
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Android Malware Detection

Using the Combination of

Different Static Features

by

Maryam Khadam

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Computing

Department of Computer Science

2018

www.cust.edu.pk
www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2018 by Maryam Khadam

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

I dedicate my dissertation work to my parents and my teachers A special feeling

of gratitude to my loving parents and brother for their love, endless support, and

encouragement.

CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY

ISLAMABAD

CERTIFICATE OF APPROVAL

Android Malware Detection Using the Combination of

Different Static Features

by

Maryam Khadam

MCS153012

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Mansoor Ahmad COMSATS University Islamabad.

(b) Internal Examiner Dr. Aamir Nadeem CUST, Islamabad.

(c) Supervisor Dr. Muhammad Arshad Islam CUST, Islamabad.

—————————————
Dr. Muhammad Arshad Islam

Thesis Supervisor
November, 2018

———————————– —————————————
Dr. Nayyer Masood Dr. Muhammad Abdul Qadir
Head Dean
Dept. of Computer Science Faculty of Computing
November, 2018 November, 2018

iv

Author’s Declaration

I, Maryam Khadam hereby state that my MS thesis titled “Android Malware

Detection Using the Combination of Different Static Features” is my own

work and has not been submitted previously by me for taking any degree from

Capital University of Science and Technology, Islamabad or anywhere else in the

country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Maryam Khadam)

Registration No: MCS153012

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Android

Malware Detection Using the Combination of Different Static Features”

is solely my research work with no significant contribution from any other person.

Small contribution/help wherever taken has been dully acknowledged and that

complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Maryam Khadam)

Registration No: MCS153012

vi

Acknowledgements

All praise and exaltation are due to ALLAH (S.W.T) The creator and Sustainer

of all seen and unseen worlds. First and foremost, I would like to express my

gratitude and thanks to Him for providing me the boundaries and blessings to

complete this work. Secondly, I would like to express my sincerest appreciation

to my supervisor Dr. Muhammad Arshad Islam for his directions, assistance, and

guidance. I sincerely thanked for his support, encouragement and technical advice

in the research area. I am heartily thankful to him from the final level, as he

enabled me to develop an understanding of the subject. He has taught me, both

consciously and unconsciously, how good experimental work is carried out. Sir,

you will always be remembered in my prayers.

I am highly indebted to my parents and my family, for their expectations, assis-

tance, support, and encouragement throughout the completion of this Master of

Science degree. They form the most important part of my life. After ALLAH

(S.W.T) they are the sole source of my being in this world. No words can ever

be sufficient for the gratitude I have for my mother and for my family. A special

thanks to my brother for his support and encouragement to complete this Master

of Science degree.

I pray to ALLAH (S.W.T) that may He bestows me with true success in all fields

in both worlds and shower His blessed knowledge upon me for the betterment of

all Muslims and whole Mankind.

Aameen

Maryam Kadam

vii

Abstract

Recent smartphones offer a large number of services and with the increase of ser-

vices security threat also increases. Use of personal data is not secure due to

malware. Malware hacker can steal user personal information like messages, con-

tacts, phone number, email accounts etc., and use this information for different

criminal activities. Malware is basically a piece of code that is built with harmful

intention. Malware attack the smartphone by using Android applications. Now-

a- days large number of Android applications has been developed but a user does

not sure about applications whether these applications are secure or not. For the

detection of malware many different approaches used some author use static and

some use dynamic malware detections techniques. Both static and dynamic mal-

ware detection approaches have some advantages and some limitations. In our

research, we used static malware detection approach for the detection of malware.

We aim to compare the performance of static analysis techniques by using three

categories of features (permission, intents, and API call) for the detection of mal-

ware. Although static malware detection has already been used but there is lack

of research done that analyses all features of apk files on the single dataset. This

approach examines the permissions tags and intent filter within the manifest file.

Moreover, we analyze the source code of the Android application; this approach

examines the Java code for Android applications. Our experiment results show

remarkable results when we used info gain feature selection algorithm. We have

obtained 97% accuracy rate in case of intents by using Decision tree. We have

observed that overall performance of Decision Tree is good in case of info gain

feature selection algorithm. Decision tree shows the accuracy value of 97% in case

of intents and 93% in case of permission and 95% for the combined feature set

and 85% for API Calls by using info gain algorithm. The results showed that the

individual feature set of API Calls are not good for Android malware detection.

Contents

Abstract vii

List of Figures x

List of Tables xi

List of Abbreviations xii

1 Introduction 1

1.1 Approaches . 2

1.1.1 Static Approach . 2

1.1.2 Dynamic Approach . 2

1.1.3 Hybrid Approach . 2

1.2 Motivation . 3

1.2.1 Permissions . 4

1.2.2 Intent . 4

1.2.3 Application Program Interface (API Calls) 5

1.3 Purpose . 5

1.4 Scope . 5

1.5 Problem Statement . 6

1.6 Research Question . 6

1.7 Proposed Solution . 7

1.7.1 Permission and Intent Analysis 7

1.7.2 Static Code Analysis . 8

1.7.3 Comparison . 8

1.8 The Significance of the Solution . 9

1.9 Tools and Techniques . 9

2 Related Work 10

2.1 Permission-Based Static Analysis 10

2.2 Permission and Intent-Based Static Analysis 11

2.3 Permission and API Call Based Static Analysis 13

2.4 API Call Based Static Analysis . 14

2.5 Hybrid Based Static Analysis . 15

viii

ix

2.6 Critical Analysis . 17

3 Research Methodology 19

3.1 APK Tool . 20

3.1.1 APK Tool Features . 20

3.2 Research Methodology . 21

3.3 Data Collection . 21

3.3.1 Training of Machine Learning Based Analysis 23

3.3.2 Extraction of Static Features 24

3.3.3 Feature Vector . 27

3.3.4 Permission Vector for non- Malware 28

3.3.5 Permission Vector for Malware 28

3.3.6 Feature Selection by Using Infogain 29

3.3.7 Feature Selection by using PCA (Principal Component Anal-
ysis) . 32

3.4 Selection of Classifier for Training Phases 32

3.4.1 Naive Bayes . 33

3.4.2 Random Forest . 34

3.4.3 Gradient Boosting . 34

3.4.4 Decision Tree . 35

3.5 Evaluation Measurements . 35

4 Results and Discussion 37

4.1 Experimental Setup . 37

4.2 Dataset . 38

4.3 Feature Selection . 38

4.4 Classification Results with Feature Selection 43

4.4.1 Malware Detection of Top Ranked Feature (Info Gain) . . . 43

4.4.2 Malware Detection of Top Ranked Feature (PCA) 47

4.4.3 Malware Detection using Combined Features (Info Gain) . . 51

4.4.4 Malware Detection using Combined Features (PCA) 53

4.5 Classification Results without Feature Selection 55

4.5.1 Performance Evaluation of the Classifiers 56

4.6 Evaluation . 58

4.6.1 Comparison . 59

5 Conclusions 61

5.1 Future Work . 63

Bibliography 68

Appendix A 68

Appendix B 76

List of Figures

3.1 Architecture of Overall Methodology 21

3.2 Training of Machine Learning Based Static Analysis 23

3.3 Feature Extraction Script . 25

3.4 Python Script Working . 26

3.5 CSV Files . 26

3.6 Python script for the feature vector 29

4.1 Rank Wise Feature Selection of Permission Using info Gain Method 40

4.2 Rank Wise Feature Selection of Intents Using Info Gain Method . . 41

4.3 Rank Wise Feature Selection of API calls Using Info Gain Method . 43

4.4 F- measure of Top 10 ranked permissions features by using four
classifiers . 44

4.5 F-measure of Top 10 Ranked Intents Features by Using Four Classifiers 44

4.6 F measure of Top 10 ranked API calls features by using four classifiers 45

4.7 Precision and Recall for permission (info gain) 45

4.8 Precision and Recall for intents (info gain) 46

4.9 Precision and Recall for API calls (info gain) 46

4.10 Accuracy of Permission, Intents and API Calls by Using Info Gain . 47

4.11 F- measure of Top Permissions Features by Using Four Classifiers . 48

4.12 F-measure of Top Intents Features by Using Four Classifiers 48

4.13 F- measure of Top API Calls Features by Using Four Classifiers . . 49

4.14 Precision and Recall for permission (PCA) 49

4.15 Precision and Recall for Intents (PCA) 50

4.16 Precision and Recall for API Calls (PCA) 50

4.17 Accuracy of permission, intents and API calls by using PCA 51

4.18 F-Measure and accuracy of combined features using info gain 52

4.19 TPR and FPR of Combined Features Using Info Gain 53

4.20 F-Measure and Accuracy of Combined Features Using PCA 53

4.21 TPR and FPR of Combined Features Using PCA 54

4.22 TPR and FPR of Combined Features Using PCA 54

4.23 TPR and FPR of Combined Features Using PCA 55

4.24 Performance of Four Classifiers on the Feature Set of Permission . . 57

4.25 Performance of Four Classifiers on the Feature Set of Intents 57

4.26 Performance of Four classifiers on the Feature set of API Calls . . . 58

x

List of Tables

1.1 Feature List of Permissions . 7

1.2 Feature List of Intents . 8

2.1 Critical analysis of literature review 18

3.1 Categories of Applications in the Benign Dataset 22

3.2 Families of Application in the Malware Dataset 22

3.3 List of Top Ten Permissions and their Score 30

3.4 List of Top Ten Intents and their Score 31

3.5 List of Top 10 API Calls and their Score 31

4.1 Experimental Setup . 38

4.2 Feature Description of the Top-Ranked Static Feature of Permission 40

4.3 Feature Description of Top ranked Static Feature of Intents 42

4.4 Top 10 Feature List of Permission 59

4.5 Top 10 Feature List of Intents . 59

4.6 Result Comparison with Similar Work by Using Permission 59

4.7 Result Comparison with Similar Work by Using Intents 60

xi

List of Abbreviations

Waikato Environment for Knowledge Analysis (WEKA)

Random Forest (RF)

Näıve Bays (NB)

Gradient boosting (GB)

Decision Tree (DT)

False Positive Rate (FPR)

True Positive Rate (TPR)

Android package Kit (APK)

Principal ComponentsAnalysis (PCA)

Application Program Interface (API)

xii

Chapter 1

Introduction

Malware is malicious code that is expressly designed with unsafe aims, correspond-

ing to viruses’ Trojan horses or worms. Malware is growing at an alarming rate

with approximately one million Android applications are actually malware (Inter-

net security threat report 2015). The worldwide damages from malware exceed 400

billion per year (cybercrime report 2014). Android has grabbed up to 87.5% of the

global mobile phone market (Arjun Kharpal 2016). Consequently, an increasing

number of security threats emerged. Now-a-days people store all their private in-

formation, financial information and personal information like photographs, videos

bank details in their cell phones, so these cell phones turn out to be more helpless

and an assailant can attack their devices to steal their information. Due to the

openness of the Android system, it becomes simple for an assailant to create mal-

ware which can hurt any Android gadget (Barsiya, et al. 2016). These situations

motivated us to research in malware analysis. There are three malware detection

approaches:

1

Introduction 2

1.1 Approaches

1.1.1 Static Approach

In the static technique, application code is analyzed without actually running it.

