k

)
.
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where, p and q as natural numbers where p > q ≥ q1,and it is given that k is in

the interval (0, 1), the series
∞∑
j=1

1

(j)1/k
converges. As a result, db(ψq, ψp) tends to

0 as q and p approach infinity. This implies that the sequence {ψq} is a CS in

(X, db) which is a complete bMS. Consequently, {ψq} converges to a certain point

µ ∈ X. Using the upper semi-continuity of the operator Γ and Lemma (3.1.2),

we can conclude that µ belongs to Γµ. This leads to our initial assumption so Γ

possesses a FP.

Theorem 4.2.2. Let (X, db) be a complete bMS that is equipped with a

digraph G. Let Γ : X → K(X) be a multivalued mapping satisfying F -contraction

properties, where F ∈ J ∗. If XΓ is non-empty, then Γ has a FP.

Proof. Suppose, there is no FP of Γ, for every ψ ∈ X then D(ψ, Γψ) > 0. Let

ψ0 ∈ XΓ and there exists ψ1 ∈ Γψ0 s.t (ψ0, ψ1) ∈ E(G). Consequently, we obtain

0 < D (ψ1, Γψ1) ≤ H (Γψ0, Γψ1) .

Thus (ψ0, ψ1) ∈ ΓG. so from (F4)

F (sD (ψ1, Γψ1)) = F (inf {db (ψ1, ν) : ν ∈ Γψ1})

= inf {F (sdb (ψ1, ν) : ν ∈ Γψ1)} .

Furthermore,

inf F (sdb (ψ1, ν) : ν ∈ Γψ1) < F (db (ψ0, ψ1))− γ

2
.

Therefore, there exists ψ2 ∈ Γψ1 s.t

F (sdb (ψ1, ψ2)) ≤ F (db (ψ0, ψ1))− γ

2
. (4.15)

As (ψ0, ψ1) belongs to the set E(G) and ψ1 is an element of Γψ0, while ψ2 is an

element of Γψ1, according to the WGP property, it can be stated that (ψ1, ψ2) is

an element of E(G). So 0 < D (ψ2, Γψ2) ≤ H (Γψ1, Γψ2) .
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Again by using (F4).

F (sD (ψ2, Γψ2)) = F (inf (sdb (ψ2, v) : ν ∈ Γψ2})

= inf {F (sdb (ψ1, ν) : v ∈ Γψ2)} .

This implies

inf {F (sdb (ψ2, v) : ν ∈ Γψ2)} < F (db (ψ1, ψ2))− γ

2
.

Then there is ψ3 ∈ Γψ2 so that

F (sdb (ψ2, ψ3)) ≤ F (db (ψ1, ψ2))− γ

2
. (4.16)

Similarly, we construe a sequence {ψq} in ψ s.t ψq+1 ∈ Γψq, thus (ψq, ψq+1) ∈ ΓG

s.t

F (sdb (ψq, ψq+1)) ≤ F (db (ψq−1, ψq))−
γ

2
.

Let τq = d(ψq, ψq+1). In this case, τq is greater than zero and the sequence {τq}

forms a decreasing sequence. Thus, there exists a non-negative value ω s.t the

limit of τq as q approaches infinity is ω. By (F4)

F (sτq) ≤ F (τq−1)− γ

2
, ∀ q ∈ N and γ > 0,

then

γ

2
+ F (sqτq) ≤ F

(
sq−1τq−1

)
, ∀ q ∈ N and γ > 0.

Hence by induction

F (sqτq) ≤ F
(
sq−1τq−1

)
− γ

2
≤ . . . ≤ F (τ0)− qγ

2
. (4.17)

So, when q tends to infinity, lim
q→∞
F (sqτq) = −∞. There exists a value k in the



FP Results in bMS via Graph Structure 54

interval (0, 1) s.t it satisfies condition (F3), lim
q→∞

(sqτq)
k F (sqτq) = 0.

