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Preface
Robot Operating System is robotic middleware that helps developers to program robotic
applications, and is widely used in robotics companies, research centers, and universities.
Mastering ROS for Robotics Programming, Second Edition presents advanced concepts of the
ROS framework and is particularly suitable for users who are already familiar with the
basic concepts of ROS. However, a brief introduction of the basic ROS concepts is proposed
in the first chapter in order to help new developers start with the examples in the book.
Readers will be guided through the creation, the modeling model and design, new robots,
as well as simulating and interfacing them with the ROS framework. They will use
advanced simulation software to use ROS tools that allow robot navigation, manipulation,
and sensor elaboration. Finally, the reader will learn how to handle important concepts
such as ROS low-level controllers, nodelets, and plugins. The readers can work with almost
all of the examples of the book using only a standard computer without any special
hardware requirements. However, additional hardware components will be used in some
chapters of the book to discuss how to use ROS with external sensors, actuators, and I/O
boards.

The book is organized as follows. After an introduction to the basic concepts of ROS, how to
model and simulate a robot is discussed. Gazebo and the V-REP software simulator will be
used to control and interact with the modeled robot. These simulators will be used to
connect the robots with MoveIt! and navigation ROS package. ROS plugins, controllers, and
nodelets are then discussed. Finally, the book discusses how to connect Matlab and
Simulink software with ROS.

Who this book is for
This book is meant to be used by passionate robotics developers or researchers who want to
fully exploit the features of ROS. The book is also good for all the users who already are
familiar with typical robotics applications or who want to start learning how to develop the
world of ROS in an advanced manner, learning how to model, build, and control their own
robots. A basic knowledge of GNU/Linux and C++ programming is strongly recommended
if you want to easily comprehend the contents of the book.
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What this book covers
, Introduction to ROS, gives you an understanding of the core underlying concepts

of ROS. 

, Getting Started with ROS Programming, explains how to work with ROS
packages.

, Working with 3D Robot Modeling in ROS, discusses the design of two robots; one
is a seven Degree of Freedom (DOF) manipulator and the other is a differential drive robot.

, Simulating Robots Using ROS and Gazebo, discusses the simulation of a seven DOF
arm, differential wheeled robots, and ROS controllers that help control robot joints in
Gazebo.

, Simulating Robots Using ROS and V-REP, introduces using the V-REP simulator
and vrep_plugin to connect ROS with the simulation scene. Then the control of a seven
DOF arm and a differential mobile robot is discussed.

, Using the ROS MoveiIt! and Navigation Stack, interfaces out-of-the-box
functionalities such as robot manipulation and autonomous navigation using ROS MoveIt!
and Navigation stack.

, Working with Pluginlib, Nodelets, and Gazebo Plugins, shows some of the advanced
concepts in ROS, such as ROS pluginlib, nodelets, and Gazebo plugins. We will discuss the
functionalities and application of each concept and can practice one example to demonstrate
its working.

, Writing ROS Controllers and Visualization Plugins, shows how to write a basic
ROS controller for PR2 robots and robots similar to PR2. After creating the controller, we
will run the controller using the PR2 simulation in Gazebo. We will also see how to create
plugin for RViz.

 Interfacing I/O Boards, Sensor, and Actuators to ROS, discusses interfacing some
hardware components, such as sensors and actuators, with ROS. We will see the interfacing
of sensors using I/O boards, such as Arduino, Raspberry Pi, and Odroid-XU4, with ROS.

, Programming Vision Sensors Using ROS, Open-CV and PCL, discusses how to
interface various vision sensors with ROS and program it using libraries such as Open
Source Computer Vision (OpenCV) and Point Cloud Library (PCL), and working with AR
Markers.
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, Building and Interfacing Differential Drive Mobile Robot Hardware in ROS, helps
you to build autonomous mobile robot hardware with differential drive configuration and
interface it with ROS. This chapter aims to give you an idea of building a custom mobile
robot and interfacing it with ROS.

, Exploring the Advanced Capabilities of ROS-MoveIt!, discusses the capabilities of
MoveIt! such as collision avoidance, perception using 3D sensors, grasping, picking, and
placing. After that, we can see how to interface of a robotic manipulator hardware with
MoveIt!

, Using ROS in Matlab and Simulink, discusses how to connect Matlab and
Simulink software with ROS.

, ROS for Industrial Robots, helps you understand and install ROS-Industrial
packages in ROS. We can see how to develop an MoveIt! IKFast plugin for an industrial
robot.

, Troubleshooting and Best Practices in ROS, discusses how to set the ROS
development environment in Eclipse IDE, best practices in ROS, and troubleshooting tips in
ROS.

To get the most out of this book
In order to run the examples in this book, you need a standard PC running Linux OS.
Ubuntu 16.04 is the suggested Linux distribution, but Debian 8 is supported as well. The
suggested PC configuration requires at least 4 GB of RAM and a modern processor (Intel i-
family) to execute Gazebo simulations and image processing algorithms.

Readers can even work in a virtual environment setup installing Linux OS on a virtual
machine, using Virtual box or VMware software hosted on a Windows system. The
disadvantage of this choice is that more computational power is needed to work with the
examples and the reader could face issues when interfacing ROS with real hardware.

The software needed to follow the book is ROS and Kinetic Kame. Additional software
required is V-REP simulator, Git, Matlab, and Simulink.

Finally, some chapters help readers to interface ROS with commercial hardware such as I/O
boards (Arduino, Odroid, and Raspberry Pi computers), vison sensors (Kinect/Asus Xition
Pro), and actuators. These are special hardware components that must be bought to run
some examples of the book but are not strictly required to learn ROS.
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Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at

. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available at
. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

.
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Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded  disk image file as another disk in
your system."

A block of code is set as follows:

Any command-line input or output is written as follows:

$ rostopic list
$ cd

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"On the main toolbar, select File | Open Workspace, and choose the directory representing
the ROS workspace."

Warnings or important notes appear like this.

Tips and tricks appear like this.
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Get in touch
Feedback from our readers is always welcome.

General feedback: Email  and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at  with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .
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Introduction to ROS

The first two chapters of this book introduce basic ROS concepts and its package
management system in order to refresh your memory about concepts you should already
know. In this first chapter, we will go through ROS concepts such as the ROS Master, the
ROS nodes, the ROS parameter server, ROS  messages and services discussing what we
need to install ROS and how to get started with the ROS master.

In this chapter, we will cover the following topics:

Why should we learn ROS?
Why should we prefer or should not prefer ROS for robots?
Getting started with the ROS filesystem level and its computation graph level.
Understanding ROS framework elements.
Getting started with the ROS master.

Why should we learn ROS?
Robot Operating System (ROS) is a flexible framework, providing various tools and
libraries to write robotic software. It offers several powerful features to help developers in
such tasks as message passing, distributing computing, code reusing, and implementation
of state-of-the-art algorithms for robotic applications.

The ROS project was started in 2007, with the name Switchyard, by Morgan Quigley
( ), as part of the Stanford STAIR robot project. The
main development of ROS happened at Willow Garage ( ).
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The ROS community is growing very fast, and there are many users and developers
worldwide. Most of the high-end robotics companies are now porting their software to
ROS. This trend is also visible in industrial robotics, in which companies are switching from
proprietary robotic applications to ROS.

The ROS industrial movement has gained momentum in the past few years, owing to the
large amount of research done in that field. ROS Industrial can extend the advanced
capabilities of ROS to manufacturing. The increasing applications of ROS can generate a lot
of job opportunities in this field. So, after some years, a knowledge of ROS will be an
essential requirement for a robotics engineer.

Why we prefer ROS for robots
Imagine that we are going to build an autonomous mobile robot. Here are some of the
reasons why people choose ROS over other robotic platforms, such as Player, YARP,
Orocos, MRPT, and so on:

High-end capabilities: ROS comes with ready-to-use capabilities. For example,
Simultaneous Localization and Mapping (SLAM) and Adaptive Monte Carlo
Localization (AMCL) packages in ROS can be used for performing autonomous 
navigation in mobile robots, and the  package can be used for motion
planning of robot manipulators. These capabilities can directly be used in our
robot software without any hassle. These capabilities are its best form of
implementation, so writing new code for existing capabilities is like reinventing
the wheel. Also, these capabilities are highly configurable; we can fine-tune each
capability using various parameters.
Tons of tools: ROS is packed with tons of tools for debugging, visualizing, and
performing a simulation. The tools, such as rqt_gui, RViz, and Gazebo, are some
of the strong open source tools for debugging, visualization, and simulation. A
software framework that has these many tools is very rare.
Support for high-end sensors and actuators: ROS is packed with device drivers
and interface packages of various sensors and actuators in robotics. The high-end
sensors include Velodyne-LIDAR, Laser scanners, Kinect, and so on, and
actuators such as DYNAMIXEL servos. We can interface these components to
ROS without any hassle.
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Inter-platform operability: The ROS message-passing middleware allows
communication between different nodes. These nodes can be programmed in any
language that has ROS client libraries. We can write high-performance nodes in
C++ or C and other nodes in Python or Java. This kind of flexibility is not
available in other frameworks.
Modularity: One of the issues that can occur in most of the standalone robotic
applications is that if any of the threads of main code crash, the entire robot
application can stop. In ROS, the situation is different; we are writing different
nodes for each process, and if one node crashes, the system can still work. Also,
ROS provides robust methods to resume operations even if any sensors or motors
are dead.
Concurrent resource handling: Handling a hardware resource via more than two
processes is always a headache. Imagine we want to process an image from a
camera for face detection and motion detection; we can either write the code as a
single entity that can do both, or we can write a single-threaded code for
concurrency. If we want to add more than two features in threads, the application
behavior will get complex and will be difficult to debug. But in ROS, we can
access the devices using ROS topics from the ROS drivers. Any number of ROS
nodes can subscribe to the image message from the ROS camera driver, and each
node can perform different functionalities. It can reduce the complexity in
computation and also increase the debug ability of the entire system.
Active community: When we choose a library or software framework, especially
from an open source community, one of the main factors that needs to be checked
before using it is its software support and developer community. There is no
guarantee of support from an open source tool. Some tools provide good support
and some tools don't. In ROS, the support community is active. There is a web
portal to handle the support queries from users too ( ). It
seems that the ROS community has a steady growth in developers worldwide.

There are many reasons to choose ROS other than the preceding points.

Next, we can check the various reasons why people don't use ROS. Here are some of the
existing reasons.
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Why some do not prefer ROS for robots
Here are some of the reasons why some people do not prefer ROS for their robotic projects:

Difficulty in learning: ROS can be difficult to learn. It has a steep learning curve
and developers should become familiar with many new concepts to get benefits
from the ROS framework. 
Difficulties in starting with simulation: The main simulator in ROS is Gazebo.
Even though Gazebo works well, to get started with Gazebo is not an easy task.
The simulator has no inbuilt features to program. Complete simulation is done
only through coding in ROS. When we compare Gazebo with other simulators,
such as V-REP and Webots, they have inbuilt functionalities to prototype and
program the robot. They also have a rich GUI toolset support a wide variety of
robots and have ROS interfaces too. These tools are proprietary but can deliver a
decent job. The toughness of learning simulation using Gazebo and ROS is a
reason for not using it in projects.
Difficulties in robot modeling: The robot modeling in ROS is performed using
URDF, which is an XML-based robot description. In short, we need to write the
robot model as a description using URDF tags. In V-REP, we can directly build
the 3D robot model in the GUI itself, or we can import the mesh. In ROS, we
should write the robot model definitions using URDF tags. There is a SolidWorks
plugin to convert a 3D model from SolidWorks to URDF, but if we use other 3D
CAD tools, there are no options at all. Learning to model a robot in ROS will take
a lot of time, and building using URDF tags is also time-consuming compared to
other simulators.
Potential limitations: Current ROS versions have some limitations. For example,
there is a lack of a native real-time application development support or the
complexity to implement robust multi-robot distributed applications.
ROS in commercial robot products: When we deploy ROS on a commercial
product, a lot of things need to be taken care of. One thing is the code quality.
ROS code follows a standard coding style and keeps best practices for
maintaining the code too. We have to check whether it satisfies the quality level
required for our product. We might have to do additional work to improve the
quality of the code. Most of the code in ROS is contributed by researchers from
universities, so if we are not satisfied with the ROS code quality, it is better to
write our own code, which is specific to the robot and only use the ROS core
functionalities if required.
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We now know where we have to use ROS and where we do not. If ROS is really required
for your robot, let's start discussing ROS in more detail. First, we can see the underlying
core concepts of ROS. There are mainly three levels in ROS: the filesystem level,
computation graph level, and community level. We will briefly have a look at each level.

Understanding the ROS filesystem level
ROS is more than a development framework. We can refer to ROS as a meta-operating
system, since it offers not only tools and libraries but even OS-like functions, such as
hardware abstraction, package management, and a developer toolchain. Like a real
operating system, ROS files are organized on the hard disk in a particular manner, as
depicted in the following figure:

Here are the explanations for each block in the filesystem:

Packages: The ROS packages are the most basic unit of the ROS software. They
contain one or more ROS programs (nodes), libraries, configuration files, and so
on, which are organized together as a single unit. Packages are the atomic build
item and release item in the ROS software.
Package manifest: The package manifest file is inside a package that contains
information about the package, author, license, dependencies, compilation flags,
and so on. The  file inside the ROS package is the manifest file of
that package.
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Metapackages: The term metapackage refers to one or more related packages
which can be loosely grouped together. In principle, metapackages are virtual
packages that don't contain any source code or typical files usually found in
packages.
Metapackages manifest: The metapackage manifest is similar to the package
manifest, the difference being that it might include packages inside it as runtime
dependencies and declare an  tag.
Messages ( ): The ROS messages are a type of information that is sent from
one ROS process to the other. We can define a custom message inside the 
folder inside a package ( ). The extension
of the message file is .
Services ( ): The ROS service is a kind of request/reply interaction between
processes. The reply and request data types can be defined inside the  folder
inside the package ( ).
Repositories: Most of the ROS packages are maintained using a Version Control
System (VCS), such as Git, Subversion (svn), Mercurial (hg), and so on. The
collection of packages that share a common VCS can be called repositories. The
package in the repositories can be released using a catkin release automation tool
called .

The following screenshot gives you an idea of the files and folders of a package that we are
going to create in the upcoming sections:
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ROS packages
A typical structure of an ROS package is shown here:

We can discuss the use of each folder as follows:

: All configuration files that are used in this ROS package are kept in this
folder. This folder is created by the user and it is a common practice to name the
folder  to keep the configuration files in it.

: This folder consists of headers and libraries that we
need to use inside the package.

: This folder keeps executable Python scripts. In the block diagram, we
can see two example scripts.

: This folder stores the C++ source codes.
: This folder keeps the launch files that are used to launch one or more

ROS nodes.
: This folder contains custom message definitions.
: This folder contains the services definitions.

: This folder contains the action files. We will see more about these kind of
files in the next chapter.

: This is the package manifest file of this package.
: This files contains the directives to compile the package.
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We need to know some commands to create, modify, and work with the ROS packages.
Here are some of the commands used to work with ROS packages:

: This command is used to create a new package
: This command is used to get information about the package in the

filesystem
: This command is used to build the packages in the workspace

: This command will install the system dependencies required for this
package

To work with packages, ROS provides a bash-like command called 
( ), which can be used to navigate and manipulate the ROS
package. Here are some of the  commands:

: This command is used to change the current directory using a package
name, stack name, or a special location. If we give the argument a package name,
it will switch to that package folder.

: This command is used to copy a file from a package.
: This command is used to edit a file using the vim editor.

: This command is used to run an executable inside a package.

The definition of  of a typical package is shown in the following screenshot:
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The  file consists of the package name, version of the package, the package
description, author details, package build dependencies, and runtime dependencies. The

 tag includes the packages that are necessary to build
the source code of the package. The packages inside the 
tags are necessary during runtime of the package node.

ROS metapackages
Metapackages are specialized packages in ROS that only contain one file, that is, a

 file. They don't contain folders and files like a normal package.

Metapackages simply group a set of multiple packages as a single logical package. In the
 file, the metapackage contains an  tag, as shown here:

Also, in metapackages, there are no  dependencies for ; there
are only  dependencies, which are the packages grouped in the
metapackage.

The ROS navigation stack is a good example of metapackages. If ROS and its navigation
package are installed, we can try the following command, by switching to the navigation
metapackage folder:

$ roscd navigation

Open  using your favorite text editor (  in the following case):

$ gedit package.xml
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This is a lengthy file; here is a stripped-down version of it:

ROS messages
The ROS nodes can write or read data that has a different type. The types of data are
described using a simplified message description language, also called ROS messages.
These datatype descriptions can be used to generate source code for the appropriate
message type in different target languages.

The data type description of ROS messages is stored in  files in the  subdirectory of
a ROS package. Even though the ROS framework provides a large set of robotic-specific
messages already implemented, developers can define their own message type inside their
nodes.

The message definition can consist of two types:  and . The field is split
into field types and field names. The field type is the data type of the transmitting message
and field name is the name of it. The constants define a constant value in the  file.
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Here is an example of message definitions:

Here, the first part is the field type and the second is the field name. The field type is the
data type and the field name can be used to access the value from the message. For
example, we can use  for accessing the value of the number from the message.

Here is a table showing some of the built-in field types that we can use in our message:

Primitive type Serialization C++ Python

Unsigned 8-bit int

Signed 8-bit int

Unsigned 8-bit int

Signed 16-bit int

Unsigned 16-bit int

Signed 32-bit int

Unsigned 32-bit int

Signed 64-bit int

Unsigned 64-bit int

32-bit IEEE float

64-bit IEEE float

ascii string(4)

secs/nsecs unsigned 32-bit ints

secs/nsecs signed 32-bit ints
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Other kinds of messages are designed to cover a specific application necessity, such as
exchanging common geometrical ( ) or sensor ( ) information.
A special type of ROS message is called a message header. Headers can carry information,
such as time, frame of reference or , and sequence number. Using headers, we
will get numbered messages and more clarity in who is sending the current message. The
header information is mainly used to send data such as robot joint transforms (TF). Here is
an example of the message header:

The  command tool can be used to inspect the message header and the field types.
The following command helps to view the message header of a particular message:

$ rosmsg show std_msgs/Header

This will give you an output like the preceding example message header. We will look at
the  command and how to work with custom message definitions further in the
upcoming sections.

The ROS services
The ROS services are a type request/response communication between ROS nodes. One
node will send a request and wait until it gets a response from the other. The
request/response communication is also using the ROS message description.

Similar to the message definitions using the  file, we have to define the service
definition in another file called , which has to be kept inside the  subdirectory of
the package. Similar to the message definition, a service description language is used to
define the ROS service types.

An example service description format is as follows:

The first section is the message type of the request that is separated by  and in the next
section is the message type of the response. In these examples, both  and 
are strings.
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In the upcoming sections, we will look at how to work with ROS services.

Understanding the ROS computation graph
level
The computation in ROS is done using a network of a process called ROS nodes. This
computation network can be called the computation graph. The main concepts in the
computation graph are ROS Nodes, Master, Parameter server, Messages, Topics, Services,
and Bags. Each concept in the graph is contributed to this graph in different ways.

The ROS communication-related packages including core client libraries, such as 
and  , and the implementation of concepts, such as topics, nodes, parameters,
and services are included in a stack called  ( ).

This stack also consists of tools such as , , , and 
to introspect the preceding concepts.

The  stack contains the ROS communication middleware packages and these
packages are collectively called the ROS Graph layer:
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The following are abstracts of each graph's concepts:

Nodes: Nodes are the process that perform computation. Each ROS node is
written using ROS client libraries. Using client library APIs, we can implement
different ROS functionalities, such as the communication methods between
nodes, which is particularly useful when different nodes of our robot must
exchange information between them. Using the ROS communication methods,
they can communicate with each other and exchange data. One of the aims of
ROS nodes is to build simple processes rather than a large process with all the
functionality. Being a simple structure, ROS nodes are easy to debug.
Master: The ROS Master provides the name registration and lookup to the rest of
the nodes. Nodes will not be able to find each other, exchange messages, or
invoke services without a ROS Master. In a distributed system, we should run the
master on one computer, and other remote nodes can find each other by
communicating with this master.
Parameter server: The parameter server allows you to keep the data to be stored
in a central location. All nodes can access and modify these values. The
parameter server is a part of the ROS Master.
Messages: Nodes communicate with each other using messages. Messages are
simply a data structure containing the typed field, which can hold a set of data,
and that can be sent to another node. There are standard primitive types (integer,
floating point, Boolean, and so on) and these are supported by ROS messages. We
can also build our own message types using these standard types.
Topics: Each message in ROS is transported using named buses called topics.
When a node sends a message through a topic, then we can say the node is
publishing a topic. When a node receives a message through a topic, then we can
say that the node is subscribing to a topic. The publishing node and subscribing
node are not aware of each other's existence. We can even subscribe a topic that
might not have any publisher. In short, the production of information and
consumption of it are decoupled. Each topic has a unique name, and any node
can access this topic and send data through it as long as they have the right
message type.
Services: In some robot applications, the publish/subscribe communication
model may not be suitable. For example, in some cases, we need a kind of
request/response interaction, in which one node can ask for the execution of a fast
 procedure to another node; for example, asking for some quick calculation. The
ROS service interaction is like a remote procedure call.



Introduction to ROS Chapter 1

[ 21 ]

Logging: ROS provides a logging system for storing data, such as sensor data,
which can be difficult to collect but is necessary for developing and testing robot
algorithms: the bagfiles. Bagfiles are very useful features when we work with
complex robot mechanisms.

The following graph shows how the nodes communicate with each other using topics. The
topics are mentioned in a rectangle and the nodes are represented in ellipses. The messages
and parameters are not included in this graph. These kinds of graphs can be generated
using a tool called  ( ):

ROS nodes
ROS nodes are a process that perform computation using ROS client libraries such as

 and . One node can communicate with other nodes using ROS Topics,
Services, and Parameters.

A robot might contain many nodes; for example, one node processes camera images, one
node handles serial data from the robot, one node can be used to compute odometry, and so
on.
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Using nodes can make the system fault tolerant. Even if a node crashes, an entire robot
system can still work. Nodes also reduce the complexity and increase debug-ability
compared to monolithic code because each node is handling only a single function.

All running nodes should have a name assigned to identify them from the rest of the
system. For example,  could be a name of a node that is broadcasting camera
images.

There is a  tool to introspect ROS nodes. The  command can be used to get
information about a ROS node. Here are the usages of :

: This will print the information about the node
: This will kill a running node

: This will list the running nodes
: This will list the nodes running on a

particular machine or a list of machines
: This will check the connectivity of a node

: This will purge the registration of unreachable nodes

We will look at example nodes using the  client and will discuss the working of ROS
nodes that use functionalities such ROS Topics, Service, Messages, and actionlib.

ROS messages
ROS nodes communicate with each other by publishing messages to a topic. As we
discussed earlier, messages are a simple data structure containing field types. The ROS
message supports standard primitive datatypes and arrays of primitive types.

Nodes can also exchange information using service calls. Services are also messages. The
service message definitions are defined inside the  file.

We can access the message definition using the following method. For example, to access
, we can use . If we are using the 

client, we have to include  for the string message definition.

In addition to message data type, ROS uses an MD5 checksum comparison to confirm
whether the publisher and subscriber exchange the same message data types.
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ROS has inbuilt tools called  to get information about ROS messages. Here are some
parameters used along with :

: This shows the message description
: This lists all messages

: This displays  of a message
: This lists messages in a package

: This lists packages that
contain messages

ROS topics
ROS topics are named buses in which ROS nodes exchange messages. Topics can
anonymously publish and subscribe, which means that the production of messages is
decoupled from the consumption. The ROS nodes are not interested in knowing which
node is publishing the topic or subscribing topics; they only look for the topic name and
whether the message types of the publisher and subscriber are matching.

The communication using topics are unidirectional. If we want to implement a
request/response, such as communication, we have to switch to ROS services.

The ROS nodes communicate with topics using TCP/IP-based transport known as TCPROS.
This method is the default transport method used in ROS. Another type of communication
is UDPROS, which has low-latency, loose transport, and is only suited for teleoperations.

The ROS topic tool can be used to get information about ROS topics. Here is the syntax of
this command:

: This command will display the bandwidth used by the
given topic.

: This command will print the content of the given
topic in a human readable format. Users can use the "-p" option to print data in a
csv format.

: This command will find topics using the
given message type.

: This command will display the publishing rate of the
given topic.
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: This command will print information about an
active topic.

: This command will list all active topics in the ROS system.
: This command can be used to

publish a value to a topic with a message type.
: This will display the message type of the given

topic.

ROS services
When we need a request/response kind of communication in ROS, we have to use the ROS
services. ROS topics can't implement natively such kind of communication because it is
unidirectional. The ROS services are mainly used in a distributed system.

The ROS services are defined using a pair of messages. We have to define a request
datatype and a response datatype in a  file. The  files are kept in a  folder inside
a package.

In ROS services, one node acts as a ROS server in which the service client can request the
service from the server. If the server completes the service routine, it will send the results to
the service client. For example, consider a node able to provide the sum of two numbers
received in input, implementing this functionality through a ROS service. The other nodes
of our system might request the sum of two numbers via this service. Differently, topics are
used to stream continuous data flow.

The ROS service definition can be accessed by the following method; for example, if
 can be accessed by .

In ROS services also, there is an MD5  that checks in the nodes. If the sum is
equal, then only the server responds to the client.

There are two ROS tools to get information about the ROS service. The first tool is ,
which is similar to , and is used to get information about service types. The next
command is , which is used to list and query about the running ROS services.
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The following explain how to use the  tool to get information about the
running services:

: This tool will call the service using the
given arguments

: This command will find services in the
given service type

: This will print information about the given
service

: This command will list the active services running on the
system

: This command will print the service type of a
given service

: This tool will print the service ROSRPC URI

ROS bags
A bag file in ROS is for storing ROS message data from topics and services. The 
extension is used to represent a bag file.

Bag files are created using the  command, which will subscribe one or more topics
and store the message's data in a file as it's received. This file can play the same topics as
they are recorded from or it can remap the existing topics too.

The main application of  is data logging. The robot data can be logged and can
visualize and process offline.

The  command is used to work with  files. Here are the commands to record
and playback a bag file:

: This command
will record the given topics into a bag file that is given in the command. We can
also record all topics using the  argument.

: This will playback the existing bag file.
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Further details about this command can be found at:

There is a GUI tool to handle the record and playback of bag files called . To learn
more about , go to: 

The ROS Master
The ROS Master is much like a DNS server, associating unique names and IDs to ROS
elements active in our system. When any node starts in the ROS system, it will start looking
for the ROS Master and register the name of the node in it. So, the ROS Master has the
details of all the nodes currently running on the ROS system. When any details of the nodes
change, it will generate a callback and update with the latest details. These node details are
useful for connecting with each node.

When a node starts publishing a topic, the node will give the details of the topic, such as
name and data type, to the ROS Master. The ROS Master will check whether any other
nodes are subscribed to the same topic. If any nodes are subscribed to the same topic, the
ROS Master will share the node details of the publisher to the subscriber node. After getting
the node details, these two nodes will interconnect using the TCPROS protocol, which is
based on TCP/IP sockets. After connecting to the two nodes, the ROS Master has no role in
controlling them. We might be able to stop either the publisher node or the subscriber node
according to our requirement. If we stop any nodes, it will check with the ROS Master once
again. This same method is used for the ROS services.

The nodes are written using the ROS client libraries, such as  and . These 
clients interact with the ROS Master using XML Remote Procedure Call (XMLRPC)-based
APIs, which act as the backend of the ROS system APIs.

The  environment variable contains the IP and port of the ROS Master.
Using this variable, ROS nodes can locate the ROS Master. If this variable is wrong, the
communication between nodes will not take place. When we use ROS in a single system, we
can use the IP of a localhost or the name  itself. But in a distributed network, in
which computation is on different physical computers, we should define 
properly; only then will the remote nodes be able find each other and communicate with
each other. We need only one Master in a distributed system, and it should run on a
computer in which all other computers can ping it properly to ensure that remote ROS
nodes can access the Master.
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The following diagram shows an illustration of how the ROS Master interacts with a
publishing and subscribing node, with the publisher node publishing a string type topic
with a  message and the subscriber node subscribing to this topic:

When the publisher node starts publishing the  message in a particular topic,
the ROS Master gets the details of the topic and details of the node. It will search whether
any node is subscribing to the same topic. If there are no nodes subscribing to the same
topic at that time, both nodes remain unconnected. If the publisher and subscriber nodes
run at the same time, the ROS Master exchanges the details of the publisher to the
subscriber and they will connect and can exchange data through ROS messages.
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Using the ROS parameter
When programming a robot, we might have to define robot parameters, such as robot
controller gains P, I, and D. When the number of parameters increases, we might need to
store them as files. In some situations, these parameters have to share between two or more
programs too. In this case, ROS provides a parameter server, which is a shared server in
which all ROS nodes can access parameters from this server. A node can read, write,
modify, and delete parameter values from the parameter server.

We can store these parameters in a file and load them into the server. The server can store a
wide variety of data types and can even store dictionaries. The programmer can also set the
scope of the parameter, that is, whether it can be accessed by only this node or all the nodes.

The parameter server supports the following XMLRPC datatypes:

32-bit integers
Booleans
Strings
Doubles
ISO8601 dates
Lists
Base64-encoded binary data

We can also store dictionaries on the parameter server. If the number of parameters is high,
we can use a YAML file to save them. Here is an example of the YAML file parameter
definitions:

The  tool is used to get and set the ROS parameter from the command line. The
following are the commands to work with ROS parameters:

: This command will set a
value in the given parameter

: This command will retrieve a value
from the given parameter
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: The ROS parameters can be saved into a
YAML file and it can load to the parameter server using this command

: This command will dump the existing ROS
parameters to a YAML file

: This command will delete the given
parameter

: This command will list existing parameter names

The parameters can be changed dynamically during the execution of the node that uses
these parameters, using the  package
( ).

ROS community level
These are ROS resources that enable a new community for ROS to exchange software and
knowledge. The various resources in these communities are as follows:

Distributions: Similar to the Linux distribution, ROS distributions are a
collection of versioned metapackages that we can install. The ROS distribution
enables easier installation and collection of the ROS software. The ROS
distributions maintain consistent versions across a set of software.
Repositories: ROS relies on a federated network of code repositories, where
different institutions can develop and release their own robot software
components.
The ROS Wiki: The ROS community Wiki is the main forum for documenting
information about ROS. Anyone can sign up for an account and contribute their
own documentation, provide corrections or updates, write tutorials, and more.
Bug ticket system: If we find a bug in the existing software or need to add a new
feature, we can use this resource.
Mailing lists: The ROS-users mailing list is the primary communication channel
about new updates to ROS, as well as a forum to ask questions about the ROS
software.
ROS Answers: This website resource helps to ask questions related to ROS. If we
post our doubts on this site, other ROS users can see this and give solutions.
Blog: The ROS blog updates with news, photos, and videos related to the ROS
community ( ).
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What are the prerequisites for starting with
ROS?
Before getting started with ROS and trying the code in this book, the following prerequisites
should be met:

Ubuntu 16.04 LTS / Ubuntu 15.10 / Debian 8: ROS is officially supported by
Ubuntu and Debian operating systems. We prefer to stick with the LTS version of
Ubuntu, that is, Ubuntu 16.04.
ROS kinetic desktop full installation: Install the full desktop installation of ROS.
The version we prefer is ROS kinetic, the latest stable version. The following link
gives you the installation instruction of the latest ROS distribution:

. Choose the 
 package from the repository list.

Running the ROS Master and the ROS parameter
server
Before running any ROS nodes, we should start the ROS Master and the ROS parameter
server. We can start the ROS Master and the ROS parameter server by using a single
command called , which will start the following programs:

ROS Master
ROS parameter server

 logging nodes

The  node will collect log messages from other ROS nodes and store them in a log
file, and will also re-broadcast the collected log message to another topic. The

 topic is published by ROS nodes by using ROS client libraries such as  and
, and this topic is subscribed by the  node which rebroadcasts the message in

another topic called . This topic has an aggregate stream of log messages. The
 command is a prerequisite before running any ROS node. The following

screenshot shows the messages printing when we run the  command in a
Terminal.
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The following is a command to run  on a Linux Terminal:

$ roscore

The following are explanations of each section when executing  on the Terminal:

In section 1, we can see a log file is created inside the  folder for
collecting logs from ROS nodes. This file can be used for debugging purposes.
In section 2, the command starts a ROS launch file called . When a
launch file starts, it automatically starts the  and the ROS parameter
server. The  command is a Python script, which can start 
and the ROS parameter server whenever it tries to execute a launch file. This
section shows the address of the ROS parameter server within the port.
In section 3, we can see the parameters such as  and 
displayed on the Terminal. These parameters are displayed when it executes

. We look at  and its details further in the next
section.
In section 4, we can see the  node is started using ,
which we defined earlier as an environment variable.
In section 5, we can see the  node is started, which will start subscribing
the  topic and rebroadcasting into .
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The following is the content of :

When the  command is executed, initially, the command checks the command-line
argument for a new port number for the . If it gets the port number, it will start
listening to the new port number; otherwise, it will use the default port. This port number
and the  launch file will pass to the  system. The 
system is implemented in a Python module; it will parse the port number and launch the

 file.

In the  file, we can see the ROS parameters and nodes are encapsulated in a
group XML tag with a  namespace. The group XML tag indicates that all the nodes inside
this tag have the same settings.

The two parameters called  and  store the output of the
 and  commands using the  tag, which is a

part of the ROS  tag. The  tag will execute the command mentioned on it and
store the output of the command in these two parameters.

The  and parameter server are executed inside  modules by using the
 address. This is happening inside the  Python module. The
 is a combination of the IP address and port in which  is going

to listen. The port number can be changed according to the given port number in the
 command.

Checking the roscore command output
Let's check the ROS topics and ROS parameters created after running . The
following command will list the active topics on the Terminal:

$ rostopic list
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The list of topics is as follows, as per our discussion on the  node subscribe 
topic. This has all the log messages from the ROS nodes and  will rebroadcast
the log messages:

/rosout
/rosout_agg

The following command lists the parameters available when running . The
following is the command to list the active ROS parameter:

$ rosparam list

The parameters are mentioned here; they have the ROS distribution name, version, address
of the  server and , where  is a unique ID associated with a
particular run of :

/rosdistro
/roslaunch/uris/host_robot_virtualbox__51189
/rosversion
/run_id

The list of the ROS service generated during the running  can be checked using the
following command:

$ rosservice list

The list of services running is as follows:

/rosout/get_loggers
/rosout/set_logger_level

These ROS services are generated for each ROS node for setting the logging levels.

Questions
After going through the chapter, you should now be able to answer the following questions:

Why should we learn ROS?
How does ROS differ from other robotic software platforms?
What are the basic elements of ROS framework?
What is the internal working of ?



Introduction to ROS Chapter 1

[ 34 ]

Summary
ROS is now a trending software framework among roboticists. Gaining knowledge in ROS
is essential in the upcoming years if you are planning to build your career as a robotics
engineer. In this chapter, we have gone through the basics of ROS, mainly to refresh the
concepts if you have already learned ROS. We discussed the necessity of learning ROS and
how it excels among the current robotics software platforms. We went through the basic
concepts, such as the ROS Master, the parameter server, and  , and looked at the
explanation of the working of . In the next chapter, we will introduce the ROS
package management, discussing some practical examples of the ROS communication
system.
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Getting Started with ROS

Programming
After discussing the basics of the ROS Master, the parameter server, and  , we can
now start to create and build a ROS package. In this chapter, we will create different ROS
nodes implementing the ROS communication system. Working with ROS packages, we will
also refresh the concepts of ROS nodes, topics, messages, services, and actionlib.

We will cover the following list of topics:

Creating, compiling and running ROS packages.
Working with standard and custom ROS messages.
Working with ROS services and actionlib.
Maintaining and releasing your ROS packages.
Creating a wiki page for ROS packages.

Creating a ROS package
The ROS packages are the basic unit of the ROS system. We can create a ROS package, build
it, and release it to the public. The current distribution of ROS we are using is kinetic. We
are using the  build system to build ROS packages. A build system is responsible for
generating  (executable/libraries) from a raw source code that can be used by an
end user. In older distributions, such as Electric and Fuerte,  was the build
system. Because of the various flaws of ,  came into existence, which is
basically based on Cross Platform Make (CMake). This has a lot of advantages, such as
porting the package into another operating system, such as Windows. If an OS supports
CMake and Python,  -based packages can be easily ported into it.
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The first requirement work with ROS packages is to create a ROS  workspace. After
installed ROS, we can create and build a  called :

$ mkdir -p ~/catkin_ws/src

To compile the workspace, we should source the ROS environment, in order to get access to
ROS functions:

$ source /opt/ros/kinetic/setup.bash

Switch to the source,   folder previously created.

$ cd ~/catkin_ws/src

Initialize a new  workspace:

$ catkin_init_workspace

We can build the workspace even if there are no packages. We can use the following
command to switch to the workspace folder:

$ cd ~/catkin_ws

The  command will build the following workspace:

$ catkin_make

This last command will create a  and a  directory in the catkin workspace.
Inside the  folder different setup files are located. To add the created ROS workspace
to the ROS environment, we should source one of this file. In addition, we can source the
setup file of this workspace every time that a new  session starts with the following
command:

$ echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
$ source ~/.bashrc

After setting the  workspace, we can create our own package that has sample nodes
to demonstrate the working of ROS topics, messages, services, and actionlib. The

 command is used to create a ROS package. This command is used to
create our package, in which we are going to create demos of various ROS concepts.

Switch to the  workspace  folder and create the package, using the following
command:

catkin_create_pkg package_name [dependency1] [dependency2]
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Source code folder: All ROS packages, either created from scratch or
downloaded from other code repositories, must be placed in
the  folder of the ROS workspace, otherwise they can not be
recognized by the ROS system and compiled.

Here is the command to create the sample ROS package:

$ catkin_create_pkg mastering_ros_demo_pkg roscpp std_msgs
actionlib actionlib_msgs

The dependencies in the packages are as follows:

: This is the C++ implementation of ROS. It is a ROS client library which
provides APIs to C++ developers to make ROS nodes with ROS topics, services,
parameters, and so on. We are including this dependency because we are going
to write a ROS C++ node. Any ROS package which uses the C++ node must add
this dependency.

: This package contains basic ROS primitive data types, such as integer,
float, string, array, and so on. We can directly use these data types in our nodes
without defining a new ROS message.

 The  metapackage provides interfaces to create
preemptible tasks in ROS nodes. We are creating  -based nodes in this
package. So we should include this package to build the ROS nodes.

: This package contains standard message definitions needed to
interact with the action server and action client.

After package creation, additional dependencies can be added manually by editing the
 and  files. We will get the following message if the package

has been successfully created:
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After creating this package, build the package without adding any nodes, using the
 command. This command must be executed from the  workspace

path. The following command shows you how to build our empty ROS package:

~/catkin_ws $ catkin_make

After a successful build, we can start adding nodes to the  folder of this package.

The build folder in the CMake build files mainly contains executables of the nodes that are
placed inside the  workspace  folder. The  folder contains bash script,
header files, and executables in different folders generated during the build process. We can
see how to make ROS nodes and build using .

Working with ROS topics
Topics are the basic way of communicating between two nodes. In this section, we can see
how the topics works. We are going to create two ROS nodes for publishing a topic and
subscribing the same. Navigate to the  folder, joining the 
subdirectory for the source code.  and

 are the two sets of code that we are going to discuss.

Creating ROS nodes
The first node we are going to discuss is . This node will
publish an integer value on a topic called . Copy the current code into a new
package or use this existing file from the code repository.

Here is the complete code:
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Here is the detailed explanation of the preceding code:

The  is the main header of ROS. If we want to use the  client APIs in our
code, we should include this header. The  is the standard message
definition of the integer datatype.

Here, we are sending an integer value through a topic. So we should need a message type
for handling the integer data.  contains the standard message definition of
primitive datatypes.  contains the integer message definition:

This code will initialize a ROS node with a name. It should be noted that the ROS node
should be unique. This line is mandatory for all ROS C++ nodes:

This will create a  object, which is used to communicate with the ROS system:

This will create a topic publisher and name the topic  with a message type
. The second argument is the buffer size. It indicates how many

messages need to be put in a buffer before sending. It should be set to high if the data
sending rate is high:
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This is used to set the frequency of sending data:

This is an infinite  loop, and it quits when we press Ctrl + C. The  function
returns zero when there is an interrupt; this can terminate this  loop:

The first line creates an integer ROS message, and the second line assigns an integer value
to the message. Here,  is the field name of the  object:

This will print the message data. This line is used to log the ROS information:

This will publish the message to the topics :

This command will read and update all ROS topics. The node will not publish without a
 or  function:

This line will provide the necessary delay to achieve a frequency of 10 Hz.

After discussing the publisher node, we can discuss the subscriber node, which is
. Copy the code to a new file or use the existing file.

Here is the definition of the subscriber node:
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Here is the code explanation:

This is the header needed for the subscribers:

This is a  function that will execute whenever a data comes to the 
topic. Whenever a data reaches this topic, the function will call and extract the value and
print it on the console:

This is the subscriber, and here we are giving the topic name needed to subscribe, the buffer
size, and the  function. We are subscribing the  topic and we have
already seen the  function in the preceding section:

This is an infinite loop in which the node will wait in this step. This code will fasten the
callbacks whenever a data reaches the topic. The node will quit only when we press the Ctrl
+ C key.

Building the nodes
We have to edit the  file in the package to compile and build the source
code. Navigate to  to view the existing  file.
The following code snippet in this file is responsible for building these two nodes:
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We can add the preceding snippet to create a new a  file for compiling the
two codes.

The  command is used to build the package. We can first switch to a
workspace:

$ cd ~/catkin_ws

Build  as follows:

$ catkin_make

We can either use the preceding command to build the entire workspace, or use the the 
 option. With this option, it is possible to set one or more

packages to compile:

$ catkin_make -DCATKIN_WHITELIST_PACKAGES="pkg1,pkg2,..."

Note that is necessary to revert this configuration to compile other packages or the entire
workspace. This can be done using the following command:

$ catkin_make -DCATKIN_WHITELIST_PACKAGES=""

If the building is done, we can execute the nodes. First, start :

$ roscore

Now run both commands in two shells. In the running publisher:

$ rosrun mastering_ros_demo_package demo_topic_publisher
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In the running subscriber:

$ rosrun mastering_ros_demo_package demo_topic_subscriber

We can see the output as shown here:

The following diagram shows how the nodes communicate with each other. We can see that
the  node publishes the  topic and then subscribes to
the  node:

We can use the  and  tools to debug and understand the working of two
nodes:

: This will list the active nodes.
: This will get the info of the

publisher node.
: This will display the value sending through the

 topic.
: This will print the message type of the 

topic.
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Adding custom msg and srv files
In this section, we will look at how to create custom messages and services definitions in the
current package. The message definitions are stored in a  file and the service
definitions are stored in a  file. These definitions inform ROS about the type of data
and name of data to be transmitted from a ROS node. When a custom message is added,
ROS will convert the definitions into equivalent C++ codes, which we can include in our
nodes.

We can start with message definitions. Message definitions have to be written in the 
file and have to be kept in the  folder, which is inside the package. We are going to
create a message file called  with the following definition:

Until now, we have worked only with standard message definitions. Now, we have created
our own definitions and can see how to use them in our code.

The first step is to edit the  file of the current package and uncomment the
lines  and

.

Edit the current  and add the  line, as follows:



Getting Started with ROS Programming Chapter 2

[ 45 ]

Uncomment the following line and add the custom message file:

After these steps, we can compile and build the package:

$ cd ~/catkin_ws/
$ catkin_make

To check whether the message is built properly, we can use the  command:

$ rosmsg show mastering_ros_demo_pkg/demo_msg

If the content shown by the command and the definition are the same, the procedure is
correct.

If we want to test the custom message, we can build a publisher and subscriber using the
custom message type named  and

. Navigate to the  folder for
these code.

We can test the message by adding the following lines of code in :
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Build the package using  and test the node using the following commands.

Run :

$ roscore

Start the custom message publisher node:

$ rosrun mastering_ros_demo_pkg demo_msg_publisher

Start the custom message subscriber node:

$ rosrun mastering_ros_demo_pkg demo_msg_subscriber

The publisher node publishes a string along with an integer, and the subscriber node
subscribes the topic and prints the values. The output and graph are shown as follows:

The topic in which the nodes are communicating is called . Here is the
graph view of the two nodes:

Next, we can add  files to the package. Create a new folder called  in the current
package folder and add a  file called . The definition of this file is as
follows:
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Here, both the  and  are strings.

In the next step, we need to uncomment the following lines in  as we did for
the ROS messages:

Take  and add  in :

We need to follow the same procedure in generating services as we did for the ROS
message. Apart from that, we need additional sections to be uncommented, as shown here:

After making these changes, we can build the package using  and using the
following command, we can verify the procedure:

$ rossrv show mastering_ros_demo_pkg/demo_srv

If we see the same content as we defined in the file, we can confirm it's working.

Working with ROS services
In this section, we are going to create ROS nodes, which can use the services definition that
we defined already. The service nodes we are going to create can send a string message as a
request to the server and the server node will send another message as a response.

Navigate to , and find nodes with the names
 and .



Getting Started with ROS Programming Chapter 2

[ 48 ]

The  is the server, and its definition is as follows:

Let's see an explanation of the code:

Here, we included , which is a mandatory header for a ROS CPP node. The
 header is a generated header, which contains

our service definition and we can use this in our code. The  is for getting string
streaming classes:
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This is the server callback function executed when a request is received on the server. The
server can receive the request from clients with a message type of

 and sends the response in the
 type:

In this code, the string data  is passing to the service  instance.
Here,  is the field name of the response that we have given in . This
response will go to the service client node:

This creates a service called  and a callback function is executed when a
request comes to this service. The callback function is , which we
saw in the preceding section.