The static approach is very fast and it does not require any effort to execute the

malicious code for identification. Application code is analyzed without actually

executing it. The advantage of the static approach is quickly detected malware,

consume fewer resources low cost and less time consuming because does not involve

execution of the application. Disadvantage is that only detect known malware

types (Vidhya Rao. et al. 2017). The most commonly used static features are the

Permission and API calls.

1.1.2 Dynamic Approach

It is a detection technique which aims at evaluating malware by executing the

application and the main advantage of this technique is that determines the appli-

cation behavior during runtime and provides deep analysis and high detection rate

with unknown malware detection. Dynamic technique checks the application code

as well as system calls during application execution and monitors its interaction

with the system. During this analysis, system calls are observed that are more

likely to occur in malware than in normal applications. These behavior similari-

ties among malicious apps could be used to detect new malware. A disadvantage

is that this technique consumes large storage space and requires high power con-

sumption. More time required to observe the appearance of the malicious activity

(Vidhya Rao. et al. 2017).

1.1.3 Hybrid Approach

Hybrid approach is a combination of the static and dynamic approach. It is an

innovation or technique that can incorporate run-time information extricated from

Introduction 3

the dynamic approach into a static examination calculation to distinguish conduct

or malignant usefulness in the applications. The hybrid analysis method involves

combining static features obtained while analyzing the application and dynamic

features and information extracted while the application is executed. Though it

could increase the accuracy of the detection rate, it makes the analysis process is

time-consuming and increases cost (Lifan Xu, et al. 2016).

1.2 Motivation

This research focuses on static techniques because the static approach is quickly

detected malware, consumes fewer resources low cost and less time consuming

because does not involve execution of the application. We aim to compare the

performance of static analysis techniques by using three categories of features

(permission, intents, and API call) for the detection of malware. Although some

other researcher also uses static analysis in their research there is no research done

that analyses all features of apk files on the same dataset. We start our static

analysis by examining the manifest file. This approach examines the permissions

tags and intent filter within the manifest file. Moreover, we analyze the source

code of the Android application; this approach examines the java code for Android

applications.

Following Features Sets are Available for Static Malware Detection

• Permission-based analysis

• Intent-based analysis

• Function call-based analysis

• API call analysis

• Opcode based analysis

• Network-based analysis

Introduction 4

This work focuses on three types of features set for static analysis permission,

intents, and API call analysis.

1.2.1 Permissions

In the case of smartphones applications, researchers concentrate on permissions

mechanisms to determine what is allowed to do in applications. A client is dis-

played with a list of permissions at the time of app installation and can choose

to grant all the permissions or reject it. If a user doesn’t grant these permissions,

it will result in stopping the installation. This could be a great security mea-

sure because the operations run by one application cannot affect or interfere with

other applications. The permissions requested for the resources are in the Android

Manifest.XML file(Saba Arshad, et al. 2016).

1.2.2 Intent

The intent is a complex messaging system on the Android platform (Ali Feizollah,

et al. 2017). This is a method for controlling what applications can do once they

are introduced on Android. Android Intents are defined in the AndroidManifest

file. Inter-process communication is one of the most notable features of the An-

droid framework as it allows the reuse of components across process boundaries. It

is used as the gateway to access different sensitive services in the Android frame-

work. In the Android platform, this communication system is usually driven by

a late runtime binding messaging object known as Intent. Intent objects provide

an abstract definition of the operations an application intends to perform (Ali

Feizollah, et al. 2017). Intents have three components – action, category, and

data.

The action component describes what kind of action is to be executed by the In-

tent such as MAIN, CALL, BATTERY LOW, SCREEN ON, and EDIT. Intents

specify the category they belong to, such as LAUNCHER, BROWSABLE, and

Introduction 5

GADGET. The data components provide the necessary data to the active com-

ponent. For instance, CALL action requires the phone number, and EDIT action

needs document or HTTP URL to complete the action (Ali Feizollah, et al. 2017).

1.2.3 Application Program Interface (API Calls)

API calls are basically a piece of code act as an intermediate between program

and system. Variables of different programs requests to the system for the use of

different resources by using API calls. By using API calls program requests to the

system for different resources.

1.3 Purpose

The purpose of this research is to evaluate the Android Malware detection capa-

bility by using three categories of features (permission, Intents, and API call) for

Android applications. It will also help the Android application developers to write

software that cannot be exploited easily.

Following is the list of categories of features for static analysis

• Permission-based analysis

• Intent-based analysis

• API call analysis

1.4 Scope

In this research, we use static analysis on the combination of features and ap-

ply machine learning algorithms to detect the malware. Research has shown the

effectiveness of machine learning systems in Android Malware detection.

Introduction 6

In a machine learning based malware detection system, selection of the feature set

from the dataset is one of the most critical steps. Feature selection itself depends

upon the analysis method through which they are extracted. It is the analysis

technique that determines the compatibility of features with the classification al-

gorithm. Due to the lack of time we have selected only three categories of the

features and used these features in our research.

1.5 Problem Statement

A lot of solutions (R. Sato, et al. 2013) (Daniel Arp, et al. 2014) (Idrees F, et

al. 2014) (Almin, et al. 2015) (Saidah Mastura A. Ghani, et al. 2015) have been

developed for malware detection that significantly improved the user’s security.

But a unified approach by using these three features set (permission, intent and

API calls) and comparison of these three categories of features for the detection

of Android malware is missing.

1.6 Research Question

1. Which category (permission, intent and API call) of the static features are

most effective for malware detection?

2. Can accuracy be improved using a combination of these features?

3. Which classifier (Gradient Boosting, Decision tree, Random forest. Naive

Bayes) performs well for the detection of malware.

Our research will be focused on these research questions with reference to the

machine learning algorithms.

Introduction 7

1.7 Proposed Solution

1.7.1 Permission and Intent Analysis

We start our static analysis by examining the manifest file. This approach ex-

amines the permissions tags and intent filter within the manifest file to check the

malicious behavior of applications.

List of the most recently used feature list of permission available in Table 1.1 (De

Capitani di Vimercati, et al. 2017), (Zhenxiang Chen, et al. 2015)

Table 1.1: Feature List of Permissions

INTERNET
ACCESS NETWORK STATE
WRITE EXTERNAL STORAGE
WAKE LOCK
READ PHONE STATE
ACCESS WIFI STATE
GET ACCOUNTS
VIBRATE
BILLING ACCESS COARSE LOCATION
SEND SMS
RECEIVE SMS
WAKE LOCK
READ SMS
ACCESS COARSE LOCATION
ACCESS FINE LOCATION
READ CONTACTS

List of the most recently used feature list of intents is available in Table 2. (Ali

Feizollah, et al.2017).

Introduction 8

Table 1.2: Feature List of Intents

SEND MULTIPLE
SCREEN OFF
USER PRESENT
SEARCH
PICK
DIAL
GET CONTENT
EDIT
MEDIA MOUNTED
BOOT COMPLETED
SENDTO
SCREEN OFF
TEXT
SEND
PACKAGE ADDED
SCREEN ON
CALL

1.7.2 Static Code Analysis

We analyze the source code of the Android application; this approach examines

the java code of Android applications on the same dataset that has not been

considered by previous researchers. Java source code is analyzed in the dex file.

For source code analysis we use the API call of the Android application by using

dex file of the android application.

1.7.3 Comparison

After analyzing all features of malware detection techniques on the same data set

we compare our results to check which techniques can provide better accuracy for

malware detection.

Introduction 9

1.8 The Significance of the Solution

In android malware detection, a prominent research gap is the absence of a study

of all features of the Android application on the same data set. The significance

of this solution is to provide a comparison of malware detection accuracy using

the following categories of feature set:

1. Permission

2. Intents

3. API call

All of these features belong to static analysis. Identify the attribute after merging

the attributes of all these features.

1.9 Tools and Techniques

Following tools and techniques will be used in this research.

1. OS: Ubuntu (version LTS 16.04) 64 bit

2. Weka tool

3. Machine Learning Classifiers (Gradient Boosting, Decision Tree, Random

forest. Näıve Bayes)

4. APK Tool

5. Python script for feature extraction

6. Python script for the feature vector

7. Microsoft Excel

Chapter 2

Related Work

Android security against rising malware has been an interesting issue among the

analysts for a couple of years. Numerous static and dynamic techniques have

been suggested for the identification of the vulnerability of the mobile applica-

tions. Both the static and dynamic analysis methods have their own benefits and

limitations. This chapter presents an extensive overview of the research work of

static analysis for Android malware detection.

Static analysis is a procedure to examine the behavior of an Android application

without actually executing it (Vidhya Rao, et al. 2017). The static analysis is

very helpful in recognizing malicious performance that may not trigger before the

occurrence of a particular condition.

2.1 Permission-Based Static Analysis

Almin, et al. (2015) laid their research upon analysis of permissions used by

an application during installation. The authors proposed a system called Android

Application Analyzer, that perform an analysis of the installed application to check

whether the application is harmful or not. In the proposed system, the k-means

clustering algorithm is used during permission authorization process to determine

that the application contains the malicious program or not. The results will use

10

Related Work 11

näıve Bayesian classification algorithm to check accurately either the application

is malicious or benign. They compare their result with other antivirus solutions

like McAfee, Kaspersky, and Avast. They found that their application detects

that malware that is undetected by the antivirus software. The drawback of their

system is that if an unknown malware family is detected, then it’s a new cluster

has to be created considering the permissions used by the new family.