Multiplication of (4.17) by (sqτq)
k yields

0 ≤
(
sqτ kq

)k F (sqτq) +
qγ

2
(sqτq)

k ≤ (sqτq)
k F (τ0) . (4.18)

As q tends to infinity, we obtain

lim
q→∞

q (sqτq)
k = 0, (4.19)

from (4.18) there is q ∈ N s.t n (sqτq)
k ≤ 1 ∀ q > q1. Then

sqτq ≤
1

q1/k
∀ q > q1. (4.20)

We now assert that the sequence {ψq} is a CS. To prove this, consider p and q as

natural numbers where p > q ≥ q1, then

db (ψq, ψp) ≤
p−1∑
j=q

sj+1−qdb (ψj, ψj+1)

=
m−1∑
j=q

sq−1sj+1−qτj

=
∞∑
j=q

sjτj

≤
∞∑
j=1

(
1

j

)1/k

since k ∈ (0, 1), so the series
∞∑
j=1

(
1

j1/k

)
converges. Then db (ψq, ψp) → 0 as

p, q → ∞. Hence {ψq} is a CS in complete bMS. Hence {ψq} is convergent to

some µ ∈ X. By the property of the upper semi-continuity of Γ, we encounter a

contradiction to our initial assumption, so Γ has a FP.

Theorem 4.2.3. Consider (X, db) a complete bMS, that is equipped with a

digraph G, where the following conditions hold:

for any {ψq} in X, if {ψq} converges to ψ and (ψq, ψq+1) ∈ E(G), then
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there exists a subsequence {ψqk} s.t (ψqk , ψ) is an element of E(G).

Let Γ : X → K(X) be a multivalued mapping (with F ∈ J ∗) satisfying F -

contraction properties. If we consider a WGP mapping Γ with a non-empty set

XΓ and if F is a continuous function, then it can be deduced that Γ possesses a

FP.

Proof. Suppose that Γ has no FP. Now, proceeding similarly as in Theorem (4.2.1)

there is CS {ψq} converges to some µ ∈ X. According to the given property, there

exists a subsequence {µqk} of {ψq} s.t (ψqk , µ) ∈ E(G) for every k ∈ N. Since

lim
q→∞

ψq = µ and D(µ,Γµ) > 0, there does not exist a natural number s.t

D
(
ψqk+1

, Γµ
)

= 0.

Therefore for each qk > q0

H (Γψqk , Γµ) > 0.

Therefore, for all qk ≥ q0, we have (ψqk , µ) ∈ ΓG. By utilizing condition (F1),

F
(
sD
(
ψqk+1

, Γµ
))
≤ F (sH (Γψqk , Γµ))− γ

≤ F (L (ψqk , µ))− γ

= F (max {db (ψqk , µ) , D (ψqk , Γψqk) , sD(µ, Γµ),

D (ψqk , Γψqk)D (ψqk , Γµ) +D(µ, Γµ)db (µ, Γψqk)

max {D (ψqk , Γµ) , D (µ, Γψqk)}

})
≤ F

(
max

{
db (ψqk , µ) , db

(
ψqk , ψqk+1

)
, sD(µ, Γµ),

db
(
ψqk , ψqk+1

)
D (ψqk , Γµ) +D(µ, Γµ)db

(
µ, ψqk+1

)
max {D (ψqk , τµ) , D (µ, Γψqk)}

})

∀ qk > q0. By allowing k to approach infinity and due to the continuity of F , we

conclude that

F(sD(µ, Γµ)) ≤ F(sD(µ, Γµ))− γ

that is

γ + F(sD(µ, Γµ)) ≤ F(sD(µ, Γµ)).
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This is a contradiction, implying that Γ possesses a FP.

Corollary 4.2.4. Suppose (X, db) is a complete bMS with a digraph G and

a mapping Γ : X → K(X). Suppose that there are F ∈ J and γ > 0 s.t

γ + F(H(Γv, Γψ)) ≤ F(db(v, ψ))

∀ v, ψ ∈ X with (v, ψ) ∈ ΓG. If Γ is both USC and a WGP mapping and the set

XΓ is non-empty, then Γ has a FP.