Next, we can see how  is working.

Here is the definition of this code:
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Let's explain the code:

This line creates a service client that has the message type
 and communicates to a ROS service named

:

This line will create a new service object instance:

Fill the request instance with a string called :

This will send the service call to the server. If it is sent successfully, it will print the response
and request; if it failed, it will do nothing:
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If the response is received, then it will print the request and the response.

After discussing the two nodes, we can discuss how to build these two nodes. The
following code is added to  to compile and build the two nodes:

We can execute the following commands to build the code:

$ cd ~/catkin_ws
$ catkin_make

To start the nodes, first execute  and use the following commands:

$ rosrun mastering_ros_demo_pkg demo_service_server
$ rosrun mastering_ros_demo_pkg demo_service_client
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We can work with  using the  command:

: This will list the current ROS services
: This will print the message type of

: This will print the information of

Working with ROS actionlib
In ROS services, the user implements a request/reply interaction between two nodes, but if
the reply takes too much time or the server is not finished with the given work, we have to
wait until it completes, blocking the main application while waiting for the termination of
the requested action. In addition, the calling client could be implemented to monitor the
execution of the remote process. In these cases, we should implement our application using

. This is another method in ROS in which we can preempt the running request
and start sending another one if the request is not finished on time as we expected.
Actionlib packages provide a standard way to implement these kinds of preemptive tasks.
Actionlib is highly used in robot arm navigation and mobile robot navigation. We can see
how to implement an action server and action client implementation.

There is another method in ROS in which we can preempt the running request and start
sending another one if the request is not finished on time as we expected. Actionlib
packages provide a standard way to implement these kinds of preemptive tasks. Actionlib
is highly used in robot arm navigation and mobile robot navigation. We can see how to
implement an action server and action client implementation.

Like ROS services, in , we have to specify the action specification. The action
specification is stored inside the action file having an extension of . This file must
be kept inside the  folder, which is inside the ROS package. The  file has the
following parts:

Goal: The action client can send a goal that has to be executed by the action
server. This is similar to the request in the ROS service. For example, if a robot
arm joint wants to move from 45 degrees to 90 degrees, the goal here is 90
degrees.
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Feedback: When an action client sends a goal to the action server, it will start
executing a callback function. Feedback is simply giving the progress of the
current operation inside the callback function. Using the feedback definition, we
can get the current progress. In the preceding case, the robot arm joint has to
move to 90 degrees; in this case, the feedback can be the intermediate value
between 45 and 90 degrees in which the arm is moving.
Result: After completing the goal, the action server will send a final result of
completion, it can be the computational result or an acknowledgment. In the
preceding example, if the joint reaches 90 degrees it achieves the goal and the
result can be anything indicating it finished the goal.

We can discuss a demo action server and action client here. The demo action client will send
a number as the goal. When an action server receives the goal, it will count from 0 to the
goal number with a step size of 1 and with a 1 second delay. If it completes before the given
time, it will send the result; otherwise, the task will be preempted by the client. The
feedback here is the progress of counting. The action file of this task is as follows. The action
file is named :

Here, the count value is the goal in which the server has to count from zero to this number.
 is the result, in which the final value after completion of a task and

 is the feedback value. It will specify how much the progress is.

Navigate to  and you can find the action server node as
 and action client node as .

Creating the ROS action server
In this section, we will discuss . The action server receives a 
goal value that is a number. When the server gets this goal value, it will start counting from
zero to this number. If the counting is complete, it will successfully finish the action, if it is
preempted before finishing, the action server will look for another goal value.
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This code is a bit lengthy, so we can discuss the important code snippet of this code.

Let's start with the header files:

The first header is the standard action library to implement an action server node. The
second header is generated from the stored action files. It should include accessing our
action definition:

This class contains the action server definition:

Create a simple action server instance with our custom action message type:

Create a feedback instance for sending feedback during the operation:

Create a result instance for sending the final result:

This is an action constructor, and an action server is created here by taking an argument
such as , , and , where  is the action
callback where all the processing is done:

This line registers a callback when the action is preempted. The  is the callback
name executed when there is a preempt request from the action client:
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This is the callback definition which is executed when the action server receives a 
value. It will execute callback functions only after checking whether the action server is
currently active or it is preempted already:

This loop will execute until the goal value is reached. It will continuously send the current
progress as feedback:

Inside this loop, it will check whether the action server is active or it is preempted. If it
occurs, the function will return:

If the current value reaches the goal value, then it publishes the final result:

In ,we create an instance of , which will start the action server.

Creating the ROS action client
In this section, we will discuss the workings of an action client. 
is the action client node that will send the goal value consisting of a number which is the
goal. The client is getting the goal value from the command-line arguments. The first
command-line argument of the client is the goal value, and the second is the time of
completion for this task.

The goal value will be sent to the server and the client will wait until the given time, in
seconds. After waiting, the client will check whether it completed or not; if it is not
complete, the client will preempt the action.
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The client code is a bit lengthy, so we will discuss the important sections of the code:

In the action client, we need to include  to
get the action client APIs, which are used to implement action clients:

This will create an action client instance:

This line will wait for an infinite time if there is no action server running on the system. It
will exit only when there is an action server running on the system:

Create an instance of a goal, and send the goal value from the first command line argument:

This line will wait for the result from the server until the given seconds:

If it is not finished, it will preempt the action.

Building the ROS action server and client
After creating these two files in the  folder, we have to edit the  and

 to build the nodes.
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The  file should contain message generation and runtime packages, as we did
for ROS service and messages.

We have to include the  library in  to build these nodes. Also, we
have to add the action files that we wrote for this example:

We should pass , , and  in
:

We should add  as a system dependency:

We need to add our action file in :
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We have to add  in :

We have to add  to include the directory:

After , we can run these nodes using the following commands:

Run :

$ roscore

Launch the action server node:

$rosrun mastering_ros_demo_pkg demo_action_server

Launch the action client node:

$rosrun mastering_ros_demo_pkg demo_action_client 10 1
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The output of these process is shown as follows:

Creating launch files
The launch files in ROS are a very useful feature for launching more than one node. In the
preceding examples, we have seen a maximum of two ROS nodes, but imagine a scenario in
which we have to launch 10 or 20 nodes for a robot. It will be difficult if we run each node
in a terminal one by one. Instead, we can write all nodes inside an XML-based file called
launch files and, using a command called roslaunch, we can parse this file and launch the
nodes.

The  command will automatically start the ROS Master and the parameter
server. So, in essence, there is no need to start the  command and individual node;
if we launch the file, all operations will be done in a single command.
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Let's start creating launch files. Switch to the package folder and create a new launch file
called  to launch two ROS nodes that are publishing and subscribing
an integer value. We keep the launch files in a  folder, which is inside the package:

$ roscd mastering_ros_demo_pkg
$ mkdir launch
$ cd launch
$ gedit demo_topic.launch

Paste the following content into the file:

Let's discuss what is in the code. The  tags are the root element in a
 file. All definitions will be inside these tags.

The  tag specifies the desired node to launch:

The  tag inside  indicates the name of the node,  is the name of the package,
and  is the name of executable we are going to launch.

After creating the launch file , we can launch it using the following
command:

$ roslaunch mastering_ros_demo_pkg demo_topic.launch
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Here is the output we get if the launch is successful:

We can check the list of nodes using:

$ rosnode list

We can also view the log messages and debug the nodes using a GUI tool called
:

$ rqt_console

We can see the logs generated by two nodes in this tool, as shown here:
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Applications of topics, services, and
actionlib
Topics, services, and actionlib are used in different scenarios. We know topics are a
unidirectional communication method, services are a bidirectional request/reply kind of
communication, and actionlib is a modified form of ROS services in which we can cancel
the executing process running on the server whenever required.

Here are some of the areas where we use these methods:

Topics: Streaming continuous data flow, such as sensor data. For example,
stream joypad data to teleoperate a robot, publish robot odometry, publish video
stream from a camera.
Services: Executing procedures that terminate quickly. For example, save
calibration parameter of sensors, save a map generated by the robot during its
navigation, or load a parameter file.
Actionlib: Execute long and complex actions managing their feedback. For
example, navigate towards a target or plan a motion path.

The complete source code of this project can be cloned from the following Git repository.
The following command will clone the project repository:

$ git clone https://github.com/jocacace/mastering_ros_demo_pkg.git

Maintaining the ROS package
Most ROS packages are maintained using a Version Control System (VCS) such as Git,
Subversion (svn), Mercurial (hg), and so on. A collection of packages that share a common
VCS can be called a repository. The package in the repository can be released using a catkin
release automation tool called bloom. Most ROS packages are released as open source with
the BSD license. There are active developers around the globe who are contributing to the
ROS platform. Maintaining packages is important for all software, especially open source
applications. Open source software is maintained and supported by a community of
developers. Creating a version control system for our package is essential if we want to
maintain and accept a contribution from other developers.
The preceding package is already updated in GitHub, and you can view the source code of
the project at 
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Releasing your ROS package
After creating a ROS package in GitHub, we can officially release our package. ROS
provides detailed steps to release the ROS package using a tool called bloom
( ). Bloom is a release automation tool,
designed to make platform-specific releases from the source projects. Bloom is designed to
work best with the catkin project.

The prerequisites for releasing the package are as follows:

Install the Bloom tool
Create a Git repository for the current package
Create an empty Git repository for the release

The following command will install bloom in Ubuntu:

$ sudo apt-get install python-bloom

Create a Git repository for the current package. The repository that has the package is called
the upstream repository. Here, we already created a repository at

.

Create an empty repository in Git for the release package. This repository is called the
 repository. We have created a package called .

After meeting these prerequisites, we can start to create the release of the package. Navigate
to the  local repository where we push our package code to Git.
Open a terminal inside this local repository and execute the following command:

$ catkin_generate_changelog

The purpose of this command is to create a  file inside the local repository.
After executing this command, it will show this option:

Continue without -all option [y/N]. Give  here

It will create a  in the local repository.

After the creation of the log file, we can update the Git repository by committing the
changes:

$ git add -A
$ git commit -m 'Updated CHANGELOG.rst'
$ git push -u origin master
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Preparing the ROS package for the release
In this step, we will check whether the package contains change logs, versions, and so on.
The following command makes our package consistent and recommended for release.

This command should execute from the local repository of the package:

$ catkin_prepare_release

The command will set a version tag if there is no current version, and commit the changes
in the upstream repository.

Releasing our package
The following command starts the release. The syntax of this command is as follows:

bloom-release --rosdistro <ros_distro> --track <ros_distro> repository_name
$ bloom-release --rosdistro kinetic --track kinetic mastering_ros_demo_pkg

When this command is executed, it will go to the 
( ) package repository to get the package details. The

 package in ROS contains an index file, which contains a list of all the packages
in ROS. Currently, there is no index for our package because this is our first release, but we
can add our package details to this index file called .

The following message will be displayed when there is no reference of the package in
:
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We should give the release repository in the terminal that is marked in red in the preceding
screenshot. In this case, the URL was :



Getting Started with ROS Programming Chapter 2

[ 66 ]

In the upcoming steps, the wizard will ask for the repository name, upstream, URL, and so
on. We can give these options and, finally, a pull request to  will be submitted,
which is shown in the following screenshot:

The  request for this package can be viewed at
.

If it is accepted, it will merge to , which contains the index
of all packages in ROS.
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The following screenshot displays the package as an index in
:

After this step, we can confirm that the package is released and officially added to the ROS
index.

Creating a Wiki page for your ROS package
ROS wiki allows users to create their own home pages to showcase their package, robot, or
sensors. The official wiki page of ROS is . Now, we are going to create a wiki
page for our package.
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Downloading the example code:
You can download the example code files from your account at:

 for all the Packt Publishing books you have
purchased. If you purchased this book elsewhere, you can visit:

 and register to have the files emailed
directly to you. You can also download chapter codes from:

 this code
repository contains the link to all other code repositories used in this book.

The first step is to register in wiki using your e-mail address. Go to , and click
on the Login button, as shown in the screenshot:
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After clicking on Login, you can register or directly log in with your details if you are
already registered. After Login, press the username link on the right side of the wiki page,
as shown in the following screenshot:
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After clicking on this link, you will get a chance to create a home page for your package;
you will get a text editor with GUI to enter data into. The following screenshot shows you
the page we created for this demo package:

Questions
After going through the chapter, you should now be able to answer the following questions:

Which kind of communication protocols between nodes are supported by ROS?
What is the difference between  and  commands?
How do ROS topics and services differ in their operations?
How do ROS services and  differ in their operations?
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Summary
In this chapter, we provided different examples of ROS nodes in which ROS features such
as ROS topics, services, and actions were implemented. We discussed how to create and
compile ROS packages using custom and standard messages. After demonstrating the
workings of each concept, we uploaded the package to GitHub and created a wiki page for
the package.

In the next chapter, we will discuss ROS robot modeling using URDF and , and will
design some robot models.



33
Working with 3D Robot

Modeling in ROS
The first phase of robot manufacturing is design and modeling. We can design and model a
robot using CAD tools such as AutoCAD, SOLIDWORKS, and Blender. One of the main
purposes of robot modeling is simulation.

The robotic simulation tool can check for critical flaws in the robot's design and can confirm
that the robot will work before it goes to the manufacturing phase.

The virtual robot model must have all the characteristics of the real hardware. The shape of
a robot may or may not look like the actual robot, but it must be abstract, which has all the
physical characteristics of the actual robot.

In this chapter, we are going to discuss the designing of two robots. One is a seven Degrees
of Freedom (DOF) manipulator, and the other is a differential drive robot. In the upcoming
chapters, we will look at simulation, how to build the real hardware, and interfacing with
ROS.

If we are planning to create the 3D model of the robot and simulate it using ROS, you need
to learn about some ROS packages that help in robot designing. Creating a model for our
robot in ROS is important for different reasons. For example, we can use this model to
simulate and control the robot, visualize it, or use ROS tools to get information on the
robotic structure and its kinematics.

ROS has a standard meta package for designing and creating robot models called
, which consists of a set of packages, some of which are called ,

, , and . These packages help us
create the 3D robot model description with the exact characteristics of the real hardware.
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In this chapter, we will cover the following topics:

ROS packages for robot modeling
Creating the ROS package for the robot description
Understanding robot modeling using URDF
Understanding robot modeling using xacro
Converting xacro to URDF
Creating a robot description for a seven DOF robot manipulator
Working with the joint state publisher and robot state publisher
Creating robot description for a differential wheeled robot

ROS packages for robot modeling
ROS provides some good packages that can be used to build 3D robot models.
In this section, we will discuss some of the important ROS packages that are commonly
used to build and model a robot:

: The most important ROS package to model the robot is the  package.
This package contains a C++ parser for the Unified Robot Description Format
(URDF), which is an XML file representing a robot model. Other different
components make up :

: This package implements methods to fill
URDF data structures

: This component provides core data structure
headers to use the urdf parser

: This package populates data structures by
parsing a Collada file

: This component populates data structures by parsing
URDF files

: This is a stand-alone component to convert Collada
documents with 3D computer graphics software such as Maya,
Blender, and Soft image
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We can define a robot model, sensors, and a working environment using URDF, and we can
parse it using URDF parsers. We can only describe a robot in URDF that has a tree-like
structure in its links, that is, the robot will have rigid links and will be connected using
joints. Flexible links can't be represented using URDF. The URDF is composed using special
XML tags, and we can parse these XML tags using parser programs for further processing.
We can work on URDF modeling in the upcoming sections:

: This tool is very useful when designing robot models
using URDF. This package contains a node called ,
which reads the robot model description, finds all joints, and publishes joint
values to all nonfixed joints using GUI sliders. The user can interact with each
robot joint using this tool and can visualize using RViz. While designing URDF,
the user can verify the rotation and translation of each joint using this tool. We
will talk more about the  node and its usage in the
upcoming section.

: Kinematic and Dynamics Library (KDL) is an ROS package that 
contains parser tools to build a KDL tree from the URDF representation. The 
kinematic tree can be used to publish the joint states and also to forward and
inverse the kinematics of the robot.

: This package reads the current robot joint states and
publishes the 3D poses of each robot link using the kinematics tree build from the
URDF. The 3D pose of the robot is published as the  (transform) ROS.
The  ROS publishes the relationship between the coordinates frames of a robot.

: Xacro stands for (XML Macros), and we can define how  is equal to
URDF plus add-ons. It contains some add-ons to make URDF shorter and
readable, and can be used for building complex robot descriptions. We can
convert  to URDF at any time using ROS tools. We will learn more about

 and its usage in the upcoming sections.

Understanding robot modeling using URDF
We have discussed the  package. In this section, we will look further into the 

 tags, which help to model the robot. We have to create a file and write the relationship
between each link and joint in the robot and save the file with the   extension.

URDF can represent the kinematic and dynamic description of the robot, the visual
representation of the robot, and the collision model of the robot.
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The following tags are the commonly used URDF tags to compose a URDF robot model:

: The  tag represents a single link of a robot. Using this tag, we
can model a robot link and its properties. The modeling includes the size, the
shape, and the color, and it can even import a 3D mesh to represent the robot
link. We can also provide the dynamic properties of the link, such as the inertial
matrix and the collision properties.

The syntax is as follows:

The following is a representation of a single link. The Visual section
represents the real link of the robot, and the area surrounding the real link is
the Collision section. The Collision section encapsulates the real link to
detect collision before hitting the real link:

: The  tag represents a robot joint. We can specify the kinematics and
the dynamics of the joint, and set the limits of the joint movement and its
velocity. The  tag supports the different types of joints, such as revolute,
continuous, prismatic, fixed, floating, and planar.

The syntax is as follows:
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A URDF joint is formed between two links; the first is called the Parent link,
and the second is called the Child link. The following is an illustration of a
joint and its link:

: This tag encapsulates the entire robot model that can be represented using
URDF. Inside the  tag, we can define the name of the robot, the links, and
the joints of the robot.

The syntax is as follows:
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A robot model consists of connected links and joints. Here is a visualization
of the robot model:

: This tag is used when we include the simulation parameters of the
Gazebo simulator inside the URDF. We can use this tag to include 
plugins,  material properties, and so on. The following shows an example
using  tags:

You can find more URDF tags at .
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Creating the ROS package for the robot
description
Before creating the URDF file for the robot, let's create an ROS package in the 
workspace so that the robot model keeps using the following command:

$ catkin_create_pkg mastering_ros_robot_description_pkg roscpp tf
 geometry_msgs urdf rviz xacro

The package mainly depends on the  and  packages. If these packages have not
been installed on to your system, you can install them using the package manager:

$sudo apt-get install ros-kinetic-urdf
$sudo apt-get install ros-kinetic-xacro

We can create the  file of the robot inside this package and create launch files to
display the created  in RViz. The full package is available on the following Git
repository; you can clone the repository for a reference to implement this package, or you
can get the package from the book's source code:

$ git clone
https://github.com/jocacace/mastering_ros_robot_description_pkg.git

Before creating the  file for this robot, let's create three folders called , ,
and  inside the package folder. The  folder can be used to keep the 
and  files that we are going to create. The  folder keeps the meshes that we
need to include in the  file, and the  folder keeps the ROS launch files.

Creating our first URDF model
After learning about URDF and its important tags, we can start some basic modeling using
URDF. The first robot mechanism that we are going to design is a pan-and-tilt mechanism,
as shown in the following figure.
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There are three links and two joints in this mechanism. The base link is static, and all the
other links are mounted on it. The first joint can pan on its axis, and the second link is
mounted on the first link, and it can tilt on its axis. The two joints in this system are of a
revolute type:

Let's see the URDF code of this mechanism. Navigate to
the  directory and open

:
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Explaining the URDF file
When we check the code, we can add a  tag at the top of the description:

The  tag defines the name of the robot that we are going to create.
Here, we named the robot .

If we check the sections after the  tag definition, we can see link and joint
definitions of the pan-and-tilt mechanism:

The preceding code snippet is the  definition of the pan-and-tilt mechanism. The
 tag describes the visual appearance of the link, which is shown on the robot

simulation. We can define the link geometry ( , , , or ) and the
material (  and ) of the link using this tag:

In the preceding code snippet, we define, a joint with a unique name and its joint type. The
joint type we used here is , and the parent and child links are 
and , respectively. The joint origin is also specified inside this tag.

Save the preceding URDF code as  and check whether the  contains
errors using the following command:

$ check_urdf pan_tilt.urdf
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The  command will parse the  tag and show an error, if there are any. If
everything is OK, it will output the following:

robot name is: pan_tilt
---------- Successfully Parsed XML ---------------
  root Link: base_link has 1 child(ren)
    child(1):  pan_link

   child(1):  tilt_link

If we want to view the structure of the robot links and joints graphically, we can use a
command tool called :

$ urdf_to_graphiz pan_tilt.urdf

This command will generate two files:  and . We can view the
structure of this robot using this command:

$ evince pan_tilt.pdf

We will get the following output:



Working with 3D Robot Modeling in ROS Chapter 3

[ 83 ]

Visualizing the 3D robot model in RViz
After designing the URDF, we can view it on RViz. We can create a 
launch file and put the following code into the  folder. Navigate to
the  directory for the code:

We can launch the model using the following command:

$ roslaunch mastering_ros_robot_description_pkg view_demo.launch

If everything works fine, we will get a pan-and-tilt mechanism in RViz, as shown here:
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Interacting with pan-and-tilt joints
We can see that an extra GUI came along with RViz; it contains sliders to control the pan
joints and the tilt joints. This GUI is called the Joint State Publisher node, from the

 package:

We can include this node in the  file, using this statement. The limits of pan-and-tilt
should be mentioned inside the  tag:

 defines
the limits of effort, the velocity, and the angle limits. The effort is the maximum force
supported by this joint;  and  indicate the lower and upper limit of the joint in
the radian for the revolute type joint, and meters for prismatic joints. The velocity is the
maximum joint velocity:
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The preceding screenshot shows the GUI of , with sliders and
current joint values shown in the box.

Adding physical and collision properties to a
URDF model
Before simulating a robot in a robot simulator, such as Gazebo or V-REP, we need to define
the robot link's physical properties, such as geometry, color, mass, and inertia, as well as the
collision properties of the link.

We will only get good simulation results if we define all these properties inside the robot
model. URDF provides tags to include all these parameters and code snippets of

 contained in these properties, as given here:

Here, we define the collision geometry as cylinder and the mass as 1 kg, and we also set the
inertial matrix of the link.

The  and  parameters are required in each link, otherwise Gazebo will
not load the robot model properly.
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Understanding robot modeling using xacro
The flexibility of URDF reduces when we work with complex robot models. Some of the
main features that URDF is missing are simplicity, reusability, modularity, and
programmability.

If someone wants to reuse a URDF block 10 times in his robot description, he can copy and
paste the block 10 times. If there is an option to use this code block and make multiple
copies with different settings, it will be very useful while creating the robot description.

The URDF is a single file and we can't include other URDF files inside it. This reduces the
modular nature of the code. All code should be in a single file, which reduces the code's
simplicity.

Also, if there is some programmability, such as adding variables, constants, mathematical
expressions, and conditional statements, in the description language, it will be more user-
friendly.

The robot modeling using xacro meets all of these conditions. Some of the main features of
xacro are as follows:

Simplify URDF: The xacro is the cleaned-up version of URDF. It creates macros
inside the robot description and reuses the macros. This can reduce the code
length. Also, it can include macros from other files and make the code simpler,
more readable, and more modular.
Programmability: The xacro language supports a simple programming statement
in its description. There are variables, constants, mathematical expressions,
conditional statements, and so on that make the description more intelligent and
efficient.

We can say that xacro is an updated version of URDF, and we can convert the xacro
definition to URDF whenever it is necessary, using some ROS tools.

We can talk about the same description of pan-and-tilt using xacro. Navigate to
, and the file name is .

Instead of , we need to use the  extension for xacro files. Here is the
explanation of the xacro code:
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These lines specify a namespace that is needed in all xacro files for parsing the xacro file.
After specifying the namespace, we need to add the name of the xacro file.

Using properties
Using xacro, we can declare constants or properties that are the named values inside the
xacro file, which can be used anywhere in the code. The main use of these constant
definitions is, instead of giving hardcoded values on links and joints, we can keep
constants, and it will be easier to change these values rather than finding the hardcoded
values and replacing them.

An example of using properties is given here. We declare the base link and the pan link's
length and radius. So, it will be easy to change the dimension here rather than changing the
values in each one:

We can use the value of the variable by replacing the hardcoded value with the following
definition:

Here, the old value, , is replaced with , and  is
replaced with .

Using the math expression
We can build mathematical expressions inside  using basic operations such as , ,  , 
, unary minus, and parenthesis. Exponentiation and modulus are not supported yet. The
following is a simple math expression used inside the code:
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Using macros
One of the main features of xacro is that it supports macros. We can use xacro to  reduce the
length of complex definitions. Here is a  definition we used in our code for inertial:

Here, the macro is named , and its parameter is mass. The mass
parameter can be used inside the inertial definition using . We can replace each
inertial code with a single line, as given here:

The xacro definition improved the code readability and reduced the number of lines
compared to . Next, we will look at how to convert xacro to a URDF file.

Converting xacro to URDF
After designing the xacro file, we can use the following command to convert it to a URDF
file:

$ rosrun xacro xacro pan_tilt.xacro --inorder > pan_tilt_generated.urdf

The  option has been recently introduced in ROS to increase the power of the
conversion tool. It allows us to process the document in read order, adding more features
than there were in older ROS versions.

We can use the following line in the ROS launch file for converting xacro to URDF and use
it as a  parameter:
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We can view the xacro of pan-and-tilt by making a launch file, and it can be launched using
the following command:

$ roslaunch mastering_ros_robot_description_pkg
view_pan_tilt_xacro.launch

Creating the robot description for a seven
DOF robot manipulator
Now, we can create some complex robots using URDF and xacro. The first robot we are
going to deal with is a seven DOF robotic arm, which is a serial link manipulator with
multiple serial links. The seven DOF arm is kinematically redundant, which means it has
more joints and DOF than required to achieve its goal position and orientation. The
advantage of redundant manipulators is that we can have more joint configuration for a
desired goal position and orientation. It will improve the flexibility and versatility of the
robot movement and can implement effective collision-free motion in a robotic workspace.

Let's start creating the seven DOF arm; the final output model of the robot arm is shown
here (the various joints and links in the robot are also marked on the image):
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The preceding robot is described using xacro. We can take the actual description file from
the cloned repository. We can navigate to the  folder inside the cloned package and
open the  file. We will copy and paste the description to the current
package and discuss the major section of this robot description.

Arm specification
Here is the robot arm specification of this seven DOF arm:

Degrees of freedom: 7
Length of the arm: 50 cm
Reach of the arm: 35 cm
Number of links: 12
Number of joints: 11

Type of joints
Here is the list of joints containing the joint name and its type of robot:

Joint number Joint name Joint type Angle limits (in degrees)

1 Fixed --

2 Revolute -150 to 114

3 Revolute -67 to 109

4 Revolute -150 to 41

5 Revolute -92 to 110

6 Revolute -150 to 150

7 Revolute 92 to 113

8 Revolute -150 to 150

9 Prismatic 0 to 3 cm

10 Prismatic 0 to 3 cm

We design the xacro of the arm using the preceding specifications; next up is the
explanation of the xacro arm file.
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Explaining the xacro model of the seven
DOF arm
We will define ten links and nine joints on this robot, and two links and two joints in the
robot gripper.

Let's start by looking at the xacro definition:

Because we are writing a xacro file, we should mention the xacro namespace to parse the
file.

Using constants
We use constants inside this xacro to make robot descriptions shorter and more readable.
Here, we define the degree to the radian conversion factor, PI value, length, height, and
width of each of the links:

Using macros
We define macros in this code to avoid repeatability and to make the code shorter. Here are
the macros we have used in this code:
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This is the definition of the  macro, in which we can use  as its
parameter:

In the section of the code, we can see the definition using the  tag.

The  tag relates a joint to an actuator. It defines the type of transmission that
we are using in a particular joint, as well as the type of motor and its parameters. It also
defines the type of hardware interface we use when we interface with the ROS controllers.

Including other xacro files
We can extend the capabilities of the robot xacro by including the xacro definition of
sensors using the  tag. The following code snippet shows how to include a
sensor definition in the robot xacro:

Here, we include a xacro definition of a sensor called Asus Xtion pro, and this will be
expanded when the xacro file is parsed.

Using 

, we can access the xacro definition of the sensor, where  is to locate the
current  package.

We will talk more about vision-processing in , Building and Interfacing Differential
Drive Mobile Robot Hardware in ROS.
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Using meshes in the link
We can insert a primitive shape in to a link, or we can insert a mesh file using the  tag.
The following example shows how to insert a mesh into the vision sensor:

Working with the robot gripper
The gripper of the robot is designed for the picking and placing of blocks; the gripper is in
the simple linkage category. There are two joints for the gripper, and each joint is prismatic.
Here is the  definition of one gripper joint:

Here, the first gripper joint is formed by  and
, and the second joint is formed by  and
.
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The following graph shows how the gripper joints are connected in :

Viewing the seven DOF arm in RViz
After talking about the robot model, we can view the designed xacro file in RViz and
control each joint using the  node and publish the robot state
using .

The preceding task can be performed using a launch file called , which is
inside the  folder of this package:
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Create the following launch file inside the  folder, and build the package using the
 command. Launch the  using the following command:

$ roslaunch mastering_ros_robot_description_pkg view_arm.launch

The robot will be displayed on RViz, with the joint state publisher GUI:
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We can interact with the joint slider and move the joints of the robot. Next, we will talk
about what  can do.

Understanding joint state publisher
Joint state publisher is one of the ROS packages that is commonly used to interact with each
joint of the robot. The package contains the  node, which will
find the nonfixed joints from the URDF model and publish the joint state values of each
joint in the  message format.

In the preceding launch file, , we started the 
node and set a parameter called  to , as follows:

If we set  to , the  node displays a slider-based
control window to control each joint. The lower and upper value of a joint will be taken
from the lower and upper values associated with the  tag used inside the  tag.
The preceding screenshot shows the robot model in RViz, along with a user interface to
change the position of robot joints, which states with the  parameter set to .

We can find more on the  package at
.

Understanding robot state publisher
The  package helps to publish the state of the robot to . This
package subscribes to joint states of the robot and publishes the 3D pose of each link using
the kinematic representation from the URDF model. We can implement the 

 node using the following line inside the launch file:
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In the preceding launch file, , we started this node to publish the  of
the arm. We can visualize the transformation of the robot by clicking the  option on RViz,
shown as follows:

The  and  packages are installed
along with the ROS desktop's installations.

After creating the robot description of the seven DOF arm, we can talk about how to make a
mobile robot with differential wheeled mechanisms.
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Creating a robot model for the differential
drive mobile robot
A differential wheeled robot will have two wheels connected on opposite sides of the robot
chassis, which is supported by one or two caster wheels. The wheels will control the speed
of the robot by adjusting individual velocity. If the two motors are running at the same
speed, the wheels will move forward or backward. If one wheel is running slower than the
other, the robot will turn to the side of the lower speed. If we want to turn the robot to the
left side, we reduce the velocity of the left wheel, and vice versa.

There are two supporting wheels, called caster wheels, that will support the robot and
rotate freely based on the movement of the main wheels.

The URDF model of this robot is present in the cloned ROS package. The final robot model
is shown here:

The preceding robot has five joints and links. The two main joints connect the wheels to the
robot, while the others are fixed joints connecting the caster wheels and the base footprint to
the body of the robot.
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The preceding robot has five joints and five links. The two main joints are two-wheel joints,
and the other three joints are two fixed joints by caster wheels, and one fixed joint by base
foot print to the base link of the robot. Here is the connection graph of this robot:

We can go through the important section of code in the URDF file. The URDF file,
called , is placed inside the  folder of the cloned ROS
package.



Working with 3D Robot Modeling in ROS Chapter 3

[ 100 ]

The first section of the URDF file is given here. The robot is
named , and it also includes a URDF file, called

. This xacro file contains the definition of the wheel and its
transmission; if we use this xacro file, then we can avoid writing two definitions for the two
wheels. We use this xacro definition because the two wheels are identical in shape and size:

The definition of a wheel inside  is given here. We can mention 
whether the wheel has to be placed to the left, right, front, or back. Using this macro, we can
create a maximum of four wheels but, for now, we require only two:

We also mention the Gazebo parameters required for simulation. Mentioned here are the
Gazebo parameters associated with a wheel. We can mention the frictional co-efficient and
the stiffness co-efficient using the  tag:

The joints that we define for a wheel are continuous joints because there is no limit in the
 joint. The  here is the robot base, and the  is each wheel:
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We also need to mention the  tag of each wheel; the macro of the wheel is as
follows:

In , we can use the following lines to use the macros defined
inside :

Using the preceding lines, we define the wheels on the left and right of the robot base. The
robot base is cylindrical, as shown in the preceding figure. The inertia calculating macro is
given here. This xacro snippet will use the mass, radius, and height of the cylinder to
calculate inertia using this equation:

The launch file definition for displaying this root model in RViz is given here. The launch
file is named :



Working with 3D Robot Modeling in ROS Chapter 3

[ 102 ]

The only difference between the arm URDF file is the change in the name; the other sections
are the same.

We can view the mobile robot using the following command:

$ roslaunch mastering_ros_robot_description_pkg view_mobile_robot.launch

The screenshot of the robot in RViz is as follows:
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Questions
What are the packages used for robot modeling in ROS?
What are the important URDF tags used for robot modeling?
What are the reasons for using xacro over URDF?
What is the function of the joint state publisher and robot state publisher
packages?
What is the function of the transmission tag in URDF?

Summary
In this chapter, we mainly looked at the importance of robot modeling and how we can
model a robot in ROS. We talked more about the  meta package and the
packages inside , such as , , and . We
discussed URDF, xacro, and the main URDF tags that we are going to use. We also created a
sample model in URDF and xacro and discussed the difference between the two. After that,
we created a complex robotic manipulator with seven DOF and looked at the usage of the

 and  packages. Towards the end of
the chapter, we reviewed the designing procedure of a differential drive mobile robot using
xacro. In the next chapter, we will look at the simulation of these robots using Gazebo.
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and Gazebo
After designing the 3D model of a robot, the next phase is its simulation. Robot simulation
will give you an idea about the working of robots in a virtual environment.

We are going to use the Gazebo ( ) simulator to simulate the
seven DOF arms and the mobile robot.

Gazebo is a multi-robot simulator for complex indoor and outdoor robotic simulation. We
can simulate complex robots, robot sensors, and a variety of 3D objects. Gazebo already has
simulation models of popular robots, sensors, and a variety of 3D objects in their repository
( ). We can directly use these models without
having to create new ones.

Gazebo has a good interface in ROS, which exposes the whole control of Gazebo in ROS.
We can install Gazebo without ROS, and we should install the ROS-Gazebo interface to
communicate from ROS to Gazebo.

In this chapter, we will discuss the simulation of seven DOF arms and differential wheeled
robots. We will discuss ROS controllers that help to control the robot's joints in Gazebo.
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We will cover the following topics in this chapter:

Understanding robotic simulation and Gazebo
Simulation a model of a robotic arm for Gazebo
Simulating the robotic arm with an rgb-d sensor
Moving robot joints using ROS controllers in Gazebo
Simulating a differential wheeled robot in Gazebo
Teleoperating a mobile robot in Gazebo

Simulating the robotic arm using Gazebo
and ROS
In the previous chapter, we designed a seven-DOF arm. In this section, we will simulate the
robot in Gazebo using ROS.

Before starting with Gazebo and ROS, we should install the following packages to work
with Gazebo and ROS:

$ sudo apt-get install ros-kinetic-gazebo-ros-pkgs ros-kinetic-gazebo-msgs
ros-kinetic-gazebo-plugins ros-kinetic-gazebo-ros-control

The default version installed from kinetic ROS packages is Gazebo 7.0. The use of each
package is as follows:

: This contains wrappers and tools for interfacing ROS with
Gazebo

: This contains messages and service data structures for interfacing
with Gazebo from ROS

: This contains Gazebo plugins for sensors, actuators, and so
on.

: This contains standard controllers to communicate
between ROS and Gazebo



Simulating Robots Using ROS and Gazebo Chapter 4

[ 106 ]

After installation, check whether Gazebo is properly installed using the following
commands:

$ roscore & rosrun gazebo_ros gazebo

These commands will open the Gazebo GUI. If we have the Gazebo simulator, we can
proceed to develop the simulation model of the seven-DOF arm for Gazebo.

Creating the robotic arm simulation model
for Gazebo
We can create the simulation model for a robotic arm by updating the existing robot
description by adding simulation parameters.

We can create the package needed to simulate the robotic arm using the following
command:

$ catkin_create_pkg seven_dof_arm_gazebo gazebo_msgs gazebo_plugins
gazebo_ros gazebo_ros_control mastering_ros_robot_description_pkg

Alternatively, the full package is available in the following Git repository; you can clone the
repository for a reference to implement this package, or you can get the package from the
book's source code:

$ git clone  https://github.com/jocacace/seven_dof_arm_gazebo.git

You can see the complete simulation model of the robot in the  file,
placed in the  folder.

The file is filled with URDF tags, which are necessary for the simulation. We will define the
sections of collision, inertial, transmission, joints, links, and Gazebo.
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To launch the existing simulation model, we can use the  package,
which has a launch file called . The file definition is as
follows:

Launch the following command and check what you get:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_world.launch
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You can see the robotic arm in Gazebo, as shown in the following figure; if you get this
output, without any errors, you are done:

Let's discuss the robot simulation model files in detail.
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Adding colors and textures to the Gazebo robot
model
We can see in the simulated robot that each link has different colors and textures. The
following tags inside the xacro file provide textures and colors to robot links:

Adding transmission tags to actuate the model
To actuate the robot using ROS controllers, we should define the  element
to link actuators to joints. Here is the macro defined for transmission:

Here,  is the joint in which we link the actuators. The  element
is the type of transmission. Currently, /
is only supported. The  element is the type of hardware interface to
load (position, velocity, or effort interfaces). In the proposed example, a position control
hardware interface has been used. The hardware interface is loaded by the

 plugin; we look at this plugin in the next section.
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Adding the gazebo_ros_control plugin
After adding the transmission tags, we should add the  plugin in the
simulation model to parse the transmission tags and assign appropriate hardware interfaces
and the control manager. The following code adds the  plugin to the
xacro file:

Here, the  element specifies the plugin name to be loaded, which is
. The  element can be given as the name

of the robot; if we are not specifying the name, it will automatically load the name of the
robot from the URDF. We can also specify the controller update rate ( ),
the location of  (URDF) on the parameter server ( ), and
the type of robot hardware interface ( ). The default hardware interfaces
are , , and .

Adding a 3D vision sensor to Gazebo
In Gazebo, we can simulate the robot movement and its physics;  we can also simulate
sensors too.

To build a sensor in Gazebo, we must model the behavior of that sensor in Gazebo. There
are some prebuilt sensor models in Gazebo that can be used directly in our code without
writing a new model.

Here, we are adding a 3D vision sensor (commonly known as an rgb-d sensor) called the
Asus Xtion Pro model in Gazebo. The sensor model is already implemented in the

/  ROS package, which we have already installed in our
ROS system.

Each model in Gazebo is implemented as a Gazebo-ROS plugin, which can be loaded by
inserting it into the URDF file.
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Here is how we include a Gazebo definition and a physical robot model of Xtion Pro in the
 robot xacro file:

Inside , we can see the following lines:

Here, we can see it includes another file called , which
consists of the complete Gazebo definition of Xtion Pro.

We can also see a macro definition named , which contains the complete
model definition of Xtion Pro, including links and joints:
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In the macro definition, we are importing a mesh file of the Asus Xtion Pro, which will be
shown as the camera link in Gazebo.

In
the  

 file, we can set the Gazebo-ROS plugin of Xtion Pro. Here, we will define the
plugin as macro with RGB and depth camera support. Here is the plugin definition:

The plugin filename of Xtion Pro is , and we can
define the plugin parameters, such as the camera name, image topics, and so on.

Simulating the robotic arm with Xtion Pro
Now that we have learned about the camera plugin definition in Gazebo, we can launch the
complete simulation using the following command:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_with_rgbd_world.launch
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We can see the robot model with a sensor on the top of the arm, as shown here:

We can now work with the simulated rgb-d sensor as if it were directly plugged into our
computer. So we can check whether it provides the correct image output.

Visualizing the 3D sensor data
After launching the simulation using the preceding command, we can check topics
generated by the sensor plugin:
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Let's view the image data of a 3D vision sensor using the following tool called :

View the RGB raw image:

$ rosrun image_view image_view image:=/rgbd_camera/rgb/image_raw

View the IR raw image:

$ rosrun image_view image_view image:=/rgbd_camera/ir/image_raw

View the depth image:

$ rosrun image_view image_view image:=/rgbd_camera/depth/image_raw

Here is the screenshot with all these images:

We can also view the point cloud data of this sensor in RViz.

Launch RViz using the following command:

$ rosrun rviz rviz -f /rgbd_camera_optical_frame
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Add a PointCloud2 display type and set the Topic as . We
will get a point cloud view as follows:

Moving robot joints using ROS controllers in
Gazebo
In this section, we are going to discuss how to move each joint of the robot in Gazebo.

To move each joint, we need to assign an ROS controller. In particular, for each joint we
need to attach a controller that is compatible with the hardware interface mentioned inside
the  tags.

An ROS controller mainly consists of a feedback mechanism that can receive a set point and
control the output using the feedback from the actuators.

The ROS controller interacts with the hardware using the hardware interface. The main
function of the hardware interface is to act as a mediator between ROS controllers and the
real or simulated hardware, allocating the resources to control it considering the data
generated by the ROS controller.
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In this robot, we have defined the position controllers, velocity controllers, effort
controllers, and so on. The ROS controllers are provided by a set of packages called

.

For a proper understanding of how to configure ROS controllers for the arm, we should
understand its concepts. We will discuss more on the  packages, different
types of ROS controllers, and how an ROS controller interacts with the Gazebo simulation.

Understanding the ros_control packages
The  packages have the implementation of robot controllers, controller
managers, hardware interfaces, different transmission interfaces, and control toolboxes. The

 packages are composed of the following individual packages:

: This package contains common modules (PID and Sine) that
can be used by all controllers

: This package contains the  base class for
controllers

: This package provides the infrastructure to ,
, , and  controllers

: This package provides the message and service
definition for the controller manager

: This contains the base class for the hardware interfaces
: This package contains the interface classes for the

 interface (differential, four bar linkage, joint state, position, and
velocity)

Different types of ROS controllers and hardware
interfaces
Let's see the list of ROS packages that contain the standard ROS controllers:

: This is a simple implementation of the joint
position controller

: This is a controller to publish joint states
: This is an implementation of the joint effort (force)

controller
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The following are some of the commonly used hardware interfaces in ROS:

: This will send the commands to the hardware
: This will send the  command

: This will send the  command
: This will send the  command

: This will retrieve the joint states from the actuators
encoder

How the ROS controller interacts with Gazebo
Let's see how an ROS controller interacts with Gazebo. The following figure shows the
interconnection of the ROS controller, robot hardware interface, and simulator/real
hardware:

We can see the third-party tools, the  and  packages. These packages
can give the goal (set point) to the mobile robot controllers and robotic arm controllers.
These controllers can send the position, velocity, or effort to the robot hardware interface.
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The hardware interface allocates each resource to the controllers and sends values to each
resource. The communications between the robot controllers and robot hardware interfaces
are shown in the following diagram:

The hardware interface is decoupled from actual hardware and simulation. The values from
the hardware interface can be fed to Gazebo for simulation or to the actual hardware itself.

The hardware interface is a software representation of the robot and its abstract hardware.
The resource of the hardware interfaces are actuators, joints, and sensors. Some resources
are read-only, such as joint states, IMU, force-torque sensors, and so on, and some are read
and write compatible, such as position, velocity, and effort joints.
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Interfacing joint state controllers and joint
position controllers to the arm
Interfacing robot controllers to each joint is a simple task. The first task is to write a
configuration file for two controllers.

The joint state controllers will publish the joint states of the arm and the joint position
controllers can receive a goal position for each joint and can move each joint.

We will find the configuration file for the controller at
 in the  folder.

Here is the configuration file definition:
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We can see that all the controllers are inside the namespace , and the first
line represents the joint state controllers, which will publish the joint state of the robot at the
rate of 50 Hz.

The remaining controllers are joint position controllers, which are assigned to the first seven
joints, and they also define the PID gains.

Launching the ROS controllers with Gazebo
If the controller configuration is ready, we can build a launch file that starts all the
controllers along with the Gazebo simulation. Navigate to
the  directory and open the

 file:
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The launch files start the Gazebo simulation of the arm, load the controller configuration,
load the joint state controller and joint position controllers, and, finally, run the robot state
publisher, which publishes the joint states and TF.

Let's check the controller topics generated after running this launch file:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_gazebo_control.launch

If the command is successful, we can see these messages in the Terminal:

Here are the topics generated from the controllers when we run this launch file:
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Moving the robot joints
After finishing the preceding topics, we can start commanding positions to each joint.

To move a robot joint in Gazebo, we should publish a desired joint value with a message
type  to the joint position controller command topics.

Here is an example of moving the fourth joint to 1.0 radians:

$ rostopic pub /seven_dof_arm/joint4_position_controller/command
std_msgs/Float64 1.0

We can also view the joint states of the robot by using the following command:

$ rostopic echo /seven_dof_arm/joint_states



Simulating Robots Using ROS and Gazebo Chapter 4

[ 123 ]

Simulating a differential wheeled robot in
Gazebo
We have seen the simulation of the robotic arm. In this section, we can set up the simulation
for the differential wheeled robot that we designed in the previous chapter.