2.2 Permission and Intent-Based Static Analysis

R. Sato, et al. (2013) analyze just Android Manifest file. For the malware de-

tection, they proposed a lightweight approach, and for the experimentation and

analyzing of their approach they used genuine samples of Android malware. They

demonstrate that the new technique can successfully distinguish Android malware,

notwithstanding when the example is obscure. In the first step, decompile man-

ifest file for extraction of the specific data. Further, they contrast the extracted

data with the keyword records that are given in this new strategy. At that point,

compute the malignancy score of the example by contrasting the data in the ex-

tricated list. in the event that the threat score surpasses the limit esteem, the

example is judged as malware. The results of their trial demonstrated that the

right proportion of distinguishing clean application is 91.4%, recognizing malware

tests are 87.5%, and it is 90.0% altogether. A few restrictions were seen amid ex-

perimentation that demonstrates that some malware tests were not identified by

the proposed strategy. Along these lines, the genuine test is to join this strategy

with different strategies to understand a considerably more exact identification

technique.

Idrees F, et al. (2014) proposed the permissions and intent filters patterns-based

identification of malware and benign applications. Authors perform classification

by applying different machine learning algorithms. In the first phase of their pro-

posed method extract permission and intents from Android Manifest file. The next

Related Work 12

phase is for processing the collected data into a suitable format to input the clas-

sifiers. In the last stage, data is provided to the classifiers that assess the refined

data and classify the apps into malicious and benign applications. Authors use the

dataset consisting of of45 malware and 300 benign applications. They found that

35 permissions are used by both malware and benign applications. The machine

learning techniques K*, Näıve Bayes, and Prism were used for classification. The

strength of their proposed approach is the combination of intents and permissions

in an efficient manner. However, they ignored other characteristics of malware

that are triggered by different events. Sometimes, malware has the least danger-

ous permissions and normal intents. However, malware often performs certain

malicious activities during execution.

Ali Feizollah, et al. (2017) done their research on Android Intents as semantically

rich features for malware identification. Authors show that Intents are powerful

features for the detection of malware in Android applications. Authors use machine

learning algorithms to classify intents and related malware. They named their

technique AndroDialysis. The main module of the proposed technique called a

detector. Detector use four other sub-modules (decompiler, extractor, intelligent

learner and decision maker) to performs the task of detection. The first sub-

module is responsible for decompiling the Android applications. The second sub-

module performs extraction and extract Android intents from the manifest file of

the Android application. The third module named intelligent learner sub-module

uses the features database to extract data. Bayesian network machine learning

algorithm uses to learn the pattern of the data. The fourth module makes decisions

about application whether it is clean or malicious. They achieve malware detection

rate of 91% using Android Intent as a major feature and got a detection rate of

83% using Android permissions.

Related Work 13

2.3 Permission and API Call Based Static Anal-

ysis

Daniel Arp, et al. (2014) proposed DREBIN, a lightweight methodology for the

revelation of Android malware that engages perceiving malicious applications di-

rectly on the phone. DREBIN plays out an expansive static examination, assem-

bling however many features of an application as would be prudent. In the initial

step, DREBIN statically examines a given Android application and concentrates

diverse feature sets from the application’s show and dex code installing in vec-

tor space. The extricated feature sets are then mapped to a joint vector space,

where patterns and feature combination can be examined. The implanting of the

feature sets empowers us to distinguish malware utilizing proficient strategies of

machine learning, for example, linear Support Vector Machines. In an assessment

of 123,453 applications and 5,560 malware tests, DREBIN beats a few related

methodologies and recognizes 94% of the malware with a couple of false alerts.

Mrs. Gunjan Kapse, et al. (2015) proposed a more extensive static investigation

of utilization covering more features with permission. This expands the malware

recognition quality. The diverse features which would be examined are the per-

mission and dangerous API calls. Doing this would identify the malware with

more exactness. The application would be delegated clean or malware effectively.

The first step is the extraction of permission and API calls. permissions are ex-

tracted from the manifest file and API calls are extracted from dex files. Weights

are doled out to permission and API calls in view of their pernicious nature. In

the event that the aggregate weight of permission and API calls of an application

surpasses a predefined edge, at that point, the application is sorted as malware.

Permission-based detection method has given 81.3% accuracy rate with 0.87 TPR

and 0.25 FPR. Permission and API call detection-based method have given 85.0%

accuracy rate with 0.88 TPR and 0.20 FPR. The proposed technique for iden-

tification of malware on Android application by using permission and API Calls

detect malware more accurately than only permission-based malware detection.

Related Work 14

2.4 API Call Based Static Analysis

Saidah Mastura A. Ghani, et al. (2015) played out a static examination in both

malware and clean Android application. The source code of malware and clean

application have compared. This examination looks at the malware and clean ap-

plications which indistinguishable from each other. This implies both malware and

clean applications in this examination are indistinguishable however the malware

applications were at that point infused by noxious code. This strategy has two

stages which include extraction stage and feature examination stage. In include

extraction stage both malware and clean applications have extracted by utiliz-

ing Androguard, a reverse engineering tool. The antivirus has infused into the

clean applications previously they are extracted. This is done to ensure the clean

applications are extremely perfect from the malware. In the feature correlation

stage, the source code amongst malware and clean applications have analyzed. At

that point, the separation of source code amongst malware and clean applications

have distinguished. At that point, the parameter is ordered into two classes. The

classifications are APIs and manager classes. There are 238 APIs in Android from

level 1 API to level 22 API. The primary classification has identified the majority

of the APIs engaged with both malware and clean applications. From that point

onward, the APIs classes which required with manager classes have recognized.

The example of API with chief classes is Telephony Manager, SmsManager, Power

Manager, Connectivity Manager, and Notification Manager. The after effects of

malware and clean applications from the two classifications have drawn utilizing

charts. The recurrence of APIs and manager classes classifications have contrasted

with clean and malware applications to recognize the most as often as possible uti-

lized API and manager classes by malware. The outcome from this examination

is exceptionally valuable particularly for Android applications engineers to take

some mindfulness when utilizing the Android APIs and manager classes.

ElMouatez Billah Karbab, et al. (2018) propose MalDozer, a straightforward, vi-

able and productive system for Android malware recognition in view of machine

learning strategies and raw sequences of API strategy brings with a specific end

Related Work 15

goal to recognize Android malware. MalDozer consequently extracts and learns in

the malware and the clean sample from the real sample to recognize Android mal-

ware. Amid the preparation, MalDozer can naturally perceive suspicious behavior

utilizing just the sequence of raw technique brings in the assembly code. MalDozer

accomplishes a high precision in malware discovery under different datasets, in-

cluding Malgenome and Drebin. The outcomes demonstrate that MalDozer can

effectively identify malware and credit them to their genuine families with a F1-

Score of 96% - 99% and a false positive rate of 0.06% - 2%, under all tried datasets

and settings. In addition, MalDozer can productively keep running under numer-

ous arrangement models, extending from servers to little IoT gadgets. The burden

of this system is that could oppose certain confusion procedures on the grounds

that exclusive consider the API technique calls.

2.5 Hybrid Based Static Analysis

Kim, et al. (2012) introduced the astatic analyzer called SCANDAL that examines

the applications at the Dalvik byte-code level and identifies the privacy spillage.

The proposed technique searches for the flow of data from the application to any

remote server. The Dalvik byte-code contains method invocation and other in-

struction that modifies the order of execution of code and jumbles the code. The

byte-code analysis detects the possible execution path of an application. Authors

have inspected 90 applications extracted from Google play and 8 malwares from

the third-party app store. They discovered that 11 applications from the Google

app store and 8 malwares involve data leakage. The applications which utilize

reflections for information leakage is not supported in the SCANDAL. The au-

thors did not automate reflection semantics to recognize the security leakage in

malignant applications taken from the third-party app store.

Faruki P, et al. (2013) proposed a signature based statistical analyzing technique

AndroSimilar to detect the newly emerging variants of known malware created

using code obfuscation and re-packaging. The proposed technique compares a

Related Work 16

malware’s signatures; with the signature produced by AndroSimilar for the ap-

plication under analysis. Authors use the dataset based on 6779 apps collected

from the Google Play store and other third-party application stores. Authors ap-

ply different code obfuscation techniques to alter the signature of an application

under analysis. They test 456applications for method renaming, insertion of spam

codes encryption of different strings and altering the control flow. They succeed in

identifying up to 60% samples correctly. The AndroSimilar faces some limitations

too. Their technique uses the comparison of signatures for identifying malware

and benign apps. However, the employed signature database is limited to han-

dle malware from different families. Moreover, new families of malware remain

undetected.

Zheng M, et al. (2013) presented a signature-based malware detection system

called Droid analytics. Authors extract op-codes from the application and ana-

lyze. The proposed system generates signatures and pairs them with the known

malware after extracting the malicious contents. The proposed technique pro-

duces signatures at 3 levels. First level signatures are generated at the method

level. These signatures are generated on the basis of API calls. The second-level

signatures are the class level. The third-level signatures are generated by com-

bining the signatures of all the classes. The Droid analytics correctly identifies

2,494 malware samples that belong to 102 different malware families. Further,

the proposed system correctly identifies 342 repackaged malwares from 06 differ-

ent malware families. The Droid analytics suffers from some limitations too. He

detects malware on the basis of signature produced through classes mostly find

in malware families. However, during experimentation, it was observed that some

signatures are common in both the benign and malware. For the detection of

repackaged malware, the similarity score is used that does not suffice to produce

a 100% accurate solution and may produce false positives.

Singla, et al. (2015) considered different features from the header file and opcode

frequency to distinguish the malware from benign apps. They collected the number

of function calls and distinguished them in malware and clean samples. They

collected the exact numbers of function calls by creating a common list of all

Related Work 17

known function calls and then used the string-matching function to gain the result.

Operational Code was the second parameter they used for malware identification.

They extracted a global list of opcodes and matched the strings; they extracted

from under observation apps and identify the same no of calls made by opcode

by these apps. Further, they identify that occurrence of specific opcode frequency

was higher in malware as compared to that in clean files. They proposed on the

need for some dynamic technique which could classify some advanced malware.

Such techniques execute malware and trace its behavior.