Corollary 4.2.5. Let (X, db) be a complete bMS endowed with a digraph G,

and Γ : X → CB(X) be a mapping. Let F ∈ J∗ and γ a positive constant s.t

γ + F(H(Γv, Γψ)) ≤ F(db(v, ψ))

for v, ψ ∈ X, with (v, ψ) ∈ ΓG Let Γ is USC and a WGP and the set XΓ is

non-empty, then Γ possesses a FP.

Example 4.2.6. Let X =

[
0,

2

3

]
∪ {1} and the db(ρ, σ) = |ρ − σ|2 for all

ρ, σ ∈ X. Then (X, db) is a complete bMS with s = 2.

Now, define a mapping T : X → CB(X) by:

T (ρ) =


{0, 1

3
,

5

12
} , if ρ = 1{ρ

4

}
, if ρ ∈

[
0,

2

3

]

and a graph on X by V (G) = X and

E (G) =

{
(ρ, ω) | ρ, σ ∈

[
0,

2

3

]}
∪
{

(1, 0) ,

(
1,

1

3

)
,

(
1,

5

12

)}

Then T is USC and a WGP) mapping. To show that T is a multivalued F -Khan

contraction with k ∈
[

1

16
,
1

4

]
, where F(ρ) = ln ρ and γ = ln 2. Let (ρ, κ) ∈ E(G)

such that T (ρ) 6= T (κ).

Then,

H (Tρ, Tσ) = db
(ρ

4
,
σ

4

)
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L(ρ, σ) = db (ρ, σ).

Now consider the following cases:

Case-1. ρ, σ ∈
[
0,

2

3

]
. Then,

L(ρ, σ) = db (ρ, σ), and for k ∈
[

1

16
,
1

4

]

H (Tρ, Tσ) = db
(ρ

4
,
σ

4

)
≤ kdb (ρ, σ) ≤ 1

4
db (ρ, σ) =

1

4
L (ρ, σ) .

Hence 4H (Tρ, Tσ) ≤ L (ρ, σ) , so we have ln 2+ln (2H (Tρ, Tσ)) ≤ ln (L (ρ, σ)) .

=⇒ ln 2 + F (2H (Tρ, Tσ)) ≤ F (L (ρ, σ))

Case-2. ρ = 1, σ ∈ 0,
1

3
,

5

12
. So

H (Tρ, Tσ) = db
(ρ

4
,
σ

4

)
≤ kdb (ρ, σ) ≤ 1

4
db (ρ, σ) =

1

4
L (ρ, σ) .

Hence 4H (Tρ, Tσ) ≤ L (ρ, σ) , so we have ln 2+ln (2H (Tρ, Tσ)) ≤ ln (L (ρ, σ)) .

=⇒ ln 2 + F (2H (Tρ, Tσ)) ≤ F (L (ρ, σ))

So all assumptions in Theorem (3.2.2) (or Theorem (3.2.3)) are satisfied. There-

fore, T has a FP. It is important to note that without considering the graph on

X, the contractive condition is not satisfied. In fact, by taking ρ = and σ = 1,

H (T (ρ), T (σ)) = 0 and d(ρ, σ) = 0, then from

γ + F(H(T (ρ), T (σ))) < F(d(ρ, σ)) ∀F ∈ J and γ > 0.

we get γ < 0, which is a contradiction.



Chapter 5

Conclusion

In this thesis the work of Acar et al. on “New Fixed Point Results via Graph

Structure” is examined and elaborated to represent the complete analysis of this

article. This research aimed mainly to extend the above results in the setting

of b-metric spaces. For this purpose, the notion of rational-type multivalued G-

contractions and F -contractions in b-metric spaces are established. Moreover some

fixed point theorems are established in the setting of b-metric space. Our results

might be beneficial in determining fixed points in perception of b -metric spaces.
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