You will get the  mobile robot description from
the  folder.

Let's create a launch file to spawn the simulation model in Gazebo. As we did for the
robotic arm, we can create a  package to launch a Gazebo simulation using the same
dependencies of the  package, clone the entire package from the
following Git repository, or get the package from the book's source code:

$ git clone  https://github.com/jocacace/diff_wheeled_robot_gazebo.git

Navigate to the  directory and take the
 file. Here is the definition of this launch:
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To launch this file, we can use the following command:

$ roslaunch diff_wheeled_robot_gazebo diff_wheeled_gazebo.launch

You will see the following robot model in Gazebo. If you get this model, you have
successfully finished the first phase of the simulation:

After successful simulation, let's add the laser scanner to the robot.
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Adding the laser scanner to Gazebo
We add the laser scanner on the top of Gazebo to perform high-end operations, such as
autonomous navigation or map creation using this robot. Here, we should add the
following extra code section to  to add the laser scanner to
the robot:
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In this section, we use the Gazebo ROS plugin file called  to
simulate the laser scanner. The complete code can be found in the

 description file in the
 directory.

We can view the laser scanner data by adding some objects in the simulation environment.
Here, we add some cylinders around the robot and can see the corresponding laser view in
the next section of the figure:

The laser scanner plugin publishes laser data (  ) into the
 topic.

Moving the mobile robot in Gazebo
The robot we are working with is a differential robot with two wheels and two caster
wheels. The complete characteristics of the robot should model as the Gazebo-ROS plugin
for the simulation. Luckily, the plugin for a basic differential drive is already implemented.

To move the robot in Gazebo, we should add a Gazebo-ROS plugin file called
 to get the differential drive behavior in this robot.
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Here is the complete code snippet of the definition of this plugin and its parameters:

We can provide the parameters such as the wheel joints of the robot (joints should be of a
continuous type), wheel separation, wheel diameters, odometry topic, and so on, in this
plugin.

An important parameter that we need to move the robot is:

This parameter is the command velocity topic to the plugin, which is basically a 
message in ROS ( / ). We can publish the  message into the

 topic, and we can see the robot start to move from its position.
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Adding joint state publishers in the launch file
After adding the differential drive plugin, we need to join state publishers to the existing
launch file, or we can build a new one. You can see the new final launch
file,  , in .

The launch file contains joint state publishers, which help to visualize in RViz. Here are the
extra lines added in this launch file for the joint state publishing:

Adding the ROS teleop node
The ROS teleop node publishes the ROS  command by taking keyboard inputs. From
this node, we can generate both linear and angular velocity, and there is already a standard
teleop node implementation available; we can simply reuse the node.

The teleop is implemented in the  package. The script
folder contains the  node, which is the teleop node. As per
usual, you can get this package from the code provided with the book or download it from
the following link:

$ git clone  https://github.com/jocacace/diff_wheeled_robot_control.git

To successfully compile and use this package, you may need to install the 
package:

$ sudo apt-get install ros-kinetic-joy
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Here is the launch file called  to start the teleop node:

Let's start moving the robot.

Launch Gazebo with complete simulation settings, using the following command:

$ roslaunch diff_wheeled_robot_gazebo diff_wheeled_gazebo_full.launch

Start the teleop node:

$ roslaunch diff_wheeled_robot_control keyboard_teleop.launch

Start RViz to visualize the robot state and laser data:

$ rosrun rviz rviz

Add , add  , and the topic as  to view the laser
scan data, and add the  to view the robot model.

In the teleop terminal, we can use some keys (U, I, O, J, K, L, M, ",", ".") for direction
adjustment and other keys (q, z, w, x, e, c, k, space key) for speed adjustments. Here is the
screenshot showing the robot moving in Gazebo using the teleop and its visualization in
RViz.
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We can add primitive shapes from the Gazebo toolbar to the robot environment or we can
add objects from the online library, which is on the left-side panel:

The robot will only move when we press the appropriate key inside the teleop node
terminal. If this terminal is not active, pressing the key will not move the robot. If
everything works well, we can explore the area using the robot and visualizing the laser
data in RViz.

Questions
Why do we perform robotic simulation?
How can we add sensors into a Gazebo simulation?
What are the different types of ROS controllers and hardware interfaces?
How can we move the mobile robot in a Gazebo simulation?
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Summary
After designing the robot, the next phase is its simulation. There are a lot of uses in
simulation. We can validate a robot design, and at the same time, we can work with a robot
without having its real hardware. There are some situations when we need to work without
having a robot hardware. Simulators are useful in all these situations.

In this chapter, we were trying to simulate two robots, one was a robotic arm with seven-
DOF and the other was a differential wheeled mobile robot. We started with the robotic
arm, and discussed the additional Gazebo tags needed to launch the robot in Gazebo. We
discussed how to add a 3D vision sensor to the simulation. Later, we created a launch file to
start Gazebo with a robotic arm and discussed how to add controllers to each joint. We
added the controllers and worked with each joint.

Like the robotic arm, we created the URDF for the Gazebo simulation and added the
necessary Gazebo-ROS plugin for the laser scanner and differential drive mechanism. After
completing the simulation model, we launched the simulation using a custom launch file.
Finally, we looked at how to move the robot using the teleop node.

We can learn more about the robotic arm and mobile robots, which are supported by ROS,
from the following link: .

In the next chapter, we will see how to simulate robots using another famous robotics
simulation: V-REP.



55
Simulating Robots Using ROS

and V-REP
Having learned how to simulate robots with Gazebo, in this chapter, we will discuss how to
use another powerful and famous simulation software: V-REP (Virtual Robot
Experimentation Platform, ).

V-REP is a multi-platform robotic simulator developed by Coppelia Robotics. It offers many
simulation models of popular industrial and mobile robots ready to be used, and different
functionalities that can be easily integrated and combined through a dedicated API. In
addition, V-REP can operate with ROS using a communication interface that allows us to
control the simulation scene and the robots via topics and services. Like Gazebo, V-REP can
be used as a standalone software, while an external plugin must be installed to work with
ROS.

In this chapter, we will learn how to set up the V-REP simulator and install the ROS
communication bridge, discussing some initial codes to understand how it works. We will
show how to interact with V-REP using services and topics and how to import and interface
a new robot model using the URDF file. Finally, we will discuss how to interact with
popular mobile robots imported from the V-REP model database, enriching it with
additional sensors.
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We will cover the following topics in this chapter:

Setting up V-REP with ROS
Understanding  
Interacting with V-REP using ROS
Importong a robot model using an URDF file
Implementing a ROS interface to simulate a robotic arm in V-REP
Controlling a mobile robot using V-REP
Adding additional sensors to simulated robots

Setting up V-REP with ROS
Before starting to work with V-REP, we need to install it in our system and compile the ROS
packages needed to establish the communication bridge between ROS and the simulation
scene. V-REP is a cross-platform software, available for different operating systems, such as
Windows, macOS, and Linux. It is developed by Coppelia Robotics GmbH and is distributed
with both free educational and commercial licenses. Download the last version of the V-REP
simulator from the Coppelia Robotics download page: 

, choosing the Linux version of the V-REP PRO EDU software.

In this chapter, we will refer to the V-REP version . You can download this version,
if already available on the website, using the following command in any desired directory:

    $ wget
http://coppeliarobotics.com/files/V-REP_PRO_EDU_V3_4_0_Linux.tar.gz

After completing the download, extract the archive:

$ tar -zxvf V-REP_PRO_EDU_V3_4_0_Linux.tar.gz

To easily access V-REP resources, it is convenient to set the  environmental
variable that points to the V-REP main folder:

$ echo "export VREP_ROOT=/path/to/v_rep/folder >> ~/.bashrc"
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V-REP offers the following modes to control simulated robots from external applications:

Remote API: The V-REP remote API is composed of several functions that can be
called from external applications developed in C/C++, Python, Lua, or Matlab.
The remote API interacts with V-REP over the network, using socket
communication. You can integrate the remote API in your C++ or Python nodes,
in order to connect ROS with the simulation scene. The list of all remote APIs
available in V-REP can be found on the Coppelia Robotics website: 

. To use the
remote API, you must implement both client and server sides:

V-REP Client: The client side resides in the external application. It
can be implemented in a ROS node or in a standard program
written in one of the supported programming languages.
V-REP Server: This side is implemented in V-REP scripts and
allows the simulator to receive external data to interact with the
simulation scene.

RosPlugin: The V-REP RosPlugin implements a high-level abstraction that
directly connects the simulated object scene with the ROS communication system.
Using this plugin, you can automatically apply subscribed messages and publish
topics from scene objects to get information or control simulated robots.
RosInterface: Introduced in the latest versions of V-REP, this interface will
substitute the RosPlugin in the future versions. Differently from the RosPlugin,
this module duplicates the C++ API functions to allow ROS and V-REP
communication.

In this book, we will discuss how to interact with V-REP using the RosPlugin. The first
thing to do is to compile the ROS communication bridge. We must add two packages to our
ROS workspace:  and . As usual, you can clone the entire
package from the following GitHub repository or obtain the package from the book's source
code:

$ git clone https://github.com/jocacace/vrep_common.git
$ git clone https://github.com/jocacace/vrep_plugin.git

Compile the packages with the  command. If everything goes right, the
compilation will create the  shared library: . This file is
located in the directory in the ROS workspace. To enable V-REP to use this
library, we need to copy it into the main  folder:

$ cp devel/lib/libv_repExtRos.so $VREP_ROOT
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This library allows V-REP to connect with an active instance of roscore at startup,
transforming it in a ROS node linked to the framework. So, to connect V-REP with ROS, an
instance of roscore must be executed before launching V-REP. To test that everything is
working properly, start  and launch the V-REP software:

$ roscore & $VREP_ROOT/vrep.sh

During the startup, all V-REP plugins installed in the system will be loaded. We can check if
the  is loaded, as shown in the following figure:

In addition, after starting the V-REP program, a new topic is published containing
information about the simulation status. Listing the active topics, we can check that the

 topic is published. As shown in the next figure, this message provides
information about the state of the simulation, if it is running or not, and information about
the simulation time:
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To explore  functionalities, we can have a look at the
 scene, located in the 

folder. To open this scene, use the main drop-down menu and select the entry: File | Open
Scene. This simulation is based on the  scene
proposed in older V-REP versions.

After opening this scene, the simulation windows should appear, as in the following image:

In this scene, a robot is equipped with two cameras: one active camera acquiring images
from the environment, publishing the video stream on a specific topic, and a passive
camera, that only acquires the video stream from the same topic. We can press the 
button on the main bar of the V-REP interface.
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After that the simulation starts; this is what will happen:

In this simulation, the passive camera displays the image published from the active one,
receiving vision data directly from the ROS framework. We can also visualize the video
stream published by V-REP using the  package:

$ rosrun image_view image_view image:=/camera/image_raw

Understanding the vrep_plugin
The  is part of the V-REP API framework. Even though the plugin is correctly
installed in your system, the load operation will fail if the roscore was not running at that
time. A pop-up error will inform users if the simulations scenes need the 
because the roscore was not running before running the simulator, or it is not installed in
the system:
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After starting up V-REP with the  correctly loaded, V-REP will act as a ROS
node called . This can be shown using the following command:

$ rosnode list

Other ROS nodes can communicate with V-REP in the following ways:

 offers ROS services. Different services are available after launching
V-REP to control the simulation scene or its state.

 can be enabled to subscribe or advertise topics. As a normal ROS
node, simulation models can communicate via topics.

We can start interacting with V-REP using services. Let's create a ROS package with the
following dependencies:

$ catkin_create_pkg vrep_demo_pkg roscpp vrep_common std_msgs geometry_msgs



Simulating Robots Using ROS and V-REP Chapter 5

[ 139 ]

Alternatively, it is possible to clone the entire package from the following GitHub
repository or get the entire package from the book's source code:

$ git clone https://github.com/jocacace/vrep_demo_pkg.git

Interacting with V-REP using ROS services
As a first example, we will use ROS services to start and stop the simulation scene. To do
this, we must call  and
the  services respectively. We will discuss the source code
of the  file located in the  directory:
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Let's see the explanation of the code:

Here, we declare the service client objects, as already seen in Chapter 1. These services
communicate with the  and

 types respectively. These services do
not require any input value, while returning the success or failure of the start/stop
operation. If the start operation is executed without errors, we can stop the simulation after
a certain time, as shown in the following code:
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We can now use another service, , to publish
messages to the status bar of V-REP. We can improve the previous code with the following
lines, as reported in the  file:

Here the  service is used to display how many seconds
remain before stopping the simulation. We can test this behavior by compiling and running
the  node:

$ rosrun vrep_demo_pkg start_stop_scene_with_msg

The output of this node on the V-REP window is shown in the following screenshot:
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Interacting with V-REP using ROS topics
We will now discuss how to use topics to communicate with V-REP. This is useful when we
want to send information to the objects of the simulation, or retrieve data generated by
robots. While services are enabled when V-REP starts, topic communication happens only
on demand, initializing publisher and subscriber variables in the simulation scene.

The most common way to program the simulation scene of V-REP is via Lua scripts. Every
object of the scene can be associated to a script that is automatically invoked when a
simulation starts and is cyclically executed during the simulation time.

In the next example, we will create a scene with two objects. One will be programmed to
receive a float data from a specific topic, while the other one republishes the same data on
another topic.

Use the drop-down menu on the Scene hierarchy panel, select the entry: Add | Dummy. We
can create two objects, a  and a  and associate a
script for each of them. Use the right mouse button on the created objects, and select the
entry Add | Associated child script | Non-threaded, as shown in the following figure:
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Alternatively, we can directly load the simulation scene by opening
the  file located in the 
directory. Let's see the content of the script associated to the  object:

Each Lua script linked to V-REP objects contains the following four sections:

: This section is executed only the
first time that the simulation starts.

: This section is cyclically called at the same
frame rate of the simulation. Users can put here the code that controls the
actuation of the robot.

: This part will be executed in each simulation
step, during the sensing phase of a simulation step.

: This section is called just before the
simulation ends.
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Let's see the explanation of the preceding code:

In the initialization part, we check if the  is installed in the system, otherwise,
an error is displayed:

This activates the subscriber of the input float value on the  topic.
The  function expects as parameters the name of the topic,
the desired queue size, the desired type to stream, and three enabling parameters. These
parameters specify the item upon which the data should be applied. For example, if we
want to set the position of a joint object, the first parameter will be the object handle, while
the other parameters will not be used. In our case, we want to save the value received from
the topic into the variable .

Let's now see the content of the script associated to the  object:
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The code is explained here:

In this line, after checking the correct installation of the , we will enable the
publisher of the float value. After this line, the script publishes continuously the value of the
variable :

Finally, we set the value of the out variable with the one received from the
, stored in the  variable. Note that  and  are special

global variables accessible from all scripts of the scene. These variables in V-REP are called
signals.
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After running the simulator, we can check that everything works correctly, publishing a
desired number on the input topic and monitoring the output from the output topic, using
the following commands:

$ rostopic pub /vrep_demo/float_in std_msgs/Float32 "data: 2.0" -r 12
$ rostopic echo /vrep_demo/float_out

Simulating the robotic arm using V-REP and
ROS
In the previous chapter, we used Gazebo to import and simulate the seven-DOF arm
designed in , Working with 3D Robot Modeling in ROS. Here, we will do the same
thing using V-REP. The first step to simulate our seven-DOF arm is to import it in the
simulation scene. V-REP allows you to import new robots using URDF files; for this reason,
we must convert the xacro model of the arm in a URDF file, saving the generated URDF file
in the URDF folder of the  package:

$ rosrun xacro xacro seven_dof_arm.xacro -inorder >
/path/to/vrep_demo_pkg/urdf/seven_dof_arm.urdf
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We can now import the robot model using the URDF import plugin. Select from the main
drop-down menu the entry Plugins | URDF import and press the import button, choosing
the default import options from the dialog window. Finally, select the desired file to import 
and the seven-DOF arm will appear in the scene:

All the components of the robot are now imported into the scene, as we can see from the
Scene hierarchy panel, in which are reported the set of robot joints and links defined in the
URDF file.



Simulating Robots Using ROS and V-REP Chapter 5

[ 148 ]

Even if the robot has been correctly imported, is not ready to be controlled yet. To actuate
the robot, we need to enable all robot motors from the Joint Dynamic Properties panel.
Until the motor is disabled, it is not possible to move it during the simulation. To enable the
motor of a joint, open the Scene object proprieties panel, selecting its entry from the main
drop-down menu: Tools | Scene object proprieties. You can also open this dialog with a
double-click on an object icon in the . From this new window, open the
dynamic properties dialog and enable the motor and the control loop of the joint, selecting
the controller type. By default, the motor is controlled via a PID, as shown in the following
figure:

To increase the performance of the control loop, PID gains should be properly tuned. After
enabling motors and control loops for all robot joints, we can check that everything has
been configured correctly. Run the simulation and set a target position from the Scene
Object Proprieties panel.
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Here is an example of moving the fourth joint to 1.0 radians:

Adding the ROS interface to V-REP joint
controllers
In this section, we will learn how to interface the seven-DOF arm with the  to
stream the state of its joints and receive the control input via topics. As already seen in the
previous example, select a component of the robot (for example the

) and create a Lua script that will manage the communication
between V-REP and ROS.

Here is the script source code:
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Let's look at the following the explanation of the code. After we have checked the correct
installation of , we initialize an object handler for each joint of the arm:

Here, we use the  function, whose argument is the name of the object
as it appear in the scene hierarchy panel that we want to handle. We can now enable the
joint state publishers:
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This code uses the  function with the
 argument, allowing V-REP to stream the state of the 

joint specified via its object handler (the fourth parameter in the function), using a
 message type:

Finally, here we enable the arm to get the user control input. The
 functions are called with the

 command, enabling the arm to
subscribe to a set of float streams. The received values will be automatically applied to the
joints specified via the object handlers.

As usual, we can test that everything works fine by setting a target position to one of the
joints of the robot:

$ rostopic pub /vrep_demo/seven_dof_arm/wrist_pitch/ctrl std_msgs/Float64
"data: 1.0"
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Simulating a differential wheeled robot in V-
REP
After simulating a robotic arm, we will now discuss how to set up a simulation scene to
control a mobile robot. In this case, we will use one of the simulation models already
implemented in V-REP. To import a model from the V-REP database, select the desired
model class and object from the Model Browser panel and drag it into the scene.

For our simulation, we will simulate the Pioneer 3dx, one of the most popular differential
wheeled mobile robots used as a research platform:

By default, the Pioneer robot is equipped with 16 sonar sensors, both forward and rear
facing. In the next section, we will discuss how to equip the robot with other sensors.

To actuate the robot using ROS, we should add a script that receives the desired linear and
angular velocity and convert it in wheel velocities. We can use the same script to enable
sensor data streaming via a ROS topic.
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Here is the complete code of the script associated to  object in the Scene
Hierarchy panel. Part of this code is released with the V-REP simulator and is already 
available when the  is imported in the simulation scene:
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Here is the explanation of the code:

Here, we stream the sonar data and initialize the handlers of the wheels to be controlled:

This allows the robot to receive the desired cartesian velocities from the ROS topic and
stream its odometry. The  command is used to read
a float value from the  and  topics, while the

 command enables the streaming of the odometry data
of the robot via a  message.

In the actuation part of the script, we can calculate the velocity of the wheels:
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This block of code retrieves the value of signals of the desired linear and angular velocities
from the input topic:

Since, by default, signals are created with null values, it is recommended to check that they
have been initialized before we use them:

Finally, we can calculate and set the wheel velocities needed to actuate the robot with the
desired control input. In our simulation, a wheel is represented by a simple joint. To move
it, we can use , which sets the desired target velocity to the
joint.

After running the simulation, the user should be able to read the sonar values and the
position of the robot, calculated via the robot odometry, and set the linear and angular
velocity:

$ rostopic pub /linear_vel std_msgs/Float32 "data: 0.2"

This will apply a linear velocity of 0.2 m/s to the robot.

Adding a laser sensor to V-REP
An important feature of robotic simulators is the possibility to simulate sensors as well as
robots. We are now going to add a laser sensor to the . V-REP offers different
models of vision, inertial, and proximity sensors. These can be selected from the Model
Browser panel in the components | sensors section.
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To add a  to the robot, select and drag and drop  into 
the scene. It's useful to put the sensor as a parent of the robot to be facilitated in its correct
positioning on the robot frame. After importing the sensor, the  should
appear, as show in the following figure:
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We can position the sensor on the robot frame using the 
 window, accessible via the toolbar. This laser sensor is already

suitable to stream laser data on the  topic, using a
 message. After running the simulation, we can see the data

generated by the laser scanner in RViz:
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Adding a 3D vision sensor to V-REP
In this section, we will add another sensor to our mobile robot: an rgb-d sensor, like the one
already used in , Simulating Robots Using ROS and Gazebo. V-REP already has a
pre-built model for this sensor, but, unlike the laser scanner, it is not directly integrated
with ROS. For this reason, let's modify the script associated to this sensor to stream its data
via topics. Add the sensor selecting the kinect model from the Model Browser panel and
drop it in the robot components. Position the kinect in the desired location and the
associated script in the following way:

Here, in the  section, we add the code to stream data
generated by the rgb-d sensor: the colored image and the depth image, and the information
concerning the camera calibration. We can run the simulation, as shown here:

$ rosrun image_view image_view image:=/rgb/image_raw
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And we get the following image:

We have now simulated a differential wheeled mobile robot equipped with different kinds
of sensors fully integrated with ROS. This robot model is saved in the 
simulation scene provided with the  package.
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Questions
We should now be able to answer the following questions:

How do V-REP and ROS communicate?
In what way is it possible to control a V-REP simulation with ROS?
How can we import new robot models in V-REP and integrate them with ROS?
How can we integrate new V-REP model sensors with ROS?
How can we move the mobile robot in a V-REP simulation?

Summary
In this chapter, we mainly replicated things already done in the previous chapter with
Gazebo, using another simulator: V-REP. V-REP is a multi-platform simulation software
that integrates different technologies and is very versatile. With respect to Gazebo, V-REP
could appear easier to use for new users.

In this chapter, we simulated two robots, one imported using the URDF file of the seven-
DOF arm designed in previous chapters, and the other was a popular differential wheeled
robot provided by V-REP simulation models. We learned how to interface and control robot
joints of our model with ROS and how to move a differential drive mobile robot using
topics. In addition, we discussed how to add different type of sensors in our simulation
scene, improving the equipment of the simulated mobile robot with a laser and a 3D vision
sensor. Finally, we discussed how to connect a rgb-d sensor simulated in V-REP with the
ROS framework.

In the next chapter, we will see how to interface the robotic arm with the ROS MoveIt
package and the mobile robot with the Navigation stack.
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Using the ROS MoveIt! and

Navigation Stack
In the previous chapters, we have been discussing the design and simulation of a robotic
arm and mobile robot. We controlled each joint of the robotic arm in Gazebo using the ROS
controller and moved the mobile robot inside Gazebo using the teleop node.

In this chapter, we are going to address the motion planning problem. Moving a robot by
directly controlling its joints manually might be a difficult task, especially if we want to add
position or velocity constraints to the robot motion. Similarly, driving a mobile robot,
avoiding obstacles, requires the planning of a path. For this reason, we will solve these
problems using the ROS MoveIt! and Navigation stack.

MoveIt! is a set of packages and tools for doing mobile manipulation in ROS. The official
web page ( ) contains the documentations, the list of robots using
MoveIt!, and various examples to demonstrate pick and place, grasping, simple motion
planning using inverse kinematics, and so on.

MoveIt! contains state-of-the-art software for motion planning, manipulation, 3D
perception, kinematics, collision checking, control, and navigation. Apart from the
command line interface, MoveIt! has some good GUI to interface a new robot to MoveIt!.
Also, there is a RViz plugin, which enables motion planning from RViz itself. We will also
see how to motion plan our robot using MoveIt! C++ APIs.
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Next is the Navigation stack, another set of powerful tools and libraries to work mainly for
mobile robot navigation. The Navigation stack contains ready-to-use navigation algorithms
which can be used in mobile robots, especially for differential wheeled robots. Using these
stacks, we can make the robot autonomous, and that is the final concept that we are going
to see in the Navigation stack.

The first section of this chapter will discuss more on the MoveIt! package, installation, and
architecture. After discussing the main concepts of MoveIt!, we will see how to create a
MoveIt! package for our robotic arm, which can provide collision-aware path planning to
our robot. Using this package, we can perform motion planning (inverse kinematics) in
RViz, and can interface to Gazebo or the real robot for executing the paths.

After discussing the interfacing, we will discuss more about the Navigation stack and see
how to perform autonomous navigation using  SLAM (Simultaneous Localization And
Mapping) and amcl (Adaptive Monte Carlo Localization).

Installing MoveIt!
Let's start with installing MoveIt!. The installation procedure is very simple and is just a
single command. Using the following commands, we install the MoveIt! core, a set of
plugins ad planners for ROS Kinetic:

$ sudo apt-get install ros-kinetic-moveit ros-kinetic-moveit-plugins ros-
kinetic-moveit-planners

MoveIt! architecture
Let's start with MoveIt! and its architecture. Understanding the architecture of MoveIt!
helps to program and interface the robot to MoveIt!. We will quickly go through the
architecture and the important concepts of MoveIt!, and start interfacing and programming
our robots.

Here is the MoveIt! architecture, included in their official web page, at
:
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The move_group node
We can say that  is the heart of MoveIt!, as this node acts as an integrator of the
various components of the robot and delivers actions/services according to the user's needs.

From the architecture, it's clear that the  node collects robot information such
as point cloud, joint state of the robot, and transform (TF) of the robot in the form of topics
and services.



Using the ROS MoveIt! and Navigation Stack Chapter 6

[ 165 ]

From the parameter server, it collects the robot kinematics data, such as
 (URDF), Semantic Robot Description Format (SRDF), and the

configuration files. The SRDF file and the configuration files are generated while we
generate a MoveIt! package for our robot. The configuration files contains the parameter file
for setting joint limits, perception, kinematics, end effector, and so on. We will see the files
when we discuss generating the MoveIt! package for our robot.

When MoveIt! gets all this information about the robot and its configuration, we can say it
is properly configured and we can start commanding the robot from the user interfaces. We
can either use C++ or Python MoveIt! APIs to command the  node to perform
actions such as pick/place, IK, and FK, among others. Using the RViz motion planning
plugin, we can command the robot from the RViz GUI itself.

As we already discussed, the  node is an integrator; it does not run any kind of
motion planning algorithms directly, but instead connects all the functionalities as plugins.
There are plugins for kinematics solvers, motion planning, and so on. We can extend the
capabilities through these plugins.

After motion planning, the generated trajectory talks to the controllers in the robot using the
 interface. This is an action interface in which an action

server is run on the robot, and  initiates an action client which talks to this server
and executes the trajectory on the real robot/Gazebo simulator.

At the end of the MoveIt! discussion, we will see how to connect MoveIt! with RViz GUI to
Gazebo. The following screenshot shows a robotic arm that is controlling from RViz and the
trajectory is executed inside Gazebo:
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Motion planning using MoveIt!
Assume that we know the starting pose of the robot, a desired goal pose of the robot, the
geometrical description of the robot, and geometrical description of the world, then motion
planning is the technique to find an optimum path that moves the robot gradually from the
start pose to the goal pose, while never touching any obstacles in the world and without
colliding with the robot links.

In this context, the robot geometry is described via the URDF file. We can also create a
description file for the robot environment and use laser or vision sensors of the robot to
map its operative space, in order to avoid static and dynamic obstacles during the execution
of planned paths.
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In the case of the robotic arm, the motion planner should find a trajectory (consisting of
joint spaces of each joint) in which the links of the robot should never collide with the
environment, avoid self-collision (collision between two robot links), and not violate the
joint limits.

MoveIt! can talk to the motion planners through the plugin interface. We can use any
motion planner by simply changing the plugin. This method is highly extensible so we can
try our own custom motion planners using this interface. The move_group node talks to the
motion planner plugin via the ROS action/services. The default planner for the 
node is OMPL ( ).

To start motion planning, we should send a motion planning request to the motion planner
which specified our planning requirements. The planning requirement may be setting a
new goal pose of the end-effector; for example, for a pick and place operation.

We can set additional kinematic constraints for the motion planners. The following are
some inbuilt constraints in MoveIt!:

Position constraints: These restrict the position of a link
Orientation constraints: These restrict the orientation of a link
Visibility constraints: These restrict a point on the link to be visible in an area
(view of a sensor)
Joint constraints: These restrict a joint within its joint limits
User-specified constraints: Using these constraints, the user can define his own
constraints using the callback functions

Using these constraints, we can send a motion planning request and the planner will
generate a suitable trajectory according to the request. The  node will generate
the suitable trajectory from the motion planner which obeys all the constraints. This can be
sent to robot joint trajectory controllers.
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Motion planning request adapters
The planning request adapters help to pre-process the motion planning request and post-
process the motion planning response. One of the uses of pre-processing requests is that it
helps to correct if there is a violation in the joint states and, for the post-processing, it can
convert the path generated by the planner to a time-parameterized trajectory. The following
are some of the default planning request adapters in MoveIt!:

FixStartStateBounds: If a joint state is slightly outside the joint limits, then this
adapter can fix the initial joint limits within the limits.
FixWorkspaceBounds: This specifies a workspace for planning with a cube size
of 10 m x 10 m x 10 m.
FixStartStateCollision: This adapter samples a new collision free configuration if
the existing joint configuration is in collision. It makes a new configuration by
changing the current configuration by a small factor called .
FixStartStatePathConstraints: This adapter is used when the initial pose of the
robot does not obey the path constraints. In this, it finds a near pose which
satisfies the path constraints and uses that pose as the initial state.
AddTimeParameterization: This adapter parameterizes the motion plan by
applying the velocity and acceleration constraints.

MoveIt! planning scene
The term "planning scene" is used to represent the world around the robot and store the
state of the robot itself. The planning scene monitor inside  maintains the
planning scene representation. The  node consists of another section called the
world geometry monitor, which builds the world geometry from the sensors of the robot
and from the user input.
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The planning scene monitor reads the joint_states topic from the robot, and the sensor
information and world geometry from the world geometry monitor. The world scene
monitor reads from the occupancy map monitor, which uses 3D perception to build a 3D
representation of the environment, called Octomap. Octomaps can be generated from point
clouds, which are handled by a point cloud occupancy map update plugin and depth
images handled by a depth image occupancy map updater. The following image shows the
representation of the planning scene from the MoveIt! official wiki
( ):

MoveIt! kinematics handling
MoveIt! provides a great flexibility to switch the inverse kinematics algorithms using the
robot plugins. Users can write their own IK solver as a MoveIt! plugin and switch from the
default solver plugin whenever required. The default IK solver in MoveIt! is a numerical
jacobian-based solver.
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Compared to the analytic solvers, the numerical solver can take time to solve IK. The
package called IKFast can be used to generate a C++ code for solving IK using analytical
methods, which can be used for different kinds of robot manipulator and perform better if
the DOF is less than 6. This C++ code can also be converted into the MoveIt! plugin by using
some ROS tool. We will look at this procedure in the upcoming chapters.

Forward kinematics and finding jacobians are already integrated to the MoveIt! RobotState
class, so we don't need to use plugins for solving FK.

MoveIt! collision checking
The CollisionWorld object inside MoveIt! is used to find collisions inside a planning scene
which is using the Flexible Collision Library (FCL) package as a backend. MoveIt!
supports collision checking for different types of objects, such as meshes, primitive shapes
such as boxes, cylinders, cones, spheres, and Octomap.

Collision checking is one of the computationally expensive tasks during motion planning.
To reduce this computation, MoveIt! provides a matrix called ACM (Allowed Collision
Matrix). It contains a binary value corresponding to the need to check for a collision
between two pairs of bodies. If the value of the matrix is 1, it means collision of the
corresponding pair is not needed. We can set the value as 1 where the bodies are always so
far that they would never collide with each other. Optimizing ACM can reduce the total
computation needed for collision avoidance.

After discussing the basic concepts in MoveIt!, we can now discuss how to interface a
robotic arm into MoveIt!. To interface a robot arm in MoveIt!, we need to satisfy the
components that we saw in Figure 1. The  node essentially requires
parameters, such as URDF, SRDF, config files, and joint states topics, along with TF from a
robot to start with motion planning.

MoveIt! provides a GUI-based tool called Setup Assistant to generate all these elements. The
following section describes the procedure to generate a MoveIt! configuration from the
Setup Assistant tool.
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Generating MoveIt! configuration package
using the Setup Assistant tool
The MoveIt! Setup Assistant is a graphical user interface for configuring any robot to
MoveIt!. Basically, this tool generates SRDF, configuration files, launch files, and scripts
generating from the robot URDF model, which is required to configure the 
node.

The SRDF file contains details about the arm joints, end-effector joints, virtual joints, and the
collision link pairs, which are configured during the MoveIt! configuration process using
the Setup Assistant tool.

The configuration file contains details about the kinematic solvers, joint limits, controllers,
and so on, which are also configured and saved during the configuration process.

Using the generated configuration package of the robot, we can work with motion planning
in RViz without the presence of a real robot or simulation interface.

Let's start the configuration wizard, and we can see the step-by-step procedure to build the
configuration package of our robotic arm.

Step 1  Launching the Setup Assistant tool
To start the MoveIt! Setup Assistant tool, we can use the following command:

$ roslaunch moveit_setup_assistant setup_assistant.launch

This will bring up a window with two choices: Create New MoveIt! Configuration
Package or Edit Existing MoveIt! Configuration Package. Here we are creating a new
package, so we need that option. If we have a MoveIt! package already, then we can select
the second option.
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Click on the Create New MoveIt! Configuration Package button, which will display a new
screen, as shown next:

In this step, the wizard asks for the URDF model of the new robot. To give the URDF file,
click on the Browse button and navigate to

. Choose this
file and press the Load button to load the URDF. We can either give the robot model as pure
URDF or xacro; if we give xacro, the tool will convert to RDF internally.
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If the robot model is successfully parsed, we can see the robot model on the window, as
shown in the following screenshot:

Step 2  Generating the Self-Collision matrix
We can now start to navigate all the panels of the window to properly configure our robot.
In the Self-Collisions tab, MoveIt! searches for a pair of links on the robot which can be
safely disabled from the collision checking. These can reduce the processing time. This tool
analyzes each link pair and categorizes the links as always in collision, never in collision,
default in collision, adjacent links disabled, and sometimes in collision, and it disables the
pair of links which makes any kind of collision. The following image shows the Self-
Collisions window:
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The sampling density is the number of random positions to check for self-collision. If the
density is large, computation will be high but self-collision will be less. The default value is
10,000. We can see the disabled pair of links by pressing the Regenerate Default Collision
Matrix button; it will take a few seconds to list out the disabled pair of links.

Step 3  Adding virtual joints
Virtual joints attach the robot to the world. They are not mandatory for a static robot which
does not move. We need virtual joints when the base position of the arm is not fixed. For
example, if a robot arm is fixed on a mobile robot, we should define a virtual joint with
respect to the odometry frame ( ).

In the case of our robot, we are not creating virtual joints.
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Step 4  Adding planning groups
A planning group is basically a group of joints/links in a robotic arm which plans together
to achieve a goal position of a link or the end effector. We must create two planning groups,
one for the arm and one for the gripper.

Click on the Planning Groups tab on the left side and click on the Add Group button. You
will see the following screen, which has the settings of the  group:

Here, we are giving Group Name as arm, and Kinematic Solver as
, which is the default numerical IK

solver with MoveIt!. We can keep the other parameters as the default values. In addition,
we can choose different ways to add elements in a planning group. For example, we could
specify the joints of the group, add its links, or directly specify a kinematic chain.
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Inside the arm group, first we have to add a kinematic chain, starting from  as
the first link to the .

Add a group called  and we don't need to have a kinematic solver for the 
group. Inside this group, we can add the joints and links of the gripper. These settings are
shown next:

Step 5  Adding the robot poses
In this step, we can add certain fixed poses in the robot configuration. For example, we can
assign a home position or a pick/place position in this step. The advantage is that, while
programming with MoveIt! APIs, we can directly call these poses, which are also called
group states. These have many applications in the pick/place and grasping operation. The
robot can switch to the fixed poses without any hassle.
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Step 6  Setting up the robot end effector
In this step, we name the robot end effector and assign the end-effector group, the parent
link, and the parent group.

We can add any number of end effectors to this robot. In our case, it's a gripper designed for
pick and place operations.

Click on the Add End Effector button and name the end effector as , the
planning group as gripper, which we have already created, the parent link as

, and the parent group as :
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Step 7  Adding passive joints
In this step, we can specify the passive joints in the robot. Passive joints mean that the joints
do not have any actuators. Caster wheels are one of the examples of passive joints. The
planner will ignore these kinds of joints during motion planning.

Step 8  Author information
In this step, the author of the robotic model can add personal information, his name and
email address, required by catkin to release the model to the ROS community.

Step 9  Generating configuration files
We are almost done. We are in the final stage, that is, generating the configuration files. In
this step, the tool will generate a configuration package which contains the file needed to
interface MoveIt!.

Click on the Browse button to locate a folder to save the configuration file that is going to be
generated by the Setup Assistant tool. Here we can see the files are generating inside a
folder called . You can  or  along with
the robot name for the configuration package.

Click on the Generate Package button, and it will generate the files to the given folder.

If the process is successful, we can click on Exit Setup Assistant, which will exit us from the
tool.
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The following screenshot shows the generation process:

After generating the MoveIt! configuration package, we can copy it into our 
workspace. In the following section, we are going to work with this package. As usual, the
model of the robot created can be downloaded from the following GitHub repository or can
be obtained from the book's source code:

$ git clone https://github.com/jocacace/seven_dof_arm_config
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Motion planning of robot in RViz using
MoveIt! configuration package
MoveIt! provides a plugin for RViz, which allows it to create new planning scenes where
robot works, generate motion plans, and add new objects, visualize the planning output
and can directly interact with the visualized robot.

The MoveIt! configuration package consists of configuration files and launch files to start
motion planning in RViz. There is a demo launch file in the package to explore all the
functionalities of this package.

The following is the command to invoke the demo launch file:

$ roslaunch seven_dof_arm_config demo.launch

If everything works fine, we will get the following screen of RViz being loaded with the
 plugin provided by MoveIt!:
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Using the RViz Motion Planning plugin
From the preceding figure , we can see that the RViz-Motion Planning plugin is loaded on
the left side of the screen. There are several tabs on the Motion Planning window, such as
Context, Planning, and so on. The default tab is the Context tab and we can see the default
Planning Library as OMPL, which is shown in green. It indicates that MoveIt! successfully
loaded the motion planning library. If it is not loaded, we can't perform motion planning.

Next is the Planning tab. This is one of the frequently used tabs used to assign the Start
State, Goal State, Plan a path, and Execute the path. Shown next is the GUI of the Planning
tab:

We can assign the start state and the goal state of the robot under the Query panel. Using
the Plan button, we can plan the path from the start to the goal state, and if the planning is
successful, we can execute it. By default, execution is done on fake controllers. We can
change these controllers into trajectory controllers for executing the planned trajectory in
Gazebo or the real robot.
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We can set the starting and the goal position of the robot end effector by using the
interactive marker attached on the arm gripper. We can translate and rotate the marker
pose, and, if there is a planning solution, we can see an arm in orange color. In some
situations, the arm will not move even the end-effector marker pose moves, and if the arm
does not come to the marker position, we can assume that there is no IK solution in that
pose. We may need more DOF to reach there or there might be some collision between the
links.

The following screenshots show a valid goal pose and an invalid goal pose:

The green colored arm represents the starting position of the arm, and the orange color
represents the goal position. In the first figure, if we press the Plan button, MoveIt! plans a
path from start to goal. In the second image, we can observe two things. First, one of the
links of the orange arm is red, which means that the goal pose is in a self-collided state.
Secondly, look at the end- effector marker; it is far from the actual end effector and it has
also turned red.
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We can also work with some quick motion planning using random valid options in the start
state and the goal state. If we select the goal state as random valid and press the Update
button, it will generate a random valid goal pose. Click on the Plan button and we can see
the motion planning.

We can customize the RViz visualization using the various options in the 
plugin. Shown next are some of the options of this plugin:
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The first marked area is Scene Robot, which will show the robot model; if it is unchecked,
we won't see any robot model. The second marked area is the Trajectory Topic, in which
RViz gets the visualization trajectory. If we want to animate the motion planning and want
to display the motion trails, we should enable this option.

One of the other sections in the plugin settings is shown in the following image:

In the preceding figure, we can see the Query Start State and the Query Goal State options.
These options can visualize the start pose and the goal pose of the arm, which we saw in
Figure 13. Show Workspace visualizes the cubic workspace (world geometry) around the
robot. The visualization can help to debug our motion-planning algorithm and understand
the robot motion behavior in detail.

In the next section, we will see how to interface the MoveIt! configuration package to
Gazebo. This will execute the trajectory generated by MoveIt! in Gazebo.

Interfacing the MoveIt! configuration package to
Gazebo
We have already worked with the Gazebo simulation of this arm and attached controllers to
it. For interfacing the arm in MoveIt! to Gazebo, we need a trajectory controller which has
the  interface, as we mentioned in the MoveIt!
architecture.

The following is the procedure to interface MoveIt! to Gazebo.
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Step 1  Writing the controller configuration file for
MoveIt!
The first step is to create a configuration file for talking with the trajectory controllers in
Gazebo from MoveIt!. The controller configuration file called  has to be
created inside the  folder of the  package.

Given next is an example of the  definition:

The controller configuration file contains the definition of the two controller interfaces; one
is for arm and the other is for gripper. The type of action used in the controllers is

, and the action namespace is . We
have to list out the joints under each group. The  indicates that it will use
the default controller, which is the primary controller in MoveIt! for communicating with
the set of joints.
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Step 2  Creating the controller launch files
Next, we have to create a new launch file called

 , which can start the trajectory
controllers. The name of the file starts with the robot name, which is added with

.

The following is the 
 launch file definition:

This launch file starts the  and loads the joint
trajectory controllers defined inside .

Step 3  Creating the controller configuration file for
Gazebo
After creating the MoveIt! files, we have to create the Gazebo controller configuration file
and the launch file.

Create a new file called  , which contains the list of the Gazebo
ROS controllers that need to be loaded along with Gazebo.
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You will get this file from the  package created in 
, Simulating Robots Using ROS and Gazebo in the  folder.

The following is the definition of this file:

Here, we created a  , which has
an action interface of  for both the  and the . We also
defined the PID gain associated with each joint, which can provide a smooth motion.
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Step 4  Creating the launch file for Gazebo trajectory
controllers
After creating the configuration file, we can load the controllers along with Gazebo. We
have to create a launch file which launches Gazebo, the trajectory controllers, and the
MoveIt! interface in a single command.

The launch file  contains the definition to
launch all these commands:

This launch file spawns the robot model in Gazebo, publishes the joint states, attaches the
position controller, attaches the trajectory controller, and, finally, launches

 inside the MoveIt! package for starting the
MoveIt! nodes along with RViz. We may need to load the  plugin in RViz
if it is not loaded by default.

We can start motion planning inside RViz and execute in Gazebo using the following single
command:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_bringup_moveit.launch
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Note that, before properly launching the planning scene, we should use the following
command to install some packages needed by MoveIt! to use ROS controllers:

$ sudo apt-get install ros-kinetic-joint-state-controller ros-kinetic-
position-controllers ros-kinetic-joint-trajectory-controller

After we have installed the preceding packages, we can launch the planning scene. This will
launch RViz and Gazebo, and we can do motion planning inside RViz. After motion
planning, click on the Execute button to send the trajectory to the Gazebo controllers:

Step 5  Debugging the Gazebo- MoveIt! interface
In this section, we will discuss some of the common issues and debugging techniques in this
interface.

If the trajectory is not executing on Gazebo, first list the topics:

$ rostopic list
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If the Gazebo controllers are started properly, we will get the following joint trajectory
topics in the list:

We can see  for the gripper and the  group. If the
controllers are not ready, the trajectory will not execute in Gazebo.

Also, check the terminal message while starting the launch file:
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In the Figure 18, the first section shows that the  was
able to connect with the Gazebo controller and if it couldn't connect to controller, it shows
that it can't connect to the controller. The second section shows a successful motion
planning. If the motion planning is not successful, MoveIt! will not send the trajectory to
Gazebo.

In the next section, we will discuss the ROS Navigation stack and look at the requirements
needed to interface the Navigation stack to the Gazebo simulation.

Understanding the ROS Navigation stack
The main aim of the ROS Navigation package is to move a robot from the start position to
the goal position, without making any collision with the environment. The ROS Navigation
package comes with an implementation of several navigation-related algorithms which can
easily help implement autonomous navigation in the mobile robots.

The user only needs to feed the goal position of the robot and the robot odometry data from
sensors such as wheel encoders, IMU, and GPS, along with other sensor data streams, such
as laser scanner data or 3D point cloud from sensors such as Kinect. The output of the
Navigation package will be the velocity commands that will drive the robot to the given
goal position.

The Navigation stack contains the implementation of the standard algorithms, such as
SLAM, A *(star), Dijkstra, amcl, and so on, which can directly be used in our application.