Mehadi Hassan, et al. (2017) proposed a straight time function call graph (FCG)

vector representation based on clustering for improved accuracy. FCG based fea-

tures safeguard the basic data in malware code as functions and the caller-callee

connection between them. The author proposed a malware characterization strat-

egy that gatherings malware tests into malware families. The strategy in light of

FCGs, yet not at all like past works, defeat the execution overhead connected with

the FCG based approach by utilizing a novel method to change over FCG represen-

tation into a vector representation. The proposed system has the accompanying

preferences. It is quicker contrasted with past works for FCG based malware order.

It has a higher precision contrasted with past works. The chart feature vector,

extracted from FCGs, can be effectively joined with other non-diagram features.

2.6 Critical Analysis

After a comprehensive study of state-of-the-art techniques for Android malware

analysis, we summaries the strengths and weaknesses of the current approaches

shown in Table 2.1.

Related Work 18

Table 2.1: Critical analysis of literature review

References Methodology Strength Weakness
Kim, et al.
(2012)

Static Bytecode Identify privacy leakage
Low cost

Expensive in terms of
time and memory.

R. Sato, et al.
(2013)

Permissions and intents Detect unknown mal-
ware sample

Produces result just
based on the Manifest
file.

Faruki P, et al
(2013)

Static analysis for repack-
aged software

Applied different code
obfuscation techniques
to alter the signature
of an application under
analysis.

High false positives
ratio.The signature
database was limited

Zheng M, et al.
(2013)

Static, Signature-based,
opcode

Three level signatures
are used efficient to iden-
tify repackaged software

The false positive ratio
is high because some sig-
natures are common in
both malware and non-
malware applications.

Daniel Arp, et
al. (2014)

API calls, Permissions,
Network address

Try to cover these fea-
tures combine

Intents not used

Idrees F, et al.
(2014)

Permissions and intents Help to improve the
efficiency of the anti-
malware programs

Generates results only
on the basis of the man-
ifest file.

Almin, et al.
(2015)

Permission-based static
analysis, machine learning
for classification

Lightweight and quick
approach

Failed to detect new
malware families

Singla, et al.
(2015)

Static, opcode, function
calls

Identify that occurrence
of specific opcode fre-
quency was high in mal-
ware

Unable to classify mal-
ware that uses code ob-
fuscation

Saidah Mastura
A. Ghani, et al.
(2015)

API calls The outcome from this
exploration is extremely
helpful particularly for
Android applications en-
gineers to take some
mindfulness when utiliz-
ing the Android APIs

Machine learning tools
not used

Gunjan Kapse,
et al. (2015)

Permissions and suspi-
cious API calls.

It yields better TPR and
accuracy than Permis-
sion based Malware de-
tection.

API calls are missing

Feizollah, et al.
(2017)

Static analysis, intents,
and permission

Covering all the aspects
that intents can play to
identify malware

His study alone is not
sufficient to detect the
wide range of malware

Mehadi Hassan,
et al. (2017)

Function call It has a 93% classifica-
tion accuracy

Only examine function
call

ElMouatez Bil-
lah Karbab, et
al. (2018)

API call Accomplishes exceed-
ingly exact malware
identification and family
attribution.

Only consider the API
method Calls.

Table 2.1 describes the strengths and weaknesses of existing approaches. This table

indicates that earlier researchers concentrated on one aspect and ignores another

basic aspect of an application vulnerability and also ignore combine features aspect

of an Android application.

In previous work, some authors use intents and permission some use API calls but

there is a lack of research that uses the combination of intents, permissions and

API calls on same data set to analyze the malware applications.

Chapter 3

Research Methodology

This chapter covers the methodology of our research. It explains the detail of

our methodology steps one by one. It explains the detail of the dataset, feature

extraction process and training of machine learning based classifiers.

Figure 3.1 depicts the overall working of the research methodology. The process

starts working with the input in the form of APK files. Although some other

researcher also uses static analysis in their research there is no research done that

analyses all types of features of apk files on the same dataset. Each Android appli-

cation is the part of the Android Package Kit (APK). Each APK is a compressed

or zip file that consists of application classes (i.e., .dex files), resource files, and a

manifest (.xml) file. The class files contain the source code of the application func-

tionality. Resource files hold information related to graphical or audio components

(e.g., images, clips, etc.). The manifest file describes the intents and permission

details of the android application.

1. The first phase is the disassembling phase apk tool is used for disassembling

the apk files. Android apk file is given as input to the apk tool that extracts

XML file and java files from it (Winsniewski R. 2012).

2. In the next step extracts the application’s permissions and intents data from

the manifest file and API calls from the java file.

19

Research Methodology 20

3. After extraction of permissions, intents and API calls these extracted fea-

tures to act as feature vectors (for the machine learning-based classifier).

4. These feature vectors are used to train machine learning classifier. Once the

classifier is trained, it will be able to identify or classify the given android

apps into malware or benign (based on similar static features).

3.1 APK Tool

APK tool is the tool for reverse engineering. It can decode resources to nearly

original form and rebuild them after making some modifications (Winsniewski R.

2012).

3.1.1 APK Tool Features

• Disassembling resources to nearly original form (including resources, classes.

Dex and XML).

• Rebuilding decoded resources back to binary APK/JAR

• Organizing and handling APKs that depend on framework resources

• Smali Debugging

• Helping with repetitive tasks

Research Methodology 21

3.2 Research Methodology

Figure 3.1: Architecture of Overall Methodology

3.3 Data Collection

Our dataset consists of applications that are in the form of .apk files. The benign

dataset is collected randomly from the Google play store. The benign dataset con-

sists of 500 applications that belong to 28 different categories. Different categories

of applications are available on Google play store. Table 3.1 shows the categories

of benign applications. For malware, we acquired Drebin dataset1 that consists

of thousands of malwares based on several families. Drebin dataset is one of the

Research Methodology 22

most used malware datasets. For research purpose, Drebin dataset free available.

The dataset contains 5,560 applications from 179 different malware families. Table

3.2 shows the different families of malware applications. The samples have been

collected in the period from August 2010 to October 2012 (Arp et al., 2014). We

used 500 malware and 500 clean applications. For the training of our dataset, we

used 70% of our total data that consist of 350 applications and 30% dataset used

for testing that consist of 150 applications.

Table 3.1: Categories of Applications in the Benign Dataset

S.NO. Applications
categories

Count S.NO. Applications
categories

Count

1 Health & Fitness 20 15 Travel and local 20
2 Art & Design 15 16 Food & Drink 15
3 Beauty 10 17 Lifestyle 10
4 Business 20 18 Video Players &

Editors
20

5 Communication 15 19 Weather 15
6 Education 20 20 Social 30
7 Event 15 21 Shopping 15
8 House & Home 20 22 Tools 20
9 Sports 30 23 Parenting 10
10 Productivity 15 24 News & Maga-

zines
15

11 Photography 30 25 Music & Audio 30
12 Camera 15 26 Medical 15
13 Finance 20 27 Entertainment 20
14 Auto & vehicles 10 28 Music & Audio 10

1(https://www.sec.cs.tu-bs.de/ danarp/drebin/)

Table 3.2: Families of Application in the Malware Dataset

S.NO. Malware fam-
ily

Count S.NO. Malware fam-
ily

Count

1 Plankton 20 15 SmsWatcher 20
2 DroidKungFu 15 16 UpdtKiller 15
3 GinMaster 10 17 Gappusin 10
4 FakeDoc 20 18 Proreso 20
5 FakeInstaller 15 19 Mobsquz 15
6 Opfake 20 20 Cosha 30
7 BaseBridge 15 21 SpyMob 15
8 Nisev 20 22 Coogos 20
9 Adrd 30 23 Updtbot 10

10 Kmin 15 24 Ackposts 15
11 Geinimi 30 25 Fatakr 30
12 DroidDream 15 26 Vidro 15
13 FakeRun 20 27 Booster 20
14 Iconosys 10 28 EWalls 10

Research Methodology 23

3.3.1 Training of Machine Learning Based Analysis

For training of machine learning based analyzer we extract two important features

permissions and intents from the manifest files of an android application and API

calls from dex files of an android application.

Figure 3.2: Training of Machine Learning Based Static Analysis

Figure 3.2 depicts the complete training process of the machine learning based

static analysis.

For training the classifier, 70% of the dataset (380 applications) is used for training

purposes. Remaining 30% (120 applications) is used for testing. This 70% of the

dataset that is used for training purpose consist of 50% clean and 50% malware

applications. Applications are disassembled into .xml and .java files using APK

Tool. The next step is feature extraction step by using feature extraction script

permissions and intents are extracted from the manifest file and API calls are

extracted from dex files. After extraction of all these features converts these

features into feature vectors. These feature vectors along with application category

labels (i.e., malware or benign) are used to train a machine learning based static

analyzer (Random Forest, Naive Bayes, Decision Tree, Gradient Boosting).

Research Methodology 24

3.3.2 Extraction of Static Features

Each Android application is the part of the Android Package Kit (APK). Each

APK is a compressed or zip file that consists of application classes (i.e., .dex files),

resource files, and a manifest (.xml) file. The class files contain the source code of

the application functionality. Resource files hold graphical or audio components

(e.g., images, clips, etc.). The manifest file describes the intents and permission

details of the android application. We start our feature extraction process by

acquiring the APK file using the feature extraction script. The feature extraction

script extracts all the permissions and intents from the manifest file and API calls

from the dex files.

To extract permissions and intents from android manifest (.xml) file, we have

written a python script which reads the tags of permissions and intents from

manifest file and export these features into a .csv. By using the .csv file we have

extracted the feature vectors of required features.

Research Methodology 25

Figure 3.3: Feature Extraction Script

Detail of the feature extraction script that takes an APK file and dissembling them

into dex and XML files:

1. In step one script takes apk files as an input and by using Apk tool decompiles

apk files.

Research Methodology 26

2. In the second step after de-compilation, we get dex files, resource files, and

XML files.

3. In the third step, the script read the android manifest.xml file and extracts

all intents and permission from manifest file and stores these intents and

permission in.CSV files.

The same process is repeated for all apk files.

Figure 3.3 shows the python script step by step working

Figure 3.4: Python Script Working

Figure 3.5: CSV Files

Same process repeat for non-malware applications and CSV files of both malware

and non-malware are used for feature vector.

Research Methodology 27

Detail of the feature extraction script that takes an APK file as an input and

dissembling them into dex files for extraction of API Calls:

1. In step one script takes apk files as an input and by using Apk tool decompiles

apk files.