ROS Navigation hardware requirements
The ROS Navigation stack is designed as generic. There are some hardware requirements
that should be satisfied by the robot. The following are the requirements:

The Navigation package will work better in differential drive and holonomic
(total DOF of robot equals to controllable DOF of robots). Also, the mobile robot
should be controlled by sending velocity commands in the form of: 

,  (linear velocity), and  (angular
velocity).
The robot should be equipped with a vision (rgb-d) or laser sensor to build the
map of the environment.
The Navigation stack will perform better for square and circular shaped mobile
bases. It will work on an arbitrary shape, but performance is not guaranteed.
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The following are the basic building blocks of the Navigational stack taken from the ROS
website ( ). We can see  the
purposes of each block and how to configure the Navigation stack for a custom robot:

According to the Navigation setup diagram, for configuring the Navigation package for a
custom robot, we must provide functional blocks that interface to the Navigation stack. The
following are the explanations of all the blocks which are provided as input to the
Navigational stack:

Odometry source: Odometry data of a robot gives the robot position with respect
to its starting position. The main odometry sources are wheel encoders, IMU, and
2D/3D cameras (visual odometry). The odom value should publish to the
Navigation stack, which has a message type of . The 
message can hold the position and the velocity of the robot. Odometry data is a
mandatory input to the Navigational stack.
Sensor source: We have to provide laser scan data or point cloud data to the
Navigation stack for mapping the robot environment. This data, along with
odometry, combines to build the global and local cost map of the robot. The main
sensors used here are Laser Range finders or Kinect 3D sensors. The data should
be of type  or .
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sensor transforms/tf: The robot should publish the relationship between the
robot coordinate frame using ROS tf.
base_controller: The main function of the base controller is to convert the output
of the Navigation stack, which is a twist ( ) message, and
convert it into corresponding motor velocities of the robot.

The optional nodes of the Navigation stack are  and map server, which allow
localization of the robot and help to save/load the robot map.

Working with Navigation packages
Before working with the Navigation stack, we were discussing MoveIt! and the

 node. In the Navigation stack, also, there is a node like the  node,
called the  node. From Figure 19, it is clear that the  node takes input
from sensors, joint states, TF, and odometry, which is very similar to the  node
that we saw in MoveIt!.

Let's see more about the  node.

Understanding the move_base node
The  node is from a package called . The main function of this
package is to move a robot from its current position to a goal position with the help of other
navigation nodes. The  node inside this package links the global-planner and the
local-planner for the path planning, connecting to the rotate-recovery package if the robot is
stuck in some obstacle and connecting global costmap and local costmap for getting the
map.

The  node is basically an implementation of , which takes
a goal pose with message type ( ). We can send a goal
position to this node using a  node.

The  node subscribes the goal from a topic called move_ ,
which is the input of the Navigation stack, as shown in the previous diagram.

When this node receives a goal pose, it links to components such as ,
, , , and , generates

the output, which is the command velocity (geometry_msgs/Twist), and sends it to the base
controller for moving the robot for achieving the goal pose.
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The following is the list of all the packages which are linked by the  node:

global-planner: This package provides libraries and nodes for planning the
optimum path from the current position of the robot to the goal position, with
respect to the robot map. This package has the implementation of path-finding
algorithms, such as A*, Dijkstra, and so on, for finding the shortest path from the
current robot position to the goal position.
local-planner: The main function of this package is to navigate the robot in a
section of the global path planned using the global planner. The local planner will
take the odometry and sensor reading, and send an appropriate velocity
command to the robot controller for completing a segment of the global path
plan. The base local planner package is the implementation of the trajectory
rollout and dynamic window algorithms.
rotate-recovery: This package helps the robot to recover from a local obstacle by
performing a 360 degree rotation.
clear-costmap-recovery: This package is also for recovering from a local obstacle
by clearing the costmap by reverting the current costmap used by the Navigation
stack to the static map.
costmap-2D: The main use of this package is to map the robot environment. The
robot can only plan a path with respect to a map. In ROS, we create 2D or 3D
occupancy grid maps, which is a representation of the environment in a grid of
cells. Each cell has a probability value that indicates whether the cell is occupied
or not. The costmap-2D package can build the grid map of the environment by
subscribing sensor values of the laser scan or point cloud and also the odometry
values. There are global cost maps for global navigation and local cost maps for
local navigation.

The following are the other packages which are interfaced to the  node:

map-server: The map-server package allows us to save and load the map
generated by the costmap-2D package.
AMCL: AMCL (Adaptive Monte Carlo Localization) is a method to localize the
robot in a map. This approach uses a particle filter to track the pose of the robot
with respect to the map, with the help of probability theory. In the ROS system,
AMCL accepts a  to create the map.
gmapping: The gmapping package is an implementation of an algorithm called
Fast SLAM, which takes the laser scan data and odometry to build a 2D
occupancy grid map.

After discussing each functional block of the Navigation stack, let's see how it really works.
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Working of Navigation stack
In the previous section, we saw the functionalities of each block in the ROS Navigation
stack. Let's check how the entire system works. The robot should publish a proper
odometry value, TF information, and sensor data from the laser, and have a base controller
and map of the surroundings.

If all these requirements are satisfied, we can start working with the Navigation package.

Localizing on the map
The first step the robot is going to perform is localizing itself on the map. The AMCL
package will help to localize the robot on the map.

Sending a goal and path planning
After getting the current position of the robot, we can send a goal position to the move_base
node. The move_base node will send this goal position to a global planner, which will plan
a path from the current robot position to the goal position.

This plan is with respect to the global costmap, which is feeding from the map server. The
global planner will send this path to the local planner, which executes each segment of the
global plan.

The local planner gets the odometry and the sensor value from the move_base node and
finds a collision-free local plan for the robot. The local planner is associated with the local
costmap, which can monitor the obstacle(s) around the robot.

Collision recovery behavior
The global and local costmap are tied with the laser scan data. If the robot is stuck
somewhere, the Navigation package will trigger the recovery behavior nodes, such as the
clear costmap recovery or rotate recovery nodes.

Sending the command velocity
The local planner generates the command velocity in the form of a twist message that
contains linear and angular velocity ( ), to the robot base controller.
The robot base controller converts the twist message to the equivalent motor speed.
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Installing the ROS Navigation stack
The ROS desktop full installation will not install the ROS Navigation stack. We must install
the Navigation stack separately, using the following command:

$ sudo apt-get install ros-kinetic-navigation

After installing the Navigation package, let's start learning how to build a map of the robot
environment. The robot we are using here is the differential wheeled robot that we
discussed in the previous chapter. This robot satisfies all the three requirements of the
Navigation stack.

Building a map using SLAM
The ROS Gmapping package is a wrapper of the open source implementation of SLAM,
called OpenSLAM ( ). The package contains a
node called , which is the implementation of SLAM and helps to create a
2D occupancy grid map from the laser scan data and the mobile robot pose.

The basic hardware requirement for doing SLAM is a laser scanner which is horizontally
mounted on the top of the robot, and the robot odometry data. In this robot, we have
already satisfied these requirements. We can generate the 2D map of the environment,
using the  package through the following procedure.

Before operating with Gmapping, we need to install it using the following command:

$ sudo apt-get install ros-kinetic-gmapping

Creating a launch file for gmapping
The main task while creating a launch file for the  process is to set the parameters
for the  node and the  node. The  node is the
core node inside the ROS Gmapping package. The  node subscribes the
laser data ( ) and the TF data, and publishes the occupancy grid
map data as output ( ). This node is highly configurable and we
can fine tune the parameters to improve the mapping accuracy. The parameters are
mentioned at .
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The next node we have to configure is the  node. The main parameters we need
to configure are the global and local costmap parameters, the local planner, and the

 parameters. The parameters list is very lengthy. We are representing these
parameters in several YAML files. Each parameter is included in the  folder inside the

 package.

The following is the  file used in this robot. The launch file is placed in
the  folder:
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Running SLAM on the differential drive robot
We can build the ROS package called  and can run the

 file for building the map. The following are the commands to start with
the mapping procedure.

Start the robot simulation by using the Willow Garage world:

$ roslaunch diff_wheeled_robot_gazebo diff_wheeled_gazebo_full.launch

Start the  launch file with the following command:

$ roslaunch diff_wheeled_robot_gazebo gmapping.launch

If the  launch file is working fine, we will get the following kind of output on the
Terminal:

Start the keyboard teleoperation for manually navigating the robot around the
environment. The robot can map its environment only if it covers the entire area:

$ roslaunch diff_wheeled_robot_control keyboard_teleop.launch
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The current Gazebo view of the robot and the robot environment is shown next. The
environment is with obstacles around the robot:

We can launch RViz and add a display type called Map and the topic name as .
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We can start moving the robot inside the world by using key board teleoperation, and we
can see a map building according to the environment. The following image shows the
completed map of the environment shown in RViz:

We can save the built map using the following command. This command will listen to the
map topic and save into the image. The map server package does this operation:

$ rosrun map_server map_saver -f willo
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Here  is the name of the map file. The map file is stored as two files: one is the YAML
file, which contains the map metadata and the image name, and second is the image, which
has the encoded data of the occupancy grid map. The following is the screenshot of the
preceding command, running without any errors:

The saved encoded image of the map is shown next. If the robot gives accurate robot
odometry data, we will get this kind of precise map similar to the environment. The
accurate map improves the navigation accuracy through efficient path planning:

The next procedure is to localize and navigate in this static map.
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Implementing autonomous navigation using amcl
and a static map
The ROS amcl package provides nodes for localizing the robot on a static map. The amcl
node subscribes the laser scan data, laser scan based maps, and the TF information from the
robot. The amcl node estimates the pose of the robot on the map and publishes its estimated
position with respect to the map.

If we create a static map from the laser scan data, the robot can autonomously navigate
from any pose of the map using amcl and the move_base nodes. The first step is to create a
launch file for starting the amcl node. The amcl node is highly customizable; we can
configure it with a lot of parameters. The list of parameters are available at the ROS package
site ( ).

Creating an amcl launch file
A typical  launch file is given next. The amcl node is configured inside the

 file, which is in the 
package. The  node is also configured separately in the

 file. The map file we created in the  process is loaded
here, using the  node:
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The following is the code snippet of . This file is a bit lengthy, as we
have to configure a lot of parameters for the  node:

After creating this launch file, we can start the amcl node, using the following procedure:

Start the simulation of the robot in Gazebo:

$ roslaunch diff_wheeled_robot_gazebo diff_wheeled_gazebo_full.launch

Start the  launch file, using the following command:

$ roslaunch diff_wheeled_robot_gazebo amcl.launch

If the  launch file is correctly loaded, the Terminal shows the following message:
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If amcl is working fine, we can start commanding the robot to go into a position on the map
using RViz, as shown in the following figure. In the figure, the arrow indicates the goal
position. We have to enable LaserScan, Map, and Path visualizing plugins in RViz for
viewing the laser scan, the global/local costmap, and the global/local paths. Using the 2D
NavGoal button in RViz, we can command the robot to go to a desired position.

The robot will plan a path to that point and give velocity commands to the robot controller
to reach that point:

In the preceding image, we can see that we have placed a random obstacle in the robot's
path, and that the robot has planned a path to avoid the obstacle.

We can view the amcl particle cloud around the robot by adding a Pose Array on RViz and
the topic is /particle_cloud. The following image shows the amcl particle around the robot:
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Questions
What is the main purpose of MoveIt! packages?
What is the importance of the  node in MoveIt!?
What is the purpose of the move_base node in the Navigation stack?
What are the functions of the SLAM and amcl packages?



Using the ROS MoveIt! and Navigation Stack Chapter 6

[ 207 ]

Summary
This chapter offered a brief overview of MoveIt! and the Navigation stack of ROS, and
demonstrated its capabilities using Gazebo simulation of a robotic arm mobile base. The
chapter started with a MoveIt! overview and discussed detailed concepts about MoveIt!.
After discussing MoveIt!, we interfaced MoveIt! and Gazebo. After interfacing, we executed
the trajectory from MoveIt! on Gazebo.

The next section was about the ROS Navigation stack. We discussed its concepts and
workings as well. After discussing the concepts, we tried to interface our robot in Gazebo to
the Navigation stack and build a map using SLAM. After doing SLAM, we performed
autonomous navigation using amcl and the static map.

In the next chapter, we will discuss pluginlib, nodelets, and controllers.
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Working with pluginlib,

Nodelets, and Gazebo Plugins
In the previous chapter, we discussed the interfacing and simulation of the robotic arm
mobile robot to the ROS MoveIt! and Navigation stack. In this chapter, we will look at some
of the advanced concepts in ROS, such as the ROS , nodelets, and Gazebo
plugins. We will discuss the functionalities and applications of each concept and will look at
an example to demonstrate it's working. We have used Gazebo plugins in the previous
chapters to get the sensor and robot behavior inside the Gazebo simulator. In this chapter,
we are going to see how to create it. We will also discuss a modified form of ROS nodes
called ROS nodelets. These features in ROS are implemented using a plugin architecture
called .

In this chapter, we will discuss the following topics:

Understanding 
Implementing a sample plugin using 
Understanding ROS nodelets
Implementing a sample nodelet
Understanding and creating a Gazebo plugin
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Understanding pluginlib
Plugins are a commonly used term in the computer world. They are modular pieces of
software that can add a new feature to the existing software application. The advantage of
plugins is that we don't need to write all the features in the main software; instead, we can
make an infrastructure on the main software to accept new plugins to it. Using this method,
we can extend the capabilities of the software to any level.

We need plugins for our robotics application too. When we are going to build a complex
ROS-based application for a robot, plugins will be a good choice to extend the capabilities of
the application.

The ROS system provides a plugin framework called  to dynamically
load/unload plugins, which can be a library or class.  represents a set of a C++
library, which helps to write plugins and load/unload whenever we need to.

Plugin files are runtime libraries, such as shared objects ( ) or dynamic link libraries
( ), which are built without linking to the main application code. Plugins are separate
entities that do not have any dependencies with the main software.

The main advantage of plugins is that we can expand the application capabilities without
making many changes in the main application code.

We can create a simple plugin using  and can see all the procedures involved in
creating a plugin using ROS pluginlib.

Here, we are going to create a simple calculator application using . We are
adding each functionality of the calculator using plugins.

Creating plugins for the calculator application
using pluginlib
Creating a calculator application using plugins is a slightly tedious task compared to
writing a single code. The aim of this example, however, is to show how to add new
features to a calculator without modifying the main application code.

In this example, we will see a computer application that loads plugins to perform each
operation. Here, we only implement the main operations ,such as addition, subtraction,
multiplication, and division. We can expand to any level by writing individual plugins for
each operation.
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Before going on to create the plugin definition, we can access the calculator code from the
 folder for reference.

We are going to create an ROS package called  to build these
plugins and the main calculator application.

The following diagram shows how the calculator plugins and application are organized
inside the  ROS package:

We can see the list of plugins of the calculator and a plugin base class called
. The plugin base class implements the common functionalities that are

required by these plugins.
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This is how, we can create the ROS package and start developing plugins for the main
calculator application.

Working with the pluginlib_calculator package
For a quick start, we can use the existing ROS plugin package, .

If we want to create this package from scratch, we can use the following command:

$ catkin_create_pkg pluginlib_calculator pluginlib roscpp std_msgs

The main dependency of this package is . We can discuss the main source files
in this package to build plugins. However, you can get the plugin code from the code
provided with this book or download it at this link:

$ git clone https://github.com/jocacace/plugin_calculator

The  file is present in the
 folder, and the main

purpose of this file is to declare functions/methods that are commonly used by the plugins:

Inside this code, we declare a class called  that encapsulates methods used
by the plugins. This class is included in a namespace called . We can add
more classes inside this namespace to expand the functionalities of this base class:

These are the main methods implemented inside the  class. The
 function can retrieve two numbers as input to the calculator, and the

 function defines the mathematical operation we want to perform.
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The  file is present in the
 folder, and the main

purpose of this file is to define complete functions of the calculator plugins, which are
named as , , , and . Here is the explanation of this code:

This header file includes the  for accessing the basic functionalities of
a calculator. Each plugin is defined as a class, and it inherits the  class
from the  class:
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In this code, we can see definitions of inherited  and 
functions. The  retrieves two number inputs and  performs
the desired operation. In this case, it performs additional operations. We can see all other
plugin definitions inside this header file.

To load the class of plugins dynamically, we must export each class using a special macro
called . This macro must be present in any CPP file that consists
of plugin classes. We have already defined the plugin class, and, in this file, we are going to
define the macro statement only.

Locate the  file from the  folder.
Here is how we export each plugin:

Inside , we need to provide the class name of the plugin and
the base class.

This plugin loader node loads each plugin and inputs the number to each plugin and
fetches the result from the plugin. We can locate the  file from
the  folder.

Here is the explanation of this code:
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These are the necessary header files to load the plugins:

The  provides the  class, which is inside , to load
classes at runtime. We need to provide a name for the loader and the calculator base class as
arguments:

This will create an instance of the  class using the  object:

These lines give an input and perform the operations in the plugin instance.

After creating the calculator loader code, next we must describe the list of plugins inside
this package in an XML file called the . The plugin description
file contains all the information about the plugins inside a package, such as the name of the
classes, types of classes, base class, and so on.

The plugin description is an important file for plugin-based packages, because it helps the
ROS system to automatically discover, load, and reason about the plugin. It also holds
information such as the description of the plugin.

The following code shows the plugin description file of our package called
, which is stored along with the  and

 files. You can get this file from the package folder itself.

Here is the explanation of this file:

This code is for the  plugin and it defines the library path of the plugin, the class name,
the class type, the base class, and the description.
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For  to find all plugin-based packages in the ROS system, we should export the
plugin description file inside . If we do not include this plugin, the ROS
system won't find the plugins inside the package.

Here, we add the export tag to  , as follows:

To work this export command properly, we should insert the following lines in
:

The current package should directly depend on itself, both at the time of building and also at
runtime.

Another difference with respect to a common ROS node regards the compilation directives
included in the  file. To build the calculator plugins and loader nodes, we
should add the following lines in :

We are almost done with all the settings, and now it's time to build the package using the
 command.

If the package is built properly, we can execute the loader. The following command will
query the plugins inside a package:

$ rospack plugins --attrib=plugin pluginlib_calculator
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We will get the following result if everything is built properly:

After launched the roscore, we can execute the  using the following
command:

$ rosrun pluginlib_calculator calculator_loader

The following screenshot shows the output of this command, to check whether everything
is working fine. The loader gives both inputs as  and we are getting the proper result,
as shown, using plugins in the screenshot:

In the next section, we will look at a new concept called nodelets and discuss how to
implement them.

Understanding ROS nodelets
Nodelets are specific ROS nodes designed to run multiple algorithms within the same
process in an efficient way, executing each process as threads. The threaded nodes can
communicate with each other efficiently without overloading the network, with zero copy
transport between two nodes. These threaded nodes can communicate with external nodes
too.

As we did using pluginlib, in nodelets, we can also dynamically load each class as a plugin,
which has a separate namespace. Each loaded class can act as separate nodes, which are on
a single process called nodelet.
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Nodelets are used when the volume of data transferred between nodes are very high; for
example, in transferring data from 3D sensors or cameras.

Next, we will look at how to create a nodelet.

Creating a nodelet
In this section, we are going to create a basic nodelet that can subscribe a string topic called

 and publish the same string ( ) on the topic .

Step 1 - Creating a package for a nodelet
We can create a package called  , using the following command to
create our nodelet:

$ catkin_create_pkg nodelet_hello_world nodelet roscpp std_msgs

Otherwise, we can use the existing package from , or download it
from the following link:

$ git clone https://github.com/jocacace/nodelet_hello_world

Here, the main dependency of this package is the  package, which provides APIs
to build a ROS nodelet.

Step 2 - Creating the hello_world.cpp nodelet
Now, we are going to create the nodelet code. Create a folder called  inside the package
and create a file called .

You will get the existing code from the  folder.

Step 3 - Explanation of hello_world.cpp
Here is the explanation of the code:



Working with pluginlib, Nodelets, and Gazebo Plugins Chapter 7

[ 218 ]

These are the header files of this code. We should include  and
 to access the  APIs and nodelets APIs:

Here, we create a nodelet class called , which inherits a standard nodelet base class.
All nodelet classes should inherit from the nodelet base class and be dynamically loadable
using . Here, the  class is going to be used for dynamic loading:

This is the initialization function of a nodelet. This function should not block or do
significant work. Inside the function, we are creating a node handle object, topic publisher,
and subscriber on the topic  and  respectively. There are macros to print
debug messages while executing a nodelet. Here, we use  to print debug
messages in the console. The subscriber is tied up with a callback function called

, which is inside the  class:

In the  function, it will print the messages from the  topic and publish
to the  topic:

Here, we are exporting  as a plugin for the dynamic loading.
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Step 4 - Creating the plugin description file
Like the  example, we have to create a plugin description file inside the

 package. The plugin description file, , is as
follows:

Step 5 - Adding the export tag in package.xml
We need to add the export tag in  and add build and run dependencies:

Step 6 - Editing CMakeLists.txt
We need to add additional lines of code in  to build a nodelet package.
Here are the extra lines. You will get the complete  file from the existing
package itself:
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Step 7 - Building and running nodelets
After following this procedure, we can build the package using  and, if the
build is successful, we can generate the shared object  file,
which represents the plugin.

The first step in running nodelets is to start the nodelet manager. A nodelet manager is a
C++ executable program, which will listen to the ROS services and dynamically load
nodelets. We can run a standalone manager or can embed it within a running node.

The following commands can start the nodelet manager:

Start :

$ roscore

Start the nodelet manager, using the following command:

$ rosrun nodelet nodelet manager __name:=nodelet_manager

If the nodelet manager runs successfully, we will get a message, as shown here:

After launching the nodelet manager, we can start the nodelet by using the following
command:

$ rosrun nodelet nodelet load nodelet_hello_world/Hello nodelet_manager
__name:=nodelet1

When we execute the preceding command, the nodelet contacts the nodelet manager to
instantiate an instance of the  nodelet with a name of

. The following screenshot shows the message when we load the nodelet:
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The topics generated after running this nodelet and the list of nodes are shown here:

We can test the node by publishing a string to the  topic and check
whether we receive the same message in .

The following command publishes a string to :

$ rostopic pub /nodelet1/msg_in std_msgs/String "Hello"

We can echo the  topic and can confirm whether the code is  working properly.

Here, we have seen that a single instance of the  class is created as a node. We can
create multiple instances of the  class with different node names inside this
nodelet.
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Step 8 - Creating launch files for nodelets
We can also write launch files to load more than one instance of the nodelet class. The
following launch file will load two nodelets, with the names  and , and we can
save it with the name :

The preceding launch can be launched with the following command:

$ roslaunch nodelet_hello_world hello_world.launch

The following message will show up on the Terminal if it is launched successfully:
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The list of topics and nodes are shown here. We can see two nodelets instantiated and we
can see their topics too:

Topics are generated by the multiple instances of the  class. We can see the
interconnection between these nodelets using the  tool. Open :

$ rosrun rqt_gui rqt_gui

Load the Node Graph plugin from the following option, Plugins | Introspection | Node
Graph , and you will get the graph as shown in the following figure:

Alternatively, you can directly load the  plugin:

$ rosrun rqt_graph rqt_graph
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Understanding the Gazebo plugins
Gazebo plugins help us to control the robot models, sensors, world properties, and even the
way Gazebo runs. Like pluginlib and nodelets, Gazebo plugins are a set of C++ code, which
can be dynamically loaded/unloaded from the Gazebo simulator.

Using plugins, we can access all the components of Gazebo, and also it is independent of
ROS, so that it can share with people who are not using ROS.  We can mainly classify the
plugins as follows:

The world plugin: Using the world plugin, we can control the properties of a
specific world in Gazebo. We can change the physics engine, the lighting, and
other world properties using this plugin.
The model plugin: The model plugin is attached to a specific model in Gazebo
and controls its properties. The parameters, such as the joint state of the model,
control of the joints, and so on, can be controlled using this plugin.
The sensor plugin: The sensor plugins are for modeling sensors, such as camera,
IMU, and so on, in Gazebo.
The system plugin: The system plugin is started along with the Gazebo startup.
A user can control a system-related function in Gazebo using this plugin.
The visual plugin: The visual property of any Gazebo component can be
accessed and controlled using the visual plugin.

Before starting development with Gazebo plugins, we might need to install some packages.
The Gazebo version installed along with ROS Kinetic is 7.0, so you might need to install its
development package in Ubuntu using the following command:

$ sudo apt-get install libgazebo7-dev

The Gazebo plugins are independent of ROS and we don't need ROS libraries to build a
plugin.

Creating a basic world plugin
We will look at a basic Gazebo world plugin and try to build and load it in Gazebo.

Create a folder called  in a desired folder and create a CPP
file called :

$ mkdir gazebo_basic_world_plugin && cd gazebo_basic_world_plugin
$ nano hello_world.cc
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The definition of  is as follows:

The header file used in this code is  . The header contains core
functionalities of Gazebo. Other headers are as follows:

: This is the Gazebo header for accessing the
physics engine parameters

: This is the Gazebo header for handling
rendering parameters

: This is the header for handling sensors

At the end of the code, we must export the plugin using the following statements.
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The  macro will register and
export the plugin as a world plugin. The following macros are used to register for sensors,
models, and so on:

: This is the export macro for the Gazebo robot
model

: This is the export macro for the Gazebo sensor
model

: This is the export macro for the Gazebo system
: This is the export macro for Gazebo visuals

After setting the code, we can make the  for compiling the source. The
following is the source of :

Create a  folder for storing the shared object:

$ mkdir build && cd build

After switching to the build folder, execute the following command to compile and build
the source code:

$ cmake ../
$ make
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After building the code, we will get a shared object called   and we
have to export the path of this shared object in  and add it to the

 file:

After setting the Gazebo plugin path and reloading the  file, we can use it inside the
URDF file or the SRDF file. The following is a sample world file called , which
includes this plugin:

This file is also contained in the code provided with this book and in the following Git
repository:

$ git clone https://github.com/jocacace/gazebo_basic_world_plugin

Run the Gazebo server and load this world file:

$ cd gazebo_basic_world_plugin
$ gzserver hello.world --verbose

The Gazebo world plugin prints . We will source the code for various
Gazebo plugins from the Gazebo repository.
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We can check browse for the source code., take the
examples folder and then the plugins, as shown in the following figure:

Questions
What is  and what are its main applications?
What is the main application of nodelets?
What are the different types of Gazebo plugins?
What is the function of the model plugin in Gazebo?
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Summary
In this chapter, we covered some advanced concepts, such as the  ,  ,
and Gazebo plugins, which can be used to add more functionalities to a complex ROS
application. We discussed the basics of  and saw an example using it. After
covering , we looked at the ROS nodelets, which are widely used in high-
performance applications. Also, we looked at an example using the ROS nodelets. Finally,
we came to the Gazebo plugins that are used to add functionalities to Gazebo simulators.

In the next chapter, we will discuss more on the RViz plugin and the ROS controllers.
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Writing ROS Controllers and

Visualization Plugins
In the last chapter, we discussed pluginlib, nodelets, and Gazebo plugins. The base library
for making plugins in ROS is pluginlib, and the same library can be used in nodelets and
Gazebo plugins. In this chapter, we will continue with pluginlib-based concepts, such as
ROS controllers and RViz plugins. We have already worked with ROS controllers and have
reused some standard controllers, such as joint state, position, and trajectory controllers in
Chapter 4: Simulating Robots Using ROS and Gazebo.

In this chapter, we will see how to write a basic ROS controller for a generic robot. We will
implement a desired controller for our  robot, developed in previous
chapters, executing it in the Gazebo simulator. The RViz plugins can add more functionality
to RViz, and in this chapter we will look at how to create a basic RViz plugin. The detailed
topics that we are going to discuss in this chapter are as follows:

Understanding packages required for ROS controller development
Setting the ROS controller development environment
Understanding  packages
Writing and running a basic ROS controller
Writing and running an RViz plugin

Let us see how to develop an ROS controller; the first step is to understand the dependency
packages required to start building custom controllers.
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The main set of packages used to develop a controller generic to all robots is contained in
the  stack. This is a rewritten version of the , containing
useful libraries to write low-level controllers for PR2 robots
( ) used in the past version of ROS. In
ROS Kinetic,  has been substituted by the  stack. The
following is the description of some useful packages that help us to write robot controllers:

: This package takes as input the joint state data directly from the
robot's actuators and a desired set point, generating the output to send to its
motors. The output is usually represented by the join position, velocity, or effort.

: The controller manager can load and manage multiple
controllers and can work them in a real-time compatible loop.

: This is the controller base class package from which all
custom controllers should inherit the controller base class. The controller
manager will only load the controller if it inherits from this package.

: This package represents the interface between the
implemented controller and hardware of the robot. Using this interface,
controllers can directly access cyclically the hardware components.

: This package allows us to set joint limits to safely
work with our robot. Joint limits are also included in the URDF of the robot. This
package is different than the URDF, because it allows us to additionally specify
acceleration and jerk limits. In addition, the position, velocity, and effort values
contained within the URDF model can be overridden using this package.
Commands sent to the hardware are filtered according to the specified joint
limits.

: This contains a set of tools that can be used from a hard real-
time thread, if the operating system supports real-time behavior. The tools
currently only provide the real-time publisher, which makes it possible to publish
messages to an ROS topic in real time.

Because we have already worked with  in , Simulating Robots
Using ROS and Gazebo, everything should be already installed on to our system. Otherwise,
to operate this package, we should install the following ROS packages from the
Ubuntu/Debian repositories:

$ sudo apt-get install ros-kinetic-ros-control ros-kinetic-ros-controllers
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Before writing the ROS controller, it will be good to understand the use of each package of
the  stack.

Understanding ros_control packages
The  stack contains packages for writing ROS low-level controllers. The first
package that we are going to discuss is the controller interface package.

The controller_interface package
The basic ROS low-level controller that we want to implement must inherit a base class
called  from this package. This represents a base
class containing four fundamental functions:  , , , and .
The basic structure of the  class is given as follows:

The workflow of the controller class is shown as follows:
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Initializating the controller
The first function executing when a controller is loaded is . The  function
will not start running the controller, it will just initialize it. The initialization can take any
amount of time before starting the controllers. The declaration of the  function is given
as follows:

The function arguments are given as follows:

: This variable represents the specific
hardware interface used by the controller to develop. ROS contains a list of
already-implemented hardware interfaces, such as:

Joint Command Interfaces (effort, velocity, and position)
Joint State Interfaces
Actuator State Interfaces

We can even create our own hardware interface. In the next example, a Position
Joint Interface will be used.

: The controller can read the robot configuration and
even advertise topics using this .
The  method only executes once while the controller is loaded by the
controller manager. If the  method is not successful, it will unload from
the controller manager. We can write a custom message if any error occurs inside
the  method.

Starting the ROS controller
The  method executes once just before running the controller. This method will
only execute once before updating and running the controller. The  method
declaration is given as follows:

The controller can also call the  method when it restarts the controller without
unloading it.
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Updating the ROS controller
The  function is the most important method that makes the controller alive. The

 method, by default, executes the code inside it at a rate of 1,000 Hz. It means the
controller completes one execution within 1 millisecond.

Stopping the controller
This method will call when a controller is stopped. The  method will execute as
the last  call and only executes once. The  method will not fail and
return nothing too. The following is the declaration of the  method:

The controller_manager
The  package can load and unload the desired controller. The
controller manager also ensures that the controller will not set a goal value that is less than
or greater than the safety limits of the joint. The controller manager also publishes the states
of the joint in the  ( ) topic at a default rate of 100
Hz. The following figure shows the basic workflow of a controller manager:

The controller manager can load and unload a plugin. When a controller is loaded by the
controller manager, it will first initialize it, but it will not start running.

After loading the controller, we can start and stop the controller. When we start the
controller, it will run the controller, and when we stop it, it will simply stop. Stopping
doesn't mean it is unloaded. But if the controller is unloaded from the controller manager,
we can't access the controller.
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Writing a basic joint controller in ROS
The basic prerequisites for writing an ROS controller are already installed. We have 
discussed the underlying concepts of controllers. Now we can start creating a package for
our own controller.

We are going to develop a controller that can access a joint of the robot and move the robot
in a sinusoidal fashion. In particular, the first joint of the  will follow a
sinusoidal motion.

The procedure of building a controller is similar to other plugins development that we have
seen earlier. The list of procedures to create an ROS controller is given as follows:

Create an ROS package with the necessary dependencies.1.
Write controller code in C++.2.
Register or export the C++ class as a plugin.3.
Define the plugin definition in an XML file.4.
Edit the   and  files for exporting the plugin.5.
Write the configuration for our controller.6.
Load the controller using the controller manager.7.

Step 1 - Creating the controller package
The first step is to create the controller package with all its dependencies. The following
command can create a package for the controller called :

$ catkin_create_pkg my_controller roscpp pluginlib controller_interface

We will get the existing package from the  folder of the code provided with
this book or clone the package from the following Git repository:

$ git clone https://github.com/jocacace/my_controller.git
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Step 2  Creating the controller header file
We will get the header file  from the  folder.
Given in the following is the header file definition of . As already stated,
in this header we are going to implement the functions contained in the

 class:

In the preceding code, we can see the controller class,  and we are
inheriting the base class, . We can see that each
function inside the  class is overriding in our class.

Step 3  Creating the controller source file
Create a folder called  inside the package and create a C++ file called

, which is the class definition of the preceding header.

Given in the following is the definition of , which has to be
saved inside the  folder:
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Step 4  Explaining the controller source file
In this section, we can see the explanation of each section of the code:
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The preceding is the  function definition of the controller. This will be called when a
controller is loaded by the controller manager. Inside the  function, we are creating
an instance of the state of the robot ( ) and , and we also get the manager of
the joint interacting with the controller. In our example, we defined the joint to control in
the  file, loading the joint name into the ROS parameter server. This
function returns the success or the failure in the controller initialization:

This code will create a joint state object for a desired joint. Here is an instance of the
 class.  is the desired joint in which we are attaching the

controller:

After the controller is loaded, the next step is to start it. The preceding function will execute
when we start a controller. In this function, it will retrieve the current position of the joint,
storing its value into the  variable:

This is the  function of the controller, which will continuously move the joint in a
sinusoidal fashion.
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Step 5  Creating the plugin description file
We can define the plugin definition file, which is given in the following code. The plugin
file is being saved inside the package folder under the name of :

Step 6  Updating package.xml
We need to update  for pointing the  file:

Step 7  Updating CMakeLists.txt
After doing all these things, we can compose  of the package:

Step 8  Building the controller
After completing , we can build our controller using the 
command. After building, check that the controller is configured as a plugin using
the  command, as shown here:

$ rospack plugins --attrib=plugin controller_interface

With this command, all the controllers related to  will be listed.
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If everything has been performed correctly, the output may look like the following:

Step 9  Writing the controller configuration file
After proper installation of the controller, we can configure it and run it. The first procedure
is to create the configuration file of the controller that consists of the controller type, joint
name, joint limits, and so on. The configuration file is saved as a YAML file that must be
saved inside the package. We are creating a YAML file with the name of

, and the definition is given as follows:

This file is the configuration of the controller. In particular, this file contains the type of the
controller represented by the name of the class compiled with the controller source code
and the set of parameters to pass to the controller. In our case, this is the name of the joint to
control.

Step 10  Writing the launch file for the controller
The joint assigned for showing the working of this controller is  of
the robot . After creating the YAML file, we can create a launch file inside
the launch folder, which can load the controller configuration file and run the controller.
The launch file is called , which is given as follows:
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In the following code, we explain the launch file:

Here we run the Gazebo simulator, launching a modified version of :

Then, we load the developed controller.

Finally, we spawn the controller:

In this way, the  will run the controller specified in the  list.
In our case, only the  is executed through the , the ,
and the  functions implemented by the controller.

Step 11  Running the controller along with the
seven dof arm in Gazebo
After creating the controller launch files, we should test it on our robot. We can launch the
Gazebo simulation using the following command:

$ roslaunch my_controller my_controller.launch
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When we launch the simulation, all of the controllers associated with the robot also get
started. The purpose of our controller is to move the  of the

, as defined in the controller. If everything is properly working, the elbow
of the robot should start to move in a sinusoidal way:

If there are existing controllers handling this same joint, our controller can't work properly.
To avoid this situation, we need to stop the controller that is handling the same joint of the
robot. A set of services are exposed by the  to manage the controllers
of the robot. For example, we can use the following command to check the state of the
controllers loaded in the system:

$ rosservice call /controller_manager/list_controllers

The output of this command is shown in the following screenshot:
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In the previous screenshot, you can see that our controller ( ) is
running. We can stop it using the  service,
as shown in the following screenshot:

Consider that in this example we are exploiting the  plugin to run
our controller. This plugin represents the hardware interface of our robot in the simulated
scene. In the case of a real robot, we should write our own hardware interface to apply
control data to robot actuators.

In conclusion,  implements a standard set of generic controllers, such as
, , , and

velocity controllers for any kind of robots. We have already used these ROS controllers
from  in , Working with 3D Robot Modeling in ROS.  is
still in development. Here we used  to develop a simple dedicated position
controller for our  robot. You can check the availability of new controllers 
through the wiki page of  at

.

Understanding the ROS visualization tool
(RViz) and its plugins
The RViz tool is an official 3D visualization tool of ROS. Almost all kinds of data from
sensors can be viewed through this tool. RViz will be installed along with the ROS desktop
full installation. Let's launch RViz and see the basic components present in RViz.
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Start :

$ roscore

Start :

$ rviz

The important sections of the RViz GUI are marked, and the uses of each section are shown
in the following screenshot:
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Displays panel
The panel on the left side of the RViz is called the Displays panel. The Displays panel
contains a list of the display plugins of RViz and its properties. The main use of display
plugins is to visualize different types of ROS messages, mainly sensor data in the RViz 3D
viewport. There are lots of display plugins already present in RViz for viewing images from
the camera, and for viewing the 3D point cloud, LaserScan, robot model, TF, and so on.
Plugins can be added by pressing the Add button on the left panel. We can also write our
own display plugin and add it there.

RViz toolbar
There are set of tools present in the RViz toolbar for manipulating the 3D viewport. The
toolbar is present at the top of RViz. There are tools present for interacting with the robot
model, modifying the camera view, giving navigation goals, and giving robot 2D pose
estimations. We can add our own custom tools to the toolbar in the form of plugins.

Views
The Views panel is placed on the right side of RViz. Using the Views panel, we can save
different views of the 3D viewport and switch to each view by loading the saved
configuration.

Time panel
The Time panel displays the simulator time elapsed and is mainly useful if there is a
simulator running along with RViz. We can also reset to the RViz initial setting using this
panel.

Dockable panels
The preceding toolbar and panels belong to dockable panels. We can create our own
dockable panels as an RViz plugin. We are going to create a dockable panel that has an
RViz plugin for robot teleoperation.
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Writing an RViz plugin for teleoperation
In this chapter, we design a teleoperation commander in which we can manually enter the
teleoperation topic, linear velocity, and angular velocity, as shown in the following
screenshot:

The following is a detailed procedure on how to build this plugin.

Methodology of building the RViz plugin
Before starting to build this plugin, we should know how to do it. The standard method to
build an ROS plugin is applicable for this plugin too. The difference is that the RViz plugin
is GUI based. The RViz is written using a GUI framework called Qt, so we need to create a
GUI in Qt and, using Qt APIs, we have to get the GUI values and send them to the ROS
system.

The following steps describe how this teleoperation RViz plugin is going to work:

The dockable panel will have a Qt GUI interface, and the user can input the topic,1.
linear velocity, and angular velocity of teleoperation from the GUI.
Collect the user input from GUI using Qt signals and slots, and publish the values2.
using the ROS subscribe-and-publish method. (The Qt signals and slots are a
trigger-invoke technique available in Qt. When a signal/trigger is generated by a
GUI field, it can invoke a slot or function, such as a callback mechanism.)
Here, also, we can use the same procedure to build a plugin as we discussed3.
earlier.
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Now we can see the step-by-step procedure to build this plugin.

Step 1  Creating the RViz plugin package
Let's create a new package for creating the teleop plugin:

$ catkin_create_pkg rviz_telop_commander roscpp rviz std_msgs

The package is mainly dependent on the  package. RViz is built using Qt libraries, so
we don't need to include additional Qt libraries in the package. In the Ubuntu 16.04 version,
we need to use Qt5 libraries.

Step 2  Creating the RViz plugin header file
Let's create a new header inside the  folder called . You will get this
source code from the existing package. This header file consists of the class and methods
declaration for the plugin.

The following is the explanation of this header file:

The preceding code is the header file required to build this plugin; we need ROS headers for
publishing the  topic and  for getting the base class of the RViz
panel for creating a new panel:

This is a plugin class and it is inherited from the  base class:

This class is using the Qt signal and slots, and it's also a subclass of QObject in Qt. In that
case, we should use the  macro:
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This is the constructor of the  class, and we are initializing a  class
to 0. We are using the  instance inside the  class for implementing
the GUI of the  plugin:

The following shows how to override the  functions for saving and loading
the RViz config file:

After this line, we can define some public Qt slots:

When we enter the topic name in the GUI and press , this slot will be called and will
create the topic publisher in the given name:

These are the protected slots for sending velocity, updating linear velocity and angular
velocity, and updating the topic name, when we change the name of the existing topic:

We are creating the Qt  object to create three text fields in the plugin to receive the
topic name, linear velocity, and angular velocity:

These are the publisher object and the  object for publishing topics and
handling an ROS node.
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Step 3  Creating the RViz plugin definition
In this step, we will create the main C++ file that contains the definition of the plugin. The
file is , and you will get it from the  package folder.

The main responsibilities of this file are as follows:

It acts as a container for a Qt GUI element, such as , to accept text
entries
It publishes the command velocity using the ROS publisher
It saves and restores the RViz config files

The following is the explanation for each section of the code:

This is the constructor and initialize  with , setting linear and
angular velocity as :

This will add a new  widget on the panel for handling the topic name. Similarly,
two other  widgets handle linear velocity and angular velocity.

This will create a Qt  object for updating a function that is publishing the velocity
topic:



Writing ROS Controllers and Visualization Plugins Chapter 8

[ 250 ]

This will connect a Qt signal to the slots. Here, the signal is triggered when
 returns , and the  here is . When the

editing inside a Qt  is finished by pressing the Enter key, the signal will trigger,
and the corresponding slot will execute. Here, this slot will set the topic name, angular
velocity, and linear velocity value from the text field of the plugin:

These lines generate a signal when the Qt  times out. The timer will time out in each
100 ms and execute a slot called , which will publish the velocity topic.

We can see the definition of each slot after this section. This code is self-explanatory and,
finally, we can see the following code to export it as a plugin:

Step 4  Creating the plugin description file
The definition of  is given as follows:

Step 5  Adding the export tags in package.xml
We have to update the  file to include the plugin description. The following is
the update of :
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Step 6  Editing CMakeLists.txt
We need to add extra lines to the  definition, as given in the following
code:

You will get the complete  from the  package
released with the code book, or you can clone the entire package from the following Git
repositories:

$ git clone https://github.com/jocacace/rviz_teleop_commander.git
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Step 7  Building and loading plugins
After creating these files, build a package using . If the build is successful, we
can load the plugin in RViz itself. Take the RViz and load the panel by going to Menu Panel
| Add New Panel. We will get a panel such as the following:
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If we load the Teleop plugin from the list, we will get a panel such as the following:

We can put the Teleop Topic name and values inside the Linear Velocity and Angular
Velocity, and we can echo the Teleop Topic and get the topic values such as the following:
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Questions
What are the list of packages needed for writing a low-level controller in ROS?
What are the different processes happening inside an ROS controller?
What are the main packages of the  stack?
What are the different types of RViz plugins?

Summary
In this chapter, we discussed creating plugins for the ROS visualization tool (RViz) and
writing basic ROS controllers. We have already worked with default controllers in ROS,
and, in this chapter, we developed a custom controller for moving joints. After building and
testing the controller, we looked at RViz plugins. We created a new RViz panel for
teleoperation. We can manually enter the topic name; we need the twist messages and to
enter the linear and angular velocity in the panel. This panel is useful for controlling robots
without starting another teleoperation node. In the next chapter, we will discuss interfacing
I/O boards and running ROS in embedded systems.
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Interfacing I/O Boards, Sensors,

and Actuators to ROS
In the previous chapters, we discussed different kinds of plugin frameworks that are used
in ROS. In this chapter, we are going to discuss the interfacing of some hardware
components, such as sensors and actuators, to ROS. We will look at the interfacing of
sensors using I/O boards, such as Arduino, Raspberry Pi, and Odroid-XU4 to ROS, and we
will discuss interfacing smart actuators, such as DYNAMIXEL, to ROS. The following is the
detailed list of topics that we are going to cover in this chapter: 

Understanding the Arduino-ROS interface
Setting up the Arduino-ROS interface packages
Arduino-ROS examples: Chatter and Talker, blink LED and push button,
Accelerometer ADXL 335, ultrasonic distance sensors, and Odometry Publisher
Interfacing a non-Arduino board to ROS
Setting ROS on Odroid-XU4 and Raspberry Pi 2
Working with Raspberry Pi and Odroid GPIOs using ROS
Interfacing DYNAMIXEL actuators to ROS
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Understanding the Arduino-ROS interface
Let's see what Arduino is first. Arduino is one of the most popular open source
development boards in the market. The ease of programming and the cost effectiveness of
the hardware have made Arduino a big success. Most of the Arduino boards are powered
by Atmel microcontrollers, which are available from 8-bit to 32-bit, with clock speeds from 8
MHz to 84 MHz. Arduino can be used for the quick prototyping of robots. The main
applications of Arduino in robotics are interfacing sensors and actuators, used for
communicating with PCs for receiving high-level commands and sending sensor values to
PCs using the  protocol.

There are different varieties of Arduino available in the market. Selecting one board for our
purpose will be dependent on the nature of our robotic application. Let's see some boards
which we can use for beginners, intermediate, and high-end users:

In the following table, we will look at each Arduino board specification in brief and see
where it can be deployed:

Boards Arduino UNO Arduino Mega 2560 Arduino Due

Processor ATmega328P ATmega2560 ATSAM3X8E

Operating/Input
Voltage 5V / 7-12 V 5V/ 7-12V 3.3V / 7 - 12 V
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CPU Speed 16 MHz 16 MHz 84 MHz

Analog In/Out 6/0 16/0 12/2

Digital IO/PWM 14/6 54/15 54/12

EEPROM[KB] 1 4 -

SRAM [KB] 2 8 96

Flash [KB] 32 256 512

USB Regular Regular 2 Micro

UART 1 4 4

Application Basic robotics and
sensor interfacing

Intermediate robotic
application-level
application

High-end robotics
application

Let's look at how to interface Arduino to ROS.

What is the Arduino-ROS interface?
Most of the communication between PCs and I/O boards in robots will be through the
UART protocol. When both the devices communicate with each other, there should be some
program in both the sides that can translate the serial commands from each of these devices.
We can implement our own logic to receive and transmit the data from board to PC and
vice versa. The interfacing code can be different in each I/O board because there are no
standard libraries to do this communication.

The Arduino-ROS interface is a standard way of communication between the Arduino
boards and the PC. Currently, this interface is exclusive for Arduino. We may need to write
custom nodes to interface with other I/O boards.

We can use the similar C++ APIs of ROS used in the PC in the Arduino IDE also for
programming the Arduino board. Detailed information about the interfacing package
follows.
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Understanding the rosserial package in ROS
The  package is a set of standardized communication protocols implemented for
communicating from ROS to character devices, such as serial ports, and sockets, and vice
versa. The  protocol can convert the standard ROS messages and services data
types to embedded device equivalent data types. It also implements multi-topic support by
multiplexing the serial data from a character device. The serial data is sent as data packets
by adding header and tail bytes on the packet. The packet representation is shown next:

The function of each byte follows:

Sync Flag: This is the first byte of the packet, which is always 
Sync Flag/Protocol version: This byte was  on ROS Groovy and after that it
is set to 
Message Length: This is the length of the packet
Checksum Over Message Length: This is the checksum of length for finding
packet corruption
Topic ID: This is the ID allocated for each topic; the range  is allocated for
the system-related functionalities
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Serialized Message data: This is the data associated with each topic
Checksum of Topic ID and Message data: This is the checksum for the topic and
its serial data for finding the packet, 

The checksum of length is computed using the following equation:

Checksum = 255 - ( (Topic ID Low Byte + Topic ID High Byte + ... data byte values) % 256)

The ROS client libraries, such as , , and , enable us to develop ROS
nodes that can run from various devices. One of the ports of the ROS clients that enables us
to run a ROS node from the embedded devices, such as Arduino and embedded Linux
based boards, is called the  library. Using the 
libraries, we can develop the ROS nodes from Arduino, embedded Linux platforms, and
Windows. The following is the list of  libraries for each of these
platforms:

: This  works on Arduino platforms,
such as Arduino UNO, Leonardo, Mega, and Due series for advance robotic
projects

: This client supports embedded Linux platforms,
such as VEXPro, Chumby alarm clock, WRT54GL router, and so on

: This is a client for the Windows platform

In the PC side, we need some other packages to decode the serial message and convert to
exact topics from the  libraries. The following packages help in
decoding the serial data:

: This is the recommended PC-side node for handling serial
data from a device. The receiving node is completely written in Python.

: This is a C++ implementation of  in the PC side.
The inbuilt functionalities are less compared to , but it can be
used for high-performance applications.

We are mainly focusing on running the ROS nodes from Arduino. First, we will see how to
set up the  packages, and then discuss how to set up the 
client in the Arduino IDE.
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Installing rosserial packages on Ubuntu 16.04
To operate with Arduino on Ubuntu 16.04, we must install  ROS packages and
then set up the Arduino client, installing the libraries needed to communicate with ROS. We
can install the  packages on Ubuntu using the following commands:

Install the  package binaries, using :1.

$ sudo apt-get install ros-kinetic-rosserial-arduino ros-kinetic-
rosserial-embeddedlinux ros-kinetic-rosserial-windows ros-kinetic-
rosserial-server ros-kinetic-rosserial-python

For installing the  library called  in Arduino, we2.
must download the latest Arduino IDE for Linux 32/64 bit. The following is the
link for downloading the Arduino IDE: 

. Here we download the Linux 64-bit version and copy the Arduino IDE
folder to the Ubuntu desktop. Arduino requires Java runtime support to run it. If
it is not installed, we can install it using the following command:

$ sudo apt-get install java-common

After installing Java runtime, we can switch the  folder using the3.
following command:

$ cd ~/Desktop/arduino-1.8.5

Start Arduino, using the following command:4.

$./arduino
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Shown next is the Arduino IDE window:
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Go to File | Preference for configuring the sketchbook folder of Arduino. The5.
Arduino IDE stores the sketches to this location. We created a folder called

 in the user  folder and set this folder as the Sketchbook location:
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We can see a folder called  inside the  folder. Switch to this folder,
using the following command:

$ cd ~/Arduino1/libraries/

If there is no  folder, we can create a new one. After switching into this folder,
we can generate  , using a script called , which is present
inside the  package.  is the  for Arduino,
which provides the ROS client APIs inside an Arduino IDE environment:

$ rosrun rosserial_arduino make_libraries.py

 is the ROS client for  , which can communicate using UART,
and can publish topics, services, TF, and so on, like a ROS node. The 
script will generate a wrapper of the ROS messages and services which are optimized for
Arduino data types. These ROS messages and services will convert into Arduino C/C++
code equivalent, as shown next:

Conversion of ROS messages:

ros_package_name/msg/Test.msg  --> ros_package_name::Test

Conversion of ROS services:

ros_package_name/srv/Foo.srv  --> ros_package_name::Foo

For example, if we include , we can instantiate the
 number.
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If the  script works fine, a folder called  will generate inside
the  folder. Restart the Arduino IDE and we will see  examples as
follows:

We can take any example and make sure that it is building properly to ensure that the
 APIs are working fine. The necessary APIs required for building ROS Arduino

nodes are discussed next.
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Understanding ROS node APIs in Arduino
The following is a basic structure of the ROS Arduino node. We can see the function of each
line of code:

The creation of  in Arduino is done using the following line of code:

Note that  should be declared before the  function, which will give a
global scope to the  instance called . The initialization of this node is done
inside the  function:

The Arduino  function will execute only once when the device starts. Note that we
can only create one node from a serial device.

Inside the  function, we have to use the following line of code to execute the ROS
callback once:

We can create the  and  objects in Arduino, like the other ROS client
libraries. The following are the procedures for defining the subscriber and the publisher.

Here is how we define a subscriber object in Arduino:
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Here we define a subscriber which is subscribing a  message, where the callback is
the callback function executing when a  message arrives on the talker topic. Given
next is an example callback for handling the string data:

Note that the , , and  definitions will be above the
 function for getting the global scope. Here we are receiving  data, using

.

The following code shows how to define a publisher object in Arduino:

This next code shows how we publish the string message:

After defining the publisher and the subscriber, we have to initiate this inside the 
function, using the following lines of code:

There are ROS APIs for logging from Arduino. The following are the different logging APIs
supported:
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We can retrieve the current ROS time in Arduino using ROS built-in functions, such as time
and duration.

Current ROS time:

ros::Time begin = nh.now();

Converting ROS time in seconds:

double secs = nh.now().toSec();

Creating a duration in seconds:

ros::Duration ten_seconds(10, 0);

ROS - Arduino Publisher and Subscriber example
The first example using the Arduino and ROS interface is a chatter and talker interface.
Users can send a  message to the  topic and Arduino will publish the same
message in a  topic. The following ROS node is implemented for Arduino, and we
will discuss this example in detail:
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We can compile the preceding code and upload to the Arduino board. After uploading the
code, select the desired Arduino board that we are using for this example and the device
serial port of the Arduino IDE.

Go to Tools | Boards to select the board and Tools | Port to select the device port name of
the board. We are using Arduino Mega for these examples.

After compiling and uploading the code, we can start the ROS bridge nodes in the PC that
connects Arduino and the PC, using the following command. Ensure that Arduino is
already connected to the PC before executing this command:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

In this case, we are running the  on the port . We can
search for the port name listing the contents of the  directory. Note that, to use this
port, root permissions are needed. In this case, we could change the permissions using the
following command in order to read and write data on the desired port:

$ sudo chmod 666 /dev/ttyACM0

We are using the  node here as the ROS bridging node. We have to
mention the device name and baud-rate as arguments. The default baud-rate of this
communication is . We can change the baud-rate according to our application and the
usage of  inside the  package is given at

. If the communication between the ROS node and
the Arduino node is correct, we will get the following message:
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When  starts running from the PC, it will send some serial data packets
called query packets to get the number of topics, the topic names, and the types of topics
which are received from the Arduino node. We have already seen the structure of serial
packets that are being used for Arduino ROS communication. Given next is the structure of
a query packet which is sent from  to Arduino:
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The query topic contains fields such as Sync Flag, ROS version, length of the message, MD5
sum, Topic ID, and so on. When the query packet is received on the Arduino, it will reply
with a topic info message that contains the topic name, type, length, topic data, and so on.
The following is a typical response packet from Arduino:

If there is no response for the query packet, it will send it again. The synchronization in
communication is based on ROS time.

From Figure 6, we can see that when we run , the buffer size allocated for
publish and subscribe is 512 bytes. The buffer allocation is dependent on the amount of
RAM available on each microcontroller that we are working with. The following is a table
showing the buffer allocation of each Arduino controller. We can override these settings by
changing the  macro inside .

AVR model Buffer size Publishers/Subscribers

ATMEGA 168 150 bytes 6/6

ATMEGA 328P 280 bytes 25/25

All others 512 bytes 25/25
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There are also some limitations in the float64 data type of ROS in Arduino. It will truncate to
32-bit. Also, when we use string data types, use the unsigned char pointer for saving
memory.

After running , we will get the list of topics, using the following
command:

$ rostopic list

We can see that topics such as  and  are being generated. We can simply
publish a message to the  topic, using the following command:

$ rostopic pub -r 5 talker std_msgs/String "Hello World"

It will publish the  message with a rate of .

We can echo the  topic, and we will get the same message as we published:

$ rostopic echo /chatter

Arduino-ROS, example - blink LED and push
button
In this example, we can interface the LED and push button to Arduino and control using
ROS. When the push button is pressed, the Arduino node sends a  value to a topic
called pushed, and at the same time, it switches on the LED which is on the Arduino board.
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The following shows the circuit for doing this example:
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The preceding code handles the key debouncing and changes the button state only after the
button release. The preceding code can upload to Arduino and can interface to ROS, using
the following commands:

Start :

$ roscore

Start :

$ rosrun roserial_python serial_node.py /dev/ttyACM0

We can see the button press event by echoing the topic pushed:

$ rostopic echo pushed

We will get following values when a button is pressed:

Arduino-ROS, example - Accelerometer ADXL 335
In this example, we are interfacing Accelerometer ADXL 335 to Arduino Mega through
ADC pins and plotting the values using the ROS tool called .

The following image shows the circuit of the connection between ADLX 335 and Arduino:
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ADLX 335 is an analog accelerometer. We can simply connect to the ADC port and read the
digital value. The following is the embedded code to interface ADLX 335 via Arduino ADC:
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The preceding code will publish the ADC values of X, Y, and Z axes in a topic called .
The code uses the  message to handle the ADC value. We can
plot the values using the  tool.



Interfacing I/O Boards, Sensors, and Actuators to ROS Chapter 9

[ 277 ]

The following is the command to plot the three axes values in a single plot:

$ rqt_plot adc/adc0 adc/adc1 adc/adc2

Next is a screenshot of the plot of the three channels of ADC:
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Arduino-ROS, example - ultrasonic distance
sensor
One of the useful sensors in robots are the range sensors. One of the cheapest range sensors
is the ultrasonic distance sensor. The ultrasonic sensor has two pins for handling input and
output, called  and . We are using the HC-SR04 ultrasonic distance sensor,
which is shown in the following image:
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The ultrasonic sound sensor contains two sections: one is the transmitter and the other is the
receiver. The ultrasonic distance sensor works like this: when a trigger pulse of a short
duration is applied to the trigger pin of the ultrasonic sensors, the ultrasonic transmitter
sends the sound signals to the robot environment. The sound signal sent from the
transmitter hits on some obstacles and is reflected to the sensor. The reflected sound waves
are collected by the ultrasonic receiver, generating an output signal which has a relation to
the time required to receive the reflected sound signals.

Equations to find distance using the ultrasonic range
sensor
The following are the equations used to compute the distance from an ultrasonic range
sensor to an obstacle:

Distance = Speed * Time/2

Speed of sound at sea level = 343 m/s or 34,300 cm/s

Thus, Distance = 17,150 * Time (unit cm)

We can compute the distance to the obstacle using the pulse duration of the output. The
following is the code to work with the ultrasonic sound sensor and send a value through
the ultrasound topic using the range message definition in ROS:
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We can plot the distance value, using the following commands:

Start :

$ roscore

Start :

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Plot values using :

$ rqt_plot /ultrasound

As seen in the screenshot below, the center line indicates the current distance ( ) from
the sensor. The upper line is the  and line below is the .
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Arduino-ROS example - Odometry Publisher
In this example, we will see how to send an  message from an Arduino node to a PC.
This example can be used in a robot for computing  and sending to the ROS
Navigation stack as the input. The motor encoders can be used for computing  and can
transmit to a PC. In this example, we will see how to send  for a robot which is moving
in a circle, without taking the motor encoder values:
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After uploading the code, run  and . We can view  and
 in RViz. Open RViz and view  , as shown next. We will see the  pointer

moving in a circle on RViz, as follows:
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Interfacing non-Arduino boards to ROS
Arduino boards are commonly used boards in robots, but what happens if we want a board
that is more powerful than Arduino? In such a case, we may want to write our own driver
for the board, which can convert the serial messages into topics.

We will look at the interfacing of a non-Arduino board called Tiva C Launchpad to ROS,
using a Python driver node, in Chapter 11: Building and Interfacing Differential Drive Mobile
Robot Hardware in ROS. This chapter is about interfacing a real mobile robot to ROS, and the
robot using the Tiva C Launchpad board for its operation.

Setting ROS on Odroid-XU4 and Raspberry Pi 2
Odroid-XU4 and Raspberry Pi2 are single board computers which have a low form factor
the size of a credit card. These single board computers can be installed in robots and we can
install ROS on them.

The main specifications comparison of Odroid-XU4 and Raspberry Pi2 is shown next:

Device Odroid-XU4 Raspberry Pi 2

CPU 2.0 GHz Quad core ARM Cortex-A15
CPU from Samsung

900 MHz quad core ARM Cortex
A7 CPU from Broadcom

GPU Mali-T628 MP6 GPU VideoCore IV

Memory 2 GB 1 GB

Storage SD card slot or eMMC module SD card slot

Connectivity 2 x USB 3.0, 1 x USB 2.0, micro HDMI,
Gigabit Ethernet

4 x USB, HDMI, Ethernet, 3.5 mm
audio jack

OS Android, Ubuntu/Linux Raspbian, Ubuntu/Linux, Windows
10

Connectors GPIO, SPI, I2C, RTC (Real Time Clock)
backup battery connector

Camera interface (CSI), GPIO, SPI,
I2C, JTAG

Price $59 $35
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The following is an image of the Odroid-XU4 board:

The Odroid board is manufactured by a company called Hard Kernel. The official web page
of the Odroid-XU4 board is at 

.

Odroid-XU4 is the most powerful board of the Odroid family. There are cheaper and lower
performance boards as well, such as Odroid-C1+ and C2. All these boards support ROS.
One of the popular single board computers is Raspberry Pi. The Raspberry Pi boards are
manufactured by the Raspberry Pi Foundation, which is based in the UK
(visit ).
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The following is an image of the Raspberry Pi 2 board:

We can install Ubuntu and Android on Odroid. There are also unofficial distributions of
Linux, such as Debian mini, Kali Linux, Arch Linux, and Fedora, and support libraries, such
as ROS, OpenCV, PCL, and so on. For getting ROS on Odroid, we can either install a fresh
Ubuntu and install ROS manually like a standard desktop PC, or directly download the
unofficial Ubuntu distribution for Odroid with ROS already installed.

The image for Ubuntu 16.04 for Odroid boards can be downloaded from
 . You can download the desired kernel

version for the Odroid-XU4 board (for example, ubuntu-16.04-mate-odroid-
xu4-20170731.img.xz). This file contains pre-installed images of Ubuntu.
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The list of the other operating systems supported on Odroid-XU4 is given on the wiki page
at , while the Raspberry Pi 2
official OS images are given at .

The official OSes supported by the Raspberry Pi Foundation are Raspbian and Ubuntu.
There are unofficial images based on these OSes which have ROS pre-installed on them. In
this book, we are using the Raspbian Jessie images
( ) with ROS installed, following the ROS wiki 
page for the installation: 

.

How to install an OS image to Odroid-XU4 and
Raspberry Pi 2
We can download the Ubuntu image for Odroid and Raspbian Jessie image for Raspberry
Pi 2 and can install to a micro SD card, preferably 16 GB. Format the micro SD card in the
FAT32 filesystem, or we can use the SD card adapter or the USB-memory card reader for
connecting to a PC.

We can either install the OS in Windows or in Linux. The procedure for installing the OS on
these boards follows.

In Windows, there is a tool called Win32diskimage which is designed specifically for
Odroid. You can download the tool from

.
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Run Win32 Disk Imager with the Administrator privilege. Select the downloaded image,
select the memory card drive, and write the image to the drive.

After completing this wizard, we can put the micro SD card in Odroid and boot up the OS
with ROS support. The same tool can be used for Raspbian installation in Raspberry Pi 2.
We can use the actual version of Win32 Disk Imager for writing Raspbian to a micro SD
card from the following link:

.
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In Linux, there is a tool called disk dump (dd). This tool helps to copy the content of the
image to the SD card. dd is a command line tool which is available in all the Ubuntu/Linux-
based OSes. Insert the micro SD card, format to the FAT32 filesystem, and use the command
mentioned later to write an image to the micro SD card.

In the dd tool, there is no progress bar to indicate the copy progress. To get the progress bar,
we can install a pipe viewer tool called pv:

$ sudo apt-get install pv

After installing pv, we can use the following command to install the image file to the micro
SD card. Note that you should have the OS image in the same path of the Terminal, and
note the micro SD card device name; for example, , , , and so on. You will
get the device name using the  command:

$ dd bs=4M if=image_name.img | pv | sudo dd of=/dev/mmcblk0

 is the image name and the device name is . 
indicates the block size. If the block size is , dd will read 4 megabytes from the image and
write 4 megabytes to the device. After completing the operation, we can send it to Odroid
and Raspberry Pi and boot the OS.

Connecting to Odroid-XU4 and Raspberry Pi 2 from a
PC
We can work with Odroid-XU4 and Raspberry Pi 2 by connecting to the HDMI display port
and connecting the keyboard and mouse to the USB like a normal PC. This is the simplest
way of working with Odroid and Raspberry Pi.

In most of the projects, the boards will be placed on the robot, so we can't connect the
display and the keyboards to it. There are several methods for connecting these boards to
the PC. It will be good if we can connect the internet to these boards too. The following
methods can connect the internet to these boards, and, at the same time, we can remotely
connect via the SSH protocol:

Remote connection using Wi-Fi router and Wi-Fi dongle through SSH: In this
method, we need a Wi-Fi router with internet connectivity and a Wi-Fi dongle in
the board for getting the Wi-Fi support. Both the PC and board will connect to the
same network, so each will have an IP address and can communicate using that
address.
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Direct connection using an Ethernet hotspot: We can share the internet
connection and communicate using SSH via , a free software DNS
forwarder and DHCP server using low system resources. Using this tool, we can
tether the Wi-Fi internet connection of the laptop to the Ethernet and we can
connect the board to the Ethernet port of the PC. This kind of communication can
be used for robots which are static in operation.

The first method is very easy to configure; it's like connecting two PCs on the same
network. The second method is a direct connection of the board to the laptop through the
Ethernet. This method can be used when the robot is not moving. In this method, the board
and the laptop can communicate via SSH at the same time and can share Internet access too.
We are using this method in this chapter for working with ROS.

Configuring an Ethernet hotspot for Odroid-XU4 and
Raspberry Pi 2
The procedure for creating an Ethernet hotspot in Ubuntu and sharing Wi-Fi internet
through this connection follows.

Go to Edit Connections... from the network settings and click on Add  to add a new
connection, as shown next:
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Create an Ethernet connection and in the IPv4 setting, change the method to Shared to Other computers ,
and give the connection name as Share, as shown next:

In Odroid:

$ ssh odroid@ip_address
password is odroid

In Raspberry Pi 2:

$ ssh pi@ip_adress
password is raspberry

After doing SSH into the board, we can launch  and most of the ROS commands on
the board like our PC. We will look at two examples using these boards. One is for blinking
an LED, and the other is for handling a push button. The library we are using for handling
the GPIO pins of Odroid and Raspberry is called Wiring Pi. 
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Odroid and Raspberry Pi have the same pin layout and most of the Raspberry Pi GPIO
libraries are ported to Odroid, which will make the programming easier. One of the
libraries we are using in this chapter for GPIO programming is Wiring Pi. Wiring Pi is
based on C++ APIs, which can access the board GPIO using C++ APIs.

In the following sections, we will look at the instructions for installing Wiring Pi on Odroid
and Raspberry 2.

The following procedure can be used to install Wiring Pi on Odroid-XU4. This is a
customized version of Wiring Pi, which is used in Raspberry Pi 2:

$ git clone https://github.com/hardkernel/wiringPi.git
$ cd wiringPi
$ sudo ./build

Odroid-XU4 has 42 pins placed on two different connectors, CON10 and CON11
respectively, as show in the following image:
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The Wiring Pi pin out of Odroid-XU4 (CON10) for bot connectors is given next:

The Wiring Pi pin out of Odroid-XU4 (CON11) for bot connectors is given next:
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The following procedure can be used to install Wiring Pi on Raspberry Pi 2:

$ git clone git clone git://git.drogon.net/wiringPi
$ cd wiringPi
$ sudo ./build

The pin out of Raspberry Pi 2 and Wiring Pi is shown next:

The following are the ROS examples for Raspberry Pi 2.
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Blinking LED using ROS on Raspberry Pi 2
This is a basic LED example which can blink the LED connected to the first pin of Wiring Pi,
that is the 12th pin on the board. The LED cathode is connected to the GND pin and 12th
pin as an anode. The following image shows the circuit of Raspberry Pi with an LED:

We can create the example ROS package, using the following command:

$ catkin_create_pkg ros_wiring_example roscpp std_msgs
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You will get the existing package from the  folder.

Create a  folder and create the following code called  inside the  folder:

This code will subscribe a topic called , which is a  type. If we publish 1
to this topic, it will switch on the LED. If we publish 0, the LED will turn off.
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Push button + blink LED using ROS on Raspberry
Pi 2
The next example is handling input from a button. When we press the button, the code will
publish to the  topic and blink the LED. When the switch is off, the LED will also
be . The LED is connected to the 12th pin and GND, and the button is connected to the
11th pin and GND. The following image shows the circuit of this example. The circuit is
also the same for Odroid:
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The code for interfacing the LED and button is given next. The code can be saved with the
name  inside the  folder:
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 for building these two examples is given next. The Wiring Pi code needs
to link with the Wiring Pi library. We have added this in the  file:
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Build the project using  and we can run each example. For executing the
Wiring Pi based code, we need a root permission.

Running examples in Raspberry Pi 2
Now that we have built the project, before running the examples, we should do the
following setup in Raspberry Pi. You can do this setup by logging in to Raspberry Pi
through SSH.

We need to add the following lines to the  file of the root user. Take the 
file of the root user:

$ sudo -i
$ nano .bashrc
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Add the following lines to the end of this file:

We can now log in with a different Terminal in our Raspberry Pi 2, and run the following
commands to execute the blink_demo program:

Start roscore in one Terminal:

$ roscore

Run the executable as the root in another Terminal:

$ sudo -s
# cd  /home/odroid/catkin_ws/build/ros_wiring_examples
#./blink_led

After starting the  node, publish 1 to the  topic in another Terminal:

For setting the LED to the ON state:

$ rostopic pub /led_blink std_msgs/Bool 1

For setting the LED to the OFF state:

$ rostopic pub /led_blink std_msgs/Bool 0

Run the button LED node in another Terminal:

$ sudo -s
# cd  /home/odroid/catkin_ws/build/ros_wiring_examples
#./button_led

Press the button and we can see the LED blinking. We can also check the button state by
echoing the topic :

$ rostopic echo /led_blink
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Interfacing DYNAMIXEL actuators to ROS
One of the latest smart actuators available on the market is DYNAMIXEL, which is
manufactured by a company called Robotis. The DYNAMIXEL servos are available in
various versions, some of which are shown in the following image:

These smart actuators have complete support in ROS, and clear documentation is also
available for them.

The official ROS wiki page of DYNAMIXEL is
at .

Questions
What are the different rosserial packages?
What is the main function of ?
How does rosserial protocol work?
What are the main differences between Odroid and Raspberry Pi boards?
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Summary
This chapter was about interfacing I/O boards to ROS and adding sensors on it. We have
discussed the interfacing of the popular I/O board called Arduino to ROS, and interface's
basic components, such as LEDs, buttons, accelerometers, ultrasonic sound sensors, and so
on. After looking at the interfacing of Arduino, we discussed how to set up ROS on
Raspberry Pi 2 and Odroid-XU4. We also presented a few basic examples in Odroid and
Raspberry Pi based on ROS and Wiring Pi. Finally, we looked at the interfacing of smart
actuators called DYNAMIXEL in ROS.



110
Programming Vision Sensors

Using ROS, Open CV, and PCL
In the last chapter, we discussed the interfacing of sensors and actuators using I/O boards in
ROS. In this chapter, we are going to discuss how to interface various vision sensors in ROS
and program them using libraries such as Open Source Computer Vision (OpenCV) and
Point Cloud Library (PCL). The vision of a robot is an important aspect of the robot for
manipulating objects and navigation. There are lots of 2D/3D vision sensors available on the
market, and most of the sensors have an interface driver package in ROS. We will discuss
the interfacing of new vision sensors to ROS and programming them using OpenCV and
PCL. Finally, we will discuss the use of fiducial marker libraries to develop vision-based
robotic applications.

We will cover the following topics in this chapter:

Integrating ROS, PCL, and OpenCV
Using a USB webcam in ROS
Learning how to calibrate a camera
Using RGB-D sensors in ROS
Using laser scanners in ROS
Working with augmented-reality markers in ROS
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Understanding ROS  OpenCV interfacing
packages
OpenCV is one of the popular open source real-time computer vision libraries, which is
mainly written in C/C++. OpenCV comes with a BSD license, and is free both for academic
and commercial applications. OpenCV can be programmed using C/C++, Python, and Java,
and it has multi-platform support, such as Windows, Linux, macOS X, Android, and iOS.
OpenCV has tons of computer vision APIs that can be used for implementing computer
vision applications. The web page of OpenCV library can be found at .

The OpenCV library is interfaced to ROS via a ROS stack, called .
 consists of two important packages for interfacing OpenCV to ROS. They

are:

: The  package contains a library that provides APIs for
converting the OpenCV image data type, , to the ROS image message
called  and vice versa. In short, it can act as a bridge
between OpenCV and ROS. We can use OpenCV APIs to process the image and
convert to ROS image messages whenever we want to send to another node. We
will discuss how to do this conversion in the upcoming sections.

: One of the first processes that we should do before working
with cameras is calibration. The  package contains libraries
written in C++ and Python, which helps to correct the geometry of the image
using calibration parameters. The package uses a message type called

 for handling the calibration parameters and feeding
to the OpenCV image rectification function.

Understanding ROS - PCL interfacing
packages
The point cloud data can be defined as a group of data points in some coordinate system. In
3D, it has x, y, and z coordinates. The PCL library is an open source project for handling
2D/3D images and point cloud processing.

Like OpenCV, it is under BSD license, and free for academic and commercial purposes. It is
also a cross-platform packages that has support in Linux, Windows, macOS, and
Android/iOS.
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The library consists of standard algorithms for filtering, segmentation, feature estimation,
and so on, which are required to implement different point cloud applications. The main
web page of the point cloud library can be found at .

The point cloud data can be acquired by sensors such as Kinect, Asus Xtion Pro, Intel Real
Sense, and others. We can use this data for robotic applications, such as robot object
manipulation and grasping. PCL is tightly integrated into ROS for handling point cloud
data from various sensors. The  stack is the ROS interface for the PCL
library. It consists of packages for pumping the point cloud data from ROS to PCL data
types and vice versa.  consists of the following packages:

: This package provides APIs to convert PCL data types to
ROS messages and vice versa.

: This package contains the definition of PCL-related messages in ROS.
The PCL messages are:

: This is the PCL bridge of ROS. This package contains tools and nodes
to bridge ROS messages to PCL data types and vice versa.

: The main function of this package is to convert the
3D point cloud into a 2D laser scan. This package is useful for converting an
inexpensive 3D vision sensor, such as Kinect and Asus Xtion Pro, to a laser
scanner. The laser scanner data is mainly used for 2D-SLAM, for the purpose of
robot navigation.

Installing ROS perception
We are going to install a single package called , which is a metapackage of ROS
containing all the perception-related packages, such as OpenCV, PCL, and so on:

 $ sudo apt-get install ros-kinetic-perception
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The ROS perception stack contains the following ROS packages:

: This metapackage contains common functionalities to handle an
image in ROS. The metapackage consists of the following list of packages
( ):

: This package helps to compress the image
during publishing and subscribes the images to save the band
width ( ). The various
compression methods are JPEG/PNG compression and Theora for
streaming videos. We can also add custom compression methods to

.
: This package contains a routine

to read/write camera calibration parameters from an XML file. This
package is mainly used by camera drivers for accessing calibration
parameters.

: This package consists of a routine to save,
restore, and load the calibration information. This is mainly used
by camera drivers.

: This package contains the interface for requesting
images from a polling camera driver (for example,

).
: This metapackage contains packages to

process the raw image from the camera driver. The various
processing done by this metapackage include calibration,
distortion removal, stereo vision processing, depth-image
processing, and so on. The following packages are present in
this metapackage for this processing
( ).

: One of the important tools for relating the 3D world to
the 2D camera image is calibration. This package provides tools for doing
monocular and stereo image calibration in ROS.

: The nodes in this package act between the camera driver and
the vision processing nodes. It can handle the calibration parameters, correct
image distortion from the raw image, and convert to color images.

: This package contains nodes and  for handling
depth images from Kinect and 3D vision sensors. The depth image can be
processed by these  to produce point cloud data.
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: This package has nodes to perform distortion removal
for a pair of cameras. It is the same as the  package, except that it
handles two cameras for stereo vision and for developing point cloud and
disparity images.

: This package contains nodes to rotate the input image.
 This is a simple ROS tool for viewing ROS message topics. It

can also view stereo and disparity images.
: These are the plugins of ROS image transport

for publishing and subscribing the ROS images in different compression
levels or different video codec to reduce the bandwidth and latency.

: This is a set of packages that can process laser data, such as
filtering and converting into 3D Cartesian points and assembling points to
form a cloud. The  stack contains the following packages:

: This package contains nodes to filter the noise in
the raw laser data, remove the laser points inside the robot
footprint, and remove spurious values inside the laser data.

: After filtering the laser data, we have to
transform the laser ranges and angles into 3D Cartesian
coordinates efficiently by taking into account the tilt and skew
angle of laser scanner

: This package can assemble the laser scan into a
3D point cloud or 2.5D scan.

: This is the stack of the PCL-ROS interface.
: This is the stack of the OpenCV-ROS interface.

Interfacing USB webcams in ROS
We can start interfacing with an ordinary webcam or a laptop cam in ROS. Overall, there
are no ROS-specific packages to install and use web cameras. If the camera is working in
Ubuntu/Linux, it may be supported by the ROS driver too. After plugging in the camera,
check whether a  device file has been created, or check with some application
such as Cheese, VLC, or similar others. The guide to check whether the webcam is
supported on Ubuntu is available at .



Programming Vision Sensors Using ROS, Open CV, and PCL Chapter 10

[ 309 ]

We can find the video devices present on the system using the following command:

$ ls /dev/ | grep video

If you get an output of , you can confirm a USB cam is available for use.

After ensuring the webcam support in Ubuntu, we can install a ROS webcam driver called
 using the following command:

$ sudo apt-get install ros-kinetic-usb-cam

We can install the latest package of  from the source code. The driver is available
on GitHub, at 

The  package contains a node called , which is the driver of USB
cams. There are some parameters that need to be set before running this node. We can run
the ROS node along with its parameters. The  file can launch the
USB cam driver with the necessary parameters:

This launch file will start  with the video device , with a
resolution of 640 x 480. The pixel format here is YUV
( ). After initiating , it will start an

 node for displaying the raw image from the driver. We can launch the
previous file by using the following command:

$ roslaunch usb_cam usb_cam-test.launch
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We will get the following message with an image view, as shown next:
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The topics generated by the driver are shown next. There are raw, compressed, and Theora
codec topics generated by the driver:

We can visualize the image in another window by using the following command:

$ rosrun image_view image_view image:=/usb_cam/image_raw

As you can see from the topic list, due to the installation of the  package,
images are published in multiple ways, compressed and uncompressed. The latter format is
useful to send images to other ROS nodes over the network or store video data of the topic
into , occupying little space on the hard disk. In order to use the compressed
image from a  on a remote machine or from a  , we need to republish it
in an uncompressed format, using the republish node of the  package:

$ rosrun image_transport republish [input format] in:=<in_topic_base>
[output format] out:=<out_topic>

For example:

$ rosrun image_transport republish compressed in:=/usb_cam/image_raw
[output format] out:=/usb_cam/image_raw/republished

Note that in the previous example, we have used the topic base name as
input ( ), and not its compressed version
( ).

Now that we have learned how to acquire images from the camera, we have to work with
the camera calibration.
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Working with ROS camera calibration
Like all sensors, cameras also need calibration for correcting the distortions in the camera
images due to the camera's internal parameters, and for finding the world coordinates from
the camera coordinates.

The primary parameters that cause image distortions are radial distortions and tangential
distortions. Using the camera calibration algorithm, we can model these parameters and
also calculate the real-world coordinates from the camera coordinates by computing the
camera calibration matrix, which contains the focal distance and the principle points.

Camera calibration can be done using a classic black-white chessboard, symmetrical circle
pattern, or an asymmetrical circle pattern. According to each different pattern, we use
different equations to get the calibration parameters. Using the calibration tools, we detect
the patterns, and each detected pattern is taken as a new equation. When the calibration tool
gets enough detected patterns it can compute the final parameters for the camera.

ROS provides a package named 
( ) to do
camera calibration, which is a part of the image pipeline stack. We can calibrate monocular,
stereo, and even 3D sensors, such as Kinect and Asus Xtion pro.

The first thing we have to do before calibration is to download the chessboard pattern
mentioned in the ROS Wiki page, and print it and paste it onto a card board. This is the
pattern we are going to use for calibration. This check board has 8x6 with 108 mm squares.

Run the  launch file to start the camera driver. We are going to run the camera
calibration node of ROS using the raw image from the  topic. The
following command will run the calibration node with the necessary parameters:

$ rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.108
image:=/usb_cam/image_raw camera:=/usb_cam
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A calibration window will pop up, and when we show the calibration pattern to the camera,
and the detection is made, we will see the following screenshot:

Move the calibration pattern in the X direction and Y direction. If the calibrator node gets a
sufficient amount of samples, a CALIBRATE button will become active on the window.
When we press the CALIBRATE button, it will compute the camera parameters using these
samples. It will take some time for the calculation. After computation, two buttons, SAVE
and COMMIT, will become active inside the window, as shown in the following image. If
we press the SAVE button, it will save the calibration parameters to a file in the 
folder. If we press the COMMIT button, it will save them to

:
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Restart the camera driver, and we will see the YAML calibration file loaded along with the
driver. The calibration file that we generated will look as follows:
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Converting images between ROS and OpenCV
using cv_bridge
In this section, we will see how to convert between the ROS image message
( ) and the OpenCV image data type ( ). The main ROS
package used for this conversion is , which is part of the  stack.
The ROS library inside , called , helps to perform this conversion. We
can use the  library inside our code and perform the conversion. The following
figure shows how the conversion is performed between ROS and OpenCV:

Here, the  library acts as a bridge for converting the ROS messages to OpenCV
images and vice versa. We will see how the conversion between ROS and OpenCV is
performed in the following example.
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Image processing using ROS and OpenCV
In this section, we will see an example of using  for acquiring images from a
camera driver, and converting and processing the images using OpenCV APIs. The
following is how the example works:

Subscribe the images from the camera driver from the1.
topic  ( )
Convert the ROS images to the  OpenCV image type using 2.
Process the OpenCV image using its APIs and find the edges on the image3.
Convert the OpenCV image type of the edge detection to the ROS image4.
messages and publish into the topic 

The step-by-step procedure to build this example follows:

Step 1  Creating a ROS package for the experiment
You can get the existing package  provided with this book, or
you can create a new package, using the following command:

$ catkin_create_pkg cv_bridge_tutorial_pkg cv_bridge image_transport roscpp
sensor_msgs std_msgs

This package is mainly dependent on , , and .

Step 2  Creating source files
You can get the source code of the example  from the

 folder.

Step 3  Explanation of the code
The following is the explanation of the complete code:
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We are using the  package in this code for publishing and subscribing to
an image in ROS:

This header includes the  class and image encoding related functions in the code:

These are main OpenCV image processing modules and GUI modules which provide image
processing and GUI APIs in our code:

We will look in more detail at the line . This
line creates an instance of , which is used to publish and subscribe the
ROS image messages. More information about the  API is given next.

ROS image transport is very similar to ROS publishers and subscribers, and it is used to
publish or subscribe the images along with the camera information. We can publish the
image data using , but image transport is a more efficient way of sending
the image data.

The image transport APIs are provided by the  package. Using these
APIs, we can transport an image in different compression formats; for example, we can
transport it as an uncompressed image, JPEG/PNG compression, or Theora compression in
separate topics. We can also add different transport formats by adding plugins. By default,
we can see the compressed and Theora transports:
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In the following line, we are creating an instance of the  class:

After that, we declare the subscriber and publisher objects for subscribing and publishing
the images, using the  object:

The following is how we subscribe and publish an image:

This is how we subscribe and publish an  , which is an
OpenCV function to create a GUI for displaying an image. The argument inside this
function is the window name. Inside the class destructor, we are destroying the named
window.

This is an image callback function, and it basically converts the ROS image messages into
the OpenCV  type using the  APIs. The following is how we can convert
ROS to OpenCV, and vice versa:
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To start with , we should start with creating an instance of a . Given next
is the creation of the  pointer:

The  type is a class provided by , which consists of information such as
an OpenCV image, its encoding, ROS header, and so on. Using this type, we can easily
convert an ROS image to OpenCV, and vice versa:

We can handle the ROS image message in two ways: either we can make a copy of the
image or we can share the image data. When we copy the image, we can process the image,
but if we use a shared pointer, we can't modify the data. We use  for creating a
copy of the ROS image, and the  function is used to get the pointer of the
image. Inside these functions, we should mention the ROS message and the type of
encoding:

In this section, we are extracting the image and its properties from the  instance,
and accessing the  object from this instance. This code simply checks whether the
rows and columns of the image are in a particular range, and, if it is true, it will call another
method called , which will process the image given as an
argument and display the edge-detected-image:

The preceding line will publish the edge-detected-image after converting to the ROS image
message. Here we are using the  function for converting the 
instance to a ROS image message.
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After converting the ROS images to OpenCV type, the  function
will be called for finding the edges on the image, using the following inbuilt OpenCV
functions:

Here, the  function will convert an RGB image to a gray color space and
 will add blurring to the image. After that, using the Canny edge detector, we

extract the edges of the image.

Here we are displaying the image data using the OpenCV function called , which
consists of the window name and the image name:

Step 4  Editing the CMakeLists.txt file
The definition of the  file is given next. In this example, we need OpenCV
support, so we should include the OpenCV header path and also link the source code
against the OpenCV library path:
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Step 5  Building and running an example
After building the package using , we can run the node using the following
command:

Launch the webcam driver:1.

$ roslaunch usb_cam usb_cam-test.launch

Run the  sample node:2.

$ rosrun cv_bridge_tutorial_pkg sample_cv_bridge_node

If everything works fine, we will get two windows, as shown in the following3.
image. The first window shows the raw image and the second is the processed
edge-detected-image:
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Interfacing Kinect and Asus Xtion Pro in
ROS
The webcams that we have worked with until now can only provide 2D visual information
of the surroundings. For getting 3D information about the surroundings, we have to use 3D
vision sensors or range finders, such as laser finders. Some of the 3D vision sensors that we
are discussing in this chapter are Kinect, Asus Xtion Pro, Intel Real sense, and Hokuyo laser
scanner:

The first two sensors we are going to discuss are Kinect and Asus Xtion Pro. Both of these
devices need the OpenNI (Open source Natural Interaction) driver library for operating in
the Linux system. OpenNI acts as a middleware between the 3D vision devices and the
application software. The OpenNI driver is integrated to ROS and we can install these
drivers by using the following commands. These packages help to interface the OpenNI
supported devices, such as Kinect and Asus Xtion Pro:

$ sudo apt-get install ros-kinetic-openni-launch ros-kinetic-openni2-launch

The preceding command will install OpenNI drivers and launch files for starting the
RGB/depth streams. After successful installation of these packages, we can launch the
driver by using the following command:

$ roslaunch openni2_launch openni2.launch
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This launch file will convert the raw data from the devices into useful data, such as 3D point
clouds, disparity images, and depth, and the RGB images using ROS nodelets.

Other than the OpenNI drivers, there is another driver available called . The
common launch files of the drivers are organized into a package called . This
package consists of common launch files that are used for the freenect and openni drivers.

We can visualize the point cloud generated by the OpenNI ROS driver by using RViz.

Run RViz, using the following command:

$ rosrun rviz rviz

Set the fixed frame to , add a PointCloud2 display, and
set the topic as . This is the unregistered point cloud from the IR
camera, that is, it may have a complete match with the RGB camera and it only uses the
depth camera for generating the point cloud:
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We can enable the registered point cloud by using the Dynamic Reconfigure GUI, by using
the following command:

$ rosrun rqt_reconfigure rqt_reconfigure
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Click on camera | driver and tick . Change the point cloud to
 and Color Transformer to  in RViz. We will

see the registered point cloud in RViz as it appears in the following image. The registered
point cloud takes information from the depth and the RGB camera to generate the point
cloud:

Interfacing Intel Real Sense camera with
ROS
One of the new 3D depth sensors from Intel is Real Sense. Until now, different versions of
this sensor have been released (F200, R200, SR30, ...). To interface Real Sense sensors with
ROS, we first have to install the   library.
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Download the Real Sense library from the following link: 
, using the following code:

$ git clone https://github.com/IntelRealSense/librealsense.git

Then follow these steps:

Install , , and :1.

$ sudo apt-get install libudev-dev pkg-config libgtk-3-dev

Install :2.

$ sudo apt-get install libglfw3-dev

Navigate to the  root directory and run:3.

$ mkdir build && cd build
$ cmake ..
$ make
$ sudo make install

After installing the Real Sense library, we can install the ROS package to start sensor data
streaming. We can install from the Ubuntu/Debian package manager by using the following
command:

$ sudo make install ros-kinetic-realsense

Or we can directly clone the package from the Git repository and compile the workspace:

$ git clone https://github.com/intel-ros/realsense.git
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Now we can start the sensor using the example launch file and open Rviz to visualize the
color and depth data streamed by :

roslaunch realsense_camera sr300_nodelet_rgbd.launch

The following are the topics generated by the Real Sense driver:



Programming Vision Sensors Using ROS, Open CV, and PCL Chapter 10

[ 328 ]

Working with a point cloud to a laser scan
package
One of the important applications of 3D vision sensors is mimicking the functionalities of a
laser scanner. We need the laser scanner data for working with autonomous navigation
algorithms, such as SLAM. We can make a fake laser scanner using a 3D vision sensor. We
can take a slice of the point cloud data/depth image and convert it to laser range data. In
ROS, we have a set of packages to convert the point cloud to laser scans:

: This package contains nodes that take the depth
image from the vision sensor and generate a 2D laser scan based on the provided
parameters. The inputs of the node are depth image and camera info parameters,
which include calibration parameters. After conversion to the laser scan data, it
will publish laser scanner data in the  topic. The node parameters are

, and the output frame
ID. The official ROS Wiki page of this package can be found at 

.
: This package converts the real point cloud data

into 2D laser scan, instead of taking a depth image as in the previous package.
The official Wiki page of this package can be found
at .

The first package is suitable for normal applications; however, if the sensor is placed on an
angle, it is better to use the second package. Also, the first package takes less processing
than the second one. Here we are using the  package to
convert a laser scan. We can install  and

 by using the following command:

$ sudo apt-get install ros-kinetic-depthimage-to-laserscan ros- kinetic-
pointcloud-to-laserscan

We can start converting from the depth image of the OpenNI device to the 2D laser scanner
by using the following package.
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Create a package for performing the conversion:

$ catkin_create_pkg fake_laser_pkg depthimage_to_laserscan nodelet roscpp

Create a folder called , and inside this folder create the following launch file called
. You will get this package and file from the

 folder:

      <!-- Pixel rows to use to generate the laserscan. For each
column, the scan willreturn the minimum value for those        pixels
centered vertically in the image. -->

The following code snippet will launch the nodelet for converting the depth image to laser
scanner:
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Launch this file and we can view the laser scanner in RViz.