2. In the second step after de-compilation, we get dex files, dex files contain

classes.dex and every class use some methods we can call methods by using

classes.

3. In the third step, we created a call graph by using classes. In our call graph

every method is a node and when one method calls to other methods it

creates an edge and every node in our call graph is a feature of API call.

3.3.3 Feature Vector

Intents and permission CSV files are used for feature vector. Feature vector script

read CSV files of both malware and non-malware application and print all features

of malware and non-malware application after getting a record of all features to

identify unique features of each application and put the record in the output.csv

file.

Let V be a vector comprising a set of 1029 android permissions extracted from

apk files. For every application at its location in the dataset, we produce a binary

sequence:1, if permission exists in the data set 0, otherwise.

The recognized permissions are arranged as a sequence of 0 and 1. The presence

of a specific permission is denoted by the value 1 and the absence is denoted by

the value 0 in the list.

Following sequence represents an example of the permission vector for a clean

application

Research Methodology 28

3.3.4 Permission Vector for non- Malware

1 at the end of this feature vector represents the permission vector for a clean

application.

Following sample represents the permission vector for a malware application:

3.3.5 Permission Vector for Malware

0 at the end of this feature vector represents the permission vector for a clean

application.

Here, we remove redundant (unnecessary and repeated) permissions from the

dataset. We observed during our experimentation that the redundancy can cre-

ate adverse effects on the classification process. After removing the redundant

permission, we obtained 88 unique permissions.

Research Methodology 29

Detail of the python script for the feature vector

Figure 3.6: Python script for the feature vector

The same procedure used for the feature vector of intents we obtained 1745 intents

vector after removing redundancy we obtained 105 unique intents.

3.3.6 Feature Selection by Using Infogain

After applying feature selection method, we selected top 10, 20, 30 and 40 permis-

sions, Intents and API Calls that play the key role in malware identification. The

focus of the feature selection method is to select those attributes of the dataset

which are most appropriate and helpful in the employed machine learning model.

For this purpose, we used the Information gain (IG) is a feature ranking method

based on decision trees that exhibit good classification performance (M. T. Martin-

Valdivia 2008). Information gain used in feature selection constitutes a filter ap-

proach. The thought behind IG is to choose features that uncover the most data

about the classes. Ideally, such features are highly discriminative and occur in a

single class (R. Mukras 2007).

Research Methodology 30

Information gain is a measure based on entropy; it indicates to what extent the

whole entropy is reduced if we know the value of a specific attribute. Therefore,

the IG value indicates how much information this attribute contributes to the

data set (M. T. Martin-Valdivia 2008). Each feature has its own IG value which

determines whether this feature is to be selected or not. A threshold value is used

for checking the features; if a feature has a greater IG value than the threshold,

the feature is chosen; otherwise, it is not selected (Cheng-Huei Yang et al 2009).

In our research information gain finds the certain patterns of the permissions and

intents appearing in the Android application and assign weights to the information

(to emphasize the effectiveness of the features).

List of top 10 permissions and their score that play the vital role for identification

of malware Table 3.3

Table 3.3: List of Top Ten Permissions and their Score

Permissions Score
WRITE CONTACTS 0.173103
READ PHONE STATE 0.128233
CHANGE WIFI STATE 0.058602
RECEIVE SMS 0.058242
CALL PHONE 0.047947
ACCESS COARSE LOCATION 0.042571
ACCESS NETWORK STATE 0.042478
WRITE EXTERNAL STORAGE 0.036509
RECEIVE BOOT COMPLETED 0.034439
SET WALLPAPER 0.03169

List of top 10 intents and their score that play the vital role for identification of

malware Table 3.4

Research Methodology 31

Table 3.4: List of Top Ten Intents and their Score

Intents Score
BATTERY CHANGED ACTION 0.253591
BOOT COMPLETED 0.097431
SIG STR 0.094266
PHONE STATE 0.08986
SEARCH 0.078222
APPWIDGET UPDATE 0.061465
NEW OUTGOING CALL 0.05858
SHORTCUT TOGGLE 0.055685
Default 0.042682
CREATE SHORTCUT 0.024502

List of top 10 API calls and their score that play the vital role for identification

of malware Table 3.5

Table 3.5: List of Top 10 API Calls and their Score

Research Methodology 32

3.3.7 Feature Selection by using PCA (Principal Compo-

nent Analysis)

PCA is the dimensionality reduction algorithm. The main use of the PCA is to

reduce the size of the feature space while retaining as much of the information as

possible. PCA combines similar attributes and creates new ones. We, for the most

part, have information with a substantial number of variables, some of which may

be corresponded. This relationship between factors achieves an excess in the data

that can be accumulated by the informational collection. In this way, keeping in

mind the end goal to decrease the computational and cost complexities, we use

PCA to transform the original variables to the linear combination of these variables

which are independent. PCA is the statistical technique that linearly transforms

an original set of variables into a substantially smaller set of uncorrelated variables

that represent most of the information in the original set of variables. Its goal is

to reduce the dimensionality of the original data set. A small set of uncorrelated

variables is much easier to understand and use in further analysis than a large set

of correlated variables (George h. Dunteman 1989).

3.4 Selection of Classifier for Training Phases

I have used Weka tool for training of the classifiers. Weka (Waikato Environment

for Knowledge Analysis) is a popular suite of machine learning software written

in Java, developed at the University of Waikato, New Zealand. The Weka suite

contains a collection of visualization tools and algorithms for data analysis and

predictive modeling, together with graphical user interfaces for easy access to this

functionality. There are various advantages of Weka:

• It is freely available under the GNU General Public License

• It is portable since it is fully implemented in the Java programming language

and thus runs on almost any architecture

Research Methodology 33

• It is a huge collection of data preprocessing and modeling techniques

• It is easy to use due to its graphical user interface

All techniques of Weka’s software are predicated on the assumption that the data

is available as a single flat file or relation, where each data point is described by

a fixed number of attributes (normally, numeric or nominal attributes, but some

other attribute types are also supported) (Rohit Arora et al 2012).

All features (permission, intents, and API calls) that we are selected are used to

train machine learning classifiers by using Weka tool. Selection of the correct clas-

sifier for the training phase is the most critical step of our research. In our research

we have used supervised learning. Supervised learning is based on labeled data. In

this case, we have an initial dataset, where data samples are mapped to the correct

outcome. Examples of supervised learning are regression and classification prob-

lems. Usually we can say that if the output is a real number and continuous, then

it is regression problem. We can say that if the output is categorical variables,

then it is classification problem. For classification problems we can use follow-

ing classification algorithms. we select four classifiers, Näıve bays (Jones, 1997),

Random Forest (Breiman, 2001), Gradient boosting (Jason Brownlee, 2016) and

Decision tree (Dobra A, 2009) for training phase.

3.4.1 Naive Bayes

Naive Bayes(Jones, 1997)is a simple classifier that uses the Bayes formula to match

the labels with their corresponding dataset labels. The supposition behind this

calculation states that the features do not depend on each other statistically for

their targeted labels. Several experiments have confirmed that naive bays can be

trained on a small amount of data. The adjustment of its parameter is simple,

and the runtime performance is better compared to the other classifiers.

P(A/B) = P(B/A) P(A)/P(B) [1]

Research Methodology 34

In equation [1] A represent malware class and B represent non-malware class.

3.4.2 Random Forest

Random Forest (Breiman, 2001) is an ensemble learning algorithm that was de-

veloped to overcome the over-fitting issue of the decision tree. For the training

purpose, this technique is used to train several trees instead of training a single

decision tree. As input, this algorithm takes the random subsets of the features.

info gain = -(pos/total) *log2(pos/5) - (neg/total) *log2(neg/total) [2]

In equation [2] positive value is malware and negative value is non-malware.

3.4.3 Gradient Boosting

Gradient boosting (Jason Brownlee, 2016) is a champion among the most intense

systems for building order models. The idea is to combine weak leaner in such a

way that overall model accuracy is optimal. The model is said to be weak if it

performs better than slightly better than random chance. The output of different

weak learner is combined in such a way that its loss function should be optimized.

The main objective is that each model loss should be minimized by adding weak

learner using procedures like gradient descent. When one weak leaner is added in

the model, the other left unchanged. Gradient boosting involves three elements:

1. A loss function to be optimized.

2. A weak learner to make predictions.

3. An additive model to add weak learners to minimize the loss function.

Research Methodology 35

3.4.4 Decision Tree

Decision tree (Dobra A, 2009) classifiers used binary tree for classification. As

any other classifier, the decision tree classifiers use values of attributes/features

of the data to make a class label (discrete) prediction. Structurally, decision tree

classifiers are organized like a decision tree in which simple conditions on (usually

single) attributes label the edge between an intermediate node and its children.

Leaves are labeled by class label predictions. Decision tree also uses entropy

formula.

3.5 Evaluation Measurements

Accuracy is the fraction of the total number of correctly classified apps as

malware or benign.

Accuracy= TP+TN/Total

Precision The fraction of the actual correctly classified apps to the total predicted

observations in all apps.

Precision=TP/TP+FP

The recall is the fraction of the correctly predicted positive applications to the

total number of the apps that are in actual class.

Recall=TP/TP+FN

F Measure The harmonic means of precision and recall. F measure represents

the value that tells how much the model is capable of making fine distinctions.

FMeasure = 2 ×Recall × Precision/Recall + Precision

Research Methodology 36

Confusion Matrix indicates the number of correctly and incorrectly classified

apps. For our dataset, there were two types of data i.e.; malware and benign. The

confusion matrix shows the results in the following terms:

True Positive (TP) The count of the malware applications that are correctly

classified as malware.

False Negative (FN) The count of the malware applications that are incorrectly

classified as benign.

True Negative (TN) The count of the benign applications that are correctly

classified as non-malware (benign).

False Positive (FP) The count of the benign applications that are incorrectly

classified as malware.

Chapter 4

Results and Discussion

In this chapter, we evaluate static feature using machine learning techniques for

the purpose of Android malware detection. On the basis of experiments, we have

collected best features which are most effective for a better classification. We have

analyzed the performance of different features by using feature selection algorithms

(info gain and PCA) and concluded the best set of features based on the attained

results against each classifier. Results present the performance of four different

machine learning classifiers (Random Forest, Naive Bayes, Decision Tree, Gradi-

ent Boosting) of Android malware detection. We have applied all four classifiers

(discussed in the previous chapter) to our dataset of malware and non-malware

applications and evaluate the performance of all these classifiers on the intents,

permissions and API calls separately. Finally, these classifiers are applied on the

combination of all these feature sets to analyze the best performing features by

using feature selection algorithms also evaluated the effectiveness of the feature

selection algorithms and best performing combination of classification and feature

selection algorithms. The following sections describe the detail of our experiments.