Launch this file using the following command:

$ roslaunch fake_laser_pkg start_laser.launch

We will see the data in RViz, as shown in the following image:

Set Fixed Frame as  and Add LaserScan in the topic . We can
see the laser data in the view port.



Programming Vision Sensors Using ROS, Open CV, and PCL Chapter 10

[ 331 ]

Interfacing Hokuyo Laser in ROS
We can interface different ranges of laser scanners in ROS. One of the popular laser
scanners available in the market is Hokuyo Laser scanner
( ):

One of the commonly used Hokuyo laser scanner models is . This sensor is fast
and accurate and is suitable for robotic applications. The device has a USB 2.0 interface for
communication, and has up to a 30 meters range with a millimeter resolution. The arc range
of the scan is about 270 degrees:
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There is already a driver available in ROS for interfacing these scanners. One of the
interfaces is called  ( ).

We can install this package by using the following command:

$ sudo apt-get install ros-kinetic-urg-node

When the device connects to the Ubuntu system, it will create a device called .
Check the device name by entering the  command in the Terminal. Change the USB
device permission by using the following command:

$ sudo chmod a+rw /dev/ttyACMx

Start the laser scan device, using the following launch file called :
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This launch file starts the node to get the laser data from the device . The
laser data can be viewed inside the RViz window, as shown in the following image:

Working with point cloud data
We can handle the point cloud data from Kinect or the other 3D sensors for performing a
wide variety of tasks, such as 3D object detection and recognition, obstacle avoidance, 3D
modeling, and so on. In this section, we will see some basic functionalities: using the PCL
library and its ROS interface. We will discuss the following examples:

How to publish a point cloud in ROS
How to subscribe and process a point cloud
How to write point cloud data to a PCD file
How to read and publish a point cloud from a PCD file
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How to publish a point cloud
In this example, we will see how to publish a point cloud data using the

 message. The code will use PCL APIs for handling and
creating the point cloud, and converting the PCL cloud data to the PointCloud2 message
type.

You will get the example code  from the 
folder:
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The creation of the PCL cloud is done as follows:

After creating this cloud, we insert random points to the clouds. We convert the PCL cloud
to a ROS message by using the following function:

After converting to ROS messages, we can simply publish the data on the topic
.



Programming Vision Sensors Using ROS, Open CV, and PCL Chapter 10

[ 336 ]

How to subscribe and process the point cloud
In this example, we will see how to subscribe the generated point cloud on the topic

. After subscribing the point cloud, we apply a filter called the 
class in PCL to down-sample the input cloud by keeping the same centroid of the input
cloud. You will get the example code  from the  folder of the package:
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This code subscribes the point cloud topic called , filters, using ,
and publishes the filtered cloud through the  topic.

Writing data to a Point Cloud Data (PCD) file
We can save the point cloud to a PCD file by using the following code. The filename is

 inside the  folder:
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Reading and publishing a point cloud from a PCD
file
This code can read a PCD file and publish the point cloud in the  topic. The
code  is available in the  folder:
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We can create a ROS package called  for compiling these examples:

$ catkin_create_pkg pcl_ros_tutorial pcl pcl_ros roscpp sensor_msgs

Otherwise, we can use the existing package.

Create the preceding examples inside  as , ,
, and .

Create  for compiling all the sources:
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Build this package using , and we can run  and the
view point cloud inside RViz by using the following command:

$ rosrun rviz rviz -f point_cloud

A screenshot of the point cloud from  is shown in the following image:
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We can run the  node to subscribe this same cloud and do voxel grid filtering.
The following screenshot shows the output from the  topic, which is the
resultant down-sampled cloud:

We can write the  cloud by using the  node and read or publish by
using the  nodes.

Working with AR Marker detection for object
pose estimation
In this section, we will see how to use fiducial markers in order to enable a robot to easily
interact with its environment. To interact with arbitrary objects, a robot should be able to
recognize and localize them by relying on its vision sensors. Estimating the pose of an object
represents an important feature of all robotic and computer-vision applications. However,
efficient algorithms to perform object recognition and pose estimation working in real-
world environments are difficult to implement, and in many cases one camera is not
enough to retrieve the three-dimensional pose of an object.
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More precisely, with the use of only one fixed camera, it is not possible to get spatial
information about the depth of a framed scene. For this reason, object pose estimation is
often simplified by exploiting AR markers. An AR marker is typically represented by a
synthetic square image composed by a wide black border and an inner binary matrix which
determines its unique identifier, as shown in Figure 19. The presence of a black border
facilitates its fast detection in the image, and the binary codification allows its identification
and the application of error detection and correction techniques:

The main benefit of these markers is that every fiducial image can be uniquely detected by
our program, starting from a dictionary of markers, allowing the robot to identify and
interact with a high number of objects. In addition, by configuring the size of the markers to
detect, it is possible to estimate the distance of a given object with respect to the visual
sensor. These markers are commonly called Augmented Reality markers because they have
been widely used in augmented reality applications to display artificial information or
artificial objects upon video frames. Different programs working with AR markers have
been developed and many of these have been interfaced with ROS, such as, for example,
ARToolKit ( ) or ArUco: a minimal library for
Augmented Reality applications ( ).
In the following section, we will discuss how to use the AprilTag visual fiducial system to
detect and localize markers, interfacing it with ROS, and estimating the three-dimensional
position and orientation of different objects.

Using AprilTag with ROS
AprilTag ( ) is a fiducial system
particularly designed for robotics applications, thanks to its high level of precision
computing the pose of AR markers, AprtilTag is particularly designed for robotics
applications, you should clone the following repository:

$ git clone https://github.com/RIVeR-Lab/apriltags_ros.git
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Now you can compile the ROS workspace in order to build the  package and its
ROS porting . To use AprilTag, the following things are needed:

Video stream: The video data received via  is elaborated by
searching for a list.
Camera calibration: The calibration data received via

, as shown in the previous sections.
Tag description: The configuration of the marker to detect. In particular its ID,
the size of the markers, and the frames associated with its pose must be specified.
Tags: A printed copy of the markers to detect. ApriTag already provides a
complete set of  ready-to-print individual markers of five different encodings:
16h5, 25h7, 25h9, 36h9, or 36h11. These markers can be found in the

 directory of  package.

After it has been configured and launched,  will publish the pose of all the
markers detected in the framed scene and configured in the launch file. In particular, the
following topics will be published by the  node:
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The image elaboration process and the detected markers can be graphically seen displaying
the image published on , where each fiducial marker is
enlightened and labelled with its ID:
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Pose information about detected markers is published on  of
the  type. In this topic, the IDs and the poses
of all detected markers are published. The content of this topic, associated to the frame of
the previous figure, is shown following:

Let's now discuss how to use  to get the position of three objects. After
calibrating our vision system, as shown in previous sections, we could configure and launch
the  node. However, you could run this demo using the files of the

 ROS packages provided with the code of this book, or directly
downloaded from the following Git repository:

$ git clone https://github.com/jocacace/apriltags_ros_demo

This package contains useful files to launch  properly configured. In particular,
you can find two main files:

: This contains the  bagfile, in which a video data and camera
calibration information are streamed via ROS topics

: This contains the launch file  that
plays the  bagfile, and launches the  node
configured to recognize three different markers
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To configure the  node, we have to modify the launch file in the following
way:

In this launch file, we could set the topic used by the camera to stream the video stream and
its image, using the  command:

In addition, we must inform  about which markers must be detected. First,
we should specify the family name:

Finally, the ID of the markers, their size expressed in meters, and the frame attached to each
tag, should be specified in the following way:

Note that the size of the marker is represented by the length of one of the sides of its black
border. This information allows AR marker detectors to estimate the distance of the tag
from the camera. For this reason, you should pay attention when providing this measure to
get a precise pose estimation.
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In this case, we want to detect three different markers, with IDs 6, 1, and 7 respectively, and
with a size of 3.5 centimetres. Each marker is linked to a different frame, which will be even
displayed on Rviz using . The complete launch file can be found in the

 directory.

We can launch this example directly using the provided launch file, which firstly
reproduces a   containing the video of a scene composed by three objects or
markers and the calibration of the camera:

$ roslaunch apriltag_ros_demo apriltags_ros_objects.launch

Now you can read the poses of these objects via the  topic output, or
visualize them using Rviz, as show in the next image:
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Questions
What are the packages in the  stack?
What are the packages in the  stack?
What are the functions of ?
How do we convert a PCL cloud to a ROS message?
How do we do distributive computing using ROS?
What is the main benefit of the AR markers?

Summary
This chapter was about vision sensors and their programming in ROS. We saw the
interfacing packages used to interface the cameras and 3D vision sensors, such as

 and . We looked at each package and its functions on
these stacks. We looked at the interfacing of a basic webcam and processing image, using
ROS . After discussing , we looked at the interfacing of various 3D
vision sensors and laser scanners with ROS. After interfacing, we learned how to process
the data from these sensors, using the PCL library and ROS. Finally, in the last part of the
chapter, we showed how to use fiducial markers to easily perform object pose estimation
and localization. In the next chapter, we will look at the interfacing of robotic hardware in
ROS.



111
Building and Interfacing

Differential Drive Mobile Robot
Hardware in ROS

In the previous chapter, we discussed robotic vision using ROS. In this chapter, we will see
how to build autonomous mobile robot hardware with a differential drive configuration
and how to interface it into ROS. We will see how to configure the ROS Navigation stack for
this robot and perform SLAM and AMCL to move the robot autonomously. This chapter
aims to give you an idea about building a custom mobile robot and interfacing it on ROS.
We will cover the following topics in this chapter:

Introduction to Chefbot a DIY autonomous mobile robot
Developing base controller and odometry nodes for Chefbot in ROS
Configuring the Navigation stack for Chefbot and understanding AMCL
Working with the Chefbot simulation
Interacting with the Navigation stack with a ROS node
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The first topic we are going to discuss in this chapter is how to build a DIY (Do It Yourself)
autonomous mobile robot, develop its firmware, and interface it to the ROS Navigation
stack. The robot, called Chefbot, was built as part of a book called Learning Robotics using
Python by Josep Lentin and published by Packt Publishing ( ).
The step-by-step procedure to build this robot is discussed in that book. In this chapter, we
will cover abstract information about this robot hardware, and we will learn more about
configuring the ROS Navigation stack and its fine tuning for performing autonomous
navigation using SLAM and AMCL. We have already discussed the ROS Navigation stack
in , Using the ROS MoveIt! and Navigation Stack, and we have simulated a
differential robot using Gazebo and performed SLAM and AMCL. In the first part of the
chapter, the Chefbot hardware is required to follow the tutorials. However, the concepts
discussed in the first part of the chapter are then applied to a simulated robot in the second
part of the chapter.

Introducing to Chefbot  a DIY mobile robot
and its hardware configuration
In , Using the ROS MoveIt! and Navigation Stack, we have discussed some
mandatory requirements for interfacing a mobile robot with the ROS Navigation package.
These requirements are recalled in the following:

Odometry source: The robot should publish its odometry/position data with
respect to the starting position. The necessary hardware components that provide
odometry information are wheel encoders, IMU, or 2D/3D cameras (visual
odometry).
Sensor source: There should be a laser scanner, or a vision sensor that can act as a
laser scanner. The laser scanner data is essential for the map-building process
using SLAM.
Sensor transform using tf: The robot should publish the transform of the sensors
and other robot components using ROS transform.
Base controller: The base controller is an ROS node, which can convert a twist
message from the Navigation stack to corresponding motor velocities:
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We can check the components present in the robot and determine whether they satisfy the
Navigation stack requirements. The following components are present in the robot:

Pololu DC Gear motor with Quadrature encoder (
): The motor is operated in 12V, 80 RPM, and an 18 kg-cm torque. It

takes a current of 300 mA in free run and a 5 A in-stall condition. The motor shaft
is attached to a quadrature encoder, which can deliver a maximum count of 8,400
counts per revolution of the gearbox's output shaft. Motor encoders are one
source of odometry of robot.
Pololu motor drivers ( ): These are dual
motor controllers for Pololu motors that can support up to 30 A and motor
voltage from 5.5V to 16V.
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Tiva C Launchpad Controller ( ): This
robot has a Tiva C LaunchPad controller for interfacing motors, encoders,
sensors, and so on. Also, it can receive control commands from the PC and can 
send appropriate signals to the motors according to the command. This board can
act as an embedded controller board of the robot. Tiva C LaunchPad board runs
on 80 MHz.
MPU 6050 IMU: The IMU used in this robot is MPU 6050, which is a combination
of accelerometer, gyroscope, and Digital Motion Processer (DMP). This motion
processor can run sensor fusion algorithms onboard and can provide accurate
results of roll, pitch, and yaw. The IMU values can be taken to calculate the
odometry along with the wheel encoders.
Xbox Kinect/Asus Xtion Pro: These are 3D vision sensors and we can use these
sensors to mock a laser scanner. The point cloud generated from these sensors
can be converted into laser scan data and used in the Navigation stack.
Intel NUC PC: This is a mini PC from Intel, and we have to load this with
Ubuntu and ROS. The PC is connected to Kinect and LaunchPad to retrieve the
sensor values and the odometry details. The program running on the PC can
compute TF of the robot and run the Navigation stack and associated packages,
such as SLAM and AMCL. This PC is placed within the robot itself.

We can check from the aforementioned hardware list that all the requirements needed by
the ROS Navigation package are satisfied. The following figure shows the block diagram of
this robot:
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In this robot, the embedded controller board is the Tiva C LaunchPad. All the sensors and
actuators are connected to the controller board, and it is connected to the Intel NUC PC for
receiving higher-level commands. The board and the PC communicate in the UART
protocol, IMU, and the board communicates using I2C. Kinect is interfaced to the PC via
USB, and all the other sensors are interfaced through GPIO pins. A detailed connection
diagram of the robot components follows:

Flashing Chefbot firmware using Energia IDE
After developing the preceding connections, we can program the Launchpad using the 
Energia IDE ( ). After setting Energia IDE on the PC (Ubuntu is
preferred), we can flash the robot firmware to the board. We will get the firmware code and
the ROS interface package by using the following command:

$ git clone https://github.com/qboticslabs/Chefbot_ROS_pkg
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The folder contains a folder called , which has the firmware code
that flashes to the board after compilation in Energia IDE. The firmware can read the
encoder, ultrasonic sensor, and IMU values, and can receive values of the motor velocity
command. The important section of the firmware is discussed here. The programming
language in the LaunchPad is the same as Arduino. Here we are using Energia IDE to
program the controller, which is built using the Arduino IDE. The following code snippet is
the  function definition of the code. This function starts serial communication with
a baud rate of 115,200. It also configures the pins of the motor encoder, motor driver pins,
ultrasonic distance sensor, and the IMU. Also, through this code, we are configuring a pin
to reset the LaunchPad:

In the  function, the sensor values are continuously polled and the data is sent
through a serial port and incoming serial data is continuously polled for getting the robot
commands. The following convention protocols are used to send each sensor value from the
LaunchPad to the PC using serial communication (UART):
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Serial data sending protocol from LaunchPad to PC
For the encoder, the protocol will be as follows:

For the ultrasonic sensor, the protocol will be as follows:

For IMU, the protocol will be as follows:

Serial data sending protocol from PC to Launchpad
For the motor, the protocol will be as follows:

For resetting the device, the protocol will be as follows:

We can check the serial values from the LaunchPad using a command-line tool called
. This tool can view the serial data coming from a device. This script is

already installed with the  package, which is installed along with the
 Debian package. The following command will display the serial values

from the robot controller:

$ miniterm.py /dev/ttyACM0 115200
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We will get values such as these shown in the following screenshot:

Discussing Chefbot interface packages on ROS
After confirming the serial values from the board, we can install the Chefbot ROS package.
The Chefbot package contains the following files and folders:

: This package contains Python scripts, C++ nodes, and launch
files to start publishing robot odometry and , and performing gmapping and
AMCL. It contains the Python/C++ nodes to read/write values from the
LaunchPad, convert the encoder ticks to , and twist messages to motor
commands. It also has the PID node for handling velocity commands from the
motor commands.

: This package contains the Chefbot URDF model.
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: This package contains launch files to simulate the robot in
Gazebo.

: This package contains the C++ implementation of a few
nodes that are already implemented in  as the Python node.

After cloning the Chefbot main directory from the previous GitHub repository, we could
compile the workspace. To successfully compile the packages of the repository, some
dependencies must be installed using the following command:

$ sudo apt-get install ros-kinetic-depthimage-to-laserscan ros-kinetic-
kobuki-gazebo-plugins ros-kinetic-robot-pose-ekf ros-kinetic-yocs-cmd-vel-
mux ros-kinetic-move-base-msgs ros-kinetic-openni-launch ros-kinetic-
kobuki-description ros-kinetic-gmapping ros-kinetic-amcl ros-kinetic-map-
server

The following launch file will start the robot odometry and the   publishing nodes:

$ roslaunch chefbot_bringup robot_standalone.launch

In the next figure, the nodes started by this launch file and how they are interconnected are
shown:
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The nodes run by this launch file and their workings are described next:

: We know that this robot uses the Tiva C LaunchPad board
as its controller. This node acts as a bridge between the robot controller and the
ROS. The basic functionality of this node is to receive serial values from the
LaunchPad and convert each sensor data into ROS topics. This acts as the ROS
driver for the LaunchPad board.

: This node converts the  message
to motor velocity targets. It subscribes the command velocity, which is either
from a teleop node or from an ROS Navigation stack, and publishes

 and .
: This node subscribes  from the
 node and the wheel topic, which is the encoder tick from

the . We have to start two PID nodes for each wheel of the
robot, as shown in the previous figure. This node finally generates the motor
speed commands for each motor.

: This node subscribes the encoder ticks from the two motors, and
computes odometry, and publishes  for the Navigation stack.
The list of topics generated after running  are
shown in the following image:
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The following is the content of the  file:
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After running , we can visualize the robot in RViz, using the
following command:

$ roslaunch chefbot_bringup view_robot.launch
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We will see the robot model, as shown in this next screenshot:

Launch the keyboard  node and we can start moving the robot:

$ roslaunch chefbot_bringup keyboard_teleop.launch
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Move the robot using the keys and we will see that the robot is moving around. If we enable
 of the robot in RViz, we can view the odometry, as shown in the following screenshot:

The graph of the connections between each node can be viewed, using the  tool:

$ rqt_graph

Until now  we have discussed the Chefbot interfacing on ROS. The coding of Chefbot is
completely done in Python. There are some nodes implemented in C++ for computing
odometry from the encoder ticks and generating motor speed commands from the twist
messages.
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Computing odometry from encoder ticks
In this section, we will see the C++ interpretation of the  node, which
subscribes the encoder data and computes the odometry, and publishes the odometry and

 of the robot. We can see the C++ interpretation of this node, called , which
can be found in the  folder of a package named .

Discussed next are the important code snippets of this code and their explanations. The
following code snippet is the constructor of the class. This class contains
the definition of computing odometry. The following code declares the subscriber for the
left and right wheel encoders along with the publisher for the  value:

The following code is the update loop of computing odometry. It computes the delta
distance moved and the angle rotated by the robot using the encoder values, base width of
the robot, and ticks per meter of the encoder. After calculating the delta distance and the
delta theta, we can compute the final , , and theta using the standard differential drive
robot equations:
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After computing the robot position and the orientation from the preceding code snippet, we
can feed the  values to the  message header and the  header, which will publish
the topics in  and :
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Computing motor velocities from ROS twist
message
The C++ implementation of  is discussed in this section. This node will
convert the twist message ( ) to motor target velocities. The topic
subscribed by this node is the twist message from the  node or Navigation stack and
it publishes the target velocities for the two motors. The target velocities are fed into the PID
nodes, which will send appropriate commands to each motor. The CPP filename is

, and you can get it from the  folder:
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The following code snippet is the callback function of the twist message. The linear velocity
 is assigned as ,  as , and angular velocity  as :

After getting , , and , we can compute the motor velocities using the following
equations:

Here, r and l are the right and left wheel velocities, and w is the base width. The preceding
equations are implemented in the following code snippet. After computing the wheel
velocities, they are published to the  and  topics:
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Running the robot standalone launch file using C++
nodes
The following command can launch , which uses the C++
nodes:

$ roslaunch chefbot_navig_cpp robot_standalone.launch

Configuring the Navigation stack for Chefbot
After setting the odometry nodes, the base controller node, and the PID nodes, we need to
configure the Navigation stack to perform SLAM and Adaptive Monte Carlo Localization
(AMCL) for building the map, localizing the robot, and performing autonomous
navigation. In , Using the ROS MoveIt! and Navigation Stack, we have seen the
basic packages in the Navigation stack. To build the map of the environment, we need to
configure mainly two nodes: the  node for performing SLAM and the 
node. We also need to configure the global planner, the local planner, the global cost map,
and the local cost map inside the Navigation stack. Let's look at the configuration of the

 node first.

Configuring the gmapping node
The gmapping node is the package to perform SLAM ( ).

The  node inside this package mainly subscribes and publishes the following
topics.

The following are the subscribed topics:

 ( ): The robot transform that relates to Kinect, robot base, and
odometry

 ( ): The laser scan data that is required to create
the map

The following are the published topics:

 ( ): Publishes the occupancy grid map data
 ( ): Basic information about the

occupancy grid
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The  node is highly configurable, using various parameters. The  node
parameters are defined inside the

 file. The following is a
code snippet of this file and its uses:

By fine tuning these parameters, we improve the accuracy of the gmapping node.

The main  launch file is given next. It is placed in
. This launch file

launches the  file and the  node to convert the depth
image to the laser scan. After launching the Kinect nodes, it launches the  node
and the  configurations:
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Configuring the Navigation stack packages
The next node we need to configure is . Along with the  node, we
need to configure the global and the local planners, and also the global and the local cost
maps. We will first look at the launch file to load all these configuration files. The following
launch file, , will load all
the parameters of , , and :
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We will now take a look at each configuration file and its parameters.

Common configuration local_costmap and
global_costmap
The common parameters of the local and the global  are discussed in this section.
The  is created using the obstacles present around the robot. Fine tuning the
parameters of the  can increase the accuracy of map generation. The customized
file  of Chefbot follows. This configuration file contains
the common parameters of both the global and the local cost maps. It is present in the

 folder. For more about  common parameters, check
:
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After discussing the common parameters, we will now look at the 
configuration.

Configuring global costmap parameters
The following are the main configurations required for building a global  The
definition of the  parameters is dumped in 

. The following is the definition of this file and its uses:
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The  here is , which is the coordinate frame of the . The
 parameter is ; it is the coordinate frame in which

the  should reference as the robot base. The  is the frequency
at which the  runs its main update loop. The  of the 
costmap is given as , which is . If we are using an existing map,
we have to set  as , otherwise we set it as . The

 is the rate at which the transform has to perform. The robot would
stop if the transforms are not updated at this rate.

Configuring local costmap parameters
The following is the local  configuration of this robot. The configuration of this file
is located in :

The , , , and  are the
same as the global . The  parameter makes the  centered
around the robot. If we set this parameter to , we will get a  that is built
centered around the robot. The width , height, and resolution parameters are the width,
height, and resolution of the . The next step will be to configure the base local
planner.
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Configuring base local planner parameters
The main function of the base local planner is to compute the velocity commands from the
goal sent from the ROS nodes. This file mainly contains the configurations related to
velocity, acceleration, and so on. The base local planner configuration file of this robot is in

. The definition of this
file is as follows:
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Configuring DWA local planner parameters
The DWA planner is another local planner in ROS. Its configuration is almost the same as
the base local planner. It is located in 

. We can either use the base local planner or the DWA
local planner for our robot.

Configuring move_base node parameters
There are some configurations to the  node too. The  node
configuration is placed in the  folder. The following is the definition of

:

We have discussed most of the parameters used in the Navigation stack, the 
node, and the  node. Now we can start running a  demo for building
the map.

Start the robot's  nodes and base controller nodes:

$ roslaunch chefbot_bringup robot_standalone.launch
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Start the  node by using the following command:

$ roslaunch chefbot_bringup gmapping_demo.launch

The  launches the OpenNI driver and the depth to laser scan
nodes in order to stream the 3D sensor data, and launches the  node and
the   node with the necessary parameters. We can now launch a  node for
moving the robot to build the map of the environment. The following command will launch
the  node for moving the robot:

$ roslaunch chefbot_bringup keyboard_teleop.launch

We can see the map building in RViz, which can be invoked by using the following
command:

$ roslaunch chefbot_bringup view_navigation.launch

We are testing this robot in a plain room; we can move robot in all areas inside the room. If
we move the robot in all the areas, we will get a map, as shown in the following screenshot:
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After completing the mapping process, we can save the map by using the following
command:

$ rosrun map_server map_saver -f /home/lentin/room

The  package in ROS contains the  node, which provides the
current map data as an ROS service. It provides a command utility called ,
which helps to save the map.

It will save the current map as two files:  and . The first one is the map
data and the next is its metadata, which contains the map file's name and its parameters.
The following screenshot shows map generation using the  tool, which is saved
in the home folder:

The following is the :

The definition of each parameter follows:

: The image contains the occupancy data. The data can be absolute or
relative to the origin mentioned in the YAML file.

: This parameter is the resolution of the map, which is meters/pixels.
: This is the 2D pose of the lower left pixel in the map (x, y, yaw), where

yaw is counter-clockwise (yaw = 0 means no rotation).
: This parameter can reverse the semantics of white/black in the map and

the free space/occupied space representation.
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: This is the threshold deciding whether the pixel is occupied
or not. If the occupancy probability is greater than this threshold, it is considered 
free space.

: The map pixel with occupancy probability less than this threshold
is considered completely occupied. After mapping the environment, we can quit
all the terminals and rerun the following commands to start AMCL.

Before starting the AMCL nodes, we will look at the configuration and the main application
of AMCL.

Understanding AMCL
After building a map of the environment, the next thing we need to implement is
localization. The robot should localize itself on the generated map. We have worked with
AMCL in , Using the ROS MoveIt! and Navigation Stack. In this section, we will see
a detailed study of the  package and the  launch files used in Chefbot. AMCL
implements the probabilistic localization technique for robot working in 2D. This algorithm
uses particle filters for tracking the pose of the robot with respect to the known map. To
know more about this localization technique, you can refer to a book called Probabilistic
Robotics by Thrun ( ). The AMCL algorithm is
implemented in the AMCL ROS package ( ), which has an
AMCL node that subscribes the scan ( ), the tf ( ),
the initial pose ( ), and the map
( ).

After processing the sensor data, it publishes 
,

 and .

 is the estimated pose of the robot after processing, where the particle cloud is
the set of pose estimates maintained by the filter.

If the initial pose of the robot is not mentioned, the particle will be around the origin. We
can set the initial pose of the robot in RViz by using the 2D Pose estimate button. We can
see the  launch file used in this robot. The following is the main launch file for starting

, called :
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The preceding launch file starts the 3D sensor-related nodes, the map server for providing
the map data, the  node for performing localization, and the  node to move
the robot from the commands received from the higher level.

The complete  launch parameters are mentioned inside another sub-file called
. It is placed in . The following is

the definition of this file:
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We can refer to the ROS  package wiki for getting more details about each parameter.
We will see how to localize and path plan the robot using the existing map. Launch the
robot hardware nodes by using the following command:

$ roslaunch chefbot_bringup robot_standalone.launch

Run the  launch file by using the following command:

$ roslaunch chefbot_bringup amcl_demo.launch
map_file:=/home/lentin/room.yaml

We can launch RViz for commanding the robot to move to a particular pose on the map by
using the following command:

$ roslaunch chefbot_bringup view_navigation.launch
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The following is the screenshot of RViz:

We will see more about each option in RViz and how to command the robot in the map in
the following section.

Understanding RViz for working with the
Navigation stack
We will explore various GUI options inside RViz to visualize each parameter in the
Navigation stack.

2D Pose Estimate button
The first step in RViz is to set the initial position of the robot on the map. If the robot is able
to localize on the map by itself, there is no need to set the initial position. Otherwise, we
have to set the initial position using the 2D Pose Estimate button in RViz, as shown in the
following screenshot:
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Press the 2D Pose Estimate button and select a pose of the robot by using the left mouse
button, as shown in the preceding figure. Check if the actual pose of the robot and the robot
model in RViz are the same. After setting the pose, we can start the path plan to the robot.
The green color cloud around the robot is the particle cloud of . If the particle amount
is high, it means the uncertainty in the robot position is high, and if the cloud is less, it
means that the uncertainty is low and the robot is almost sure about its position. The topic
handling the robot's initial pose is:

Topic name: 
Topic type: 

Visualizing the particle cloud
The particle cloud around the robot can be enabled using the  display topic.
Here the  topic is  displayed in RViz. The  type is
renamed as  particles:

Topic: 
Type: 
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The 2D Nav Goal button
The 2D Nav Goal button is used to give a goal position to the  node in the ROS
Navigation stack through RViz. We can select this button from the top panel of RViz and
can give the goal position inside the map by left clicking the map using the mouse. The goal
position will send to the  node for moving the robot to that location:

Topic: 
Topic type: 
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Displaying the static map
The static map is the map that we feed into the  node. The  node
serves the static map in the  topic:

Topic: 
Type: 

The following is the static map in RViz:
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Displaying the robot footprint
We have defined the robot footprint in the configuration file called

. This robot has a circular shape, and we have given the
radius as 0.45 meters. It can visualize using the Polygon display type in RViz. The following
is the circular footprint of the robot around the robot model and its topics:

Topic:

Topic:

Type: 
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Displaying the global and local cost map
The following RViz screenshot shows the local cost map, the global cost map, the real
obstacles, and the inflated obstacles. The display type of each of these maps is the map
itself:

Local cost map topic: 
Local cost map topic type: 
Global cost map topic: 
Global cost map topic type: 

To avoid collision with the real obstacles, it is inflated to some distance from the real
obstacles, called inflated obstacles, as per the values in the configuration files. The robot
only plans a path beyond the inflated obstacle; inflation is a technique to avoid collision
with the real obstacles.



Building and Interfacing Differential Drive Mobile Robot Hardware in ROS Chapter 11

[ 387 ]

Displaying the global plan, the local plan, and the
planner plan
In the next figure, the global, local, and planner plans are shown. In this context, the planner
and the global plans represent the complete plan to reach the goal. The local plan represents
a short-term plan to follow the global planning. The global plan and the planner plan can be
changed if there are any obstacles. The plans can be displayed using the Path display type
in RViz:

Global plan topic: 
Global plan topic type: 
Local plan topic: 
Local plan topic type: 
Planner plan topic: 
Planner plan topic type: 
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The current goal
The current goal is the commanded position of the robot using the 2D Nav Goal button or
using the ROS client nodes. The red arrow indicates the current goal of the robot:

Topic: 
Topic type: 

Obstacle avoidance using the Navigation stack
The Navigation stack can be used to allow the robot to avoid random obstacles during its
motion. The following is a scenario where we have placed a dynamic obstacle in the
planned path of the robot. In particular, the first figure shows a path planning without any
obstacle on the path. When we place a dynamic obstacle on the robot path, we can see it
planning a path by avoiding the obstacle:
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Working with Chefbot simulation
The  simulator package is available along with the 
package, and we can simulate the robot in Gazebo. We will see how to build a room similar
to the room we tested with the hardware. First, we will check how to build a virtual room in
Gazebo.

Building a room in Gazebo
We will start building the room in Gazebo, save into Semantic Description Format (SDF),
and insert in the Gazebo environment.

Launch Gazebo with the Chefbot robot in an empty world:

$ roslaunch chefbot_gazebo chefbot_empty_world.launch

It will open the Chefbot model in an empty world on Gazebo. We can build the room using
walls, windows, doors, and stairs.

There is a Building Editor in Gazebo. We can take this editor from the menu Edit |
Building Editor. We will get an editor in the Gazebo viewport:
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We can add walls by clicking the Add Wall option on the left-side pane of Gazebo. In the
Building Editor, we can draw the walls by clicking the left mouse button. We can see that
adding walls in the editor will build real 3D walls in Gazebo. We are building a similar
layout of the room that we tested for the real robot. Save the room through the Save As
option, or press the Done button; a box will pop up to save the file. The file will get saved in
the  format. We can save this example as .

After saving the room file, we can add the model of this room to the  folder,
so that we can access the model in any simulation.

Adding model files to the Gazebo model folder
The following is the procedure to add a model to the Gazebo folder.

Locate the default model folder of Gazebo, which is located in the
 folder. Create a folder called  and copy 

inside this folder. Also, create a file called , which contains the details of the
model file. The definition of this file follows:
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After adding this model to the model folder, restart Gazebo, and we can see the model
named  in the entry in the Insert tab, as shown in the next screenshot. We have
named this model as  in the  file; that name will show on this list.
We can select this file and add it to the viewport, as shown next:

After adding to the viewport, we can save the current world configuration. Select 
from the  menu and the  option. Save the file as  in
the  folder of the  ROS package, then  add it to the

 file, and save this launch file as the
 file, which is shown next:
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After saving this launch file, we can start the launch file  for
simulating the same environment as the hardware robot. We can add obstacles in Gazebo,
using the primitive shapes available in it.

Instead of launching the  file from  for the
hardware, we can start  for getting a more complex
environment of the robot, and the  and tf data in simulation:

$ roslaunch chefbot_gazebo chefbot_hotel_world.launch

Other operations, such as SLAM and AMCL, have the same procedure that we followed for
the hardware. The following launch files are used to perform SLAM and AMCL in the
simulation. To use  and the AMCL program to perform localization and
mapping, we should install it by using the following commands:

Run SLAM in the simulation:

$ roslaunch chefbot_gazebo gmapping_demo.launch

Run the Teleop node:

$ roslaunch chefbot_bringup keyboard_teleop.launch

Run AMCL in the simulation:

$ roslaunch chefbot_gazebo amcl_demo.launch

After moving the robot into its environment, we can save the generated map as already
seen:

$ rosrun map_server map_saver -f /tmp/hotel

Sending a goal to the Navigation stack from a
ROS node
We have seen how to send a goal position to a robot for moving it from point A to B using
the RViz  button. Now we will see how to command the robot using the
actionlib client and the ROS C++ APIs. The following is a sample package and node for
communicating with the Navigation stack  node.

The  node is . We can send and cancel the goals to the
robot if the task takes a lot of time to complete.
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The following code is  for the  node, which can send the
, , and theta from the command-line arguments. The following code is in the

 folder with the name of :
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The following lines are added to  for building this node:

Build the package using  and test the working of the client using the
following set of commands using Gazebo.

Start the Gazebo simulation in a room:

$ roslaunch chefbot_gazebo chefbot_room_world.launch

Start the  node with the generated map:

$ roslaunch chefbot_gazebo amcl_demo.launch map_file:=/tmp/hotel.yaml

Start RViz for the navigation:

$ roslaunch chefbot_bringup view_navigation.launch

Run the send  node for sending the move base goal:

$ rosrun chefbot_bringup send_goal 1 0 1

We will get the desired pose of the robot in the map by using the RViz 2D Nav goal button.
Simply echoing the topic  will print the pose that we commanded
through RViz. We can use these values as command-line arguments in the 
node.
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Questions
What are the basic requirements for working with the ROS Navigation stack?
What are the main configuration files for working with the ROS Navigation
stack?
How does the AMCL package in ROS work?
What are the methods to send a goal pose to the Navigation stack?

Summary
In this chapter, we mainly covered interfacing a DIY autonomous mobile robot to ROS and
the Navigation package. We looked at an introduction to this robot and the necessary
components and connection diagrams. We looked at the robot firmware and saw how to
flash it into the real robot. After flashing the firmware, we learned how to interface it to the
ROS and saw the Python nodes for interfacing the LaunchPad controller in the robot and
the nodes for converting twist messages to motor velocities and encoder ticks to odom and
tf.

After discussing the interconnection of the Chefbot nodes, we covered the C++ port of some
important nodes for odometry calculation and the base controller node. After discussing
these nodes, we looked at detailed configurations of the ROS Navigation stack. We also did

 and AMCL and looked at a detailed description of each option in RViz for
working with the Navigation stack. We also covered obstacle avoidance using the
Navigation stack and worked with the Chefbot simulation. We set up a similar environment
in Gazebo to the environment of the real robot and went through the steps to perform
SLAM and AMCL. At the end of this chapter, we saw how we can send a goal pose to the
Navigation stack using .
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Exploring the Advanced

Capabilities of ROS-MoveIt!
In the previous chapter, we covered ROS navigation and interfacing with mobile robotic
hardware. Similarly, in this chapter, we are going to cover the advanced capabilities of
ROS-MoveIt!, such as collision avoidance, perception with 3D sensors, grasping, picking,
and placing. After this, we will see how to interface robotic manipulator hardware with
MoveIt!.

The following are the main topics discussed in this chapter:

Motion planning collision checking of a robotic arm, using MoveIt! C++ APIs
Working with perception in MoveIt! and Gazebo
Performing object manipulation with MoveIt!
Understanding DYNAMIXEL ROS servo controllers for robot hardware
interfacing
Interfacing 7-DOF DYNAMIXEL-based robotic arm to ROS MoveIt!

In , Simulating Robots Using ROS and Gazebo, and , Using the ROS
MoveIt! and Navigation Stack, we discussed MoveIt! and how to simulate an arm in Gazebo,
and motion plan using MoveIt!. In this chapter, we are going to see some of the advanced
capabilities of MoveIt! and how to interface a real robotic manipulator to ROS MoveIt!.

The first topic that we are going to discuss is how to motion plan our robot using MoveIt!
C++ APIs.
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Motion planning using the move_group C++
interface
In , Using the ROS MoveIt! and Navigation Stack, we discussed how to interact with
a robot arm, and how to plan its path using the MoveIt! RViz motion planning plugin. In
this section, we will see how to program the robot motion using the  C++ APIs.
Motion planning using RViz can also be done programmatically through the 
C++ APIs.

The first step to start working with C++ APIs is to create another ROS package that has the
MoveIt! packages as dependencies. You can get an existing  package
from the code provided with this book, or you can download it from the following
repository:

$ git clone https://github.com/jocacace/seven_dof_arm_test.git

We can create this same package using the following command:

$ catkin_create_pkg seven_dof_arm_test catkin cmake_modules
interactive_markers moveit_core moveit_ros_perception
moveit_ros_planning_interface pluginlib roscpp std_msgs

Motion planning a random path using MoveIt!
C++ APIs
The first example that we are going to see is a random motion plan using MoveIt! C++ APIs.
You will get the code named  from the  folder. The code and the
description of each line follows. When we execute this node, it will plan a random path and
execute it:
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To build the source code, we should add the following lines of code to .
You will get the complete  file from the existing package itself:

We can build the package using the  command. First, check whether
 is built properly or not. If the code is built properly, we can start testing

the code.

The following command will start the RViz with 7-DOF arm with the motion planning
plugin:

$ roslaunch seven_dof_arm_config demo.launch

Move the end effector to check whether everything is working properly in RViz.

Run the C++ node for planning to a random position using the following command:

$ rosrun seven_dof_arm_test test_random_node
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The output of the RViz is shown next. The arm will select a random position that has a valid
IK and motion plan from the current position:
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Motion planning a custom path using MoveIt! C++
APIs
We saw random motion planning in the preceding example. In this section, we will check
how to command the robot end effector to move to a custom goal position. The following
example, , will do that job:
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The following are the extra lines of code added on for building the source code:

Following is the command to execute the custom node:

$ rosrun seven_dof_arm_test test_custom_node

The following screenshot shows the result of the :
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Collision checking with a robot arm using
MoveIt!
Along with motion planning and the IK solving algorithm, one of the most important tasks
that is done in parallel in MoveIt! is collision checking, and its avoidance. MoveIt! can
handle both self-collisions and environmental collisions exploiting the built-in Flexible
Collision Library (FCL) (

), an open source project that implements various collision-detection and-
avoidance algorithms. MoveIt! takes the power of FCL and handles the collision inside the
planning scene using a  class. The MoveIt!
collision checking includes objects, such as meshes; primitive shapes, such as boxes and
cylinders, and OctoMap. The OctoMap ( ) library implements a
3D occupancy grid, called an octree, which consists of probabilistic information regarding
obstacles in the environment. The MoveIt! package can build an OctoMap using 3D point
cloud information, and can directly feed the OctoMap to FCL for collision checking.

Like motion planning, collision checking is also very computationally intensive. We can
fine-tune the collision checking between two bodies say, a robot link, or with the
environment - using a parameter called Allowed Collision Matrix (ACM). If the value of a
collision between two links is set to 1 in ACM, there will not be any collision checks. We
may set this for links that are far from each other. We can optimize the collision-checking
process by optimizing this matrix.

Adding a collision object to MoveIt!
We can add a collision object to the MoveIt! planning scene, and we can see how the
motion-planning works. For adding a collision object, we can use mesh files, which can
directly be imported from the MoveIt! interface, and can be added by writing a ROS node
using MoveIt! APIs.
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We will first discuss how to add a collision object using the ROS node:

In the node , which is inside the1.
 folder, we are starting a ROS node and creating an

object of , which
can access the planning scene of MoveIt! and perform any action on the current
scene. We will now add a sleep of 5 seconds to wait for the

 object instantiation:

In the next step, we need to create an instance of the collision object message2.
. This message is going to be sent to the

current planning scene. Here, we are making a collision object message for a
cylinder shape, and the message is given as . When
we add this object to the planning scene, the name of the object is its ID:

After making the collision object message, we have to define another message of3.
type , which is used to define what kind of
primitive shape we are using and its properties. In this example, we are creating a
cylinder object, as shown in the following code. We have to define the type of
shape, the resizing factor, the width, and the height of the cylinder:
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After creating the shape message, we have to create a 4.
message to define the pose of this object. We define a pose that may be closer to
robot. We can change the pose after the creation of the object in the planning
scene:

After defining the pose of the collision object, we need to add the defined5.
primitive object, and the pose to the cylinder collision object. The operation we 
need to perform is adding the planning scene:

In the next step, we create a vector called  of type6.
, inserting the collision object to this vector:

We will add the collision objects vector to the current planning scene by using the7.
following line of code.  inside the

 class is used to add the object to the planning scene:

The following are the compile and build lines of the code in :8.
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Let's see how this node works in RViz with the MoveIt! motion-planning Plugin:

We will start the  inside the  package for
testing this node:

$ roslaunch seven_dof_arm_config demo.launch

Then we, add the following collision object:

$ rosrun seven_dof_arm_test add_collision_object

When we run the  node, a green cylinder will pop up, and we can
move the collision object as shown in the following screenshot. When the collision object is
successfully added to the planning scene, it will list out in the Scene Objects tab. We can
click on the object and modify its pose. We can also attach the new model in any links of
robots too. There is a Scale option to scale down the collision model:



Exploring the Advanced Capabilities of ROS-MoveIt! Chapter 12

[ 407 ]

The RViz Motion-Planning plugin also gives an option to import a 3D mesh to the planning
scene. Click the Import File button for importing the meshes. The following image shows
our importing of a cube mesh DAE file, which is imported along with the cylinder in the
planning scene. We can scale up the collision object using the Scale slider, and set the
desired pose using the Manage Pose option. When we move the arm end effector to any of
these collision objects, MoveIt! detects it as a collision. The MoveIt! collision detection can
detect environment collision as well as self-collision. The following is a snapshot of a
collision with the environment:

The collided link will turn red when the arm touches the object. In self-collision also, the
collided link will turn red. We can change the color setting of the collision in the Motion
Planning plugin settings.
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Removing a collision object from the planning
scene
Removing the collision object from the planning scene is easy. We have to create an object of

, as we did in the previous
example, along with some delay:

Next, we need to create a vector of the string that contains the collision object IDs. Here, our
collision object ID is . After pushing the string to this vector, we
will call , which will remove the collision
objects from the planning scene:

This code is placed in .

Attaching a collision object to a robot link
After seeing how to insert and remove objects from the planning scene, we are now going to
discuss how to attach and detach objects to the robot's body. This important feature of ROS
MoveIt! allow us to perform object manipulation. In fact, after attaching an object to the
robot's body, the obstacle avoidance is additionally extended to the grasped object. In this
way, the robot will be free to move into its workspace, avoiding obstacles and carrying the
object to manipulate. The code we are going to discuss in place is the

 source code. After creating a
, as shown in the previous

examples, we must initialize a , filling
information about which scene object will be attached to a specific link of the robot's body:



Exploring the Advanced Capabilities of ROS-MoveIt! Chapter 12

[ 409 ]

In this example, the  attached to the robot link is the one already used in
the  example. When an object is successfully attached to a
robot, its color in the Moveit! visualization will change from green to purple, and will move
along with the robot motion. To detach an object from the robot's body, we should invoke
the  function on the desired object to detach modifying
its operation from  to :

Checking self-collisions using MoveIt! APIs
We have seen how to detect collision in RViz, but what do we have to do if we want to get
collision information in our ROS node? In this section, we will discuss how to get the
collision information of our robot in a ROS code. This example can check self collisions and
environment collisions, and also tell which links were collided. The example called  is
placed in the  folder. This code is a modified version of the
collision-checking example of PR2 MoveIt! robot tutorials. In this code, the following
snippet loads the kinematic model of the robot to the planning scene:

To test self-collision in the robot's current state, we can create two instances of class
 and

, which have the name of
. After creating these objects, pass it

MoveIt! collision-checking function, , which
can give the collision result in the  object, and we can print the details,
which are shown in the following code:
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If we want to test collision in a particular group, we can do that by 
, as shown in the following code. Here, the  is :

For performing a full collision check, we have to use the following function, called
. We need to mention the current robot state and

the ACM matrix in this function.