4.1 Experimental Setup

The experimental setup is shown in table 4.1

37

Results and Discussion 38

Table 4.1: Experimental Setup

1 CPU Intel R© Core (TM) i7-6500 CPU, 2.50 GHz
2 Installed Memory 12 GB
3 O.S Ubuntu 16.04
4 APK Tool 2.2.1
5 Python 2.2.13

6 Machine Learning Classifier

-Random Forest
-Naive Bayes
-Decision Tree
-Gradient Boosting

4.2 Dataset

For this study, our dataset consists of applications that are in the form of .apk

files. The benign dataset is collected randomly from the Google play store. The

benign dataset consists of 500 applications that belong to 28 different categories.

We acquired Drebin dataset that consists of thousands of Malwares based on

several families. To do research on Android malware and to enable a comparison

of different detection approaches, Drebin dataset is free available. The dataset

contains 5,560 applications from 179 different malware families. The samples have

been collected in the period from August 2010 to October 2012 (Arp et al., 2014).

We have 500 malware and 500 clean applications. For the training of our dataset,

we use 70% of our total data that consist of 350 applications and 30% dataset

used for testing that consist of 150 applications.

4.3 Feature Selection

The aim of this step is to reduce the high-dimension of feature instances in our

collected dataset by introducing subsets of features. The most suitable features

(obtained using info gain and PCA method) are then selected as suitable features

which are most helpful in identifying application class (malware or benign). Fea-

ture selection minimizes the time required for training/ testing and increases the

Results and Discussion 39

accuracy to generate simple interpreted models. Before performing feature selec-

tion, we have cleaned our datasets by omitting redundant features. Usually, the

decision of filtering out or keeping a certain set of features depends on the platform

which provides that feature. Therefore, during the feature selection process, we

have paid more attention to the features provided by the Android platform. To

serve this purpose, we have used info gain (discussed in Section 3.2.4) to get the

most appropriate feature’s list having a significant role in the classification. Total

189 android application features (based on different permissions and intents) were

selected out of total 1700 produced by the static analysis. These features consist

of permissions and intents collectively. Similarly, 92 android API calls were se-

lected out of total 700 produced by static analysis Figure 4.1 describes the feature

selection of top ten features of permission (ranked by the info gain method) which

play a key role in malware identification using static analysis. Features obtained

as a result of info gain method consists of permissions. These features play a vital

role in the classification process, as they retain the maximum information for the

classification.

Permission Features WRITE CONTACTS Permission has the highest rank

among all other features. READ PHONE STATE permission is second highest.

SET WALLPAPER have the lowest rank among the top ten ranked features.

Results and Discussion 40

Figure 4.1: Rank Wise Feature Selection of Permission Using info Gain
Method

Table 4.2 shows the brief description of the features obtained through the feature

selection method. Each description tells about the basic functionality of the top-

ranked feature.

Table 4.2: Feature Description of the Top-Ranked Static Feature of Permission

Rank Feature Name Description
1 WRITE CONTACTS Allows an application to write the

user”s contacts data.
2 READ PHONE STATE Allows read-only access to phone

state, including the phone num-
ber of the device, current cellular
network information, the status of
any ongoing calls, and a list of any
phone accounts registered on the
device.

3 CHANGE WIFI STATE Allows an application to change
WI-FI connectivity state.

4 RECEIVE SMS Allows an application to receive an
SMS.

5 CALL PHONE Allows an application to initiate a
phone call without going through
the dialer user interface for the
user to confirm the call.

Results and Discussion 41

Rank Feature Name Description
6 ACCESS COARSE LOCATION Allows an application to access ap-

proximate location.
7 ACCESS NETWORK STATE Allows an application to access in-

formation about networks.
8 WRITE EXTERNAL STORAGE Allows an application to write

from external storage.
9 RECEIVE BOOT COMPLETED Allows an application to receive

the intent.action BOOT COM-
PLETED that is broadcast after
the system finishes booting.

10 SET WALLPAPER Allows an application to set the
wallpaper.

Intent Features Figure 4.2 indicates the role of top ten features of intents (ranked

by the info gain method) which play a key role in malware identification using static

analysis.BATTERY CHANGED ACTION intent has the highest rank among all

other features.BOOT COMPLETED is second highest. CREATE SHORTCUT

have the lowest rank among the top ten ranked features.

Figure 4.2: Rank Wise Feature Selection of Intents Using Info Gain Method

Table 4.3 shows the brief description of the features obtained through the feature

selection method (info gain). Each description tells about the basic functionality

of the top-ranked feature.

Results and Discussion 42

Table 4.3: Feature Description of Top ranked Static Feature of Intents

Rank Feature Name Description
1 BATTERY CHANGED ACTION This is a sticky broadcast containing the

charging state, level, and other information
about the battery.

2 BOOT COMPLETED Broadcast Action: This is broadcast once
after the user has finished booting. It can
be used to perform application-specific ini-
tialization, such as installing alarms.

3 SIG STR Represents strings that can be assigned to
other objects

4 PHONE STATE Allows read-only access to phone state, in-
cluding the phone number of the device, cur-
rent cellular network information, the status
of any ongoing calls, and a list of any phone
accounts registered on the device.

5 SEARCH Activity Action: Perform a search.
6 APPWIDGET UPDATE Sent when it is time to update your App-

Widget.
7 NEW OUTGOING CALL When the user initiates a call, the system

notifies interested apps by sending an or-
dered broadcast of the New outgoing call In-
tent, attaching the original phone number,
URI, and other information as extras.

8 SHORTCUT TOGGLE Create shortcut
9 Default This is the most common action performed

on data – it is the generic action you can use
on a piece of data to get the most reasonable
thing to occur

10 CREATE SHORTCUT App creates shortcut

API Call Features Figure 4.3 indicates the role of the top ten features of API

calls (ranked by the info gain method) which play a key role in malware identifi-

cation using static analysis.sendMessage (Landroid/os/Message;API calls has the

highest rank among all other features.obtainMessage () Landroid/os/Message;is

second highest. setText (Ljava/lang/CharSequence;) have the lowest rank among

the top ten ranked features.

Results and Discussion 43

Figure 4.3: Rank Wise Feature Selection of API calls Using Info Gain Method

4.4 Classification Results with Feature Selection

4.4.1 Malware Detection of Top Ranked Feature (Info Gain)

R.Q 1 Which category of the static features are most effective for mal-

ware detection?

The variations in the f-measure achieved against used classifiers can be seen in

Figure 4.4.

Figure 4.4 shows that Decision tree has the highest value of f-measure that is

93% Random Forest and Gradient Boosting has the second highest value off - the

measure that is 92%. The Naive Bayes show the lower value of f-measure that is

88%.

Results and Discussion 44

Figure 4.4: F- measure of Top 10 ranked permissions features by using four
classifiers

Figure 4.5 shows that Decision tree and Gradient Boosting and Random Forest

has the highest value of f measure that is 97%. The Naive Bayes show the lower

value of f-measure that is 93%.

Figure 4.5: F-measure of Top 10 Ranked Intents Features by Using Four
Classifiers

Figure 4.6 shows that the F-measure of the four classifiers using API calls are the

same that is 84%.

Results and Discussion 45

Figure 4.6: F measure of Top 10 ranked API calls features by using four
classifiers

The results of the precision and recall of classification using different classifiers

and info gain feature selection algorithm are given in Figure 4.7, figure 4.8, and

Figure 4.9.

Figure 4.7: Precision and Recall for permission (info gain)

Results and Discussion 46

Figure 4.8: Precision and Recall for intents (info gain)

Figure 4.9: Precision and Recall for API calls (info gain)

(As shown in Figure 4.10 it is quite evident that the highest achieved accuracy is

97% when the classification is done for the intents analysis. Decision tree Random

forest Gradient boosting classifiers behave same for the intent analysis Similarly,

for the permission analysis, the classifier which achieved best results was the Deci-

sion Tree. Random forest and Gradient Boosting achieved second highest accuracy

in case of permission. For the API calls analysis, all four classifiers performance

Results and Discussion 47

is the same but the malware detection rate is very low as compare to intents and

permission.

We have concluded that overall performance of the Decision Tree classifier is good

in case info gain feature selection algorithm. We have also concluded that intents

are the great static feature for the detection of malware in case of info gain feature

selection algorithm.

Figure 4.10: Accuracy of Permission, Intents and API Calls by Using Info
Gain

4.4.2 Malware Detection of Top Ranked Feature (PCA)

In this section, we have discussed the results of selected feature sets (using PCA)

which play a key role in malware identification.

Figure 4.11 shows that Random Forest has the highest value of f-measure that is

96% Decision Tree has the second highest value of fa measure that is 95%. The

Naive Bayes and Gradient Boosting show the lower value of f-measure that is 94%.

Results and Discussion 48

Figure 4.11: F- measure of Top Permissions Features by Using Four Classifiers

Figure 4.12 shows that Random forest and Gradient Boosting has the highest value

off- the measure that is 93%. Decision Tree has the second highest value that is

92% The Naive Bayes show the lower value of f-measure that is 83%.

Figure 4.12: F-measure of Top Intents Features by Using Four Classifiers

Figure 4.13 shows that the F-measure of the four classifiers using API calls are

the same that is 80%.

Results and Discussion 49

Figure 4.13: F- measure of Top API Calls Features by Using Four Classifiers

The results of the precision and recall of classification using different classifiers and

PCA feature selection algorithm are given in Figure 4.14, figure 4.15, and Figure

4.16.

Figure 4.14: Precision and Recall for permission (PCA)

Results and Discussion 50

Figure 4.15: Precision and Recall for Intents (PCA)

Figure 4.16: Precision and Recall for API Calls (PCA)

(As shown in Figure 4.17 it is quite evident that the highest achieved accuracy is

96% when the classification is done for the permission analysis by using Random

Forest Classifier. We have concluded that overall performance of the Random

Forest classifier is good in case of PCA feature selection algorithm. We have also

concluded that permissions are the great static feature for the detection of malware

in case of PCA feature selection algorithm.

Results and Discussion 51

Figure 4.17: Accuracy of permission, intents and API calls by using PCA

4.4.3 Malware Detection using Combined Features (Info

Gain)

R. Q2 Can accuracy be improved using a combination of these features

(permission, intents, API calls)?

We trained the classifiers using intents, permission, and API calls features sep-

arately by using info gain and PCA feature reduction algorithm and compares

which algorithm gives us best accuracy in case of all these (permission, intents,

API calls) feature set. Now to assess classification accuracy, we have combined

all these features in a single Boolean vector and compared the malware detection

results by using info gain and PCA feature reduction algorithms. Furthermore,

this feature vector is used to train a pure machine learning classifier that is trained

on high-dimensional features to select a wide range malware in the Android ap-

plications.

Figure 4.18 shows that the f-measure and accuracy obtained using four classi-

fiers (RF, DT, GB, and NB). The Decision Tree and Gradient Boosting have the

Results and Discussion 52

same accuracy i.e., 95%, while the Random Forest shows the 94% accuracy and

f-measure. The Näıve Bayes accuracy is below 93%.

Figure 4.18 indicates that the Decision Tree and Gradient Boosting has a high

accuracy rate and can be employed for combined features. The figure also indicates

that the Decision tree classifier performs well with the info gain feature selection

algorithm as it performs well with individual features.

Figure 4.18: F-Measure and accuracy of combined features using info gain

Figure 4.19 shows that every increase in true-positive rate is accompanied by the

decrease in false-positive rate. The Decision tree has the lowest false positive rate

while the Naive Bayes shows the highest false positive rate. High false positive

rate indicates that a classifier incorrectly classifies malware applications as benign

applications.

Results and Discussion 53

Figure 4.19: TPR and FPR of Combined Features Using Info Gain

4.4.4 Malware Detection using Combined Features (PCA)

Figure 4.20 shows that the f-measure and accuracy obtained using four classifiers

(RF, DT, GB, and NB). The Gradient Boosting has the high accuracy i.e., 88%.

The Näıve Bayes accuracy is low 75%.

Figure 4.20 indicates that the Decision Tree and Gradient Boosting has a high

accuracy rate and can be employed for combined features.

Figure 4.20: F-Measure and Accuracy of Combined Features Using PCA

Results and Discussion 54

Figure 4.21: TPR and FPR of Combined Features Using PCA

Figure 4.22: TPR and FPR of Combined Features Using PCA

Figure 4.22 shows that intents are the best feature set for detection of android

malware with the highest accuracy rate of 97%. Combined feature set gives us the

second highest performance of 95% by using the Decision tree.

Results and Discussion 55

Figure 4.23: TPR and FPR of Combined Features Using PCA

Figure 4.23 shows that PCA feature reduction algorithm gives us best performance

with the feature set permission by using the Random Forest classifier. Intent

feature set gives us the second highest performance by using PCA. Combine feature

set gives us third highest performance by using PCA. API Calls performance is

very low for malware detection.

4.5 Classification Results without Feature Selec-

tion

The aim of this phase is to sort out an accurate classifier and feature selection al-

gorithm that can discriminate between the malicious and the benign applications

using feature patterns. We have considered four classification algorithms i.e. Näıve

Bayes (Jones, 1997), Random Forest (Breiman, 2001), Gradient boosting (Jason

Brownlee, 2016) and decision tree (Dobra A, 2009) and two feature selection al-

gorithms info gain and PCA to be evaluated. First, the classification algorithms,

Näıve Bayes, Decision tree, random forest, gradient boosting, were run on top 10

separate feature sets of intents, permission and API calls by using info gain feature

Results and Discussion 56

selection algorithm and then feature selection algorithms were run in combination

with classification algorithms. Secondly, the classification algorithms were run on

top selected separate feature sets of intents, permission and API calls by using

PCA feature selection algorithm and then feature selection algorithms were run

in combination with classification algorithms.

First, we have discussed results of all feature sets and then discussed results of

selected feature sets (using info gain and PCA) which play a key role in malware

identification using static analysis. The aim of using feature selection algorithm

is to identify the best algorithm that takes minimum attributes and gives us best

accuracy. We have compared both feature selection algorithms to identify the best

algorithm.

4.5.1 Performance Evaluation of the Classifiers

R.Q 3 Which classifier (Gradient Boosting, Decision tree, Random for-

est. Näıve Bayes) performs well for the detection of malware?

Figure 4.24 shows the results of the performance of different classification algo-

rithms in WEKA using the Accuracy values. Accuracy is the fraction of the total

number of correctly classified applications as malware or benign.

The goal of this test is to compare the results of different classifiers with one

other to check the selection of most appropriate (with higher accuracy) machine

learning algorithms. From the results of this experiment, we can see that the

Gradient Boosting classifier gives an Accuracy value 95% closer to the optimum

value 1. The x-axis shows four classifiers and the Y-axis shows the accuracy value.

Results and Discussion 57

Figure 4.24: Performance of Four Classifiers on the Feature Set of Permission

Figure 4.25 shows the results of the performance of different classification algo-

rithms by using static feature set of intents to check the performance of different

classifiers on intents. From the results of this experiment, we can see that Decision

Tree, Random Forest and Gradients Boosting algorithms gives an Accuracy value

97% closer to the optimum value 1.

Figure 4.25: Performance of Four Classifiers on the Feature Set of Intents

Figure 4.26 shows the results of the performance of different classification algo-

rithms by using static feature set of API calls to check the performance of different

Results and Discussion 58

classifiers on API calls. From the results of this experiment, we can see that Gradi-

ent Boosting algorithm gives an Accuracy value 90% closer to the optimum value

1. Decision Tree and Random Forest gives us the second highest value of 80% and

the Naive Bayes classifier give us the lowest value that is 76%

Figure 4.26: Performance of Four classifiers on the Feature set of API Calls

Figure 4.24, 425 and Figure 4.26 show the comparison of four classifiers for three

types of the feature set of static data. The comparison results show that Gradient

Boosting gives us best performance as compared to other classifiers Random Forest

and decision tree performance is almost same in all types of feature sets and Naive

Bayes give us lowest performance in all type of feature sets.

4.6 Evaluation

Ali Feizollah, et al. (2017) done their research on Android intents and permissions

for malware identification. Authors show that intents are powerful features for the

detection of malware in Android applications. They achieve malware detection

rate of 91% using Android intent as a major feature and got a detection rate of

83% using Android permissions. We compared our results to the previous paper

Ali Feizollah, et al. (2017) and achieved high accuracy rate for both Android

intents and permissions as compare to pervious paper. Table 4.4 shows the top 10

features of permission used in previous paper and also shows top 10 feature which

we have obtained in our research.

Results and Discussion 59

Table 4.4: Top 10 Feature List of Permission

Table 4.5 shows the top 10 features of intents used in previous paper and also

shows top 10 features which we have obtained in our research.

Table 4.5: Top 10 Feature List of Intents

4.6.1 Comparison

Table 4.6 shows the result comparison of permission with similar work (Ali Feizol-

lah, et al. (2017).

Table 4.6: Result Comparison with Similar Work by Using Permission

Results and Discussion 60

Table 4.7 shows the result comparison of intents with similar work (Ali Feizollah,

et al. (2017).

Table 4.7: Result Comparison with Similar Work by Using Intents

Table 4.6 and 4.7 shows the comparison of our work with previous work. The

comparison results show that our results achieved high accuracy value that is 97%

as compared to previous work (Ali Feizollah, et al. (2017). These results also show

that our selected classifiers perform good as compare to the previous work.

The results presented in this chapter show that intents are the best feature set

for malware detection as compare to permission and API calls. Android intents

achieved high accuracy rate by using three classifiers (Decision tree, Random for-

est, Gradient Boosting) and info gain feature selection algorithm. We have seen

that the Näıve Bayes classifier gives the very low performance as compared to other

classifiers. Combined feature set gives us the second highest performance by using

the Decision tree. Permission and API call feature set give us low performance.

Overall performance of Decision Tree is good for android malware detection. Info

gain is the best feature selection algorithm as compare to PCA.

Chapter 5

Conclusions

In Android malware detection, a prominent research gap is the absence of a study

of machine learning based classifiers, which utilize all the features (Intents, Per-

missions and API Calls) to classify an android application as benign or malware.

In previous work, some author uses intents and permission some use API calls but

there is a lack of research that uses the combination of intents, permissions and API

Calls on same data set to analyze the malware applications. This research work

presents the comparative performance of four different machine learning classifiers

(Random Forest, Decision Tree, Gradient Boosting, Näıve Bayes) and two feature

selection algorithms (info gain, PCA) of Android malware detection and compare

them. Moreover, these classifiers are trained on the features which have not been

coupled in the literature.

We performed Static analysis on manifest file to extract permissions and intents,

generated the very informative feature vector. Further, this feature vector used

to train classifiers for efficient malware detection. Similarly, we performed static

analysis using API calls.

We identified the features that play important role in malware identification. We

have done another experiment by combining the features set (permission, intent,

API calls) obtained from the static analysis.

61

Conclusions 62

We draw the following conclusion from our experimentation and results:

• In a machine learning based malware detection system, selection of the fea-

ture set from the dataset is one of the most critical steps.

• Feature selection itself depends upon the analysis method through which

they are extracted. It is the analysis technique that determines the compat-

ibility of features with the classification algorithm.

• Feature selection algorithms also another important step in our research.

Our conclusion consists of two feature selection algorithms info gain and PCA.

Experimental results explain the conclusions of this research. We get remarkable

results regarding classifier training for malware identification. Trained classifier

(Random Forest based) shows the accuracy value of 96% in case of permission

and 93% in case of intents and 83% for the combined feature set and 81% for API

Calls by using PCA algorithm. The overall performance of Random Forest is best

as compare to other classifiers when we have used PCA and permission is the best

feature set for malware detection. The TPR for this feature set is high up to 96%

and the FPR is low as 4% that indicates the accurate performance of this classifier

and feature set for malware detection identification.