The following is the code snippet to perform full collision checking using this function:

We can launch the demo of motion planning and run this node using the following
command:

$ roslaunch seven_dof_arm_config demo.launch

Run the collision-checking node:

$ rosrun seven_dof_arm_test check_collision
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You will get a report, such as the one shown in the following image. The robot is now not in
collision; if it is in collision, it will send a report of it:

Working with perception using MoveIt! and
Gazebo
Until now, in MoveIt!, we have worked with an arm only. In this section, we will see how to
interface a 3D vision sensor data to MoveIt!. The sensor can be either simulated using
Gazebo, or you can directly interface an RGB-D sensor, such as Kinect or Xtion Pro, using
the  package. Here, we will work using Gazebo simulation. We will add
sensors to MoveIt! for vision-assisted pick-and-place. We will create a grasp table and a
grasp object in Gazebo for the pick-and-place operation. We will add two custom models
called  and . The sample models are placed into the

 package in the model directory, and should be copied to the
 folder for accessing the models from Gazebo. The following command

will launch the robot arm and the Asus Xtion pro simulation in Gazebo:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_bringup_grasping.launch
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This command will open up Gazebo with arm joint controllers and the Gazebo plugin for
3D vision sensor. We can add a grasp table and grasp objects to the simulation, as shown in
the following image, by simply clicking and dragging them to the workspace. We can create
any kind of table or object. The objects shown in the following image are only for
demonstration purposes. We can edit the model SDF file to change the size and shape of the
model:
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Check the topics generated after starting the simulation:

$ rostopic list

Make sure that we are getting the RGB-D camera topics, as shown in the following code
snippet:

We can view the point cloud in RViz using the following command:

$ rosrun rviz rviz -f base_link
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The following is the output generated:

After confirming the point cloud data from the Gazebo plugins, we have to add some files
to the MoveIt! configuration package of this arm, that is, the , for
bringing the point cloud data from Gazebo to the MoveIt! planning scene.
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The robot environment is mapped as octree representation
( ), which can be built using a library called
OctoMap, which we have already seen in the previous section. The OctoMap is
incorporated as a plugin in MoveIt!, called the Occupany Map Updator plugin, which can
update octree from different kinds of sensor inputs, such as point cloud and depth images
from 3D vision sensors. Currently, there are the following plugins for handling 3D data:

: This plugin can take input in the form of
point clouds ( )

: This plugin can take input in the form of
input depth images ( )

The first step is to write a configuration file for these plugins. This file contains information
about which plugin we are using in this robot, and what its properties are. The file
exploiting the first plugin is found in the  folder, called

.

The definition of this file is as follows:

The explanation of a general parameter is:

: This parameter specifies the name of the plugin we are using in
the robot

The following are the parameters of the given :

: The plugin will listen to this topic for point cloud data
: This is the distance limit in meters in which points above the range

will not be used for processing
: This value will be taken into account for robot links and

attached objects when filtering clouds containing the robot links (self-filtering)
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: This value will also be taken into account while self-filtering
: If the update process is slow, points can be subsampled. If

we make this value greater than 1, the points will be skipped instead of processed
: This is the final filtered cloud topic. We will get the

processed point cloud through this topic. It can be used mainly for debugging

If we are using the  plugin, we can have a different
configuration file. We are not using this plugin in our example robot, but we can see its
usage and properties:

The explanation of a general parameter is:

: This parameter specifies the name of the plugin we are using in
the robot.

The following are the parameters of the given :

: The topic that streams the image.
: This is the queue size for the depth image transport subscriber.

: This is the minimum valid distance from the
sensor.

: This is the maximum valid distance from the
sensor.

: This is the number of pixels we have to skip from the
top and bottom of the image. If we give a value of 5, it will skip five columns
from first and last of the image.
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: Skipping pixels in horizontal direction.
: In some situations, points can appear below the robot links.

This happens because of padding.  removes the points with a
distance that is greater than the .

After discussing the OctoMap update plugin and its properties, we can switch to the launch
files necessary to initiate this plugin and its parameters. The first file we need to create is
inside the  folder with the name

. The following is the definition of
this file. This launch file basically loads the plugin parameters:

The next file that we need to edit is the , which is located inside
the  folder. The definition of this file is as follows:
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The following line is commented because it can be used if the robot is mobile. In our case,
our robot is static. If it is fixed on a mobile robot, we can give the frame value as , or

 of the robot:

The following parameter is the resolution of OctoMap, which is visualizing in RViz
measured in meters. The rays beyond the  value will be truncated:

The interfacing is now complete. We can test the MoveIt! interface using the following
command. Launch Gazebo for perception using the following command, and add the
desired grasp table and grasp object model:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_bringup_grasping.launch

Start the MoveIt! planner with sensor support:

$ roslaunch seven_dof_arm_config moveit_planning_execution.launch

Now RViz has sensor support. We can see the OctoMap in front of the robot in the
following screenshot:
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Manipulating objects with MoveIt!
Manipulating objects is one of main usages of robotic arms. The capacity to pick up objects
and place them in a different location of the robot's workspace is extremely useful both in
industry and research applications. The picking process is also known as grasping, and
represents a complex task because a lot of constraints are required to pick an object up in a
proper way. Humans handle grasping operations using their intelligence, but robots need
rules for it. One of the constraints in grasping is the approaching force; the end effector
should adjust the grasping force for picking the object, but not make any deformation on
the object while grasping. In addition, a grasping pose is needed to pick an object in the best
way, and should be calculated considering its shape and its pose. MoveIt! doesn't provide
any built-in functionality to find the best approaching or grasping pose to pick objects. For
this reason, in this section, we will first discuss how to pick-and-place an object placed into
the planning scene considering a known grasping pose. Later, we will present the Grasping
Pose Detector (GPD) package, a ROS package able to detect 6-DOF grasp poses based on
the point clouds.

Working with a robot pick-and-place task
using MoveIt!
We can do pick and place in various ways. One is by using pre-defined sequences of joint
values; in this case, we put the object in a known position, and move the robot into towards
that by providing direct joint values or forward kinematics. Another method of pick and
place is by using inverse kinematics without any visual feedback. In this case, we command
the robot to move in a cartesian position with respect to the robot base frame, and by
solving IK. In this way, the robot can reach that position and pick up that object. One more
method is to use external sensors, such as the vision ones, to calculate the pick-and-place
positions; in this case, a vision sensor is used to identify the object's location, and the arm
goes to that position by solving to pick the object. Of course, the use of vision sensors
requires the development of robust algorithms to perform object recognition and tracking,
and are able to calculate the best grasping pose to pick that object. But in this section, we
want to demonstrate a pick and place sequence, by defining the approaching and grasping
position to pick the object and place it on another location of its workspace. We can work
with this example along with Gazebo, or simply use the MoveIt! demo interface. The
complete source code of this example is reported in the

 file. As we have already seen, we first
should initialize the planning scene:
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Then, we must create the working environment of the robot, placing the grasping table and
the grasping object into the scene:
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Now that the planning scene is properly configured, we can request the motion of the robot
towards a pre-configured position of the workspace to bring its end effector close to the
object and pick it up:

If the grasping succeeded, we can attach the object to the end effector of the robot, in order
to place it in another location of the workspace:
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Finally, we must remove the object from the robot's gripper:

To run this example, launch the MoveIt! demo:

$ roslaunch seven_dof_arm_config demo.launch

Run the pick and place program:

$ rosrun seven_dof_arm_test pick_place

The following is the screenshot of the grasping process:
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The various steps in the grasping process are explained next:

In the first step, we can see a green block, which is the object that is going to be
grasped by the robot gripper. We have created this object inside the planning
scene using the  node. In the first part of the node, the end
effector of the robot is approaching the object.
After approaching the object, a valid trajectory to grasp the object is generated.
After the grasping is completed, the green block will be attached to the robot's
gripper, and will change its color to purple.
After picking the block, the robot will transport it to another place of the
workspace, before placing it on the working table. If there is a valid IK in the
place pose, the gripper holds the object in the planned trajectory.
Finally, the object is placed on the table and detached from from the robot's
gripper.

Another way to perform the pick and place tasks is by using actions provided by MoveIt!.
After launching MoveIt!, two action servers start:

pickup: This action accepts a  message in which we
mainly must specify the target object to grasp, and a list of possible grasping
configurations. These configurations are filled in a  in
which we have to set the complete position of the joints of the robot during the
approaching and grasping actions, and the position of the end effector during the
picking .
place: This action is used to place an object on to a surface. It accepts a

 message to specify a list of possible objects,
positioning configuration. 

Using MoveIt! actions assure the success of safe and complete pick and place tasks, but a lot
of pre-planned information is required, making them difficult to use in advanced complex
and dynamic robotic applications.
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Calculating grasp poses with GPD
In this section, we will present Grasp Pose Detector (  ), a
ROS package able to detect 6-DOF grasp poses for two-finger grippers, such as the one for
our  manipulator. Grasping poses are detected using 3D point clouds, so
we can use the depth sensor of the robot to find object grasping poses. This package exploits
deep learning and GPU calculation to detect different grasping poses for all the objects
detected into the scene. To download this package, just clone the following code repository:

$ git clone https://github.com/atenpas/gpd.git

Owing to the use of GPU parallel calculation, to use this package an Nvidia video card is
needed. To compile the GPD, the following libraries must be installed:

$ sudo apt-get install libgflags-dev libprotobuf-dev liblmdb-dev
libleveldb-dev libsnappy-dev libatlas3-base

In addition, GPD uses the Caffe framework ( ) to
implement deep learning functionalities. To install this software, follow these lines of code:

$ git clone https://github.com/BVLC/caffe.git
$ cd caffe && mkdir build && cd build
$ cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr ..
$ make && sudo make install

If everything goes well, we can build an ROS workspace to compile the GPD package. After
completion, we we can test the Grasping Pose Detector on an example dataset, using the
following command:

$ roslaunch gpd tutorial0.launch
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Within the GUI that appears, press r to center the view, and q to quit the GUI and load the
next visualization. The output should show several grasping poses for a point cloud test set,
as shown in the next diagram:

To test the GPD package on our robotic system, we can use Gazebo with a simulation scene
containing an object to grasp:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_bringup_grasping_gpd.launch
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After we've spawned the simulation scene, we can lunch the GPD software with the
following command:

$ roslaunch seven_dof_arm_test gpd.launch

We can use Rviz to visualize the possible grasping poses generated by GPD:

In the following code, we will see some entries of the Grasping pose Detector launch file:
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Firstly, we must inform the system of the geometry of the end effector. In the
 launch file, a list of parameters are included to define the width of the

gripper fingers, and its depth:

Here, we define the topic name of the point clouds and the number of samples used to
detect the grasping pose; of course, a higher number of samples requires more computation
time. Finally, the  parameter specifies the number of grasping poses to
provide as output. These poses are scored, and the one with the highest score is at the top of
the list.

After selecting a grasp, you can get information about where to place the robot hand from
the  topic. In this message, the list of grasping
configurations is published, defining the position and the orientation of the end effector
during the picking action. In particular, this message contains the following field:

: A 3D point specifying the centred base of the robotic hand
: A 3D point specifying the centered top of the robotic hand

: A 3D point specifying the centred position on the object surface
: A 3D vector indicating the grasp approaching direction
: A 3D vector indicating the grasping surface orientation

: A 3D vector perpendicular to the approaching direction vector
: The opening width of the gripper needed to grasp the object
: The grasping pose score

Sadly, right now no direct integration between GPD and MoveIt! are provided.

Pick and place action in Gazebo and real robot
The grasping sequence executed in the MoveIt! demo uses fake controllers. We can send the
trajectory to the actual robot or Gazebo. In Gazebo, we can launch the grasping world to
perform this action.

In the real hardware, the only difference is that we need to create joint trajectory controllers
for the arm. One of the commonly used hardware controllers is the DYNAMIXEL
controller. We will learn more about the DYNAMIXEL controllers in the next section.
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Understanding DYNAMIXEL ROS Servo
controllers for robot hardware interfacing
Till now, we have learned about MoveIt! interfacing using Gazebo simulation. In this
section, we will see how to replace Gazebo and put a real robot interface to MoveIt!. Let's
discuss the DYNAMIXEL servos and the ROS controllers.

The DYNAMIXEL servos
The DYNAMIXEL servos are smart, high-performance networked actuators for high-end
robotics applications. These servos are manufactured by a Korean company called
ROBOTIS ( ). These servos are very popular among robotics
enthusiasts because they can provide excellent position and torque control, and also
provide a variety of feedback, such as position, speed, temperature, voltage, and so on. One
of their useful features is that they can be networked in a daisy chain manner. This feature
is very useful in multi-joint systems, such as a robotic arm, humanoid robots, robotic
snakes, and others. The servos can be directly connected to PCs using a USB to
DYNAMIXEL controller, which is provided from ROBOTIS. This controller has a USB
interface, and when it is plugged into the PC, it acts as a virtual COM port. We can send
data to this port, and internally it will convert the RS 232 protocol to Transistor-Transistor
Logic (TTL), and in RS 485 standards. The DYNAMIXEL can be powered and then
connected to the USB to DYNAMIXEL controller to start working with it. DYNAMIXEL
servos support both TTL and RS 485 level standards. The following figure shows the
DYNAMIXEL servos, called MX-106, and USB To DYNAMIXEL controller:
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There are different series of DYNAMIXEL available in the market. Some of the series are
MX - 28, 64 and 106, RX - 28,64, 106, and so on. The following is the connection diagram of
DYNAMIXEL, USB to DYNAMIXEL to PC:

Multiple DYNAMIXEL devices can be connected together in sequence (or a daisy chain), as
shown in the preceding figure. Each DYNAMIXEL has a firmware setting inside its
controller. We can assign the ID of servo, the joint limits, the position limits, the position
commands, the PID values, the voltage limits, and so on, inside the controller. There are
ROS drivers and controllers for DYNAMIXEL, which are available at:

.

DYNAMIXEL-ROS interface
The ROS stack for interfacing the DYNAMIXEL motor is . This stack
contains an interface for DYNAMIXEL motors, such as MX-28, MX64, MX-106, RX-28, RX64,
EX106, AX-12, and AX-18. The stack consists of the following packages:

: This package is the driver package of DYNAMIXEL, which
can do low-level IO communication with DYNAMIXEL from the PC. This driver
has hardware interface for the previously mentioned series of servos, and can do
the read/write operation for DYNAMIXEL through this package. This package is
used by high-level packages, such as . There are only a
few cases when the user directly interacts with this package.

: This is a higher-level package that works using the
 package. Using this package, we can create a ROS controller

for each DYNAMIXEL joint of the robot. The package contains a configurable
node, services, and spawner script to start, stop, and restart one or more
controller plugins. In each controller, we can set the speed and the torque. Each
DYNAMIXEL controller can be configured using the ROS parameters, or can be
loaded by a YAML file. The  package supports
position, torque, and trajectory controllers.
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: These are the message definitions that are used inside the
 stack.

Interfacing 7 DOF DYNAMIXEL-based robotic
arm to ROS MoveIt!
In this section, we will discuss a 7 DOF robot manipulator called COOL arm-5000, which is
manufactured by a company called ASIMOV Robotics ( ), and
is shown in the following figure. The robot is built using DYNAMIXEL servos. We will see
how to interface a Dynamixel-based robotic arm to ROS using :
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COOL arm robots are fully compatible with ROS and MoveIt!, and are mainly used in
education and research. Following are the details of the arms:

Degree of Freedom: 7 DOF
Types of Actuators: DYNAMIXEL MX-64 and MX-28
List of Joints: Shoulder Roll, Shoulder Pitch, Elbow Roll, Elbow Pitch, Wrist Yaw,
Wrist Pitch, and Wrist Roll
Payload: 5 Kg
Reach: 1 meter
Work Volume: 2.09 m3
Repeatability: +/- 0.05 mm
Gripper with 3 fingers

Creating a controller package for a COOL arm
robot
The first step is to create a controller package for a COOL arm for interfacing to ROS. The
COOL arm controller package is available for download along with the book codes. Before
we create the package, we should install the  package:

$ sudo apt-get install ros-kinetic-dynamixel-controllers

The following command will create the controller package with the necessary
dependencies. The important dependency of this package is the 
package:

$ catkin_create_pkg cool5000_controller roscpp rospy dynamixel_controller
std_msgs sensor_msgs

The next step is to create a configuration file for each joint. The configuration file is called
, which contains a definition of each controller's name, its type, and its

parameters. We can see this file in the  folder. We have to
create parameters for the seven joints in this arm. The following is a snippet of this config
file:
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The controller configuration file mentions the joint name, package of the controller,
controller type, joint speed, motor ID, initial position, and minimum and maximum limits
of the joint. We can connect as many motors as we want and can create controller
parameters by including them in the configuration file. The next configuration file to create
is a  configuration. MoveIt! can only interface if the robot
has the  action server. The file called

 is put in the 
folder, and its definition is given in the following code:
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After creating the  controller, we need to create a
 node for combining and publishing the joint states of the

robotic arm. You can find this node from the  folder named
. The function of this node is to subscribe controller states

of each controller with the message type of , and combine each
message of the controller into the  messages and publish in
the  topic. This message will be the aggregate of the joint states of all the
DYNAMIXEL controllers. The definition of , which
runs the  node with its parameters, follows. It is placed in the

 folder:

We can launch the entire controller using the following launch file, called
, which is inside the  folder. The code inside this

launch file will start communication between the PC and the DYNAMIXEL servos, and will
also start the controller manager. The controller manager parameters are serial port, baud
rate, servo ID range, and update rate:
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In the next step, it should launch the controller spawner by reading the controller
configuration file:

In the next section of the code, it will launch the  controller from the
controller configuration file:
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The following section will launch the  node and the robot
description from the  package:

This is all about the COOL arm controller package. Next, we need to set up the controller
configuration inside the MoveIt! configuration package of the COOL arm, called

.

MoveIt! configuration of the COOL Arm
The first step is to configure the , which is inside the

 folder. The definition of this file follows. For now, we
are only focusing on moving the arm, and not on handling the gripper control. So the
configuration only contains the arm group joints:
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The following is the definition of
the  inside

:

After configuring MoveIt!, we can start working on the arm. Apply a proper power supply
the arm and connect it to connect your PC to the USB of the DYNAMIXEL. We will see a
serial device generate; it may be either , or . According to the
device, change the port name inside the controller launch file.

Start the  arm controller using the following command:

$ roslaunch cool5000_controller cool5000_controller.launch

Start the RViz demo, and start path planning. If we press the Execute button, the trajectory
will execute on the hardware arm:

$ roslaunch cool5000_moveit_config 5k.launch



Exploring the Advanced Capabilities of ROS-MoveIt! Chapter 12

[ 438 ]

A random pose (which is shown in RViz) and the COOL arm is shown in the following
image:

Questions
What is the role of the FCL library in MoveIt!?
How does MoveIt! build OctoMap of the environment?
How could a robot avoid obstacles after grasped an object?
What is the main aim of the GPD ROS package?
What are the main features of DYNAMIXEL servos?
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Summary
In this chapter, we explored some advanced features of MoveIt!, and how to interface it into
a real hardware. The chapter started with a discussion on collision checking using MoveIt!.
We saw how to add a collision object using MoveIt! APIs, and also saw the direct importing
of mesh to the planning scene. We discussed a ROS node to check collision using MoveIt!
APIs. After learning about collisions, we moved to perception using MoveIt!. We connected
the simulated point cloud data to MoveIt! and created an OctoMap in MoveIt!. The next
topic we discussed was how to perform pick and place actions to manipulate objects in the
scene. We presented a ROS package to autonomously generate grasping poses starting from
object point clouds. After discussing these things, we switched to hardware interfacing of
MoveIt! using dynamixel servos and its ROS controllers. In the end, we saw a real robotic
arm called COOL arm and its interfacing to MoveIt!, which was completely built using
DYNAMIXEL controllers. In the next chapter, we will discuss how to interface Matlab, a
world-renowned numerical computing environment with ROS.
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Using ROS in MATLAB and

Simulink
In previous chapters, we discussed how to simulate and control robots implementing ROS
nodes in C++. In this chapter, we will learn how to create ROS nodes using MATLAB, a
powerful piece of software that provides several toolboxes with algorithms and hardware
connectivity, for developing autonomous robotic applications for ground vehicles,
manipulators, and humanoid robots. In addition, MATLAB integrates Simulink: a block
diagram environment for model-based design, allowing the implementation of our control
programs through a graphical editor. In this chapter, we will also discuss how to implement
robotic applications using Simulink.

The first part of this chapter is dedicated to a brief introduction to MATLAB and the
Robotic System Toolbox. After we have learned how to exchange data between ROS and
MATLAB, we will implement an obstacle avoidance system for the differential drive mobile
robot, Turtlebot, showing how simple it is to use components already available in the
Robotic System Toolbox and minimize the number of elements to develop in the system. In
the second part of the chapter, we will introduce Simulink, showing an initial model as an
example, and then discuss a publisher and a subscriber model to demonstrate the Simulink
and ROS communication interface. Finally, a control system to regulate the orientation of
the Turtlebot robot is developed in Simulink and tested in the Gazebo simulator.
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The following are the main topics discussed in this chapter:

Getting started with MATLAB and MATLAB-ROS and the Robotic System
Toolbox
Working with ROS topics in MATLAB
Developing a robotic application using MATLAB and Gazebo
Working with Simulink and the Simulink-ROS interface
Developing a control system in Simulink and Gazebo

Getting started with MATLAB and MATLAB-
ROS
MATLAB (MATrix LABoratory) is a multi-platform numerical computing environment
widely used by industries, universities, and research centers. MATLAB was born as a 
mathematical software, but now it offers a lot of additional packages for different areas,
such as control design, plotting, image processing, robotics, and so on. MATLAB is a
proprietary product of MathWorks and it's not a free software. Usually, free licenses are
distributed for student and academic institutions. You can use MATLAB on Windows,
GNU/Linux, and macOS. After you have launched it, the main window of MATLAB will
appear with its default layout, as shown in the following screenshot:
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This window includes three main panels:

Current Folder: This shows local files
Command Window: This is a command line to enter MATLAB commands or run
MATLAB scripts
Workspace: This shows data created from the Command Window or in the
MATLAB scripts

Using the Command Window, you can issue mathematical commands and create variables
that will be shown in the Workspace. The same window can be used to view MATLAB
function documentation. In fact, all the built-in MATLAB functions have supporting
documentation, including examples and descriptions of the function inputs, outputs, and
calling syntax. You can access the documentation using  or  commands. The first
one will open an external window containing the documentation, while the second one will
display the documentation in the Command Window. Let's see how to get the
documentation about the  function:

>> doc mean

You could also use this command:

>> help mean

Getting started with the Robotic System Toolbox
and ROS-MATLAB interface
Beyond the standard functions provided by the default installation of MATLAB, several
external toolboxes give you access to other utilities and libraries. To enable the
communication between ROS and MATLAB, we need the ROS-MATLAB interface, which is
part of the Robotic System Toolbox
( ). This toolbox provides several
algorithms that help us to develop autonomous robot applications, such as path planners,
obstacle avoidance methods, state estimations, kinematics, and dynamics algorithms.
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In addition, this toolbox implements the interface between MATLAB and ROS that enables
developers to test and port their applications on real robots and robotic simulators. You can
add the Robotic System Toolbox from the packages list during the MATLAB installation, or
purchase it from the toolbox website:

Using the Robotic System Toolbox, we can transform MATLAB into a real ROS node able to
exchange information with other nodes of the system and directly control simulated or real
ROS-enabled robots using topics and services. The following block diagram depicts the
connection between MATLAB and ROS. After connecting MATLAB to a ROS master node,
it can fetch data to process from the robot or other ROS nodes. MATLAB could itself
initialize a ROS master node in order to manage the communication with the nodes of the
network, or it could be connected to another remote ROS master, like any other element of
the ROS network. In addition, in the final version of the application, we are not forced to
run MATLAB on our computer to execute it, but we can deploy the developed application
as a typical C++ node:
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With the installation of the Robotic System Toolbox, we will have access to several ROS
commands equivalent to the ones used under Linux. To list these commands, you can enter
the following line in the Command Window:

>> help robotics.ros
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The output of this command is shown in the following figure:

To initialize the ROS-MATLAB interface, we can use the  command, while
 is used to stop it. By default,  creates a ROS master node in Matlab,

starting a  to communicate with the ROS network. We can see the
active ROS nodes after initializing  using the  list command:
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Using the default configuration of the ROS-MATLAB interface, we must set the
 environmental variable on the other node of the ROS network with the IP

address of the computer running MATLAB. If you are running MATLAB on Windows, you
can easily get the IP address of your computer by using the following command:

>> !ipconfig

Or you can use the following command if you are running MATLAB on Linux:

>> !ifconfig

The output of this command in Windows is shown in the following screenshot:

Otherwise, we can directly connect MATLAB to an active ROS network. In this case, we
must inform the ROS-MATLAB interface about the address of the computer/robot where
the ROS master is running. This is done with the following command:

>> setenv('ROS_MASTER_URI', 'http://192.168.1.131:11311')

In the next section, we will start to work with topic callbacks, initializing the ROS-MATLAB
interface and elaborating data directly from MATLAB scripts.
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Starting with ROS topics and MATLAB callback
functions
In this section, we will discuss how to publish and subscribe ROS messages using MATLAB
scripts. The first script that we analyze defines a typical template to develop the control
loop of our robot. Firstly, we will subscribe to an input topic, and, successively, we will
republish its value on an output topic for a certain amount of time. The complete source
code is contained in the , in the code provided with the book, or  you can clone
the following Git repository:

$ git clone https://github.com/jocacace/ros_matlab_test

Let's see the content of the  script:

Let's see how the script works:

In the preceding code, we initialize the MATLAB-ROS node. In this example, we want to
connect MATLAB to an external ROS network and make it able to both read and write data
on topics. For this reason, we should export both  and 
environmental variables. Change the IP addresses on the base of your system configuration:
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Then, we subscribe to the  topic while initializing the advertiser to the 
topic of the  type:

Finally, we use the  function to get the last message on the input topic,
while publishing the message on the  topic.

At this point, you can publish the desired message on the  topic, using the 
command line from one of the computers running Linux in the same network of the
MATLAB computer, and visualize the message published on the  topic. Before
running the MATLAB script, be sure to have correctly exported the  variable
on the computer where you want to publish the message in order to enable MATLAB to
receive the published data.

Now, you can run the script by typing its name in the Command Window:

>> talker

If everything has been correctly set, the output on the Linux machine should appear like in
the following screenshot:
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The previous script defines a typical template to implement the control loop of an
autonomous robot. Instead of continuously asking for the last message received on the
topics, we can define a callback function that is called every time that a new message is
received. In this way, we could write more complex control loops to handle the robot
behavior, asynchronously receiving multiple information from ROS topics. In the next
example, we will start to connect ROS-MATLAB to Gazebo, simulating the Turtlebot robot
and plotting the value of its laser sensor using MATLAB.

To run the Gazebo simulation, we will use the  package:

$ roslaunch turtlebot_gazebo turtlebot_world.launch

After starting Gazebo, different topics are published, among which is  . In this
example, we need the following MATLAB functions:

: This initializes the ROS-MATLAB interface subscribing to the
desired laser scanner topic and plots the laser data at a desired frame rate

: This receives and stores the value of the laser scanner data

Let's look at the code of the  script:
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After setting up the ROS-MATLAB interface, we initialize the subscriber to the laser scan
topic:

With this line, we demand, the  function handles the data contained in the
 topic. To exchange data between different MATLAB scripts, we use a global variable:

Finally, we plot the laser scanner data of the laser data for 25 seconds:

Let's now look at the code of the  function:

In this function, we just save the value of the laser scanner data.

After launching the Gazebo simulation, we can run the MATLAB script:

>> plot_laser
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The output of the the default placement of the scene objects is shown in the following
screenshot:
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Implementing an obstacle avoidance system for a
Turtlebot robot
Until now, we have used MATLAB only to exchange data using ROS topics. In this section,
we are going to demonstrate how easy it is to create a robotic application for a mobile robot
using MATLAB and the Robotic System Toolbox. We will design an obstacle avoidance
system for a differential mobile robot, that allows the Turtlebot robot to navigate a crowded
environment without colliding with any obstacle. We will present a MATLAB script that
will set the control velocities of the robot to generate a random movement. At the same
time, the laser scanner data of the sensor of the robot will be used to avoid obstacles. To 
implement this behavior, we will rely on the Vector Field Histogram (VFH) algorithm to
compute the obstacle-free steering directions of the robot, based on range sensor readings.
This algorithm is already provided by the Robotic System Toolbox in the

 class. Finally, after some navigation time, some log
data will be plotted, using MATLAB function. This could help developers to debug our
application.

The complete source code of the script that we are going to discuss can be found in the
 source file:
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Let's explain the previous script:

We call this script by specifying the IP address of the computer that is running 
and the IP address of the MATLAB computer. In this way, we can initialize the ROS-
MATLAB interface:

Now we subscribe to the laser scan message, and declare variables to advertise the
commands to control the robot. The  function returns both the instantiated
publisher, , and the type of the message to send via the publisher, . In
addition, we subscribe to the odometry of the robot to track its velocity during the motion.

We are now ready to instantiate the VFH object to implement our obstacle avoidance
system:

Some parameters are needed by the VFH algorithm. In particular, these are:

: The limits for laser readings, specified with a two-dimensional
vector continuing the minimum and maximum ranges to consider a valid laser
measure

: The dimension of the robot specified in meters
: The minimum turning radius, in meters, of the robot

: The maximum space to allow between the robot and the
obstacles:
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We are now ready to start the control loop that allows the motion of the robot. Firstly, we
define the control loop rate:

In the following, the motion control loop is described. We want to perform the control loop
for a desired amount of time. We can use  to track the elapsed
time. This function returns the elapsed time in seconds from the creation of the rate object.
Inside the control loop, we will read the sensor data from the laser scanner topic:

The  specifies the angle direction of the robot movement. Its value must be
expressed in radians, and the robot's forward direction is considered as zero radians. As
already stated, the target direction in our example is randomly calculated at each control
loop:

Then, we can call the  method to calculate an obstacle-free steering direction on the base
of the input laser scanner data and the actual desired direction of the movement:

If a valid steering direction exists, we need to calculate the rotation velocity to send to the
robot to actuate it. To do this, we will using the following function:
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This function returns the angular velocity for a differential drive robot expressed in rad/s,
given a steering direction in the robot's frame, like in our case. In addition, the second 
parameter of the function represents a maximum velocity value in order to saturate the
calculated one. Finally, we plot the minimum distance of the robot from the detected
obstacles during its motion, the performed path, and the actuated angular and forward
velocities:

To test this example, first we need to launch the Turtlebot simulation scene on the computer
where we want to run :

$ roslaunch turtlebot_gazebo turtlebot_world.launch

Then we must invoke the MATLAB script with the correct IP address of our ROS network:

>> vfh_obstacle_avoidance( '192.168.1.105', '192.168.1.130' )
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While the robot will navigate the same environment depicted in Figure 8, an example of the 
output of MATLAB script is shown in the following screenshot:
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Getting started with ROS and Simulink
In the previous sections, we discussed how to interact with ROS using MATLAB. In this
section, we are going to use another powerful tool of MATLAB: Simulink. Simulink is a
graphical programming environment for modeling, simulating, and analyzing dynamical
systems. We can use Simulink to create a model of a system and simulate its behavior over
time.

In this section, we will start creating a first simple system outer from the ROS framework.
We will also discuss how to develop a ROS application using Simulink.

Creating a wave signal integrator in Simulink
To model a new system, let's start by opening Simulink. We can open it by typing the
following command in the Command Window:

>> Simulink

Then, you should choose to create a new blank model. To create a new system, we must
import the desired Simulink blocks that will compose it. These blocks can be directly
dragged and dropped into the model window from the Library Browser. To open the
Library Browser, select View | Library Browser from the model pane toolbar. For our first
system, we need four blocks:

Sine Wave: This generates a sinusoidal signal that will represent the input of our
system
Integrator: This integrates an input signal
Bus Creator: This combines multiple signals in one signal
Scope: This graphically visualizes the input signal
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After importing these blocks, your model pane should appear like in the following figure:

Some blocks must be properly configured with some parameters. For example, the Sine
Wave block requires the amplitude and the frequency sinusoidal signal to generate. To set
these values, we can explore block parameters with a double click on the desired block. To
make the system work, we need to properly connect the Simulink blocks, as shown in this
model:

Now that the model components have been connected, we can simulate the behavior of our
system. First, we should configure the duration of the simulation setting the Start and Stop
simulation time. Open the Simulation | Model Configuration Parameters window and
insert the desired value. In our example, we are considering  and 

:
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Now, we can press the play button in the model pane toolbar, while we check the output by
exploring the content of the Scope block, with a double click on it:

Note that, even if we inserted 10 seconds of simulation time, Simulink will not work in real
time but only simulate the increment of the time steps along the simulation. In this way, the
effective elapsed time during the simulation will be very short.

The model proposed in this example can be found in the book source code in the
 model file.
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Working with ROS messages in Simulink
Simulink support for ROS allows us to model systems that can be linked to other nodes of
the ROS network. This support includes a library of Simulink blocks for sending and
receiving messages via topics. When we start the simulation of the developed model,
Simulink will try to connect to a ROS network, which can be running on the same computer
where Simulink is or on another remote machine. Once this connection is established,
Simulink exchanges messages with the ROS network until the simulation is terminated. As
we did in the previous section, we will start by showing how to read and write data, using
ROS topics, and then we will discuss how to create a more complex system to control the
Turtlebot robot simulated in Gazebo.

Let's start to create two different Simulink models. In one model, we are going to develop a
message publisher while in the other one we will implement a simple subscriber. These
models can be found in the source code directory, , called

 and , respectively.

Publishing a ROS message in Simulink
To publish a ROS message in Simulink, we mainly need two blocks:

Publish: This block sends a message on the ROS network. Using block
parameters, we can specify the topic name and the message type.
Blank message: This block creates a blank message with the specified message
type.

Let's see how to connect these blocks to publish a  message on a
new topic, called . Get started by importing the blank message block from the
library browser and configuring the type of message by double-clicking on it. From the
block parameters pane, we can press the Select button to select the ROS message type from
a list, as shown in the following screenshot:



Using ROS in MATLAB and Simulink Chapter 13

[ 462 ]

Now we are ready to import the ROS publish block: drag and drop the block to the model
and double click on it to configure the topic name and the message type. Select Specify
your own for the topic source field in order to enter a desired topic name. Enter 
in the topic field. As we have already seen, we can select the type of the message to publish:
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Now, we must fill in the fields of the ROS message to publish before sending it into the ROS
network. We will use two other Simulink components to do this work. The first is the Sine
Wave, the sinusoidal signal generation already used in the first Simulink example. The 
second one is a signal bus assignment. In fact, a ROS message is represented as a bus signal
in the Simulink environment, allowing us to manage its field using the bus signal block.
Connect the output port of the blank message block to the bus input port of the
BusAssignment block. Connect the output port of the BusAssignment block to the input
port of the ROS publish block. Then configure the bus signal parameters: double-click on
the BusAssignment block. You should see ,  , and  (the signals comprising a

t message) listed on the left. Remove the element in the right list and
select both the  and  signals of the linear part of the message in the left list, click Select
>> , and then click OK to close the block mask. In this case, we will assign only the first two
components of the linear part of the  message:
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After completing the parameter configuration of the bus assignment module, the shape of
the block will change, accepting the value of the selected input signals. Now, we should
assign the desired value to publish to these components. We can do this by using the Sine
Wave block, as we did in the previous example. Drag and drop two sinusoidal signal
generators, linking them to the bus assignment block. The final model will look as follows:
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An additional block has been included in our publisher Simulink model: . This
block is needed to simulate a real-time behavior during the execution of our model,
implementing the ROS rate mechanism. Without this module, in fact, the execution rate of
this node will be very high, publishing ROS messages at its maximum frequency. The

 block is a special module called the MATLAB System block and allows us to
instantiate and invoke a  object. After importing this block into the system
model, we should select the System object name to invoke or to create a new one:

The code of the  block is in the  source file:
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In this code, we defined the  class, which has two objects: the rate specifying the
loop frequency, and , which implements the  mechanism. The
most important methods of this class are the  method that is called at the
start of the simulation and is used to initialize the class stuff, and the

 method that is invoked at each step time in order to regulate the execution
time of the simulation.

Now that our model is complete, we require a never-ending duration for our simulation
setting to  the  of the simulation. In this way, we can terminate the
simulation when desired by using the stop button. Now we can play the simulation and
read the content published on the  topic.

Subscribing to a ROS topic in Simulink
To subscribe to a ROS topic, we only need the Subscribe block. Even in this case, we must
configure the type of the message to read and the topic name. Let's select the

 topic in order to read the data sent to the ROS network by the publisher
Simulink model. The Subscriber block has two outputs: IsNew, a Boolean signal that
defines if a new message is received, and Msg, which contains the received message:
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In the publisher model, if we have used a bus creator to aggregate multiple data in one
message, then we need to split the data of the message. For this, we will use a bus selector
block with one input and two outputs: the  and  fields of the linear part of the twist
message. To create this block, configure it in order to have, as the selected signals, only the

 and  parts of the twist message:
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In our implementation, we include the bus selector into a Subsystem, another type of block 
that can be enabled/disabled with the use of an enable port. In this way, we can link the
IsNew field of the Subscriber block to the Subsystem, and enable its output only if a new
message is received. To explore the content of a subsystem, it is enough to double click on
it, like any other block. Finally, we can add two scope blocks to plot the output of the
subsystem. The final linked model is shown in the following figure:

We can now run both the publisher and subscriber systems and check the output on the
scope blocks.
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Developing a simple control system in
Simulink
Now that we have learned how to interface Simulink and ROS, we can try to implement a
more complex system that is able to control a real or simulated robot. We will continue to
work with the Turtlebot robot simulated in Gazebo, and we will see how to control its
orientation in order to bring it to a desired value. In other words, we will implement a
control system that will measure the orientation of the robot using its odometry, comparing
this value with the desired orientation and obtaining the orientation error. We will use a
PID controller to calculate the velocity to actuate the robot to reach the final desired
orientation, setting the orientation error to zero. This controller is already available in
Simulink, so we don't need to implement it by ourselves. Let's start to discuss all the
elements of our model:

The input of the system is represented by the  message, which contains information
about the actual pose of the robot and its velocity, and the constant block, which specifies
the desired orientation of the Turtlebot.
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The first thing that our model does is to estimate the orientation from the  message.
The orientation is estimated by considering the angular velocity of the robot, integrating it
at each time step. We use a MATLAB function block to threshold the velocity value of the

 message to discard noise measurements. To integrate the velocity data, we use the
Integrator block provided by Simulink.

Again, we include this part in a subsystem:

The MATLAB function block allows developers to translate their own MATLAB functions
into Simulink blocks. In this case, the code function is as follows:

We extract the  value from the received twist message that specifies the angular
velocity with respect to the  axes, representing which direction is rotating the robot. We
consider as noise the values below 0.01 rad/s.

Now that we know how to rotate the robot, we can calculate the orientation error by
considering the desired orientation (that is constant) using the Simulink sum block. To
change the desired orientation, we can double click on the constant block and configure its
parameters.
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Finally, we can implement our robot controller. For this scope, we will use a PID controller,
one of the most commonly used control loop mechanisms with feedback. This kind of
controller is widely used both in industry and university settings  for a variety of
applications. It continuously tries to minimize the input error, applying a control output
based on proportional, integral, and derivative terms, which give the controller its name.
After dragging and dropping this controller in the model, its response to the input data will 
depends on P, I, and D terms (called gains) that can be properly tuned from the block
proprieties. Finally, we must publish the data generated by the PID controller on the

 topic to actuate the robot in the Gazebo simulation. As usual,
we can check on the scope block how the orientation error decreases after starting the
simulation.

Before applying the calculated velocity, we use another MATLAB function block to set the
sign of the velocity. In fact, considering the sign of the velocity, the robot will rotate in two
different directions: a negative velocity will make the robot rotate in a clockwise direction,
while a positive velocity will make the robot rotate in a counter-clockwise direction. In our
case, we want to choose the direction that will bring the robot more quickly to its direction:

This function block receives as input the calculated velocity, the commanded, and the actual
orientation of the robot. When the measured orientation is lower than the commanded one,
the robot must rotate in a clockwise direction, or otherwise in a counter-clockwise direction.

Configuring the Simulink model
Now that our model is fully connected, we only need to configure and simulate it. Firstly,
we need to import the  module to synchronize the Simulink simulation. In this
case, a higher frame rate assures a better behavior, so you can double click on the 
block and set the rate to 100 Hz. Then, open the Model Configuration Parameters by
clicking on Simulation | Model Configuration Parameters from the main menu bar of the
model window or just type Ctrl + E. A suggested configuration is to use a Fixed-step size
solver, specifying the desired step size (we can use  seconds):
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Now that the model has been configured, we can simulate it. As in the last example, launch
the Turtlebot simulation:

$ roslaunch turtlebot_gazebo turtlebot_world.launch
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Then push the play button to start the Simulink simulation. On Gazebo, you should see the
robot that tries to reach the desired orientation, while on Simulink, you can use the scope
panels to monitor the orientation error and the generated velocity command:
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Questions
What is MATLAB and the Robotic System Toolbox?
How can we connect MATLAB with the ROS network?
Why is MATLAB useful to develop robotic applications?
What is Simulink?
What is a PID controller and how can we implement it using Simulink?

Summary
In this chapter, we learned how to use MATLAB to develop simple or complex robotic
applications and how to connect MATLAB with the other ROS nodes running on the same
computer or in other nodes of the ROS network. We discussed how to handle topics in
MATLAB and how to develop a simple obstacle avoidance system for a differential driver
robot, reusing functions already available in the MATLAB toolboxes. Then, we introduced
Simulink, a graphically-based program editor that allow developers to implement, simulate,
and validate their dynamic system models. We learned how to get and set data into the ROS
network and how do develop a simple control system that controls the orientation of the
Turtlebot robot. In the next chapter, we will present ROS-Industrial, a ROS package to
interface industrial robot manipulators to ROS, and how to control it using the power of
ROS, such as MoveIt!, Gazebo, RViz, and so on.
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Until now, we have been mainly discussing interfacing personal and research robots with
ROS, but one of the main areas where robots are extensively used is in industry. Does ROS
support industrial robots? Are there any companies that use ROS for handling
manufacturing processes? The ROS-Industrial package comes with a solution to interface
and control industrial robot manipulators to ROS, using its powerful tools, such as MoveIt!,
Gazebo, and RViz.

In this chapter, we will discuss the following topics:

Understanding and getting started with ROS-Industrial
Creating a URDF for an industrial robot and interfacing it with MoveIt!
Working with MoveIt! configuration of a Universal Robots arm and ABB robots
Understanding ROS-Industrial robot support packages
Understanding ROS-Industrial robot client and driver packages
Working with IKfast algorithms and the MoveIt! IKFast plugin

Let's start with a brief overview of ROS-Industrial.
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Understanding ROS-Industrial packages
ROS-Industrial basically extends the advanced capabilities of ROS software to industrial
robots employed in manufacturing processes. ROS-Industrial consists of many software
packages, which help us to control industrial robots. These packages are BSD
(legacy)/Apache 2.0 (preferred) licensed programs, which contain libraries, drivers, and 
tools with a standard solution for industrial hardware. ROS-Industrial is now guided by the
ROS-Industrial Consortium. The official website of ROS-Industrial (ROS-I) can be found
at :

Goals of ROS-Industrial
The main goals behind ROS-Industrial development are as follows:

Combining the strength of ROS with the existing industrial technologies to
explore the advanced capabilities of ROS in the manufacturing process
Developing a reliable and robust software for industrial robot applications
Providing an easy way to do research and development in industrial robotics
Creating a wide community supported by researchers and professionals for
industrial robotics
Providing industrial-grade ROS applications and becoming a one-stop location of
industry-related applications
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ROS-Industrial  a brief history
In 2012, the ROS-Industrial open source project started as the collaboration of Yaskawa
Motoman Robotics ( ), Willow Garage
( ), and the Southwest Research Institute (SwRI)
( ), for using ROS in industrial manufacturing. The ROS-I was 
founded by Shaun Edwards in January 2012.

In March 2013, the ROS-I Consortium Americas was launched, led by SwRI, and ROS-I
Consortium Europe was launched, led by Fraunhofer IPA in Germany.

Benefits of ROS-Industrial
Let's look at the benefits ROS-I provides to the community:

Explores the features in ROS: The ROS-Industrial packages are tied to the ROS
framework so that we can use all the ROS features in industrial robots too. Using
ROS, we can create custom IK solvers for each robot and implement object
manipulation, using 2D/3D perception.
Out-of-the-box applications: The ROS interface enables advanced perception in
robots for working with picking and placing complex objects.
Simplifies robotic programming: ROS-I eliminates teaching and planning paths
of robots and, instead, automatically calculates a collision-free optimal path for
the given points.
Open source: ROS-I is open source software that allows commercial use without
any restrictions.

Installing ROS-Industrial packages
Installing ROS-I packages can be done by using package managers or building from the
source code. If we have installed the  installation, we can use
the following command to install ROS-Industrial packages on Ubuntu, working with ROS
Kinetic:

$ sudo apt-get install ros-kinetic-industrial-core
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The preceding command will install the core packages of ROS-Industrial packages. The
 stack includes the following set of ROS packages:

: This stack contains packages and libraries for supporting
industrial robotic systems. The package consists of nodes for communicating
with industrial robot controllers and industrial robot simulators, and also
provides ROS controllers for industrial robots.

: This package contains nodes, launch files, and so on
that are going to be deprecated. The files inside this package could be deleted
from the repository in the next ROS versions, so we should look for the
replacement of these files before the content is going to be deleted.

: This package contains message definitions, which are
specific to the ROS-Industrial packages.