We get remarkable results when we used info gain feature selection algorithm we

get 97% accuracy rate in case of intents by using Decision tree we have absorbed

that overall performance of Decision Tree is good in case of info gain feature

selection algorithm. Decision tree shows the accuracy value of 97% in case of

intents and 93% in case of permission and 95% for the combined feature set and

85% for API Calls by using info gain algorithm. We have concluded that info gain

feature selection algorithm is best as compare to PCA. We have also concluded

that intents are the best feature set for detection of android malware with the

highest accuracy rate of 97% with the combination of info gain feature selection

algorithm that we have not seen in literature. The individual feature set of API

Calls are not good for Android malware detection.

Conclusions 63

The result of this experiment opens the door to another aspect of malware iden-

tification. Trained classifier on combined feature set identified the 95% malware

accurately. The accuracy value of the best classifier is 97% that indicates the

classifiers learn the malware patterns successfully.

5.1 Future Work

As a future work, we plan to validate our framework on the different data set

(Malgenome). We can even train a classifier in the future which can detect the

malware application and classifies them into families. Combination of machine

learning algorithms can also be trained on the combined feature vector. we can also

check the performance of other machine learning algorithm also use other feature

selection algorithm to evaluate the performance of android malware detection. We

can also use other feature selection algorithms to validate our results.

Bibliography

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K. and Siemens,

C.E.R.T., 2014, February. DREBIN: Effective and Explainable Detection of

Android Malware in Your Pocket. vol. 14, pp. 23-26.

Almin, S.B. and Chatterjee, M., 2015. A novel approach to detect android mal-

ware. Procedia Computer Science, vol. 45, pp.407-417.

Breiman, L., 2001. Random forests. Machine learning, vol. 45, pp.5-32.

Cheng-Huei Yang, Li-Yeh Chuang and Cheng-Hong Yang. (2009). A Hybrid

Filter/Wrapper Method for Feature Selection of Microarray Data” Journal of

Medical and Biological Engineering, vol.30, pp. 23-28.

Dobra A. (2009) Decision Tree Classification. springer pp. 532-538.

De Capitani di Vimercati and Fabio Martinelli. (2017) “ICT Systems Security and

Privacy Protection”. Published in 32nd IFIP TC 11 International Conference,

pp.29-31,

ElMouatez Billah Karbab, Mourad Debbabi, Derhab and Mouhab. (2018) “Mal-

Dozer: The Automatic framework for Android malware detection using deep

learning”. DFRWS 2018 Europe d Proceedings of the Fifth Annual DFRWS

Europe, vol 24, pp.23-26.

Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M.S. and Bharmal, A., 2013, Novem-

ber. AndroSimilar: robust statistical feature signature for Android malware

64

Bibliography 65

detection. In Proceedings of the 6th International Conference on Security of

Information and Networks pp. 152-159.

Feizollah, A., Anuar, N.B., Salleh, R., Suarez-Tangil, G. and Furnell, S., 2017.

Androdialysis: Analysis of android intent effectiveness in malware detection.

computers & security, vol. 65, pp.121-134.

George h. Dunteman. (1989) “Principal Components Analysis” published by

SAGE Publications Ltd. pp.1009-1021.

Gunjan Kapse and Aruna Gupta. (2015) “Detection of Malware on Android based

on Application Features”. International Journal of Computer Science and

Information Technologies, vol. 6, pp.3561-3564.

Idrees F and Rajarajan M. (2014) “Investigating the android intents and per-

missions for malware detection”. Wireless and Mobile Computing, Network-

ing and Communications (WiMob), IEEE 10th International Conference on.

IEEE, pp. 354-358.

Jones KS. (1997) Readings in information retrieval: Morgan Kaufmann, pp.456-

459.

Jason Brownlee, (2016) “A Gentle Introduction to the Gradient Boosting Algo-

rithm for Machine Learning”. vol. 9, pp.556-560.

Jung, H.M., Kim, K.B. and Cho, H.J., 2016. A study of android malware detection

techniques in virtual environment. Cluster Computing, volume number 19,

pp.2295-2304.

Kim J, Yoon Y and Kwangkeun Yi. (2012) “ScanDal: The Static analyzer for

detecting privacy leaks in android applications”. vol. 12 pp.1-110.

Losses, N., 2014. Estimating the global cost of cybercrime. McAfee, Centre for

Strategic & International Studies.

Bibliography 66

Lifan Xu, Dongping Zhang, Nuwan Jayasena and John cavazos. (2016) “HADM

Hybrid Analysis for Detection of Malware”. Proceedings of SAI intelligent

system conference. pp. 702-724.

Mehadi Hassan and Philip K. Chan. (2017) “Scalable Function Call Graph-based

Malware Classification”. Proceedings of the Seventh ACM on Conference.

pp. 239-248.

Mart́ın-Valdivia, M.T., Dı́az-Galiano, M.C., Montejo-Raez, A. 2008. Using infor-

mation gain to improve multi-modal information retrieval systems. Informa-

tion Processing & Management, vol. 44, pp.1146-1158.

R. Mukras, R., Wiratunga, N., Lothian, R., Chakraborti, S. and Harper, D.,

2007. Information gain feature selection for ordinal text classification using

probability re-distribution. In Proceedings of the Textlink workshop at IJCAI

vol. 7, p. 1-16.

Rohit Arora and Suman. (2012) “Comparative Analysis of Classification Algo-

rithms on Different Datasets using WEKA” International Journal of Com-

puter Applications vol.54, pp. 1-13.

Sato R, Chiba D and Goto S. (2013) “Detecting Android malware by analyzing

manifest files”. Proceedings of the Asia-Pacific Advanced Network vol. 36, p.

23-31.

Singla S, Gandotra E, Bansal D, and Sanjeev Sofat. (2015) “A Novel Approach

to Malware Detection using Static Classification”. International Journal of

Computer Science and Information Security vol. 13, pp. 1-3.

Saidah Mastura, Mohd Faizal Abdollah, Robiah Yusof and Mohid Zaki. (2015)

“ Recognizing API Features for Malware Detection Using Static Analysis”.

Journal of Wireless Networking and Communications vol 5, pp. 6-12.

Saba Arshad, Abid Khan, Munam Ali Shah, Mansoor Ahmad. (2016) “Android

Malware Detection & Protection: A Survey” IJACSA) International Journal

of Advanced Computer Science and Applications, vol. 7, pp. 1-2.

Bibliography 67

Tarang Kumar Barsiya, Manasi and Rajesh Wadhwani. (2016) “Android malware

analysis: A survey paper”. International Journal of Control, Automation,

Communication and Systems (IJCACS), vol.1, pp.1-1.

Vidhya Rao, K Hande and J. Eng.Dev. (2017) “A comparative study of static, dy-

namic and hybrid analysis techniques for Android malware detection. vol.,5,

pp.1433-1436.

Weka: http://www.cs.waikato.ac.nz/ml/weka/ 4 April, 2018

Zheng M, Sun M and Lui JC. (2013) “Droid analytics: a signature based analytic

system to collect, extract, analyze and associate android malware”. Trust,

Security and Privacy in Computing and Communications (TrustCom), 12th

IEEE International Conference IEEE, pp. 163-171.

Zhenxiang Chen, Hongbo Han, Qiben Yan, B. Yang, L. Pang and L. Zang. (2015)

“A First Look at Android Malware Traffic in First Few Minutes”. Published

in conference Trustcom/BigDataSE/ISPA, vol. 1, pp. 206-213.

Appendix A

Feature extraction code for APK files

68

Appendix A 69

Appendix A 70

Appendix A 71

Appendix A 72

Appendix A 73

Appendix A 74

Appendix A 75

Appendix B

Standard Configurations of Random Forest in WEKA

3.6

Property Configurations

Maxdepth None

Max feature Auto

Min samplesleaf 1

Minweight fractionleaf 0

Warmstart FALSE

Standard Configurations of Decision Tree in WEKA

3.6

Property Configurations

Maxfeatures None

Maxdepth None

Minsamplesleaf 1

Minweightfractionleaf 0

Presort FALSE

76

Appendix B 77

Standard Configurations of Gradient Boosting in

WEKA 3.6

Property Configurations

Maxfeatures None

Maxdepth 3

Minsamplesleaf 1

Minweightfractionleaf 0

Warmstart FALSE

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Approaches
	1.1.1 Static Approach
	1.1.2 Dynamic Approach
	1.1.3 Hybrid Approach

	1.2 Motivation
	1.2.1 Permissions
	1.2.2 Intent
	1.2.3 Application Program Interface (API Calls)

	1.3 Purpose
	1.4 Scope
	1.5 Problem Statement
	1.6 Research Question
	1.7 Proposed Solution
	1.7.1 Permission and Intent Analysis
	1.7.2 Static Code Analysis
	1.7.3 Comparison

	1.8 The Significance of the Solution
	1.9 Tools and Techniques

	2 Related Work
	2.1 Permission-Based Static Analysis
	2.2 Permission and Intent-Based Static Analysis
	2.3 Permission and API Call Based Static Analysis
	2.4 API Call Based Static Analysis
	2.5 Hybrid Based Static Analysis
	2.6 Critical Analysis

	3 Research Methodology
	3.1 APK Tool
	3.1.1 APK Tool Features

	3.2 Research Methodology
	3.3 Data Collection
	3.3.1 Training of Machine Learning Based Analysis
	3.3.2 Extraction of Static Features
	3.3.3 Feature Vector
	3.3.4 Permission Vector for non- Malware
	3.3.5 Permission Vector for Malware
	3.3.6 Feature Selection by Using Infogain
	3.3.7 Feature Selection by using PCA (Principal Component Analysis)

	3.4 Selection of Classifier for Training Phases
	3.4.1 Naive Bayes
	3.4.2 Random Forest
	3.4.3 Gradient Boosting
	3.4.4 Decision Tree

	3.5 Evaluation Measurements

	4 Results and Discussion
	4.1 Experimental Setup
	4.2 Dataset
	4.3 Feature Selection
	4.4 Classification Results with Feature Selection
	4.4.1 Malware Detection of Top Ranked Feature (Info Gain)
	4.4.2 Malware Detection of Top Ranked Feature (PCA)
	4.4.3 Malware Detection using Combined Features (Info Gain)
	4.4.4 Malware Detection using Combined Features (PCA)

	4.5 Classification Results without Feature Selection
	4.5.1 Performance Evaluation of the Classifiers

	4.6 Evaluation
	4.6.1 Comparison

	5 Conclusions
	5.1 Future Work

	Bibliography
	Appendix A
	Appendix B