: This is a part of ROS-Industrial packages that is a standard
message protocol containing a simple messaging framework for communicating
with industrial robot controllers.

: This package contains a generic robot client for
connecting to industrial robot controllers, which is running an industrial robot
server and can communicate using a simple message protocol.

: This package simulates the industrial robot
controller, which follows the ROS-Industrial driver standard. Using this
simulator, we can simulate and visualize the industrial robot.

: This package contains libraries and
plugins for filtering the trajectories, which are sent to the robot controller.

Block diagram of ROS-Industrial packages
The following diagram is a simple block diagram representation of ROS-I packages, which
are organized on top of ROS. We can see the ROS-I layer on top of the ROS layers. We can
see a brief description of each of the layers for better understanding. The following diagram
is taken from the ROS-I wiki page ( ):

The ROS GUI: This layer includes the ROS plugin-based GUI tools layer, which
consists of tools such as RViz, , and so on
The ROS-I GUI: These GUIs are standard industrial UIs for working with
industrial robots that may be implemented in the future
The ROS Layer: This is the base layer in which all communications are taking
place
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The MoveIt! Layer: The MoveIt! layer provides a direct solution to industrial
manipulators in planning, kinematics, and pick and place
The ROS-I Application Layer: This layer consists of an industrial process
planner, which is used to plan what is to be manufactured, how it will be
manufactured, and what resources are needed for the manufacturing process
The ROS-I Interface Layer: This layer consists of the industrial robot client,
which can be connected to the industrial robot controller using the simple
message protocol
The ROS-I Simple Message Layer: This is the communication layer of the
industrial robot, which is a standard set of protocols that will send data from the
robot client to the controller and vice versa
The ROS-I Controller Layer: This layer consists of vendor-specific industrial
robot controllers
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After discussing the basic concepts, we will start to interface an industrial robot to ROS
using ROS-Industrial. Firstly, we will show how to create a URDF model of an industrial
robot and how to create a proper MoveIt! configuration for it. Then, we will discuss how to
control real and simulated Universal Robots and Abb industrial manipulators, analyzing all
the necessary elements of a ROS-I package. Finally, we will work with the Ikfast algorithm
and plugin to speed up kinematic calculation with MoveIt!.

Creating a URDF for an industrial robot
Creating the URDF file for an ordinary robot and an industrial robot are the same, but
industrial robots require some standards that should be strictly followed during their URDF
modeling, which are as follows:

Simplify the URDF design: The URDF file should be simple and readable and
only need the important tags
Develop a common design: Develop a common design formula for all industrial
robots by various vendors
Modularize the URDF: The URDF needs to be modularized using XACRO
macros and it can be included in a large URDF file without much hassle

The following points are the main differences in the URDF design followed by ROS-I.

Collision-aware: The industrial robot IK planners are collision-aware, so the
URDF should contain an accurate collision 3D mesh for each link. Every link in
the robot should export to STL or DAE with a proper coordinate system. The
coordinate system that ROS-I is following is X-axes pointing forward and Z-axes
pointing up when each joint is in the zero position. It is also to be noted that, if
the joint's origin coincides with the base of the robot, the transformation will be
simpler. It will be good if we are putting robot-based joints in the  zero position
(origin), which can simplify the robot design. In ROS-I, the mesh file used for
visual purposes is highly detailed, but the mesh file used for collision will not be
detailed, because it takes more time to perform collision checking. In order to
remove the mesh details, we can use tools such as MeshLab
( ), using its option (

).



ROS for Industrial Robots Chapter 14

[ 481 ]

URDF joint conventions: The orientation value of each robot joint is limited to
single rotation, that is, out of the two orientation ( , , and ) values,
only one value will be there.
Xacro macros: In ROS-I, the entire manipulator section is written as a macro
using . We can add an instance of this macro in another macro file, which
can be used for generating a URDF file. We can also include additional end-
effector definitions on this same file.
Standards frames: In ROS-I, the  frame should be the first link and

 (tool-zero) should be the end-effector link. Also, the  frame should
match with the  of the robot controller. In most cases, the transform from

 to  is treated as fixed.

After building the  file for the industrial robot, we can convert to URDF and verify it
using the following command:

$ rosrun xacro xacro -inorder -o <output_urdf_file> <input_xacro_file>
$ check_urdf <urdf_file>

Next, we can discuss the differences in creating the MoveIt! configuration for an industrial
robot.

Creating the MoveIt! configuration for an
industrial robot
The procedure for creating the MoveIt! interface for industrial robots is the same as the
other ordinary robot manipulators, except in some standard conventions. The following
procedure gives a clear idea about these standard conventions:

Launch the MoveIt! setup assistant by using the following command:1.

$ roslaunch moveit_setup_assistant setup_assistant.launch

Load the URDF from the robot description folder or convert xacro to the URDF2.
and load to the setup assistant.
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Create a Self-Collisiona matrix with a Sampling Density of about ~ 80,000. This3.
value can increase the collision checking in the arm.
Add a Virtual Joints matrix, as shown in the following screenshot. Here the4.
virtual and parent frame names are arbitrary:

In the next step, we are adding Planning Groups for manipulator and End5.
Effector. Here, also, the group names are arbitrary. The default plugin is KDL; we
can change it even after creating the MoveIt! configuration:
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The Planning Groups, that is, the manipulator plus the endeffector6.
configuration, will be shown like this:

We can assign Robot Poses, such as home position, up position, and so on. This7.
setting is an optional one.
We can assign End Effectors, as shown in the following screenshot; this is also an8.
optional setting:
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After setting the end effector, we can directly generate the configuration files. It9.
should be noted that the  package should be named as

, where  is the name of the URDF
file. Also, if we want to move this generated  package to another PC, we
need to edit the  file, which is inside the  package.
We should change the absolute path to the relative path. Here is an example of
the  robot. We should mention the relative path of URDF and SRDF
in this file, as follows:

Updating the MoveIt! configuration files
After creating the MoveIt! configuration, we should update the  file
inside the  folder of the MoveIt! package. Here is an example of

:
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We should also update  about the joint information. Here is a code
snippet of :

We can also change the Kinematic solver plugin by editing the  file.
After editing all the configuration files, we need to edit the 
file
( ).

Here is an example of the  file:

After creating the controller manger, we need to create the
 file. Here is an example of this file:
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Testing the MoveIt! configuration
After editing the configuration and launch files in the MoveIt! configuration, we can start
running the robot simulation and can check whether the MoveIt! configuration is working
well or not. Ensure that the  package is installed properly.
Here are the steps to test an industrial robot:

Start the robot simulator.1.
Start the MoveIt! planning execution launch file using the following command2.
line:

$ roslaunch <robot>_moveit_config
moveit_planning_execution.launch

Open RViz and load the RViz Motion planning plugin, using the Plan and3.
Execute button. We can plan and execute the trajectory on the simulated robot.

Installing ROS-Industrial packages of 
Universal robotic arms
Universal Robots ( ) is an industrial robot
manufacturer based in Denmark. The company mainly produces three arms: UR3, UR5,
and UR10. The robots are shown in the following figure:
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The specifications of these robots are given in the following table:

Robot UR-3 UR-5 UR-10

Working radius 500 mm 850 mm 1,300 mm

Payload 3 kg 5 kg 10 kg

Weight 11 kg 18.4 kg 28.9 kg

Footprint 118 mm 149 mm 190 mm

In the next section, we will install the Universal Robots packages and work with the
MovetIt! interface to simulate industrial robots in Gazebo.

Installing the ROS interface of Universal Robots
We can install the Universal Robots packages by using the Ubuntu/Debian package
manager:

$ sudo apt-get install ros-kinetic-universal-robot

Or, we can directly download these packages from the following repository:

$ git clone https://github.com/ros-industrial/universal_robot.git

The Universal Robot packages are:

: This package consists of the robot description and Gazebo
description of UR-3, UR-5, and UR-1.

: This package contains client nodes, which can communicate with the
UR-3, UR-5, and UR-10 robot hardware controllers.

: This package consists of launch files to start communication with
the robot hardware controllers to start working with the real robot.

: This package consists of Gazebo simulations of UR-3, UR-5, and
UR-10.

: This package contains ROS messages used for communication between
various UR nodes.
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: These are the  config files of Universal Robot
manipulators. One different package exists for each type of arm
(  and ).

: This package contains kinematic solver plugins for UR-3, UR-5,
and UR-10. We can use this solver plugin in MoveIt!

After installing or compiling the Universal Robots packages, we can launch the simulation in
Gazebo of the UR-10 robot by using the following command:

$ roslaunch ur_gazebo ur10.launch

We can see the robot controller configuration file for interfacing into the MoveIt! package.
The following YAML file defines the  controller. It is placed in the

 folder with the name :
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Understanding the Moveit! configuration of a
Universal Robot arm
The MoveIt! configuration for Universal Robot arms is in the  directory of each

 package (  for the UR-10 configuration).

Here is the definition of the  of UR-10:
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In the same directory, we can find the kinematic configuration: . This file
specifies the IK solvers used for the robotic arm. For the UR-10 robot, the content of the
kinematic configuration file is shown here:

The definition of  inside the  folder
is given as follows. This launch file loads the trajectory controller configuration and starts
the trajectory controller manager:

After discussing these files, let's see how to plan a motion using MoveIt! and simulate it
using Gazebo:

Start the simulation of UR-10 with joint trajectory controllers:1.

$ roslaunch ur_gazebo ur10.launch

Start the MoveIt! nodes for motion planning. We can set , to test2.
MoveIt! only in simulation:

$ roslaunch ur10_moveit_config
ur10_moveit_planning_execution.launch sim:=true



ROS for Industrial Robots Chapter 14

[ 492 ]

Launch RViz with the MoveIt! visualization plugin:3.

$ roslaunch ur10_moveit_config moveit_rviz.launch config:=true

We can move the end-effector position of the robot and plan the path by using the Plan
button. When we press the Execute button or the Plan and Execute button, the trajectory
should send to the simulated robot, performing the motion in the Gazebo environment.

Getting started with real Universal Robots
hardware and ROS-I
After testing our control algorithms in simulation using Gazebo, we can start to perform
manipulation tasks with a real Universal Robots arm. The main difference between
performing a trajectory simulating the robot and using real hardware, is that we need to
start the driver that will contact the arm controller to set the desired joint positions.
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The default driver of Universal Robot arms is released with the  package of
ROS-I. This driver has been successfully tested with system versions ranging from 
to . The last version of Universal Robot controllers is , so the default version of
the ROS-I driver could be not fully compatible. For the newer versions of these systems
(  and up), it is recommended to use the unofficial  package.

To download , use the following Git repository:

$ git clone ur10_moveit_config ur10_moveit_planning_execution.launch
sim:=true

After downloading this package, we need to compile the workspace to be able to use the
driver.

The next step is to configure Universal Robots hardware to control it from our computer.
Firstly, we must enable the networking capabilities of the Universal Robot, using its teach-
pendant. Navigate into the Robot -> Setup Network Menu in order to select a proper
configuration compatible with our network. If you prefer to have a fixed internet address
for the robot, you must select the Static Address option and manually input the desired
address information. Anyway, select the DHCP option, and then apply the configuration.
After setting the IP address, it could be useful to check the connection status by pinging the
robot controller:

$ ping IP_OF_THE_ROBOT

If the controller replies to the ping command, the connection is successfully established, and
we can start to control the manipulator.

If your Universal Robots system has a version lower than , we can bring it up by
running the following command:

$ roslaunch ur_bringup ur10_bringup.launch robot_ip:=IP_OF_THE_ROBOT
[reverse_port:=REVERSE_PORT]

Replace the  with the IP address assigned to the robot controller. Then,
we can test the motion of the robot by using the following script:

$ rosrun ur_driver IP_OF_THE_ROBOT [reverse_port:=REVERSE_PORT]
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To operate with systems greater than , we can use launch files provided by the
 package:

$ roslaunch ur_modern_driver ur10_bringup.launch robot_ip:=IP_OF_THE_ROBOT
[reverse_port:=REVERSE_PORT]

The next step is to use MoveIt! to control the robot:

$ roslaunch ur10_moveit_config ur5_moveit_planning_execution.launch

$ roslaunch ur10_moveit_config moveit_rviz.launch config:=true

Note that for some desired robot configurations, MoveIt! could have difficulties with
finding plans with full joint limits. There is another version with lower restrictions of the
joint limits. This operative mode can be started simply by using the argument  in
the launch command:

$ roslaunch ur10_moveit_config ur5_moveit_planning_execution.launch
limited:=true

We have seen how to simulate and control a Universal Robot. In the next section, we will
work with ABB robots.

Working with MoveIt! configuration of ABB
robots
We will work with two of the most popular ABB industrial robot models: IRB 2400 and IRB
6640. The following are the images of these two robots and their specifications:
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The specification of these robotic arms is given in the following table:

Robot IRB 2400-10 IRB 6640-130

Working radius 1.55 m 3.2 m

Payload 12 kg 130 kg

Weight 380 kg 1,310-1,405 kg

Footprint 723x600 mm 1,107 x 720 mm

To work with ABB packages, clone the ROS packages of the robot into the 
workspace. We can use the following command to do this task:

$ git clone https://github.com/ros-industrial/abb
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Then, build the source packages using . Alternatively, we can also install
packages using the Ubuntu/Debian package management system. However, to follow the
reminder tutorial of this chapter, it is suggested to clone the ABB repository in your ROS
workspace. The following package will install the complete set of ABB robot packages:

$ sudo apt-get install ros-kinetic-abb

To launch the ABB IRB 6640 in RViz for motion planning, use the following command:

$ roslaunch abb_irb6640_moveit_config demo.launch

The RViz window will be open and we can start motion planning the robot in RViz:
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One of the other popular ABB robot models is the IRB 2400. We can launch the robot in
RViz by using the following command:

$ roslaunch abb_irb2400_moveit_config demo.launch
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Understanding the ROS-Industrial robot
support packages
The ROS-I robot support packages are a new convention followed for industrial robots. The
aim of these support packages is to standardize the ways of maintaining ROS packages for a
wide variety of industrial robot types of different vendors. Because of a standardized way
of keeping files inside support packages, we don't have any confusion in accessing the files
inside them. We can demonstrate a support package of an ABB robot and can see the
folders and files and their uses.

We have already cloned the ABB robot packages, and inside this folder we can see three
support packages that support three varieties of ABB robots. Here we are taking the ABB
IRB 2400 model  package: . This is the support package of
the ABB industrial robot model called IRB 2400. The following list shows the folders and
files inside this package:

: As the name of the folder, this contains the configuration files of joint
names, RViz configuration, and robot model specific configuration.

: Inside the  folder, there is a configuration file,
which contains the joint names of the robot that is used by the ROS controller.

: This folder contains the launch file definitions of this robot. These files
are following a common convention in all industrial robots.

: This file simply loads  on the
parameter server. According to the complexity of the robot, the number of xacro
files can be increased. This file loads all xacro files in a single launch file. Instead
of writing separate code for adding  in other launch files,
we can simply include this launch file.

: This launch file can visualize the loaded URDF. We can
inspect and verify the URDF in RViz. This launch file includes the preceding
launch files and starts the  and

 nodes, which helps to interact with the user on RViz.
This will work without the need for real hardware.

: This launch file visualizes the
current state of the real robot by running nodes from the ROS-Industrial driver
package with appropriate parameters. The current state of the robot is visualized
by running RViz and the  node. This launch file needs
a real robot or simulation interface. One of the main arguments provided along
with this launch file is the IP address of the industrial controller. Also note that
the controller should run a ROS-Industrial server node.
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: This launch file starts bi-
directional communication with the industrial robot controller to ROS and vice
versa. There are industrial robot client nodes for reporting the state of the robot
( ) and subscribing the joint command topic and issuing the
joint position to the controller ( ). This launch file also
requires access to the simulation or real robot controller and needs to mention the
IP address of the industrial controllers. The controller should run the ROS-
Industrial server programs too.

: This folder contains the set of standardized  files of the robot model.

: This is the xacro definition of a specific robot. It is not a
complete URDF, but it's a macro definition of the manipulator section. We can
include this file inside another file and create an instance of this macro.

: This is the top level  file, which creates an instance of the
macro, which was discussed in the preceding section. This file doesn't include
any other files other than the macro of the robot. This  file will be loading
inside the  file that we have already discussed.

: This is the URDF generated from the preceding  file, using
the  tool. This file is used when the tools or packages can't load 
directly. This is the top-level URDF for this robot.

: This contains meshes for visualization and collision
checking

: This folder contains mesh files for a specific robot
: This folder contains STL files used for visualization

: This folder contains STL files used for collision
checking

: This folder contains the test launch file to test all the
preceding launch files

: This launch file tests all the launch files

Visualizing the ABB robot model in RViz
After creating the robot model, we can test it using the  file. The
following command will launch the test interface of the ABB IRB 2400 robot:

$ roslaunch abb_irb2400_support test_irb2400.launch
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It will show the robot model in RViz with a joint state publisher node, as shown in the
following screenshot:

We can adjust the robot joints by adjusting the joint state publisher slider values. Using this
testing interface, we can confirm whether the URDF design is correct or not.

ROS-Industrial robot client package
The industrial robot client nodes are responsible for sending robot position/trajectory data
from ROS MoveIt! to the industrial robot controller. The industrial robot client converts the
trajectory data to  and communicates to the robot controller using the

 protocol. The industrial robot controller running a server and industrial
robot client nodes are connecting to this server and start communicating with this server.
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Designing industrial robot client nodes
The  package contains various classes to implement industrial
robot client nodes. The main functionalities that a client should have include updating the
robot current state from the robot controller, and also sending joint position messages to the
controller. There are two main nodes that are responsible for getting the robot state and
sending joint position values:

The  node: This node is responsible for publishing the robot's
current position, status, and so on
The  node: This node subscribes the robot's command topic
and sends the joint position commands to the robot controller via the simple
message protocol

The following figure gives the list of APIs provided by the industrial robot client:

We can briefly go through these APIs and their functionalities, as follows:

: This class contains methods to publish the current robot
position and status at regular intervals after receiving the position data from the
robot controller.

: The  class is a wrapper around a
class called . What it does is it listens to the 
robot connection and processes each message handling, using

. The  functionality is a
, and its function is to publish the joint position in the

 topic.
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: This is another , that can publish
the current robot status info in the  topic.

: This class contains methods to send the robot's
joint position to the controller when it receives a ROS trajectory command.

: This class is derived from the
 class, and it implements a method called

. This method sends an entire trajectory as a sequence of
messages to the robot controller. The robot controller will execute the trajectory in
the robot only after getting all sequences sent from the client.

: This class is the same as the preceding class except
in the implementation of the  method. This method sends
independent joint values to the controller in separate threads. Each position
command is sent only after the execution of the existing command. In the robot
side, there will be a small buffer for receiving the position to make the motion
smoother.

The list of nodes inside the industrial robot client are as follows:

: This node is running based on , which
can publish the current robot states

: This node runs
, which will download the trajectory in sequence

to the controller
: This node runs ,

which will send the joint position in parallel using threading
: This node provides a basic  interface

ROS-Industrial robot driver package
In this section, we will discuss the industrial robot driver package. If we take the ABB robot
as an example, it has a package called . This package is responsible for
communicating with the industrial robot controller. This package contains industrial robot
clients and launches the file to start communicating with the controller. We can check
what's inside the  folder. The following is a definition of a launch file
called :
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This launch file provides a socket-based connection to ABB robots using the standard ROS-
Industrial  protocol. Several nodes are started to supply both low-level
robot communication and high-level  support:

: This publishes the current joint positions and robot state data
: This commands the robot motion by sending

motion points to the robot
: This is the  interface to control the

robot motion

Their usage is as follows:

$ robot_interface.launch robot_ip:=IP_OF_THE_ROBOT [J23_coupled:=false]
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We can see the 
 file, and this is the driver for the ABB

IRB 6640 model. This definition of launch is given in the following code. The preceding
driver launch file is included in this launch file. In other support packages of other ABB
models, use the same driver with different joint configuration parameter files:

The preceding file is the manipulator-specific version of  (of
):

Defaults provided for IRB 2400: 
Usage: 

We should run the driver launch file to start communicating with the real robot controller.
For the ABB robot IRB 2400, we can use the following command to start bi-directional
communication with the robot controller and the ROS client:

$ roslaunch abb_irb2400_support robot_interface_download_irb2400.launch
robot_ip:=IP_OF_THE_ROBOT

After launching the driver, we can start planning by using the MoveIt! interface. It should
also be noted that the ABB robot should be configured and the IP of the robot controller
should be found before starting the robot driver.
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Understanding the MoveIt! IKFast plugin
One of the default numerical IK solvers in ROS is KDL. KDL is mainly using DOF > 6. In
robots DOF <= 6, we can use analytic solvers, which is much faster than numerical solvers,
such as KDL. Most of the industrial arms have , so it will be good if we make an
analytical solver plugin for each arm. The robot will work on the KDL solver too, but if we
want a fast IK solution, we can choose something such as the IKFast module to generate
analytical solver-based plugins for MoveIt!. We can check which are the IKFast plugin
packages present in the robot (for example, universal robots and ABB):

: This package contains IKFast solver plugins of UR-5 and UR-10
robots from Universal Robotics

: This package contains
IKFast solver plugins for the ABB robot model IRB 2400

We can go through the procedures to build an IKFast plugin for MoveIt!. It will be useful
when we create an IK solver plugin for a custom industrial robotics arm. Let's see how to
create a MoveIt! IKFast plugin for the industrial robot ABB IRB 6640.

Creating the MoveIt! IKFast plugin for the
ABB IRB 6640 robot
We have seen the MoveIt! package for the ABB robot IRB 6640 model. This robot works
with a default numerical solver. In this section, we will discuss how to generate an IK solver
plugin using IKFast, a powerful inverse kinematics solver provided within Rosen Diankov's
OpenRAVE motion planning software. At the end of this section, we can run the MoveIt!
demo of this robot, using our custom inverse kinematic plugin.

In short, we will build an IKFast MoveIt! plugin for robot ABB IRB 66400. This plugin can
be selected during the MoveIt! setup wizard or we can mention it in the

 file of the  package.
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Prerequisites for developing the MoveIt! IKFast
plugin
The following is the configuration we have used for developing the MoveIt! IKFast plugin:

Ubuntu 16.04 LTS x86_64 bit
ROS-kinetic desktop-full
Open-Rave 0.9

OpenRave and IK Fast modules
OpenRave is a set of command lines and GUI tools for developing, testing, and deploying
motion planning algorithms in real-world applications. One of the OpenRave modules is

, which is a robot kinematics compiler. OpenRave was created by a robotic
researcher called Rosen Diankov. The IKFast compiler analytically solves the inverse
kinematics of a robot and generates optimized and independent C++ files, which can be
deployed in our code for solving IK. The IKFast compiler generates analytic solutions of IK,
which is much faster than numerical solutions provided by KDL. The IKFast compiler can
handle any number of DOFs, but practically it is well suited for . IKFast is a
Python script that takes arguments such as IK types, robot model, joint position of the base
link, and end effector.

The following are the main IK types supported by IKFast:

: This end effector should reach the commanded 6D
transformation

: This end effector should reach the commanded 3D rotation
: This end effector origin should reach the desired 3D

translation

MoveIt! IKFast
The  package for MoveIt! contains tools to generate a kinematic solver plugin using
the OpenRave source files. We will use this tool to generate an IKFast plugin for MoveIt!.
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Installing the MoveIt! IKFast package
The following command will install the  package in ROS Indigo:

$ sudo apt-get install ros-kinetic-moveit-kinematics

Installing OpenRave on Ubuntu 16.04
Installing OpenRave on the latest Ubuntu is a tedious task. We will install OpenRave from
the source itself, using the following procedure:

Clone the source code in the preferred folder:1.

$ git clone --branch latest_stable
https://github.com/rdiankov/openrave.git

For compiling the source code, we need to install the following packages:2.

Install boost, Python development packages, and NumPy:

$ sudo apt-get install libboost-python-dev
$ python python-dev python-numpy ipython python-pip

Install scientific Python and its package to handle symbolic mathematics. Note3.
that the suggested version to work with OpenRave and Ubuntu 16.04 is :

$ sudo apt-get install python-scipy
$ pip install -v sympy==0.7.1

Install the open asset import library to handle 3D file formats:4.

$ sudo apt-get install libassimp-dev assimp-utils python-
pyassimp

Install the  toolkit:5.

$ sudo apt-get install libsoqt4-dev

Install the  file handling package. Clone it from the following Git6.
repository:

$ git clone https://github.com/rdiankov/collada-dom.git
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Join the  directory, create a build folder, and compile the software:7.

$ cd collada-dom && mkdir build && cd build
$ cmake ..
$ make && sudo make install

Now, we will see how to install  for configuring and generating8.
Makefiles from . The  project is based on CMake, so
we need this tool for generating Makefiles:

$ sudo apt-get install cmake-qt-gui

The first procedure of installing  is to generate the Unix Makefiles from
the  file: create a  folder inside the OpenRave cloned folder and
open  for configuring and building Makefiles. Browse the source code and the

 folder, as shown in the following screenshot, and after configuring, uncheck the
support for the MATLAB and Octave interfaces:
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Click on the Generate button to generate the Makefile in the selected  folder. Switch
to the  folder, build the code, and install using the following command:

$ make
$ sudo make install

After installing OpenRave, execute the following command to check that OpenRave is
working:

$ openrave

If everything works fine, it will open a 3D view port.

Creating the COLLADA file of a robot to
work with OpenRave
In this section, we will discuss how to use URDF robot models with OpenRave. Firstly, we
will see how to convert an URDF in a  file ( ) format; this file will be then used
to generate the IKFast source file. To convert a URDF model into a  file, we can use
a ROS package, called .

We will work with the ABB IRB 6640 robot model, which can be found in the
 package in the  folder named . Alternatively,

you can take this file from the  folder released with the book code. Copy this
file into your working folder and run the following command for the conversion:

$ roscore && rosrun collada_urdf urdf_to_collada irb6640.urdf irb6640.dae

The output of the previous command is the robotic model in the  file format.

In most of the cases, this command fails because most of the URDF file
contains STL meshes and it may not convert into DAE as we expected. If
the robot meshes in the DAE format, it will work fine. If the command
fails, follow this procedure:

Install  tool, for viewing and editing meshes, using the following command:

$ sudo apt-get install meshlab

Open meshes present at  in Meshlab
and export the file into DAE with the same name.
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Edit the  file and change the visual meshes in the STL extension to DAE.
This tool only process meshes for visual purposes only, so we will get a final DAE model.

We can open the  file, using OpenRave with the following command:

$ openrave irb6640.dae

We will get the model in OpenRave, as shown in the following screenshot:

We can check the link information of the robot by using the following command:

openrave-robot.py irb6640.dae --info links
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We can get the link info about the robot in the following format:

name          index parents
---------------------------------
base_link     0
base          1     base_link
link_1        2     base_link
link_2        3     link_1
link_4        5     link_3
link_5        6     link_4
link_6        7     link_5
tool0         8     link_6
link_cylinder 9     link_1
link_piston   10    link_cylinder
---------------------------------
name          index parents

Generating the IKFast CPP file for the IRB
6640 robot
After getting the link information, we can start to generate the inverse kinematic solver
source file for handling the IK of this robot. All the files needed to follow the tutorial of this
section are available in the source code folder, , provided with this book.
Alternatively, you can download this code by cloning the following Git repository:

$ git clone https://github.com/jocacace/ikfast_demo.git

Use the following command to generate the IK solver for the ABBIRB 6640 robot:

$ python `openrave-config --python-dir`/openravepy/_openravepy_/ikfast.py -
-robot=irb6640.dae --iktype=transform6d --baselink=1 --eelink=8 --
savefile=ikfast61.cpp

The preceding command generates a CPP file called  , in which the IK type
is , the position of the  is , and the end effector link is . We need
to mention the robot DAE file as the robot argument.

Before using this code with MoveIt!, we can test it with the  demo source.
This  has been modified to include the , as you can see
from the header file list:
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Compile the demo source files:

$ g++ ikfastdemo.cpp -lstdc++ -llapack -o compute -lrt

The previous command generates an executable called . If you run it without input
arguments, the program displays the usage menu. To get the forward kinematic solution,
given a set of joint angle values, use the following command:

$ ./compute fk j0 j1 j2 j3 j4 j5

Here,  represents the joint angle values in radians. To measure the
average time taken by the IKFast algorithm for a set of random joint angles, use the
following command:

$ ./compute iktiming

Now that we have successfully created the inverse kinematic solver CPP file, we can create
a MoveIt! IKFast plugin by using this source code.

Creating the MoveIt! IKFast plugin
Creating a MoveIt! IKFast plugin is quite easy. There is no need to write code; everything
can be generated using some tools. The only thing we need to do is to create an empty ROS
package. The following is the procedure to create a plugin:

Create an empty package in which the name should contain the robot name and1.
model number. This package is going to convert into the final plugin package,
using the plugin generation tool:

$ catkin_create_pkg abb_irb6640_moveit_plugins

Then, build the workspace by using the  command. You can also2.
download the ROS package from here:

$ git clone
https://github.com/jocacace/abb_irb6640_moveit_plugins.git

After building the workspace, copy  to3.
.

Copy the switch  previously created in the package folder,4.
renaming it . This filename
consists of the robot name, model number, type of robot, and so on. This kind of
naming is necessary for the generating tool.
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After performing these steps, open two terminals in the current path where the IK solver
CPP file exists. In one terminal, start the  command. In the next terminal, move in
to the  package and enter the plugin creation command, as follows:

$ rosrun moveit_kinematics create_ikfast_moveit_plugin.py abb_irb6640
manipulator abb_irb6640_moveit_plugins
abb_irb6640_manipulator_ikfast_solver.cpp

This command could fail due to a mismatch of the robot name specified into the URDF and
SRDF files. To work around this error, we need to change the name of the robot in the SRDF
file, placed into the . You change line
seven of this file from  to 

. Or simply replace this file with the one contained in the
 folder.

The  ROS package includes the 
script for the plugin generation. The first parameter is the robot name with the model
number, the second argument is the type of robot, the third argument is the package name
we created earlier, and the fourth argument is the name of the IK solver CPP file. This tool
needs the  package in order to work. It will search this
package using the given name of the robot. So, if the name of the robot is wrong, the tool for
raising an error will say that it couldn't find the robot  package.

If the creation is successful, the following messages will be displayed on the Terminal:
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As you can see from these messages, after creating the plugin, the
 file has been updated,

specifying  as the
kinematics solver. The updated version of the file is shown in the following code:

Now you can build the workspace again in order to install the plugin and start to operate
with the robot and the new IKFast plugin, launching the demo scene:

$ roslaunch abb_irb6640_moveit_config demo.launch

Questions
Here are some common questions that will help you better learn and understand this
chapter:

What are the main benefits in using ROS-Industrial packages?
What are the conventions followed by ROS-I in designing a URDF for industrial
robots?
What is the purpose of ROS' support packages?
What is the purpose of ROS' driver packages?
Why do we need an IKFast plugin for our industrial robot, rather than the default
KDL plugin?
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Summary
In this chapter, we have been discussing a new interface of ROS for industrial robots called
ROS-Industrial. We have seen the basic concepts in developing the industrial packages and
installed them on Ubuntu. After installation, we have seen the block diagram of this stack,
and started discussing developing the URDF model for industrial robots and also creating
the MoveIt! interface for an industrial robot. After covering these topics in detail, we
installed some industrial robot packages of Universal Robots and ABB. We have learned the
structure of the MoveIt! package and then shifted to the ROS-Industrial support packages.
We have discussed in detail and switched on to concepts such as the industrial robot client
and how to create the MoveIt! IKFast plugin. Finally, we used the developed plugin in the
ABB robot.

In the next chapter, we will look at troubleshooting and best practices in ROS software
development.
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Troubleshooting and Best

Practices in ROS
In this chapter, we will discuss how to set up an Integrated Development Environment
(IDE) with ROS, best practices in ROS, and troubleshooting tips in ROS. This is the last
chapter of this book, so before we start development in ROS, it will be good if we know the
standard methods for writing the code. The following are the topics that we are going to
discuss in this chapter:

Using RoboWare Studio IDE with ROS
Best practices in ROS
Best coding practices in ROS using C++
Important troubleshooting tips in ROS

Before we start coding in ROS, it will be good if we set up a ROS development environment
in an IDE. Setting up an IDE for ROS is not mandatory, but it can save developers time.
IDEs can provide auto completion features, as well as building and debugging tools that
can make programming easy. We can use any editor, such as Sublime and VIM, or simply
Gedit for coding in ROS, but it will be good if you choose IDEs when you are planning a big
project in ROS. For this reason, in this chapter we will focus on RoboWare Studio, an IDE
designed for ROS development. It makes the ROS development visual, simple, and
manageable. Besides the facilities it has for programming, RoboWare offers useful tools to
manage the ROS workspace, the creation, the handling, and the compilation of ROS nodes,
and the support-running ROS tools.
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Setting up RoboWare Studio in Ubuntu
Several IDEs are available in Linux such as Net Beans ( ), Eclipse
( ), and QtCreator ( ) and are suitable for
different programming languages. For building and running ROS programs from IDEs, the
ROS environment has to be set up. All IDEs might have a configuration file for that, but
running your IDE from your ROS-sourced shell should be the easiest way to
avoid inconsistency. In this section, we will discuss how to use RoboWare Studio IDE with
ROS. A comprehensive list of other IDEs that are configurable with ROS can be found
at .

RoboWare Studio is an IDE especially designed for working with ROS, supporting ROS
kinetic. The installation is quite easy, and automatically detects and loads an ROS
environment without additional configurations. RoboWare Studio has different out-of-the-
box features to help ROS developers to create their applications, such as a graphical
interface to create ROS packages, source files (as well as service and message files), and list
the nodes and packages.

Installing/uninstalling RoboWare Studio
To install RoboWare Studio, we need to download the installation file. Go to

 and download the latest version of the software. You can install
it either by double-clicking on the downloaded  file to open it with the package
manager GUI, or using the following commands in a terminal:

$ cd /path/to/deb/file/
$ sudo dpkg -i roboware-studio_<version>_<architecture>.deb

To remove the software, you can use the following command:

$ sudo apt-get remove roboware-studio

Getting started with RoboWare Studio
After you have installed RoboWare, you can start it from the command line:

$ roboware-studio
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The main window of RoboWare will be open. In the following list, we will discuss the main
elements of the RoboWare interface:

EXPLORER window: This panel displays the contents of the  directory of the1.
ROS workspace. From this panel, you can navigate all the ROS packages installed
into your ROS workspace.
NODE: In this panel, you can access all the nodes compiled inside the workspace.2.
Nodes are folded inside packages. You can run the nodes using this panel.
EDITOR: In this panel, you can edit the source code of the packages.3.
TERMINAL and OUTPUT: This panel allows developers to use a Linux terminal4.
integrated inside the IDE and check for possible errors during compilation.
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Before we start editing our source codes, we should import the ROS workspace into
RoboWare. On the main toolbar, select File | Open Workspace, and choose the directory
representing the ROS workspace. All the packages located in the  directory are now
shown in the explorer window:

Create ROS packages in RoboWare Studio
As already stated, RoboWare Studio allows developers to manage ROS projects directly
from its user interface without using the Linux terminal or editing the 
file. In this section, we will discuss how to create and handle ROS packages in RoboWare.
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To create a complete ROS package with CPP executables, follow these steps:

Let's create the package. Right-click on the  folder of the ROS workspace from1.
the explorer window and select Add ROS Package. Type the name for the
package. A new ROS package will be created. In our case, we are creating a
package called :

Now let's create the source code directory. Right-click on the package name in the2.
explorer window and select Add Src Folder:
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Let's create the source file. Right-click on the created  folder and select 3.
. After you have inserted the name of the source file, RoboWare will

ask you to specify whether this file is part of a system library or an
executable select the Executable entry:

Now let's add the package dependencies. We can add the desired dependencies4.
for the package. Right-click on the package name in the explorer window and
select Edit catkin ROS Package Dependencies. An input bar will allow us to
insert the dependencies list. For example, we can add the  and the
std_msgs dependencies:

During these four steps, RoboWare Studio fills the  file in order to
compile the desired executable. We can look in the updated  file of

:
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As you can see from the generated  file, the executable and the additional
libraries have successfully been added. Similarly, we can add ROS messages, services, and
actions. We are now ready to write some code in the source file and build it.

Building ROS workspace in RoboWare Studio
RoboWare Studio supports both a release build and a debug build for local and remote
compilation and deployment of ROS packages. In this tutorial, we will configure RoboWare
to compile the release version of the local development mode. To select the compilation
mode, use the drop-down menu from the explorer panel:

To compile the workspace, use the main toolbar to select ROS | Build entry (or type
Ctrl + Shift + B). The output of the compilation process is shown in the Output pane.

By default, RoboWare Studio compiles all packages inside the workspace (such as
the  command). In order to manually specify one or more packages to build,
we can right-click on the desired packages and select Activate ROS Package to activate it.
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In this way, when we click the build button, only the ones that are activated will be
compiled, while the deactivated packages will be marked with a strikethrough, as shown in
the following figure:

We can reset the active packages configuration by selecting Activate All ROS Package in
the explorer window.

Executing ROS nodes in RoboWare Studio
You can run ROS nodes by using both the  and  commands.

First of all, we should create a launch file for our package. To do this, right-click on the
package name and select Add Launch Folder to create a folder named . Then, right-
click on the launch folder and select Add Launch File to add a new file. After we have filled
the launch file, we can simply right-click on the launch file's name and select Run Launch
File:
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To execute an ROS node using the  command, we must select the desired executable
from the node list. This will open the node window that will allow us to perform different
actions on that node. For example, clicking on Run this file will start the execution of the
node:

The output of the node can be viewed by the users from the debug console window.
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Starting ROS tools from the RoboWare interface
RoboWare Studio allows developers to run the some of the most commonly used ROS tools.
To access these tools, use the ROS menu in RoboWare's top toolbar to unfold the drop-
down menu shown in the following figure:

You can directly run  from this menu or access these commonly used tools:

In addition, you can directly open your  file in the file editor and manually modify
the system configuration. Moreover, you can run a remote  by selecting the Run
Remote roscore option.

You can monitor the execution of these ROS commands from the terminal panel, where a
new terminal is opened for each ROS tool and external windows are opened for the
visualization tools:
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Handling active ROS topics, nodes, and services
To view the ROS topics, nodes, and services active in your system at a certain time, click on
the ROS icon on the left-hand sidebar. The list of the information traveling along the

 is shown in each box, and we can display the contents of each ROS message by
clicking on the topic name:
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In the example shown in the previous figure, we have chosen to display data published on
the topic /numbers of type .

We can even record and play ROS bagfiles from RoboWare. To start recording a bagfile,
click on the Record ROS Topic button near the Active Topics panel, as shown in the
following figure. Clicking on this button, all the active topics of the system will be recorded.
The generated bagfile will be saved in the root directory of the workspace, with the naming
format . To stop the recording, you have to type Ctrl + C in the
Terminal window. If you want to record one or more specific topics, select them by pressing
the Ctrl key and then clicking on the rosbag record button:

To play a bagfile, you can right-click on the bagfile name from the explorer window and
click on Play Bag File:
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Creating ROS nodes and classes with RoboWare
tools
RoboWare Studio provides a wizard procedure to create C++ and Python classes and ROS
nodes. To create a ROS node, do the following:

Right-click on the package name and select either Add C++ ROS Node or Add1.
Python ROS Node.
Type the name of the package.2.
By default, two source files will be created: an example of a publisher and a3.
subscriber node. For example, if you inserted  as a package name, a

 file and a  file will be created.
Compile the package. The  file has already been updated4.
according to the newly created nodes. You can remove the publisher or the
subscriber in case you don't need them; the  file will be
automatically updated.

As well as ROS nodes, we can create C++ classes using the following method:

Right-click on the package name1.
Choose Add C++ Class2.
Type the name of the class for example, 3.
A header file will be created in the  directory of the package named4.

, while a CPP file named  will be
added to the  directory
Select an executable to link the class just created, in order to import the class into5.
another ROS node of the package
The  will be updated automatically6.

ROS package manager in RoboWare Studio
From the RoboWare Studio interface, we can install or explore the available ROS packages
via the ROS package manager panel. To access this panel, click on the ROS Packages
Manager icon in the left-hand side bar. RoboWare will automatically detect the ROS
distribution in use and the list of the package already installed in the ROS package path.
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From this panel, we can navigate through the packages available in the ROS repository,
choosing between packages and meta-packages. You can click the package name to view its
wiki page directly in RoboWare Studio, and install or uninstall the desired package:

Best practices in ROS
This section gives you a brief idea of the best practices that can be followed when we
develop something with ROS. ROS provides detailed tutorials about its QA (quality
assurance) process. A QA process is a detailed developer guide that includes C++ and
Python code style guides, naming conventions, and so on. First, we will discuss the ROS
C++ coding styles.
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ROS C++ coding style guide
ROS C++ nodes follow a coding style to make the code more readable, debuggable, and
maintainable. If the code is properly styled, it will be very easy to reuse and contribute to
the current code. In this section, we will quickly go through some commonly used coding
styles.

Standard naming conventions used in ROS
Here we are using the text HelloWorld to demonstrate the naming patterns we use in ROS:

: This name starts with an uppercase letter, and each new word
starts with an uppercase letter with no spaces or underscores.

: In this naming convention, the first letter will be lowercase, but
new words will be in uppercase letters without spaces.

: This only contains lowercase letters. Words are separated with
underscores.

: All letters are uppercase letters. Words are separated by an
underscore.

The following are the naming conventions followed by each component in ROS:

Packages, topics/services, files, libraries: These ROS components follow the
 pattern

Classes/types: These classes follow the  naming convention for
example, 
Functions/methods: Functions follow the  naming convention and
function arguments follow the  pattern for example, 

.
Variables: Generally, variables follow the  pattern
Constants: Constants follow the  pattern
Member variables: The member variable inside a class follows the 
pattern with a trailing underscore added for example, 
Global variables: Global variables follow the  convention with a
leading g_ for example, 
Namespace: This follows the  naming pattern
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Code license agreement
We should add a license statement at the top of code. ROS is an open source software
framework, and it's in the BSD license. The following is a code snippet of LICENSE, which
must be inserted at the top of the code. You will get the license agreement from any of the
ROS nodes from the main repository. You can check the source code
from the ROS tutorial at :

For more information about the various licensing schemes in ROS, refer
to .

ROS code formatting
One thing that needs to be taken care of while developing code is its formatting. One of the
basic things to remember with formatting is that each code block in ROS is separated by
two spaces. The following is a code snippet showing the formatting:

The following is an example code snippet in the ROS standard formatting style:
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Console output
Try to avoid  or  statements for printing debug messages inside ROS nodes.

We can use  ( ) for printing debug messages
from ROS nodes, instead of  or  functions. Rosconsole offers timestamped
output messages, automatically logs the printed messages, and provides five different
levels of verbosity. For detailed coding styles, refer to

.
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Best practices in the ROS package
The following are the key points to bear in mind while creating and maintaining a package:

Version control: ROS supports version control using Git, Mercurial, and
Subversion. We can host our code in GitHub and Bitbucket. Most of the ROS
packages are in GitHub.
Packaging: Inside an ROS catkin package, there will be a , and this
file should contain the author name, description, and license.
The following is an example of a :

Important troubleshooting tips in ROS
We will now look at some of the common issues that are experienced when working with
ROS, as well as tips on how to solve them.
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One of ROS in-built tools to find issues in an ROS system is .  is a command-
line tool that checks for issues in the following areas of ROS:

Environment variables and configuration
Packages or meta-packages configuration
Launch files
Online graphs

Using roswtf
We can check the issues inside an ROS package by simply going into the package and
entering . We can also check for issues in our ROS system by entering the following
command:

$ roswtf

This command generates a report about the health of the system for example, in the case
of a wrong ROS hostname and master configuration, we will have the following report:

We can also run  on launch files to search for potential issues:
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The wiki page of  is available at .

The following are some of the common issues faced when working with ROS:

Issue 1:
Error message: Failed to contact master at [localhost:11311]. Retrying...

Solution: This message comes when the ROS node executes without running
the  command or checking the ROS master configuration.

Issue 2:
Error message: Could not process inbound connection: topic types do not match

Solution: This happens when there is a topic message mismatch, where we
publish and subscribe a topic with a different ROS message type.

Issue 3:
Error message: Couldn't find executables

Solution: This error could occur for different reasons. One error could be the
wrong name of the executable specified from the command line or the
missing name of the executable in the ROS package. In this case, we should
check its name inside the .
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Issue 4:
Error message: roscore command is not working

Solution: One of the reasons that can hang the  command is the
definition of  and . When we run ROS on multiple
computers, each computer has to assign its own IP as , and

 as the IP of the computer that is running . If this
IP
is incorrect,  will not run. This error can be generated by assigning
an incorrect IP on these variables.

Issue 5:
Error message: Compiling and linking errors
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Solution: If the  has no dependencies, which are required
to compile the ROS nodes, it can show this error. We have to check the
package dependencies in  and . Here, we are
generating this error by commenting  dependencies:

Some of the troubleshooting tips from the ROS wiki are given at
.

Questions
Why do we need an IDE to work with ROS?
What are the common naming conventions used in ROS?
Why is documentation important when we create a package?
What is the use of the  command?

Summary
In this chapter, we have seen how to work with the RoboWare Studio IDE, how to set up
the ROS development environment inside the IDE, how to create nodes and packages, and
how to manage ROS data. After setting up ROS in RoboWare, we discussed some of the
best practices in ROS, looking at naming conventions, coding styles, best practices while
creating an ROS package, and so on. After discussing best practices, we looked at ROS
troubleshooting. In the troubleshooting section, we discussed various troubleshooting tips
that we need to bear in mind when we work with ROS.
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